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To: Marian Rejewski and Herman Kahn, 
Master Empirical Model Builders 

Marian Rejewski cracked the Enigma Code in 1932, 
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German submarines in World War II. 

The writings of Herman Kahn provided the basis for the 
Reagan-Kohl Pershing II strategy which brought down the 

"evil empire" without firing a shot. 
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Preface 

That mathematics is not a science because it exits in a Platonic world of abstraction 
was well argued by the late John W. Tukey. Statistics, on the other hand, deals with 
data from the real world. Hence statistics can be claimed to be a science, to the ex-
tent that its practitioners focus on data analysis including model inferences based on 
data. Many scholars have believed that Tukey (himself a brilliant topologist) made a 
mistake in taking statistics out from under the umbrella of mathematics. Indeed, 
some members of the departments of statistics seldom, if ever, look at a set of data, 
contenting themselves with elegant data-free mathematical structures. Many a 
named chair has been awarded to a "statistician" who contented himself/herself with 
developing tests (seldom used in actual data analysis), and then proceeding to prove 
the asymptotic optimality of such tests under idealized conditions. 

The father of Exploratory Data Analysis, John Tukey, took the position that indi-
viduals who avoid data from the real world, be they ever so elegant mathematically, 
are not practicing statistics but mathematics. Tukey went further and argued that 
those who did only apply to data standardized tests of models of other scientists 
were confining themselves unnecessarily to "confirmatory data analysis." He want-
ed statisticians to be more original than that. It was better if data analysis were done 
in an exploratory fashion. In other words, he wanted statisticians to be key players 
in science. They should examine data without relying too much on existing theories, 
and try to make inferences about real world systems. 

Statistics is older than mathematics. Moses did carry out a census of the number 
of warriors in the Jewish tribes in 1452 ВС. Не made inferences from his census 
about the logistics of caring for his people and the military conquest of Canaan. 
Furthermore, I would submit that Thucydides, who wrote a fairly objective account 
of the Peloponnesian War between 431 ВС and 411 ВС (the war continued until 404 
ВС, but Thucydides apparently did not live to see the end of it), should be consid-
ered the father of time series analysis, an important subcategory of statistics. 

Centuries later, geostrategist Herman Kahn (who was a major player in Monte 
Carlo simulation) argued from historical patterns and extrapolations how best to 
overcome the Soviet threat to the Free World. He was going further than Thucydides 
in that he was not only talking about qualitative facts in the past, but was extrapolat-
ing into an unknown future what would be the likely results of various strategies 
first to contain and then to destroy politically the Soviet Union. In other words, he 

xiii 
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xiv PREFACE 

engaged in Extrapolatory Data Analysis. The Reagan-Kohl Pershing II strategy was 
one almost taken right out of the pages of Kahn 's numerous books. 

Yet many scholars would argue that neither Thucydides nor Kahn could be con-
sidered statisticians. 

In my own professional experience, I have had the good fortune of working in 
the building of practical models in such fields as oncology, tall building construc-
tion, manufacturing, epidemiology, military strategy, remote sensing, public policy, 
market analysis, nonparametric data-based estimation of functions, and others. Sel-
dom have I been able to sit inside the box of standardized theories, statistical or oth-
erwise. I always had to climb outside the box and use data to build appropriate mod-
els for dealing with the problem at hand. 

The purpose of this book is not only to add to the arsenal of tools for using data 
to build appropriate models, but to give the reader insights as to how he/she can take 
his/her own direction for empirical model building. From my own experience in ob-
taining a bachelor's degree in engineering from Vanderbilt and a doctorate in math-
ematics from Princeton, I can say that I seldom use directly the tools learned in my 
university education. But it is also true that an understanding of those mechanisms 
has been of significant help in my career in data analysis and model building. 

In Chapter 1,1 consider topics in growth, including population growth, tax poli-
cy, and modeling tumor growth and its chemotherapeutic control. Parts of this chap-
ter are simple from a mathematical standpoint, but the entire chapter has important 
implications for optimization and control. The so-called Malthusian theory is an ex-
ample of a model that makes logical sense, absent data, but is seriously flawed when 
compared with reality. It is also noted that Malthus's ideas led to Social Darwinism 
and the unnecessary horror of the Irish potato famine. 

Chapter 2 starts with an attempt to use data from the Old Testament to make in-
ferences about the growth of the Jewish population starting with 1750 ВС and end-
ing with the fall of the Kingdom of David in 975 ВС. Then we examine John 
Graunt's creation of the life table analysis of the demographic effects of the London 
plague of the sixteenth and seventeenth centuries. Then we delve into the data-based 
combat modeling started by Georg von Reisswitz and carried through with great 
success by Lanchester. Although easily computerized and data-modifiable, the U.S. 
Department of Defense, since the time of Robert McNamara has opted for non-
data-based, noninteractive computer games such as Castforem. The work of the late 
Monte Carlo innovator, Herman Kahn, working without federal support in creating 
the strategy used by Reagan and Kohl to bring down the USSR, is also discussed. 

Models for coping with contagious epidemics are presented in Chapter 3. We 
start with the laws of Moses concerning leprosy. We then proceed to John Snow's 
halting of the East End cholera epidemic of the mid-1800s. Each of these epidemics 
was more or less successfully dealt with sociologically. We then suggest that the 
AIDS epidemic that has killed over 600,000 Americans could have been prevented 
in the United States if only the simple expedient of closing the gay bathhouses had 
been followed. We note that sociological control of epidemics should not be ne-
glected. The United States has much the highest number of AIDS cases per hundred 
thousand in the First World (over ten times that in the United Kingdom). The failure 
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of the Centers for Disease Control to shut down the gay bathhouses is shown to be a 
plausible explanation of why AIDS continues to thrive in the United States. An ar-
gument is made that the United States may be "country zero" for the First World 
epidemic. 

Chapter 4 deals with the bootstrap work of Julian Simon, Bradley Efron, and Pe-
ter Bruce. This computer-intensive resampling technique has revolutionized statis-
tics. The classic zea mays data set from Fisher's The Design of Experiments is rean-
alyzed using various bootstrapping techniques. Then we deal with some rather 
unusual problems successfully handled by bootstrap techniques. 

In Chapter 5 we show the importance of simulation in solving differential equa-
tions which do not admit of closed-form solutions (i.e., most of them). Particularly 
for partial differential equations in dimensions higher than three, simulation be-
comes virtually our only recourse. 

I have often been approached by clients who wanted me to increase the size 
of their data sets by statistical means. That is generally not doable. However, the 
SIMDAT algorithm can build a continuous nonparametric density estimation base 
of pseudo-data around and within the neighborhood of an existing set which avoids 
such anomalies as suggesting that ammunition be stored in a section of a tank where 
there was no data but is shown from the nonparametric density estimator approach 
to be very vulnerable indeed. For many problems it is easy to write down the plausi-
ble axioms which have generated a data set. However, it is rarely the case that these 
axioms lead to a ready representation of the likelihood function. The problem is that 
the axioms are written in the forward direction, but the likelihood requires a back-
ward look. The SIMEST algorithm allows a temporally forward approach for deal-
ing with the estimation of the underlying parameters. SIMDAT and SIMEST are de-
veloped in Chapter 6. 

Chapter 7 is a brief survey of the exploratory data analysis paradigm of John 
Tukey. He viewed statistics not just as a device by which models developed by non-
statisticians could be confirmed or rejected on the basis of data. He wanted statisti-
cians to be on the cutting edge of discovery. He noted that exploration of data could 
be used to infer structures and effect inferences and extrapolations. EDA has great-
ly expanded the creativity horizons for statisticians as generalists across the scientif-
ic spectrum. 

Chapter 8 is devoted to what I consider to be shortlived fads. Fuzzy logic and 
catastrophe theory have been shown to be inadequate tools. Chaos theory is not 
such a hot topic as formerly, but it still has its followers. The fads tend to build anti-
Aristotelian structures not really sensitive to data. If we build a mathematical model 
that is not to be stressed by data, then we have entered the realm of postmodernism 
where everyone gets to create his/her own reality. Simply showing a mathematical 
structure does not indicate that structure conforms to anything in the real world. 
Nevertheless, I show that even if one does look at some of the artificial models of 
chaos theory, the addition of a slight amount of noise can frequently bring the 
chaotic model to something which does conform to real-world data bases. 

Some professors of statistics believe that Bayesian data analysis is the only way 
to go. Bayesian theory has a lot to be said for it. For example, it gets around the 
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claim of Karl Popper that statistics can only demolish hypotheses, never confirm 
them. Over the years, the use of noninformative prior distributions has seemingly 
weakened a major raison d'etre of Bayesian analysis. In Chapter 9, the author at-
tempts to give a data-based exposition of Bayesian theory, including the EM algo-
rithm, data augmentation, and the Gibbs sampler. 

There used to be surveys performed to decide who the most important living sta-
tistician was. Sometimes John Tukey would come in first. At other times it would be 
Edward Deming, the developer of Statistical Process Control. In Chapter 10 we go 
beyond the normal low-dimensional analysis advocated by Deming to show how 
higher-dimensional control charts can be constructed and how nonparametric as 
well as parametric tests can be used. 

In Chapter 11 we investigate procedures where optimization may be readily im-
plemented in the real world, which is generally noisy. We particularly emphasize al-
gorithms developed by the statisticians Neider and Mead which are amazingly use-
ful in this age of swift computing. Lawera and Thompson built upon the piecewise 
quadratic optimization technique used in the rotatable experimental designs of the 
statisticians Box and Hunter. 

Chapter 12 shows how no lesser a person than the author of The Declaration of 
Independence, Thomas Jefferson, persuaded President Washington to veto the 
rather reasonable and transparent allocation rule of Alexander Hamilton for the allo-
cation of congressmen across the various states in favor of Jefferson's rule favoring 
the large population states (at that time Jefferson's Virginia was the largest). This 
first use of the Presidential veto is simply an example of the fact (pointed out by 
Jefferson earlier) that one should take the statements of politicians with a very large 
grain of salt. We show the basis of the utility theory of Bernoulli as well as that of 
Morgenstern and von Neumann. Finally, we present the Nobel Prize winning Im-
possibility Theorem of Kenneth Arrow which demonstrates the fact that group deci-
sions which make everybody happy can never be constructed. 

Chapter 13 is a brief practicum in sampling theory. The author has experience 
consulting in this area and believes that a great deal can be achieved by the use of 
transparent and relatively simple strategies. 

In Chapter 14 it is shown how efficient market theory including capital market 
theory and the derivative approaches which proceed from the Nobel Prize winning 
work of Black, Scholes, and Merton are inconsistent with market data. The efficient 
market hypothesis has dominated finance, as taught in schools of business, for 
decades, much to the disadvantage of investors and society as a whole. As an alter-
native, it is demonstrated how computer-intensive and momentum-based strategies 
may be created which significantly best the market cap Index Fund strategies that 
proceed from capital market theory. Serious doubt is cast on the practice of the 
vending of uncovered call options. Most importantly, this chapter attempts to show 
young investors how they can develop their own strategies for purchasing stocks in 
an age where wars of choice (based on information later declared to be false), bad 
Federal Reserve policy, and the financing of houses to persons unable to pay off the 
mortgages have produced conditions where inflation becomes almost a certainty. 
The author has no magic rule for making the reader rich, but he gives the kind of in-
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formation which is assuredly useful in showing him/her how to plan for using the 
market as a vehicle for obtaining a measure of financial security. 

This work was supported in part by the Army Research Office (Durham) 
(W91 lNF-04-1-0354) Some Topics in Applied Stochastic Modeling, Risk Analysis 
and Computer Simulation. I would like to thank my mentor John Tukey and my col-
leagues Katherine Ensor, Scott Baggett, John Dobelman, Ed Williams, David Scott, 
Chapman Findlay, Jacek Koronacki, Webster West, Martin Lawera, Marc Elliott, 
Otto Schwalb, William Wojciechowski, Steven Boswell, Rachel MacKenzie, Neely 
Atkinson, Barry Brown and Ricardo Affinito. At John Wiley & Sons, I would like to 
thank my editor, Stephen Quigley. 

Finally and most importantly, I wish to thank my wife, Professor Ewa Thompson, 
for her continuing love and encouragement. 
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Chapter 1 

Models of Growth and 
Decay 

1.1 A Simple Pension and Annuity Plan 

It is almost always the case that everything we plan for is, in actuality, 
an approximation to what might happen. The distinction between "sci-
ence" and "engineering" frequently has to do with the difference between 
models of Newtonian precision and approximations to a reality only par-
tially understood. The fact is, of course, that Newton's laws are themselves 
approximations. It is true that we can much more accurately design an 
authomobile than we can plan an economy. However, though the author 
absolutely believes in objective reality, he understands that he is unlikely to 
find it in any physical or social system. As St. Paul said, Ve see through 
a glass darkly,"(1 Corintians 13:12, King James Version). Of course some 
visions are cloudier than others. But, truth be told, if science is the study of 
precise reality and engineering is the study of approximations to that real-
ity, then almost every scientist is actually an engineer. Frequently, physical 
scientists look down on the social sciences because the models in the physi-
cal sciences are more precise and more accurate. But, in reality, we are most 
of us empirical modelers doing the best we can, making logical inferences 
based on data, to understand what is going on and what will happen. 

One easy introduction to the subject of growth models is obtained by 
considering an accounting situation, because such systems are relatively 
well defined. A pension and annuity plan is generally axiomatized clearly. 

As a practical matter, pension funds in the United States are becoming 
much less generous than was the case in years past. A major reason for the 
distress of companies such as General Motors was the large liability built up 

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R. 
Thompson ©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons. 

1 

Chapter 1 

Models of Growth and 
Decay 

1.1 A Simple Pension and Annuity Plan 

It is almost always the case that everything we plan for is, in actuality, 
an approximation to what might happen. The distinction between "sci­
ence" and "engineering" frequently has to do with the difference between 
models of Newtonian precision and approximations to a reality only par­
tially understood. The fact is, of course, that Newton's laws are themselves 
approximations. It is true that we can much more accurately design an 
authomobile than we can plan an economy. However, though the author 
absolutely believes in objective reality, he understands that he is unlikely to 
find it in any physical or social system. AB St. Paul said, ''we see through 
a glass darldy,"(1 Corintians 13:12, King James Version). Of course some 
visions are cloudier than others. But, truth be told, if science is the study of 
precise reality and engineering is the study of approximations to that real­
ity, then almost every scientist is actually an engineer. Frequently, physical 
scientists look down on the social sciences because the models in the physi­
cal sciences are more precise and more accurate. But, in reality, we are most 
of us empirical modelers doing the best we can, making logical inferences 
based on data, to understand what is going on and what will happen. 

One easy introduction to the subject of growth models is obtained by 
considering an accounting situation, because such systems are relatively 
well defined. A pension and annuity plan is generally axiomatized clearly. 

As a practical matter, pension funds in the United States are becoming 
much less generous than was the case in years past. A major reason for the 
distress of companies such as General Motors was the large liability built up 

o Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R. 
Thompson ©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons. 

1 



2 MODELS OF GROWTH AND DECAY 

over years to provide pensions and health care plans for their workers. For 
many small companies, there now simply are no pension funds beyond the 
federally mandated Social Security. A company is obliged to pay slightly 
more than 7% of a worker's salary into Social Security. The worker must 
match this. Insofar as the company's contribution is concerned, it is tax 
deductible. The worker's portion is not tax deductible. So an average 
worker is faced with the necessity of a "payroll tax" for income that is 
put somewhere in the maze of federal funds and is frequently spent out as 
though it were ready cash money. This is a kind of double whammy. In 
a sense, the worker is taxed on money that she does not receive. Then, 
when she starts to collect Social Security, a middle class employee is taxed 
a third time on 85% of monies received. 

Typically, many employers are very concerned about the welfare of their 
workers. We recall that in 1908 Henry Ford instituted the 40-hour week 
and the minimum daily wage of $5. He also started at the same time a 
profit-sharing plan for his workers. He provided, at low mortgage rates, 
simple two-bedroom houses for his workers. We recall that this was 100 
years ago when the majority of workers were not so blessed with so kindly 
an employer. 

Unions tended to develop adversarial attitudes toward managers, whom 
they felt cared Uttle about the welfare of the workers. Wage structures and 
benefit plans began to be increasingly divorced from economic reality. A 
plan that deferred some wage benefits into future retirement funds might 
be very attractive to a manager who was making promises that he would 
not have to meet in his own professional lifetime. 

We will consider below a possible minimal pension fund. It is referred to 
as an Individual Retirement Account (IRA). Properly structured, the con-
tribution of the worker and that of the employer are both tax deductible. 
At the time of retirement, the worker will receive monthly payments ac-
cording to a mutually agreed upon plan. On these payments, he or she will 
pay taxes as though the annuity payments were ordinary income. 

Suppose that we set up a pension plan for an individual who starts work-
ing for a firm at age Λ7Ί, retiring at age N2- The starting salary is Si at age 
N1 and will increase at rate a annually. The employer and employee both 
contribute a fraction /3/2 of the salary each year to the employee's pension 
fund. The fund is invested at a fixed annual rate of return 7. We wish to 
find the value of the employee's pension fund at retirement. Furthermore, 
we wish to know the size of the employee's pension checks if he invests his 
pension capital at retirement in a life annuity (i.e., one that pays only dur-
ing the employee's lifetime, with no benefit to his heirs at time of death). 
Let the expected death age given survival until N2 be denoted by ΛΓ3. 

Many investigators find it convenient to consider first a pilot study with 
concrete values instead of algebraic symbols. For example, we might try 
5X = $40,000;iVi = 21; N2 = 65; a = 0.02; ß = 0.0705; 7 = 0.05; N3 = 75. 
The values of a and 7 are rather low. The value of ß is roughly half the 
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value used at present in the U.S. Social Security System. The value of 
N2 is the same as the present regular Social Security retirement age of 65. 
No allowance is made for annual losses from taxation, since pension plans 
in the United States generally leave the deposited capital untaxed until 
the employee begins his or her annuity payments (although the employee 
contributions to Social Security are taxed at full rate). 

First, we note that at the end of the first year the employee will have 
approximately 

P(l) = /35(1) = (0.0705)$40,000 = $2820 (1.1) 
invested in the pension plan. This will only be an approximation, be-
cause most salaried employees have their pension fund increments invested 
monthly rather than at the end of the year. We shall use the approximation 
for the pilot study. 

At the end of the second year, the employee will have approximately 

P(2) = ßS(2) + (1 + 7)P(1) = (0.0705)5(2) + 1.05($2820), (1.2) 

where 

5(2) = (1 +a)5( l ) = 1.025(1) = 1.02($20,000) = $20,400. 

Thus, we have that P(2) = $5837, Similarly, 

P(3) = /35(3) + (1 + 7)P(2) = (0.0705)5(3) + 1.05($5837), (1.3) 
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So P(3) = $9063«. By this point, we see how things are going well enough 
to leave the pilot study and set up the recurrence relations that solve the 
problem with general parameter values. Clearly, the key equations are 

5(j + l) = (l + a)5(j) (1.4) 
and 

P(j + l) = ßS(j) + (l+f)P(j), for j = l,2,...,N2-N!. (1.5) 
Moreover, at this point, it is easy to take account of the fact that pension 

increments are paid monthly via 

5(j + l) = (l + a)5(j), for j = l ,2, . . . ,JVa-tf i , (1.6) 
and 

^(< + 1) = ^ ϋ ) + (ΐ + ^ ) ^ ( 0 , for i = 0,1,2,.. . , 11, (1.7) 
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Figure 1.1. Subroutine annuity (Ni9N2,S,a9ßff). 

where PJ+i(0) = Pj (12). This system can readily be programmed on a 
handheld calculator or microprocessor using the simple flowchart in Figure 
1.1. We find that the total stake of the employee at age 65 is a respectable 
$450,298 (recall that we have used an interest rate and a salary incremen-
tation consistent with a low inflation economy). We now know how much 
the employee will have in his pension account at the time of retirement. 
We wish to decide what the fair monthly payment will be if he invests the 
principal P(N2) in a life annuity. Let us suppose that actuarily he has a 
life expectancy of N3 given that he retires at age ЛГ2. То do this, we first 
compute the value to which his principal would grow by age JV3 if he simply 
invested it in an account paying at the prevailing interest of 7. But this 
is easily done by using the preceding routine with 5 = 0 and setting JVi 
equal to the retirement age N2 and N2 equal to the expected time of death 
ÌV3. So we determine that using this strategy, the principal at the expected 
time of death is computed to be Р(ЛГз). 

4 

Nl 
N2 

8 
P 
a 
f3 
'Y 

Year 

Month 

"'P 
Month 

Is Month 

If "no" 

If ''yes'' 

Year 

8 

Month 

Is Year 

If "no" 

If "yes" 

MODELS OF GROWTH AND DECAY 

= 

= 
= 
= 
= 

= 
= 

go to·· 

continue 

= 

= 

continue 

Return P 

starting age of employment 

retirement age 

starting salary 

starting principal 

annual rate of increase of salary 

fraction of salary contributed by employee 

annual rate of increase of principal in fund 

Nl 
1 
�8+ (1 + �) P 6 12 
Month + 1 
13? 

Year + 1 

8(1 +a) 
1 
N2+1? 
go to'" 

Figure 1.1. Subroutine annuity (NhN2,8,a,(3,'Y). 

where Pj+1(O) = Pj(12). This system can readily be programmed on a 
handheld calculator or microprocessor using the simple flowchart in Figure 
1.1. We find that the total stake of the employee at age 65 is a respectable 
$450,298 (recall that we have used an interest rate and a salary incremen­
tation consistent with a low inflation economy) . We now know how much 
the employee will have in his pension account at the time of retirement. 
We wish to decide what the fair monthly payment will be if he invests the 
principal P(N2) in a life annuity. Let us suppose that a.ctuarily he has a 
life expectancy of N3 given that he retires at age N2• To do this, we first 
compute the value to which his principal would grow by age N3 if he simply 
invested it in an account paying at the prevailing interest of 'Y. But this 
is easily done by using the preceding routine with 8 = 0 and setting Nl 
equal to the retirement age N2 and N2 equal to the expected time of death 
N3• So we determine that using this strategy, the principal at the expected 
time of death is computed to be P(N3). 
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The monthly payments of the life annuity should be such that if they 
are immediately invested in an account paying at rate 7, then the total 
accrued principal at age N3 will be P(Ns). Let us suppose a guess as to 
this payment 

X = guess as to fair monthly return 
Ρ(Ν2) = principal at retirement 

7 = annual rate of return on principal 
N2 = retirement age 
N3 — expected age at death given survival until age N2 

η \ N3-N2 

P(N3) = P(N2)(l + l ) 

** Call Annuity (iV2,JV3,X,0,6,7) 
Compare P with desired monthly payout 
Make new guess for X and return to** 

Figure 1.2. Program trial and error. 

is X. Then we may determine the total principal at age N3 by using 
the flowchart in Figure 1.1 using S — Χ , α = 0,/? = 6,7 = 7,iV"i = 
(retirement age) N2, N2 = (expected age at death)i\F3. We can then find 
the fair value of monthly payment by trial and error using the program 
pwreviously flowcharted in Figure 1.1. 

We note that if the pensioner invests his principal at retirement into a 
fund paying 5% interest compounded monthly with all dividends reinvested, 
then at the expected death date he would have at that time a total principal 
of $741,650. 

/ 0 n^ \ ( 7 5"6 5 ) 1 2 

P(NZ) = $450,298 ( 1 + ^ - J = $741,650. (1.8) 

Now on a monthly basis, the pensioner should receive an amount such 
that if he invested each month's payment at 5%, then at age 75 his stake 
would have increased from $0 to $741,650. As a first guess, let us try a 
monthly payout of $5000. Using the program in Figure 1.2, we find a stake 
of $776,414. Since this is a bit on the high side, we next try a payout 
rate of $4,500—producing a stake at age 75 of $737,593. Flailing around 
in an eyeballing mode gets us to within one dollar of Р(.Л7з) in a number 
of iterations highly dependent on the intuition of the user. Our number of 
iterations was nine. The equitable monthly payout rate is $4,777. 

It should be noted in passing that we have not taken into account the 
effect of inflation. What would the value of the first monthly payment be 
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that if he invested each month's payment at 5%, then at age 75 his stake 
would have increased from $0 to $741,650. AB a first guess, let us try a 
monthly payout of $5000. Using the program in Figure 1.2, we find a stake 
of $776,414. Since this is a bit on the high side, we next try a payout 
rate of $4,500-producing a stake at age 75 of $737,593. Flailing around 
in an eyeballing mode gets us to within one dollar of P(N3) in a number 
of iterations highly dependent on the intuition of the user. Our number of 
iterations was nine. The equitable monthly payout rate is $4,777. 

It should be noted in passing that we have not taken into account the 
effect of inflation. What would the value of the first monthly payment be 
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in today's dollars if the inflation rate has progressed at the rate of 3% per 
year? The value of the first months's payout is then 

$4,777x (.97)41 = $1,370 

If the inflation rate should grow to 8%, then, the pensioner's first month 
check is in current dollars $583. Social Security, on the other hand, is 
(supposedly) indexed for inflation. As John Bogle [2] has pointed out and 
as we shall demonstrate in Chapter 14, those who seek risk-free investment 
in fixed-rate bonds have failed to note that the actual value of a bond at 
maturity is an unknown because of inflation. The wise investor should put 
some of his or her annuity investment in stocks, since stocks, in a sense, 
self-adjust for inflation. Moreover, the current Social Security System has 
other benefits that the employee could elect to have incorporated into his 
payout plan, for example, survivorship benefits to a surviving spouse, and 
disability. Thus, our employer should really look further than bank returns. 
He needs to find something which is responsive to the cost of living. We 
will demonstrate later, in Chapter 14, how this might be achieved. 

These additional add-ons would not cost sufficiently to lower the fair 
monthly payout below, say, $3000 per month. And we recall that these are 
dollars in a low inflation economy. Considering that there is some doubt 
that an individual entering the current job market will ever receive anything 
from Social Security at retirement, a certain amount of indignation on the 
part of the young is perhaps in order. Furthermore, the proposed private 
alternative to Social Security would allow the investments by the employee 
and his employer in the plan to be utilized as capital for investment in 
American industry, increasing employment as well as productivity. 

The method of trial and error is perhaps the oldest of the general algo-
rithmic approaches for problem solving. It is highly interactive; that is, 
the user makes a guess (in the above case X) as to the appropriate "input" 
(control variable, answer, etc.) that he feeds into a "black box." An output 
result is spewed out of the black box and compared to the desideratum—in 
the earlier problem, P and P(Nz). 

We note that the above example is one in which we know the workings 
of the black box well. That is, we have a model for reality that seems to 
be precise. And little wonder, for annuity is a manmade entity and one 
should be able to grasp the reality of its workings far better than, say, daily 
maximum temperatures in Houston forecast 3 years into the future. 

In actuality, however, even the pension fund example is highly dependent 
on a series of questionable assumptions. For example, the interest figures 
used assume negligible inflation—a fair assumption for the mid-1980s but 
a terrible one for the late 1970s. Objections as to the assumption that 
the pension fund will be soundly managed are not too relevant, since most 
such funds are broadly invested, essentially a random selection from the 
market. Objections as to the uncertainty of employment of the employee in 
his current company are also irrelevant, since it is assumed that the vesting 
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of such a fund is instantaneous, so that the employee loses no equity when 
he changes jobs. The plan suggested here is simply the kind of private 
IRA arrangement used so eflFectively by the Japanese as both a vehicle of 
retirement security and capital formation. Such a plan can reasonably be 
designed to track the performance of the overall economy. But the assump-
tions as to the specific yields of the plan will almost certainly be violated 
in practice. At a later time, we shall cover the subject of scenano analysis, 
in which the investigator frankly admits he does not fully understand the 
black box's workings very well and examines a number of reasonable sets of 
scenarios (hypotheses) and observes what happens in each. At this point, 
we need only mention that in reality we are always in a scenario analysis 
situation. We always see through a glass darkly. 

Having admitted that even in this idealized situation our model is only 
an approximation to reality, we observe that a wide variety of algorithms 
exist for solving the problem posed. Usually, if we can come up with a 
realistic mathematical axiomatization of the problem, we have done the 
most significant part of the work. The trial-and-error approach has many 
advantages and is not to be despised. However, its relative slowness may 
be somewhat inefficient. In the present problem, we are attempting to pick 
X so that P is close to Ρ(Ν$). It is not hard to design an automated 
algorithm that behaves very much like the human mind for achieving this 
goal. For example, in Figure 1.3, we consider a plot of G = P — Ρ(Ν^) 
versus X. Suppose that we have computed G for two values Xn-i and Xn. 
We may then use as our next guess Xn+i, the intercept on the X axis of 
the line joining [Jrn_i,G(Xn_i ]) and [(Xn,G{Xn)]. 

Using the program in Figure 1.4, we use as our first guess a monthly 
output of 0, which naturally produces a stake at 75 years of age of 0. 
As our second guess, we use X2 — $450,298/(7x12). With these two 
starting values of Xn and Gn , the program converges to a value that gives 
P = 741,650 to within one dollar in three iterations. The equitable payout 
rate obtained by the secant method is, of course, the same as that obtained 
by trial and error—namely, $4,777. 

The Secant Method 

G = p-P<N ) 

X X X , 
n-1 n n+1 

Figure 1.3. The secant method 
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Ρ(Ν%) = principal at retirement 
7 = annual rate of return on principal 

N2 = retirement age 
N3 = expected age at death given survival until age iV2 

P(N3) = P(N2)(1 + %)12{N3-N2) 

Xn-i = 0 
On-i = -P(N3) 
A " "~ 12(Ν3-ΛΓ2) 

*Call Annuity (ΛΓ2,ΛΓ3,JTn,0,6,7) 
G n P-P( iV 3 ) 

Slope = = (Gn - Gn-i)/<fCn - X n - i ) 
Χη+λ = Xn - g j ^ 

Call Annuity (Ν2,Ν3,Χη+ι,0,6,7) 
G n + 1 = P - P ( i \ T 3 ) 

Is Gn + 1 < 1? 
If yes, print Xn+1 and stop 

If no continue 
An_i = JCn 
Gn+i — Gn 

Xn
 = -^π+Ι 

Gn = C?n+i 
Go to* 

Figure 1.4. Program secant method 

1.2 Income Tax Bracket Creep and the Quiet 
Revolution of 1980 

Many, with some justification, believe that our leaders in Washington have 
something approaching a proprietary interest in the wealth of America's 
citizens. That works up to a point, but beyond some hard-to-establish 
threshold taxes can cause revolutions. The American Revolution is a case 
in point. The high tariffs on exported cotton and imported textiles led, in 
large measure, to the American Civil War. The discussion here concerns a 
quiet revolution that removed President Carter from office by the election 
of 1980. 

Facing inflation of more than 10% and interest rates that reached 20%, 
President Carter gave a speech on July 15, 1979, in which he blamed the 
problem on a "general malaise" of the American people. This was heady 
stuff, for most Americans did not feel they were part of such a general 
shiftlessness. The General Malaise Speech, as it came to be called, flew in 
the face of the famous maxim of the long dead economist and sociologist 
Vilfredo Pareto. One form of Pareto's Maxim is that the catastrophically 
many failures are not due to a general malaise but to a small number of 
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assignable causes [[11, p. 10]. 
It seemed to many that perhaps President Carter himself, rather than the 

general population, had allowed things to go very wrong with the nation's 
economy. The election of Ronald Reagan in November of 1980 had as its 
most important accomplishment the abolition of the Soviet Union. But the 
electorate was not dreaming of such a result. They were concerned about 
the deterioration in their standards of living. We will demonstrate below 
how the tax system contributed to the economic problem, which was the 
real reason for Carter's defeat. 

Beginning in 1981, there were several changes in the U.S. income tax 
laws. The major reason advanced for these modifications in the tax regu-
lations was something called "bracket creep." This is a phenomenon of the 
progressive income tax which causes an individual whose income increases 
at the same rate as inflation to fall further and further behind as time pro-
gresses. There was much resistance on the part of many politicians to this 
indexing of taxes to the inflation rate, since the existing tax laws guaranteed 
a 1.6% increase in federal revenues for every 1% increase in the inflation 
rate. Another problem that was addressed by the tax changes in the early 
1980s was the fact that a professional couple living together in the unmar-
ried state typically paid a few thousand dollars less in taxes than if they 
were married. Those who felt the need for indexing and some relief from 
the "marriage tax" had carried out several "if this goes on" type scenario 
analyses. We consider one such below. All the figures below use typical 
salary rates for 1980 and an inflation rate a bit below that experienced at 
that time. The tax brackets are those of the 1980 IRS tables. 

Let us consider the case of John Ricenik who accepts a position with a 
company that translates into a taxable income of $20,000. Let us project 
John's earning profile in the case where both inflation and his salary increase 
at an annual rate of 7%. First of all, we see that John's income will grow 
annually according to the formula 

income = 20,000(1.07)Уеаг~ 1 9 8 0 . (1.9) 

The tax required to be paid in any given year is easily determined from 
Table 1.1. Inflation, on an annual basis, can be taken care of by expressing 
all after tax amounts in 1980 dollars according to the formula 

. , л л л , „ nominal amount ,„ - л х 

value in 1980 dollars = γτ^ή. (1.10) 
IQ7 year —1980 v ' 

To determine John's after tax profile, we need to examine the 1980 tax 
tables for single taxpayers. 

We will see that that John is not holding his own against inflation despite 
of the fact that his salary is increasing at the same rate as inflation. This is 
due to the fact that his marginal increases in salary are being taxed at rates 
higher than the average rate for the total tax on his earnings. The purpose 
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assignable causes [[11, p.10J. 
It seemed to many that perhaps President Carter himself, rather than the 

general population, had allowed things to go very wrong with the nation's 
economy. The election of Ronald Reagan in November of 1980 had as its 
most important accomplishment the abolition of the Soviet Union. But the 
electorate was not dreaming of such a result. They were concerned about 
the deterioration in their standards of living. We will demonstrate below 
how the tax system contributed to the economic problem, which was the 
real reason for Carter's defeat. 

Beginning in 1981, there were several changes in the U.S. income tax 
laws. The major reason advanced for these modifications in the tax regu­
lations was something called "bracket creep." This is a phenomenon of the 
progressive income tax which causes an individual whose income increases 
at the same rate as inflation to fall further and further behind as time pro­
gresses. There was much resistance on the part of many politicians to this 
indexing of taxes to the inflation rate, since the existing tax laws guaranteed 
a 1.6% increase in federal revenues for every 1 % increase in the inflation 
rate. Another problem that was addressed by the tax changes in the early 
1980s was the fact that a professional couple living together in the unmar­
ried state typically paid a few thousand dollars less in taxes than if they 
were married. Those who felt the need for indexing and some relief from 
the "marriage tax" had carried out several ''if this goes on" type scenario 
analyses. We consider one such below. All the figures below use typical 
salary rates for 1980 and an inflation rate a bit below that experienced at 
that time. The tax brackets are those of the 1980 IRS tables. 

Let us consider the case of John Ricenik who accepts a position with a 
company that translates into a taxable income of $20,000. Let us project 
John's earning profile in the case where both inflation and his salary increase 
at an annual rate of 7%. First of all, we see that John's income will grow 
annually according to the formula 

income = 20, 000(1.07)year- 1980. (1.9) 

The tax required to be paid in any given year is easily determined from 
Table 1.1. Inflation, on an annual basis, can be taken care of by expressing 
all after tax amounts in 1980 dollars according to the formula 

val . 1980 d 
II _ nominal amount 

ue m 0 ars - 1980' 1.07 year - (1.10) 

To determine John's after tax profile, we need to examine the 1980 tax 
tables for single taxpayers. 

We will see that that John is not holding his own against inflation despite 
of the fact that his salary is increasing at the same rate as inflation. This is 
due to the fact that his marginal increases in salary are being taxed at rates 
higher than the average rate for the total tax on his earnings. The purpose 
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of indexing is to see that the boundaries for the rate changes increase at 
the annual rate of inflation. 

We can readily compute the 6-year horizon table for John Ricenik's after 
tax income in 1980 dollars (Table 1.1). 

1 Table 1.1. Rates for 
1 If taxable income 

is not over $2,300... 
Over 

$2,300 
$3,400 
$4,400 
$6,500 
$8,500 
$10,800 
$12,900 
$15,000 
$18,200 
$23,500 

j $28,800 
$34,100 
$41,500 
$55,300 
$81,800 
$108,300 

But not over 
$3,400 
$4,400 
$6,500 
$8,500 
$10,800 
$12,900 
$15,000 
$18,200 
$23,500 
$28,800 
$34,100 
$41,500 
$55,300 
$81,800 
$108,300 

Single Taxpayers. 

0 

14% 
$154 + 16% 
$314 + 18% 
$692 + 19% 

$1,072 + 2 1 % 
$1,555 + 25% 
$2,059 + 26% 
$2,605 + 30% 
$3,565 + 34% 
$5,367 + 39% 
$7,434 + 44% 
$9,766 + 49% 

$13,392 + 55% 
$20,982 + 63% 
$37,677 + 68% 
$55,697 + 70% 

of amount over 
$2,300 
$3,400 
$4,400 
$6,500 
$8,500 

$10,800 
$12,900 
$15,000 
$18,200 
$23,500 
$28,800 
$34,100 
$41,500 
$55,300 
$81,800 
$108,300 

Table 1.2. After-Tax Income. 

Year 
1980 
1981 
1982 
1983 
1984 
1985 

Nominal 
$20,000 
$21,400 
$22,898 
$24,501 
$26,216 
$28,051 

Tax 
$4,177 
$4,653 
$5,162 
$5,757 
$6,426 
$7,142 

Nominal After 
Tax Income 

$15,823 
$16,747 
$17,736 
$18,744 
$19,790 
$20,909 

After-Tax 
Income (1980 dollars) 

$15,823 
$15,651 ! 
$15,491 
$15,300 
$15,098 j 
$14,908 

Let us now investigate the "marriage tax." Suppose that John Ricenik 
marries his classmate, Mary Weenie, who has the same earnings projections 
as does John—that is, 7% growth in both salary increments and inflation. 
You might suppose that computing the after tax income of the Ricenik 
family is trivial. All one has to do is to double the figures in Table 1.1. 
This is, in fact, the case if John and Mary live together without being 
legally married. 

There is another table that applies to John and Mary if they are legally 
husband and wife. See Table 1.3. 
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of indexing is to see that the boundaries for the rate changes increase at 
the annual rate of inflation. 

We can readily compute the 6-year horizon table for John Ricenik's after 
tax income in 1980 dollars (Table 1.1). 

Table 1.1. Rates for Single Taxpayers. 
IT taxable income 

is not over $2,300 . .. 0 
Over But not over of amount over 

$2,300 $3,400 14% $2,300 
$3,400 $4,400 $154+ 16% $3,400 
$4,400 $6,500 $314 + 18% $4,400 
$6,500 $8,500 $692 + 19% $6,500 
$8,500 $10,800 $1, 072 + 21 % $8,500 
$10,800 $12,900 $1, 555 + 25% $10,800 
$12,900 $15,000 $2, 059+ 26% $12,900 
$15,000 $18,200 $2, 605 + 30% $15,000 
$18,200 $23,500 $3, 565 + 34% $18,200 
$23,500 $28,800 $5, 367 + 39% $23,500 
$28,800 $34,100 $7, 434+ 44% $28,800 
$34,100 $41,500 $9, 766 + 49% $34,100 
$41,500 $55,300 $13, 392 + 55 % $41,500 
$55,300 $81,800 $20, 982 + 63 % $55,300 
$81,800 $108,300 $37, 677 + 68 % $81,800 
$108,300 .. . $55, 697 + 70 % $108,300 

Table 1.2. After-Tax Income. 
Nominal After After-Tax 

Year Nominal Tax Tax Income Income (1980 dollars) 
1980 $20,000 $4,177 $15,823 $15,823 
1981 $21,400 $4,653 $16,747 $15,651 
1982 $22,898 $5,162 $17,736 $15,491 
1983 $24,501 $5,757 $18,744 $15,300 
1984 $26,216 $6,426 $19,790 $15,098 
1985 $28,051 $7,142 $20,909 $14,908 

Let us now investigate the "marriage tax." Suppose that John Ricenik 
marries his classmate, Mary Weenie, who has the same earnings projections 
as does John-that is, 7% growth in both salary increments and inflation. 
You might suppose that computing the after tax income of the Ricenik 
family is trivial. All one has to do is to double the figures in Table 1.1. 
This is, in fact, the case if John and Mary live together without being 
legally married. 

There is another table that applies to John and Mary if they are legally 
husband and wife. See Table 1.3. 
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In Table 1.3, we compare the tax John and Mary must pay if they are 
living in common-law marriage as compared to that if they are legally 
married. All figures are given in nominal dollar amounts (i.e., in dollars 
uncorrected for inflation). 

1 Table 1.3. 1980 Tax Schedule for Married Couples. 
Over 

$3,400 
$5,500 
$7,600 

$11,900 
$16,000 
$20,200 
$24,600 
$29,900 
$35,200 
$45,800 
$60,000 
$85,600 
$109,400 
$162,400 
$215,400 

But not over 
$5,500 
$7,600 
$11,900 
$16,000 
$20,200 
$24,600 
$29,900 
$35,200 
$45,800 
$60,000 
$85,600 

$109,400 
$162,400 
$215,400 

14% 
$294 + 16% 
$630 + 18% 

$1,404 + 2 1 % 
$2,265 + 24% 
$3,273 + 28% 
$4,505 + 32% 
$6,201 + 37% 
$8,162 + 43% 

$12,720 + 49% 
$19,678 + 54% 
$33,502 + 59% 
$47,544 + 64% 
$81,464 + 68% 
$117,504 + 70% 

of the amount over 
$3,500 
$5,500 
$7,600 

$11,900 
$16,000 
$20,200 
$24,600 
$29,900 
$35,200 
$45,800 
$60,000 
$85,600 

$109,400 
$162,400 
$215,400 1 

, Table 1.4. The Marriage Tax. 
Year 
1980 
1981 
1982 
1983 
1984 
1985 

Comd. Income 
$40,000 
$42,800 
$45,796 
$49,002 
$52,432 
$56,102 

Tax Married 
$10,226 
$11,430 
$12,717 
$14,289 
$15,970 
$17,768 

Tax Unmarried 
$8,354 
$9,306 

$10,324 
$11,514 
$12,852 
$14,284 

Marrg. Tax 
$1,872 
$2,124 
$2,394 
$2,775 
$3,118 
$3,484 

We note that, even corrected for inflation, the marriage tax is increasing 
year by year. For example, when measured in constant dollars, the 1980 
marriage tax of $1872 grows to $2484 in 1985. 

Despite the tax disadvantages, John and Mary decide to get married. 
Their living expenses, until they can buy a house, are $27,000 per year 
(in 1980 dollars). To buy a house, the Riceniks need a down payment of 
$10,000 (in 1980 dollars). Assume that at the end of each year until they 
can make a down payment they invest their savings at an annual rate of 
8% in short-term tax-free bonds. How many years must the Riceniks save 
in order to acquire their home if their wages and inflation increase at an 
annual rate of 7% and if the tax tables for 1980 had been kept in place? 
We answer this question by creating Table 1.5. As we note from the table, 
the Riceniks actually would never be able to afford their house under the 
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14% 
$294 + 16% 
$630 + 18% 

$1, 404 + 21 % 
$2, 265 + 24% 
$3, 273 + 28% 
$4, 505 + 32% 
$6, 201 + 37% 
$8, 162 + 43% 

$12, 720 + 49 % 
$19, 678 + 54 % 
$33, 502 + 59 % 
$47, 544 + 64 % 
$81, 464 + 68 % 

$117, 504 + 70% 

of the amount over 
$3,500 
$5,500 
$7,600 

$11,900 
$16,000 
$20,200 
$24,600 
$29,900 
$35,200 
$45,800 
$60,000 
$85,600 

$109,400 
$162,400 
$215,400 

Table 1.4. The Marriage Tax. 
Year Comd. Income Tax Married Tax Unmarried Marrg. Tax 
1980 $40,000 $10,226 $8,354 $1,872 
1981 $42,800 $11,430 $9,306 $2,124 
1982 $45,796 $12,717 $10,324 $2,394 
1983 $49,002 $14,289 $11,514 $2,775 
1984 $52,432 $15,970 $12,852 $3,118 
1985 $56,102 $17,768 $14,284 $3,484 

We note that, even corrected for inflation, the marriage tax is increasing 
year by year. For example, when measured in constant dollars, the 1980 
marriage tax of $1872 grows to $2484 in 1985. 

Despite the tax disadvantages, John and Mary decide to get married. 
Their living expenses, until they can buy a house, are $27,000 per year 
(in 1980 dollars). To buy a house, the Rlceniks need a down payment of 
$10,000 (in 1980 dollars). Assume that at the end of each year until they 
can make a down payment they invest their savings at an annual rate of 
8% in short-term tax-free bonds. How many years must the Rlceniks save 
in order to acquire their home if their wages and inflation increase at an 
annual rate of 7% and if the tax tables for 1980 had been kept in place? 
We answer this question by creating Table 1.5. As we note from the table, 
the Rlceniks actually would never be able to afford their house under the 
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conditions given. Prom 1985 on, they would actually see the diminution of 
their savings. 

Next, let us give a savings profile of the Riceniks with conditions as 
given earlier, except with the change that income tax levels are indexed by 
inflation, and the marriage penalty has been eliminated. Here, the relevant 
taxes in 1980 dollars can be obtained by doubling $4177, the tax for a single 
person earning $20,000 per annum. This then gives us Table 1.6 (in 1980 
dollars). 

1 Table 1.5. The Savings Profile of John and Mary Ricenik. 
Year 

1980 
1981 
1982 
1983 
1984 
1985 

Income 

$40,000 
$42,800 
$45,796 
$49,001 
$52,432 
$56,102 

Tax 

$10,226 
$11,430 
$12,718 
$14,289 
$15,970 
$17,768 

After 
Tax Inc. 
$29,774 
$31,370 
$33,078 
$34,712 
$36,462 
$38,334 

Savings 

$2,274 
$1,945 
$1,593 
$1,023 
$415 

-$236 

Accum. 
Savings 
$2,274 
$4,401 
$6,346 
$7,877 
$8,922 
$9,400 

Savings 
1980 Dollars 

$2,274 
$4,113 
$5,543 
$6,430 
$6,807 
$6,702 1 

Table 1.6. Savings Profile with Indexing and N o Marrg. Tax. 
Year 
1980 
1981 
1982 
1983 
1984 
1985 

Income 
$40,000 
$40,000 
$40,000 
$40,000 
$40,000 
$40,000 

Tax 
$8,354 
$8,354 
$8,354 
$8,354 
$8,354 
$8,354 

Income 
$31,646 
$31,646 
$31,646 
$31,646 
$31,646 
$31,646 

Savings 
$4,146 
$4,185 
$4,224 
$4,263 
$4,304 
$4,343 

Savings | 
$4,146 
$8,331 
$12,555 
$16,818 
$21,122 
$25,465 

Thus, if the income tax were indexed to inflation, the Riceniks could afford 
the down payment on their home in less than 3 years even if their salaries 
only kept pace with inflation. In the above case, the only participation 
the Riceniks see in the assumed increase of productivity made possible 
by technology is through the interest on their capital. Even without this 
interest, they would be able to move into their home in 1982. It is perhaps 
interesting to note that most people who go through the computations in 
Table 1.6 do not believe the results when they create the table for the first 
time. 

Next, let us briefly consider one of the consequences of the pre-1987 
U.S. income tax—the tax shelter. The top tax level on salaried income 
was reduced in the early 1980s to 50%—a reform instituted during the 
Carter administration. However, it is not surprising that many people 
would search for some legal means of avoiding paying this "modest" rate of 
taxation. This can be achieved by noting that income which was gained by 
making an investment and selling it at least 6 months later was discountable 
in reporting total income by 60%. Thus, a property that is purchased for 
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conditions given. From 1985 on, they would actually see the diminution of 
their savings. 

Next, let us give a savings profile of the Riceniks with conditions as 
given earlier, except with the change that income tax levels are indexed by 
inflation, and the marriage penalty has been eliminated. Here, the relevant 
taxes in 1980 dollars can be obtained by doubling $4177, the tax for a single 
person earning $20,000 per annum. This then gives us Table 1.6 (in 1980 
dollars) . 

Table 1.5. The Savings Profile of John and Mary Ricenik. 
Year Income Tax After Savings Accum. Savings 

Tax Inc. Savings 1980 Dollars 
1980 $40,000 $10,226 $29,774 $2,274 $2,274 $2,274 
1981 $42,800 $11,430 $31,370 $1,945 $4,401 $4,1 13 
1982 $45,796 $12,718 $33,078 $1,593 $6,346 $5,543 
1983 $49,001 $14,289 $34,712 $1,023 $7,877 $6,430 
1984 $52,432 $15,970 $36,462 $415 $8,922 $6,807 
1985 $56,102 $17,768 $38,334 -$236 $9,400 $6,702 

Table 1.6. Savings Profile with Indexing and No Marrg. Tax. 
Year Income Tax Income Savings Savings 
1980 $40,000 $8,354 $31 ,646 $4,146 $4,146 
1981 $40,000 $8,354 $31,646 $4,185 $8,331 
1982 $40,000 $8,354 $31,646 $4,224 $12,555 
1983 $40,000 $8,354 $31 ,646 $4,263 $16,818 
1984 $40,000 $8,354 $31,646 $4,304 $21 ,122 
1985 $40,000 $8,354 $31,646 $4,343 $25,465 

Thus, if the income tax were indexed to inflation, the Riceniks could afford 
the down payment on their home in less than 3 years even if their salaries 
only kept pace with inflation. In the above case, the only participation 
the Riceniks see in the assumed increase of productivity made possible 
by technology is through the interest on their capital. Even without this 
interest, they would be able to move into their home in 1982. It is perhaps 
interesting to note that most people who go through the computations in 
Table 1.6 do not believe the results when they create the table for the first 
time. 

Next, let us briefly consider one of the consequences of the pre-1987 
U.S. income tax-the tax shelter. The top tax level on salaried income 
was reduced in the early 1980s to 50 %-a reform instituted during the 
Carter administration. However, it is not surprising that many people 
would search for some legal means of avoiding paying this "modest" rate of 
taxation. This can be achieved by noting that income which was gained by 
making an investment and selling it at least 6 months later was discountable 
in reporting total income by 60%. Thus, a property that is purchased for 
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$100 and sold for $200 results in a profit of $100, but a taxable profit of 
only $40. Thus, the after-tax profit is not $50 but $80. Not surprisingly, 
this "loophole" made possible a large tax avoidance industry. We shall see 
below an example of what should by all reason be deemed a bad real estate 
investment which turns out to result in approximately the same after tax 
profit as that obtained by a "good" conventional investment. The example 
is one simple indication of how taxation polity can affect, very dramatically, 
the increase of investments which do little good to society over those which 
provide the engine of capitalism. 

Ms. Brown is an engineer whose income level puts her in the 50 % bracket 
on the upper level of her income tax. She decides to purchase a real-estate 
acreage for a nominal price of $100,000. The terms are $10,000 down, and 
$10,000 payable at the beginning of each year with 10% interest on the 
balance payable 1 year in advance. Let us suppose Ms. Brown sells the 
property at the end of the fifth year. If the selling price is $135,000, how 
well has Ms. Brown done? Let us examine Ms. Brown's cash outflow 
during the 5 years (see Table 1.7). 

Table 1.7. A Real Estate Investment Outflow Profile. 
Year 

1 
2 
3 
4 
5 

Principal Investment 
$10,000 
$10,000 
$10,000 
$10,000 
$10,000 

Interest Investment 
$9,000 
$8,000 
$7,000 
$6,000 
$5,000 

Ms. Brown has invested $85,000 and still owes $50,000 on the property 
at the time of sale. Thus, it would seem that the result of five years' 
investment is that Ms. Brown gets back exactly what she has put into the 
investment. Furthermore, Ms. Brown must pay capital gains tax of 20% on 
the profit of $35,000. So, Ms. Brown's after-tax stake at the end of the five 
years is $78,000. Clearly, Ms. Brown has not done well in her investing. 

Let us suppose that Ms. Brown had followed a more traditional invest-
ment strategy. Suppose that she had taken the available salary income 
and invested in a money market fund at an annual rate of 10%. Now, we 
must note that the $9,000 interest payment which she made in the first 
yeax of the real estate investment is deductible from her gross income. If 
she had not paid it in interest, she would have had to pay half of it to the 
federal government in taxes. So she would not have had $19,000 to invest 
in a market fund in year 1—only $14,500. Moreover, the interest which 
she would earn in year 1, $1,450, would have been taxed at the 50% rate. 
Consequently, the after tax capital of Ms. Brown using the money market 
strategy would be given as shown in Table 1.8. 

Note that Ms. Brown has approximately the same after tax capital using 
either the "imprudent" tax shelter or the "prudent" money market. It 
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Ms. Brown is an engineer whose income level puts her in the 50 % bracket 
on the upper level of her income tax. She decides to purchase a real-estate 
acreage for a nominal price of $100,000. The terms are $10,000 down, and 
$10,000 payable at the beginning of each year with 10 % interest on the 
balance payable 1 year in advance. Let us suppose Ms. Brown sells the 
property at the end of the fifth year. If the selling price is $135,000, how 
well has Ms. Brown done? Let us examine Ms. Brown's cash outflow 
during the 5 years (see Table 1.7) . 

Table 1 .7. A Real Estate Investment Outflow Profile. 
Year Principal Investment Interest Investment 

1 $10,000 $9,000 
2 $10,000 $8,000 
3 $10,000 $7,000 
4 $10,000 $6,000 
5 $10,000 $5,000 

Ms. Brown has invested $85,000 and still owes $50,000 on the property 
at the time of sale. Thus, it would seem that the result of five years' 
investment is that Ms. Brown gets back exactly what she has put into the 
investment. Furthermore, Ms. Brown must pay capital gains tax of 20% on 
the profit of $35,000. So, Ms. Brown's after-tax stake at the end of the five 
years is $78,000. Clearly, Ms. Brown has not done well in her investing. 

Let us suppose that Ms. Brown had followed a more traditional invest­
ment strategy. Suppose that she had taken the available salary income 
and invested in a money market fund at an annual rate of 10%. Now, we 
must note that the $9,000 interest payment which she made in the first 
year of the real estate investment is deductible from her gross income. If 
she had not paid it in interest, she would have had to pay half of it to the 
federal government in taxes. So she would not have had $19,000 to invest 
in a market fund in year l�nly $14,500. Moreover, the interest which 
she would earn in year 1 ,  $1 ,450, would have been taxed at the 50% rate. 
Consequently, the after tax capital of Ms. Brown using the money market 
strategy would be given as shown in Table 1.8. 

Note that Ms. Brown has approximately the same after tax capital using 
either the "imprudent" tax shelter or the "prudent" money market. It 
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is not that the real estate investment has become good; it is rather that 
the tax system has made the money market investment bad. This is an 
example of the means whereby individuals have been forced by the tax 
system into making unproductive investments rather than depositing the 
money with lending agencies who would, in turn, lend out the money for 
capital development. 

| Table 1.8.After-Tax Principal With Money Market Strategy. 
Year 

1 
2 
3 
4 
5 

After tax capital at year's end 
$15,225 
$30,686 
$46,396 
$62,365 
$78,609 

In September of 1986, the Rostenkowski-Packwood Tax Reform elimi-
nated the capital gains preference, thus removing the incentive for the kind 
of bad investment mentioned here. Since much of the capital gains invest-
ment had favored the rich, Packwood and Rostenkowski set the marginal 
for families in the $150,000 per year and up range at 28%. Marginal tax 
rates for the upper middle class, on the other hand, were set at 33%. So tax 
treatment which favors the wealthy and shafts the middle class was frankly 
and straightforwardly institutionalized instead of concealed with a capital 
gains exclusion. Other Rostenkowski-Packwood reforms included a suspen-
sion of the marriage deduction and that for state sales taxes. Moreover, 
the inflation indexing provisions of the reforms of the early 1980s appeared 
to be put at the hazard, "since the marginal rates are now so low." The 
"transitional" year marginal rates for the upper middle class of 38% were 
proposed to be made permanent by the Speaker of the House, Jim Wright. 
Some have cynically argued that, having wiped out a host of deductions 
in exchange for lower rates, the Congress will now gradually raise the new 
rates. 1 

One thing that was not changed by any of the tax reforms of the last 
decade is the Social Security tax on income below roughly $40,000 per 
worker (a ceiling raised steadily by legislation passed years ago). This tax 

1Fbr whatever reasons one might conjecture, both Rostenkowski and Packwood were 
pilloried and forced out of office over matters that seem less serious than the punishments 
they received. Rostenkowski actually went to prison (his crime seems to have been 
renting a property owned by his sister for his Chicago office). Packwood appears to have 
been something of a Don Juan, but not even in the same league as Bill CUnton or John 
Kennedy. Nor is it recorded that he was responsible for the death of any of his conquests, 
as was the case with Ted Kennedy. It would appear that Rostenkowski and Packwood 
may have angered some influential people with their reforms. At any rate, President 
Clinton raised the marginal tax rates and restored the capital gains reduction. The 
point of this section has been to show how tax rates can remove from office a President 
and cause a vendetta against tax reformers. 
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is approximately 7% from the employee and 7% from the employer, for 
a pooled total of slightly more than 14 %. The self-employed pay roughly 
10 %. Many citizens pay more in Social Security tax than in income tax. 
And, of course, the monies paid by the worker in Social Security tax are 
also subject themselves to federal income tax. In addition to the two fed-
eral income taxes mentioned above, most states also levy income taxes— 
amounting to sums as high as 25 % of the federal income tax. Furthermore, 
almost all states and municipalities levy sales taxes, real estate taxes, and 
so on. The proportion of an American citizen's income which goes to pay 
taxes is now several times that two centuries ago when taxes were a major 
cause of the American Revolution against Great Britain. Still, things could 
have been worse; the British taxation rates today are much more severe 
even than those in the United States. 

We have gone through this section to demonstrate how a relatively simple 
and well-defined system such as the U.S. income tax is by no means easy to 
grasp until one goes through some computations with actual figures. When 
we leave the comfortable realm of well-axiomitized man-made systems and 
go into the generally very imperfectly understood systems of the social and 
natural sciences, we may well expect our difficulties of comprehension to 
increase dramatically. 

1.3 Retirement of a Mortgage 

In 2009, in response to plummeting house prices, the federal government 
made it possible for mortgages to drop below 5%. However, so much du-
bious activity had been undertaken by American banks that several of the 
prudently paranoid tried to pay off the remaining portion of their house 
mortgages. The reason is that in the event of crises, the homeowner might 
find it hard to get the cash to make a mortgage payment. "Bank holidays" 
can occur arbitrarily at the behest of the government. If a banker is consid-
ering which of two houses each valued at $175,000. on which to foreclose, 
he will no doubt prefer to foreclose the one on which only $15,000 is owed 
rather than the one on which the full $175,000 is owed. 

Let us now consider the case of Mr. and Mrs. Jones who have 10 years to 
run on their mortgage. They now owe a principal of $15,000 on which they 
pay 5.5 % interest on the outstanding balance. Suppose recent mortgage 
rates are in the 4% range. How much should the Joneses have to pay to 
retire the mortgage? The naive answer is "obviously $15,000." But is the 
mortgage really worth $15,000 to the bank who holds it? Obviously not. If 
the bank had the $15,000 in hand, they could lend it out at only 4%. We 
wish to find the fair market value of the Jones mortgage. 

One answer that might be proposed is that the fair market value is that 
quantity—say x—which, when compounded at 4%, will be worth the same 
as $15,000 compounded at 5.5%. This amount may easily be computed via 
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X(1.04)10 = $15,000(1.055)10. (1.11) 

or 

/ 1 0554 10 

X = $15,000 ( - ^ j - J = $17,309.42 (1.12) 

But this answer is also wrong, for we recall that under the terms of a 
mortgage, the principal is retired over the entire term of the mortgage—not 
at the end. As the mortgage company receives the principal, it can loan it 
out at the prevailing mortgage rate—say 4%. The usual rule of principal 
retirement for older mortgages is that monthly payout is determined so 
that each installment of principal retired plus interest on unpaid balance 
is equal. Thus, the Joneses are to pay out their mortgage over 120 months 
according to the rule 

у = P l + $ 1 5 , 0 M ^ (1.13) 

= p2 + ($15,000 - p i ) ^ 

0 055 
= рз + ( $ 1 5 , 0 0 0 - P l - P 2 ) ^ -

0 055 
= · · · = Ρΐ20 + ($15,000 - pi - Р2 Ριΐ9)-~2Π> 

where р» is the principal retired on month i. By the 120th payment, all the 
$15,000 will have been retired. Hence, 

i=120 

Σ Pi = $15,000. (1.14) 

Using the fact that monthly payments are equal, we have 

-»-.. л л л /0.055 \ , . _ ч /0.055 \ 
Pi 4- $15,000 ί — J - P2 + ($15,000 - Pl) l - ^ - J . (1.15) 

This gives 

Л 0.055Ч 
» = ( 1 + "Ì2"JPl· (L16) 

Similarly, from the second and third equalities above, we have 

Λ 0-0554 
Рз = V "ΊΓ JP2' ( ] 

or 

16 MODELS OF GROWTH AND DECAY 

or 

X(1 .04)1O = $15, 000(1 .055) 10. 

( 1.055) 10 
X = $15.000 

1 .04 
= $17, 309.42 

(1 .11) 

(1.12) 

But this answer is also wrong, for we recall that under the terms of a 
mortgage, the principal is retired over the entire term of the mortgage-not 
at the end. AI3 the mortgage company receives the principal, it can loan it 
out at the prevailing mortgage rate-say 4%. The usual rule of principal 
retirement for older mortgages is that monthly payout is determined so 
that each installment of principal retired plus interest on unpaid balance 
is equal. Thus, the Joneses are to pay out their mortgage over 120 months 
according to the rule 

0.055 
Y PI + $15, 00012 (1.13) 

0.055 
P2 + ($15, 000 - Pl)12 

0.055 = Pa + ($15, 000 - PI - P2) 12 
0.055 

. . .  = P120 + ($15, 000 - PI - P2 - . . . - P119) 12 '  

where Pi is the principal retired on month i. By the 120th payment, all the 
$15,000 will have been retired. Hence, 

i=120 
L Pi = $15, 000. (1 .14) 
i=l 

Using the fact that monthly payments are equal, we have 

(0.055) (0.055) PI + $15, 000 12 = P2 + ($15, 000 - PI) 12 . (1. 15) 

This gives 

( 0.055) P2 = 1 + 12 Pl · (1 .16) 

Similarly, from the second and third equalities above, we have 

( 0.055) Pa = 1 + 12 P2· ( 1.17) 
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P3 = rp2, (1.18) 
where 

, 0.055 

Thus, we have 

Pi=ri~1p1. (1.19) 
Using the fact that Σρ% = $15,000, we have 

pi(l 4- r + r2 + . . . + r119) = $15,000. (1.20) 
Recalling the formula for the sum of a geometric progression, we have 

(4£) px [ ——— 1 = $15,000. (1.21) 

This yields a pi value of $94.04. Any other pi value is immediately 
available via Pi = r*"1 $94.04. The monthly payment is given simply by 

$94.04 + $15,000 ( ^ т ? Ч = $162.79. 

Moreover, the interest payment for the ith month is simply obtained via 

1 L 

r>; I -
12 

\ ' = 1 / 
But this is just 

12 

$15,000- Σ ft) ^ · ί1·22) 
i= i 

$15,000-px j ; ^ - 1 ) ^ . (1.23) 

or 

(юв,оао-л1^)225. (1.24) 

We are now in a position to answer the question as to the fair value for an 
instantaneous payment of the Jones mortgage. If the company that holds 
the Jones's mortgage lends out the monthly current mortgage payment at 
an annual rate of / , then the total value of monies received over the ten 
years will be 

1 - < ? 1 2 0 

$162.79(1 + s + s2 + . · - + s119) = $162.79—-—. (1.25) 

where 

Thus, we have 
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($15, 000 _ P1 
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( 1 .24) 

We are now in a position to answer the question as to the fair value for an 
instantaneous payment of the Jones mortgage. If the company that holds 
the Jones's mortgage lends out the monthly current mortgage payment at 
an annual rate of I, then the total value of monies received over the ten 
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1 - 8 
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where 
a = 1 + 7/12. 

Suppose the interest were the 5.5% the Jones currently pay. Then the 
total value of monies received over the ten years would be $25,966.24. To 
compute present value of the mortgage, X, we solve 

Xs120 = $25,966.24. (1.26) 

Of course, we get the figure of $15,000. But if the lender is only able to make 
a return of 4% on a new mortgage, then from (1.24), the total cash he will 
receive from the alternative mortgage is $23,941.87. And, from (1.25), the 
present value of the alternative mortgage to the lender is $17,412.34. Unless 
the borrower had no cost for early repayment written into his mortgage, 
owning his home without mortgage liability will cost at least $17, 412.34. 
Given the kindness of bankers, $20,000 might be closer to the mark. 

1.4 Some Mathematical Descriptions of the 
Theory of Malthus 

In this chapter on models of growth, we began with compound interest 
because, historically, this seems to be the oldest of the quantified growth 
models. People have been lending out money at interest rates since the 
dawn of civilization. Because such financial transactions are essentially 
human constructs, it is not surprising that the modeling of such a process 
has been well understood for so long. In a sense, it is as though the process 
proceeds directly from an idealized model. Of course, even here, in what 
should be the most straightforward kind of modeling situation, there are 
many problems. Inflation rates are not generally predictable; wars and 
revolutions disrupt the orderly process of commerce; bankruptcy laws are 
created to protect debtors from their creditors, and so on. The point is 
that even in the most simple kind of modeling—that is, the modeling of 
processes based on idealized models—we are unable to describe precisely 
what is going on. 

When it comes to modeling processes that do not proceed directly from 
a man-made model, we shall expect to be peering through even muddier 
water. Still, as we shall see, the attempt to try and understand at least 
in part what is happening is well worth the effort. In fact, these attempts 
to conceptualize portions of the world around us have existed as long as 
humankind. It is our ability of the last 300 years to mathematize our 
conceptions and the commercial impetus to do so which have been largely 
responsible for the rapid scientific and technological progress characteriz-
ing this period. And it is this progress that has been responsible for the 
dramatic improvement in the material standard of living in those countries 
where this progress has been permitted. 
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Let us now consider the revolutionary work of the Reverend Thomas 
Malthus [9], An Essay on the Principle of Population. This book (pub-
lished in 1798 and available as a free download on the Internet), generally 
speaking, was not as explicitly mathematical as one might have wished. 
Malthus used words rather than equations. His basic thesis is succinctly, 
if ambiguously, given by, "Population, when unchecked, increases in a ge-
ometrical ratio. Subsistence increases only in an arithmetical ratio." If 
the qualifying phrase "when unchecked" had been omitted, we could have 
summarized these two sentences very simply, using the symbols P for pop-
ulation and F for food by the two differential equations 

The solutions to these equations are given simply by 

P(t) = P{Q)eat and F{t) = F(0) + ßt. (1.28) 

The consequence would then be that the population was increasing at 
an exponential rate without any constraint from the more slowly growing 
food supply. But Malthus coupled the two processes, population and food 
("subsistence"), with the use of the phrase "when unchecked." This sim-
ple qualifying phrase implies that a shortage of food checks the population 
growth. How should this checking effect be incorporated into our mathe-
matical model? We might first decide that our constant a is not a constant 
at all but rather a function of F and P. To do so, however, we have to 
express population and food in similar units. This might be accomplished 
by using as one unit of food that amount required to sustain one person for 
a given unit of time. We then arrive at the coupled differential equation 
model 

4 jP=a(F ,P)P and ^ =/J, (1.29) 

where a(F, P) is read "a of F and P." Note that whereas F affects P, 
there is no effect of P on P. Accordingly, we may write 

F(t) = F(0) + ßt. (1.30) 

Suppose we argue that the growth rate per person is proportional to the 
difference between the food available and the food consumed. Then we 
have 

L^=a[F(0)+ßt-P}). (1.31) 

In the case where the food supply is unchanging (i.e., ß = 0), this is the 
logistic model of Verhulst (1844). A simple integration by parts for this 
special case gives 
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FP(0)eatF 

(1.32) 
P(0)eatF + F - P(0)' 

Consequently, we shall refer to (1.31) as the generalized logistic model. 
The solution is given by 

P(t) = 
P(0)exp[q(P(0)t4-|/?t2)] 

(1.33) 
1 + oP(0) /0* exp [oF(0)r + \αβτ*\ dr ' 

The present application provides some promise from a curve fitting stand-
point. For example, for t large (1.33) is approximately given by 

P{t) ъ F(Q) + ßt. (1.34) 
For a long established society, we might expect the Malthusian argument 

would yield a population that tracks the supposedly linear growth of the 
food supply. This is consistent with the population growth in England and 
Wales from 1800 to 1950 as shown in Figure 1.5. Using 1801 as the time 
origin, and using population in units of 1 million, we can fit the Une by eye 
to obtain 

P(t)«6.4 + 0.2(t - 1801). (1.35) 
Naturally, there is little chance of determining a, since population records 

in Britain in the remote past, when population growth may have been less 
limited by the growth in the food supply, are not available. However, in 
the remote past, when t is "small," becomes effectively 

P(t) « P(0)eaF(°>*. (1.36) 
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Figure 1.5. Population growth in England and Wales. 
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limited by the growth in the food supply, are not available. However, in 
the remote past, when t is "small," becomes effectively 
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Figure 1.5. Population growth in England and Wales. 
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Looking at the population growth of the United States in Figure 1.6, 
we note that whereas 20th-century population growth is approximately 
linear, growth prior to, say, 1880 is much faster than linear. The only 
functional curve that can readily be identified by humans is the straight 
line. Accordingly, we take natural logarithms of both sides of (1.35). This 
gives us the equation of a straight Une in t 

lpg[P(i))«Iog(P(0)) + aF(0)i]. (1.37) 
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Figure 1.6. U.S. population growth. 

If (1.36) holds approximately over some time interval, then we should expect 
that a plot of log(P) versus time would yield very nearly a straight line. 
As we note from Figure 1.6, it seems that for the first 70 years of the 19th 
century, population growth is consistent with Figure 1.7. We shall not at 
this point go through the argument for estimating all the parameters in 
(1.37). But let us suppose that (1.37) could be made to fit closely both 
the American and British data. Would we have "validated (1.32) that is, 
would we have satisfied ourselves that (1.32) is consistent with the data 
and our reason? Now a monotone data set can be fit with many curve 
families particularly if they have three free parameters—as does (1.37). 
A good curve fit is a necessary condition but not a sufficient condition 
for establishing the 'Validity" ("plausibility" might be a better word) of 
a model. 
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Figure 1.7. Logarithm of U.S. population growth. 

Let us reexamine (1.37) in light of the hypotheses of Malthus and our own 
reasoning. Is it reasonable to suppose that the per-person population rate 
of increase will depend on the total availability of food? It would appear 
that if the food supply will support a population of 1,100,000, when the 
actual population is 1,000,000, then the per-person rate of increase should 
be the same for a population of 100,000 which has an available food supply 
for 110,000. Accordingly, (1.37) is not appropriate. Rather, we should 
prefer 

1 dP _ a{F(0)+ßt 
P dt "" P 

The solution to this equation is 

P] 

P(t) = (P(0) + £- F(0)\ e~at + F(0) -^+ßt. 

(1.38) 

(1.39) 

It is interesting to note that in (1.39), for large values of time, the pop-
ulation curve is given essentially by 

P(t)=F(0)-£+ßt. 
Gì 

(1.40) 

Thus, the model is consistent with the British population growth figures 
and with those from the United States after, say, 1910. 

To examine the behavior of P(t) for small values of t, we expand the 
exponential term neglecting all terms of order t2 or higher (i.e., 0(t2)) to 
give 

P(t) P(0) + £ - F(0) 
a 

(l-at) + F(Q)-£+ßt] (1.41) 
a 

that is, 
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P{t) « P(0) + [F(0) - P(0)]at. (1.42) 

Now we note that (1.38) departs from the spirit of Malthus, since growth 
consists essentially of two pieces linear in time with a transition in-between. 
The differential equation (1.37), moreover, has the problem that there is 
no "threshold" phenomenon insofar as per-capita food supply is concerned. 
If there is an excess capacity of food per person of 20, then people will 
multiply 20 times as fast as if the per capita excess capacity were 1. This 
is clearly unreasonable. However, if we fit the model and find out that the 
per capita excess food capacity is small throughout the extent of the data, 
then we might find the model satisfactory. As it is not too much trouble to 
try a rough-and-ready fit, we shall attempt one, using U.S. data in Table 
1.9. 

! Table 1.9. 
Date 
1800 
1810 
1820 
1830 
1840 
1850 
1860 
1870 
1880 
1890 
1900 
1910 
1920 
1930 
1940 
1950 

t 
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 

U.S. Population 1800-1950. 
.P(t)in millions 

5.308483 
7.239881 
9.638453 
12.866020 
17.069453 
23.191876 
31.443210 
38.558371 
50.155783 
62.947714 
75.994575 
91.972266 
105.710620 
122.785046 
132.169275 
150.697361 

First of all, using 1800 as the time origin, we have P(0) = 5.308483. 
Then, using the population figures for 1800 and 1810 as base points, we 
have from (1.42) 

F (o) _ ^ ? H = 5.308483. (1.43) 

Then, using (1.41) for P(120) and P(150), we have 

ß = 1.49956. (1.44) 

Finally, extending the line from P(150) with slope 1.49956 back to the 
intercept on the population axis, we have from (1.44) 
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F(0) 1.49956 
-74.9340. (1.45) 

Solving (1.43) and (1.45) together, we find 

F(0) = 17.1715 (1.46) 

and 

о = 0.016281. (1.47) 

Already, we should have some concern about the size of F(0). This 
leads to a per capita excess food supply in 1800 of around 2, probably an 
unreasonably high figure, and one that is high enough that the absence of 
a threshold effect in excess food supply might very well render our model 
less useful than one might hope. 

Using these "rough and ready" parameter values in (1.38), we see in Fig-
ure 1.8 a comparison between the model values and the actual population 
figures. The quality of the fit is not spectacular. However, with three par 
rameters to juggle—F(0), α, ß—we could no doubt arrive at a very good fit 
with a little work. We might, for example, find the least squares solution 
by minimizing 

S(a,ß,F(0)) = 

J=15 

Σ 
j=0 L - ( ' 

PilOj) - ( P(0) + - - F(0)\ e~10aj - F(0) - £ - 10jß 
Q> J a 

T 2 

(1.48) 
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Figure 1.8. U.S. population growth and model values. 
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Now, let us go to a model more consistent with the apparent intent 
of Malthus. We need a model that will not penalize exponential growth 
when the excess per capita capacity of food is sufficiently large but will 
cause growth to be proportional to excess food capacity when the "affluence 
threshold" has been reached. There are an infinite number of models that 
will do this. Consequently, we here borrow a maxim from the Radical 
Pragmatist William of Ockham and try to pick a simple model that is 
consistent with Malthus' conjecture and with the facts before us. 

dP F(0) + ßt-P 1 ίΛ ,ЛЧ 
_ = α Ρ , w h e n __!_!_ > . . (1.49) 

and 

— = ak[F(0) + ßt - F], otherwise. (1.50) 

Examining the logarithmic curve in Figure 1.8, it seems that population 
growth is close to log-linear until around 1860. So we shall guess that the 
time where we switch from (1.30) to (1.31) is t* = 1860. Prom the data at 
1800 and 1860, we can estimate a via 

a = —In ( 
60 V 

3 1 4 4 3 2 1 ) =0.029648. (1.51) 
5.30843 

We know what the solution to (1.49)is from (1.38), namely, 

P(t) = P(t*) + £k-F(n e-ak(t-f) + РЦЦ + ßt _ £_ ( 1 5 2 ) 

Going to the essentially linear part of the model, we have, as when fitting 
(1.52), that ß = 1.49954. By examining the intercept when t = t*, we find 
that 

F(t*) = F(0) + ßt* = 15.73696 + 5 0 , 5 J 8 7 9 . (1.53) 
К 

We still must estimate F(Q). In this case, we shall guess that a value 
around 10 will be close to the truth. From (1.53), this gives us a fc value of 
0.600437. Finally, then, we have the estimated model 

P(t) = P(0)e0029648t, before 1860, (1.54) 
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Figure 1.9. U.S.population growth vs. model values. 

and 

P(t) = 15.70611e-°017801(t-60) - 74.2530 + 1.40053t, thereafter. (1.55) 

We see the results of our fit in Figure 1.9. With a bit more careful 
juggling of the four parameters a, fc, -F(O), and /?, we could essentially 
make the fitted curve nearly repeat precisely the actual data set. 

Have we then established the 'Validity" of Malthus's model? By no 
means. But even with the crude fitting strategy employed, there is some 
reason for acknowledgment if not of the validity of the Malthusian model, 
then at least of its value as a framework within which to consider popular 
tion data. Recall that population increases of nations have been for many 
years measured by per capita rate of increase, or its equivalent—just as 
Malthus said we should. Reasoning from the standpoint of Malthus, we 
might argue that in the recent stages of the United States, its population 
growth was linear. This linear growth was also exhibited in the British 
data. These facts are directly consistent with what one would predict from 
Malthus' hypotheses. Moreover, it is of interest to note that all these data 
were collected after Malthus' book was published. A model is generally 
more believable if it can predict what will happen, rather than "explain" 
something that has already occurred. (Note, however, that by fitting our 
model using data from the entire time range of the data base, we have en-
gaged in a bit of "sharp practice." Really to 'Validate" a model in time, we 
should obtain the parameters using values from early time and see if the 
model can then predict the later behavior.) 

However, if we really wished to give a thorough investigation of the va-
lidity of Malthus's hypotheses, we should incorporate more factors into the 
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model. For example, in the case of the American population, we should 
take some cognizance of the effects of immigration. (It would be possi-
ble to eliminate immigration as a significant demographic factor from some 
rapidly growing populations, such as that of 19th-century India.) Moreover, 
we have not directly checked Malthus' assumption as to the linear growth 
of the food supply. Malthus's implicit assumption that food strongly af-
fects population growth, but that the change in the population has little 
feedback effect on the change in the food supply, would also need to be 
checked. Moreover, we must face the fact that the use of food as the sole 
limiting factor is too restrictive. Indeed, even a generalization of the con-
cept of "food" to something like per capita productivity has problems. We 
know, for example, that if we substratify the American population into 
economic groups, we would find a much higher rate of population growth 
for the lower income levels than for the middle class. This is not consistent 
with Malthus's hypotheses. And, indeed, we cannot simply assume that 
the hypotheses have been invalidated by the welfare state. This kind of 
high reproductive rate of the poor relative to that of the well to do also 
exists in Mexico, for example, which has very little in the way of welfare. 
It would appear that in many contemporary societies the Malthusian hy-
potheses have been, in a sense, stood on their head with material well-being 
rather than with poverty acting as a brake on population growth. Almost 
without exception, the rapid rate of population growth in the Third World 
(before the AIDS epidemic) is not due to increases in the birth rate, but 
rather to a lowering of infant mortality using the cheap end of First World 
medical technology (vaccination, etc.) without the compensating decreases 
in the birth rate which have occurred in the First World. On the other 
hand, we do see in large stretches of Africa, an apparent return to the 
Malthusian model, as various governments there have managed to wreck 
their economies to the extent that even the most rudimentary trappings of 
modern medicine (e.g., sterile instruments) are disappearing and the food 
production even in fertile areas has been seriously damaged. It would ap-
pear that for subsistence economies, Malthus's model retains a great deal 
of validity; but that for First World societies (which, of course, postdate 
Malthus), radical modifications to his model would be required. 

In the above, we note one of the primary values of a mathematical 
model—namely, as a framework in which to view data. The model gives us 
a benchmark by which to gauge our observations. It forces us to ask ques-
tions about the implications of the data in the light of our "best guess" 
made prior to the data analysis itself. This will generally lead to modificar 
tions of the original model, which will give us a new framework requiring 
that other data be collected, and so on. 

If we take the position that the scientist should clear his or her mind 
of all prejudices about the generating mechanism of the data and "let the 
data speak for itself," we lose much. The human mind simply does not 
ever "start from zero" when analyzing phenomena. Rather, it draws on 
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made prior to the data analysis itself. This will generally lead to modifica­
tions of the original model, which will give us a new framework requiring 
that other data be collected, and so on. 

If we take the position that the scientist should clear his or her mind 
of all prejudices about the generating mechanism of the data and "let the 
data speak for itself," we lose much. The human mind simply does not 
ever "start from zero" when analyzing phenomena. Rather, it draws on 
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instinct plus a lifetime of experience and learning to which is added the 
current information. Empirical model building is simply a formulation of 
this natural learning process. 

On the other hand, models, such as that of Malthus, which were con-
jectured based on logical feelings as the way things ought to be instead 
of basing things on data, are almost always flawed, frequently disastrous. 
During the famous Irish potato famine, the Malthusian model was used as 
an excuse by the English establishment to let the Irish starve during the 
potato blight rather than simply giving them a portion of the Irish grain 
crop which was perfectly healthy and plentiful but raised on huge estates 
owned by the English and worked by poor Irish peasants. The argument 
was that if one fed the starving Irish, it would only encourage them to 
have more children and make things worse. This variant of Malthusianism 
is sometimes referred to as Social Darwinism and it is absolutely contrary 
to the Christian ethos of Western civilization even if the model were cor-
rect (it was not over the long term). In our own times we see much in 
human demographics to contradict Malthus's model. Some of the worlds 
most rapid human population growth is among people who are desperately 
poor. Indeed, it may well be the case that the high population growth 
amongst, say, the Palestinians is due to a notion that it is their only viable 
weapon against the Israelis, whose economy and weaponry are far better 
than those of the Palestinians. And in most of the First World, with its 
relatively abundant resources, most countries show a negative population 
growth. It would seem that Malthus did not come up with anything like a 
universal law. During the 210 years since he presented his model, it really 
has not performed very well. And it has been used by some governments 
with very cruel and disastrous effects. 

In Chapter 14, we shall discuss the efficient market hypothesis (EMH), 
which was developed in the 1960s with reliance on bright ideas instead of on 
data, which stood in stark contradiction to the EMH. As Sherlock Holmes 
used to remark frenziedly to Dr. Watson, "Data, Watson. I must have 
data." 

1.5 Metastasis and Resistance 

The killing effect of cancer is a result of the fact that a cancerous tumor 
grows, essentially, without limit and that it can spread to other parts of the 
body in a cascading sequence of metastatic events. On the other hand, if 
we can remove the tumor before it spreads via metastatic progression, that 
is, the breaking off of a cell from the primary that lodges in sites remote 
from it, then the chances of cure are excellent. On the other hand, once 
the primary has produced metastases to sites remote from the primary, 
surgical removal of the primary alone will generally not cure the patient's 
cancerous condition. If these metastases are widely spread, then, since each 
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surgical intervention involves a weakening of the patient and the removal of 
possibly essential tissue, alternatives to surgery are required. Radiotherapy 
is also contraindicated in such cases, since radiation, like surgery, generally 
should be focused at a small region of tissue. Bartoszynski et alia [1] have 
postulated that the tendency of a tumor to throw off a metastasis in a time 
interval [£,£ + At] is proportional to its size (in tumor cells) n(t): 

P(metastasis in [£, t + At]) = ßn(t)At, (1.56) 

where μ represents the tendency to metastasize. 
For all intents and purposes, only chemotherapy is left to assist a patient 

with diffiise spread of a solid tumor. Happily, we have a vast pharmacopoeia 
of chemotherapeutic agents that are very effective at killing cancerous tis-
sue. Unfortunately, the general experience seems to be that within most 
detectable tumors, cells exist that resist a particular regimen of chemother-
apy. Originally, it was thought that such resistance developed as a feed-
back response of the malignant cells to develop strains that resisted the 
chemotherapy. Currently, it is believed that resistance develops randomly 
over time by mutation and that the eventual dominance of resistant cells 
in a tumor is simply the result of destruction of the nonresistant cells by 
the chemotherapeutic agent(s), a kind of survival-of-the-fittest cells. It is 
postulated that, during any given time interval [t, t + Δί], 

P(resistant cell produced during [t, t + At]) = ßn(t)At, (1-57) 

where ß represents the tendency to develop irreversible drug resistance and 
n(t) is the size of the tumor at time t. 

Now if the resistant cells are confined to the primary tumor, a cure would 
result if the primary were excised and a chemotherapeutic agent were in-
fused to kill the nonresistant cells that might have spread metastatically to 
other sites in the body. Unfortunately, it might very well happen that some 
resistant cells would have spread away from the primary or that originally 
nonresistant metastases would have developed by the time of the beginning 
of therapy. 

Accordingly, it might be appropriate in some cases to follow surgery im-
mediately by a regime of chemotherapy, even though no metastases have 
been discovered. The reason is that this kind of "preemptive strike" might 
kill unseen micrometastases which had not yet developed resistance to the 
chemotherapeutic agent(s). Such a strategy is termed adjuvant chemother-
apy. 

At the time of presentation, a patient with a solid tumor is in one of 
three fundamental states: 
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no metastases; (1.58) 

metastases, none of which contain resistant cells; (1.59) 

metastases at least one of which contains resistant cells. (1.60) 

Both simple excision of the primary and the adjuvant regime of excision 
plus chemotherapy will cure a patient in state (1.58). A patient in state 
(1.60) will not be cured by either regime. Of special interest to us is the 
probability that, at the time of discovery (and removal) of the primary 
tumor, the patient is in state (1.59). The probability that a patient has 
metastases, all nonresistant, at the time of presentation, gives us an indica-
tion as to the probability that a patient will be cured by adjuvant therapy 
but not by simple excision of the primary tumor. 

For most types of solid tumors it is a close approximation to assume that 
the rate of growth is exponential; that is, 

n(t) = eat. (1.61) 

Because we may describe the time axis in arbitrary units, we lose no 
generality by making our primary tumor growth our "clock," and hence, 
we may take a as equal to 1. Thus, for our purposes, we can use n(t) as 
given simply by e*, since for the parameter ranges considered, the amount 
of tumor mass removed from the primary to form the metastatic mass 
and/or the resistant mass is negligible (of relative mass, when compared to 
the primary of 1 part per 10,000). Furthermore, we assume that backward 
mutation from resistance to nonresistance is negligible. 

Our task is to find a means of measuring the efficacy of adjuvant chemother-
apy. We shall try to find estimates of the marginal improvement in the 
probabiUty of cure of a solid tumor (with no apparent metastases) as a 
function of the size of the tumor and the parameters μ and β. We shall 
examine two approaches to this problem and suggest a third. We note 
that the problem suffers from the fact that the relatively simply Poisson 
axioms that describe the process go forward in time. However, to try to 
obtain the expression for marginal improvement in cure requires essentially 
a "backward" look. The first process will be an approximate one based on 
an argument used for a related problem of Goldie et al. [5,6]. First, let us 
look at the number of cells in resistant clones which develop in the primary 
tumor. This number, of course, is stochastic, but we shall approximate the 
number of resistant cells (R) by its expected value E(R). 

^ β ^ « E(R) + ß\e - E(R)} (1.62) 

has the solution 

ВДие*-^1"«. (1.63) 
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Then 

P(no metastasis thrown off by resistant clone by N) (1.64) 

« exp | -M(JV - 1 ) + j -e^iJV 1 -^ - 1 ) I 

Similarly, 

P(no metastasis which develops resistant clone by N) (1.65) 

« exp -0(ЛГ-1) + -JL(jV-i-" _ l) 
1— /i 

Summarizing, 

P(no resistant metastasis by total mass N) « (1.66) 

exp -{β + μ)(Ν - 1) + ^(N1-0 - 1) + JZ^iN1-'1 ~ 1) 

By differentiating (1.65) and (1.66) with respect to JV, we note that for 
β very large relative to μ, the chances are that any formation of a resistant 
metastasis after tumor discovery would most likely be the result of spread 
from a resistant clone in the primary. Here, the standard protocol of re-
moving the primary before beginning chemotherapy would be indicated. 
However, if the force of metastasis is much stronger than that of mutar 
tion to resistance, then chemotherapy might appropriately precede surgical 
intervention. 

Now the approximation in (1.63) may be a serious underestimate for 
values of the stated probability less than 0.25. The reason is that by using 
E(R) instead of Д, we are allowing clones of size less than one cell to form 
metastases, an obvious biological absurdity. Similarly, by replacing M by 
E(M), we are allowing metastatic clones of less than one cell to develop 
and be at risk to resistance. 

It is possible to obtain an exact expression for the marginal improvement 
possible from adjuvant chemotherapy, but only as the result of a fair amount 
of reflection. Let us consider the two events 

A(N) = the event that by the time the total tumor mass equals (1.67) 
N cells a nonresistant metastasis develops in which a resistant 
population subsequently develops before a total tumor mass of N 

B(N) = the event that by the time the total tumor mass equals (1.68) 
N cells a resistant clone develops from which a metastasis 
develops before a total tumor mass of N). 

Then 
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We shall seek to compute P[AC(N)} and P[BC(N)]. This can easily be 
computed by using (1.55) and (1.56). 
P(metastasis occurs in [t,£ + At]followed by a resistant subclone before T) 

— /xe* 
rT-t 

1 - exp ( - / ßr dr ) Δί = μει ( l - eße~ßN^ At. (1.69) 

where T = ln(JV). But then, 

P[AC(N)] = e x p j - / με\\-ββε~βΝ'η)άλ (1.70) 

= exp [μ - μεβ^~Ν) + μβεβΝ{Εί{-β) - Ei(-ßN)}] . 

Here, the exponential integral Ei(-) is defined for negative x by 

Ei(x) = - —-dt. (1.71) 
./-a: ^ 

Similarly, we obtain 

P [Bc(iV)] = exp [ß - ße*e-»N + μββμΝ{Εί(-μ) - Ει{-μΝ)}] . (1.72) 

Thus, we can compute the probability that no resistant metastases have 
been formed by a total tumor size of N via 

P(no resistant metastases) = P[AC(N)]P[BC(N)}. (1.73) 

We have been able to obtain (1.69) and (1.71), exact solutions to the 
special two-stage branching processes defined by hypotheses (1.55), (1.56, 
and (1.57) (generally deemed intractable and requiring approximation), by 
exploiting the special structure of the case of interest to us here: namely, 
the nonappearance of any second-stage events. The exact expression in 
(1.72) is easily computed using, for example, the IMSL routine MMDEI 
[7] for computing exponential integrals. However, for the magnitudes of N 
(very large) and μ and β (very small) in the present application, we obtain 
essentially the same result [using approximations for small arguments of 
Ei(x)] with 

P(no resistant metastases by TV) = (μβη2γβΝ. (1.74) 

where 7 = 1.781072 is e raised to Euler's constant. The probabiUty of no 
metastases at all by tumor size N] is given simply by 

P(no metastases by N) = exp j - / με* dt j = е-м ( л г _ 1 ) . (1.75) 
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Thus, the probability that a patient with a tumor of size N is curable by 
adjuvant therapy but not by simple excision of the primary tumor alone is 
given by 

P(metastases, none of them resistant by N) (1.76) 
= ( ^ ) ^ - « φ [ - μ ( # - 1 ) ] . 

In Figure 1.10, we show the probability of nonoccurrence of metastases. 

Figure 1.10. Nonoccurrence of metastases. 

Typical values for ß for mammalian cells are 10~6 to 10~4. A typical 
tumor size at time of detection is 1010 cells (roughly 10 cubic centimeters). 

In Figure 1.11, we show the probability of nonoccurrence of resistant 
metastases versus log(N) for various values of log(^/3). 

In Figure 1.12, we show the probability there exist metastases but no 
resistant metastases at a tumor mass of 1010 for various ß and μ values. 
We note, for example, that for β = IO"6·5 to 10~10, the probability a 
patient presents with a condition curable by adjuvant therapy but not by 
simple excision of the primary is at least 40 %. Similar results hold for early 
detection (109 cells) as shown in Figure 1.13. This wide range of μ values 
includes that reported for breast cancer by Bartoszynski et al. [1]. 
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Typical values for {3 for mammalian cells are 10-6 to 10-4. A typical 
tumor size at time of detection is 1010 cells (roughly 10 cubic centimeters). 

In F igure 1 .1 1 ,  we show the probability of nonoccurrence of resistant 
metastases versus log(N) for various values of log (JI.{3). 

In Figure 1 .12, we show the probability there exist metastases but no 
resistant metastases at a tumor mass of 1010 for various {3 and JI. values. 
We note, for example, that for {3 = 10-6.5 to 10-10 , the probability a 
patient presents with a condition curable by adjuvant therapy but not by 
simple excision of the primary is at least 40 %. Similar results hold for early 
detection (109 cells) as shown in Figure 1 .13. This wide range of JI. values 
includes that reported for breast cancer by Bartoszyllski et al. [1] . 
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Figure 1.11. Nonoccurrence of resistant metastases. 

Figure 1.12. Probability of metastases but no resistant 
metastases when log(tumor cell count) = 10. 
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Figure 1.11. Nonoccurrence of resistant metastases. 
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Figure 1.12. Probability of metastases but no resistant 
metastases when log(tumor cell count) = 10. 
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Figure 1.13. Probability of metastases but no resistant 
metastases when log(tumor cell count) = 9· 

As an aside, (1.71), and (1.72) can be used for the situation where one 
is interested in obtaining the probability that resistance to both of two 
independent chemotherapeutic agents will not have developed by tumor 
mass of size N. If the two parameters of resistance are βχ and β2ι then the 
probability of no doubly resistant cells is given by 

P(no doubly resistant cells) (1.77) 
= exp [ft + β2 - βι exp(/?2 - AJV) 

- Ä « p ( Ä - βχΝ) + βχβ2 exp(ß1)N{Ei(-ß1) - Ei(-faN)} 
+ß1ß2exp(ß2)N{Ei(~ß2) - Ei(-ß2N)}}. 

For typical values of Ν,βι, and β2ί this is essentially given by 

P(no doubly resistant cells) = (ßiß2j2)ßlß2N> (1-78) 

In the case of breast cancer that has metastasized at least to local nodes, 
it has been reported by Buzdar et al. [3] that the use of adjuvant chemother-
apy decreases disease mortality by as much as 54% when compared to 
surgery alone. In order to estimate μ and β clinically, we need randomized 
trials on tumors (which have exhibited no metastases at presentation) using 
surgery followed by adjuvant chemotherapy compared with surgery alone. 
Such a clinical data base is not currently available. However, since we are, 
at this stage, really seeking rough estimates of μ and /3, animal experiments 
may be appropriate. 

We examine below how such experiments might be used to estimate μ and 
/?. Let us suppose we have stratified our data by tumor size at presentation. 
Consider the 1010 primary cell stratum. Suppose that the control group 
(surgical excision only) exhibits a cure rate of 5 % and that the adjuvant 
therapy group exhibits a 95% cure rate. Then we can estimate μ: 
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Figure 1.13. Probability of metastases but no resistant 
metastases when log(tumor cell count) = 9. 
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AB an aside, (1 .71) , and (1 .72) can be used for the situation where one 
is interested in obtaining the probability that resistance to both of two 
independent chemotherapeutic agents will not have developed by tumor 
mass of size N. If the two parameters of resistance are (31 and (32, then the 
probability of no doubly resistant cells is given by 

P(no doubly resistant cells) ( 1 .77) 
= exp [131 + 132 - 131 exp(!32 - !32N) 

-(32 exp(!31 - !31N) + (31(32 exp(!31)N{Ei(-!31) - Ei( -!31N)} 
+131132 exp(f32)N {Ei( -132) - Ei( -f32N)}] . 

For typical values of N, (31 . and 132, this is essentially given by 
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exp[-ß(N - 1)] = ехр[-£(1010 - 1)] = .05. (1.79) 
This yields a ß value of 3xl0~10. 

Next, we can estimate β from (178): 

(ßßj2)ß0N = (3xlO- l o072)3^ = .95. (1.80) 

This gives (using Newton's method) ß = 0.0006. [The same estimate is 
obtained by the use of (1.66).] 

Although we are here essentially concerned only with obtaining rough 
estimates of μ and β, it is clear that several resampling techniques (e.g., 
the jackknife or the bootstrap [4]) can be used to determine the variability of 
the estimates. Let us suppose, for example, that we have Ni individuals in 
the control group of whom n\ are cured and N2 individuals in the adjuvant 
group of whom 712 are cured. Using the coding of 1 for a cure and 0 for 
a noncure, we repeatedly sample (say, M times, where M is very large) 
JV*i individuals with probability of success ηχ/Ν\ and N2 individuals with 
probability of success 712/ÌV2· For each such jth sampling we obtain ßj and 
ßj as above. Then we have as ready bootstrap estimates for Var(/i), Var(/3), 
ала Cov(ß,ß),E(ßj - μ)2/Μ,Σ(4· - β)2/Μ, and Σ(& - ß)(ßj - ß)/M, 
respectively. An unacceptably large 95 % confidence ellipsoid would cause 
us to question the validity of our model, and the comparative suitability 
of competing models might be judged by examining the 'tightness" of the 
95 % confidence ellipsoids of each using the same data set. 

In our discussion, note that both (1.65) and (1.73) are easy to compute. 
Equation (1.65) is much easier to think out than (1.73) but if we use (1.65), 
we know1 we are employing an approximation whose imprecision is hard 
to assess unless we have the more precise formula (1.73), which is time 
consuming to derive. It would clearly be good to have the advantage of the 
accuracy of (1.73) without the necessity for much effort spent in cogitation. 
We shall show later how we can employ simulation to go in the forward 
direction, pointed to by the axioms in SIMEST in Chapter 6. 
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Problems 

1.1. Assume a society in which there is no inflation. Savings accounts 
pay an interest rate of 3% per year. A young professional begins investing 
into an IRA (tax exempt) at the end of each year the amount of $50,000. 
How long must she invest before she arrives at the capital necessary to pay 
$20,000 per year forever? 

1.2. In 1790, Benjamin Franklin set up a two hundred year trust for the 
University of Pennsylvania paying 3% interest annually. The average rate 
of inflation for the United States since its founding has been a remarkably 
low (by modern standards) 1%. If the original stake was $100,000, find (a) 
the value of the trust in 1990 in 1990 dollars; (b) the value of the trust in 
1990 in 1790 dollars. 

1.3. An individual has a stake which, in January of 2011, is worth $10,000. 
Assume the interest is continuous and at the annual rate of 6.25%. Assume 
that all income will be taxed continuously at the 33% level, and that all 
after tax income will be continuously reinvested. Assume that inflation is 
5%. Find, in 2011 dollars, the value of the individual's account on January 
1 of 2027. 

1.4. Pick two or more human populations (selected by geographical re-
gion, ethnicity, religion, or some other criterion) and examine their growth 
and/or decline over a period of at least one hundred years. Plot the pop-
ulations versus time and/or other interesting independent variables. By 
argument, supported by models, discuss the pluses, incompletenesses,etc, 
of the Malthusian approach to the populations you are considering. 
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Chapter 2 

Models of Competition, 
Survival, and Combat 

2.1 Analysis of the Demographics of Ancient 
Israel based on Data in the Biblical Books 
of Exodus, Numbers, Judges, and II Samuel 

Let us consider a simple model of population growth: 

£ « * (2.1) 

where Y is the size of the population at time t and a is the (constant) rate 
of growth. The solution is simply 

Y{t)=Y0e
at, (2.2) 

where YQ is the size at t = 0. We note first that this model has several 
natural reasons for its appeal. 

1. The model follows directly from the microaxiom: 

P(individual gives birth in [t, t + At]) = aAt (2.3) 

The expected increase in the interval is given simply by multiplying 
by Y\ As Y becomes large, we can replace Y by its expectation to 
obtain 

AY = YaAt (2.4) 
0Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R. 

Thompson ©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons. 
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2. The model has the happy property that if we choose to divide the 
Y population into subgroups, which we then watch grow, when we 
recombine them, we get the same result as when we use pooled Y all 
along. 

Clearly, there are bad properties of the model, too. For example: 

1. The model is more appropriate for single-cell animals than for peo-
ple; there is no child-bearing age range considered in the model, no 
allowance for the fact that only women have children, and so on. 
However, for large samples, this objection is academic. We could use 
the number of men (as we shall of necessity do thanks to the presen-
tation of our data) assuming rough proportionality between men and 
women. Age stratification will also not make a noticeable difference 
for large populations. 

2. There is no factor for diminishing growth as the people fill up the 
living space. However, for the population to be considered here, it 
would seem that death by armed violence was a much more important 
factor than a limit to growth factor (although it can surely be argued 
that death in war was a function of "crowding"). 

3. There is no factor for death by war. We shall add such a factor to 
our model shortly. 

Around 1700 B.C., there were 12 male Jews fathering children. These 
were, of course, the sons of Jacob, his two wives (Leah and Rachel), and two 
concubines (Bilhah and Zilpah). The entire family disappeared into Egypt 
shortly thereafter. Before the conquest of Canaan, in 1452 B.C., Moses 
conducted a census of the total military force of the Jews. The results are 
shown in Table 2.1. As the Levites are always excluded from censuses, we 
must inflate the figure by 12/11 if we are to come up with a figure that can 
be used to estimate a. This gives us a comparable total of 656,433 and an 
estimate of a = ln(656,433/12)/248 = 0.044. To put this in perspective, 
this growth rate is roughly that of Kenya today, and Kenya has one of the 
fastest growing populations in the world. Certainly, it was an impressive 
figure by Egyptian standards and is given as the reason (Exodus 1) for the 
subsequent attempts (using such devices as infanticide by midwives) of a 
few later Pharaohs to suppress the growth in Jewish population. We note 
that this growth rate would seem to indicate that the bondage of Israel 
was of relatively short duration and that, on the whole, the Jews had lived 
rather well during most of their time in Egypt. This is also consistent with 
later writings. 
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Table 2.1. 
Tribe 
Judah 

Issachar 
Zebulun 
Reuben 
Simeon 

Gad 
Ephraaim 
Manasseh 
Benjamin 

Dan 
Asher 

Naphtali 
Total 

Moses's Census of 1452 B.C. j 
Number of Warriors 

74,600 
54,400 
57,400 
46,500 
59,300 
45,650 
40,500 
32,200 
35,400 
62,700 
41,500 
53,400 

603,550 1 

In Deuteronomy 23, there is an injunction to treat the Egyptians (along 
with the Edomites, descendants of Jacob's brother Esau) relatively well. 
They were allowed to become full participants in all forms of Jewish life af-
ter only three generations. (Contrast this with the Moabites who were not 
allowed membership in the congregation under any circumstances "even 
to their tenth generation." Obviously, the harsh Mosaic law was not al-
ways strictly observed, because King David and King Solomon had the 
Moabitess Ruth as their great grandmother and great great grandmother, 
respectively.) Also, the Jews, having gained control of Canaan, were very 
much inclined to enter into alliances with the Egyptians against their ene-
mies to the north and east. The current guarded friendship between Egypt 
and Israel has ancient precedent. 

Figure 2.1. Total Israeli militia (1452 B.C.). 

Now had Moses had a Macintosh, he could have represented this data 
graphically, using a pie chart as shown in Figure 2.1 . We note that a 
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Figure 2.1. Total Israeli militia (1452 B.C.). 
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pie chart is somewhat appropriate, since the circular representation does 
not give any notion of ordering of the attributes of tribeship (i.e., it does 
not demand that we say that Issachar > Dan). It does give false notions 
of adjacency; for example, Asher is "between" Dan and Naphtali for no 
good reason. Less appropriate would have been a column chart (Figure 
2.2) which does "order" one tribe versus another for no good reason. 

Figure 2.2. Bar chart of Israeli defense forces (1452 B.C). 

Still less appropriate would have been a line chart (Figure 2.3), which 
presents information more misleadingly and less informatively than the 
other two. (Note, however, that any one of the charts could have been 
constructed from either of the others.) 

In truth, for the present data set, we may be better off to stick with a ta-
ble, since the graph may encourage us to make subconscious inferences that 
are accidents of presentation rather than the result of intrinsic attributes 
of the data. 

Returning to our attempt to make some modeling sense of the data at 
hand, we note (Judges 20) that after the conquest of Canaan in 1406 B.C. 
we have more population information at our disposal. The total warrior 
population had declined to 427,000. Putting in the correction to account 
for the Levites, we come up with a total of 465,000. Recall that before 
the conquest, the comparable figure was 656,000. It is obvious now that 
we need to include a term to account for the losses in warfare during this 
period of 46 years: 

^=aY-X, (2.5) 
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dY dt = aY - '\, (2.5) 
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where λ is the annual loss to the male population due to warfare. The 
solution is simply 

n*) = - + (Vo--Y 
a \ a) 

>at (2.6) 

Now the figures for the two base years of 1452 B.C. and 1406 B.c. give 
us a means of estimating λ via 

λ = a 
yCtt . (Yoe^-Y), (2.7) 
e«* - 1 

where the time origin is taken to be 1452 B.c. 
If we use our previous estimate of a — .044, we find λ = 30,144, giving 

total losses of males during the 46-year period of 1,386,606. Clearly, the 
conquest of Canaan had caused heavy casualties among the Jews. More-
over, total war was pursued, with the Jews killing everyone: men, women, 
and children. Assuming their opponents retaliated in kind, the above figure 
might be close to 3,000,000. 

Now unsettled times can be expected to lower fecundity, so perhaps the 
use of a = 0.044 is unrealistic. We do have a means of estimating the growth 
rate between 1406 and 1017, since we have another census at that later 
date (the warrior age male population exclusive of Levites was 1,300,000). 
Unfortunately, there was intermittent, frequently very intense, warfare with 
the Philistines, Midianites, Ammonites, and so on, during that period, so 
a new value of λ is really needed. But if we swallow the later warfare 
casualties in a, we come up with an estimate of 0.0029. If we use this value 
in our equation for estimating the total casualties during the conquest of 
Canaan, we come up with a λ of 5777 and a total warrior age male loss 
figure of 265,760. This figure is no doubt too small. But translated to U.S. 
population values, if we go between the two extreme figures, we should be 
talking about losses at least as great as 30,000,000. 

One observation that ought to be made here is that in 1017 B.C. David 
had an army of 1,300,000 after 450 years of war, during which great sac-
rifices had been made and borne by the Jews. The period of peace that 
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started about that year continued essentially until 975 B.C. After that 
date, the Kingdom was generally in subjugation and vassalage to some 
other state. What happened? Were the Jews overwhelmed by armies so 
massive that they could not match them? 

To answer this question, we might consider some sizes of the largest field 
armies of the ancient world: see Table 2.2. 

The notion of Israel as a numerically tiny nation, unable to cope with 
attacks by massive invading armies is seen to be false. At the time of the 
Kingdom of David (1017 till 975), Israel had a larger army than Rome 
had 700 years later. We know, not only from Biblical accounts but also 
from other records, that the Jews were one of the largest "national" groups 
in the ancient world. Their militia was vast [1,300,000—larger than the 
maximum size (750,000) ever attained by the total military forces of the 
Romans]. What then caused the decline (which set in immediately after 
Solomon)? The short answer is high taxes. Whether these taxes were mainly 
the result of costs of the Temple of Solomon or the costs for the luxuriant 
life-style of Solomon, we cannot answer definitively. However, we know that 
in 975 B.c. a delegation pleaded with Solomon's son Rehoboam to lower the 
rate of taxation. While acknowledging that taxes had been high under his 
father ("My father has chastised you with whips ...") Rehoboam promised 
little in the way of tax relief ("But I will chastise you with scorpions."). 
Upon reception of this news, the larger part of the Jews seceded from the 
Kingdom of Judah, setting up the Kingdom of Israel. And within these 
kingdoms, there then began further quarrels and divisions. Frequently, the 
two kingdoms would go to war with each other, inviting help from outside 
powers. From the time of the death of Solomon, the Kingdom of David was 
on a slippery slope to destruction. The total time span of the Kingdom was 
a scant 42 years. 

Table 2.2. Field Armies of the Ancient World. | 
Tribe 

Hannibal's army at Cannae 
Largest Assyrian army 
Xerxes' army in Greece 

Alexander's army at Issus 
Scipio's army at Zama 

Rome's total forces under Augustus 

Number of Warriors 
32,000 
200,000 
200,000 
30,000 
43,000 
300,000 

2.2 The Plague and John Graunt's Life Table 
In A.D. 1662, some 3113 years after the census of Moses, an obscure hab-
erdasher, late a captain in the loyalist army of Charles II, published an 
analysis on data originally collected by Thomas Cromwell, 127 years ear-
lier, dealing with age at the time of death in London. The data had been 
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collected at the request of the merchants of London who were carrying out 
the most basic kind of marketing research; that is whether potential cus-
tomers (i.e., live people) were on the increase or decrease. Interestingly 
enough, the question originally arose because of the fact that the bubonic 
plague had been endemic in England for many years. At times, there would 
be an increase of the incidence of the disease, at other times a decrease. 
It was a matter of sufficient importance to be attended to by Chancellor 
Cromwell (also Master of the Rolls). Without any central data bank, a 
merchant might put a shop in an area where the decline in population had 
eliminated any potential opportunity, due to market saturation. 

Cromwell's data base consisted in records of births and deaths from the 
Church of England to be carried out and centrally located by the clergy. 
Before John Graunt, all analyses of the data had suffered the usual "can't 
see the forest for the trees" difficulty. 

Graunt solved this problem and started modern statistics by creating 
Table 2.3. 

Graunt also tabulated 1 — F, where F is the cumulative distribution 
function. We can easily use this information to graph F (see Figure 2.4). 

Prom Graunt's table, it is an easy matter to compute the life expectancy— 
18 years. It would seem the plague was in full force. Note that Graunt's 
brilliant insight to order his data made possible a piece of information sim-
ply not available to the ancient Israeli statisticians, the sample average. 
How obvious Graunt's step seems to us today. Yet, it would appear he was 
the first to take it. It is also interesting to note how application frequently 
precedes theory. Graunt's sample cumulative distribution function predates 
any notion of a theoretical cdf. 

Table 2.3. Graunt's Life Table 
Age Interval 

0-6 
6-16 
16-26 
26-36 
36-46 
46-56 
56-66 
66-76 
76-86 

P (death in interval) 
.36 
.24 
.15 
.09 
.06 
.04 
.03 
.02 
.01 

Following our earlier graphical analyses, we note that the pie chart is 
rather less informative than the bar chart, near histogram), which is slightly 
less useful than the near histopolygon line chart). The pie chart draws the 
viewer's attention to a periodicity which simply does not exist. If we divide 
the probabilities by the width of the age interval, we could get a true 
histogram as shown in (with unequal intervals). 
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Figure 2.5.Graunt's life table (A.D. 1661). 

Figure 2.6.Graunt's life table (A.D. 1661). 

We observe that Graunt's table cries out to be graphed, as the demo-
graphic data from ancient Israel did not. What is the difference? In the 
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Israeli data, there is no natural measure of proximity of tribal attributes. 
The covariate information is completely qualitative. Dan cannot be said, 
in general, to be "closer" to Napthtali than to Benjamin. A 5-year-old 
Englishman is very like a 7-year-old and very different from a 70-year-old. 
Graunt had empirically discovered a practical realization of the real number 
system before the real numbers were well understood. In so doing, he also 
presented the world with its first cumulative distribution function. 
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Figure 2.7. Graunt's life table ( A.D. 1661). 

Had he graphed his table, he might have been tempted to draw a tangent 
and then graph that. A pity he did not, so that a statistician could have 
been credited with discovering derivatives. And yet, for all the things he 
did not do, we must give Graunt enormous credit for what he did do. 
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Figure 2.8. Graunt's histogram (A.D. 1661). 

He brought, empirically, the notion of continuity into data analysis. By 
his tabulation of the cumulative distribution function, Graunt brought forth 
the modern science of statistics. No longer would stochastics be simply a 
plaything for the gentleman hobbyist. It would be the fundamental gram-
mar of empirical science. Graunt gave us the first rationally constructed 
spreadsheet. As we know from Pepys' journal and other sources, Graunt 
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died destitute and apparently dropped from his membership (the first mod-
ern statistician had been inducted by the command of Charles II over the 
grumblings of other members) in the Royal Society of London. 

2.3 Modular Data-Based Wargaming 

Checkerboard-based games are of ancient origin, being claimed by several 
ancient cultures. One characteristic of these games is the restricted motion 
of the pieces, due to the shape and tiling of the playing field. This is 
overcome, in measure, in chess by giving pieces varying capabilities for 
motion both in direction and distance. Another characteristic of these 
games is their essential equality of firepower. A pawn has the same power 
to capture a queen as the queen to capture a pawn. Effectiveness of the 
various pieces is completely a function of their mobility. 

The directional restrictions of square tiles are a serious detriment to 
checkerboard games if they are to be reasonable simulations of warfare. 
The most satisfactory solution, at first glance, would be to use building 
blocks based on circles, since such tiles would appear to allow full 360° 
mobility. Unfortunately, as we observe, circles cannot be satisfactory tiles, 
since they leave empty spaces between the tiles. 

EHH 
Figure 2.9. Tiling with squares. 

A natural first attempt to overcome the difficulty of circles as tiles would 
be to use equilateral octagons, since these allow motion to the eight points 
of the compass, N, NE, E, SE, S, SW, W, NW. Unfortunately, as we see in 
Figure 2.11, this still leaves us with the empty space phenomenon. 

None of the ancient games is particularly apt as an analogue of combat 
after the development of the longbow, let alone after the invention of gun-
powder. Accordingly, the Prussian von Reiswitz began to make suitable 
modifications leading in 1820 to Kriegspiel. The variants of the Prussian 
game took to superimposing a hexagonal grid over a map of actual terrain 
(see Figure 2.12). 
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Figure 2.10. Tiling with circles. 

Motion of various units was regulated by their capabilities in their par-
ticular terrain situation. The old notion of "turns" was retained, but at 
each turn, a player could move a number of units subject to a restriction 
on total move credits. Combat could be instituted by rules based on ad-
jacency of opposing forces. The result of the combat was regulated by the 
total firepower of the units involved on both sides in the particular terrain 
situation. A roll of the dice followed by lookup in a combat table gave the 
casualty figures together with advance and retreat information. 

Figure 2.11. Tiling with octagons. 
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Figure 2.12. Tiling with hexagons. 

The Prussian game, together with later American variants, such as Strat-
ego, was validated against actual historical combat situations. In general, 
these games were excellent in their ability to simulate the real-world situ-
ation. Their major difficulty was one of bookkeeping. Frequently, a sim-
ulated combat could take longer to play than the actual historical battle. 
If the masking of movements and questions of intelligence gathering were 
included in the game, a large number of referees was required. 

In attempting to take advantage of the computer, the creators of many 
modern military war-games have attempted to go far beyond resolution 
of the bookkeeping problems associated with Kriegspiel. Very frequently, 
these games do not allow for any interaction of human participants at all. 

Initial conditions are loaded into a powerful mainframe computer, and 
the machine plays out the game to conclusion based on a complex program 
that may actually look at the pooled result of simulations of individual 
soldiers firing at each other, even though the combat is for very large units. 
Any real-time corrections for imperfections in the game are accordingly 
impossible. Any training potential of such games is obviously slight. 

Furthermore, the creators of many of these games may disdain to engage 
in any validation based on historical combat results. Such validation as 
exists may be limited to checking with previous generations of the same 
game to see whether both gave the same answer. 

If we know anything about artificial intelligence (and admittedly we know 
very little), it would seem to be that those simulations work best that seem 
to mimic the noncomputerized human system. Attempts to make great 
leap» forward without evolution from noncomputerized systems are almost 
always unsuccessful. And it is another characteristic of such a nonevo-
lutionary approach that it becomes quickly difficult to check the results 
against realistic benchmarks. Before anyone realizes it, a new, expensive, 
and, very likely, sterile science will have been created soaking up time and 
treasure and diverting us from the real-world situation. 

My own view is that it is better to use the computer as a means of 
alleviating the bookkeeping difficulties associated with Kriegspiel-like board 
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exists may be limited to checking with previous generations of the same 
game to see whether both gave the same answer. 

If we know anything about artificial intelligence (and admittedly we know 
very little) , it would seem to be that those simulations work best that seem 
to mimic the noncomputerized human system. Attempts to make great 
leaps forward without evolution from noncomputerized systems are almost 
always unsuccessful. And it is another characteristic of such a nonevo­
lutionary approach that it becomes quickly difficult to check the results 
against realistic benchmarks. Before anyone realizes it, a new, expensive, 
and, very likely, sterile science will have been created soaking up time and 
treasure and diverting us from the real-world situation. 

My own view is that it is better to use the computer as a means of 
allevia.ting the bookkeeping difficulties associated with Kriegspiel-like board 
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games. In the late 1970s and early 1980s, I assigned this task to various 
groups of students at Rice University. Experience showed that 200 person 
hours of work generally led to games that could emulate historical results 
very well. 

At least another 500 person hours would have been required to make these 
games user friendly, but the rough versions of the games were instructive 
enough. One criticism made against historical validation is that technology 
is advancing so rapidly that any such validations are meaningless. It is 
claimed that the principal function of wargaming should be predictions of 
what will happen given the new technologies. While not agreeing that 
parallels between historical situations and future conflicts are irrelevant 
(and I note here that the strategy and tactics hobbyists generally make 
games ranging from Bronze Age warfare to starship troopers), I agree that 
the predictive aspect, in the form of scenario analyses, is very important. 

Accordingly, one student created a game for conflict between an Amer-
ican carrier task force and a Soviet missile cruiser task force. Given the 
relatively close-in combat that would be likely, it seemed that if the Soviet 
commander is willing to sacrifice his force for thè much more costly Ameri-
can force, he can effect an exchange of units by a massive launch of missies 
at the outset of the conflict. Clearly, such a playout could have serious 
technological implications, for example, the desirabiHty of constructing a 
system of jamming and antimissile defenses that is highly resistant to being 
overwhelmed by a massive strike. Or, if it is deemed that such a system 
could always be penetrated by further technological advances on the Soviet 
side, it might be appropriate to reconsider task forces based around the 
aircraft carrier. In any event, I personally would much prefer an interactive 
game in which I could see the step-by-step results of the simulation. 

Also, a validation using, say, data from the Falkland conflict could be 
used to check modular portions of the game. World War II data could be 
used to check other parts. The validation would not be as thorough as 
one might wish, but it would be a good improvement on no validation at 
all. Some "supersophisticated" unvalidated computer simulation in which 
the computer simply played with itself and, at the end of the day, told 
me that existing antimissile defenses were sufficient would leave me neither 
comforted nor confident. 

An integral part of any Kriegspiel computerization should deal with the 
resolution of the likely results of a conflict. A ready means of carrying 
this out was made via the famous World War I opus of Lanchester. Let us 
suppose that there are two forces, the Blue and the Red, each homogeneous, 
and with sizes и and v, respectively. 

Then, if the fire of the Red force is directed, the probability a particular 
Red combatant will eliminate some Blue combatant in time interval [t, t + 
At] is given simply by 

P(Blue combatant eliminated in [t, t + At]) = c\At, (2.8) 
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where c\ is the Red coefficient of directed fire. If we wish then to obtain 
the total number of Blue combatants eliminated by the entire Red side in 
[t, t + Δί], we simply multiply by the number of Red combatants to obtain 

^(change in Blue in [t, t + Δ*]) = -vciAt. (2.9) 

Replacing и by its expectation (as we have the right to do in many cases 
where the coefficient is truly a constant and v and и are large), we have 

I ? - - c i v · (2ло> 
This gives us immediately the differential equation 

du /Λ „ „ ч 

- = -Clv. (2.11) 

Similarly, we have for the Red side 

This system has the time solution 

u(t) = щ cosh \Jc\Cit — VQX — sinh y/c\C2t. (2.13) 
V c2 

v(t) = vo cosh Jc\C2t — uo\ — sinh Jc\Cit. (2.14) 
V c i 

A more common representation of the solution is obtained by dividing 
(2.11) by (2.12) to obtain 

du C\V 

db C2U* 

with solution 

(2.15) 

l 4 a- t l g = 3:( t ,a-1 ,g). (2.16) 
02 

Now и and v are at "combat parity" with each other when 

и2 = ^v\ (2.17) 
C2 

A special point needs to be made here. Such parity models assume that 
both sides are willing to bear the same proportion of losses. If such is not 
the case, then an otherwise less numerous and less effective force can still 
emerge victorious. For example, suppose that the Blue force versus the 
Red force coefficient is 0.5 and the Blue force has only 0.9 the numerosity 
of the Red force. Then if Blue is willing to fight until reduced to 0.2 of 
his original strength, but Red will fight only to 0.8 of his original strength, 
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then using (2.17), we find that by the time Red has reached maximal ac-
ceptable losses, Blue still has 30% of his forces and thus wins the conflict. 
This advantage to one force to accept higher attrition than his opponent is 
frequently overlooked in wargame analysis. The empirical realization of this 
fact has not escaped the attention of guerrilla leaders from the Maccabees 
to the Mujaheddin. 

Accordingly, it is interesting to note that if there is a doubling of numbers 
on the Red side, Blue can only maintain parity by seeing to it that сг/ci 
is quadrupled, a seemingly impossible task. 

Lanchester's formula for undirected fire follows from similar Poissonian 
arguments. The probability that a Red combatant will eliminate some Blue 
combatant in [t, t + At] is given by 

P(a Blue eliminated by a Red in [t, t + At]) (2.18) 
= P(shot fired in [t, t + At])P(ahot hits a Blue)Ai. 

Now, the probability that a shot aimed at an area rather than at an 
individual hits someone is proportional to the density of Blue combatants 
in the area, and hence proportional to u. Thus, we have 

P(Blue eliminated in [t, t + At]) = dxuAt. (2.19) 

The expected number of Blues eliminated in the interval is given by 
multiplying the above by the size of the Red force, namely, v. So the 
differential equations are 

du dv 
— = —d\uv and — = —d2uv. (2.20) 
dt dt 

This system has the time solution 

„(A - (Vrfi)tto - vo f0 9 1 v 
W " (A/di) - Ы|ю)е-<*«о-*'*>* ' VM> 

and 

_./,\ (di/d2)vo - up 
W ~~ (di/cfa) - (u0/v0)e-^o-d*uo)t · Vм) 

Here, when dividing the equations and solving, we obtain the parity equa-
tion: 

u-Uo = ^(v-Vo), (2.23) 

In such a case, a doubling of Red's parity force can be matched by Blue's 
doubling of da/di. 

In attempting to match either law (or some other) against historical data, 
one needs to be a bit careful. In 1954, Engel claimed to have validated the 
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applicability of Lanchester's directed fire law for the Battle of Iwo Jima. 
He used no records for Japanese casualties and simply adjusted the two 
parameters to fit the record of American casualty data. According to En-
gel's model, Japanese resistance was completely eliminated in 36 days. But 
American data reveal that resistance continued for some time after the bat-
tle was over, with 20 Japanese killed in a single banzai charge on day 37 and 
up to 70 prisoners taken on some days up to 1 month after day 36. More 
significantly, there is available partial Japanese force data delivered by the 
Japanese commander, General Kuribayashi, by radio to Tokyo at times well 
before day 36. For example, on day 21 of the conflict, when EngePs model 
gives a figure of 8550 for the Japanese forces on the island, Kuribayashi 
gives the actual figure of 1500. Using the partial Japanese casualty records 
shows that the directed fire model gave answers much at variance with the 
data (sometimes off the Japanese total effectives by a factor of 4) and that 
the undirected fire model appeared to work much more satisfactorily. It 
is possible to track very closely the American force levels using either the 
directed or undirected fire models. But the undirected fire model has the 
additional attribute of closely tracking the partial force information for the 
Japanese. We have exhibited both the directed and undirected fire models 
above in Figure 2.13. 

Battle of Iwo Jima 
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Figure 2.13a. Battle of Iwo Jima with 21,500 defenders. 

Suppose, however that the Japanese had had 50,000 defenders. We note, 
in this case, a catastrophe for the Americans. One can only wonder at the 
excellence of U.S. Naval Intelligence which showed the Japanese had only 
around half that number. One gets the impression that, time and again, 
U.S. Naval Intelligence gets things right more often than other United States 
intelligence services. 

Directed Fire 

Undirected Fire _*++*—*.rf 
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Figure 2.13b. Battle of Iwo Jima with 50,000 defenders. 

In the Iwo Jima scenario, considering the losses of the Japanese forces, 
it is rather clear that the undirected fire model is to be preferred over 
the directed one. In the case of the American attrition, the directed fire 
model is the more appropriatae. However, any homogeneous force model 
would probably not be as satisfactory as a heterogeneous force model in an 
engagement in which naval gunfire together with marine assault both played 
important roles. We shall address the heterogeneous force model problem 
shortly. In a much broader context of combat simulation, we note that a 
model which appears at first glance to do an excellent job of "prediction" 
may become seriously deficient as more data are made available. 

The year 2011 marked the 175th anniversary of the Battle of the Alamo. 
This battle gives an example of a situation in which a mixture of the two 
models is appropriate. Since the Texans were aiming at a multiplicity of 
Mexican targets and using rifles capable of accuracy at long range (300 
m), it might be appropriate to use the directed fire model for Mexican 
casualties. Since the Mexicans were using less accurate muskets (100 m) 
and firing against a fortified enemy, it might be appropriate to use the 
undirected fire model for Texan casualties. This would give 

du 
HU-

di) 
= —d\uv and — = — C2U. 

dt 

The parity equation is given by 

2 2 2C2 f v 

(2.24) 

(2.25) 
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du - = -dtuv and 
dt 

The parity equation is given by 

2 2 2C2 
( V - Vo = dt u - uo) .  

(2.24) 

(2.25) 
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The Texans fought 188 men, all of whom perished in the defense. The 
Mexicans fought 3000 men of whom 1500 perished in the attack. By plug-
ging in initial and final strength conditions, it is an easy matter to compute 
cijdi = 17,952. However, such an index is essentially meaningless, since 
the equations of combat are dramatically different for the two sides. A fair 
measure of man for man Texan versus Mexican effectiveness is given by 

Ì.U0L 

Ц-ύ- (226) 
v at x 

This index computes the rate of destruction of Mexicans per Texan di-
vided by the rate of destruction of Texans per Mexican. We note that the 
mixed law model gives a varying rate of effectiveness, depending on the 
number of Mexicans present. At the beginning of the conflict, the effective-
ness ratio is a possible 96; at the end, a romantic but unrealistic 17,952. 

The examination of this model in the light of historical data should cause 
us to question it. What is wrong? Most of the Mexican casualties occurred 
before the walls were breached. Most of the Texan casualties occurred after 
the walls were breached. But after the walls were breached, the Mexicans 
would be using directed fire against the Texans. 

We have no precise data to verify such an assumption, but for the sake 
of argument, let us assume that the Texans had 100 men when the walls 
were breached, the Mexicans 1800. Then (2.26) gives c2/di = 32,727. The 
combat effectiveness ratio c^jaxu goes then from 174 at the beginning of 
the siege to 327 at the time the walls were breached. For the balance of the 
conflict we must use (2.21) and (2.22) with the combat effectiveness ratio 
c2/ci = 99. Personally, I am not uncomfortable with these figures. The 
defenses seem to have given the Texans a marginal advantage of around 3. 
Those who consider the figures too "John Wayneish" should remember that 
the Mexicans had great difficulty in focusing their forces against the Alamo, 
whereas the Texans were essentially all gainfully employed in the business 
of fighting. This advantage to a group of determined Palikari to defend 
a fortified position against overwhelming numbers of a besieging enemy is 
something we shall return to shortly. 

Another example of the effect of fortifications in combat is obtained from 
the British-Zulu War of 1879. On January 22, at Isandhlwana, an en-
camped British column of 1800 British soldiers and 1000 native levies was 
attacked by 10,000 warriors of the Zulu King Cetawayo. The suggestion of 
the Afrikaaner scouts to laager (roughly drawing the wagons into a circle) 
was rejected by the British commander. Consequently, even though the 
British troops had the benefit of modern breech-loading rifles, they were 
quickly engaged in hand to hand combat by the Zulus. The result of the 
conflict was that only around 55 British and 300 of the native levies sur-
vived. We do not have precise knowledge of the Zulu losses; but we do know 
that, on the evening of January 22, 5000 of the same Zulu force attacked a 
British force of 85 at Rorkesdrift. The British commander (a lieutenant of 
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engineers, John Chard, later a colonel) had used the few hours warning to 
laager his camp with overturned wagons and sacks of meal. On January 23, 
the Zulus withdrew, leaving 400 dead on the field. British losses were 17 
killed and 10 seriously wounded. Here we have an example of nearly iden-
tical types of forces on the attack and on the defense in both engagements. 
Since the Zulus always fought hand-to-hand, we shall use (2.24) in both 
battles for both sides. If we assume (a popular notion of the day) that the 
native levies made no contribution, and that 5000 Zulus were incapacitated 
by the bandhlwana engagement, the combat effectiveness of British soldier 
versus that of Zulu soldier computes to be 23.17. (The assumptions here 
obviously tend hugely to inflate the actual British versus Zulu combat ef-
fectiveness.) At Rorkesdrift, the combat effectiveness ratio goes to 994.56. 
Thus, the advantage given to the British defenders of Rorkesdrift by the 
hastily constructed defenses was at least 994.56/23.17 = 42.92. The ad-
vantage was not primarily an increased combat effectiveness of the British 
soldiers, but rather a diminution of the combat effectiveness of the Zulus. 
Having transmitted some feeling as to the advantages of commonsense uti-
lization of the method of Lanchester (borrowed in spirit from Poisson), we 
shall now take the next step in its explication: namely, the utilization of 
heterogeneous force equations. 

Let us suppose that the Blue side has m subforces {%·}; j = 1,2, . . . , m. 
These might represent artillery, infantry, armor. Then, we have 

and 

, m 
- ^ = - Σ ^ 2 ϋ % - (2.28) 

i=i 

Here, kij represents the allocation (a number between 0 and 1 such that 
E i l i * y < l )o f the i th 

Red subforce's firepower against the jth Blue subforce, CUJ represents 
the Lanchester attrition coefficient of the ith Red subforce against the jth 
Blue subforce. Similar obvious definitions hold for {Iji} and {c2ji}· 

Beyond the very real utility of the Lanchester combat laws to describe 
the combat mode for war-games, they can be used as a model framework 
to gain insights as to the wisdom or lack thereof of proposed changes in 
defense policy. For example, a dismanthng of intermediate range missiles 
in eastern and central Europe throws additional responsibility on the effec-
tiveness of NATO conventional forces, since a conventional Soviet attack is 
no longer confronted with a high risk of a Pershing missile attack from West 
Germany against Russia. The rather larger disparity in conventional forces 
between the Soviet block and NATO forces can roughly be addressed by a 
consideration of Lanchester's directed fire model. As we have observed in 
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(2.26), in the face of a twofold personnel increase of Red beyond the parity 
level, Blue can, assuming Lanchester's directed fire model, maintain parity 
only by quadrupling C2JC\. This has usually been perceived to imply that 
NATO must rely on its superior technology to match the Soviet threat by 
keeping c% always much bigger than c\. 

Since there exists evidence to suggest that such technological superior-
ity does not exist at the conventional level, it appears that the Soviets 
kept out of western Europe because of a fear that a conventional jugger-
naut across western Europe would be met by a tactical nuclear response 
from West Germany, possibly followed, in extremis, by a strategic attack 
against population centers in Russia: thus, the big push by the Soviets 
and their surrogates for "non first use of nuclear weapons" treaties and 
their enthusiastic acceptance of American initiatives to remove intermedi-
ate range missiles from eastern and central Europe. It is not at all unlikely 
that the Soviets could have taken western Europe in a conventional war in 
the absence of intermediate range missiles in West Germany if the current 
disparate numerical advantage of conventional Soviet forces in Europe were 
maintained. Thus, one practical consequence for NATO of the dismantling 
of intermediate range missiles in Europe might be attempts by the Western 
powers to bring their conventional forces to numerical parity with those of 
the Soviets. This might require politically difficult policy changes in some 
NATO countries, such as reinstitution of the draft in the United States. 

In my paper, "An Argument for Fortified Defense in Western Europe" [9], 
I attempted to show how the c2/ci ratio could be increased by using forti-
fications to decrease c\. Whether or not the reader judges such a strategy 
to be patently absurd, it is instructive to go through the argument as a 
means of explicating the power of Lanchester's laws in scenario analysis. 

My investigation was motivated, in part, by the defense of the Wester-
platte peninsula in Gdansk by 188 Polish soldiers from September 1 through 
September 7 in 1939, and some interesting parallels with the much lower 
tech siege of the Alamo 100 years earlier. (Coincidentally, the number of 
Polish defenders was the same as the number of Texans at the Alamo.) 
The attacking German forces included a battalion of SS, a battalion of 
engineers, a company of marines, a construction battalion, a company of 
coastal troops, assorted police units, 25 Stukas, the artillery of the Bat-
tleship Schleswig-Holstein, eight 150 mm howitzers, four 210 mm heavy 
mortars, 100 machine guns, and two trainloads of gasoline (the Germans 
tried to flood the bunkers with burning gasoline). 

The total number of German troops engaged in combat during the 7-day 
seige was well over 3000. Anyone who has visited Westerplatte (as I have) 
is amazed with the lack of natural defenses. It looks like a nice place for a 
walkover. It was not. 

The garrison was defended on the first day by a steel fence (which the 
Germans and the League of Nations had allowed, accepting the excuse of 
the Polish commander, Major Sucharski, that the fence was necessary to 
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keep the livestock of the garrison from wandering into Gdansk), which was 
quickly obliterated. Mainly, however, the structural defenses consisted in 
concrete fortifications constructed at the ground level and below. The-
oretically, the structural fortifications did not exist, because tthey were 
prohibited by the League of Nations and the peninsula was regularly in-
spected by the Germans to ensure compliance. However, extensive "coal 
and storage cellars" were permitted, and it was such that comprised the 
fortifications. The most essential part of the defenses was the contingent of 
men there. Unlike the Texans at the Alamo who realized they were going 
to die only after reinforcements from Goliad failed to arrive and the deci-
sion was made not to break through Santa Anna's encirclement, the Polish 
defenders of Westerplatte realized, long before the conflict, that when the 
German invasion began, they would be doomed. It is interesting to note 
the keen competition that existed to gain the supreme honor of a posting to 
Westerplatte. Perhaps "no bastard ever won a war by dying for his coun-
try" but the defenders of the Alamo and those of Westerplatte consciously 
chose their deaths as an acceptable price for wreaking a bloody vengeance 
on the enemies of their people. 

Ever since the abysmal failure of the Maginot Line in 1940, it has been 
taken for granted that any strategy based on even the partial use of fixed 
defenses is absurd. I question this view. Historically, fixed defenses have 
proved more effective as islands rather than as flankable dikes. The Maginot 
Line was clearly designed as a dike, as was the Great Wall of China, and 
both proved failures. It is unfortunate that the dike-like tactics of trench 
warfare had proved so effective in World War I. Otherwise, the French 
would undoubtedly have noted that they were basing their 1940 defense on 
a historically fragile strategy. Dikes generally can withstand force only from 
the front, as the Persians (finally) discovered at Thermopolae. If the dikes 
are sufficiently narrow and thick, however, they may be effective islands 
and very difficult to outflank. It was conceded by the panzer innovator, von 
Manstein, that Germany absolutely could not have taken the Sudentenland 
defenses in 1938 had they been used. This brings up another interesting 
point. An effective system of fixed defenses is very much dependent on the 
will of the people using them. 

Historical examples, modern as well as ancient, of successful use of con-
structed defensive positions can be given ad infinitum. Among the crusad-
ing orders, the Templars and Hospitalers early discovered that they could 
maintain an effective Christian presence in the Holy Land only by concen-
trating a large percentage of their forces in a number of strongly fortified 
castles. This gave them sufficient nuisance value to cause concessions by 
the Muslim leaders. Most of the military disasters to the orders were the 
result of their willingness to strip their castle defenses and join the crusader 
barons in massive land battles against numerically overwhelming odds—as 
at Hattin. For more than 1000 years, some of the Christian peoples in 
the Near East, for example, the Armenians and the Maronites, maintained 
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their very identity by mountain fortifications. 
It is interesting to note that one crusader fortress—Malta—never fell to 

the Muslims and was only taken (by treachery) by Napoleon in 1798. In the 
second World War, the connection between the resistance of Malta and the 
ultimate destruction of the Afrika Korps is well remembered. Even light, 
hastily constructed defenses, manned by people who do not know they 
are supposed to surrender when surrounded, can be extremely effective in 
slowing down the enemy advance, as proved by the 101st Airborne during 
the Battle of the Bulge. In the examples above, there seem to be some 
common points. First, fortified defense gives a ready means of increasing 
the ratio of the Lanchester coefficients in favor of the Blue side. One natural 
advantage to this type of defense is the fact that the defender can increase 
his Lanchester attrition ratio by a policy of construction over a period of 
time. This may be a more fruitful policy than placing all one's hopes on 
increasing ones Lanchester ratio by the design of new weapons systems. 

Second, fortified defense should rely on adequate stores of supplies located 
within the "fortress perimeter." It should be assumed by the defenders that 
they will be completely surrounded by the enemy for long periods of time. 
(In their fortress at Magdeburg, the Teutonic Knights always kept 10 years' 
provisions for men and horses.) 

Third, fortified defense is a task best undertaken by well-trained profes-
sionals with strong group loyalty. 

Fourth, fortified defense is most effective when there are allied armies 
poised to strike the enemy at some future time and place. The fortress 
and the mobile striking force complement each other in their functions. 
The function of the fortress is to punish, harass, and divide the enemy and 
to maintain a presence in a particular area. In general, however, offensive 
activities must be left to the mobile forces. The deployment of enemy forces 
to take fortified positions will weaken their ability to withstand mobile 
offensive operations. Let us now examine modified versions of (2.21) and 
(2.22): 

— = -c\v (2.29) 

and 

di = ~c>- (230) 
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Figure 2.14. Lanchester combat. 

The attrition to Blue coefficient is represented by the variable c* = c*(u, v) 
and is demonstrated graphically in Figure 2.14 In the above, we assume that 
c\ never exceeds c\, the attrition constant corresponding to nonfortified 
combat. Clearly, the functions c\ and с£ are functions of the manner in 
which the fortress has been constructed. It may be desirable to design 
the fortifications so that c\ is small, even at the expense of decreasing cJ-j. 
Generally, one might assume that c£ is close to the nonfortified attrition 
rate of и against v, since the defenders will have removed potential cover 
for the Red side. In fortress defense, the solution in time is likely to be 
important, since a primary objective is to maintain a Blue presence for as 
long as possible. Next, consider a linear approximation to the v-level curves 
of cj(u, v) Figure 2.15. Then we would have 

du 
— = -g(v)uv - c^u, (2.31) 

where cl(u,v) = g(v)u and c** is the Blue coefficient of internal attrition. 
(We note that this analysis has moved us, quite naturally, to an undirected 
fire model for the defenders' losses. The model thus derived is essentially 
that used earlier for the Alamo.) We might reasonably expect that the 
besieging forces would maintain more or less a constant number of troops 
in the vicinity of the redoubt. Hence, we would expect 

— = -<%u - 4*v + P(u, v) = 0, (2.32) 
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Figure 2.15. Linear approximations to Lanchester combat. 

where P(u, v) is the rate of replacement necessary to maintain constant v 
strength and d-j* is the Red coefficient of internal attrition. We might expect 
that c*,* ^ c**, since inadvertent self-inflicted casualties are a well-known 
problem for the besieging force. Then 

u(i) = u0 exp[-(g(v)v + c\*)t]. 

The enemy attrition by time t is given by 

/ 
Jo 

* 1 
P(u, v)dt = c£tv + c%uo— 

■exp[-(g(v)v + cl*)t} 

(2.33) 

(2.34) 
/o 9{v)v + с? 

If the Blue defense can hold out until и = JUQ (where 0 < 7<1), then 
the time until the end of resistance is given by 

i* = - ln(7) 

We have then that the total 
falls are given by 

(2-35) 
g(v)v + ci* v ; 

to the Red side by the time the defense 

(2.36) 
cJuo(l - 7) - c*,*t;m(7) 

g(v)v + cj* 
It is interesting to note that if c*,* = 0, then the minimization of Red 

casualties seems to be consistent with the minimization of t*. This might 
indicate that an optimum strategy for Red is to overwhelm the Blue fortifi-
cations by shear weight of numbers. This would not be true if beyond some 
value of v, а(д(у)у)/аь<0, implying that beyond a certain strength, addi-
tional Red forces would actually impair Red's ability to inflict casualties on 
the Blue side. As a matter of fact, the history of fortified defense seems to 
indicate that such a "beginning of negative returns" point in the v space 
does exist. It is generally the case for the besieging force that с*.* ^> О 
and that it is increasing in v. This is particularly true if the besieged 
forces are able from time to time to conduct carefully planned "surprises" 
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to encourage increased confusion and trigger happiness on the part of the 
besiegers. 

In the heterogeneous force model for fortified defense, we have 

» n 

-£ = - Σ kij9ij(vi)viUj - c^Uj (2.37) 

and 

, m 

-£ = - Σ hi<Zji*J - <%ν*· (2·38) 

The size of the j th Blue subforce at time t is given by 

uj(t) = Uj(0)exp ί -tY^kijgijiv^Vi -h cj/ J . (2.39) 

The total attrition to the zth enemy subforce at time t is given by 

/ Pi(u,v)dr (2.40) 
Jo 

= Σ ) tji^jiM0) / e x P ( ~T Σ *У$У (V*)V* + C i / ) d T + ° 2 1 ^ 

m 1 - exp ( -t è hjgijiv^Vi ) 

= Σ **<^(°)—n ч i=1 +<%>i-
i=i Σ kij9ij (vi)vi + c j ; 

Suppose that the effectiveness (at time t) of the Blue defender is measured 
by 

m 

nO = E<W(0, (2.41) 

where the dj are predetermined relative effectiveness constants. If we as-
sume that the fortress is lost when the effectiveness is reduced to some 
fraction 7 of its initial value, that is, when 

T(t) < T T ( 0 ) , (2.42) 

then we can use (2.42), in straightforward fashion, to solve for the time of 
capture. 

This model gives some indication of the power of the simple Lanchester 
"laws" in analyzing a "what iP scenario. It is, in large measure, the lack 
of "gee-whizziness" of Lanchester's models that renders them such a useful 
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j=1 
where the aj are predetermined relative effectiveness constants. If we as­
sume that the fortress is lost when the effectiveness is reduced to some 
fraction "( of its initial value, that is, when 

T(t) < "(T(O) , (2.42) 

then we can use (2.42), in straightforward fashion, to solve for the time of 
capture. 

This model gives some indication of the power of the simple Lanchester 
"laws" in analyzing a "what if" scenario. It is, in large measure, the lack 
of "gee-whizziness" of Lanchester's models that renders them such a useful 
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device to the applied worker. Generally, after a few hours of self-instruction, 
potential users can reach the level of sophistication where they can flowchart 
their own war-games or other forms of scenario analysis. 

2.3.1 Herman Kahn and the Winning of the Cold War 

John Tukey once told the author that he considered Herman Kahn to be 
the world leader and pioneer in Monte Carlo simulation. Kahn turned his 
attention in the 1950s to strategies for dealing with Soviet Russia. Kahn was 
a model for effective big picture statisticians. His book On Thermonuclear 
War was required reading for members of President Kennedy's cabinet. 
Kahn invented the escalation ladder, the use of which was generally agreed 
upon both by the United States and Russia. It was a discrete multi-step 
upward and downward progression of hostilities. Its use gave both the great 
powers time to think before rushing precipitously to full scale nuclear war. 
The escalation ladder alone was worth a great deal. 

But Kahn went much further. He noted that in the Soviet Union nothing 
worked very well except the military. Even before the Communists seized 
Russia, it would be a fair analysis to observe that Russia was the successor 
to the Mongol Golden Horde, and that it lived by conquest. Its expansion 
rate was equivalent to a Belgium-sized country per year. There really was 
very little indication that Russia was a normal country. It would either 
continue to be a gigantic kleptocracy or its historic model would simply 
fail. 

The Leonid Brezhnev strategy was straightforward. At a time of its 
own choosing, led by 50,000 tanks, the Soviets start a march to the Rhine. 
Bcause of the logistic advantages of shorter supply lines than those of the 
Americans, by bloody attrition, the Russians drive the Americans to the 
point of being conventionally overwhelmed. At this point, the Americans 
are driven to the use of battlefield nuclear weapons. At this point, Brezhnev 
calls the West German government and notes that their country is about 
to become a nuclear landscape. He suggests the Germans leave NATO and 
order the Americans to leave West Germany. An arrangement is achieved 
whereby the countries east of the Rhine become quasi-independent satel-
lites, which pay Russia annual tribute. 

Herman Kahn understood well that statistics was not only about crunch-
ing numbers. It was about logical conclusions based on facts. And these 
facts might be historical precedent. Kahn died in the earliest days of the 
Reagan Administration. But his books lived past his lifespan. Reagan's 
personal library reveals that Reagan read and reread them all. In coordi-
nation with German Chancellor Helmut Kohl, Reagan placed Pershing II 
missile sites in West Germany. These missile sites were an innovation. Ear-
lier, none of the sites in West Germany contained nuclear weapons which 
could reach Moscow or Krasnoyarsk. Thus, an American nuclear attack 
would have to be launcehd by SAC, American nuclear submarines, Minute-

64 MODELS OF COMPETITION, SURVIVAL, AND COMBAT 

device to the applied worker. Generally, after a few hours of self-instruction, 
potential users can reach the level of sophistication where they can flowchart 
their own war-games or other forms of scenario analysis. 

2.3.1 Herman Kahn and the Winning of the Cold War 

John Tukey once told the author that he considered Herman Kahn to be 
the world leader and pioneer in Monte Carlo simulation. Kahn turned his 
attention in the 1950s to strategies for dealing with Soviet Russia. Kahn was 
a model for effective big picture statisticians. His book On Thermonuclear 
War was required reading for members of President Kennedy's cabinet. 
Kahn invented the escalation ladder, the use of which was generally agreed 
upon both by the United States and Russia. It was a discrete multi-step 
upward and downward progression of hostilities. Its use gave both the great 
powers time to think before rushing precipitously to full scale nuclear war. 
The escalation ladder alone was worth a great deal. 

But Kahn went much further. He noted that in the Soviet Union nothing 
worked very well except the military. Even before the Communists seized 
Russia, it would be a fair analysis to observe that Russia was the successor 
to the Mongol Golden Horde, and that it lived by conquest. Its expansion 
rate was equivalent to a Belgium-sized country per year. There really was 
very little indication that Russia was a normal country. It would either 
continue to be a gigantic kleptocracy or its historic model would simply 
fail. 

The Leonid Brezhnev strategy was straightforward. At a time of its 
own choosing, led by 50,000 tanks, the Soviets start a march to the Rhine. 
Bcause of the logistic advantages of shorter supply lines than those of the 
Americans, by bloody attrition, the Russians drive the Americans to the 
point of being conventionally overwhelmed. At this point, the Americans 
are driven to the use of battlefield nuclear weapons. At this point, Brezhnev 
calls the West German government and notes that their country is about 
to become a nuclear landscape. He suggests the Germans leave NATO and 
order the Americans to leave West Germany. An arrangement is achieved 
whereby the countries east of the Rhine become quasi-independent satel­
lites, which pay Russia annual tribute. 

Herman Kahn understood well that statistics was not only about crunch­
ing numbers. It was about logical conclusions based on facts. And these 
facts might be historical precedent. Kahn died in the earliest days of the 
Reagan Administration. But his books lived past his lifespan. Reagan's 
personal library reveals that Reagan read and reread them all. In coordi­
nation with German Chancellor Helmut Kohl, Reagan placed Pershing II 
missile sites in West Germany. These missile sites were an innovation. Ear­
lier, none of the sites in West Germany contained nuclear weapons which 
could reach Moscow or Krasnoyarsk. Thus, an American nuclear attack 
would have to be launcehd by SAC, American nuclear submarines, Minute-



PREDATION AND IMMUNE RESPONSE SYSTEMS 65 

man sites in America and so on. In other words, if NATO escalated, full 
scale nuclear war would result. 

However, Kahn proposed a distributed system. If the Soviets launched 
a panzer blitz, then when they would get within 10 minutes of a U.S. 
Pershing silo near Kleindorf, the Amercan commander Colonel Miller would 
know he had 20 minutes to live. He also would know that his family in 
Kleindorf would have 35 minutes to live. His German counterpart, Oberst 
Miller, would be in the same situation. It is a capital offense for a NATO 
commander to launch a missile strike without NATO authorization. But 
what will Colonel Miller do? Nobody knows. Facing such a situation, 
perhaps Brezhnev would simply continue his attack. But not Gorbachev. 

Thus, after the Pershing IPs are installed, Helmut Kohl offers Gorbachev 
$60 billion to remove the Red Army from East Germany. Gorbachev, des-
perate for cash, agrees, assuming this is the beginning of perpetual tribute 
from the West. 

On June 4, 1989, a Solidarnosc government is formed in Poland. On 
November 9, 1989, the Berlin Wall falls. On December 12, 1991, the Soviet 
Union dissolves. 

2.4 Predation and Immune Response Systems 
Let us consider Volterra's predator-prey model and some consequences for 
modeling the human body's anticancer immune response system. For the 
classica 1 shark-fish model, we follow essentially Haberman [5]. Suppose we 
have predators, say sharks, whose numbers are indicated by 5, who prey on, 
say fish, whose numbers are indicated by F. In the 1920s, it was brought 
to the attention of Volterra that there seemed to be a periodic pattern in 
the abundance of certain food fish in the Adriatic, and that this pattern 
did not seem to be simply seasonal. Volterra attempted to come up with 
the simplest logical explanation of this periodicity. 

We might suppose that the probability a typical shark gives birth to 
another shark (for reasons of simplicity, we treat the sharks as though they 
were single-cell creatures) is given by 

P(birth in [t, t + At}) = (XF)At. (2.43) 
Here the assumption is that the probability of reproduction is propor-

tional to the food supply, that is, to the size of the fish population. The 
probability a shark dies in the time interval is considered to be a con-
stant к At. Thus, the expected change in the predator population during 
[t, t + At] is given by 

E[AS] = S{XF - k)At (2.44) 

As we have in the past, we shall assume that for a sufficiently large preda-
tor population, we may treat the expectation as essentially deterministic. 
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This gives us the differential equation 

§-5(AF-*). (2.46) 

Similarly, the probability that a given fish will reproduce in [£, t 4- At] 
minus the probability it will die from natural causes may be treated like 

P(birth in [t,t + At]) = aAt. (2.46) 

We have assumed that the fish have essentially an unlimited food supply. 
The death by predation, on a per fish basis, is obviously the number of 
sharks multiplied by their fish eating rate, c, giving the differential equation 

2-F(.-.4. (2.47) 

Now the system of Volterra equations given by has no known simple time 
domain solution, although numerical solution is obviously trivial. However, 
let us examine the F versus S situation by dividing (2.47) by (2.45). This 
gives us 

The solution is easily 

dF F 
dS XF-

seen to be 

F-ke\F = 

a 
-k 

Ee~ 

-cS 
S 

CS QCL 

(2.48) 

(2.49) 

with E a constant. Now, let us use trace the path of F versus S. We note 
first that F = k/X gives an unchanging S population; S = а/с gives an 
unchanging F population. 

кЛ 

dF/dt> 0 
dS/dt>0. 

dF/eftVo 
dS/dt < 0 \ 

X' 
dF/dt < 0 

\S/dt>0 

S eft 
IF/dt <0 

dS/dt < 0 

а/с 

Figure 2.16. Linear Volterra population plot. 
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Figure 2.16. Linear Volterra population plot. 



PREDATION AND IMMUNE RESPONSE SYSTEMS 67 

The consequences of Figure 2.16 are that the F versus S plot must either 
be a closed repeating curve or a spiral. We can use (2.49) to eliminate 
the possibility of a spiral. Let us examine the level curves of F and S 
corresponding to the common Z values in 

F-ke\F = Ee- cS Sa = Z. (2.50) 
In Figure 2.17, we sketch the shapes of Z versus F and 5, respectively, 

and use these values to trace the F versus S curve. We note that since each 
value of Z corresponds to at most four points on the F versus S curve, a 
spiral structure is out of the question, so we obtain the kind of closed curve 
that was consistent with the rough data presented to Volterra. Using Figure 
2.17 leading the shark curve by 90 degrees. 

Figure 2.17. Volterra plots. 

Figure 2.18. Volterra plots. 

Let us now turn to a seemingly quite different problem, that of modeling 
the body's immune response to cancer. Calling the number of cancer cells 
X, let us postulate the existence of antibodies in the human organism that 
identify and attempt to destroy cancer cells. Let us call the number of these 
"immunoentities" Y, and suppose that they are given in X units; that is, 
one unit of Y annihilates and is annihilated by one cancer cell. Then, we 
can model the two populations via 
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dX 
at 

bXY 

and 

dt 
= cX - bXY. 

(2.51) 

(2.52) 

The justification for such a model is as follows. Cancer cells are produced 
at a constant rate λ, which is a function of environmental factors, inability 
of the body to make accurate copies of some of the cells when they divide, 
and so on. о is the growth rate of the cancer cells. 6 is the rate at which 
antibodies attack and destroy the cancer cells, с is the rate of response of 
the antibody population to the presence of cancer cells. 

c/b 

Y -(λ +аХ)/(ЬХ) Daath 

Death ^ - YmB/b 

Death 

Death 

Figure 2.19. Immune system plots. 

Although we cannot obtain closed-form solutions for the system given 
by (2.51) and (2.52), we can sketch a system of curves that will give us 
some feel as to which individuals will have immune systems that can cope 
with the oncogenesis process. Prom (2.52), we note that Y decreases if 
dY/dt = cX — bXY<0, that is, if Y > c/b. If the inequality is reversed, 
then Y will increase. Similarly, from (2.51), we note that X decreases if 
dX/dt = A + aX - bXY<0, that is, if Y > (A 4- aX)/bX. Let us examine 
the consequences of these facts by looking at Figure 2.19. The prognosis 
here would appear to be very bad. The body cannot fight back the cancer 
cells and must be overwhelmed. 

However, let us examine the more hopeful scenario in Figure 2.20. We 
note the change if с increases dramatically relative to a. We now have 
regions where the body will arrive at a stable equilibrium of cancer cells 
and antibodies. We should also note that in both Figure 2.19 and Figure 
2.20 the situation of an individual who starts out with no antibody backup 
at the beginning of the process is bad. 
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Figure 2.20. Optimistic immune plot. 

We can glean other insights from the model. For example, a large enough 
value of λ can overwhelm any value of c. Thus, no organism can reason-
ably expect to have the immune response power to overcome all oncogenic 
shocks, no matter how big. Next, even if X is very large, provided only 
that we can change the biological situation to increase с dramatically, while 
suppressing A, the tumor can be defeated. 

The model considered here is obviously not only hugely simplified, but 
it is purely speculative. We have, at present, no good means of measuring 
X and Y. But it should be remembered that the model generally precedes 
the collection of data: generally, data are collected in the light of a model. 
In the case of Volterra's fish model, partial data were available because 
the selling of fish was measured for economic reasons. Volterra was, in 
short, fortunate that he could proceed from a well-developed data set to an 
explanatory model. This was serendipitous and unusual. 

Generally, we waste much if we insist on dealing only with existing data 
sets and refuse to conjecture on the basis of what may be only anecdotal 
information. If we are being sufficiently bold, then for every conjecture 
that subsequently becomes substantiated, we should expect to be wrong a 
dozen times. Model building is not so much the safe and cozy codification 
of what we are confident about as it is a means of orderly speculation. 

2.5 Pyramid Clubs for Fun and Profit 

There are those who hold that the very formalism of the "free market" 
will produce good—irrespective of the production of any product or service 
other than the right to participate in the "enterprise" itself. One example 
of such an enterprise is gambling. Here, the player may understand that he 
is engaging in an activity in which his long-run expectations for success are 
dim—the odds are against him. Nevertheless, he will enter the enterprise 
for fun, excitement, and the chance that, if he only plays the game a small 
number of times, he will get lucky and beat the odds. 

PYRAMID CLUBS FOR FUN AND PROFIT 69 

y - (). + aX)l(bX) 

db ��---------------

alb � __ ..;.;AmbIgo;;;;=IOI:;:; .. � ____ Y _ alb 
Amblg";;;--'" 

x 
Figure 2.20. Optimistic immune plot. 

We can glean other insights from the model. For example, a large enough 
value of >. can overwhelm any value of c. Thus, no organism can reason­
ably expect to have the immune response power to overcome all oncogenic 
shocks, no matter how big. Next, even if X is very large, provided only 
that we can change the biological situation to increase c dramatically, while 
suppressing >., the tumor can be defeated. 

The model considered here is obviously not only hugely simplified, but 
it is purely speculative. We have, at present, no good means of measuring 
X and Y. But it should be remembered that the model generally precedes 
the collection of data: generally, data are collected in the light of a model. 
In the case of Volterra's fish model, partial data were available because 
the selling of fish was measured for economic reasons. Volterra was, in 
short, fortunate that he could proceed from a well-developed data set to an 
explanatory model. This was serendipitous and unusual. 

Generally, we waste much if we insist on dealing only with existing data 
sets and refuse to conjecture on the basis of what may be only anecdotal 
information. If we are being sufficiently bold, then for every conjecture 
that subsequently becomes substantiated, we should expect to be wrong a 
dozen times. Model building is not so much the safe and cozy codification 
of what we are confident about as it is a means of orderly speculation. 

2. 5 Pyramid Clubs for Fun and Profit 

There are those who hold that the very formalism of the "free market" 
will produce good-irrespective of the production of any product or service 
other than the right to participate in the "enterprise" itself. One example 
of such an enterprise is gambling. Here, the player may understand that he 
is engaging in an activity in which his long-run expectations for success are 
dim-the odds are against him. Nevertheless, he will enter the enterprise 
for fun, excitement, and the chance that, if he only plays the game a small 
number of times, he will get lucky and beat the odds. 



70 MODELS OF COMPETITION, SURVIVAL, AND COMBAT 

Another example of an enterprise that apparently produces no good or 
service is that of the pyramid club. Unlike gambling, the pyramid club gives 
the participants the notion that they almost certainly will "win"; that is, 
their gain will exceed, by a very significant margin, the cost of their partic-
ipation. Let us consider a typical club structure. For the cost of $2000, the 
member is allowed to recruit up to six new members. For each member he 
recruits, he receives a commission of $1000. Furthermore, each of the new 
members is inducted with the same conditions as those of the member who 
inducted them. Now for each recruit made by second-level members, the 
first-level member receives a commission of $100. This member is allowed 
to share in these $100 commissions down through the fifth level. Gener-
ally, there is some time limit as to how long the member has to recruit his 
second-level members—typically a year. Thus, his anticipated return is 

anticipated return = $1000x6 + (62 + б3 + б4 + б5)х$100 (2.53) 

= $938,400. 

It is this apparent certainty of gain that attracts many to pyramid en-
terprises. Many state governments claim that this hope of gain is hugely 
unrealistic, and, thus, that pyramid enterprises constitute fraud. We wish 
to examine this claim. 

Let us suppose we consider only those members of society who would 
become members if asked. Let us say that at any given time those who are 
already members will be included in the pool Y and those who have not 
yet joined but would if asked are included in the pool X. If we examine 
the probability that a member will effect a recruitment in time interval Δί, 
this appears to be given by 

kX 
P(recruitment in [t, t + At]) = ~——At. (2.54) 

X + Y 
Here, к is the yearly rate of recruitment if all persons in the pool were 

nonmembers (e.g., fc = 6). Then we have that the expected number of 
recruits by all members in [t, 1+ At] is given by 

kXY 
^(number of recruits in [t, t + At]) = ~—ττΑί. (2.55) 

X -г У 

We will neglect any exodus from the pool. Also, we neglect entries into 
the pool. Thus, if we replace the expectation of Y by Y itself, and divide 
by Δί, and let At go to 0, we have 

*-=*™-. (2.56) 
dt X + Y y > 

Let us make the assumption that X + Y = c, a constant. Then we have 
the easily solvable (using partial fractions) equation 
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We will neglect any exodus from the pool. Also, we neglect entries into 
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by 6.t, and let 6.t go to 0, we have 

dY kXY 
'dt = X + Y '  

(2.56) 

Let us make the assumption that X + Y = c, a constant. Then we have 
the easily solvable (using partial fractions) equation 
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= - dt. (2.57) 
Y(c -Y) с 

So we have 

Now, when dY/dt = 0, there is no further increase of Y. Thus, the 
equilibrium (and maximum) value of Y is given by 

Ye = с (2.59) 

For the present example, the maximum value of Y, Yey will only be reached 
at t = oo. But it is relevant to ask how long it will take before Y equals, 
say, .99c. If we assume that YQ equals .0001c, a little computation shows 
that t (when Y = .99c) = 2.3 years. 

Now, the rate of recruitment per member per year at any given time is 
given by 

αψ=ΗΞζγ1 
Y с 

At time t = 2.3, and thereafter, 

<ψ<0Μ, ^ < 0 . 0 6 . (2.61) 

Unfortunately, a member who joins at t = 1.87 or thereafter must replace 
the 6 in (2.54) by a number no greater than .06. Thus, the anticipated 
return to a member entering at this time is rather less than 938,400: 

anticipated return < $1000 x .06 -f (.062 + .063 4- Ό64 4- .065) x$100 
= 60.38. (2.62) 

The difference between a pyramid structure and a bona fide franchising 
enterprise is clear. In franchising enterprises in which a reasonable good 
or service is being distributed, there is a rational expectation of gain to 
members even if they sell no franchises. Potential members may buy into 
the enterprise purely on the basis of this expectation. Still, it is clear 
that a different kind of saturation effect is important. The owner of a 
fast food restaurant may find that he has opened in an area which already 
has more such establishments than the pool of potential customers. But a 
careful marketing analysis will be enormously helpful in avoiding this kind 
of snafu. The primary saturation effect is not caused by a lack of poten-
tial purchasers of fast food restaurants but by an absence of customers. 
However, there is little doubt that many franchising operations infuse in 
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However, there is little doubt that many franchising operations infuse in 



72 MODELS OF COMPETITION, SURVIVAL, AND COMBAT 

potential members the idea that their main profit will be realized by selling 
distributorships. Indeed, many such operations are de facto pyramid oper-
ations. Thus, it would appear to be impossible for the government to come 
up with a nonstifling definition of pyramid clubs which could not be cir-
cumvented by simply providing, in addition to the recruiting license, some 
modest good or service (numbered "collectors' item" bronze paper weights 
should work nicely). The old maxim of caveat emptor would appear to be 
the best protection for the public. 

The model of a pyramid club is an example of epidemic structure, al-
though no transmission of germs is involved. Nor should the term "epi-
demic" be considered always to hav e negative connotations. It simply has 
to do with the ability of one population to recruit, willfully or otherwise, 
members of another population into its ranks at a self-sustaining rate. 

Problems 
2.1. We shall begin with what Lterm a conversational flowchart. In reality, 
this sort of rather informal flowchart, mixing verbal and symbolic means 
of delineating a time based progression, has long sense replaced the pseudo 
electric circuit charts of years past. 

By Δί, we mean a relatively short interval of time. In a combat lasting 
over a month, it may well be the case that we may safely take each At to 
be a day. Now by Au(t) we will mean the difference between the size of the 
blue force и between time t and time t + At . Suppose, for example, that 
the size of the blue force at time t = 30 was 4050, and the size of the blue 
force at time t + At was 4000. Then, we would have 

Au(t) = u(t + At) - u(t) = u(30) = u(Sl) - u(30) = -50 . 
Similarly, if we knew that u(t) — 4050 and that Au = —50, then we could 
easily compute that 

u(t + At) = u(t) + Au(t) = 4050 - 50 = 4000. 
Suppose next that we had some model for the change in u. One such is 
given in equation (2.10). Namely, we have that the degradation of the blue 
force is proportional to the size of the red force at that time: 

Au(t) = u(t + At) - u(t) = -cxvföAt. 
So, then, if ci = .05, and v(0) = 21,500, and u(0) = 70,000, then we would 
have 

ti(l) = u(0) - c(0)A* = 73,000 - .05(21,500) = 71,925. 
Of course, the red side will be degraded by the blue force. Let us suppose 
the model for this degredation is 

Av(t) = v(t + At) - v(t) = -c2u{t)At. 
Then, taking v(0) = 21,500 and c2 = .01, we would have 

v ( l ) = v(0) - c2u(0)At = 21,500 - .01(73,000) = 20,770. 
We simply carry on the process in this way for a prescribed number of time 
intervals (or until one of the force sizes becomes zero). Thus 
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ti(2) = !*(1) - cxv{l)At = 71,925 - .05(20,770) = 70,887, 
and 

v(2) = v(l) - c2u(l)At = 20,770 - .01(71,925) = 20,061. 
If you can carry this out for 36 days, congratulations. You have achieved a 
simulation of the casualty figures of the Battle of Iowa Jima. 

Suppose U.S. intelligence had made a mistake, and there were actually 
50,000 Japanese troops on the island on day one. Compute the course of 
the modeled battle. 

Next, to make the simulation more accurate, use the fact that the Amer-
icans stormed the beaches with 54,000 men on the first day, were reinforced 
by 6,000 more men on day 3 and 13,000 on day 6. (Here assume a total of 
21,500 Japanese troops). 

This is the way the modeling was done first time by Engel. It assumes 
the Japanese force went to zero by day 36 and was 8,500 on day 21. Engel 
had the advantage of not bothering to look and see whether there was 
any Japanese force data. Actually, there were 1,500 Japanese troops still 
fighting on day 21 and well over zero on day 36. 

Maintaining the levels of attrition constants, how long would it have 
taken the Americans to eliminate the Japanese if they (the Americans) had 
had landed 54,000 troops on the first day and 10,000 daily for the next ten 
days? (Assume 21,500 Japanese troops on day one). 

See what happens when you use the model in (2.24) with d\ = d2 = 
.0000019. This is the undirected fire model where the combatants cannot 
see each other much of the time and are simply firing at sectors where 
the enemy is entrenced. Now, it could be argued that the Japanese could 
see the Americans, but that the Japanese were concealed during much of 
the combat. You might try a hybrid model, where American degredation 
proceeds via 

Au(t) = u(t + At) - u(t) = -civ(t)At 
and the Japanese degredation proceeds according to 

Av(t) = v(t + At) - v(t) = -d2v(t)u(t)At. 
You might try and model another battle (such as the Alamo). Or you 

might try and model another conflict, possibly one that does not involve 
warfare. Be creative! 

2.2. Starting on September 1, 1939, a force of 188 Polish soldiers defended 
the Westerplatte peninsula against, roughly, 3,750 Germans for seven days. 
Assuming that all the Poles became casualties, as well as 1,750 Germans, 
compute the relative effectiveness of a Polish combatant to that of a German 
one. Assume directed fire against the Germans, undirected against the 
Poles. 

2.3. Pick two opposing forces and use Lanchester theory to describe their 
performances under a variety of scenarios. For example, you might con-
sider Confederates versus Yankees at both Fredericksburg and Gettysburg. 

PROBLEMS 
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Carefully delineate your work employing something like the conversational 
mode flowchart used in Problem 2.1. 

2.4. Give a data analysis for the Volterra model applied to specific predator 
and prey populations. 

2.5. Develop a model for resistance to antibiotics. 
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Chapter 3 

Epidemics 

3.1 Introduction 
The author has enjoyed more than three decades of collaboration with 
members of Houston's Texas Medical Center. Oncological modeling has 
been a particular interest. But I have spent a great deal of time dealing 
with contagious diseases in general and AIDS in particular. It seems strange 
to me that most of my colleagues use the word "epidemic" in conjunction 
with noncontagious diseases such as cancer and multiple sclerosis, but that 
is the case. Indeed, I know only a very few people other than myself who 
work with contagious diseases and restrict the use of "epidemic" to describe 
diseases of contagion. I gather that the reasons for this kind of twisting 
of the language have mainly to do with the sociology and political matrix 
in which disease investigators find themselves. Although in other chapters 
of this book, we shall deal with such noncontagious diseases as cancer, in 
this chapter we shall be concerned with epidemics in the classical contagion 
sense. 

Among the contagious diseases of history, leprosy has an important po-
sition because it is so often mentioned in the Bible. The author has ob-
served that the number of verses in the Old Testament concerning leprosy 
is roughly three times the number of verses dealing with the famous kosher 
regulations. This disease was typically controlled in ancient cultures by 
isolating the infectives from the rest of the population. A harsh system to 
be sure, but one which was more effective than some protocols that have 
been introduced into Third World Countries by First World medications 
that have proved less effective than promised. 

It is interesting to note that leprosy has a long history in East Texas. 
The time Une does not admit of the possibility that it was vectored from, 
say, Mexico. The armadillo is one possible candidate for the spread of the 
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disease. As the reduction of the grinding poverty following the War Between 
the States has advanced, more Texans have given up undercooked armadillo 
meat for alternatives. However, the threat from this disease should not be 
underrated. 

Please have a look at the short discussion of the shutting down of the 
(http://www.abcnews.go.com/sections/us/DailyNews/hansens990329a.html) 
Carville, Louisiana, facility. This article is somewhat typical of the "rosy scenario" 
view of epidemics. There are some rather bizarre claims in the article. For 
example: 

Hansen's Disease is among the least contagious of infectious dis-
eases. More than 95 percent of the population is naturally immune 
to it. And its easily treated these days. 

"It is only contagious in certain stages, and once medicated, par 
tients show no risk to the public," says Dr. Bruce Clements, Carvilles 
clinical director of patient care. "Most people who worked with 
Hansens Disease sufferers never contracted the disease." 

Note that Dr. Clements does not state that it is extremely rare for people 
who work with Hansen's Disease sufferers to contract the disease. If 95% 
were immune to the disease, then, considering that health care workers at 
Carville have historically taken careful precautions to protect themselves, 
"most people" would have been replaced by "almost all people." Carville 
has traditionally paid high wages to workers and provided rather posh living 
conditions for them. This has not been done without reason. The notion 
that 95% of the human race is immune to leprosy is probably ridiculous. 
Considering the high mortality rates from many diseases, an epidemic to 
which only 5% of the population was susceptible would hardly have at-
tracted such stringent policies for epidemiological control. Moreover, we 
know that the spouses of lepers who went to Molokai frequently accompar 
nied them. Anecdotal evidence indicates that they generally contracted the 
disease themselves, as did the first Molokai mission priest Father Damien. 

Working in the late 1980s with Professor of Pathology Raymond McBride 
(McBride ran the major pathology lab of Houston) of the Baylor College 
of Medicine, I learned that leprosy had been endemic among East Texas 
farmers as far back as records were kept. This was not a Third World 
importation, it was endemic in the almost completely Anglo East Texas 
population. Certainly the relative frequency of the disease has diminished. 
Why is that? We really do not know (and probably we should try and 
find out). Conjectures abound. For example, some have opined that the 
armadillo might be a vector for the disease. Apparently, modern East 
Texans prize armadillo stew rather less than did their forbears. They also 
Uve in air-conditioned houses with indoor toilets and running water. 

The $18 million which it cost the U.S. taxpayers annually to keep the 
Carville Center open was money well spent. The notion that the 200 new 
U.S. cases of leprosy per year in the United States can be treated in local 
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healthcare centers without danger of spread is an example of the triumph 
of hope over experience. 

Let us now move to another disease of antiquity (actually virtually all 
contagious diseases have been around for thousands of years; there axe 
no new species of animals and no new diseases), namely smallpox. We 
have good historical evidence that it was this disease that destroyed the 
inhabitants of the Athens-Piraeus fortifications of Pericles. 

Just as we can destroy species of animals, it should be theoretically possi-
ble to destroy bacteria and viruses which cause particular diseases. Such is 
the confidence of the U.S. Centers for Disease Control that smallpox (out-
side laboratories) has been eradicated that inoculation against the disease 
in the United States has been long since halted. We really have trivial sup-
plies of the vaccine in the event that someone decided to weaponize some 
of the virus from laboratories. The risk from the vaccine is infinitesimal. 

However, vaccination for whooping cough, a disease much less deadly 
than smallpox is essentially a requirement for an American child getting 
admitted into the public school system. And the incidence of autism has 
skyrocketed in the United States since the whooping cough vaccine became 
a requirement to get into school. Correlations, although not a proof, are 
an important part of exploratory data analysis. 

3,2 John Snow and the East End of London 
Cholera Epidemic of 1854 

Let us start with an example from 19th century epidemiology. Please read 
the material at http://www.cdc.gov/excite/snow.pdf. You should also read 
the complete text at http://www.ph.ucla.edu/epi/snow/snowbook-al.html 
of 19-century pioneering epidemiologist John Snow (to get the full four in-
stallments, you change al in the above to a2, аЗ, а4). We are concerned 
here with an outbreak of cholera in London. What Snow did was to look 
at the frequency of cholera cases plotted on a map and use this information 
to seek for an (http://www.ph.ucla.edu/epi/snow/maplea.htm) apparent 
cause of the epidemic somewhere in the center of the high-frequency area. 
We note that Dr. Snow performed his data analysis without the benefit of 
mathematical formulas. His was a good example of "exploratory data anal-
ysis." EDA, as often as not, relies on graphical procedures. Transmission 
by drinking water was one of the candidates thought of as possible by Snow. 
A simple plot showing a hash mark for a death pointed Snow to a water 
source almost in the center of high death concentration. Truly, it could have 
been argued (and was) that the pump was simply coincidentally located in 
the center of the death circle. Snow did a great deal of canvassing work. 
He noted, for example, that the workers in a brewery close to the pump did 
not exhibit cholera deaths. But the owner of the brewery revealed that it 
had its own deep well which was used for the making of their beer (which 
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the workers consumed in lieu of water). Snow further found instances of 
persons remote from the pump who nevertheless obtained their water from 
it (including a lady from the upscale West End of London, who daily had a 
supply carted to her) and subsequently died of cholera. Snow made a case 
for removing the pump handle that was based on his plot plus extensive 
interviewing. 

Figure 3.1. Vicinity of the "Broad Street Pump". 

The removal of the pump handle from the now famous "Broad Street 
Pump" was a matter of inconvenience for many. They had to gather their 
water from farther away. Here is a classic example of cost/benefit analysis. 
Snow evidently won his argument with the local parish council arguing 
that the modest inconvenience was well worth while in light of the fact of 
a raging epidemic. 

Apparently, a shallow well in the area, served by one pump, had been 
contaminated by cholera feces transported to a cesspool that drained into 
the well. Removal of the pump handle by Snow caused some inconvenience, 
but it seems to have saved hundreds of lives. This is a classic situation in 
the treatment of epidemics: isolation of the susceptible population from ac-
tive sources of the infection. Notice how Snow by a very simple sociological 
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intervention (removing the handle of the Broad Street Pump) ended a dan-
gerous epidemic without vaccines or antibiotics. Later on in this chapter, 
it is argued that a simple sociological intervention could be used against 
the United States AIDS epidemic, again without the use of the vaccines 
(unavailable for AIDS) or antiviral agents (unavailable for AIDS). 

3.3 Prelude: The Postwar Polio Epidemic 

Effective immunizations against many of the killing diseases of the 19th 
century, plus antibiotics massively used during World War II, gave the 
promise of the end to life-threatening contagion in the United States. The 
killers of the future would be those largely associated with the aging process, 
such as cancer, stroke, and heart attack. 

However, in the postwar years, polio, which already had stricken some (in-
cluding President Roosevelt), became a highly visible scourge in a number 
of American cities, particularly in the South, particularly among the young. 
In 1952, over 55,000 cases were reported. Mortality rates in America, due 
to good care, had by that time dropped to well under 10%. Nonetheless, the 
spectacle of children confined to wheelchairs or iron lungs was a disturbing 
one. 

This was in the years before the emigration of the middle classes to 
suburbia, and most schools tended to have representation from a wide range 
of socioeconomic groups. Incidence rates were the highest in the summers, 
when the schools were closed. But, at the intuitive level, it was clear that 
polio was a disease predominantly of school age children, and that there 
was a fair amount of clustering of cases. Although the causative agent had 
not been isolated, there was little doubt that it was a virus, that it favored 
young hosts, that the throat was the likely pathway, and that transmission 
was greatest in the hot weather. 

In such a situation, it might appear that a prudent public health policy 
would be to discourage summer gatherings of children, particularly in con-
fined indoor settings or in swimming pools. Such an inference might well be 
put down as a prejudice of causation where none existed. Indeed, this was 
the era of the kiddie matinee and new municipal swimming facilities given 
by city governments to their citizens in celebration of a perceived affluence 
following the War. Some parents did, to the displeasure of their children, 
attempt to deprive them of matinees and swimming excursions, but such 
were in the distinct minority. Prom time to time, city officials would take 
such steps as shutting down municipal swimming pools, but this was un-
usual and always temporary. There was a large economic constituency for 
matinees and swimming pools. The constituency for shutting them down 
was acting on intuition and without business support. The results were 
that the movies and pools generally stayed open all summer. The epidemic 
flourished. 
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There was a great deal of expectation that "the cavalry will soon ride 
to the rescue" in the form of an expected vaccine against the disease. In 
1955, the Salk vaccine1 did appear, and new polio cases, for the United 
States, became a thing of the past. Of course, a residual population of tens 
of thousands of Americans remained, crippled by polio. 

There was very little in the way of a postmortem examination about how 
effective public health policy had been in managing the American polio 
epidemic. In fact, there had been essentially no proactive policy at all. 
But two effective anti-polio vaccines (Salk and then Sabin) seemed to have 
brought everything right in the end. If there were serious efforts to learn 
from the mistakes in management of the American polio epidemic, this 
author has not seen them. 

Polio had, apparently, been simply a bump in the road toward a time 
in which life-threatening contagious diseases in America would be a thing 
of the past. However, having spent my childhood in Memphis, Tennessee 
(one of the epicenters of the postwar polio epidemic), that epidemic was 
something I would never forget. My parents were among the number of 
those who forbade matinees and swimming pools to their children. But 
among my childhood friends there were several who died from polio, and 
many others crippled by it. 

3.4 AIDS: A New Epidemic for America 

In 1983,1 was investigating the common practice of using stochastic mod-
els in dealing with various aspects of diseases. When attempting to model 
the progression of cancer within an individual, a good case could be made 
for going stochastic. For example, one matter of concern with solid tu-
mors is whether the primary tumor throws off a metastasis before it has 
been removed surgically. Whether it has or has not will largely determine 
whether surgical removal of the primary tumor has cured the patient. Such 
a phenomenon needs to be modeled stochastically. 

However, when modeUng the progression of a contagious disease through 
a population, the common current practice of using a stochastic model and 
then finding, for example, the moment generating function of the number 
Y(t) of infectives seems unnecessarily complicated, particularly if, at the 
end of the day, one decides simply to extract Ü7[Y(£)], the expected number 
of infectives. Moreover, any sociological data, if available, are likely to be 
in terms of aggregate information, such as the average number of contacts 
per day. 

I had decided to write a paper giving examples where deterministic mod-
eling would probably be appropriate. I selected the AIDS epidemic because 

1In 1999, evidence started to appear that contamination of the Salk vaccine by a 
monkey virus, not unrelated to HIV, was causing many recipients of the Salk vaccine 
to develop a variety of cancers, possibly due to a destruction of parts of their immune 
system. 
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it was current news, with a few hundred cases reported nationally. Although 
reporting at the time tended to downplay the seriousness of the epidemic 
(and, of course, the name was pointedly innocuous, the same as an appetite 
suppressant of the times), there was a palpable undercurrent of horror in 
the medical community. It looked like a study that might be important. 

Even at the very early stage of an observed United States AIDS epidemic, 
several matters appeared clear to me: 

• The disease favored the homosexual male community and outbreaks 
seemed most noticeable in areas with sociologically identifiable gay 
communities. 

• The disease was also killing (generally rather quickly) people with 
acute hemophilia. 

• Given the virologist's maxim that there are no new diseases, AIDS, in 
the United States, had been identified starting around 1980 because 
of some sociological change. A disease endemic under earlier norms, 
it had blossomed into an epidemic due to a change in society. 

At the time, which was before the HIV virus had been isolated and 
identified, there was a great deal of commentary both in the popular press 
and in the medical literature (including that of the Centers for Disease 
Control) to the effect that AIDS was a new disease. Those statements 
were not only putatively false, but were also potentially harmful. First of 
all, from a practical virological standpoint, a new disease might have as a 
practical implication genetic engineering by a hostile foreign power. This 
was a time of high tension in the Cold War, and such an allegation had the 
potential for causing serious ramifications at the level of national defense. 

Secondly, treating an unknown disease as a new disease essentially re-
moves the possibility of stopping the epidemic sociologically by simply 
seeking out and removing (or lessening) the cause(s) that resulted in the 
endemic being driven over the epidemiologica! threshold. 

For example, if somehow a disease (say, the Lunar Pox) has been in-
troduced from the moon via the return of moon rocks by American astro-
nauts, that is an entirely different matter than, say, a mysterious outbreak 
of dysentery in St. Louis. For dysentery in St. Louis, we check food and 
water supplies, and quickly look for "the usual suspects" — unrefrigerated 
meat, leakage of toxins into the water supply, and so on. Given proper 
resources, eliminating the epidemic should be straightforward. 

For the Lunar Pox, there are no usual suspects. We cannot, by reverting 
to some sociological status quo ante, solve our problem. We can only look 
for a bacterium or virus and try for a cure or vaccine. The age-old way 
of eliminating an epidemic by sociological means is difficult — perhaps 
impossible. 

In 1982, it was already clear that the United States public health estab-
lishment was essentially treating AIDS as though it were the Lunar Pox. 
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The epidemic was at levels hardly worthy of the name in Western Europe, 
but it was growing. Each of the European countries was following classical 
sociological protocols for dealing with a venereal disease. These all involved 
some measure of defacilitating contacts between infectives and susceptibles. 
The French demanded bright lighting in gay "make-out" areas. Periodic 
arrests of transvestite prostitutes on the Bois de Bologne were widely pub-
licized. The Swedes took much more draconian steps, mild in comparison 
with those of the Cubans. The Americans took no significant sociological 
steps at all. 

However, as though following the Lunar Pox strategy, the Americans 
outdid the rest of the world in money thrown at research related to AIDS. 
Some of this was spent on isolating the unknown virus. However, it was the 
French, spending pennies to the Americans' dollars, at the Pasteur Institute 
(financed largely by a legacy from the late Duke and Duchess of Windsor) 
who first isolated HIV. In the intervening 30 years since isolation of the 
virus, no effective vaccine or cure has been produced. 

3.5 Why an AIDS Epidemic in America? 

Although the popular press in the early 1980s talked of AIDS as being 
a new disease, as noted, prudence and experience indicated that it was 
not. Just as new species of animals have not been noted during human 
history, the odds for a sudden appearance (absent genetic engineering) of 
a new virus are not good. My own discussions with pathologists with some 
years of experience gave anecdotal cases of young Anglo males who had 
presented with Kaposi's sarcoma at times going back to early days in the 
pathologists' careers. This pathology, previously seldom seen in persons of 
Northern European extraction, now widely associated with AIDS, was at 
the time simply noted as isolated and unexplained. Indeed, a few years 
after the discovery of the HIV virus, HIV was discovered in decades old 
refrigerated human blood samples from both Africa and America. 

Although it was clear that AIDS was not a new disease, as an epidemic it 
had never been recorded. Because some early cases were from the Congo, 
there was an assumption by many that the disease might have its origins 
there. Clearly, record keeping in the Congo was not and is not very good. 
But Belgian colonial troops had been located in that region for талу years. 
Any venereal disease acquired in the Congo should have been vectored into 
Europe in the 19th century. But no AIDS-like disease had been noted. It 
would appear, then, that AIDS was not contracted easily as is the case, 
say, with syphilis. Somehow, the appearance of AIDS as an epidemic in 
the 1980s, and not previously, might be connected with higher rates of 
promiscuous sexual activity made possible by the relative affluence of the 
times. 

Then there was the matter of the selective appearance of AIDS in the 
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American homosexual community. If the disease required virus in some 
quantity for effective transmission (the swift progression of the disease in 
hemophiliacs plus the lack of notice of AIDS in earlier times gave clues that 
such might be the case), then the profiles in Figures 3.2 and 3.3 give some 
idea why the epidemic seemed to be centered in the American homosexual 
community. If passive to active transmission is much less likely than active 
to passive, then clearly the homosexual transmission patterns faciütate the 
disease more than the heterosexual ones. 

Low Chance 

Of Further 

Transmission 

Figure 3.2. Heterosexual transmission of AIDS. 

Figure 3.3. Homosexual transmission of AIDS. 

One important consideration that seemed to have escaped attention was 
the appearance of the epidemic in 1980 instead of 10 years earlier. Gay 
lifestyles had begun to be tolerated by law enforcement authorities in the 
major urban centers of America by the late 1960s. If homosexuality was the 
facilitating behavior of the epidemic, then why no epidemic before 1980? 
Of course, believers in the "new disease" theory could simply claim that the 
causative agent was not present until around 1980. In the popular history of 
the early American AIDS epidemic, And the Band Played On, Randy Shilts 
points at a gay flight attendant from Quebec as a candidate for "patient 
zero." But this "Lunar Pox" theory was not a position that any responsible 
epidemiologist could take (and, indeed, as pointed out, later investigations 
revealed HIV samples in human blood going back into the 1940s). 

What accounts for the significant time differential between civil tolerance 
of homosexual behavior prior to 1970 and the appearance of the AIDS 
epidemic in the 1980s? Were there some other sociological changes that 
had taken place in the late 1970s that might have driven the endemic over 
the epidemiological threshold? 

It should be noted that in 1983, data were skimpy and incomplete. As is 
frequently the case with epidemics, decisions need to be made at the early 
stages when one needs to work on the basis of skimpy data, analogy with 
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other historical epidemics, and a model constructed on the best information 
available. 

I remember in 1983 thinking back to the earlier American polio epidemic 
that had produced little in the way of sociological intervention and less in 
the way of models to explain the progress of the disease. Although po-
lio epidemics had been noted for some years (the first noticed epidemic 
occurred around the time of World War I in Stockholm), the American 
public health service had indeed treated it like the "Lunar Pox." That is, 
they discarded sociological intervention based on past experience of trans-
mission pathways and relied on the appearance of vaccines at any moment. 
They had been somewhat lucky, since Salk started testing his vaccine in 
1952 (certainly they were luckier than the thousands who had died and the 
tens of thousands who had been permanently crippled). But basing policy 
on hope and virologica! research was a dangerous policy (how dangerous 
we are still learning as we face the reality of 650,000 Americans dead by 
2011 from AIDS). 

Although some evangelical clergymen inveighed against the epidemic as 
divine retribution on homosexuals, the function of epidemiologists is to use 
their God-given wits to stop epidemics. In 1983, virtually nothing was 
being done except to wait for virological miracles. 

3.5.1 Political Correctness Can Kill 

One possible candidate was the turning of a blind eye by authorities to the 
gay bathhouses that started in the late 1970s. These were places where 
gays could engage in high frequency anonymous sexual contact. By the 
late 1970s they were allowed to operate without regulation in the major 
metropolitan centers of America. My initial intuition was that the key 
was the total average contact rate among the target population. Was the 
marginal increase in the contact rate facilitated by the bathhouses sufficient 
to drive the endemic across the epidemiological threshold? It did not seem 
likely. Reports were that most gays seldom (many, never) frequented the 
bathhouses. 

In the matter of the present AIDS epidemic in the United States, a great 
deal of money is being spent on AIDS. However, practically nothing in 
the way of steps for stopping the transmission of the disease is being done 
(beyond education in the use of condoms). Indeed, powerful voices in the 
Congress speak against any sort of government intervention. On April 13, 
1982, Congressman Henry Waxman [2] stated in a meeting of his Subcom-
mittee on Health and the Environment, "I intend to fight any effort by any-
one at any level to make public health policy regarding Kaposi's sarcoma 
or any other disease on the basis of his or her personal prejudices regarding 
other people's sexual preferences or life styles." (It is significant to note 
that Representative Waxman has been one of the most strident voices in the 
fight to stop smoking and global warming, considering rigorous measures 
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acceptable to end these threats to human health.) We do not even have a 
very good idea as to what fraction of the target population in the United 
States is HIV positive, and anything approaching mandatory testing is re-
garded by American political leaders as an unacceptable infringement of 
civil liberties. In light of Congressman Waxman's warnings, it would have 
taken brave public health officials to close the gay bathhouses. The Cen-
ters for Disease Control have broad discretionary powers and its members 
have military uniforms to indicate their authority. They have no tenure, 
however. The Director of the CDC could have closed the bathhouses, but 
that would have been an act of courage which could have ended his career. 
It appears odd to say so, but of all the players in the United States AIDS 
epidemic, Congressman Waxman may be more responsible than any other 
for what has turned out to be a death tally exceeding any of America's 
wars, including its most lethal, the American War Between the States (aka 
the Civil War). 

3.6 The Effect of the Gay Bathhouses 

But perhaps my intuitions were wrong. Perhaps it was not only the total av-
erage contact rate that was important, but a skewing of contact rates, with 
the presence of a high activity subpopulation (the bathhouse customers) 
somehow driving the epidemic. It was worth a modeling try. 

The model developed in [3] considered the situation in which there are 
two subpopulations: the majority, less sexually active, and a minority with 
greater activity than that of the majority. We use the subscript "1" to de-
note the majority portion of the target (gay) population, and the subscript 
"2" to denote the minority portion. The latter subpopulation, constituting 
fraction p of the target population, will be taken to have a contact rate r 
times the rate к of the majority subpopulation. The following differential 
equations model the growth of the number of susceptibles Χχ and infectives 
Yi in subpopulation г (г = 1,2). 

dYx kaX^Yi +τΥ2) 
dt XI+YI+T(Y2 + X2) 

dY2 = karX2{Yi+rY2) 
dt ~ Χι+Υι+τ(Υ 2 + Χ2) 

dXx kaXi{Yx + rY2) 
dt X1 + YI + T(Y2 + X2) 

dX2 = kcerX2{Yi+TY2) 
dt ~ X I + Y I + T(Y2 + * 2 ) 

■(7 + μ)ϊι> 

(7 + /i)Y2, (3.1) 

+ ( 1 - Р ) Л - / А Х Ь 

+ p\- μΧ2. 

where 
к = number of contacts per month, 
a = probability of contact causing AIDS, 
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dt 
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dt 
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ko:Xl (Yl + rY2) ( )Y; 
) 

- 'Y + Jl. 1 , 
Xl + Yl + r(Y2 + X2 

kar X2(Yl + rY2) ( )Y; - 'Y + Jl. 2 , 
Xl + Y1 + r(Y2 + X2) 

ko:Xl (Yl + rY2) (1 )>' X + - p  - Jl. 1 
Xl + Yl + r(Y2 + X2) 
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karX2(Y1 + r¥2) >. 
X + p - Jl. 2 · 

Xl + Yl + r(Y2 + X2) 

k = number of contacts per month, 
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(3.1) 
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A = immigration rate into the population, 
μ = emigration rate from the population, 
7 = marginal emigration rate from the population due 

to sickness and death. 

In Thompson [3], it was noted that if we started with 1,000 infectives in 
a target population with ka = 0.05, τ = 1, a susceptible population of 
3,000,000 and the best guesses then available (μ = 1/(15 x 12) = 0.00556, 
7 = 0.1, λ = 16,666) for the other parameters, the disease advanced as 
shown in Table 3.1. 

| Table 3.1. Extrapolated 
| Year 

1 
2 
3 
4 
5 
10 

Cumulative deaths 
1751 
2650 
3112 
3349 
3571 
3594 

AIDS cases: ka = 0.05, r = 1. 
Fraction infective 

0.00034 
0.00018 
0.00009 
0.00005 
0.00002 

0.000001 

Next, a situation was considered in which the overall contact rate was 
the same as in Table 3.1, but it was skewed with the more sexually active 
subpopulation 2 (of size 10%) having contact rates 16 times those of the 
less active population. 

Table 3.2. Extrapolated AIDS cases: ka = 0.02, r = 16,p = 
Year 

1 
2 
3 
4 
5 
10 
15 
20 

Cumulative deaths 
2,184 
6,536 

20,583 
64,157 
170,030 
855,839 

1,056,571 
1,269,362 

0.10. 
Fraction infective 

0.0007 
0.0020 
0.0067 
0.0197 
0.0421 
0.0229 
0.0122 
0.0182 

Even though the overall average contact rate in Table 3.1 and Table 3..2 is 
the same (ka)overaii = 005, the situation is dramatically different in the two 
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cases. Here, it seemed, was a pnma facie explanation as to how AIDS was 
pushed over the threshold to a full-blown epidemic in the United States: a 
small but sexually very active subpopulation. 

I note that nothing more sophisticated than some numerical quadrature 
was required to obtain the results in these tables. In the ensuing arguments 
concerning why AIDS became an epidemic in the United States, everything 
beyond the simple deterministic model (3.1) will be, essentially, frosting on 
the cake. This was the way things stood in 1984 when I presented the paper 
at the summer meetings of the Society for Computer Simulation in Vancou-
ver. It hardly created a stir among the mainly pharmacokinetic audience 
who attended the talk. And, frankly, at the time I did not think too much 
about it because I supposed that probably even as the paper was being 
written, the "powers that be" were shutting down the bathhouses. The 
deaths at the time were numbered in the hundreds, and I did not suppose 
that things would be allowed to proceed much longer without sociological 
intervention. Unfortunately, I was mistaken. 

In November 1986, the First International Conference on Population Dy-
namics took place at the University of Mississippi where there were some of 
the best biomathematical modelers from Europe and the United States. I 
presented my AIDS results [6], somewhat updated, at a plenary session. By 
this time, I was already alarmed by the progress of the disease (over 40,000 
cases diagnosed and the bathhouses still open). The bottom line of the talk 
had become more shrill: namely, every month delayed in shutting down the 
bathhouses in the United States would result in thousands of deaths. The 
reaction of the audience this time was concern, partly because the prognosis 
seemed rather chilling, partly because the argument was simple to follow 
and seemed to lack holes, and partly because it was clear that something 
was pretty much the matter if things had gone so far off track. 

After the talk, the well-known Polish probabilist Robert Bartoszynski, 
with whom I had carried out a lengthy modeling investigation of breast 
cancer and melanoma (at the Curie-Sklodowska Institute in Poland and 
at Rice), took me aside and asked whether I did not feel unsafe making 
such claims. "Who," I asked, "will these claims make unhappy"? "The 
homosexuals," said Bartoszyuski. "No, Robert," I said, "I am trying to 
save their lives. It will be the public health establishment who will be 
offended." 

And so it has been in the intervening years. I have given AIDS talks 
before audiences with significant gay attendance in San Francisco, Hous-
ton, and other locales without any gay person expressing offense. Indeed, 
in his 1997 book [1], Gabriel Roteilo, one of the leaders of the American 
gay community, not only acknowledges the validity of my model but also 
constructs a survival plan for gay society in which the bathhouses have no 
place. 
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3.7 A More Detailed Look at the Model 
A threshold investigation of the two-activity population model (3.1) is ap-
propriate here. Even today, let alone in the mid-1980s, there was no chance 
that one would have reliable estimates for all the parameters fc, a, 7, μ, 
λ, p, т. Happily, one of the techniques sometimes available to the modeler 
is the opportunity to express the problem in such a form that most of the 
parameters will cancel. For the present case, we will attempt to determine 
the ka value necessary to sustain the epidemic when the number of infec-
tives is very small. For this epidemic in its early stages one can manage to 
get a picture of the bathhouse effect using only a few parameters: namely, 
the proportion p of the target population which is sexually very active and 
the activity multiplier r. 

For Yi = У2 = 0 the equilibrium values for X1 and X2 are (1 — ρ)(Χ/μ) 
and ρ(Χ/μ)1 respectively. Expanding the right-hand sides of (3.1) in a 
Maclaurin series, we have (using lower case symbols for the perturbations 
fromO) 

dyi 
dt 

dy2 
dt 

Summing then gives 

ka(l — p) 

\—ρ + τρ 

катр 

~ ( 7 + μ) 

kar2p 

kail - р)т 
2/1+ , - LV2 

1 — p + rp 
2/1 + 

1 — p + гp 

l—p + rp 

2/2-

^dt + ^л = [ka " ( 7 + /x)]2/1 + [kar " fr+ μ)]»-
In the early stages of the epidemic, 

dyi/dt = (1-p) 
dyvjdt pr 

That is to say, the new infectives will be generated proportionately to their 
relative numerosity in the initial susceptible pool times their relative activ-
ity levels. So, assuming a negligible number of initial infectives, we have 

Vi = 
( 1 - P ) 

pr 2/2-

Substituting in the expression for dyi/dt 4- dy^jdt, we see that for the 
epidemic to be sustained, we must have 

> а > (1 + „) (1 -р^) 
1 - p 4- pr2 

Accordingly we define the heterogeneous threshold via 

(1 + μ ) ( 1 - ρ + τρ), 
1 — p + pr2 

(3.2) 

fchet« = '(7 + M). 
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Now, in the homogeneous contact case (i.e., r = 1), we note that for the 
epidemic not to be sustained, the condition in equation (3.3) must hold. 

ka < (7 4- μ). (3.3) 

Accordingly we define the homogeneous threshold by 

fchomO!= (7 + μ). 

For the heterogeneous contact case with fehet» the average contact rate is 
given by 

fcaveC* = Mkbeta) + (1 - P)(kheta) = V V „ ■ 2 fr + *0-
(1+μ)(1-ρ + τρ), 

i — v+рт2 

Dividing the sustaining value fchom# by the sustaining value fcavea for the 
heterogeneous contact case then produces 

l - p + r2p 
(1 - p + rp)2 ' 

Notice that we have been able here to reduce the parameters necessary 
for consideration from seven to two. This is fairly typical for model-based 
approaches: the dimensionality of the parameter space may be reducible in 
answering specific questions. Figure 3.4 shows a plot of this "enhancement 
factor" Q as a function of r. Note that the addition of heterogeneity to the 
transmission picture has roughly the same effect as if all members of the 
target population had more than doubled their contact rate. Remember 
that the picture has been corrected to discount any increase in the overall 
contact rate which occurred as a result of adding heterogeneity. In other 
words, the enhancement factor is totally a result of heterogeneity. It is this 
heterogeneity effect which I have maintained (since 1984) to be the cause 
of AIDS getting over the threshold of sustainability in the United States. 
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Figure 3.4 Effect of a high activity subpopulation. 

If this all still seems counterintuitive, then let us consider the following 
argument at the level of one individual infective. Suppose, first of all, that 
the disease is such that one contact changes a susceptible to an infective. 
Then let us suppose we have an infective who is going to engage in five 
contacts. What number of susceptibles (assuming equal mixing) will give 
the highest expected number of conversions of susceptibles to infectives? 
Note that if the number of susceptibles is small, the expectation will be 
lessened by the "overkill effect": i.e., there is the danger that some of the 
contacts will be 'Svasted" by being applied to an individual already infected 
by one of the other five contacts. Clearly, here the optimal value for the 
size JV of the susceptible pool is infinity, for then the expected number of 
conversions from susceptible to infective E(T \ N = oo) is five. 

Now let us change the situation to one in which two contacts, rather 
than one, are required to change a susceptible to an infective. We will still 
assume a total of five contacts. Clearly, if JV = 1 then the expected number 
of conversions is E = 1; there has been wastage due to overkill. Next, 
let us assume the number of susceptibles has grown to N = 2. Then the 
probability of two new infectives is given by 

The probability of only one new infective is 1 — P(21 JV = 2). Thus the 
expected number of new infectives is 

S(I|tf = 2) = 2 ( g ) + l ( H ) - I . « » . 
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The probability of only one new infective is 1 - P{2 1 N = 2). Thus the 
expected number of new infectives is 

E{I I N = 2) = 2 (��) + 1 (!�) = 1 .625. 
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Now when there are JV = 3 susceptibles, the contact configurations leading 
to two new infectives are of the type (2,2,1) and (3,2,0). All other con-
figurations will produce only one new infective. So the probability of two 
new infectives is given by 

and the expected number of new infectives is 

*cri*-»->(ig)+i(ä)-"»'· 
Additional calculations give E(I\N = 4) = 1.469 and E(1\N = 5) = 
1.314. For very large ЛГ, E(l) is of order 1/N. Apparently, for the situation 
where there are a total of five contacts, the value of the number in the 
susceptible pool that maximizes the total number of new infectives from the 
one original infective is N = 2, not oo. Obviously, we are oversimplifying, 
since we stop after only the contacts of the original infective. The situation 
is much more complicated here, since an epidemic is created by the new 
infectives infecting others and so on. As well, there is the matter of a 
distribution of the number of contacts required to give the disease. We 
have in our main model (3.1) avoided the complexities of branching process 
modeling by going deterministic. The argument above is given to present 
an intuitive feel as to the facilitating potential of a high contact core in 
driving a disease over the threshold of sustainability. 

In the case of AIDS, the average number of contacts required to break 
down the immune system sufficiently to cause the person ultimately to get 
AIDS is much larger than two. The obvious implication is that a great fa-
cilitator for the epidemic being sustained is the presence of a subpopulation 
of susceptibles whose members have many contacts. In the simple example 
above, we note that even if the total number of contacts were precisely 
five, from a standpoint of facilitating the epidemic, it would be best to 
concentrate the contacts into a small pool of susceptibles. In other words, 
if the total number of contacts is fixed at some level, it is best to start 
the epidemic by concentrating the contacts within a small subpopulation. 
Perhaps the analogy to starting a fire, not by dropping a match onto a pile 
of logs, but rather onto some kindling beneath the logs, is helpful. 

3.8 Forays into the Public Policy Arena 

The senior Professor of Pathology at the Baylor College of Medicine in the 
1980s was Raymond McBride. McBride had been one of the pioneers in 
immunosuppression for organ transplantation and was the Chief of Pathol-
ogy Services for the Harris County (Houston) Medical District. Distressed 
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to see the ravages of AIDS on autopsied victims, he was quite keen to 
have municipal authorities act to close down the bathhouses. He and I co-
authored a front page op-ed piece for the Houston Chronicle 4-9-1989 titled 
"Close Houston's Gay Bathhouses" , taking care not to mention the names 
and addresses of the two major offending establishments lest some vigilante 
act be taken against them. Hardly a ripple of interest, even though Hous-
ton, with less than one-tenth the population of Canada, had more AIDS 
cases than that entire country. We tried to motivate members of the City 
Council. When interviewed by a reporter, the office of the Councilman 
in whose district these two bathhouses were situated shrugged the whole 
matter off by asking, 'What's a bathhouse"? I served on the American 
Statistical Association's Ad Hoc Committee on AIDS from its inception 
until its demise. But our mandate was never allowed to extend to model-
ing. Only the methodology of data analysis was permitted. Nor were we 
allowed, as a committee, to compare America's AIDS incidence with that 
from other countries. 

The situation was not unlike that of the earlier polio epidemic. There 
were specific interests for not addressing the bathhouse issue, but there was 
only a nonspecific general interest for addressing it. 

Although I myself had no experience with the blood-testing issue, it 
should be noted that early on in the epidemic, long before the discovery of 
HIV, it was known that over 90% of the persons with AIDS tested positive 
to antibodies against Hepatitis-B. For many months, the major blood col-
lecting agencies in the United States resisted employing the surrogate Hep-
atitis test for contaminated blood. The result was rampant death among 
hemophiliacs and significant AIDS infections among persons requiring large 
amounts of blood products for surgery. 

The statistician/economist/sociologist Vilfredo Pareto remarked that Aris-
totle had made one mistake when he presented to the world the system of 
logical thinking. The mistake was Aristotle's assumption that once hu-
mankind understood logical consistency, actions, including public policy, 
would be made on the basis of reason. Pareto noted that the historical 
record showed otherwise. The more important the decision, Pareto noted, 
the less likely was logical inference based on facts. This a significant concern 
in decision making. So, it has unfortunately been with policy concerning 
AIDS. 

3.9 Modeling the Mature Epidemic 

In the United States, the AIDS epidemic crossed the threshold of viability 
long ago. Consequently, we should investigate the dynamics of the mature 
epidemic. Unfortunately, we then lose the ability to disregard five of the 
seven parameters and must content ourselves with picking reasonable values 
for those parameters. A detailed analysis is given in Thompson and Go [7]. 
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In the following, we will make certain ballpark assumptions about some of 
the underlying parameters. Suppose the contact rate before the possible 
bathhouse closings is given by 

(Moverai! = (1 " P + TP)(7 + μ). (3.4) 

This represents an average contact rate for the two-activity model. We shall 
take μ = 1/(180 months) and A = 16,666 per month. (We are assuming a 
target population, absent the epidemic, of roughly 3,000,000.) For a given 
fraction 7Γ of infectives in the target population, we ask what is the ratio 
of contact rates causing elimination of the epidemic for the closings case 
divided by that without closings. 

Figure 3.5 shows the ratio of contact rates (with closings relative to with-
out closings) as a function of яг for p = 0.1 and 7 = ^ . It would appear 
that as long as the proportion of infectives π is no greater than 40% of 
the target population, there would be a significant benefit from bathhouse 
closings. The benefit decreases once we get to 40%. However, because of 
the fact that there appears to be a continuing influx of new entrants into 
the susceptible pool, there is good reason to close these establishments. 
Generally, restoring the sociological status quo ante is an effective means 
of stopping an epidemic; often this is difficult to achieve. Closing the bath-
houses continues to be an appropriate action, even though a less effective 
one than if it had been taken early on in the history of the epidemic. 

Marginal Benefit of 
(DefadUtatlng 
I High Rate Sexual Contact 
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k a m i t i a i = Y + ^ 

Figure 3.5. Effect of bathhouse closings in a mature epidemic. 

How many Americans know than the USA has more AIDS cases than 
the rest of the First World combined? The highest American death rate 
in any of our wars was the War Between the States. AIDS in America has 
already killed more than the 600,000 combat dead from that War. 
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Figure 3.6. A Z T and proport ion of infectives. 

Next, we look at the possible effects on the AIDS epidemic of adminis-
tering a drug, such as AZT, to the entire infective population. Obviously, 
infectives who die shortly after contracting a contagious disease represent 
less of an enhancement to the viability of an epidemic than those who live 
a long time in the infective state. In the case of AIDS, it is probably unrea-
sonable to assume that those who, by the use of medication, increase their 
T cell count to an extent where apparently normal health has returned, 
will decide to assume a chaste life style for the rest of their lives. We shall 
assume that the drug increases life expectancy by two years. Figure 3.6 
demonstrates the change in the percent infective if the drug also increases 
the period of infectivity by two years for various proportions π of infective 
at the time that the drug is administered. The curves plot the ratio of the 
proportion infective using AZT to the proportion infective if AZT is not 
used (with 7 = 1/60) and they asymptote to 1.4 = 84/60, as should be 
the case. The greater pool of infectives in the target population can, under 
certain circumstances, create a kind of "Typhoid Mary" effect, where long-
lived infectives wander around spreading the disease. Clearly, it should be 
the policy of health care professionals to help extend the time of quality life 
for each patient treated. However, it is hardly responsible to fail to realize 
that, by so doing, in the case of AIDS, there is an obligation of the treated 
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infective to take steps to ensure that he does not transmit the disease to 
susceptibles. To the extent that this is not the case, the highly laudable 
use of AZT to improve the length and quality of life for AIDS victims is 
probably increasing the number of deaths from AIDS. 

3.10 AIDS as a Facilitator of Other Epidemics 

In 1994 Webster West [11] completed a doctoral dissertation attempting 
to see to what extent AIDS could enhance the spread of tuberculosis in 
America. As we are primarily concerned here with the spread of AIDS 
itself, we shall not dwell very long on the tuberculosis adjuvancy issue. 
The reader is referred to relevant papers elsewhere [12,13]. 

West did discover that if one used stochastic process models and then 
took the mean trace, one obtained the same results as those obtained simply 
by using deterministic differential equation models. In the United States, 
since the Second World War at least, tuberculosis has been a cause of 
death mainly of the elderly (for example, Mrs. Eleanor Roosevelt died of 
it). Tuberculosis is carried by the air, and its epidemiologica! progression 
is enhanced by infected persons who are well enough to walk around in 
elevators, offices, and so on. When tuberculosis is confined to elderly per-
sons, essentially not moving freely about, it is largely self-contained. But 
HIV infected persons are generally young, and generally employed, at least 
before the later stages of full-blown AIDS. 

West discovered that the result of AIDS facilitating tuberculosis was 
likely to be only a few hundred additional deaths per year. His model 
further revealed that modest resources expended in the early treatment of 
persons infected with tuberculosis could bring even these relatively modest 
numbers down. 

3.11 Comparisons with First World Countries 

As noted in Section 3.4, the position of other developed countries toward 
defacilitating contacts between infectives and susceptibles was quite dif-
ferent from that in the United States. In a very real sense, these other 
countries can be used as a "control" when examining the epidemic in the 
United States. Good data for new cases did not become easier and easier to 
obtain as the epidemic progressed. Whereas in the earlier time span of the 
epidemic fairly good data for all First World countries could be obtained 
via "gopher" sites, increasingly it became more and more disconnected as 
data bases supposedly moved to the Internet. The reality was that the 
information on the gopher sites stayed in place but was not brought up 
to date, whereas data on the Internet appeared temporally disconnected. 
Great patience was required to follow a group of countries over a period 
of time, and because of holes in the data, it was not at all clear whether 
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anything but snippet comparisons could be made. I published one of these 
at a conference in 1989 [6], but the data available to me at the time gave 
only suggestions of what was happening. There seemed to be something 
important going on that went to the issue of the United States being a 
source of infection for other First World countries. 

I kept sending out queries to the Centers for Disease Control and the 
World Health Organization (WHO), but without much success. Finally, in 
early 1998, Ms. Rachel Mackenzie of the WHO contacted me and provided 
me, not with a URL, but with the data itself, which was in the hands of 
the Working Group on Global HIV/AIDS, and STD Surveillance which is a 
joint Working Group between WHO and UNAIDS. I wish to acknowledge 
my gratitude to Ms. Mackenzie and her colleagues for allowing me to use 
their database. 

Figure 3.7 shows the staggering differences in cumulative number of 
AIDS cases between the United States and France, Denmark, Netherlands, 
Canada, and the UK. The pool of infectives in the USA dwarfe those of 
the other First World countries. Whenever I would bring up the enormous 
differential between the AIDS rate in the United States and those in Eu-
rope, my European colleagues would generally attribute all this to a time 
lag effect. Somehow the United States had a head start on AIDS, but in 
time the European countries would catch up. If other First World coun-
tries were lagging the USA, then one would expect some sort of variation 
in new AIDS cases such as that depicted in Figure 3.8. However, Figure 
3.9 demonstrates that the time lagging hypothesis is not supported by the 
data. No other First World country is catching up to the USA. Moreover, 
a downturn in new case rates is observable in all the countries shown. 
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Figure 3.7, Cumulative AIDS cases 1985-1995. 
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If the USA Simply Leads the Best of the First Vubiid in AIDS 
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Figure 3.8. A time lagged scenario. 
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Figure 3.9. New case rates by country. 

Additional insight is provided by Figure 3.10 in which we divide the 
annual incidence of AIDS per 100,000 in the USA by that for various other 
First World countries. Note the relative constancy of the new case ratio 
across the years for each country when compared to the United States. 
Thus, for the United Kingdom, it is around 9, for Denmark 6, etc. It is a 
matter of note that this relative constancy of new case rates is maintained 
over the period examined (eleven years). In a similar comparison, Figure 
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3.11 shows that the cumulative cases per 100,000 of AIDS in the United 
States divided by that for other First World countries gives essentially the 
same values observed for the new case rates in Figure 3.10. 
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To investigate further, let us consider a piecewise in time exponential 
model for the number of AIDS cases, say in Country A: 

аул 
dt = kA{t)yA- (3.5) 

Figure 3.12 gives estimates for the rates A: on a year-by-year basis using 
new cases per year 

kA(t) cumulative cases 
Note the apparent near equality of rates for the countries considered. To 
show this more clearly, Figure 3.13 displays the ratio of the annual estimated 
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piecewise national rates divided by the annual estimated rate of the United 
States. 
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Figure 3.13. Ratios of piecewise rate estimates. 

It is a matter of some interest that the к values are essentially the same 
for each of the countries shown in any given year. How shall we explain a 
situation where one country has a much greater incidence of new cases, year 
by year, yet the rate of increase for all countries is the same? For example, 
by mid-1997, the United Kingdom had a cumulative total of 15,081 cases 
compared to 612,078 for the United States. This ratio is 40.59 whereas the 
ratio of populations is only 4.33. This gives us a comparative incidence 
proportion of 9.37. However, at the same time, Canada had a cumulative 
AIDS total of 15,101. The United States population is 9.27 times that 
of Canada, so the comparative incidence proportion for theUnited States 
versus Canada in mid-1997 was 4.37. The comparative incidence of the 
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United States vis-a^vis the United Kingdom is over twice that of the United 
Statest vis-arvis Canada. Yet, in all three countries the rate of growth of 
AIDS cases is nearly the same. This rate changes from year to year, from 
around 0.54 in 1985 to roughly 0.12 in 1995. Yet it is very nearly the same 
for each country in any given year. One could therefore predict the number 
of new cases in Prance in a given year, just about as well knowing the case 
history of the United States instead of that in Prance. The correlation of 
new cases for the United States with that for each of the other countries 
considered is extremely high, generally around 0.96. It is hard to explain 
this by ал appeal to some sort of magical synchronicity, particularly since 
we have the fact that though the growth rates of AIDS in the countries 
are roughly the same for any given year, the new case relative incidence 
per 100,000 for the United States is several times that of any of the other 
countries. 

Recall from Section 3.5 the conjecture made in the mid-80s that it was 
the bathhouses which caused the stand-alone epidemic in the United States. 
But, as we have seen, the bathhouse phenomenon really does not exist in 
the rest of the First World. How is it, then, that there are stand-alone AIDS 
epidemics in each of these countries? I do not believe there are stand-alone 
AIDS epidemics in these countries. 

To model this situation, let us suppose there is a country, say Country 
Zero, in which the sociology favors a stand-alone AIDS epidemic. Prom 
other First World countries there is extensive travel to and from Country 
Zero, as indicated by Figure 3.14. If AIDS, with its very low infectivity 
rates, breaks out in Country Zero, then naturally the disease will spread 
to the other countries. But if the infectivity level is sufficiently low, then 
the maintenance of an apparent epidemic in each of the countries will be 
dependent on continuing visits to and from Country Zero. 

Figure 3.14. Country Zero. 

Now let us suppose the fraction of infectives is low in country j . Thus, 
we shall assume that the susceptible pool is roughly constant. Let Xj be 
the number of infectives in country j and let z be the number of infectives 
in Country Zero. Let us suppose we have the empirical fact that, both for 
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Country Zero and the other countries, we can use the same ßt in the growth 
models 

dz 
Έ 

dxj 

= ßtz (3.6) 

= ßtxj. (3.7) 

Let the population of country j be given by Nj and that of Country Zero 
be given by Nz- Suppose the new case rate in Country Zero divided by 
that for country j is relatively constant over time: 

Let us suppose that, at any given time, the transmission of the disease in 

a country is proportional to both the number of infectives in the country 

and the number of infectives in Country Zero. Then from (3.7 and (3.8) 

dxj / Nz \ л /л л\ 
-£ = ajtXj + vjtz = (aat + -j^c^jtjxj = ßtXj, (3.9) 

where otjt and r\jt are the transmission rates into country j from that coun-
try's infectives and Country Zero's infectives, respectively. We are assuming 
that infectives from other countries will have relatively little effect on the 
increase of infectives in Country Zero. Thus, for a short time span, (3.6) 
gives 

z(t) « z(Q)e*\ 

and (3.9) is roughly 

- ^ = α ϋ ^ + ^ζ (0 )βΑ* . 

Now, we note that the epidemic in a country can be sustained even if otjt 
is negative, provided the transmission from the Country Zero infectives is 
sufficiently high. If we wish to look at the comparative effect of Country 
Zero transmission on country j vis-arvis country г, we have 

Ci Nj ait - ajt Nj 

If for two countries i and j we have ац = ац, then 

Using (3.8) this can be expressed as 

3j = Vjt 

Xi Vit 
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If r/jt doubles, then according to the model, the number of infectives in 
country j doubles. 

Let us see what the situation would be in Canada if, as a stand alone, the 
epidemic is just at the edge of sustainability: i.e., acan,t = 0. Then, going 
back to a universal ßt for all countries including Country Zero (America), 
we have from (3.9) (using the ccan value for 1995, 4.14). 

Wean 1 Q 
NjJSA С Can 

26,832,000 1 
248,709,873 4.14 Ä 

0.026&. 

Thus, according to the model, activity rates from USA infectives roughly 
2.6% of that experienced in the United States could sustain a Canadian 
epidemic at a comparative incidence ratio of around 4 to 1, United States 
to Canada. (If someone would conjecture that it is rather the Canadian 
infectives who are causing the epidemic in the United States, that would 
require the activity rate of Canadian infectives with American susceptibles 
to be 1/0.026 = 38.5 times that of Canadian infectives with Canadian 
susceptibles.) If this activity rate would double to 5.2%, then the Canadian 
total infectives would double, but the rate (l/xc&n)dxc*n/dt would still 
grow at rate ßt. Similar calculations show that 

»№м = 0.076&, 
77uK,t = 0.024Д, 
r?DK,t = 0.0034Ä, 
fjNL,t = 0.0075&. 

In summary, we have observed some surprises and have tried to come up 
with plausible explanations for those surprises. The relative incidence of 
AIDS for various First World countries when compared to that of the United 
States appears, for each country, to be relatively constant over time and this 
incidence appears to be roughly the same for cumulative ratios and for ratios 
of new cases. The rate of growth ßt for AIDS changes year by year, but 
it seems to be nearly the same for all the First World countries considered 
(Figure 3.12), including the United States. The bathhouse phenomenon 
is generally not present in First World countries other than the United 
States. Yet AIDS has a continuing small (compared to that of the United 
States), though significant, presence in First World countries other than the 
United States. The new case (piecewise exponential) rate there tracks that 
of the United States rather closely, country by country. We have shown 
that a model where a term for travel" from and to the United States is 
dominant does show one way in which these surprises can be explained. 
Some years ago [3-10], I pointed out that the American gay community 
was made unsafe by the presence of a small subpopulation which visited 
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the bathhouses, even though the large majority of gays, as individuals, 
might not frequent these establishments. The present analysis gives some 
indication that the high AIDS incidence in the United States should be a 
matter of concern to other First World countries as long as travel to and 
from the USA continues at the brisk rates seen since the early 1980s. 

Developing a model requires risk taking. The model, if it is to be useful, 
will be developed almost always without anything approaching a full data 
set. We could always find, as the fuller story comes in, that we were wrong. 
Then, in the case of epidemiology, we might find that by the time we 
publish our results, the virologists will have come up with a vaccine, perhaps 
rendering our model interesting but less than relevant. Most perilous of all, 
however, is to neglect the construction of a model. 

3.12 Conclusions: A Modeler's Portfolio 

This chapter has given an overview of around 25 years of my work on the 
AIDS epidemic. I did not treat this work as an academic exercise. Rather, 
by public talks, articles in the popular press, service on the ASA AIDS 
Committee, and meetings with public officials, I tried to change the public 
policy on the bathhouses, without effect. So it is correct to say that I 
have not been successful in influencing public policy as I had wished. I 
well recall, by the late 1980s certainly, that things were not going as I had 
wished. 

I never had the experience of somebody getting up at a professional 
meeting and poking holes in my AIDS model. I would get comments like, 
"Well, we see that you have shown a plausible way that the epidemic got 
started. But that does us little good in providing a plan of action now 
that the epidemic is well under way." Of course, this statement is not 
correct, for two reasons. First of all, I have addressed what the effect of 
closing the bathhouses would be during the mature epidemic. Secondly, 
effective restoration of the status quo ante will, almost always, reverse the 
course of an epidemic. In the case of polio, for example, closing of the public 
swimming pools ала the suburban cinemas would have greatly defacilitated 
the epidemic, even after it was well under way. 

To my shock, some colleagues took me aside to say that AIDS might be a 
very good thing, since it was discouraging a lifestyle of which neither these 
colleagues nor I approved. I always responded that our obligation in health 
care was to improve the lives of all persons, whether we liked their lifestyles 
or not. Moreover, I noted that a continuing entry of young males into 
the sociologically defined gay communities showed that the discouragement 
induced by the dreadful deaths generally associated with AIDS was not 
working the way they supposed. For example, in Houston, most of the 
leadership of the gay community had died off by the early 1990s. The 
death toll in Houston was staggering, more than in all Canada which has 
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over ten times Houston's population. And yet, the people who died were 
replaced by a new wave of infectives. 

Perhaps most significantly of all, I would hear amazement that my mod-
eling research was receiving any government support since there seemed to 
be little statistical interest in such public policy consequential modeling. 
Vast sums had been spent, for example, in support of the design of proce-
dures whereby blood samples could be anonymously dumped into a pool 
with that of, say, nine other individuals and this exercise repeated many 
times in such a way to determine the fraction of AIDS infectives in the 
United States, while ensuring the privacy of those tested. But modeling 
the progression of the epidemic was not receiving much NIH or PHS sup-
port. I was fortunate indeed that the Army Research Office has allowed me 
to work on modeling problems generally. 

The notion of becoming some sort of full-time activist for modification of 
government policy toward defacilitating the epidemic was tempting. Some 
hold that, like ал entrepreneur with a good idea for a product, the researcher 
should put all his/her energy into one enterprise at a time. Certainly, to 
save the hundreds of thousands of lives which have been needlessly lost to 
AIDS, such single-minded fanaticism would have been more than justified. 
However, based on the considerable effort that I had expended, it seemed 
to me that public policy was not going to be changed. If there had been 
some sort of focused attack on my AIDS model, then I might simply have 
hoped that a better explanation or a more complete model might win the 
day. But I had received the worst possible response: "We see your model, 
find no mistakes in it, and concede that it squares with the data, but it 
must be flawed because it does not square with policy." 

So I continued my general career policy, which is somewhat similar to that 
of an investment portfolio. The basis of portfolio theory is that putting all 
of one's assets in one stock, even one with enormous expected return, is 
generally not a good idea. One is much better advised to use the weak law 
of large numbers and put one's capital in several enterprises of reasonably 
good expectation of return, so that the variability of the return of the overall 
portfolio will be brought down to much better levels than those associated 
with a single stock. It seems to me that this is a good idea for modeling 
researchers in allocating their intellectual assets. 

During the period since the start of my work on AIDS, I founded the 
Department of Statistics at Rice, which now has 18 core faculty, 8 of them 
Fellows of the ASA. Again, during this period, I wrote eight books (AIDS 
figured in only three of these and only as chapters). I produced seven 
doctoral students during the interval, only one of these writing on AIDS. I 
managed to obtain United Nations funding to start a Quality Control Task 
Force in Poland following the fall of Russian domination of that country. 
I developed computer intensive strategies for simulation based estimation 
and continuous resampling, largely in connection with modeling work in 
cancer. I did a modest amount of consulting, saving in the process one or 
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figured in only three of these and only as chapters) . I produced seven 
doctoral students during the interval, only one of these writing on AIDS. I 
managed to obtain United Nations funding to start a Quality Control Task 
Force in Poland following the fall of Russian domination of that country. 
I developed computer intensive strategies for simulation based estimation 
and continuous resampling, largely in connection with modeling work in 
cancer. I did a modest amount of consulting, saving in the process one or 
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two companies from bankruptcy. I started the development of anti-efficient 
market theory models which work fine as stochastic simulations, but cannot 
be handled in closed form. And so on. If AIDS was part of my professional 
portfolio," it accounted for only, say, ten percent of the investment. I 
could have increased my efforts, but it become fairly clear that this was a 
battle which I could not win. 

As I have so far been unable to find political support for closing down 
bathhouses in America, it could be argued that the AIDS modeling part 
of the portfolio was not productive. I disagree. Our business as modelers 
is, first of all, to understand the essentials of the process we are modeling. 
Only rarely, and generally in relatively simple situations, such as changing 
the quality control policy of a corporation, should we expect to be able to 
say, "There; I have fixed it." 

The optimism concerning a quick discovery of an AIDS cure has dimmed. 
No doubt, one will be found at some time in the future. However, after 
tens of billions of dollars already expended without a cure or vaccine, it 
is unwise to continue on our present route of muddling through until a 
miracle occurs. By this time, so many hundreds of thousands of Ameri-
can lives have been wasted by not shutting down high contact facilitating 
establishments that changing policy could leave open a myriad of litigious 
possibilities. The families of the dead or dying might have good reason to 
ask why such policies were not taken 30 years ago. In the early 1980s I 
noted that AIDS might well kill more Americans that those killed in our 
bloodiest military conflict, the War between the States, around 600,000. It 
has already done so. Nobel laureate Joseph StigUtz has argued, America's 
recent Middle Eastern Wars have cost the USA $3 trillion. I doubt that the 
United States AIDS epidemic will cost less. The loss of over 600,000 lives 
and the productivity of those lives is huge. 

Why did America allow itself to be drawn into the dreadful conflict in 
the Middle East? Certainly, one might opine, as I do, that it was due to 
powerful lobbies. But, regarding AIDS, the CDC's failing to take the most 
elementary epidemiologica! step of simply closing down the gay bathhouses 
as all other First World countries ultimately did, is beyond my compre-
hension. AIDS has no lobby. But political correctness does. I conjecture 
that Congressman Waxman's strictures simply frightened our public health 
officials into inactivity. 

Modelers are not generally members of the political/economic power 
structure, which Pareto termed the "circle of the elites." We cannot our-
selves hope to change public policy. But it is certainly our business to 
develop models that increase understanding of some system or other which 
appears to need fixing. We should follow the path of Chaucer's poor Clerk 
of Oxford: "... gladly would he learn and gladly teach." 

Following the American poUo epidemic of the postwar years, no modeler 
appears to have attempted to describe what went wrong with its manage-
ment. Had that been done, perhaps a totally different response might have 
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taken place when AIDS came on the scene. At the very least, I hope that 
my modeling of AIDS will have some impact on public policy concerning 
the next plague when it comes, and come it surely will. 

Problems 

3.1. Using data from WHO, I have obtained estimates for the piecewise 
growth rates from equation (3.5) as shown in Table 3.5. Construct a boot-
strap test to test the hypothesis that, year by year, the kinetic constant is 
the same for the United States as for the other countries shown. 

| Table 3.5. Estimates of Kinetic Constants. 
[ Year 

1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 

U.S.A. 
0.518 
0.459 
0.413 
0.347 
0.290 
0.251 
0.229 
0.232 
0.187 
0.143 
0.113 

U.K. 
0.597 
0.535 
0.434 
0.367 
0.304 
0.265 
0.224 
0.202 
0.184 
0.158 
0.127 

Canada 
0.584 
0.498 
0.428 
0.341 
0.289 
0.230 
0.201 
0.182 
0.155 
0.131 
0.101 

Denmark 
0.513 
0.482 
0.411 
0.342 
0.320 
0.266 
0.221 
0.180 
0.171 
0.144 
0.116 

Prance 
0.611 
0.569 
0.504 
0.406 
0.336 
0.263 
0.232 
0.205 
0.179 
0.163 
0.123 

Netherlands 
0.540 
0.523 
0.482 
0.393 
0.321 
0.256 
0.214 
0.196 
0.153 
0.138 
0.120 

3.2. The combinatorics of finding the expected number of infectives created 
in the early days of an epidemic can quickly grow tedious. Moreover, it is 
very easy to make mistakes. Resampling gives us an easy way out. If there 
are n contacts to be spread among N individuals in a short period of time 
(say, the time of infectivity of the infectives), we may repeatedly take integer 
samples from 1 to N and count the fraction of times integers are repeated 
n or more times. Using this approach, if a total of 10 contacts are to be 
made, find the size of the susceptible pool which gives the largest number 
of expected infections, given that at least three contacts are required to 
convert a susceptible into an infective. 

3.3. In Table 3.6 we show the ratio of the cumulative incidence of AIDS 
per 100,000 population for the United States divided by that for the United 
Kingdom, Canada, Denmark, Prance, and the Netherlands. Construct a 
resampling based test of the hypothesis that these ratios are constant over 
the 10 year period considered. 
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1 Year 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 

Table 3.6. Ratios of U.S.A. AIDS 
Incidences to Those of Other Countries j 
U.K. 

12.427 
10.695 
10.300 
9.982 
9.784 
9.597 
9.669 
10.048 
10.088 
9.904 
9.744 

Canada 
3.735 
3.468 
3.379 
3.405 
3.408 
3.505 
3.636 
3.871 
4.023 
4.080 
4.138 

—_————. 

Denmark 
10.693 
9.432 
8.318 
7.727 
7.389 
7.346 
7.489 
7.833 
8.163 
8.208 
8.140 

Prance 
6.092 
5.831 
5.842 
5.888 
5.635 
5.521 
5.581 
5.954 
6.075 
6.067 
6.048 

Netherlands 
ÌT254 
4.193 
3.541 
3.219 
3.010 
2.960 
2.949 
3.050 
3.083 
3.012 
2.977 

3.4· The assumption of a sexually very active subpopulation is, of course, 
not the only way to bring AIDS to epidemic levels. Redo Table 12.3 but 
make 7 = .01. This scenario has increased the sexually active period of an 
AIDS infective from 10 months to 100 months. 

3.5. Computers have become so fast, storage so plentiful, that we are 
tempted to dispense with differential equation aggregates and work directly 
with the underlying axioms. Such an approach was suggested in Chapter 
3. Let us consider one not quite atomistic approach. Create a population 
of 300 susceptibles, 30 of whom have an activity level r times that of the 
dominant population. Suppose that one (high activity) infective is intro-
duced into the population. Keep track of all the members of the population 
as susceptible individuals 5, "retired" susceptible individuals i2, infective 
individuals I , and dead individuals D. See what r needs to be to sustain 
the epidemic with high probability. At the beginning of the time interval 
[Μ + Δ*), 

P(new susceptible appears in [£, t + At]) = XAt. 

If such a person appears, we add him to the number of susceptibles, ac-
cording to the proportion of .10 for high activity, .90 for low activity. 

Then a susceptible may, for whatever reason, remove himself from the 
pool of risk. 

^(susceptible J, "retires" in [t,t + At)) = μΔί. 

If this happens, we remove him from the infective pool and add him to the 
retired pool. 

Next, an infective may die (or be so sick as to be inactive): 

P(an infective dies in [ty t + At)) = 7Ä£. 
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If this happens, we remove him from the pool of infectives and add him to 
the list of the dead. 

Then, for each susceptible person, 

P(low-activity susceptible, converts to infective in [£, t + At)) 

kaAtX1(Y1 + TY2) 

~~ XI+YI+T(Y2+X2Y 

If such a change is made, we add the individual to the pool of low-
activity infectives removing him from the pool of low-activity susceptibles. 
Similarly, 

P(high-activity susceptible, converts to infective in [f, 1+ At)) 

rkaAtX1{Yl + TY2) 

~ Χΐ+Υ1+τ(Υ2 + Χ2)' 

If such a conversion takes place, we remove the person from the pool of 
high-activity susceptibles, adding him to the pool of high-activity infectives. 
where 

r = multiple of number of contacts of low-activity 
population for high-activity population; 

к = number of contacts per month; 
a = probability of contact causing AIDS; 
λ = immigration rate into sexually active gay population; 
μ = emigration rate from sexually active gay population; 
7 = marginal emigration rate from sexually active 

gay population due to sickness and death; 
Xi = number of low-activity susceptibles; 
X2 = number of high-activity susceptibles; 
Y\ = number of low-activity infectives; 
Y2 = number of high-activity infectives. 

This problem may well indicate the reason that "higher order" languages 
are frequently not the choice for nontrivial simulations, which are generally 
DO-LOOP intensive. The running time for this program in FORTRAN 
or С is a tiny fraction of that required when the program is written in 
MATLAB or R. There is, naturally, no particular reason why this need be 
true. There is no reason why DO-LOOPS cannot be accommodated if only 
the compiler be written to do so. 

3.6. There are many processes of the empirical birth-and-death variety 
related to those for epidemics. For example, there is the whole topic of 
simulating warfare. Suppose we have two sides, the Red and the Blue. 
Then we may ([4], pp. 55-71), if there are n subforces of Red, and m 
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subforces of Blue, write down the heterogeneous force Lanchester equations 

duj __ _ v ^ i 

i=l 

-ir = - Σ ^ ϋ ^ » 

where ky represents the allocation (between 0 and 1) such that ]CjLi ^ìj ^ 
1 of the ith Red subforce's firepower against the jth Blue subforce. Also, 
cuj represents the attrition coefficient of the ith Red subforce against the 
j th Blue subforce; and similarly for l^ and C2j%- Write down the stochastic 
laws that one might use to simulate this system at the unit level (e.g., 
one company of Red tanks against two companies of Blue infantry). Such 
procedures for combat attrition were used since von Reiswitz introduced 
them in 1820 (with dice tosses and patient officers sitting around game 
boards). Interestingly, such games can easily be computerized, and their 
concordance with historical reality is excellent. 
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Chapter 4 

Bootstrapping 

4.1 Introduction 

The monumental work of Peter Bruce in the development of Julian Simon's 
Resampling Stats [7] can be downloaded from Statisticsl01.net [6] as free-
ware provided you have version 1.4 or later of the Java Runtime Environ-
ment (JRE). You can download the latest version from www.java.sun.com. 

The bootstrap is also available in most of the current computer languages. 
I have chosen to write bootstrapping programs in Resampling Stats because 
of its intuitive relation to actual problems. 

Charles Darwin was the originator of the theory of evolution by natural 
selection. According to this theory, animals and plants which have superior 
survival characteristics are more likely to live to procreate than those with 
inferior survival characteristics. Sometimes, these superior survival char-
acteristics are passed on to the next generation. And thus, over millenia, 
animals and plants are produced with superior survival characteristics. This 
theory, like any other, should be viewed critically and in the light of data. 

Darwin carried out some experiments in which he tried to test the hy-
pothesis that cross-fertilized corn plants produced higher stalks than self-
fertilized ones. He had this data analyzed by his cousin Francis Galton, one 
of the founders of modern statistics (both Darwin and Galton were knighted 
by Queen Victoria for their scientific work). It turns out that Galton's anal-
ysis (which supported Darwin's conjecture) was seriously flawed. The data 
set was analyzed many years later by Ronald Fisher [5] (knighted by Queen 
Elizabeth II), and this time the analysis was much better. But Fisher made 
the assumption that the stalk heights observed would follow a particular 
probablility distribution, the normal or Gaussian. One of the goals in this 
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Chapter 4 

Bootstrapping 

4.1 Introduction 

The monumental work of Peter Bruce in the development of Julian Simon's 
Resampling Stats [7] can be downloaded from StatisticslOl.net [6] as free­
ware provided you have version 1 .4 or later of the Java Runtime Environ­
ment (JRE). You can download the latest version from www.java.sun.com. 

The bootstrap is also available in most of the current computer languages. 
I have chosen to write bootstrapping programs in Resampling Stats because 
of its intuitive relation to actual problems. 

Charles Darwin was the originator of the theory of evolution by natural 
selection. According to this theory, animals and plants which have superior 
survival characteristics are more likely to live to procreate than those with 
inferior survival characteristics. Sometimes, these superior survival char­
acteristics are passed on to the next generation. And thus, over millenia, 
animals and plants are produced with superior survival characteristics. This 
theory, like any other, should be viewed critically and in the light of data. 

Darwin carried out some experiments in which he tried to test the hy­
pothesis that cross-fertilized corn plants produced higher stalks than self­
fertilized ones. He had this data analyzed by his cousin Francis Galton, one 
of the founders of modern statistics (both Darwin and Galton were knighted 
by Queen Victoria for their scientific work) . It turns out that Galton's anal­
ysis (which supported Darwin's conjecture) was seriously flawed. The data 
set was analyzed many years later by Ronald Fisher [5] (knighted by Queen 
Elizabeth II), and this time the analysis was much better. But Fisher made 
the assumption that the stalk heights observed would follow a particular 
probablility distribution, the normal or Gaussian. One of the goals in this 
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book is to minimize prior assumptions on the distributions of data sets. 
In the case of Darwin's corn data, we have several possible questions to be 

addressed. Naturally, although Darwin was looking specifically at a certain 
variety of a specific grain plant, the implicit question is more general: Is 
cross-fertilization good or bad? The common wisdom of most cultures is 
that it is likely a good thing. And utilizing almost any kind of analysis on 
the height based Darwin corn data, we arrive at an answer consistent with 
the common wisdom. 

In the case of Darwin and Galton and Fisher, we see that the surrogate 
for "goodness" is stalk height at a fixed time after sprouting. It could have 
been otherwise. Darwin might have used other criteria (e.g., grain yield, 
resistance to disease and drought, flavor of grain, etc.). We cannot include 
every possible criterion. The sociologist/anthropologist Ashley Montague 
noted that by a number of criteria, sponges were superior to human beings. 
The selection of a criterion to be measured and analyzed almost always 
requires a certain amount of subjectivity. 

In the case of the Darwin corn data, the null hypothesis selected is that 
there is no difference in stalk height between the cross-fertilized and self-
fertilized plants. But when it comes to the alternative hypothesis the speci-
ficity is more vague. For example, we could select an alternative hypothesis 
model (à la Darwin, Galton, and Fisher) that cross-fertilization increases 
stalk height with variation from this rule being due to unexplained factors. 
Or, we could hypothesize that, on the average, cross-fertilization leads to 
increased stalk height. Or, we might opine that the median stalk height of 
a group of cross-fertilized plants tends to be greater than that of a group 
of self-fertilized plants. Each of these alternative hypotheses is different 
(although the first implies the next two). In the case of the Darwin data, 
each of the hypothesesseemsto be supported by the data. 

Selection of hypotheses is not easy, and the literature is replete with 
examples of studies where inappropriate hypotheses led to ridiculous or 
pointless conclusions. But an ivory tower disdain of specifying hypotheses 
leads, as a practical matter, to the radical position of Ashley Montague, 
where Shakespeare is no better than a sponge. That is more multicultur-
alism than is consistent with progress, scientific or otherwise. 

4.2 Bootstrapping Analysis of Darwin's Data 

In Table 4.1, we show the data essentially as presented by Darwin to Gal-
ton. We note here a "pot effect" and, possibly, an "adjacency within pot 
effect." At any rate, Darwin presented the data to Galton paired. Natu-
rally, Darwin had made every attempt to equalize soil and water conditions 
across pots. It might well seem to us, in retrospect, that such equalization 
should be readily obtainable and that we might simply pool the data into 
15 cross-fertilized and 15 self-fertilized plants. 
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1 Table 4.1 
1 Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

1 14 

15 

Pot 
I 
I 
I 

II 
II 
II 

III 
III 
III 
III 
III 
IV 
IV 
IV 
IV 

Y Crossed 
23.500 
12.000 
21.000 
22.000 
19.124 
21.500 
22.125 
20.375 
18.250 
21.625 
23.250 
21.000 
22.125 
23.000 
12.000 

XSelf-Fertilized 
17.375 
20.375 
20.000 
20.000 
18.375 
18.625 
18.625 
15.250 
16.500 
18.000 
16.250 
18.000 
12.750 
15.500 
18.000 
Sum 

Difference 
6.125 

-8.375 
1.000 
2.000 
0.749 
2.875 
3.500 
5.125 
1.750 
3.625 
7.000 
3.000 
9.375 
7.500 

-6.000 
39.25 | 

The sum of the differences for the 15 cases is rounded to 39.25. The 
evidence points toward a positive difference between the cross-fertilized 
and the self-fertilized, but we need some way of assessing how confident 
we can be that the difference is significantly greater than what one would 
expect from random choice. Let us assume that the height of a stalk is a 
result of three factors: 

1. Cross-fertilized versus self-fertilized average effects, ßcF and ßsF 

2. Pot effects {μι,μιι,μιιι, or μιν)· 

3. Random variation aka noise e which is usually assumed to average 
out to zero. 

So, if we were looking at cross-fertilized plant number 2, we might say that 

CF(2) = MCF + μι + €. 

Let us consider the differences: 

d2 = Y2-X2 (4.1) 

= μορ + μι + e - (MSF + μι + б) 
= μορ - MSF + zero average noise (4.2) 
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Table 4.1 
Cage Pot Y Crossed X Self-Fertilized Difference 

1 I 23.500 17.375 6.125 
2 I 12.000 20.375 -8.375 
3 I 21 .000 20.000 1 .000 
4 II 22.000 20.000 2.000 
5 II 19.124 18.375 0.749 
6 II 21 .500 18.625 2.875 
7 III 22.125 18.625 3.500 
8 III 20.375 15.250 5.125 
9 III 18.250 16.500 1 .750 

10 III 21 .625 18.000 3.625 
1 1  III 23.250 16.250 7.000 
12 IV 21 .000 18.000 3.000 
13 IV 22.125 12.750 9.375 
14 IV 23.000 15.500 7.500 
15 IV 12.000 18.000 -6.000 

Sum 39.25 

The sum of the differences for the 15 cages is rounded to 39.25. The 
evidence points toward a positive difference between the cross-fertilized 
and the self-fertilized, but we need some way of agsessing how confident 
we can be that the difference is significantly greater than what one would 
expect from random choice. Let us assume that the height of a stalk is a 
result of three factors: 

1. Cross-fertilized versus self-fertilized average effects, /-LCF and /-LSF 

2. Pot effects (/-LI , /-LII , /-LIII, or /-LIV) .  

3. Random variation aka noise f which is usually agsumed to average 
out to zero. 

So, if we were looking at cross-fertilized plant number 2, we might say that 

CF(2) = /-LCF + /-LI + E. 

Let us consider the differences: 

d2 = Y2 - X2 
/-LCF + /-LI + E - (/-LSF + /-LI + E) 

= /-LCF - /-LSF + zero average noise 

(4.1) 

(4.2) 
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and similarly for the other differences.1 Then, if we look at the 15 differ-
ences, we can obtain 

Now, let us carry out the following strategy. Pool the cross-fertilized and 
self-fertilized plants in each pot. So, Table 4.1 becomes 

1 Table 4.2 
Pot 

I 
I 
I 

II 
II 
II 

III 
III 
III 
III 
III 
rv 
IV 
IV 

L I V 

23.500 
12.000 
21.000 
22.000 
19.124 
21.500 
22.125 
20.375 
18.250 
21.625 
23.250 
21.000 
22.125 
23.000 1 
12.000 

17.375 
20.375 
20.000 
20.000 
18.375 
18.625 
18.625 
15.250 
16.500 
18.000 
16.250 
18.000 
12.750 
15.500 
18.000 | 

1. We then sample three plants from Pot I and treat these as being 
"cross- fertilized." 

2. We sample three plants from Pot I and treat these as being "self 
fertilized." 

3. We pair the plants and take their differences. 

4. We carry out similar operations for Pots II, III and IV. 

5. We sum all the 15 differences so obtained. 

6. We repeat the above 5000 times. 

A program (zearandom.sta) in the Resampling Stats language to achieve 
this is given in Figure 4.1 below. (Recall that the program also runs on the 
freeware version at statisticsl01.net.) 

1Each e is a different noise term. When we subtract two es, we get a zero average 
noise term which is as likely to be positive as negative. 
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Now, let us carry out the following strategy. Pool the cross-fertilized and 
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1 .  We then sample three plants from Pot I and treat these as being 
"cross-fertilized." 

2. We sample three plants from Pot I and treat these as being "self 
fertilized. " 

3. We pair the plants and take their differences. 

4. We carry out similar operations for Pots II, III and IV. 

5. We sum all the 15 differences so obtained. 

6. We repeat the above 5000 times. 

A program (zearandom.sta) in the Resampling Stats language to achieve 
this is given in Figure 4.1 below. (Recall that the program also runs on the 
freeware version at statisticslO1.net.) 

1 Each E is a different noise term. When we subtract two ES, we get a zero avera.ge 
noise term which is as likely to be positive as negative. 
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'zearandom.sta 

Within four pots, the cross-fertilized and self-fertilized 
'plants are pooled within pots. So, from Pot I, 
'we obtain a set of six stalk heights. We select randomly 
'with replacement three of these and 
'designate them as "cross-fertilized." 
'We select randomly and with replacement 
' three more plants from 
'Pot I and designate them as "self-fertilized. 
'We proceed similarly for Pots II, III, and IV. We then take the 
'difference between the 15 "cross-fertilized" and "self-fertilized" 
'plants. We repeat the above 5000 times, 
' sort the 5000 differences 
'so obtained and make a histogram of them. 
' This gives us a picture 
'of how the differences should look in the original data if there 
'were no difference between cross-fertilized and self-fertilized 
'heights. 

maxsize default 10000 
copy ( 23.500 12.000 21.000)Al 
copy(17.375 20.375 20.000)B1 
copy(22.000 19.124 21.500)A2 
copy (20.000 18.375 18.625)B2 
copy(22.125 20.375 18.250 21.625 23.250)A3 
copy(18.625 15.250 16.500 18.000 16.250)B3 
copy(21.000 22.125 23.000 12.000)A4 
copy(18.000 12.750 15.500 18.000)B4 
concat Al B1 Poti 
concat A2 B2 Pot2 
concat A3 B3 Pot3 
concat A4 B4 Pot4 
repeat 5000 
sample 3 Poti PI 
sample 3 Poti P2 
sample 3 Pot2 P3 
sample 3 Pot2 P4 
sample 5 Pot3 P5 
sample 5 Pot3 P6 
sample 4 Pot4 P7 
sample 4 Pot4 P8 
subtract PI P2 PP1 
subtract P3 P4 PP2 
subtract P5 P6 PP3 
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'zearandom.sta 

'Within four pots, the cross-fertilized and self-fertilized 
'plants are pooled within pots. So, from Pot I, 
'we obtain a set of six stalk heights. We select randomly 
'with replacement three of these and 
'designate them as "cross-fertilized." 
'We select randomly and with replacement 
, three more plants from 
'Pot I and designate them as "self-fertilized. 
'We proceed similarly for Pots II, III, and IV. We then take the 
'difference between the 15 "cross-fertilized" and "self-fertilized" 
'plants. We repeat the above 5000 times, 
, sort the 5000 differences 
'so obtained and make a histogram of them. 
, This gives us a picture 
'of how the differences should look in the original data if there 
'were no difference between cross-fertilized and self-fertilized 
'heights. 

maxsize default lOO()() 
copy ( 23.500 12.000 21 .000)Al 
copy(17.375 20.375 20.000)Bl 
copy(22.000 19.124 21.500)A2 
copy (20.000 18.375 18.625)B2 
copy(22.125 20.375 18.250 21 .625 23.250)A3 
copy(18.625 15.250 16.500 18.000 16.250)B3 
copy(21.000 22.125 23.000 12.000)A4 
copy(18.()()0 12.750 15.500 18.000)B4 
concat Al Bl Potl 
concat A2 B2 Pot2 
concat A3 B3 Pot3 
concat A4 B4 Pot4 
repeat 50()() 
sample 3 Potl PI 
sample 3 Potl P2 
sample 3 Pot2 P3 
sample 3 Pot2 P4 
sample 5 Pot3 P5 
sample 5 Pot3 P6 
sample 4 Pot4 P7 
sample 4 Pot4 P8 
subtract PI P2 PPI 
subtract P3 P4 PP2 
subtract P5 P6 PP3 
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subtract P7 P8 PP4 
concat PP1 PP2 PP3 PP4 POOL 
sum POOL PSUM 
Score PSUM F 
Sort F S 
Mean F К 
Variance F L 
END 
histogram F 
Figure 4.1· Pooled within pot (zearandom.sta.). 

If the null hypothesis is true,then 

ßCF = ßSF-

We recall that in the actual data set, the sum of the differences was 39.25. 
How many of the 5,000 differences where we treat all observations as having 
the same μ exceed 39.25 or are less than —39.25? 

4.3 A Bootstrap Approximation to Fisher's 
Nonparametric Test 

When this was done we obtained the histogram in Figure 4.2. 
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Figure 4.2. Resampled sum of differences with random 
allocation. 

In only 56 of these was the sum of differences greater than 39.25 or less 
than —39.25. Thus, our resampling test would reject the null hypothesis 
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subtract P7 P8 PP4 
concat PPI PP2 PP3 PP4 POOL 
sum POOL PSUM 
Score PSUM F 
Sort F S 
Mean F K 
Variance F L 
END 
histogram F 
Figure 4.1. Pooled within pot (zearandom.sta.) .  

If the null hypothesis is true, then 

ILCF = ILSF· 
We recall that in the actual data set, the sum of the differences was 39.25. 
How many of the 5,000 differences where we treat all observations as having 
the same J.L exceed 39.25 or are less than -39.251 

4.3 A Bootstrap Approximation to Fisher's 
Nonparametric Test 

When this was done we obtained the histogram in Figure 4.2. 
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Figure 4.2. Resampled sum of differences with random 
allocation. 

In only 56 of these was the sum of differences greater than 39.25 or less 
than -39.25. Thus, our resampling test would reject the null hypothesis 
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at the 2 x 56/5000 = .0224 level of significance. Naturally, if we carried 
out our resampling plan again, we would obtain somewhat different results, 
for bootstrapping is based on random sampling. But you should not be 
surprised as you repeat the experiment several times, that you keep getting 
results which reject the null hypothesis. The evidence is overwhelmingly 
against it. 

Bootstrapping is a wonderful mental exercise, for generally we can devise 
several different resampling strategies to test a null hypothesis. We have 
just gone through one such argument with the program given in Figure 4.1. 
Let us consider another quite natural way to proceed. 

Now, it is a well-known fact that experimental investigators can have a 
tendency to present data to the statistician so as to promote the best chance 
for a significant argument in favor of significance of the data in support of 
an hypothesis. We note that the pairings in each pot might have been made 
in some way that this would be achieved. Better, then, to consider looking 
at differences in which the pairings are achieved randomly. That is to say, 
we do not know how Darwin elected to pair his observations within pot. 
But we have reason to suppose that the conditions for growing were rather 
uniform throughout each pot. Accordingly, we use the following resampling 
strategy (see Resampling Stats code in Figure 4.3): 

Resampling Test Based on Within Pot Information 

1. Sample (with replacement) three of the crossed plants in Pot I and 
then sample (with replacement) three of the self-fertilized plants in 
Poti. 

2. Compute the differences between crossed and self-fertilized plants in 
each run where pairings are done randomly. 

3. Sum the differences. 

4. Carry out similar resamplings from each of the four pots. 

5. Compute the sum of differences. 

6. Repeat 5000 times. 

'zeapots.sta 
4 Sample (with replacement) three of the crossed plants in Pot I. 
Then sample (with replacement) three of the self-fertilized plants 
'in 'Pot I. 
'Compute the differences between crossed and self-fertilized plants 
'in each run where pairings are done randomly. 
4 Sum the differences. 
4 Carry out similar resamplings from each of the four pots. 
4 Compute the sum of differences. 
4 Repeat 5000 times. 
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Now, it is a well-known fact that experimental investigators can have a 
tendency to present data to the statistician so as to promote the best chance 
for a significant argument in favor of significance of the data in support of 
an hypothesis. We note that the pairings in each pot might have been made 
in some way that this would be achieved. Better, then, to consider looking 
at differences in which the pairings are achieved randomly. That is to say, 
we do not know how Darwin elected to pair his observations within pot. 
But we have reason to suppose that the conditimis for growing were rather 
uniform throughout each pot. Accordingly, we use the following resampling 
strategy (see Resampling Stats code in Figure 4.3) : 

Resampling Test Based on Within Pot Information 

1 .  Sample (with replacement) three of the crossed plants in Pot I and 
then sample (with replacement) three of the self-fertilized plants in 
Pot 1. 

2. Compute the differences between crossed and self-fertilized plants in 
each run where pairings are done randomly. 

3. Sum the differences. 

4. Carry out similar resamplings from each of the four pots. 

5. Compute the sum of differences. 

6. Repeat 5000 times. 

'zeapots.sta 

, Sample (with replacement) three of the crossed plants in Pot 1. 
'Then sample (with replacement) three of the self-fertilized plants 
'in 'Pot 1. 
'Compute the differences between crossed and self-fertilized plants 
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, Compute the sum of differences. 
, Repeat 5000 times. 
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copy ( 23.500 12.000 21.000)Al 
copy(17.375 20.375 20.000)B1 
copy(22.000 19.124 21.500)A2 
copy (20.000 18.375 18.625)B2 
copy(22.125 20.375 18.250 21.625 23.250)A3 
copy(18.625 18.625 15.250 16.500 18.000 16.250)B3 
copy(21.000 22.125 23.000 12.000)A4 
copy(18.000 12.750 15.500 18.000)B4 
repeat 5000 
sample 3 Al CI 
sample 3 Bl Dl 
sample 3 A2 C2 
sample 3 B2 D2 
Sample 5 A3 C3 
sample 5 B3 D3 
sample 4 A4 C4 
sample 4 B4 D4 
concat Cl C2 C3 C4 С 
concat Dl D2 D3 D4 D 
Subtract С D G 
SumGE 
Score E F 
END 
Sort F FF 
histogram FF 

Figure 4.3. Within pots bootstrap program zeapots.sta. 
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Figure 4.4. Resampled sum of differences with resampling 
within pots. 
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copy ( 23.500 12.000 21.0oo)Al 
copy(17.375 20.375 20.0oo)Bl 
copy(22.000 19.124 21 .5OO)A2 
copy (20.000 18.375 18.625)B2 
copy(22.125 20.375 18.250 21 .625 23.250)A3 
copy(18.625 18.625 15.250 16.500 18.000 16.250)B3 
copy(21.000 22.125 23.000 12.0oo)A4 
copy(18.oo0 12.750 15.500 18.0oo)B4 
repeat 5000 
sample 3 Al Cl 
sample 3 Bl Dl 
sample 3 A2 C2 
sample 3 B2 D2 
Sample 5 A3 C3 
sample 5 B3 D3 
sample 4 A4 C4 
sample 4 B4 D4 
concat Cl C2 C3 C4 C 
concat Dl D2 D3 D4 D 
Subtract C D G 
Sum G E  
Score E F 
END 
Sort F FF 
histogram FF 

Figure 4.3. Within pots bootstrap program zeapots.sta. 
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Figure 4.4. Resampled sum of differences with resampling 
within pots. 



A RESAMPLING-BASED SIGN TEST 119 

Only 6 of the 5000 simulations gave a sum less than zero. The assumption 
of equality of stalk heights would be rejected at the 2 x 18/5000 = 0.007 
level. The mean of the difference distributions computed in this way is 
39.48. 

4.4 A Resampling-Based Sign Test 

Let us suppose that one of the self-fertilized plants had been much taller. 
Suppose, for example, that the 12.75 value in Pot IV had been inflated 
by misrecording to 32.75. Then, running zeapots.sta with the indicated 
change, we find the histogram in Figure 4.5, and we note that 874 (or over 
17%) of the resampled means are less than zero. The test is no longer 
significant. 

F 
r 
e 
q 
u 
Θ 

n 
с 
У 

1000 l 

750 

500 

250 

Histogram of "FF" in File "zeapots.sta" 

T T 
-100 -75 

111111 i i i"i#iTrrnr 14 
-50 -25 0 25 

Value in FF 

пин и 
50 75 100 

Figure 4.5. Within pots bootstrap with one inflated recording. 

Suppose we disregard the sizes of the differences, relying completely on 
the signs of the differences. Every time the distance between a cross-
fertilized plant and a self-fertilized plant in the same pot is positive, we 
score +1. Every time the difference is negative we score —1. Clearly, if 
there is no intrinsic difference in the heights of cross-fertilized and self-
fertilized plants, then a plus and a minus are equally likely. 

We will now use a program which is essentially the same as zeapots.sta 
except we shall code any positive difference as +1 and any negative dif-
ference as - 1 . Then, we note that if there really is no intrinsic difference, 
roughly half the sum of the 15 scores should be less than zero, half greater 
than zero. 
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Suppose we disregard the sizes of the differences, relying completely on 
the signs of the differences. Every time the distance between a cross­
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score + 1.  Every time the difference is negative we score -1.  Clearly, if 
there is no intrinsic difference in the heights of cross-fertilized and self­
fertilized plants, then a plus and a minus are equally likely. 

We will now use a program which is essentially the same as zeapots.sta 
except we shall code any positive difference as +1 and any negative dif­
ference as -1.  Then, we note that if there really is no intrinsic difference, 
roughly half the sum of the 15 scores should be less than zero, half greater 
than zero. 
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* Sample (with replacement) three 
'of the crossed plants in Pot I. 
'Then sample (with replacement) three 
4 of the self-fertilized plants 
4 in Pot I. 
' Compute the differences between crossed 
' and self-fertilized plants 
' in each run where pairings 
' are done randomly. 
' Score -f 1 for each positive difference 
' and -1 for each negative difference. 
' Sum the differences. 
' Carry out similar resamplings from each of the four pots. 
' Compute the sum of differences. 
' Repeat 5000 times. 
'Compute the histogram of the sums. 
maxsize default 14000 
copy ( 23.500 12.000 21.000)A1 
copy(17.375 20.375 20.000)B1 
copy(22.000 19.124 21.500)A2 
copy (20.000 18.375 18.625)B2 
copy(22.125 20.375 18.250 21.625 23.250)A3 
copy(18.625 15.250 16.500 18.000 16.250)B3 
copy(21.000 22.125 23.000 12.000)A4 
copy(18.000 22.750 15.500 18.000)B4 
repeat 5000 
sample 3 Al CI 
sample 3 B l Dl 
sample 3 A2 C2 
sample 3 B2 D2 
Sample 5 A3 C3 
sample 5 B3 D3 
sample 4 A4 C4 
sample 4 B4 D4 
concat Cl C2 C3 C4 С 
concat Dl D2 D3 D4 D 
Subtract С D E 
Count E<,0 G 
Score G F 
Sort F S 
Mean F К 
Variance F L 
END 
histogram F 

Figure 4.6. Sign test zeasign.sta. 
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Figure 4.6. Sign test zeasign.sta. 
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The resulting histogram is shown in Figure 4.7. Not one of the 5000 
sum of differences is less than zero. Clearly, then, the null hypothesis 
which says there is no intrinsic difference in stalk heights due to cross-
fertilized as opposed to self-fertilized is not supported by the resampling 
sign test applied to the data in Table 4.1, even when one of the self-fertilized 
observations has been inflated by 20. 
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Figure 4.7. Bootstrapped sign test with one inflated observation. 

4.5 A Bootstrapping Approach for Confidence 
Intervals 

What can we say about the difference between the heights of cross-fertilized 
and self-fertilized zea mays plants? We have measured 15 differences and 
found that the total difference is 39.25. That means that our estimate of 
d = μορ - ßSF is given by 

d = ßcF - ßsF = 39.25 
15 

2.6167. 

How sure are we that d is precisely equal to 2.6167? We would not be 
wise to claim that d is precisely equal to 2.6167, but we can make some 
statement of the sort "With 95% confidence we state that the true value of 
d lies between di and dr." To find this interval, we might first take our 15 
observed differences and take a random sample (with replacement) of size 
15, then compute the mean of the sample. We do this 5,000 times, rank the 
means so obtained from smallest to largest. Counting up from the smallest 
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What can we say about the difference between the heights of cross-fertilized 
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found that the total difference is 39.25. That means that our estimate of 
d = J..LCF - J..LSF is given by 

dA A A 39.25 
2 6167 = J..LCF - J..LSF = 15 = .  . 

How sure are we that d is precisely equal to 2.6167? We would not be 
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statement of the sort "With 95% confidence we state that the true value of 
d lies between dl and dr." To find this interval, we might first take our 15 
observed differences and take a random sample (with replacement) of size 
15,  then compute the mean of the sample. We do this 5,000 times, rank the 
means so obtained from smallest to largest. Counting up from the smallest 
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to ranked mean 125 and down from the largest to ranked mean 4,875 we 
obtain our 95% confidence interval 15 x d. 

To obtain the 95% confidence interval on d, we need to take these values 
and divide by 15. 

A program for doing this is given in zeaconfint.sta below. 

'zeaconfint.sta 
'We would like to be able to make a 
'statement of the sort that says that 
'if we repeated our corn stalk experiment 
'many times, then with 95'the sum of the 15 differences will lie 
'between x and y. We achieve this goal 
'by resampling randomly from the 15 differences 
'with replacement 10,000 times, then counting up 
'to the 250th observation and down to the 
'9,750th observation . There is a function in RS 
'which automatically achieves this: Percentile 

copy (6.125 -8.375 1.000 2.000 0.749 2.875 3.500 5.125 1.750 
3.625 7.000 3.000 9.375 7.500 -6.000)A 

repeat 10000 
sample 15 А В 
sum В С 
score С G 
End 
histogram G 
Percentile G(2.5 97.5)Z print Z 
Figure 4.8· Zeaconfint.sta for histogram of 15 x d. 

Here, we obtain for d.025 and d.975, 2.000/15 = 0.1333 and 71.500/15 = 
4.767, respectively. We can therefore express our informed opinion that 
with 95% probability, the true value of d — ßcF — ßSF is between 0.1333 
and 4.767. 

4.6 Solving Ill-Structured Problems 

The question posed by Darwin to his cousin Francis Galton was relatively 
well posed. In the real world, we have to make decisions based on poorly 
designed experiments and with ill-defined goals. 
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The question posed by Darwin to his cousin Francis Galton was relatively 
well posed. In the real world, we have to make decisions based on poorly 
designed experiments and with ill-defined goals. 
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1 Table 4.3. 
1 Group A 
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Standardized Reading Scores. 
Group В 
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9.9 
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1.4 

-4.1 
4.9 

Let us consider the following problem from the arena of public education. 
There is frequently concern over the methodology used for improving stu-
dents' reading skills. Particularly in suburban school districts, there is an 
attempt to improve upon the standard methodology. In this instance, the 
statistician is confronted with data from three different ways of improving 
the reading skills of fourth graders. In one school, there were three different 
classes, each taught by different methodologies. The first method, call it A, 
is the standard that has been used for five years. The second method, call 
it B, differs only from the standard one in that a different textbook is used. 
The third method, call it C, is markedly different from the first two. In C, 
there is intervention in the form of extensive instruction, in small student 
groups, by doctoral students in education from a nearby state university. 
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classes, each taught by different methodologies. The first method, call it A, 
is the standard that has been used for five years. The second method, call 
it B, differs only from the standard one in that a different textbook is used. 
The third method, call it C, is markedly different from the first two. In C, 
there is intervention in the form of extensive instruction, in small student 
groups, by doctoral students in education from a nearby state university. 
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Whereas A and В have essentially the same cost, method С would, absent 
the intervention for free by five doctoral students and their advisor, be very 
costly indeed. 

At the end of the year, a standardized test is given to students from all 
three groups, and their scores are measured as departures from the scores 
of students in the past 5 years taking the same test. The scores are given 
in Table 4.3. 

We have 30 tested students from A, 21 from B, and 24 from C. Of 
course, we can point out to the Board of Education that our task has 
not been made easier by the fact that there are three different teachers 
involved and the "teacher effect" is generally important. But that will 
not do us much good. The Board points out that it would have been 
practically impossible, under the limitations of size of the school, to have 
eliminated the teacher effect. We can, supposedly, take some comfort from 
the fact that the principal points out that the teachers, all similar in age 
and background, are uniformly "excellent." We are also assured that, in 
the interests of multicultural breadth, students are randomly mixed into 
classes from year to year. In any event, the data are as presented, and it 
is pointless to dwell too much on what might be done in the best of all 
possible worlds. Telling a client that "this job is just hopeless the way you 
have presented it to me" is not very good for keeping the consultancy going. 
Moreover, such an attitude is generally overly pessimistic 

One intuitive measure of the effectiveness of such programs is the mean 
score for each of the methods: 0.73, 2.4, and 3.64, respectively. The stan-
dard deviations are 2.81, 1.78, and 3.53, respectively. 

The first thing we note is that the improvements, if any, are modest. The 
principal replies that such incrementalism is the way that improvements are 
made. She wishes to know whether or not the improvements for each of 
the two new methods, В and С are real or may simply be disregarded as 
due to chance. In Figure 4.9, we show a histogram of bootstrapped means 
using a resampling size of 10,000. 

Now, the mindset of the bootstrapper is to consider the data to represent 
all reality, all possibilities that can ever occur. So, as a first step, we 
could compare means of samples (with replacement) of size 21 from В with 
means of samples (with replacement) of size 30 from the current pedagogy, 
A. Then, we similarly compare the new costlier pedagogy С with that of 
the current pedagogy A. Finally, we similarly compare the new costlier 
pedagogy С with that of the new less costly pedagogy B. The program for 
achieving these three figures is given in the program booktest.sta 

'booktest.sta 
Oere, we have three sets of test data: 
'30 from the class using the old paradigm, 
'21 from the class using new cheaper 
'paradigm, 
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'24 from the class using the new 
'costly paradigm. 
'Since the data are rather numerous, 
'we write them as text files and 
'read them into the program. 
' We take 10,000 random samples of 
'size 30 from the old paradigm, 
'computing the mean; 
'size 21 from the new cheaper paradigm, 
'computing the mean; 
'size 24 from the new costlier paradigm, 
'computing the mean. 
'For each of the 10,000 runs we compute 
'difference between mean of new cheap 
'and mean of old paradigm; 
'difference between mean of new costly 
'and mean of old; 
'difference between mean of new costlier 
'and mean of new cheaper paradigm. 
'We compute the fraction of times mean of 
'new cheaper paradigm minus mean of old paradigm 
' is greater than 0 and call this sigcpold. 
'We compute the fraction of times mean of 
'new costlier paradigm minus mean of old 
'paradigm is greater than 0 and call 
'this sigcsold. 
'We compute the fraction of times mean of 
'new costlier paradigm minus mean of new 
'costlier paradigm is greater than 0 and 
'call this sigcscp. 

read file "tabs" xold xcheap xcostly 
repeat 10000 
sample 30 xold oldsamp 
sample 21 xcheap chpsamp 
sample 24 xcostly costsamp 
mean oldsamp oldmean 
mean costsamp costmean 
mean chpsamp chpmean 
subtract chpmean oldmean dchpold 
score dchpold zdchpold 
subtract costmean chpmean dcoschp 
score dcoschp zcoschp 
subtract costmean oldmean dexold 
score dexold zexold 
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end 
histogram zdchpold 
count zdchpold^O sigcount 
divide sigcount 10000 sigcpold 
print sigcpold 
count zexold^O sigcount 
divide sigcount 10000 sigcsold 
print sigcsold 
count zcoschp^O sigcount 
divide sigcount 10000 sigcscp 
print sigcscp 

Figure 4.9. Test for differences of the three paradigms. 

In Figure 4.10 we show the histogram of differences between the two 
procedures using 10,000 resamplings. Here, denoting the resampled sample 
mean by μ, we note that the average performance of a resampled class us-
ing methodology В is greater than that of methodology A in over 91% of 
the runs. This gives us a bootstrapped "significance level" of .086, that is, 
the chances are only 8.6% that, if the methodologies were equally effective 
based on class average scores on the standardized test, that we would have 
seen a performance difference as large or larger than that which we have 
observed. Although significance levels are traditionally taken to be .05 or 
.01, significance levels should actually be adjusted to the reality of the situ-
ation. The cost of changing textbooks is marginal. The Board of Education 
might be well advised, therefore, to consider moving to methodology B. 
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end 
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mean by J..t, we note that the average performance of a resampled class us­
ing methodology B is greater than that of methodology A in over 91 % of 
the runs. This gives us a bootstrapped "significance level" of .086, that is, 
the chances are only 8.6% that, if the methodologies were equally effective 
based on class average scores on the standardized test, that we would have 
seen a performance difference as large or larger than that which we have 
observed. Although significance levels are traditionally taken to be .05 or 
.01 , significance levels should actually be adjusted to the reality of the situ­
ation. The cost of changing textbooks is marginal. The Board of Education 
might be well advised, therefore, to consider moving to methodology B.  
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Next, let us investigate the resampling result when testing means of the 
costly procedure, C, versus that of the old standard, A. We demonstrate 
these results in Figure 4.11. 

Histogram of Means 
from С and A, 10,000 
Runs 

Figure 4· 11. Means histogram of С versus A· 

There seems little question as to the superiority of С to A. We see a 
bootstrap significance level of .044. On the other hand, we recall that С 
was an experimental, labor-intensive protocol that would be difficult to 
implement. Perhaps we should raise the question as to how much better 
it is than the cheap В protocol. We give the resampled comparisons of 
mean scores from С and В in Figure 4.12. If the two procedures had 
equal efficacy, then we would have observed a difference as great as we have 
observed 22.2% of the time. 
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128 BOOTSTRAPPING 

Our analysis does not give the Board of Education an unambiguous call. 
But it would appear that the cost of going to plan В (i.e., changing to the 
new textbook) may be the way to go. 

Problems 

4.1. An IQ test is administered to students from two high schools in the 
same city (Table 4.4). Using a bootstrap procedure, comment upon the 
conjecture that both groups A and В have the saune underlying IQ. 

1 Table 4.4 . Intelligence 
| Quotient Scores. 
| Group A~ 

ПбТГ 
98.0 

117.3 
97.2 

119.3 
73.4 

110.4 
88.4 

123.8 
74.3 

144.9 
97.6 
66.7 

114.1 
142.7 
87.1 

109.9 
77.8 
74.9 
77.8 
91.1 
86.3 

119.2 
104.5 
95.1 

106.9 
84.6 
99.3 
96.9 
77.6 

Group В 

шт\ 
120.2 
120.6 
101.1 
85.9 
90.7 
98.7 

125.3 
84.8 

103.2 
117.2 
121.7 
100.0 
101.1 
128.9 
90.6 
92.8 

113.4 
143.5 
120.1 
100.0 
103.2 
112.8 
125.2 
127.3 
127.9 
147.9 
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106.9 127.9 

84.6 147.9 
99.3 
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4.2. For the two schools selected, the conjecture is made that there is a sig-
nificant correlation between IQ and family income (measured in thousands 
of dollars). Use the data in Table 4.5 to obtain a bootstrap procedure for 
testing the conjecture. 

| Table 4.5. Intelligence Quotient Scores. ] 
| GroupA 

Ш 
98.0 

117.3 
97.2 

119.3 
73.4 

110.4 
88.4 

123.8 
74.3 

144.9 
97.6 
66.7 

114.1 
142.7 
87.1 

109.9 
77.8 
74.9 
77.8 
91.1 
86.3 

119.2 
104.5 
95.1 

106.9 
84.6 
99.3 
96.9 
77.6 

Income 
ШТ 
20.3 
25.7 
56.3 
45.2 
70.2 
19.1 
14.2 
72.4 
14.2 
97.3 
36.0 
13.2 
36.1 
19.1 
44.7 
55.1 
72.1 
15.1 
13.9 
19.1 
56.2 
34.1 
45.1 
24.8 
16.2 
23.1 
18.1 
39.9 
15.2 

GroupB 
112.3 
120.2 
120.6 
101.1 
85.9 
90.7 
98.7 

125.3 
84.8 

103.2 
117.2 
121.7 
100.0 
101.1 
128.9 
90.6 
92.8 

113.4 
143.5 
120.1 
100.0 
103.2 
112.8 
125.2 
127.3 
127.9 
147.9 

Income 
2Τ4Ί 
66.2 
45.1 
23.1 
19.1 
22.1 
21.1 
45.2 
11.1 
74.1 
44.1 
97.2 
23.1 
19.3 
35.6 
22.1 
13.1 
23.8 

101.3 
87.1 
44.4 
28.1 
10.5 
36.7 
12.3 
28.1 
15.2 

4.3. Now, even before estimating μβ and μα in Table 4.3, we see that 
adding on the graduate student teaching assistants appears to have effect. 
However, it is possible that this appearance is simply the result of random-
ness. Moreover, the adding on of the teaching assistants is not without cost. 
Orthodox Bayesians are generally reluctant to construct significance tests. 
Construct a resampling procedure to determine if it is realistic to assume 
that the add-on of graduate student teaching assistants is of no benefit. 
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Chapter 5 

Monte Carlo Solutions of 
Differential Equations 

5.1 Introduction 

In a real sense, computer science was started by the Polish Enigma Code 
breaker Marian Rejewski, working with his colleagues Jerzy Rozycki. and 
Henryk Zygalski. A true empirical model builder, Rejewski used several 
exploratory techniques to reduce the number of the Kriegsmarinen code 
combinations from an impossible 1092 to a manageable 105. The German 
Enigma machine had no electic power. Rejewski and his associates built a 
decoding device which did. Their programming operating system might be 
regarded as a precursor to UNIX. And they completed their prototype in 
1932, a year before Hitler came to power in Germany. The PoUsh govern-
ment shared their decryption device with its English and French "allies" 
before the start of the Second World War. Without the decryption, there is 
little doubt England would have been starved into submission by the Ger-
man submarine fleet. Successful in keeping their possession of an Enigma 
breaking device secret, the English were even more successful in keeping 
the secret of who had built it. 

As cryptanalysis is somewhat exotic, we can say that when it comes to 
the equations of nuclear reactors and other equations of applied engineer-
ing, the Hungarian John von Neumann could be said to be the "founder of 
computer science." Unlike the Enigma decoder, von Neumann's computer 
worked very much like the computers we still use today, von Neumann con-
ceived of and built the first serious digital computer as a device for handling 
simulation algorithms that he had formulated for dealing with problems in 

0Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R. 
Thompson ©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons. 
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132 M O N T E CARLO SOLUTIONS OF DIFFERENTIAL EQUATIONS 

nuclear engineering.1 Ideally, if we are dealing with problems of heat trans-
fer, neutron flux, and so on, in regular and symmetrical regions, the classical 
nineteenth and early twentieth century differential-integral-difference equar 
tion formulations can be utilized. However, if the regions are complicated, 
if indeed we are concerned about a maze of pipes, cooling vessels, rods, and 
so on, the closed-form solutions are not available. This means that many 
person-years would be required to come up with all the approximation-
theoretic quadrature calculations to ensure that a satisfactory plant will 
result if the plans are implemented, von Neumann noticed that if large 
numbers of simple repetitive computations could be readily performed by 
machine, a method could be devised which would serve as an alternative to 
quadrature. 

In reality, the quadrature issue, which Monte Carlo was largely developed 
to address, is rather unimportant compared to the much more important 
issue of direct simulation. To make a distinction between Monte Carlo and 
simulation, let us consider the following two paradigms shown in Figure 
5.1. In the upper flowchart, we note a traditional means of coping with 
the numerical results of a model. We start out with axioms at the micro 
level which are generally easily understood. For example, one such axiom 
might be that a gas particle starts at a particular point and moves step 
by step in three-space according to specified laws until it collides with a 
wall. Dealing with each specific gas molecule out of a total of, say, 1012 

molecules is a hopeless task. Thus, investigators in the nineteenth century 
quite naturally and correctly were led to means for summary information 
about the gas molecules. That is to say, they had to content themselves 
with differential-integral-equation models as average representations of the 
effect of trillions of molecules. 

Axioms 
Closed 
Form 
Attempt 

N.A. 
Approx. - * 

Monte 
Carlo 

^ ^ 
Polntwlse 

Tabulation 

Figure 5.1. Two ways of problem solving. 

In Figure 5.1 the upper path gives the paradigm for solving such prob-
lems based on precomputer age models. We start with axioms which axe 
accepted by most investigators in the field. These are transformed into 
a differential-integral-difference-equation type of summary model. Then, 

The discussion in this chapter largely follows [3]. 
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a generally pro forma attempt is made to arrive at a closed-form solu-
tion, that is, a representation which can be hoUstically comprehended by 
an observer and which lends itself to precise numerical evaluation of the 
dependent variables as we change the parameters of the model and the in-
dependent variables. This attempt is generally unsuccessful and leads only 
to some nonholistic quadrature-like setup for numerical evaluation of the 
independent variables. If the dimensionality of the quadrature is greater 
than 2, the user moves rather quickly to a random quadrature Monte Carlo 
approach. What would have happened had computers been developed a 
century before they were? Would differential-integral equation modeling 
be the backbone of so much of physical science the way it still is today? It 
is an open question. 

The fact is that we now have the computer speed to use the algorithm 
in the lower part of the diagram. We can now frequently dispense with the 
traditional approach by one which goes directly from the microaxioms to 
pointwise evaluation of the dependent variables. The technique for making 
this "great leap forward" is, in principle, simplicity itself. 

Simulation carries out that which would earlier have been thought to 
be impossible, namely, to follow the progress of the particles, the cells, 
whatever. We do not do this for all the particles, but for a representative 
sample. We still do not have the computer speed to deal with 1010 particles; 
but we can readily deal with, say, 104 or 105. For many purposes, such a size 
is more than sufficient to yield acceptable accuracy. Among the advantages 
of a simulation approach is principally that it enables us to eliminate time-
consuming and artificial approximation-theoretic activities and spend our 
time in more useful pursuits. 

More importantly, simulation enables us to deal with problems which 
are so complex in their "closed-form" manifestation that they are presently 
attacked only in ad hoc fashion. For example, econometric approaches are 
frequently linear, not because such approaches are supported by microeco-
nomic theory, but because the complexities of dealing with the nonlinear 
consequences of the microeconomic theory are so overwhelming. Similarly, 
in mathematical oncology, the use of linear models is motivated by the 
failure of the natural branching process models to lead to numerically ap-
proximateable closed forms. 

We have long since passed the point where computers can enable us 
to change fundamentally the ways we pose and solve problems. We have 
had the hardware capabilities for a long time to implement all the tech-
niques covered in this chapter. But the proliferation of fast computing to 
the desktop will encourage private developers to develop simulation-based 
procedures for a large and growing market of users who need to get from 
specific problems to useful solutions in the shortest time possible. We now 
have the ability to use the computer, not as a fast calculator, but as a device 
which changes fundamentally the process of going from the microaxioms to 
the macrorealization. 
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5.2 Gambler's Ruin 
There is an old temptation in applied mathematics to pose new problems, 
whenever possible, in classical "toy problem" formulation. One such is that 
of "gambler's ruin" [1]. We consider two gentlemen gamblers, A and B, who 
start to gamble in a zero-sum game with stakes x and b - x , respectively. 
At each round, each gambler puts up a stake of h dollars. The probability 
that A wins a round is p, while the probability that В wins a round is 
q = 1 — p. We wish to compute the probability that A ultimately wins 
the game. Let us define v(x, t) to be the probability that A wins the game 
starting with capital x on or before the tth round. Similarly, u(x, t) is the 
probability that В wins the game with his stake of b — x on or before the 
tth round. Let w(x1t) be the probability the game has not terminated by 
the tth round. 

Each of the three variables u, v, and w is bounded below by zero and 
above by one. Moreover, и and v are nondecreasing in t. w is nonincreasing 
in t. Thus, we can take limits of each of these as t goes to infinity. We shall 
call these limits v(x), u(x), and ги(х), respectively. 

Although we shall briefly digress to get the closed-form solution to gam-
bler's ruin, such a solution is really unimportant for our diiferential-integral 
simulation purposes. It will be the fundamental recursion in (5.1), which 
will be the basis for practically everything we do in this section. 

u(x, t) = pv(x + ft, t - X) + qv(x - ft, t - λ). (5.1) 

That is, the probability A wins the game on or before the tth round is given 
by the probability that he wins the first round and then ultimately wins 
the game with his new stake of x + ft in t - X rounds plus the probabiUty 
he loses the first round and then wins the game in t — X rounds with his 
new stake of x — h. Here we have used a time increment of A. 

Taking limits in (5.1), we have 

(p + q)v(x) = pv(x + h) + qv(x - Λ). (5.2) 

Rewriting (5.2), we have 

p[v(x + h) - v(x)] = q[v(x) - v(x - ft)]. (5.3) 

Let us make the further simplifying assumption that b = Nh. Then 

v({n + l}ft) - v(nft) = (q/p)[v(nh) - v({n - l}ft)]. (5.4) 

Notes that v(0) = 0 and v(Nh) = 1. So writing (5.4) in extenso, we have 

v(nh) - v({n - l}ft) = (q/p){v({n-l}h)-v({n-2}h)} 

v({n - l}ft) - v({n - 2}Λ) = (« /ρ)Κ{η-2}Λ)-ν({η-3}Λ)] 
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5.2 Gambler's Ruin 

There is an old temptation in applied mathematics to pose new problems, 
whenever possible, in classical "toy problem" formulation. One such is that 
of "gambler's ruin" [1]. We consider two gentlemen gamblers, A and B, who 
start to gamble in a zero-sum game with stakes x and b - x , respectively. 
At each round, each gambler puts up a stake of h dollars. The probability 
that A wins a round is p, while the probability that B wins a round is 
q = 1 - p. We wish to compute the probability that A ultimately wins 
the game. Let us define v(x, t) to be the probability that A wins the game 
starting with capital x on or before the tth round. Similarly, u(x, t) is the 
probability that B wins the game with his stake of b - x on or before the 
tth round. Let w(x, t) be the probability the game has not terminated by 
the tth round. 

Each of the three variables u, v, and w is bounded below by zero and 
a.bove by one. Moreover, u and v are nondecreasing in t. w is nonincreasing 
in t. Thus, we can take limits of each of these as t goes to infinity. We shall 
call these limits v(x) , u(x) , and w(x), respectively. 

Although we shall briefly digress to get the closed-form solution to gam­
bler's ruin, such a solution is really unimportant for our differential-integral 
simulation purposes. It will be the fundamental recursion in (5.1) ,  which 
will be the basis for practically everything we do in this section. 

v(x, t) = pv(x + h, t - oX) + qv(x - h, t - oX). (5 .1) 

That is, the probability A wins the game on or before the tth round is given 
by the probability that he wins the first round and then ultimately wins 
the game with his new stake of x + h in t - oX rounds plus the probability 
he loses the first round and then wins the game in t - oX rounds with his 
new stake of x - h. Here we ha.ve used a time increment of oX. 

Taking limits in (5.1) , we have 

(p + q)v(x) = pv(x + h) + qv(x - h) . (5.2) 

Rewriting (5.2) , we have 

p[v(x + h) - v(x)] = q[v(x) - v(x - h)] . (5.3) 

Let us make the further simplifying assumption that b = Nh. Then 

v( {n + l}h) - v(nh) = (qjp) [v(nh) - v( {n - 1 }h)] . (5.4) 

Notes that v(O) = 0 and v(Nh) = 1. So writing (5.4) in extenso, we have 

v(nh) - v({n - l}h) = (qjp) [v({n - l}h) - v({n - 2}h)] 
v({n - l }h) - v({n - 2}h) = (qjp) [v({n - 2}h) - v({n - 3}h)] 

= 



GAMBLER'S RUIN 135 

. . . = . . . (5.5) 

v(2h)-v(h) = q/p[v(h)-v(0)] = (q/p)v(h). 

Substituting up the ladder, we have 

v{nh) - v({n - l}h) = {q/v)n-lv{h). (5.6) 

Substituting (5.5) in the extenso version of (5.4), we have 

v{nh)-v{{n-l}h) = (q/p)n^v(h) 

v({n-l}h)-v({n-2}h) = (q/p)n~2v{h) 

v{h) = v(h). 

Adding, we have 

Recalling that v(Nh) = 1, we have 

2 / \ N-l 

Now, by symmetry, 

(5.7) 

v(nh) = (l + 2 + g ) 2 + - · · + g ) n - 1 ) „(fc). (5.8) 

i - ( 1 + i + G ) + ~ + G) > Λ ) (5·9) 

Thus, we have 

υ(ηΛ) - г + Ф + Ш^.-. + Ш»-1 (5Л0) 

For p = q = .5, this gives, 

<nh) = - - ; i.e., t/(*) = | . (5.11) 

Otherwise, multiplying (5.10) by [1 —p/q]/[l —p/q], we have 

v{nh) = T ^ W ' Le" (5Л2) 

v(x) =
 1 - шх/" 

( ) i - ( 9 / p ) ò / f t " 

-M-(,/ff«y <-> 
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= 
= 

v(2h) - v(h) = q/p[v(h) - v(O)] = (q/p)v(h). 

Substituting up the ladder, we have 

v(nh) - vein - l}h) = (q/p)n-lv(h). 

Substituting (5.5) in the extenso version of (5.4) , we have 

v(nh) - vein - l}h) = (q/p)n-lv(h) 
vein - l}h) - vein - 2}h) = (q/p)n-2v(h) 

= 
= 
= 

v(h) = v(h). 

Adding, we have 

135 

(5.5) 

(5.6) 

(5.7) 

v(nh) = (1 + � + (�) 2 + . . . + (�) n-l
) v(h) . (5.8) 

Recalling that v(Nh) = 1, we have 

Thus, we have 

1 = (1 + � + (�r + . . .  + (�) N-l
) v(h) (5.9) 

v(nh) = 1 + q/p + (q/p)2 + . . .  + (q/p)n-l  
(5.10) 1 + q/p + (q/p)2 + . . . + (q/p)N-l 

For p = q = .5, this gives, 

v(nh) = ; ; i.e., vex) = �. (5. 11 )  

Otherwise, multiplying (5.10) by [ 1  - p/ql/[1 - p/q] , we have 

Now, by symmetry, 

v(nh) 

vex) 

1 _ (q/p)n = 
1 _ (q/p)N ' i.e. , 

= 1 - (q/pyc/h 

1 - (q/p)b/h . 

(q/X)z/h _ (q/h)h/h 
u(x) = 

1 - (q/p)b/h 

(5.12) 

(5.13) 
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Prom (5.12) and (5.13), we have 

v(x) + u(x) = 1. (5.14) 

Consequently, w(x) = 0; that is, the game must terminate with probabil-
ity 1. Thus, we can use a simulation to come up with reasonable estimates 
of the probability of A ultimately winning the game. A flowchart of such a 
simulation is given in Figure 5.2. 

We note that this simulation gives us a ready means of estimating a rough 
95% confidence interval for v(x), namely 

4X) " M ± M 
(5.15) 

No 

No 

No 

t 
j=j-1 

- lsj=0 
Ives 

ΜΙΦΜΜ+1 

- lsMM=M 
I Yes 

v(nh) =W/M 

I 
BD 

M=number of 
simulations 
N=b/h 
n=x/h 
p=probability of A winning a round 
MM=0 
W=0 
7=n * 
Gen и from U[0,1] ■* 

4s u<p 
Yes I, 

j=j+1 

teJfcW 

I Yes 

W=W+1 

MM=MM+1 

I 
lsMM=M -

| Yes 
v{nh)-\N/M 

No 

No 

B€> 

Figure 5.2. Gambler's ruin. 
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From (5.12) and (5.13), we have 

v(x) + u(x) = 1 .  (5. 14) 

Consequently, w(x) = OJ that is, the game must terminate with probabil­
ity 1 .  Thus, we can use a simulation to come up with reasonable estimates 
of the probability of A ultimately winning the game. A flowchart of such a 
simulation is given in Figure 5.2. 

We note that this simulation gives us a ready means of estimating a rough 
95% confidence interval for v(x) , namely 

v(x) = 
W ± 2v'W(1 - W/M)

. 
M M 

M=number of 
simulations 
N=b/lh n=x h 
p=probabi/ity of A winning a round 
MM--O 
W=O 

-------�� j=n 

No 

No 

No Gen u from UfO, 1J 
.;";':;""--....j/s u<p 

j=j- 1 
Is j=O + Yes 

MM--MM+1 

Is MM--M + Yes 

v(nh) =WIM 
, 
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Yes + 
j=j+ 1 

IS�N + Yes 

W = W+1 
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, 

Is MM=M 
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v(nh)= WIM 
, 

Figure 5.2. Gambler's ruin. 

(5.15) 

No 

No 
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5.3 Solution of Simple Differential Equations 
Since we have shown a closed-form solution for the gambler's ruin problem, 
it would be ridiculous for us to use a simulation to solve it. It is by means 
of an analogy of real-world problems to the general equation (5.1) that 
simulation becomes useful. Rewriting (5.3), we have 

pAv(x) = qAv(x - h), (5.16) 

where 
Δν(χ) = [v(x + h) - v(x))/h. 

Subtracting qAv(x) from both sides of (5.16), we have 

(p - q)Av(x) = q[Av(x - h) - АУ(Х)], (5.17) 

or 
A2v(x) + ^-±Av{x) = 0, (5.18) 

qh 
where 

д о , ч Αυ(χ) - Av(x - h) 
Α2ν{χ) = — — — τ — ^ -. 

For h sufficiently small, this is an approximation to 

cPv dv 

where 

qh 

Now, suppose that we are given the boundary conditions of (5.19), v(0) = 0 
and v(b) = 1. Then our flowchart in Figure 5.2 gives us a ready means of 
approximating the solution to (5.19). We simply set p = (2ßh+l)/(2ßh+2)i 

taking care to see that h is sufficiently small, if ß be negative, to have p 
positive. To make sure that we have chosen h sufficiently small that the 
simulation is a good approximation to the differential equation, typically 
we use simulations with successively smaller h until we see little change in 
v(x) « W/N. 

Suppose that the boundary conditions are less accommodating, for exam-
ple, suppose that v(0) and v(b) take arbitrary values. A moment's reflection 
shows that 

W ( W\ 
v(x)*jfV(b)+[l--)v{0). (5.20) 

As a closed-form solution of (5.19) is readily available. We need not con-
sider simulation for this particular problem. But suppose that we generalize 
(5.19) to the case where ß depends on x: 
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5.3 Solution of Simple Differential Equations 

Since we have shown a closed-form solution for the gambler's ruin problem, 
it would be ridiculous for us to use a simulation to solve it. It is by means 
of an analogy of real-world problems to the general equation (5.1) that 
simulation becomes useful. Rewriting (5.3), we have 

pLlv(x) = qLlv(x - h), 
where 

Llv(x) = [v(x + h) - v(x)]/h. 
Subtracting qLlv(x) from both sides of (5.16), we have 

or 

where 

(p - q)Llv(x) = q[�v(x - h) - Llv(x)] , 

Ll2v(x) = Llv(x) - Llv(x - h) . h 
For h sufficiently smaIl, this is an approximation to 

where 

tPv dv 
dx2 + 2f3 dx = 0, 

p - q = 2f3. qh 

(5.16) 

(5. 17) 

(5.18) 

(5.19) 

Now, suppose that we are given the boundary conditions of (5.19) , v(O) = 0 
and v(b) = 1 . Then our flowchart in Figure 5.2 gives us a ready means of 
approximating the solution to (5.19) . We simply set p = (2f3h+1)/(2f3h+2), 
taking care to see that h is sufficiently small, if /3 be negative, to have p 
positive. To make sure that we have chosen h sufficiently small that the 
simulation is a good approximation to the differential equation, typically 
we use simulations with successively smaller h until we see little change in 
v(x) ::=;:j WIN. 

Suppose that the boundary conditions are less accommodating, for exam­
ple, suppose that v(O) and v(b) take arbitrary values. A moment's reflection 
shows that 

v(x) ::=;:j � v(b) + (1 - �) v(O) . (5.20) 

AB a closed-form solution of (5. 19) is readily available. We need not con­
sider simulation for this particular problem. But suppose that we generalize 
(5.19) to the case where f3 depends on x: 

tPv dv 
dx2 + 2f3(x) dx = O. (5.21) 
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Again, we use our flowchart in Figure 5.2, except that at each step we 
change p via 

_ 2ß{x)h + l 
P(X)-2ß(x)h + 2' ( 5 · 2 2 ) 

Once again, υ(χ) « W/Nv(b) + (1 - W/N)v(0). And once again, it is an 
easy matter to come up with an internal measure of accuracy via (5.15). 

It is possible to effect numerous computational efficiencies. For exam-
ple, we need not start afresh for each new grid value of x. For each pass 
through the flowchart, we can note all grid points visited during the pass 
and increase the counter of wins at each of these if the pass terminates at 
6, the number of losses if the pass terminates at 0. 

5.4 Solution of the Fokker—Planck Equation 

It is important to note that the simulation used to solve (5.19) actually 
corresponds, in many cases, to the microaxioms of which the differential 
equation (5.19) is a summary. This is very much the case for the Fokker-
Planck equation which we consider below. Let us suppose that we do not 
eliminate time in (5.1). We will define 

ν(χ,£,0;Λ, λ) = P[particle starting at x will be absorbed at 0 
on or before t = mA]; 

υ(χ, ty b; ft, λ) = Pfparticle starting at x will be absorbed at b 
on or before t = τηλ ]; 

V{x,t)hy\) = F(0,t)t;(s,i,0;ft,A) + V(ò,t)v(z,t,&;ft,A). 

We define 

ν(Μ + Α;Μ)-νΧΜ;Μ) 
i\tV{x,t\h,\) = ^ , 
л τ,Λτ f. h w У(д + М;М)-У(а?,*;М 
Аху(х9Р,п>л) = , 

AxxV4M;n,A) = ^ . 

That is, the expected payoff is given by the probability a particle is absorbed 
at the left at time t, multiplied by the boundary award V(0, t) plus the 
probability the particle is absorbed at the right at time t times the boundary 
award V(ò,t). 

Now, our basic relation in (5.1) still holds, so we have 

V(x,t + λ; ft, A) = p(x)V{x + ft, t; ft, A) + q(x)V(x - ft, t; ft, A). (5.23) 

Subtracting V(x,t;ft,/) from both sides of (5.23), we have 
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Again, we use our 80wchart in Figure 5.2, except that at each step we 
change p via 

2f3(x)h + 1 p(x) = 2f3(x)h + 2 '  (5.22) 

Once again, v(x) � W/Nv(b) + (1 - W/N)v(O). And once again, it is an 
easy matter to come up with an internal measure of accuracy via (5.15). 

It is possible to effect numerous computational efficiencies. For exam­
ple, we need not start afresh for each new grid value of x. For each pass 
through the 8owchart, we can note all grid points visited during the pass 
and increase the counter of wins at each of these if the pass terminates at 
b, the number of losses if the pass terminates at O. 

5.4 Solution of the Fokker-Planck Equation 

It is important to note that the simulation used to solve (5.19) actually 
corresponds, in many cases, to the microaxioms of which the differential 
equation (5.19) is a summary. This is very much the case for the Fokker­
Planck equation which we consider below. Let us suppose that we do not 
eliminate time in (5.1) . We will define 

v(x, t, OJ h, '\) = P[particle starting at x will be absorbed at 0 
on or before t = rn,\] j 
v(x, t, bj h, '\) = P[particle starting at x will be absorbed at b 
on or before t = rn'\ ] j 
V(x, t; h, '\) = V(O, t)v(x, t, 0; h, '\) + V(b, t)v(x, t, b; h, '\). 

We define 

at V(x, t; h, '\) = 

ax V(x, tj h, '\) 

axx V(x, tj h, '\) = 

V(x, t + '\; h, '\) - V(x, tj h, ,\) 
,\ 

V(x + h, t; h, '\) - V(x, t; h, '\ 
h 

ax V(x, t; h, '\) - ax V(x - h, t; h, ,\) 
h 

That is, the expected payoff is given by the probability a particle is absorbed 
at the left at time t, multiplied by the boundary award V(O, t) plus the 
probability the particle is absorbed at the right at time t times the boundary 
award V(b, t). 

Now, our basic relation in (5.1) still holds, so we have 

V(x, t + ,\j h, '\) = p(x)V(x + h, tj h, '\) + q(x)V(x - h, tj h, '\). (5.23) 

Subtracting V(x, tj h, l) from both sides of (5.23) , we have 
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XAtV(x,t;h,l) = p(x)[V(x + h,t;h,X)-V(x,t;h,\)} (5.24) 
+q(x)[V(x - ft, t; ft, A) - V(x, t; A, A)] 

= p(x)[V(x + h,t;h,X)- V(x,t;ft,λ)] 
-q(x) [V(x, t; ft, A) - V(x - ft, t; ft, A)] 

= hp(x)AxV(x, t; ft, A) - hq{x)AxV(x - ft, t; ft, A) 
= ft[p(x) - q(x)]AxV(x, t; ft, A) 

+hq(x) [AxV(x, t; ft, A) - AxV(x - ft, t; ft, A)] 
= ft[p(x) - q(x)]AxV(x, t; ft, A) + h2q(x)Ax<xV(x, t; ft, A). 

Letting p(x) = \ß{x) + 2ha(x)]/[2ß(x) + 2fta(x)] and q(x) = 1 - p(x), we 
have 

(5.25) 
Next, taking ft very small with A/ft2 = μ, we have 

μΔ* V(x, t; ft, λ) = ^ Δ χ Κ ( χ , ί; Л, А) + \bxxV{xy t; ft, λ). (5.26) 

So the simulation, which proceeds directly from the microaxioms, yields 
in the limit as the infinitesimals go to zero a practical pointwise evaluator 
of the usual Fokker—Planck equation: 

dV _ a(x)dV d*V 
2 моГ-2Щах-+9^· (5·27) 

The Fokker—Planck equation is generally not solvable in closed form. Note 
that we have given a simulation-based approach for solving (5.27), but 
more importantly we have given a practical means for arriving at the con-
sequences of the original axioms which brought about Fokker—Planck in 
the first place. So we again raise the intriguing possibility that had com-
puters been available 100 years ago, Fokker and Planck might have simply 
represented their model in microaxiomatic format instead of giving a dif-
ferential equation summary thereof. Again, our algorithm is essentially the 
flowchart in Figure 5.2 with a time counter added on. 

5.5 The Dirichlet Problem 

Next, we consider another common differential equation model of physics, 
that of Dirichlet. In %k<> let there be given a bounded connected region S 
Г (Figure 5.3). Let there be given a function F(x) satisfying the equation 
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AAt V(X, t; h, 1) = p(x)[V(x + h, t; h, A) - V(x, t; h, A)] (5.24) 
+q(x) [V(x - h, t; h, A) - V(x, t; h, A)] 

= p(x) [V(x + h, t; h, A) - V(x, t; h, A)] 
-q(x)[V(x, t; h, A) - V(x - h, t; h, A)] 

= hp(X)Ax V(x, t; h, A) - hq(x) Ax V(x - h, t; h, A) 
= h[P(x) - q(x)]Ax V(x, tj h, A) 

+hq(x)[AxV(x, tj h, A) - AxV{x - h, tj h, A)] 
= h[P(x) - q(x)]Ax V(x, tj h, A) + h2q(x)Ax,x V(x, tj h, A) . 

Letting p{x) = [,8(x) + 2ha(x)J1[2,8(x) + 2ha(x)] and q(x) = 1 - p(x), we 
have 

2 a(x) 2 ,8(x) AAt V(x, t; h, A) = 2h 2,8(x) + 2hax + h 2,8{x) + 2ha(x) Axx V(x, t; h, A) . 
(5.25) 

Next, taking h very small with A/h2 = 1", we have 

a(x) 1 
I"At V(x, t; h, A) = ,8(x) Ax V(x, t; h, A) + "2Axz V{x, tj h, A). (5.26) 

80 the simulation, which proceeds directly from the microaxioms, yields 
in the limit as the infinitesimals go to zero a practical pointwise evaluator 
of the usual Fokker-Planck equation: 

2 8V = 2a(x) 8V + 82V . I" at ,8(x) 8x 8x2 (5.27) 

The Fokker-Planck equation is generally not solvable in closed form. Note 
that we have given a simulation-based approach for solving (5.27), but 
more importantly we have given a practical means for arriving at the con­
sequences of the original axioms which brought about Fokker-Planck in 
the first place. 80 we again raise the intriguing possibility that had com­
puters been available 100 years ago, Fokker and Planck might have simply 
represented their model in microaxiomatic format instead of giving a dif­
ferential equation summary thereof. Again, our algorithm is essentially the 
flowchart in Figure 5.2 with a time counter added on. 

5.5 The Dirichlet Problem 

Next, we consider another common differential equation model of physics, 
that of Dirichlet. In Rk, let there be given a bounded connected region 8 
r (Figure 5.3). Let there be given a function F(x) satisfying the equation 
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of Laplace inside S 

i = i 
dx) 

0. (5.28) 

The values of φ are given explicitly at every boundary point by the piecewise 
continuous function /(£?); that is, 

№)\r = HQ). (5.29) 

For most boundaries and boundary functions, the determination of φ 
analytically is not known. The usual numerical approximation approach 
can require a fair amount of setup work, particularly if the dimensionality 
is 3 or greater. We exhibit below a simulation technique which is, in fact, 
an actualization of the microaxioms which frequently give rise to (5.28). 
Although our discussion is limited to 7^2, the generalization to flk is quite 
straightforward. Let us superimpose over S a square grid of length h on 
a side. The points of intersection inside S nearest Г will be referred to as 
boundary nodes. All other nodes inside S shall be referred to as internal 
nodes. 

HTTHTJ —J—1 1 fl I 1_ _l_ .J^l.J 

HI H 1 KTT 1 
h i ruy 

Figure 5.3. The Dirichlet problem. 

In Figure 5.4, we consider an internal node with coordinates (x,y) in 
relation to its four immediate neighbors. 

P/x, y + h) 

# p(x-h,y) ρ·Χ| y) P(* + h, у, 

.Pj*,y-h) 

Figure 5.4. Random walk grid for Dirichlet problem. 
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of Laplace inside S : 
k {)2¢ . 
L a i = 0. 
j=l Xj 

(5.28) 

The values of ¢ are given explicitly at every boundary point by the piecewise 
continuous function f(Q)j that is, 

¢(X) lr = f(Q)· (5.29) 

For most boundaries and boundary functions, the determination of ¢ 
analytically is not known. The usual numerical approximation approach 
can require a fair amount of setup work, particularly if the dimensionality 
is 3 or greater. We exhibit below a simulation technique which is, in fact, 
an actualization of the microaxioms which frequently give rise to (5.28). 
Although our discussion is limited to 'R2, the generalization to 'Rk is quite 
straightforward. Let us superimpose over S a square grid of length h on 
a side. The points of intersection inside S nearest r will be referred to as 
boundary nodes. All other nodes inside S shall be referred to as internal 
nodes. 

i"' -t\.. 
,) 

\:: r 
\ .... , 

"', ,/ 

Figure 5.S. The Dirichlet problem. 

In Figure 5.4, we consider an internal node with coordinates (x, y) in 
relation to its four immediate neighbors . 

• Pix, y + h) 

• • �(x - h, y) P(x, y) 

• PJx, y - h) 

• p (x + h, Y; 
f 

Figure 5.4. Random walk grid for Dirichlet problem. 



THE DIRICHLET PROBLEM 141 

Now 

and 

дФ/дх\хл 
ф(х + h/2, у) - ф(х - h/2, у) 

Similarly, 

дЧ „ (дф/дх)\х+н/2>у - (дф/дх)\х-н/2л 

дх2 ~ h 
„ Ф(х + h,y) + Ф(х -h,y)- 2ф(х,у) 

h2 

дРф ф(х, y + h) + ф(х, у-К)- 2ф(х, у) 

(5.30) 

(5.31) 

ду2 

Equation (5.28) then gives 

h2 

0=^д2ф | д2ф _ ф{Рх) + ф(Р2) + ф(Р3) + ф(Р4) - 4ф(Р) 
дх2 ду2 h2 

So 
Φ(Ρ) 

φ(Ρΐ) + φ(Ρ2) + φ(Ρ3) + φ(Ρ4) 

(5.32) 

(5.33) 

(5.34) 

Equation (5.34) gives us a ready means of a simulation solution to the 
Dirichlet problem. Starting at the internal node (x,y), we randomly walk 
to one of the four adjacent points with equal probabilities. We continue 
the process until we reach a boundary node, say Qi< After N walks to the 
boundary from starting point (x, y)1 our estimate of ф(х) у) is given simply 
by 

Ф(х,у)*Е^П/т, (5.35) 

Figure 5.5. Quick steps to the boundary. 

where щ is the number of walks terminating at boundary node Q% and the 
summation is taken over all boundary nodes. 

In Figure 5.3, if we wish to show ф contours throughout S, we can take 
advantage of computational efficiencies. For example, as we walk from 

Now 

and 

Similarly, 
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8¢/8xix,y � ¢(x + h/2, y) � ¢(x - h/2, y) (5.30) 

� 

(8¢/8x) ix+h/2,y - (8¢/8x)lx-h/2,y 
h 

¢(x + h, y) + ¢(x - h, y) - 2¢(x, y) 
h2 

(5.31) 

82¢ ¢(x, Y + h) + ¢(x, y - h) - 2¢(x, y) 
(5.32) 

8y2 � 
h2 . 

Equation (5.28) then gives 

So 

(5.33) 
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. (5.34) 4 
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Figure 5.5. Quick steps to the boundary. 

where ni is the number of walks terminating at boundary node Qi and the 
summation is taken over all boundary nodes. 

In Figure 5.3, if we wish to show ¢ contours throughout S, we can take 
advantage of computational efficiencies. For example, as we walk from 
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(я, y) to the boundary, we will traverse (x -f ft, y) numerous times. By 
incorporating the walks which traverse (x + ft, y) even though (x 4- ft, y) is 
not our starting point, we can increase the total number of walks used in 
the evaluation of φ(χ + Л, у). 

Let us now consider in Figure 5.5 a technique that is particularly useful if 
we need to evaluate φ at only one point in 5. Since it can easily be shown 
that ф(х,у), the solution to Laplace's equation inside S, is equal to the 
average of all values taken on a circle centered at (x, y) and lying inside 5, 
we can draw around (x, y) the largest circle lying inside S and then select 
a point uniformly on the boundary of that circle, use it as the center of a 
new circle, and select a point at random on that circle. We continue the 
process until we arrive at a boundary node. Then, again after N walks, 

ф(х,у)^=1П/Ш. (5.36) 

This method works, using hyperspheres, for any dimension k. Again, it 
should be emphasized that in many cases the simulation is a direct imple-
mentation of the microaxioms that gave rise to Laplace's equation. 

5.6 Solution of General Elliptic Differential 
Equations 

Next, we consider a general elliptic differential equation in a region S in 
two-dimensional space. Again, the values on the boundary Г are given by 
/(·), which is piecewise continuous on Г. Inside 5, 

д2ф л д2ф д2ф дф дф , 

**ш+2ß»ddy-+^w+2a>£+^i=°· <5·37> 
where /Зц > О, /З22 > 0, and /З11/З22 - #12 > 0. We consider the difference 
equation corresponding to (5.37), namely: 

βηΔχχφ + 2β12Αχνφ + &2&ууф + 2агАхф + 2а2Ауф = 0. (5.38) 

As convenient approximations to the finite differences, we use 
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+ Л, у) + φ(χ - h 
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+ h,y)-
h 

h 

ft2 

-Ф(х,у) 
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7»2 
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-Щх 

-2ф(х 

,У) 

,У) (5.39) 
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82l/J 82l/J 82l/J 8l/J 8l/J {311 8x2 + 2{312 8xBy + /322 By2 + 2a1 8x + 2a2 By = 0, (5.37) 

where {311 > 0, {322 > 0, and {311f322 - {3�2 > 0. We consider the difference 
equation corresponding to (5.37) , namely: 

{3l1!::J.zzl/J + 2{312!::J.Zyl/J + f322!::J.yyl/J + 2a1!::J.zl/J + 2a2!::J.yl/J = 0. (5.38) 
As convenient approximations to the finite differences, we use 

�1I = 

l/J(x + h, y + h) - l/J(x, y + h) - l/J(x + h, y) + l/J(x, y) 
h2 

l/J(x + h, y) + l/J(x - h, y) - 2l/J(x, y) 
h2 

l/J(x, y + h) + l/J(x, y - h) - 2l/J(x, y) 
h2 

l/J(x + h, y) - l/J(x, y) 
h 

l/J(x, y + h) - l/J(x, y) 
h 

(5.39) 
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These differences involve five points around (x, y). Now, we shall develop 
a random walk realization of (5.37), which we write out explicitly in Figure 
5.6, 

Рг(х, y*h) p
s(x + h, у + ft. 

*P3(x-h,y)P*(x,y) P/x + ft, y) 

• P4(x,y-h) 

Figure 5.6. Grid for elliptic equation random walk. 

?i i -
ф(х + h,y) + ф(х -h)- 2ф(х,у) 

h2 

+2/3: 12" 

+#22 

ф(х + h,y + h)- ф(х,у + h) - ф(х + h,y) + ф(х,у) 
ft2 

ф(х, y + h) + ф(х, y-h)- 2ф(х, у) 
ft2 

+ 2 a iÖHM + 2а2Ф(х,у + к)-ф(х,у) = 
h h 

We rearrange the terms in (5.40) to give 

ф(х + h, y)(0n + 2aih~ 2ß12) + Ф(х, У + h){ßn + 2a2h - 2ß12) 

+ф{х - h,y)ßn + Ф(х,У - h)ß22 + ф{х + Ку + h)2ß12 

= ф(х,y)[2ßn - 2/9x2 + 2/322 + 2(αχ + α2Λ)]. (5.41) 

Letting D = [2/?ιι - 2ßi2 + 2β22 + 2(αα + a2)h], we have 

φ(χ + h, y)pi + ф(х, у + h)p2 + ф(х - h, y)p3 + ф(х, у - h)pA 

+ф(х + h,y + h)p5 = ф(х, у), (5.42) 

with 

ßu + 2aih - 2/З12 /З22 + 2a2h - 2ß12 

Pi = F; ; P2 D 
ßu. 

P3 = _ t S p 4 = , 

D 
IA2 20ц 

• Рь = - p - -
(5.43) 
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/3 ¢(x + h, y) + ¢(x - h) - 2¢(x, y) 11 h2 

2f3 ¢(x + h, y  + h) - ¢(X, y  + h) - ¢(X + h, y) + ¢(X, y) + 12 h2 
f3 ¢(X, y + h) + ¢(X, Y - h) - 2¢(x, y) + 22 h2 

+201 ¢(X + h, y� - ¢(X, y) + 202 
¢(x, y + h� - ¢(X, y) 

= 0.(5.40) 

We rearrange the terms in (5.40) to give 

¢(x + h, y)({311 + 201h - 2(312) + ¢(x, y + h) (1322 + 202h - 2(312) 

+¢(X - h, y){311 + ¢(X, Y - h)f322 + ¢(X + h, y + h)2/312 
= ¢(X, y) [2{311 - 2/312 + 2{322 + 2(01 + 02h») . (5.41) 

Letting D = [2/311 - 2/312 + 2{322 + 2(01 + (2)h] ,  we have 

with 

¢(x + h, y)p1 + ¢(x, Y + h)P2 + ¢(x - h, y)P3 + ¢(x, Y - h)P4 

+¢(x + h, y + h)P5 = ¢(x, y), 

f311 + 201h - 2f312 P1 = D 
/311 . 11322 P3 = -tSP4 = - j 
D D 

(5.42) 

(5.43) 
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Note that in the formulation above, we must exercise some care to assure 
that the probabilities are non-negative. By using the indicated probabili-
ties, we walk randomly to the boundary repeatedly and use the estimate 

φ{χ,ν) = ΣίιψΜ (5.44) 

5.7 Conclusions 

The examples provided in this chapter are given to give the reader a feel as 
to the practical implementation of simulation-based algorithms as alternar 
tives to the usual numerical approximation techniques. A certain amount 
of practice quickly brings the user to a point where he or she can write sim-
ulation algorithms in days to problems that would require the numerical 
analyst months to approach. 

Other advantages of the simulation approach could be given. For exam-
ple, since walks to boundaries are so simple to execute, it is easy to concep-
tualize the utilization of parallel processors to speed up the computations 
with a minimum of handshaking between the CPUs. But the main advan-
tage of simulation is its ability to enable the user to bypass the traditional 
path in Figure 5.1 and go directly from the microaxioms to their macro 
consequences. Our algorithm for solving the Fokker—Planck problem and 
our algorithm for solving the Dirichlet problem are not simply analogues of 
the classical differential-equation formulations of these systems. They are, 
in fact, descriptions of the axioms that typically give rise to these problems. 
Here we note that the classical differential-equation formulation of many of 
the systems of physics and chemistry proceed from the axioms that form 
the simulation algorithm. It was simply the case, in a precomputer age, 
that the differential-integral equation formulations appeared to give the 
best hope of approximate evaluation via series expansions and the like. 

Model 
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Quad Data 
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Figure 5.7. The idealized simulation paradigm. 
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Moving further along, we now have the possibility of implementing the 
algorithm in Figure 5.7 as a basic model-building paradigm. In the path 
shown, computer simulation may obviate the necessity of modeling via, say, 
differential equations and then using the computer as a means of approx-
imating solutions, either by numerical techniques or by Monte Carlo to 
the axiomitized model. The computer then ceases to be a fast calculator, 
and shifts into actually simulating the process under consideration. Such a 
path represents a real paradigm shift and will begin the realization of the 
computer as a key part of the scientific method. 

Problems 

5.1. Consider the differential equation 

d2v 2.5 dv __ 
dx2 dx ' 

where v(0) = 1 and v(l) = 2. Use the flowchart in Figure 5.2 to obtain 
estimates of v(.2), v(.4), v(.6), and i?(.8), together with error bounds for 
these quantities. 

5.2. Program a quadrature-type differential equation solver for the follow-
ing differential equation, where x(0) = 0 and x(l) = 1: 

d?x , ч dx 

Compare its performance with a simulation-based approach using Figure 
5.2 for the following candidates for ß: 

(a) 0 = 4 
(b)/3 = * 
(c) ß = tìn(47rt/t + 1). 

5.3. Consider the differential equation on the unit x interval. 

dt " dx + dx2 ' 

where V(x,t) = 200xexp(—t). Again, use the flowchart in Figure 5.2 to 
obtain estimates of V(.2,t), V(.4,t), V(.6.t), and V(.8,t), for t = 0,1,2,3. 

5.4. Draw contours for T in the interior of the plate shown in Figure 5.8, 
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Figure 5.8. Dirichlet problem for a plate. 

using increments of 0.2 in both x and у based on the Gambler's Ruin 
flowchart in Figure 5.2, given that Laplace's equation (A) is satisfied in the 
interior with the boundary conditions shown. Here, we have a substantial 
demonstration of how inefficient it would be to run simulation from each 
interior point (x, y) independently of walks from other points which "step 
on" (x,2/). 

5.5· Consider the equation 

}dx2 ( 2 + » ) 3 3 + ^ + ( 2 - » ) 5 5 - ^ = 0 » Ä v 
дф 
дх 

which is satisfied inside the unit circle shown in Figure 5.9, with the bound-
ary condition indicated. Use the standard gambler's ruin flowchart in Fig-
ure 5.2 to obtain estimates of the ф contours inside the unit circle. 

^mt,y) - *>2y 

Figure 5.9. Elliptic equation on the circle. 
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Chapter 6 

SIMDAT, SIMEST, and 
Pseudoreality 

6.1 Introduction 
Many of us have had the experience of wishing we had 10 times the data 
at hand. Many of us have had the experience of trying to estimate the 
parameters of a model in a situation where we found it mathematically 
infeasible to write down a likelihood function to maximize. Many of us 
have needed to look at a higher-dimensional data set by trying to use our 
rather limited three (or four)-dimensional perceptions of reality. 

I recall some years ago being on the doctoral committee of an electrical 
engineering student who had some time-indexed data, where the sampling 
intervals were so wide that he was unable to detect features at the fre-
quencies where his interest lay. His solution (of which he was inordinately 
proud) was to create a spline curve-fitting algorithm which would magically 
transform his discrete data into continuous data. By one fell swoop he had 
rendered Nyquist irrelevant. Although second readers should generally keep 
their silence, I had to point out that he had assumed away high-frequency 
components by his approach. 

Having hosted at Rice in the late 1970s one of the early short courses 
on exploratory data analysis, I recall one of the two very distinguished in-
structors in the course making the statement that "EDA (exploratory data 
analysis) frees us from the straightjacket of models, allowing the data to 
speak to us imfettered by preconceived notions." During the balance of 
the course, whenever a new data set was displayed from one of the dual 
projectors, a rude psychometrician in the audience would ostentatiously 
cup his hand to his left ear as though to hear the data better. The psy-

0 Empirical Model Building: Dota, Modeling, and Reality, Second Edition. James R. 
Thompson ©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons. 
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chometrician knew full well that data are perceived via a model, implicit 
or explicit. The strength of EDA is that it has provided us with the most 
effective analog-digital computer interface currently available, with the hu-
man visual system providing the analog portion of the system. Certainly, 
Tukey's exploratory data analysis [27] is one of the most important data 
analytical tools of the the last 50 years. But it has tended to tie us to 
a three-dimensional perception, which is unlikely to be appropriate when 
dealing with data of high dimensionality. 

The same criticism may be made of those of us who have tried to push 
graphical displays of nonparametric density estimates into high-dimensional 
situations in the hope that spinning, coloring, and so on, might somehow 
force the data into a realm where our visual systems would suffice to extract 
the essence of the system generating the data. For many years now, I have 
been artistically impressed by those who would take data sets, color them, 
spin them, project them, and/or time lapse them. But, in retrospect, it is 
hard to think of many examples where these fun type activities contributed 
very much to an understanding of the basic mechanism which formed the 
data set in the first place. Unfortunately, it seems as though many computer 
intensive studies, in the case of EDA, nonparametric density estimation, 
nonparametric regression,and so on, in the hands of many users, have more 
or less degenerated into essentially formalist activities, that is, activities in 
which we are encouraged not so much to appreciate what data analytical 
insights the algorithms contribute, but rather to appreciate the algorithms 
sui generis, as intrinsically wonderful. 

In the matter of both density estimation and nonparametric regression, 
the bulk of the computer intensive work continues to emphasize the one-
dimensional situation, that in which simple-minded methods (e.g., his-
tograms, hand-fit curves, etc.) have been used for a long time with about as 
much success as the newer techniques. Is it not interesting to observe that 
the histogram is still much the most used of the one-dimensional nonparar 
metric density estimators, and that one-dimensional curve fits are, at their 
most effective, psychometric activities, where one tries to automate what a 
human observer might do freehand? In the case where several independent 
variables are contemplated in nonparametric regression, rather unrealistic 
assumptions about additivity tend to be implemented in order to make the 
formal mathematics come out tractably. 

In the case of one-dimensional nonparametric density estimation, a fair 
argument can be made that Rosenblatt obtained much of the practical 
knowledge we have today in his 1956 paper [18]. In the case of multi-
variate nonparametric density estimation, we have barely scratched the 
surface. Those who favor pushing three-dimensional graphical arguments 
into higher dimensions have made definite progress (see, e.g., Scott and 
Thompson [19] and Scott [20]). But others take the approach that the way 
to proceed is profoundly nonvisual. Boswell [4], Elliott and Thompson [10], 
as well as Thompson and Tapia [25] take the position that it is reasonable 
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hard to think of many examples where these fun type activities contributed 
very much to an understanding of the basic mechanism which formed the 
data set in the first place. Unfortunately, it seems as though many computer 
intensive studies, in the case of EDA, nonparametric density estimation, 
nonparametric regression,and so on, in the hands of many users, have more 
or less degenerated into essentially formalist activities, that is, activities in 
which we are encouraged not so much to appreciate what data analytical 
insights the algorithms contribute, but rather to appreciate the algorithms 
sui generis, as intrinsically wonderful. 

In the matter of both density estimation and nonparametric regression, 
the bulk of the computer intensive work continues to emphasize the one­
dimensional situation, that in which simple-minded methods (e.g., his­
tograms, hand-fit curves, etc.) have been used for a long time with about as 
much success as the newer techniques. Is it not interesting to observe that 
the histogram is still much the most used of the one-dimensional nonpara.­
metric density estimators, and that one-dimensional curve fits are, at their 
most effective, psychometric activities, where one tries to automate what a 
human observer might do freehand? In the case where several independent 
variables are contemplated in nonparametric regression, rather unrealistic 
assumptions about additivity tend to be implemented in order to make the 
formal mathematics come out tractably. 

In the case of one-dimensional nonparametric density estimation, a fair 
argument can be made that RDsenblatt obtained much of the practical 
knowledge we have today in his 1956 paper [18] . In the case of multi­
variate nonparametric density estimation, we have barely scratched the 
surface. Those who favor pushing three-dimensional graphical arguments 
into higher dimensions have made definite progress (see, e.g., Scott and 
Thompson [19] and Scott [20]) . But others take the approach that the way 
to proceed is profoundly nonvisual. Boswell [4], Elliott and Thompson [10] , 
as well as Thompson and Tapia [25] take the position that it is reasonable 
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to start by seeking for centers of high density using algebraic, nongraphical, 
algorithms. The case where the density is heavily concentrated on curved 
manifolds in high-dimensional space is a natural marriage of nonparametric 
regression and nonparametric density estimation and has not yet received 
the attention one might have hoped. 

The case for nonparametric regression has been eloquently and exten-
sively advocated by Hastie and Tibshirani [15]. Other important contribu-
tions include those of Cleveland [6], Cox [7], Eubank [11], Härdle [13], and 
Hart and Wehrly [14]. However, I fear that the nonparametric regressor 
is swimming against a sea of intrinsic troubles. First of all, extrapola-
tion continues to be both the major thing we need for application, and 
something very difficult to achieve, absent an investigation of the underly-
ing model which generates the data. For interpolation purposes, it would 
appear that we really do not have anything more promising than locally 
averaged smoothers. The important case here is, of course, the one with 
a reasonable number of independent variables. Unfortunately, much of the 
work continues to be for the one-independent-variable case, where the job 
could be done "with a rusty nail." 

In the cases mentioned, EDA, nonparametric regression, nonparametric 
density estimation, algorithms have been and are being developed which 
seek to affect data analysis positively by use of the high-speed digital com-
puter. I have to opine that it seems most of this "machine in search of a 
problem" approach has not yet been particularly successful. 

6.2 The Bootstrap: A Dirac Comb Density 
Estimator 

There are statistical areas in which the use of the computer has borne 
considerable fruit. In Chapter 4, we gave a nontheoretical example laden 
treatment of the bootstrap of Efron [8], clearly one of the most influential 
algorithms of the last 30 years or so. To motivate the bootstrap, we follow 
the discussions in Taylor and Thompson [21], [22], and Thompson and Tapia 
[25]. Let us first consider the Dirac comb density estimator associated with 
a one-dimensional data set {χ%}2=ι- The Dirac comb density estimator is 
given by 

We may represent δ(χ) as 
n . 

i = l 

δ(χ) = limι-7=-β-* I* . (6.2) 

Waving our hands briskly, δ(χ) can be viewed as a density function that 
is zero everywhere except at the data points. At each of these points, 
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£ ( )  l' 
1 -x� /2T� U X = 1m --e . T-+O y'2irr 

(6. 1) 

(6.2) 

Waving our hands briskly, 8(x) can be viewed as a density function that 
is zero everywhere except at the data points. At each of these points, 
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the density has mass 1/n. Nonparametric density estimation is frequently 
regarded as a subset of smoothing techniques in statistics. fs(x) would seem 
to be infinitely rough and decidedly nonsmooth. Moreover, philosophically, 
it is strongly nominalist, for it says that all that can happen in any other 
experiment is a repeat of the data points already observed, each occurring 
with probability 1/n. In other words, the data are considered to be all of 
reality. 

For many purposes, however, fs(x) is useful. For example, the mean of 
fs(x) is simply 

/

°° 1 .rc 

xfs(x) = - V X Ì = X . (6.3) 
■oo 71£ΐ 

The sample variance can be represented by 

/

oo 1 n 

(x - x)2fs(x)dx = - V ( x < - x)2 = s2 

(6.4) 

So, if we are interested in discrete characterizations of the data (such as a 
few lower order moments), a Dirac comb may work quite satisfactorily. The 
Dirac comb density estimator may be easily extended to higher dimensions. 
Indeed, such an extension is easier than is the case for other estimators, 
for it is based on masses at points; and a point in, say, 20-space, is still a 
point (hence, of zero dimension). Thus, if we have a sample of size n from 
a density of dimension p, fs(x) becomes 

MX) = ~Σ,δ(Χ -Xi), (6.5) 
n r~i 

t = l 

where 

" " ■ Й Ш ' " ! ^ 1 (6·6) 

with Xj being the j component of X. 
For the two-dimensional case, we might wish to develop a 95% confidence 

interval for the correlation coefficient, 

P=9°&2U. (6.7) 

Now, if we had a sample of size n: {x<, J/»}"=i, we could construct 

n t = i 
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with X j being the j component of X. 

(6.5) 
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For the two-dimensional case, we might wish to develop a 95% confidence 
interval for the correlation coefficient, 

Cov(X, Y) 
p =  . 

CT:lJCTy 

Now, if we had a sample of size n: {Xi, Yi}f=l ' we could construct 

1 n 
f�(x, Y) = - L 8« x, Y) - (Xi , Yi» . n i=l 

(6.7) 

(6.8) 
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Next, we construct 10,000 resamplings (with replacement) of size n. That 
means, for each of the 10,000 resamplings we draw samples from the n data 
points (with replacement) of size n. For each of the resamplings we compute 
the sample correlation: 

Next, we can rank the sample correlations from smallest to largest. A 95% 
confidence interval estimate is given by 

Г(250) <Р<Г(9750) · (6.10) 

One can view the bootstrap as being based on such a Dirac-comb estima-
tor. Although it is clear that such a procedure may have use for estimating 
the lower moments of some interesting parameters, we should never lose 
sight of the fact that it is, after all, based on the profoundly discontinuous 
Dirac-comb estimator f$. The smoothed bootstrap [9] operates very much 
like the bootstrap itself, except that to each resampled point one adds, say, 
a normal variate with small variance. Essentially one samples from a fuzzy 
Dirac-comb nonparametric density estimator. 

Now, for better or for worse, the reality is that much of statistics is 
concerned with such tasks as estimating a few moments. When we know the 
underlying density function (and history shows that people get away with 
assuming that the world is Gaussian more often than might be supposed), 
then knowledge of a few moments actually gives a continuous description of 
the underlying system [the first and second moments of a Gaussian (normal) 
distribution completely characterize the density function everywhere]. 

However, if the world truly were Gaussian, then we could drop the entire 
subject of nonparametrics (and most computer-intensive statistical analy-
ses). Let us consider an example where the data really are Gaussian, but 
the use of the Dirac-comb nonparametric density estimator serves us poorly. 
For example, suppose we have a sample of size 100 of firings at a bull's-eye 
of radius 5 centimeters. If the distribution of the shots is circular normal 
with mean the center of the bull's-eye and deviation 1 meter, then with a 
probability in excess of .88, none of the shots will hit inside the bull's-eye. 
Then any Dirac-comb resampling procedure will tell us the bull's-eye is a 
safe place if we get a base sample (as we probably will) with no shots in 
the bullseye. Such a problem with the bootstrap motivated SIMDAT, the 
nonparametric density estimator based resampling algorithm of Taylor and 
Thompson [21, 22, 25]. 
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6.3 SIMDAT: A Smooth Resampling 
Algorithm 

We note that any realization of a bootstrap simulation most likely will 
be different from the original sample. Some sample points will disappear. 
Others will be repeated multiple times. Indeed, the concatenation of a 
bootstrap followed by a bootstrap based on that bootstrapped simulation, 
and so on, will lead ultimately to a simulated sample which consists of a 
single sample point. This is hardly desirable. It might be hoped that a 
single resampling would be of such a character that we would be almost 
indifferent as to whether we had this simulation or the original data set. 
But, of course, it would be dangerous to wander too far from the original 
sample. A resampling of a resampling of a resampling, and so on, is not 
nearly as desirable as resamples that always point directly to the original 
sample. 

The bootstrap is clearly a powerful algorithm for many purposes. How-
ever, given the ubiquity of fast computing, it would usually be preferred to 
use resampling schemes based on better nonparametric density estimators 
than the Dirac comb. One such would be the 1976 algorithm of Guerra, 
Tapia and Thompson [12], where one obtains a smooth of the empirical cdf 
and samples from that. This algorithm has been employed for some time 
as the RNGCT subroutine of Visual Numerics (formerly IMSL). The disad-
vantage of the algorithm is that it was only written for the one-dimensional 
case, and that the estimator of the cdf must be explicitly obtained. 

One candidate for a nonparametric density estimator to be used for sim-
ulation purposes would be 

/*(*) = £ ] £ * ( * - * < ■ 2«), (6.11) 

where ΑΓ(Χ, Σ») is a normal distribution centered at zero with locally esti-
mated covariance matrix Σ». 

Such an estimator, despite its advantages, would seem to be very difficult 
to construct. However, let us recall what it is we seek: not a nonparamet-
ric density estimator, but a random sample from such an estimator. So, 
perhaps, we can go directly from the actual sample to the pseudosample. 
Of course, this is precisely what the bootstrap estimator does, with the fre-
quently unfortunate properties associated with a Dirac comb. Fortunately, 
it is possible to go from the sample directly to the pseudosample in such a 
way that the resulting estimator behaves very much like that of the normal 
kernel approach above. This is what the SIMDAT algorithm does. 
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6.3.1 The SIMDAT Algorithm 
Assume given a data set of size n from a p-dimensional variable X, {Xi}?=i · 
Assume that we have already rescaJed our data set so that the marginal 
sample variances in each vector component are the same. For a given integer 
ra, we can find, for each of the n data points, the ra — 1 nearest neighbors. 
These will be stored in an array of size nx (ra — 1). 

Suppose we wish to generate a pseudosample of size N. Note that there 
is no reason to suppose that n and N need be the same (as is the case 
generally with the bootstrap). To start the algorithm, we sample one of 
the n data points with probability 1/n (just as with the bootstrap). Then, 
we recall its m — 1 nearest neighbors from memory, and compute the mean 
of the resulting set of ra points: 

_ 1 m 

Χ = ~ΣΧ- (6·12) 
Next, we subtract from each of the data points the local mean X, thus 

achieving zero averages of the transformed cloud: 

{χ'ύ\ = {χί-Χ}?=ν (6.13) 

Although we go through the computations of sample means and centering 
about them here as though they were a part of the simulation process, the 
operation will be done once only, just as with the determination of the m—1 
nearest neighbors of each data point. The {Xj} values as well as the X 
values will be stored in an array of dimension nx (m + 1). 

Next, we generate a random sample of size ra from the one-dimensional 
uniform distribution: 

I ra V m2 ra V m2 I 

We now generate our centered pseudodata point X\ via 
m 

Χ' = ΣΐΗΧί. (6.15) 

Finally, we add back on X to obtain our pseudodata point X: 

1 = 1 4 1 (6.16) 

These, then, are the nuts and bolts of SIMDAT. The major setup cost is 
the determination of interpoint distances. The tabulation is for each of the 
n data points, a list indicating the m — 1 nearest points. Once the resulting 
matrix has been obtained, subsequent generation of any desired amount of 
pseudodata is very rapid. 
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6.3.2 An Empirical Justification of SIMDAT 
As ra and n get large, the procedure gives results very much like those of 
the normal kernel approach mentioned earlier. To see why this is so, we 
consider the sampled vector Xi and its m — 1 nearest neighbors: 

(6.17) 

J=l,...,m 

Let us treat this collection of m points as being from a distribution with 
mean vector μ and covariance matrix Σ. Now, if {щ}^г is an independent 
sample from the uniform distribution in ( 6.14), then 

Е(щ) = —; Var(ty) = j - ; COV(WÌ, u,·) = 0, for г ф j . (6.18) 

Then we form the linear combination 

m 

Z = JT>X|. (6.19) 

We note that for the rth component of the vector Z, zr = u\xri + U2Xr2 + 

E(zr) = μΓ, (6.20) 

ν*τ(Ζτ) = σΐ + ^ μ Ι (6.21) 
га 

and 
VYì 1 

Cov(zr, z8) = ara + μΓμβ. (6.22) 
m 

We observe that if the mean vector of X were (0,0,. . . , 0), then the mean 
vector and covariance matrix of Z would be the same as that of X, that is, 
E(zr) = 0, Var(zr) = σ ,̂ and Cov(zr,z8) = σΓθ. Naturally, by translation 
to the local sample mean of the nearest-neighbor cloud, we will not quite 
have achieved this result. But we will come very close to the generation of 
an observation from the truncated distribution that generated the points 
in the nearest-neighbor cloud. 

For ra moderately large, by the central limit theorem, SIMDAT comes 
close to sampling from n normal distributions with the mean and covari-
ance matrices corresponding to those of the n, ra nearest-neighbor clouds. 

№>£i = 

X\l 

X21 
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If we were seeking rules for consistency of the nonparametric density esti-
mator corresponding to SIMDAT, we could use the formula of Mack and 
Rosenblatt [16] for nearest-neighbor nonparametric density estimators: 

m = Cn4/(p+4>. (6.23) 

Actually, as a practical matter, such formulas have little practical relevance, 
since С is usually not available. Furthermore, we ought to remember that 
our goal is not to obtain a nonparametric density estimator, but rather, 
to generate a data set which appears like that of the data set before us. 
Let us suppose that we err on the side of making m far too small, namely, 
m = 1. That would yield simply the bootstrap. Suppose that we err on 
the side of making m far too large, namely, m = n. That would yield an 
estimator which roughly sampled from a multivariate normal distribution 
with the mean vector and covariance matrix computed from the data. In 
Figure 6.1, we show a sample of size 85 from a mixture of three normal 
distributions with the weights indicated, and a pseudodata set of size 85 
generated by SIMDAT with m = 5. We note that the emulation of the 
data is reasonably good. In Figure 6.2 we go through the same exercise, 
but with m — 15. There, effects of a modest oversmoothing are noted. 
In general, if the data set is very large, say of size 1000 or greater, good 
results are obtained with m « ,02n. For smaller values of n, m values 
in the .05n range appear to work well. A version of SIMDAT in the S 
language, written by E.N. Atkinson, is available under the name "gendat" 
from http://lib.stat.cmu.edu/S/gendat. 
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If we were seeking rules for consistency of the non parametric density esti­
mator corresponding to SIMDAT, we could use the formula of Mack and 
Rosenblatt [16] for nearest-neighbor nonparametric density estimators: 

m = Cn4/(pH) . (6.23) 

Actually, as a practical matter, such formulas have little practical relevance, 
since C is usually not available. Furthermore, we ought to remember that 
our goal is not to obtain a nonparametric density estimator, but rather, 
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Let us suppose that we err on the side of making m far too small, namely, 
m = 1 .  That would yield simply the bootstrap. Suppose that we err on 
the side of making m far too large, namely, m = n. That would yield an 
estimator which roughly sampled from a multivariate normal distribution 
with the mean vector and covariance matrix computed from the data. In 
Figure 6.1, we show a sample of size 85 from a mixture of three normal 
distributions with the weights indicated, and a pseudo data set of size 85 
generated by SIMDAT with m = 5. We note that the emulation of the 
data is reasonably good. In Figure 6.2 we go through the same exercise, 
but with m = 15. There, effects of a modest oversmoothing are noted. 
In general, if the data set is very large, say of size 1000 or greater, good 
results are obtained with m � .02n. For smaller values of n, m values 
in the .05n range appear to work well. A version of SIMDAT in the S 
language, written by E.N. Atkinson, is available under the name "gendat" 
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For really large data sets, the user may wish to use Fortran or С instead 
of S. The savings for using the more primitive languages, as opposed to S 
or R, may be 100-fold 

So far, we have considered basically model-free techniques for examining 
data. There are, of course, many situations where exploration of a new data 
set may preclude an early conjecture as to a likely model of the mechanism 
generating the data. In my opinion, such procedures should usually be first 
steps in modeling a process. But, imfortunately, they frequently are as far 
as one goes. In essence, the nonparametric techniques use the power of the 
computer to bypass altogether the need for the modeling step. Such an 
approach is likely to be useful mainly as an interpolative device. When the 
dimensionality of a data set becomes high, say five or more, this adhocery 
is likely to prove dangerous, since we may be confronted with a number 
of widely separated modes, with deserts in between. Dealing with such 
data sets, nonparametrically, away from the modes, is an extrapolation 
problem, and using the standard smoothed interpolation routines can bring 
one quickly to disaster. 
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as one goes. In essence, the non parametric techniques use the power of the 
computer to bypass altogether the need for the modeling step. Such an 
approach is likely to be useful mainly as an interpolative device. When the 
dimensionality of a data set becomes high, say five or more, this adhocery 
is likely to prove dangerous, since we may be confronted with a number 
of widely separated modes, with deserts in between. Dealing with such 
data sets, nonparametrically, away from the modes, is an extrapolation 
problem, and using the standard smoothed interpolation routines can bring 
one quickly to disaster. 
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6.4 SIMEST: An Oncological Example 
The power of the computer as an aid to modeling does not get the atten-
tion it deserves. Part of the reason is that the human modeling approach 
tends to be analog rather than digital. Analog computers were replaced by 
digital computers 40 years ago. Most statisticians remain fascinated by the 
graphical capabilities of the digital computer. The exploratory data anal-
ysis route tends to attempt to replace modeling by visual displays which 
are then interpreted, in a more-or-less instinctive fashion, by an observer. 
Statisticians who proceed in this way are functioning somewhat like pro-
totypical cyborgs. After over four decades of seeing data spun, colored, 
and graphed in a myriad of ways, I have to admit to being disappointed 
when comparing the promise of EDA with its reality. Its influence amongst 
academic statisticians has been enormous. Visualization is clearly one of 
the major areas in the statistical literature. But the inferences drawn from 
these visualizations in the real world are, relatively speaking, not so numer-
ous. Moreover, when visualization-based inferences are drawn, they tend 
to give results one might have obtained by classical techniques. 

Of course, as in the case of using the computer as a nonparametric 
smoother, some uses are better than others. In the 1980s a group of 
Bayesian statisticians convinced one of our leading research universities 
that the reason statistical analysis had produced marginal results in such 
areas as oncology had been the traditional dominance of frequentists in 
biometry. The advent of high-speed computing brought forth the possi-
bility that the insights of physicians could be appropriately blended into 
priors leading to breakthrough posteriors. Here, we were told that the com-
puter would enable us to carry out another one, two, or three dimensions of 
quadrature, thus enabling prior information to be infused into the process. 
But, since the desired prior information really was not available (and may 
never be in the form required), the computer just enabled people to spin 
their wheels faster. 

It is extremely unfortunate that some are so multicultural in their outlook 
that they rearrange their research agenda in order to accommodate them-
selves to our analog-challenged friends, the digital computers. Perhaps the 
greatest disappointment is to see the modeling aspect of our analog friends, 
the human beings, being disregarded in favor of using them as gestaltic im-
age processors. This really will not do. We need to rearrange the agenda so 
that the human beings can gain the maximal assistance from the computers 
in making inferences from data. That is the purpose of SIMEST. 

There is an old adage to the effect that quantitative change carried far 
enough may produce qualitative change. The fact is that we now have com-
puters so fast and cheap that we can proceed (almost) as though computa-
tion were free and instantaneous (with infinite accessible memory thrown 
in as well). This should change, fundamentally, the way we approach data 
analysis in the light of models, 
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There are now numerous examples in several fields where SIMEST has 
been used to obtain estimates of the parameters characterizing a market-
related applied stochastic process (see, e.g., Bridges, Ensor, and Thompson 
[5]). Below we consider an oncological application to motivate and to expli-
cate SIMEST. We shall first show a traditional model-based data analysis, 
note the serious (generally insurmountable) difficulties involved, and then 
give a simulation-based, highly computer-intensive way to get what we re-
quire to understand the process and act on that understanding. 

6.4.1 An Exploratory Prelude 

In the late 1970s, my colleague Barry W. Brown, of the University of Texas 
M.D. Anderson Cancer Center, and I had started to investigate some con-
jectures concerning reasons for the relatively poor performance of oncology 
in the American "War on Cancer." Huge amounts of resources had been 
spent with less encouraging results than one might have hoped. It was my 
view that part of the reason might be that the basic orthodoxy for cancer 
progression was, somehow, flawed. 

This basic orthodoxy can be summarized briefly as follows: 

At some time, for some reason, a single cell goes wild. It, 
and its progeny, multiply at rates greater than that required for 
replacement. The tumor thus formed grows more or less expo-
nentially. Prom time to time, a cell may break off (metastasize) 
from the tumor and start up a new tumor at some distance from 
the primary (original) tumor. The objective of treatment is to 
find and excise the primary before it has had a chance to form 
metastases. If this is done, then the surgeon (or radiologist) will 
have "gotten it all" and the patient is cured. If metastases are 
formed before the primary is removed, then a cure is unlikely, 
but the life of the patient may be extended and ameliorated 
by aggressive administration of chemotherapeutic agents which 
will kill tumor cells more vigorously than normal cells. Unfortu-
nately, since the agents do attack normal cells as well, a cure of 
metastasized cancer is unlikely, since the patient's body cannot 
sustain the dosage required to kill all the cancer cells. 

For some cancers, breast cancer, for example, long-term cure rates had not 
improved very much for many years. 

6.4.2 Models and Algorithms 

One conjecture, consistent with a roughly constant intensity of display of 
secondary tumors, is that a patient with a tumor of a particular type is 
not displaying breakaway colonies only, but also new primary tumors re-
sulting from suppression of a patient's immune system to attack tumors of 
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a particular type. We can formulate axioms at the micro level which will 
incorporate the mechanism of new primaries. Such an axiomitization has 
been formulated by Bartoszynski, Brown, and Thompson [3]. The first five 
axioms are consistent with the classical view as to metastatie progression. 
Hypothesis 6 is the mechanism we introduce to explain the nonincreasing 
intensity function of secondary tumor display. 

Hypothesis 1. For any patient, each tumor originates from a single cell 
and grows at exponential rate a. 

Hypothesis 2. The probability that the primary tumor will be detected 
and removed in [t,t + At) is given by bYo(t)At + ο(Δί), and until the 
removal of the primary, the probability of a metastasis in [t, t + At) is 
aYo(t)At + o(At), where Yo(t) is the size of the primary tumor at time t. 

Hypothesis 3. For patients with no discovery of secondary tumors in 
the time of observation, 5, put m\{t) = Y\{t) +12 (£) + ·· ·» where Y%{t) 
is the size of the ith originating tumor. After removal of the primary, the 
probability of a metastasis in [£, t + At) equals am\{t) + o(At), and the 
probability of detection of a new tumor in [£, t + At), is bm\(t) + o(At), 

Hypothesis 4. For patients who do display a secondary tumor, after 
removal of the primary and before removal of Y\, the probability of detection 
of a tumor in [t,t + At) equals bYi(t) + ο(Δί), while the probability of 
detection of a metastasis is aY\{t) + o(At). 

Hypothesis 5. For patients who do display a secondary tumor, the 
probability of a metastasis in [t,t 4- At) is arri2{t)At + ο(Δί), while the 
probability of detection of a tumor is brri2(t)At + ο(Δί), where rri2(t) = 
Y2(t) + .... 

Hypothesis 6. The probability of a systemic occurrence of a tumor 
in [t,t + At) equals XAt + ο(Δί), independent of the prior history of the 
patient. 

Essentially, we shall attempt to develop the likelihood function for this 
model so that we can find the values of a, ò, a, and λ which maximize the 
likelihood of the data set observed. It turns out that this is a formidable 
task indeed. The SIMEST algorithm which we develop later gives a quick 
alternative to finding the likelihood function. However, to give the reader 
some feel as to the complexity associated with model aggregation from 
seemingly innocent axioms, we shall give some of the details of getting the 
likelihood function. First of all, it turns out that in order to have any hope 
of obtaining a reasonable approximation to the likelihood function, we will 
have to make some further simplifying assumptions. We shall refer to the 
period prior to detection of the primary as Phase 0. Phase 1 is the period 
from detection of the primary to S', the first time of detection of a secondary 
tumor. For those patients without a secondary tumor, Phase 1 is the time 
of observation, 5. Phase 2 is the time, if any, between S' and S. Now for 
the two simplifying axioms. To is defined to be the (unobservable) time 
between the origination of the primary and the time when it is detected 
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and removed (at time t — 0). T\ and T2 are the times until detection 
and removal of the first and second of the subsequent tumors (times to be 
counted from t = 0). We shall let X be the total mass of all tumors other 
than the primary at t = 0. 

Hypothesis 7. For patients who do not display a secondary tumor, 
growth of the primary tumor, and of all tumors in Phase 1, is determinis-
tically exponential with the growth of all other tumors treated as a pure 
birth process. 

Hypothesis 8. For patients who display a secondary tumor, the growth 
of the following tumors is treated as deterministic: in Phase 0, tumors Yo(t) 
and Y\(t)\ in Phase 1, tumor Y\(t) and all tumors which originated in Phase 
0; in Phase 2, all tumors. The growth of remaining tumors in Phases 0 and 
1 is treated as a pure birth process. 

We now define 
raz H(s;t,z) = exp{—eat(e8 - 1)log[l + (e~at - l)e'a] 

а 

+ - s - - l o g [ l + e ° V - l ) ] } a a 
and 

_b£( e«*_l) 
а 

p(t; z) = bzeat exp 

Further, we shall define 

w{y) = \\fVe-y^du-y 

where v(u) is determined from 

u= (a+ 6 + a s ~ae" e ) - 1 ds . 
Jo 

Then, we can establish the following propositions, and from these, the 
likelihood function: 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

p(To > r) = exp Ч; eatdt = exp 4e~-l) 
a 

For patients who do not display a secondary tumor, we have 

P{TX > S\X = x) = exp [-xv(S) + w(S)}. 

(6.28) 

(6.29) 

For patients who develop metastases, we have 

P(Ti > S) = P(ao secondary tumor in (0, S)) 

ew^p(t;l)H(v(8);t,l)dt. - Г 
Jo 

(6.30) 

160 SIMDAT, SIMEST AND PSEUDO REALITY 

and removed (at time t = 0). Tl and T2 are the times until detection 
and removal of the first and second of the subsequent tumors (times to be 
counted from t = 0) . We shall let X be the total mass of all tumors other 
than the primary at t = O. 

Hypothesis 7. For patients who do not display a secondary tumor, 
growth of the primary tumor, and of all tumors in Phase 1 ,  is determinis­
tically exponential with the growth of all other tumors treated as a pure 
birth process. 

Hypothesis 8. For patients who display a secondary tumor, the growth 
of the following tumors is treated as deterministic: in Phase 0, tumors Yo(t) 
and Y1(t) j in Phase 1, tumor Y1(t) and all tumors which originated in Phase 
OJ in Phase 2, all tumors. The growth of remaining tumors in Phases 0 and 
1 is treated as a pure birth process. 

We now define 

and 

H(sj t, z) = exp{
az eQt(eB - 1) log[1 + (e-at - l)e-B) a 

+�s - � log[1 + eat (eB - I))} (6.24) a a 

(6.25) 

Further, we shall define 

w(y) = A [lY e-v(u)du - Y] , (6.26) 

where v( u) is determined from 

u = LV (a + b + as - ae-B)-lds. (6.27) 

Then, we can establish the following propositions, and from these, the 
likelihood function: 

p(To > r) = exp [-b LT eQtdt] = exp [_� (eQT - 1)] . (6.28) 

For patients who do not display a secondary tumor, we have 

P(T1 > SIX = x) = exp [-xv(S) + w(S») . (6.29) 

For patients who develop metastases, we have 

P(TI > S) = P(no secondary tumor in (O, S» 
= 100 eW(B)p(tj I)H(v(s)j t, l)dt. (6.30) 



SIMEST: AN ONCOLOGICAL EXAMPLE 161 

Similarly, for patients who do display a secondary tumor, we have 

/»OO rt 
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Уо Jo 

x exp [-λ(ί - и) - |(ea<*-u) - 1)] H(u(S - S');S', eau) 
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Г°° rS' г n л 

+ 1 1 е ^ - 5 , > ^ ; 1 ) е х р [ ^ - ~ ( е ^ - 1 ) ] А е - ^ 
xp(S' - щ l)H(v{S - 5'); S' - щ l)dud<6.31) 

Finding the likelihood function, even a quadrature approximation to it, 
is more than difficult. EYirthermore, current symbol manipulation programs 
(e.g., Mathematica, Maple) do not have the capability of doing the work. 
Accordingly, it must be done by hand. Approximately 1.5 person years were 
required to obtain a quadrature approximation to the likelihood. Before 
starting this activity, we had no idea of the rather practical difficulties 
involved. However, the activity was not without reward. 

We found estimates for the parameter values using a data set consisting 
of 116 women who presented with primary breast cancer at the Curie-
Sklodowska Cancer Institute in Warsaw (time units in months, volume 
units in cells): a = .17 x 1(T9, b = .23 x 10~8, a = .31, and λ = .0030. 
Using these parameter values, we found excellent agreement between the 
proportion free of metastasis versus time obtained from the data and that 
obtained from the model, using the parameter values given above. When 
we tried to fit the model to the data with the constraint that λ = 0 (that 
is, disregarding the systemic process as is generally done in oncology), the 
attempt failed. 

One thing one always expects from a model-based approach is that, once 
the relevant parameters have been estimated, many things one had not 
planned to look for can be found. For example, tumor doubling time is 2.2 
months. The median time from primary origination to detection is 59.2 
months and at this time the tumor consists of 9.3 x 107 cells. The prob-
ability of metastasis prior to detection of the primary is .069, and so on. 
A model-based approach generally yields such serendipitous results, as a 
nonparametric approach generally does not. It is worth mentioning that, 
more frequently than one realizes, we need an analysis which is flexible, in 
the event that at some future time we need to answer questions different 
from those originally posed. The quadrature approximation of the likeli-
hood is relatively inflexible compared to the simulation-based approach we 
shall develop shortly. 
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Similarly, for patients who do display a secondary tumor, we have 

P(Tl = 8', T2 > 8) = 100 1t ewCS-Sf)p(t; l )p(8'; eO<U)(A + aeo<Ct-u» ) 

x exp [-A(t - u) - �(eO« t-U) - 1)] H(v(8 - 8') ; 8', eO<U ) 
xH(v(8 - 8')eO<s' ;  u, eo<Ct-u»)dudt 

00 S' 
+ 1 1  eWCS-S' )p{t; l) exp [-At - ;(eO<t - 1)] Ae-AU 
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xp{8' - u; I)H(v(8 - 8') ; 8' - u, l)dud(6.31) 

Finding the likelihood function, even a quadrature approximation to it, 
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Figure 6.3. Metastatic and systemic effects. 

Insofar as the relative importance of the systemic and metastatic mecha-
nisms, in causing secondary tumors associated with breast cancer, it would 
appear from Figure 6.3 that the systemic is the more important. This result 
is surprising, but is consistent with what we have seen in our exploratory 
analysis of another tumor system (melanoma). Interestingly, it is by no 
means true that for all tumor systems the systemic term has such domi-
nance. For primary lung cancer, for example, the metastatic term appears 
to be far more important. 

It is not clear how to postulate, in any definitive fashion, a procedure for 
testing the null hypothesis of the existence of a systemic mechanism in the 
progression of cancer. We have already noted that when we suppress the 
systemic hypothesis, we cannot obtain even a poor maximum likelihood fit 
to the data. However, someone might argue that a different set of nonsys-
temic axioms should have been proposed. Obviously, we cannot state that 
it is simply impossible to manage a good fit without the systemic hypothe-
sis. However, it is true that the nonsystemic axioms we have proposed are 
a fair statement of traditional suppositions as to the growth and spread of 
cancer. 

As a practical matter, we had to use data that were oriented toward the 
life of the patient rather than toward the life of a tumor system. This is due 
to the fact that human in vivo cancer data is seldom collected with an idea 
toward modeling tumor systems. For a number of reasons, including the 
difficulty mentioned in obtaining the likelihood function, deep stochastic 
modeling has not traditionally been employed by many investigators in on-
cology. Modeling frequently precedes the collection of the kinds of data of 
greatest use in the estimation of the parameters of the model. Anyone who 
has gone through a modeling exercise such as that covered in this section 
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sis. However, it is true that the nonsystemic axioms we have proposed are 
a fair statement of traditional suppositions as to the growth and spread of 
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As a practical matter, we had to use data that were oriented toward the 
life of the patient rather than toward the life of a tumor system. This is due 
to the fact that human in vivo cancer data is seldom collected with an idea 
toward modeling tumor systems. For a number of reasons, including the 
difficulty mentioned in obtaining the likelihood function, deep stochastic 
modeling has not traditionally been employed by many investigators in on­
cology. Modeling frequently precedes the collection of the kinds of data of 
greatest use in the estimation of the parameters of the model. Anyone who 
has gone through a modeling exercise such as that covered in this section 
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is very likely to treat such an exercise as a once in a lifetime experience. 
It simply is too frustrating to have to go through all the flailing around to 
come up with a quadrature approximation to the likelihood function. As 
soon as a supposed likelihood function has been found, and a correspond-
ing parameter estimation algorithm constructed, the investigator begins a 
lengthy "debugging" experience. The algorithm's failure to work might be 
due to any number of reasons (e.g., a poor approximation to the likelihood 
function, a poor quadrature routine, a mistake in the code of the algorithm, 
inappropriateness of the model,etc). Typically, the debugging process is 
time consuming and difficult. If one is to have any hope for coming up with 
a successful model-based investigation, an alternative to the likelihood pro-
cedure for aggregation must be found. 

Time 

Figure 6.4. Two possible paths from primary to secondary. 

To decide how best to construct an algorithm for parameter estimation 
which does not have the difficulties associated with the classical closed-
form approach, we should try to see just what causes the difficulty with the 
classical method of aggregating from the microaxioms to the macro level, 
where the data lives. A glance at Figure 6.4 reveals the problem with the 
closed-form approach. 

The axioms of tumor growth and spread are easy enough to implement 
in the forward direction. Indeed, they follow the natural forward formula-
tion used since Poisson's work of 1837 [17]. Essentially, we are overlaying 
stochastic processes, one on top of the other, and interdependently to boot. 
But when we go through the task of finding the likelihood, we are essen-
tially seeking all possible paths by which the observables could have been 
generated. The secondary tumor, originating at time £3, could have been 
thrown off from the primary at time £3, or it could have been thrown off 
from a tumor that itself was thrown off from another tumor at time £2 
which itself was thrown off from a tumor at time t\ from the primary that 
originated at time to- The number of possibilities is, of course, infinite. 

In other words, the problem with the classical likelihood approach in the 
present context is that it is a backward look from a database generated 
in the forward direction. To scientists before the present generation of 
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fast, cheap computers, the backward approach was, essentially, unavoidable 
unless one avoided such problems (a popular way out of the dilemma). 
However, we need not be so restricted. 

Once we realize the difficulty when one uses a backward approach with 
a concatenation of forwardly axiomitized mechanisms, the way out of our 
difficulty is clear [1, 23]. We need to analyze the data using a forward 
formulation. The most obvious way to carry this out is to pick a guess for 
the underlying vector of parameters, put this guess in the micro-axiomitized 
model and simulate many times of appearance of secondary tumors. Then, 
we can compare the set of simulated quasidata with that of the actual data. 

The greater the concordance, the better we will believe we have done in 
our guess for the underlying parameters. If we can quantitize this measure 
of concordance, then we will have a means for guiding us in our next guess. 
One such way to carry this out would be to order the secondary occurrences 
in the data set from smallest to largest and divide them into к bins, each 
with the same proportion of the data. Then, we could note the propor-
tions of quasidata points in each of the bins. If the proportions observed 
for the quasidata, corresponding to parameter value Θ, were denoted by 
{^(0)}*=1, then a Pearson goodness-of-fit statistic would be given by 

The minimization of χ2(θ) provides us with a means of estimating Θ. 
Typically, the sample size, n, of the data will be much less than ΛΓ, the 

size of the simulated quasidata. With mild regularity conditions, assuming 
there is only one local maximum of the likelihood function, θο, as n —► oo 
(which function we of course do not know), then as N —> oo, as n becomes 
large and к increases in such a way that limn_»oo к = oo and lima-«» к/п = 
0, the minimum χ2 estimator for θο will have an expected mean square 
error which approaches the expected mean square error of the maximum 
likelihood estimator. This is, obviously, quite a bonus. Essentially, we will 
be able to forfeit the possibility of knowing the likelihood function and 
still obtain an estimator with asymptotic efficiency equal to that of the 
maximum likelihood estimator. The price to be paid is the acquisition of a 
computer swift enough and cheap enough to carry out a very great number, 
iV, of simulations, say 10,000. This ability to use the computer to get us 
out of the "backward trap" is a potent but, as yet seldom used, bonus of 
the computer age. Currently, the author is using SIMEST on a 2 gigaherz 
personal computer, amply adequate for the task, which now costs around 
$1000. 

First, we observe how the forward approach enables us to eliminate those 
hypotheses which were, essentially a practical necessity if a likelihood func-
tion was to be obtained. Our new axioms are simply: 
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Hypothesis 1. For any patient, each tumor originates from a single cell 
and grows at exponential rate a. 

Hypothesis 2. The probabiUty that the primary tumor will be detected 
and removed in [£, t+At) is given by bYo(t)At+o(At). The probabiUty that 
a tumor of size Y(t) will be detected in [£, t+At) is given by bY(t)At+o(At). 

Hypothesis 3- The probabiUty of a metastasis in [t,t -f Δ) is aAtx 
(total tumor mass present). 

Hypothesis 4. The probability of a systemic occurrence of a tumor 
in [£,£ + At) equals XAt + ο(Δί), independent of the prior history of the 
patient. 

In order to simulate, for a given value of (a, a, 6, A), a quasidata set of 
secondary tumors, we must first define: 

to = time of detection of primary tumor; 
ÌM = time of origin of first metastasis; 
ts = time of origin of first systemic tumor; 
tR = time of origin of first recurrent tumor; 
td = time from t# to detection of first recurrent tumor; 
ÌDR = time from to to detection of first recurrent tumor. 

Now, generating a random number и from the uniform distribution on 
the unit interval, if F(-) is the appropriate cumulative distribution function 
for a time, i, we set t = F"~1(u). Then, assuming that the tumor volume 
at time t is 

v(t) = ceat, where с is the volume of one ceU, (6.33) 

we have 
FM(i) = l - e x p ( - ^ e a l - ) . (6.34) 

Similarly, we have 

FD(tD) = 1 - exp ( - / bceaTdr J 

= 1 - exp ( - ^ e a t D ) , (6.35) 

Fs = l-e-xts, (6.36) 

and 

Fd(td) = 1 - exp ( - ^ e Q t d ) · (6-37) 

Using the actual times of discovery of secondary tumors t\ < *2 < , · · . , < 
tn, we generate к bins. In actual tumor situations, because of recording 
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protocols, we may not be able to put the same number of secondary tumors 
in each bin. Let us suppose that the observed proportions are given by 
(Pbi>2,. ·. iPk)· We shall generate N recurrences si < s2 < . . . < sN. The 
observed proportions in each of the bins will be denoted πι , π 2 , . . . , π*. The 
goodness of fit corresponding to (α, A, a, b) will be given by 

χ2(α, A,a,6) = ^ ^ \ а Ь ) Pj)2 
fri ^ ( α , λ , α , ο ) 

As a practical matter, we may replace Kj (α, λ, a, 6) by Pj, since with (a, λ, a, b) 
far away from truth, 7Tj(a, λ, a, b) may well be zero. Then the following al-
gorithm generates the times of detection of quasisecondary tumors for the 
particular parameter value (α, λ, a, ò). 

Secondary Tumor Simulation (α, λ, a, ö) 
Generate to 

3=0 
i = 0 

Repeat until £м 0 ) > to 
i = J + l 

Generate Ьм(з) 
Generate £<шО) 

tdMÜ) <- tdMÜ) + tM{j) 
If tdNi(j) < tD, then tdM(j) <- oo 

Repeat until ts > ΙΟί^ 
г = г + 1 

Generate tds(i) 
tds(i) *- tds(i) + ts(i) 

e * - min [tdMÜ)i*ds(*)] 
Return s 

End Repeat 

This algorithm does still have some simplifying assumptions. For exam-
ple, we assume that metastases of metastases will probably not be detected 
before the metastases themselves. We assume that the primary will be 
detected before a metastasis, and so on. Note, however, that the algo-
rithm uses much less restrictive simplifying assumptions than those that 
led to the terms of the closed-form likelihood such as (6.31). Even more 
importantly, the Secondary Tumor Simulation algorithm can be discerned 
in a few minutes, whereas a likelihood argument is frequently the work of 
months. 

Another advantage of the forward simulation approach is its ease of mod-
ification. Those who are familiar with "backward" approaches based on the 
likelihood or the moment generating function are only too familiar with the 
experience of a slight modification causing the investigator to go back to the 
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Generate tv 

j = O 
i = O  

Repeat until tM(j) > tv 
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Generate tM(j) 
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tdM(j) +- tdM(j) + tM(j) 
If tdM(j) < tv, then tdM(j) +- 00 

Repeat until ts > lOt v 
i = i + 1  
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End Repeat 

This algorithm does still have some simplifying assumptions. For exam­
ple, we assume that metastases of metastases will probably not be detected 
before the metastases themselves. We assume that the primary will be 
detected before a metastasis, and so on. Note, however, that the algo­
rithm uses much less restrictive simplifying assumptions than those that 
led to the terms of the closed-form likelihood such as (6.31). Even more 
importantly, the Secondary Tumor Simulation algorithm can be discerned 
in a few minutes, whereas a likelihood argument is frequently the work of 
months. 
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start and begin anew. This is again a consequence of the tangles required 
to be examined if a backward approach is used. However, a modification of 
the axioms generally causes slight inconvenience to the forward simulator. 

For example, we might add: 
Hypothesis 5. A fraction 7 of the patients ceases to be at systemic 

risk at the time of removal of the primary tumor if no secondary tumors 
exist at that time. A fraction 1 — 7 of the patients remains at systemic risk 
throughout their lives. 

Clearly, adding Hypothesis 5 will cause considerable work if we insist on 
using the classical aggregation approach of maximum likelihood. However, 
in the forward simulation method we simply add the following lines to the 
Secondary Tumor Simulation code: 

Generate и from f7(0,1) 
If и > 7, then proceed as in the Secondary Tumor Simulation 
code 
If и < 7, then proceed as in the Secondary Tumor Simulation 
code except replace the step "Repeat until ts > 10i£>" with the 
step "Repeat until ts(i) > £D·" 

In the discussion of metastasis and systemic occurrence of secondary tu-
mors, we have used a model supported by data to try to gain some insight 
into a part of the complexities of the progression of cancer in a patient. 
Perhaps this sort of approach should be termed speculative data analy-
sis. In the current example, we were guided by a nonparametric intensity 
function estimate [2], which was surprisingly nonincreasing, to conjecture 
a model, which enabled us to test systemic origin against metastatic origin 
on something like a level playing field. The fit without the systemic term 
was so bad that anything like a comparison of goodness-of-fit statistics was 
unnecessary. 

It is interesting to note that the implementation of SIMEST is gener-
ally faster on the computer than working through the estimation with the 
closed-form likelihood. In the four-parameter oncological example we have 
considered here, the running time of SIMEST was 10% of the likelihood 
approach. As a very practical matter, then, the simulation-based approach 
would appear to majorize that of the closed-form likelihood method in vir-
tually all particulars. The running time for SIMEST can begin to become 
a problem as the dimensionality of the response variable increases past one. 
Up to this point, we have been working with the situation where the data 
consists of failure times. In the systemic versus metastatic oncogenesis 
example, we managed to estimate four parameters based on this kind of 
one-dimensional data. As a practical matter, for tumor data, the estima-
tion of five or six parameters for failure time data are the most one can hope 
for. Indeed, in the oncogenesis example, we begin to observe the beginnings 
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into a part of the complexities of the progression of cancer in a patient. 
Perhaps this sort of approach should be termed speculative data analy­
sis. In the current example, we were guided by a nonparametric intensity 
function estimate [2J, which was surprisingly nonincreasing, to conjecture 
a model, which enabled us to test systemic origin against metastatic origin 
on something like a level playing field. The fit without the systemic term 
was so bad that anything like a comparison of goodness-of-fit statistics was 
unnecessary. 

It is interesting to note that the implementation of SIMEST is gener­
ally faster on the computer than working through the estimation with the 
closed-form likelihood. In the four-parameter oncological example we have 
considered here, the running time of SIMEST was 10% of the likelihood 
approach. As a very practical matter, then, the simulation-based approach 
would appear to majorize that of the closed-form likelihood method in vir­
tually all particulars. The running time for SIMEST can begin to become 
a problem as the dimensionality of the response variable increases past one. 
Up to this point, we have been working with the situation where the data 
consists of failure times. In the systemic versus metastatic oncogenesis 
example, we managed to estimate four parameters based on this kind of 
one-dimensional data. As a practical matter, for tumor data, the estima­
tion of five or six parameters for failure time data are the most one can hope 
for. Indeed, in the oncogenesis example, we begin to observe the beginnings 
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of singularity for four parameters, due to a near trade-off between the pa-
rameters a and 6. Clearly, it is to our advantage to be able to increase the 
dimensionality of our observables. For example, with cancer data, it would 
be to our advantage to use not only the time from primary diagnosis and 
removal to secondary discovery and removal, but also the tumor volumes of 
the primary and the secondary. Such information enables one to postulate 
more individual growth rates for each patient. Thus, it is now appropriate 
to address the question of dealing with multivariate response data. 
Gaussian Template Criterion, In many cases, it will be possible to 
employ a procedure using a criterion function. Such a procedure has proved 
quite successful in another context (see [22]). First, we transform the data 
{-Xi}£=i by a linear transformation such that for the transformed data set 
{ЭД}£=1 the mean vector becomes zero and the covariance matrix becomes 
I: 

U = AX + 6. (6.39) 

Then, for the current best guess for Θ, we simulate a quasidata set of size N. 
Next, we apply the same transformation to the quasidata set {Yj(&)}jLi, 
yielding {Zj(Q)}jLv Assuming that both the actual data set and the 
simulated data set come from the same density, the Ukelihood ratio Λ(θ) 
should increase as Θ gets closer to the value of Θ, say θο, which gave rise 
to the actual data, where 

А(в)-Пу-^-у'* + - + У ' . (6.40) 

As soon as we have a criterion function, we axe able to develop an algorithm 
for estimating θο· The closer Θ is to θο, the smaller will Λ(θ) tend to be. 

This procedure above that uses a single Gaussian template will work well 
in many cases where the data has one distinguishable center and a falling off 
away from that center which is not too "taily." However, there will be cases 
where we cannot quite get away with such a simple approach. For example, 
it is possible that a data set may have several distinguishable modes and/or 
exhibit very heavy tails. In such a case, we may be well advised to try a 
more local approach. Suppose that we pick one of the n data points at 
random—say X\—and find the m nearest-neighbors amongst the data. We 
then treat this m nearest-neighbor cloud as if it came from a Gaussian 
distribution centered at the sample mean of the cloud and with covariance 
matrix estimated from the cloud.We transform these m + 1 points to zero 
mean and identity covariance matrix, via 

U = AiX + bi. (6.41) 

Now, from our simulated set of N points, we find the N(m + l ) /n simu-
lated points nearest to the mean of the m +1 actual data points. This will 
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be to our advantage to use not only the time from primary diagnosis and 
removal to secondary discovery and removal, but also the tumor volumes of 
the primary and the secondary. Such information enables one to postulate 
more individual growth rates for each patient. Thus, it is now appropriate 
to address the question of dealing with multivariate response data. 

Gaussian 'Thmplate Criterion. In many cases, it will be possible to 
employ a procedure using a criterion function. Such a procedure has proved 
quite successful in another context (see [22] ) .  First, we transform the data 
{Xi}f=l by a linear transformation such that for the transformed data set 
{Ui}f=l the mean vector becomes zero and the covariance matrix becomes 
I: 

U = AX + b. (6.39) 

Then, for the current best guess for 8, we simulate a quasidata set of size N. 
Next, we apply the same transformation to the quasidata set {Y;(8n.f=1' 
yielding {Zj(9n.f=1 . Assuming that both the actual data set and the 
simulated data set come from the same density, the likelihood ratio A( 9) 
should increase as 9 gets closer to the value of e, say 90, which gave rise 
to the actual data, where 

(6.40) 

As soon as we have a criterion function, we are able to develop an algorithm 
for estimating eo. The closer 9 is to 90, the smaller will A(9) tend to be. 

This procedure above that uses a single Gaussian template will work well 
in many cases where the data has one distinguishable center and a falling off 
away from that center which is not too ''taily." However, there will be cases 
where we cannot quite get away with such a simple approach. For example, 
it is possible that a data set may have several distinguishable modes and/or 
exhibit very heavy tails. In such a case, we may be well advised to try a 
more local approach. Suppose that we pick one of the n data points at 
random--say Xl-and find the m nearest-neighbors amongst the data. We 
then treat this m nearest-neighbor cloud as if it came from a Gaussian 
distribution centered at the sample mean of the cloud and with covariance 
matrix estimated from the cloud. We transform these m + 1 points to zero 
mean and identity covariance matrix, via 

(6.41) 

Now, from our simulated set of N points, we find the N(m + 1)/n simu­
lated points nearest to the mean of the m + 1 actual data points. This will 
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give us an expression like 

If we repeat this operation for each of the n data points, we will have a 
set of local likelihood ratios {Λχ, Λ2, . . . , Λη}. Then one natural measure 
of concordance of the simulated data with the actual data would be 

Л(в) = £ к * ( Л , ( в ) ) . (6.43) 

We note that this procedure is not equivalent to one based on density 
estimation, because the nearest-neighbor ellipsoids are not disjoint. Never-
theless, we have a level playing field for each of the guesses for Θ and the 
resulting simulated data sets. 
A Simple Counting Criterion· Fast computing notwithstanding, with 
n in the 1000 range and N around 10,000, the template procedure can 
become prohibitively time consuming. Accordingly, we may opt for a subset 
counting procedure: 

For data size n, pick a smaller value, say nn. 
Pick a random subset of the data points of size nn. 
Pick a nearest neighbor outreach parameter m, typically 

0.02n. 
For each of the nn data points, Xj , find the Euclidean dis-

tance to the mth nearest neighbor, say dj ,m . 
For an assumed value of the vector parameter Θ, generate 

TV simulated observations. 
For each of the data points in the random subset of the 

data, find the number of simulated observations within djì7nì 

say NjiTn. 
Then the criterion function becomes 

Experience indicates that whatever nn size subset of the data points is 
selected should be retained throughout the changes of Θ. Otherwise, prac-
tical instability may obscure the path to the minimiun value of the criterion 
function. 

A SIMDAT SIMEST Stopping Rule. In Section 4.2 we considered a 
situation where we compared the results from resampled data points with 
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give us an expression like 

nm+ 1 [ 1 ( 2 2 )] 
A (9) _ i=l exp - "2 uti + . . . + Upi 1 - nN(m+1)/n [ 1 ( 2 2 )] ' 

i=l exp - "2  Zli + . . .  + Zpi 
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(6.42) 

If we repeat this operation for each of the n data points, we will have a 
set of local likelihood ratios {Al . A2, • • •  , An}. Then one natural measure 
of concordance of the simulated data with the actual data would be 

n 
A(9) = L log(Ai(9)) . (6.43) 

i=l 

We note that this procedure is not equivalent to one based on density 
estimation, because the nearest-neighbor ellipsoids are not disjoint. Never­
theless, we have a level playing field for each of the guesses for 8 and the 
resulting simulated data sets. 

A Simple Counting Criterion. Fast computing notwithstanding, with 
n in the 1000 range and N around 10,000, the template procedure can 
become prohibitively time consuming. Accordingly, we may opt for a subset 
counting procedure: 

For data size n, pick a smaller value, say nn. 
Pick a random subset of the data points of size nn. 
Pick a nearest neighbor outreach parameter m, typically 

0.02n. 
For each of the nn data points, Xj, find the Euclidean dis­

tance to the mth nearest neighbor, say dj,m' 
For an assumed value of the vector parameter e, generate 

N simulated observations. 
For each of the data points in the random subset of the 

data, find the number of simulated observations within dj,m , 
say Nj,m' 

Then the criterion function becomes 

2 (8) = � « m  + l)/n - Nj,m/N)2 
X 

j=l (m + l)/n 

Experience indicates that whatever nn size subset of the data points is 
selected should be retained throughout the changes of 9.  Otherwise, prac­
tical instability may obscure the path to the minimum value of the criterion 
function. 

A SIMDAT SIMEST Stopping Rule. In Section 4.2 we considered a 
situation where we compared the results from resampled data points with 



170 SlMDAT, SlMEST AND PSEUDOREALITY 

those from model-based simulations. SIMDAT is not a simple resampling 
so much as it is a stochastic interpolator. We can take the original data 
and use SIMDAT to generate a SIMDAT pseudodata set of N values. 

Then, for a particular guess of Θ, we can compute a SIMEST pseudodata 
set of N values. For any region of the space of the vector observable, 
the number of SIMEST-generated points should be approximately equal 
to the number of SIMDAT-generated points. For example, let us suppose 
that we pick nn of the n original data points and find the radius djjTn of 
the hypersphere which includes m of the data points for, say, point Xj. 
Let NjtsD be the number of SIMDAT-generated points falling inside the 
hypersphere and NjtsE be the number of SIMEST-generated points falling 
inside the hypersphere. Consider the empirical goodness-of-fit statistic for 
the SIMDAT cloud about point Χά\ 

v2 /йч _ ((m + l ) / n - % 5 p / i V ) 2 

X*'8D{B) - (m + l) /n ' 

For the SIMEST cloud, we have 

Χ*'3Ε{Θ) - (m + l) /n " 

If the model is correct and if our estimate for Θ is correct, then χ^5^(θ) 
should be, on the average, distributed similarly to Xjt$E(ß)· Accordingly, 
we can construct a sign test. To do so, let 

Wj = +1ÌÌXISD(®)>XISE(Q) 

= -IÜXISD(®)<XISE(Q)-

So, if we let 
ζ=ΒΣ£ι»> 

у/пп 

we might decide to terminate our search for estimating Θ when the absolute 
value of Z falls below 3 or 4. 

Problems 

6.1. Generate a sample of size 100 of firings at a bull's-eye of radius 5 
centimeters where the distribution of the shots is circular normal with mean 
the center of the bullseye and deviation 1 meter. 
(a) Generate and display a bootstrapped sample of size lOOO.Do you find 
any simulated points inside the bull's-eye? 
(b) Then using m= 10, generate a SIMDAT pseudosample of size 1000. Do 
you find any simulated points inside the bull's-eye? 
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those from model-based simulations. SIMDAT is not a simple resampling 
so much as it is a stochastic interpolator. We can take the original data 
and use SIMDAT to generate a SIMDAT pseudo data set of N values. 

Then, for a particular guess of 9, we can compute a SIMEST pseudodata 
set of N values. For any region of the space of the vector observable, 
the number of SIMEST -generated points should be approximately equal 
to the number of SIMDAT -generated points. For example, let us suppose 
that we pick nn of the n original data points and find the radius dj,m of 
the hypersphere which includes m of the data points for, say, point Xj. 
Let Nj,SD be the number of SIMDAT-generated points falling inside the 
hypersphere and Nj,SE be the number of SIMEST-generated points falling 
inside the hypersphere. Consider the empirical goodness-of-fit statistic for 
the SIMDAT cloud about point Xj : 

� 
(9) = «m + l )/n - Nj,SD/N)2 

X3,SD (m + l)/n . 

For the SIMEST cloud, we have 

2 (8) _ « m + l)/n - Nj,SE/N)2 
Xj,SE - (m + l)/n . 

If the model is correct and if our estimate for 9 is correct, then X;,sE(9) 
should be, on the average, distributed similarly to XlSE(9) . Accordingly, 
we can construct a sign test. To do so, let 

So, if we let 

= +1 if X;,sD(8) � X;,sE(8) 
= -1 if X;,sD(8) < X;,sE(8) . 

L;:l Wj Z = r.;;;;; ' ynn 
we might decide to terminate our search for estimating 9 when the absolute 
value of Z falls below 3 or 4. 

Problems 

6.1. Generate a sample of size 100 of firings at a bull's-eye of radius 5 
centimeters where the distribution of the shots is circular normal with mean 
the center of the bullseye and deviation 1 meter. 

(a) Generate and display a bootstrapped sample of size 1000.Do you find 
any simulated points inside the bull's-eye? 

(b) Then using m= 10, generate a SIMDAT pseudosample of size 1000. Do 
you find any simulated points inside the bull's-eye? 
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6.2. A multivariate distribution with heavy tales may be generated as 
follows. First, we generate a χ2 variable v with 2 degrees of freedom. 
Then we generate p independent univariate normal variates from a normal 
distribution with mean 0 and variance 1. Then X' = (Xi, Χ^..., Xp) will 
have the multivariate normal distribution Λ/^(0,Ι). Moreover, 

X 
*2,ρ(μ ) = -7= + μ 

y/v/2 

will have a shifted t distribution with 2 degrees of freedom. Generate a 
sample of size 500 from the mixture distribution 

/ = .9M(0,I) + .lt2 ,3(0). 

Can you tell the difference between the sample from the mixture distribu-
tion above and a sample of size 500 from Л/з(0,1)? 

6.3. Let us consider von Bortkiewicz's suicide data from eight German 
states over a period of 14 years, as shown in Table 6.1 

Table 6 .1 . Actual and Expec ted N u m b e r s of Suicides per Year ; 
Suicides 

Freq. 
E(freq.) 

0 
9 

3.5 

1 
19 

12.1 

2 
17 
21 

3 
20 

24.3 

4 
15 
21 

5 
11 

14.6 

6 
8 

8.5 

7 
2 

4.2 

8 
3 

1.9 

9 
5 
.7 

> 1 0 
3 
.2 

Sum 
112 
112 

Using the Poisson model for fc, the number of suicides generated in a year, 

Р(к\в) = е-°^, 

find a SIMEST estimator for 0, using as the criterion function 

E^^-x2(fc-i). 

(We recall here that the category "10" here is > 10.) 

6.4. Generally speaking, before using an algorithm for parameter estima-
tion on a set of data, it is best to use it on a set of data simulated from 
the proposed model. Returning to the problem in Section 6.4.1, generate 
a set of times of discovery of secondary tumor (time measured in months 
past discovery and removal of primary) of 400 patients with a = .17 x 10~9, 
6 = .23 x 10"8, a = .31, and A = .0030. Using SIMEST, see if you can 
recover the true parameter values from various starting values. 

6.5. Using the parameter values given in Problem 6.4, generate a set of 
times of discovery of first observed secondary tumor and second observed 
secondary tumor. Using SIMEST, see whether you can recover the true 
parameter values from various starting values. 
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will have a shifted t distribution with 2 degrees of freedom. Generate a 
sample of size 500 from the mixture distribution 

Can you tell the difference between the sample from the mixture distribu­
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6.3. Let us consider von Bortkiewicz's suicide data from eight German 
states over a period of 14 years, as shown in Table 6.1 
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Using the Poisson model for k, the number of suicides generated in a year, 
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6.4. Generally speaking, before using an algorithm for parameter estima­
tion on a set of data, it is best to use it on a set of data simulated from 
the proposed model. Returning to the problem in Section 6.4.1, generate 
a set of times of discovery of secondary tumor (time measured in months 
past discovery and removal of primary) of 400 patients with a = .17 x 10-9, 
b = .23 X 10-8, a = .31, and ..\ = .0030. Using SIMEST, see if you can 
recover the true parameter values from various starting values. 

6.S. Using the parameter values given in Problem 6.4, generate a set of 
times of discovery of first observed secondary tumor and second observed 
secondary tumor. Using SIMEST, see whether you can recover the true 
parameter values from various starting values. 
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Chapter 7 

Exploratory Data 
Analysis 

7.1 Introduction 

The concept of exploratory data analysis (EDA) is generally dismissive of 
models. The concept of EDA was proposed by the late John W. Tukey 
[1] of Princeton University and Bell Labs (best known in the popular press 
for having coined the term "software," to scientists as possibly the most 
important statistician ever). Tukey wrote an entire book on the subject 
(Exploratory Data Analysis, 1977), and an entire semester can easily be 
spent studying that book. Nevertheless, we can find out a great deal of 
EDA and demonstrate much of its utility in rather a short amount of time. 

It is clear to the reader by this time that I personally am of the opin-
ion that we learn by developing a chain of ever improving models. By 
"improving," I mean, in general, getting closer to the truth. EDAers, how-
ever, are rather postmodern in that they question whether the notion of 
"truth" is meaningful or relevant. As one of them, Professor William Eddy 
of Carnegie Mellon University, put it: 

The data analytic method denies the existence of "truth"; 
the only knowledge is empirical. 

The only purpose of models is to make formal implications. 
For far too long statisticians have concentrated on fitting mod-
els to data. And, for reasons I don't fully understand, they 
have nested" the parameters of these models. The relevance 
of models comes only from their implications and the interpre-

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R. 
Thompson ©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons. 
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tation thereof. If we can make predictions without models, I 
think we should. 

To forecast purely on the basis of empiricism, without understanding the 
driving forces of the system under investigation is hardly desirable. Of 
course, we have to do this often enough. If we see that a stock is 100 on 
Monday and then goes to 110 by the next Monday and 120 the Monday 
after that and 130 the Monday after that, we may well be tempted to 
forecast that on the Monday after the 130 reading the stock will be around 
140. But few of us would like to "bet the farm on the forecast." Suppose, 
however, that we found out that the company had developed a drug for 
curing AIDS but had not formally announced the discovery, and insiders 
were discreetly buying blocks of the stock, that might make us feel better 
about forecasting the 140 price. 

Eddy [1] does not just take it as a practical necessity that sometimes 
we must predict without understanding the underlying process; he proudly 
announces that dispensing with modeling is a good thing. This kind of 
radical empiricism has resonance with the "Prince of Nominalists" William 
of Ockham. Ockham did not deny the existence of reality. He simply 
thought that we, as a practical matter, are unwise to fail to act until we 
know that reality rather precisely. 

In order to understand the highly anti-modeling paradigm of Exploratory 
Data Analysis, we naturally need to model EDA itself. Here are some 
personal observations which capture much of the essence of EDA: 

1. The eye expects adjacent pixels to be likely parts of a common whole. 

2. The eye expects continuity (not quite the same as (1) ). 

3. As points move far apart, the human processor needs training to 
decide when points are no longer to be considered part of the common 
whole. Because of the ubiquity of situations where the Central Limit 
Theorem, in one form or another, applies, a natural benchmark is the 
normal distribution. 

4. Symmetry reduces the complexity of data. 

5. Symmetry essentially demands unimodality. 

6. The only function that can be identified by the human eye is the 
straight line. 

7. A point remains a point in any dimension. 
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7.2 Smoothing 

During the early days of the U.S. space program, photographs were taken of 
the surface of the moon. These were not very useful without some process-
ing because there was a great deal of noise imposed on the signal. However, 
let us use the first principle given above 

1. The eye expects adjacent pixels to be likely parts of a common whole. 

In Figure 7.1, we show five adjacent pixels. If we believe that each of these 
has more or less the same light intensity, then we might simply replace the 
observed light intensity of the center point by the average of the intensities 
of all five points. We know if we have five measurements of the same thing, 
each contaminated by noise, then the average gives us a better measure of 
the uncontaminated intensity than any single observation. 

(x-h,y)· · · (x + h, y) 
(x, У) 

(x,y-h) 
Figure 7.1. Five adjacent pixels. 

So one way to improve our estimate of the reflected light intensity at the 
point x, у would be to use 

j / ч <_ 1(х,У) + I(x + h,y) + I(x,y + h) + I(x - h,y) + I(x,y - h) _ ^ 

But this means of proceeding might be a bit extreme, for we do not usually 
suppose that the adjacent points all have the same intensity. Accordingly, 
we might rather use 

J ( ^ ( 4I(s,y) 4- I(x 4- h,y) + I(x%у + h) + I(x - hty) + I(x,y-h) ( 

Obviously, we could use this digital filter over and over until we felt we had 
about the right resolution. If we use the filter too many times, then every 
pixel will have roughly the same intensity. We will have a smooth picture, 
for we will have reduced the variability almost to zero. We will be close to 
the position of the stopped clock which is, of course, precisely correct twice 
in a 24-hour day. 

However, if we do not smooth enough, we will have a photograph that 
is so jumpy we have difficulty making out any patterns on the moon's sur-
face. The trick is knowing just when to stop. Human beings can achieve 
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this rather well by simply looking at the resulting picture after each smooth. 
Something of this sort was done by JPL (Jet Propulsion Laboratory) scien-
tists with the Mariner probe pictures of the moon. The filter was used by 
the founder of exploratory data analysis, John Tukey. However, the name 
of the filter was given by Tukey to Julius von Hann, a nineteenth-century 
Austrian weather scientist, who used something like Hanning in obtaining 
land coordinate indexed temperature profiles. With Hanning, we put half 
the weight on the intensity of (x, y) and then distribute the rest of the 
weight equally on the surrounding points. 

| Table 7.1. Production. | 

ΓΤΊ 
2 
3 
4 
5 
6 
7 
8 
^ 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

1 30 

133 
155 
199 
193 
201 
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185 
160 
161 
182 
149 
110 
72 
101 
60 
42 
15 
44 
60 
86 
50 
40 
34 
40 
33 
67 
73 
57 
85 
90 

2I(x) + I(x + h) + I(x - h) 

Consider a small company that makes van modifications transforming 
vans into campers. In Table 7.1 we show production figures on 30 consecu-
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Consider a small company that makes van modifications transforming 
vans into campers. In Table 7.1 we show production figures on 30 consecu-
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tive days. The Hanning smoother originally was developed for dealing with 
information indexed by two spatial dimensions. However, it can be used 
very nicely to smooth data indexed to a one-dimensional variable. 

We graph this information in Figure 7.2. The points we see are real 
production figures. There are no errors in them. Nevertheless, most people 
would naturally smooth them. Perhaps the figures are real, but the human 
observer wants them to be smooth, not rough. One could look upon such a 
tendency to want smoothness as being some sort of natural Platonic notion 
hardwired into the human brain. We can rationalize this tendency by saying 
that the real world has smooth productions contaminated by shocks such 
as sudden cancellations of orders, sickness of workers, etc. But the fact is 
that most of us would hate to make plans based on such a jumpy plot. 

The fact is that the world in which we live does tend to move rather 
smoothly in time. If there were so much turbulence that this was not the 
case, it would be hard to imagine how any sort of civilized society could 
ever have developed. So we ought not despise our apparently instinctive 
desire to see smooth curves rather than jumpy ones. 

250 

200 

150 

H 
M 

§ 100 

50 

0 
0 10 20 30 

DATE 

Figure 7.2. Daily production data. 

So, how shall we smooth the data in Table 7.1 (and Figure 7.2)? There 
seemsto be no natural unique answer. There are obviously many con-
tenders. One way would be simply to connect all the data points. We 
show this graph in Figure 7.3. 
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show this graph in Figure 7.3. 
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Figure 7.3· Piecewise linear graph. 

We might try some sort of freehand smoothing such as that shown in 
Figure 7.4. 
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Figure 7.4. Freehand smooth. 

In Figure 7.5 we observe the results of smoothing by Hanning one time. We 
note that the smooth appears to be rather local. We have not taken such 
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a global smoothing approach as we did in Figure 7.4. 
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Figure 7.5. Hanning smooth. 

Let us hann the hanning smooth to obtain the H2 graph in Figure 7.6. 
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Table 7.2. Various orders of Hannings. 
Day I Production I H I H H I H5 I H10 

1 133 133 133 133 133 
2 155 161 160 157 155 
3 199 187 183 178 171 
4 193 197 197 192 183 
5 201 208 207 199 190 
6 235 214 207 198 190 
7 185 191 191 189 185 
8 160 167 173 178 176 
9 161 166 167 167 165 
10 182 169 163 155 151 
11 149 148 144 138 135 
12 110 110 114 118 118 
13 72 89 93 97 100 
14 101 84 81 80 83 
15 60 66 64 64 69 
16 42 40 44 51 59 
17 15 29 35 45 53 
18 44 41 43 48 51 
19 60 63 59 54 52 
20 86 71 65 57 52 
21 50 57 56 54 51 
22 40 41 44 47 49 
23 34 37 38 43 47 
24 40 37 38 43 48 
25 33 43 46 48 51 
26 67 60 58 56 57 
27 73 68 66 64 64 
28 57 68 71 72 72 
29 85 79 79 81 81 
30 I 90 1 90 I 90 1 90 I 90 
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Figure 7.7. Fifteen-fold Hanning smooth. 

For many purposes, the single Hanning or the double Hanning seems to give 
a reasonable smooth one that is more local than the "freehand smooth" 
onein Figure 7.4. One problem with Hanning is that "it does not know 
when to stop." For any function other than a straight line, each successive 
application of Hanning will change the picture. Note that the 15-fold Han-
ning smooth has eliminated the local mode (peak) on day 20. There are 
other problems with hanning. One glitch will spread throughout the data 
set. In Table 7.3, we note that a string of ones to which has been added 
one 1,000 reading will, after a few hannings spread the glitch throughout 
the data. 

Table 7.3. Contaminating Hanning Smooth. 
Data 

1 
1 
1 
1 

1,000 
1 
1 
1 

H 
1 
1 
1 

250.75 
500.50 
250.75 

1 
1 

HH 
1 
1 

63.44 
250.75 
375.62 
250.75 
63.44 

1 

HHH 1 
1 

16.61 
94.66 
235.14 
313.18 
235.14 
94.66 
16.61 

A Hanning filter has advantages. It was used to provide smoothed pixels 
for flyby photographs of the moon in the 1960s. However, it would be nice 
if we had a filter that automatically functions without the necessity of a 
human observer to fine tune it. Consider Figure 7.8 which is one of many 
hundreds of shots taken of the moon by the Clementine Project in 1994. 

J L 
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A Hanning filter has advantages. It was used to provide smoothed pixels 
for flyby photographs of the moon in the 19608. However, it would be nice 
if we had a filter that automatically functions without the necessity of a 
human observer to fine tune it. Consider Figure 7.8 which is one of many 
hundreds of shots taken of the moon by the Clementine Project in 1994. 
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Figure 7.8. Clementine shot of moon crater. 

For processing such material, we need something which will not destroy 
the edges of the crater by oversmoothing. The median smooth of Tukey [1] 
has such a desired effect. It replaces the averaging process in (7.2) by the 
median process 

I(x,y) <- Med (I(x,y),I(x + ft,y),I(x,y -f h)J(x - h,y): + I(x,y - ft». 
(7.4) 

In other words, we replace the raw light intensity at (ж, y\ by the median 
intensity of the five points in the vicinity of (x,y). This smoother "knows 
when to stop," and it does not smooth out crater edges that need to be 
seen. We have here an example of a truly revolutionary result that requires 
practically no mathematics but is powerful nonetheless. It is also significant 
to note that it took decades from the time such a filter was needed until it 
was discovered. 

Let us apply the median smooth (in one dimension, called the "3 smooth" ) 
to the production data in Table 7.1. We note that there is no change in 
the table after we "smooth by 3R" the second time. Indeed, only one value 
changes from the first to the second smoothing by 3's. And this is the big 
advantage of the median smooth. Unlike the Hanning smooth, it will not, 
if applied ad infinitum, simply smooth the data to destruction. It auto-
matically stops, usually after no more than three iterations. We show these 
results in Table 7.4, where changed values are indicated in boldface. The 
expression "3R" means that the median smooth has been applied until no 
further changes were observed. 

We note that there is a tendency for the 3R (median) smooth to give 
artificially broad peaks and valleys. This is generally a very minor problem. 
For many applications, the 3R smooth is all we need. 
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further changes were observed. 

We note that there is a tendency for the 3R (median) smooth to give 
artificially broad peaks and valleys. This is generally a very minor problem. 
For many applications, the 3R smooth is all we need. 
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Table 7.4. 3R Smooth, ~ | 
Day 

1 * 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1 13 
14 
15 
16 
17 

! 18 
19 
20 
21 
22 

i 23 
24 
25 
26 
27 
28 
29 

1 30 

Production 
133 
155 
199 
193 
201 
235 
185 
160 
161 
182 
149 
110 
72 
101 
60 
42 
15 
44 
60 
86 
50 
40 
34 
40 
33 
67 
73 
57 
85 
90 
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161 
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72 
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67 
67 
73 
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Figure 7.9. The 3R (median) smooth. 
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If we wish to make things look a little better aesthetically, we can take 
the results of the 3R smooth and hann them twice as we show in Table 
7.5 and Figure 7.10. The advantage of the 3RHH smooth is that it is 
fully automated. We need not have an observer in the loop. This is a 
big advantage for most applications. The very big deal of this chapter 
on smoothing is the median smooth. It simply was done looked at until 
the 1960s. This is a really big discovery which requires very little in the 
way of mathematical sophistication. It is amazing how frequently such big 
discoveries are really simple mathematically. Frequently, genius consists in 
thinking of things to try and then seeing whether they work. 

1 Table 7.5. 3 R H H Smooth. 
Day 1 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Production 
Ϊ33 
155 
199 
193 
201 
235 
185 
160 
161 
182 
149 
110 
72 
101 
60 
42 
15 
44 
60 
86 
50 
40 
34 
40 
33 
67 
73 
57 
85 
90 

3 
133 
155 
193 
199 
201 
201 
185 
161 
161 
161 
149 
110 
101 
72 
60 
42 
42 
44 
60 
60 
50 
40 
40 
34 
33 
67 
67 
73 
85 
90 

33=3R 
133 
155 
193 
199 
201 
201 
185 
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161 
161 
149 
110 
101 
72 
60 
42 
42 
44 
60 
60 
50 
40 
40 
34 
40 
67 
67 
73 
85 
90 

3RH 
133 
159 
185 
198 
201 
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167 
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158 
142 
118 
96 
76 
59 
47 
43 
48 
56 
58 
50 
43 
39 
37 
45 
60 
69 
79 
88 
90 

3RHH 
133 
159 
182 
196 
199 
195 
183 
170 
162 
155 
140 
118 
97 
77 
60 
49 
45 
49 
55 
55 
50 
44 
39 
40 
47 
59 
69 
79 
86 
90 

186 EXPLORATORY DATA ANALYSIS 

If we wish to make things look a little better aesthetically, we can take 
the results of the 3R smooth and hann them twice as we show in Table 
7.5 and Figure 7.10. The advantage of the 3RHH smooth is that it is 
fully automated. We need not have an observer in the loop. This is a 
big advantage for most applications. The very big deal of this chapter 
on smoothing is the median smooth. It simply was done looked at until 
the 1960s. This is a really big discovery which requires very little in the 
way of mathematical sophistication. It is amazing how frequently such big 
discoveries are really simple mathematically. Frequently, genius consists in 
thinking of things to try and then seeing whether they work. 

Table 7.5. 3RHH Smooth. 
Day Production 3 33=3R 3RH 3RHH 

1 133 133 133 133 133 
2 155 155 155 159 159 
3 199 193 193 185 182 
4 193 199 199 198 196 
5 201 201 201 201 199 
6 235 201 201 197 195 
7 185 185 185 183 183 
8 160 161 161 167 170 
9 161 161 161 161 162 
10 182 161 161 158 155 
11 149 149 149 142 140 
12 110 1 10 1 10 1 18 118 
13 72 101 101 96 97 
14 101 72 72 76 77 
15 60 60 60 59 60 
16 42 42 42 47 49 
17 15 42 42 43 45 
18 44 44 44 48 49 
19 60 60 60 56 55 
20 86 60 60 58 55 
21 50 50 50 50 50 
22 40 40 40 43 44 
23 34 40 40 39 39 
24 40 34 34 37 40 
25 33 33 40 45 47 
26 67 67 67 60 59 
27 73 67 67 69 69 
28 57 73 73 79 79 
29 85 85 85 88 86 
30 90 90 90 90 90 



THE STEM AND LEAF PLOT 187 

200 

100 

50 

30 

Figure 7.10. The 3RHH smooth. 

7.3 The Stem and Leaf Plot 

In 1965, a smalltown mayor takes a random sample of yearly incomes from 
30 householders. The results are (in dollars) 5600, 8700, 9200, 9900,10,100, 
11,200,13,100,16,100,19,300, 23,900, 25,100, 25,800, 28,100, 31,000, 31,300, 
32,400, 35,800, 37,600, 40,100,42,800, 47,600, 49,300, 53,600, 55,600, 58,700, 
63,900, 72,500, 81,600, 86,400,156,400. The mayor wants to get some notion 
of what the data might be saying about income distributions in his town. 
Of course simply looking at the data as a ordered text file above gives her 
some information. For example, the average income is 39,423. However, 
this one number contains only part of the important information in the 30 
numbers. Next, consider the stem and leaf plot, demonstrated in Table 7.6. 
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Figure 7.10. The 3RHH smooth. 
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of what the data might be saying about income distributions in his town. 
Of course simply looking at the data as a ordered text file above gives her 
some information. For example, the average income is 39,423. However, 
this one number contains only part of the important information in the 30 
numbers. Next, consider the stem and leaf plot, demonstrated in Table 7.6. 

Table 7.6. Stem and Leaf Plot. 
0 5899 
10 01369 
20 3558 
30 11257 
40 0279 
50 358 
60 3 
70 2 
80 16 
90 
100 
1 10 
120 
130 
140 
150 6 
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We note that the left hand column gives a marker graded in tens of thou-
sands. The rows give the appropriate number of whole thousands of dollars 
of income. The table here is a kind of hybrid between a table and a graph. 
It looks very much like a histogram turned sideways. Such a table/graph 
is called a stem and leaf plot. It retains almost all the information of the 
original salary list but displays it in such a way that we immediately can 
make rough inferences from it. For example, the the highest income in the 
survey looks very different from the rest. The smallest income in the list 
does not look atypical of the rest of the incomes in the sense that there 
does not be a break in continuity of incomes between that lowest income 
and the rest. 

7.4 The Five Figure Summary 

Now, we know that there are 30 incomes in our list. The sample median 
income will be obtained by looking at the average of the fifteenth and 
sixteenth incomes. 

M = ì [31,300 + 32,400] = 31,850. (7.5) 

To obtain a notion of the spread of the income data, we look at the lower 
quartile and the upper #tmrtóie.One-fourth of 30 is 7.5. So, the lower quartile 
is found by taking the average of the seventh and eighth observations. We 
will call this value the lower hinge: 

LH = -[13,100 + 16,100] = 14,600. 
Δ 

(7.6) 

Similarly, for the upper hinge, we have 

UH = £[53,600 + 55,600] = 54,600. 

This gives us, then, for the five figure summary of the data: 

(7.7) 

Table 7.7. Five Figure Summary. 
M15 
H8 
1 

31,850 
56,00 

31,850 
54,600 
156,400 

Here, we show the smallest and largest observations, the upper and lower 
quartiles (hinges) and the sample median. 

7.5 Tukey's Box Plot 

So far, things look rather intuitive. But we now wish to come up with a 
scheme for deciding whether some of the observations appear to be rather 
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untypical of the others. So we now come up with some spread measures 
which do not look, at first glance, to be so intuitive. The first is that of a 
step, which is defined to be 1.5 times the difference between the upper and 
lower quartiles (hinges). Here, 

Я = 1.5 x (54,600 - 31,850) = 34,125. (7.8) 

The notion here is that any observation which is more than one step be-
yond the lower quartile or the upper quartile begins to be suspicious in 
consideration of whether it is typical of the rest of the observations. Any 
observation that is more than two steps beyond either of the quartiles is 
probably not typical of the rest of the observations. One step beyond the 
upper quartile is termed the upper inner fence. Two steps beyond the up-
per quartile (upper hinge) is termed the upper outer fence. Here the upper 
outer fence is seen to be 

UOF = 2 x 34,125 + 54,600 = 122,850. (7.9) 

The largest income of 156,400 is seen to be even greater than the UOF, 
so it is probably not representative of the other data points. Perhaps, 
this individual came into a windfall of profit due to some sale of property. 
Perhaps he/she comes from an unusually rich part of the town. The data 
alone cannot tell us what is going on. It does tell us that the income here 
is unusually high in comparison to the incomes of the group. 

Now for the income data at hand, the schematic plot also called a box 
plot is given in Figure 7.11. 
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Figure 7.11. Box plot of income data. 

We note that the median is clearly shown with a vertical line toward the 
middle of the "box." The upper and lower hinges (quartiles) are shown as 
vertical lines forming the limits of the "box." There is an asterisk showing 
any value outside the upper or lower outer fences. The first value inside 
the lower inner fence is indicated as the lower boundary of the "whisker" 
line. The first value inside the upper inner fence is indicated as the upper 
boundary of the "whisker" line. Other than the individual making 156,400, 
no person sampled has an income outside the inner fences. The incomes 
seem to be somewhat homogeneous except for that one very high income. 
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The box plot is a very handy device for getting a preliminary look at a 
data set. It does, in a fairly well structured way, things that have histori-
cally been done in a less orderly way. Let us consider an example of Tukey 
[1]. During the winter of 1893-94, W.J. Rayleigh was examining deter-
minations of the densities of nitrogen obtained from a variety of sources. 
We show these densities in Table 7.8. Now, the "OTHER" refers to any 
source other than air. Rayleigh noted that regardless of the source of ni-
trogen (other than air), all the densities appeared to be roughly the same. 
He noted this in a somewhat nonspecific search pattern going through his 
data. But we can perceive Rayleigh's discovery easily by making a box plot 
of his "OTHER" data as we show in Figure 7.12. 

Table 7.8. Measurements of N Densities. 
AIR 

2.31024 
2.31030 
2.31028 
2.31017 
2.30986 
2.31010 
2.31001 

OTHER 
2.30143 
2.29816 
2.30182 
2.29890 
2.29940 
2.29849 
2.29889 
2.29889 

Y 

I I I I I 

2.298 2.299 2.300 2.301 2.302 

OTHER 

Figure 7.12. Nitrogen densities from sources other than AIR. 

We note that the density of nitrogen as measured from the AIR sources are 
higher than those from the OTHER sources. To see how much this is so, 
let us take the smallest of AIR source observations, 2.30986, and add it to 
the OTHER data points, making a box plot of the pooled values (as shown 
in Figure 7.13). 
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Figure 1.12. Nitrogen densities from sources other than AIR. 

We note that the density of nitrogen as measured from the AIR sources are 
higher than those from the OTHER sources. To see how much this is so, 
let us take the smallest of AIR source observations, 2.30986, and add it to 
the OTHER data points, making a box plot of the pooled values (as shown 
in Figure 7.13) . 
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Figure 7.13. Nitrogen densities from OTHER sources plus one 
AIR source observation. 

We note that the AIR source observation is well outside the upper outer 
fence. We should strongly question whether the AIR source nitrogen is 
really the same as the OTHER source nitrogen. Indeed, it turns out that 
the AIR sources contained traces of a then unknown element, namely argon. 
This empirically obtained observation of Lord Rayleigh contributed toward 
his receiving a Nobel Prize in Physics in 1906. 

Problems 

7.1. By means of a sketch supported by an argument, show a hypothetical 
data plot for which a Hanning smooth carried out until the smooth looks 
statisfactory will be disastrous , but a 3R smooth will work well. 

7.2. By means of a sketch and an argument show a hypothetical data 
plot for which a 3R smooth is unsatisfactory but a Hanning smooth is 
satisfactory. 

7.3. Construct a stem-and-leaf plot for county populations in the state 
of Texas or the state of California or the state of New York. Carry out 
appropriate transformations to symmetrize the plot (if this should be nec-
essary). Construct five figure summaries. Find the inner and outer fences 
and construct a schematic plot. 

7.4. Given the following table, infer the functional relationship between 
X and Y. 

X 
.40 
1.10 
1.91 
4.22 

Y 
0.048 
0.363 
1.094 
5.343 I 
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Chapter 8 

Noise Killing Chaos 

Anything could be true. The so-called laws of nature were 
nonsense. The law of gravity was nonsense. "If I wished," 
O'Brien had said, "I could float off this floor like a soap bubble." 
Winston worked it out. "If he thinks he floats off the floor, and 
I simultaneously think I see him do it, then the thing happens." 

George Orwell, 1984 

8.1 Introduction 

Many regard noise and chaos to be the same thing. This impression is 
very wrong. Noise is a naturally occurring phenomenon. Willy-nilly, the 
television may go dark. The salmon harvest may explode. And, we can go 
backward in time to see what caused the disruption. The stock market may 
plummet. By looking backward in time, we can generally find the causes 
of the fall. 

In chaos theory, it is not randomness that is the villain. It is some 
underlying part of the mechanism from which we cannot escape. Hence, 
weather forecasts are essentially impossible as are forecasting changes in 
the stock market. 

In the ensuing argument, we will attempt to show that if chaos existed 
in the real world, it would be destroyed by naturally occurring noise. 

Postmodernism is one of the latest intellectual schools to be inflicted on 
the West since the French Revolution. Postmodernism does more than cast 
doubt on objective reality; it flatly denies it. The perception of a particular 
reality is deemed to be highly subjective and hugely nonstationary, even for 

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R. 
Thompson ©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley L· Sons. 
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the same observer. Those schooled in the implicit Aristotelian modality of 
reason and logic (and that still includes most scientists) can easily follow 
the postmodernist train of thought to the point where they note that the 
assumptions of the postmodernists really bring one to such a level of chaos 
that conversation itself becomes impractical and useless. 30 years ago one 
could find few people presenting papers on such subjects as postmodern 
science; this has become more frequent lately. Postmodernism, as the latest 
of the pre-Socratic assaults on reason based on facts, was gently smiled at 
by scientists simply as a bizarre attempt of their humanistic colleagues to 
appear to be doing something useful. In the last few years, however, the 
leakage of postmodern modalities of thinking into the sciences has increased 
significantly. When one looks in library offerings under such topics as chaos 
theory or fuzzy logic, one frequently finds "postmodern" as a correlative 
listing. For some of us Aristotelians, this tendency is alarming. But many 
mathematicians are pleased to find that their abstract ideas are appreciated 
by literati and the popular press. 

Every generation or so, there crops up a notion in mainstream science 
which is every bit as antilogica! and antirealistic as postmodernism itself. 
These notions either do not admit of scientific validation or, for some reason, 
are somehow exempted from it. Once these new ideas have been imprima^ 
turized by the scientific establishment and developed into a systematology, 
large amounts of funding are provided by government agencies, and persons 
practicing such arts are handsomely rewarded by honors and promotion un-
til lack of utility causes the systematology to be superseded or subsumed 
by some other new idea. 

It is intriguing (and should be noncomforting to stochasticians) that such 
new ideas tend to have as a common tendency the promise that practition-
ers of the new art will be able to dispense with such primitive notions as 
probability. Stochastics, after all, was simply a patch, an empirical artifice, 
to get around certain bumps in the scientific road—which jumps have now 
been smoothed level by the new art. 

Frequently, not only will the new art not give any hope for solving a 
scientific problem, but also it will actually give comfort to an economist, 
say, or a meteorologist, or the members of some area of science which has 
not lived up to hopes, over the fact that their area simply does not lend 
itself to the solution of many of its most fundamental problems. It does not 
merely say that these problems are hard, but it argues that they cannot 
be solved now or ever. Those who have labored for decades on these hard 
problems may now safely down shovels, knowing that they gave their best 
to do what could not be done. 

We have seen scientists take problems that were supposed to be insoluble 
and solve them. The "hopeless" hairtrigger of nuclear war was obviated 
by one of the founders of Monte Carlo techniques, Herman Kahn. Kahn 
essentially created the escalation ladder, giving the great powers a new 
grammar of discourse that enabled staged response to crises. 
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High-speed computing broke out of "natural" bounds of feasibility by the 
invention first of the transistor and then the microchip. Weather forecasting 
is still admittedly primitive, but apparently we are now in a position to 
carry out such tasks as forecasting severe as opposed to mild hurricane 
seasons. 

To introduce the subject of chaos, let us first consider the Mandelbrot 
model, 

Zn+i = zl + c, (8.1) 

where z is a complex variable and с is a complex constant. Let us start 
with 

Zl = с = -0.339799 + 0.358623Ì. 
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Figure 8.1. Mendelbrot set. 
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The iterative structure of this set is given in Figure 8.1. All the points 
exist in thin, curved manifolds. Most of the complex plane is empty. And, 
to make things more interesting, we do not trace smoothly within each 
manifold, but rather jump from manifold, to manifold. It is as though we 
started to drive to the opera hall in Houston, but suddenly found ourselves 
in downtown Vladivostok. Of course, it could be interesting for somebody 
who fantasizes about zipping from one part of the galaxy to another. 

Now, the Mandelbrot model may itself be questioned as a bit bizarre 
when describing any natural phenomenon. Were it restricted to the reals, 
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then it would be, for a growth model, something that we would be unlikely 
to experience, because it is explosive. But let that pass. Since we are in the 
realm of Gedankenspiel anyway, let us see what happens when we introduce 
noise. 

Consider the model 

Zn+i = zl + с + 0.2wn+i + 0.2vn+1, (8.2) 
where the и and v are independent Л/"(0,1) variables. We have been able 
to penetrate throughout the former empty space, and now we do not make 
quantum leaps from Houston to Vladivostok. Here, in the case of a formal 
mathematical structure, we simply note in passing how the introduction of 
noise can remove apparent pathology. Noise can and does act as a powerful 
smoother in many situations based on aggregation (Figure 8.2). 

IMAG 

Figure 8.2. Mendelbrot plus noise. 

8.2 The Discrete Logistic Model 
Let us turn now to an example of a model of a real-world phenomenon, 
namely the growth of a population with finite food supply. One of the 
earliest was the 1844 logistic model of Verhulst: 

?£=X(a-X), (8.3) 
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8.2 The Discrete Logistic Model 
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where a essentially represents the limit, in population units, of the food 
supply. A solution to this model was obtained by Verhulst and is simply 

aX(0)exp(at) 
X(t) (8.4) 

a + X(0)[exp(at)-l]' 

Naturally, this model is only an approximation to the real growth of a 
population, but the mathematical solution is perfectly regular and without 
pathology. 

Lorenz [2] has examined a discrete version of the logistic model: 

Xn - Xn-i(<*> - Xn-i) = --X"n-i + aXn-\- (8.5) 

Using XQ = a/2, he considers the time average of the modeled population 
size: 

1 N 

im — >^ Xn lim 
N—юо 

(8.6) 
n = l 

For a values below 1+\/б> the graph of X behaves quite predictably. Above 
this value, great instability appears, as we show m Figure 8.3. 

2.5-1 

2.4 A 

X 

2.3 A 

2.24 

2 , 1 I 

2.0 H 

3.0 3.2 3.4 
a 

3.6 3.8 4.0 

Figure 8.3. Discrete logistic model. 
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We note in Figures 8.4 and 8.5 how this fractal structure is maintained 
at any level of microscopic examination we might choose. 
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Figure 8.4. Discrete logistic model at small scale. 
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Figure 8.5. Discrete logistic model at very small scale. 

Let us look at Figure 8.3 in light of real-world ecosystems. Do we know 
of systems where we increase the food supply slightly and the supported 
population crashes, and where we increase it again and it soars? What 
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should be our point of view concerning a model that produces results greatly 
at variance with the real world? And we recall that actually we have a 
perfectly good continuous 150 year old solution to the logistic equation. 
The use of the discrete logistic model is really natural only in the sense that 
we wish to come up with a model that can be put on a digital computer. 
In the case of chaos theory it is frequently the practice of enthusiasts to 
question not the model but the reality. So it is argued that, in fact, it is 
the discrete model which is the more natural. Let us walk for a time in 
that country. 

For the kinds of systems the logistic model was supposed to describe, we 
could axiomatize by a birth-and-death process as follows: 

P(birth in [M + Δί)) = β(Ί-Χ)ΧΔί 
P(death in [t, t + At)) = ηΧΔί. (8.7) 

Figure 8.6. Discrete logistic model plus noise. 

Perhaps Verhulst would have agreed that what he had in mind to do was 
to aggregate from such microaxioms but had not the computational ability 
to do so. Equation (8.5) was the best he could do. We have the computing 
power to deal directly with the birth-and-death model. However, we can 
make essentially the same point by adding a noise component to the logistic 
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model. We do so as follows: 

Xn = -Xn-l(a — Xn-l) + ßn-lXm-l 
= Χη_ι([α + μ η _ ! ] - Χ η _ ι ) . (8.8) 

where μη-ι Is a random variable from the uniform distribution on (—τ,τ). 
As a convenience, we add a bounceback effect for values of the population 

less than zero. Namely, if the model drops the population to — e, we record it 
as +e. In Figure 8.6 we note that the stochastic model produces no chaos 
(the slight fuzziness is due to the fact that we have averaged only 5000 
successive Xn values). Nor is there fractal structure at the microscopic 
level, as we show in Figure 8.7 (using 70,000 successive Xn values). 

Clearly, the noisy version of (8.5) is closer to the real world than the 
purely deterministic model. The food supply changes; the reproductive 
rate changes; the population is subject to constant change. However, the 
change itself induces stability into the system. The extreme sensitivity to a 
in Figure 8.3 is referred to as the butterfly effect. The notion is that if (8.5) 
described the weather of the United States, then one butterfly flying across 
a backyard could dramatically change the climate of the nation. Such an 
effect, patently absurd, is a failure of the model (8.5), not of the real world. 
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8.3 A Chaotic Convection Model 
In 1963, after rounding off initial conditions, Lorenz [1] discovered that the 
following model was extremely sensitive to the initial value of (ж, t/, z). 

dx „ л , v 

- = Щу-х) 
du 
-~ = -xz + 28x - у 
at 
dz 8 
Έ = xy~3z-

(8.9) 

In Figure 8.8 we show a plot of the system for 2000 steps using At = .01 
and r = 0.0. 

Time trace of 2000 steps from 
starting point (0.1,0.1,20.1) 
Deterministic case (τ=0) 

Figure 8.8· Lorenz weather model. 

We observe the nonrepeating spiral which characterizes this chaotic model. 
The point to be made here is that, depending on where one starts the pro-
cess, the position in the remote future will be very different. Lorenz uses 
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We observe the nonrepeating spiral which characterizes this chaotic model. 
The point to be made here is that, depending on where one starts the pro­
cess, the position in the remote future will be very different. Lorenz uses 
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this model to explain the poor results one has in predicting the weather. 
Many have conjectured that such a model corresponds to a kind of uncer-
tainty principle operating in fields ranging from meteorology to economics. 
Thus, it is opined that in such fields, although a deterministic model may 
accurately describe the system, there is no possibility of making meaningful 
long range forecasts, because the smallest change in the initial conditions 
dramatically changes the end result. The notion of such an uncertainty 
principle has brought comfort to such people as weather scientists and 
econometricians who are renowned for their inability to make useful fore-
casts. What better excuse for poor performance than a mathematical basis 
for its inevitability? 

The philosophical implications of (8.9) are truly significant. Using (8.9), 
we know precisely what the value of (x, y, z) will be at any future time if 
we know precisely what the initial values of these variables are (an evident 
impossibility). We also know that the slightest change in these initial val-
ues will dramatically alter the result in the remote future. Furthermore, 
(8.9) essentially leads us to a dead end. If we believe this model, then it 
cannot be improved, for if at some time a better model for forecasting were 
available so that we really could know what (x, j/, z) would be at a future 
time, then, since the chaos spirals are nonrepeating, we would be able to 
use our knowledge of the future to obtain a precise value of the present. 
Since infinite precision is not even a measurement possibility, we arrive at 
a practical absurdity. 

If one accepts the ubiquity of chaos in the real world (experience notwith-
standing), then one is essentially driven back to pre-Socratic modalities of 
thought, where experiments were not carried out, since it was thought that 
they would not give reproducible results. Experience teaches us that, with 
few exceptions, the models we use to describe reality are only rough approx-
imations. Whenever a model is thought to describe a process completely, 
we tend to discover, in retrospect, that factors were missing, that pertur-
bations and shocks entered the picture which had not been included in the 
model. A common means of trying to account for such phenomena is to 
assume that random shocks of varying amplitudes are constantly being ap-
plied to the system. Let us, accordingly, consider a discretized noisy version 
of (8.9): 

xn = (1-f μχ,η-ι)χη-ι + Δ* 10(г/п-1 - xn-i) 
yn = (1 + My,n-i)2/n-i + Щ-хп-1Уп-\ + 28xn_i - yn_i)(8.10) 

zn = (1 + μζ,η-ι)ζη-ι + Δί Ixn-iVn-i - ö^n-i 

where the μ 's are independently drawn from a uniform distribution on the 
interval from (—τ,τ). 

We consider in Figure 8.9 the final point at the 2500th step of each of 1000 
random walks using the two initial points (0.1, 0.1, 20.1) and (—13.839, 
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—6.66, 40.289), with r = 0.0001. These two starting points are selected 
since, in the deterministic case, the end results are dramatically different. 
In Figure 8.10, we show quantile-quantile plots for the two cases. We note 
that, just as we would expect in a model of the real world, the importance 
of the initial conditions diminishes with time, until, as we see from Figures 
8.9 and 8.10, the distribution of end results is essentially independent of 
the initial conditions. 
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Figure 8.9. 10,000th step for each of 1000 time traces. 
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Figure 8.10. Quantile-quantile plots after 10,000 steps. 

8.4 Conclusions 

It is intriguing that so many scientists have been drawn to a theory which 
promises such a chaotic world that, if it were the real one, one would not 
even be able to have a conversation on the merits of the notion. Never-
theless, chaos theory should cause us to rethink aggregation to a supposed 
mean trace deterministic model. In many cases we will not get in trou-
ble if we go down this route. For example, for most of the conditions one 
would likely put in a logistic model, one would lie in the smooth part of the 
curve (i.e., before a = l + л/б)· However, as we saw in looking at the logistic 
model for a > 1+\/6, if we consider a realistic model of a population, where 
the model must constantly be subject to noise, since that is the way the 
real world operates, then if we aggregate by simulating from the stochastic 
model as we did in Figure 8.6, we still obtain smooth, sensible results, even 
after the naive discrete logistic model has failed. But, as we have seen us-
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ing two stochastic versions of examples from the work of Lorenz, there are 
times when the closed form is itself unreliable, even though the simulation-
based aggregate, proceeding as it does from the microaxioms, is not. As 
rapid computing enables us to abandon more and more the closed form, we 
will undoubtedly find that simulation and stochastic modeling expand our 
ability to perceive the world as it truly is. 

In 1993, Lorenz ([3], pp. 181—184) seriously addressed the question as 
to whether the flap of a butterfly's wings in Brazil could cause a tornado 
in Texas. He reckoned that isolation of the Northern Hemisphere from the 
Southern in its wind currents might make it impossible, but within the 
same hemisphere, it was a possibility. In 1997, ([6], p. 360), remarking 
on his view that the weather is a chaotic phenomenon, Ian Stewart wrote, 
"Forecasts over a few days, maybe a week—that's fine. A month? Not a 
hope!" 

If one listens closely to these statements, it is possible to hear the throb-
bing of the shamans' tom-toms celebrating the Festival of Unreason. Al-
ready, long-term models for the weather have been dramatically improved 
by noting the importance of driving currents in the jet stream. We now 
have the capability of forecasting whether winters will be warmer or colder 
than the norm in, say, New York. And high-frequency hurricane seasons 
are now being predicted rather well. It is large macroeffects—sunspots, 
El Nino, currents in the jet stream that drive the weather—not Brazilian 
butterflies. It is the aggregates which drive the weather. The tiny effects 
do not matter. In nature, smoothers abound, including noise itself. 

Models for the forecasting of the economy have improved as well. Happily, 
rather than throwing up their hands at the futility of developing good mod-
els for real-world phenomena, a number of scientists are constantly drawing 
upon the scientific method for learning and making forecasts better. One of 
the bizarre traits of human beings is the tendency of some to believe models 
as stand-alones, unstressed by data. In Chapter 14 it is noted how this can 
cause disaster, as in the case of the LTCM investment fund. However, some 
people refuse to look at models as having consequences for decision mak-
ing. We noted in Chapter 3 how this has characterized public health policy 
in the American AIDS epidemic. It is amazing how the same people can 
often take both positions simultaneously. For example, there are scientists 
who have worked hard to develop decision-free models for AIDS (this really 
takes some doing) and also work on trying to show how biological systems 
should be unstable (evidence to the contrary notwithstanding) as a result 
of the regions of instability in the discrete logistic model dealt with earlier 
in this chapter. 

As time progresses, it is becoming ever more clear that naturally occur-
ring realizations of mathematical chaos theory are difficult to find. The 
response of chaosticians is increasingly to include as "chaos" situations in 
which standard models for describing phenomena are being proved unsat-
isfactory or at least incomplete (see, e.g., Peters [4]). Thus, "chaos" has 
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been broadened to include "nonrobust" and "unstable." That some models 
are simply wrong and that others claim a completeness that is mistaken I 
do not question. The point being made in this chapter is that just because 
one can write down a chaotic model, it need not appear in nature, and that 
when it does, we will probably view its effects only through the mediating 
and smoothing action of noise. Moreover, a philosophical orientation that 
we should give up on forecasting the weather or the economy because some-
body has postulated, without validation, a chaotic model, is an unfortunate 
handshaking between the New Age and pre-Socratic times. 

A more complete analysis of chaos and noise is given in Thompson et alia 
[7] and Thompson and Tapia [8]. 

Problems 

8.1. Let us consider the following birth process amongst single cell organ-
isms. X is the population size, t the time, F the limiting population. 

Prob(birth in [i, t + Δί)) = .0Q1X(F - X)At. 

Starting with an initial population of 10 at time 0, simulate a number of 
population tracks using a time increment of .01 and going to a time limit 
of 20. Take the time averages of 500 such tracks. Do you see evidence of 
chaotic behavior as you change F? 

8.2. Again, consider the more general model 

Prob(birth in [t, 1+ Δί)) = aX{F - X)At 

Here a is positive, the initial population is 10. Again, you should satisfy 
yourself that, although there is considerable variation over time tracks, the 
average time track does not exhibit chaotic behavior. 

8.3. Many of the older differential equation models of real world phenom-
ena suffered from the necessity of not easily being able to incorporate the 
reality of random shocks. For example, let us consider the well known 
predator—prey model of Volterra ([5, 9]): 

ax — bxy. 

-cy + cxy. 

A simple Simpson's rule discretization works rather well: 

x{t) = x(t - Δ) + [ax(t - Δ) - bx(t - A)y{t - Δ)]Δ 
y(t) = y(t-A) + [-q/(t-A)+dx(t)y{t-A)}A. 

dx 
Έ 
dy^ 
dt 
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Here, the x are the fish and the у are the sharks. For x(0) = 10, y(0) = 1), 
a = 3, 6 = 2, с = 2, d = 1.5, Δ = .01, we show the resulting plot for the 
first 13 units of time in Figure 8.11. 
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Figure 8.11. Volterrane predator—prey model. 

Such regularity is, of course, not supported by the evidence. The system is 
certainly stable, but not so regular. Show that if you change the discretizar 
tion slightly to: 

x(t) = x(t - Δ)(1 + 10ζΔ) + [ax(t - Δ) - bx(t - A)y(t - Δ)]Δ 
y(t) = y(t-A) + [-cy(t-A) + dx(t)y(t-A)]A, 

where z is а Л/"(0,1) random variable, then the stability of the system is 
maintained, but the path is much more realistically random. 

8.4. One realization of the Henon attractor [5] is given, in discrete formu-
lation, by 

sn+1 = Уп + 1 - 1-4Яп 
ϊ/η+ι = 0.3xn. 

For the Henon attractor, as with that of Lorenz, slight differences in the 
initial conditions produce great differences in the trajectories. Examine 
this fact and then observe the effect of adding a slight amount of noise to 
the system. 

8.5. Chaos is frequently the concern of those who are worried about a data 
set somehow "on the edge" of stability. Consider, for example, a sample of 
size n from the^Gaussian Af(0,1). Then, we know that if we compute the 
sample mean X and variance Ä2, then 

o~o 
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has a t distribution with v = n - 1 degrees of freedom. For n = 2, this is 
the Cauchy distribution which has neither expectation nor variance but is 
symmetrical about zero. For n = oo, this is Λ/*(0,1). Let us consider what 
happens when we sample from t(u) adding on observations one at a time 
and computing the sequential sample mean: 

TV{N) = (N-VTv(N-l) + U,N 

(a) Give plots of Ti(N) for N going from 1 to 5000. 
(b) What happens if you throw away the 10% smallest observations and 
the 10% largest before computing Τχ(Ν) (show this for N = 10, 50, 100 
and 5000). This "trimming" is generally an easy way for minimizing the 
effects of long-tailed distributions. 
(c) The Cauchy does not occur very often in nature (although it is easy to 
design a hardwired version: Just divide a Λ^Ο, 1) signal by another M(0,1) 
signal; but that would not be a good design). Much more realistically, we 
carry out (a) but for v = 3. 
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Chapter 9 

A Primer in Bayesian 
Data Analysis 

9.1 Introduction 

Within the statistics community, there has for many years a group(we shall 
call the Religious Bayesians) who hold that all analysis should be carried 
out using Bayes1 Theorem. That is not the position of this author. Nev-
ertheless, there are many situations where Bayesian analysis is very useful. 
In this chapter, we give some examples. 

Most of the work in this chapter based on one specific data set of Gehan 
and Freireich [4]. The convergence properties of the estimation procedures 
considered in this chapter, however, apply rather broadly Those interested 
in convergence proofs are referred to Casella and George [1], Cowles and 
Carlin [2], or Tanner [6]. 

Let us consider a process in which failures occur according to an expo-
nential distribution, that is, 

F(t) = l - e x p ( - 0 t ) . (9.1) 

Thus the probability no failure takes place on or before t is given by 
exp(—0i). Then, based on an independent sample of size n, the likelihood 
is given by 

L(ß) = Π F%) = θη1[ e x p ( - 0 g = θη exp ( -Θ £ t, ] . (9.2) 

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R. 
Thompson ©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons. 
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Then, the maximum likelihood estimator of Θ can readily obtained be by 
taking the logarithm of the Ukelihood, differentiating with respect to 0, and 
setting the derivative equal to zero: 

n 

log L{6) = n log Θ - θ Σ Ь (9·3) 
3=1 

dlogL(0) ; - Σ > = 0. (9.4) 

This yields 

9Θ 0 jml 

where the {tj} represent the n failure times. 
Next, let us consider the case where one of the subjects did not yield an 

observed failure because the study ended at censoring time T. Then the 
likelihood becomes 

n - l 

L{9) = 0 n _ 1 Д exp(-ö^) Prob (subject n does not fail by T) 

n - l 

= θη~ι Дехр(-о^)ехр(-ОТ). (9.6) 

Then the log likelihood becomes 
n - l 

log L{fi) = (n - 1) log(Ö) - θ Σ tj - 0T> (9.7) 
J=I 

yielding 
θ\ = ^ 1 . (9.8) 

TTjZlb + T 

9.2 The EM Algorithm 
We note that our classical maximum likelihood estimator does not include 
any guess as to the when the nth subject might have failed had T = oo. Yet, 
the times that n-l individuals did fail does provide us with information 
relevant to guessing the nth failure time. Let us assume that our prior 
feelings as to the true value of Θ are very vague: Essentially, we will take 
any value of Θ from 0 to oo to be equally likely. Then, again, our log 
likelihood is given by 

n - l 

log Цв) = n log Θ - Θ ] T tj - 0tn. (9.9) 
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Now, the times of the n -1 failures are a matter of fact. The modal value 
of Θ and the time of the unobserved failure time £* are matters of infer-
ence. The EM algorithm is an iterative procedure whereby the hypothesized 
failure time £* can be conjectured and the log likelihood reformulated for 
another attempt to obtain a new estimate for the modal value 0. Using our 
naive maximum likelihood estimator for 0, we have that the expected value 
for £* is given by 

^ 1 - ехр(-ад (9Л0) 

= T + l. 
θι 

Substituting this value in the log likelihood, we have 

log£(0) = nlogfl - θ Σ *ji - 9 (T + i V (9.11) 

This gives us 

02 = : -, TV· (9-12) 

We then obtain a new expected value for the n'th failure time via 

*;,a = r + i ; (9.13) 

and so on. 
In fact, for the exponential failure case, we can handle readily the more 

complex situation where n of the subjects fail at times {tj}™=1 and к are 
censored at times {Ti}^Lx, The m expectation estimates for { ί * } ^ are 
given at the fcth step by {T» -f l/0fc_i}, and the log likelihood to be maxi-
mized is given by 

n l o g 0 - 0 
n—m m .. 

j = l i = l 0ft-1 
(9.14) 

Next, let us apply the EM in the analysis of the times of remission of 
leukemia patients using a new drug and those using an older modality of 
treatment. The data we use are from a clinical trial designed by Gehan 
and Freireich [4]. The database has been used by Cox and Oakes [3] as an 
example of the EM algorithm. Here we use it to examine the EM algorithm, 
data augmentation, chained data augmentation, and the Gibbs sampler. 
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| Table 9.1. Leukemia Remission Times 
1 Ranked Survival 

Г 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2lJ 

New Therapy 
¥ 
6 
6 
6 
7 
9* 
10* 
10 
11* 
13 
16 
17* 
19* 
20* 
22 
23 
25* 
32* 
32* 
34* 
35* 

Old Therapy 
^ 
1 
2 
2 
3 
4 
4 
5 
5 
8 
8 
8 
8 

11 
11 
12 
12 
15 
17 
22 
23J 

In Table 9.1, an asterisk indicates that a patient's status was known to 
be remission until the (right censored time), at which time the status of 
the patient became unavailable. There is no pairing of patients in the 
two groups. We have simply ordered each of the two sets of 21 patients 
according to time of remission. Using (9.14) recursively to obtain Θ for the 
new treatment, we have the results shown in Table 9.2. 

The average survival time using the new therapy is 1/.025, or 40 months. 
For the old therapy, average survival was only 8.67 months. So, the new 
therapy seems relatively promising. We note that in our use of the EM 
algorithm, we have not allowed our experience with the old therapy to 
influence our analysis of survival times of the new therapy. 

We have chosen to explicate the EM algorithm by the use of a relatively 
simple example. It should be noted that, like the other algorithms we shall 
explore in this chapter, it performs effectively under rather general condi-
tions. Clearly, the EM algorithm is, in fact, a data augmentation approach. 
So is the Gibbs sampler. But the name data augmentation algorithm is gen-
erally reserved for the batch Bayesian augmentation approach covered in 
the next section. 
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Table 9.1. Leukemia Remission Times 
Ranked Survival New Therapy Old Therapy 

1 6* 1 
2 6 1 
3 6 2 
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5 7 3 
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8 10 5 
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20 34* 22 
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algorithm, we have not allowed our experience with the old therapy to 
influence our analysis of survival times of the new therapy. 

We have chosen to explicate the EM algorithm by the use of a relatively 
simple example. It should be noted that, like the other algorithms we shall 
explore in this chapter, it performs effectively under rather general condi­
tions. Clearly, the EM algorithm is, in fact, a data augmentation approach. 
So is the Gibbs sampler. But the name data augmentation algorithm is gen­
erally reserved for the batch Bayesian augmentation approach covered in 
the next section. 
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1 Tfable 9.2. Iterations of EM Algorithm."] 
| Iteration 

Г 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

1 19 
20 

Θ 1 
0.082569 
0.041639 
0.032448 
0.028814 
0.027080 
0.026180 
0.025693 
0.025422 
0.025270 
0.025184 
0.025135 
0.025107 
0.025091 
0.025082 
0.025077 
0.025074 
0.025072 
0.025071 
0.025070 
0.025070 | 

9.3 The Data Augmentation Algorithm 
The EM procedure, although formally Bayesian, is, when one uses a diffuse 
prior, as we have done, an algorithm with which non-Bayesians generally 
feel comfortable. Many Bayesians, however, would be more comfortable 
with a procedure that gives the user, not simply the mode of a posterior 
distribution, but an estimate of the posterior distribution itself. 

For example, let us suppose that the density function of a random variable 
X is given by /(#;0), or, in Bayesian notation, /(x|0). The joint density 
of a sample of x's of size n is then given by 

t = l 

Generally speaking, we will be interested in making inferences about the 
parameter Θ in the light of a random sample {XJ}"=1. Before we take 
any observations, we may well have some feelings about the parameter 0. 
Seldom will these feelings be so strong as to be of the sort, "We know that 
Θ is precisely equal to 150.3741." If we were really so certain, why bother 
to collect data concerning the random variable X? It is much more likely 
that our feelings would be of the sort: "We are quite confident that Θ is 
greater than 100 but less than 250." Expressing our prior feelings in terms 
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1 0.082569 
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4 0.028814 
5 0.027080 
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7 0.025693 
8 0.025422 
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9.3 The Data Augmentation Algorithm 

The EM procedure, although formally Bayesian, is, when one uses a diffuse 
prior, as we have done, an algorithm with which non-Bayesians generally 
feel comfortable. Many Bayesians, however, would be more comfortable 
with a procedure that gives the user, not simply the mode of a posterior 
distribution, but an estimate of the posterior distribution itself. 

For example, let us suppose that the density function of a random variable 
X is given by f(Xi 9) , or, in Bayesian notation, f(xI9) . The joint density 
of a sample of x's of size n is then given by 

n II f(Xi I9). 
i=l 

Generally speaking, we will be interested in making inferences about the 
parameter 9 in the light of a random sample {Xi }j=1 . Before we take 
any observations, we may well have some feelings about the parameter 9. 
Seldom will these feelings be so strong as to be of the sort, ''We know that 
9 is precisely equal to 150.3741 ." If we were really so certain, why bother 
to collect data concerning the random variable X? It is much more likely 
that our feelings would be of the sort: "We are quite confident that 9 is 
greater than 100 but less than 250." Expressing our prior feelings in terms 
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of a prior distribution on the parameter space is not easy, for most people. 
Perhaps the major difficulty with a Bayesian approach is not on the basis 
of logic but on that of practicality. We may well have ideas about 0, absent 
any data. But it is not so easy to express these as a probability density 
function. 

One way out of the difficulty is to require that the prior density function 
be such that the functional form will be unchanged by the addition of data. 
That is, the posterior distribution will have the same functional form as 
that of the prior density. 

Let us return to the problem of exponentially distributed failure times. 
Here, we recall that 

/(ίι , ί2,. . . , ίη|0) = 0 η β χ ρ ί - 0 ^ ^ 1 . (9.15) 

Suppose that we decide to take as the prior density of 0, absent any data, 
a gamma density 

е-\вх<*ва-1 

м~-тщ— <9 I 6> 
Then 

Ε(θ) = α/λ (9.17) 
Var(0) = α/λ2. (9.18) 

It is not unreasonable to suppose that we have some notion as to our prior 
feelings as to the mean and variance of 0. These feelings enable ready 
guesses as to appropriate values of λ and a. Furthermore, we can then 
write down the joint density of 0 and the failure times as 

p(0;tut2,...,tn) = p (0 ) / (* i ,*2 , . . . , *n |0 ) 

υ = ^ - ^ e x p W - f Z ^ ) ] ( 9 1 9 ) 

If we then obtain the marginal density of ίχ, *2> · · · >*n> М$ь *2> · · · » *n), 
for example, we can obtain the posterior density of 0, via 

p(e\tut2,...,tn) = P ^ f
t 2 - · ^ . (9.20) 

Here we have 
να /ΌΟ 

M*l,t2,-,*») = Щ^ ^ " ^ β Χ ρ ^ λ + Σ ί , · ) ] ^ 

T(m + n) Xa 

Γ(α) (λ + Ε*, · ) η + α ' 
(9.21) 
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a gamma density 

Then 

E(O) 

Var(O) 

(9.16) 

(9. 17) 

(9.18) 

It is not unreasonable to suppose that we have some notion as to our prior 
feelings as to the mean and variance of e. These feelings enable ready 
guesses as to appropriate values of >. and 0'. Furthermore, we can then 
write down the joint density of 0 and the failure times as 

v 

p(0)f(tl , t2 , . . .  , tn I0) 
on+a-l >.a exp[-O(>' + L:tj)] 

r(O') 
(9.19) 

If we then obtain the marginal density of tb t2, . . .  , tn, h(tb t2, . . .  , tn) , 
for example, we can obtain the posterior density of 0, via 

(9.20) 

Here we have 

h(h, t2, · · . ,  tn) = r�:) 100 oi+m-l exp [-0(>. + L tj)] dO 

r(m + n) >.a 
(9 21) r(0') (>. + L:tj)n+a ·  . 
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Then, readily, we have 

P№ut2,...,tn)= ( A r ( ™ " + V + ° - i e x p [-θ(\ + £ t j ) ] . (9.22) 

But this density is also of the gamma form with 

and 

that is, 

where 

α * = α + η, 

and 

p(e\tut2ì..., t») = ψφγ- , (9.23) 

E(e\tut2^.^tn) = ^ = ^ ^ (9.24) 

V a r ( ö | t b t 2 , . . . , 0 = ^ = ( ^ ^ ^ (9.25) 

In the case where some of the failure times were missing as a result of 
censoring, we could use the EM algorithm to find an improved estimate of 
the mode of p(0|ti,Ì2> · · · »*n) · We shall, however, consider a strategy for 
estimating the posterior density itself, through obtaining either a knowl-
edge of the function ρ(0|£ι,£2>·.. >tn) or a pointwise (in 0) evaluator of 
i?(0|*b*2, . . . ,*n). 

Let us suppose we observe the failure times ti, t2i...,*n_m but are miss-
ing {£;}":=п-т+1> since these individuals were lost from the study at times 
{TJ}y==n_m+1. The data augmentation algorithm proceeds as described be-
low: 

Data Augmentation Algorithm 

1. Sample 9j from p(0j |*i, t2,..., tn). 

2. Generate t n _ m +i , . . . , tn from 9j ехр(—0^п_т+») (with the restriction 
tiiat tn__m+t il J-n—m+i)* 

3. Repeat Step 2N times. 

4. Compute f = 1/N E ^ i Σ?=ι *ϋ· 

5. Let Л* = λ + Г. 

6. Let a* = a + n*. 
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Then, readily, we have 

«()I ) - (,\ + Etj)n+a ()n+a_l [ ()( ' '"' )] P tI , t2, · · · , tn -
r(o + n) 

exp - A +  LJtj . 

But this density is also of the gamma form with 

and 

0* = o + n, 

that is, 

where 

and 
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the mode of p«()lh ,  t2, . . .  , tn) . We shall, however, consider a strategy for 
estimating the posterior density itself, through obtaining either a knowl­
edge of the function p«()ltl l t2, . . .  , tn) or a pointwise (in ()) evaluator of 
p«()ltl , t2' · . · '  tn) . 

Let us suppose we observe the failure times tI , t2 , . . .  , tn-m but are miss­
ing {tj}j=n-m+l ' since these individuals were lost from the study at times 
{Tj }j=n-m+1 . The data augmentation algorithm proceeds as described be­
low: 

Data Augmentation Algorithm 

1 .  Sample OJ from p(Oj ltl l t2, . . . , tn). 
2. Generate tn-m+i , . . .  , tn from OJ exp( -Ojtn-m+i) (with the restriction 

that tn-m+i � Tn-mH). 
3. Repeat Step 2N times. 

4. Compute T = liN E!l E;=l tji . 
5. Let '\* = ,\ + T. 
6. Let 0* = a + n*. 
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7. Then the new iterate for the posterior distribution for Θ is given by 

- - ' λ · (λ · ) β >· - 1 

Ρ ( 0 | * 1 , * 2 , . . · , * η ) = Γ(α*) 

8. Return to Step 1, repeating the cycle M times or until the estimates 
λ* and a* stabilize. 

For the first pass through the cycle, we use for p(0|£i,Ì2> · · · ̂ η)» simply 
the prior density for 0, ρ(θ). Typically, N is quite large, say on the order 
of 1000. Again, typically, we will go through the repeat cycle until the 
estimates of the posterior distribution for Θ stabilize. 

We note that, unlike the EM algorithm, there is no maximization step in 
data augmentation, rather a series of expectations. It is interesting to note 
that under rather general conditions, data augmentation does stabilize to 
a "fixed point" (in function space) under expectation iterations. 

Let us consider using the data augmentation algorithm on the remission 
data for the new treatment in Table 9.1. First of all, we need to ask 
whether there is a reasonable way to obtain the parameters for the gamma 
prior distribution of Θ. In clinical trials, there is generally the assumption 
that the newer treatment must be assumed to be no better than the old 
treatment. So, in this case, we might consider obtaining estimates of the 
two parameters by looking at the data from the older (control) therapy. 
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Figure 9.1. Resampled values of Θ. 
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Let us use a simple bootstrap approach to achieve this objective. Sam-
pling with replacement 5000 times from the 21 control remission times (we 
have used the Resampling Stats package [5], but the algorithm can easily 
be programmed in a few lines of Fortran or С code). Now, for each of the 
runs, we have computed an estimate for 0, which is simply the reciprocal 
of the average of the remission times. A histogram of these remission times 
is given in Figure 9.1. 

For the control group, the bootstrap average of Θ is .11877 and the vari-
ance is .00039018. Then, from (9.17) and (9.18), we have as estimates for λ 
and a, 304.40 and 36.15, respectively. Returning to the data from the new 
drug, let us use JV = 1000. * After 400 simulations, we find that 

400 12 

f = 1/400 Σ Σ tji = 539.75 (9.26) 
t= l j = l 

a* = 36.15 + 21 = 57.15 

A* = 304.4 + 539.75 = 844.15. (9.27) 

Computing the posterior mean and variance of 0, we have 

E[9\T) = 2 - = .0677; 
A* 

Var(0|f ) = -~2 = .0000802. (9.28) 
A 

Essentially, we can approximate the posterior distribution of Θ as being 
Gaussian with mean .0677 and variance .0000802. 

It seems that waiting for such a large number (1000) of simulations to 
update our estimates for λ* and a* may be somewhat inefficient. Above 
we have used JV = 1000 and M = 400. 

Now, we need not use a large value for JV in the generation of plausible 
in_m +j · . In fact, by using a large value for JV, we may be expending a 
large amount of computing time generating tn-m+b*n-m+2>·· ·*η values 
for Θ values generated from posterior distribution estimates which are far 
from the mark. Let us go through the data augmentation algorithm with 
JV = 50 and M = 10,000. 2 This requires approximately the same number 
of computations as the first run (JV = 1000 and M = 400) run. We now 
have the estimates for the posterior mean and variance of Θ being .06783 
and .0000848, respectively. Clearly, the use of a smaller value for JV has not 
changed our estimate for the parameters for the posterior distribution of Θ. 
In Figure 9.2, we show a histogram of the Θ values generated for the 10,000 

xThe author wishes to thank Patrick King and Mary Calizzi for the computations in 
the first data augmentation run. 

2 The author wishes to thank Otto Schwalb for the computations and graphs in the 
balance of this chapter. 
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runs. On this, we superimpose two Gaussian distributions with variance 
.0000802, one centered at the mean of the generated 0's and the other at 
the median. 

Figure 9.2. Histogram of Θ. 

It could be argued that we might, in fact, advocate recomputing our 
guess as to the true posterior distribution after each generation of a set 
of missing values. This is the chained data augmentation algorithm. We 
note that, now, when we go from Step 1 to Step 8, we "transit" from one 
value of Θ to another. We also observe the one step memory of the process. 
Knowing p(ej\tiJt2i. · ·, tn) is sufficient to generate £ n _ m + i , . . . , tn, which, 
in turn, is sufficient to generate p(0j+i|*b*2i · · · >C;)· Thus, the chained 
data augmentation algorithm is Markovian. And, clearly, the more general 
data augmentation algorithm is Markovian as well. In the present example, 
using N = 1 (i.e., the chained data augmentation algorithm) took less than 
5% of the running time of the data augmentation algorithm with N = 1000 
and M = 400 (with essentially the same results). 

At the level of intuition, it would appear that the only reason to use an N 
greater than 1 would be to guarantee some sort of stability in the estimates. 
It turns out that this is not necessary, and this fact leads us immediately to 
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runs. On this, we superimpose two Gaussian distributions with variance 
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It could be argued that we might, in fact, advocate recomputing our 
guess as to the true posterior distribution after each generation of a set 
of missing values. This is the chained data augmentation algorithm. We 
note that, now, when we go from Step 1 to Step 8, we "transit" from one 
value of 8 to another. We also observe the one step memory of the process. 
Knowing p(8j ltl ' t2 , . . . , tn) is sufficient to generate tn-mH, '  . .  , tno which, 
in turn, is sufficient to generate P(OHt lt t ,  t2 , '  . .  , t�j) '  Thus, the chained 
data augmentation algorithm is Markovian. And, clearly, the more general 
data augmentation algorithm is Markovian as well. In the present example, 
using N = 1 (Le., the chained data augmentation algorithm) took less than 
5% of the running time of the data augmentation algorithm with N = 1000 
and M = 400 (with essentially the same results) . 

At the level of intuition, it would appear that the only reason to use an N 
greater than 1 would be to guarantee some sort of stability in the estimates. 
It turns out that this is not necessary, and this fact leads us immediately to 
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the dominant simulation-based paradigm by which orthodox Bayesians deal 
with missing values, namely, the Gibbs Sampler, which subject we address 
in the following section. 

9.4 The Gibbs Sampler 

Next, let us consider the situation where we decide to model failure times 
according to the normal distribution 

/ ( i l , Ì 2 , . . . , Ì n | / i , f t 2 ) -(£) 
n/2 

exp -5fc2E(*i-rta 

j = l 

(9.29) 

where both μ and h2 = l/σ2 are unknown. We start with a data set consist-
ing of failure times ti,*2>· · · > tn-m but are missing tn_m+i, tn_m+2, · · · > *n· 
For the most recent estimates for μ and h2 we shall generate surrogates for 
the m missing values from a Gaussian distribution, with these estimates 
for μ and h2 imposing the restriction that we shall, in the generation of 
tn-m+jj say, discard a value less than the censoring time Tn_m+J. 

The natural conjugate prior here is 

p(ß,h2\M',V',n'y) 

= if exp - i f tV(M-M') 2 V^^p[-\h2V'i/\{h2)v'l2-\ (9.30) 
4b 

where if is a constant of integration. (We shall, in the following, use К 
generically, i.e., one symbol, К will be used for all constants of integration.) 
Let 

i n 

n *—i M 
n. 

i=l 
i/ = n — 1 

v = l±(u-M)2. 
i=l 

Then the posterior distribution is given by 

pfa,h2\M",V",n"y') 

= if exp 

where 

~Η2η"(μ-Μ")2 s/h? exp ~(h2)V"i/> (Ла) 2\ι/"/2-1 , (9.31) 

n = nf + n 
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(9.29) 

where both /J. and h2 = 1/u2 are unknown. We start with a data set consist­
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tn-m+j , say, discard a value less than the censoring time Tn-m+j . 

The natural conjugate prior here is 

p(/J., h2 1M' , V', n', v') 

(9.30) 

where K is a constant of integration. (We shall, in the following, use K 
generically, i.e., one symbol, K will be used for all constants of integration.)  
Let 

Then the posterior distribution is given by 

p(/J., h2 1 Mil, V", nil, v") 

= K exp [-�h2nll(/J. - MII)2] v'Ji2 exp [-�(h2)VIIVIl] (h2)"" /2-1 , (9.31) 

where 

nil = n' + n 
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M" = —MM' + nM) 
n" 

v" = у1 + (n - 1) + 1 

V" = 47[^ V , + n'M,2) + (ί/Vr + r ι M 2 - n , , M , , 2 ) ] · 

Immediately, then, we have the possibility of using the chained data aug-
mentation algorithm via 

1. Generate (μ,ή2) from ρ(μ,/ι2| M",^",n",i/'). 

2. Generate {tn-m+jYjLi from 

/ f t 2 \ 1/2 
/(in_m+i|Ax,/i2)=(^—J exp -h2(t M)2 

where £n-m+i > Γ. 

3. Return to Step 1. 

Such a strategy is rather difficult to implement, since it requires the 
generation of two-dimensional random variables (μ,Λ2). And we can well 
imagine how bad things can get if the number of parameters is, say, four or 
more. We have seen in Chapters 1 and 2 that multivariate random num-
ber generation can be unwieldy. There is an easy way out of the trap, as it 
turns out, for according to the Gibbs sampler paradigm, we simply generate 
from the one-dimensional distributions of the parameters sequentially, con-
ditional upon the last generation of the other parameters and the missing 
value data. Let us see how this is done in the case of the current situation. 

The posterior density for h2 (conditional on the data including the sur-
rogates for the missing failure times) is given by 

Ph2(h2\V",v")=Kexp (-*?> /2 -1 (9.32) 

We may then obtain the conditional density for μ given h2 and the data by 

Ρμί»(μ\Η2,Μ",ν",η",ν") = 
ρ(μ,Η2\Μ",ν",η",ν") 

p(h2\V",v") 

- ί / ι 2 η"(μ-Μ") 2 = AT exp . (9.33) 

Similarly, the posterior density for μ (conditional on the data including the 
surrogates for the missing failure times) is given by 

ρμ(μ\Μ",η"Χ',ι/') = Κ и | ( М - М " ) У 
V" 

-(""+D/2 
(9.34) 
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imagine how bad things can get if the number of parameters is, say, four or 
more. We have seen in Chapters 1 and 2 that multivariate random num­
ber generation can be unwieldy. There is an easy way out of the trap, as it 
turns out, for according to the Gibbs sampler paradigm, we simply generate 
from the one-dimensional distributions of the parameters sequentially, con­
ditional upon the last generation of the other parameters and the missing 
value data. Let us see how this is done in the case of the current situation. 

The posterior density for h2 (conditional on the data including the sur­
rogates for the missing failure times) is given by 

(9.32) 

We may then obtain the conditional density for JL given h2 and the data by 

( Ih2 M" V" " If) P,.lh2 JL , , , n ,  v = p(JL, h2 1 M", V", n", v") 
p(h2 IV", v") 

= K exp [-�h2n"(JL - M")2] . (9.33) 

Similarly, the posterior density for JL (conditional on the data including the 
surrogates for the missing failure times) is given by 

[ ( M")2 "] -(v"+l)/2 
p,.(JLIM", n", V", v") = K v" + JL -

V" 
n 

(9.34) 
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We may then find the conditional distribution for h2 given μ and the data 
by 

ρ(μ,Κ2\Μ",ν",η",ν") (9.35) 
ρμ(μ|Μ",η",ν7 ',ι/") 

In summary, the missing failure times are generated from a normal distri-
bution with the current estimates of mean = μ and variance = \/h2. μ, 
conditional on the generation both of data including missing values for fail-
ures and Λ2, is generated from a normal distribution with mean M" and 
variance 1/ (h2n"). h2, conditional on the data and pseudodata and μ, is a 
X2 variable with v" +1 degrees of freedom divided by η"{μ - M")2 + V"v". 
Clearly, such one-dimension-at-artime samplings are extremely easy. 

Let us suppose we observe the failure times ti, £г> · - · 9 tn-m but are miss-
ing {fy}y=n_m+i» since these individuals were lost from the study at times 
{2}}£=п-т+1· The Gibbs sampler algonthm proceeds thusly: At the start, 
we shall set M" = M\ V" = V, η" = η', Vм = V. 

1. Generate μ from ρμ(μ|Μ", n", V", i/"). 

2. Generate h2 from Vh*{h2\V"v"). 

3. Generate {£n-m+j}/Li from 

h2 fh2\1'2 

/(tn_m+>,h2)=^—J exp о (*n-m4-j A*) 

where £n_m+j > T. 

4. Return to Step 1. 

By simply recording all the μ and h2 (hence σ2), recorded in sequence of 
generation, over, say, 10,000 iterations, we can obtain a histogram picture 
of the joint posterior density for (μ,/ι2). 

We can do more. Suppose that 

M" = Ave{M"} 
V" = Ave{V"}. 

Then we have 

ρ(μ, Л2 |*Ь*2, . . · , in) « Ρ(μ, h2\M», V», n", v"). (9.36) 
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By simply recording all the J1. and h2 (hence (1'2) ,  recorded in sequence of 
generation, over, say, 10,000 iterations, we can obtain a histogram picture 
of the joint posterior density for (J1.,h2) .  

We can do more. Suppose that 

Then we have 

M" Ave{M"} 

V" = Ave{V"} . 

(9.36) 
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9,000 Drawl of <u,h2) wtoComounfrrepU.HM'-lSm.V'-lwmn··-«!.^·-· 33.89) Sqngnpo·«) 

Figure 9.3. Posterior draws of (μ,Λ2) 

For the Gehan—Freireich data, we have n = 21. Using the control group 
to obtain the initial parameters of the prior, we have M' = 8.667, via a 
bootstrap sample of size 5000. Looking at the reciprocals of the variances 
of 5000 bootstrap samples of size n' = 21 from the control group, we have 
E(h) = .028085 and Var(/i) = .00012236. This gives 

V = 
E{h) 

= 35.606 

,E{hf 
JVar(/i) 

= (.028085)^ 
.00012236 

Performing 10,000 samples of μ and h generated one after the other (with 
the first 1000 discarded to minimize startup effects), we arrive at 

M" 
V" 
n" 
v" 

= 

= 
= 

= 

15.716 

179.203 

n' + n = 42 
12.89 + 21n = 33.89 

The results of these samplings of (μ, ft2) are shown in Figure 9.3. The 
marginal histograms of μ and ft2 are given in Figures 9.4 and 9.5 respec-
tively. 
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Figure 9.3. Posterior draws of (JL,h2) 

For the Gehan-Freireich data, we have n = 21. Using the control group 
to obtain the initial parameters of the prior, we have M' = 8.667, via a 
bootstrap sample of size 5000. Looking at the reciprocals of the variances 
of 5000 bootstrap samples of size n' = 21 from the control group, we have 
E(h) = .028085 and Var(h) = .00012236. This gives 

v' 

v' = 

1 
E(h) = 35.606 

2 
E(h)

2 
= 2 

(.028085)2 
= 12.89. 

Var(h) .00012236 

Performing 10,000 samples of JL and h generated one after the other (with 
the first 1000 discarded to minimize startup effects) , we arrive at 

Mil = 15.716 
V" 179.203 

nil = n' + n =  42 
v" = 12.89 + 21n = 33.89. 

The results of these samplings of (JL, h2) are shown in Figure 9.3. The 
marginal histograms of JL and h2 are given in Figures 9.4 and 9.5 respec­
tively. 



THE GIBBS SAMPLER 223 

Figure 9.4. Posterior draws of μ. 

Figure 9.5. Posterior draws of ft2. 
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By way of comparison with the earlier data augmentation approach taken 
in Figure 9.4, in Figure 9.6, we show a histogram taken from the values of 
450 but coded as Θ = l/μ. We note that Figure 9.4 and Figure 9.6 are 
essentially the same. The average survival posterior mean for the survival 
time, in both cases is roughly 15.7 months. 

Figure 9.6. Posterior draws of 1/μ 

9.5 Conclusions 

We have noted that the data augmentation and the Gibbs sampler proce-
dures employed both give, for the new treatment, approximately the same 
posterior mean (15.7 months) for the average survival time. This value is 
roughly twice as long as the average survival time for the old treatment 
(8.7 months). But in the case of the EM algorithm, our estimate for the 
average survival time was a much more optimistic 40 months. What is the 
reason for the discrepancy? 

The discrepancy occurs because in the data augmentation and Gibbs 
sampler procedures, we elected to use a prior distribution for the parameters 
of interest which was obtained from data using the old treatment. In the EM 
algorithm, on the other hand, we used a "noninformative" prior distribution 
(i.e., one with a very large variance). 
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9.5 Conclusions 
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We have noted that the data augmentation and the Gibbs sampler proce­
dures employed both give, for the new treatment, approximately the same 
posterior mean (15.7 months) for the average survival time. This value is 
roughly twice as long as the average survival time for the old treatment 
(8.7 months) . But in the case of the EM algorithm, our estimate for the 
average survival time was a much more optimistic 40 months. What is the 
reason for the discrepancy? 

The discrepancy occurs because in the data augmentation and Gibbs 
sampler procedures, we elected to use a prior distribution for the parameters 
of interest which was obtained from data using the old treatment. In the EM 
algorithm, on the other hand, we used a "noninformative" prior distribution 
(Le. , one with a very large variance) . 
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Philosophically, some Bayesians would object to our utilization of the 
results from the old treatment to estimate the parameters of the prior 
distribution for the new treatment. It could be argued that such a step 
was unduly pessimistic and smacked of an underlying frequentist mindset 
whereby the prior distribution was formed with a de facto null hypothesis 
in mind, namely that the new therapy produced no better average survival 
times than the old. A Bayesian statistician would probably prefer to con-
sult a panel of advocates of the new treatment and using their insights, 
attempt to obtain the parameters of the appropriate prior distribution. 

In the long run, after the new treatment has been employed on many in-
dividuals, it will not make much difference what (nondegenerate) prior dis-
tribution we elected to use. But a standard Bayesian claim is that Bayesian 
techniques enable a more rapid change from a less effective to a more effec-
tive procedure. In the case considered here, we have used what Bayesian 
would consider a rather pessimistic prior. This is unusual in Bayesian anal-
ysis. Most Bayesians would tend to use a prior no more pessimistic than 
the noninformative prior which we used in the case of the EM algorithm. 
And such a prior is generally roughly equivalent to a standard nonBayesian, 
frequentist approach. Thus, there is kind of practical bias in favor of the 
new therapy in most Bayesian analyses. If there is physician opinion in-
dicating the new treatment is much better, then that is incorporated into 
the prior. But, absent good news, the statistician is supposed to default 
to a noninformative prior. That may indeed give a running start to those 
wishing to change the protocol. 

In the problems, we give examples of a variety of possible prior assump-
tions which might be used. 

Problems 

9.1. Consider the situation where a random variable X has the normal 
distribution ΛΓ(ο, 1) and Θ has the normal distribution JV(0,1). Create a 
sample of size 1000 by first sampling a Θ and then an X 1000 times. 
(a) Create a two-dimensional histogram of (0, X). 
(b) Create a one-dimensional histogram of the marginal density of X. 
(c) Find explicitly the marginal density of X. 
9.2. We recall that a Poisson random variable has the probability function 

Suppose that Θ has the exponential density 

f{9) = е~Чотв>0 
= 0 for0<O. 

Generate first a 0, then an X. Do this 1000 times. 
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Problems 

9.1.  Consider the situation where a random variable X has the normal 
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()x 
P(X) = e-8 

Xl
. 

Suppose that () has the exponential density 

I(()) e-8 for () � 0 

= 0 for () < o. 

Generate first a (), then an X. Do this 1000 times. 
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(a) Show a two-dimensional histogram of (Θ,Χ). 
(b) Create a one-dimensional histogram of the probability function of X. 
(c) Find the one-dimensional probability function of X. 

The time that it takes for a member of a group of small inner city businesses 
in a particular city to develop credit problems seems to be short. The lend-
ing agency is considering making an attempt to increase the time to failure 
by giving companies free counseling at monthly intervals. Two subgroups 
of size 25 each have their times until first credit difficulty recorded. The 
members of the first group (A) do not receive the counseling. The mem-
bers of the second group (B) do. Below, we show the results of the first 
two years. The times (in months) till time of first credit problem are given 
in Table 9.3. 

Table 9.3. 
Time Until First Credit Problem 
Rank | 

Г 
2 
3 
4 
5 
6 
7 

1 8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Group A 

5 
1 
1 
1 
1 
1 
2 
2 
2 
3 
5 
5 
7 
7 
8 
9 

10 
11 
12 
14 
15 
20 
24* 
24* 
24* 

Group В 
1 
1 
1 
4 
4 
4 
5 
5 
6 
7 
8 
8 

10 
11 
12 
12 
14 
16 
24* 
24* 
24* 
24* 
24* 
24* 
24* 

9.3. Assuming that the time to first problem is exponentially distributed, 
use the EM algorithm to estimate ΘΑ and ΘΒ· 

9.4. One useful Bayesian approach in deciding whether to make the coun-
seling a standard protocol would be to compute the posterior distributions 
of ΘΑ and ΘΒ- DO this, utilizing the data augmentation algorithm developed 
in Section 9.3. 
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(a) Show a two-dimensional histogram of (O, X). 
(b) Create a one-dimensional histogram of the probability function of X. 
(c) Find the one-dimensional probability function of X. 

The time that it takes for a member of a group of small inner city businesses 
in a particular city to develop credit problems seems to be short. The lend­
ing agency is considering making an attempt to increase the time to failure 
by giving companies free counseling at monthly intervals. Two subgroups 
of size 25 each have their times until first credit difficulty recorded. The 
members of the first group (A) do not receive the counseling. The mem­
bers of the second group (B) do. Below, we show the results of the first 
two years. The times (in months) till time of first credit problem are given 
in Table 9.3. 

Table 9.3. 
Time Until First Credit Problem 
Rank Group A Group B 

1 0 1 
2 1 1 
3 1 1 
4 1 4 
5 1 4 
6 1 4 
7 2 5 
8 2 5 
9 2 6 

10 3 7 
1 1  5 8 
12 5 8 
13 7 10 
14 7 1 1  
1 5  8 12 
16 9 12 
17 10 14 
18 1 1  16 
19 12 24* 

20 14 24* 
21 15 24* 

22 20 24* 
23 24* 24* 
24 24* 24* 

25 24* 24* 

9.3. Assuming that the time to first problem is exponentially distributed, 
use the EM algorithm to estimate () A and 0 B .  

9.4. One useful Bayesian approach in deciding whether to make the coun­
seling a standard protocol would be to compute the posterior distributions 
of 0 A and () B. Do this, utilizing the data augmentation algorithm developed 
in Section 9.3. 
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9.5. Next, let us consider the situation where we decide to model failure 
times according to the normal distribution 

j=l J 

where both μ and h2 = Ι/σ2 are unknown. Using the approach in Section 
9.4, obtain Gibbs sampler estimates for the posterior distributions of (μ^, 
h\) and (μβ , h%). 

9.6. As has been mentioned earlier in this chapter, the results for finding 
an estimate for Θ in the case of the Gehan—Freireich leukemia data are 
similar for the data augmentation and the Gibbs sampler procedures. But 
these results are quite different from those obtained by the use of the EM 
algorithm. This would appear to be due to the fact that in the case of 
our data augmentation and Gibbs sampler analyses we have used a prior 
distribution based on the survival results of the old therapy. Moreover, the 
sample size of the old therapy was the same as that of the new therapy. We 
noted that the bootstrap estimate for Θ based on the old therapy was .11877. 
The EM estimate for Θ was .02507. The average of these two estimates is 
.07192, a figure which is roughly similar to the estimate we obtained with 
data augmentation, .0677. It could be argued, therefore, that by using the 
old procedure to obtain a prior density for 0, we have blended the good 
results of the new therapy with the poorer results of the old therapy. 

We recall from equation (9.22) that the posterior distribution of Θ is given 
by 

6-θλ'/χ*\α'θα'-1 
P(*|tl,t2,.··,*») = γφ-} , 

where 

£(0 | ί ΐ , ί 2 , . . . , ίη) = ^ = χ ^ -

and 

V a r ( ^ 1 ' t 2 ' - ' t " ) = ( ^ = ( A + X> J ) 2 · 

Suppose that we decide to use our resampled value of the prior distribu-
tion's mean using the data from the old therapy (.11877), but decide that 
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would look much more like those obtained by the EM algorithm. Is this 
the case? 
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Chapter 10 

Multivariate and Robust 
Procedures in Statistical 
Process Control 

10.1 Introduction 

In terms of its economic impact, statistical process control (SPC) is among 
the most important topics in modern statistics. Although some statisticians 
(see, e.g., Banks [2]) have considered SPC to be trivial and of scant impor-
tance, the market seems to have reacted quite differently. For example, the 
American Society for QuaUty is vastly larger in its membership than the 
American Statistical Association. It is clear is that SPC is not going away, 
even should many professional statisticians continue in their disdain for it. 

At the end of the World War II, Japan was renowned for shoddy goods 
produced by automatons living in standards of wretchedness and resignar 
tion. W. Edwards Deming began preaching the paradigm of statistical 
process control (originally advocated by Walter Shewhart) in Japan in the 
early 1950s. By the mid 1960s, Japan was a serious player in electronics 
and automobiles. By the 1980s, Japan had taken a dominant position in 
consumer electronics and, absent tariffs, automobiles. Even in the most 
sophisticated areas of production, such as computing, the Japanese had 
achieved a leadership role. The current situation of the Japanese workers 
is among the best in the world. A miracle, to be sure, and one far beyond 
that of, say postwar Germany, which was a serious contender in all levels 
of production before World War II. 

0 Empirical Model Building: Data} Modeling, and Reality, Second Edition. James R. 
Thompson ©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons. 
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There is little doubt that the SPC paradigm facilitated these significant 
changes in Japanese production. Nevertheless, SPC is based on some very 
basic notions: 

• The key to optimizing the output of a system is the optimization of 
the system itself. 

• Although the problem of modifying the output of a system is fre-
quently one of linear feedback (easy), the problem of optimizing the 
system itself is one of nonlinear feedback (hard). 

• The suboptimalities of a system are frequently caused by a small num-
ber of assignable causes. These manifest themselves by intermittent 
departures of the output from the overall output averages. 

• Hence, it is appropriate to dispense with complex methods of system 
optimization and replace these by human intervention whenever one 
of these departures is noted. 

• Once an assignable cause of suboptimality has been removed, it sel-
dom recurs. 

• Thus, we have the indication of an apparently unsophisticated but, 
in fact, incredibly effective, paradigm of system optimization. 

Perhaps there is a valid comparison between Shewhart and Adam Smith, 
who had perceived the power of the free market. But there appears to be no 
single implementer of the free market who was as important in validating 
The Wealth of Nations as Deming has been in validating the paradigm of 
statistical process control. There has never been, in world history, so large 
scale an experiment to validate a scientific hypothesis as Deming's Japanese 
validation and extension of the statistical process control paradigm of Dem-
ing and Shewhart. 

It is not our intention to dwell on the philosophy of SPC. That topic has 
been extensively dealt with elsewhere (see, e.g., Thompson and Koronacki 
[9]). We will develop here a modeling framework for SPC and then indicate 
natural areas for exploration. Both Shewhart and Deming held doctor-
ates in mathematical physics, so it is reasonable to assume that there was 
some reason they did not resort to exotic mathematical control theory type 
strategies. In Figure 10.1 we indicate a standard feedback diagram for 
achieving the desired output of a system. 
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One might pose this as an optimization problem where we desire to mini-
mize, say 

/ [output(i) - target^)]2 at, (10.1) 

Such a problem is generally linear and tractable. 
However, the task of SPC is not to optimize the output directly, but 

rather, to achieve optimization of the system itself. Generally, such an 
optimization is an ill-posed problem. At some future time, artificial intelli-
gence and expert systems may bring us to a point where such problems can 
be handled, to a large extent, automatically. But Shewhart and Deming 
lacked such software/hardware (as we all still lack it). So they resorted to 
a piecewise (in time) control strategy based on human intervention (cf. [3] 
and [5]). 

10.2 A Contamination Model for SPC 

It is paradoxical that W. Edwards Deming, one of the most important 
statistical figures of all time, never really published a model of his paradigm 
of statistical process control (SPC). Deming rightly argued that the key to 
quality control of an industrial product was to understand the system that 
produced it. But, in the case of the SPC paradigm itself, he was rather 
didactic, like the Zen masters of Japan, the country whose economy and 
standard of Uving he did so much to improve. Careful analysis of Deming's 
paradigm led Thompson and Koronacki to their model-based analysis of 
the SPC system [9]. 

To understand one of the key aspects of SPC, let us first of all assume 
that there is a "best-of all-possible -worlds" mechanism at the heart of the 
process. For example, if we are turning out bolts of 10-cm diameter, we 
can assume that there will be, in any lot of measurements of diameters, 
a variable, say XQ, with mean 10 and a variance equal to an acceptably 
small number. When we actually observe a diameter, however, we may not 
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be seeing only Xo but a sum of Xo plus some other variables which are 
a consequence of flaws in the production process. These are not simply 
measurement errors but actual parts of the total diameter measurements 
which depart from the "best of all possible worlds" distribution of diameter 
as a consequence of imperfections in the production process. One of these 
imperfections might be excessive lubricant temperature, another bearing 
vibration, another nonstandard raw materials, and so on. These add-on 
variables will generally be intermittent in time. This intermittency enables 
us to find measurements which appear to show "contamination" of the basic 
production process. We note how different the situation would be without 
the intermittency, if, say, an output variable were the sum of the "best of 
all possible worlds" variable Xo and an "out of control" variable X\. Then, 
assuming both variables were Gaussian, the output variable would simply 
have the distribution λί(μο-\-μι, σ§+σ\ ) , and the SPC control charts would 
not work Perhaps the greatest statistical contribution of Shewhart was 
noting the general presence of intermittent contamination in out-of-control 
systems. 

It is important to remember that the Deming—Shewhart paradigm of 
SPC is not oriented toward the detection of faulty lots. Rather, SPC seeks 
for atypical lots to be used as an indication of epochs when the system 
exhibits possibly correctable suboptimalities. If we miss a bad lot or even 
many bad lots, that is not a serious matter from the standpoint of SPC. 
If we are dealing with a system that does not produce a sufficiently low 
proportion of defectives, we should use 100% end inspection, as we note 
from the following argument frequently referred to as Deming's Theorem: 

Let a be the cost of passing a bad item. 
Let b be the cost of inspecting an item. 
Let x be the proportion of items inspected. 
Let у be the proportion of bad items. 
Let N be the number of items produced. 

Then the cost of inspecting some items and not inspecting others is given 
by 

С = bxN + ay(l - x)N 

= (b - ay)xN + ayN. 

Clearly, then, if ay > ò, we should inspect all the lots. (If ay < 6, we should 
inspect none.) Thus, from a sampUng end product cost model, we should 
sample all or none. 

End-product inspection is really not SPC but quality assurance. Most 
companies use some sort of quality assurance. SPC, however, is different 
from quality assurance. In fact, the experience of Thompson and Koronacki 
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when implementing SPC in a number of factories in Poland was that it was 
better to leave the quality assurance (a.k.a. quality control) groups in place 
and simply build up new SPC departments. 

Now, for SPC, we simply cannot have the alarms constantly ringing, or 
we shall be wasting our time with false alarms. Accordingly, in SPC, we 
should be interested in keeping the probability of a Type I error small. 
Thus, the testing rules in control charting are typically of the type 

P[declaring "out of control" | in control] = 0.002. (10.2) 

With such conservatism we may well find an out-of-control situation later 
rather than sooner. However, we shall tend to avoid situations where the 
alarms are always ringing, frequently to no good purpose. And by the 
theory of SPC, suboptimalities, if missed, will occur in the same mode 
again. 

Proceeding with the contamination model, let us assume that the random 
variables are added. In any lot, indexed by the time t of sampling, we will 
assume that the measured variable can be written as 

к 

г = 1 

where Xi comes from distribution Fi having mean μ* and variance σ?, г = 
1,2,..., к. and indicator 

Ii(t) = 1 with probability pi 
= 0 with probability 1 - p*. (Ю.4) 

When such a model is appropriate, then, with к assignable causes, there 
may be in any lot, 2k possible combinations of random variables contribut-
ing to У. Not only do we assume that the observations within a lot are 
independent and identically distributed, we assume that there is sufficient 
temporal separation from lot to lot that the parameters driving the Y pro-
cess are independent from lot to lot. Also, we assume that an indicator 
variable U maintains its value (0 or 1) throughout a lot. Let X be a collec-
tion from i e 1,2,..., fc. Then 

Υ(ί) = Χ0 + ΣΧ* w i t h Probability (Црг) ( Ш 1 " ^ ) ) · (10·5) 

Restricting ourselves to the case where each distribution is Gaussian (nor-
mal), the observed variable Y(t) is given by 

Y(t) = ΛΓ(μ0 + Χ;^ σ ο + Σ σ Π ' (10·6) 
\ i€i iex / 

with probability \Y\pi I TT (1 - Pi) 
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Moreover, it is a straightforward matter to show that 

E(Y) = /io + X > i / i t (10.7) 

к к 
Var(F) = σ0

2 + Σ><7? + Σ>(1-ρ,)/ζ?. 
i = l i = l 

A major function of the Shewhart control chart is to find epochs of time 
which give lots showing characteristics different from those of the "in con-
trol" distribution. We note that no assumption is made that this dominant 
distribution necessarily conforms to any predetermined standards or toler-
ances. Deming proposes that we find estimates of the dominant μο and 
σ§ and then find times where lots significantly depart from the dominant. 
Personal examination of what was unusual about the system when the un-
usual lot was observed enables us to search for the "assignable cause" of 
the trouble and fix it. Not a particularly elegant way to proceed perhaps, 
but plausible prima facie and proved amazingly effective by experience. 

Consider the flowchart of a production process in Figure 10.2. (For rear 
sons of simplicity, we shall neglect effects of time delays in the flow). 
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Figure 10.2. Simple flowchart of production. 

When Deming writes of statistical process control imparting "profound 
knowledge," he is not resorting to hype or boosterism. On the contrary, this 
"profound knowledge" is hardnosed and technical. At a very early stage in 
the optimization process of SPC, we are urged to draw a flowchart of the 
production process. In many cases, that very basic act (i.e., the composi-
tion of the flowchart) is the single most valuable part of the SPC paradigm. 
Those who are not familiar with real industrial situations might naively 
assume that a flowchart is composed long before the factory is built and 
the production begins. Unhappily, such is not the case. To a large extent, 
the much maligned ISO 9000 protocol for selling goods in the European 
Economic Community is simply the requirement that a manufacturer write 
down a flowchart of his or her production process. 

The SPC flowchart continually monitors the output of each module and 
seeks to find atypical outputs at points in time that can be tracked to a 
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The SPC flowchart continually monitors the output of each module and 
seeks to find atypical outputs at points in time that can be tracked to a 
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particular module. This module is then considered as a candidate for imme-
diate examination for possible suboptimalities, which can then be corrected. 
The SPC flowchart approach will respond rather quickly to suboptimalities. 
Let us consider an example. 

First of all, let us suppose that in Figure 10.2, the output of module 2 
is an aqueous solution where the key measure of Z2 is the exiting concen-
tration of compound A from module 2. We note that Z9 is the measured 
strength of compound В from module 9. In module 10, a compound AB is 
produced, and the output variable Zio is the strength of that by-product 
compound. Let us suppose that the end product Z14 is the measured re-
flectivity of a strip of metal. Clearly, the system described above may be 
one of great complexity. A primitive quality assurance paradigm would 
simply examine lots of the end product by looking at lot averages of Z14 
and discarding or reworking lots which do not meet specification standards. 
If the output is our only measured variable, then any notion of correcting 
problems upstream of Z14 is likely to be attempted by a uniform harangue 
of the personnel concerned with the management of each of the modules 
"to do better" without any clue as to how this might be done. 

The philosophy of Deming's SPC suggests that we would do much better 
to find the source of the defect in the system so that it can be rectified. 
This will be achieved by monitoring each of the intermediate output values 
Zi, Z2 , . . . , Z14. Simply looking at Z14 will not give us an indication that, 
say, there is a problem with the control of Zio. This is an example of the 
truism that "you cannot examine quality into a system." 

Let us recall the Maxim of Pareto: г The failures in a system are usually 
the consequence of a few assignable causes rather than the consequence of a 
general malaise across the system. Suppose that we make the following fur-
ther extension of this Maxim: the failures in a module are usually bunched 
together in relatively short time epochs, where contamination intervenes, 
rather than being uniformly distributed across the time axis. Thus, we are 
postulating that there will be periods where misfunctioning in a flawed 
module will be particularly prominent. Statistical process control gives us 
a simple means for searching for atypical epochs in the record of observer 
tions. Whenever we find such atypicality, we will attempt to examine the 
functioning of the module closely in the hope that we can find the problem 
and fix it. 

Let us return to Figure 10.2. Suppose that we find an atypical epoch of 
Zio. Since the effect of Zio flows downstream to modules 11 through 14, it 
may well be that a glitch in Zio will cause glitches in some or all of these as 

1 Interestingly, we may look on Pareto's maxim in the light of Bayes' axiom (postulate 
1). If we have a discrete number of causes of failure, Bayes* axiom suggests that we put 
equal prior probability on each cause. Pareto's maxim (which, although not explicitly 
stated in his works is fairly deemed to be consistent with them) tells us that it is most 
likely the probabilities will actually be skewed rather than uniform. The differences 
represented by the two postulates are consistent with the different philosophies of Bayes 
and Pareto, the first optimistic and democratic, the second pessimistic and oligarchic. 

A CONTAMINATION MODEL FOR SPC 235 

particular module. This module is then considered as a candidate for imme­
diate examination for possible suboptimalities, which can then be corrected. 
The SPC flowchart approach will respond rather quickly to suboptimalities. 
Let us consider an example. 

First of all, let us suppose that in Figure 10.2, the output of module 2 
is an aqueous solution where the key measure of Z2 is the exiting concen­
tration of compound A from module 2. We note that Z9 is the measured 
strength of compound B from module 9. In module 10, a compound AB is 
produced, and the output variable ZlO is the strength of that by-product 
compound. Let us suppose that the end product Z14 is the measured re­
flectivity of a strip of metal. Clearly, the system described above may be 
one of great complexity. A primitive quality assurance paradigm would 
simply examine lots of the end product by looking at lot averages of Z14 
and discarding or reworking lots which do not meet specification standards. 
If the output is our only measured variable, then any notion of correcting 
problems upstream of Z14 is likely to be attempted by a uniform harangue 
of the personnel concerned with the management of each of the modules 
''to do better" without any clue as to how this niight be done. 

The philosophy of Deming's SPC suggests that we would do much better 
to find the source of the defect in the system so that it can be rectified. 
This will be achieved by monitoring each of the intermediate output values 
Zl , Z2 , '  . .  , Z14 . Simply looking at Z14 will not give us an indication that, 
say, there is a problem with the control of ZIO . This is an example of the 
truism that "you cannot examine quality into a system." 

Let us recall the Maxim of Pareto: 1 The failures in a system are usually 
the consequence of a few assignable causes rather than the consequence of a 
geneml malaise across the system. Suppose that we make the following fur­
ther extension of this Maxim: the failures in a module are usually bunched 
together in relatively short time epochs, where contamination intervenes, 
rather than being uniformly distributed across the time axis. Thus, we are 
postulating that there will be periods where misfunctioning in a flawed 
module will be particularly prominent. Statistical process control gives us 
a simple means for searching for atypical epochs in the record of observa­
tions. Whenever we find such atypicality, we will attempt to examine the 
functioning of the module closely in the hope that we can find the problem 
and fix it. 

Let us return to Figure 10.2. Suppose that we find an atypical epoch of 
ZIO. Since the effect of ZlO flows downstream to modules 1 1  through 14, it 
may well be that a glitch in ZlO will cause glitches in some or all of these as 

1 Interestingly, we may look on Pareto's maxim in the light of Bayes' axiom (postulate 
1). If we have a discrete number of causes of failure, Bayes' axiom suggests that we put 
equal prior probability on each cause. Pareto's maxim (which, although not explicitly 
stated in his works is fairly deemed to be consistent with them) tells us that it is most 
likely the probabilities will actually be skewed rather than uniform. The differences 
represented by the two postulates are consistent with the different philosophies of Bayes 
and Pareto, the first optimistic and democratic, the second pessimistic and oligarchic. 



236 MULTIVARIATE AND ROBUST PROCEDURES IN S P C 

well. However, our best course will be to find the earliest of the modules in 
a series where the glitch occurs, since that is the one where the assignable 
cause is most likely to be found (and fixed). 

In the example above, let us suppose that we find no atypicality from lot 
to lot until we get to module 10. Then we also find atypicality in modules 
11 through 14. It seems rather clear that we need to examine module 10 
for an assignable cause of the system behaving suboptimally. Once the 
assignable cause is found, it can generally be fixed. Once fixed, it will not 
soon recur. 

10.3 A Compound Test for SPC Data in 
Higher Dimensions 

The basic control chart procedure of Deming is not oriented toward seeing 
whether a particular lot of items is within predetermined limits, but rather 
whether the lot is typical of the dominant distribution of items produced. 
In the one-dimensional case, the interval in which we take a lot sample 
mean to be 'typical," and hence the production process to be "in control" 
is given by 

I - 3-̂ = <x<W + 3-4=. (10.8) 
y/n y/n 

where n is the lot size, x is the mean of a lot, σ is an estimator for the stan-
dard deviation of the dominant population of items, and f is an estimator 
for the mean of the dominant population. Assuming that x is normally 
distributed, then the probability that a lot of items coming from the dom-
inant (i.e., "typical") population will fall outside the interval is roughly 
0.002. Generally speaking, because we will usually have plenty of lots, tak-
ing the sample variance for each lot, and taking the average of these will 
give us, essentially, σ2. 

Now let us go from the one-dimensional to the multivariate situation. 
Following Thompson and Koronacki [9], let us assume that the dominant 
distribution of output x data is p-variate normal, that is, 

/(χ) = |2πΣΓ1/2βχρ - ^ χ - μ / Σ - ^ χ - μ ) (10.9) 

where μ is a constant vector and Σ is a constant positive definite matrix. 
By analogy with the use of control charts to find a change in the distribution 
of the output and/or the input of a module, we can describe a likely scenario 
of a process going out of control as the mean suddenly changes from, say, 
μ0 to some other value. Let us suppose that for jth of N lots, the sample 
mean is given by Щ and the sample covariance matrix by Sj. Then the 
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where J.' is a constant vector and :E is a constant positive definite matrix. 
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natural estimates for μ0 and Σ are 
N 

and 
ΛΓ 

respectively. Now the Hotelling T2-like statistic for the jth lot assumes the 
form 

Tj2 = n(x, - f ) /S"1(x j - x), (10.10) 
where j = 1,2,..., N. Alt has shown [1] that 

nN-N-p+l 2 
p(n-1)(ΛΓ-1) ' 

has the F distribution with p and nN -N—p+l degrees of freedom. Thus, 
we consider the j th lot to be out of control if 

^ p ( w - i ) ( a r - i ) 
' nN -N -p + l FpinN-N-p+liot)) (10.11) 

where i^nw-jv-p+^a) is the upper (100a)th percentile of the F distribu-
tion with p and nN — JV - p +1 degrees of freedom. In SPC, it is generally 
a fair assumption that N is large, so that we can declare the jth lot to be 
out of control if 

3? > X » , (10.12) 
where Xp(a) is the upper (100a)th percentile of the χ2 distribution with p 
degrees of freedom. 

The dispersion matrix (i.e., the covariance matrix of the set of estimates 
μ) is given by 

f(p*P) 

where 

Var(Ai) Cov(ßliß2) . . . Cov(ßußp) 
Cov(£i,£2) Var(/42) · · · Cov(£2,£P) 

Cov(ßußp) Cov(ß2,ßP) . . . Var(/ìp) 

1 n 

ßj =xó — "Z z~* Xji 
n 

(10.13) 

(10.14) 
t = l 

for each j . 
Let us investigate the power (probability of rejection of the null hypoth-

esis) of the Tj test as a function of the noncentrality: 

λ = (μ-μ 0 ) 'Υ * (μ - μ0) (10.15) 
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V(pxp) = : : : ' (10.13) 
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for each j. 

. . . 
Cov({t} ,  {tp) COV({t2, {tp) Var({tp) 

� _ 1 
n 

/l-j = Xj = - L Xij n i=l 
(10.14) 
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One can use the approximation [8] for the power of the Tf test: 

ρ ( λ ) = Γ &(*+τ£ό\)* (ιαΐ6) 

where dx2(p) is the differential of the cumulative distribution function of the 
central χ2 distribution with p degrees of freedom and Xa(p) its 100(1 - a)% 
point. Now, in the current application, any attempt at a numerical approx-
imation technique is unwieldy, due to the fact that we shall be advocating 
a multivariate strategy based on a battery of nonindependent test. Here is 
just one of the myriad of instances in real-world applications where simular 
tion can be used to provide quickly and painlessly to the user an excellent 
estimate of what we need to know at the modest cost of a few minutes 
crunching on a modern desktop computer. 

Current practice is for virtually all testing of p-dimensional data to be 
carried out by a battery of p one-dimensional tests. Practitioners rightly 
feel that if glitches are predominant in one or another of the p dimensions, 
then the information in the ^dimensional multivariate Hotelling statistic 
will tend to be obscured by the inclusion of channels that are in control. 

As ал example, let us consider the case where p = 5. Thompson and 
Koronacki [9] have proposed the following compound test:t 

1. Perform the five one-dimensional tests at nominal Type I error of a 
= 0.002 each. 

2. Next, perform the ten two-dimensional tests at nominal a = 0.002 for 
each. 

3. Then perform the ten three-dimensional tests. 

4. Then perform the five four-dimensional tests 

5. Finally, perform the one five-dimensional test. 

If all the tests were independent, we would expect a pooled Type I error 
of 

a = 1 - (1 - 0.002)31 = 0.06. (10.17) 

Table 10.11. Type I Errors of Compound Test. 
P 
2 
3 
4 
5 

1-d Tests 
.004 
.006 
.008 
.010 

n = 5 
.00434 
.00756 
.01126 
.01536 

n = 10 
.00466 
.00722 
.01072 
.01582 

n=15 
.00494 
.00720 
.01098 
.01552 

n = 20 
.00508 
.00720 
.01098 
.01544 

n = 50 
.00512 
.00704 
.01108 
.01706 

n = 100 
.00528 
.00826 
.01136 
.01670 

n = 200 
.00546 
.00802 
.01050 
.01728 

However, the ten tests are not really independent [so we cannot use (10.16)]. 
For dimensions two through five, using uncorrelated vector components, we 
show in Table 10.1, the Type I errors based on 50,000 simulations per table 
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entry. In the second column, we show the Type I errors if only the one-
dimensional tests are carried out (i.e., p x .002). The subsequent columns 
give the Type I errors for various lot sizes (n) assuming we use all the 
possible 2P — 1 tests. The resulting Type I errors for the pooled tests for 
all dimensions are not much higher than those obtained simply by using 
only the one-dimensional tests. We note that in the five-dimensional case, 
if we use only the five one-dimensional tests, we have a Type I error of 
.01. Adding in all the two-dimensional, three-dimensional, four-dimensional 
and five-dimensional tests does not even double the Type I error. As a 
practical matter, a user can, if desired, simply continue to use the one-
dimensional tests for action, reserving the compound higher-dimensional 
tests for exploratory purposes. 

We note here how the use of simulation, essentially as a "desk acces-
sory," enabled us quickly to determine the downside risks of using a new 
testing strategy. Slogging through analytical evaluations of the compound 
test would have been a formidable task indeed. Using a simulation-based 
evaluation, we were able quickly to see that the price for the compound 
test was small enough that it should be seriously considered. 

10.4 Rank Testing with Higher-Dimensional 
SPC Data 

In statistical process control, we are looking for a difference in the dis-
tribution of a new lot, anything out of the ordinary. That might seem to 
indicate a nonparametric density estimation based procedure. But the gen-
eral ability to look at averages in statistical process control indicates that 
for many situations, the central limit theorem enables us to use procedures 
that point to distributions somewhat close to the normal distribution as the 
standards. In the case where data are truly normal, the functional form of 
the underlying density can be based exclusively on the mean vector and the 
covariance matrix. However, as we show below, it is a rather easy matter to 
create multivariate tests that perform well in the normal case and in heavy 
tailed departures from normality. 

Consider the case where we have a base sample of N lots, each of size n, 
with the dimensionality of the data being given by p. For each of these lots, 
compute the sample mean X* and sample covariance^ matrix S». Moving 
on, compute the average of these N sample means, X, and the average of 
the sample covariance matrices S. Then, use the transformation 

Z = S" 1 / 2 (X-X) , (10.18) 

which transforms X into a variate with approximate mean 0 and approxi-
mate covariance matrix I. Next, apply this transformation to each of the 
N lot means in the base sample. For each of the transformed lots, compute 
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which transforms X into a variate with approximate mean 0 and approxi­
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the transformed mean and covariance matrix, Z{ and SZÌ, respectively. For 
each of these, apply, respectively, the location norm 

and the scale norm 

l|z*ll2 = f > / , (10.19) 

V V 

IISill2 = E E s ^ < 2 · (10.20) 

Now, if a new lot has location norm higher than any of those in the base 
sample, we flag it as atypical. If its scale norm is greater than those of any 
lot in the base sample, we flag it as atypical. The Type I error of either test 
is given, approximately, by l/(N + 1), that of the combined test is given 
very closely by 

( - ^ ) 2 ^ -

Let us now compare the performance of the location rank test with that 
of the parametric likelihood ratio test when we have as the generator of the 
'in control" data a p-variate normal distribution with mean 0 and covari-
ance matrix I, the identity. We consider as alternatives "slipped" normal 
distributions, each with covariance matrix I but with a translated mean 
each of whose components is equal to the "slippage" μ. In Figure 10.3, 
using 20,000 simulations of 50 lots of size 5 per slippage value to obtain 
the base information, we compute the efficiency of the rank test to detect 
a shifted 51st lot relative to that of the likelihood ratio test [i.e., the ratio 
of the power of the rank test to that of the χ2(ρ) test (where p is the di-
mensionality of the data set)]. In other words, here, we assume that both 
the base data and the lots to be tested have identity covariance matrix and 
that this matrix is known. We note that the efficiency of the rank test 
here, in a situation favorable to the likelihood ratio test, is close to 1, with 
generally improving performance as the dimensionality increases. Here, we 
have used the critical values from tables of the χ2 distribution. For such 
a situation, the χ2 is the likelihood ratio test, so in a sense this is a very 
favorable case for the parametric test. In Figure 10.3 we apply the location 
test only for the data simulation delineated above. 
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Let us now compare the performance of the location rank test with that 
of the parametric likelihood ratio test when we have as the generator of the 
'in control" data a p-variate normal distribution with mean 0 and covari­
ance matrix I, the identity. We consider as alternatives "slipped" normal 
distributions, each with covariance matrix I but with a translated mean 
each of whose components is equal to the "slippage" p.. In Figure 10.3, 
using 20,000 simulations of 50 lots of size 5 per slippage value to obtain 
the base information, we compute the efficiency of the rank test to detect 
a shifted 51st lot relative to that of the likelihood ratio test [i.e., the ratio 
of the power of the rank test to that of the X2(p) test (where p is the di­
mensionality of the data set)] . In other words, here, we assume that both 
the base data and the lots to be tested have identity covariance matrix and 
that this matrix is known. We note that the efficiency of the rank test 
here, in a situation favorable to the likelihood ratio test, is close to 1 ,  with 
generally improving performance as the dimensionality increases. Here, we 
have used the critical values from tables of the X2 distribution. For such 
a situation, the X2 is the likelihood ratio test, so in a sense this is a very 
favorable case for the parametric test. In Figure 10.3 we apply the location 
test only for the data simulation delineated above. 



RANK TESTING WITH HIGHER DIMENSIONAL SPC DATA 241 

> о с 
ф 

ш 

0 . 5 1 . 0 1 . 5 

Slippage per Dimension 
Figure 10.3. Monte Carlo estimates of efficiencies (normal data). 

Next, we consider applying the rank test for location to t(3) data gener-
ated in the obvious manner as shown in Figure 10.4. First, we generate a 
X2 variable υ with 3 degrees of freedom. Then we generate p independent 
univariate normal variates X' = (-ΧΊ, X2, · . , Xp) from a normal distribu-
tion with mean 0 and variance 1. If we wish to have a mean vector μ and 
covariance matrix I, 

t = -^== + μ (10.22) 
v/3 

will have a shifted t distribution with 3 degrees of freedom. 
Once again the rank test performs well when its power is compared with 

that of the parametric test even though we have computed the critical value 
for the parametric test assuming the data are known to be t(3). We should 
remember, however, that if we had assumed (incorrectly) that the data 
were multivariate normal, the likelihood ratio test would have been quite 
different and its results very bad. (Naturally, as the lot size becomes large, 
the central limit theorem will render the normal theory-based test satisfac-
tory.) The rank test performs well whether the data are normal or much 
more diffuse, and it requires no prior information as to whether the data is 
normal or otherwise. 

So far, we have been assuming that both the base lots and the new 
lots were known to have identity covariance matrices. In such a case, the 
appropriate parametric test is χ2 if the data are normal, and if they are not, 
we have employed simulation techniques to find appropriate critical values 
for the distribution in question. Now, however, we shift to the situation 
where we beUeve that the covariance matrices of the new lots to be sampled 
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Once again the rank test performs well when its power is compared with 
that of the parametric test even though we have computed the critical value 
for the parametric test assuming the data are known to be t (3) . We should 
remember, however, that if we had assumed (incorrectly) that the data 
were multivariate normal, the likelihood ratio test would have been quite 
different and its results very bad. (Naturally, as the lot size becomes large, 
the central limit theorem will render the normal theory-based test satisfac­
tory.) The rank test performs well whether the data are normal or much 
more diffuse, and it requires no prior information as to whether the data is 
normal or otherwise. 

So far, we have been assuming that both the base lots and the new 
lots were known to have identity covariance matrices. In such a case, the 
appropriate parametric test is X2 if the data are normal, and if they are not, 
we have employed simulation techniques to find appropriate critical values 
for the distribution in question. Now, however, we shift to the situation 
where we believe that the covariance matrices of the new lots to be sampled 
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may not be diagonal. We have been assuming that the base lots (each of size 
5) are drawn from Af(Q,1). The sampled (bad) lot is drawn from ΛΓ(μ, Σ), 
where 

ала 

Σ = 

(10.23) 
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Figure 10.4. Monte Carlo estimates of efficiencies (t(3) data). 

Thus, we are considering the case where the lot comes from a multivariate 
normal distribution with equal slippage in each dimension and a covariance 
matrix that has unity marginal variances and covariances .8. In Figure 
10.5, we note the relative power of the "location" rank test when compared 
with that of the Hotelling T2 procedure. The very favorable performance 
of the rank test is largely due to the effect that it picks up not only changes 
in location but also departures in the covariance matrix of the new lot 
from that of the base lots. The basic setting of statistical process control 
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Thus, we are considering the case where the lot comes from a multivariate 
normal distribution with equal slippage in each dimension and a covariance 
matrix that has unity marginal variances and covariances .8. In Figure 
10.5, we note the relative power of the "location" rank test when compared 
with that of the Hotelling T2 procedure. The very favorable performance 
of the rank test is largely due to the effect that it picks up not only changes 
in location but also departures in the covariance matrix of the new lot 
from that of the base lots. The basic setting of statistical process control 
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lends itself very naturally to the utilization of normal distribution theory, 
since computation of lot averages is so customary. But as we have seen, 
for modest lot sizes it is possible to run into difficulty if the underlying 
distributions have heavy tails. 
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Figure 10.5. Monte Carlo estimates of efficiencies for correlated 
data. 

In the construction of these rank tests by Thompson, Lawera and Ko-
ronacki, [7, 9], a substantial number of unsuccessful tests was examined 
before noting the testing procedure explicated here. Again, the utility of 
simulation is demonstrated. It is all very well to try an analytical approach 
for such tests, examining, for example, asymptotic properties. But few of 
us would willingly expend months of effort on tests that might well "come 
a cropper." Simulation gives us a means of quickly stressing potentially 
useful tests quickly and efficiently. 

10.5 A Robust Estimation Procedure for 
Location in Higher Dimensions 

Let us recall that, in the philosophy of Deming, one should not waste much 
time in determining whether a lot conforms to some predetermined stan-
dards. Many have thought themselves inspired because they came up with 
very strict standards for, say, manufacturing automobile transmissions. The 
very statement of strenuous goals is thought by many contemporary Ameri-
can managers (not to mention directors of Soviet five-year plans in a bygone 
age, or presidents of American universities in this age) to be a constructive 
act. SPC does not work that way. In SPC we seek to see epochs when lots 
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before noting the testing procedure explicated here. Again, the utility of 
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for such tests, examining, for example, asymptotic properties. But few of 
us would willingly expend months of effort on tests that might well "come 
a cropper." Simulation gives us a means of quickly stressing potentially 
useful tests quickly and efficiently. 

10.5 A Robust Estimation Procedure for 
Location in Higher Dimensions 

Let us recall that, in the philosophy of Deming, one should not waste much 
time in determining whether a lot conforms to some predetermined stan­
dards. Many have thought themselves inspired because they came up with 
very strict standards for, say, manufacturing automobile transmissions. The 
very statement of strenuous goals is thought by many contemporary Ameri­
can managers (not to mention directors of Soviet five-year plans in a bygone 
age, or presidents of American universities in this age) to be a constructive 
act. SPC does not work that way. In SPC we seek to see epochs when lots 
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appear to have been produced by some variant of the dominant in-control 
process which produces most of the lots. 

But, how shall we attempt to look into the wilderness of the past record 
of lots and determine what actually is, say, the location of the dominant 
output? It is not an easy task. Obviously, to the extent that we include 
out-of-control lots in our estimate of the location of the in-control lots we 
will have contaminated the estimate. 

The following King of the Mountain algorithm of Lawera and Thompson 
[7] (see also Thompson and Koronacki, [9]) appears to be promising: 

"King of the Mountain" Trimmed Mean Algorithm 

Set the counter M equal to the historical proportion of bad lots 
times number of lots. 

For N lots compute the vector sample means of each lot {Xt}£Li. 
1. Compute the pooled mean of the means X. 

Find the two sample means farthest apart in the cloud of lot means. 
FVom these two sample means, discard the farthest from X. 

Let M = M - 1 and N = N - 1. 
If the counter is still positive, go to 1; otherwise exit and print out 

X as Χτ· 

To examine the algorithm, we examine a mixture distribution of lot means 

7·Λαθ,Ι) + (1-7)Λ/*(μ,Ι). (Ю.25) 

Here we assume equal slippage in each dimension, that is, 

(μ) = (μ,μ, . . . ,μ) . (10.26) 

Let us compare the trimmed mean procedure XT with the customary procedure 
of using the untrimmed mean X. In Tables 10.2 and 10.3 we show for dimensions 
two, three, four, and five, the average MSEs of the two estimators when 7 = 0.70 
for simulations of size 1000. 

Table 10.2. MSEs for 50 Lots: 7 = 0.7 | 

μ 
\ 1 

2 
3 
4 
5 
6 
7 
8 
9 

10 

d=2 
XT 

0.40 
0.21 
0.07 
0.06 
0.05 
0.06 
0.06 
0.06 
0.06 
0.06 

d=2 
X 

0.94 
1.24 
1.85 
3.01 
4.61 
6.53 
8.94 

11.58 
14.71 
18.13 

d=3 
XT 

0.43 
0.17 
0.09 
0.09 
0.09 
0.08 
0.09 
0.08 
0.08 
0.08 

d = 3 
X 

1.17 
1.62 
2.67 
4.48 
6.88 
9.85 

13.41 
17.46 
22.03 
27.24 

d=4 
XT 

0.46 
0.17 
0.12 
0.12 
0.11 
0.12 
0.11 
0.11 
0.11 
0.11 

d=4 
X 

1.42 
2.00 
3.49 
5.93 
9.16 

13.19 
17.93 
23.27 
29.40 
36.07 

d = 5 
XT 

0.54 
0.18 
0.15 
0.14 
0.15 
0.14 
0.14 
0.14 
0.15 
0.15 

d = 5 
JC 

1.72 
2.37 
4.33 
7.41 

11.52 
16.50 
22.33 
28.99 
36.67 
45.26 
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appear to have been produced by some variant of the dominant in-control 
process which produces most of the lots. 

But, how shall we attempt to look into the wilderness of the past record 
of lots and determine what actually is, say, the location of the dominant 
output? It is not an easy task. Obviously, to the extent that we include 
out-of-control lots in our estimate of the location of the in-control lots we 
will have contaminated the estimate. 

The following King of the Mountain algorithm of Lawera and Thompson 
[7] (see also Thompson and Koronacki, [9]) appears to be promising: 

"King of the Mountain" TriDlDled Mean Algorithm 

Set the counter M equal to the historical proportion of bad lots 
times number of lots. 

For N lots compute the vector sample means of each lot {X'}�l '  
1 .  Compute the pooled mean of the means X. 

Find the two sample means farthest apart in the cloud of lot means. 
From these two sample means, discard the farthest from X. 

Let M = M - l and N = N - 1. 
If the counter is still pOBitive�go t£...l ; otherwise exit and print out 

X as XT. 

To examine the algorithm, we examine a mixture distribution of lot means 

-yN(o, I) + (1 - -y)N(p., I). (10.25) 

Here we assume equal slippage in each dimension, that is, 

(p.) = (J.L, J.L, . • .  , J.L) .  (10.26) 

Let us compare the trimmed �an procedure X T with the customary procedure 
of using the untrimmed mean X. In Tables 10.2 and 10.3 we show for dimensions 
two, three, four, and five, the average MSEs of the two estimators when -y = 0.70 
for simulations of size 1000. 

Table 10.2. MSEs for 50 Lots: -y = 0.7 
d=2 d=2 d=3 d=3 d=4 d=4 d=5 d=5 

J.L XT X XT X XT X XT X 
1 0.40 0.94 0.43 1 . 17 0.46 1 .42 0.54 1 .72 
2 0.21 1 .24 0.17 1 .62 0.17  2.00 0.18 2.37 
3 0.07 1 .85 0.09 2.67 0.12 3.49 0.15 4.33 
4 0.06 3.01 0.09 4.48 0.12 5.93 0.14 7.41 
5 0.05 4.61 0.09 6.88 0.1 1  9.16 0.15 1 1 .52 
6 0.06 6.53 0.08 9.85 0.12 13.19 0.14 16.50 
7 0.06 8.94 0.09 13.41 0.11  17.93 0.14 22.33 
8 0.06 11 .58 0.08 17.46 0.1 1  23.27 0.14 28.99 
9 0.06 14.71 0.08 22.03 0.1 1  29.40 0.15 36.67 

10 0.06 18.13 0.08 27.24 0.1 1  36.07 0.15 45.26 
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Table 10.3. MSEs for 100 Lots: 7 = 0.7 
1 d==2 I d=2 1 d=3 I d=3 I d=4 I d=4 I d=5 I d=5~ 

μ Χτ X XT X XT X XT X 
~~1 Ö28 (Ш Ö3Ö ( Ш Ö32 О б ÖM 1.34 

2 0.05 0.88 0.06 1.30 0.07 1.74 0.08 2.10 
3 0.03 1.72 0.05 2.58 0.06 3.37 0.07 4.25 
4 0.03 2.95 0.04 4.41 0.06 5.86 0.07 7.34 
5 0.03 4.56 0.04 8.25 0.06 9.13 0.08 11.39 
6 0.03 6.56 0.04 8.31 0.06 13.08 0.07 16.35 
7 0.03 8.87 0.04 13.28 0.06 17.67 0.07 22.16 
8 0.03 11.61 0.04 17.32 0.06 23.17 0.07 28.86 
9 0.03 14.67 0.04 21.98 0.06 29.28 0.07 36.61 

10 I 0.03 I 18.04 | 0.04 | 27.12 | 0.06 | 36.06 | 0.07 | 45.13 

In Tables 10.4 and 10.5 we show the MSEs of the trimmed mean and the 
customary pooled sample mean for the case where 7 = 0.95. 

Table 10.4. MSEs for 50 Lots: 7 = 0.95 
I d=2 I d=2 I d=3 I d=3 I d=4 I d=4 I d=5 I d=5 

μ Xj· X XT X XT X XT X 
~Ί ÖÖ5 ( Ш ÖW 0.15 ~OÖ9 ÖÄ8 0Л2 0.24 

2 0.05 0.11 0.07 0.16 0.09 0.20 0.11 0.26 
3 0.04 0.11 0.06 0.17 0.08 0.22 0.11 0.28 
4 0.04 0.13 0.06 0.19 0.08 0.26 0.11 0.33 
5 0.04 0.16 0.06 0.24 0.08 0.32 0.11 0.41 
6 0.04 0.19 0.06 0.29 0.09 0.40 0.10 0.49 
7 0.04 0.24 0.06 0.35 0.08 0.48 0.11 0.61 
8 0.04 0.29 0.06 0.42 0.08 0.58 0.10 0.71 
9 0.04 0.33 0.06 0.51 0.08 0.68 0.11 0.86 

10 I 0.042 I 0.39 I 0.06 | 0.59 | 0.08 | 0.79 | 0.11 | 1.01 

Table 10.5. MSEs for 100 Lots: 7 = 0.95 
I d=2 I d=2 I d=3 1 d=3 I d=4 1 d=4 I d=5 I d^5~ 

μ Χτ X XT X XT X XT X 
Г 0.02 ~Ö~Ö5 0.04 0.09 0.05 0.12 0.06 0.14 
2 0.02 0.07 0.03 0.10 0.05 0.14 0.05 0.16 
3 0.02 0.09 0.03 0.14 0.04 0.18 0.05 0.23 
4 0.02 0.13 0.03 0.20 0.05 0.27 0.06 0.34 
5 0.02 0.18 0.03 0.27 0.04 0.37 0.06 0.46 
6 0.02 0.24 0.03 0.38 0.04 0.49 0.05 0.60 
7 0.02 0.31 0.03 0.47 0.04 0.62 0.06 0.80 
8 0.02 0.40 0.03 0.60 0.04 0.80 0.05 1.00 
9 0.02 0.50 0.03 0.74 0.04 1.00 0.05 1.21 

10 I 0.02 I 0.60 I 0.03 I 0.90 | 0.05 | 1.20 | 0.05 | 1.50 

If the level of contamination is substantial (e.g., if 1 - 7 = 0.3), the use of 
a trimming procedure to find a base estimate of the center of the in-control 
distribution contaminated by observations from other distributions may be 
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Table 10.3. MSEs for 100 Lots: 'Y = 0.7 
d=2 d=2 d=3 d=3 d=4 d=4 d=5 d=5 

p. XT X XT X XT X XT X 
1 0.28 0.71 0.30 0.94 0.32 1 . 16 0.34 1 .34 
2 0.05 0.88 0.06 1 .30 0.07 1 .74 0.08 2.10 
3 0.03 1 .72 0.05 2.58 0.06 3.37 0.07 4.25 
4 0.03 2.95 0.04 4.41 0.06 5.86 0.07 7.34 
5 0.03 4.56 0.04 8.25 0.06 9.13 0.08 11 .39 
6 0.03 6.56 0.04 8.31 0.06 13.08 0.07 16.35 
7 0.03 8.87 0.04 13.28 0.06 17.67 0.07 22.16 
8 0.03 11 .61 0.04 17.32 0.06 23.17 0.07 28.86 
9 0.03 14.67 0.04 21 .98 0.06 29.28 0.07 36.61 

10 0.03 18.04 0.04 27.12 0.06 36.06 0.07 45.13 

In Tables 10.4 and 10.5 we show the MSEs of the trimmed mean and the 
customary pooled sample mean for the case where 'Y = 0.95. 

Table 10.4. MSEs for 50 Lots: 'Y = 0.95 
d=2 d=2 d=3 d=3 d=4 d=4 d=5 d=5 

p. XT X XT X XT X XT X 
1 0.05 0.10 0.07 0.15 0.09 0.18 0.12 0.24 
2 0.05 0.11 0.07 0.16 0.09 0.20 0.1 1  0.26 
3 0.04 0.1 1  0.06 0. 17 0.08 0.22 0.1 1  0.28 
4 0.04 0.13 0.06 0.19 0.08 0.26 0.11  0.33 
5 0.04 0.16 0.06 0.24 0.08 0.32 0.1 1  0.41 
6 0.04 0.19 0.06 0.29 0.09 0.40 0.10 0.49 
7 0.04 0.24 0.06 0.35 0.08 0.48 0.1 1  0.61 
8 0.04 0.29 0.06 0.42 0.08 0.58 0.10 0.71 
9 0.04 0.33 0.06 0.51 0.08 0.68 0.1 1  0.86 

10 0.042 0.39 0.06 0.59 0.08 0.79 0.1 1  1 .01 

Table 10.5. MSEs for 100 Lots: 'Y = 0.95 
d=2 d=2 d=3 d=3 d=4 d=4 d=5 d=5 

J.I. XT X XT X XT X XT X 
1 0.02 0.05 0.04 0.09 0.05 0.12 0.06 0.14 
2 0.02 0.07 0.03 0.10 0.05 0.14 0.05 0.16 
3 0.02 0.09 0.03 0.14 0.04 0.18 0.05 0.23 
4 0.02 0.13 0.03 0.20 0.05 0.27 0.06 0.34 
5 0.02 0.18 0.03 0.27 0.04 0.37 0.06 0.46 
6 0.02 0.24 0.03 0.38 0.04 0.49 0.05 0.60 
7 0.02 0.31 0.03 0.47 0.04 0.62 0.06 0.80 
8 0.02 0.40 0.03 0.60 0.04 0.80 0.05 1 .00 
9 0.02 0.50 0.03 0.74 0.04 1 .00 0.05 1.21 

10 0.02 0.60 0.03 0.90 0.05 1.20 0.05 1 .50 

If the level of contamination is substantial (e.g., if 1 - 'Y= 0.3) , the use of 
a trimming procedure to find a base estimate of the center of the in-control 
distribution contaminated by observations from other distributions may be 
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strongly indicated. For more modest but still significant levels of contami-
nation (e.g., if 1 — 7= 0.05), simply using X may be satisfactory. We note 
that the trimming procedure considered here is computer intensive and is 
not realistic to be performed on the usual hand-held calculator. However, 
it is easily computed on a personal computer or workstation. Since the 
standards for rejecting the null hypothesis that a lot is in control are gen-
erally done by off-line analysis rgularly, we do not feel that the increase in 
computational complexity should pose much of a logistical problem. 

Problems 
10.1. It is desired to simulate a contamination model for training purposes. 
We wish to produce sheets of aluminum with thickness 1 mm. Suppose the 
dominant distribution is given by Λ/*(1,1). Time is divided up into epochs 
of 10 minutes. Contamination will occur in each epoch with probability 
7. The contaminating distribution will be Λ/"(μ,<72). Simulate data for a 
variety of 7's, μ'β, and a's. Using Shewhart control charting (10.8), see how 
effective you are in finding lots that are from contamination periods. 
10.2. Let us consider the case where there are four measurables in a pro-
duction process. After some transformation, the in control situation would 
be represented by a normal distribution with mean 

/ Mi 
A*2 
M3 

\ M4 

= 0 \ 
= 0 
= 0 
= 0 / 

and covariance matrix 

Σ = Ι = 

σιχ = 1 σ\2 — 0 σΐ3 = 0 σ^ = 0 
σΐ2 = 0 (722 = 1 0*23 = 0 σ2Α = 0 
σΐ3 = 0 (723 = 0 <733 = 1 σ34 = 0 
0"14 = 0 (724 = 0 σ24 == 0 σΑΑ = 1 

We wish to examine the effectiveness of the battery of tests procedure in 
Section 10.3, for the following situations, each with lot sizes of 10: 
(a) There is 5% contamination from the Gaussian distribution with 

β2 
Мз 

V M4 

= 1 \ 
= 1 
= 1 

and covariance matrix 

Σ = Ι. 

(b) There is 5% contamination from a Gaussian distribution with 
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strongly indicated. For more modest but still significant levels of contami­
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that the trimming procedure considered here is computer intensive and is 
not realistic to be performed on the usual hand-held calculator. However, 
it is easily computed on a personal computer or workstation. Since the 
standards for rejecting the null hypothesis that a lot is in control are gen­
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10.1 .  It is desired to simulate a contamination model for training purposes. 
We wish to produce sheets of aluminum with thickness 1 rom. Suppose the 
dominant distribution is given by N(l , l).  Time is divided up into epochs 
of 10 minutes. Contamination will occur in each epoch with probability 
'Y. The contaminating distribution will be N(J1., u2). Simulate data for a 
variety of 'Y's, J1.'S, and u's. Using Shewhart control charting (10.8), see how 
effective you are in finding lots that are from contamination periods. 
10.2. Let us consider the case where there are four measurables in a pro­
duction process. After some transformation, the in control situation would 
be represented by a normal distribution with mean 

= ( �� :  � )  J1. J1.3 = 0 
J1.4 = 0 
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( Uu = 1 

E = I = 
U12 = 0 
U13 = 0 
U14 = 0 
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U24 = 0 U24 = 0 U44 = 1 
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The problem is to recover the mean of the uncontaminated Gaussian 
distribution for the case where 7 = .2 Lot sizes are 10. See how well the 
King of the Mountain Algorithm works for this case compared to using 
pooled lot means. 
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Chapter 11 

Considerations for 
Optimization and 
Estimation in the Real 
(Noisy) World 

11.1 Introduction 
In 1949, Abraham Wald [19] attempted to clean up the work of Fisher 
by proving that the maximum likelihood estimator θη of the parameter 
characterizing a probability density function converged to the true value of 
the parameter 9Q. He was indeed able to show under very general conditions 
that if 0n (globally) maximized the likelihood, it did converge almost surely 
to 0o. Prom a practical standpoint, there is less to the Wald result than 
one might have hoped. The problem is that, in most cases, we do not have 
good algorithms for global optimization. 

Let us suppose that we seek a minimum to a function /(x). In the 
minds of many, we should use some variant of Newton's method to find the 
minimum. Now, Newton's method does not seek to find the minimum of a 
function, but rather the (hopefully unique) point where the first derivative 
of the function is equal to zero. We recall, then, that the simplest of the 
Newton formulations is an iterative procedure, where 

r f ' ^ M11Ì 
Xk+1 Хк~¥ы- (11Л) 

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R. 
Thompson ©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons. 
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Returning to Wald's result, let us suppose that we consider data from a 
Cauchy density 

fM=wnhwY ( 1 1 · 2 ) 
Then we can pose the maximum likelihood estimation by minimizing the 
negative of the log likelihood: 

n 

Цв\хих2,... ,Χη) = nlog(7r) + X > g [ l + (XÌ - Θ)2]. (11.3) 

If we use Newton's method here, if we have a starting guess to the left of 
the smallest point in the data, we will tend to declare that the smallest 
of the data is the maximum likelihood estimator for 0o, for that point is 
a local minimum of the negative of the log likelihood. If we start to the 
right of the largest data value, we will declare the largest data point to 
be a maximum likelihood estimator. Now as the data set becomes large, 
if we do not start on the fringes, we have much better fortune. We do 
not have multiple "bumps" of the log likelihood near the middle of a large 
data set. As the data set becomes larger and larger, a starting point that 
gave a misleading bump at a data far away from 0Q will, in fact, lead 
us to an acceptable estimator for 9Q. In one sense, this is true broadly 
for the problem of estimation by maximum Ukelihood or minimum χ2, for 
example, by Newton's method will become less and less as the sample size 
increases. We show this stabilization with increasing sample size from a 
Cauchy distribution with Θ = 0 in Figure 11.1. * We see, for example, that 
for the data set explored, for a sample size of 10, we have no false local 
modes if we start with a positive Θ value less than approximately 13, but if 
we start with a greater value, we might, using Newton's method, wind up 
with a false maximum (i.e., one that is not equal to the global maximum). 
Picking any interval of starting values for Θ and any values e and 5, however, 
there will be a sample size such that the probability will be less than e that 
Newton's method will converge to a value more that δ removed from the 
true global maximum, namely, во, 

This is a phenomenon occurring much more generally than in the case of 
Cauchy data. In the case of the use of SIMEST in Chapter 5 in the estima-
tion of parameters in a cancer model, for example, the use of the algorithm 
with sample sizes of 150 demonstrated problems with local maxima, unless 
one started very near the global maximum. As the number of patients in-
creased past 700, the problem of local maxima of the likelihood (minima 
of the x2) essentially disappeared. That was due to the fact that a larger 
sample, for maximum likelihood estimation, brings a starting value, unac-
ceptable for smaller samples, into the domain of attraction of the global 
maximum, and the bumps which existed for the smaller samples, tend to 

This figure was created by Otto Schwalb. 
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"tail off" (i.e., appear remotely from reasonable starting values). As the 
sample sizes become large, problems of finding the global maximum of the 
sample likelihood tend to become less. So, as a practical matter, Wald's 
result is actually useful if the sample size be sufficiently large. 
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a random sample with a density function /(x|0o) with positive 
mass throughout its support a < x < b. a and/or b may or 
may not be oo. For any fixed (i.e, not changing with n) starting 
point between a and 6, as n goes to oo, if / is well behaved, 
a Newton's algorithm maximizer of the log likelihood function 
will converge almost surely to 0o· 

In other words, for the statistician, the natural piling up of data points 
around regions of high density will cause a practical convergence of the 
naive maximum likelihood estimator to the truth. Of course, the number 
of points required to make this conjecture useful may be enormous, par-
ticularly if we use it for a multivariate random variable and multivariate 
characterizing parameter. Statisticians have an advantage over others who 
deal in optimization, for, generally speaking, the function to be maximized 
in most problems is not a density function, so that the possibility of never 
converging to a global maximum is a real one. This, of course, suggests 
the attractive possibility of trying to reformulate an objective function as 
a probability density function when feasible to do so. 

We go further with a conjecture on simulation-based estimation (SIMEST 
discussed in Chapter 5). Since the time of Poisson [11], it has been taken 
as natural to model time-based processes in the forward direction. For ex-
ample, "with a probability proportional to its size, a tumor will, in any 
time interval, produce a metastasis." Easy to state, easy to simulate—not 
so easy to find the likelihood, particularly when the metastatic process is 
superimposed upon other simultaneously occurring processes. For exam-
ple, the tumor is also growing in proportion to its size; the tumor may be 
discovered and removed with a probability proportional to its size; and so 
on. But the simulations superimpose quite readily. Hence, given fast com-
puting, we are tempted to assume the unknown parameters characterizing 
the pooled processes, generate relevant events by simulation, and then use 
the difference between the simulated process and the actual, say, discovery 
of tumors, as a measure of the quality of assumed parameters. 

SIMEST Conjecture . Let {xi, a?2> · · · > я п } be a random sam-
ple with a (possibly not known in closed form) density function 
f(x\6o). Suppose we can generate, for a given 0, N pseudovalues 
of {yj} from the density function. Create bins in an intuitive 
way in the data space, for example putting n/k data points and 
Ni data points into each of к bins. If the maximum likelihood 
estimator for 0o> in the case where we know the closed formof 
the log likelihood converges to 0o> then so does an estimator 0n , 
which maximizes the histogram log likelihood function 

к 
LH(0|XI,X 2 , ·. · >Sn) = ^2Niiog(n/k) 

i = l 

252 OPTIMIZATION AND ESTIMATION IN A NOISY WORLD 

a random sample with a density function f(xI80) with positive 
mass throughout its support a < x < b. a and/or b may or 
may not be 00. For any fixed (i.e, not changing with n) starting 
point between a and b, as n goes to 00, if f is well behaved, 
a Newton's algorithm maximizer of the log likelihood function 
will converge almost surely to 80 . 

In other words, for the statistician, the natural piling up of data points 
around regions of high density will cause a practical convergence of the 
naive maximum likelihood estimator to the truth. Of course, the number 
of points required to make this conjecture useful may be enormous, par­
ticularly if we use it for a multivariate random variable and multivariate 
characterizing parameter. Statisticians have an advantage over others who 
deal in optimization, for, generally speaking, the function to be maximized 
in most problems is not a density function, so that the possibility of never 
converging to a global maximum is a real one. This, of course, suggests 
the attractive possibility of trying to reformulate an objective function as 
a probability density function when feasible to do so. 

We go further with a conjecture on simulation-based estimation (SIMEST 
discussed in Chapter 5). Since the time of Poisson [l1J ,  it has been taken 
as natural to model time-based processes in the forward direction. For ex­
ample, ''with a probability proportional to its size, a tumor will, in any 
time interval, produce a metastasis." Easy to state, easy to simulat�not 
so easy to find the likelihood, particularly when the metastatic process is 
superimposed upon other simultaneously occurring processes. For exam­
ple, the tumor is also growing in proportion to its size; the tumor may be 
discovered and removed with a probability proportional to its size; and 80 
on. But the simulations superimpose quite readily. Hence, given fast com­
puting, we are tempted to assume the unknown parameters characterizing 
the pooled processes, generate relevant events by simulation, and then use 
the difference between the simulated process and the actual, say, discovery 
of tumors, as a measure of the quality of assumed parameters. 

SIMEST Conjecture . Let {XI .  X2, . . •  , xn} be a random sam­
ple with a (possibly not known in closed form) density function 
f(xI80}. Suppose we can generate, for a given 8, N pseudovalues 
of {Yi} from the density function. Create bins in an intuitive 
way in the data space, for example putting n/k data points and 
Ni data points into each of k bins. If the maximum likelihood 
estimator for 80, in the case where we know the closed form of 
the log likelihood converges to 80, then so does an estimator On, 
which maximizes the histogram log likelihood function 

k 
LH(8Ixl . X2 , . . .  , xn) = L Ni log(n/k} 

i=l 



THE NELDER MEAD ALGORITHM 253 

based on N pseudodata, as n goes to oo and N goes to oo if we 
let к go to oo in such a way that limn-^ k/n = 0. 

The conjecture concerning simulation-based estimation is rather powerful 
stuff, because it raises the possibility of parameter estimation in incredibly 
complex modeling situations. Naturally, for the situation where X is vector 
valued, some care must be taken in finding appropriate binning strategies. 
A somewhat differently styled version of the SIMEST conjecture has been 
proved by Schwalb [13]. 

As a matter of fact, the statistician is generally confronted with finding 
the maximum of an objective function which is contaminated by noise. In 
the case of simulation-based parameter estimation, the noise is introduced 
by the modeler himself. The use of Newton-like procedures will generally 
be inappropriate, since derivatives and their surrogates will be even more 
unstable than pointwise function evaluation. We shall discuss two ways of 
dealing with this problem. Interestingly, both the Nelder-Mead algorithm 
and the Box—Hunter algorithm were built, not by numerical analysts, but 
by statisticians, working in the context of industrial product optimization. 
The algorithm of Nelder and Mead essentially gives up on equivalents of 
"setting the first derivative equal to zero." Rather, it follows ал ad hoc and 
frequently very effective zig-zag path to the maximum using pointwise func-
tion evaluations without any derivative-like evaluation. The essential idea 
is to approach the maximum indirectly and, therefore, hopefully, with some 
robustness. The mighty quadratic leaps toward the maximum promised by 
Newton's method are not available to the N-M user. On the other hand, 
neither are the real-world leaps to nowhere-in-particular that frequently 
characterize Newton's method. 

The algorithm of Box and Hunter, however, takes noisy pointwise func-
tion evaluations over a relatively small hyperspherical region and uses them 
to estimate the parameters of a locally approximating second degree poly-
nomial. Essentially, with Box—Hunter we do take the derivative of the 
fitting polynomial and proceed to the maximum by setting it equal to zero. 
But remembering that the fitting validity of the polynomial is generally 
credible only in a rather small region, we cannot take the giant leaps to 
glory (or perdition) associated with Newton's method. 

11.2 The Nelder-Mead Algorithm 

The problem of parameter estimation is only one of many. For most situar 
tions, we will not have samples large enough to enable Newton's method to 
do us much good. Newton method's is generally not very effective for most 
optimization problems, particularly those associated with data analysis. 

A more robust algorithm, one pointing more clearly to the direct search 
for the minimum (or maximum) of a function, is needed. (And there is 
still the problem of trying to find the global minimum, not simple some 
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do us much good. Newton method's is generally not very effective for most 
optimization problems, particularly those associated with data analysis. 

A more robust algorithm, one pointing more clearly to the direct search 
for the minimum (or maximum) of a function, is needed. (And there is 
still the problem of trying to find the global minimum, not simple some 
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local minimum. We deal with this problem later). More than 30 years 
ago, two statisticians, Neider and Mead [10], designed an algorithm which 
searches directly for a minimum rather than for zeros of the derivative of 
the function. It does not assume knowledge of derivatives, and it generally 
works rather well when there is some noise in the pointwise evaluation of 
the function itself. It is not fast, particularly in higher dimensions. This is 
due, in part, to the fact that the Neider—Mead algorithm employs a kind of 
envelopment procedure rather than one which, as does Newton's method, 
tries to move directly to the minimum. The Neider—Mead algorithm is 
rather intuitive, and, once learned, is easy to construct. We give the algo-
rithm below with accompanying graphs (Figures 11.2 and 11.3) showing the 
strategy of moving toward the minimum. Our task is to find the minimum 
of the function / (x) . Here, we consider a two-dimensional x. 

Neider—Mead Algorithm 
Expansion 

• P = C + 7л(С7 — W) (where typically 7я = 7я = 1) 

• If f(P)< f(B), then 

• PP = C + 4E(C-W) [a] 

. I f / (PP)</ (P) , then 

• Replace W with PP as new vertex [c] 

• Else 

• Accept P as new vertex [b] 

• End If 

Else 
I f / (P )< / (2H0 , then 

• Accept P as new vertex [b] 

• Else 

Contraction 

I f / ( W ) < / ( P ) , then 

• PP = C + jc(W - B) (typically, 7 c = 1/2) [a*] 

• If F(PP) < F(W), Then replace W with PP as new vertex [b*] 

• Else replace W with (W+B)/2 and 2W with (2W+£)/2 (total contraction) 

M 
• End If 

Else 
Contraction 

lif{2W) < /(P), then 
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tries to move directly to the minimum. The Neider-Mead algorithm is 
rather intuitive, and, once learned, is easy to construct. We give the algo­
rithm below with accompanying graphs (Figures 11 .2 and 11 .3) showing the 
strategy of moving toward the minimum. Our task is to find the minimum 
of the function f(x) . Here, we consider a two-dimensional x. 

Neider-Mead Algorithm 
Expansion 

• P = C + 'YR(C - W)(where typically 'YR = 'YE = 1) 

• If f(P) < f(B), then 

• PP = C + 'YE(C - W) [a] 

• If f(PP) < f(P), then 

• Replace W with P P 88 new vertex [c] 

• Else 

• Accept P 88 new vertex [b] 

• End If 

Else 
If f(P) < f(2W), then 

• Accept P as new vertex [b] 

• Else 

Contraction 

If f(W) < f(P) , then 

• PP = C + 'Yc(W - B) (typically, 'Ya = 1/2) la*] 

• If F(PP) < F(W), Then replace W with PP 88 new vertex Ib*) 

• Else replace W with (W +B)/2 and 2W with (2W +B)/2 (total contraction) 
[e*] 

• End If 

Else 

Iff(2W) < f(P), then 

Contraction 
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• PP = C + 7 c ( P - B ) [aa] 
• If /(PP) < / (P) , then Replace W with PP as new vertex [bb] 
• Else replace W with (W+B)/2 and 2W with (2W+B)/2 (total contraction) 

Else 

• Replace W with P 

• End If 

End If 

Figure 11.2. Nelder-Mead polytope expansions. 
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• PP = C + ,c(P - B) [aa] 

• If f(PP) < f(P) , then Replace W with PP as new vertex [bb] 

• Else replace W with (W +B)/2 and 2W with (2W +B)/2 (total contraction) 
[ee] 

Else 
• Replace W with P 

• End If 

End If 

ExpaMon 

Expansion 

Expansion 

Partial inside Contraction 

B 

� 

Figure 11.2. NeIder-Mead polytope expansions. 
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о и сААэ 
(В-0 

Total Contraction 

(B+2W)/2 

(B+W)/2 

E3 Partial Outside Contraction 

п О 

\*S(B+W)/2 \*S 

Total Contraction 

(B+2W)/2 

Figure 11.3. Neider—Mead polytope contractions. 

11.3 The Box—Hunter Algorithm 

Both the Neider—Mead [10] and Box—Hunter [5] algorithms were designed 
with an eye for use in the design of industrial experiments. In fact, they 

256 OPTIMIZATION AND ESTIMATION IN A NOISY WORLD 

G Total Contraction 

o / "" cr � (B+2W)/2 

(B+W)/2 

o E> 

Partial Outside Contraction 

Toni Contraction 

EI G) 
� / � (B+2W� � �  

G G) 
Figure 11.3. NeIder-Mead polytope contractions. 

11 .3 The Box-Hunter Algorithm 

Both the NeIder-Mead [10) and Box-Hunter [5) algorithms were designed 
with an eye for use in the design of industrial experiments. In fact, they 
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have been used both as experimental design techniques and as computer 
optimization routines. However, the Box-Hunter designs clearly are the 
more used in industry, the Neider-Mead approach the more used in com-
puter optimization. The reasons are not hard to understand. When it 
comes to industrial experiments, where great costs are incurred, the rather 
free-wheeling nature of Nelder-Mead appears profligate. On the computer, 
where an "experiment" generally simply involves a function evaluation, the 
Box—Hunter approach appears overly structured, with a "batch" rather 
than a continuous-flow flavor. However, the natural parallelization possi-
bilities for Box—Hunter should cause us to rethink whether it might be the 
basis for a new theory of computer optimization and estimation. 

Figure 11.4. Box—Hunter three-dimensional design. 

Essentially, the Box—Hunter rotatable design [17] approach centers at 
the current best guess for the optimum. Points are then placed at the 
degenerate sphere at that center, the coordinates rescaled so that a move-
ment of one unit in each of the variables produces approximately the same 
change in the objective function. Then a design is created with points on 
a hypersphere close to the origin and then on another hypersphere farther 
out. The experiment is carried out, and the coefficients of an approximat-
ing quadratic are estimated. Then we move to the new apparent optimum 
and repeat the process. 

In the ensuing discussion, we follow the argument of Lawera and Thomp-
son [9]. The variation of Box-Hunter was created, in large measure, to 
deal with the application of SIMEST (see Chapter 5) to parameter estima-
tion in stochastic processes. In Figure 11.4, we show a three-dimensional 
Box—Hunter design. In standardized scaling, the points on the inner hy-
persphere are corners of the hypercube of length two on a side. The second 
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sphere has "star points" at 2p/4, where p is the dimensionality of the in-
dependent variables over which optimization is taking place. For three di-
mensions, we have points at (0,0,0), (1,1,1), (1,1,-1), (1, -1,1), (1,1, -1) , 
(-1,-1,1), ( -1 , -1 , -1 ) , (-1,1,1), (-1,1,-1) , (2·75,0,0), (-2·75,0,0), 
(0,2·75,0), (0,-2·75,0), (0,0,2·76), and (0,0,-275). 

For dimensionality ρ we start with an orthogonal factorial design having 
2P points at the vertices of the (hyper)cube (±1, ± 1 , . . . , ±1). Then we add 
2p star points at (±a, 0 , . . . , 0) (0, ±a, 0 , . . . , 0), ..., (0,0,. . . , 0, ±a). Then 
we generally add two points (for, say, p < 5, more for larger dimensionality) 
at the origin. A sufficient condition for rotatability of the design, i.e., that, 
as above, Var(#) is a function only of 

p2 = Xl + Xl + ... + Xl, (11.4) 

can be shown to be [4] that 

a = (2P)·26. (11.5) 

In Table 11.1 we show rotatable designs for dimensions 2,3,4, 5, 6 and 7. 
Table 11.1. Some Box-Hunter Rotatable Designs. 

Dimension 
2 
3 
4 
5 
6 
7 

Num. Cube Points 
4 
8 

16 
32 
64 

128 

Num. Center Points 
2 
2 
4 
4 
6 
8 

Num. Star Points 
4 
6 
8 

10 
12 
14 

a 
2 ° 
2™ 
2 

21.25 

2 i . e 
21.75 

When the response variable has been evaluated at the design points, we 
then use least squares to fit a quadratic polynomial to the results. 

Λ(θ) = β0 + £ > Θ < + Σ έ Α*θ«θ*· (ил) 
i = l i = l j=l 

We then transform the polynomial to canonical form A: 

</2(θ) = & + Σ > Θ * + J 2 &&· (1L?) 
i = l *=1 

Lfet us now flowchart the Lawera—Thompson version of the Box—Hunter 
algorithm. First, we define some notation: 

θο coordinates of current minimum 
D n x 2n -I- 2n 4- no Box—Hunter design matrix 
R nxn diagonal matrix used to transform into "absolute" 

coordinate system 
T nxn matrix which rotates the axes of the design to coincide with 

the "absolute" axes 
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2p star points at (±a, 0, . . .  , 0) (0, ±a, 0, . . .  , 0) , . . .  , (0, 0, . . .  , 0, ±a). Then 
we generally add two points (for, say, p � 5, more for larger dimensionality) 
at the origin. A sufficient condition for rotatability of the design, i.e. , that, 
as above, Var(y) is a function only of 

l = Xf + X� + . . .  + X;, 

can be shown to be [4] that 

(1 1 .4) 

(1 1 .5) 
In Table 1 1 . 1  we show rotatable designs for dimensions 2,3,4, 5, 6 and 7. 

Table 11.1. Ifome Bax:-Hunter Rotatable Designs. 
Dimension Num. (Jube Points Num. venter Points Num, ljtar Pomts a 

2 4 2 4 2,0 3 8 2 6 2,75 
4 16 4 8 2 
5 32 4 10 21 .25 
6 64 6 12 21 ,5 
7 128 8 14 21,75 

When the response variable has been evaluated at the design points, we 
then use least squares to fit a quadratic polynomial to the results. 

P P P 
J1 (8) = .Bo  + L.8i8i + L L.8ijei8j . 

i=1 i=1 j=1 
We then transform the polynomial to canonical form A: 

P P 
J2(9) = .80 + L.8i9i + L .8iie�. 

i=1 i=1 

(1 1 .6) 

(11 .7) 

Let us now flowchart the Lawera-Thompson version of the Box-Hunter 
algorithm. First, we define some notation: 

80 coordinates of current minimum 

D n x 2n + 2n + no Box-Hunter design matrix 

R n x n diagonal matrix used to transform into "absolute" 

coordinate system 

T n x n matrix which rotates the axes of the design to coincide with 

the "absolute" axes 
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(Note that the design points as given by matrix D have "absolute" coordi-
nates given by T x R x D 4- θ0.) 

S(.) the objective function 
EC prespecified by the user upper limit on noise level 

CONV user-specified constant in the convergence criterion at level 2 
XR (2n 4- 2n + no) x [1 4- n 4- n(n 4-1)/2] matrix of regression points 

X can be written as [1, (RxD)T, r dn , . . . , rdnn], where 1 is a column vector 
obtained by elementwise multiplication of the ith and the jth columns of 
{R x D)T. 

Lawera—Thompson Algorithm 

Level 1 
Input (initial guess): θο,Λο,ϊο 

1. Perform the level 2 optimization starting from the initial guess. Out-
put: θι ,Αι,Τι. 

2. Perform the level 2 optimization 10 times, starting each time from 
the results obtained in (1). 

3. Find Smin(Qmin): the best of results obtained in (2). 

O u t p u t : &mimSmin(Smin) 

Level 2 
Input: θο,ϋο,Γο,ΕΟ) 

1. EC <- EC0 

2. Perform the level 3 optimization using the input values. Output: 
e b ß i ,T i ,S (Oi ) 

3. Calculate the distance between θο and θχ, i.e., Δ θ = ^ | | θ ι — θο||2. 

4. Calculate the gain from (2): AS = 5(θ0) - 5(θι) . 

5. If Δ θ > 0 and AS > 1.5 x y/EC, then θ 0 <- в ь До <- Д ь ^ο <- Ά 
and go to (1). 

6. Else if EC > CONV, then EC 4- EC/4, and go to (2). 

7. Else exit to level 1. 

Output: θ ι ,Αι ,Γι ,5(θ ι ) . 

Level 3 
Input: θ 0 , До, To, EC0ì 5(θ0) 
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(Note that the design points as given by matrix D have "absolute" coordi­
nates given by T x R x D + 80.) 

S(.) 
EC 

CONY 
XR 

the objective function 
prespecified by the user upper limit on noise level 

user-specified constant in the convergence criterion at level 2 
(2n + 2n + no) x [1 + n + n(n + 1)/2] matrix of regression points 

X can be written as [1, (RxD)T, rdl l , . . .  , rdnn] , where 1 is a column vector 
obtained by elementwise multiplication of the ith and the jth columns of 
(R x D)T. 

Lawera-Thompson Algorithm 

Level l 
Input (initial guess) :  80, Ro, To 

1 . Perform the level 2 optimization starting from the initial guess. Out­
put: 8t , Rt , Tl . 

2. Perform the level 2 optimization 10 times, starting each time from 
the results obtained in (1) . 

3. Find Smin(8min) : the best of results obtained in (2) . 

Output: 8min,Smin(8min) 

Level 2 
Input: 80,Ro ,To ,ECo 

1 . EC +- ECo 

2. Perform the level 3 optimization using the input values. Output: 
8t, Rl , Tl , S(8l) 

3. Calculate the distance between 80 and 81 , i.e., �8 = Vl 18l - 80 1 1 2 . 
4. Calculate the gain from (2): �S = S(80) - S(8d. 
5. If �8 > 0 and tl.S > 1 .5 x VEG, then 80 +- 81, Ro +- R1 , To +- Tl 

and go to (1) . 

6. Else if EC > CONY, then EC +- EC/4, and go to (2) . 

7. Else exit to level 1 . 

Output: 8t, Rl , Tt , S(8d· 

Level 3 
Input: 80, Ro, To, EGo, S(80) 
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1. Perform level 4. Output: Rmin-

2. Set Y <- NULL, X <- NULLj <- 0, θ ι ♦- θ 0 . 

3. Set Rcur *~ Rmin· 

4. Increment г by one. 

5. Evaluate 5(θ)* = S(T0 x ДСиг x D + ©i). 

6. Calculate ХяСиг-

7. Set 

8. Set 
Y^{s(ey)· 

9. Regress Y on X. Obtain: vector of regression coefficients 0} and 
the r2 statistic. 

10. Perform the level 5 optimization. Output: Θ*, Д*, T*, 5(θ)*. 

11. Calculate the gain from (5): AS = 5(θχ) - 5(θ)*. 

12. If r2 > 0.9, AS > 1.5 x л / Щ г < 20, then 

ÄCtir <- 2 x Rcur, and go to (4). 

13. Else exit to level 2. 

Output: θ ι , Л ь Tu S(QX) 

Level 4 

Input: θο, До, To, EC0, 5(θ0) 

1. Evaluate 5(θ0)* = S(T0 x До x D + θ0) . 

2. Calculate X ^ . 
3. Regress 5(θο)* on XRQ. Obtain the r2 statistic and the error sum of 

squares (ESS). 

4. If r2 < 0.9 and [ESS < 2 x EC0, or Max(S(O0) - Μίη(5(θ0)) < 
1 . 5 х \ / Щ , 
then 
(a) Set До <- 2 x До. 
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1 .  Perform level 4. Output: Rmin' 

2. Set Y � NULL, X � NULL,i � 0, 81 � 80• 

3. Set Rcur � Rmin.  

4 .  Increment i by one. 

5. Evaluate S(8)* = S(To x RCur x D + 8d. 

6. Calculate XRcur ' 
7. Set 

X � ( � ) .  RCur 
8. Set 

9. Regress Y on X. Obtain: vector of regression coefficients {t3} and 
the r2 statistic. 

10. Perform the level 5 optimization. Output: 8*, R* , T* , S( 8)*. 

1 1. Calculate the gain from (5) : ll.S = S(81) - S(8)* .  

12. If r2 > 0.9, ll.S > 1 .5  x v'EG, i < 20, then 

81 � 8*, Rl � R* , Tl � T* 
Rcur � 2 x RCur, and go to (4). 

13. Else exit to level 2.  

Level 4 
Input: 80, Ro, To, EGo, S(80) 

1.  Evaluate S(80)* = S(To x Ro x D + 80). 

2. Calculate XRo '  

3 .  Regress S(80)* on XRo .  Obtain the r2 statistic and the error sum of 
squares (ESS). 

4. If r2 < 0.9 and [ESS < 2 x EGo, or Max(S(80) - Min(S(80)) < 
1 .5 x v'EC), 
then 

(a) Set Ro � 2 x Ro. 
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(b) Repeat (l)-(4) until r2 > 0.9, or [ ESS > 2xEC0, and Max(5(80))-
Μιη(5(θ0)) < 1.5 x у/ЕС)}. 

(c) Exit to level 3. 

5. Else 
(a) Set До <- 0.5 x До. 
(b) Repeat (l)-(4) until r2 < 0.9, and ESS < 2 x EC0i or 
Max(S(90)) - Μίη(5(θ0)) < 1.5 x y/EC. 

Set RQ <- 2 x До. 
(c) Exit to level 3. 

Output: До 

Level 52 

Input: /3, quadratic fit to the objective function 

1. Calculate vector b and matrix В such that the quadratic fit has the 
form 

y = b0 + XT xb + XTxBxX. 

2. Find matrices M and Л such that Мт х В = Л. 

3. Calculate the minimum Θ < \J2B~1 x 6. 

4. If v/PÌF > 1. tben 
(a)SetMin( |e 1 | , . . . , | e n | )^ -0 . 
(b) Repeat (a) until х/Щ* < 1. 

5. Calculate the rescaling matrix До <— Diag(\\i\~1'2). 

6. Set To <r-M. 

Output: в0,До,Т0 

Evaluation 
Input: Θ, Д, Г, EC 

1. S e t % < - 0 

2. Evaluate S 10 times at θ 0 = Г х Д x D + Θ. 

3. Increment г by 7. 

4. Calculate the sample mean S and the sample variance V of all г 
evaluations. 

2 Level 5 is based on Box and Draper [4]. 
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(b) Repeat (1)-(4) until r2 > 0.9, or [ EBB > 2xEOo, and Max(S(80» ­
Min(S(80» < 1 .5 x v'EO)] .  
(c) Exit to level 3. 

5. Else 

(a) Set Ro +- 0.5 x Ro. 

(b) Repeat (1)-(4) until r2 < 0.9, and EBB < 2 x EOo, or 

Max(S(80» - Min(S(80» < 1 .5 x v'EG. 
Set Ro +- 2 x Ro. 

(c) Exit to level 3. 

Output: Ro 

Level 52 
Input: /3, quadratic fit to the objective function 

1 .  Calculate vector b and matrix B such that the quadratic fit has the 
form 

y = bo + XT X b + XT X B x X. 

2. Find matrices M and A such that MT x B = A. 
3. Calculate the minimum 8 +- -1/2B-1 X b. 

4. If Jii8ii2 > 1, then 

(a) Set Min( le1 1 ,  . . . , len I ) +- o. 
(b) Repeat (a) until JiT8TI2 :-:; 1 .  

5. Calculate the rescaling matrix Ro +- Diag(I).; 1- 1/2) .  

6. Set To +- M. 
Output: eo, Ro, To 

Evaluation 
Input: 8, R, T, EO 

1. Set i +- 0 

2. Evaluate B 10 times at 80 = T x R x D + 8.  

3 .  Increment i by 7. 

4. Calculate the sample mean S and the sample variance V of all i 
evaluations. 

2 Level 5 is based on Box and Draper [4J . 
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5. If V/EC > Ci-i, where С*_1 is the 95th percentile of the χ^_χ dis-
tribution, then go to (2). 

6. Else exit. 

Output 5 
Using the Lawera—Thompson variant of the Box-Hunter algorithm on 

generated tumor data (150 patients) with a = 0.31, A = 0.003, a — 
1.7 x НГ10, b = 2.3a x 10~9, using a SIMEST sample size of 1500, with 
starting value 0(0.5,0.005,4 x 10~10,10~9), and using 10 bins, we converged 
to (0.31,0.0032,2 x 10"10,2.3 x 10~9). Computations were carried out on a 
Levco desktop parallel processor with 16 CPUs. Subsequent availability of 
very fast and inexpensive serial machines has caused us, temporarily, to sus-
pend the parallel investigation. It is clear, however, that the Box—Hunter 
paradigm, requiring minimal handshaking between CPUs, is a natural can-
didate for parallelization. 

11.4 Simulated Annealing 

The algorithm of Neider—Mead and that of Box—Hunter will generally not 
stall at a local minimum with the same degree of risk as a Newton's method 
based approach. Nevertheless, it sometimes happens that stalling local 
minima do occur with Neider—Mead. How to get around this problem? 

Naturally, there is no easy answer. Practically speaking, there is no 
general way to make sure that a minimum is global without doing a search 
over the entire feasible region. We might well converge, using Neider—Mead 
to point A in Figure 11.5. We need some way to make sure that we really 
have arrived at the global minimum. 

Figure 11.5. The problem with local minima. 

In the example in Figure 11.5, we might argue that we need something to 
kick us away from A. Then, we can see if, say using Neider Mead, we move 
to a new candidate for the global minimum, say B, or fall back to A. From 
the picture, it is clear that it is a critical matter just how far we move away 
from A which determines whether we will progress on to В and thence to 
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5. If V/EC > Ci-1 , where Ci-1 is the 95th percentile of the Xtl dis­
tribution, then go to (2) . 

6. Else exit. 

Output S 
Using the Lawera-Thompson variant of the Box-Hunter algorithm on 

generated tumor data (150 patients) with a = 0.31 , >. = 0.003, a = 
1.7 x 10-10 , b = 2.3a x 10-9, using a SIMEST sample size of 1500, with 
starting value 0(0.5, 0.005, 4 x 10-10 , 10-9) ,  and using 10 bins, we converged 
to (0.31 , 0.0032, 2 x 10-1°, 2.3 x 10-9) .  Computations were carried out on a 
Levco desktop parallel processor with 16 CPUs. Subsequent availability of 
very fast and inexpensive serial machines has caused us, temporarily, to sus­
pend the parallel investigation. It is clear, however, that the Box-Hunter 
paradigm, requiring minimal handshaking between CPUs, is a natural can­
didate for parallelization. 

11 .4 Simulated Annealing 

The algorithm of NeIder-Mead and that of Box-Hunter will generally not 
stall at a local minimum with the same degree of risk as a Newton's method 
based approach. Nevertheless, it sometimes happens that stalling local 
minima do occur with NeIder-Mead. How to get around this problem? 

Naturally, there is no easy answer. Practically speaking, there is no 
general way to make sure that a minimum is global without doing a search 
over the entire feasible region. We might well converge, using NeIder-Mead 
to point A in Figure 1 1.5. We need some way to make sure that we really 
have arrived at the global minimum. 

c 
Figure 11.5. The problem with local minima. 

In the example in Figure 1 1 .5, we might argue that we need something to 
kick us away from A. Then, we can see if, say using NeIder Mead, we move 
to a new candidate for the global minimum, say B, or fall back to A. From 
the picture, it is clear that it is a critical matter just how far we move away 
from A which determines whether we will progress on to B and thence to 
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С, or whether we will fall back into A. Mysterious analogies to Boltzmann 
energy levels are probably not very helpful, but we shall mention the idea, 
since users of simulated annealing generally do. 

In cooling a molten metal too quickly, one may not reach a level of 
minimum energy (and hence apparently of crystalline stability). When this 
happens, it sometimes happens that a decision is made to reheat the metal 
(although not to the molten state, necessarily) and then cool it down again, 
slowly, hoping to move to another lower-energy state. The probability of 
moving from energy state E\ to another energy state i?2, when E2 — E\ — 
ΔΕ > 0, is given by exp(—AE/(kT) where к is the Boltzmann constant 
The analogy is relatively meaningless, and generally the 1/(кТ) is simply 
replaced by a finagle factor. The finagle factor will determine how far we 
kick away from the apparent minimum. As time progresses, we may well 
decide to "stop the kicking." 

Let us suppose that we have used Neider—Mead to get to a minimum 
point XQ. Using this as our starting point, we can use an algorithm sug-
gested by Bohachevsky, Johnson, and Stein [1, 12]. 

BJS "General" Simulated Annealing Algorithm 

1. Set /о = f(x0). К I/o - /ml < e, stop. 

2. Generate n independent standard normal variates ΥΊ, У2,..., Yn Let 
Ui = Yi/№ + Y? + ...+Y*)1'2tori = lì2ì...ìn. 

3. Set ж* = XQ + (Ar)U. 

4. If x* is not in the feasible set, return to step 2, otherwise, set /1 = 
/(**) and Δ / = /!-/«>. 

5. If /1 < /0, set £0 = я* and /0 = / 1 . If I/o - /ml < e, stop. Otherwise, 
go to step 2. 

6. If h > /0, set p = ехр(-/?/ |Д/). 

7. Generate a uniform W(0,1) random variate V. If V > p, go to step 2. 
If V < p, set XQ = x*, /0 = /1 and go to step 2. 

It is clear that the above algorithm contains a fair amount of things that 
are a bit arbitrary. These include 

• Step size Ar 
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BJS "General" Simulated Annealing Algorithm 
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Ui = �j(Y12 + y22 + . . .  + y;)1/2 for i = 1 , 2, . . . , n. 
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4. If x· is not in the feasible set, return to step 2, otherwise, set ft = 

I(x*) and fl.1 = ft - 10. 
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6. If It > 10, set p = exp( -/318 fl./) · 
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It is clear that the above algorithm contains a fair amount of things that 
are a bit arbitrary. These include 

• Step size fl.r 
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• 9 

• ß 

• / m assumed value of the global minimum 

Before the advent of simulated annealing, investigators tried to seek path-
ways to the global optimum by starting at a random selection of starting 
points. Such a multistart approach is still a good idea. Taking a set of local 
minima obtained from different starting points, one might try a number 
of strategies of starting from each of the local minima and conducting a 
random search in hyperspheres around each to see whether better minima 
might be obtained, and so on. Any simulated annealing approach will be, 
effectively, a random search on a set much smaller than the entire feasible 
region of the parameter space. We should despair, in general, of coming up 
with a fool-proof method for finding a global optimum that will work with 
any and all continuous functions. Much of the supposed success of simu-
lated annealing, as opposed to the kind of multistart algorithm, is probably 
a result of the very fast computers that simulated annealers tended to have 
available. 

11.5 Exploration and Estimation in High 
Dimensions 

The power of the modern digital computer enables us realistically to carry 
out analysis for data of higher dimensionality. Since the important intro-
duction of exploratory data analysis in the 1970s, a great deal of effort 
has been expended in creating computer algorithms for visual analysis of 
data. One major advantage of EDA compared to classical procedures is 
a diminished dependency on assumptions of normality. However, for the 
higher-dimensional situation, visualization has serious deficiencies, because 
it tends to involve projection into two or three dimensions. 

What are typical structures for data in high dimensions? This is a ques-
tion whose answer is only very imperfectly understood at the present time. 
Some possible candidates are: 

1. Gaussian-like structure in all dimensions. 

2. High signal-to-noise ratio in only one, two, or three dimensions, with 
only noise appearing in the others. Significant departures from Gaus-
sianity. 

3. System of solar systems. That is, clusters of structure about modes 
of high density, with mostly empty space away from the local modes. 
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only noise appearing in the others. Significant departures from Gaus­
sianity. 

3. System of solar systems. That is, clusters of structure about modes 
of high density, with mostly empty space away from the local modes. 
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4. High signal-to-noise ratio along curved manifolds. Again the astro-
nomical analogy is tempting, one appearance being similar to that of 
spiral nebulae. 

For structure 1, classical analytical tools are likely to prove sufficient. For 
structure 2, EDA techniques, including nonparametric function estimation 
and other nonparametric procedures will generally suffice. Since human 
beings manage to cope, more or less, using procedures which are no more 
than three- or four-dimensional, it might be tempting to assume that stuc-
ture 2 is somehow a natural universal rule. Such an assumption would 
be incredibly anthropomorphic, and we do not choose, at this juncture, to 
make it. For structure 3, the technique investigated by Thompson and his 
students [2, 6—8] is the finding of modes, utilizing these as base camps for 
further investigation. For structure 4, very little successful work has been 
done. Yet the presence of such phenomena as diverse in size as spiral nebu-
lae and DNA shows that such structures are naturally occurring. One way 
in which the astronomical analogy is deceptively simple is that astronom-
ical problems are generally concerned with relatively low dimensionality. 
By the time we get past four dimensions, we really are in terra incog-
nita insofar as the statistical literature is concerned. One hears a great 
deal about the "curse of dimensionality." The difficulty of dealing with 
higher-dimensional non-Gaussian data is currently a reality. However, for 
higher-dimensional Gaussian data, knowledge of data in additional dimen-
sions provides additional information. So may it also be for non-Gaussian 
data, if we understood the underlying structure. 

Here, we are concerned mainly with structure 3. Mode finding is based 
on the mean update algorithm (MUA) [2 , 6, 7, 18]: 

Mean Update Algorithm 
Let fii be the initial guess 

Let m be a fixed parameter; 
< = 1 \ Repeat until μ£+ι = fi%\ 
Begin 

Find the sample points {X\, X2,..., Xm} which are closest to μ*; 
Let/V+i = ±Σ?=ιχ*\ 

г = t + 1; 
end. 

Let us consider a sample from a bivariate distribution centered at (0,0). 
The human eye easily picks the (0,0) point as a promising candidate for the 
"location" of the distribution. Such a Gestaltic visualization analysis is not 
as usable in higher dimensions. We will be advocating such an automated 
technique as the mean update algorithm. Let us examine Figure 11.6. 
Suppose that we have only one dimension of data. Starting at the projection 
of 0 on the x-axis, let us find the two nearest neighbors on the ж-axis. 
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Here, we are concerned mainly with structure 3. Mode finding is based 
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Mean Update Algorithm 
Let iiI be the initial guess 

Let m be a fixed parameter; 
i = 1; 

Repeat until J1.i+ 1 = Iii; 
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Find the sample points {Xl ! X2, • • •  , Xm} which are closest to J1.i; 
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end. 

Let us consider a sample from a bivariate distribution centered at (0,0) . 
The human eye easily picks the (0,0) point as a promising candidate for the 
"location" of the distribution. Such a Gestaltic visualization analysis is not 
as usable in higher dimensions. We will be advocating such an automated 
technique as the mean update algorithm. Let us examine Figure 11 .6. 
Suppose that we have only one dimension of data. Starting at the projection 
of 0 on the x-axis, let us find the two nearest neighbors on the x-axis. 
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Taking the average of these, brings us to the 1 on the x-axis. And there 
the algorithm stalls, at quite a distance from the origin. 
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Figure 11.6. Mean update estimation of mode. 

Howeveer, if we use the full two dimensional data, we note that the al-
gorithm does not stall until point 3, a good deal closer to the origin. So 
increased dimensionality need not be a curse. Here, we note it to be a 
blessing. 

Let us take this observation further. Suppose we are seeking the location 
of the minor mode in a data set which (unbeknownst to us) turns out to be 

f(x) = .W(x\ .051,1) + ЛМ(х\ 2.4471,1). (11.8) 

If we have a sample of size 100 from this density and use the mean update 
algorithm, we can measure the effectiveness of the MUA with increasing 
dimensionality using the criterion function 

Μ8Ε(μ) = ΐΣ(μι-μ)2. (11.9) 

Below we consider numerical averaging over 25 simulations, each of size 
100. 
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Howeveer, if we use the full two dimensional data, we note that the al­
gorithm does not stall until point 3, a good deal closer to the origin. So 
increased dimensionality need not be a curse. Here, we note it to be a 
blessing. 

Let us take this observation further. Suppose we are seeking the location 
of the minor mode in a data set which (unbeknownst to us) turns out to be 

f(x) = .3N(x; .051, 1) + .7N(x; 2.4471, 1) .  (11 .8) 

If we have a sample of size 100 from this density and use the mean update 
algorithm, we can measure the effectiveness of the MUA with increasing 
dimensionality using the criterion function 

(11 .9) 

Below we consider numerical averaging over 25 simulations, each of size 
100. 
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Table 11.2. Mean Square Errors 
P 
1 
3 

! 5 
10 
15 

m 
20 
20 
20 
20 
20 

MSE 
0.6371 
0.2856 
0.0735 
0.0612 
0.0520 

We note in Table 11.2, how, as the dimensionality increases, essentially 
all of the 20 nearest neighbors come from the minor mode, approaching the 
idealized MSE of 0.05 as p goes to oo. Subsequent work [6] has shown that 
for multiple modes in dimensions five and over, the MUA appears to find, 
automatically, which points to associate with each mode, so that even for 
mixtures of rather tally distributions such as T(3), we come close to the 
idealized MSE for the location of each mode, namely, l/(np) where n is the 
total sample size and p is the proportion of the data coming from the mode. 
So far from being a curse, an increasing dimensionality can be an enormous 
blessing. We really have no very good insights yet as to what happens 
in, say, 8-space. This examination of higher-dimensional data is likely to 
be one of the big deals in statistical analysis for the next 50 years. The 
examination of data in higher-dimensions is made possible by the modern 
computer. If we force ourselves, as is currently fashionable, to deal with 
higher-dimensional data by visualization techniques (and hence projections 
into 3-space) we pay an enormous price and, quite possibly, miss out on the 
benefits of high-dimensional examination of data. 

The analogy we shall employ is that of moving through space until we 
find a "center" of locally high density. We continue the process until we 
have found the local modes for the data set. These can be used as centers 
for local density estimation, possibly nonparametric, possibly parametric 
(e.g., locally Gaussian). It turns out, as we shall see, that finding local 
modes in high dimensions can be achieved effectively with sample sizes 
orders of magnitude below those generally considered necessary for density 
estimation in high dimensions [14—16]. Moreover, as a practical matter, 
once we have found the modes in a data set, we will have frequently gleaned 
the most important information in the data, rather like the mean in a one-
dimensional data set. 

Let us suppose that we have, using each data point from the data set of 
size n as a starting point, found mm apparent local modes. As a second 
step, let us develop an algorithm for consolidating the apparent local modes 
to something more representative of the underlying distribution. There axe 
many ways to carry out the aggregation part of the algorithm. This is only 
one of the possibilities. 

Take two of the local modes, say Mi and M2. Examine the volume Vi>m 
required to get, say, m nearest neighbors of M\ and l^>m required to get, 
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find a "center" of locally high density. We continue the process until we 
have found the local modes for the data set. These can be used as centers 
for local density estimation, possibly nonparametric, possibly parametric 
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modes in high dimensions can be achieved effectively with sample sizes 
orders of magnitude below those generally considered necessary for density 
estimation in high dimensions [14-16] .  Moreover, as a practical matter, 
once we have found the modes in a data set, we will have frequently gleaned 
the most important information in the data, rather like the mean in a one­
dimensional data set .  

Let us suppose that we have, using each data point from the data set of 
size n as a starting point, found mm apparent local modes. As a second 
step, let us develop an algorithm for consolidating the apparent local modes 
to something more representative of the underlying distribution. There are 
many ways to carry out the aggregation part of the algorithm. This is only 
one of the possibilities. 

Take two of the local modes, say Ml and M2• Examine the volume Vl ,m 
required to get, say, m nearest neighbors of Ml and V2,m required to get, 
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say, m nearest neighbors of M2 . Standing at the midpoint between Μχ and 
M2 , say, Mi>2, draw a sphere of volume Vi2,m = Vi,m + V ,̂™· Suppose 
that the number of distinct points in the pooled clouds is mi 2 . Suppose 
that the hypersphere centered at Mi>2 has a density as high as that in the 
other two clouds. Let the number of points falling inside the hypersphere 
centered at Mi j 2 be ηι,2· Then if the number of data points falling inside 
that hypersphere is greater than the 5th percentile of a binomial variate of 
size 7П\2 and with p = 0.5, we perform a condensation step by replacing 
the two modes Mi and M2 by Mi ) 2 as shown in Figure 11.7. 

200 12-d Simulated Data Points 

■"■·'·*<%£? ' ' · 

Data after Two Condensations 

* -'" 

I v ' 

Data after One Condensation 

Final Estimate of Four Modes 

; 
* 1 

Figure 11.7. Condensation progression using M U A . 

To examine the progression of the condensation algorithm, we simulate 
200 data points from a mixture of four 12-dimensional normal distributions 
with mixture weights .40, .24, .19, and .17. The four modes are well esti-
mated both in terms of numerosity and location even for such a small data 
set. 

Let us apply Elliott's version [6, 7] of the MUA to the much-studied 
Fisher—Anderson iris data. This is a database of three varieties of iris with 
50 observations from each of the varieties. The algorithm found four (see 
Table 11.4) rather than the hoped-for three clusters shown in Table 11.3. 

Table 11.3. Fisher-Anderson Iris Data. 
| Species 
1 Setosa 

Versicolor 
1 Virginica 

Sepal Length 
5.006 
5.936 
6.588 

Sepal Width 
3.428 
2.770 
2.974 

Petal Length 
1.462 
4.260 
5.552 

Petal Width 
0.246 
1.326 
2.026 
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To examine the progression of the condensation algorithm, we simulate 
200 data points from a mixture of four 12-dimensional normal distributions 
with mixture weights .40, .24, .19, and .17. The four modes are well esti­
mated both in tenns of numerosity and location even for such a small data 
set. 

Let us apply Elliott's version [6, 7] of the MUA to the much-studied 
Fisher-Anderson iris data. This is a database of three varieties of iris with 
50 observations from each of the varieties. The algorithm found four (see 
Table 11 .4) rather than the hoped-for three clusters shown in Table 1 1 .3. 

Table 11.3. Fisher-Anderson Iris Data. 
Species Sepal Length Sepal Width Petal Length Petal Width 
Setosa 5.006 3.428 1.462 0.246 
Versicolor 5.936 2.770 4.260 1.326 
Virginica 6.588 2.974 5.552 2.026 
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Table 11.4. Estimated Modes Based on 150 Observations 
Species Sepal Length Sepal Width Pet. Lgth Pet. Width 
Setosa 
Versicolor 
Virginica 
Versi/Virgin. 

4.992 
5.642 
6.762 
6.249 

3.411 
2.696 
3.067 
2.893 

1.462 
4.101 
5.589 
4.837 

.225 
1.267 
2.218 
1.591 

At first, we feared that some fundamental flaw had crept into the algorithm, 
which had always performed quite predictably on simulated data. Later, 
it seemed plausible, based on the fact Verginica and Versicolor always 
spontaneously hybridize and that it is almost impossible not to have this 
hybrid present, to believe our eyes. The fourth mode had occurred, in fact, 
almost precisely at the mean of the Verginica and Versicolor modes. This 
was a rather surprising result, apparently unnoticed in the some fifty years 
since the Fisher—Anderson iris data became something of a test bed for 
measuring the effectiveness of discrimination and clustering algorithms. 

200 400 800 200 400 600 

Figure 11.8. Mode finding when scales of underlying mixtures 
are very different. 

In another application, Elliott and Thompson [6] have examined a four di-
mensional ballistics data set of size 944 kindly provided by Malcolm Taylor 
of the Army Research Laboratory. Consider the two-dimensional projec-
tions displayed in Figure 11.8. Our algorithm was able to find modes from 
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'Thble 11.4. Estimated Modes Based on 150 Observations 
Species Sepal Length Sepal Width Pet. Lgth Pet. Width 
Setosa 4.992 3.41 1 1 .462 .225 
Versicolor 5.642 2.696 4.101 1 .267 
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At first, we feared that some fundamental Haw had crept into the algorithm, 
which had always performed quite predictably on simulated data. Later, 
it seemed plausible, based on the fact Verginica and Versicolor always 
spontaneously hybridize and that it is almost impossible not to have this 
hybrid present, to believe our eyes. The fourth mode had occurred, in fact, 
almost precisely at the mean of the Verginica and Versicolor modes. This 
was a rather surprising result, apparently unnoticed in the some fifty years 
since the Fisher-Anderson iris data became something of a test bed for 
measuring the effectiveness of discrimination and clustering algorithms. 
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Figure 11.8. Mode finding when scales of underlying mixtures 
are very different, 

In another application, Elliott and Thompson [6] have examined a four di­
mensional ballistics data set of size 944 kindly provided by Malcolm Taylor 
of the Army Research Laboratory. Consider the two-dimensional projec­
tions displayed in Figure 11 .8. Our algorithm was able to find modes from 
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overlapping subpopulations whose scales differed by nearly 1000. We see 
in the top left quadrant of Figure 11.8 a two-dimensional projection of the 
data set. The top right quadrant gives the three estimated modes. In the 
lower left quadrant, we have zoomed in on the cluster in the lower left of 
the data set. In the lower right quadrant, we have zoomed in to a scale 
10~3 of that used in the display of the raw data. As we have seen, even in 
data sets of dimensionality as low as four, there seems to be appearing a 
big bonus for the extra dimension(s) past three for finding modes. 

Mean update algorithms show great promise for exploratory purposes. 
The problem of nonparametric function estimation is one to which some of 
us at Rice University have given some attention for a number of years. Our 
foray into the higher dimensions has produced a number of surprises. The 
notion that increasing dimensionality is a "curse" seems only to be true 
if we insist on graphical approaches. Our multidimensional mode—finding 
algorithm dramatically improves with increasing dimensionality. 

Problems 

11.1. In optimization examples, perhaps the easiest problem is that of 
finding the minimum of the dot product. Consider finding the minimum of 

j1(e) = e? + ei + e§ + 2e 
where e is N (0,1). Examine the performance of both the Neider—Mead 
and Box-Hunter algorithms. 

11.2. A somewhat more difficult minimization case study is that of the 
Rosenbrock function with additive Gaussian noise 

J2(6) = 100(θ? - ©i)2 + (1 - θ ι ) 2 + 1 + 6, 

where e is Λ/*(0,1). Examine the performance of both the Neider—Mead 
and Box—Hunter algorithms. 

11.3. Returning to the problem in Section 5.4.1, generate a set of times 
of discovery of secondary tumor (time measured in months past discovery 
and removal of primary) of 400 patients with a = .17 x 10~9, b = .23 x 
1СГ8, a = .31, and λ = .0030. Using SIMEST, see if you can recover the 
true parameter values from various starting values, using the Box—Hunter 
algorithm. 

11.4. Consider the density function 

f(x) = 0.5Af (x; 0.551,1) + 0.W(x\ 21,1) + 0.2Af(*; 21,1) 

Generate random samples of size 100 for dimensions 2, 3, 4, 5, and 10. 
Examine the efficacy of the MUA in finding the centers of the three distri-
butions. 
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Chapter 12 

Utility and Group 
Preference 

12.1 Introduction 

If our analysis consisted simply in trying to see what the dollar value of 
a stock might be six months from today, that would be difficult enough. 
But analysis of the market is complicated by the fact that it is not simply 
the dollar value that is of interest. A thousand dollars is not necessarily of 
the same subjective value to investor A and investor B. It is actually this 
difference in personal utilities which helps create markets. 

Narratives concerning the differing values of the same property to indi-
viduals of differing means go back into antiquity. Around 1035 B.C., the 
Prophet Nathan told about a rich man with many flocks who slaughtered 
the sole lamb of a poor man rather than kill one of his own (2 Samuel 1:12). 
King David was enraged to hear of the deed and promised harsh justice to 
the evil rich man. One lamb means more to a poor man than to a man with 
many lambs. (Of course, then Nathan dropped the punch line which had 
to do with David having had Uriah killed, so that David could gain access 
to Uriah's wife Bathsheba. The parable was about King David himself.) In 
the New Testament Jesus tells of a poor widow whose gift to the Temple 
of two mites, a small multiple of lowest currency in the realm, had moral 
value more than the magnificent gifts of the very wealthy, since the widow 
had given away everything she had. 

All this more or less resonates with us as a matter of common sense. We 
understand that the gain or loss of a small amount of property means much 
more to a poor person than it does to a wealthy one. Although the effect 
of present wealth on the utility of the gain of a certain amount of money 
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had been clear for millenia, it seems that no attempt had been made un-
til 1738 A.D. to come up with a quantitative measure of the relationship 
between present wealth and marginal gain. In that year, the Swiss proto-
statistician Daniel Bernoulli published "Exposition of a New Theory on the 
Measurement of Risk" [3]. In this paper Bernoulli laid the basis of utility 
theory. Before starting our discussion of Bernoulli's paper, we should note 
that utility theory today in market modeling does not have quite the rel-
evance one might have supposed in the golden age of utility theory, which 
ended some time before 1970. To many, a dollar is a dollar, regardless of 
one's wealth. That is unfortunate, for as we shall emphasize repeatedly 
in this text, markets are made by diverse individuals who view the same 
commodity or security quite differently from one another. Prices are most 
efficiently determined by a jostling of buyers and sellers who come together 
with different notions of utility and arrive at a trading price by agreement. 

When governments or agencies attempt to enforce fair pricing, disaster 
is generally the result, even when the government is really high-minded and 
has worthy goals. As an extreme example, during the general uprising of 
the population of Warsaw against the Nazis in August of 1944, things were 
going rather badly for the Poles. Even clean water was all but impossible 
to obtain. Some industrious peasants from the suburbs who had access 
to water carrier wagons loaded up from the family wells and, risking life 
and limb, delivered water to the freedom fighters for a price well above the 
peace time price of fresh water. What was a fair price for water delivered to 
patriots fighting to the death for the freedom of the nation? The freedom 
fighter high command decided it was zero and had the water vendors shot. 
Of course this marked the end of fresh water, but at least a politically 
correct fair price for water for freedom fighters had been enforced. Fresh 
water was both free and unavailable. "Nothin' ain't worth nothin', but it's 
free." 

12.2 The St. Petersburg Paradox 

Many are familiar with the following apparently paradoxical question: 

How much should you be willing to pay to play a game in 
which a coin is repeatedly tossed until the first heads? If the 
first heads appears on the first toss, you will receive 21 = 2 
dollars. If the first heads appears on the second toss, you will 
receive 22 = 4 dollars. If the first heads appears on the fcth 
toss, you receive 2k dollars. The game terminates on the round 
where the first heads is obtained. 

Now, on the average the expectation of the pay-off in this game is 

fc=l 
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The expected payoff in the game is infinity. Would anybody pay a million 
dollars to play this game? Very likely, the answer is negative. Possibly 
somebody who was already incredibly rich might do it, for the chances of 
tossing 19 straight tails is small (one in 219 = 524,288). A poor person 
might be unwilling to pay more than two dollars, the minimum possible 
pay-off of the game. There is, it would appear, a relationship between one's 
wealth and the amount one would pay to play this paradoxical game. But 
things are more complicated than that. It really is the case that simply 
looking at the expected value of the game does not tell the whole story 
unless the game is replayed a very large number of times. 

As we shall discuss later on, it is customary to talk about the expected 
value of an investment and also about its volatility (standard deviation). 
But the fact is that these two numbers generally will not give an investor 
all the information to determine whether an investment is attractive or not. 
Now, for the St. Petersburg game, we know that the probability that the 
player will realize at least ($2)fc+1 is given (for к = 1,2,...) by1 

к 

1-Σφ^Φ*· (12·2) 
The player cannot make less than $2. But what is the probability that he 
will make at least, say, $1024? Prom (12.2), the answer is 1/29 = 1/512 = 
.001953. This would be roughly two chances in a thousand. Probably, the 
player would dismiss such an event as being very unlikely. In Figure 12.1, 
we give a profile showing the probabilities that the player will make at least 
various amounts of dollars. 

The probability profile gives a reasonable insight as to why the St. Pe-
tersburg game is not worth the expectation of payoff, in this case oo.2 We 
believe that, for most players, most of the time, it is advisable to look at 
the entire probability profile when deciding whether an investment suits 
the investor. Most investors will not be as impressed with the fact that 
the expected value of the game is infinity as they would with the fact that 
in only two chances out of a thousand will the game produce winnings in 
excess of $1000. Looking at the overall picture, half the time, a player will 
make at least $4. He will never make less than $2. One-fourth of the time, 
he will make at least $8. One-eighth of the time he will make at least $16, 
etc. In deciding how much he will wager to play the game, the player should 
have the entire probability profile at his disposal, not simply the mean and 
standard deviation. At the end of the day, the player must decide how 
much he is willing to pay to play. In other words, he must combine the 
entire probability profile into his decision, 'Tea or nay." It is tempting to 

1Here we are using the fact that a series of the form 1 + r + r2 + r3 + .. . + rn = 
(1 - rn) / ( l — r) if r is greater than 0 and less than 1. 

2It is interesting to note, of course, that no gambling house exists which could pay 
oo! 
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create a deus ex machina which will automatically decide how much one 
should pay to play the game. The expected value is such a rule, and we 
have seen that it does not work. 
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Figure 12.1. Probability profile of/0^2(winnings). 

The situation where the utility function U is the dollar value of game 
payoff is a special case of the class of reasonable utihties. Here, the utility 
is linear in dollar pay-off, i.e., the relation between utility U and payoff X 
is given by 

U(X) =a + BX. (12.3) 

We note that if we used any function which grows more slowly than X, 
then, for the coin flipping example under consideration, 

fc=oo -

E(U(X)) = V=Y,U(2k)(-)k (12.4) 

is finite. For example, suppose we consider U(X) = y/X, then we have 
fc=oo л 

fc=l 

k—oo 

= £ 2"fc/2 

1 ., 1 1 1 

1 1 
л/2 1 - 1/V2 

1 

(12.5) 
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create a deus ex machina which will automatically decide how much one 
should pay to play the game. The expected value is such a rule, and we 
have seen that it does not work. 
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Figure 12.1. Probability profile of l092{winnings). 

The situation where the utility function U is the dollar value of game 
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Another popular utility function is the logarithm U(X) = log(X). Here, 
for the coin-flipping problem 3 

fc=oo -

E(U(X)) = Σ log((2*))(i)* (12.9) 
fei Z 

= log(2)f>(i)* 

= 41og(2). 

Again, it should be emphasized that for most investors, looking at the 
expected utility will be at best a poor substitute for looking at the entire 
probability profile of the utilities. We consider such a profile in Figure 12.2 
where probability of making at least a value of utiles as those given on 
the abscissa is plotted for the case where log(winnings) is the utility. We 
note that we have the same probability masses as in Figure 12.1. Only the 
abscissa axis has changed, since we are looking at loge (winnings) as opposed 
to log2(winnings) (where e = 2.7183). Most investors could work just as 
well with Figure 12.1 as with Figure 12.2, even if their utility function 
were loge. We really can get into trouble if we do not look at the entire 
probabiUty profile (which could appropriately also be referred to as a risk 
profile). If we decide to make our decision based on one summary number, 
such as the expected value of the utility, we can quite easily lose our grasp 
of what the numbers are telling us. 
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Figure 12.2. Probability profile of log(winnings). 

Generally speaking, reasonable candidates for utility should be nonde-
creasing in capital. That is, by increasing one's capital, one's utility does 

3Here we use the fact that 1/(1 - y)2 = Efc=?° kyk. 
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not decrease. There are, of course, exceptions to this rather reasonable 
assumption. As with most exceptions to rationality, these are generally 
state imposed. For example, during the Socialist government of Olaf Palme 
in Sweden, graduated tax rates actually got over 100%. In Lenin's war 
to break the power of free agriculture in Ukraine, "kulaks" (kulak means 
"fist") were defined to be peasants with over a certain modest amount of 
holdings. If one had a bit less than the boundary value, one was (for the 
time) left alone. But over the value, one was shot. Similarly, in the Red 
controlled areas of Spain during the Civil War (1936—1939), there was a 
critical boundary between who was a peasant and who was a "landlord." 

The marginal utility of a new increment or decrement of wealth is clearly 
a personal matter related to one's wealth. The loss of ten thousand dollars 
is trivial to a wealthy person. To someone in the lower income brackets, it 
may be ruinous. 

"A billion here, a billion there," can be easily be doled out by an Amer-
ican politician at the national level. An incremental dollar has utility de-
pendent, somehow, on the assets of the person(s) considered. This rather 
obvious fact can be used for many purposes, including graduated taxation. 
Here we simply wish to consider the matter from the standpoint of its 
practical implications. 

One can argue, as did Bernoulli, that the marginal increase in a person's 
wealth by a profit should be measured as a ratio of the new profit to the 
assets already in hand before the profit was realized. Expressing this in 
symbols, where U is the utility, к is a constant of proportionality, X is 
the base amount of wealth, and AX is the change in that wealth, one can 
write4 

AX 
AU = *=£-. (12.10) 

This, then, says that an increase in wealth of one dollar changes the utility 
of a person with beginning wealth of $100 the same as an increase in wealth 
of $1,000 has for a person with beginning wealth of $100,000. This "law" 
of Bernoulli's is, of course, not really a law but rather an assumption with 
shortcomings. For example, if both of these hypothetical persons have a 
child being held for a ransom of $101,000, then the wealthier individual can 
buy his child's freedom, whereas the poorer one is as far away from achieving 
the goal with $101 as with $100. On the other hand, if the ransom is $101, 
then the poorer person's utility goes up much more with the addition of one 
dollar than that of the richer one with the addition of $1,000. These are 
both examples of "step function" utilities, and Bernoulli wanted to look at 
a smooth utility. Objections can be raised that utility functions which have 
critical jumps up or down are not realistic. The thousands of bankruptcies 
experienced in the United States yearly would seem to be an example of 
step function realities. 

4If the initial capital is X} then (2.9) is satisfied by U(X, AX) = log[(X + ΔΧ)/Χ]. 
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Having noted that Bernoulli discovered an insight rather than a law, 
we must concede that his insight was valuable. Generally speaking, when 
starting to understand a new concept, it is good to try and reason from an 
example, even a hypothetical one. Bernoulli gave a hypothetical example 
based on Caius, a fictitious merchant of St. Petersburg, Russia, who was 
contemplating whether he should take insurance on a shipment from Am-
sterdam to St. Petersburg. The shipment, upon delivery, provides Caius 
with 10,000 rubles. But storms are such that, on the average, 5% will be lost 
at sea. The Amsterdam underwriters want a full covered policy payment of 
800 rubles, or 8% of the profit if no mishap occurs. Should Caius buy the 
policy? His expected value if he does not is 9,500 rubles. The underwrit-
ers are clearly demanding a premium of 300 rubles above their expected 
payout. Is it worth it for Caius to purchase the policy or to "self-insure"? 
If we go by naive ruble values, then he should self-insure. But if Caius 
follows Bernoulli's advice, he should buy the policy if his expected utility 
for insuring is greater than that for not insuring. Let us suppose Caius's 
capital is X rubles. We shall, without loss of generality, take к = 1, since 
any к will change both the insured and self-insured options in the same 
way. Then Caius's expected utility of not insuring minus that of insuring 
is given by 

f(X) = .95 log X + 10,000 - log Jf + 9,200 (12.11) 

Setting f(X) = 0, we can easily solve the resulting equation using Newton's 
Method (see Appendix В at the end of this book). 

b-n+l = Xn 
f{Xn) (12.12) 

Starting with 5000 rubles as our first guess, we arrive at the indifference 
value of 5042 rubles. If Caius has less than this amount, he should (accord-
ing to Bernoulli), buy the 800 ruble policy. If he has more, he should self 
insure (i.e., not buy the insurance). 

Next, let us ask the question as to how much the underwriter (insurer) 
should have in hand in order to sell the 10,000 ruble policy for the amount 
of 800 rubles. Let Y be the assets of the underwriter. Then he should sell 
the policy if his assets exceed the Y value in 

(j(Y) = .951og Y + 800 + .05 log F - 9 , 2 0 0 (12.13) 

Again, using Newton's method, we find that if the underwriter has a stake 
of 14,242 rubles or more, Bernoulli's rule tells us that selling the policy will 
improve the underwriter's position. Going further, let us ask the question 
as to what is the minimum price the underwriter might reasonably sell the 
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10,000 ruble policy if the underwriter has capital of one million rubles. To 
achieve this, we simply solve 

h(W) = 0.95 log 
106 + W 

106 4-0.05 log 
106 + W - 104 

106 (12.14) 

The solution here tells us that the underwriter with capital of 1,000,000 
rubles might reasonably sell the 10,000 ruble policy for 502.4 rubles. But 
Caius, if he has capital of 5,042 rubles, say, would find it reasonable to pay 
up to 800 rubles. Thus, the underwriter is in a position to get more than 
his own indifference value for the trade (502.4). Naturally, the underwriter 
is largely looking at things from his own standpoint, rather than that of 
potential cUents. He is only interested in the amount of the policy, the risk 
to the underwriter, and charging whatever rate the market will bear. If the 
underwriter has no competition, he must remember that there is always 
competition from the merchant himself who can decide to self insure. This 
is simply a manifestation of substitutability of one service by another. Still, 
there is the likelihood that the presence of a second underwriter in the 
Amsterdam to St. Petersburg run will drive prices downward. There is 
a spread of several hundred rubles where the purchase of the policy is a 
good deal, from a utility standpoint, for both underwriter and the insured 
merchant. 

Note that in the above example, if the underwriter sells Caius a policy 
for 650 rubles, then Caius has a good deal. He has the policy for less than 
his utility function would make him willing to pay. And the underwriter has 
a good deal also, for he is well above the minimum rate his utility function 
dictates. Here is an example of the reason transactions take place, for the 
deal is good for both parties from the standpoints of their respective utili-
ties. In a true free trade situation where there are a number of merchants 
and several underwriters, there will be a jostling back and forth of rates. 
The change in riskiness of the transit due to weather, war, pirates, etc., 
will be a major driver in the change of rates. They will never stop their 
fluctuation, though at any given point in time, the cost of a 10,000 ruble 
policy will be similar from all of the underwriters. It is the difference in 
utility functions (driven in part by wealth status) as well as the difference 
in personal views as to the value of a commodity or service that cause mar-
kets to exist at all. If Caius were willing to buy the policy for no more than 
800 rubles and the underwriter were only willing to sell it for 850 rubles, 
then no transaction would take place. By jostling and haggling, any given 
selling price will be in the "comfort intervals" of both buyer and seller. The 
buyer would always have been willing to have paid a bit more than he did, 
the seller always to have taken a bit less. 

Human nature being what it is, there will be an attempt by the under-
writers to combine together to set the rates at an unnaturally high level. 
They may even decide <cfor the good of the public" to have the Czar set 
the rates. These will tend to be rates determined by the St. Petersburg 
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Association of Underwriters, and thus on the high side. On the other hand, 
the Patriotic Association of Merchants will try and get the rates lowered, 
particularly for favored clients. But the creation of fixed rates will indeed 
"stabilize" the market by fixing the rates. Statist intervention, then, is 
really the only means of arriving at a "stable" market. Otherwise, the 
rates will fluctuate, and there will always be a market opportunity for an 
insurance agent continually to negotiate with all the underwriters to obtain 
better deals for the merchants the agent represents. 

The presence of variation in market prices over time is woefully mis-
understood. So fax from being evidence of chaos in the market, variation 
represents a stabilizing continuum of adjustments to the ever changing re-
alities of the market, including the goals, expectations and situations of 
the persons and institutions taking part in the market. One example of the 
destabilizing effects of statist efforts to "stabilize" markets is rationing. An-
other is the fixing of prices at arbitrary levels. In "People's" Poland before 
the Communists lost power on June 4, 1989, the retail price of milk was set 
by the government at one generally below the cost of production. There was 
little collectivization in Poland, so the state was forced to buy milk from 
independent farmers. It could, naturally, have paid the farmers something 
greater than the cost of production by using state funds. It chose, rather, 
to force each farmer to deliver a certain quantity of milk to the state at 
a price which was generally below the cost of production. Naturally, the 
milk sold to the state had a water content considerably in excess of that of 
milk which comes straight from the cow. The price stabilized milk that was 
made available to the populace had some similarities with milk, but was 
something rather different, and it varied greatly in quality from day to day, 
from location to location. On the other hand, the state turned more or less 
a blind eye to farmers selling a portion of their milk on the black (aka free) 
market. Occasionally (once every several years) a "speculator" was shot, 
but this was pro forma. Even under Russian control, some realism was ever 
present in the European satellites. Black market milk was expensive, and, 
since it was produced and vended under irregular conditions, the quality 
was variable. Those who could afford to do so generally would strike a deal 
with one particular farmer for deliveries of milk on a regular basis. Most 
city dwellers, however, were stuck with price stabilized "milk" for the fifty 
years of Soviet occupation. 

There is much to fault with Bernoulli's treatment of utility. First of 
all, we can observe that the conditions of trade he posed were somewhat 
strange. Generally speaking, Caius would have to buy the goods for ship-
ment. A more accurate way to pose the problem, perhaps, would be one in 
which Caius has acquired goods in Amsterdam for which he paid, say, 6000 
rubles. He can sell the goods in St. Petersburg for 10,000 rubles. When 
he buys his insurance policy, he may well have to settle for insuring at the 
amount of purchase. Caius may own his own ship, in which case, insuring 
the value of the ship is another consideration. And so on. But Bernoulli 
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has revealed a most important point: the marginal value of a dollar varies 
depending on the financial status of the person involved. Such differences in 
utility from person to person should not pass unnoticed. It is one (though 
not the only one) reason that markets exist at all. Another problem with 
Bernoulli's treatment is that everything is based on the expected value of 
the utility. In order for an investment to have low risk, we need to know 
that the probabiHty of a large loss is small. The risk profile cannot be 
captured by the expected utility or any other single number. 

12.3 von Neumann—Morgenstern Utility 

It is generally not a very good idea to assume a utility function for a par-
ticular individual concerning a set of possible transactions contemplated by 
an individual. A financial advisor who simply assumed, say, a logarithmic 
or square root relation between various returns and the utility of a client 
is making an unnecessary assumption. Utility being a matter of personal 
assessment, it is frequently possible to come up with a series of questions 
which would enable us to extract the implied utility of the various choices. 
von Neumann and Morgenstern [6] have given us a set of axioms which 
should be satisfied by the preferences of a rational person. These are 

1. Transitivity. If the subject is indifferent between outcomes A and 
£, and also between В and C, he must be indifferent between A and 
a Symbolically, A^B and B^C => A^C. 

2. Continuity of preferences. If A is preferred to В and В is preferred 
to no change, then there is a probability a (0 < a < 1), such that the 
subject is indifferent between a A and B. 

3. Independence. If A is preferred to B, then for any probability a 
(0 < a < 1) a A + (1 — а) В is preferred to B. (An equivalent axiom 
says that if A^J3,then aA^aB.) 

4. Desire for high probability of success. If A is preferred to no 
change, and if ot\ > c*2, then a\A is preferred to OL^A. 

5. Compound probabilities. If one is indifferent between OLA and B, 
and if a = αια2, then one is indifferent between αχα^Α and B. In 
other words, if the outcomes of one risky event are other risky events, 
the subject should act only on the basis of final outcomes and their 
associated probabilities. 

Let us now go through the largely psychometric exercise for determining 
a subject's utility function and his/her willingness to accept risk. First of 
all, notice that all of this discussion abandons the world where utility is 
linear in dollars. We shall talk of a new currency, called utiles. This is, 
by the way, an interpolation rule. We will not feel very comfortable about 
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extrapolating outside the interval where our client can answer the questions 
we shall pose. We will start, then, with a range of dollar assets, say $0 to 
$1,000,000. We need to define a utility nondecreasing in dollars. It turns 
out that our hypothetical client has a utility function equal to the square 
root of the amount of dollars (he does not necessarily realize this, but 
the answers to our questions will reveal this to be the case). We need to 
define the utility at the two endpoints. So, we decide (ourselves, without 
consulting yet the client) that {/($0) = 0 utiles and t/($l, 000,000) = 1,000 
utiles. 

Q. How much would you be willing to pay for a lottery ticket 
offering a 50-50 chance of $1,000,000 or $ 0? 
A. The client responds "$250,000." (Of course, we recognize 
the expectation in utile scale as being . 5 x 0 utiles -f 0.5x 1,000 
utiles = 500 utiles.) 
Q. How much would you pay for a 50-50 chance of $250,000 or 
nothing? 
A. The client responds "$62,500" (which we recognize to be the 
expectation on the utile scale, . 5 x 0 utiles + 0.5 x 500 utiles = 
250 utiles). 
Q. How much would you pay for a 50-50 chance of $62,500 or 
nothing? 
A.The client responds "$15,625" (which we recognize to be the 
expectation on the utile scale, .5x 0 utiles + .5x250 utiles = 
125 utiles). 

The above analysis is consistent with the 

Utility Maxim of von Neumann and Morgenstern. The 
utility of a game (risky event) is not the utility of the expected 
value of the game but rather the expected value of the utilities 
associated with the outcomes of the game. 

In Figure 12.3, we give a spUne smoothed plot using the Q&A. We note 
that if all we had was the three questions and their answers, we would 
see a plot virtually indistinguishable from what we know the functional 
relationship is between utiles and dollars, namely 

U(X) = VX. 
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Figure 12.3. Empirically determined utility function. 

Now, we recall that our client may not know that his utility is the square 
root of dollars. But his answers to our three questions give us a graph 
which is essentially equivalent to the square root.5 

We can now ask the following question: How much is it worth to the 
client to receive the payoffs $10,000 with probability .3, $90,000 with proba-
bility 0.5, and $490,000 with probability 0.2? Now, the naive answer would 
be that associated with the assumption that the utility of the client is 
simply the dollar amount: 

E(X) = .3 x 10,000 + 0.5 x 90,000 + 0.2 x 490,000 = 146,000. 

But we have already determined that the utility function of the client is 
not dollars but the square root of dollars. This gives us: 

E(U(X)) = .3x χΛΜΟΟ + .δχ >/90,000 + . 2χ ^/490,000 = 320 utiles. 

Going to Figure 12.3 (or recalling the X = Ì72), we have that our client 
should consider a sure payment of 3202 = $102,400 to be the value of the 
game to himself/herself. 

Let us consider several scenarios each having expected utility value 500 
utiles. 

• A. A cash gift of $250,000 = ^/250,000= 500 utiles. Here E(X) 
= $250,000. The standard deviation of the dollar payout is OA = 
v/(250,000 - 250,000)2 = $0 

5Economists derive the notion of "diminishing marginal utility" from functions of this 
sort. 
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Now, we recall that our client may not know that his utility is the square 
root of dollars. But his answers to our three questions give us a graph 
which is essentially equivalent to the square root.5 

We can now ask the following question: How much is it worth to the 
client to receive the payoffs $10,000 with probability .3, $90,000 with proba­
bility 0.5, and $490,000 with probability 0.21 Now, the naive answer would 
be that associated with the assumption that the utility of the client is 
simply the dollar amount: 

E(X) = .3 x 10, 000 + 0.5 x 90, 000 + 0.2 x 490, 000 = 146, 000. 

But we have already determined that the utility function of the client is 
not dollars but the square root of dollars. This gives us: 

E(U(X)) = .3 x '1'10, 000 + .5 x '1'90, 000 + .2 x '1'490, 000 = 320 utiles. 

Going to Figure 12.3 (or recalling the X = U2), we have that our client 
should consider a sure payment of 3202 = $102,400 to be the value of the 
game to himself/herself. 

Let us consider several scenarios each having expected utility value 500 
utiles . 

• A. A cash gift of $250,000 = y'250, 000= 500 utiles. Here E(X) 
= $250,000. The standard deviation of the dollar payout is a A = 
'1'(250, 000 - 250, 000)2 = $0 

5Economists derive the notion of "diminishing marginal utility" from functions of this 
sort. 
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• В. A game which pays $90,000 with probability .5 and $490,000 with 
probability .5. Here E(U) = .5 Χχ/90,000 + .5 Xi/490,000 = .5x 
300 + .5x 700 = 500 utiles. E(X) = .5x $90,000 + .5 x $490,000 = 
$290,000. σΒ = у/.5(90,000 - 290,000)2 + ,5(490,000 - 290,000)2= 
$200,000. 

• С A game which pays $90,000 with probability .5 and $490,000 with 
probability .5. Here, E(U) = .5 xV90,000 -f .5 x V890,000 = 500 
utiles. E(X) = .5x $90,000 4- .5 x $810,000 = $400,000. The stan-
dard deviation of the dollar output is given by ag = 
V-5(90,000 - 400,000)2 + .5(810,000 - 400,000)2 = $400,000. 

• D. A game which pays $1,000,000 with probability .5 and $0 with 
probability .5. Here E(U) = .5 x 0 + .5 Χχ/Ι,ΟΟΟ,ΟΟΟ = 500 utiles. 
E(X) = .5 x $1,000,000 = $500,000. 
σΌ = v^.5(l, 000,000 - 500,000)2 + .5(0 - 500,000)2= $500,000. 

In Figure 12.3, we show the indifference curve for various games each having 
a value of 500 utiles. 
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Figure 12.4. σ versus expected payoff with E(U) = 500 utiles. 

We note the typical increase in expected payoff as the games become more 
risky. We note that the von Neumann-Morgenstern utility paradigm enables 
us to assess a rational choice system for a client who has no real notion 
of mathematical modeling, provided he or she can answer a few questions 
concerning indifference to choice between a sure thing and a set of particular 
games. 

One major reason for the functioning of a market is that individuals 
and corporations will have different utilities for the same thing. Suppose 
that everybody valued a stock at $100. What would be the incentive for 
the owner of such a stock to sell it at less than $100? He might need money 
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for some other purpose. Perhaps he knows of another stock that is selling 
for $99 which is worth to him $110. In that case, he might be willing to 
sell his share of stock for $99 because he could then use the money to make 
a net profit. But if all stocks, services and other properties were evaluated 
by all people the same, that would stifle the market. 

Let us consider a bar of soap selling in a shop for one dollar. To the 
owner of the shop, the bar of soap is worth less than a dollar, or she would 
not sell it for a dollar. To the customer who buys the bar of soap, it is 
probably worth more than a dollar (to see that this is so, we need only ask 
whether the customer would buy the soap bar for $1.01.) The price of sale, 
from the standpoints of the buyer and the seller, is in the interval between 
what the vendor values the soap and that which the buyer values the soap 
(assuming the former is less than the latter, for otherwise no voluntary 
transaction will occur). A transaction at any price within the internal will 
be Pareto preferred to no transaction, as one on both parties will be better 
off without any party being worse off. However, there is no "scientific" 
basis for selecting a price within the interval, because each price is Pareto 
optimal (a movement from any price to any other price would make one 
of the parties worse off). A price outside of the interval will only generate 
transactions through coercion, because one of the parties will be worse off 
than not transacting at all. For every value within that interval, we have 
achieved Pareto efficiency\ i.e., the vendor is getting more than he values the 
bar of soap and the purchaser is buying it for less than he values it. The task 
of the merchant is to raise the price as high as possible without exceeding 
the valuation of a significant fraction of his customers. Any notion of fair 
market price, a one price for the same item, is achievable only in a state 
controlled situation. And such statist controlled prices generally produce 
absurdities. 

In Soviet-controlled Poland, the state suppressed the price of bread to 
well below the cost of production. It made this work, in part, by forcing the 
farmers (Poland's farms were privately owned and operated, for the most 
part, even during the Russian occupation) to sell a certain fraction of their 
wheat below the cost of production. The price of pork, however, was not 
so artificially depressed. So some clever peasants became rich by buying 
stale bread and feeding it to their pigs. It was difficult for the authorities to 
overcome this strategy, since there was really no other good set of buyers for 
stale bread. The best that could be done was to raise the price of stale bread 
to nearly that of fresh bread. Ultimately, the only good solution (to escape 
embarrassment of the officials) was to raise the price of fresh bread as well. 
A market with set prices is very much like a cardiac patient who takes 
one medication for his heart plus three other medications to counteract 
bad side effects of the heart medication plus five additional medications to 
counteract the bad side effects of the three medications taken to counteract 
the effects of the primary heart medication. 
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12.4 Creating a "St. Petersburg Trust" 

In the Enlightenment world of Daniel Bernoulli, neat and concise answers 
to virtually any problem were deemed possible if one only had the right 
insight. In our modern world, we understand that there is likely to be some 
arbitrariness in most simple solutions. All the notions of utility, at which 
we have looked, have some underlying assumption that if one only looks at 
the proper function of wealth, then decisions become rather clear, using a 
simple stochastic (probabilistic) model, relying on a few summary numbers, 
such as expected value. By constructing a utility function and then looking 
at its expected value in the light of a particular policy, Bernoulli thought 
he could capture the entire profile of risk and gain. Simply looking at a 
utiUty linear in money came up, in the case of the St. Petersburg game, 
with an absurd result, infinite gain. So, Bernoulli constructed other utility 
functions which had other than infinite expectation for the St. Petersburg 
game. He really did not, however, achieve his goal: reducing the entire 
prospectus of the gain to one scalar number. Moreover, market decisions 
these days are still based on dollars—not logarithms of dollars or square 
roots of dollars. This is surely evidence that utility theory has not lived up 
to the hope some have held for it. 

The real essence of constructing a risk profile has to do with looking at 
the stochastic process that underlies the investment being considered. (For 
detailed information concerning stochastic processes, the reader is referred 
to the Appendix A at the end of this book.) We need to look at the 
probabilities of various results which might be obtained and decide, in the 
aggregate, whether the deal appears good. Of course, at the end of the 
day, we must make a decision whether to take the deal or turn it down. 
However, we believe that this is better done from the risk profile (time 
slices of the cumulative distribution function of the payofF) than from a one 
dimensional summary number (which, of course, expectation is). 

In our postmodern world, in which few things are really simple, we 
should take a different view. It could be argued that Bernoulli was en-
chanted with the notion that a benevolent Providence had constructed the 
universe in structures selected to make them easy for human beings to un-
derstand. Or, he might have taken the nominalist (essentially, postmodern) 
view of William of Ockham that "truth" was a matter simply of fashion, 
so one might as well pick the simplest model that seemed, more or less, 
to work. After all, Bernoulli had no notion of fast computing, a primitive 
slide rule being the hottest computer available. 

The view we shall take is that one should try to use any means avail-
able to get close to the truth (and we do not put quotes around the word), 
realizing we will generally use a model at variance with reality, but hope-
fully not too far from it. Bernoulli's consideration of a game with infinite 
expected payoff was unfortunate. In the first place, one should ask who 
the croupier would be for such a game. Beyond that, games with infinite 
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expectation do not correspond to any real world economic situation (again, 
we notice that no casino in the world can offer a payout of oo. Everyone 
places some maximum betting limit—perhaps high for "high rollers" but 
not oo.) Finally, as we show below, a game with an infinite expected value 
can be diddled in such a way that a clever player can come up with a very 
high gain with high probability. 

Next, we will perform some computer simulations to try and understand 
better the St. Petersburg Paradox. First of all, we will follow the common 
policy of not using a utility function formally, but only implicitly. If we play 
the game for $2 payoffs, we get a false sense of value. So let us make the 
payoffs to be in the $2 million range. Suppose we take a reasonably well-
to-do individual and ask how much he would pay to play the game using 
the profile in Figure 12.1. We note that the investor cannot make less than 
$2 million. So that is an obvious floor. We recall that the expected payoff 
of the game is infinite, but the chance of making more than $2 million is 
only 50%. The chance of making more than $4 million is only 25%. The 
chance of making more than, say, $5 million is also 25%. If the person's 
total assets are, say, $5 million, it is hard to believe he will be willing to pay 
the full $5 million to play the game, even knowing that there is a $2 million 
floor below which he cannot fall. Rather clearly, he would be willing to 
pay, say, $2.1 million to play. For figures between, say $2.4 million and $5 
million, we would see a variety of decisions made by the variety of possible 
players, depending upon their incomes, ages, psychology, and so on. Will 
the decision be made on the basis of expected winnings? Of course not. It 
will be made utilizing the entire information given in Figure 12.1. 

Next, let us see whether the investor can structure the game somewhat 
differently. Suppose he notes the possibility of arranging things so that 
another investor and he form a trust and strike an agreement with the house 
that each will play the game for half the payoffs and the winnings will be 
pooled and divided by two. In this case, we note that both players may get 
heads first toss. In that case, the pooled winnings will be $2,000,000. This 
occurs with probability 0.50 x 0.50 = 0.25. Suppose the first player gets 
heads first time, but the second gets tails first time immediately followed by 
heads. That would result in net winnings of $3,000,000. Or it could be the 
first player gets tails first, then heads. Again, net winnings of $3,000,000. 
The probability of one or the other of these is 2 x 0.5 x 0.25 = 0.25. Next, 
they could both toss TH for a total winning of $4,000,000. The probability 
of this is 0.25 x 0.25 = 0.125. So, then, the probability that the trust wins 
more than $2,000,000 is 1 - 0.25 = 0.75. The probability the trust wins 
more than $4,000,000 is 1 - 0.25 - 0.25 - 0.125 = 0.375. According to the 
original game in which only one player plays, these probabilities were .50 
and 0.25, respectively. Clearly, the idea of playing according to each player 
playing for half the pay-offs of the original game rules is a good one. We can 
carry out computer simulations for games with varying numbers of players: 
one, ten, one hundred, one thousand. We show the probability profile in 
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Figure 12.5 where sums are in millions of dollars. 
Here we see the advantage which can be achieved by pooling in the 

rather stylized St. Petersburg Paradox situation. With 1,000 investors 
participating, the probabihty of the trust winning a total in excess of nine 
million dollars is 90%. For the same game played by one investor, the 
probabihty of winning in excess of nine million dollars is less than 10%. 

It would be a fine thing if there were some sort of way we might develop 
a portfolio or trust fund which mimicked the strategy above for dealing with 
Bernoulli's St. Petersburg scenario. Alas, the author is unable to point out 
such a strategy. Essentially, our "trust strategy" uses the fact that sample 
means converge, with increasing sample size, to the mean (expected value) 
of the population. In the St. Petersburg case, this value is infinite. Nature 
and the market do not tend to provide such opportunities. 
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P(winnings ^ y) 
Figure 12.5. Probability profile for St. Petersburg trust. 

There are other flaws with the St. Petersburg scenario of Bernoulli. For 
example, the coin throws are taken to occur with constant probabihty. But 
storms in the North Atlantic and Baltic are not of constant probability of 
occurrence. A heavy storm period will increase the risks to all shipping 
during that period. This happens also in markets. There will be periods of 
bull market growth across the market. And there will be periods of bear 
market declines. There may be safe harbors during the bear market times. 
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But very frequently, as in the 2000-2001 case, a bear market will adversely 
affect most securities. 

Perhaps the bottom line in our analysis of the St. Petersburg Paradox 
is that by examining the full probability profile instead of simply looking 
at the expected value of utility, we can gain something of an understanding 
of what is going on. We replace arbitrary formalism and a simple answer 
with a more complicated, albeit more insightful analysis. Moreover, the real 
world may not be one of risk but rather varying degrees of hazy uncertainty. 
Finally, almost all people violate the axioms anyway. That is why they 
purchase insurance on one day and go to Las Vegas on the next! 

12.5 Some Problems with Aggregate Choice 
Behavior 

So far, we have been concerned with the utility—based choices made by 
individuals. We now look at the pooling of individual choices to obtain 
pooled choices of groups of individuals. A key part of our treatment will 
be to show Kenneth Arrow's proof [1] that rational rules for preferences 
among individuals do not translate into the same rules for the group. We 
essentially follow the treatment given by Thompson [5] in Empirical Model 
Building. 

To begin, we have a collection of n individuals {1,2, . . . , n} = G. The 
task confronting the individuals is to rank their preferences amongst at 
least three decisions D = {a,6,c,...}. By a>~iò, we mean that the first 
individual in the group prefers a to 6. By аУоЬ, we mean that the group 
as a whole prefers a to ò, i.e., whatever the underlying mechanism used to 
obtain group consensus, the group picks a over b. 

Suppose we have the following four axioms for pooling individual pref-
erences into group decision making: 

1. For a particular set of individual preferences, suppose the group prefers 
a to b (ayob)- Then, suppose that some of the individuals change 
their preferences in such a way that preferences for a over b are un-
changed or increased in a's favor, and that each individual's preference 
between a and any alternative other than b are unchanged. Then, the 
group preference for a over 6 is maintained. 

2. (Axiom of the Irrelevant Alternative.) Suppose that the group prefers 
a to 6. Then, some of the individual preferences between alternatives 
other than a and b are changed, but the preferences between a and b 
are unchanged. Then, the group preference for a over b is maintained. 

3. For any pair of alternatives a and 6, there is some collection of indi-
vidual preferences for which аУоЬ-
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4. (Axiom of Disallowing Dictators). No individual in the group has such 
influence that if he or she prefers a to 6, and every other member of 
the group ranks 6 over a, then аУсЬ. 

Arrow's Impossibility Theorem. If Axioms 1—3 hold, then Axiom 4 
cannot hold, assuming there are two or more decision makers and three or 
more possible decisions.6 

Definition: Suppose we have к > 3 mutually exclusive decisions for which 
each of n > 2 voters have ordered preferences. Let P={P1 , P2i..., Pn} 
represent the ordered preferences (profile) of each of the individual voters. 
Let J be a subset of the set of individual voters G and a and 6 be included 
among the set of decisions D. If, for all the individuals in J, aPib (i.e., 
ax^b), we then say that V is J — favored for (a, 6). If for all the individuals 
not in J, bP%a, then we say that J is strictly J— favored. 

Definition: Suppose that the fact that all members in J favor a over b 
implies that a F(V) b, where F is the group decision rule (aka "social utility 
function" ) which integrates the preferences of the individual voters into a 
group decision for V (i.e., we suppose that all the members in subset J 
deciding for a over b will cause the consensus of the entire group V to 
prefer a over 6.) Then we say that J is decisive for (a, ò). 

Definition: A minimal decisive set J is a. subset of G which is decisive for 
some (a, b) and which has the property that no subset of J is decisive for 

6 Before proving the theorem, we note that all the axioms appear quite reasonable at 
first glance, somewhat less so upon closer inspection. For example, even in North Korea, 
the Supreme Leader could not make policy opposed by everyone else on the Politburo. 
But then, it is not hard to consider examples where dictators are possible. For example, 
a person owning 51% of the stock of a company can make policy disagreed to by all 
the other shareholders. Then, again, looking at the Axiom of the Irrelevant Alternative, 
suppose there are two Republican candidates, one strongly pro life, the other strongly pro 
choice. 51% of the party strongly supports the pro life position, the other 49% strongly 
supports the pro choice position. If the vote were held between these two, the strongly 
pro life candidate would win the primary. Of course, this would be done in the light of 
the general election, where the Democrats would then be able to capture the votes of 
many pro choice Republicans. But then, a third feasible candidate appears, one who is 
mildly pro life. In all probability, this third candidate will get the nomination. Clearly, 
in bringing forward this example, we have used the fact that decisions are seldom stand 
alone. It is the knowledge of the general election which will cause some of the strongly 
pro life Republicans to consider voting for the mildly pro life candidate. But let us 
suppose the four axioms above are all satisfied. Then, Arrow shows that they cannot be 
all satisfied. It is simply an impossibility. Fundamentally, the reason for this fact has 
to do with the fact that although in one-dimensional space, it is easy to make orderings 
(for example, clearly 2>1), it is not nonarbitrarily possible in higher dimensional spaces 
(for example, we cannot say that (2,1)>(1,3) nor that (1,3)>(2,1), unless we arbitrarily 
impose a one-dimensional structure onto the two-dimensional space; but if we use as 
the criterion the sum of squares of the components, then we can say that (1,3)>(2,1), 
since l2 + 32 > 22 + l2. Having said this, we shall go through Arrow's Impossibility 
Theorem in part to show how much more important are insight and conjecture than 
theorem proving ability in the acquisition of Nobel Prizes. The proof is rather easy. The 
conjecture (which is what a theorem is before it has been proved) is profound, and its 
consequences are important in the consideration of efficient market theory. 
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any other pair of decisions. 

Lemma 12.1. Assume Axioms 1—4. Then J is decisive for (ayb) if and 
only if there is a set of preferences which are strictly J — favored for (a, 6) 
and for which aF(P) b. 

Proof. Suppose J is decisive for (a, 6). Then any strictly J - favored for 
(a, 6) profile has aF(V)h. 
Next, suppose there is a profile V that is strictly J — favored for (a, b) and 
for which aF(V )b. Then, every voter in J prefers a to 6. But since V is 
strictly J — favored for (a, ò), we know that voters in G — J all prefer 6 to 
a. Let V be some other J — favored for (a, 6) profile. For all voters in J, 
a is preferred to ò for this second profile. Thus, insofar as voters in J are 
concerned, they all prefer a to 6 for both V and V'. But for G — J, all the 
voters, following profile P prefer b to a. Nevertheless, aF(P )6. However, 
for profile V1 it is possible some voters in G — J prefer a to 6. By Axiom 1, 
then, it must be true that aF(V )b. Hence, J is decisive for (α,ο). 

Lemma 12.2. Assuming all the four axioms to be true, the entire group 
G is decisive for every (a, 6). 
Proof. Suppose every voter in G prefers a to 6, but that bF(P )a. By Axiom 
3, there must be some profile V such that aF(V)b. Now, if every voter in 
G prefers a to 6, but the group decision is for b over a, then changing some 
of the voters' preferences to b over a can only (by Axiom 1) strengthen the 
group resolve to prefer b over a. That would contradict Axiom 3, for then 
there would be no profile V such that aF(V)b. Hence, G is decisive for 
every (a, 6). 

Next, let J be a minimal decisive set. We know there is a decisive set, 
since the preceding lemma proved that G is decisive for every (a,ò). So, 
we can remove individuals from G until one more removal would no longer 
give a decisive set. Pick one of the voters j from the minimal decisive set 
J. We shall prove that j must be a dictator, contrary to Axiom 4. 

Suppose J is decisive for (a, 6). Pick another decision с which is neither 
a nor ò. Consider the profile shown in Table 2.1. 

Table 12.1. 
Pi for i in J — j 

с 
a 
b 

1 D — {а, о, с} 

Pi for г not in J 
b 
с 
a 

D — {a, о, с} 

Pi 1 
a 
b 
с 

D — {a, ò, c} 

By construction, J is decisive for (a,ò). Thus aF(V)b. We note that V is 
strictly J -j favored for (c, b). Thus, if cF{V)b, then by Lemma 2.1, J - j 
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would be decisive for (c, b) contrary to the assumption that J is a minimal 
decisive set. Thus, с is not favored over b by the group, and a is favored 
over b by the group. 

Consequently, we have two possible scenarios for the preference of the 
group: either a is preferred to b is preferred to с or a is preferred to b and 
с and the group ties b and с Then, in both cases, we have aF(P)b. But j 
is the only voter who prefers a to c. Thus, by Lemma 12.1, j is decisive for 
(а,с). Thus j cannot be a proper subset of j , i.e., j — J. So far we have 
shown that j is decisive for (о, с) for any с фа. 

Next, we shall establish that j is decisive for (d, c) for any d, с not equal 
to a. Consider the profile in Table 12.2. 

Table 12.2. | 
Pi 
d 
a 
с 

D - {a, c, d} 

Pi for %ф$ 1 
с 1 
d 
a 

D — {a, c, d} \ 

Note that the entire set G is decisive for any pair of decisions as we have 
proved in Lemma 12.2. Hence, dF{V)a. Thus the group as a whole ranks 
d over a and ranks a over c. Thus, dF(V)c. Therefore, by Lemma 2.1, j is 
decisive for (d,c). 

Finally, we shall demonstrate that j is decisive for (d, a) whenever d^ a. 
Consider the profile in Table 12.3. 

Table 12.3. | 
Pi 
d 
с 
a 

D - {a, c, d} 

Pi for г ф j 
с 
a 
d 

D - {a, c, d} 

As j is decisive for (d,c), we have dF(V)a. But j is the only individual 
preferring d to a. Hence, j is a dictator, contrary to Axiom 4, and the 
theorem is proved! 

12.6 Jeffersonian Realities 

Arrow's Impossibility Theorem was perceived intuitively by earlier social 
scientists. Vilfredo Pareto, for example, whose father had labored his en-
tire life to bring forth an enlightened Jeffersonian democratic system to 
Italy, and who himself believed in the feasibility of such a system until well 
into middle age, finally opined that all social systems would naturally be 
controlled not by an orderly pooling of individual preferences, but rather 
by a circle of elites. In his youth, Pareto assumed that the twin pillars of 
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would be decisive for (c, b) contrary to the assumption that J is a minimal 
decisive set. Thus, c is not favored over b by the group, and a is favored 
over b by the group. 

Consequently, we have two possible scenarios for the preference of the 
group: either a is preferred to b is preferred to c or a is preferred to b and 
c and the group ties b and c. Then, in both cases, we have aF(P)b. But j 
is the only voter who prefers a to c. Thus, by Lemma 12.1 ,  j is decisive for 
(a, c) . Thus j cannot be a proper subset of j, i.e., j = J. So far we have 
shown that j is decisive for ( a, c) for any c :f. a. 

Next, we shall establish that j is decisive for (d, c) for any d, c not equal 
to a. Consider the profile in Table 12.2. 

Table 12.2. 
Pj 
d 
a 
c 

D - {a, c, d} 

Pi for i :f. j 
c 
d 
a 

D - {a, c, d} 
Note that the entire set G is decisive for any pair of decisions as we have 
proved in Lemma 12.2. Hence, dF(P)a. Thus the group as a whole ranks 
d over a and ranks a over c. Thus, dF(P)c. Therefore, by Lemma 2.1 ,  j is 
decisive for (d, c). 

Finally, we shall demonstrate that j is decisive for (d, a) whenever d :f. a. 
Consider the profile in Table 12.3. 

Table 12.3. 
Pj 
d 
c 
a 

D - {a, c, d} 

P;. for i :f. j 
c 
a 
d 

D - {a, c, d} 
As j is decisive for (d, c) , we have dF(P)a. But j is the only individual 
preferring d to a. Hence, j is a dictator, contrary to Axiom 4, and the 
theorem is proved! 

12.6 Jeffersonian Realities 

Arrow's Impossibility Theorem was perceived intuitively by earlier social 
scientists. Vilfredo Pareto, for example, whose father had labored his en­
tire life to bring forth an enlightened Jeffersonian democratic system to 
Italy, and who himself believed in the feasibility of such a system until well 
into middle age, finally opined that all social systems would naturally be 
controlled not by an orderly pooling of individual preferences, but rather 
by a circle of elites. In his youth, Pareto assumed that the twin pillars of 
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Jeffersonian government and Adam Smith poUcies toward free trade would 
bring economies and governments into a state of efficiency and optimality. 
Let us look at Arrow's result in the context of Jeffersonian performance 
as opposed to Jeffersonian ideals. In 1792, the Congress was confronted 
with the task of deciding how many members of the House of Represen-
tatives would be allocated to each state. Alexander Hamilton, the alleged 
opponent of states' rights, proposed the following rule: 

Hamilton's Rule. Pick the size of the House = n . Divide the 
voting population Nj of the jth state by the total population N 
to give a ratio Ту Multiply this ratio by n to give the quota qj 
of seats for the jth state. If this quota is less than one, give the 
state one seat. Give each state the number of representatives 
equal to the integer part of its quota. Then rank the remainders 
of the quotas in descending order. Proceeding down the list, give 
one additional seat to each state until the size of the House n 
has been equaled. 

The method of Hamilton has firmly embodied in it the notion of the state as 
the basic entity of indirect democracy. Once the number of Representatives 
had been arrived at by a comparison of the populations of the several states, 
the congressional districts could be apportioned by the state legislatures 
within the states. But the indivisible unit of comparison was that of state 
population. If one conducts a poll of educated Americans and asks how 
seats in the House of Representatives are apportioned amongst the several 
states, much the most popular rule given is that of Hamilton. It is a very 
intuitive rule. Furthermore, if we let dj be the ultimate allocation of seats 
to each state, then Hamilton's Rule minimizes 

5 > i - * | , (12.15) 

(i.e., Hamilton's Rule minimizes the sum of the discrepancies between the 
allocations obtainable without consideration of states and those with the 
notion of noncrossover of state boundaries to obtain districts.)7 

7 Census figures are from Balinski and Young [2]. 
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1 Table 12.4. Method of Hamilton. ] 
State 

Connecticut 
Delaware 
Georgia 
Kentucky 
Maryland 
Massachusetts 
New Hampshire 
New Jersey 
New York 
North Carolina 
Pennsylvania 
Rhode Island 
South Carolina 
Vermont 
Virginia 
Total 

Population 

236,841 
55,540 
70, 835 
68,705 
278,514 
475,327 
141,822 
179,570 
331,589 
353,523 
432,879 
68,446 

206,236 
85,533 
630,560 

3,615,920 

Quota 

7.860 
1.843 
2.351 
2.280 
9.243 
15.774 
4.707 
5.959 
11.004 
11.732 
14.366 
2.271 
6.844 
2.839 
20.926 

120 

! Hamiltonian 
Allocation 

8 
2 
2 
2 
9 
16 
5 
6 
11 
12 
14 
2 
7 
3 
21 
120 

! Voters per 
Seat 

29^605 
27,770 
35,417 
34,353 
30,946 
29,708 
28,364 
29,928 
30,144 
29,460 
30,919 
34,223 
29,462 
28,511 
30,027 

It is interesting to note that the first Congressional Senate and House 
passed a bill embodying the method of Hamilton and the suggested size 
of 120 seats. That the bill was vetoed by President George Washington 
and a subsequent method, that of Thomas JeflFerson, was ultimately passed 
and signed into law is an interesting exercise in Realpolitik. The most 
advantaged state by the Hamiltonian rule was Delaware, which received a 
seat for every 27,770 of its citizens. The most disadvantaged was Georgia 
which received a seat for every 35,417 of its citizens. Jefferson's Virginia 
was treated about the same as Hamilton's New York with a representative 
for every 30,027 and 30,144 citizens, respectively. The discrepancy between 
the most favored state and the least favored was around 28%, a large num-
ber of which the supporters of the bill were well aware. The allocation 
proposed by Hamilton in 1792 did not particularly favor small states. In 
general, however, if we assume that a state's likelihood of being rounded 
up or down is independent of its size, the method of Hamilton will favor 
somewhat the smaller states if our consideration is the number of voters 
per seat. But Hamilton, who was from one of the larger states and who 
is generally regarded as favoring a strong centralized government which 
de-emphasized the power of the states, is here to be seen as the clear prin-
cipled champion of states' rights and was apparently willing to give some 
advantage to the smaller states as being consistent with, and an extension 
of, the notion that each state was to have at least one Representative. Now 
let us consider the position of Thomas JeflFerson, the legendary defender of 
states' rights. JeflFerson was, of course, from the largest of the states, Vir-
ginia. He was loathe to see a system instituted until it had been properly 
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Vermont 85,533 2.839 3 28,511 
Virginia 630,560 20.926 21 30,027 
Total 3,615,920 120 120 

It is interesting to note that the first Congressional Senate and House 
passed a bill embodying the method of Hamilton and the suggested size 
of 120 seats. That the bill was vetoed by President George Washington 
and a subsequent method, that of Thomas Jefferson, was ultimately passed 
and signed into law is an interesting exercise in Realpolitik. The most 
advantaged state by the Hamiltonian rule was Delaware, which received a 
seat for every 27,770 of its citizens. The most disadvantaged was Georgia 
which received a seat for every 35,417 of its citizens. Jefferson's Virginia 
was treated about the same as Hamilton's New York with a representative 
for every 30,027 and 30,144 citizens, respectively. The discrepancy between 
the most favored state and the least favored was around 28%, a large num­
ber of which the supporters of the bill were well aware. The allocation 
proposed by Hamilton in 1792 did not particularly favor small states. In 
general, however, if we assume that a state's likelihood of being rounded 
up or down is independent of its size, the method of Hamilton will favor 
somewhat the smaller states if our consideration is the number of voters 
per seat. But Hamilton, who was from one of the larger states and who 
is generally regarded as favoring a strong centralized government which 
de-emphasized the power of the states, is here to be seen as the clear prin­
cipled champion of states' rights and was apparently willing to give some 
advantage to the smaller states as being consistent with, and an extension 
of, the notion that each state was to have at least one Representative. Now 
let us consider the position of Thomas Jefferson, the legendary defender of 
states' rights. Jefferson was, of course, from the largest of the states, Vir­
ginia. He was loathe to see a system instituted until it had been properly 
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manipulated to enhance, to the maximum degree possible, the influence of 
Virginia. Unfortunately for Jefferson, one of the best scientific and math-
ematical minds in the United States who undoubtedly recognized at least 
an imprecisely stated version of (12.15), the result in (12.15) guaranteed 
that there was no other way than Hamilton's to come up with a reasonable 
allocation rule fully consistent with the notion of states' rights. Given a 
choice between states' rights and an enhancement of the power of Virginia, 
Jefferson came up with a rule which would help Virginia, even at some 
cost to his own principles. Jefferson arrived at his method of allocation by 
departing from the states as the indivisible political units. We consider the 
method of Jeffersonas follows: 

Jefferson's Rule. Pick the size of the House = n . Find a 
divisor d so that the integer parts of the quotients of the states 
when divided by d sum to n. Then assign to each state the 
integer part of Nj/d. 

We note that the notion of a divisor d is an entity which points toward 
House allocation which could occur if state boundaries did not stand in the 
way of a national assembly without the hindrance of state boundaries. Let 
us note the effect of Jefferson's method using the same census figures as in 
Table 12.4. 

We note that the discrepancy in the number of voters per representative 
varies more with Jefferson's method than with Hamilton's—94% versus 
28%. In the first exercise of the Presidential veto, Washington, persuaded 
by Jefferson, killed the bill embodying the method of Hamilton, paving the 
way for the use of Jefferson's method using a divisor of 33,000 and a total 
House size of 105. Let us examine the differences between the method of 
Hamilton and that of Jefferson. 

The only practical difference between the two allocation systems is to 
take away one of Delaware's two seats and give it to Virginia. The dif-
ference between the maximum and the minimum number of voters per 
seat is not diminished using the Jeffersonian method which turns out to 
give a relative inequity of 88%; for the Hamiltonian method the difference 
is a more modest 57%. The method of Jefferson favors the larger states 
pure and simple. Jefferson essentially presented George Washington and 
Congress with a black box and the message that to use Hamilton's Rule 
would be unsophisticated, whereas Jefferson's Rule was somehow very po-
litically correct. It worked. Congress approved the method of Jefferson, 
and this method was in use until after the census of 1850 at which time the 
method of Hamilton was installed and kept in use until it was modified by 
a Democratic Congress in 1941 in favor of yet another scheme. 
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1 Table 12.5. Method of Jefferson (divisor 
State 

CN 
DE 
GA 
KY 
MD 
MA 
NH 
NJ 
NY 
NC 
PA 
RJ 
SC 
VE 
VA 
Total 

Population 

236,841 
55,540 
70, 835 
68,705 

278,514 
475,327 
141,822 
179,570 
331,589 
353,523 
432,879 
68,446 

206,236 
85,533 
630,560 

3,615,920 

Quotient 

8.310 
1.949 
2.485 
2.411 
9.772 
16.678 
4.976 
6.301 
11.635 
12.404 
15.189 
2.402 
7.236 
3.001 
22.125 
126.88 

Jeffersonian 
Allocation 

8 
1 
2 
2 
9 
16 
4 
6 
11 
12 
15 
2 
7 
3 

22 
120 

of 27,500). 
Voters 
Seat 

29,605 
55,540 
35,417 
34,353 
30,946 
29,708 
35,456 
29,928 
30,144 
29,460 
28,859 
34,223 
29,462 
28,511 
28,662 

We have in the 1792 controversy a clear example of the influence on 
consensus of one individual who passionately and cleverly advances a pol-
icy about which his colleagues have little concern and less understanding. 
Jefferson was the best mathematician involved in the Congressional discus-
sions, and he sold his colleagues on a plan in the fairness of which one must 
doubt he truly believed. 

Table 12.6. Allocations of Hamilton anc 
State 

CN 
DE 
GA 
KY 
MD 
MA 
NH 
NJ 
NY 
NC 
PA 
PJ 
SC 
VE 
VA 
Total 

Population 

236,841 
55,540 
70, 835 
68,705 

278,514 
475,327 
141,822 
179,570 
331,589 
353,523 
432,879 
68,446 
206,236 
85,533 

630,560 
3,615,920 

H 

7 
2 
2 
2 
8 
14 
4 
5 
10 
10 
13 
2 
7 
2 
18 
106 

J 

7 
1 
2 
2 
8 
14 
4 
5 
10 
10 
13 
2 
7 
2 
19 

106 

Voters/Seat 
Hamilton 

33,834 
27,220 
35,417 
34,353 
34,814 
33,952 
35,455 
35,914 
33,159 
35,352 
33,298 
34,223 
29,462 
42,766 
35,031 

Jefferson. 
Voters/Seat 

Jefferson 
33,834 
55,440 
35,417 
34,353 
34,814 
33,952 
35,455 
35,914 
33,159 
35,352 
33,298 
34,223 
29,462 
42,776 
33,187 
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Table 12.5. Method of Jefferson (divisor of 27,500). 
State Population Quotient Jeffersonian Voters 

Allocation Seat 
CN 236,841 8.310 8 29,605 
DE 55,540 1.949 1 55,540 
GA 70, 835 2.485 2 35,417 
KY 68,705 2.411 2 34,353 
MD 278,514 9.772 9 30,946 
MA 475,327 16.678 16 29,708 
NH 141 ,822 4.976 4 35,456 
NJ 179,570 6.301 6 29,928 
NY 331,589 1 1 .635 11 30,144 
NC 353,523 12.404 12 29,460 
PA 432,879 15.189 15 28,859 
Rl 68,446 2.402 2 34,223 
SC 206,236 7.236 7 29,462 
VE 85,533 3.001 3 28,511 
VA 630,560 22.125 22 28,662 
Total 3,615,920 126.88 120 

We have in the 1792 controversy a clear example of the influence on 
consensus of one individual who passionately and cleverly advances a pol­
icy about which his colleagues have little concern and less understanding. 
Jefferson was the best mathematician involved in the Congressional discus­
sions, and he sold his colleagues on a plan in the fairness of which one must 
doubt he truly believed. 

Table 12.6. Allocations of Hamilton and Jefferson. 
State Population H J Voters/Seat Voters/Seat 

Hamilton Jefferson 
CN 236,841 7 7 33,834 33,834 
DE 55,540 2 1 27,220 55,440 
GA 70, 835 2 2 35,417 35,417 
KY 68,705 2 2 34,353 34,353 
MD 278,514 8 8 34,814 34,814 
MA 475,327 14 14 33,952 33,952 
NH 141 ,822 4 4 35,455 35,455 
NJ 179,570 5 5 35,914 35,914 
NY 331,589 10 10 33,159 33,159 
NC 353,523 10 10 35,352 35,352 
PA 432,879 13 13 33,298 33,298 
Rl 68,446 2 2 34,223 34,223 
SC 206,236 7 7 29,462 29,462 
VE 85,533 2 2 42,766 42,776 
VA 630,560 18 19 35,031 33,187 
Total 3,615,920 106 106 
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Naturally, as the large state bias of the method of Jefferson began to be 
understood, it was inevitable that someone would suggest a plan that, some-
what symmetrically to Jefferson's method, would favor the small states. We 
have such a scheme proposed by John Quincy Adams. 

John Quincy Adams's Rule. Pick the size of the House = 
n. Find a divisor d so that the integer parts of the quotients 
(when divided by d) plus 1 for each of the states sum to n. Then 
assign to each state the integer part of Nj/d + 1. 

The plan of Adams gives the same kind of advantage to the small states 
that that of Jefferson gives to the large states. Needless to say, it has never 
been used in this country or any other (although amazingly, Jefferson's 
has). It is interesting to note that Adams, instead of saying, "I see what's 
going on. Let's go to Hamilton's Rule," tried to do for the small states the 
same thing Jefferson had done for the large states. 

It is interesting to note that Daniel Webster attempted to come up with 
a plan which was intermediate to that of Jefferson's and that of Adams. 
He noted that whereas Jefferson rounded the quotient down to the next 
smallest integer, Adams rounded up to the next largest integer. Webster, 
who was a man of incredible intuition, suggested that fractions above .5 
be rounded upward, those below 0.5 be rounded downward. Prom the 
1830's until 1850 there was very active discussion about the unfairness 
of the method of Jefferson and a search for alternatives. It was finally 
decided to pick Hamilton's method, but Webster's was almost selected and 
it was a contender as recently as 1941. As it turns out, there is very little 
practical difference between the method of Hamilton and that of Webster. 
Both methods would have given identical allocations from the beginning 
of the Republic until 1900. Since that time, the differences between the 
two methods usually involve one seat per census. The method of Hamilton 
was replaced in 1941 by one advocated by Edward Huntington, Professor of 
Mathematics at Harvard. Huntington, instead of having the division point 
of fractions to be rounded up and rounded down to one half, advocated 
that if the size of the quotient of a state were denoted by Nj/d then the 
dividing point below which rounding down would be indicated would be the 
geometric mean \f[Nj/d\([Nj/d\ + 1), where [.] denotes "integer part of." 
One might say that such a method violates the notion that such methods 
should be kept simple. Furthermore, the rounding boundaries do increase 
slightly as the size of the state increases, giving an apparent advantage 
to the smaller states. At the last minute, the more popular method of 
Webster was rejected in favor of that of Huntington, since its application 
using the 1940 census would give a seat to Democratic Arkansas rather 
than to Republican Michigan. The Huntington method is in use to this day, 
though not one American in a thousand is aware of the fact. And indeed, 
it is not a very important issue whether we use the method of Hamilton or 
that of Webster or that of Huntington or even that of Jefferson or that of 
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Adams. Not one significant piece of legislation would have changed during 
the course of the Republic if any one of them were chosen. The subject of 
apportionment possibly receives more attention than practicality warrants. 

But looking over the history of the apportionment rule should give pause 
to those among us who believe in the pristine purity of the Founding Fathers 
and the idea that there was a time when Platonic philosophers ruled the 
land with no thought except virtue and fair play. Jefferson, the noblest and 
wisest and purest of them all, was working for the advantage for his state 
under the guise of fairness and sophistication. And George Washington, the 
Father of his Country, was tricked into using the first veto in the history of 
the Republic to stop a good rule and put one of lesser quality in its place. 
All this, in the name of being a good Enlightenment chief of state. 

Arrow [1] proved mathematically what Machiavelli had observed and 
Pareto had described as being part of a general taxonomy of political be-
havior: in economics, politics and society generally: important public pol-
icy decisions are not made as the orderly aggregation of collective wisdom. 
Group decisions are made using mechanisms we do not clearly understand 
(and, as Pareto urged, we really should try without passion to learn these 
mechanisms). It appears that insiders have a great deal to do with these 
decisions. Sometimes, as when Robert Rubin, Secretary of the Treasury, 
rushed in to secure Mexican loans made by American financial institutions, 
including that of which he had been boss, Goldman-Sachs, one may raise 
an eyebrow. Of course, he could respond that he was just following an 
example set by arguably the smartest and most idealistic President in the 
history of the Republic. Then again, we have the Federal Reserve Board in 
recent years presenting the stock market with frequent "Gotcha!" type sur-
prises. What sort of efficiency is possible in a market where interest rates 
are changed at the whim of Alan Greenspan and his fellows? Then there 
is the matter of anti-trust law. Should a CEO be careful lest his company 
be so successful that it is dismembered by the Attorney General? 

Some years ago, the author was consultant to a firm that had a well-
designed plan to raise chickens in Yucatan according to the notions of mod-
ern poultry husbandry. In order to purchase buildings, poultry, land, and 
equipment, the firm had to convert millions of dollars of cash from dollars 
into pesos. It did so on the Friday before the deals were to be paid for on 
Monday. During the week-end, the President of Mexico devalued the peso 
hugely, wiping out the cash reserves of the firm. Naturally, on Monday, 
all the Mexican parties from whom land, structures, equipment, poultry, 
etc., were to be purchased, changed their peso prices hugely upward to 
reflect the devaluation. (It turns out that prior to the devaluation, the 
President of Mexico had leveraged his own cash assets to purchase a num-
ber of villas in Mexico.) Such surprises are hardly helpful to facilitating 
market efficiency. One may well ask how an investor can cope with such 
inefficiency producing spikes in the market. Pareto's answer is that one 
had better learn how to do precisely that, for such is the real world. There 
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is indeed a tendency towards efficiency in most markets. But this is only 
part of the market mechanism. In our study, we model an efficient market 
tendency and then look at what happens when varieties of contaminating 
mechanisms are superimposed upon it. 

12.7 Conclusions 

In this chapter on utility, we have started with Enlightenment assurance 
as to the way rational people should make choices. The buttressing of 
Bernoulli by von Neumann and Morgenstern seemed very promising indeed. 
But then we ran into Arrow and looked back to Pareto and (shudder) 
Thomas JeflFerson. And we became less confident about the orderliness of 
the way aggregate decisions are made. In Mind and Society, Pareto tells us 
that in reality many decisions are made with results which are the equal in 
consequence of any Adam Smith might have made. The market may not be 
efficient; politicians may not be clones of Lucius Quintus Cincinnatus; but 
in some societies (and Pareto always had great hopes for the United States), 
the market moves toward efficiency, and political decisions are frequently 
Cincinnatus-like in their consequences. The West and its economies are not 
at all chaotic. There is a tendency toward efficiency. But it is ridiculous 
if we assume efficient markets as an iron law, and then fudge when our 
illusions are challenged by reality. In this book, we shall assume a more or 
less efficient driver for a given market situation with departures therefrom 
taken cognizance of empirically by perturbations to the model. 

Problems 

12.1. Sempronius owns goods at home worth a total of 4,000 ducats and 
in addition possesses 8000 ducats of commodities in foreign countries from 
where they can be transported only by sea. However, our daily experience 
teaches us that of ten ships, one perishes. 

(a) What is Sempronius' expectation of the commodities? 

(b) By how much would his expectation improve if he trusted them equally 
to two ships? 

(c) What is the limit of his expectation as he trusted them to increasing 
numbers of ships? 
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12.2. Let us use Bernoulli's logarithmic utility function 

U(X)=log(^-) 

where Θ is one's initial wealth. Would it be rational to play a game where 
there is a finite probability of losing all one's wealth? Why? How might 
this result be rationalized? Why, in modern first world society, might it be 
said that is impossible to lose all one's wealth? 

12.3. Suppose a woman were offered either a certain $230 or a 50—50 
chance of $400 or $100. Which option should be taken if: 

(a) She possesses a square root utility function, 

(b) A Bernoulli utility function with initial wealth of $1,000, 

(c) The same as 2, with initial wealth of $100? 

12.4. Consider the section on von Neumann—Morgenstern utility. 

(a) Determine the certain sum for which the subject in the example would 
relinquish the following opportunity: 

w 
40,000 
160,000 
250,000 

Probability 
.4 
.4 
.2 

(b) Explain how von Neumann—Morgenstern Axiom 5 treats the utility 
derived from gambling itself (i.e., deals with the existence of casinos). 

(c) Compare the mean and standard deviation of outcomes in the example 
and in (a). 

(i) What are the mean and standard deviation in each case of the 
certain dollar value for which the subject would be indifferent? 

(ii) We now have two sets of (σ, μ) for each of the two opportunities. 
Which of the two games (example or (a)) would the subject prefer to play? 

(iii) For what probability a would he be indifferent between a x (game 
he prefers) and the game he does not prefer? 

12.5. For this problem, assume U = y/W and i7(0) = 0 and 17(1,000,000) = 
1,000 utiles. 
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(a) For what 0 < a < 1 would the subject be indifferent between a x 
$1,000,000 and a certain $250,000? 

(b) For what a would the subject be indifferent between ax$500,000 and 
( 1 - a ) x $200,000? 

12·6. Consider the Last Shall be First Rule for establishing group prefer-
ences: 

• Step 1. Select as the group choice, the candidate who was ranked 
number one by a majority of the decision makers, if such a candidate 
exists. 

• Step 2. If no candidate received a majority of number one rankings, 
then take all the preference rankings of voters who voted for the 
candidate with the smallest number of first choice preferences and 
treat them as if their first choice candidate is simply deleted from 
their preference lists and all other candidates on their lists moved up 
one rung on the preference ladder. 

• Step 3. Go to Step 1. 

Which of Arrow's Axioms does this rule fail to satisfy? Discuss its ad-
vantages and disadvantages in three settings: 

(a) A mayoral election in an American city of over 10,000 voters 

(b) An election for a position on a university committee 

(c) A decision making process for picking one of four potential new products 
by a board of directors (with 20 members) of a company. 

12.7. Consider the Borda Count Rule 

• Step 1. Rank the preferences amongst к choices for voter i, one of n 
voters. 

• Step 2. For each preference a, count the number of choices below a 
in the preferences of voter г. This gives us Bi(a). 

• Step 3. For each choice sum the Borda counts, e.g., B(a) = ]£? Bi(a). 

• Step 4. The group chooses the preference with the highest Borda 
count sum 

A group decision rule defined on the set of all profiles (preferences) on 
the set of decisions is said to be Pareto optimal if for every a and b in the 
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set of decisions whenever о is ranked over b in every ranking of a profile, 
then a is ranked over ò in the corresponding group ranking. 

Prove or disprove the following: 
The Borda count rule is Pareto optimal. 

12.8. Consider the following Plurality Rule: rank a over 6 for the group 
if and only if a receives more first place votes than b. Is this rule Pareto 
optimal? 
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Chapter 13 

A Primer in Sampling 

13.1 Introduction 
Typically, when we talk about sampling, we are randomly selecting a relar 
tively few items from a much larger population in order to make inferences 
about that much larger popultation. If we fail to pick a subsample of the 
population which is typical of the population under consideration, nothing 
can save us from false conclusions. Three of the greatest statisticians of all 
time, Cochran, Mosteller, and Tukey [2] in examining Kinsey's [5] surveys 
on the sexual behavior of the American male were hoodwinked by failing to 
uncover the fact that a large fraction of Kinsey's sample consisted of male 
prostitutes and prison inmates. Had they probed more deeply into Kinsey's 
sampling methods, they could have spared the world years of false science. 
In effect, while being somewhat critical, they gave Kinsey a pass. It serves 
as an example to all persons examining sampling studies: be very careful 
to vet the sampler and his/her sampling strategy. 

The increasing uses of sampling are quite significant. For example, two 
distinguished law professors, Walker and Monahan [7], have noted the ad-
vantages in time and cost if sampling techniques were used for assessing 
damages in class action lawsuits. This would be bad news for trial lawyers, 
but good news for society as a whole. 

The notion of an opinion poll about various candidates comes immedi-
ately to mind. Most of the time, these opinion polls are amazingly accurate 
in assessing the current opinion of the electorate even though the sample 
is a tiny fraction, less than one in ten thousand, say, of the electorate. The 
polls may tell a presidential candidate that he or she is so far behind in a 
particular state, say less than 35% support, that it is simply pointless to 
spend significant marketing resources for campaigning in that state. Or it 
may tell the candidate that his or her support is so great, say over 65% that 
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it really is not necessary to expend significant resources in that state. Typ-
ically, based on opinion polling, the candidates will expend most of their 
resources in battleground states, states in which no candidate can be at 
all certain about the results. Consequently, in the presidential election of 
2008, neither McCain nor Obama spent significant resources campaigning 
in California or Texas. In California, the polls showed Obama to be the 
easy winner. In Texas, the polls showed McCain to be comfortably ahead. 
Both candidates spent considerable resources in Indiana, Ohio, North Car-
olina, Virginia and Florida, for in these states neither candidate had polls 
showing over 55% strength. 

Such neglect by the candidates of vast segmenets of the population is one 
argument used against the Electoral College, where one candidate receives 
all the electoral votes of the state, and the other receives none. On the 
other hand, a system whereby the President is selected on the basis of the 
aggregate popular vote without regard to state boundaries, many states 
would become "flyover" states. Little time would be spent campaigning in 
New Hampshire or Montana or Wyoming, for there are not so many voters 
in these states. 

Let us next consider two states of very different population sizes, Wyoming 
and Texas. Wyoming has a population of roughly 500,000 whereas Texas 
has around 20,000,000. In other words, Texas has a population around 40 
times that of Wyoming. 

Consider a state of size N where there are M persons who prefer Obama. 
Let X be the number of voters in a sample of size n who prefer Obama. We 
wish to estimate the proportion of voters in the state who prefer Obama. 
In Appendix A, we have shown in (A.35) that 

E{X) = μ = ηρ (13.1) 

where p = M/N and q = 1 — p. 
In (A.38), we have shown that 

E[(X - μ)2) =σ2 = npq(N - n)/(N - 1). (13.2) 

Generally, we will have a much larger population than the sample size. 
For this reason, we may frequently write the variance as 

Var(X) = npq (13.3) 

We note that this gives us a conservative estimate for the variance of X, 
(i.e., a slightly inflated one). Again, if we do not have a rough idea as to 
the value of p, we might use p = 0.5, which will give an inflated estimate 
for the variance. 

Let us suppose we take a random sample of size 400 from the population 
of Wyoming and find that 180 favor Obama. Based on our sample, the 
natural estimator for p is p = 180/400. What is a natural two—tailed 95% 
confidence interval for p? The obvious interval will be 
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p ± IMJ*1 *' = 0.45 ± 0.04875. (13.4) 

Now, if we should carry out the same survey in Texas, and in a sample 
of size 400 received again 180 votes for Obama, we would obtain precisely 
the same 95% confidence interval. Many persons confronted with this fact 
for the first time are surprised that the size of the state does not enter into 
the formula. 

On the other hand, suppose the question was to obtain a 95% confidence 
interval on the numbers of persons favoring Obama in the two states. Let 
us call these two numbers My/ and Μτ· 

Clearly then, we need to multiply by proportions confidence interval by 
the populations of the two separate states. This would give us 

Mw = 500,000p±500,000xl.96\/^—-^ (13.5) 
V n 

= 225,000 ± .04875 x 500,000 
= 225,000 ±24,375. 

For Texas we have 

MT = 20,000,000p ± 20,000,000 x 1.96\№—— (13.6) 
V n 

= 9,000,000 ± .04875 x 20,000,000 
= 9,000,000 ±975,000. 

Next, let us consider the situation where we have 800 samplings to use 
in Wyoming and Texas. Let us suppose that our goal is to minimize the 
variance of the sum of the estimated Obama voters. Our function to be 
minimized (assuming the polls are independent) for the two states is 

V = Var(Mw) + Var(MT) = 500 ,000 P w ( 1 ~ P w ) + 2 0 , 0 0 0 , 0 0 0 ^ " ^ . 
nw (800 — nw) 

(13.7) 
Of course, if we actually knew pw and ρτ^ we would not have to take a 

survey in the first place. Let us suppose, however, that we have, perhaps 
on the basis or earlier surveys, have rough a priori estimates of pw and 
pr—say, pw and py. 

Now, both Wyoming and Texas were not very strong for Obama. Let us 
assume that both states had approximately the same p for the proportion 
of Obama voters. 

Then, 
. . r500,000 , 20,000.000Ί ρ 
V = [~^r + 800 -nw

]Y^p' (13*8) 
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for the first time are surprised that the size of the state does not enter into 
the formula. 

On the other hand, suppose the question was to obtain a 95% confidence 
interval on the numbers of persons favoring Obama in the two states. Let 
us call these two numbers Mw and MT. 

Clearly then, we need to multiply by proportions confidence interval by 
the populations of the two separate states. This would give us 

Mw = 500, OOOp ± 500, 000 x 1 .96 V p(l : p) 
= 225, 000 ± .04875 x 500, 000 

225, 000 ± 24, 375. 

( 13.5) 

For Texas we have 

MT 20, 000, OOOp ± 20, 000, 000 x 1 .96V p(l : p) 
= 9, 000, 000 ± .04875 x 20, 000, 000 

= 9, 000, 000 ± 975, 000. 

(13.6) 

Next, let us consider the situation where we have 800 samplings to use 
in Wyoming and Tex88. Let us suppose that our goal is to minimize the 
variance of the sum of the estimated Obama voters. Our function to be 
minimized (88Suming the polls are independent) for the two states is 

pw(l - pw) PT(l - PT) V = Var(Mw) + Var(MT) = 500, 000 nw + 20, 000, 000 
(800 _ nw) "  

(13.7) 
Of course, if we actually knew Pw and PT, we would not have to take a 

survey in the first place. Let us suppose, however, that we have, perhaps 
on the basis or earlier surveys, have rough a priori estimates of Pw and 

PT-say, Pw and Iir· 
Now, both Wyoming and Texas were not very strong for Obama. Let us 

assume that both states had approximately the same p for the proportion 
of Obama voters. 

Then, 
v = 

[
500, 000 

+ 
20, 000.000

j _
p

_. 
nw 800 - nw 1 - P 

(13.8) 
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Taking the partial derivative with respect to nw and setting the resulting 
equation equal to zero, we have 

dV __ -500,000 20,000,000 
dnw n w (800 - nw)2 

This gives 

39n^ + 1,600nw - 640,000 = 0 

(13.9) 

(13.10) 

with the solution nw = 109, and г%т = 691. 

13.1.1 Tracking Polls 
Frequently, when looking at public opinion polling, there may be some 
advantage to taking an exponentially weighted moving average approach. 
Below, we use weight 1 — a for today's sample proportion favoring a can-
didate, and a weight a for the past sampled proportion. So, starting with 
day 1 for the first day of the tracking poll, we have 

4 = ft. 
Then, for the second day 

ft = α ή + (1-α)Ρι . 

Continuing in this fashion, we have by day N 

(13.11) 

(13.12) 

PN = αρΝ_ι + (1 - a)PN^. (13.13) 

The tracking poll is really an exploratory device. During a campaign the 
day to day and week to week values of p are likely to be changing some-
what, sometimes a great deal. By letting past week estimates influence 
current week estimates of the proportion favoring a candidate the sample 
size, though the process has changed, the sample size has effectivley in-
creased. If one wishes to create a sort of rough confidence interval on day 
N 

P = pN± 1.96 VVarPtf. (13.14) 
We demonstrate a few steps of the temporally indexed estimation process 

when a = 0.4. 

Table 13.1. Weekly Estimates for p. 
3 
1 
2 
3 
4 
5 

ni 
100 
105 
110 
85 
100 

Pj 
0.400 
0.42 
0.43 
0.428 
0.48 

Pi 
0.40 
0.408 
0.420 
0.420 
0.4488 

Var(pj) 
0.0024 
0.0023 
0.00223 
0.00290 
0.00175 

Vax(Pi) 
0.0024 
0.00123 
0.00080 
0.000752 
0.000671 
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It would appear that the estimates of the proportion for Obama have not 
changed very much during the five week tracking period. This would be 
expected if this were a rather solid Republican state in which little had 
been spent in advertising either candidate. However, if we chose to look 
at a 95% confidence interval about P5, we would find the upper bound to 
be 0.4488 + 0.0507 = 0.4995. Essentially, it would look like Wyoming is 
moving Obama's way. Perhaps he should not count Wyoming out. 

13.2 Stratification 

Suppose we wish to estimate a total of random variables in m containers. 
For example, we might want to estimate the total of voters favoring a 
candidate for President in m states. Or, we could be carrying out a survey 
to determine an estimate for the total value of items in m warehouses. This 
is a common inventory survey, which might be required for the payment of 
ad valorem taxes. 

Both problems can be dealt with in the same urn model fashion. Let us 
start then with the situation where the N\ variables in the first urn have 
mean μ\ and variance (Ö"I)2. Similarly, the N2 variables in the second urn 
have mean μ2 and variance σ\. Continuing on in this fashion, we profress 
to the mth urn with mean μ and variance σ2. 

We wish to estimate 

T = Νιμι + Ν2μ2 + . . . + Nmßm. (13.15) 

One natural procedure is to take a sample of size n\ in the first urn, n2 

in the second, and so on, until we have n m in the mth urn. Using these 
samples, our natural estimator is 

t = ΝιΧχ + N2X2 + . . . + NmXM. (13.16) 

It is a fair assumption (usually) that the variables in each urn are inde-
pendent of the variables in the other urns and each other. Using squared 
deviation from the true value of T as the loss function to be minimized, we 
try to minimize: 

Var(f) = N?Var{Xi) + ЩУаг{Х2) + . . . + N^Var(Xm) (13.17) 

2 

Ti l 2 П>2 m Пт ' 
= Ni£+JV*Ä + ... + j We2i 

(Note how we have used independence to eliminate cross product terms.) 
Now, the question becomes: If we have a total sample size across urns of 

ni + n2 4 - . . . + nm = n, (13.18) 
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how shall we optimally allocate the samples across the m urns? Using the 
method of Lagrange for optimizing T subject to the constraint in (13.18), 
we have 

-JV?4 +*P- = -N?4 + λ = 0 (13.19) 
Щ OTli Щ v ' 

»1 

-̂ f+A = 0 

Isolating λ and using the fact that things equal to λ are equal to each 
other, we have 

^i24 = ^ 4 = · · · = ^m4· (13.20) 
n? 2n? m n i v ; 

This gives 

So for each j 

Thus 

2Ì ^ σ2^Ι (13.21) 

П ' = П 1 ? ^ ( 1 3 · 2 2 ) 

σι ivi 

71 
711 =

 Т Т ^ Г Ж Г Г Е Г Ж Т ■ *~ Ν„ (13.23) 

And, for any other η ,̂ 

σι TVi 
Let us return to the election poll. Suppose in state j , there are Nj voters. 

Suppose for each voter, the probability of each voter voting for Obama is 
Pj. Then 

* i = P i ( l - P i ) . (13.25) 

And, remembering, 
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n� (T� N� 
n2 = ..... 2 N2 ·  1 V l  1 

n 
nl - -----.,.------.,.------=--

1 + � &  + !!.J. &  + . . . + !!.m. . !:!.m.  0" 1  N1 0"1 N1 0"1 N1 
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(13.23) 

(13.24) 

Let us return to the election poll. Suppose in state j, there are Nj voters. 
Suppose for each voter, the probability of each voter voting for Obama is 
Pj .  Then 

(Tj = pj(1 - Pj) . (13.25) 

And, remembering, 

(13.26) 
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If we have some prior information as to the various probabilitities—say 
Pj— we simply substitute these values in (13.25) and (13.26). 

Thus, 
&*"Ί (13.27) 

We see that as the standard deviation in urn j increases, the proportion of 
the sample used in urn j increases. And, as the number of units in the urn 
increases, so does the sample size in the jth urn increase. 

What if our prior guesses for the proportions favoring Obama are off the 
mark? Will our estimate for the total number of voters favoring a candidate 
be flawed? The answer is that it will not. Our estimates for each state will 
be unbiased. As long as we are using correct values for the sizes of the voter 
populations on a s ta te -by-s ta te basis and our sampling is done randomly, 
our estimate for the total number of voters favoring a candidate will be 
unbiased. By using incorrect values for the pj in the formula for the sample 
sizes, state by state, we will have sacrificed some efficiency in the estimation 
process, but our answer will still be unbiased. 

Next, let us apply stratification to an inventory problem. We have goods 
in a number of oil tool warehouses. We need to come up with a reasonable 
figure for the total worth of the goods on hand. In some of the warehouses, 
we may have things as simple as nuts and bolts. In others, we will have 
drilling bits and extenders worth many thousands of dollars. How shall we 
decide where to invest our sampling of n items. A general assumption, fre-
quently a fair approximation, is that the coefficient of variation is constant 
across each warehouse. That is to say, for all the warehouses 

Ml M2 
(13.28) 

And 

where, 

J μιΝχ 

П\ « 1 + älNl_L äsNsL , 
1 ^ σχ Νχ ^ μι ΛΓι ^ * ' 

+ 4- ibo-Hm. 

(13.29) 

(13.30) 

13.2.1 A Warehouse Inventory 

Let us suppose we have a warehouse with three different categories of items, 
as in Table 13.2. 

Table 13.2. Warehouse Inventory. 
N< fij (average value in dollars ) 
100 

5000 
25,000 

10,000 
500 
5 
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0'1 Nl 1-'1 Nl 1-'1 Nl 
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(13.28) 

(13.29) 

(13.30) 

Let us suppose we have a warehouse with three different categories of items, 
as in Table 13.2. 

Table 13.2. Warehouse Inventory. 
j Nj Jij (average value in dollars ) 
1 100 10,000 
2 5000 500 
3 25,000 5 
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Then from (13.30), we have 

ni = 
100 

1 4- 500 5000 i 5 25,000 
1 ~*~ 10,000 100 "·" 10,000 100 

= 28 

And, from (13.29), 

500 5,000 „D „e n2 = -4rr- x 28 = 68 

n3 = 

10,000 100 

5 25,000 
10,000 100 

x28 = 4 

(13.31) 

(13.32) 

(13.33) 

13.3 The Saga of Happy Valley 

It is common these days for these cities to attempt to annex affluent inde-
pendent suburban communities. The reasons for doing so are various, but 
a major reason is to add the citizens of these communities to the real estate 
tax rolls of the city. Of course, once the suburb has been captured by the 
city, there may be some subsequent costs involved. For example, it may 
be necessary to add sewer lines and water mains, provide professional (as 
opposed to volunteer) fire protection, etc. One of the first things the tax 
assessor will want to do is to pick houses randomly from the suburb in an 
effort to determine the average value. In this way, the city authorities can 
make an estimate about the real estate tax revenue which incorporation of 
the suburb will add to the city's coffers. In Table 13.3 we display the results 
of such a sample. The Mayor Taxum of Monstropolis is deciding whether 
to begin proceedings to annex the upper middle income suburb of Happy 
Valley. The house prices may look relatively low, but these data are from 
the late 1980s. 

Table 13.3. 
House Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Home Values. 
Estimated Value 

$107,500 
$329,000 
$274,500 
$174,000 
$87,500 
$495,500 
$295,000 
$310,000 
$290,500 
$478,000 
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The average of the sample is computed via 

- i=10 

* = ΪΟΣΧ* (13 ·34) 
where Xi is the estimated value of the ith house. The rationale for using X 
as an estimate for the average value of a house in this suburban community 
might be 

The ten houses we have examined randomly selected represent 
the entire suburban community in microcosm. Within this com-
munity, each house has probability 1/10 of being selected. If we 
had to pick one number to represent the idealized "representar 
tive house" from the suburb, X seems a likely candidate. So, 
(13.35) represents the "world in a drop of water" estimate of 
the value of a house in the community. 

The expression the "world in a drop of water" goes back to ancient notions 
which exist in most of the world's major religions about some small part of 
the whole being, in a sense, equivalent in kind to the whole. For example, 
we find in the Koran: 

5:32 That was why We laid it down for the Israelites that who-
ever killed a human being, except as a punishment for murder 
or other wicked crimes, should be looked upon as though he had 
killed all mankind; and that whoever saved a human life should 
be regarded as though he had saved all mankind. 

Prom a data analytical perspective, we might seem to be going back 
to John Graunt's treatment of the records of death in sixteenth—century 
London. Recall that analysts prior to Graunt had insisted on looking at 
each death individually, and so they could not grasp the big picture. But 
Graunt was able to "see the forest" by aggregating deaths into groups 
based on age at death. We are talking about grasping the details of the 
forest by looking at a small subset of the trees in the forest. There might 
well be 20,000 houses in the suburban community. We are not, at this 
time, aggregating the houses according to some stratification rule, such as 
"126 houses worth $50,000 to $75,000, 520 worth $75,001 to $90,000, etc." 
Frequently, simple economics prevents us from grabbing the entire relevant 
data set. So, rather, we are saying that the ten houses we randomly selected 
have price characteristics representative of the full set of 20,000 houses in 
the suburban community. 

The use of the sample mean X as a representative value for a much larger 
set has gone on for as long as one can imagine. It is the basis of an area of 
data analysis called sampling theory. But, ancient though the use of X is, 
the nuances of sampling theory are by no means trivial to grasp. 
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13.3.1 The Problem with Standards 
Some years ago, a large manufacturer of trucks was deciding whether to ac-
cept a contract for 125,000 trucks from the U.S. Army. Everything looked 
reasonable in the contract except for one stipulation. The trucks were to 
be produced over a five year period at the rate of 25,000 per year. For 
each year of production, an inspector from the Army would pick one of the 
trucks and test it over a 100 mile stretch of road. The fuel consumption of 
the truck would be compared with the target value in the manufacturer's 
specifications. If the consumption rate was less than that of the specifi-
cation, then the manufacturer would pay no penalty. However, were the 
consumption greater than the specification, then the manufacturer would 
pay a penalty given by subtracting the actual miles per gallon from the 
specified miles per gallon and dividing this into the expected life of the 
truck (100,000 miles) times $1.50 per gallon. 

Although the engineers at the plant were not statisticians, they felt that 

1. The specification was unusual; 

2. It could make the deal risky for the manufacturer. 

Now the engineers were confident that the fleet average consumption of 
the 25,000 trucks would be better than the specified miles per gallon. If 
the penalty were based on an orderly recording of the miles per gallon of 
each truck, then they would be willing to sign off on the deal. But to base 
judgments on 25,000 trucks on the performance of just one of them seemed 
to be nonintuitive. Here, one truck is not a big enough drop of water to 
represent the world. The Army was unwilling to go to the expense of a 
record taking involving all the trucks. 

How big must the sample of trucks be to come up with something fair? 
This question does not go back into the mists of prehistory. It was first 
considered by Karl Frederick Gauss in his lectures on the motions of comets 
given at Königsberg in 1809. 

Gauss knew perfectly well how to take several estimates of speed and 
combine them to give one improved good estimate of speed. This is just 
the sample mean X. But he did not know how to estimate the quality of 
his estimate. He tried various strategies. First, he considered looking at 
the average miss of each observation from X: 

1 n 

Average Error = - ] Г ( ^ - X). (13.35) 
71 i = i 

Suppose the sample size were two and the true value of the comet's 
velocity were 1000 kilometers per hour. Suppose we consider two possible 
samplings. In the first, the measurements are 500 km/hr and 1500 km/hr. 
In the second, the measurements are 999 km/hr and 1001 km/hr. In both 
cases, the Average Error is zero. But, clearly, we feel much better about X 
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judgments on 25,000 trucks on the performance of just one of them seemed 
to be nonintuitive. Here, one truck is not a big enough drop of water to 
represent the world. The Army was unwilling to go to the expense of a 
record taking involving all the trucks. 

How big must the sample of trucks be to come up with something fair? 
This question does not go back into the mists of prehistory. It was first 
considered by Karl Frederick Gauss in his lectures on the motions of comets 
given at Konigsberg in 1809. 

Gauss knew perfectly well how to take several estimates of speed and 
combine them to give one improved good estimate of speed. This is just 
the sample mean X. But he did not know how to estimate the quality of 
his estimate. He tried various strategies. First, he considered looking at 
the average miss of each observation from X: 

1 n 
Average Error = - :�:)Xi - X) . n i=l (13.35) 

Suppose the sample size were two and the true value of the comet's 
velocity were 1000 kilometers per hour. Suppose we consider two possible 
samplings. In the first, the measurements are 500 lan/hr and 1500 lan/hr. 
In the second, the measurements are 999 lan/hr and 1001 lan/hr. In both 
cases, the Average Error is zero. But, clearly, we feel much better about X 
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results based on the second set of measurements, for they are less variable. 
Gauss noted that it was unacceptable to use a measure where positive and 
negative errors could cancel each other. 

So Gauss sought alternative measures. One that he considered, and dis-
carded, was the Mean Absolute Deviation (MAD): 

= £έι**-*ι· (13·36) 
Tv 

MAD 
n i = i 

Actually, this is not a bad measure. Why did Gauss reject it? One reason 
is the relative complexity of dealing with absolute values. In these days, 
when we have computers, the MAD makes a good deal more sense than in 
Gauss's. If we try and look at the problem of finding ά the value of a that 
minimizes 

1 П 

MAD == - Σ \Xi - al> (13·37) 
n * = i 

the answer is not the sample mean X, that wonderful estimate which goes 
back to prehistory. Moreover, the calculus developed separately by Leibnitz 
and Newton finds dealing with absolute values messy. 

Gauss decided to use squared deviation of the observations from the 
sample mean as a practical measure of the confidence one might have in 
the quality of the estimate of how well "the drop represents the world." 
For example, consider the two cases above given for the estimation of the 
velocity of a comet. In the case where we have the two sets of observations 
above, our two estimates are 

*i = 5 [(500 - 1 0 0 0 ) 2 + (150° - 1000)2] = 250,000 

4 = \ [ ( " 9 - Ю00)2 + (1001 - 1000)2] = 1, 

respectively. For the first data set, most people would feel they had very 
little confidence that X is close to the true velocity. For the second data 
set, we have reason to suppose that the true velocity probably is very close 
to 1,000 km/hr. For s2 small, we probably feel that the drop of water is 
big enough to describe well the world. The statistic 

5
2 = 1 ^ ( ^ - Х ) 2 (13.38) 

i = l 

is called the sample vanance. The square root of s2 is called the sample 
standard deviation s. Note that 5 and X have the same units of measure-
ment. 

Of course, we need to quantify what we mean by the variance being small 
or large. Small or large relative to what? The usual way to determine this is 
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is called the sample variance. The square root of S2 is called the sample 
standard deviation s. Note that s and X have the same units of measure­
ment. 

Of course, we need to quantify what we mean by the variance being small 
or large. Small or large relative to what? The usual way to determine this is 
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to divide s by X. This quantity is called the sample coefficient of variation: 

СУ = щ. (13.39) 

So, for two cases above, we have 

_ «i _ /250,000 
CVi - * - v TOOT 5 · 8 1 

Now, although it is not essential to follow convention, and sometimes it is 
even bad to do so, we are going, in the future, to follow the convention, 
in obtaining the sample variance of dividing through by n — 1 as opposed 
to n. Obviously,for n large, it will make little difference whether we divide 
by one or the other. But for n small, one advantage to dividing through 
by n — 1 rather than by n is that it gives us a larger value for s2. Thus, 
it makes us a bit more cautious in claiming that we have a "drop of water 
large enough to describe the world." 

13.4 To Annex or Not 
Returning to our example about annexation, the mayor of Monstropolis 
wants to be very sure before proceeding that the average house value in 
Happy Valley is over $250,000 before proceeding with annexation. There 
are numerous disadvantages to incorporation of Happy Valley, not the least 
of which is that it may bring in tens of thousands of angry Republican 
voters to vote against him in the next election. If he is sure the average 
tax value for the houses in Happy Valley is at least $250,000, he reckons it 
is worth the risk and costs to proceed with incorporation. 

Performing the calculations, the mayor's statistician, Mr. Damnlys, 
quickly finds that the sample mean for house values is $284,100, comfort-
ably above the $250,000 threshold. He tells the mayor that, indeed, it 
really looks as though Happy Valley houses average more than $250,000. 
But Damnlys has not taken into account the variability of the data. We 
compute the sample standard deviation to be equal to $136,295. And the 
sample coefficient of variation is a rather large .48. Probably, the mayor 
would like to be 95% sure that the Happy Valley average was at least 
$250,000. Can we assure him of that? 

13.4.1 The Bootstrap: The World in a Drop of Water 

There are many ways we can try to answer Mayor Taxum's question. We 
are going to use the bootstrap here and quite a lot generally because 
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1. The bootstrap requires few assumptions; 

2. The bootstrap intuitively gives us a practical feel as to whether "our 
drop of water" is large enough for the purpose at hand; 

3. It is very computer intensive, replacing human effort by computer 
simulation effort. 

Is the bootstrap "prehistoric" or of recent vintage? Here the answer is 
ambiguous. Practically speaking, it was little used before Julian Simon [6] 
used it in business courses in the 1960s (in those days, fast mainframe com-
puters, such as the IBM 7040, were becoming rather common). Although 
Professor Simon used his resampling paradigm on a relatively main frame, 
it is generaly available for use on most platforms at no cost. There is, for 
example, the freeware site Statisticsl01.net. Inasmuch as it is written in 
JAVA, StatiticslOl will work on most platforms. A freeware manual is also 
included. 

At the level of mathematical statistics, the "bootstrap " did not truly take 
off until Bradley Efron [4] and his colleagues at Stanford started massively 
demonstrating its use in the early 1980s. But it is also true that bootstrap-
like algorithms go back at least to Block [1] in 1960 and Dwass [3] in 1957 
when the first usable and generally available digital computer, the IBM 
650, was on the scene. 

When you consider it, a person who, in the 1920s, say, came up with 
a procedure which was practically impossible without a computer would 
have been very much like a person who today would assume the existence 
of an anti-gravity device as an essential part of a scheme for cheap trans-
portation. It just did not happen. The author blushes to admit that he 
himself used a bootstrap-like scheme for economic forecasting purposes in 
an extensive consultation in 1971. The author blushes because one really 
cannot appropriately use bootstrapping for forecasting purposes. The boot-
strap essentially works for one great purpose: assessing variation and its 
surrogates. As a practical matter, we will credit the bootstrap partly to 
Simon and particularly to Efron. In this course, we will be using a rather 
clever and compact computer package called Resampling Stats, which was 
developed by Simon and his associates. 

13.4.2 Resampling and Histograms 

Consider the house price data in Table 13.3. There are ten house prices in 
that "drop of water," and we would like to know whether it is legitimate to 
tell Mayor Taxum that he may safely assume that the average house price 
in Happy Valley is at least $250,000. 

1. Consider first of all that our drop of water has become our mini-
universe. We will treat the ten prices as the only values one can 
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possibly get. Each of the ten house prices will have probability one-
tenth of being drawn. 

2. Pick at random a house price from the list. It turns out, we pick 
house price number 3, namely $274,500. 

3. Pick at random, from the full list of ten, another house price. Again, 
we get number 3, namely $274, 500. 

4. Continue to resample from the full list of ten house prices until we 
have a sample of size ten. It turns out that our sample is $107,500, 
$329,000, $274,500, $274,500, $174,000,$87,500, $495,500, $495,500, 
$310,000, $290,000. 

5. Compute X± for this sample. It turns out to be $283,890. 

6. Carry out this operation 10,000 times, saving the entire list of 
-ΧΊ,-Ϋ2»···>-ΧΊοοοο· 

7. Sort these values and plot them in a histogram as shown in Figure 
13.1. 

8. See what percentage of the Xi values lie to the left of $250,000. 

9. Graph the results 

We will now take a Grauntian step, i.e., a step of aggregation. We will 
count all the Xi which occur in the intervals (in increments of $10,000) 
from $135,000 through $455J000. Note that, for example, the interval with 
center $140,000 counts all Xt values from $135,000 through $145,000. We 
note that we reexpress counts as percentages in the next column; simply 
divide each cell by 10,000 and multiply the resulting fraction by 100%. In 
the fourth column we accumulate the percentages. We note that 24% of 
the resampled Xi values are less than $250,000. We must report to Mayor 
Taxum that, assuming our sample of size ten is representative of the total 
house population of Happy Valley, there seems to be a 24% chance that the 
average value of houses there is less than $250,000. tation of the sample 
cumulative distribution function, i.e., column four of Table 13.4. 

, v _ А/ ч __ number observations < x ( . 
total number observations 
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CDF(x) = F(x) = number observations ::; x 
total number observations 

(13.40) 



To ANNEX OR NOT 319 

1 Table 13Л7 
| Interval Center 

ШШ 
150000 
160000 
170000 
180000 
190000 
200000 
210000 
220000 
230000 
240000 
250000 
260000 
270000 
280000 
290000 
300000 
310000 
320000 
330000 
340000 
350000 
360000 
370000 
380000 
390000 
400000 
410000 
420000 
430000 
440000 
450000 

Occurrence of 10,000 Bootstrapped Xt. 
Number of Xj 

2 
1 
7 
14 
34 
69 
110 
187 
289 
427 
576 
701 
873 
856 
1044 
900 
936 
700 
690 
472 
426 
275 
171 
86 
78 
44 
14 
13 
2 
1 
1 
1 

Percent 

ö 
0 
0 
0 
0 
1 
1 
2 
3 
4 
6 
7 
9 
9 
10 
9 
9 ! 
7 
7 
5 
4 
3 
2 
1 
1 
0 
0 
0 
0 
0 
0 
0 

Cumulative Percent 

ö 
0 
0 
0 
1 
1 
2 
4 
7 
11 
17 
24 
33 
42 
52 
61 
70 
77 
84 
89 
93 
96 
98 
99 
99 
100 
100 
100 
100 
100 
100 
100 1 

What will Mayor Taxum decide to do? One can only conjecture. If he 
has other suburban areas which are more clearly ripe for the picking, he 
may leave Happy Valley alone, for the time being. Or he may decide to 
take a larger sample of estimated house values from Happy Valley. Clearly, 
taking things to the extreme, if he can obtain estimates for all the houses in 
Happy Valley, then he has eliminated any doubt as to the true value of the 
average of house values for Happy Valley. Generally speaking, however, we 
are driven by cost to take a sample much smaller than the entire relevant 
population. 
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Table 13.4. Occurrence of 10,000 Bootstrapped Xi' 
Interval Center Number of Xi Percent Cumulative Percent 

140000 2 0 0 
150000 1 0 0 
160000 7 0 0 
170000 14 0 0 
180000 34 0 1 
190000 69 1 1 
200000 110 1 2 
210000 187 2 4 
220000 289 3 7 
230000 427 4 11  
240000 576 6 17 
250000 701 7 24 
260000 873 9 33 
270000 856 9 42 
280000 1044 10 52 
290000 900 9 61 
300000 936 9 70 
310000 700 7 77 
320000 690 7 84 
330000 472 5 89 
340000 426 4 93 
350000 275 3 96 
360000 171 2 98 
370000 86 1 99 
380000 78 1 99 
390000 44 0 100 
400000 14 0 100 
410000 13 0 100 
420000 2 0 100 
430000 1 0 100 
440000 1 0 100 
450000 1 0 100 

What will Mayor Tromm decide to do? One can only conjecture. If he 
has other suburban areas which are more clearly ripe for the picking, he 
may leave Happy Valley alone, for the time being. Or he may decide to 
take a larger sample of estimated house values from Happy Valley. Clearly, 
taking things to the extreme, if he can obtain estimates for all the houses in 
Happy Valley, then he has eliminated any doubt as to the true value of the 
average of house values for Happy Valley. Generally speaking, however, we 
are driven by cost to take a sample much smaller than the entire relevant 
population. 



320 A PRIMER IN SAMPLING 

Note that in Figure 13.1, we have essentially displayed a graphical repre-
sentation of the third column in Table 13.4. Such a representation is called 
a histogram. Figure 13.1 gives a representation of the resampled house price 
averages in cumulative distribution format. 
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'houseresample 

Ά sample of 10 houses in Happy N&lley is taken, and the average valuatbn is 
'283,890. How sure can we be that the true average house valuation is at least 
'250,00? The sample values house valuations are listed in A. 
'We use the "bootstrap" technique of drawing many bootstrap 
'resamples with replacement from the original sample, and observing 
'how the resample means are distributed. 

Maxsize Default 50000 
COPY (107500 329000 274500 174000 87500 495500 
295000 310000 290500 478000)A 
REPEAT Ю000 'Do 10000 trials or simulations 
SAMPLE 10 А В 'Draw 10 lifetimes from A, randomly and with replacement. 
SUM В С 

'Find the average lifetime of the 10 
DIVIDE С 10 D 
SCORE D Z 'Keep score 
END 
HISTOGRAM percent Z 'Graph the experiment results. 

Figure 13.3. Resampling Stats program Happy Valley Houses. 

There would appear to be around a 20% chance that the $250,000 average 
is overly optimistic. Mayor Taxum's assistant, Mr. Damnlys, did not know 
anything about resampling. He advised the Mayor to go ahead and annex 
with confidence. 

13.5 Using Sampling to Estimate Total 
Population Size 

One relatively easy case would be the counting of penguins on an ice shelf 
in the Antarctic. Photographs from overflights would probably be fairly 
accurate for simply counting the penguins, particularly if these were taken 
at a time of day when the penguins were almost all at rest on the ice shelf. 

Counting, say the number of robins in a county on a spring day would 
be much more difficult. One could very carefully compute the number of 
robins on a grid and then impute the density to be the same throughout 
the county. This would be a difficult and generally dubious assumption. 

For engangered species—such as the Whooping Crane—there is a very 
careful and costly attempt to count nests around, say, Port Aransas, Texas, 
during nesting season. Fortunately, nest counts show that this species ap-
pears to be in a state of recovery. 

Careful counting procedures have established the recovery of the Ameri-
can Bald Eagle. The California Condor's future is still in doubt, but even 
with major forest fire problems in the highlands of California, there appears 
to be evidence of recovery. 
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careful and costly attempt to count nests around, say, Port Aransas, Texas, 
during nesting season. Fortunately, nest counts show that this species ap­
pears to be in a state of recovery. 

Careful counting procedures have established the recovery of the Ameri­
can Bald Eagle. The California Condor's future is still in doubt, but even 
with major forest fire problems in the highlands of California, there appears 
to be evidence of recovery. 
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13.5.1 The United States Census 

For the purpose of allocating congressional seats among the several states 
of the United States, the UnitedStatesConstituion provides the method 
of enumeration. That means, an attempt should be made to count all U.S. 
citizens residing in the United States. The Indians who chose to live on 
tribal lands were treated as memebers of separate nations and were not to be 
counted. Any Amerinds who chose to live in the general taxed population 
were counted. The Amerind provision would seem to make clear, as to 
historical precedents, that the U.S. Census was to count American citizens 
and not nationals of other countries. 

For the 2010 Census, the protocol has been changed to one of counting 
everbody, including, for example, members of a foreign sports team taking 
months long training in the USA. The headquarters of the United States 
Census has actually been moved to the East Wing of the White House, 
where its workings can be carefully monitored by the Obama Administrar 
tion. It does not require too much cynicism to conjecture as to why this de 
facto change in the Constitution has been effected. 

At this time, a majority of those persons who vote Democrat pay no 
income taxes at all. Nontaxpayers have a vested interest in voting for an 
entitlements oriented government. Aliens who reside in the United States 
make up well over 10,000,000 persons and tend to reside in areas where 
poorer Americans live. Therefore, the more illwgal aliens one counts, the 
more Democrat congressmen and the more electoral votes for states that 
tend to vote Democrat (though not always: Texas will likely continue to 
vote Republican, and the counting of illegal aliens will increase, therefore, 
the weight of votes from a Republican state.) 

Irregularities in voting in the United States are not uncommon. For 
example, in the Election of 1960, it may well have been the case that the 
political machinations of Mayor Daley in Chicago and Boss Parr in Duvall 
County, Texas, may have falsely given the election to Kennedy rather than 
Nixon. (In an earlier election, "missing votes" were presented by the Parr 
machine in which the voters voted in alphabetical offer. In New Orleans 
there is the old joke that the tombs are built above ground to make it easier 
for the dead to walk to the polls and vote.) 

13.5.2 Capture Recapture 

Considering the wording of the Constitution, it really is not admissible for 
any procedure other than enum eration to be employed. That fact will 
not prevent creative wizardry going on in the East Wing for the counting 
of aliens residing illegally in the United States. One of the most popular 
suggestions being considered is that of "capture/recapture". 

To start with, let us consider finding the total number of fish in a lake. 
We capture M fish out of a lake and tag them. The total (unknown) number 
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of fish in the lake is N. After a few days, we capture z fish from the lake, 
noting that x of these are tagged. Assuming no traumatization effect of the 
first capture (a big assumption) we can write 

Then we appear to have a natural estimate for iV, namely 

Mz 
N « —-. (13.42) 

Note, however, that if x = 0, we obtain an infinite estimate for N. 
One popular alternative estimator is 

We need to find the expectation of ^ γ Α . Let us define p = jfc. 
Then, we have 

Going forward, we find after a few steps, letting x = у — 1, 

E[-±-] = - У „ ( Z + / ) !
 λ,Ρ*(1 - p ) z + 1 - y . (13.45) 

lx + l J zp^y\{z + l-y)V v ^ ; v ; 

pz Mz 

Returning to (13.44) we have that 

M 
E{N) « i V ^ J - i ^ ± i « ΛΓ. (13.46) 

FWther work shows that 

È и (ζ + 1)(Μ + 1)(,-χ)(Μ-χ) 
v y (x + l)2(x-h2) v y 

Now, we are ready to go through a "practical" example. Suppose we go to 
an area where many illegal aliens are thought to live. We use sound trucks 
and flyers to inform the inhabitants that for the next week the area will 
exclude INS agents and any other law enforcement official seeking to capture 
illegal aliens. Then the Hispanic Census pollsters go into the neighborhood 
and start looking for persons to be counted. Perhaps they offer $5 to anyone 
who will fill out a verbally administered census form. We give a metal token 
to the person interviewed. After a few days the Census workers return again 
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offering $5 to anybody who will fill out the verbally administered census. 
If the person produces the metal token, we award him or her another $5. 
The results of the poll are 500 persons found on the first census. On the 
second poll 1,000 persons are found. Of these 25 have the token. 

Our estimate for the illegal aliens is given by 

^ = ( M + l)(z + l) = 

x + 1 

у а г ф ) _ ( 1 Ш ) ( В Д Щ Ш - З Д ( 5 0 0 - 2 5 ) _ 1 2 i ^ ( 1 3 4 9 ) 

How reliable would such an estimate be? Not very. Many will hide. Typ-
ically, each person paid several thousands to get here. Even the captured 
fish would be sensitive to a second capture. And people are much more 
clever than fish. Anything except enumeration is unconstitutional and, 
almost certainly, statistically invalid. 

Problems 

13.1 In a minor league, surprise drug testing was administered to 200 
players, categorized by the number of homeruns hit last season. 

Table 13.5. Home runs and Steroids. 
Number Home runs 

More than 30 
15< 30 

Number< 14 

Number 
40 
200 
210 

Number in Sample 
30 
75 
95 

Testing Positive 
18 
15 
2 

(a) What are the estimates for the overall percentage of drug use in the 
league? 
(b) What is the estimate for overall variance of the percentage? 
(c) Using what you have seen from this league, using minimum total vari-
ance, find the number to be sampled in each of the three homerun groupings 
from another league if the total sample size is 200. 

13.2. In an attempt to extimate the total number of large mouth bass in a 
large lake, 523 are captured and tagged. Then after a week, a sample of size 
724 is captured. Of these 72 are found to be tagged. Estimate the number 
of large mouth bass in the lake and also the variance of your estimate. 

13.3. A chain of jewelry stores is attempting to estimate the value of 
diamond rings for ad valorem tax purposes. The chain wishes to minimize 
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the variance of the estimate. Give your best guess as to the number of rings 
to be sampled from each store if the total sample size is 100. 

1 Table 13.6. Diamond Rings. 
1 Store Number 

I 
II 
III 

Guess of Average Ring Value 
$1000 
$2000 

$10,000 

Number Rings in Store 
250 
300 
200 

13.4. The Bayou City Foods chain of grocery stores is well known for its 
sales. Some have conjectured that the chain fails to enter the sales prices 
in its computer and overcharges its customers. This would be a version 
of "bait and switch," and, if true, is illegal. The legal firm of Sueem, 
Sueem, and Settle has decided to conduct a sample survey of 35 randomly 
selected branches of a basket of $50 to see whether a class action of be-
half of customers of Bayou City Foods might be indicated. Use a boot-
strapping simulation to determine whether there is a prima facie case for 
"bait and switch, using the resulting prices the sample customers actually 
paid $50.00 $43.14 $50.00 $48.75 $50.00 $43.71 $50.00 $50.00 $56.13 $50.00 
$50.00 $50.00 $48.35 $56.75 $50.00 $49.10 $50.00 $57.85 $61.12 $50.00 
$50.00 $48.75 $52.35 $58.06 $50.00 $50.00 $49.44 $56.12 $50.00 $48.74 
$58.98 $50.00 $51.23 $50.00 $51.12. 
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Chapter 14 

The Stock Market: 
Strategies Based on Data 
versus Strategies Based 
on Ideology 

14.1 Introduction 

Many young professionals have the false notion that their futures will be 
secure if they simply excel in their professions. Generally speaking, unless 
they invest from their salaries in a fairly regular fashion, they will arrive at 
retirement with very little to show for it. One, generally speaking, does not 
get wealthy by socking away salary money in Treasury Bills or certificates 
of deposit. Inflation and taxes will lead them over the cliff. One should set 
aside a portion of one's salary monthly for investment in real estate, a new 
on the side venture, sound but high paying bonds, common stocks, etc. In 
this chapter, we shall restrict ourselves to buying publicly traded common 
stocks. 

How shall one invest in the market of common stocks? There are well 
over 10,000 publicly traded stocks.Not surprisingly, there are many opin-
ions. Some of these are quite bizarre. One tenured professor of economics 
from a major university appeared on a major television talk show some 
years ago. He was invited, since he had correctly forecasted a temporary 
crash in the market. As the program proceeded, to the apparent horror of 
the host of the program, the professor revealed that his insights were based 
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on the insights of his guru, who was some sort of Hindu astrologer. In this 
chapter, we will not include such bizarre forecasters, although the efficient 
market academics have sometimes some of the flavor of the unnamed guru. 

The most venerable school is that of the "value investors" who base 
their strategies by seeking underpriced stocks. Perhaps the most famous 
of these is Warren Buffett, whose Berkshire-Hathaway portfolio has a 40 
year track record of greater than 20% gain per year. Value investors tend 
to follow the strategy of Graham and Dodd, who carefully examined the 
internal statistics of companies to attempt to find those which appeared 
to be undervalued. This approach is not based on ideology or the config-
uration of the stars, but on actual data. Naturally, the huge number of 
stocks cries out for some sort of orderly computer analysis, but that is not 
so easy when one is examining the quality of management, working condi-
tions, worker morale, market opportunities, etc. In large measure, Buffett 
disdains the use of computer analysis. But it is not necessary that one scan 
through thousands of balance sheets. One need not seek for a sharp opti-
mum. Indeed, seeking for a sharp optimum is frequently a fragile approach. 
There are plenty of good stocks around. It is not necessary to scan all of 
them. Of course, the young professional could simply trust in the insights 
of somebody such as Buffett with a long and impressive track record. Buf-
fetta company, Berkshire-Hathaway has much to recommend it. However, 
if one invests in Berkshire-Hathaway, he or she should be aware that they 
are investing in a portfolio of stocks which typically has a value, in terms 
of assets held, which may be less than 75% of the cost of the Berkshire-
Hathaway stock. Part of the cost of the stock is the quite reasonable high 
value placed on the wisdom of "the genius from Omaha." A decision to in-
vest part of one's assets in Berkshire-Hathaway stock, might be very wise. 
However, no mortal lives forever, and it is a fair question one must ask, 
"What happens to the value of a share of Berkshire-Hathawy when Buffett 
leaves the scene?" Successors of geniuses in investment firms usually fall 
short of their predecessors. Therefore, that the prudent young professional 
should take interest in managing his or her own retirement investments. 

Of course, if one wishes to invest on "autopilot" there are ways to do 
so. John Bogle has effectively argued [4] that the value of investment coun-
sellors is, in general, not worth their fees. Many years ago, he founded 
the Vanguard S&P 500 fund (among others) which maintains a portfolio 
balanced according to the market cap values of each of the members of the 
Standard and Poor selected basket of top 500 stocks. Thus the weight of 
investment in the i'th stock would be 

where V* is the total market value of all the stocks in company i. Inter-
estingly, Bogle's strategy is actually very close to the 'total market index 
fund" suggestd by Nobel laureate William Sharpe. 
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This brings us to the "Efficient Market Hypothesis" (EMH) According 
to this theory, stock purchasers in the aggregate, at any given time, impute 
to each of the more than 10,000 publicly traded stocks its accurate value. 
It assumes that the current price information, although obviously a one di-
mensional vector, correctly sums up such factors as the past trading prices 
of the stock, the past trading prices of all the other stocks, the market situ-
ation, the political environment, the relative quality of management of the 
companies, etc. To many data analysts, the EMH appears too simplistic. 
In a sense, it smacks of the long defunct Marxist idea that value of an item 
consists of the labor which went into its creation. 

Nevertheless, the EMH enjoys overwhelming dominance in most schools 
of business in the Unted States. Although the author is in strong disagree-
ment with the EMH, he will devote some time to it, for readers need to 
be aware of its jargon and its consequences some of which have been quite 
destructive. 

A third paradigm is that of the technical analyst (chartist, momentum 
trader, etc.). Like the EMH advocate the technical analyst will generally 
not pay close attention to the operational details of a company. Rather, 
the technical analyst will try and extrapolate from the historical records 
of stocks. For example, the technical analyst will generally prefer a stock 
which has gone up for ten straight trading days to one which has declined 
for ten straight trading days. Thanks to the advent of the high storage 
high speed computer, it is possible to build "expert systems" which can 
train themselves in the utilization of massive data sets for the purposes 
of making high returns for the user using constraints on the extrapolated 
downside risk. 

14.2 Markowitz's Efficient Frontier: 
Portfolio Design as Constrained 
Optimization 

We will now consider strategies for reducing the risk to an investor as a well 
defined constrained optimization problem. The argument follows roughly 
that of Markowitz [7—8]. Let us suppose that the proportional gain of a 
security is given the symbol Xi. Here we are not necessarily assuming Xi 
is the growth rate of the stock. Xi may include as well, for example, the 
dividends accruing to the security. And we will treat X% as a Gaussian 
(normal) random variable rather than as a constant. We will then assume 
that the average (expected value) of Xi is μ»> and its variance, is σ\. Then we 
shall assume that the covanance of Xi and Xj is given by σ^ (alternatively, 
that the correlation is given by pij). That is, we assume that: 

E(Xi) = μί 

E(Xi-ßi)2 = σ\ = σα 
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This brings us to the "Efficient Market Hypothesis" (EMH) According 
to this theory, stock purchasers in the aggregate, at any given time, impute 
to each of the more than 10,000 publicly traded stocks its accurate value. 
It assumes that the current price information, although obviously a one di­
mensional vector, correctly sums up such factors as the past trading prices 
of the stock, the past trading prices of all the other stocks, the market situ­
ation, the political environment, the relative quality of management of the 
companies, etc. To many data analysts, the EMH appears too simplistic. 
In a sense, it smacks of the long defunct Marxist idea that value of an item 
consists of the labor which went into its creation. 

Nevertheless, the EMH enjoys overwhelming dominance in most schools 
of business in the Unted States. Although the author is in strong disagree­
ment with the EMH, he will devote some time to it, for readers need to 
be aware of its jargon and its consequences some of which have been quite 
destructive. 

A third paradigm is that of the technical analyst (chartist, momentum 
trader, etc.) .  Like the EMH advocate the technical analyst will generally 
not pay close attention to the operational details of a company. Rather, 
the technical analyst will try and extrapolate from the historical records 
of stocks. For example, the technical analyst will generally prefer a stock 
which has gone up for ten straight trading days to one which has declined 
for ten straight trading days. Thanks to the advent of the high storage 
high speed computer, it is possible to build "expert systems"which can 
train themselves in the utilization of massive data sets for the purposes 
of making high returns for the user using constraints on the extrapolated 
downside risk. 

14.2 Markowitz's Efficient Frontier: 
Portfolio Design as Constrained 
Optimization 

We will now consider strategies for reducing the risk to an investor as a well 
defined constrained optimization problem. The argument follows roughly 
that of Markowitz [7-8] . Let us suppose that the proportional gain of a 
security is given the symbol Xi. Here we are not necessarily assuming Xi 
is the growth rate of the stock. Xi may include as well, for example, the 
dividends accruing to the security. And we will treat Xi as a Gaussian 
(normal) random variable rather than as a constant. We will then assume 
that the average (expected value) of Xi is J1.i , and its variance is crl. Then we 
shall assume that the covariance of Xi and Xj is given by crij (alternatively, 
that the correlation is given by Pij) .  That is, we assume that: 

E(Xi)  

E(Xi - I-Li)2 = 
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2δ[(Χ,-Λ)(Χ,-μ,)] = 

Pij = 

Our portfolio will be formed by a linear combination of n stocks where the 
fraction a* of our portfolio will consist of shares of stock i. Clearly, it would 
be a fine thing to have a high value of 

n 

ßave = Y^CXißi. (14.2) 
*=1 

On the other hand, we would like for the portfolio to be as close to a 
sure thing as possible, i.e., we would like to minimize the volatility of the 
portfolio 

n n 

S = E^aiXi-^Oi^]2 (14.3) 
i = l i = l 

n n 

= Σ Σ α < α ^ · 
»=1 i = l 

Clearly, there is a problem, for minimizing S would logically drive us to 
something like Treasury Bills, which strategy is not historically very good 
for maximizing μανβ· It might be postulated that what should be done is to 
ask an investor what μ*υβ he requires and then design a portfolio obtaining 
a mix of the n stocks so as to minimize S for that target value. This is not 
a very natural posing of the problem from the standpoint of the investor 
(picking a /x*ve is not natural for most). However, from the standpoint of 
the mathematician, it is a formulation easily solved. To see that this is so, 
consider the Lagrange multiplier formulation which seeks to minimize: 

n n n n 

Z = Σ Σ ai<*o°iJ + λ ΐ ( Σ <*М - Λυβ) + λ 2 ( Σ <*i - 1) (14.4) 
i = l j = l i = l i = l 

Differentiating partially with respect to each of the α», λχ, and X2 and 
setting the derivatives equal to zero gives us the n + 2 equations (linear in 
αι ,α2, . . ,αη ,λι ,λ2): 

n 

2 ̂  aiai + 2 Σ α*σ*ί + λΐ/Χ< + λ2 = ° 
i = l j>i 

n 

σί3 

dz 
dai 

dz 
ολι 
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i=1 ,=1 
n n 

L L a,ajO'ij · 
i=1 j=1 
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for maximizing J..Lave. It might be postulated that what should be done is to 
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n n n n 
Z = L L aiajO'ij + Al(�:::: aiIJ.i - J..L:ve) + A2(L at - 1)  

i=1 j=1 i=1 i=1 
(14.4) 

Differentiating partially with respect to each of the ai, A} , and >'2 and 
setting the derivatives equal to zero gives us the n + 2 equations (linear in 
a}, a2, . . . , an, AI ,  >'2) : 

n 
= 2 Law; + 2 L ajO'ij + >'1J..Li + >'2 = 0 

i=1 j>i 
n 

LaiIJ.i - IJ.:ve = 0 

n 
Lai - 1  = o. 
i=1 
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This is an easy formulation to solve in the current era of cheap high speed 
computing. Naturally, as formulated here, it is possible that some of the a< 
may go negative, though it is easy to impose the additional constraint that 
all a» be nonnegative. Furthermore, it will happen that the a» will yield 
fractional shares of stocks. Generally rounding will give us a satisfactory 
approximation to the solution, though we can easily impose the restriction 
that all shares be bought as integer lots. All these little details can be 
dealt with easily. However, the formulation is not particularly relevant in 
practice, for few individuals will find it natural to come up with a hard 
number for ß%ve. 

Well then, we could also pose the problem where we maximize the gain 
of the portfolio subject to some acceptable level of the volatility. But this 
is also not (for most people) a natural measure of portfolio riskiness. An 
investor probably would like to know his/her probabilities of achieving vary-
ing levels of value as time progresses. This is not an easy task. Indeed, the 
assumption of the equivalence of risk and variance is a dramatic oversim-
plification. 

θ-οο 

θ-ο 

(fi 

Figure 14.1. Markowitz's efficient frontier. 

The set of all portfolios with maximum expected gain at a given level of 
volatility (or minimum volatility at a given level of expected gain) was de-
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Figure 14.1.  Markowitz's efficient frontier. 
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fined by Markowitz as the efficient frontier. His basic method, which is 
fairly similar conceptually to the other techniques discussed in this sec-
tion, can perhaps be understood by reference to Figure 14.1. Here the dots 
represent security parameters and the boxes represent portfolio parame-
ters. Markowitz set about to minimize a function of the type σ2 - θμ. 
By initializing the procedure at Θ = oo, the highest return security (F) 
is obtained. Note that, because diversification cannot increase return, the 
highest return portfolio will be composed entirely of the highest return se-
curity. From this point, Markowitz employed a quadratic programming 
algorithm to trace the efficient frontier by allowing Θ to decrease to 0 (at 
which point E у the minimum variance portfolio is obtained). In actual-
ity, the iterative procedures only determine "corner" portfolios, which are 
those points at which a security enters or leaves the efficient portfolio. The 
efficient frontier between two corner portfolios is a linear combination of 
the corner portfolios. Aside from the objective function, these techniques 
also generally involve constraints, such as the requirement that the weights 
assigned to securities be nonnegative and/or sum to one. Now, it would 
appear that, according to the EMH, nobody would want to buy the black 
circle stocks in Figure 14.1. But people do. The assumption of some sort of 
instantaneous group wisdom is the kind of deus ex machina not borne out 
in the real world. Actually, if one looks at the relationship between growth 
and volatility (standard deviation) for large cap stocks over the period from 
1926 through 2000, one finds the correlation to be, not positive, but rather 
—.317 as demonstrated in Figure 14.2 
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14.3 Sharpe's Super Efficient Frontier: The 
Capital Market Line (CML) 

Building upon the work of Markowitz, William Sharpe, formed the philo-
sophical underpinings of Index Fund Investment. 

If we may assume that investors behave in a manner consistent with 
the EMH, then certain statements may be made about the nature of cap-
ital markets as a whole. Before a complete statement of capital market 
theory may be advanced, however, certain additional assumptions must be 
presented: 

1. The μ and σ of a portfolio adequately describe it for the purpose of 
investor decision making [U = /(σ,μ)] . 

2. Investors can borrow and lend as much as they want at the riskless 
rate of interest. 

3. All investors have the same expectations regarding the future, the 
same portfolios available to them, and the same time horizon. 

4. Taxes, transactions costs, inflation, and changes in interest rates may 
be ignored. 

Under the assumptions above, all investors will have identical oppor-
tunity sets, borrowing and lending rates (гь = гв) and, thus, identical 
optimal borrowing-lending portfolios, say X (see Figure 14.3). Because all 
investors will be seeking to acquire the same portfolio (X), and will then 
borrow or lend to move along the Capital Market Line in Figure 14.3, it 
must follow for equilibrium to be achieved that all existing securities be 
contained in the total market portfolio (X). In other words, all securities 
must be owned by somebody, and any security not initially contained in 
X would drop in price until it did qualify. Therefore, the portfoUo held 
by each individual would be identical to all others and a microcosm of the 
market, with each security holding bearing the same proportion to the total 
portfolio as that security's total market value would bear to the total mar-
ket value of all securities. In no other way could equilibrium be achieved 
in the capital market under the assumptions stated above. 
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σ 
Figure 14·3· The capital market line (CML). 

The borrowing-lending line for the market as whole is called the Capital 
Market Line. The securities portfolio (X) employed is the total universe 
of available securities (called the market portfolio) by the reasoning given 
above. The CML is linear and it represents the combination of a risky 
portfolio and a riskless security. One use made of the CML is that its 
slope provides the so-called market price of risk, or, that amount of in-
creased return required by market conditions to justify the acceptance of 
an increment to risk, that is 

slope = μ T. 
σ(Χ) 

The simple difference ß(X) — r is called the equity premium, or the expected 
return differential for investing in risky equities rather than riskless debt. 

This very elegant result of Sharpe indicates that one simply cannot do 
better than invest along the Sharpe Superefficient Frontier (CML). Unfor-
tunately, a backlook at 50,000 randomly selected portfolios from the 1,000 
largest market cap stocks over a period of 40 years shows that over half lie 
above the CML. How it has been that EMH enthusiasts apparently failed to 
crunch the numbers is a matter of conjecture. Nor is this result surprising, 
since the Standard and Poor Index fund over this period has averaged a 
return of somewhat in excess of 10% while Buffetta Berkshire-Hathaway 
has delivered well over 20%. 
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The simple difference J.L(X) -r is called the equity premium, or the expected 
return differential for investing in risky equities rather than riskless debt. 

This very elegant result of Sharpe indicates that one simply cannot do 
better than invest along the Sharpe Superefficient Frontier (CML). Unfor­
tunately, a backlook at 50,000 randomly selected portfolios from the 1 ,000 
largest market cap stocks over a period of 40 years shows that over half lie 
above the CML. How it has been that EMH enthusiasts apparently failed to 
crunch the numbers is a matter of conjecture. Nor is this result surprising, 
since the Standard and Poor Index fund over this period has averaged a 
return of somewhat in excess of 10% while Buffett's Berkshire-Hathaway 
has delivered well over 20%. 
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Figure 14.4. Randomly selected portfolios in 1993 beating the 
super efficient frontier portfolios. 

14.4 The Security Market Line 

One major question raised by CML analysis involves the means by which 
individual securities would be priced if such a system were in equilibrium. 
Throughout this chapter, we generally do not assume that markets are in 
equilibrium. Therefore, when we combine securities into a portfolio that 
has the average return of the component securities but less than the average 
risk, we simply ascribe this gain from diversification to our own shrewdness. 
In the type of efficient market assumed by the EMH enthusiasts, everyone 
will be doing the same thing, and the prices of securities will adjust to 
eliminate the windfall gains from diversification. 

Sharpe [9,10] has suggested a logical way by which such security pricing 
might take place. If everyone were to adopt a portfolio theory approach to 
security analysis, then the risk of a given security might be viewed not as 
its risk in isolation but rather as the change in the total risk of the portfolio 
caused by adding this security. Furthermore, because capital market the-
ory assumes everyone to hold a perfectly diversified (that is, the market) 
portfolio, the addition to total portfolio risk caused by adding a particular 
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security to the portfolio is that portion of the individual security's risk that 
cannot be eliminated through diversification with all other securities in the 
market.1 

Because the concept of individual security pricing is rather elusive, let 
us restate it. Sharpe argued that the price (and thus return) of a given 
security should not be determined in relation to its total risk, because the 
security will be combined with other securities in a portfolio and some of the 
individual risk will be eliminated by diversification (unless all the securities 
have correlation equal to 1). Therefore, the return of the security should 
only contain a risk premium to the extent of the risk that will actually be 
borne (that is, that portion of the total risk which cannot be eliminated by 
diversification—which is variously called nondiversifiable risk or systematic 
nsk). 

If this logic is accepted, it is then possible to generate a Security Mar-
ket Line as shown in Figure 14.5, where the return on individual securities 
is related to their covariance with the market. If capital markets are in 
equilibrium and all the other assumptions of this chapter hold, then the 
parameters of each security should lie on the SML. Furthermore, because 
the risk of a portfolio is the weighted sum of the nondiversifiable risk of its 
component securities, all portfolios should also fall on the SML in equilib-
rium. (It should be noted that Sharped theory indicates that all portfolios 
will fall on the SML, and as a general rule, no individual securities or port-
folios, should lie on or above the CML.) Of course, the inelegant reality 
should trump the elegant theory. Data analysis shows that stocks do not 
lie on the SML and it is not true that all stocks and portfolios like below 
the CML. If one can do better, on the average, than investing in the total 
market portfolio by random portfolio selection, then it should not be sur-
prising that Buffett's value investing was so successful. Nor should it be 
surprising that we can beat index portfolios with astounding regularity by 
using technical coordinated momentum analayis. One might have hoped 
that the EMH enthusiasts would have done a bit of plotting of real world 
data to see whether it be true that all securities lie on the SML. Unfor-
tunately, as is their custom, they found it unnecessary to see whether the 
reals world conforms to their suppositions. 

*If the standard deviation of the market as whole is ам and the standard deviation 
of security i is σ*, and the correlation of security % with the market is р%м, then the non-
diversifiable portion of the individual security's risk is the covariance of returns between 
the security and the market as a whole, i.e., Сцд = σ<σΛ/p»jvf. 
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Figure 14.5. The security market line (SML). 

14.5 The Sharpe Diagonal Model 

Although Sharpe's theory does not lead to anything close to optimality, it 
is useful in that it assumes that the return on a security may be related 
to an index (such as the DJIA, S&P 500, Wilshire 5000, or whatever) as 
follows: 

Return* = di + bi Return/ + c* (14.5) 

μ% = ai + biß! + a 

where: 

di and bi are constants, 
μι is the return (including dividends) on the index, 
Ci is an error term with μ0ί = 0 and aCi = a constant. 

It is further assumed that c* is not correlated with /i/, with itself over time, 
nor with any other security's с (the last implying that securities are only 
correlated through their common relationship to the index). Therefore, μ* 
can be estimated as (a* -f bißi). The parameters a* and bi can either be 
estimated, computed by regression analysis, or both. Furthermore, aCi can 
be viewed as the variation in μ» not caused by variation in μ/. The values 
di and bi are referred to as Sharpe's alpha and beta, respectively. When 
people away from detailed information about stock values other than the 
increase in one of the major indices, such as the DOW or the S&P 500, hear 
that these indices have gone up by 2% day-to-day, they may well heave a 
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Figure 14.5. The security market line (SML). 
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sigh of relief, for the stock values in the market are generally correlated 
with the values of the major indices. 

The return of the portfolio becomes: 

μ = 53α»(θί+&</*/+Ci) 

= ^a i iOi + CiJ+i^aift iÌM/ (14.6) 
i=l \г=1 

where the first term is viewed as an investment in the essential nature of 
the securities, and the second term is an investment in the index. The risk 
of the portfolio is: 

σ = 
\ 

E t o O ' + l É o A ] "Ì (".7) 
г=1 \ г=1 

where, again, the first term under the radical may be viewed as the risk of 
the portfolio attributable to the particular characteristics of the individual 
securities, and the second term as the risk attributable to the index. 

Thus, the Sharpe model simplifies the input problem by making it di-
rectly amenable to simple regression analysis. In addition, by assuming 
that securities are only related through the index, the nonzero elements in 
the covariance matrix are reduced to those on the diagonal, thus easing the 
computational burden. 

To illustrate the Sharpe approach, assume that the index currently 
stands at 1000 and, with reinvestment of dividends, it is expected to be 
at 1100 at the end of the year. Given the following data, suppose we 
wished to determine portfolio μ and σ for ot\ = .2, Q2 = .5 and аз = .3. 

σ/ = 0.10 

μι = 0.06 + Ο.ΐμ/; aCl = 0.03 

μ2 = -0.03 + 2μ7; σθ2 = 0.20 

μ3 = 0.00 + μ/;σ03 =0.10. 

Employing the above we obtain: 

μ = (.2)(.06) + (.5X-.03) + (.3)(.00) + [(.2)(.l) + (.5)(.2) + (.3)(1)](.10) 

= .012 - .015 + (1.32)(.10) = .129 or 12.9%. 

Employing (14.7), 

a = л/[(.2)(.03)]» + [(.5)(.2)]2 + [(.3)(.l)]» + [(.2)(.l) + (.5)(.2) + (.3)(1)]» 

= V(.006)2 + (Л)2 + (.03)2 + (1.32)2(.l)2 

= V.000036 + .01 + .0009 + .017424 = V.02836 = .168 or 16.8% . 
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It is also possible to discuss the SML in terms of Sharpe's index model. 

/Zi = ai + bißj + Ci. (14-8) 

The bi term (called Sharpe's beta coefficient), given μ/, is equal to: 

№) = % = ̂ A (14.9) 
σι σι 

which, if the index is a valid depiction of the market: 

(ММ/) = ^ = С « 4 . (14.10) 

Under these assumptions, the abscissa of a point on the SML expressed in 
terms of bi is merely l / θ χ times that of the same point expressed in terms 
of CÌX and the two are directly comparable. Viewed another way, the risk 
premium an individual security would exhibit in equilibrium is: 

H-r = ^^-Cix = (μι -r)bi. (14.11) 
σχ 

A major advantage of transferring the discussion into beta terminology 
is that the regression coefficient can be used directly to estimate the sys-
tematic risk of the asset. Unfortunately, the beta concept also possesses 
serious pitfalls. In the first place, its very simplicity and popularity cause 
it to be used by many who fail to understand its limitations. Because the 
concept is subject to all the assumptions of both linear regression and the 
efficient capital market hypothesis, statistical problems and economic im-
perfections may undermine its usefulness. Many investors are unaware of 
these limitations and have blithely assumed that one need only fill a port-
folio with securities possessing large betas to get high returns. At best, 
the beta is a risk-measure surrogate and not an indicator of future returns. 
The idea that the assumption of large amounts of risk will generate large 
returns only approaches being correct over the long run in reasonably effi-
cient markets in equilibrium. Even then it ignores utility considerations. A 
further difficulty with the beta concept follows from empirical findings that 
betas for small portfolios (and, of course, individual securities) over short 
periods can be highly unstable over long holding periods where, of course, 
beta approaches one by definition anyway. It would thus appear that one 
of the few valid applications of the beta concept would be as a risk-return 
measure for large portfolios. An example of how betas can be used in this 
regard is presented in the next section. 

14·6 Portfolio Evaluation and the Capital 
Asset Pricing Model (CAPM) 

Several measures directly related to capital market theory have been de-
veloped for the purpose of portfolio evaluation. The latter is essentially a 
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retrospective view of how well a particular portfolio or portfolio manager 
did over a specified period in the past. Most of the published research in 
this area has dealt with mutual funds, seemingly because they are contro-
versial, economically important in certain financial markets, and possessed 
of long life with readily available data. Much of the early work in this area 
(including the advertisements of the funds themselves) was of a simple time 
series nature, showing how well an investor could have done over a given 
period in the past if he/she had invested then or else comparing these re-
sults to what the investor could have earned in other funds, or the market 
as a whole. The more recent work considers both return and its variability, 
contending that mutual funds that invest in riskier securities should exhibit 
higher returns. One result of this work, considered subsequently, has been 
the finding that investors do as well or better on average by selecting se-
curities at random as they could with the average mutual fund. Another 
implication, of more relevance here, is the growing feeling that the man-
agers of any kind of portfolio should be rated not on the return they earn 
alone, but rather on the return they earn adjusted for the risk to which 
they subject the portfolio and their management fees. 

Before proceeding, however, a caveat is in order about the nature of 
ex post risk and return measures. As in any problem in measurement, 
one must delineate (1) why a measurement is being made, (2) what is to 
be measured, (3) which measurement technique is appropriate, and (4) the 
import of the results of the measurement. If one is not careful ex post return 
measurements can easily result in the "if only I had ...." syndrome, which 
is a waste of time and effort as far as making an investment in the present 
is concerned. For such measures to be of use, one must assume that the 
ability of a manager or fund to earn greater-than-average returns in the past 
is some indication of ability to do so in the future. As the empirical work 
cited below indicates, there is little evidence to support this contention. As 
far as risk in concerned, there is some doubt about what the concept of ex 
post risk means. Most of the writers in this area are careful to stress the 
term "return variability" instead of risk per se. Because the outcomes of all 
past events are currently known with certainty, the use of return variability 
as a measure of risk in this instance involves a different notion of risk than 
we have been using. Again, to make operational investment decisions, it 
would seem necessary to assume that past risk-return behavior of managers 
or portfolios either could or would be maintained in the future. 

Deferring judgment for the moment on the above reservations, let us 
consider the proposed evaluation measures. Sharpe [10] has proposed the 
use of a reward-to-variability ratio related to the slope of the capital market 
line: 

Sharpe's Measure for ith portfolio = — . (14.12) 
Ci 

In effect, Sharpe is computing the slope of the borrowing-lending line 
going through the given portfolio and arguing that a greater slope is more 
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desirable. 
A second measure on the SML is that of Treynor [14]: 

Treynor's Measure for the ith portfolio or security = ^-— (14.13) 

and the line in (beta, return) space = r + (μ% — r)/(bi) = characteristic line 
of security or portfolio i. Treynor's methodology is fairly similar to that 
of Sharpe, except that by using the SML instead of the CML, the Treynor 
measure is capable of evaluating individual security holdings as well as 
portfolios. A disadvantage is that the accuracy the rankings depends in 
part upon the assumption (implicit in the use of the SML) that the fund 
evaluated would been held in an otherwise perfectly diversified portfolio. 

A third measure, also based on the SML but different from Treynor's, 
is that of Jensen [14]: 

Jensen's Measure = (μ» — r) — 6»(μχ — r). (14.14) 

This measure is expressed in units of return above or below the riskless 
rate of a line drawn through the parameters of the security or portfolio 
parallel to the SML. This measure does allow comparisons of a portfolio to 
the market and is also amenable to estimation by regression; because of its 
treatment of differential risk, however, direct comparisons between funds 
or portfolios generally cannot be made. Furthermore, it has been suggested 
that all three of the above measures are biased against high risk portfolios 
by failing to recognize the inequality of borrowing and lending rates and 
the resulting nonlinearity of the SML and CML. 

Use of geometric means as an evaluation tool should not be overlooked 
as well. Over a given period of time, the geometric mean portfolio return 
could be compared to that of other portfolios or some market index. There 
are several advantages to such a measure. Assuming that the interval con-
sidered is "sufficiently" long (and if it is not, one may doubt the validity 
of any evaluation technique), then undue risk taking should manifest itself 
in numerous low period returns and, thus, a reduced geometric mean (or 
terminal wealth, which is an equivalent concept in this context). If such 
is not the case, then the equivalence of historical variability and risk be-
comes increasingly dubious. The geometric mean also facilitates the use of 
very short investment periods (because funds value their holdings several 
times a day, thousands of observations per year could be obtained) and 
provides a cumulative effect if desired (by simply including each new set of 
observations without discarding any of the old). 

In its simplest form, the capital asset pricing model (CAPM) is the 
more common name for the SML. Over the years, however, efforts have 
been made to extend the CAPM to multiple periods, other investment me-
dia, foreign markets, and even human wealth. Unfortunately, however, it 
became increasingly apparent that very little of the cross section of securi-
ties' returns was reliably explained by beta. 
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14.7 Views of Risk 

Einstein has been quoted as saying that it was more difficult to understand 
compound interest that it was to understand special relativity. While this 
author cannot agree with Einstein's statement, I would certainly agree that 
the consequences of the manipulation of markets by bankers and politicians 
are more intricate and frequently more brutal than the operation of orgar 
nized crime. Firstly there really is no honest way to eliminate risk without 
reducing profit margins to starvation levels. If one insists on investing in 
T-bills, then taxes and inflation will leave one a pauper at retirement time. 

There are ways honestly to participate in a growing economy (if only 
politicians will allow it to grow). The economy of the United States rises 
on a wave of continuing technological progress, whether it be in agriculture, 
or health care, or the manufacturing of washing machines. If technological 
progress be sufficiently stressed by taxes and regulation, then the ship of 
state, including all possible investments (excepting perhaps those in sub-
marines and lifeboats and survivalist provisions), will sink. The United 
States, with only 5% of the world's population, employs 70% of the world's 
lawyers. The proportion of lawyers in Congress exceeds even one third. 
Having a country run by one of its least productive segments might be 
thought to be other than wise. And, as to the 5% figure, it could be pointed 
out that the proportion of engineering baccalaureates in the United States 
hovers around 5%. We do produce vast numbers of sociologists, pscyhol-
ogists, historians, etc., who can perform as social workers or perhaps con-
tinue on to acquire law degrees or, as President George W. Bush, go for the 
MBA. Both President G.W. Bush and President Barack Obama expressed 
the desire that all American students could go to college. The number of 
trade high schools, where one might learn a skilled trade has dropped to 
near zero in this country. 

That being said, there has always been a "muddling through" spirit in 
the United States. This author writes this chapter assuming that things 
will not be much more chaotic than they have been in the last 75 years. 

14.7.1 Diversification 

If we have ten stocks, each with the same growth rate and each with the 
same volatility, dividing our investment among the ten stocks rather than 
putting all our investment in any one of them is almost a "free lunch" 
(assuming their returns are not perfectly correlated with each other). Of 
course, the lunch is not entirely free. Such diversification should save us 
from losing everything in an Enron, but it might kill our hopes of becoming 
a Microsoft millionaire (as occurred to many Microsoft clerical personnel 
who had retirement plans invested heavily in the stock of their employer, 
which is the other side of the coin from the experience of Enron employees). 
Diversification of this sort has been used for a long time ( in the nineteenth 
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century many farmers planted corn as well as wheat in the event that hail 
storms zapped the more profitable wheat). 

Unfortunately, a bear market will tend to cause most stocks in the port-
folio to drop. Just as an extended drought will zap both corn and wheat, a 
bear market will hurt stocks generally. (An old politically incorrect adage 
of Wall Street is "When the paddy wagon comes, good girls are arrested 
as well as the bad.") What other variable can we use for "diversification"? 
The answer is time. The historical fact is that investors over longer periods 
of time, have the advantage of the fact that in roughly 70% of the years, 
the index of large cap U.S. stocks rises rather than falls. And there is the 
further encouraging news that in over 40% of the years, the index rises by 
over 20%. In 30% of the years, the market rises by over 25%. And in 25% 
of the years, the index has risen by over 30%. Over the roughly 75 year 
period such records have been kept, the United States has lived through 
the Great Depression, the Second World War, the Cold War, Korea, Viet-
nam, assorted massive sociological changes, shifts toward and away from 
free markets, and assorted epidemics. These can all be viewed as the polit-
ical/economic/sociological analogs of major "droughts." It is true that we 
have yet to experience Martian invasion, attacks by genetically engineered 
viruses or suitcase nuclear devices, or the costs of mounting the Sixth Cru-
sade. We hope such events do not occur, but events of comparable angst 
have occurred to other countries of the West over the past 75 years. Poland 
was occupied by Russia and Germany in September of 1939, and the Rus-
sian occupation only ended (sort of) in June of 1989. It is hard to imagine 
a course of action (other than attempting to take oneself and one's money 
out of Poland and moving to, say, the United States) which would have 
saved an investor in the Warsaw Stock Exchange. And it is hard today to 
imagine a safe harbor for oneself or one's property in the event that the 
United States falls. Past performance is not an infallible guide for looking 
over the risk profile and we do not claim it to be. Moreover, readers have 
surely by this point learned that we have not produced any ethical schemes 
for getting rich quick. We hope, however, to give clues by which an investor 
can hope to become wealthy at a moderate rate of speed. Let us consider 
a federally insured certificate of deposit with interest rate r (interest rein-
vested) with a time horizon of, say, five years. Calling the value of the CD 
at time t, X{t), we can compute the change in the value of the CD over an 
increment of time At via 

A(X(t)) = rX(t)A(t). (14.15) 

We recognize, in the limit as At goes to zero, one of the most venerable of 
simple differential equations: 

Ш-r* (НЛ6, 

PORTFOLIO EVALUATION AND THE CAPITAL ASSET PRICING MODEL 343 

century many farmers planted corn as well as wheat in the event that hail 
storms zapped the more profitable wheat) . 

Unfortunately, a bear market will tend to cause most stocks in the port­
folio to drop. Just as an extended drought will zap both corn and wheat, a 
bear market will hurt stocks generally. (An old politically incorrect adage 
of Wall Street is "When the paddy wagon comes, good girls are arrested 
as well as the bad." ) What other variable can we use for "diversification" ? 
The answer is time. The historical fact is that investors over longer periods 
of time, have the advantage of the fact that in roughly 70% of the years, 
the index of large cap U.S. stocks rises rather than falls. And there is the 
further encouraging news that in over 40% of the years, the index rises by 
over 20%. In 30% of the years, the market rises by over 25%. And in 25% 
of the years, the index has risen by over 30%. Over the roughly 75 year 
period such records have been kept, the United States has lived through 
the Great Depression, the Second World War, the Cold War, Korea, Viet­
nam, assorted massive sociological changes, shifts toward and away from 
free markets, and assorted epidemics. These can all be viewed as the polit­
ical/economic/sociological analogs of major "droughts." It is true that we 
have yet to experience Martian invasion, attacks by genetically engineered 
viruses or suitcase nuclear devices, or the costs of mounting the Sixth Cru­
sade. We hope such events do not occur, but events of comparable angst 
have occurred to other countries of the West over the past 75 years. Poland 
was occupied by Russia and Germany in September of 1939, and the Rus­
sian occupation only ended (sort of) in June of 1989. It is hard to imagine 
a course of action (other than attempting to take oneself and one's money 
out of Poland and moving to, say, the United States) which would have 
saved an investor in the Warsaw Stock Exchange. And it is hard today to 
imagine a safe harbor for oneself or one's property in the event that the 
United States falls. Past performance is not an infallible guide for looking 
over the risk profile and we do not claim it to be. Moreover, readers have 
surely by this point learned that we have not produced any ethical schemes 
for getting rich quick. We hope, however, to give clues by which an investor 
can hope to become wealthy at a moderate rate of speed. Let us consider 
a federally insured certificate of deposit with interest rate r (interest rein­
vested) with a time horizon of, say, five years. Calling the value of the CD 
at time t, X(t), we can compute the change in the value of the CD over an 
increment of time I:!.t via 

I:!.(X(t)) = rX(t)I:!.(t). (14.15) 

We recognize, in the limit as I:!.t goes to zero, one of the most venerable of 
simple differential equations: 

dX(t) = dt X(t) r (14.16) 
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with solution 
X(t) = X(Q)exp(rt). (14.17) 

This is the equation of compound interest of which Einstein is reputed to 
have said, "There is no magic in special relativity. Compound interest, now 
that is magic." Actually, there is no magic in compound interest either, 
but there is a great deal of dishonest flim-flam in the way that it is used 

14.8 Stock Progression as Geometric 
Brownian Motion 

14.8.1 Ito's Lemma 

Following Hull [6], let us suppose we have a continuously differentiable 
function of two variables G(x, £). Then, taking a Taylor's expansion through 
terms of the second order, we have 

dGA dGA± AG « ^ - Δ χ + — Δ ί 
ox at 

l ö 2 G / A ч2 l ö 2 G / A 4 2 d2G A A ,ЛАЛО. 

1 t f ( A x ) 4 2 ¥ ( A t ) + M M i (14Л8) 

Next let us consider the general Ito process 

dx = a(x, t)dt + b(x, t)dz (14.19) 

with discrete version 

Ax = o(ar, t)At + b(x, t)ey/àt, (14.20) 
where dz denotes a Wiener process, and a and b are deterministic functions 
of x and t. We note that 

(Δχ)2 = b2e2At + terms of higher order in At. (14.21) 

Now 
Vax(e) = E(e2)-[E(e)}2 = l. 

So, since by assumption E(e) — 0, 

E(e2) = 1. 

Furthermore, since e is Λ/"(0,1), after a little algebra, we have that Var(e2) = 
2, and Var(Ate2) = 2(At)2. Thus, if At is very small, through terms of 
order {At)2

i we have that it is equal to its expected value, namely, 

(Δχ)2 = b2At (14.22) 
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with solution 
X(t) = X(O) exp(rt) . (14.17) 

This is the equation of compound interest of which Einstein is reputed to 
have said, ''There is no magic in special relativity. Compound interest, now 
that is magic." Actually, there is no magic in compound interest either, 
but there is a great deal of dishonest Him-Ham in the way that it is used 

14.8 Stock Progression as Geometric 
Brownian Motion 

14.8.1 Ito's Lemma 

Following Hull (6), let us suppose we have a continuously differentiable 
function of two variables G(x, t). Then, taking a Taylor's expansion through 
terms of the second order, we have 

(14.18) 

Next let us consider the geneml Ito process 

dx = a(x, t)dt + b(x, t)dz (14.19) 

with discrete version 

/},x = a(x, t)At + b(x, t)e..;t;;i, (14.20) 

where dz denotes a Wiener process, and a and b are deterministic functions 
of x and t. We note that 

(14.21) 

Now 
Var(e) = E(e2) - [E(e))2 = l .  

So, since by assumption E( e)  = 0, 

Furthermore, since e isN(O, 1), after a little algebra, we have that Var(e2) = 
2, and Var(/},te2) = 2(/},t)2. Thus, if /},t is very small, through terms of 
order (/},t)2 , we have that it is equal to its expected value, namely, 

(14.22) 
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or 

Substituting (14.20) and (14.22) into (14.18), we have 

Lemma 14,1 (Ito) 

дс= ( S * ' ) + f+ 50»2)Δ1 + ̂ ^ (1423) 

d G=(^-< ) + f + 5062)'ft + ^ · ( 1 4 · 2 4 ) 

14.8.2 A Geometric Brownian Model for Stocks 

Let us look at stock growth as noisy compound interest 
Д С 
— - = μΜ + аеу/Ш. (14.25) 

Again, σ (the volatility ) is a measure of the variability of the process 
as time increases. Here we will formally take б to be a normal variate with 
mean zero and variance 1. In the limit, as At goes to zero, such a process 
is uniquely defined and is commonly referred to as a geometric Brownian 
process. 

d(ln 5) = ßdt + σάζ. (14.26) 

Alternatively, we have 
dS = ßSdt + aSdz. (14.27) 

Now, in Ito's lemma we define G = In 5. Then we have 

9G _ _1 cfrG _ _ J_ d£ _ 
ÖS ~~ S; dS2 ~ S2 ' dt " 

Thus G follows a Wiener process: 

dG = (μ - ^ - ) dt + σ ώ . (14.28) 

This tells us simply that if the price of the stock at present is given by 5(0), 
then the value t units in the future will be given by 

[ 2 л 

(μ - у )t + eaVt 
= 5(0)exp[^((M-y)i,i<72)] 

[Af(k*(S(0)) + ( M - y ) t V ) = exp (14.29) 

where Af(log(S(0)) + (μ - σ2 /2)ί , ίσ2) is a normal random variable with 
mean log(S(0)) + (μ - σ2/2)ί and variance ίσ2 . Thus, S(t) is a normal 
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Substituting (14.20) and (14.22) into (14.18) ,  we have 

Lemma 14.1 (Ito) 

tJ.G = (aG a(x, t) + aG + � a2G b2) tJ.t + aG b€� 
ax at 2 ax2 ax 

or 

14.8.2 A Geometric Brownian Model for Stocks 

Let us look at stock growth as noisy compound interest 

tJ.S 
S 

= JLtJ.t + a€�. 
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(14.23) 

(14.24) 

(14.25) 

Again, a (the volatility ) is a measure of the variability of the process 
as time increases. Here we will formally take € to be a normal variate with 
mean zero and variance 1 .  In the limit, as tJ.t goes to zero, such a process 
is uniquely defined and is commonly referred to as a geometric Brownian 
process. 

d(ln S) = JLdt + adz. ( 14.26) 

Alternatively, we have 
dS = JLSdt + aSdz. ( 14.27) 

Now, in Ito's lemma we define G = In S. Then we have 

Thus G follows a Wiener process: 

dG = (IL - �2) dt + adz. (14.28) 

This tells us simply that if the price of the stock at present is given by S(O), 
then the value t units in the future will be given by 

S(t) S(O) exp [(JL - �2 )t + fav't] 
= S(O) exp [N ( JL  - �2 )t, t(2) ] 
= exp [N (log(S(O» + (JL - �2 )t, t(2) ] , (14.29) 

where N(log(S(O» + (JL - a2j2)t, t(2) is a normal random variable with 
mean log(S(O» + (JL - a2j2)t and variance ta2• Thus, S(t) is a normal 
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variable exponentiated (i.e., it follows the lognormal distribution). The 
expectation of S(t) is given by S(0)exp[/z£]. In the current context, the 
assumption of an underlying geometric Brownian process (and hence that 
S(t) follow a lognormal distribution) is somewhat natural. Let us suppose 
we consider the prices of a stock at times t\, t\ + *2, and t\ + *2 + £3. Then 
if we assume S{t\ + t2)/S{t\) to be independent of starting time ii, and if 
we assume S{t\ 4- t2)/S{t{) to be independent of S(t\ 4- ti 4- ts)/S(t\ 4- £2)» 
and if we assume the variance of the stock price is finite for finite time, and 
if we assume that the price of the stock cannot drop to zero, then, it can 
be shown that S(t) must follow geometric Brownian motion and have the 
lognormal distribution indicated. 

When a stock price S(t) obeys the law given in the three equivalent 
forms we say that S(t) is lognormal with growth rate μ and volatility σ. We 
note that the expected value of S(t) is given by 

/

0 0 - 1 -j 

βχρ((μ - V ) t + aVtZ)-==e-z*/2dZ 
■oo 2 ν2π 

= 5(0) exp((M - \^)t)-^ J ^ e^ze-z2'^dZ 
-1 ΛΟΟ -1 

= S(0)exp((/x-^72)i) / exp[-^(Z - aVt)2]dZe^ * 

= 5(0)βχρ[(μ-ίσ2)ί + (1σ2)ί] 

= S(0)e"*. (14.30) 

It is a straightforward matter to show that 

Var(S(t)) = E[S(t) - E(S{t))}2 

= 5(0)аезф[2/Л][ел-1] 

14.9 Estimating μ and σ 

From (14.30), we have, for all t and Δί 

r(t + At, t) = Щщу^ = exp [ (μ - у ) Δί + ΖσΤΔϊ] . (14.31) 

Denning R(t + At, t) = log(r(f + Δί,t)), we have 

R(t + At,t) = (μ - ^- J Δί + eaVÄl. 

Then 
E[R(t + At, t)] = (μ - ?- J Δί. (14.32) 
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and if we assume the variance of the stock price is finite for finite time, and 
if we assume that the price of the stock cannot drop to zero, then, it can 
be shown that S(t) must follow geometric Brownian motion and have the 
lognormal distribution indicated. 

When a stock price S(t) obeys the law given in the three equivalent 
forms we say that S(t) is lognormal with growth rote JL and volatility G. We 
note that the expected value of S(t) is given by 

E(S(t)) 

It is a straightforward matter to show that 

Var(S(t)) E [S(t) - E(S(t)W 
= S(0)2 exp[2JLt] [e,,3t - 1] 

14.9 Estimating J-t and a 

From (14.30), we have, for all t and t:J.t 

r(t + t:J.t, t) = S(t
s7t�t) = exp [ (Jl - �2) t:J.t + ZG�] . 

Defining R(t + t:J.t, t) = log(r(t + t:J.t, t)), we have 
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Then 
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Suppose we have a stock that stands at 100 at week zero. In 26 subse-
quent weeks we note the performance of the stock as shown in Table 9.1. 
Here At = 1/52. Let 

1 26 

Д = ^ ] [ > ( * ) = 002931. 

1 Table 14.1. 
| Week=i~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

| 26 

Stock(i) 
99.83942 
97.66142 
97.54407 
96.24717 
98.65675 
102.30830 
103.82212 
103.91875 
105.11467 
104.95000 
105.56152 
105.44247 
104.21446 
103.58197 
102.70383 
102.94174 
105.32943 
105.90627 
103.63793 
102.96025 
103.39027 
107.18351 
106.02782 
106.63995 
105.13506 
107.92604 

26 W e e k s of Stock Performance 
r(i)=Stock(i)/Stock(i - 1 ) 

0.99839 
0.97818 
0.99880 
0.98670 
1.02503 
1.03701 
1.01480 
1.00093 
1.01151 
0.99843 
1.00583 
0.99887 
0.98835 
0.99393 
0.99152 
1.00232 
1.02320 
1.00548 
0.97858 
0.99346 
1.00418 
1.03669 
0.98922 
1.00577 
0.98589 
1.02655 

fi(i)=log(r(i)) | 
-0.001611 
-0.02206 
-0.00120 
-0.01338 
0.02473 
0.03634 
0.01469 
0.00093 
0.01144 

-0.00157 
0.00581 

-0.00113 
-0.01171 
-0.00609 
-0.00851 
0.00231 
0.02293 
0.00546 

-0.02165 
-0.00656 
0.00417 
0.03603 

-0.01084 
0.00576 

-0.01421 
0.02620 | 

By the strong law of large numbers, the sample mean R converges almost 
surely to its expectation (μ — σ2/2)Δ£. Next, we note that 

[R(t + Δ*, t) - E(R{t + Δ*, t))]2 = 62σ2Δί, (14.33) 

so 

Var[i?(* + Δί, t)] = E[R(t + Δί, t) - (μ - γ λ At}2 = σ2Δί. (14.34) 
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Suppose we have a stock that stands at 100 at week zero. In 26 subse­
quent weeks we note the performance of the stock as shown in Table 9 .1 .  
Here il.t = 1/52. Let 

_ 1 26 
R = 

26 
L R( i) = .002931 .  
i=l 

Table 14.1. 26 Weeks of Stock Performance 
Week=i Stock(i} r(i}=Stock(i}/Stock(i - I}  R(i)=log(r(i}} 

1 99.83942 0.99839 -0.001611 
2 97.66142 0.97818 -0.02206 
3 97.54407 0.99880 -0.00120 
4 96.24717 0.98670 -0.01338 
5 98.65675 1.02503 0.02473 
6 102.30830 1.03701 0.03634 
7 103.82212 1 .01480 0.01469 
8 103.91875 1 .00093 0.00093 
9 105.11467 1 .01 151 0.01144 
10 104.95000 0.99843 -0.00157 
1 1  105.56152 1 .00583 0.00581 
12 105.44247 0.99887 -0.00113 
13 104.21446 0.98835 -0.01171 
14 103.58197 0.99393 -0.00609 
15 102.70383 0.99152 -0.00851 
16 102.94174 1.00232 0.00231 
17 105.32943 1.02320 0.02293 
18 105.90627 1.00548 0.00546 
19 103.63793 0.97858 -0.02165 
20 102.96025 0.99346 -0.00656 
21 103.39027 1 .00418 0.00417 
22 107.18351 1.03669 0.03603 
23 106.02782 0.98922 -0.01084 
24 106.63995 1.00577 0.00576 
25 105.13506 0.98589 -0.01421 
26 107.92604 1 .02655 0.02620 

By the strong law of large numbers, the sample mean R converges almost 
surely to its expectation (J.t - a2/2}il.t. Next, we note that 

so 

(14.33) 

Var[R(t + il.t, t)j = E[R(t + D.t, t) - (J.t - �2) D.tj2 = a2 D.t. (14.34) 
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For a large number of weeks, this variance is closely approximated by 
the sample variance 

. 26 

4 = 26^1 E W ) - Я)2 = -000258. 

Then σ2 = .000258/Δί = .000258x52 = .013416, giving as our volatility 
estimate σ =.1158. Finally, our estimate for the growth rate is given by 

/z = Д x 52 + — = .1524 + .0067 = .1591. 

14.10 The Time Indexed Distribution of 
Portfolio Value 

Let us construct, using simulation, the distribution of 1000 possible out-
comes of an investment of $10,000 in a stock with μ = 0.10 and σ = 0.10 
after ten years. We show the results in Figure 14.6. This is not, of course, 
a histogram in the usual sense of the term. A histogram is a relative count 
register of the number of historical observations which fall into the inter-
vals of value observed in the past. Here, we have taken parameter values 
and used them in a model to obtain simulations. So, each simulation gives 
an observation of simulated value. (Of course, for this simple case, one can 
obtain the density as a Gaussian probability integral. Very quickly, we will 
be moving to a situation where such a "closed—sform solution" is no longer 
practical.) 
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Figure 14.6. Simulated investment values at ten years. 
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register of the number of historical observations which fall into the inter­
vals of value observed in the past. Here, we have taken parameter values 
and used them in a model to obtain simulations. So, each simulation gives 
an observation of simulated value. {Of course, for this simple case, one can 
obtain the density as a Gaussian probability integral. Very quickly, we will 
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practical. ) 
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Next, if we can find 20 stocks, each with μ — .10 and σ = .10, then assuming 
they are stochastically independent of each other, we might take the $10,000 
and invest $500 in each of the stocks. The distribution of value at ten years 
(using 200 possible outcomes) is shown in Figure 14.7. The sample means 
for both the one-stock investment and the diversified 20-stock mutual fund 
are $27,088 and $26,715, respectively. But the standard deviation for the 
one-stock investment ($8,343) is roughly \/20 times that for the mutual fund 
investment ($1,875). A portfolio that has such such stochastic independence 
would be a truly diversified one. Generally speaking, one should expect 
some dependency between the tracks of the stocks. 

Now let us recall the general equation for geometric Brownian motion 

AS-
—- = ßAt + aeVEt. (14.35) 

Let us modify (14.35) to allow for a mechanism for dependence: 

A C 

— - = μοΛ + GtiVEb. (14.36) 
Si 

We shall take щ to be a Gaussian random variable with mean zero and 
variance 1. Similarly, the 20 щ will also be independent Gaussian with 
mean zero and variance 1. Then we shall let 

d = с{ащ + (1 - а)тц). (14.37) 

We wish to select с and a so that a is between zero and 1 and so that 
Var(ei) = 1 and any two €* and Cj have positive correlation r. After a little 
algebra, we see that this is achieved when 

and 

> = 40ΞΑ (14.38) 

*-*+l-r (14'39) 
At the singular value of p — 0.5, we use a = 0.5. 
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(using 200 possible outcomes) is shown in Figure 14.7. The sample means 
for both the one-stock investment and the diversified 20-stock mutual fund 
are $27,088 and $26,715, respectively. But the standard deviation for the 
one-stock investment ($8,343) is roughly J20 times that for the mutual fund 
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would be a truly diversified one. Generally speaking, one should expect 
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Now let us recall the general equation for geometric Brownian motion 
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Si
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Let us modify (14.35) to allow for a mechanism for dependence: 

(14.35) 

(14.36) 

We shall take 110 to be a Gaussian random variable with mean zero and 
variance 1 .  Similarly, the 20 TJi will also be independent Gaussian with 
mean zero and variance 1 .  Then we shall let 

(14.37) 

We wish to select c and a so that a is between zero and 1 and so that 
Var(fi) = 1 and any two fi and fj have positive correlation r. After a little 
algebra, we see that this is achieved when 

and 

p - Vp(l - p) a = '---!-"":""':'-,-""':""":" 
2p - l  

2 1 
c = . a2 + (1 - a)2 

At the singular value of p = 0.5, we use a = 0.5. 

( 14.38) 

(14.39) 
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Figure 14.7. A simulation of an idealized mutual fund value at 
ten years. 

Let us examine the situation with an initial stake of $500 per stock with 
μ = a = .10 and p = .8 as shown in Figure 14.8. We employ 500 simulations. 
We note that the standard deviation of the portfolio has grown to 7,747. 
This roughly follows the rule that the standard deviation of a portfolio 
where stocks have the same variance and have correlation p, should be 
y/1 + (n — l)p times that of an uncorrelated portfolio. 
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prices. 
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14.11 Negatively Correlated Portfolios 
Is there anything more likely to reduce the variance of a mutual fund port-
folio than the assumption that the stocks move in a stochastically indepen-
dent fashion? We recall that if we have two random variables X\ and X2, 
each with unit variance and the same unknown mean μ, the variance of the 
sample mean is given by 

Var((X1+X2)/2) = -[2-f2p]. (14.40) 

Here the variance can be reduced to zero if p = —1. Let us consider a 
situation where we have two stocks each of value $5000 at time zero which 
grow according to 

Si 

AS2 

52 

= μΑί + aey/Kt 

= μΑί - aeVÄi, 

(14.41) 

where б is a Gaussian variate with mean zero and unit variance. Then the 
resulting portfolio (based on 500 simulations) is exhibited in Figure 14.9. 
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Figure 14.9. Simulation of two-stock portfolio with p = — 1. 

We note that the standard deviation of this two-stock portfolio is 1701, 
even less than that observed for the 20-stock portfolio with the assumption 
of independence of stocks. Now, the assumption that we can actually find 
stocks with negative correlation to the tune of —1 is unrealistic. Probably, 
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we can find two stocks with rather large negative correlation, however. This 
is easily simulated via 

AS-
Si 

- = μΔ£ + (α€0 + (1 - a)ei)cy/Aia (14.42) 

AS-
—-1 = μΑί - (ae0 + (1 - а)б2)с\/Д^т, 

Ö2 

where 

a = 
p+^/-p(l-p) 

2 p + l 
с = l/у/а2 -f (1 — a)2 and бо, €i, and 62 are normally and independently 
distributed with mean zero and variance 1. Let us consider, in Figure 14.10, 
the situation where p =-.5. 
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Figure 14.10. Simulation of two-stock portfolio with p = —.5. 

We note that the standard deviation here has grown to $2,719. When 
it comes to utilizing negative correlation as a device for the reduction of 
the variance of a portfolio, a number of strategies can be considered. We 
know, for example, that if one wishes to minimize the variance of a sample 
mean, we can pose the problem as a constrained optimization problem to 
find the optimal correlation matrix, where we impose the constraint that the 
covariance matrix be positive definite. Our problem here is rather different, 
of course. 
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We could try something simple, namely take our two-stock negatively 
correlated portfolio and repeat it 10 times, (i.e., see to it that the stocks 
in each of the ten subportfolio have zero correlation with the stocks in the 
other portfolios). Here, each of the 20 stocks has an initial investment of 
$500. In Figure 14.11, we show the profile of 500 simulations of such a 
portfolio. The standard deviation of the pooled fund is only $1,487. 

How realistic is it to find uncorrelated subportfolios with stocks in each 
portfolio negatively correlated? Not very. We note that we can increase 
the sizes of the subportfolios if we wish, only remembering that we cannot 
pick an arbitrary correlation matrix—it must be positive definite. If we 
have a subportfolio of к stocks, then if the stocks are all to be equally 
negatively correlated, the maximum absolute value of the correlation is 
given by l/(k — 1). 
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Figure 14.11. Simulation often independent two-stock portfolios 
with p = - . 5 . 

Let us consider another type of randomness in the stock market. Super-
imposed over Brownian geometric motion of stocks there are periodic bear 
market downturns in the market overall. It is unusual for bull markets to 
exhibit sharp sudden rises. But 10% corrections (i.e., rapid declines) are 
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quite common, historically averaging a monthly probability of as much as 
0.08. Really major downturns, say 20%, happen rather less frequently, say 
with a monthly probability of 0.015. 

14.12 Bear Jumps 

In Figure 14.12 we see the binned results of 500 simulations with the jumps 
modeled as above, σ=.10, ρ = 0, and μ = 0.235. The mean here is $ 27,080, 
very similar to that of the situation with independent stocks, with μ=.10 
and σ =.1. However, we note that the standard deviation is a hefty $11,269. 
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Figure 14.12. Simulation of portfolio of 20 independent stocks 

with bear jumps. 

We note that these general (across the market) downward jumps take away 
some of the motivation for finding stocks which have local negative corre-
lation in their movements. (For example, had our portfolio had a .8 cor-
relation between the stochastic increments, the standard deviation would 
only have increased from 11,269 to 13,522.) It is rather easy to advise an 
investor not to put all his/her investments in Apple Computers. It is also 
clear that the investor ought not invest in a portfolio consisting of Apple, 
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Dell, Compaq, Oracle and HP, for these stocks tend to move together. How-
ever, when a big bear market hits, our investor is very likely to be damaged 
even if he/she includes department stores, utilities, drug companies and 
restaurant chains. Still, a diversified investor, in the bear market which 
started in the last half of 2000, generally fared better than the investor 
who only invested in a few high tech stocks. Now, we have arrived at a 
situation where nearly 25% of the time, our portfolio performs worse than 
a riskless security invested at a 6% return. If we increase the volatility σ 
to .5, then nearly 40% of the simulated portfolios do worse that the fixed 
6% security. 

Let us return to looking at the situation where a $100 million university 
endowment, consisting of 20 stocks ($5 million invested in each stock) with 
stochastically independent geometric Brownian steps, with μ= 0.235, σ = 
0.1 and with monthly probabilities 0.08 of a 10% drop in all the stocks and 
a 0.015 probability of a 20% drop in all the stocks. We shall "spend" the 
portfolio at the rate of 5% per year. Let us see in Figure 14.18 what the 
situation might be after 10 years. With probability 0.08, after 10 years, the 
endowment will have shrunk to less than $50 million. With probability 0.22, 
it will have shrunk to less than $75 million. With probability 0.34, it will 
have shrunk to less than the original $100 million. Given that universities 
tend to spend up to their current cash flow, it is easy to see how some of 
those which tried such a strategy in the 1960s went through very hard times 
in the 1970s and 1980s. 

I have discussed how a portfolio of stocks has, historically, been a supe-
rior investment over the long run for retirement purposes. The endowment 
problem just discussed applies to those who have followed such a policy as 
they near retirement (especially if the timing is mandatory). If the date 
falls soon after a bear jump, the options are ugly: Cash out into a fixed 
annuity and consume much less than one had anticipated or consume from 
the equity portfolio and hope for a big, quick recovery before the portfolio 
is literally "eaten up." Retirement flexibility can moderate this risk (and 
is why a lot of people who hoped to retire in 2000—2002 did not). Failing 
this, at least a partial shift out of equities as one approaches mandatory 
retirement is indicated. However, at the present time, when the Federal 
Reserve has continued a policy for some years of artificially keeping inter-
est rates near zero, it could be argued that the burden of the United States 
government fighting, without justification, a huge war against the Iraqis 
while demanding savings and loan associations allow $600,00 mortgages to 
be given to persons with incomes below $50,000, has created a situation in 
which there is really no safe ground other than precious commodities, and 
that a conscious decision has been made to make retirees pay the cost of 
ridiculous government policies. 

It is very likely the case that broad sector downward jumps ought to be 
included as part of a realistic model of the stock market. The geometric 
Brownian part may well account for the bull part of the market. But 
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downward movements may very well require a jump component. By simply 
noting variations on geometric Brownian drift in stock prices, analysts may 
be missing an essential part of the reality of the stock market, namely large 
broad market declines which occur very suddenly. 
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Figure 14.13. Simulation of $100 million endowment with 5% 
payout. 

14.13 "Everyman's" MaxMedian Rule for 
Portfolio Management 

If index funds, such as Vanguard's S&P 500 are popular (and with some 
justification they are), this is partly due to the fact that over several decades 
the market cap weighted portfolio of stocks in the S&P 500 of John Bogle 
(which is slightly different from a total market fund) has small operataing 
fees currently, less than 0.1% compared to hedge fund management rates 
typically around 30 times that of Vanguard. And, with dividends thrown in, 
it produces around a 10% return. Many people, perhaps damaged by MBA 
toting Poobahs in $5,000 suits living in fancy offices, invest in managed 
funds. The results have not been promising, overall, although those dealing 
with people like Peter Lynch and Warren Buffet have done generally well. 
John Bogle probably did not build his Vanguard funds because of any great 
faith in fatwahs coming down from the EMH crowd at the University of 
Chicago. Rather, he was arguing that investors were paying too much for 
the "wisdom" of the Poobahs. There is little question that John Bogle has 
benefited greatly the middle class investor community. 

That being said, we have shown earlier in this chapter that market cap 
weighted funds do no better (actually worse) than those selected by random 
choice. It might, then, be argued that there are nonrandom strategies which 
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the individual investor could use to his/her advantage. For example if one 
had invested in the stocks with equal weight in the S&P 100 over the last 
40 years rather than by weighting according to market cap, she would have 
experienced a significantly higher annual growth (our backtest revealed as 
much as a 5% per year difference in favor of the equal weighted portolio). 
Moreover, the downside losses in bad years would have been less than with 
a market cap weighted fund. Actually, there are now several equal weight 
funds. Moreover, their operating fees are rather modest. It would be nice if 
we could come up with a strategy which kept only 20 stocks in the portfolio. 
If one is into managing ones own portfolio, it would appear that Baggett and 
Thompson [1] did about as well as the equal weight of the S&P 100 using a 
portfolio size of only 20 stocks. I am harking back to the old morality play 
of "Everyman" where the poor average citizen moving through life is largely 
abandoned by friends and advisors except for Knowledge who assures him 
"Everyman, I will accompany you and be your guide." 

The science of statistics exists, in large measure, as a vehicle for testing 
and, when appropriate, modifying models in other sciences. We have a 
great deal of evidence to the effect that the academic school of finance 
dominant in the United States, that of the efficient market hypothesis, 
has not stressed its models sufficiently with market data. This fact has 
led to market strategies with poor, frequently disastrous results. If one 
looks at a growth versus volatility (standard deviation) plot for stocks and 
portfolios of stocks, then the efficient frontier [7—8] of Markowitz gives 
a convex curve below and to the right of which no investor would wish 
to venture. Beyond that, Sharpe notes [9—10] that if one plots a point 
on the left for the zero volatility Treasury Bill, and then goes rightward 
and upward to a point representing the total market of all publicly traded 
stocks weighted by market cap, then one has the optimal Capital Market 
Line (super efficient frontier) above which no stocks or portfolios of stocks 
should be found. Were these results, which are a basis of efficient market 
hypothesis practice, correct, then one need look no further for investment 
in the stock market. One simply picks the volatility level with which one 
can live and makes an investment on the CML. That Warren Buffett's 
Berkshire-Hathaway has, for many years, produced returns roughly double 
those of an S&P 500 Index Fund seems not to shake the faith of believers 
in the EMH. 

It turns out that it is not so difficult to form portfolios with performance 
above the CML. Wojciechowski and Thompson [18] have shown (looking 
back 40 years) how randomly selected portfolios selected from the 1,000 
largest market cap stocks lie above the CML over half the time (see Figure 
14.4). This empirical fact demonstrates that the search for optimal port-
folios is by no means a closed issue, as would be supposed by advocates 
of the EMH. Further, we have observed ([13]-[18]) that the assumptions 
of EMH option theory are contradicted by market data. Market prices are 
different from those suggested by Black and Scholes [3] analysis. The dis-
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crepancy cannot be avoided by such sharp practices as implied volatility, 
since implied volatilities for the same stock at the same execution time tend 
to be different for different strike prices. The building of a vast structure for 
the trading of derivatives based on specious assumptions has led to a con-
catenation of market catastrophes, starting with the relatively mild ($3.3 
billion) Long Term Capital Management fiasco in 1998, then proceeding to 
the failure of ENRON in 2001 ($62 billion). Looking for villains on whom 
to blame these disasters, few seemed to consider the flawed EMH theo-
ries which had more to do with the problem than the fraudulent off-shore 
corporations of some of Enron's directors. The collapse of a number of 
high bandwidth firms seems to have been caused by an unexpected rise in 
interest rates by the Federal Reserve, attempting to curb the irrational exu-
berance caused, in large measure, by its earlier managed bail-out of LTCM. 
The same Federal Reserve then dropped interest rates to such a level that 
millions of retirees living on fixed incomes experienced significant hardship. 
Proceeding to the present day, we have observed the subprime mortgage 
fiasco including the insurance policies written on subprime mortgages, all 
based on EMH premises. We observe a societal cost which is in the trillions 
of dollars. 

It is not my purpose directly to effect system change. Rather, I present 
a simple nonproprietary rule which appears significantly to enhance the 
return to an individual investor. (I have developed and patented a better 
proprietary algorithm of great computational complexity which will not be 
dealt with in this book). However the MaxMedian Rule [1], given below, 
is easy to use and appears to beat the Index, on the average, by up to an 
annual multiplier of 1.05, an amount which is additionally enhanced by the 
power of compound interest. Note that that (1.15/1.00)45 = 7.4, a handy 
bonus to one who reitres after 45 years. A purpose of the MaxMedian 
Rule was to provide individual investors a tool which they could use and 
modify without the necessity of massive computing. Others in my classes 
have developed their own paradigms, such as the MaxMean Rule. In order 
to use such rules, one need only purchase for a very modest one time fee 
the Yahoo base hquotes program from hquotes.com. (The author owns no 
portion of the hquotes company.) 

The MaxMedian Rule 

1. For the 500 stocks in the S&P 500 look back at the daily 
returns S(j,t) for the preceding year the day to day ratios 
r(j,t) = S ( j , t ) /S ( j , t -1 ) . 

2. Sort these for the year's trading days. 

3. Discard all r values equal to one. in the 500 medians of the 
ratios· 

4. Invest equally in the 20 stocks with the largest medians. 
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5. Hold for one year and t h e n l iquidate. 

In Figure 14.14 we examine the results of putting one present value 
dollar into play in three different investments: 5% yielding T-bill, S&P 
500 Index Fund, MaxMedian Rule. First, we shall do the investment sim-
ply without avoiding the intermediate taxing structure. The assumptions 
are that interest income is taxed at 35%; capital gains and dividends are 
taxed at 15%; and inflation is 2%. As we see, the T-Bill invested dollar 
is barely holding its one dollar value over time. The consequences of such 
an investment strategy are disastrous as a vehicle for retirement. On the 
other hand, after 40 years, the S&P 500 Index Fund dollar has grown to 11 
present value dollars. The MaxMedian Rule dollar has grown to 55 present 
value dollars. Our investigations indicate that the MaxMedian Rule perf-
prms about as well as an equal weighted S&P 100 portfolio, though the 
latter has somewhat less downside in bad yeaars. Of course, it is difficult 
for the individual investor to buy into an SP equal weight S&P 100 index 
fund. The advantage of the equal weight S&P 500 index fund is only 2% 
greater than that of the market cap weight S&P 500. Even so, when one 
looks at the compounded advantage over 40 years, it appears to be roughly 
a factor of two. It is interesting to note that the bogus Ponzi scheme of 
Bernie Madoff claimed returns which appear to be legally attainable either 
by the MaxMedian Rule or the equal weight S&P 100 rule. This leads the 
author to the conclusion that most of the moguls of finance and the Federal 
Reserve Bank have very limited data analytical skills or even motivation to 
look at market data. 

F igure 14.14. A comparison of t h r ee investment s t ra tegies . 
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14.13.1 Investing in a 401k 
Money invested in a 401-k plan avoids all taxes until the money is with-
drawn, at which time it is taxed at Ourrent level of tax on ordinary income. 
In Table 14.2, we demonstrate the results of adding an annual inflation ad-
justed $5,000 addition to a 401k for 40 years, using diflFerent assumptions 
of annual inflation rates. All values are in current value dollars. 

Table 14.2. 4 0 - Year End Results of Three 401k Strategies. 
Inflation 
T-bill 
S&P Index 
MaxMedian 

2% 
447,229 
1,228,978 
4,660,901 

3% 
292,238 
924,158 
3,385,738 

5% 
190,552 
560,356 
1,806,669 

8% 
110,197 
254,777 
735,977 

We recall that when these dollars are withdrawn, taxes must be paid. So, 
in computing the annual cost of living, one should figure in the tax burden. 
Let us suppose the cost of living including taxes for a family of two is 
$70,000 beyond Social Security retirement checks. (Of course, the federal 
government may well decide to eliminate all or part of a family's Social 
Security payments.) We realize that the 401k portion which has not been 
withdrawn will continue to grow (though the additions from salary will 
have ceased upon retirement). Even for the unrealistically low inflation 
rate of 2% the situation is not encouraging for the investor in T-bills. Both 
the S&P Index holder and the Max Median holder will be in reasonable 
shape. For the inflation rate of 5%, the T-bill holder is in real trouble. 
The situation for the Index Fund holder is also risky. The holder in the 
MaxMedian rule portfolio appears to be in reasonable shape. Now, by 
historical standards, 5% inflation is high for the United States. On the 
other hand, we observe that the decline of the dollar against the Euro 
during the Bush Administration was as high as 8% per year. 

Hence, realistically, 8% could be a possibility to the inflation rate for 
the future in the United States. In such a case, of the four strategies consid-
ered only the return available from the MaxMedian rule leaves the family 
in reasonable shape. Currently, even the Euro is inflation stressed due to 
the social welfare excesses of some of the Eurozone members. From a so-
cietal standpoint, it is not necessary that an individual investor achieve 
spectacular returns. What is required is effectiveness, robustness, trans-
parency, and simplicity of use so that the returns will be commensurate 
with the normal goals of families: education of children, comfortable retire-
ment, etc. Furthermore, it is within the power of the federal government to 
bring the economy to such a pass where even the prudent cannot make do. 
The history of Western societies shows that high rates of inflation cannot 
be sustained without some sort of revolution, such as that which occurred 
at the end of the Weimar Republic. The lack of awareness of basic intuitive 
economics among the American people is depressing. Unscrupulous bankers 
encourage indebtedness on the unwary, taking their profits at the front end 
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and leaving society as a whole to pick up the bill. Naturally, as a scientist, 
I would hope that the empirical tules such as the MaxMedian approach of 
Baggett and Thompson will lead to fundamental insights about the market 
and the economy more generally. Caveat: The MaxMedian rule is freeware 
not quality assured or extensively tested. If you use it, remember what you 
paid for it. The goal of the MaxMedian rule is to enable the individual 
investor to develop his or her own portfolios without the assistance of gen-
erally overpriced and underachieving investment fund managers. Note that 
I am not badmouthing the equal weighted index funds, which can be an 
attractive autopilot strategy and do indeed have modest management fees. 
The investor gets to use all sorts of readily available information in public 
libraries, e.g., Investors Business Daily. Indeed, many private investors will 
subscribe to IBD as well as to other periodicals. Obviously, even if a stock 
is recommended by the MaxMedian rule (or any rule) and there is valuable 
knowledge, such as that the company represented by the stock is under sig-
nificant legal attack for patent infringement, oil spills, etc., exclusion of the 
stock from the portfoUo might be indicated. The bargain brokerage Fidelity 
provides abundant free information for its clients and generally charges less 
than 8 dollars per trade. 

Obviously, one might choose rather a MaxMean rule or a Max 60 Per-
centile rule or an equal weight Index rule. There are many which might 
be tested by a forty year backtest. My goal is not to push the MaxMedian 
rule or the MaxMean rule or the equal weight S&P 100 rule or any rule, 
but rather allow the intelligent investor to invest without paying vast sums 
to MBAs in $5000 suits. If, at the end of the day, the investor chooses to 
invest in market cap based index funds, that is suboptimal but not ridicu-
lous. What is ridiculous is not to work hard to understand as much as 
practicable about investment. This chapter is a very good start. It has to 
be observed that at this time in history, investment in US Treasury Bills 
or bank cds would appear to be close to suicidal. Both the Federal Reserve 
and the investment banks are doing the American middle class no good 
service. 0.2% return on Treasury Bills is akin to theft, and what some of 
the investment banks do is akin to robbery. 

The author has no magic riskless formula for getting rich. (The au-
thor created and owns the patent on a highly computer intensive artificial 
intelligence algorithm for buying stocks, which backtested over a 40 year 
period at roughly the rate of return of Buffett's Berkshire-Hathaway. We 
shall not discuss that paradigm in this book.) Rather, I shall offer some 
opinions about alternatives to things such as buying T-bills. Investing in 
market cap index funds is certainly suboptimal. However, it is robustness 
and transparency rather than optimality which should be the goal of the 
prudent investor. It should be remembered that most investment funds (in-
cluding, alas TIAA-CREF) do charge the investor a fair amount of his/her 
basic investment whatever be the results. The EMH is untrue and does 
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not justify investment in a market cap weighted index fund. However, the 
fact is that, with the exception of such gurus as Warren Buffett and Peter 
Lynch, the wisdom of the professional market forecaster seldom justifies 
the premium of the guru's charge. There are very special momentum based 
programs (on one of which the author holds a patent), in which the investor 
might do well. However, if one simply manages one's own account, using 
MaxMean or MaxMean within an IRA, it would seem to be better than 
trusting in gurus who have failed again and again. Berksire-Hathaaewy 
has proved to be over the years a vehicle which produces better than 20% 
return. For any strategy that the investo is considering, backtesting for, 
say, 40 years, is a very good idea. That is not easy to achieve with equal 
weight funds, since they have not been around very long. Baggett and 
Thompson had to go back using raw S&P 100 data to assess the potential 
of an S&P 100 equal weight fund, since, to my knowledge, no such fund is 
currently available. If Bernie Madoff (who had the resources to do it), had 
set up such a fund, he might well have been able to give his investors the 
15% return he promised but did not deliver. 

Note that the United States government, with its war of choice in the 
Middle East, its forcing of commercial banks to grant mortgage loans to 
persons unlikely to be able to repay them, and its willingness to allow com-
mercial banks to engage in speculative derivative sales, is the driving force 
behind the market collapse of the late Bush Administration and the Obama 
Administration. Just the war cost part of the current crisis due to what 
Nobel Laureate Stiglitz has described as something beyond a three trillion 
dollar war in the Middle East has damaged both Berkshire-Hathaway's and 
other investment strategies. To survive in the current market situation, 
one must be agile indeed. Stiglitz keeps upping his estimates of the cost 
of America's war in the Middle East. Anecdotally,I have seen estimates as 
high as six trillion dollars. If we realize that the cost of running the entire 
US Federal government is around three trillion dollars per year, then we 
can see what a large effect Bush's war of choice has had on our country's 
aggregate debt. This fact alone would indicate that a future damqging 
inflation is all but certain. To some extent, investing in the stock market 
could be viewed as a hedge against inflation. In the author's opinion, it 
was Bush's war of choice in the Middle East which caused the recent and 
continuing recession with real employment rates approaching some of the 
years of the Great Depression. In the next section, we will examine another 
cause of denigration and instability in the economy, the use of derivatives. 

14.14 Derivatives 

In the period frequently referred to as "The Roaring Twenties," there were 
investment counselors who advised their clients to buy stocks "on margin." 
Margin investing is most easily explained by an example. Suppose an in-
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vestor has $10,000 to invest in a stock. The current price of the stock 
is $100. Thus, the investor could simply buy 100 shares of stock. If the 
stock's value climbed to $110, then the investor would have made $1000. 
His account in the stock would be worth $11,000. But if the stock declined 
in value to $90, then the investor would have lost $1000. His account would 
be still be worth $9000. 

The stock broker advises the investor to use a margin loan with a factor 
of ten times. That would enable the investor to buy 1000 shares of stock. 
If the stock price rose to $110, then the investor would have made a tidy 
profit of $10,000. This was the good news the investment counselors told 
potential investors. 

Less common was the warning that if the stock declined in value to 
$90, then the margin loan would capture all the shares of stock purchased 
by the investor. His losses would have brought his account to zero value. 
Notice, also, that as the investment broker started selling recouped shares, 
this puts downward pressure on the value of the stock. 

On October 28, 1929 there was a 13% fall in the market followed by a 
12% fall on October 29. On December 10, there was a run on the Bronx 
branch of the (privately owned) Bank of the United States. Thus began 
America's Great Depression. Many things were tried to ameliorate the sit-
uation with various stimuli, but the Great Depression was still continuing 
when America entered the Second World War in 1941. To ameliorate the 
effect of bank failures on depositors, the Federal Deposit Insurance Corpo-
ration was founded. It has had a positive effect, but the amount of funds 
available to it is really rather small. President Roosevelt changed invest-
ment laws to reduce margin loans from ten fold to two fold. At any rate, it 
would appear that prudent steps were taken by President Roosevelt, which 
might have eliminated the start of the Great Depression in the first place. 

14.14.1 Black-Scholes and the Search for Risk 
Neutrality 

It is a fair statement that those traders who profited greatly from selling 
margin portfolios to their customers were harmfull to the nation. It is 
also true that President Roosevelt did implement some strategies which 
minimized this practice. Unfortunately, the Nobel winning Black-Scholes 
equation has been, in large measure, responsible for the continuing receces-
sion which started with Bush's War and continues with Obama's War. 

A call option is the right (but not the obligation) to buy a specified 
asset S at a strike price X T days in the future. If the seller of the option 
owns the stock (or commodity) connected with the option, then the option 
is said to be covered. If the seller of the option does not own the stock, 
then the option is uncovered. 

Before deriving the Black-Scholes pricing formula for the price of a Eu-
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ropean call option (defined below), let us look at two older pricing formulas 
С A and CB giving the arguments for each. What should be the fair value 
for an option to purchase a stock at an exercise price X starting with to-
day's stock price 5(0) and an expiration time of T? If the rate of growth 
of the stock is μ, and the volatility is cr, then, assuming the lognormal 
distribution for S(t)y the stock value at the time T should be 

5 (0 )вхр(л / - ( (А*-у )Г ,Га а ) ) , 

where N{a, 6) is a Gaussian random variable with expectation о and vari-
ance &. If we borrow money at a fixed riskless rate r to purchase the option, 
then the value of the option could be argued2 to be equal to С A in 

Method А С A =exp(-rT)E[Max(0,5(T) - X ) ] , 

where E denotes expectation. 
On the other hand, it could also be argued that the person buying the 

option out of his assets is incurring an opportunity cost by using money 
to buy the option which might as well have been used for purchasing the 
stock so that the value of the option should be given by 

Method В Св = exp(-/iT) £[Max(0, S(T) - X)}. 

After a little calculus [11], it can be shown that we have for Method A, 

CA = e-^{e^Sm (
Ыт/Х)^ + ( " 2 / 2 ) ] T ) 

_χφ /log(S(0)/X) + [ M - ( a V 2 ) ] r V 

For Method B, we have 

CB = e-*V"sm ( ^ 0 ) m + tflW} 

_χφ ()og(S(0)/X) + fr-{a*/2)]T\ 

The formula for the pricing of an option which gives the purchaser the 
right to buy a stock for X dollars at future time T, as formulated above, 
in the case of С A depends on knowledge of three parameters, μ, σ, and r. 
Ostensibly, r should be easy to determine. It is frequently argued to be 

2The use of the expectation criterion as the measure of value is questionable. We 
recall, for example, the St. Petersburg Paradox discussed in Chapter 13 shows how 
expectation of gain can give ridiculous results.The question of appropriate criteria is 
extremely important, and we have addressed it extensively throughout this book. For 
the moment, we stick with expectation, for that is, unfortunately, the standard view. 
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Ostensibly, r should be easy to determine. It is frequently argued to be 
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simply the riskless interest rate (i.e., that of a Treasury bill). A bit later, 
we will question whether a universal r value is reasonable. Knowledge of 
μ and σ would appear to be more uncertain. They can be estimated quite 
handily from past stock records, but we are not talking about the μ and σ 
values of the past. Rather we want to use those which are appropriate from 
now until the time T (when the option is exercised or is allowed to expire). 

14.14.2 A Game Independent of the Odds 

Let us consider the game indicated in Figure 14.15 

A* 
Figure 14.15. Game unlinked to probabilities. 

There are two prizes Dup and D&n. What is the fair price Do to pay the 
casino to play this game? As we have seen, if the prizes are reasonably 
small relative to the wealth of the player, the fair value might be taken to 
be the expected value: 

A> = PupDup + pdnDdn. (14.43) 

We can be sure, in the real world, that the casino operator will charge a bit 
more than Do, say D\ > Do to play this game, for a zero rate of return on 
his investment (casino, employees, utilities, security, etc.) would soon put 
him out of business. It is not reasonable, one might argue, for the player to 
become involved with the wager, since in paying Di to play, he will, over 
the long run, lose money. Yet casinos do a thriving business. In general, 
the casino organization will be happy, in the case of many of its games, 
to operate on a reasonably small margin (D\ — Do)/D\ of profit, for, over 
time, it is almost certain to return, on the game, a profit margin per wager 
equal to the profit margin times the total bets wagered on the game. 

In casino games of chance, we know precisely the probabilities associated 
with each game. But what if one is engaging in a game where one does 
not know the probabilities associated with winning and losing? Suppose 
one is taking bets, for example, on a horse race. There are horse racing 
experts who will set preliminary odds of the sort, Purple Martian has a ten 
percent chance of winning the race. So, preliminary odds might be that 
Purple Martian, for a one dollar ticket, will pay ten dollars if it wins the 
race. But as the bets come in, the track may note that too many people 
are betting on Purple Martian at the bet as stated. That means, if Purple 
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Martian should win, the track would actually lose money. So, a woman 
who bet on Purple Martian would know that the ticket she bought might 
pay less than the rate stated at the time of the purchase. The track has 
the right to readjust payoffs right up until the time of the start of the race 
to make sure it has locked in a profit, irrespective of which horse actually 
wins the race. Similarly, if the track finds that too few people are betting 
on Purple Martian, it will typically improve the payoff. The whole idea 
of the track, then, is to readjust payoffs for all the horses, continuously in 
time, to guarantee a profit for the track. Now, in the world of bookmakers, 
competition from several "agencies" will tend to drive the payoffs from all 
to be similar, for why buy a ticket which pays $10 if another bookmaker 
is paying $15? If communications are as rapid as they have been for some 
decades, there will be, essentially, a national market for betting on Purple 
Martian to win. The only thing which can restrict (partially) the creation of 
a nearly efficient market in the victory of Purple Martian is interference by 
some governmental or quasi-governmental agency (e.g., organized crime) 
to restrict trade in Purple Martian tickets. Notice, then, that the world 
of horse racing bookmakers provides us with an example of a market in 
outcomes in which the probabilities are not very well known, and that the 
bookmakers actually set the rates based, not to their retrospective guesses 
as to the probabilities, but rather on volumes of purchases of tickets for 
specific pay-off rates. 

Notice that the payoff rates are computed by the bookmakers with little 
reliance on probability estimates. Prom the standpoint of an individual 
buying Purple Martian tickets, however, the decision is generally based on 
the probability of a Purple Martian win as intuited by the individual buying 
tickets. Here, the bookmaker has a very different strategy from that of the 
woman making the wager. The bookmaker is attempting to hedge his bets 
so that he makes a return based, essentially, on commissions.3 

Earlier in this chapter we have seen how, given assumptions about μ, 
r, and σ, to obtain the price of a European call option under those as-
sumptions. Moreover, it is clear how one might argue that if we want to 
determine a "fair" price to promise to deliver a stock T units in the future, 
when that price is to be paid on the day of delivery, it can be determined 
by buying the stock at today's known price 5(0) and then borrowing the 
money for that purchase at the going interest rate r. That would mean that 
the futures price at time T is 5(0) exp(rT). That means that, assuming the 
broker could borrow the money 5(0) exp(rT) for rate r, then he could have 
a perfect hedge and make a profit exactly equal to his commission for the 
transaction. He would be in somewhat the same position of a bookie at the 

3The aforementioned description of horse race bookmaking follows closely the way 
investment bankers price new stock issues (IPOs). The initial price increases or decreases 
depending on the "book" (even the terminology is similar). Substantial initial interest 
(buy orders) will raise the IPO price. If there is weak interest, the IPO price will be set 
lower. The size of the issue may also be adjusted depending on interest in the deal. 
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races. 
Prom the standpoint of the buyer, however, he or she probably has rea-

son to believe that at time T the stock will be worth more than 5(0) exp(rT). 
(There are other reasons, of course, for the buyer to purchase the future 
instead of simply buying the stock today. For example, it might well be 
that other investments will bring into the futures purchaser's hands a sum 
of money at time T at least as great as 5(0)ехр(гГ), a sum which the 
purchaser does not have in hand today. This rather obvious hedging price 
whereby the vendor can sell a futures contract goes back so far in history 
that it can probably be called a "folk theorem." In the case of a European 
call option, one might have inferred that the way to price a riskless (to the 
vendor) option would be simply to use the formulae associated with Method 
B, except replacing the growth rate μ with the bond interest rate r. This 
method turns out to be correct, given the assumptions. 4 However, it was 
not proved to be the case until 1973 [3] at some profit to the provers. In 
1998, it earned the two surviving members of the research project (Scholes 
and Merton) the Nobel Prize in Economics. 

In their provocative book Financial Calculus, Baxter and Rennie [2, p. 
7] state that for the purpose of pricing derivatives, " seductive though the 
strong law is, it is also completely useless." They show how serious they are 
about this view when they consider a wager which is based on the progress 
of a stock [2, p. 15]. At present, the stock is worth $1. In the next tick 
of time, it will either move to $2.00 or to $0.50. A wager is offered which 
will pay $1.00 if the stock goes up and $0.00 if the stock goes down. The 
authors form a portfolio consisting of 2/3 of a unit of stock and a borrowing 
of 1/3 of a $1.00 riskless bond. The cost of this portfolio is $0.33 at time 
zero. After the tick, it will either be worth 2/3 x $2.00 - 1/3 x $1.00 = 
$1.00 or 2/3 x $ 0.50-1/3 x $1.00 = $0.00. Prom this, they infer that "the 
portfolio's initial value of $0.33 is also the bet's initial value." б 

4This "simple" futures approach ignores the risk of "nonexercise" to the seller of the 
option. At any given time, an investor who believes that a stock is going to make serious 
upward progress over the next six months may purchase an option to buy that stock 
six months in the future at a price set today. Such an option is called a European call 
option. The price at which he may buy the stock is called the exercise price or strike 
price and the time at which the option can be exercised is called the expiration date. 
The option need not be exercised and will not be unless the value of the stock at the 
expiration date is at least as great as the exercise price. 

5Some might argue as follows: In fact, several things are occurring in the example 
which are often confused and combined. Observe that there are two immediate future 
states, up and down. The portfolio exactly replicates the payoff of the bet in each state 
and involves a net investment of $0.33. Hence, unless the bet also sold for $0.33, an 
arbitrage profit could be earned by buying the cheaper and selling the dearer of the two. 
In that no risk would be involved in such a transaction, it would be invariant to (and 
devoid of information about) risk preferences. Even if the market for the stock were in 
equilibrium (which would imply $.33 was an equilibrium price for the bet), including 
general agreement about the stat outcomes, probabilities and risk preferences create a 
jointness which cannot be untangled from the information provided. For example, if 
the market is employing risk neutral pricing, then prob(up)=l/3, prob (down)=2/3, the 
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14.14.3 The Black-Scholes Hedge Using Binomial Trees 
Suppose, however, we were to ask another question ("another" because 
options are not precisely analogized by payoffs in horse races). Namely, 
can we come up with a way in which a brokerage firm could match the 
value of a call option by continually readjusting a portfolio consisting of a 
mixture of shares of the stock on which the option is based and Treasury 
bills, in such a way that there would be no risk to the brokerage firm? If we 
neglect transaction costs to the firm, the answer is "Yes". The brokerage 
firm, like a bookie at a race track, makes its money on service fees built into 
the cost of the commodity being sold. The brokerage firm does not care 
whether the stock goes up or down, provided that it can determine a "risk 
neutral" price. Given that the goal has changed from one of forecasting 
to one of accounting, we will not be surprised if the stochastic effects are 
modest in the solution of the problem of achieving "risk neutrality." 

Let us return to the situation in Figure 14.15 but with the addition of a 
stock (with outcomes in the next increment of time sup and Sdn) to which 
the prizes Dup and Д*п are linked. We will refer now to the prizes Dup and 
Ddn as derivatives. 

DUp 

Sup 

so 

Ddn 

Sdn 

Figure 14.16. Simple binomial tree with options. 

A woman approaches the dealer and states she would like to play a game 

expected value of the stock, portfolio and bet are their prices and the expected return on 
each upon the revelation is 0. Suppose, however, the market is engaging in risk averse 
pricing, such that the probabilities are 50-50. The expected value of the stock is $1.25 and 
of the portfolio and bet is $.50. The instantaneous expected return on the first is 25% and 
on the latter two is 50%. Further, there is no way to earn an arbitrage profit between the 
portfolio and the bet. In particular, there is no way to arbitrage this result back to risk 
neutral pricing. If the only concern is the derivation of the hedged, no arbitrage price of 
the bet, a shortcut may be employed. In that preferences do not enter this computation, 
the simplest approach is to assume the stock price is risk-neutral, extract the implied 
probabilities (i.e., 1/3, 2/3), and price the bet (i.e., 1/3 x $1 + 2/3 X 0 = $0.33). By 
using this approach, it is not even necessary to derive the hedge portfolio to price the 
bet. As discussed above, this procedure in no way implies that the price of the stock or 
the bet is actually risk neutral. 
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the cost of the commodity being sold. The brokerage firm does not care 
whether the stock goes up or down, provided that it can determine a "risk 
neutral" price. Given that the goal has changed from one of forecasting 
to one of accounting, we will not be surprised if the stochastic effects are 
modest in the solution of the problem of achieving "risk neutrality." 

Let us return to the situation in Figure 14.15 but with the addition of a 
stock (with outcomes in the next increment of time sup and Sdn) to which 
the prizes Dup and Ddn are linked. We will refer now to the prizes Dup and 
Ddn as derivatives. 

So 

Dup 
Sup 

Figure 14.16. Simple binomial tree with options. 

A woman approaches the dealer and states she would like to play a game 

expected value of the stock, portfolio and bet are their prices and the expected return on 
each upon the revelation is O. Suppose, however, the market is engaging in risk averse 
pricing, such that the probabilities are SO-SO. The expected value ofthe stock is $1.2S and 
ofthe portfolio and bet is $.SO. The instantaneous expected return on the first is 2S% and 
on the latter two is SO%. Further, there is no way to earn an arbitrage profit between the 
portfolio and the bet. In particular, there is no way to arbitrage this result back to risk 
neutral pricing. If the only concern is the derivation of the hedged, no arbitrage price of 
the bet, a shortcut may be employed. In that preferences do not enter this computation, 
the simplest approach is to assume the stock price is risk-neutral, extract the implied 
probabilities (i.e., 1/3, 2/3), and price the bet (Le., 1/3 x $1 + 2/3 x 0 = $0.33). By 
using this approach, it is not even necessary to derive the hedge portfolio to price the 
bet. As discUBBed above, this procedure in no way implies that the price of the stock or 
the bet is actually risk neutral. 
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in which she receives Dup if the stock goes up in the next step and Ddn if 
it goes down. How much should the dealer charge her to play this game? 

The dealer decides to emulate the derivative by forming a portfolio of 
the и units of the stock on which the derivative is based plus a position of 
v in a bond paying interest rate r. Using Figure 14.16, let us determine и 
and v. 

usup + verA^ = Dup when the stock goes up, 

vsdn + verAW = Ddn when the stock goes down. (14.44) 

Solving for и and υ, we have 

Dup - Ddn 
и = , 

Sup Sdn 
υ = e~rA^(Dup-usup). 

At time zero, the value of the portfolio (and therefore of the emulated 
derivative) is given by 

D0 = su+v 

= exp(-rA(i)) Dup + 1 1 - — ) Ddn ) 
\ sup sdn \ Sup ~~ sdn J / 

= qDup + (l-q)Ddn (14.45) 

where 
q=s0e^-sdn ( 1 4 4 6 ) 

SUp Sdn 

(Verify that 0 < q < 1 .) 

1. Now, at time zero, the lady who wishes to play the game gives the 
dealer DQ in cash. 

2. The dealer buys и shares of the stock at a cost of USQ. 

3. So, at time zero, the dealer has и shares of stock, and cash equal to 
-Do — uso = v. 

4. If the stock moves up at time Δ(ί), the dealer sells his и shares at 
price 5U. He then has cash equal to 

y>Sup i VC = Sup i -Lsup Sup ~z Dup 
Sup ~ Sdn Sup — Sdn 
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in which she receives Dup if the stock goes up in the next step and Ddn if 
it goes down. How much should the dealer charge her to play this game? 

The dealer decides to emulate the derivative by forming a portfolio of 
the u units of the stock on which the derivative is based plus a position of 
v in a bond paying interest rate r. Using Figure 14.16, let us determine u 
and v. 

USup + ver.6.{t) = Dup when the stock goes up, 

VSdn + ver.6.{t) Ddn when the stock goes down. (14.44) 

Solving for u and v, we have 

u = Sup - Sdn 
V = e-r.6.{t) (Dup - uSup) .  

At time zero, the value of the portfolio (and therefore of the emulated 
derivative) is given by 

Do Su + v  

where 

exp( -r�(t» 
(soer.6.{t) - Sdn Dup + (1 _ soer.6.(t) - Sdn ) Ddn) 

sup - Sdn sup - Sdn 
qDup + (1 - q)Ddn (14.45) 

(14.46) 

(Verify that 0 � q � 1 .) 

1. Now, at time zero, the lady who wishes to play the game gives the 
dealer Do in cash. 

2. The dealer buys u shares of the stock at a cost of uso. 

3. So, at time zero, the dealer has u shares of stock, and cash equal to 
Do - USo = v. 

4. If the stock moves up at time �(t) , the dealer sells his u shares at 
price Su'  He then has cash equal to 

r.6.{t) _ Dup - Ddn D Dup - Ddn - D uSup + ve sup + up - sup - up sup - Sdn sup - Sdn 
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5. If the stock moves down at time Δ(ί), the dealer sells his и shares at 
price su. He then has cash equal to 

usdn + v = —^1— sdn + Dup £ sup = Ddn 
&up sdn Sup Sdn 

So, then, the dealer has achieved a strategy of buying a portfolio which 
gives him zero profit and zero loss whether the stock moves up or down. 
By imposing a discipline of buying the right amount of stocks and bonds 
at each step, he has achieved, apparently, a situation where he controls the 
"state of nature." We note that 

n «оег*М - Sdn 
Q= 

&up Sdn 

has the formal properties of a probability. That is, q is between zero and 
one. We have seen that the value of the dealer's portfolio at time zero is 
given by 

D0 = e-rAV[qDup + (l-q)Ddn]. 
For a price received from the lady Д>, he agrees to pay the lady Dup at time 
A(t) if the stock moves to sup and Ddn if it moves down to Sdn- At time 
Δ(£), the dealer has a portfolio of value Dup if the stock goes up and Ddn 
if it goes down. The dealer has, it would appear, created his own reality. 
Maintaining his strategy of updating the portfolio at each tick of time, he 
will have achieved the ability to have assets, absent his obligations, of zero. 
This q is, accordingly, frequently referred to as the martingale measure: it 
has "expectation" zero. Like a bookie, the dealer has managed to eliminate 
his risk and simply Uve on commissions. 

Let us consider a modified version of equation (14.16), namely, 

S{t 4- Δ(ί)) = S(t) exp[(/x - -σ2)Δ(ί)] exp[ay/A(t)] with prob q 

)1 
(14.47) 

= S(t) βχρ[(μ - -σ2)Δ(ί)] βχρ[-σv
/5(t)]with prob 1 - д. 

Note that 
So[erA(t) _ ^Μ-σν 'Σδ ) ] 

4 ~ SoeMA(t)[e^v/^Ó_e-crVA(Ì0| 

6Δ(ί)(Γ-μ) _ е-ау/Щ 

1 + A(t)(r - μ) + A(t)2(r - /i)2/2 - 1 + ау/Щ - σ2Δ(*)/2 
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5. If the stock moves down at time �(t), the dealer sells his U shares at 
price Su'  He then has cash equal to 

_ Dup - Ddn Dup - Ddn USdn + V - Sdn + Dup - sup = Ddn sup - Sdn sup - Sdn 
So, then, the dealer has achieved a strategy of buying a portfolio which 
gives him zero profit and zero loss whether the stock moves up or down. 
By imposing a discipline of buying the right amount of stocks and bonds 
at each step, he has achieved, apparently, a situation where he controls the 
"state of nature." We note that 

soerA(t) - Sdn q = -'------'= sup - Sdn 
has the formal properties of a probability. That is, q is between zero and 
one. We have seen that the value of the dealer's portfolio at time zero is 
given by 

For a price received from the lady Do, he agrees to pay the lady Dup at time 
�(t) if the stock moves to sup and Ddn if it moves down to Sdn. At time 
�(t), the dealer has a portfolio of value Dup if the stock goes up and Ddn 
if it goes down. The dealer has, it would appear, created his own reality. 
Maintaining his strategy of updating the portfolio at each tick of time, he 
will have achieved the ability to have assets, absent his obligations, of zero. 
This q is, accordingly, frequently referred to as the martingale measure: it 
has "expectation" zero. Like a bookie, the dealer has managed to eliminate 
his risk and simply live on commissions. 

Let us consider a modified version of equation (14.16) ,  namely, 

S(t + �(t)) 1 r;;T.;\ . S(t) exp[(J.t - 2a2)�(t)] exp[ay �(t)] WIth prob q 

Note that 

= 

S(t) exp[(J.t - �a2)�(t)1 exp[-ay' �(t)]with prob 1 - q. 

(14.47) 

q 

= 

so [erA(t) _ eI'A(t)-u.JA(t)] 
soeI'A(t) [eUV A(t) _ e-uV A(t) ] 
eA(t)(r-l') _ e-u.JA(t) 
eUV A(t) _ e-uV A(t) 

1 + �(t)(r - J.t) + �(t)2(r - J.t)2/2 - 1 + a.;z;;w - a2�(t)/2 
2ay' �(t) 

1/2 ( 1 _ y' �(t) [J.t + a;2 - r] ) . 
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Again, we look at 

5(i) = 5(0) exp[(M - \a2)t + aVt^Ц^)], (14.48) 

But, with the martingale measure, we have 

EQ(2Xn - n) = 2nq-n 

= - n V ^ ^ + " ' / 2 - - l , (14.49) 

For(2Xn) = 4ng(l-<?) (14.50) 

= n (l - ^/φι\μ + σ2/2 - Γ]/σ) ( l + >/£(*)[** + σ2/2 - rj/σ) 

= η(ΐ - ( ί /η)((μ + σ 2 /2-Γ) / σ ) 2 ) 
—> η + a constant as n becomes large, i.e., as Δ(ί) —► 0 

Therefore, 

Let 

2 X n - n 
^ - Λ Τ ( - ^ + σ

2 / 2 - Γ ] / σ , ΐ ) . 

z _ 2 X n - n | Vtlß + a2/2-r] 
y/n σ 

Z is normal with mean zero and unit variance. Then 

(14.51) 

(14.52) 

S{t) = 5(0) exp 

-» 5(0) exp 
2 σ 

(14.53) 

Then, under the risk-neutral Q measure, 

EQ(S(t)) = S(0)exv[(r-^a2)t]EQ(exp[aVtZ]) 

= S(0)ert. (14.54) 

Not surprisingly, considering the way the portfolio is constantly rebalanced, 
its return is the same as that of a riskless bond paying the rate r. In 
other words, although under the probability model, E(S(t)) = 5(0) βχρ(μέ), 
the risk neutral hedging model buys and sells the stock in such a way 
that the expected value of the stock under the hedging discipline is only 
E(S(t)) = S(0) exp(rt) regardless of the stock's growth rate μ. In essence, 
we have taken a risky stock and split it into riskless debt (which the dealer 
holds) and a risky call (which is sold to the lady). In a perfect world, this 
might work, but it does not in the real world. Here are some reasons why: 
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Again, we look at 

1 
2 

t;2X - n 8(t) = 8(0) exp[(JL - "2(7 )t + (7vt � )] , (14.48) 

But, with the martingale measure, we have 

EQ{2Xn - n) 2nq - n 
= n (1 _ JA(t) [JL + (7;2 - r] ) _ n 

-n� [JL + (72/2 - r] . (14.49) 
(7 

Var(2Xn) = 4nq(1 - q) (14.50) 
n (1 - �[JL + (72/2 - rl/(7) (1 + J A (t) [JL + (1'2/2 - rl/(7) 

n (1 - (t/n) ( JL + (72/2 - r)/(7)2) 
- n + a constant as n becomes large, i.e., as A(t) - 0 

Therefore, 

Let 

2Xn - n ( t; 
2 ) ..;n - N -vt[JL + (7 /2 - rl/(7, 1 . 

Z =  
2Xn - n  + vt[JL + (72/2 - r] 

..;n (7 

(14.51) 

(14.52) 
Z is normal with mean zero and unit variance. Then 

8(t) = 8(0) exp [(JL - �(72)t + (7v'i2X� n)] 

[ 1 t;vt[JL + (72/2 - r] t; ] - 8(0) exp (JL - 2(72)t - (7V t (7 + (7V tZ . 

Then, under the risk-neutral Q measure, 

EQ(8(t)) = 8(0) exp[(r - �(72)t]EQ (exp[(7v'iZJ) 
= 8(0)ert. 

(14.53) 

(14.54) 
Not surprisingly, considering the way the portfolio is constantly rebalanced, 
its return is the same as that of a riskless bond paying the rate r. In 
other words, although under the probability model, E(8(t)) = 8(0) exp(JLt), 
the risk neutral hedging model buys and sells the stock in such a way 
that the expected value of the stock under the hedging discipline is only 
E(8(t)) = 8(0) exp(rt) regardless of the stock's growth rate JL. In essence, 
we have taken a risky stock and split it into riskless debt (which the dealer 
holds) and a risky call (which is sold to the lady) . In a perfect world, this 
might work, but it does not in the real world. Here are some reasons why: 
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• Transaction costs are not really free. The closer the hedge gets to be-
ing riskless, the more frequently one must rebalance (and this results 
in material transaction costs). 

• The realistic value of r will be significantly higher than that of a 
T-bill. 

• Historical records show that the Black-Scholes formula [3], which we 
develop below, generally does not give the actual market price of a 
call option. To correct this imperfection in nature, it is customary 
for some traders to plug in whatever value is necessary for σ to give 
the market price for the option. We may recall in a chemistry or 
physics lab when we did not get the answer demanded by the science, 
there was some temptation to plug in whatever would conform to the 
established physical model. Such a procedure was called "dry labing" 
and generally regarded as cheating. Amongst believers in EMH, such 
a plug-in approach to a σ so obtained has a much more respectable 
name, implied volatility. 

• Stock prices may jump (with substantial discontinuities), and this 
may defeat the hedging strategy. Stock price evolution is not just a 
smooth function of time. 

• Investors will vary a great deal on their expectations as to the future 
price of the stock. Even in the aggregate, the investment bankers 
believe the investors to be more leming-like than they are. 

• In the case of horse betting, there is an arbitrary mechanism which 
sets payoffs at the instant the race starts. The bookmaker is allowed 
to set payoffs with his profit margin locked into the payoff. Suppose 
that the bet is placed a week before the instant the race starts. What 
costs must the bookmaker incur in the intervening time period to 
rebalance the payoffs for the bets he has covered? The answer is 
"zero." And this is the reason the analogy between bookmaking and 
selling options is flawed. 

Perhaps the Black-Scholes Theorem can be described as a proof of a 
result wished by many to be true. Perhaps the best introduction to the 
result comes from asking the old question of how much an investor should 
pay at time T for a stock which today has price 5(0). The answer is deemed 
(by many) to be obvious. The seller of the stock future buys the stock today 
at a price 5(0) using money he borrows at interest rate r. If the agreed 
upon price is S(0)exp(rT), then when the buyer pays it at time T, the 
seller can pay back the loan he entered upon to buy the stock. So, the 
story goes, it really makes no difference what buyer or seller believes the 
growth rate of the stock is (that has already been incorporated magically 
into the current price of the stock). The broker of the future naturally will 
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call option. To correct this imperfection in nature, it is customary 
for some traders to plug in whatever value is necessary for (j to give 
the market price for the option. We may recall in a chemistry or 
physics lab when we did not get the answer demanded by the science, 
there was some temptation to plug in whatever would conform to the 
established physical model. Such a procedure was called "dry labing" 
and generally regarded as cheating. Amongst believers in EMH, such 
a plug-in approach to a (j so obtained has a much more respectable 
name, implied volatility. 

• Stock prices may jump (with substantial discontinuities), and this 
may defeat the hedging strategy. Stock. price evolution is not just a 
smooth function of time. 

• Investors will vary a great deal on their expectations as to the future 
price of the stock.. Even in the aggregate, the investment bankers 
believe the investors to be more leming-like than they are. 
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add a commission to the cost. The only market aspect of the deal will be 
the possible competition between brokers to lower their commissions. 

Let us turn to the "risk-free" purchase of a European call option. Recall 
that here we pay at time zero for the right to buy the stock at time T for 
strike price X. 

CBS = e"rTJ57[Max(5(r)-X,0)] (14.55) 

e~rt 

> / W t J\n[^] 
f (S(0)ez-X)exp 

•/inferi 

1 , , σ* a 
(*-(r-V)*V 2σΗχ ν 2 dz 

where we note that the formula is the same as that for Method В except 
that the growth rate is r rather than μ. 

The risk neutral determination value for a call option was first given 
by Black and Scholes [3]. Prom Smith's Lemma (see Problem 2 in this 
chapter), taking φ = 1, λ =η = e~rT, and setting μ = r, 

CBS - e-"{**sm ( W ( 0 ) / J ^ + ( « V W ) (14.56) 

Λο6(3(0)/Χ) + [Γ-(σ2/2)]Γ 
)> ' 

The Black-Scholes model has had enormous impact on the trading of op-
tions. Consequently, it has itself changed the mechanism of the market. 
However, if one looks at the actual market price of an option at a given 
time, it is seldom the case that it is the same or even close to the Black-
Scholes value if one uses historical measures of volatility. But since the true 
believers know the Black-Scholes value is correct, they take the actual mar-
ket price of the option and calculate backwards to determine the implied 
volatility. That this implied volatility will be different for different time 
horizons is taken care of by noting that the appropriate average volatility 
will naturally be different for longer and shorter time epochs. That the 
implied volatility can also be different for the same stock using the same 
time horizon but different strike prices is the kind of rude remark that is 
best left unsaid in polite financial circles. 

14.15 The Black-Scholes Derivation Using 
Differential Equations 

We recall the brownian model for stock progression: 

dS = ßSdt + aSdz. (14.57) 

Let / be a derivative security (i.e., one thats is contingent on S). Then, 
from Ito's lemma, we have: 

* - {%"s+1+50("s)a)л+я»«- (ι4·58) 
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add a commission to the cost. The only market aspect of the deal will be 
the possible competition between brokers to lower their commissions. 

Let us turn to the "risk-free" purchase of a European call option. Recall 
that here we pay at time zero for the right to buy the stock at time T for 
strike price X. 

CBS e-rT E[Max(S(T) - X, 0)] (14.55) 

= e-rt � fOO (S(O)eZ - X) exp [-
2 
\ (z - (r - u

2
2 

)t)2] dz 
21ru2t In! � I u t 

where we note that the formula is the same as that for Method B except 
that the growth rate is r rather than f.L. 

The risk neutral determination value for a call option was first given 
by Black and Scholes [3] . From Smith's Lemma (see Problem 2 in this 
chapter), taking 'I/J = 1, A =7 = e-rT, and setting f.L = r, 

CBS = e-rT{erTB(O)� Cog(B(O)/X�1r + (U2/2)]T) (14.56) 

-X� (IOg(B(O)/ X) + [r - (u2 /2)]T) }. uVT 
The Black-Scholes model has had enormous impact on the trading of op­
tions. Consequently, it has itself changed the mechanism of the market. 
However, if one looks at the actual market price of an option at a given 
time, it is seldom the case that it is the same or even close to the Black­
Scholes value if one uses historical measures of volatility. But since the true 
believers know the Black-Scholes value is correct, they take the actual mar­
ket price of the option and calculate backwards to determine the implied 
volatility. That this implied volatility will be different for different time 
horizons is taken care of by noting that the appropriate average volatility 
will naturally be different for longer and shorter time epochs. That the 
implied volatility can also be different for the same stock using the same 
time horizon but different strike prices is the kind of rude remark that is 
best left unsaid in polite financial circles. 

14.15 The Black-Scholes Derivation Using 
Differential Equations 

We recall the brownian model for stock progression: 

dB = f.LBdt + uBdz. (14.57) 
Let f be a derivative security (Le., one thats is contingent on B) . Then, 
from Ito's lemma, we have: 

(14.58) 
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Multiplying (14.57) by df/dS, and isolating df/dSaSdz on the left side in 
both (14.57) and (14.58), we have: 

—aSdz = —dS-—ßSdt 

%«sdz - 4r-(g^+V + ig(af i ),)A 

Setting the two right-hand sides equal (stochastic though they be), we have: 

Let us consider a portfolio which consists of one unit of the derivative 
security and —df/dS units of the stock. The instantaneous value of the 
portfolio is then 

v=f-%s- (14-6°) 
Over a short interval of time, the change in the value of the portfolio is 
given by 

Now since (14.61) has no dz term, the portfolio is riskless during the time 
interval dt. We note that the portfolio consists both in buying an option 
and selling the stock. Since, over an infinitessimal time interval, the Black-
Scholes portfolio is a riskless hedge, it could be argued that the portfolio 
should pay at the rate r of a risk free security, such as a Treasury short 
term bill. That means that 

» - ·** -r (> - %s)л - (f+ìS<* s>2)* ( ΐ4·62) 

Finally, that gives us the Black-Scholes differential equation 

It is rather amazing that the Black-Scholes formulation has eliminated 
both the Wiener term and the stock growth factor μ. Interestingly, however, 
the stock's volatility σ remains. Essentially, the Black-Scholes evaluation 
of a stock is simply driven by its volatility, with high volatility being prized. 
We note that μ has been replaced by the growth rate r of a riskless security. 
Over a short period of time, the portfolio will be riskless. (We recall how, 
in the Black-Scholes solution, we used a hedge where we bought options 
and sold stock simultaneously.) This risklessness will not be maintained at 
the level of noninfinitessimal time. However, if one readjusts the portfolio, 
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Multiplying (14.57) by 8118S, and isolating 8118SuSdz on the left side in 
both (14.57) and (14.58) , we have: 

Setting the two right-hand sides equal (stochastic though they be) , we have: 

(14.59) 

Let us consider a portfolio which consists of one unit of the derivative 
security and -81/8S units of the stock. The instantaneous value of the 
portfolio is then 

(14.60) 
Over a short interval of time, the change in the value of the portfolio is 
given by 

81 (81 u P  1 2) dP = dl - 8SdS = at + 2 8S2 (uS) dt. (14.61) 

Now since (14.61) has no dz term, the portfolio is riskless during the time 
interval dt. We note that the portfolio consists both in buying an option 
and selling the stock. Since, over an infinitessimal time interval, the Black­
Scholes portfolio is a riskless hedge, it could be argued that the portfolio 
should pay at the rate r of a risk free security, such as a Treasury short 
term bill. That means that 

(14.62) 

Finally, that gives us the Black-Scholes differential equation 

(14.63) 

It is rather amazing that the Black-Scholes formulation has eliminated 
both the Wiener term and the stock growth factor 11-. Interestingly, however, 
the stock's volatility u remains. Essentially, the Black-Scholes evaluation 
of a stock is simply driven by its volatility, with high volatility being prized. 
We note that J.t has been replaced by the growth rate r of a riskless security. 
Over a short period of time, the portfolio will be riskless. (We recall how, 
in the Black-Scholes solution, we used a hedge where we bought options 
and sold stock simultaneously.) This risklessness will not be maintained at 
the level of noninfinitessimal time. However, if one readjusts the portfolio, 
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say, daily, then (making the huge assumption that sudden jumps cannot 
happen within a short period of time), it could be argued that assuming 
one knew the current values of r and σ, a profit could be obtained by 
purchasing options when the market value was below the Black-Scholes 
valuation and selling them when the market value was above that of the 
Black—Scholes valuation (assuming no transaction costs). (Such a fact, it 
could be argued, in which all traders acted on the Black—Scholes valuation, 
would drive the market. In reality, if the Treasury Bill rate is used for r 
said historical estimates are used for μ and σ, the actual value for which an 
option is traded is generally significantly different from the Black- Scholes 
value.) 

Now, we recall that a European call option is an instrument which gives 
the owner the right to purchase a share of stock at the exercise price -X", T 
time units from the date of purchase. Naturally, should the stock actually 
be priced less than X at time T, the bearer will not exercise the option to 
buy at price X. Although we get to exercise the option only at time T, we 
must pay for it today. Hence, we must discount the value of an option by 
the factor exp(—rt). Since we have seen that the Black-Scholes equation 
involves no noise term, it is tempting to conjecture that the fair evaluation 
of an option to purchase a share of stock at exercise price X is given by 

CBS = e~rTE[Max(S(T) - X, 0)] (14.64) 

- ·""5Й l*i(S<0)e* " *)exp Ш* -<r - T»"]& 

where we note that the growth rate is r rather than μ. 

14.16 Black-Scholes: Some Limiting Cases 

Consider, in Tables 14.3 and 14.4, the Black-Scholes pricing model com-
pared to Model A and Model В in the case where a stock has a rather high 
growth rate μ = 0.15 with a fixed riskless interest rate of 5% and a variety 
of volatilities and strike prices X. (Of course, we are looking at a case 
where the option buyer's estimates of the growth rate μ and volatility σ 
were correct. From the standpoint of the buyer, who decides to buy the call 
option, standing at time zero, he probably believes his estimate for (μ, σ) 
is correct. One question we should be examine is the value of the option 
to the buyer, given his current state of information.) We shall assume the 
option is for an exercise time of six months in the future, and that the price 
of the stock at the present time is $100. The purpose of this exercise is 
simply to look at Black-Scholes in comparison to two older pricing models 
in the very optimistic case where the person using the model knows μ and 
σ. 
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say, daily, then (making the huge assumption that sudden jumps cannot 
happen within a short period of time) , it could be argued that assuming 
one knew the current values of r and (T, a profit could be obtained by 
purchasing options when the market value was below the Black-Scholes 
valuation and selling them when the market value was above that of the 
Black-Scholes valuation (assuming no transaction costs) .  (Such a fact, it 
could be argued, in which all traders acted on the Black-Scholes valuation, 
would drive the market. In reality, if the Treasury Bill rate is used for r 
and historical estimates are used for J.l. and (T, the actual value for which an 
option is traded is generally significantly different from the Black-Scholes 
value.) 

Now, we recall that a European call option is an instrument which gives 
the owner the right to purchase a share of stock at the exercise price X, T 
time units from the date of purchase. Naturally, should the stock actually 
be priced less than X at time T, the bearer will not exercise the option to 
buy at price X. Although we get to exercise the option only at time T, we 
must pay for it today. Hence, we must discount the value of an option by 
the factor exp( -rt). Since we have seen that the Black-Scholes equation 
involves no noise term, it is tempting to conjecture that the fair evaluation 
of an option to purchase a share of stock at exercise price X is given by 

GBS e-rT E[Max(S(T) - X, O)] (14.64) 

= e-rt � 100 (S(O)eZ - X) exp [- 2 \ (z - (r - 0'
2
2 )t)2] dz 21rO'2t In!:gfu I 0' t 

where we note that the growth rate is r rather than J.l.. 

14.16 Black-Scholes: Some Limiting Cases 

Consider, in Tables 14.3 and 14.4, the Black-Scholes pricing model com­
pared to Model A and Model B in the case where a stock has a rather high 
growth rate J.l. = 0.15 with a fixed riskless interest rate of 5% and a variety 
of volatilities and strike prices X. (Of course, we are looking at a case 
where the option buyer's estimates of the growth rate J.J. and volatility (T 
were correct. From the standpoint of the buyer, who decides to buy the call 
option, standing at time zero, he probably believes his estimate for (J.l., (T) 
is correct. One question we should be examine is the value of the option 
to the buyer, given his current state of information.) We shall assume the 
option is for an exercise time of six months in the future, and that the price 
of the stock at the present time is $100. The purpose of this exercise is 
simply to look at Black-Scholes in comparison to two older pricing models 
in the very optimistic case where the person using the model knows J.l. and 
(T. 
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X 

I CBs 
С в 

1 С А 

Table 14 .3 . S ix -Month Options: σ 
102 
5.89 
8.58 
9.02 

104 
4.99 
7.47 
7.85 

106 
4.20 
6.46 
6.79 

108 
3.51 
5.55 
5.83 

110 
' 2.91 

4.73 
L 4.97 

112 
2.40 
4.00 
4.21 

= 0.20, μ = 0.15. 
114 
1.98 
3.37 
3.54 

116 
1.63 
2.82 
2.96 

118 
1.36 
2.35 
2.47 

120 
1.16 
1.95 
2.05 

X 
CBS 

С в 
1 С А 

Table 14.4 . S ix -Month Options: σ = 0.40, μ = 
102 

11.48 
13.84 
14.55 

104 
10.63 
12.89 
13.55 

106 
9.82 

12.00 
12.62 

108 
9.07 

11.16 
11.73 

ПО 
8.37 

10.37 
10.90 

112 
7.72 
9.62 

10.11 

114 
7.11 
8.92 
9.37 

= 0.15. 
116 
6.54 
8.26 
8.68 

118 
6.01 
7.64 
8.03 

120 
5.53 
7.06 
7.43 1 

We note that as the volatility σ increases, the three strategies become more 
similar. To note the effect of increasing and decreasing σ, we show in Tables 
14.5 and 14.6 results for very low σ (.001) and very high σ (2.00). 

Table 14.5. S ix -Month Opt 
X 

CBS 

С в 
1 С A 

102 
0.52 
5.37 
5.65 

104 
0.00 
3.51 
3.69 

106 
0.00 
1.66 
1.74 

108 
0.00 
0.00 
0.00 

110 
0.00 
0.00 
0.00 

ions: σ = .001 μ== .15. | 
112 
0.00 
0.00 
0,00 

114 
0.00 
0.00 
0.00 

116 
0.00 
0.00 
0.00 

118 
0.00 
0.00 
0.00 

120 
0.00 
0.00 
o.oo 1 

! Table 14.β . S i x - M o n t h Opt ions : I 
I σ = 2.00 μ = .16. 
1 EP I 102 I 104 | 106 | 108 1 110 | 112 | 114 | 116 | 118 | 120 | 

&BS I 5 2 1 7 61.71 51.25 50.80 50.36 4Ó.Ò3 49.50 40.08 48.67 48.26 
CB I 53.37 52.91 52.45 52.00 51.56 51.13 50.70 50.28 40.87 40.47 

| CA I 66.11 I 55.62 1 66.14 I 54.67 | 54.21 | 53.75 | 53.30 | 62.86 | 52.43 | 52.00 | 

Let us consider limiting behavior as the volatility goes first to infinity and 
then to zero. Suppose that a stock is currently selling for 5(0). We wish 
to buy an option T time units in the future with strike price X. As the 
volatility of the stock goes to infinity, then we note that both Black-Scholes 
(14.56) and Method В (14.3) tell us that the option is so valuable that its 
fair price is simply the current value of the stock, namely 5(0), irrespective 
of the value of μ. 

On the other hand, let us suppose that the value of the volatility is zero. 
Then the Black-Scholes price is 

CBS = S(0)-e~rTXifS(0)erT>X 
= 0 otherwise. (14.65) 

Next, let us consider the situation where the growth rate of the stock is 
actually negative (μ = - .15) in Tables 14.7 and 14.8, respectively. 

Та 
X 

CBS 

1 С в 
I С А 

102 
0.52 
0.00 
0.00 

bì© 14 .7rS lx -Mont l 
104 
0.00 
0.00 
0.00 

106 
0.00 
0.00 
0.00 

108 
0.00 
0.00 
0.00 

Ь Options: σ = .001 μ = - . 1 5 . 
1 110 

0.00 
0.00 

[ 0.00 

112 
0.00 
0.00 
0.00 

114 
0.00 
0.00 
0.00 

116 
0.00 
0.00 
0.00 

118 
0.00 
0.00 
0.00 

120 ! 
0.00 
0.00 
0.00 

к CBS 
св CA 

1 0 2 
52.17 
40.77 
45.03 

—тан 
1 0 4 

51.71 
40.30 
44.61 

e 14 .8 ."S ix -Month Opt ions : σ = 2.00 μ = ■ 
1 0 6 

51.25 
48.84 
44.10 

1 0 8 
50.80 
48.30 
43.78 

1 1 0 
50.36 
47.06 
43.38 

112 
40.03 
47.61 
42.00 

1 1 4 
40.50 
47.08 
42.60 

- . 1 5 . 
1 1 6 

40.08 
46.66 
42.22 

1 1 8 
48.67 
46.26 
41.85 

1 2 0 
48.26 
45.84 ' 
41.48 
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Table 14.3. Six-Month Options: q = 0.20, I' = 0.15. 
X 102 104 106 108 1 10 112 114 1 16 1 18 120 
CBS 5.89 4.99 4.20 3.51 2.91 2.40 1.98 1.63 1.36 1 . 16 
CB 8.58 7.47 6.46 5.55 4.73 4.00 3.37 2.82 2.35 1 .95 
CA 9.02 7.85 6.79 5.83 4.97 4.21 3.54 2.96 2.47 2.05 

Table 14.4. Six-Month Options: q = 0.40, I' = 0.15. 
X 102 104 106 108 110 112  114 1 16 1 18 120 

CBS 11 .48 10.63 9.82 9.07 8.37 7.72 7 .11  6.54 6.01 5.53 
CB 13.84 12.89 12.00 1 1.16 10.37 9.62 8.92 8.26 7.64 7.06 
CA 14.55 13.55 12.62 1 1.73 10.90 10.11  9.37 8.68 8.03 7.43 

We note that as the volatility ()" increases, the three strategies become more 
similar. To note the effect of increasing and decreasing ()", we show in Tables 
14.5 and 14.6 results for very low ()" ( .001) and very high ()" (2.00) . 

Table 14.5. Six-Month Options: q = .001 I' = . 15. 
X 102 104 106 108 110 112 114 1 16 118 120 

CBS 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
CB 5.37 3.51 1.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
CA 5.65 3.69 1.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Let us consider limiting behavior as the volatility goes first to infinity and 
then to zero. Suppose that a stock is currently selling for 8(0) . We wish 
to buy an option T time units in the future with strike price X. AB the 
volatility of the stock goes to infinity, then we note that both Black-Scholes 
( 14.56) and Method B (14.3) tell us that the option is so valuable that its 
fair price is simply the current value of the stock, namely 8(0) , irrespective 
of the value of J.L. 

On the other hand, let us suppose that the value of the volatility is zero. 
Then the Black-Scholes price is 

CBS = 8(0) - e-rT X if 8(0)erT � X 
o otherwise. (14.65) 

Next, let us consider the situation where the growth rate of the stock is 
actually negative (J.t = -.15) in Tables 14.7 and 14.8, respectively. 

Table 14.7. Six-Month Options: q - .001 I' - . 15. 
X 102 104 

CBS 0.52 0.00 
CB 0.00 0.00 
CA 0.00 0.00 

�I>I X 10� 104 ass I S�.17 I SI.71 as 411.77 49.30 a A 46.03 44.61 

106 108 
0.00 0.00 
0.00 0.00 
0.00 0.00 

. 14.8. IIx-MoDt 
106 108 

S1.�6 SO.80 
48.84 48.80 
44. 19 4S.78 

1 10 112 114 1 16 118 120 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 

Optional " � . OO ,. .IS. 
110 11� 114 1 1 6  1 1 8  120 

60.36 I 49.93 I 49.S0 J 49.08 I 48.67 I 48.26 
47.96 47.S1 47.08 46.66 46.�S 4S.84 
4S.38 42.1111 4�.60 �.�� 41.8S 41.48 
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We note that Black-Scholes values a call option at, say $102, equally 
whether the growth rate of the stock is +.15 or —.15. Naturally, it is 
unfair to note that Method A and Method В are more accurate than 
Black—Scholes. That would be true if we really knew μ, but generally 
we have only noisy estimates for this parameter. Nevertheless, markets are 
made, in large measure, by differences in information (opinion). 

Table 14.9 . C o m p u t e d Values of S ix -Month Opt ions (wi th Bear J u m p s ) . 
σ = .20, μ = .15. 

Ex. Pr. 
CBS 

CB 

CA 

Sim. 

102 
5.89 
8.58 
9.02 
5.97 

104 
4.99 
7.47 
7.85 
5.13 

106 
4.20 
6.46 
6.79 
4.38 

108 
3.51 
5.55 
5.83 
3.72 

110 
2.91 
4.73 
4.97 
3.13 

112 
2.40 
4.00 
4.21 
2.62 

114 
1.98 
3.37 
3.54 
2.18 

116 
1.63 
2.82 
2.96 
1.80 

118 
1.36 
2.35 
2.47 
1.48 

120 
1.16 
1.95 
2.05 
1.21 

1 ^ EP 

CBS 

С в 
С A 

1 Sim. 

ble 14 .10 . Six-] 
102 

11.48 
13.84 
14.55 
10.89 

104 
10.63 
12.89 
13.55 
10.08 

Month 
106 

9.82 
12.00 
12.62 
9.33 

Options (with Bear J u m p s . ) σ = .40, μ = .15 ~~] 
108 

9.07 
11.16 
11.73 
8.62 

110 
8.37 

10.37 
10.90 
7.96 

112 
7.72 
9.62 

10.11 
7.34 

114 
7.11 
8.92 
9.37 
6.76 

116 
6.54 
8.26 
8.68 
6.23 

118 
6.01 
7.64 
8.03 
5.73 

1 2 0 J 
5.53 
7.06 
7.43 
5.28 

Now, based on Tables 14.9 and 14.10, the pricing of the Black-Scholes 
model appears inspired. Of course, we have simply added on the kind of 
unexpected downward turn which is not accounted for by the geometric 
Brownian walk unmodified. On the other hand, our imposition of bear 
jumps has depressed the expected growth rate of the stock to essentially 
1%, and most of the value of the option is due to volatility. 

The vendor of the option typically has no strong views about a particular 
stock. He or she is selling options in many stocks and is only interested that 
he or she retrieves his or her supposed opportunity cost rate η. Accordingly, 
the vendor of the option might use use Black-Scholes with r replaced by η. 

_хф^у»т+и-суту (l4.66) 

On the other hand, the buyer of the option will have fairly strong views 
about the stock and its upside potential. The buyer could use Black-Scholes 
replacing r by μ, where, typically, μ > 77 > r. Thus, 

-x· (у*тт+ь-У№} ). (11.67) 
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We note that Black-Scholes values a call option at, say $102, equally 
whether the growth rate of the stock is +.15 or -.15. Naturally, it is 
unfair to note that Method A and Method B are more accurate than 
Black-Scholes. That would be true if we really knew J..L, but generally 
we have only noisy estimates for this parameter. Nevertheless, markets are 
made, in large measure, by differences in information (opinion) . 

Table 14.9. Computed Values of Six-Month Options (with Bear Jumps). 
0' = .20, I-' = .15. 

Ex. Pro 102 104 106 108 110 112 114 116 118 120 
CBS 5.89 4.99 4.20 3.51 2.91 2.40 1.98 1.63 1.36 1.16 
CB 8.58 7.47 6.46 5.55 4.73 4.00 3.37 2.82 2.35 1.95 
CA 9.02 7.85 6.79 5.83 4.97 4.21 3.54 2.96 2.47 2.05 

Siro. 5.97 5.13 4.38 3.72 3.13 2.62 2.18 1.80 1.48 1.21 

Table 14.10. Six-Month Options {with Bear Jumps.) q - .40, I-' - . 15 
EP 102 104 106 108 110 112 114 116 118 120 

CBS 1 1.48 10.63 9.82 9.07 8.37 7.72 7.11 6.54 6.01 5.53 
CB 13.84 12.89 12.00 11.16 10.37 9.62 8.92 8.26 7.64 7.06 
CA 14.55 13.55 12.62 11.73 10.90 10.11 9.37 8.68 8.03 7.43 

Siro. 10.89 10.08 9.33 8.62 7.96 7.34 6.76 6.23 5.73 5.28 

Now, based on Tables 14.9 and 14.10, the pricing of the Black-Scholes 
model appears inspired. Of course, we have simply added on the kind of 
unexpected downward turn which is not accounted for by the geometric 
Brownian walk unmodified. On the other hand, our imposition of bear 
jumps has depressed the expected growth rate of the stock to essentially 
1 %, and most of the value of the option is due to volatility. 

The vendor of the option typically has no strong views about a particular 
stock. He or she is selling options in many stocks and is only interested that 
he or she retrieves his or her supposed opportunity cost rate TJ. Accordingly, 
the vendor of the option might use use Black-Scholes with r replaced by 1]. 

Cvendor e-'1T{e'1TS(O)<J.> COg(S(O)/X��+ (a2/2)]T) 
-X<J.> ( log(S(O)/ X) + [TJ - (a2/2»)T) }. (14.66) a../T 

On the other hand, the buyer of the option will have fairly strong views 
about the stock and its upside potential. The buyer could use Black-Scholes 
replacing r by J..L, where, typically, J..L > TJ > r. Thus, 

e-I-'T {el-'TS(O)<J.> COg(S(O)/X�1 + (a2/2»)T) 
-X<J.> COg(S(O)/X)a1 - (a2 /2)JT) } . (14.67) 
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We note that typically, in the mind of the call option buyer, μ is rather large. 
Perhaps some investors will buy solely on the basis of a large stock volatility, 
but this is unusual. Option buying is frequently a leveraging device whereby 
ал investor can realize a very large gain by buying call options rather than 
stocks. The seller of the option is probably expecting an η < μ value as the 
reasonable rate of return on his/her investments overall. It is observed [1] 
that the arithmetic mean annual return on U.S. common stocks (including 
dividends) from 1926 on is over 10%. Let us suppose we are dealing with 
an initial stock price of $100 and that the vendor uses 77 = 0.10 and the 
buyer believes μ = 0.15. In Tables 14.11 and 14.12, we show the values 
of C(v e n d o r\ and С (buyer)' respectively This may appear confusing, for 
we have arrived at a price for the vendor and one for the buyer, and they 
are generally not the same. Pareto efficiency is the situation where all 
parties are better off by undertaking a transaction. Clearly, at least from 
their respective viewpoints, we do have Pareto efficiency (assuming that 
the commission is not so high as to swamp the anticipated profit to the 
buyer). The difference between the price the buyer is willing to pay and 
that for which the vendor is willing to sell must be positive, or there will 
be no trade. 

Suppose that an investor believes the rate of growth of a stock is 0.15 
overall, bear jumps included. Then, if we are to include the bear jumps, 
we need to increase the value of the Brownian growth to 0.15 + 0.14 = 
0.29. So, let us now compute the simulated buyer's price, with discount 
to present value rate being μ = 0.15. We also compute the vendor's price 
using the Black-Scholes formula with riskless rate 77 = 0.10 (we will assume 
that the vendor will use the nominal volatility values of 0.20 and 0.40, as 
shown in Tables 14.11 and 14.12). 

Table 14 .11 . S ix -Month Opt ions (wi th Bear J u m p s ) : 
E x P r 
CBS 
^vendor 

1 ^buyer 

102 
5.89 
7.17 

10.53 

104 
4.99 
6.16 
9.34 

106 
4.20 
5.26 
8.24 

108 
3.51 
4.45 
7.23 

110 
2.91 
3.74 
6.30 

112 
2.40 
3.13 
5.46 

114 
1.98 
2.59 
4.71 

σ = 0.20, μ = 
116 
1.63 
2.13 
4.04 

118 
1.36 
1.75 
3.44 

0.15. 
120 
1.16 
1.42 
2.91 

Table 14 .12 . S ix -Month Opt ions (wi th £ 
EP 

CBS 
1 Cven 

Cbuy 

102 
11.48 
12.63 
15.56 

104 
10.63 
11.73 
14.54 

106 
9.82 

10.88 
13.58 

108 
9.07 

10.08 
12.67 

110 
8.37 
9.34 

11.80 

(ear J u m p s ) : σ = 0.40, μ = 0.15. 
112 

7.72 
8.63 

10.98 

114 
7.11 
7.98 

10.21 

116 
6.54 
7.36 
9.49 

118 
6.01 
6.79 
8.81 

120 
5.53 
6.25 
8.17 

It is unlikely that a buyer will be able to acquire options at the orthodox 
Black-Scholes rate (i.e., the one using Treasury bill interest rates of .05). 
But suppose she can. Suppose she correctly guesses σ = .2. The Black-
Scholes price for a strike price of $108 six months in the future is $3.5357. 
Suppose she gets lucky and the growth rate over the next six months is 
μ — .15. However, this is the aggregate growth (including Poissonian bear 
jumps of size 10% once a year and of size 20% once every five years). 
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We note that typically, in the mind of the call option buyer, J.I. is rather large. 
Perhaps some investors will buy solely on the baBis of a large stock volatility, 
but this is unusual. Option buying is frequently a leveraging device whereby 
an investor can realize a very large gain by buying call options rather than 
stocks. The seller of the option is probably expecting an TJ < J.I. value aB the 
reasonable rate of return on his/her investments overall. It is observed [1] 
that the arithmetic mean annual return on U.S. common stocks (including 
dividends) from 1926 on is over 10%. Let us suppose we are dealing with 
an initial stock price of $100 and that the vendor uses TJ = 0.10 and the 
buyer believes J.I. = 0.15. In Tables 14.11 and 14.12, we show the values 
of C(vendor) and C(buyer) ' respectively. This may appear confusing, for 

we have arrived at a price for the vendor and one for the buyer, and they 
are generally not the same. Pareto efficiency is the situation where all 
parties are better off by undertaking a transaction. Clearly, at least from 
their respective viewpoints, we do have Pareto efficiency (assuming that 
the commission is not so high aB to swamp the anticipated profit to the 
buyer). The difference between the price the buyer is willing to pay and 
that for which the vendor is willing to sell must be positive, or there will 
be no trade. 

Suppose that an investor believes the rate of growth of a stock is 0.15 
overall, bear jumps included. Then, if we are to include the bear jumps, 
we need to increase the value of the Brownian growth to 0.15 + 0.14 = 
0.29. So, let us now compute the simulated buyer's price, with discount 
to present value rate being J.I. = 0.15. We also compute the vendor's price 
using the Black-Scholes formula with riskless rate TJ = 0.10 (we will assume 
that the vendor will use the nominal volatility values of 0.20 and 0.40, as 
shown in Tables 14.11  and 14.12). 

Table 14.11. Six-Month Options (with Bear Jumps): t7 = 0.20, p. - 0.15. 
Ex Pr 102 104 106 lOS 110 112 114 116 1 18 120 
CBS 5.89 4.99 4.20 3.51 2.91 2.40 1.98 1.63 1.36 1 .16 
C"endor 7.17 6.16 5.26 4.45 3.74 3. 13 2.59 2. 13 1.75 1.42 
Cb�lI1'r 10.53 9.34 8.24 7.23 6.30 5.46 4.71 4.04 3.44 2.91 

Table 14.12. Six-Month Options with Bear Jumps): t7 - 0.40, P. - 0.15. 
EP 102 104 106 lOS 110 112 114 116 118 120 

CBS 11 ,48 10.63 9.82 9.07 8.37 7.72 7. 11  6.54 6.01 5.53 
C"en 12.63 11.73 10.88 10.08 9.34 8.63 7.98 7.36 6.79 6.25 
COOII 15.56 14.54 13.58 12.67 11.80 10.98 10.21 9.49 8.81 8.17 

It is unlikely that a buyer will be able to acquire options at the orthodox 
Black-Scholes rate (Le., the one using TreaBury bill interest rates of .05) . 
But suppose she can. Suppose she correctly guesses (1 = .2. The Black­
Scholes price for a strike price of $108 six months in the future is $3.5357. 
Suppose she gets lucky and the growth rate over the next six months is 
J.I. = . 15. However, this is the aggregate growth (including Poissonian bear 
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Simulation allows us to see what she can expect. We display the results 
in the simugram in Figure 14.17. The expected value of the option is 
$7.23. However, she should realize that around 55% of the time she will 
have lost her purchase price of the option. There are many other things 
the prospective buyer might choose to try before making the decision as 
to whether or not the option should be bought. Most of these are rather 
easy to achieve with simulation. The point here is that she should view 
the purchase of the call option as something risky. Mathematics has not 
secured for her a free lunch. 
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Figure 14.17. Simugram of option (present) values. 

In actuality, a buyer of options has many to choose from. Let us suppose 
that a rational buyer has computed the value of options (using his own 
estimates for the growth rates and the volatilities). Suppose he has confined 
himself to stocks with roughly the same volatilities. Suppose further that he 
is interested in European call options maturing one year from today. If he 
has no emotional attachment to one stock or the other (big and frequently 
false assumption), he would then be well advised to purchase options in 
the stock which give him the largest positive difference between what his 
computations give him for the value of the option and the actual market 
price of that option. It will be unusual for the buyer to have the Black-
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Scholes price as his personal valuation of the option, and he will seldom see 
the stock offered for the Black-Scholes price on the market. 

So, our hypothetical buyer puts down his money for a one year option 
in the stock which seems, for a given risk measure, to give him the greatest 
expected (or median or twenty percentile) return. When he and others buy 
the option, if the volume of sales over a given time interval appears high, 
this will encourage vendors of the stock to take note that perhaps they can 
raise the option's price. Similarly, vendors of options which are not selling 
at expected volume levels, may decide to lower the prices of their options. 

And, as all this is going on, we are aware that there exists a wide 
diversity of ways for each buyer to consider balancing expected gain against 
volatility. And there are many time horizons for which he can buy an option. 
And there axe many other possible ways he can invest his capital: in real 
estate, bonds, wheat, etc. It is the concatenation of all these opportunities 
for buying and selling, viewed from the standpoints of each buyer and seller, 
which make up the market. The dynamism of the world in which the market 
exists is such that any notion of reaching equilibrium for most potential 
investments is generally unlikely so long as the market is allowed to "work 
its will." The possibilities for finding undervalued (from the standpoint of 
the buyer) stocks and derivatives to purchase exist day by day, hour by 
hour, minute by minute. 

14.17 Conclusions 

Finally, I cannot emphasize too strongly that the time indexed profile of the 
probability distribution of the proposed investment is much more reliable 
than simply looking at expected values. It is frequently the case that the 
purchase of an option with a high expected value of gain will, most of the 
time, be a losing proposition. 

At the end of the day, an option based on a stock is simply a security to 
be purchased or not depending on its risk profile and the way an investor 
views that risk profile in comparison to those of other investments. It might 
seem absurd that one could come up with a formula which would give, at 
a given time, strike price and execution time, the value of an option on 
a stock which is following a random trajectory. Indeed, it is absurd. If 
transaction costs are truly zero, then the Black-Scholes evaluation of an 
option is correct if one is basing evaluation on the expected value of the 
option. And if cold fusion were a reality and anti-gravitational devices 
existed, that would be nice too. 

The reality is that transaction costs are not free, and looking only at 
the expected value of an option (as opposed to its entire risk profile) will 
frequently lead to disaster. In many ways, option trading has become a 
useful surrogate for margin buying. Before the Crash of 1929, an investor 
could use his portfolio to leverage purchasing of stocks by a factor of ten 
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to one. As the market started downward, the broker would dump stocks 
in the portfolio to meet margin calls. This put downward pressure on the 
prices of the stocks being sold. This kind of feedback mechanism led to the 
Crash of 1929. These days, in the United States, margin leveraging is a 
more modest two to one. 

The purchasing of options appears to be a relatively benign alternative 
to margin leveraging. If the buyer purchases an option for a strike price 
which the stock does not realize, then he loses the purchase price of the 
option without any direct negative pressure on the stock. Indeed, if the 
stock price is rising, then vendors of uncovered options will have to go into 
the market and purchase shares to cover the calls, thus putting an upward 
pressure on the stock price. Though some argue that the availability of 
options exerts a stabilizing effect on the market, one has to question this 
judgment. The ability of large companies to sell uncovered options can 
have disastrous consequences. Enron failed when it could not fulfill the call 
options in electricity it had sold in California. 

The selling of covered call options may be very desirable for a fund 
manager who is trying to maintain a somewhat steady rate of return in 
markets good and bad. If the market moves into a phase of low or negative 
growth, the selling of the call options will bring in some income even though 
the purchasers will not exercise the options. If the market moves into a good 
growth phase, then the selling of the call options limits the upside profit 
from the stock to that of the strike price minus the original cost of the stock 
to the fund. Suppose that, by very clever balancing, the manager of such 
a fund managed to obtain a return of, say, 3% in bear markets and 10% 
in strong markets. That might be the basis for an attractive alternative to 
bonds. In other words, the vendor might be able to use call options as a 
way of trading high gains for low risk. In this author's opinion, however, 
the selling of uncovered call options should not be allowed. 

Prom the standpoint of the buyer of call options, it is frequently the 
case that the purpose of the trade is to assume high risk in the hopes of 
substantial gains. There are situations where this can make a great deal 
of sense. But the author wonders how often the purchasers of call options 
bother to crank out and examine a risk profile such as that shown in Figure 
14.17. The purchaser of a call option ought not believe that the equation 
of Black, Scholes and Merton will bring determinism into what is, in fact, 
the very risky business of using options for leveraging purposes. 

If one wishes to put his or her investment strategy on autopilot, then 
finding a good equal weight S&P index fund (such as Vanguard's) is not a 
bad idea. Even a Fidelity or Vanguard market cap weighted fund may be 
alright. If one is willing to take the time, one can do better still. What is 
really unwise is investing in a fund with high management fees managed 
by individuals who do the investor little good service. And investing in 
Treasury Bills or derivative funds is probably very dangerous indeed. 

The one sure thing about the stock market continues to be that it will 
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fluctuate. And this fluctuation produces risk. However, the investor has 
two weapons at his/her disposal to reduce risk: portfolio diversification 
and time. The investor also has another weapon: reason and the knowl-
edge that if a deal appears too good to be true, it probably is. Without 
careful backtesting, investing is beyond risky. The assumption that one can 
trust the wisdom of mutual fund managers is generally misplaced. Unfor-
tunately, most companies with 401-k plans for its employees generally force 
them into mutual funds. Bactesting of mutual funds comparing their his-
torical performance to the DOW or S&P 500 is a minimal time investment 
which can protect the employee. And equity in most mutual funds can be 
converted into others after a holding period of 90 days. The days of "buy 
and hold" and "trust thy employer who knoweth best" are gone and not 
likely to reappear. The area of personal investing is time consuming, but 
the time is well spent. 
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Problems 

14.1· Find the option values for Method A and Method В for a stock with 
present value 100, μ = 0.10, r = 0.06, σ = 0.1, strike price X = 110 and 
time horizon one year. 

14.2. Verify Smith's Lemma [11]. 

If S is lognormal with growth rate μ and volatility σ and if 

Q = \S-*yX\iS-4;X>0 
= 0 if S - ψΧ < 0, 

then 

E(Q) = / ° ° (A5- 7 X) / (5 )d5 
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where λ, 7, and ^ are arbitrary parameters and Φ is the standard Gaussian 
cumulative distribution function.6 

14.3. Consider the Black-Scholes differential equation (11.24) with the 
boundary condition that 

f(S,T) = S{T)-XiiS(T)-X>0 

= 0, otherwise. 

Prove that 

/(5,*) = s*^(S/X) + lrj£/2)}(T-t^ 
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14.4. A group of investors is considering the possibility of creating a Euro-
pean option-based mutual fund. As a first step in a feasibility study, they 
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decide to compare investments of $1 million in a portfolio of 20 stocks as 
opposed to a portfolio of 20 options. They want to obtain histograms of 
investment results after one year. Let us suppose that all stocks in the 
portfolios are bought at a cost of $100 per share. Let us assume the usual 
model of stock growth, 

S(t) = S(0) exp(ßt + ауДе), 

where e is normally distributed with mean 0 and variance 1. Let us take 
two values of μ, namely, .10 and .15. Also, let us consider two values of 
σ, namely, .15 and .30. Consider several strike prices for the options: for 
example, the expected value of the stock at the end of one year, and various 
multiples thereof. Assume that the options are completely fungible. Thus, 
at the end of the year, if a stock is $10 over the strike price, the option 
purchased for the Black-Scholes price is worth $10 (i.e., one does not have 
to save capital to buy the stock; one can sell the option). For the "riskless" 
interest rate, use two values: .06 and .08. Clearly, then, we are consid-
ering a leveraged portfolio and seeing its performance in relationship to a 
traditional one. Carry out the study assuming that there is no correlation 
between the stocks. 

14.5· Carry out the study in Problem 14.4 with the following modification. 
Use the μ value of .24 and the two σ values of .15 and .30. Then assume 
that there is an across-the-board bear jump mechanism whereby a sudden 
drop of 10% happens, on the average, once a year and a sudden drop of 
20% happens on the average once every five years. The overall growth is 
still roughly .10. Use the Black-Scholes riskless price as before without 
adding in the effect of the Poisson jumps downward. 

384 STRATEGIES BASED ON DATA VERSUS STRATEGIES BASED ON IDEOLOGY 

decide to compare investments of $1 million in a portfolio of 20 stocks as 
opposed to a portfolio of 20 options. They want to obtain histograms of 
investment results after one year. Let us suppose that all stocks in the 
portfolios are bought at a cost of $100 per share. Let us assume the usual 
model of stock growth, 

8(t) = 8(0) exp(Jl.t + avtt) , 

where t is normally distributed with mean 0 and variance 1 .  Let us take 
two values of Jl., namely, .10 and .15. Also, let us consider two values of 
a, namely, . 15 and .30. Consider several strike prices for the options: for 
example, the expected value of the stock at the end of one year, and various 
multiples thereof. Assume that the options are completely fungible. Thus, 
at the end of the year, if a stock is $10 over the strike price, the option 
purchased for the Black-Scholes price is worth $10 (i.e., one does not have 
to save capital to buy the stock; one can sell the option) .  For the "riskless" 
interest rate, use two values: .06 and .08. Clearly, then, we are consid­
ering a leveraged portfolio and seeing its performance in relationship to a 
traditional one. Carry out the study assuming that there is no correlation 
between the stocks. 

14.5. Carry out the study in Problem 14.4 with the following modification. 
Use the Jl. value of .24 and the two a values of .15 and .30. Then assume 
that there is an across-the-board bear jump mechanism whereby a sudden 
drop of 10% happens, on the average, once a year and a sudden drop of 
20% happens on the average once every five years. The overall growth is 
still roughly . 10. Use the Black-Scholes riskless price as before without 
adding in the effect of the Poisson jumps downward. 



REFERENCES 385 

References 

[I] Baggett, L. S., and Thompson, J. R. (2007). "Every man's MaxMedian 
rule for portfolio management", in Proceedings of the 13th Army Conference 
on Applied Statistics. 

[2] Baxter, M. and Rennie, A. (1996). Financial Calculus: An Introduction 
to Derivative Pricing. New York: Cambridge University Press. 

[3] Black, F. and Scholes, M. (1973). "The pricing of options and corporate 
liabilities," Journal of Political Economy, 81, 637-659. 

[4] Bogle, J .C. (1999). Common Sense and Mutual Funds: New Imperatives 
for the Intelligent Investor. New York: John Wiley L· Sons. 

[5] Findlay, M. Chapman, Williams, E. E. and Thompson, J. R. (2003). 
"Why we all held our breath when the market reopened," Journal of Port-
folio Management, Spring, 91—100. 

[6] Hull, J.C., (1993). Options, Futures, and Other Derivative Securities. 
Englewood Cliffs, N.J.: Prentice Hall. 
[7] Markowitz, H.(1952). "Portfolio selection," Journal of Finance, March, 
77-91. 
[8] Markowitz, H. (1959). Portfolio Selection, New York: John Wiley & 
Sons. 
[9] Sharpe, W. E. (1964). "Capital asset prices: A theory of market equilib-
rium under conditions of risk," Journal of Finance, September, 425—442. 
[10] Sharpe, W. E. (2000).Portfolio Theory and Capital Markets, New York: 
McGraw Hill, 102-103. 

[II] Smith, C. W. (1976). "Option pricing: a review," Journal of Financial 
Economics, 3, 3—51. 

[12] Thompson, J. R. (1999). Simulation: A Modeler's Approach. New 
York: John Wileyfc Sons, 115-142. 
[13] Thompson, J. R. and Williams, E. E. (1999) "A post Keynesian analysis 
of the Black-Scholes option pricing model," The Journal of Post Keynesian 
Economics, Winter, 251-267. 
[14] Thompson, J. R., Williams, E. E., and Findlay, M. Chapman (2003). 
Modeh for Investors in Real World Markets. Hoboken, N.J.: John Wiley 
Sons. 
[15] Thompson, J. R. Baggett, L. S. and Wojciechowski, W. С (2004). 
"Some things ecnomists know that just aren't so," in The Proceedings of 

REFERENCES 385 

References 

[1] Baggett, L. S., and Thompson, J. R. (2007). "Every man's MaxMedian 
rule for portfolio management" ,  in Proceedings of the 13th Army Conference 
on Applied Statistics. 
[2] Baxter, M. and Rennie, A. (1996) . Financial Calculus: An Introduction 
to Derivative Pricing. New York: Cambridge University Press. 

[3] Black, F. and Scholes, M. (1973). "The pricing of options and corporate 
liabilities," Journal of Political Economy, 81, 637-659. 
[4] Bogle, J .C. (1999) . Common Sense and Mutual Funds: New Imperatives 
for the Intelligent Investor. New York: John Wiley & Sons. 

[5] Findlay, M. Chapman, Williams, E. E. and Thompson, J. R. (2003). 
"Why we all held our breath when the market reopened," Journal of Port­
folio Management, Spring, 91-100. 
[6] Hull, J.C. , (1993). Options, Futures, and Other Derivative Securities. 
Englewood Cliffs, N.J.: Prentice Hall. 
[7] Markowitz, H.(1952) . "Portfolio selection," Journal of Finance, March, 
77-91 . 
[8] Markowitz, H. (1959) . Portfolio Selection, New York: John Wiley & 
Sons. 

[9] Sharpe, W. E. (1964). "Capital asset prices: A theory of market equilib­
rium under conditions of risk," Journal of Finance, September, 425-442. 
[10] Sharpe, W. E. (2000).Portfolio Theory and Capital Markets, New York: 
McGraw Hill, 102-103. 
[11] Smith, C. W. (1976). "Option pricing: a review," Journal of Financial 
Economics, 3, 3-51. 
[12] Thompson, J. R. (1999). Simulation: A Modeler's Approach. New 
York: John Wiley& Sons, 115-142. 
[13] Thompson, J. R. and Williams, E. E. (1999) "A post Keynesian analysis 
of the Black-Scholes option pricing model," The Journal of Post Keynesian 
Economics, Winter, 251-267. 
[14] Thompson, J. R. , Williams, E. E., and Findlay, M. Chapman (2003). 
Models for Investors in Real World Markets. Hoboken, N.J.: John Wiley 
Sons. 

[15] Thompson, J. R. Baggett, L. S. and Wojciechowski, W. C. (2(04) . 
"Some things ecnomists know that just aren't so," in The Proceedings of 



386 STRATEGIES BASED ON DATA VERSUS STRATEGIES BASED ON IDEOLOGY 

the 10th Conference on Applied Statistics. 

[16] Thompson, J. R., Baggett, L. Scott, Wojciechowski, W. C , and Williams, 
E. E. (2006). "Nobels for nonsense." The Journal of Post Keynesian Eco-
nomics, Fall, pp. 3—18. 
[17] Williams, E. E. and Findlay, M. Chapman (1974). Investment Analysis, 
Englewood Cliffs, N.J.: Prentice-Hall. 
[18] Wojciechowski, W. C. and Thompson, J. R. (2006). "Market truths: 
theory versus empirical simulations." Journal of Statistical Computation 
and Simulation,76,no 5, 385-395. 

386 STRATEGIES BASED ON DATA VERSUS STRATEGIES BASED ON IDEOLOGY 

the 10th Conference on Applied Statistics. 
[16] Thompson, J. R., Baggett, L. Scott, Wojciechowski, W. C. , and Williams, 
E. E. (2006). "Nobels for nonsense." The Journal of Post Keynesian Eco­
nomics, Fall, pp. 3-18. 
[17] Williams, E. E. and Findlay, M. Chapman (1974). Investment Analysis. 
Englewood Cliffs, N.J.: Prentice-Hall. 

[18) Wojciechowski, W. C. and Thompson, J. R. (2006) . "Market truths: 
theory versus empirical simulations." Journal of Statistical Computation 
and Simulation,76,no 5, 385-395. 



Appendix A 

A Brief Introduction to 
Probability and Statistics 

A. l Craps: An Intuitive Introduction to 
Probability 

In this game, played with great gusto by millions, the player throws two 
six-sided dice. We shall assume that one of these dice is white and the other 
is black. If, in the first throw, the player throws a seven (W1B6, W2B5, 
W3B4, W4B3, W5B2, W6B1) or an eleven (W5B6, W6B5), he wins the 
game. We note that there are 36 possible results of the throw: 
(WlBl, W1B2, W1B3, W1B4, W1B5, W1B6; W2B1, W2B2, W2B3, W2B4, 
W2B5, W2B6;W3B1, W3B2, W3B3, W3B4, W3B5, W3B6; W4B1, W4B2, 
W4B3, W4B4, W4B5, W4B6; W5B1, W5B2, W5B3, W5B4, W5B5, W5B6; 
W6B1, W6B2, W6B3, W6B4, W6B5, W6B6). 

This collection would be looked upon as the sample space S. Clearly 

P(S) = 1. 

We have to get one of the 36 results. Intuitively, each of these 36 results 
has the same chance of occurring: 1/36. These 36 elements represent the 
basic primitive events of the probability space. 

We now give an example of a random variable. For a toss of the dice: 

Let X — number of white pips + number of black pips. 

A· 1.1 Random Variables, Their Means and Variances 

What is the probability of winning on the first throw? We need to find 
P(7 or 11). How shall do this? We look at the primitive elements which 

0Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R. 
Thompson ©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons. 
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map under the random variable to 7 or 11. These are W1B6, W2B5, W3B4, 
W4B3, W5B2, W6B1, W5B6, W6B5. Now, we know the probabUity of each 
of these primitive events: each has probability 1/36. So, then the concept 
of a random vanable is a mapping from the space of primitive events to 
some other space (here to the integers 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) in 
such a way that the inverse map gets us to the primitive events on which 
the probability is naturally defined. A random variable has the property 
that the probability that the random variable is equal to a particular value 
can be computed from the space of original events: 

P(7 or 11 on first toss) = 
P (W1B6, W2B5, W3B4, W4B3, W5B2, W6B1, W5B6, W6B5) = 

P(W1B6)+ P(W2B5)+ P(W3B4)+ P(W4B3)+ P(W5B2)+ P(W6B1)+ 

P(W5B6)+P(W6B5) = 4 = 0.222222. 
36 

By simply looking at the primitive events that map into 2,3,4,5,6,7,8,9,10, 
11,12, we note that 

P(2) = P(12) 

P(3) = P(11) 

P(4) = P(10) 

P(5)=P(9) 

P(6) = P(8) 

P(7) 

The expected value of a random variable 

= 7. (A.1) 

The variance of a random variable is given by 

σ2 = Ε{Χ-μ)2 = Ε(Χ2)-2μΕ(Χ)+μ2 = Ε(Χ2)-μ2 = 54.833-72 = 5.833. 
(Α.2) 

Now, the rules of the game of craps tell us that the player loses if he gets 
a 2, 3, or 12 on the first throw. What is the probability of this? 

_ J_ 
36 
2_ 
36 
3_ 
36 
4_ 
36 
5_ 
36 
6_ 
36' 

X is its average value. Here 

Prob (2, 3, or 12 on first throw) = P(W1B1, W1B2, W2B1, W6B6) 
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36 
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= 
36 
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36 
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36 

P(6) = P(8) 
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36 
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36 ' 

The expected value of a random variable X is its average value. Here 

J1. = E(X) 
x=12 

1 2 3 4 = L XP(X) = 2
36 

+ 3
36 

+ 4
36 

+ 5
36 

+ . . .  
x=2 
7. (A.l) 

The variance of a random variable is given by 

0'2 = E(X-J1.)2 = E(X2)-2J1.E(X)+J1.2 = E(X2)-J.1.2 = 54.833-72 = 5.833. 
(A.2) 

Now, the rules of the game of craps tell us that the player loses if he gets 
a 2, 3, or 12 on the first throw. What is the probability of this? 

Prob (2, 3, or 12 on first throw) = P(W1Bl, WIB2, W2Bl,  W6B6) 
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-1 J- i_ _L 
36 + 36 + 36 + 36 

36" 

Now, the player may throw some number other than 2, 3, 12, 7 or 11. 
Suppose the number is 4. The probability of this is 

P(4) = P(W1B3)+ P(W2B2)+ P(W3B1) = ^ . 
36 

The rule is that the player wins if he throws a second 4 before throwing a 7. 
We have seen already that the probability of a 7 is 6/36. So, the probabiUty 
of getting a 4 before a 7 is 

3 1 
34-6 ~ 3* 

The probabiUty of the player winning the game by throwing a 4 on the first 
round and then, on subsequent throws, getting a 4 before rolling a 7 is: 

3 1 2 
— x - = — = 0.027778. 
36 3 72 

Another way the player could win is to throw a 10 on the first round 
and then throw a second 10 before throwing a 7. Now the probabiUty of 
throwing a 10 is 

P(10) = P(W4B6, W5B5, W6B4) = ^ , 
36 

the same as the probability of throwing a 4. Thus, the probabiUty of win-
ning by throwing first a 10 and then throwing another 10 before throwing 
a ? i s 

— x - = — = 0.027778. 
36 3 72 

We then note that the probability of getting a 5 on the first toss is 

P(5) = P(W1B4, W2B3, W3B2, W4B1) = ^ . 

So, the probability of winning by throwing first a 5 and then throwing 
another 5 before getting a 7 is 

4 4 4 
τ^ x TZ = τζ = 0.0444444. 
36 10 10 

By symmetry, we see that this is the same probabiUty as throwing first a 9 
and then getting a second 9 before throwing a 7. 

Finally, the probability of throwing first a 6 is 

P(5) = P(W1B5, W2B4, W3B3, W4B2, W5B1) = ^ . 
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Then, the probability of winning by throwing first a 6 and then a second 6 
before throwing a 7 is 

A x A = 0.0631313. 
36 11 

By symmetry, this is the same as the probability of throwing first an 8 and 
then throwing another 8 before throwing a 7. 

In summary, the probability of winning the game of craps is given by 

P(Winning) =P(7 or 11 on first toss)+ 

2 x [P(4 on first toss)P(4 before 7) 4- P(5 on first toss)P(5 before 7) 

+P(6 on first toss)P(6 before 7)] = 0.492928. 

Craps is interesting in that it can be used to capture at the level of 
intuition the key concepts of probability theory. We notice, for example, 
that all the probabilities in the game are actually generated from the 36 
elementary events. Each of these has probability 1/36. But the game itself 
pays off on the basis of the sum total of the two dice (without regard to 
their color). The sum total of the two faces is a random variable. For any 
value of the random variable, we can find the elementary events which form 
the basis for the necessary computation. 

Here, as we have mentioned, there are only eleven throws of interest to 
us (2,3,4,5,6,7,8,9,10,11,12). Suppose we hear that someone has won at 
a game of craps, just that he has won. We then want to compute the 
probability that the person won on the first round. This could only have 
been done if he had thrown a 7 or an 11. That probability we know is 
8/36= 0.222222. We have, however, the additional information that the 
player has won. Common sense might lead us to the following formula 

P(win) P(win on first round|win) = P(win and win on first round) 

= P(win Π win first round) (A.3) 

Here P(win on first round| win) is termed the "conditional probability 
that he won on the first toss given that he won at all." We can then solve 
for this conditional probability by using a bit of algebra: 

_ , . _ ,, . ч P(win and win on first round) /A .4 Pfwm on first round wm) = —- n, . ч (A.4) v ' ' P(win) v ; 

Now, here, we note that the event that he won on the first round implies 
that he won at all. Hence the solution to (A.2) is given by 

0 222222 
P(win on first roundl win) = „' _ 0 = 0.450816. (A.5) v ' ; 0.492928 v ; 

This discussion should be used as a template any time one needs reminding 
what a random variable is and how we compute the probability that a 
random variable has a particular set of values. 
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Let us get more abstract and ask how many sets could we construct from 
the 36 primitive elements (without replacement)? Let us construct one such 
set. We can put any number of primitive elements into the set. The first 
element WlBl can either be in our set or out of it. That means two choices 
for inclusion of WlBl. And the same choice is available as to whether to 
include W1B2 or not. Aggregating across each of the primitive elements, 
we find that the number of sets is 

2 x 2 x ... x 2 = 236 = 6,871,947,674. 

We can easily compute the probability P of each of these sets by look-
ing at the primitive events included in each of them and adding up their 
probabilities (each equal to 1/36). * 

1We can do more and take arbitrarily many unions of these 6,871,947,674 sets and 
intersections, and complements and so forth and so on od infinitum. The class of sets so 
obtained is called the sigma field generated by the primitive events. Now, as noted, we 
can find the probability of each of these sets by simply looking to see which primitive 
events are included. 

For example, the case where none of the elementary sets is included is called the empty 
set or 0. We have to get one of the elementary events; something must happen; so the 
probability that nothing happens is zero. Thus, 

P(0) = 0. 

Now the entire sample space S of all the elementary events (36 of them here) must have 
probability one, for one of the elementary tosses must happen: 

P(S) = 1. 

Now, in the set of real numbers, we can consider the connected intervals as the basic 
building blocks of a sigma field. And then we can ad infinitum look at unions, inter-
sections, and complements for the real numbers. The resulting sigma field is called the 
Borei field. In order for us to compute the probability of a set В of real numbers, we 
need to be able to assure ourselves that the inverse Х~г(В) is a member of the sigma 
field in our primitive probability space (where we know what the probabilities are). In 
such a case, 

P'(B) = P(X~1(B)). 

So, a random variable is a real variable such that the inverse image of the Borei sets is 
a member of the sigma field in the primitive probability space. Thus, the probability 
measure P and the random variable X will induce a probability measure P' on the Borei 
sets. 
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ICQ I 
Figure A . l . Sets and their intersections. 

As we see from Figure A.l, 

P(A U В) = P(A) + P(B) - P(A П В). (А.6) 

Suppose that we have two sets A and В which have the property that 

P(A and B) = P(A n B) = P(A) x P(B). (A.7) 

Then, we say that A and В are stochastically independent under the prob-
ability measure P. 

If A and В are disjoint (have no points in common), then we can write 

P(A and/or B) = P(A UB) = P(A) + P(B). (A.8) 

For any set A on which a probability measure is defined, we must have 

0 < P(A) < 1. (A.9) 

Let us return briefly to the game of craps. Suppose we have a second 
random variable, F , which is equal to 1 if the sum of the two dice is odd 
and 2 if it is even. Let us view the two random variables in the light of the 
eleven possible outcomes of X and their probabilities 
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Let us return briefly to the game of craps. Suppose we have a second 
random variable, Y, which is equal to 1 if the sum of the two dice is odd 
and 2 if it is even. Let us view the two random variables in the light of the 
eleven possible outcomes of X and their probabilities 
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I Table A.l . The Game of Craps. 
| Primitive Events 

W1B1 
W1B2.W2B1 

W1B3,W2B2,W3B1 
W1B4,W2B3,W3B2,W4B1 

W1B5,W2B4,W3B3,W4B2,W5B1 
W1B6,W2B5,W3B4,W4B3,W5B2,W6B1 

W2B6,W3B5,W4B4,W5B3,W6B2 
W3B6,W4B5,W5B4,W6B3 

W4B6,W5B5,W6B4 
W5B6.W6B5 

W6B6 

X 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Y 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

XY 
4 
3 
8 
5 
12 
7 
16 
9 
20 
11 
24 

P(X,Y) 1 
1/36 
2/36 
3/36 
4/36 
5/36 
6/36 
5/36 
4/36 
3/36 
2/36 
1/36 J 

Firstly, we can easily compute the mean and variance of Y. 

E(Y) = 2 x 1/36 + 3 x 2/36 + . . . = 1.5 
E(Y2) = 22 x 1/36 + 32 x 2/36 + . . . = 2.5 

Var(Y) = E(Y2) - \E(Y)]2 = 2.5 - 1.52 = .25. 

Generally, we may try to find a simple measure of the apparent interaction 
between two variables, X and Y. One such is the covariance of X and Y 

Cov(X, Y) = E[(X - μχ)(Υ - μγ)]. (A.10) 

A more popular measure of apparent interaction is the correlation between 
X andY, 

Cov(X,Y) 
P(X,Y) = 

ЛЛ4С ТУ 
(Al l ) 

Now, although covariances can take values from —oo to +00, the correlation 
can only take values between —1 and +1. To prove this fact, we note that: 

0 < E[a{X -μχ)-(Υ- μγ)}2 = α?σ2
χ +ap- 2аСм(Х,У), (А.12) 

where a is an arbitrary real constant which we elect to be Cov(XyY)/a\. 
This gives us immediately a version of Cauchy's Inequality, 

P2<I. (A.13) 

Now, the reader should verify that if Y is simply a positive multiple of X, 
then p = 1. If У is a negative multiple of X, then p = - 1 . We are interested, 
in portfolio design, in looking at the correlation between two securities. To 
the extent that this correlation is close to 1, the diversification benefit of 
including both stocks in the portfolio is marginal. 
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Table A.1. The Game of Craps. 
Primitive Events X Y XY 

WIBI 2 2 4 
WIB2,W2Bl 3 1 3 

WIB3,W2B2,W3Bl 4 2 8 
WIB4,W2B3,W3B2,W 4Bl 5 1 5 

WIB5,W2B4,W3B3,W 4B2,W5Bl 6 2 12 
WIB6,W2B5,W3B4,W4B3,W5B2,W6Bl 7 1 7 

W2B6,W3B5,W4B4,W5B3, W6B2 8 2 16 
W3B6,W4B5,W5B4,W6B3 9 1 9 

W 4B6,W5B5,W6B4 10 2 20 
W5B6,W6B5 11  1 11 

W6B6 12 2 24 

Firstly, we can easily compute the mean and variance of Y. 

E(Y) 
E(y2) 

Var(Y) 

2 x 1/36 + 3 x 2/36 + . . . = 1 .5 
= 22 x 1/36 + 32 x 2/36 + . . .  = 2.5 

E(y2) - [E(y)]2 = 2.5 - 1.52 = .25 .  
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P(X, Y) 
1/36 
2/36 
3/36 
4/36 
5/36 
6/36 
5/36 
4/36 
3/36 
2/36 
1/36 

Generally, we may try to find a simple measure of the apparent interaction 
between two variables, X and Y. One such is the covariance of X and Y 

Cov(X, Y) = E[(X - J.Lx) (Y - J.Ly)] . (A.lO) 

A more popular measure of apparent interaction is the correlation between 
X and Y, 

p(X, Y) = 
Cov(X, Y) 
v'<Ti<T} 

(A. 11) 

Now, although covariances can take values from -00 to +00, the correlation 
can only take values between -1 and + 1 .  To prove this fact, we note that: 

o � E[a(X - J.Lx) - (Y - J.Ly)]2 = a2<Tk + <T} - 2aCov(X, Y), (A.12) 

where a is an arbitrary real constant which we elect to be Cov(X, Y)/<Tk '  
This gives us immediately a version of Cauchy's Inequality, 

(A.13) 

Now, the reader should verify that if Y is simply a positive multiple of X, 
then p = 1. If Y is a negative multiple of X , then p = -1.  We are interested, 
in portfolio design, in looking at the correlation between two securities. To 
the extent that this correlation is close to 1, the diversification benefit of 
including both stocks in the portfolio is marginal. 
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A.2 Combinatorics Basics 
Let us first compute the number of ways that we can arrange in a distinc-
tive order к objects selected without replacement from n, n > k, distinct 
objects. We easily see that there are n ways of selecting the first object, 
n — 1 ways of selecting the second object, and so on until we select к — 1 
objects and note that the fcth object can be selected in n — к + 1 ways. The 
total number of ways is called the permutation of n objects taken к at a 
time, P{n, fe), and is seen to be given by 

Р{щк) = n(n - l)(n - 2) · · · (n - к + 1) = - ^ щ , (A.14) 

where m! = m(m — l)(ra — 2) · · · 2 x 1, 0! = 1. In particular, there are 
n! ways that we can arrange n objects in a distinctive order. Next, let us 
compute in how many ways we can select к objects from n objects when 
we are not concerned with the distinctive order of selection. This number 
of ways is called the combination of n objects taken A at a time, and is 
denoted by C{n,k). We can find it by noting that P(n>k) could be first 
computed by finding C7(n, k) and then multiplying it by the number of ways 
к objects could be distinctly arranged (i.e., k\). So we have 

P(n, k) = C(n, fc)P(fc, k) = C(n, k)k\ 

and thus 

For example, the game of stud poker consists in the drawing of 5 cards from 
a 52 card deck (4 suits, 13 denominations). The number of possible hands 
is given by 

52' 
C ( 5 2 , 5 ) = 4 7 ! 5 ! = 2 , 5 9 8 , 9 6 ° · 

We are now in a position to compute some basic probabilities which are 
slightly harder to obtain than, say, those concerning tossing a die. Each 
of the 2,598,960 possible poker hands is equally likely. To compute the 
probability of a particular hand, we simply evaluate 

number of ways of getting the hand 

( : ) -

P(hand)= 
number of possible hands 

Suppose we wish to find the probability of getting an all-spade hand. There 
are C(13,5) ways of selecting 5 spades (without regard to their order) out 
of 13 spades. Hence, 

P(an all spade hand) = Щ Щ 

= (9)(10)(11)(12)(13) = 0 

(5!)(2,598,960) 
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where m! = m(m - 1)(m - 2) . .  · 2 x 1 ,  O! = 1. In particular, there are 
n! ways that we can arrange n objects in a distinctive order. Next, let us 
compute in how many ways we can select k objects from n objects when 
we are not concerned with the distinctive order of selection. This number 
of ways is called the combination of n objects taken k at a time, and is 
denoted by O(n, k) . We can find it by noting that P(n, k) could be first 
computed by finding O(n, k) and then multiplying it by the number of ways 
k objects could be distinctly arranged (i.e., k!). So we have 

and thus 

P(n, k) = O(n, k)P(k, k) = O(n, k)k! 

( n ) n! 
k = O(n, k) = (n _ k)!k! ' 

(A.15) 

For example, the game of stud poker consists in the drawing of 5 cards from 
a 52 card deck (4 suits, 13 denominations) . The number of possible hands 
is given by 

52! 
0(52, 5) = 

47!5! 
= 2, 598, 960. 

We are now in a position to compute some basic probabilities which are 
slightly harder to obtain than, say, those concerning tossing a die. Each 
of the 2,598,960 possible poker hands is equally likely. To compute the 
probability of a particular hand, we simply evaluate 

P(hand) _ number of ways of getting the hand -
number of possible hands 

. 

Suppose we wish to find the probability of getting an all-spade hand. There 
are 0(13, 5) ways of selecting 5 spades (without regard to their order) out 
of 13 spades. Hence, 

P(an all spade hand) = 

= ..:.....( 9 )�( 1
:7"'3
0 )'=""( 1

�
1 )-=--( I

-=-,:
2 )�( 1-,-3) 

(5!) (2, 598, 960) 

0(13, 5) 
0(52, 5) 

0.0000495. 



BAYESIAN STATISTICS 395 

Finding the probability of getting four cards of a kind (e.g., four aces, 
four kings) is a bit more complicated. There are C(13,1) ways of picking 
a denomination, C(4,4) ways of selecting all the four cards of the same 
denomination, and C(48,1) of selecting the remaining card. Thus, 

C(13,1)C7(4,4)C(48,1) 
C(52,5) 

(13)(1)(48) 
= 0.00024. 

P(four of a kind) = 

2,598,960 

Similarly, to find the probability of getting two pairs, we have 

P(two pairs) = 
C(13,2)C7(4,2)C(4,2)C(44,1) 

C(52,5) 
(78)(6)(6)(44) 

2,598,960 

A.3 Bayesian Statistics 

A.3.1 Bayes's Theorem 

Suppose that the sample space S can be written as the union of disjoint 
sets: S — Ai U A4 U · · · U An. Let the event Я be a subset of S which has 
nonempty intersections with some of the A^s. Then 

Р Ш т = Р(Н\А)РМ 
гщи) р{щМ)р{м) + р(н\А2)Р(А2) + ■■■ + P(H|An)P(A„)· 

(А.16) 

То explain the conditional probability given by equation (A.16), consider 
a diagram of the sample space, 5. Consider that the A^s represent n 
disjoint states of nature. The event H intersects some of the A^s. 
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A.3 Bayesian Statistics 

A.3. !  Bayes's Theorem 

Suppose that the sample space S can be written as the union of disjoint 
sets: S = Al U A2 u · · ·  U An. Let the event H be a subset of S which has 
nonempty intersections with some of the Ai'S. Then 

P(HIAi)P(�) P(AiIH) = P(HIAl )P(A1 ) + P(HIA2)P(A2) + . . . + P(HIAn)P(An) ·  
(A.16) 

To explain the conditional probability given by equation (A.16), consider 
a diagram of the sample space, S. Consider that the Ai'S represent n 
disjoint states of nature. The event H intersects some of the Ai'S. 
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Figure A.2. Bayesian Venn diagram. 

P(HnAi) P{Ai\H)P{H) 
Р(Н\Аг) = 

P(Ai) P(Ai) 

Solving forP(Ai|#), we get 

and in general, 

Now, 

Р(Аг\Н) = 

P(Ai\H) 

PjHlA^PjA,) 
P(H) ' 

P(H\Aj)P(Aj) 
p(H) ■ 

(A.17) 

P(H) = Р ( ( Я п Л 1 ) и ( # п Л 2 ) и - и ( Я п Л , ) ) 
= У^ Р(Н П Ai), since the intersections (HnAi) are disjoint 

= £ P(H\Ai)P(Ai), where j = 1,2,..., n. 

Thus, with (A.17) and Р(Я) given as above, we get (A.16). 
The formula (A.16) finds the probability that the true state of nature 

is Ai given that H is observed. Notice that the probabilities P{Aì) must 
be known to find P(Ai\H). These probabilities are called prior probabil-
ities because they represent information prior to experimental data. The 
P(Ai\H) are then posterior probabilities. For each i = 1,2,..., n, P(Ai\H) 
is the probability that Ai was the state of nature in light of the occurrence 
of the event H. 
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P(HIA ) = P(H n Ad = P(A1IH)P(H) 
I 

P(Ad P(AI) ' 

Solving forP(A1 IH) , we get 

and in general, 

Now, 

P(A IH) = P(HIA1)P(Ad 
1 

P(H) 
, 

P(H) = P«H n AI) U (H n A2) U . U (H n An)) 

(A.17) 

L P(H n Ai) ,  since the intersections (H n Ai) are disjoint 

= L P(HIAi)P(Ai) ,  where j = 1 , 2, . . .  , n. 

Thus, with (A.17) and P(H) given 88 above, we get (A.16). 
The formula (A.16) finds the probability that the true state of nature 

is Ai given that H is observed. Notice that the probabilities P(Ai) must 
be known to find P(Ai IH). These probabilities are called prior probabil­
ities because they represent information prior to experimental data. The 
P(Ai IH) are then posterior probabilities. For each i = 1, 2, . . . , n, P(AiIH) 
is the probability that Ai was the state of nature in light of the occurrence 
of the event H. 
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A.3.2 A Diagnostic Example 
Consider patients being tested for a particular disease. It is known from 
historical data that 5% of the patients tested have the disease, further, 
that 10% of the patients that have the disease test negative for the disease, 
and that 20% of the patients who do not have the disease test positive for 
the disease. Denote by D+ the event that the patient has the disease, by 
D" the event that the patient does not, and denote by T+ the event the 
patient tests positive for the disease, and by T~ the event the patient tests 
negative. 

If a patient tests positive for the disease, what is the probability that 
the patient actually has the disease? We seek the conditional probability, 
P{D+\T+). Here, T+ is the observed event, and D+ may be the true state 
of nature that exists prior to the test. (We trust that the test does not 
cause the disease.) Using Bayes's theorem, 

p(D+|r+) . ета (л.18) 
P{T+\D+)P(D+) 

P(T+|#+)P(L>+) + P{T+\D-)P{D~) 
0.9 x .05 

0.9 x 0.05 + 0.2 x 0.95 
= 0.1915. 

Thus, there is nearly a 20% chance given a positive test result that the 
patient has the disease. This probability is the posterior probability, and if 
the patient is tested again, we can use it as the new prior probability. If the 
patient tests positive once more, we use equation (A.18) with an updated 
version of P(D+), namely, 0.1915. 
The posterior probability now is: 

P(£>+|T+) = 
P(T+1D+)P(P+) 

P(T+) 

Р(Г+1Д+)Р(Р+) 
P(T+|£>+)P(D+) + P ( T + | D - ) P ( D - ) 

0.9 x 0.1915 
0.9x0.1915 4-0.2x0.8085 

= 0.5159. 

Twice the patient tests positive for the disease and the posterior probability 
that the patient has the disease is now much higher. As we gather more and 
more information with further tests, our posterior probabilities will better 
and better describe the true state of nature. 

In order to find the posterior probabilities as we have done, we needed 
to know the prior probabilities. A major concern in a Bayes application 
is the choice of priors, a choice which must be made sometimes with very 
little prior information. One suggestion made by Bayes is to assume that 
the n states of nature are equally likely (Bayes' Axiom). If we make this 
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patient has the disease. This probability is the posterior probability, and if 
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In order to find the posterior probabilities as we have done, we needed 
to know the prior probabilities. A major concern in a Bayes application 
is the choice of priors, a choice which must be made sometimes with very 
little prior information. One suggestion made by Bayes is to assume that 
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assumption in the example above, that is, that P(D+) = P(D ) = 0.5, 
then 

PP+IT+) = P(T+|Z>+)P(D+) 
P(T+\D+)P(D+) + P(T+\D-)P(D-) 

P(D+) and P(D~) cancel, giving 

f\v I ; P(T+|£>+) + P(T+|£>-) 
0.9 

0.9 + 0.2 
= 0.8182. 

This is much higher than the accurate probability, 0.1912. Depending upon 
the type of decisions an analyst has to make, a discrepancy of this magni-
tude may be very serious indeed. As more information is obtained, however, 
the effect of the initial choice of priors will become less severe. 

A.4 The Binomial Distribution 

Let us suppose we are selecting from a very large—effectively infinite— 
population of black and white balls. Suppose the probability a ball is black 
is p and that the probability a ball is white is q = 1 — p. Suppose that out 
of n draws, the first x are black and the next n — x are white. Suppose that 
out of n draws we get x black balls and n — x white balls. The probability 
is given by 

да...р(1-р)(1-р)...(1-р) = p*(l -p) n ~* . 

x n—x times 

But suppose that we are not interested in the order in which the black 
balls appear, just their total number x out of n draws. Then we have the 
binomial probability function 

--C) р(Х = х ) = ( ^ )if(l-p)n-*, * = 0,1,2 п. (А.19) 

The binomial distribution may be viewed as the sum of n independent 
Bernoulli vanables. A Bernoulli variable, У, takes the value 1 with prob-
ability p and the value 0 with probability q = 1 — p. Thus, the expected 
value o f Y = p x l + gxO = p. Similarly, the expected value of Y2 = p x l2 

= p. Then the variance of Y = E(Y2) - [E(Y)]2 =p-p2=p(l-p). 
Returning to the binomial variable x, we have 

* = 2/i+2/2 + . . . + y n . (A.20) 
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So, for the binomial distribution, 

E(X) = % i ) + % ) + . . . + % ) 
= P + P + . . . + P 
= пр. (А.21) 

E(X2) = E{y\+yl + .. .+г / 2 +п 2 -п terms like y ^ where г ф j). (A.22) 

Thus, 

E(X2) = np + n(n - l)p2. (A.23) 

And 

Var(X) = E(X2)-[E(X)}2 = np+n(n- l )p 2 - (np) 2 = np(l-p). (A.24) 

We now bring in a concept which is used extensively throughout this book, 
that of the cumulative probability distribution function: 

F(x) = P(X < x). (A.25) 

For the binomial distribution, we have 

ВД = Е Ϊ Ы(1-Р)п"^ j = 0,l,2,...,n. (A.26) 
j=o ^ J ' 

We note that the binomial distribution is discrete. F(x) is described by step 
functions. We show the (cumulative) distribution function of a binomial 
variate when p = 0.7 and n = 3 in Figure A.3. 
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Figure A.3. CDF of the binomial distribution. 

A.5 The Uniform Distribution 

We now look at a random variable X which is characterized by its cdf 

F(x) = 0, if x < 0 
= x, if 0 < x < 1 
= 1, i f x > l . (A.27) 
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A.5 The Uniform Distribution 

We now look at a random variable X which is characterized by its cdf 

F(x) = 0, if x < 0 
= x, if 0 � x � 1 
= 1, if x >  1 . (A.27) 
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F(X) 

Figure A.4· CDF of the uniform distribution. 

The uniform distribution has no jumps in the cdf. A uniform random 
variable is, therefore, an example of a continuous random variable. For a 
continuous random variable, we may desire to look at its derivative, f(x) = 
dF(x)/dx. f(x) is called the probability density function of the random 
variable X. In the case of the uniform distribution, we note that 

№ 
dF(x) 

dx 
= 1 for 0 < x < 1; 

= 0 otherwise . 

For simulation purposes, the uniform distribution is of particular impor-
tance. Suppose that we have another continuous random variable X with 
cdf F(.). We will now consider F as itself a random variable, Y = F(x). 
Its cdf G(y) is easily found by the following argument: 

G(y) = P(Y <y) = P(F(x) <y) = P(x < F-^y)) = y. (A.28) 

The consequence is that if we know the cdf F(x), then we may obtain a 
simulated value from the distribution by finding и randomly distributed on 
the unit interval. Then 

x^F-^u). (A.29) 

Practically every numerical computer compiler has a uniform random num-
ber generator. So (A.29) will generally yield an easy way for us to generate 
a simulated observation of the random variable with cdf F. 
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The uniform distribution has no jumps in the cdf. A uniform random 
variable is, therefore, an example of a continuous random variable. For a 
continuous random variable, we may desire to look at its derivative, f (x) = 
dF(x)/dx. f(x) is called the probability density function of the random 
variable X. In the case of the uniform distribution, we note that 

f(x) __ 
dF(x) __ 

£ 
1 or 0 � x � 1 ;  dx 
o otherwise . 

For simulation purposes, the uniform distribution is of particular impor­
tance. Suppose that we have another continuous random variable X with 
cdf F(.). We will now consider F as itself a random variable, Y = F(x) . 
Its cdf G(y) is easily found by the following argument: 

G(y) = P(Y � y) = P(F(x) � y) = P(x � F-1 (y» = y. (A.28) 

The consequence is that if we know the cdf F(x), then we may obtain a 
simulated value from the distribution by finding u randomly distributed on 
the unit interval. Then 

x = F-l (U) . (A.29) 

Practically every numerical computer compiler has a uniform random num­
ber generator. So (A.29) will generally yield an easy way for us to generate 
a simulated observation of the random variable with cdf F. 
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A.6 Moment—Generating Functions 
We now consider the joint density function of n random independent and 
identically distributed random variables of a continuous random variable X 
having density function /(.). Then a natural definition of the joint density 
of (χι ,Χ2>· . ·>£π) is 

/ ( # 1 , # 2 , · . . ,Xn) 

H m P[x\ < Xi < xi + €i] P[x2 < X 2 < Ж2 -f 62] 
«1,β2, . . , - > 0 61 €2 

Hm / ( g i ) € i /(^2)62 f(Xn)en 

«1,«2>···»->0 € l 62 € n 

= /(*i)/(*a). . . / (*n). (A.30) 

The late Salomon Bochner once mentioned the rather modest result in 
(A.30) as being R. A. Fisher's greatest contribution to statistics. Note that 
it enables us to write the density of an n—dimensional random variable as 
the product of n one-dimensional densities. 

Next, let X be a random variable with cumulative distribution function 
F(x). The moment-generating function Μχ{ί) via 

Mx(t) = E(etx), (A.31) 

where t is an arbitrary real variable. 
Assuming that differentiation with respect to t commutes with expecta-

tion operator U, we have 

M'x(t) = £7(Xetx) 
M£(t) = E(X2etx) 

M$\t) = E(XWetx). 

Setting t equal to zero, we see that 

M%\0) = E(Xk). (А.32) 

Thus, we see immediately the reason for the name moment-generating func-
tion (m.g.f.). Once we have obtained Μχ(ί), we can compute moments of 
arbitrary order (assuming they exist) by successively differentiating the 
m.g.f. and setting the argument t equal to zero. As an example of this 
application, let us consider a random variable distributed according to the 
binomial distribution with parameters n and p. Then, 

Mx(t) = Ì2etx(l)px(l-p)n-x Pi")-
- έ(ΐ)(!*'Π1-Ι»"-1. 
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(A.31) 

where t is an arbitrary real variable. 
Assuming that differentiation with respect to t commutes with expecta­

tion operator E, we have 

Mx(t) 
M�{t) 

= E(XetX) 
E{X2etX) 

Setting t equal to zero, we see that 

(A.32) 

Thus, we see immediately the reason for the name moment-generating func­
tion (m.g.f.) . Once we have obtained Mx{t), we can compute moments of 
arbitrary order (assuming they exist) by successively differentiating the 
m.g.f. and setting the argument t equal to zero. As an example of this 
application, let us consider a random variable distributed according to the 
binomial distribution with parameters n and p. Then, 

Mx{t) = t etx ( : ) pX{l _ p)n-x 

t ( : ) (pet)X(l - p)n-x . 
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Now recalling the binomial identity 

Σ(χ)α Χ 6 η"* = (°+6)η> 

we have 
Мх(*) = [ре* + (1-р)] п . (А.ЗЗ) 

Next, differentiating with respect to £, we have 

M'x(t) = прег\ре + (1 - p)]n-\ (A.34) 

Then, setting t equal to zero, we have 

E(X) = M'x{0) = пр. (А.35) 

Differentiating again with respect to t and setting t equal to zero, we have 

E(X2) = M£(0) = np + n(n - l)p2. (A.36) 

To calculate the variance, it suffices to recall that for any r.v. X we have 

Var(X) = E(X2) - [E(X)}2. (A.37) 

Thus, for the binomial X, 

Var(X) = np( l -p) . (A.38) 

Of course we have already found the mean and variance of the binomial dis-
tribution via (A.20)—(A.24). Generally speaking the moment—generating 
function is an easier way to compute moments them the direct approach. 
However, we shall shortly see an even more important use of the moment 
generating function. 

A.7 The Normal (Gaussian) Distribution 
Consider the normal density function 

/(x) = ~TL·^exp V έ ( χ " μ )2) ' -°° < x < °°· (Α·39) 
We would like to satisfy ourselves that we have a true density function. We 
note, first of all, that f(x) > 0 for all —oo < x < oo. Next, we need to 
show that F(oo) = 1, i.e, that 

£ΤΚ1- Ρ ( -5 Ι ( - ' 0 ' )* - 1 · <A40) 
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Now recalling the binomial identity 

we have 
Mx(t) = (pet + (1 - p)]n . (A.33) 

Next, differentiating with respect to t, we have 

(A.34) 

Then, setting t equal to zero, we have 

E(X) = Mx(O) = np. (A.35) 

Differentiating again with respect to t and setting t equal to zero, we have 

(A.36) 

To calculate the variance, it suffices to recall that for any r. v. X we have 

(A.37) 

Thus, for the binomial X, 

Var(X) = np(1 - p) . (A.38) 

Of course we have already found the mean and variance of the binomial dis­
tribution via (A.20)-(A.24). Generally speaking the moment-generating 
function is an easier way to compute moments than the direct approach. 
However, we shall shortly see an even more important use of the moment 
generating function. 

A.7 The Normal (Gaussian) Distribution 

Consider the normal density function 

f(x) = �exp (- 2
1
2 (x - Jl.)2) , -00 < x < 00. 

v 21ro·2 (1 
(A.39) 

We would like to satisfy ourselves that we have a true density function. We 
note, first of all, that f(x) > 0 for all -00 < x < 00. Next, we need to 
show that F(oo) = 1 ,  i.e, that 

(A.40) 
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Let us make the transformation 

* = ί—Ё. (А.41) 
σ 

The left hand side of (A.40) becomes 

/
°° 1 

-4=e~z '2dz = A. (A.42) 

Clearly, A is non-negative. Hence it will suffice to show that A2 = 1. Now 
1 |»oo j*oo -i 

A2 = -=» / / exp[-^(z2 + w2)]d2dw. (A.43) 

Let us transform to polar coordinates, with 

r2 = z2 + w2;tan(0) = w/z. 

Thus, 
1 ЛОО /»27Г -ι /»OO 

A2 = ^ / e" r /2rdfd0 = -^2π / e~r >2rdr = 1. (A.44) 
2π y0 У0 2π Уо 

The moment—generating function of a normal random variable can be found 
via 

= ,— / exp I - τ - ^ (# 2 — 2μχ — 2σΗχ + μ2) 1 dx 
\/2πσ У-оо V 2 σ / 

= v f c / expi-^2(x2-2x(/x + t(T2)+/i2)Jdx 

= 7fc/Ie^(~a (x- / i* )2)dxexp( i / i+^)' 
where μ* = μ + to"2. But recognizing that the integral is simply equal to 
\/27Γσ, we see that the m.g.f. of the normal distribution is given by 

Mx(t) = exp (ίμ + ^уЛ . (A.45) 

By evaluating the first two derivatives of Μχ{€) at 0, the reader may now 
easily verify that the mean and variance of the normal distribution are μ 
and σ2, respectively. 2 

2 A related distribution, of particular interest to persons involved with market models, 
is the lognormal distribution. Suppose that we have a random variable X such that its 
logarithm is normally distributed with mean μ and variance σ. Then we say that X has 
the lognormal distribution with density: 

/(x) = vè^**» (-έ ( 1 η* -μ ) 2) for x > °-
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The moment-generating function of a normal random variable can be found 
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1 100 tx ( 1 2) Mx(t) = -- e exp --2 (x - Ji.) dx �O' -00 20' 

1 100 ( 1 2 2 2 ) = -- exp --2 (x - 2Ji.x - 20' tx + Ji. ) dx �O' -00 20' 

� roo 
exp (- 2

1
2 (x

2 - 2x(Ji. + to'2) + Ji.2») dx 
v 271"0' J -00 0' 

= _
1

_ roo 
exp (-�(X _ Ji.*)2) dx exp (tJi. + 

t20'2) , �O' J -00 20' 2 

where Ji.* = Ji. + to'2. But recognizing that the integral is simply equal to 
�O', we see that the m.g.f. of the normal distribution is given by 

( t20'2) Mx(t) = exp tJi. + -
2
- . (A.45) 

By evaluating the first two derivatives of Mx (t) at 0, the reader may now 
easily verify that the mean and variance of the normal distribution are Ji. 
and 0'2 , respectively. 2 

2 A related distribution, of particular interest to persons involved with market models, 
is the lognormal distribution. Suppose that we have a random variable X such that its 
logarithm is normally distributed with mean I' and variance u. Then we say that X has 
the lognormal distribution with density: 

/(x) = � exp (-�2 (lux _ 1')2) for x >  O. V 27rUX 2u 
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The possible mechanical advantages of the m.g.f. are clear. One in-
tegration (summation) operation plus к differentiations yield the first к 
moments of a random variable. However, the moment-generating aspect 
of the m.g.f. pales in importance to some of its properties relating to the 
summation of independent random variables. Let us suppose, for exam-
ple, that we have n independently distributed r.v.'s Xi,X2,... >Xn with 
m.g.f.'s Mi, M2,. . . , Mn, respectively. Suppose that we wish to investigate 
the distribution of the r.v. 

Y = ciXx + c2X2 + · · · + CnXni 

where ci,C2,...,Cn are fixed constants. Let us consider using the moment-
generating functions to achieve this task. We have 

MY(t) = E[exp {t{dXi + c2X2 + · · · + CnXn)}}. 

Using the independence of X\, X2j..., Xn we may write 

MY(t) = E[exp tciX{\E[exp*c2X2] · · Я[ехр tc^,Xn] 
= M1(c1t)M2(c2t)--Mn(cnt). (A.46) 

Given the density (or probability) function, we know what the m.g.f. 
will be. But it turns out that, under very general conditions, the same is 
true in the reverse direction; namely, if we know Μχ{ί), we can compute a 
unique density (probability) function that corresponds to it. The practical 
implication is that if we find a random variable with an m.g.f. we rec-
ognize as corresponding to a particular density (probability) function, we 
know immediately that the random variable has the corresponding density 
(probability) function. Thus, in many cases, we are able to use (A.46) to 
give ourselves immediately the distribution of Y. Consider, for example, 
the sum 

Y = X!+X2 + --- + Xn 
of n independent binomially distributed r.v.'s with the same probability of 
success p and the other parameter being equal to ni, 712,..., nn, respectively. 
Thus, the moment-generating function for У is 

MY(t) = \pel + (1 - p)]ni [ре* + (1 - р)]П2 · · - \pé + (1 - ν)Τη 

= [pe* + (1 - p)]»i+n2+...+n„. 

We note that, not unexpectedly, this is the m.g.f. of a binomial r.v. with 
parameters N = щ + n2 H l· nn and p. 

Next, we note that the moment generating function for 

Z = C\X\ + C2-X2 + .. . CnXn 

where the Xj are independent normal variables with parameters ßj and σ?, 
is simply 

Mz(t) =exp(tJ2 αμ< + I Σ(*σ)Α . (A.47) 
\ t= l «=1 / 
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Prom (A.45), we recognize that Z must be a normal random variable with 
mean ΣΓ=ι c%ß% and variance Σ?=ι <4σί-

A.8 The Central Limit Theorem 
We are now in a position to derive one version of the central limit theorem 
(CLT). Let us suppose we have a sample Χχ,Хг> · · · >Xn of independently 
and identically distributed random variables with mean μ and variance σ2. 
We wish to determine, for n large, the approximate distribution of the 
sample mean 

Χ ι + Χ 2 + · · · + Χη 
x = n 

We shall examine the distribution of the sample mean when put into the 
standard form. Let 

z=z x-μ =
 χι -μ ì *2-μ | Xn -μ 

σ/y/n Gy/n ay/n ay/n 

Now, using the independence of the X^s and the fact that they are identi-
cally distributed with the same mean and variance, we can write 

Mz(t) = E(é") = n * [ e x p ( t ^ ) ] 

■ {-hfe/Oir 

et2/2 a s n ^ o o . (A.48) - K) 
But (A.48) is the m.g.f. of a normal distribution with mean zero and 
variance one. Thus, we have been able to show that the distribution of the 
sample mean of a random sample of n i.i.d. random variables with mean 
μ and variance σ2 becomes "close" to the normal distribution with mean μ 
and variance σ2/η as n becomes large. 

Perhaps the easiest method of remembering the CLT is that if a statistic 
is the result of a summing process, then 

_ statistic — E(statistic) . . 
y^Var(statistic) 

is approximately normally distributed with mean 0 and variance 1. 
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We are now in a position to derive one version of the centml limit theorem 
(CLT). Let us suppose we have a sample Xl , X2, • . •  , Xn of independently 
and identically distributed random variables with mean J.I. and variance 0'2. 
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We shall examine the distribution of the sample mean when put into the 
standard form. Let 

Now, using the independence of the Xi'S and the fact that they are identi­
cally distributed with the same mean and variance, we can write 

(A.48) 

But (A.48) is the m.g.f. of a normal distribution with mean zero and 
variance one. Thus, we have been able to show that the distribution of the 
sample mean of a random sample of n Li.d. random variables with mean 
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and variance 0'2/ n as n becomes large. 

Perhaps the easiest method of remembering the CLT is that if a statistic 
is the result of a summing process, then 

Z = statistic - E( statistic) 

...;V ar( statistic) 

is approximately normally distributed with mean 0 and variance 1 .  

(A.49) 
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A.9 The Gamma Distribution 

Consider the gamma function: 

лОО 

Γ(α) = / x*-xe-*dx for a > 0. (A.50) 
Jo 

Integrating by parts, we obtain 

Γ(α) = (a - 1)Γ(α - 1) for a > 1. (A.51) 

When a = n, with n a positive integer, repeating (A.51) n — 1 times yields 

Γ(η) = (η-1)! , (Α.52) 

since Г(1) = /0°° e~xdx = l.The random variable X has the gamma distri-
bution with parameters a and /3, if its p.d.f. is 

f{x) = ß4(ä)Xa~le~X/ß ίοτχ>0 ( Α · 5 3 ) 

and zero elsewhere, where both constants, a and /3, are positive. The mean 
of X is a/3 and the variance of X is a/32. 

The gamma distribution with parameter a = 1 is called the (negative) 
exponential distribution with parameter /3. That is, the exponential r.v. X 
has the p.d.f. 

f(x) = 4e~*//3 for x > 0, (A.54) 

and zero elsewhere, where /3 > 0. It also follows from the above that X has 
the mean /3 and variance /32. 

The gamma distribution with parameters a = v/2 and /3 = 2, where v is 
a positive integer, is called the chi-square (χ2 for short) distribution with 
v degrees of freedom. The chi-square random variable X has the p.d.f. 

/ ( X ) = 2^Ι>/2)*" / 2 ~ 1 β ~* / 2 ίθΤΧ>° ( Α · 5 5 ) 

and zero elsewhere. The r.v. X has the mean v and variance 2ΪΛ 
The m.g.f. of a gamma variate with parameters a and /3 can be computed 

in the following way: 

= I f°° χα-ί -»(l-ßti/ßjx. 
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(A. 53) 
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1 
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and zero elsewhere. The r.v. X has the mean 1/ and variance 21/. 
The m.g.f. of a gamma variate with parameters a and 13 can be computed 

in the following way: 

M(t) = 
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now this integral is finite only for t < 1/ß and substituting у = x(l — ßt)/ß 
yields 

- (гЬ·)***««?· <Α ·5 6> 
where the last equality follows from the form of the p.d.f. of the gamma 
distribution with parameters a and 1. In particular, the m.g.f. for a chi-
square r.v. with и degrees of freedom has the form 

M{t) = ( j ^ y = (1 - 2<)-"/2, t < 1/2. (A.57) 

Suppose we consider the moment generating function of the square of a 
λί(0,1) random variable. 

Mz»(t) = - p = / etz e~z2/2dz 
V27T У_оо 

•1 лОО 2 

= -7= / e^dw(l-2t)^ 
л/2¥ J-oo 

= ( 1 - й ) * , (A.58) 

where w = zy/\ — 2t. 
Next, let us consider the sum of squares of n random variables indepen-

dently distributed as Л/"(0,1). That is, we wish to consider the moment 
generating function of 

χ2 = Σ*/2 
n 

2 

*=1 

Then, from (A.45) and (A.46), we have 

/ ! xn/2 
M*{t)=\J=b) (A*59) 

We recognize this to be a χ2 variable with n degrees of freedom. 

A. 10 Conditional Density Functions 
Let us return to questions of interdependence between random variables 
and consider briefly conditional distribution of one random variable given 
that another random variable has assumed a fixed value. 
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) a 

( l ) a 1 
1 _ /3t 
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1_ foo etzl e-z2 /2dz 

V2-ff J-oo 
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= - exp(--z2(1 - 2t))dz 
1 100 1 

V2-ff -00 2 

- elf-dw(l - 2t)! 
1 100 l 

V2-ff -00 
= (1 - 2t)! , (A.58) 
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dently distributed as N(O, 1) . That is, we wish to consider the moment 
generating function of 

n 
2 "" 2 X = � ZI ·  

i=l 
Then, from (A.45) and (A.46) , we have 

( 1 ) n/2 
M')(l (t) = -­

I - 2t 

We recognize this to be a X2 variable with n degrees of freedom. 

A.IO Conditional Density Functions 

(A. 59) 

Let us return to questions of interdependence between random variables 
and consider briefly conditional distribution of one random variable given 
that another random variable has assumed a fixed value. 
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If two random variables X and У are discrete and have a joint probability 
function /(я, у), then, the conditional probability function of the r.v. Jf, 
given that У = у, has the form 

f(Xi\y) = P(X = xt\Y = y) = ϋ ^ ή , (A.60) 

where 

fy(y)= Σ л**»)· (A·61) 
all values of χά 

Next, let us now suppose that random variables X and У are continuous 
and have joint c.d.f. 

/ f(uìv)dudv. (A.62) 
-oo J—oo 

We can obtain the marginal density function of У via 

/

oo 

/(x,y)dx. (A.63) 
■oo 

Writing the statement of joint probability for small intervals in X and У, 
we have 

P(x<X <x + eDy<X <y + S) 

P(y<Y <y + S)P{x < X < x + e\y < Y < у + S). 

Now, exploiting the assumption of continuity of the density function, we 
can write 

лхЧ-ε /Ί/+£ ΓΪ/+<5 fX+ε 

/ / f{x,y)dydx = / fy(y)dy fx\y(x)dx 
Jx Jy Jy Jx 

= eSf(x,y) = SfY(y)efx\y(x). 

Here, we have used the terms /y and fx\y to denote the marginal density 
function of У, and the conditional density function of X given У = у, 
respectively. This gives us immediately 

Шх) = *ш- ( Α · 6 4 ) 

Note that this is a function of the argument x, whereas у is fixed; у is the 
value assumed by the random variable У. 
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If two random variables X and Y are discrete and have a joint probability 
function f(x, y), then, the conditional probability function of the r.v. X, 
given that Y = y, has the form 

(A.60) 

where 

Jy(y) = (A.61) 
all values of Xj 

Next, let us now suppose that random variables X and Y are continuous 
and have joint c.d.f. 

F(x, y) = i�i� f(u, v)dudv. (A.62) 

We can obtain the marginal density function of Y via 

Jy(y) = i: f(x, y)dx. (A.63) 

Writing the statement of joint probability for small intervals in X and Y, 
we have 

P(x < X :$ x + e: n y < X :$ y + 0) 
p(y < Y :$ y + o)P(x < X :$  x + e:ly < Y :$ y + 0). 

Now, exploiting the assumption of continuity of the density function, we 
can write 

1X+€1Y+O 

x y 
f(x, y)dydx 

/.Y+6 1x+€ 
= 

y 
Jy(y)dy 

x 
fX ly(x)dx 

= cof(x, y) = oJy(y)cfxIY(x). 

Here, we have used the terms fy and fXly to denote the marginal density 
function of Y, and the conditional density function of X given Y = y, 
respectively. This gives us immediately 

f(x, y) 
fXIY(x) = 

Jy(y) . (A.64) 

Note that this is a function of the argument x, whereas y is fixed; y is the 
value assumed by the random variable Y. 
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A. 11 The Weak Law of Large Numbers 

Let us now consider the set of n data drawn from some probability distri-
bution. Prior to the experiment which yields the data, they can be treated 
as a sequence of n independent and identically distributed (i.i.d.) random 
variables XL, X2i · · ·, Xn- Such sequence will be labeled as a random sample 
of size n. Suppose that the mean and variance of the underlying probability 
distribution are μ and σ2, respectively. Otherwise, the probability distribu-
tion is unknown. We shall find the mean and variance of the sample mean 
of the random sample. 

It is easy to see that 

Ms 
E(X1+X2 + -' + Xn) _ E(XX) +E(X2) + -- + E(Xn) 

μ + μ + 
n 

· + μ 
n 

In this derivation, we have not used independence or the fact that all the 
r.v.'s have the same distribution, only the fact that they all have the same 
(finite) mean. We say that X is an unbiased estimator of μ. 

Next we shall derive the variance of X: 

σ\ = Ε[{Χ-μγ] 

= E 

= > ιν \ ^' J + terms like E 
i=l 

(Χ1-μ)(Χ2-μ) 
ηΔ 

Now, by independence, the expectation of the cross-product terms is zero: 

/

0 0 

(χι - μ)(χ2 - μ)ί(χι)ί{χ2)άχ1άχ2 
-oo 

= Ε(Χ1-μ)Ε(Χ2-μ)=0 

(the argument for discrete distributions is analogous). Thus, we have 

We note that in the above derivation the fact that the X^s are identically 
distributed has been superfluous. Only the facts that therandom variables 
are independent and have the same μ and σ2 have been needed. The 
property that the variability of X about the true mean μ decreases as n 
increases is of key importance in experimental science. We shall develop 
this notion further below. 

410 A BRIEF INTRODUCTION TO PROBABILITY AND STATISTICS 

A. II  The Weak Law of Large Numbers 
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E [ CXl
n
- J.L) + (X2

n
- J.L) + . . .  + (Xn

n
- J.L) r] 
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We note that in the above derivation the fact that the Xi 'S are identically 
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are independent and have the same IJ. and (72 have been needed. The 
property that the variability of X about the true mean IJ. decreases as n 
increases is of key importance in experimental science. We shall develop 
this notion further below. 
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Let us begin by stating the celebrated Chebyshev's inequality. If У is any 
random variable with mean μν and variance σ ,̂ then for any ε > 0 

P(\Y-Hy\>e)<£. (A.65) 

As a practical approximation device, it is not a particularly useful inequal-
ity. However, as an asymptotic device, it is invaluable. Let us consider the 
case where Y = X. Then, we have 

Ρ(\Χ-μ\>ε)<£-, (Α.66) 

or equivalently 

Ρ ( | Χ - μ | < ε ) > 1 - ^ . (Α.67) 

Equation (A.67) is a form of the weak law of large numbers. The WLLN 
tells us that if we are willing to take a sufficiently large sample, then we 
can obtain an arbitrarily large probability that X will be arbitrarily close 
to μ. 3. 

3In fact, even a more powerful result, the strong law of large numbers, is available. 
In order to make the difference between the WLLN and SLLN more transparent, let us 
denote the sample mean based on a sample of size n by Xn> so that the dependence of 
X on n be emphasized. Now we can write the WLLN in the following way 

lim P(\Xn - μ\ < ε) = 1 (A.68) 
η—*ΌΟ 

for each positive ε. On the other hand, the SLLN states that 

P( lim \Xn - μ\ = 0) = 1. (A.69) 
n—юо 

Loosely speaking, in the WLLN, the probability of Xn being close to μ for only one 
n a t a time is claimed, whereas in the SLLN, the closeness of Xn to μ for all large n 
simultaneously is asserted with probability one. The rather practical advantage of the 
SLLN is that if g(x) is some function, then 

F( Um \g(Xn) - 9(μ)\ = 0) = 1. (A.70) 
n—*oo 

The WLLN and the SLLN are particular cases of convergence in probability and 
almost sure convergence of a sequence of r.v.'s, respectively. Let Yi, Y2,.. . , Yn , . . . be 
an infinite sequence of r.v.'s. We say that this sequence of r.v.'s converges in probability 
or stochastically to a random variable Y if 

lim P(\Yn - Y\ > e) = 0 
n—»00 

for each positive e. We say that the sequence Y\, У2,... , Yni... converges almost surely 
or converges with probability one if 

P(l im \Yn-Y\=0) = l. 
n—юо 
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A. 12 The Multivariate Normal Distribution 

The random vector X of dimension p is said to have multivariate normal 
(or p-dimensional multinormal or p-variate normal) distribution if its p.d.f. 
is given by 

/(x) = ΐ Ζ τ τ Σ Γ ^ β χ ρ ί — ί χ - μ / Σ ^ χ - μ )}, (A.71) 

where μ i sa constant vector and Σ is a constant positive definite mar 
trix. It can be shown that μ and Σ are the mean vector and covariance 
matrix of the random vector X, respectively. For short, we write that 
X is Λί (μ , Σ) distributed. Now if the covariance matrix Σ is diagonal, 
Σ = diag(au1a22, · · ·, tfpp)> the density function can be written as: 

/(x) = Π(2πσ ί ί)-1 / 2βχρ{-~(χ ί - ßi)a^(Xi - μ,)}. (A.72) 

Thus, the elements of X are then mutually independent normal random 
variables with means μί and variances σ^, i = 1,2,... ,p, respectively. If the 
random vector X is multivariate normal, then the property that its elements 
are uncorrelated one with another (i.e., that CovpQ, Xj) = 0, i Φ j) implies 
their mutual independence. 

A.13 The Wiener Process 

A stochastic process {Xt} is a collection of random variables indexed on 
the real variable t. Typically, t is time. Let us suppose the {Xt} process 
has the property that for any collection of t values t\ < ^ < · · · < ^? 
the vector random variable (Xtl, Xt2,..., Xtn ) is an n dimensional normal 
distribution. Then {Xt} is a Gaussian process. 

Next, suppose that a stochastic process W(t) has the following properties 
• W(0) = 0; 

• For any t, W(t) is normal with mean zero and variance t; 

• If the intervals [ti,t2] and [£3^4] do not overlap, then the random 
variables Wfa) — W(t\) and W{t±) — W{tz) are stochastically inde-
pendent. 

Then W(t) is called a Wiener process. 
We define a Brownian process S(t) as 

S(t) = ßt + aW(t), (A.73) 

where W(t) is a Wiener process. We write this as the stochastic differential 
equation 

dS(t) = μί + adW(t). (A.74) 
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Thus, the elements of X are then mutually independent normal random 
variables with means J-Li and variances O'ii , i = 1, 2, . . .  , p, respectively. If the 
random vector X is multivariate normal, then the property that its elements 
are uncorrelated one with another (i.e., that COV(Xi' Xj) = 0, i =f:. j) implies 
their mutual independence. 

A.13 The Wiener Process 

A stochastic process {Xt} is a collection of random variables indexed on 
the real variable t. Typically, t is time. Let us suppose the {Xt} process 
has the property that for any collection of t values tl < t2 < . . .  < tn , 
the vector random variable (Xtl ' Xtl ,  . . .  , Xt .. ) is an n dimensional normal 
distribution. Then {Xt} is a Gaussian process. 

Next, suppose that a stochastic process W(t) has the following properties 

• W(O) = OJ 
• For any t, W(t) is normal with mean zero and variance tj 
• If the intervals [tl ' t2J and [t3' t4J do not overlap, then the random 

variables W(t2) - W(tt} and W(t4) - W(t3) are stochastically inde­
pendent. 

Then W (t) is called a Wiener process. 
We define a Brownian process S (t) as 

S(t) = J.tt + O'W(t) , (A.73) 

where W(t) is a Wiener process. We write this as the stochastic differential 
equation 

dS(t) = J-Lt + O'dW(t). (A.74) 
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If the logarithm of S(t) is a Brownian process, then we say that S(t) is a 
geometric Brownian process. We may write this as the stochastic diflFerential 
equation 

^ l = p a + adW(t). (A.75) 
Sdt 

Then, we have 

S(t) = 5(0) βχρ[(μ - \σ2)ί + ay/iZ] 

= 5(0) exp(ßt) x ехр(ауДг - (-σΗ)) 
Zi 

(Α.76) 

where the Z are independently distributed as Λ/"(0,1). To find the percentile 
values of a security at time £, we use the percentile values from 

^critical 
2.3263 
1.6449 
1.2816 
1.0364 

.8416 

.6745 

.5244 

.2533 
0 

P(Z > Zcritical = P(Z< 
.01 
.05 
.10 
.15 
.20 
.25 
.30 
.40 
.50 

~% critical 

A. 14 The Poisson Process and the Poisson 
Distribution 

Let us consider a counting process described by Poisson's Four Axioms: 

1. P(l occurrence in [M + e]) — λβ; 

2. P( more than 1 occurrence in [t, t + e]) = o(e) 

where limc_+o o(e)/e = 0; 

3. P(k in [ti,*2] and m in [tz,U\), = P(* in [*ι,£2])Ρ(πι in [ts^t^]) 

if[*i,i2]n[*3,*4]=0; 

4. P(fc in [ii,ii + s]) — P(k in [Ì2,Ì2 + s]) for all ti,Ì2, and 5. 

Then we may write 

P(k + 1 in [0, * + б]) = P(fc + 1 in [0, t])P(0 in [t, £ + e]) 
+P(fc in [0, t])P(l in [t, * + €]) + o(e) 

= Ρ(* + 1,ί)(1-λ€)+Ρ(*,ί)λ6 + θ(€) 
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If the logarithm of 8(t) is a Brownian process, then we say that 8(t) is a 
geometric Brownian process. We may write this as the stochastic differential 
equation 

Then, we have 

8(t) 

d8(t) 
8dt = j.tt + adW(t). 

1 = 8(0) exp[(j.t - 2a2)t + avtZl 
1 = 8(0) exp(j.tt) x exp(avtZ - (2a2t» 

(A.75) 

(A.76) 

where the Z are independently distributed asN(O, 1) . To find the percentile 
values of a security at time t, we use the percentile values from 
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1 .2816 . 10 
1 .0364 .15 
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.6745 .25 
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0 .50 

A.14 The Poisson Process and the Poisson 
Distribution 

Let us consider a counting process described by Poisson's Four Axioms: 

1 .  P(1 occurrence in [t, t + ED = At:; 
2. P( more than 1 occurrence in [t, t + ED = 0(10) 

where limE .... o O(E)/t: = 0; 
3. P(k in ttl ,  t2J and m in [t3 , t4j ) , = P(k in [tl . t2j)P(m in [t3 ,  t4j ) 

if [tl . hl n[t3, t4J = 0; 

4. P(k in [tl ' tl + s] ) = P(k in [t2 ' t2 + s]) for all tl . t2 , and s. 
Then we may write 

P(k + 1 in [0, t + 10] ) P(k + 1 in [0, t])P(O in [t, t + 10]) 
+P(k in [0, t] )P(1 in [t, t + 10]) + 0(10) 

= P(k + 1 ,  t) (1 - AE) + P(k, t)AE + 0(10) 
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where P(k,t) = P{k in [0,t]). 
Then we have 

Taking the limit as e —> 0, we have the differential-difference equation: 

dP(k + l,t) 
dt 

= λ[Ρ(*, t) - P(k + l,i)l· (A-78) 

Taking Л = —1, since we know that it is impossible for a negative number 
of events to occur, we have 

Ì q M = - A P « M ) . (A.79) 

So, 
Ρ(0,ί)=βχρ(-λί). (Α.80) 

Next, we for for P(l,t) via 

^ M = A[exp(-Ai) - P(l,t)J, (A.81) 

with solution, 
P(l,t) = βχρ(-λ*)(λί). (Α.82) 

Continuing in this fashion, we quickly conjecture that the general solution 
of (A.78) is given by 

Р(М) = ^ . (А.83) 

(A.83) defines the Poisson distribution. We can quickly compute the mean 
and variance both to be λί. If there are N happenings in a time interval of 
length T, then a natural estimate for λ is found by solving 

XT = N. (A.84) 

This gives us 

À = f . (A.85) 

Of special interest to us is the probability that no shock (event) occurs 
in the interval from t to t + s. Clearly, that is given by P(0, s) = exp(—Xs). 
This immediately enables us to write the cumulative distribution function 
of the time it takes to reach an event, namely, 

F(t) = 1 - βχρ(-λί) (Α.86) 

Now, we know that the cdf of a continuous random variable is distributed 
as a uniform random variable on the interval from 0 to 1. This gives us 
a ready means for generating a simulated time until first occurrence of an 
event. 
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This immediately enables us to write the cumulative distribution function 
of the time it takes to reach an event, namely, 
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1. Generate и from {7(0,1). 

2. Set u = l-exp(-Xt). 

3. t = log(l - u)/\. 

Once we observe an occurrence time £i, we start over with the new time 
origin set at ίχ. 

Note that we now have a stochastic process. At any given time t, the 
probabiUty an event happens in the interval (£, t + e) is given by Л х e. The 
probabihty is stochastically independent of the history prior to t. 

A. 14.1 Simulating Bear Jumps 

Let us suppose we have a bank account of one million pesos which is grow-
ing at the rate of 20% per year. Unfortunately, a random devaluation of 
currency in the amount of 10% occurs on the average of once a year. A 
random devaluation of currency in the amount of 20% occurs on the aver-
age of once every five years. What will be the value of the bank account 
six months in the future in present day pesos? If there are no devaluations, 
the answer is 

5(10) = 1,000,000 exp(.5 x .2) = 1,105,171. 

On the other hand, we have to deal with the concatenation of our "sure 
thing" bank account with the cancatenation of two Poisson bear jump mech-
anisms. The 10% jumps have λ10% given by: 

λ10% = \ = 1. (A.87) 

The 20% jumps have X2o% given by 

λ2ο% = \ = 0.2. (A.88) 
о 

Returning to (A.84), to handle the 10% jumps, we generate a uniform 
random variate u\ on [0,1] we have the following downjump multiplier table: 

1. If i*i < exp(-l x 0.5) = 0.60653, use multiplier 1.00. 

2. If 0.60653 < щ < 0.90980, use multiplier 0.9. 

3. If 0.909080 < ui < 0.98561, use multiplier 0.81. 

4. If 0.98561 < wi < 0.99824, use multiplier 0.729. 

5. If 0.99824 < щ < 0.99982, use multiplier 0.6561. 

6. If 0.99824 < ui, use multiplier 0.59049. 
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origin set at t 1 .  

Note that we now have a stochastic process. At any given time t ,  the 
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To handle the 20% bear jumps, we generate a uniform random variate u2-
We then have the following downjump multiplier table. 

1. If иг < exp(-.2 x 0.5) = 0.90484, use multiplier 1.00 

2. If 0.90484 <u2< 0.99532, use multiplier 0.8 

3. If 0.99532 <u2< 0.99985, use multiplier 0.64. 

4. If 0.99985 < u2, use multiplier 0.512. 

Many standard software packages have automatic Poisson generators. To 
use such a routine, one simply enters XT and a random number of bear 
jumps, from 0 to infinity, is generated. 

A. 15 Parametric Simulation 

For the standard lognormal model for stock growth, we have 

S(t) = 5(0) exp[(/i - i<72)* + ay/iZ\. (A.89) 

Then, from (A.90), we have, for all t and At 

r(t + At,t) = g ( t
g | ^ f ) = exp \(μ - γ ) Δί + Zay/Xt 

Defining R(t + At,t) = log(r(t + Δί,ί)), we have 

R(t -f ΔΜ) = ί μ - γ ] At + eay/Äi. 

(A.90) 

Then 
E[R(t + Δ*, *)] = (μ - Y J Δ*. (A.91) 

We will take μβ to be given on an annual basis. Then, if the data are taken 
at N points separated by Δί, let the sample mean R be defined by 

1 N 

Й = ^ Е Й « (А ·92) 

By the strong law of large numbers, the sample mean R converges almost 
surely to its expectation (μ — a2/2)At. Next, we note that 

[R(t + Δί, t) - E{R{t + At, t))]2 = 62σ2Δί, (Α.93) 

so 

Vax[R(t + At,t)) = E[R(t + At,ί)-(μ- γ ) At]2 = a2At. (A. 94) 
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To handle the 20% bear jumps, we generate a uniform random variate U2. 
We then have the following downjump multiplier table. 

1 .  If U1 < exp( -.2 x 0.5) = 0.90484, use multiplier 1 .00 

2. If 0.90484 � U2 < 0.99532, use multiplier 0.8 

3. If 0.99532 � U2 < 0.99985, use multiplier 0.64. 

4. If 0.99985 � U2, use multiplier 0.512. 

Many standard software packages have automatic Poisson generators. To 
use such a routine, one simply enters AT and a random number of bear 
jumps, from 0 to infinity, is generated. 

A.I5 Parametric Simulation 

For the standard lognormal model for stock growth, we have 
1 8(t) = 8(0) exp[(1-' - 2(2)t + uVtZ]. 

Then, from (A.90), we have, for all t and l:1t 

r(t + l:1t, t) = 8(t
87t�t) = exp [(1-' - �2 ) l:1t + ZUv'Xt] . 

Defining R(t + l:1t, t) = log(r(t + l:1t, t)), we have 

R( t + l:1t, t) = (I-' - �2) l:1t + fUv'Xt. 

Then 
E[R(t + l:1t, t)] = (I-' _ �2) l:1t. 

(A.89) 

(A.90) 

(A.91) 

We will take I-'s to be given on an annual basis. Then, if the data are taken 
at N points separated by l:1t, let the sample mean R be defined by 

_ 1 N 
R =  N LR(i) 

1=1 
(A.92) 

By the strong law of large numbers, the sample mean R converges almost 
surely to its expectation (I-' - u2/2)l:1t. Next, we note that 

so 

(A.93) 

Var[R(t + l:1t, t)] = E[R(t + l:1t, t) - (I-' - �2) l:1t]2 = u2l:1t. (A.94) 
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4=^х>«-я)2· (А ·95) 
The most utilized estimation technique in statistics is the method of mo-
merits. By this procedure, we replace the mean by the sample mean, the 
variance by the sample variance, etc. Doing this in (A.94), we have 

^=8ft. (A.96) 

Then, from (A.92) we have 

R σ2 

Having estimated from historical data μ and <7, we can now simulate the 
value of our stock using (A. 90) for any desired time horizon. 

A.15.1 Simulating a Geometric Brownian Walk 
First we start with a simple geometric Brownian case. The program is 
incredibly simple. We need only assume available a uniform generator, a 
normal generator, and a sorting routine. 

Simulation of Portfolios 

1. Enter 5(0) ,T, /i, and σ. 

2. Repeat 10,000 times. 

3. Generate normal observation Z with mean zero and variance 1 . 

4. Set S(T) = 5(0)exp[(/i - \σ2)Τ + σ^/ΤΖ\ 

5. End repeat. 

6. Sort the 10,000 end values. 

ч τ^Λ„ Ι7Λ.Λ — Number of sorted values <v 
7. Then F{v) = щ^о · 

We will now add on the possibility of two types of bear jumps: a 10% 
downturn on the average of once every year (λι = 1) and a 20% downturn 
on the average of once every five years (Лг = .2). 

Simulation With Jumps 

1. Enter 5(0), T, μ, σ, Аь λ2. 

2. Repeat 10,000 times. 
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N 2 1 '"" - 2 SR = N - 1 
�(R(i) - R) . 
i=1 
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(A.95) 

The most utilized estimation technique in statistics is the method of mo­
ments. By this procedure, we replace the mean by the sample mean, the 
variance by the sample variance, etc. Doing this in (A.94), we have 

(A.96) 

Then, from (A.92) we have 

(A.97) 

Having estimated from historical data J.L and q, we can now simulate the 
value of our stock using (A.90) for any desired time horizon. 

A.IS.I Simulating a Geometric Brownian Walk 

First we start with a simple geometric Brownian case. The program is 
incredibly simple. We need only assume available a uniform generator, a 
normal generator, and a sorting routine. 

Simulation of Portfolios 

1 .  Enter 8(0),T, p" and &. 
2. Repeat 10,000 times. 

3. Generate normal observation Z with mean zero and variance 1 . 

4. Set 8(T) = 8(0) exp[(J.L - �(2)T + qvTZj. 
5. End repeat. 

6. Sort the 10,000 end values. 

7. Then F(v) = Number of ��� values <v . 

We will now add on the possibility of two types of bear jumps: a 10% 
downturn on the average of once every year (>'1 = 1) and a 20% downturn 
on the average of once every five years (>'2 = .2). 

Simulation With Jumps 

1 .  Enter 8(0), T, p" &, >'1 . >'2. 

2. Repeat 10,000 times. 
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3. Generate normalobservation Z with mean zero and variance 1 . 

4. Set S(T) = 5(0)βχρ[(μ - \σ2)Τ + ay/ΤΖ]. 

5. Generate a Poisson variate πΐ\ from Po(\\ x T). 

6. Replace S(T) by .9mi x S(T) 

7. Generate a Poisson variate m<i from Po(\2 x T). 

8. Replace S(T) by .8m2 x S(T) 

9. End repeat. 

10. Sort the 10,000 end values. 

11. Then F(v) = Number of sorted values <, 

A.15.2 The Multivariate Case 

Now, we assume that we have p securities to be considered in a portfoUo 
with weights {CJ} which axe non-negative and sum to one. We estimate the 
{ßj} and the {σ} precisely as in the one security case. Accordingly, for the 
jtb security, we let 

* « - * ( * ) 
Then 

N 
Äi=eeÄi(<) 

and 
N 

D . \ 2 4, = ^ Е ( В Д - ^ ) 2 

So we have an estimates for σ? and μ̂ , namely 

and 

Now, we 
stocks: 

ς 2 

σ2 - ^ σ° At 

Rj σϊ 

(A.98) 

(A.99) 

must also account for the correlation between the growths of 

1 N 

c*m = ΊΓ^ι Σ ^ « - **)(*«»(*) - #»)· (АЛ0°) 
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3. Generate normalobservation Z with mean zero and variance 1 . 

4. Set S(T) = S(O) exp[(J.t - !(2)T + aVTZ] .  
5 .  Generate a Poisson variate ml from PO(AI x T). 

6. Replace S(T) by .9ml x S(T) 

7. Generate a Poisson variate m2 from PO(A2 x T). 

8. Replace S(T) by .8m2 x S(T) 

9. End repeat. 

10. Sort the 10,000 end values. 

11 .  Then F(v) = Number of ��� values <v . 

A.15.2 The Multivariate Case 

Now, we assume that we have p securities to be considered in a portfolio 
with weights {Cj }  which are non-negative and sum to one. We estimate the 
{J.tj} and the {a} precisely as in the one security case. Accordingly, for the 
jth security, we let 

Then 

and 

( .) ( Sj(i) ) Rj � = log Sj(i - l) . 

_ 1 N 
Rj = - L Rj(i) N i=l 

N 2 1 '"' - - 2 8R; = N _ 1 L...J(Rj(t) - Rj) . 
i=l 

So we have an estimates for a; and J.tj , namely 

and 

82 
A 2 R; a - - ­
J - At (A.98) 

(A.99) 

Now, we must also account for the correlation between the growths of 
stocks: 

N 
aim = N � 1 

L(Rj(i) - Rj)(Rm(i) - lim). 
i=l 

(A. 100) 
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Then, we have as our estimated covariance matrix 

/ "̂11 "̂12 · · · àip \ 
t = *12 à22 . . . σ2ρ 1 ( A 1 0 1 ) 

\ àìp σ2ρ . . . àpp ) 

For a covariance matrix, we may obtain a Cholesky decomposition 

Σ = LLT , (A.102) 

where L is a lower triangular matrix, frequently referred to as the matrix 
square root of Σ. Subroutines for obtaining the matrix square root are 
available in most standard matrix compatible software such as Matlab, 
Splus, and SAS. 

Let us generate p independent normal variates with mean 0 and variance 
one, putting them into a row vector, Z = (zi, z2i..., zp). Then, we compute 
the row vector 

V = ZLT = (viyv2i...yVp). 

Then, the price of the jth stock in the joint simulation at time T is given 
by 

Sj(t) = SjiO) exp[(ßj - \σό
2)Τ + VjVf]. (A.103) 

Then, for the p-dimensional case: 

Portfolio Simulation 

1. Enter {Si(0)}?=1 , Г, {ßj}, and L. 

2. Repeat 10,000 times. 

3. Generate p independent normal variates with mean 0 and variance 
one, putting them into a row vector, Z = (zi, z2i..., zp). 

4. Compute the row vector 

V = ZLT = (vuv2y... ,vp). 

5. For each of the p stocks, compute 

Sj(t) = Α,(0)βχρ[(μ, - ^ 2 ) T + ^VT] . 

6. For the ith repeat save the (Si(T), 5 2 (T) , . . . , SP(T)) as the row vector 
Si. 

7. End repeat. 
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Then, we have 88 our estimated covariance matrix 

For a covariance matrix, we ma.y obtain a Cholesky decomposition 
A T E = LL , 
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(A.101) 

(A.102) 

where L is a lower triangular matrix, frequently referred to as the matrix 
square root of :E. Subroutines for obtaining the matrix square root are 
available in most standard matrix compatible software such as Matlab, 
Splus, and SAS. 

Let us generate p independent normal variates with mean 0 and variance 
one, putting them into a row vector, Z = (Zl ' Z2, " • , zp) . Then, we compute 
the row vector 

v = ZLT = (Vb V2, • • •  , vp) . 
Then, the price of the jth stock in the joint simulation at time T is given 
by 

Sj(t) = Sj(O) exp[(J,tj - �ol)T + vjv'Tj. (A.103) 

Then, for the p-dimensional case: 

Portfolio Simulation 

1 .  Enter {Sj (O) }�=l ' T, {foj}, and L. 

2. Repeat 10,000 times. 

3. Generate p independent normal variates with mean 0 and variance 
one, putting them into a row vector, Z = (Zb Z2 , " " zp) .  

4. Compute the row vector 

V = ZLT = (vt . V2 , " " vp) . 

5. For each of the p stocks, compute 

6. For the ith repeat save the (Sl (T) , S2(T), . . .  , Sp(T» as the row vector 
Si . 

7. End repeat. 
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The multivariate simulation with the two bear jump processes added 
becomes: 

Simulation Multivariate With Jumps 

1. Enter {Sj(0)}J=1, T, {£,}, L, λι and λ2. 

2. Repeat 10,000 times. 

3. Generate a Poisson variate тп\ from Po{\\ x T). 

4. Replace 5,(0) by .9mi x Sj(T) 

5. Generate a Poisson variate Ш2 from Po{\2 x T). 

6. Replace 5,(0) by .8ma x Sj(T) 

7. Generate p independent normal variates with mean 0 and variance 
one, putting them into a row vector, Z = (21,22,..., zp). 

8. Compute the row vector 

V = ZLT = (vuv2,...,vp). 

9. For each of the p stocks, compute 

Si(T) = 5,(0)ехр[^ - ^ T + Vjy/f]. 

10. For the ith repeat save the (Si(T), S2(T),..., SP(T)} as the row vector 
Si(T). 

11. End repeat. 

Suppose we have a portfolio consisting of p stocks each weighted by c>0 
such that AY^Ci — 1. Then to obtain a simulation of the portfolio, we 
must look at the 10,000 values from the above simulations, of the form 

Р,(Т) = ^ с ^ ^ ( Г ) . (А.104) 

Here, the % refers to the number of the simulation. We can then form the 
simulation of the portfolio results by sorting the P%(T) and obtaining the 
cumulative distribution function. This gives us 
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The multivariate simulation with the two bear jump processes added 
becomes: 

Simulation Multivariate With Jumps 

1 .  Enter {8j (0)}�=1 ' T, {JLj} , L, Al and A2. 

2. Repeat 10,000 times. 

3. Generate a Poisson variate mt from PO(AI x T). 

4. Replace 8j(0) by .9m1 x 8j{T) 

5. Generate a Poisson variate m2 from PO{A2 x T). 

6. Replace 8j(0) by .8ml x 8j(T) 

7. Generate p independent normal variates with mean 0 and variance 
one, putting them into a row vector, Z = (z} , Z2, ' • •  , zp) .  

8. Compute the row vector 

V = ZLT = (V} , V2, ' "  , vp). 

9. For each of the p stocks, compute 

10. For the ith repeat save the (81 (T) , 82(T) , . . .  , 8p(T)} as the row vector 
Si(T) . 

11 .  End repeat. 

Suppose we have a portfolio consisting of p stocks each weighted by c>O 
such that A E c; = 1. Then to obtain a simulation of the portfolio, � 
must look at the 10,000 values from the above simulations, of the form 

p 
Pi(T) = L Cj8i,j (T) . (A. 104) 

j=1 

Here, the i refers to the number of the simulation. We can then form the 
simulation of the portfolio results by sorting the Pi(T) and obtaining the 
cumulative distribution function. This gives us 
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A Simulation Based Portfolio 

1. Enter S(T), {CJ}. 

2. For all i from 1 to 10,000, find P^T) = JJ}=i < A ( T ) . 

3. Sort the Pi(T). 

A j?(„\ — Number of sorted values Pdt)<v ft. r \v) — l00QQ 

The Portolio Simulation may then be used for a host of purposes. We might 
use it as an assist, for example, in deciding whether one wished to replace 
one stock in the portfolio by another. 

We wish to make it clear that, due to the fact that one is using historical 
estimates of growth and volatility rather than the actual values, rather than 
the true ones (which we cannot know), the portfolio optimization based on 
such simulations should only be used as an exploratory and speculative tool. 
It is not a magic bullet, nor do we claim it to be. It is a useful technique 
for what might happen. 

A. 16 Resampling Simulation 

Let us suppose we have a data base showing the year to year change in a 
stock or a stock index. We can then obtain a data base of terms like 

In other words, we know that 

S(U) = SiU-i) x exv(Ri). 

Suppose we have a data base of n such terms, {i?i,Ä2, · · · »Яп }· Let us 
make the (frequently reasonable) assumption that the ups and downs of 
the stock or the index in the past are a good guide to the ups and downs in 
the future. It would not be a good idea, if we wished to forecast the value 
of the stock five years in advance, randomly to sample (with replacement) 
five of the iVs, say, {Из, Д17, Д20, #20, #31} and use 

5(5) = 5(0) x ехр[Д3 + Rir + Я20 + д20 + Д31]-

On the other hand, if we wished to obtain, not a point estimate for S(T), 
but an estimate for the distribution of possible values of 5(5), experience 
shows that this frequently can be done as follows: 

RESAMPLING 

A Simulation Based Portfolio 

1 .  Enter S(T) , {Cj} .  

2 .  For all i from 1 to 10,000, find Pi(T) = L:�=1 CjSi,j(T). 

3. Sort the Pi(T) . 

4 F(v) = Number of sorted values P;(t)<v . 10,000 · 

421 

The Portolio Simulation may then be used for a host of purposes. We might 
use it as an assist, for example, in deciding whether one wished to replace 
one stock in the portfolio by another. 
We wish to make it clear that, due to the fact that one is using historical 

estimates of growth and volatility rather than the actual values, rather than 
the true ones (which we cannot know), the portfolio optimization based on 
such simulations should only be used as an exploratory and speculative tool. 
It is not a magic bullet, nor do we claim it to be. It is a useful technique 
for what might happen. 

A.16 Resampling Simulation 

Let us suppose we have a data base showing the year to year change in a 
stock or a stock index. We can then obtain a data base of terms like 

In other words, we know that 

Suppose we have a data base of n such terms, {R1 7 R2, • • •  , Rn } . Let us 
make the (frequently reasonable) assumption that the ups and downs of 
the stock or the index in the past are a good guide to the ups and downs in 
the future. It would not be a good idea, if we wished to forecast the value 
of the stock five years in advance, randOlnly to sample (with replacement) 
five of the �'s, say, {R3, R17, R20, R20 ,R3d and use 

8(5) = S(O) x exp[R3 + R17 + R20 + R20 + R3d . 

On the other hand, if we wished to obtain, not a point estimate for S(T), 
but an estimate for the distribution of possible values of S(5), experience 
shows that this frequently can be done as follows: 
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Portfolio Resampling 

1. Enter 5(0), Γ, and the {Ri}. 

2. Repeat 10,000 times 

3. For pass г, randomly sample with replacement T values from {J?i, i?2» · 
say, {jRii, Д»2> Д»з>R%4, · · ·}· 

4. Compute 

SS(T) = S(0) x ехр[Яп + Ri2 + Д*3 + Ru + · ■ -] 

Clearly we use T resampled R values to obtain. 

5. Obtain the empirical cumulative distribution function from the re-
sulting 10,000 values of SS(T). That is, compute 

_ , ч Number of sorted values \SS(T)} <v , A „лкл 
FT(V) = 7 7 - ^ — * — . (A.105) 

v ; 10,000 v ' 
By looking at the simulations for, say, five, ten, twenty and forty years 
in the future, an investor can examine the historically based outcomes of 
buying a security in the light of his/her anticipated needs. 

A· 16 Л The Multivariate Case 

Here, for each of p stocks, we compute 

Multivariate Portfolio Resampling 

We then proceed very much as in the parametric case: 

1. Enter {Aj(0)}jU, T, and the {Rijhj-

2. Repeat 10,000 times 

3. For pass г, randomly sample with replacement T values from the 
length of the historical list, say, ii,i, Z<,2» · · · » к,т-

4. For each stock j 

SSid(T) = Sj(0) x exp[Rl{iìl)ìj + Rl(i2)ìj + ... + Rl(itT)J] 

5. Store {SSiyiy SSiy2, · · ■, SSij) as a row vector SS*. 

6. End Repeat. 
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Portfolio Resampling 

1 .  Enter 8(0) , T, and the {Rd. 

2. Repeat 10,000 times 

3. For pass i, randomly sample with replacement T values from {Rb R2, · • •  , Rn}, 
say, {Ril , Ri2 ' �3' �4' . . .  }. 

4. Compute 

88(T) = 8(0) x exp[�l + �2 + �3 + Ri4 + . . .. J 

Clearly we use T resampled R values to obtain. 

5. Obtain the empirical cumulative distribution function from the re­
sulting 10,000 values of 88(T) . That is, compute 

F ( ) = Number of sorted values {88(T)} � v 
T V 10, 000 . (A. lOS} 

By looking at the simulations for, say, five, ten, twenty and forty years 
in the future, an investor can examine the historically based outcomes of 
buying a security in the light of his/her anticipated needs. 

A.16.I The Multivariate Case 

Here, for each of p stocks, we compute 

Multivariate Portfolio Resampling 

We then proceed very much as in the parametric case: 

1. Enter {8; (0)}j=1 '  T, and the {Ri.ih,j .  

2. Repeat 10,000 times 

3. For pass i, randomly sample with replacement T values from the 
length of the historical list, say, l" b l,,2 , . . .  , l" T. 

4. For each stock j 

5. Store (88i,b 88i,2, . . . , 88i,j ) as a row vector SSi . 

6. End Repeat. 



RESAMPLING 423 

Now for a portfolio of p stocks, balanced according to 

P(t) = J>5,(t), (A·106) 

where the weights are non-negative and sum to one, we simply use the, 

An Algorithm for Resampling Portfolios 

1. Enter SS(T), {CJ}. 

2. For all г from 1 to 10,000, find РДГ) = £?=i CjSS^T). 

3. Sort the Pi (Г). 

(Л Number of Ρ«(Γ) <ν 

We may then proceed to obtain simulations of the portfolio value at a 
given time. Because of the correlations between stock values, it is essential 
that, when we randomly select a year, we sample the annual growth factors 
of the stocks in the portfolio for that year. 

A.17 A Portfolio Case Study 

Next, we take the 90 stocks in the S&P 100 that were in business prior 
to 1991. The data base we shall use will utilize the 12 years 1990-2001, 
utilizing monthly data, both for the estimation of the parameters character-
izing the simple geometric Brownian model parameters (without Poissonian 
jumps), namely the {ßjYjZ*0 and the covariance matrix {σ^}, and for ob-
taining resampling months. We look below at the result of one of many 
possible optimization criteria that might have been considered. We find 
the allocation of an investment in the portfolio amongst the 90 stocks max-
imizing the one year lower 20 percentile. with the constraint that no stock 
has more than 5% of the portfolio share. 

RESAMPLING 423 

Now for a portfolio of p stocks, balanced according to 

p 
P(t) = L C;Si(t), (A. 106) 

i=l 

where the weights are non-negative and sum to one, we simply use the, 

An Algorithm for Resampling Portfolios 

1 .  Enter SS(T), {Cj}. 

2. For all i from 1 to 10,000, find Pi(T) = E�=l CjSSi,j (T). 

3. Sort the Pi(T) . 

4 F( 
) _ Number of Pi(T) <v . v - 10,000 . 

We may then proceed to obtain simulations of the portfolio value at a 
given time. Because of the correlations between stock values, it is essential 
that, when we randomly select a year, we sample the annual growth factors 
of the stocks in the portfolio for that year. 

A.17 A Portfolio Case Study 

Next, we take the 90 stocks in the S&P 100 that were in business prior 
to 1991. The data base we shall use will utilize the 12 years 1990-2001, 
utilizing monthly data, both for the estimation of the parameters character­
izing the simple geometric Brownian model parameters (without Poissonian 
jumps) , namely the {JLj}1��0 and the covariance matrix {cri,j} ,  and for ob­
taining resampling months. We look below at the result of one of many 
possible optimization criteria that might have been considered. We find 
the allocation of an investment in the portfolio amongst the 90 stocks max­
imizing the one year lower 20 percentile. with the constraint that no stock 
has more than 5% of the portfolio share. 
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Table A.2. Portfolio Allocation from S&P 100. 
Maximizing One Year 20 Percentile 

with Max 5% in Any Stock. 
id permno ticker u σ par alloc npar alloc 

~ Ш04 ÖRCL Ö44 ΟΊΠΓ 0.05 0.05 
2 10107 MSFT 0.39 0.48 0.05 0.05 
3 10145 HON 0.12 0.44 0.00 0.00 
4 10147 EMC 0.48 0.61 0.00 0.01 
5 10401 T 0.05 0.40 0.00 0.00 
6 10890 UIS 0.36 0.68 0.00 0.01 
7 11308 КО 0.07 0.31 0.00 0.00 
8 11703 DD 0.05 0.28 0.00 0.00 
9 11754 EK -0.11 0.35 0.00 0.00 
10 11850 XOM 0.12 0.17 0.00 0.00 
11 12052 GD 0.19 0.25 0.05 0.05 
12 12060 GE 0.23 0.26 0.00 0.00 
13 12079 GM 0.08 0.36 0.00 0.00 
14 12490 IBM 0.32 0.34 0.05 0.00 
15 13100 MAY 0.07 0.29 0.00 0.00 
16 13856 PEP 0.13 0.28 0.00 0.00 
17 13901 MO 0.13 0.32 0.00 0.00 
18 14008 AMGN 0.32 0.39 0.05 0.05 
19 14277 SLB 0.12 0.36 0.00 0.00 
20 14322 S 0.05 0.36 0.00 0.00 
21 15560 RSH 0.27 0.49 0.05 0.05 
22 15579 TXN 0.40 0.56 0.00 0.01 
23 16424 G 0.09 0.33 0.00 0.00 
24 17830 UTX 0.21 0.35 0.00 0.00 
25 18163 PG 0.16 0.31 0.04 0.00 
26 18382 PHA 0.12 0.30 0.00 0.00 
27 18411 SO 0.14 0.24 0.05 0.05 
28 18729 CL 0.25 0.33 0.05 0.05 
29 19393 BMY 0.20 0.26 0.01 0.03 
30 19561 BA 0.05 0.35 0.00 0.00 
31 20220 BDK 0.06 0.38 0.00 0.00 
32 20626 DOW 0.07 0.30 0.00 0.00 
33 21573 IP 0.07 0.36 0.00 0.00 
34 21776 EXC 0.17 0.33 0.05 0.05 
35 I 21936 I PFE | 0.26 | 0.28 | 0.05 | 0.05 
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Table A.2. Portfolio Allocation from S&l:P 100. 
Maximizing One Year 20 Percentile 

with Max 5% in Any Stock. 
id permno ticker u q par alloc npar alloc 
1 10104 ORCL 0.44 0.65 0.05 0.05 
2 10107 MSFT 0.39 0.48 0.05 0.05 
3 10145 HON 0. 12 0.44 0.00 0.00 
4 10147 EMC 0.48 0.61 0.00 0.01 
5 10401 T 0.05 0.40 0.00 0.00 
6 10890 UIS 0.36 0.68 0.00 0.01 
7 11308 KO 0.07 0.31 0.00 0.00 
8 11703 DD 0.05 0.28 0.00 0.00 
9 11754 EK -0.11  0.35 0.00 0.00 
10 11850 XOM 0.12 0.17 0.00 0.00 
11 12052 GD 0.19 0.25 0.05 0.05 
12 12060 GE 0.23 0.26 0.00 0.00 
13 12079 GM 0.08 0.36 0.00 0.00 
14 12490 IBM 0.32 0.34 0.05 0.00 
15 13100 MAY 0.07 0.29 0.00 0.00 
16 13856 PEP 0. 13 0.28 0.00 0.00 
17 13901 MO 0.13 0.32 0.00 0.00 
18 14008 AMGN 0.32 0.39 0.05 0.05 
19 14277 SLB 0.12 0.36 0.00 0.00 
20 14322 S 0.05 0.36 0.00 0.00 
21 15560 RSH 0.27 0.49 0.05 0.05 
22 15579 TXN 0.40 0.56 0.00 0.01 
23 16424 G 0.09 0.33 0.00 0.00 
24 17830 UTX 0.21 0.35 0.00 0.00 
25 18163 PG 0.16 0.31 0.04 0.00 
26 18382 PHA 0.12 0.30 0.00 0.00 
27 18411 SO 0.14 0.24 0.05 0.05 
28 18729 CL 0.25 0.33 0.05 0.05 
29 19393 BMY 0.20 0.26 0.01 0.03 
30 19561 BA 0.05 0.35 0.00 0.00 
31 20220 BDK 0.06 0.38 0.00 0.00 
32 20626 DOW 0.07 0.30 0.00 0.00 
33 21573 IP 0.07 0.36 0.00 0.00 
34 21776 EXC 0.17 0.33 0.05 0.05 
35 21936 PFE 0.26 0.28 0.05 0.05 
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Appendix B 

Statistical Tables 

Tables of the Normal Distribution 

Values of � J�. oo e - "i dt 
. . 0  .01 .02 .03 .04 .05 .06 .07 .08 .09 

0 .50000 .50399 . 50798 . 5 1 1 97 . 5 1595 . 5 1 994 ::�;�� .52790 .53188 .53586 

. 1  .53983 .64380 . 54776 .55172 .55567 .55962 . 56749 .57142 .57535 

. 2  .57926 .58317 . 58706 . 59095 .59483 .59871 .60257 . 60642 .61026 . 6 1 409 

.3 .61791 .62172 .62552 . 62930 .63307 . 63683 .64058 .64431 . 64803 .65173 

.4 .65542 .65910 . 66276 .66640 .67003 .67364 .67724 . 68082 . 68439 . 68793 

.5 .69146 .69497 . 69847 .70194 . 70540 . 70884 .71226 . 71566 . 7 1904 .72240 

.6 .72575 .72907 .73237 . 73565 .73891 .14216 .74537 .748157 . 7 5 1 75 . 75490 

. 7  . 75804 .76115 . 76424 . 76730 .77036 .77337 .77637 .77935 .78230 . 78524 

.8 .78814 .79103 . 79389 . 79673 .79955 .80:;1:34 .805 1 1  .807815 .81057 .81327 

. 9  .81594 .81859 .82121 .82381 .82639 .82894 .63147 .83398 .83646 .83891 

1 . 0  .84134 .84375 .84614 .84849 .85083 .85314 .85543 .85769 .85993 .86214 

1 . 1  .86433 .86650 .86864 .87076 .87286 .87493 .87698 .87900 .88100 .88298 

1 . 2  .88493 .88686 . 88877 .89065 .89251 .89435 .89617 .89796 .89973 .90147 

1 . 3  .90320 .90490 .90658 .90824 .90988 . 9 1 1 49 .91309 .91466 .91621 , 9 1 774 

1 . 4  .91924 .92073 . 92220 .92364 . 92607 . 92647 . 92786 .92922 . 93066 .93189 

1 . 5  .93319 . 93448 .93574 .93699 .93822 . 93943 . 94062 .94179 .94295 .94408 

1 . 6  .94520 , 94690 . 94738 . 94845 .94950 . 95053 .95154 . 95254 .95352 .95449 

1 . 7  . 95543 . 911637 . 95728 .95818 . 95907 . 95994 . 96080 ,96164 ,96246 .96327 

1 . 8  . 96407 , 96485 .Q6156:l ,96638 ,9671:2 . 96784 , 96866 .96926 , 9ago!) ,07062 

1 .9 .97126 . 97193 .97257 .97320 ,97381 .97441 . 97500 ,97l5158 .97615 .97670 

2.0 ,97725 . 97778 .97831 .97882 . 9 7932 . 97982 . 98030 . 98077 .98124 .98169 

2 . 1  .98214 . 98257 . 98300 .98341 . 98382 . 98422 . 98461 . 98500 .98537 .98574 

2.2 .98610 . 98645 . 98679 .98713 .98745 . 98778 . 98809 . 98840 . 98870 .98899 

2 . 3  . 98928 . 98956 . 98983 .99010 .99036 . 99061 . 99086 .991 1 1  .99134 .99158 

2.4 .99180 . 99202 . 99224 .99245 . 99266 . 99286 . 99305 . 99324 . 99343 .99361 

2 . 5  .99379 .99396 .99413 .99430 . 99446 .99461 . 99477 .99492 . 99506 .99520 

2 . 6  . 99534 .99547 .991160 .99573 .99585 . 99598 . 99609 .99621 . 99632 .99643 

2 . 7  . 99653 .99664 .99674 . 99683 .99693 .99702 .99711 .99720 .99728 .09736 

2.8 . 99744 . 09762 . 99760 .99767 .99774 .99781 . 99788 . 99795 . 99801 .99807 

2 . 9  .99813 .99819 .99825 .99831 .99836 . 99841 . 99846 .99851 ,008156 .99861 

3 . 0  .00865 . 99869 . 99874 ,99878 .99882 . 99886 . 99889 . 99893 , 99896 . 99000 

3 . 1  .99903 . 99906 .99910 .99913 .99916 .99918 .99921 . 99924 .99926 .99929 

3 . 2  .99931 . 99934 .99936 .99938 .99940 . 99942 . 99944 . 99946 . 99948 . 99950 

3.3 . 99952 . 99953 . 99955 .99957 .99958 .99960 .99961 .99962 . 99964 .99965 

3 . 4  . 99966 . 99968 . 99969 . 99970 . 99971 . 99972 .99973 . 99974 . 99975 .99976 

3 . 5  .99977 . 99978 . 99978 .99979 . 99980 .99981 .99981 . 99982 . 99983 .99983 

3 . 6  . 99984 . 99985 . 99985 .99986 . 99986 .99987 . 99987 . 99988 . 99988 .99989 

3 . 7  .99989 . 99990 . 99990 .99990 . 99991 .99991 . 99992 .99992 .99992 .99992 

3 . 8  . 99993 . 99993 . 99993 . 99994 .99994 . 99994 . 99994 .99995 .99995 .99995 

3 . 9  . 99995 . 99995 . 99996 .99996 .99996 .99996 . 99996 .99996 .99997 .99997 
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Tables of the Chi-Square Distribution 
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