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To: Marian Rejewski and Herman Kahn,
Master Empirical Model Builders

Marian Rejewski cracked the Enigma Code in 1932,
sparing the United Kingdom strangulation by
German submarines in World War II.

The writings of Herman Kahn provided the basis for the
Reagan—Kohl Pershing II strategy which brought down the
“evil empire” without firing a shot.
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Preface

That mathematics is not a science because it exits in a Platonic world of abstraction
was well argued by the late John W. Tukey. Statistics, on the other hand, deals with
data from the real world. Hence statistics can be claimed to be a science, to the ex-
tent that its practitioners focus on data analysis including model inferences based on
data. Many scholars have believed that Tukey (himself a brilliant topologist) made a
mistake in taking statistics out from under the umbrella of mathematics. Indeed,
some members of the departments of statistics seldom, if ever, look at a set of data,
contenting themselves with elegant data-free mathematical structures. Many a
named chair has been awarded to a “statistician” who contented himself/herself with
developing tests (seldom used in actual data analysis), and then proceeding to prove
the asymptotic optimality of such tests under idealized conditions.

The father of Exploratory Data Analysis, John Tukey, took the position that indi-
viduals who avoid data from the real world, be they ever so elegant mathematically,
are not practicing statistics but mathematics. Tukey went further and argued that
those who did only apply to data standardized tests of models of other scientists
were confining themselves unnecessarily to “confirmatory data analysis.” He want-
ed statisticians to be more original than that. It was better if data analysis were done
in an exploratory fashion. In other words, he wanted statisticians to be key players
in science. They should examine data without relying too much on existing theories,
and try to make inferences about real world systems.

Statistics is older than mathematics. Moses did carry out a census of the number
of warriors in the Jewish tribes in 1452 BC. He made inferences from his census
about the logistics of caring for his people and the military conquest of Canaan.
Furthermore, I would submit that Thucydides, who wrote a fairly objective account
of the Peloponnesian War between 431 BC and 411 BC (the war continued until 404
BC, but Thucydides apparently did not live to see the end of it), should be consid-
ered the father of time series analysis, an important subcategory of statistics.

Centuries later, geostrategist Herman Kahn (who was a major player in Monte
Carlo simulation) argued from historical patterns and extrapolations how best to
overcome the Soviet threat to the Free World. He was going further than Thucydides
in that he was not only talking about qualitative facts in the past, but was extrapolat-
ing into an unknown future what would be the likely results of various strategies
first to contain and then to destroy politically the Soviet Union. In other words, he

xiii



xiv PREFACE

engaged in Extrapolatory Data Analysis. The Reagan—Kohl Pershing II strategy was
one almost taken right out of the pages of Kahn’s numerous books.

Yet many scholars would argue that neither Thucydides nor Kahn could be con-
sidered statisticians.

In my own professional experience, I have had the good fortune of working in
the building of practical models in such fields as oncology, tall building construc-
tion, manufacturing, epidemiology, military strategy, remote sensing, public policy,
market analysis, nonparametric data-based estimation of functions, and others. Sel-
dom have I been able to sit inside the box of standardized theories, statistical or oth-
erwise. I always had to climb outside the box and use data to build appropriate mod-
els for dealing with the problem at hand.

The purpose of this book is not only to add to the arsenal of tools for using data
to build appropriate models, but to give the reader insights as to how he/she can take
his/her own direction for empirical model building. From my own experience in ob-
taining a bachelor’s degree in engineering from Vanderbilt and a doctorate in math-
ematics from Princeton, I can say that I seldom use directly the tools learned in my
university education. But it is also true that an understanding of those mechanisms
has been of significant help in my career in data analysis and model building.

In Chapter 1, I consider topics in growth, including population growth, tax poli-
cy, and modeling tumor growth and its chemotherapeutic control. Parts of this chap-
ter are simple from a mathematical standpoint, but the entire chapter has important
implications for optimization and control. The so-called Malthusian theory is an ex-
ample of a model that makes logical sense, absent data, but is seriously flawed when
compared with reality. It is also noted that Malthus’s ideas led to Social Darwinism
and the unnecessary horror of the Irish potato famine.

Chapter 2 starts with an attempt to use data from the Old Testament to make in-
ferences about the growth of the Jewish population starting with 1750 BC and end-
ing with the fall of the Kingdom of David in 975 BC. Then we examine John
Graunt’s creation of the life table analysis of the demographic effects of the London
plague of the sixteenth and seventeenth centuries. Then we delve into the data-based
combat modeling started by Georg von Reisswitz and carried through with great
success by Lanchester. Although easily computerized and data-modifiable, the U.S.
Department of Defense, since the time of Robert McNamara has opted for non-
data-based, noninteractive computer games such as Castforem. The work of the late
Monte Carlo innovator, Herman Kahn, working without federal support in creating
the strategy used by Reagan and Kohl to bring down the USSR, is also discussed.

Models for coping with contagious epidemics are presented in Chapter 3. We
start with the laws of Moses concerning leprosy. We then proceed to John Snow’s
halting of the East End cholera epidemic of the mid-1800s. Each of these epidemics
was more or less successfully dealt with sociologically. We then suggest that the
AIDS epidemic that has killed over 600,000 Americans could have been prevented
in the United States if only the simple expedient of closing the gay bathhouses had
been followed. We note that sociological control of epidemics should not be ne-
glected. The United States has much the highest number of AIDS cases per hundred
thousand in the First World (over ten times that in the United Kingdom). The failure
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of the Centers for Disease Control to shut down the gay bathhouses is shown to be a
plausible explanation of why AIDS continues to thrive in the United States. An ar-
gument is made that the United States may be “country zero” for the First World
epidemic.

Chapter 4 deals with the bootstrap work of Julian Simon, Bradley Efron, and Pe-
ter Bruce. This computer-intensive resampling technique has revolutionized statis-
tics. The classic zea mays data set from Fisher’s The Design of Experiments is rean-
alyzed using various bootstrapping techniques. Then we deal with some rather
unusual problems successfully handled by bootstrap techniques.

In Chapter 5 we show the importance of simulation in solving differential equa-
tions which do not admit of closed-form solutions (i.e., most of them). Particularly
for partial differential equations in dimensions higher than three, simulation be-
comes virtually our only recourse.

I have often been approached by clients who wanted me to increase the size
of their data sets by statistical means. That is generally not doable. However, the
SIMDAT algorithm can build a continuous nonparametric density estimation base
of pseudo-data around and within the neighborhood of an existing set which avoids
such anomalies as suggesting that ammunition be stored in a section of a tank where
there was no data but is shown from the nonparametric density estimator approach
to be very vulnerable indeed. For many problems it is easy to write down the plausi-
ble axioms which have generated a data set. However, it is rarely the case that these
axioms lead to a ready representation of the likelihood function. The problem is that
the axioms are written in the forward direction, but the likelihood requires a back-
ward look. The SIMEST algorithm allows a temporally forward approach for deal-
ing with the estimation of the underlying parameters. SIMDAT and SIMEST are de-
veloped in Chapter 6.

Chapter 7 is a brief survey of the exploratory data analysis paradigm of John
Tukey. He viewed statistics not just as a device by which models developed by non-
statisticians could be confirmed or rejected on the basis of data. He wanted statisti-
cians to be on the cutting edge of discovery. He noted that exploration of data could
be used to infer structures and effect inferences and extrapolations. EDA has great-
ly expanded the creativity horizons for statisticians as generalists across the scientif-
ic spectrum.

Chapter 8 is devoted to what I consider to be shortlived fads. Fuzzy logic and
catastrophe theory have been shown to be inadequate tools. Chaos theory is not
such a hot topic as formerly, but it still has its followers. The fads tend to build anti-
Aristotelian structures not really sensitive to data. If we build a mathematical model
that is not to be stressed by data, then we have entered the realm of postmodernism
where everyone gets to create his/her own reality. Simply showing a mathematical
structure does not indicate that structure conforms to anything in the real world.
Nevertheless, I show that even if one does look at some of the artificial models of
chaos theory, the addition of a slight amount of noise can frequently bring the
chaotic model to something which does conform to real-world data bases.

Some professors of statistics believe that Bayesian data analysis is the only way
to go. Bayesian theory has a lot to be said for it. For example, it gets around the
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claim of Karl Popper that statistics can only demolish hypotheses, never confirm
them. Over the years, the use of noninformative prior distributions has seemingly
weakened a major raison d’étre of Bayesian analysis. In Chapter 9, the author at-
tempts to give a data-based exposition of Bayesian theory, including the EM algo-
rithm, data augmentation, and the Gibbs sampler.

There used to be surveys performed to decide who the most important living sta-
tistician was. Sometimes John Tukey would come in first. At other times it would be
Edward Deming, the developer of Statistical Process Control. In Chapter 10 we go
beyond the normal low-dimensional analysis advocated by Deming to show how
higher-dimensional control charts can be constructed and how nonparametric as
well as parametric tests can be used.

In Chapter 11 we investigate procedures where optimization may be readily im-
plemented in the real world, which is generally noisy. We particularly emphasize al-
gorithms developed by the statisticians Nelder and Mead which are amazingly use-
ful in this age of swift computing. Lawera and Thompson built upon the piecewise
quadratic optimization technique used in the rotatable experimental designs of the
statisticians Box and Hunter.

Chapter 12 shows how no lesser a person than the author of The Declaration of
Independence, Thomas Jefferson, persuaded President Washington to veto the
rather reasonable and transparent allocation rule of Alexander Hamilton for the allo-
cation of congressmen across the various states in favor of Jefferson’s rule favoring
the large population states (at that time Jefferson’ Virginia was the largest). This
first use of the Presidential veto is simply an example of the fact (pointed out by
Jefferson earlier) that one should take the statements of politicians with a very large
grain of salt. We show the basis of the utility theory of Bernoulli as well as that of
Morgenstern and von Neumann. Finally, we present the Nobel Prize winning Im-
possibility Theorem of Kenneth Arrow which demonstrates the fact that group deci-
sions which make everybody happy can never be constructed.

Chapter 13 is a brief practicum in sampling theory. The author has experience
consulting in this area and believes that a great deal can be achieved by the use of
transparent and relatively simple strategies.

In Chapter 14 it is shown how efficient market theory including capital market
theory and the derivative approaches which proceed from the Nobel Prize winning
work of Black, Scholes, and Merton are inconsistent with market data. The efficient
market hypothesis has dominated finance, as taught in schools of business, for
decades, much to the disadvantage of investors and society as a whole. As an alter-
native, it is demonstrated how computer-intensive and momentum-based strategies
may be created which significantly best the market cap Index Fund strategies that
proceed from capital market theory. Serious doubt is cast on the practice of the
vending of uncovered call options. Most importantly, this chapter attempts to show
young investors how they can develop their own strategies for purchasing stocks in
an age where wars of choice (based on information later declared to be false), bad
Federal Reserve policy, and the financing of houses to persons unable to pay off the
mortgages have produced conditions where inflation becomes almost a certainty.
The author has no magic rule for making the reader rich, but he gives the kind of in-
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formation which is assuredly useful in showing him/her how to plan for using the
market as a vehicle for obtaining a measure of financial security.

This work was supported in part by the Army Research Office (Durham)
(W911INF-04-1-0354) Some Topics in Applied Stochastic Modeling, Risk Analysis
and Computer Simulation. I would like to thank my mentor John Tukey and my col-
leagues Katherine Ensor, Scott Baggett, John Dobelman, Ed Williams, David Scott,
Chapman Findlay, Jacek Koronacki, Webster West, Martin Lawera, Marc Elliott,
Otto Schwalb, William Wojciechowski, Steven Boswell, Rachel MacKenzie, Neely
Atkinson, Barry Brown and Ricardo Affinito. At John Wiley & Sons, I would like to
thank my editor, Stephen Quigley.

Finally and most importantly, I wish to thank my wife, Professor Ewa Thompson,
for her continuing love and encouragement.

JAMES THOMPSON

Houston, Texas
Easter 2011
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Chapter 1

Models of Growth and
Decay

1.1 A Simple Pension and Annuity Plan

It is almost always the case that everything we plan for is, in actuality,
an approximation to what might happen. The distinction between “sci-
ence” and “engineering” frequently has to do with the difference between
models of Newtonian precision and approximations to a reality only par-
tially understood. The fact is, of course, that Newton’s laws are themselves
approximations. It is true that we can much more accurately design an
authomobile than we can plan an economy. However, though the author
absolutely believes in objective reality, he understands that he is unlikely to
find it in any physical or social system. As St. Paul said, “we see through
a glass darkly,” (1 Corintians 13:12, King James Version). Of course some
visions are cloudier than others. But, truth be told, if science is the study of
precise reality and engineering is the study of approximations to that real-
ity, then almost every scientist is actually an engineer. Frequently, physical
scientists look down on the social sciences because the models in the physi-
cal sciences are more precise and more accurate. But, in reality, we are most
of us empirical modelers doing the best we can, making logical inferences
based on data, to understand what is going on and what will happen.
One easy introduction to the subject of growth models is obtained by
considering an accounting situation, because such systems are relatively
well defined. A pension and annuity plan is generally axiomatized clearly.
As a practical matter, pension funds in the United States are becoming
much less generous than was the case in years past. A major reason for the
distress of companies such as General Motors was the large liability built up

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©)2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.
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2 MODELS OF GROWTH AND DECAY

over years to provide pensions and health care plans for their workers. For
many small companies, there now simply are no pension funds beyond the
federally mandated Social Security. A company is obliged to pay slightly
more than 7% of a worker’s salary into Social Security. The worker must
match this. Insofar as the company’s contribution is concerned, it is tax
deductible. The worker’s portion is not tax deductible. So an average
worker is faced with the necessity of a “payroll tax” for income that is
put somewhere in the maze of federal funds and is frequently spent out as
though it were ready cash money. This is a kind of double whammy. In
a sense, the worker is taxed on money that she does not receive. Then,
when she starts to collect Social Security, a middle class employee is taxed
a third time on 85% of monies received.

Typically, many employers are very concerned about the welfare of their
workers. We recall that in 1908 Henry Ford instituted the 40-hour week
and the minimum daily wage of $5. He also started at the same time a
profit-sharing plan for his workers. He provided, at low mortgage rates,
simple two-bedroom houses for his workers. We recall that this was 100
years ago when the majority of workers were not so blessed with so kindly
an employer.

Unions tended to develop adversarial attitudes toward managers, whom
they felt cared little about the welfare of the workers. Wage structures and
benefit plans began to be increasingly divorced from economic reality. A
plan that deferred some wage benefits into future retirement funds might
be very attractive to a manager who was making promises that he would
not have to meet in his own professional lifetime.

We will consider below a possible minimal pension fund. It is referred to
as an Individual Retirement Account (IRA). Properly structured, the con-
tribution of the worker and that of the employer are both tax deductible.
At the time of retirement, the worker will receive monthly payments ac-
cording to a mutually agreed upon plan. On these payments, he or she will
pay taxes as though the annuity payments were ordinary income.

Suppose that we set up a pension plan for an individual who starts work-
ing for a firm at age N,, retiring at age V. The starting salary is S; at age
N; and will increase at rate a annually. The employer and employee both
contribute a fraction 3/2 of the salary each year to the employee’s pension
fund. The fund is invested at a fixed annual rate of return 4. We wish to
find the value of the employee’s pension fund at retirement. Furthermore,
we wish to know the size of the employee’s pension checks if he invests his
pension capital at retirement in a life annuity (i.e., one that pays only dur-
ing the employee’s lifetime, with no benefit to his heirs at time of death).
Let the expected death age given survival until N; be denoted by Nj.

Many investigators find it convenient to consider first a pilot study with
concrete values instead of algebraic symbols. For example, we might try
S1 = $40,000; N; = 21; N, = 65;a = 002; 8 = 00705; v = 0.05; N3 = 75.
The values of a and v are rather low. The value of 3 is roughly half the
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value used at present in the U.S. Social Security System. The value of
N, is the same as the present regular Social Security retirement age of 65.
No allowance is made for annual losses from taxation, since pension plans
in the United States generally leave the deposited capital untaxed until
the employee begins his or her annuity payments (although the employee
contributions to Social Security are taxed at full rate).

First, we note that at the end of the first year the employee will have
approximately

P(1) = BS(1) = (0.0705)$40, 000 = $2820 1.1)

invested in the pension plan. This will only be an approximation, be-
cause most salaried employees have their pension fund increments invested
monthly rather than at the end of the year. We shall use the approximation
for the pilot study.

At the end of the second year, the employee will have approximately

P(2) = BS(2) + (1 + v)P(1) = (0.0705)S(2) + 1.05($2820), (1.2)
where
S(2) = (1 + @)S(1) = 1.025(1) = 1.02($20, 000) = $20, 400.
Thus, we have that P(2) = $5837. Similarly,
P(3) = BS(3) + (1 + 7)P(2) = (0.0705)S(3) + 1.05($5837),  (1.3)
where
S@3) = (1 + a)S(2) = 1.025(2) = 1.02($20, 400) = $20, 808.

So P(3) = $9063s. By this point, we see how things are going well enough
to leave the pilot study and set up the recurrence relations that solve the
problem with general parameter values. Clearly, the key equations are

SE+1)=(1+a)SyH) (1.4)
and

P(i+1)=BS3GH) + (1 +7)PG), for j=1,2,...,.Ny—N;. (1.5)

Moreover, at this point, it is easy to take account of the fact that pension
increments are paid monthly via

SG+1)=1+a)S@j), for j=1,2,...,N;— Ny, (1.6)
and

Pj(i+1)=%5(j)+(l+%)}’j(i), for i=0,1,2,...,11, (1.7)
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N = starting age of employment
N, = retirement age
S = starting salary
P = starting principal
a = annual rate of increase of salary
B = fraction of salary contributed by employee
¥ = annual rate of increase of principal in fund
Year = WA
Month = 1
“p = gs +(1+ 112) P
Month = Month + 1
Is Month = 13?

If “no”  go to**
If “yes” continue

Year = Year + 1
S = S(1+a)
Month = 1
Is Year = Ny +17
If “no” go to**
If “yes”  continue
Return P

Figure 1.1. Subroutine annuity (N1,N2,5,a,0,7).

where Pj;1(0) = P;(12). This system can readily be programmed on a
handheld calculator or microprocessor using the simple flowchart in Figure
1.1. We find that the total stake of the employee at age 65 is a respectable
$450,298 (recall that we have used an interest rate and a salary incremen-
tation consistent with a low inflation economy). We now know how much
the employee will have in his pension account at the time of retirement.
We wish to decide what the fair monthly payment will be if he invests the
principal P(N3) in a life annuity. Let us suppose that actuarily he has a
life expectancy of N3 given that he retires at age Na2. To do this, we first
compute the value to which his principal would grow by age N3 if he simply
invested it in an account paying at the prevailing interest of 4. But this
is easily done by using the preceding routine with S = 0 and setting ™V,
equal to the retirement age N2 and N, equal to the expected time of death
Nj3. So we determine that using this strategy, the principal at the expected
time of death is computed to be P(N3).
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The monthly payments of the life annuity should be such that if they
are immediately invested in an account paying at rate <, then the total
accrued principal at age N3 will be P(N3). Let us suppose a guess as to
this payment

X = guess as to fair monthly return
P(N;) = principal at retirement
v = annual rate of return on principal
N; = retirement age
N3 = expected age at death given survival until age N»
4 \Ns~Na
P(N)) = P(No)(1+ )

** Call Annuity (N2, N3, X,0,6,7)
Compare P with desired monthly payout
Make new guess for X and return to**

Figure 1.2. Program trial and error.

is X. Then we may determine the total principal at age N3 by using
the flowchart in Figure 1.1 using S = X, = 0,8 = 6,y = 9,N; =
(retirement age) N2, N2 = (expected age at death)N3. We can then find
the fair value of monthly payment by trial and error using the program
pwreviously flowcharted in Figure 1.1.

We note that if the pensioner invests his principal at retirement into a
fund paying 5% interest compounded monthly with all dividends reinvested,
then at the expected death date he would have at that time a total principal
of $741,650.

(75—65)12
P(Ns) = $450,298 (1 + %)

Now on a monthly basis, the pensioner should receive an amount such
that if he invested each month’s payment at 5%, then at age 75 his stake
would have increased from $0 to $741,650. As a first guess, let us try a
monthly payout of $5000. Using the program in Figure 1.2, we find a stake
of $776,414. Since this is a bit on the high side, we next try a payout
rate of $4,500—producing a stake at age 75 of $737,593. Flailing around
in an eyeballing mode gets us to within one dollar of P(N3) in a number
of iterations highly dependent on the intuition of the user. Our number of
iterations was nine. The equitable monthly payout rate is $4,777.

It should be noted in passing that we have not taken into account the
effect of inflation. What would the value of the first monthly payment be

= $741, 650. (1.8)
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in today’s dollars if the inflation rate has progressed at the rate of 3% per
year? The value of the first months’s payout is then

$4, 777 x (.97)* = $1,370

If the inflation rate should grow to 8%, then, the pensioner’s first month
check is in current dollars $583. Social Security, on the other hand, is
(supposedly) indexed for inflation. As John Bogle (2] has pointed out and
as we shall demonstrate in Chapter 14, those who seek risk-free investment
in fixed-rate bonds have failed to note that the actual value of a bond at
maturity is an unknown because of inflation. The wise investor should put
some of his or her annuity investment in stocks, since stocks, in a sense,
self-adjust for inflation. Moreover, the current Social Security System has
other benefits that the employee could elect to have incorporated into his
payout plan, for example, survivorship benefits to a surviving spouse, and
disability. Thus, our employer should really look further than bank returns.
He needs to find something which is responsive to the cost of living. We
will demonstrate later, in Chapter 14, how this might be achieved.

These additional add-ons would not cost sufficiently to lower the fair
monthly payout below, say, $3000 per month. And we recall that these are
dollars in a low inflation economy. Considering that there is some doubt
that an individual entering the current job market will ever receive anything
from Social Security at retirement, a certain amount of indignation on the
part of the young is perhaps in order. Furthermore, the proposed private
alternative to Social Security would allow the investments by the employee
and his employer in the plan to be utilized as capital for investment in
American industry, increasing employment as well as productivity.

The method of trial and error is perhaps the oldest of the general algo-
rithmic approaches for problem solving. It is highly interactive; that is,
the user makes a guess (in the above case X) as to the appropriate “input”
(control variable, answer, etc.) that he feeds into a “black box.” An output
result is spewed out of the black box and compared to the desideratum—in
the earlier problem, P and P(N3).

We note that the above example is one in which we know the workings
of the black box well. That is, we have a model for reality that seems to
be precise. And little wonder, for annuity is a manmade entity and one
should be able to grasp the reality of its workings far better than, say, daily
maximum temperatures in Houston forecast 3 years into the future.

In actuality, however, even the pension fund example is highly dependent
on a series of questionable assumptions. For example, the interest figures
used assume negligible inflation—a fair assumption for the mid-1980s but
a terrible one for the late 1970s. Objections as to the assumption that
the pension fund will be soundly managed are not too relevant, since most
such funds are broadly invested, essentially a random selection from the
market. Objections as to the uncertainty of employment of the employee in
his current company are also irrelevant, since it is assumed that the vesting
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of such a fund is instantaneous, so that the employee loses no equity when
he changes jobs. The plan suggested here is simply the kind of private
IRA arrangement used so effectively by the Japanese as both a vehicle of
retirement security and capital formation. Such a plan can reasonably be
designed to track the performance of the overall economy. But the assump-
tions as to the specific yields of the plan will almost certainly be violated
in practice. At a later time, we shall cover the subject of scenario analysis,
in which the investigator frankly admits he does not fully understand the
black box’s workings very well and examines a number of reasonable sets of
scenarios (hypotheses) and observes what happens in each. At this point,
we need only mention that in reality we are always in a scenario analysis
situation. We always see through a glass darkly.

Having admitted that even in this idealized situation our model is only
an approximation to reality, we observe that a wide variety of algorithms
exist for solving the problem posed. Usually, if we can come up with a
realistic mathematical axiomatization of the problem, we have done the
most significant part of the work. The trial-and-error approach has many
advantages and is not to be despised. However, its relative slowness may
be somewhat inefficient. In the present problem, we are attempting to pick
X so that P is close to P(N3). It is not hard to design an automated
algorithm that behaves very much like the human mind for achieving this
goal. For example, in Figure 1.3, we consider a plot of G = P — P(Nj)
versus X. Suppose that we have computed G for two values X,,_; and Xj,.
We may then use as our next guess X,,;1, the intercept on the X axis of
the line joining [X,_1,G(Xn-1 ]) and [(Xn, G(Xn)]-

Using the program in Figure 1.4, we use as our first guess a monthly
output of 0, which naturally produces a stake at 75 years of age of 0.
As our second guess, we use X = $450,298/(7x12). With these two
starting values of Xy, and Gn, the program converges to a value that gives
P = 741,650 to within one dollar in three iterations. The equitable payout
rate obtained by the secant method is, of course, the same as that obtained
by trial and error—namely, $4,777.

The Secant Method

G=P-P(N))

Figure 1.3. The secant method
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P(N2) = principal at retirement
~ = annual rate of return on principal
N2 = retirement age
N3 = expected age at death given survival until age N;
P(N3) = P(N2) (1 + T.%)12(N.<,—Nz)
n-1=0
Gn-1 = —P(N3)

_ __P(Ns
Xn' — 12(Ns~- N2

*Call Annuity (N2, N3, X,0,6,7)
GrP — P(N3)
Slope = = (G, — Gn—l)/éXn — Xn-1)
Xn+1 = Xn - SIB?)‘E
Call Annuity (N2, N3, X541,0,6,7)
Gn+1 =P — P(N3)
Is Gn+1 <17
If yes, print X4+, and stop
If -no continue
Xn.—l = X‘n
Gn+1 = Gn
Xn = Xn+1
Gn = Gn+1
Go to *
Figure 1.4. Program secant method

1.2 Income Tax Bracket Creep and the Quiet
Revolution of 1980

Many, with some justification, believe that our leaders in Washington have
something approaching a proprietary interest in the wealth of America’s
citizens. That works up to a point, but beyond some hard-to-establish
threshold taxes can cause revolutions. The American Revolution is a case
in point. The high tariffs on exported cotton and imported textiles led, in
large measure, to the American Civil War. The discussion here concerns a
quiet revolution that removed President Carter from office by the election
of 1980.

Facing inflation of more than 10% and interest rates that reached 20%,
President Carter gave a speech on July 15, 1979, in which he blamed the
problem on a “general malaise” of the American people. This was heady
stuff, for most Americans did not feel they were part of such a general
shiftlessness. The General Malaise Speech, as it came to be called, flew in
the face of the famous maxim of the long dead economist and sociologist
Vilfredo Pareto. One form of Pareto’s Maxim is that the catastrophically
many failures are not due to a general malaise but to a small number of
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assignable causes [[11, p.10].

It seemed to many that perhaps President Carter himself, rather than the
general population, had allowed things to go very wrong with the nation’s
economy. The election of Ronald Reagan in November of 1980 had as its
most important accomplishment the abolition of the Soviet Union. But the
electorate was not dreaming of such a result. They were concerned about
the deterioration in their standards of living. We will demonstrate below
how the tax system contributed to the economic problem, which was the
real reason for Carter’s defeat.

Beginning in 1981, there were several changes in the U.S. income tax
laws. The major reason advanced for these modifications in the tax regu-
lations was something called “bracket creep.” This is a phenomenon of the
progressive income tax which causes an individual whose income increases
at the same rate as inflation to fall further and further behind as time pro-
gresses. There was much resistance on the part of many politicians to this
indexing of taxes to the inflation rate, since the existing tax laws guaranteed
a 1.6% increase in federal revenues for every 1% increase in the inflation
rate. Another problem that was addressed by the tax changes in the early
1980s was the fact that a professional couple living together in the unmar-
ried state typically paid a few thousand dollars less in taxes than if they
were married. Those who felt the need for indexing and some relief from
the “marriage tax” had carried out several “if this goes on” type scenario
analyses. We consider one such below. All the figures below use typical
salary rates for 1980 and an inflation rate a bit below that experienced at
that time. The tax brackets are those of the 1980 IRS tables.

Let us consider the case of John Ricenik who accepts a position with a
company that translates into a taxable income of $20,000. Let us project
John'’s earning profile in the case where both inflation and his salary increase
at an annual rate of 7%. First of all, we see that John’s income will grow
annually according to the formula

income = 20,000(1.07)¥ear— 1980, (1.9)

The tax required to be paid in any given year is easily determined from
Table 1.1. Inflation, on an annual basis, can be taken care of by expressing
all after tax amounts in 1980 dollars according to the formula

nominal amount

value in 1980 dollars = (1.10)

To determine John’s after tax profile, we need to examine the 1980 tax
tables for single taxpayers.

We will see that that John is not holding his own against inflation despite
of the fact that his salary is increasing at the same rate as inflation. This is
due to the fact that his marginal increases in salary are being taxed at rates
higher than the average rate for the total tax on his earnings. The purpose
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of indexing is to see that the boundaries for the rate changes increase at
the annual rate of inflation.

We can readily compute the 6-year horizon table for John Ricenik’s after
tax income in 1980 dollars (Table 1.1).

Table 1.1. Rates for Single Taxpayers.
If taxable income

is not over $2,300... 0
Over But not over of amount over
$2,300 $3,400 14% $2,300
$3,400 $4,400 $154 +16% $3,400
$4,400 $6,500 $314+18% $4,400
$6,500 $8,500 $692 + 19 % $6,500
$8,500 $10,800 $1,072+21% $8,500
$10,800 $12,900 $1,555 +25% $10,800
$12,900 $15,000 $2,059 + 26 % $12,900
$15,000 $18,200 $2,605 + 30 % $15,000
$18,200 $23,500 $3,565 + 34 % $18,200
$23,500 $28,800 $5,367 +39% $23,500
$28,800 $34,100 $7,434+ 44 % $28,800
$34,100 $41,500 $9, 766 + 49 % $34,100
$41,500 $55,300 $13,392 + 55% $41,500
$55,300 $81,800 $20,982 + 63 % $55,300
$81,800 $108,300 $37,677 + 68 % $81,800
N $108,300 _ .. $55,697 + 70% $108,300
Table 1.2. After-Tax Income.
Nominal After After-Tax
Year Nominal  Tax Tax Income  Income (1980 dollars)
1980 $20,000 $4,177 $15,823 $15,823
1981 $21,400 $4,653 $16,747 $15,651
1982 $22,898 $5,162 $17,736 $15,491
1983 $24,501 $5,757 $18,744 $15,300
1984 $26,216 $6,426 $19,790 $15,098
1985 $28,051 $7,142 $20,909 $14,908

Let us now investigate the “marriage tax.” Suppose that John Ricenik
marries his classmate, Mary Weenie, who has the same earnings projections
as does John—that is, 7% growth in both salary increments and inflation.
You might suppose that computing the after tax income of the Ricenik
family is trivial. All one has to do is to double the figures in Table 1.1.
This is, in fact, the case if John and Mary live together without being
legally married.

There is another table that applies to John and Mary if they are legally
husband and wife. See Table 1.3.
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In Table 1.3, we compare the tax John and Mary must pay if they are
living in common-law marriage as compared to that if they are legally
married. All figures are given in nominal dollar amounts (i.e., in dollars
uncorrected for inflation).

Table 1.3. 1980 Tax Schedule for Married Couples. |

Over But not over ' of the amount over
$3,400 $5,500 14% $3,500
$5,500 $7,600 $294 + 16 % $5,500
$7,600 $11,900 $630 + 18 % $7,600

$11,900 $16,000 $1,404 + 21 % $11,900
$16,000 $20,200 $2,265 + 24 % $16,000
$20,200 $24,600 $3,273 +28% $20,200
$24,600 $29,900 $4,505 + 32% $24,600
$29,900 $35,200 $6,201 + 37 % $29,900
$35,200 $45,800 $8,162 + 43 % $35,200
$45,800 $60,000 $12,720 + 49% $45,800
$60,000 $85,600 $19,678 + 54 % $60,000
$85,600 $109,400 $33,502 + 59 % $85,600
$109,400 $162,400 $47,544 + 64 % $109,400
$162,400 $215,400 $81,464 + 68 % $162,400
$215,400 . $117,504 + 70% $215,400

Table 1.4. The Marriage Tax.
Year Comd. Income Tax Married Tax Unmarried Marrg. Tax

1980 $40,000 $10,226 $8,354 $1,872
1981 $42,800 $11,430 $9,306 $2,124
1982 $45,796 $12,717 $10,324 $2,394
1983 $49,002 $14,289 $11,514 $2,775
1984 $52,432 $15,970 $12,852 $3,118
1985 $56,102 $17,768 $14,284 $3,484

We note that, even corrected for inflation, the marriage tax is increasing
year by year. For example, when measured in constant dollars, the 1980
marriage tax of $1872 grows to $2484 in 1985.

Despite the tax disadvantages, John and Mary decide to get married.
Their living expenses, until they can buy a house, are $27,000 per year
(in 1980 dollars). To buy a house, the Riceniks need a down payment of
$10,000 (in 1980 dollars). Assume that at the end of each year until they
can make a down payment they invest their savings at an annual rate of
8% in short-term tax-free bonds. How many years must the Riceniks save
in order to acquire their home if their wages and inflation increase at an
annual rate of 7% and if the tax tables for 1980 had been kept in place?
We answer this question by creating Table 1.5. As we note from the table,
the Riceniks actually would never be able to afford their house under the
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conditions given. From 1985 on, they would actually see the diminution of
their savings.

Next, let us give a savings profile of the Riceniks with conditions as
given earlier, except with the change that income tax levels are indexed by
inflation, and the marriage penalty has been eliminated. Here, the relevant
taxes in 1980 dollars can be obtained by doubling $4177, the tax for a single
person earning $20,000 per annum. This then gives us Table 1.6 (in 1980
dollars).

Table 1.5. The Savings Profile of John and Mary Ricenik.

Year Income Tax After Savings Accum. Savings
Tax Inc. Savings 1980 Dollars

1980 $40,000 $10,226 $29,774 $2,274  $2,274 $2,274

1981 $42,800 $11,430 $31,370 $1,945  $4,401 $4,113

1982 $45796 $12,718 $33078 $1,593  $6,346 $5,543
1983 $49,001 $14,289 $34,712 $1,023  $7,877 $6,430
1984 $52,432 $15970 $36,462  $415  $8,922 $6,807
1985 $56,102 $17,768 $38334 —$236  $9,400 $6,702

Table 1.6. Savings Profile with Indexing and No Marrg. Tax.

Year Income Tax Income Savings Savings
1980 $40,000 $8,354 $31,646 $4,146 $4,146

1981 $40,000 $8,354 $31,646 $4,185 $8,331

1982 $40,000 $8,354 $31,646 $4,224 $12,555
1983 $40,000 $8,354 $31,646 $4,263 $16,818
1984 $40,000 $8,354 $31,646 $4,304 $21,122
1985 $40,000 $8,354 $31,646 $4,343 $25,465

Thus, if the income tax were indexed to inflation, the Riceniks could afford
the down payment on their home in less than 3 years even if their salaries
only kept pace with inflation. In the above case, the only participation
the Riceniks see in the assumed increase of productivity made possible
by technology is through the interest on their capital. Even without this
interest, they would be able to move into their home in 1982. It is perhaps
interesting to note that most people who go through the computations in
Table 1.6 do not believe the results when they create the table for the first
time.

Next, let us briefly consider one of the consequences of the pre-1987
U.S. income tax—the tax shelter. The top tax level on salaried income
was reduced in the early 1980s to 50 %—a reform instituted during the
Carter administration. However, it is not surprising that many people
would search for some legal means of avoiding paying this “modest” rate of
taxation. This can be achieved by noting that income which was gained by
making an investment and selling it at least 6 months later was discountable
in reporting total income by 60%. Thus, a property that is purchased for
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$100 and sold for $200 results in a profit of $100, but a taxable profit of
only $40. Thus, the after-tax profit is not $50 but $80. Not surprisingly,
this “loophole” made possible a large tax avoidance industry. We shall see
below an example of what should by all reason be deemed a bad real estate
investment which turns out to result in approximately the same after tax
profit as that obtained by a “good” conventional investment. The example
is one simple indication of how taxation polity can affect, very dramatically,
the increase of investments which do little good to society over those which
provide the engine of capitalism.

Ms. Brown is an engineer whose income level puts her in the 50 % bracket
on the upper level of her income tax. She decides to purchase a real-estate
acreage for a nominal price of $100,000. The terms are $10,000 down, and
$10,000 payable at the beginning of each year with 10 % interest on the
balance payable 1 year in advance. Let us suppose Ms. Brown sells the
property at the end of the fifth year. If the selling price is $135,000, how
well has Ms. Brown done? Let us examine Ms. Brown’s cash outflow
during the 5 years (see Table 1.7).

Table 1.7. A Real Estate Investment Outflow Profile.

Year Principal Investment Interest Investment
1 $10,000 $9,000
2 $10,000 $8,000
3 $10,000 $7,000
4 $10,000 $6,000
5 $10,000 $5,000

Ms. Brown has invested $85,000 and still owes $50,000 on the property
at the time of sale. Thus, it would seem that the result of five years’
investment is that Ms. Brown gets back exactly what she has put into the
investment. Furthermore, Ms. Brown must pay capital gains tax of 20% on
the profit of $35,000. So, Ms. Brown’s after-tax stake at the end of the five
years is $78,000. Clearly, Ms. Brown has not done well in her investing.

Let us suppose that Ms. Brown had followed a more traditional invest-
ment strategy. Suppose that she had taken the available salary income
and invested in a money market fund at an annual rate of 10%. Now, we
must note that the $9,000 interest payment which she made in the first
year of the real estate investment is deductible from her gross income. If
she had not paid it in interest, she would have had to pay half of it to the
federal government in taxes. So she would not have had $19,000 to invest
in a market fund in year 1—only $14,500. Moreover, the interest which
she would earn in year 1, $1,450, would have been taxed at the 50% rate.
Consequently, the after tax capital of Ms. Brown using the money market
strategy would be given as shown in Table 1.8.

Note that Ms. Brown has approximately the same after tax capital using
either the “imprudent” tax shelter or the “prudent” money market. It
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is not that the real estate investment has become good; it is rather that
the tax system has made the money market investment bad. This is an
example of the means whereby individuals have been forced by the tax
system into making unproductive investments rather than depositing the
money with lending agencies who would, in turn, lend out the money for
capital development.

Table 1.8.After-Tax Principal With Money Market Strategy.

Year After tax capital at year’s end
1 $15,225
2 $30,686
3 $46,396
4 $62,365
5 $78,609

In September of 1986, the Rostenkowski-Packwood Tax Reform elimi-
nated the capital gains preference, thus removing the incentive for the kind
of bad investment mentioned here. Since much of the capital gains invest-
ment had favored the rich, Packwood and Rostenkowski set the marginal
for families in the $150,000 per year and up range at 28%. Marginal tax
rates for the upper middle class, on the other hand, were set at 33%. So tax
treatment which favors the wealthy and shafts the middle class was frankly
and straightforwardly institutionalized instead of concealed with a capital
gains exclusion. Other Rostenkowski—Packwood reforms included a suspen-
sion of the marriage deduction and that for state sales taxes. Moreover,
the inflation indexing provisions of the reforms of the early 1980s appeared
to be put at the hazard, “since the marginal rates are now so low.” The
“transitional” year marginal rates for the upper middle class of 38% were
proposed to be made permanent by the Speaker of the House, Jim Wright.
Some have cynically argued that, having wiped out a host of deductions
in exchange for lower rates, the Congress will now gradually raise the new
rates. !

One thing that was not changed by any of the tax reforms of the last
decade is the Social Security tax on income below roughly $40,000 per
worker (a ceiling raised steadily by legislation passed years ago). This tax

1For whatever reasons one might conjecture, both Rostenkowski and Packwood were
pilloried and forced out of office over matters that seem less serious than the punishments
they received. Rostenkowski actually went to prison (his crime seems to have been
renting a property owned by his sister for his Chicago office). Packwood appears to have
been something of a Don Juan, but not even in the same league as Bill Clinton or John
Kennedy. Nor is it recorded that he was responsible for the death of any of his conquests,
as was the case with Ted Kennedy. It would appear that Rostenkowski and Packwood
may have angered some influential people with their reforms. At any rate, President
Clinton raised the marginal tax rates and restored the capital gains reduction. The
point of this section has been to show how tax rates can remove from office a President
and cause a vendetta against tax reformers.
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is approximately 7% from the employee and 7% from the employer, for
a pooled total of slightly more than 14 %. The self-employed pay roughly
10%. Many citizens pay more in Social Security tax than in income tax.
And, of course, the monies paid by the worker in Social Security tax are
also subject themselves to federal income tax. In addition to the two fed-
eral income taxes mentioned above, most states also levy income taxes—-
amounting to sums as high as 25 % of the federal income tax. Furthermore,
almost all states and municipalities levy sales taxes, real estate taxes, and
so on. The proportion of an American citizen’s income which goes to pay
taxes is now several times that two centuries ago when taxes were a major
cause of the American Revolution against Great Britain. Still, things could
have been worse; the British taxation rates today are much more severe
even than those in the United States.

We have gone through this section to demonstrate how a relatively simple
and well-defined system such as the U.S. income tax is by no means easy to
grasp until one goes through some computations with actual figures. When
we leave the comfortable realm of well-axiomitized man-made systems and
go into the generally very imperfectly understood systems of the social and
natural sciences, we may well expect our difficulties of comprehension to
increase dramatically.

1.3 Retirement of a Mortgage

In 2009, in response to plummeting house prices, the federal government
made it possible for mortgages to drop below 5%. However, so much du-
bious activity had been undertaken by American banks that several of the
prudently paranoid tried to pay off the remaining portion of their house
mortgages. The reason is that in the event of crises, the homeowner might
find it hard to get the cash to make a mortgage payment. “Bank holidays”
can occur arbitrarily at the behest of the government. If a banker is consid-
ering which of two houses each valued at $175,000. on which to foreclose,
he will no doubt prefer to foreclose the one on which only $15,000 is owed
rather than the one on which the full $175,000 is owed.

Let us now consider the case of Mr. and Mrs. Jones who have 10 years to
run on their mortgage. They now owe a principal of $15,000 on which they
pay 5.5% interest on the outstanding balance. Suppose recent mortgage
rates are in the 4% range. How much should the Joneses have to pay to
retire the mortgage? The naive answer is “obviously $15,000.” But is the
mortgage really worth $15,000 to the bank who holds it? Obviously not. If
the bank had the $15,000 in hand, they could lend it out at only 4%. We
wish to find the fair market value of the Jones mortgage.

One answer that might be proposed is that the fair market value is that
quantity—say z—which, when compounded at 4%, will be worth the same
as $15,000 compounded at 5.5%. This amount may easily be computed via
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X (1.04)!° = $15,000(1.055)°. (1.11)
or
1. 10
X = $15.000 (1L0545) = $17,309.42 (1.12)

But this answer is also wrong, for we recall that under the terms of a
mortgage, the principal is retired over the entire term of the mortgage—not
at the end. As the mortgage company receives the principal, it can loan it
out at the prevailing mortgage rate—say 4%. The usual rule of principal
retirement for older mortgages is that monthly payout is determined so
that each installment of principal retired plus interest on unpaid balance
is equal. Thus, the Joneses are to pay out their mortgage over 120 months
according to the rule

0.055
y = pi+815,000——= (1.13)
0.055
= p2+($15,000 — p,) 2
0.055
= ps + (815,000 —p1 —p2) =5~
0.055
= ...=p120+($15,000—P1—p2—“‘_p119) 12 I

where p; is the principal retired on month i. By the 120th payment, all the
$15,000 will have been retired. Hence,

=120
3" pi = $15,000. (1.14)

i=1

Using the fact that monthly payments are equal, we have

0.055 0.055
p + $15,000 <T) = p2 + ($15,000 — p,) (T) . (1.15)
This gives
0.055
=(14+— . 1.1
P2 ( + 12 ) P1 (1.16)
Similarly, from the second and third equalities above, we have
0.0
p3 = (1 + T55) D2. (1.17)

or
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P3 = TP2, (1.18)
where
r=1+ m
12
Thus, we have
pi=r""p. (1.19)

Using the fact that }_ p; = $15, 000, we have

p(1+7+724... 47119 = $15, 000. (1.20)
Recalling the formula for the sum of a geometric progression, we have
1-— 120
P ( - "r ) = $15, 000. (1.21)

This yields a p; value of $94.04. Any other p; value is immediately
available via p; = 7*~1$94.04. The monthly payment is given simply by

0.055

$94.04 + $15. 000( *

) = $162.79.

Moreover, the interest payment for the ith month is simply obtained via

J=i-1
($15 000 — Z p,) 00255. (1.22)

But this is just

j=i—-1
., ) 0.055
— Jj—1 ) =%
($15,000 n Zr ) T (1.23)
J=0
or
0.055
($15 000 - ;1= r) 0%, (1.24)

We are now in a position to answer the question as to the fair value for an
instantaneous payment of the Jones mortgage. If the company that holds
the Jones’s mortgage lends out the monthly current mortgage payment at
an annual rate of I, then the total value of monies received over the ten
years will be

— gl20

$162.79(1 + s + s% + - .- + s19) = $162. 791 - (1.25)
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where
s=1+1/12.

Suppose the interest were the 5.5% the Jones currently pay. Then the
total value of monies received over the ten years would be $25,966.24. To
compute present value of the mortgage, X, we solve

X520 = $25,966.24. (1.26)

Of course, weget the figure of $15,000. But if the lender is only able to make
a return of 4% on a new mortgage, then from (1.24), the total cash he will
receive from the alternative mortgage is $23,941.87. And, from (1.25), the
present value of the alternative mortgage to the lender is $17,412.34. Unless
the borrower had no cost for early repayment written into his mortgage,
owning his home without mortgage liability will cost at least $17, 412.34.
Given the kindness of bankers, $20,000 might be closer to the mark.

1.4 Some Mathematical Descriptions of the
Theory of Malthus

In this chapter on models of growth, we began with compound interest
because, historically, this seems to be the oldest of the quantified growth
models. People have been lending out money at interest rates since the
dawn of civilization. Because such financial transactions are essentially
human constructs, it is not surprising that the modeling of such a process
has been well understood for so long. In a sense, it is as though the process
proceeds directly from an idealized model. Of course, even here, in what
should be the most straightforward kind of modeling situation, there are
many problems. Inflation rates are not generally predictable; wars and
revolutions disrupt the orderly process of commerce; bankruptcy laws are
created to protect debtors from their creditors, and so on. The point is
that even in the most simple kind of modeling—that is, the modeling of
processes based on idealized models—we are unable to describe precisely
what is going on.

When it comes to modeling processes that do not proceed directly from
a man-made model, we shall expect to be peering through even muddier
water. Still, as we shall see, the attempt to try and understand at least
in part what is happening is well worth the effort. In fact, these attempts
to conceptualize portions of the world around us have existed as long as
humankind. It is our ability of the last 300 years to mathematize our
conceptions and the commercial impetus to do so which have been largely
responsible for the rapid scientific and technological progress characteriz-
ing this period. And it is this progress that has been responsible for the
dramatic improvement in the material standard of living in those countries
where this progress has been permitted.
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Let us now consider the revolutionary work of the Reverend Thomas
Malthus [9], An Essay on the Principle of Population. This book (pub-
lished in 1798 and available as a free download on the Internet), generally
speaking, was not as explicitly mathematical as one might have wished.
Malthus used words rather than equations. His basic thesis is succinctly,
if ambiguously, given by, “Population, when unchecked, increases in a ge-
ometrical ratio. Subsistence increases only in an arithmetical ratio.” If
the qualifying phrase “when unchecked” had been omitted, we could have
summarized these two sentences very simply, using the symbols P for pop-
ulation and F for food by the two differential equations

dP dF
pra oP and i B. (1.27)

The solutions to these equations are given simply by

P(t) = P(0)e** and F(t) = F(0) + Gt (1.28)

The consequence would then be that the population was increasing at
an exponential rate without any constraint from the more slowly growing
food supply. But Malthus coupled the two processes, population and food
(“subsistence”), with the use of the phrase “when unchecked.” This sim-
ple qualifying phrase implies that a shortage of food checks the population
growth. How should this checking effect be incorporated into our mathe-
matical model? We might first decide that our constant o is not a constant
at all but rather a function of FF and P. To do so, however, we have to
express population and food in similar units. This might be accomplished
by using as one unit of food that amount required to sustain one person for
a given unit of time. We then arrive at the coupled differential equation
model

dP dF
E = a(F, P)P and d_t = ﬂ, (129)
where o(F, P) is read “o of F and P.” Note that whereas F' affects P,

there is no effect of P on F. Accordingly, we may write

F(t) = F(0) + Bt. (1.30)

Suppose we argue that the growth rate per person is proportional to the
difference between the food available and the food consumed. Then we
have

1dP
—_—— t - P . 1.31
5o = alF(©)+ 4t~ P) (131)
In the case where the food supply is unchanging (i.e., 8 = 0), this is the
logistic model of Verhulst (1844). A simple integration by parts for this

special case gives
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. FP(0)estf

~ P(0)etF + F — P(0)’
Consequently, we shall refer to (1.31) as the generalized logistic model.

The solution is given by

P (1.32)

P(t) = P(0) exp [a (F(0)t + 35t)]
1+aP(0) fgexp [aF(0)r + LapBr?] e

The present application provides some promise from a curve fitting stand-
point. For example, for ¢ large (1.33) is approximately given by

(1.33)

P(t) ~ F(0) + gt. (1.34)

For a long established society, we might expect the Malthusian argument

would yield a population that tracks the supposedly linear growth of the

food supply. This is consistent with the population growth in England and

Wales from 1800 to 1950 as shown in Figure 1.5. Using 1801 as the time

origin, and using population in units of 1 million, we can fit the line by eye
to obtain

P(t)~6.4 + 0.2(t — 1801). (1.35)

Naturally, there is little chance of determining a, since population records
in Britain in the remote past, when population growth may have been less
limited by the growth in the food supply, are not available. However, in
the remote past, when ¢ is “small,” becomes effectively

P(t) ~ P(0)e*F (O, (1.36)
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Figure 1.5. Population growth in England and Wales.
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Looking at the population growth of the United States in Figure 1.6,
we note that whereas 20th-century population growth is approximately
linear, growth prior to, say, 1880 is much faster than linear. The only
functional curve that can readily be identified by humans is the straight
line. Accordingly, we take natural logarithms of both sides of (1.35). This
gives us the equation of a straight line in ¢

log [P(t)) ~ log(P(0)) + aF(0)t] . (1.37)
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Figure 1.6. U.S. population growth.

If (1.36) holds approximately over some time interval, then we should expect
that a plot of log(P) versus time would yield very nearly a straight line.
As we note from Figure 1.6, it seems that for the first 70 years of the 19th
century, population growth is consistent with Figure 1.7. We shall not at
this point go through the argument for estimating all the parameters in
(1.37). But let us suppose that (1.37) could be made to fit closely both
the American and British data. Would we have “validated (1.32) that is,
would we have satisfied ourselves that (1.32) is consistent with the data
and our reason? Now a monotone data set can be fit with many curve
families particularly if they have three free parameters—as does (1.37).
A good curve fit is a necessary condition but not a sufficient condition
for establishing the “validity” (“plausibility” might be a better word) of
a model.
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Figure 1.7. Logarithm of U.S. population growth.

-
@ = =i
- 3

Let us reexamine (1.37) in light of the hypotheses of Malthus and our own
reasoning. Is it reasonable to suppose that the per-person population rate
of increase will depend on the total availability of food? It would appear
that if the food supply will support a population of 1,100,000, when the
actual population is 1,000,000, then the per-person rate of increase should
be the same for a population of 100,000 which has an available food supply
for 110,000. Accordingly, (1.37) is not appropriate. Rather, we should
prefer

1dP _ a[F(0)+pt—P]

Pdt P (1.38)
The solution to this equation is
_ g ~at B
P(t) = ( P(0) + i F(0) ) e~ + F(0) — 2 + Bt. (1.39)

It is interesting to note that in (1.39), for large values of time, the pop-
ulation curve is given essentially by

P(t) = F(0) - g + pBt. (1.40)

Thus, the model is consistent with the British population growth figures
and with those from the United States after, say, 1910.

To examine the behavior of P(t) for small values of t, we expand the
exponential term neglecting all terms of order t2 or higher (i.e., O(t?)) to

give
B

a

B

P(t) ~ |P(0) + - F(O)J (1—at)+ F(0) — — + Bt; (1.41)

that is,
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P(t) ~ P(0) + [F(0) — P(0)]at. (1.42)

Now we note that (1.38) departs from the spirit of Malthus, since growth
consists essentially of two pieces linear in time with a transition in-between.
The differential equation (1.37), moreover, has the problem that there is
no “threshold” phenomenon insofar as per-capita food supply is concerned.
If there is an excess capacity of food per person of 20, then people will
multiply 20 times as fast as if the per capita excess capacity were 1. This
is clearly unreasonable. However, if we fit the model and find out that the
per capita excess food capacity is small throughout the extent of the data,
then we might find the model satisfactory. As it is not too much trouble to
try a rough-and-ready fit, we shall attempt one, using U.S. data in Table
1.9.

Table 1.9. U.S. Population 1800-1950.

Date ¢t P(t)in millions
1800 O 5.308483.
1810 10 7.239881
1820 20 9.638453
1830 30 12.866020
1840 40 17.069453
1850 50 23.191876
1860 60 31.443210
1870 70 38.558371
1880 80 50.155783
1890 90 62.947714
1900 100 75.994575
1910 110 91.972266
1920 120 105.710620
1930 130 122.785046
1940 140 132.169275
1950 150 150.697361

First of all, using 1800 as the time origin, we have P(0) = 5.308483.
Then, using the population figures for 1800 and 1810 as base points, we
have from (1.42)

0.19314
F(0) - =

= 5.308483. (1.43)

Then, using (1.41) for P(120) and P(150), we have

B = 1.49956. (1.44)

Finally, extending the line from P(150) with slope 1.49956 back to the
intercept on the population axis, we have from (1.44)
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1.49956
F(0) - ==

= —74.9340. (1.45)

Solving (1.43) and (1.45) together, we find

F(0) =17.1715 (1.46)

and

a = 0.016281. (1.47)

Already, we should have some concern about the size of F(0). This
leads to a per capita excess food supply in 1800 of around 2, probably an
unreasonably high figure, and one that is high enough that the absence of
a threshold effect in excess food supply might very well render our model
less useful than one might hope.

Using these “rough and ready” parameter values in (1.38), we see in Fig-
ure 1.8 a comparison between the model values and the actual population
figures. The quality of the fit is not spectacular. However, with three pa-
rameters to juggle—F(0), a, B—we could no doubt arrive at a very good fit
with a little work. We might, for example, find the least squares solution
by minimizing

S(a, B, F(0)) =
j=15
2

j=0

B

a

B

a

[P(le) - <P(0)+ F(O)) e 1% — F(0) — 10jﬂ]2. (1.48)
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Figure 1.8. U.S. population growth and model values.
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Now, let us go to a model more consistent with the apparent intent
of Malthus. We need a model that will not penalize exponential growth
when the excess per capita capacity of food is sufficiently large but will
cause growth to be proportional to excess food capacity when the “afluence
threshold” has been reached. There are an infinite number of models that
will do this. Consequently, we here borrow a maxim from the Radical
Pragmatist William of Ockham and try to pick a simple model that is
consistent with Malthus’ conjecture and with the facts before us.

dP FO)+pt-P _ 1
o aP, when B > (1.49)
and
dP .
- = ak[F(0) + St — P], otherwise. (1.50)

Examining the logarithmic curve in Figure 1.8, it seems that population
growth is close to log-linear until around 1860. So we shall guess that the
time where we switch from (1.30) to (1.31) is t* = 1860. From the data at
1800 and 1860, we can estimate a via
1 In (31.44321

a

We know what the solution to (1.49)is from (1.38), namely,

P(t) = [P(t‘) + % - F(t")] e~kE=t) 4 F(0) + Bt — 5@15 (1.52)

Going to the essentially linear part of the model, we have, as when fitting
(1.52), that 8 = 1.49954. By examining the intercept when ¢t = t*, we find
that

50.57879

F(t*) = F(0) + Bt* = 15.73696 + ——

(1.53)

We still must estimate F(0). In this case, we shall guess that a value
around 10 will be close to the truth. From (1.53), this gives us a k value of
0.600437. Finally, then, we have the estimated model

P(t) = P(0)e*%%8  before 1860, (1.54)
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Figure 1.9. U.S.population growth vs. model values.

and

P(t) = 15.70611¢0-017801(t=60) __ 749530 + 1.40053¢, thereafter. (1.55)

We see the results of our fit in Figure 1.9. With a bit more careful
juggling of the four parameters a, k, F(0), and 3, we could essentially
make the fitted curve nearly repeat precisely the actual data set.

Have we then established the “validity” of Malthus’s model? By no
means. But even with the crude fitting strategy employed, there is some
reason for acknowledgment if not of the validity of the Malthusian model,
then at least of its value as a framework within which to consider popula-
tion data. Recall that population increases of nations have been for many
years measured by per capita rate of increase, or its equivalent—just as
Malthus said we should. Reasoning from the standpoint of Malthus, we
might argue that in the recent stages of the United States, its population
growth was linear. This linear growth was also exhibited in the British
data. These facts are directly consistent with what one would predict from
Malthus’ hypotheses. Moreover, it is of interest to note that all these data
were collected after Malthus’ book was published. A model is generally
more believable if it can predict what will happen, rather than “explain”
something that has already occurred. (Note, however, that by fitting our
model using data from the entire time range of the data base, we have en-
gaged in a bit of “sharp practice.” Really to “validate” a model in time, we
should obtain the parameters using values from early time and see if the
model can then predict the later behavior.)

However, if we really wished to give a thorough investigation of the va-
lidity of Malthus’s hypotheses, we should incorporate more factors into the
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model. For example, in the case of the American population, we should
take some cognizance of the effects of immigration. (It would be possi-
ble to eliminate immigration as a significant demographic factor from some
rapidly growing populations, such as that of 19th-century India.) Moreover,
we have not directly checked Malthus’ assumption as to the linear growth
of the food supply. Malthus’s implicit assumption that food strongly af-
fects population growth, but that the change in the population has little
feedback effect on the change in the food supply, would also need to be
checked. Moreover, we must face the fact that the use of food as the sole
limiting factor is too restrictive. Indeed, even a generalization of the con-
cept of “food” to something like per capita productivity has problems. We
know, for example, that if we substratify the American population into
economic groups, we would find a much higher rate of population growth
for the lower income levels than for the middle class. This is not consistent
with Malthus’s hypotheses. And, indeed, we cannot simply assume that
the hypotheses have been invalidated by the welfare state. This kind of
high reproductive rate of the poor relative to that of the well to do also
exists in Mexico, for example, which has very little in the way of welfare.
It would appear that in many contemporary societies the Malthusian hy-
potheses have been, in a sense, stood on their head with material well-being
rather than with poverty acting as a brake on population growth. Almost
without exception, the rapid rate of population growth in the Third World
(before the AIDS epidemic) is not due to increases in the birth rate, but
rather to a lowering of infant mortality using the cheap end of First World
medical technology (vaccination, etc.) without the compensating decreases
in the birth rate which have occurred in the First World. On the other
hand, we do see in large stretches of Africa, an apparent return to the
Malthusian model, as various governments there have managed to wreck
their economies to the extent that even the most rudimentary trappings of
modern medicine (e.g., sterile instruments) are disappearing and the food
production even in fertile areas has been seriously damaged. It would ap-
pear that for subsistence economies, Malthus’s model retains a great deal
of validity; but that for First World societies (which, of course, postdate
Malthus), radical modifications to his model would be required.

In the above, we note one of the primary values of a mathematical
model—namely, as a framework in which to view data. The model gives us
a benchmark by which to gauge our observations. It forces us to ask ques-
tions about the implications of the data in the light of our “best guess”
made prior to the data analysis itself. This will generally lead to modifica-
tions of the original model, which will give us a new framework requiring
that other data be collected, and so on.

If we take the position that the scientist should clear his or her mind
of all prejudices about the generating mechanism of the data and “let the
data speak for itself,” we lose much. The human mind simply does not
ever “start from zero” when analyzing phenomena. Rather, it draws on
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instinct plus a lifetime of experience and learning to which is added the
current information. Empirical model building is simply a formulation of
this natural learning process.

On the other hand, models, such as that of Malthus, which were con-
jectured based on logical feelings as the way things ought to be instead
of basing things on data, are almost always flawed, frequently disastrous.
During the famous Irish potato famine, the Malthusian model was used as
an excuse by the English establishment to let the Irish starve during the
potato blight rather than simply giving them a portion of the Irish grain
crop which was perfectly healthy and plentiful but raised on huge estates
owned by the English and worked by poor Irish peasants. The argument
was that if one fed the starving Irish, it would only encourage them to
have more children and make things worse. This variant of Malthusianism
is sometimes referred to as Social Darwinism and it is absolutely contrary
to the Christian ethos of Western civilization even if the model were cor-
rect (it was not over the long term). In our own times we see much in
human demographics to contradict Malthus’s model. Some of the world’s
most rapid human population growth is among people who are desperately
poor. Indeed, it may well be the case that the high population growth
amongst, say, the Palestinians is due to a notion that it is their only viable
weapon against the Israelis, whose economy and weaponry are far better
than those of the Palestinians. And in most of the First World, with its
relatively abundant resources, most countries show a negative population
growth. It would seem that Malthus did not come up with anything like a
universal law. During the 210 years since he presented his model, it really
has not performed very well. And it has been used by some governments
with very cruel and disastrous effects.

In Chapter 14, we shall discuss the efficient market hypothesis (EMH),
which was developed in the 1960s with reliance on bright ideas instead of on
data, which stood in stark contradiction to the EMH. As Sherlock Holmes
used to remark frenziedly to Dr. Watson, “Data, Watson. I must have
data.”

1.5 Metastasis and Resistance

The killing effect of cancer is a result of the fact that a cancerous tumor
grows, essentially, without limit and that it can spread to other parts of the
body in a cascading sequence of metastatic events. On the other hand, if
we can remove the tumor before it spreads via metastatic progression, that
is, the breaking off of a cell from the primary that lodges in sites remote
from it, then the chances of cure are excellent. On the other hand, once
the primary has produced metastases to sites remote from the primary,
surgical removal of the primary alone will generally not cure the patient’s
cancerous condition. If these metastases are widely spread, then, since each
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surgical intervention involves a weakening of the patient and the removal of
possibly essential tissue, alternatives to surgery are required. Radiotherapy
is also contraindicated in such cases, since radiation, like surgery, generally
should be focused at a small region of tissue. Bartoszynski et alia [1] have
postulated that the tendency of a tumor to throw off a metastasis in a time
interval [t,t + At] is proportional to its size (in tumor cells) n(t):

P(metastasis in [t,t + At]) = pn(t)At, (1.56)

where p represents the tendency to metastasize.

For all intents and purposes, only chemotherapy is left to assist a patient
with diffuse spread of a solid tumor. Happily, we have a vast pharmacopoeia
of chemotherapeutic agents that are very effective at killing cancerous tis-
sue. Unfortunately, the general experience seems to be that within most
detectable tumors, cells exist that resist a particular regimen of chemother-
apy. Originally, it was thought that such resistance developed as a feed-
back response of the malignant cells to develop strains that resisted the
chemotherapy. Currently, it is believed that resistance develops randomly
over time by mutation and that the eventual dominance of resistant cells
in a tumor is simply the result of destruction of the nonresistant cells by
the chemotherapeutic agent(s), a kind of survival-of-the-fittest cells. It is
postulated that, during any given time interval [t,t + At],

P(resistant cell produced during (¢, t + At]) = Bn(t)At, (1.57)

where (3 represents the tendency to develop irreversible drug resistance and
n(t) is the size of the tumor at time ¢.

Now if the resistant cells are confined to the primary tumor, a cure would
result if the primary were excised and a chemotherapeutic agent were in-
fused to kill the nonresistant cells that might have spread metastatically to
other sites in the body. Unfortunately, it might very well happen that some
resistant cells would have spread away from the primary or that originally
nonresistant metastases would have developed by the time of the beginning
of therapy.

Accordingly, it might be appropriate in some cases to follow surgery im-
mediately by a regime of chemotherapy, even though no metastases have
been discovered. The reason is that this kind of “preemptive strike” might
kill unseen micrometastases which had not yet developed resistance to the
chemotherapeutic agent(s). Such a strategy is termed adjuvant chemother-
apy.

At the time of presentation, a patient with a solid tumor is in one of
three fundamental states:
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no metastases; (1.58)
metastases, none of which contain resistant cells; (1.59)
metastases at least one of which contains resistant cells. (1.60)

Both simple excision of the primary and the adjuvant regime of excision
plus chemotherapy will cure a patient in state (1.58). A patient in state
(1.60) will not be cured by either regime. Of special interest to us is the
probability that, at the time of discovery (and removal) of the primary
tumor, the patient is in state (1.59). The probability that a patient has
metastases, all nonresistant, at the time of presentation, gives us an indica-
tion as to the probability that a patient will be cured by adjuvant therapy
but not by simple excision of the primary tumor.

For most types of solid tumors it is a close approximation to assume that
the rate of growth is exponential; that is,

n(t) = e*. (1.61)

Because we may describe the time axis in arbitrary units, we lose no
generality by making our primary tumor growth our “clock,” and hence,
we may take a as equal to 1. Thus, for our purposes, we can use n(t) as
given simply by e, since for the parameter ranges considered, the amount
of tumor mass removed from the primary to form the metastatic mass
and/or the resistant mass is negligible (of relative mass, when compared to
the primary of 1 part per 10,000). Furthermore, we assume that backward
mutation from resistance to nonresistance is negligible.

Our task is to find a means of measuring the efficacy of adjuvant chemother-
apy. We shall try to find estimates of the marginal improvement in the
probability of cure of a solid tumor (with no apparent metastases) as a
function of the size of the tumor and the parameters i and 8. We shall
examine two approaches to this problem and suggest a third. We note
that the problem suffers from the fact that the relatively simply Poisson
axioms that describe the process go forward in time. However, to try to
obtain the expression for marginal improvement in cure requires essentially
a “backward” look. The first process will be an approximate one based on
an argument used for a related problem of Goldie et al. [5,6]. First, let us
look at the number of cells in resistant clones which develop in the primary
tumor. This number, of course, is stochastic, but we shall approximate the
number of resistant cells (R) by its expected value E(R).

d(E(R))

== ~ B(R) + fle* - E(R) (1.62)

has the solution

E(R) ~ et — t1=P), (1.63)
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Then
P(no metastasis thrown off by resistant clone by N) (1.64)
~ exp [—u(N -1)+ l—f‘—ﬂ(zvl-ﬂ - 1)] .
Similarly,
P(no metastasis which develops resistant clone by N) (1.65)
A exp [—ﬂ(N -1)+ %(NH‘ - 1)] .
Summarizing,
P(no resistant metastasis by total mass N) ~ (1.66)

e [~(8+ ¥ - 1)+ v -+ vy

By differentiating (1.65) and (1.66) with respect to N, we note that for
0 very large relative to u, the chances are that any formation of a resistant
metastasis after tumor discovery would most likely be the result of spread
from a resistant clone in the primary. Here, the standard protocol of re-
moving the primary before beginning chemotherapy would be indicated.
However, if the force of metastasis is much stronger than that of muta-
tion to resistance, then chemotherapy might appropriately precede surgical
intervention.

Now the approximation in (1.63) may be a serious underestimate for
values of the stated probability less than 0.25. The reason is that by using
E(R) instead of R, we are allowing clones of size less than one cell to form
metastases, an obvious biological absurdity. Similarly, by replacing M by
E(M), we are allowing metastatic clones of less than one cell to develop
and be at risk to resistance.

It is possible to obtain an exact expression for the marginal improvement
possible from adjuvant chemotherapy, but only as the result of a fair amount
of reflection. Let us consider the two events

A(N) = the event that by the time the total tumor mass equals  (1.67)

N cells a nonresistant metastasis develops in which a resistant

population subsequently develops before a total tumor mass of N
B(N) = the event that by the time the total tumor mass equals  (1.68)

N cells a resistant clone develops from which a metastasis
develops before a total tumor mass of N).
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We shall seek to compute P[AS(N)] and P[B¢(N)]. This can easily be
computed by using (1.55) and (1.56).
P(metastasis occurs in [t,t + At]followed by a resistant subclone before T')

T—t
= pet ll — exp (— g dr)] At = pet (1 - e/’e-l’N/") At.  (1.69)
0

where T = In(N). But then,

T
P[AS(N)] exp (—/ pet(1 — ePe=PNI) dt) (1.70)
0

= exp [~ pe®N + uBe N{E(-p) - E(-BN)}] .

Here, the ezponential integral Ei(-) is defined for negative = by

Ei(z) = — / ~ e—t_—t dt. (1.71)

bt ]

Similarly, we obtain

P[B°(N)) = exp [8 — Be*e N + pfe* N{Ei(—p) — Ei(—uN)}]. (1.72)

Thus, we can compute the probability that no resistant metastases have
been formed by a total tumor size of N via

P(no resistant metastases) = P[A°(N)]P[B¢(N)]. (1.73)

We have been able to obtain (1.69) and (1.71), exact solutions to the
special two-stage branching processes defined by hypotheses (1.55), (1.56,
and (1.57) (generally deemed intractable and requiring approximation), by
exploiting the special structure of the case of interest to us here: namely,
the nonappearance of any second-stage events. The exact expression in
(1.72) is easily computed using, for example, the IMSL routine MMDEI
(7] for computing exponential integrals. However, for the magnitudes of N
(very large) and p and 3 (very small) in the present application, we obtain
essentially the same result [using approximations for small arguments of
Fi(z)] with

P(no resistant metastases by N) = (p87%)*AV. (1.74)

where v = 1.781072 is e raised to Euler’s constant. The probability of no
metastases at all by tumor size N is given simply by

T
P(no metastases by N) = exp (— / pet dt) = g #(N-1), (1.75)
0
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Thus, the probability that a patient with a tumor of size NV is curable by
adjuvant therapy but not by simple excision of the primary tumor alone is
given by

P(metastases, none of them resistant by N) (1.76)
= (uB7)*PN — expl-p(N - 1)].

In Figure 1.10, we show the probability of nonoccurrence of metastases.
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Figure 1.10. Nonoccurrence of metastases.

Typical values for 8 for mammalian cells are 10~6 to 10=%. A typical
tumor size at time of detection is 100 cells (roughly 10 cubic centimeters).

In Figure 1.11, we show the probability of nonoccurrence of resistant
metastases versus log(NV) for various values of log(u03).

In Figure 1.12, we show the probability there exist metastases but no
resistant metastases at a tumor mass of 10° for various 8 and u values.
We note, for example, that for 3 = 1076% to 10710, the probability a
patient presents with a condition curable by adjuvant therapy but not by
simple excision of the primary is at least 40 %. Similar results hold for early
detection (10° cells) as shown in Figure 1.13. This wide range of p values
includes that reported for breast cancer by Bartoszynski et al. [1].
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Figure 1.11. Nonoccurrence of resistant metastases.
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Figure 1.12. Probability of metastases but no resistant
metastases when log(tumor cell count) = 10.
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Figure 1.13. Probability of metastases but no resistant
metastases when log(tumor cell count) = 9.

As an aside, (1.71), and (1.72) can be used for the situation where one
is interested in obtaining the probability that resistance to both of two
independent chemotherapeutic agents will not have developed by tumor
mass of size N. If the two parameters of resistance are $; and B2, then the
probability of no doubly resistant cells is given by

P(no doubly resistant cells) (1.77)
= exp |01 + B2 — B exp(B2 — P2N)
—B2exp(B1 — B1N) + p1B2 exp(B1) N{Ei(—51) — Ei(-P1N)}
+B182 exp(B2) N{Ei(—B2) — Ei(—F2N)}.

For typical values of N, (3, and 3, this is essentially given by

P(no doubly resistant cells) = (8, Bay2)? P2V (1.78)

In the case of breast cancer that has metastasized at least to local nodes,
it has been reported by Buzdar et al. [3] that the use of adjuvant chemother-
apy decreases disease mortality by as much as 54% when compared to
surgery alone. In order to estimate p and 3 clinically, we need randomized
trials on tumors (which have exhibited no metastases at presentation) using
surgery followed by adjuvant chemotherapy compared with surgery alone.
Such a clinical data base is not currently available. However, since we are,
at this stage, really seeking rough estimates of p and 3, animal experiments
may be appropriate.

We examine below how such experiments might be used to estimate x and
B. Let us suppose we have stratified our data by tumor size at presentation.
Consider the 10!° primary cell stratum. Suppose that the control group
(surgical excision only) exhibits a cure rate of 5% and that the adjuvant
therapy group exhibits a 95% cure rate. Then we can estimate pu:
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exp[—j(N — 1)] = exp[—(10'° - 1)] = .05. (1.79)

This yields a /i value of 3x10~10,
Next, we can estimate 8 from (178):

@AY = (3x1071°(B1%)% = .95 (1.80)

This gives (using Newton’s method) B = 0.0006. [The same estimate is
obtained by the use of (1.66).]

Although we are here essentially concerned only with obtaining rough
estimates of u and f, it is clear that several resampling techniques (e.g.,
the jackknife or the bootstrap [4]) can be used to determine the variability of
the estimates. Let us suppose, for example, that we have N; individuals in
the control group of whom n; are cured and N individuals in the adjuvant
group of whom n; are cured. Using the coding of 1 for a cure and O for
a noncure, we repeatedly sample (say, M times, where M is very large)
N1 individuals with probability of success n1/N1 and N2 individuals with
probability of success na/N;. For each such jth sampling we obtain j; and
f; as above. Then we have as ready bootstrap estimates for Var(f), Var(J),
and Cov(i, B), S(a; — B)*/M,Z(B; — B)*/M, and T(4; — B)(B; — B)/M,
respectively. An unacceptably large 95 % confidence ellipsoid would cause
us to question the validity of our model, and the comparative suitability
of competing models might be judged by examining the “tightness” of the
95 % confidence ellipsoids of each using the same data set.

In our discussion, note that both (1.65) and (1.73) are easy to compute.
Equation (1.65) is much easier to think out than (1.73) but if we use (1.65),
we know we are employing an approximation whose imprecision is hard
to assess unless we have the more precise formula (1.73), which is time
consuming to derive. It would clearly be good to have the advantage of the
accuracy of (1.73) without the necessity for much effort spent in cogitation.
We shall show later how we can employ simulation to go in the forward
direction, pointed to by the axioms in SIMEST in Chapter 6.
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Problems

1.1. Assume a society in which there is no inflation. Savings accounts
pay an interest rate of 3% per year. A young professional begins investing
into an IRA (tax exempt) at the end of each year the amount of $50,000.
How long must she invest before she arrives at the capital necessary to pay
$20,000 per year forever?

1.2. In 1790, Benjamin Franklin set up a two hundred year trust for the
University of Pennsylvania paying 3% interest annually. The average rate
of inflation for the United States since its founding has been a remarkably
low (by modern standards) 1%. If the original stake was $100,000, find (a)
the value of the trust in 1990 in 1990 dollars; (b) the value of the trust in
1990 in 1790 dollars.

1.3. Anindividual has a stake which, in January of 2011, is worth $10,000.
Assume the interest is continuous and at the annual rate of 6.25%. Assume
that all income will be taxed continuously at the 33% level, and that all
after tax income will be continuously reinvested. Assume that inflation is
5%. Find, in 2011 dollars, the value of the individuals’s account on January
1 of 2027.

1.4. Pick two or more human populations (selected by geographical re-
gion, ethnicity, religion, or some other criterion) and examine their growth
and/or decline over a period of at least one hundred years. Plot the pop-
ulations versus time and/or other interesting independent variables. By
argument, supported by models, discuss the pluses, incompletenesses,etc.,
of the Malthusian approach to the populations you are considering.
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Chapter 2

Models of Competition,
Survival, and Combat

2.1 Analysis of the Demographics of Ancient
Israel based on Data in the Biblical Books
of Exodus, Numbers, Judges, and II Samuel

Let us consider a simple model of population growth:

daYy

dt
where Y is the size of the population at time ¢ and « is the (constant) rate
of growth. The solution is simply

= aY, (2.1)

Y(t) = Yoe™, (2.2)

where Y; is the size at ¢t = 0. We note first that this model has several
natural reasons for its appeal.

1. The model follows directly from the microaxiom:

P(individual gives birth in [t,t + At]) = aAt. (2.3)

The expected increase in the interval is given simply by multiplying
by Y. As Y becomes large, we can replace Y by its expectation to
obtain

AY =YaAt. (2.4)

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.
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2. The model has the happy property that if we choose to divide the
Y population into subgroups, which we then watch grow, when we
recombine them, we get the same result as when we use pooled Y all
along.

Clearly, there are bad properties of the model, too. For example:

1. The model is more appropriate for single-cell animals than for peo-
ple; there is no child-bearing age range considered in the model, no
allowance for the fact that only women have children, and so on.
However, for large samples, this objection is academic. We could use
the number of men (as we shall of necessity do thanks to the presen-
tation of our data) assuming rough proportionality between men and
women. Age stratification will also not make a noticeable difference
for large populations.

2. There is no factor for diminishing growth as the people fill up the
living space. However, for the population to be considered here, it
would seem that death by armed violence was a much more important
factor than a limit to growth factor (although it can surely be argued
that death in war was a function of “crowding”).

3. There is no factor for death by war. We shall add such a factor to
our model shortly.

Around 1700 B.C., there were 12 male Jews fathering children. These
were, of course, the sons of Jacob, his two wives (Leah and Rachel), and two
concubines (Bilhah and Zilpah). The entire family disappeared into Egypt
shortly thereafter. Before the conquest of Canaan, in 1452 B.C., Moses
conducted a census of the total military force of the Jews. The results are
shown in Table 2.1. As the Levites are always excluded from censuses, we
must inflate the figure by 12/11 if we are to come up with a figure that can
be used to estimate a. This gives us a comparable total of 656,433 and an
estimate of @ = In(656,433/12)/248 = 0.044. To put this in perspective,
this growth rate is roughly that of Kenya today, and Kenya has one of the
fastest growing populations in the world. Certainly, it was an impressive
figure by Egyptian standards and is given as the reason (Exodus 1) for the
subsequent attempts (using such devices as infanticide by midwives) of a
few later Pharaohs to suppress the growth in Jewish population. We note
that this growth rate would seem to indicate that the bondage of Israel
was of relatively short duration and that, on the whole, the Jews had lived
rather well during most of their time in Egypt. This is also consistent with
later writings.
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Table 2.1. Moses’s Census of 1452 B.C. |

Tribe Number of Warriors
Judah 74,600
Issachar 54,400
Zebulun 57,400
Reuben 46,500
Simeon 59,300
Gad 45,650
Ephraaim 40,500
Manasseh 32,200
Benjamin 35,400
Dan 62,700
Asher 41,500
Naphtali 53,400
Total 603,550

In Deuteronomy 23, there is an injunction to treat the Egyptians (along
with the Edomites, descendants of Jacob’s brother Esau) relatively well.
They were allowed to become full participants in all forms of Jewish life af-
ter only three generations. (Contrast this with the Moabites who were not
allowed membership in the congregation under any circumstances “even
to their tenth generation.” Obviously, the harsh Mosaic law was not al-
ways strictly observed, because King David and King Solomon had the
Moabitess Ruth as their great grandmother and great great grandmother,
respectively.) Also, the Jews, having gained control of Canaan, were very
much inclined to enter into alliances with the Egyptians against their ene-
mies to the north and east. The current guarded friendship between Egypt
and Israel has ancient precedent.

Israeli Defense Forces (1452 8.C.)
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Figure 2.1. Total Israeli militia (1452 B.C.).

Now had Moses had a Macintosh, he could have represented this data
graphically, using a pie chart as shown in Figure 2.1 . We note that a
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pie chart is somewhat appropriate, since the circular representation does
not give any notion of ordering of the attributes of tribeship (i.e., it does
not demand that we say that Issachar > Dan). It does give false notions
of adjacency; for example, Asher is “between” Dan and Naphtali for no
good reason. Less appropriate would have been a column chart (Figure
2.2) which does “order” one tribe versus another for no good reason.

Israeli Defense Forces (1452 B.C.)
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Figure 2.2. Bar chart of Israeli defense forces (1452 B.C).

Still less appropriate would have been a line chart (Figure 2.3), which
presents information more misleadingly and less informatively than the
other two. (Note, however, that any one of the charts could have been
constructed from either of the others.)

In truth, for the present data set, we may be better off to stick with a ta-
ble, since the graph may encourage us to make subconscious inferences that
are accidents of presentation rather than the result of intrinsic attributes
of the data.

Returning to our attempt to make some modeling sense of the data at
hand, we note (Judges 20) that after the conquest of Canaan in 1406 B.C.
we have more population information at our disposal. The total warrior
population had declined to 427,000. Putting in the correction to account
for the Levites, we come up with a total of 465,000. Recall that before
the conquest, the comparable figure was 656,000. It is obvious now that
we need to include a term to account for the losses in warfare during this
period of 46 years:

— =aY -, (2:5)
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Figure 2.3. Line chart of Israeli defense forces (1452 B.C).

where A is the annual loss to the male population due to warfare. The
solution is simply

Y(t) = % + (Yo - 2) e, (2.6)

Now the figures for the two base years of 1452 B.C. and 1406 B.C. give
us a means of estimating A via

A=

(Yot = Y), (2.7)
where the time origin is taken to be 1452 B.C.

If we use our previous estimate of a = .044, we find A = 30, 144, giving
total losses of males during the 46-year period of 1,386,606. Clearly, the
conquest of Canaan had caused heavy casualties among the Jews. More-
over, total war was pursued, with the Jews killing everyone: men, women,
and children. Assuming their opponents retaliated in kind, the above figure
might be close to 3,000,000.

Now unsettled times can be expected to lower fecundity, so perhaps the
use of & = 0.044 is unrealistic. We do have a means of estimating the growth
rate between 1406 and 1017, since we have another census at that later
date (the warrior age male population exclusive of Levites was 1,300,000).
Unfortunately, there was intermittent, frequently very intense, warfare with
the Philistines, Midianites, Ammonites, and so on, during that period, so
a new value of ) is really needed. But if we swallow the later warfare
casualties in a, we come up with an estimate of 0.0029. If we use this value
in our equation for estimating the total casualties during the conquest of
Canaan, we come up with a A of 5777 and a total warrior age male loss
figure of 265,760. This figure is no doubt too small. But translated to U.S.
population values, if we go between the two extreme figures, we should be
talking about losses at least as great as 30,000,000.

One observation that ought to be made here is that in 1017 B.C. David
had an army of 1,300,000 after 450 years of war, during which great sac-
rifices had been made and borne by the Jews. The period of peace that
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started about that year continued essentially until 975 B.C. After that
date, the Kingdom was generally in subjugation and vassalage to some
other state. What happened? Were the Jews overwhelmed by armies so
massive that they could not match them?

To answer this question, we might consider some sizes of the largest field
armies of the ancient world: see Table 2.2.

The notion of Israel as a numerically tiny nation, unable to cope with
attacks by massive invading armies is seen to be false. At the time of the
Kingdom of David (1017 till 975), Israel had a larger army than Rome
had 700 years later. We know, not only from Biblical accounts but also
from other records, that the Jews were one of the largest “national” groups
in the ancient world. Their militia was vast [1,300,000—larger than the
maximum size (750,000) ever attained by the total military forces of the
Romans]. What then caused the decline (which set in immediately after
Solomon)? The short answer is high tazes. Whether these taxes were mainly
the result of costs of the Temple of Solomon or the costs for the luxuriant
life-style of Solomon, we cannot answer definitively. However, we know that
in 975 B.C. a delegation pleaded with Solomon’s son Rehoboam to lower the
rate of taxation. While acknowledging that taxes had been high under his
father (“My father has chastised you with whips ...”) Rehoboam promised
little in the way of tax relief (“But I will chastise you with scorpions.”).
Upon reception of this news, the larger part of the Jews seceded from the
Kingdom of Judah, setting up the Kingdom of Israel. And within these
kingdoms, there then began further quarrels and divisions. Frequently, the
two kingdoms would go to war with each other, inviting help from outside
powers. From the time of the death of Solomon, the Kingdom of David was
on a slippery slope to destruction. The total time span of the Kingdom was
a scant 42 years.

Table 2.2. Field Armies of the Ancient World.

Tribe Number of Warriors
Hannibal’s army at Cannae 32,000
Largest Assyrian army 200,000
Xerxes’ army in Greece 200,000
Alexander’s army at Issus 30,000
Scipio’s army at Zama 43,000
Rome’s total forces under Augustus 300,000

2.2 The Plague and John Graunt’s Life Table

In A.D. 1662, some 3113 years after the census of Moses, an obscure hab-
erdasher, late a captain in the loyalist army of Charles II, published an
analysis on data originally collected by Thomas Cromwell, 127 years ear-
lier, dealing with age at the time of death in London. The data had been
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collected at the request of the merchants of London who were carrying out
the most basic kind of marketing research; that is whether potential cus-
tomers (i.e., live people) were on the increase or decrease. Interestingly
enough, the question originally arose because of the fact that the bubonic
plague had been endemic in England for many years. At times, there would
be an increase of the incidence of the disease, at other times a decrease.
It was a matter of sufficient importance to be attended to by Chancellor
Cromwell (also Master of the Rolls). Without any central data bank, a
merchant might put a shop in an area where the decline in population had
eliminated any potential opportunity, due to market saturation.

Cromwell’s data base consisted in records of births and deaths from the
Church of England to be carried out and centrally located by the clergy.
Before John Graunt, all analyses of the data had suffered the usual “can’t
see the forest for the trees” difficulty.

Graunt solved this problem and started modern statistics by creating
Table 2.3.

Graunt also tabulated 1 — F, where F' is the cumulative distribution
function. We can easily use this information to graph F' (see Figure 2.4).

From Graunt’s table, it is an easy matter to compute the life expectancy—
18 years. It would seem the plague was in full force. Note that Graunt’s
brilliant insight to order his data made possible a piece of information sim-
ply not available to the ancient Israeli statisticians, the sample average.
How obvious Graunt’s step seems to us today. Yet, it would appear he was
the first to take it. It is also interesting to note how application frequently
precedes theory. Graunt’s sample cumulative distribution function predates
any notion of a theoretical cdf.

Table 2.3. Graunt’s Life Table
Age Interval P (death in interval)

0-6 36
6-16 24
16-26 .15
26-36 .09
36-46 06
46-56 04
56-66 03
66-76 02
76-86 .01

Following our earlier graphical analyses, we note that the pie chart is
rather less informative than the bar chart, near histogram), which is slightly
less useful than the near histopolygon line chart). The pie chart draws the
viewer’s attention to a periodicity which simply does not exist. If we divide
the probabilities by the width of the age interval, we could get a true
histogram as shown in (with unequal intervals).
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Figure 2.5.Graunt’s life table (A.D. 1661).
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Figure 2.6.Graunt’s life table (A.D. 1661).

We observe that Graunt’s table cries out to be graphed, as the demo-
graphic data from ancient Israel did not. What is the difference? In the
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Israeli data, there is no natural measure of proximity of tribal attributes.
The covariate information is completely qualitative. Dan cannot be said,
in general, to be “closer” to Napthtali than to Benjamin. A 5-year-old
Englishman is very like a 7-year-old and very different from a 70-year-old.
Graunt had empirically discovered a practical realization of the real number
system before the real numbers were well understood. In so doing, he also
presented the world with its first cumulative distribution function.

Graunt's Life Tabte (1661 A.D.)
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Interval)
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0.0
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Figure 2.7. Graunt’s life table ( A.D. 1661).

Had he graphed his table, he might have been tempted to draw a tangent
and then graph that. A pity he did not, so that a statistician could have
been credited with discovering derivatives. And yet, for all the things he
did not do, we must give Graunt enormous credit for what he did do.
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Figure 2.8. Graunt’s histogram (A.D. 1661).

He brought, empirically, the notion of continuity into data analysis. By
his tabulation of the cumulative distribution function, Graunt brought forth
the modern science of statistics. No longer would stochastics be simply a
plaything for the gentleman hobbyist. It would be the fundamental gram-
mar of empirical science. Graunt gave us the first rationally constructed
spreadsheet. As we know from Pepys’ journal and other sources, Graunt
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died destitute and apparently dropped from his membership (the first mod-
ern statistician had been inducted by the command of Charles II over the
grumblings of other members) in the Royal Society of London.

2.3 Modular Data-Based Wargaming

Checkerboard-based games are of ancient origin, being claimed by several
ancient cultures. One characteristic of these games is the restricted motion
of the pieces, due to the shape and tiling of the playing field. This is
overcome, in measure, in chess by giving pieces varying capabilities for
motion both in direction and distance. Another characteristic of these
games is their essential equality of firepower. A pawn has the same power
to capture a queen as the queen to capture a pawn. Effectiveness of the
various pieces is completely a function of their mobility.

The directional restrictions of square tiles are a serious detriment to
checkerboard games if they are to be reasonable simulations of warfare.
The most satisfactory solution; at first glance, would be to use building
blocks based on circles, since such tiles would appear to allow full 360°
mobility. Unfortunately, as we observe, circles cannot be satisfactory tiles,
since they leave empty spaces between the tiles.

Figure 2.9. Tiling with squares.

A natural first attempt to overcome the difficulty of circles as tiles would
be to use equilateral octagons, since these allow motion to the eight points
of the compass, N, NE, E, SE, S, SW, W, NW. Unfortunately, as we see in
Figure 2.11, this still leaves us with the empty space phenomenon.

None of the ancient games is particularly apt as an analogue of combat
after the development of the longbow, let alone after the invention of gun-
powder. Accordingly, the Prussian von Reiswitz began to make suitable
modifications leading in 1820 to Kriegspiel. The variants of the Prussian
game took to superimposing a hexagonal grid over a map of actual terrain
(see Figure 2.12).
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Figure 2.10. Tiling with circles.

Motion of various units was regulated by their capabilities in their par-
ticular terrain situation. The old notion of “turns” was retained, but at
each turn, a player could move a number of units subject to a restriction
on total move credits. Combat could be instituted by rules based on ad-
jacency of opposing forces. The result of the combat was regulated by the
total firepower of the units involved on both sides in the particular terrain
situation. A roll of the dice followed by lookup in a combat table gave the
casualty figures together with advance and retreat information.

Figure 2.11. Tiling with octagons.
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Figure 2.12. Tiling with hexagons.

The Prussian game, together with later American variants, such as Strat-
ego, was validated against actual historical combat situations. In general,
these games were excellent in their ability to simulate the real-world situ-
ation. Their major difficulty was one of bookkeeping. Frequently, a sim-
ulated combat could take longer to play than the actual historical battle.
If the masking of movements and questions of intelligence gathering were
included in the game, a large number of referees was required.

In attempting to take advantage of the computer, the creators of many
modern military war-games have attempted to go far beyond resolution
of the bookkeeping problems associated with Kriegspiel. Very frequently,
these games do not allow for any interaction of human participants at all.

Initial conditions are loaded into a powerful mainframe computer, and
the machine plays out the game to conclusion based on a complex program
that may actually look at the pooled result of simulations of individual
soldiers firing at each other, even though the combat is for very large units.
Any real-time corrections for imperfections in the game are accordingly
impossible. Any training potential of such games is obviously slight.

Furthermore, the creators of many of these games may disdain to engage
in any validation based on historical combat results. Such validation as
exists may be limited to checking with previous generations of the same
game to see whether both gave the same answer.

If we know anything about artificial intelligence (and admittedly we know
very little), it would seem to be that those simulations work best that seem
to mimic the noncomputerized human system. Attempts to make great
leaps forward without evolution from noncomputerized systems are almost
always unsuccessful. And it is another characteristic of such a nonevo-
lutionary approach that it becomes quickly difficult to check the results
against realistic benchmarks. Before anyone realizes it, a new, expensive,
and, very likely, sterile science will have been created soaking up time and
treasure and diverting us from the real-world situation.

My own view is that it is better to use the computer as a means of
alleviating the bookkeeping difficulties associated with Kriegspiel-like board
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games. In the late 1970s and early 1980s, I assigned this task to various
groups of students at Rice University. Experience showed that 200 person
hours of work generally led to games that could emulate historical results
very well.

At least another 500 person hours would have been required to make these
games user friendly, but the rough versions of the games were instructive
enough. One criticism made against historical validation is that technology
is advancing so rapidly that any such validations are meaningless. It is
claimed that the principal function of wargaming should be predictions of
what will happen given the new technologies. While not agreeing that
parallels between historical situations and future conflicts are irrelevant
(and I note here that the strategy and tactics hobbyists generally make
games ranging from Bronze Age warfare to starship troopers), I agree that
the predictive aspect, in the form of scenario analyses, is very important.

Accordingly, one student created a game for conflict between an Amer-
ican carrier task force and a Soviet missile cruiser task force. Given the
relatively close-in combat that would be likely, it seemed that if the Soviet
commander is willing to sacrifice his force for the much more costly Ameri-
can force, he can effect an exchange of units by a massive launch of missles
at the outset of the conflict. Clearly, such a playout could have serious
technological implications, for example, the desirability of constructing a
system of jamming and antimissile defenses that is highly resistant to being
overwhelmed by a massive strike. Or, if it is deemed that such a system
could always be penetrated by further technological advances on the Soviet
side, it might be appropriate to reconsider task forces based around the
aircraft carrier. In any event, I personally would much prefer an interactive
game in which I could see the step-by-step results of the simulation.

Also, a validation using, say, data from the Falkland conflict could be
used to check modular portions of the game. World War II data could be
used to check other parts. The validation would not be as thorough as
one might wish, but it would be a good improvement on no validation at
all. Some “supersophisticated” unvalidated computer simulation in which
the computer simply played with itself and, at the end of the day, told
me that existing antimissile defenses were sufficient would leave me neither
comforted nor confident.

An integral part of any Kriegspiel computerization should deal with the
resolution of the likely results of a conflict. A ready means of carrying
this out was made via the famous World War I opus of Lanchester. Let us
suppose that there are two forces, the Blue and the Red, each homogeneous,
and with sizes u and v, respectively.

Then, if the fire of the Red force is directed, the probability a particular
Red combatant will eliminate some Blue combatant in time interval [¢,¢ +
At] is given simply by

P(Blue combatant eliminated in [t,t + At]) = ¢ At, (2.8)
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where c; is the Red coefficient of directed fire. If we wish then to obtain
the total number of Blue combatants eliminated by the entire Red side in
(t,t + At)], we simply multiply by the number of Red combatants to obtain

E(change in Blue in [t,t + At]) = —vc,At. (2.9)
Replacing u by its expectation (as we have the right to do in many cases

where the coefficient is truly a constant and v and u are large), we have

Au
K{ = —C1v. (210)

This gives us immediately the differential equation

du

o _ew. A1
o av (2.11)
Similarly, we have for the Red side

dv
E{ = —C2Uu. (212)

This system has the time solution

u(t) = ug cosh v/c1cat — o Z—l sinh y/cicat. (2.13)
V e

v(t) = vocosh \/cicat — up4/ 2—2 sinh \/cicat. (2.14)
1

A more common representation of the solution is obtained by dividing
(2.11) by (2.12) to obtain

du cv

= = 2.15
dv czu’ ( )
with solution
u? —ul = c—l('v2 - v3). (2.16)
C2
Now u and v are at “combat parity” with each other when
u? = 2qy2, (2.17)

A special point needs to be made here. Such parity models assume that
both sides are willing to bear the same proportion of losses. If such is not
the case, then an otherwise less numerous and less effective force can still
emerge victorious. For example, suppose that the Blue force versus the
Red force coefficient is 0.5 and the Blue force has only 0.9 the numerosity
of the Red force. Then if Blue is willing to fight until reduced to 0.2 of
his original strength, but Red will fight only to 0.8 of his original strength,
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then using (2.17), we find that by the time Red has reached maximal ac-
ceptable losses, Blue still has 30% of his forces and thus wins the conflict.
This advantage to one force to accept higher attrition than his opponent is
frequently overlooked in wargame analysis. The empirical realization of this
fact has not escaped the attention of guerrilla leaders from the Maccabees
to the Mujaheddin.

Accordingly, it is interesting to note that if there is a doubling of numbers
on the Red side, Blue can only maintain parity by seeing to it that cz/c;
is quadrupled, a seemingly impossible task.

Lanchester’s formula for undirected fire follows from similar Poissonian
arguments. The probability that a Red combatant will eliminate some Blue
combatant in [t,t + At] is given by

P(a Blue eliminated by a Red in [t,t + At]) (2.18)
= P(shot fired in [t,t + At]) P(shot hits a Blue)At.

Now, the probability that a shot aimed at an area rather than at an
individual hits someone is proportional to the density of Blue combatants
in the area, and hence proportional to u. Thus, we have

P(Blue eliminated in [t,t + At]) = djuAL. (2.19)

The expected number of Blues eliminated in the interval is given by
multiplying the above by the size of the Red force, namely, v. So the
differential equations are

du dv
a = —dluv and d—t
This system has the time solution

(da/d1)uo — vo

= —dauv. (2.20)

4O = o) - (o)== 221
and
(d1/da)vo — uo (2.22)

YO = 7ay ~ (ofro)e G

Here, when dividing the equations and solving, we obtain the parity equa-
tion:

u—up = ﬂ('v — vo). (2.23)
d;
In such a case, a doubling of Red’s parity force can be matched by Blue’s

doubling of d2/d;.
In attempting to match either law (or some other) against historical data,
one needs to be a bit careful. In 1954, Engel claimed to have validated the
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applicability of Lanchester’s directed fire law for the Battle of Iwo Jima.
He used no records for Japanese casualties and simply adjusted the two
parameters to fit the record of American casualty data. According to En-
gel’s model, Japanese resistance was completely eliminated in 36 days. But
American data reveal that resistance continued for some time after the bat-
tle was over, with 20 Japanese killed in a single banzai charge on day 37 and
up to 70 prisoners taken on some days up to 1 month after day 36. More
significantly, there is available partial Japanese force data delivered by the
Japanese commander, General Kuribayashi, by radio to Tokyo at times well
before day 36. For example, on day 21 of the conflict, when Engel’s model
gives a figure of 8550 for the Japanese forces on the island, Kuribayashi
gives the actual figure of 1500. Using the partial Japanese casualty records
shows that the directed fire model gave answers much at variance with the
data (sometimes off the Japanese total effectives by a factor of 4) and that
the undirected fire model appeared to work much more satisfactorily. It
is possible to track very closely the American force levels using either the
directed or undirected fire models. But the undirected fire model has the
additional attribute of closely tracking the partial force information for the
Japanese. We have exhibited both the directed and undirected fire models
above in Figure 2.13.

Battle of Iwo Jima

Japanese

Forces Directed Fire

10000+
50004
Undirected Fire
0 L 4
135791111 122222333
1357913579135
Day

Figure 2.13a. Battle of Iwo Jima with 21,500 defenders.

Suppose, however that the Japanese had had 50,000 defenders. We note,
in this case, a catastrophe for the Americans. One can only wonder at the
excellence of U.S. Naval Intelligence which showed the Japanese had only
around half that number. One gets the impression that, time and again,
U.S. Naval Intelligence gets things right more often than other United States
intelligence services.
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Figure 2.13b. Battle of Iwo Jima with 50,000 defenders.

In the Iwo Jima scenario, considering the losses of the Japanese forces,
it is rather clear that the undirected fire model is to be preferred over
the directed one. In the case of the American attrition, the directed fire
model is the more appropriatae. However, any homogeneous force model
would probably not be as satisfactory as a heterogeneous force model in an
engagement in which naval gunfire together with marine assault both played
important roles. We shall address the heterogeneous force model problem
shortly. In a much broader context of combat simulation, we note that a
model which appears at first glance to do an excellent job of “prediction”
may become seriously deficient as more data are made available.

The year 2011 marked the 175th anniversary of the Battle of the Alamo.
This battle gives an example of a situation in which a mixture of the two
models is appropriate. Since the Texans were aiming at a multiplicity of
Mexican targets and using rifles capable of accuracy at long range (300
m), it might be appropriate to use the directed fire model for Mexican
casualties. Since the Mexicans were using less accurate muskets (100 m)
and firing against a fortified enemy, it might be appropriate to use the
undirected fire model for Texan casualties. This would give

du
dt
The parity equation is given by

= —djuv and Z—: = —cou. (2.24)

2
v —oi= dilz(u — u). (2.25)
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The Texans fought 188 men, all of whom perished in the defense. The
Mexicans fought 3000 men of whom 1500 perished in the attack. By plug-
ging in initial and final strength conditions, it is an easy matter to compute
cp/dy = 17,952. However, such an index is essentially meaningless, since
the equations of combat are dramatically different for the two sides. A fair
measure of man for man Texan versus Mexican effectiveness is given by

ldw
wdt _ 22 2.26
i4 = g 229

This index computes the rate of destruction of Mexicans per Texan di-
vided by the rate of destruction of Texans per Mexican. We note that the
mixed law model gives a varying rate of effectiveness, depending on the
number of Mexicans present. At the beginning of the conflict, the effective-
ness ratio is a possible 96; at the end, a romantic but unrealistic 17,952.

The examination of this model in the light of historical data should cause
us to question it. What is wrong? Most of the Mexican casualties occurred
before the walls were breached. Most of the Texan casualties occurred after
the walls were breached. But after the walls were breached, the Mexicans
would be using directed fire against the Texans.

We have no precise data to verify such an assumption, but for the sake
of argument, let us assume that the Texans had 100 men when the walls
were breached, the Mexicans 1800. Then (2.26) gives c2/d; = 32, 727. The
combat effectiveness ratio cz/di1u goes then from 174 at the beginning of
the siege to 327 at the time the walls were breached. For the balance of the
conflict we must use (2.21) and (2.22) with the combat effectiveness ratio
cz/c; = 99. Personally, I am not uncomfortable with these figures. The
defenses seem to have given the Texans a marginal advantage of around 3.
Those who consider the figures too “John Wayneish” should remember that
the Mexicans had great difficulty in focusing their forces against the Alamo,
whereas the Texans were essentially all gainfully employed in the business
of fighting. This advantage to a group of determined Palikari to defend
a fortified position against overwhelming numbers of a besieging enemy is
something we shall return to shortly.

Another example of the effect of fortifications in combat is obtained from
the British-Zulu War of 1879. On January 22, at Isandhlwana, an en-
camped British column of 1800 British soldiers and 1000 native levies was
attacked by 10,000 warriors of the Zulu King Cetawayo. The suggestion of
the Afrikaaner scouts to laager (roughly drawing the wagons into a circle)
was rejected by the British commander. Consequently, even though the
British troops had the benefit of modern breech-loading rifles, they were
quickly engaged in hand to hand combat by the Zulus. The result of the
conflict was that only around 55 British and 300 of the native levies sur-
vived. We do not have precise knowledge of the Zulu losses; but we do know
that, on the evening of January 22, 5000 of the same Zulu force attacked a
British force of 85 at Rorkesdrift. The British commander (a lieutenant of
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engineers, John Chard, later a colonel) had used the few hours warning to
laager hiscamp with overturned wagons and sacks of meal. On January 23,
the Zulus withdrew, leaving 400 dead on the field. British losses were 17
killed and 10 seriously wounded. Here we have an example of nearly iden-
tical types of forces on the attack and on the defense in both engagements.
Since the Zulus always fought hand-to-hand, we shall use (2.24) in both
battles for both sides. If we assume (a popular notion of the day) that the
native levies made no contribution, and that 5000 Zulus were incapacitated
by the Isandhlwana engagement, the combat effectiveness of British soldier
versus that of Zulu soldier computes to be 23.17. (The assumptions here
obviously tend hugely to inflate the actual British versus Zulu combat ef-
fectiveness.) At Rorkesdrift, the combat effectiveness ratio goes to 994.56.
Thus, the advantage given to the British defenders of Rorkesdrift by the
hastily constructed defenses was at least 994.56/23.17 = 42.92. The ad-
vantage was not primarily an increased combat effectiveness of the British
soldiers, but rather a diminution of the combat effectiveness of the Zulus.
Having transmitted some feeling as to the advantages of commonsense uti-
lization of the method of Lanchester (borrowed in spirit from Poisson), we
shall now take the next step in its explication: namely, the utilization of
heterogeneous force equations.

Let us suppose that the Blue side has m subforces {u;};j = 1,2,...,m.
These might represent artillery, infantry, armor. Then, we have

n
% = — § k,-jcli,-v,- (2.27)
and
ﬂ = - i lj,'CQj,'Uj. (228)
dt j=1

Here, k;; represents the allocation (a number between 0 and 1 such that
iz kij <1) of the ith

fied subforce’s firepower against the jth Blue subforce. ¢);; represents
the Lanchester attrition coefficient of the ith Red subforce against the jth
Blue subforce. Similar obvious definitions hold for {{;i} and {ez;i}.

Beyond the very real utility of the Lanchester combat laws to describe
the combat mode for war-games, they can be used as a model framework
to gain insights as to the wisdom or lack thereof of proposed changes in
defense policy. For example, a dismantling of intermediate range missiles
in eastern and central Europe throws additional responsibility on the effec-
tiveness of NATO conventional forces, since a conventional Soviet attack is
no longer confronted with a high risk of a Pershing missile attack from West
Germany against Russia. The rather larger disparity in conventional forces
between the Soviet block and NATO forces can roughly be addressed by a
consideration of Lanchester’s directed fire model. As we have observed in
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(2.26), in the face of a twofold personnel increase of Red beyond the parity
level, Blue can, assuming Lanchester’s directed fire model, maintain parity
only by quadrupling cz/c;. This has usually been perceived to imply that
NATO must rely on its superior technology to match the Soviet threat by
keeping ¢, always much bigger than c;.

Since there exists evidence to suggest that such technological superior-
ity does not exist at the conventional level, it appears that the Soviets
kept out of western Europe because of a fear that a conventional jugger-
naut across western Europe would be met by a tactical nuclear response
from West Germany, possibly followed, in extremis, by a strategic attack
against population centers in Russia: thus, the big push by the Soviets
and their surrogates for “non first use of nuclear weapons” treaties and
their enthusiastic acceptance of American initiatives to remove intermedi-
ate range missiles from eastern and central Europe. It is not at all unlikely
that the Soviets could have taken western Europe in a conventional war in
the absence of intermediate range missiles in West Germany if the current
disparate numerical advantage of conventional Soviet forces in Europe were
maintained. Thus, one practical consequence for NATO of the dismantling
of intermediate range missiles in Europe might be attempts by the Western
powers to bring their conventional forces to numerical parity with those of
the Soviets. This might require politically difficult policy changes in some
NATO countries, such as reinstitution of the draft in the United States.

In my paper, “An Argument for Fortified Defense in Western Europe” (9],
I attempted to show how the c3/c; ratio could be increased by using forti-
fications to decrease c¢;. Whether or not the reader judges such a strategy
to be patently absurd, it is instructive to go through the argument as a
means of explicating the power of Lanchester’s laws in scenario analysis.

My investigation was motivated, in part, by the defense of the Wester-
platte peninsula in Gdansk by 188 Polish soldiers from September 1 through
September 7 in 1939, and some interesting parallels with the much lower
tech siege of the Alamo 100 years earlier. (Coincidentally, the number of
Polish defenders was the same as the number of Texans at the Alamo.)
The attacking German forces included a battalion of SS, a battalion of
engineers, a company of marines, a construction battalion, a company of
coastal troops, assorted police units, 25 Stulsms, the artillery of the Bat-
tleship Schleswig-Holstein, eight 150 mm howitzers, four 210 mm heavy
mortars, 100 machine guns, and two trainloads of gasoline (the Germans
tried to flood the bunkers with burning gasoline).

The total number of German troops engaged in combat during the 7-day
seige was well over 3000. Anyone who has visited Westerplatte (as I have)
is amazed with the lack of natural defenses. It looks like a nice place for a
walkover. It was not.

The garrison was defended on the first day by a steel fence (which the
Germans and the League of Nations had allowed, accepting the excuse of
the Polish commander, Major Sucharski, that the fence was necessary to
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keep the livestock of the garrison from wandering into Gdafisk), which was
quickly obliterated. Mainly, however, the structural defenses consisted in
concrete fortifications constructed at the ground level and below. The-
oretically, the structural fortifications did not exist, because tthey were
prohibited by the League of Nations and the peninsula was regularly in-
spected by the Germans to ensure compliance. However, extensive “coal
and storage cellars” were permitted, and it was such that comprised the
fortifications. The most essential part of the defenses was the contingent of
men there. Unlike the Texans at the Alamo who realized they were going
to die only after reinforcements from Goliad failed to arrive and the deci-
sion was made not to break through Santa Anna’s encirclement, the Polish
defenders of Westerplatte realized, long before the conflict, that when the
German invasion began, they would be doomed. It is interesting to note
the keen competition that existed to gain the supreme honor of a posting to
Westerplatte. Perhaps “no bastard ever won a war by dying for his coun-
try” but the defenders of the Alamo and those of Westerplatte consciously
chose their deaths as an acceptable price for wreaking a bloody vengeance
on the enemies of their people.

Ever since the abysmal failure of the Maginot Line in 1940, it has been
taken for granted that any strategy based on even the partial use of fixed
defenses is absurd. I question this view. Historically, fixed defenses have
proved more effective as islands rather than as flankable dikes. The Maginot
Line was clearly designed as a dike, as was the Great Wall of China, and
both proved failures. It is unfortunate that the dike-like tactics of trench
warfare had proved so effective in World War 1. Otherwise, the French
would undoubtedly have noted that they were basing their 1940 defense on
a historically fragile strategy. Dikes generally can withstand force only from
the front, as the Persians (finally) discovered at Thermopolae. If the dikes
are sufficiently narrow and thick, however, they may be effective islands
and very difficult to outflank. It was conceded by the panzer innovator, von
Manstein, that Germany absolutely could not have taken the Sudentenland
defenses in 1938 had they been used. This brings up another interesting
point. An effective system of fixed defenses is very much dependent on the
will of the people using them.

Historical examples, modern as well as ancient, of successful use of con-
structed defensive positions can be given ad infinitum. Among the crusad-
ing orders, the Templars and Hospitalers early discovered that they could
maintain an effective Christian presence in the Holy Land only by concen-
trating a large percentage of their forces in a number of strongly fortified
castles. This gave them sufficient nuisance value to cause concessions by
the Muslim leaders. Most of the military disasters to the orders were the
result of their willingness to strip their castle defenses and join the crusader
barons in massive land battles against numerically overwhelming odds—as
at Hattin. For more than 1000 years, some of the Christian peoples in
the Near East, for example, the Armenians and the Maronites, maintained



60 MODELS OF COMPETITION, SURVIVAL, AND COMBAT

their very identity by mountain fortifications.

It is interesting to note that one crusader fortress—Malta—never fell to
the Muslims and was only taken (by treachery) by Napoleon in 1798. In the
second World War, the connection between the resistance of Malta and the
ultimate destruction of the Afrika Korps is well remembered. Even light,
hastily constructed defenses, manned by people who do not know they
are supposed to surrender when surrounded, can be extremely effective in
slowing down the enemy advance, as proved by the 101st Airborne during
the Battle of the Bulge. In the examples above, there seem to be some
common points. First, fortified defense gives a ready means of increasing
the ratio of the Lanchester coefficients in favor of the Blue side. One natural
advantage to this type of defense is the fact that the defender can increase
his Lanchester attrition ratio by a policy of construction over a period of
time. This may be a more fruitful policy than placing all one’s hopes on
increasing ones Lanchester ratio by the design of new weapons systems.

Second, fortified defense should rely on adequate stores of supplies located
within the “fortress perimeter.” It should be assumed by the defenders that
they will be completely surrounded by the enemy for long periods of time.
(In their fortress at Magdeburg, the Teutonic Knights always kept 10 years’
provisions for men and horses.)

Third, fortified defense is a task best undertaken by well-trained profes-
sionals with strong group loyalty.

Fourth, fortified defense is most effective when there are allied armies
poised to strike the enemy at some future time and place. The fortress
and the mobile striking force complement each other in their functions.
The function of the fortress is to punish, harass, and divide the enemy and
to maintain a presence in a particular area. In general, however, offensive
activities must be left to the mobile forces. The deployment of enemy forces
to take fortified positions will weaken their ability to withstand mobile
offensive operations. Let us now examine modified versions of (2.21) and
(2.22):

du .

= = v (2.29)
and

v _ —Cau. (2.30)
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Figure 2.14. Lanchester combat.

The attrition to Blue coefficient is represented by the variable ¢} = ¢} (u, v)
and is demonstrated graphically in Figure 2.14 In the above, we assume that
¢} never exceeds c;, the attrition constant corresponding to nonfortified
combat. Clearly, the functions ¢} and ¢ are functions of the manner in
which the fortress has been constructed. It may be desirable to design
the fortifications so that c] is small, even at the expense of decreasing c3.
Generally, one might assume that ¢} is close to the nonfortified attrition
rate of u against v, since the defenders will have removed potential cover
for the Red side. In fortress defense, the solution in time is likely to be
important, since a primary objective is to maintain a Blue presence for as
long as possible. Next, consider a linear approximation to the v-level curves
of ¢}(u,v) Figure 2.15. Then we would have

du = —g(v)uv — ci*u, (2.31)
dit

where c}(u,v) = g(v)u and c}* is the Blue coefficient of internal attrition.
(We note that this analysis has moved us, quite naturally, to an undirected
fire model for the defenders’ losses. The model thus derived is essentially
that used earlier for the Alamo.) We might reasonably expect that the
besieging forces would maintain more or less a constant number of troops
in the vicinity of the redoubt. Hence, we would expect

% = —cju—c§*v + P(u,v) = 0, (2.32)
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Figure 2.15. Linear approximations to Lanchester combat.

where P(u, v) is the rate of replacement necessary to maintain constant v
strength and c3* is the Red coefficient of internal attrition. We might expect
that c3* > c}*, since inadvertent self-inflicted casualties are a well-known
problem for the besieging force. Then

u(t) = up exp[—(g(v)v + c}*)t). (2.33)

The enemy attrition by time ¢ is given by

1 — exp[—(g(v)v + c}*)t]
g(v)v +ci* '
If the Blue defense can hold out until « = yup (where 0 < 4<1), then
the time until the end of resistance is given by

po O (2.35)
g(v)v +ct*
We have then that the total losses to the Red side by the time the defense
falls are given by

i
/ P(u,v) dt = &5 tv + Cuo (2.34)
0

csuo(l — ) — ¢*vin(y)

gv)v+ct* )

It is interesting to note that if c3* = 0, then the minimization of Red
casualties seems to be consistent with the minimization of ¢*. This might
indicate that an optimum strategy for Red is to overwhelm the Blue fortifi-
cations by shear weight of numbers. This would not be true if beyond some
value of v, d(g(v)v)/dv<0, implying that beyond a certain strength, addi-
tional Red forces would actually impair Red’s ability to inflict casualties on
the Blue side. As a matter of fact, the history of fortified defense seems to
indicate that such a “beginning of negative returns” point in the v space
does exist. It is generally the case for the besieging force that ¢3* > 0
and that it is increasing in v. This is particularly true if the besieged
forces are able from time to time to conduct carefully planned “surprises”

(2.36)
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to encourage increased confusion and trigger happiness on the part of the
besiegers.
In the heterogeneous force model for fortified defense, we have

du; i
-—d-t‘l = - Z k.,'jg,'j ('U.')‘U,"Uj - cI;uj (2.37)
i=1
and
d‘U,' - * o
d—t = — E ljiCzji'U:j - C-zi V4. (2.38)
=1
The size of the jth Blue subforce at time ¢ is given by
n
u;(t) = u;(0) exp (—t Z kijgij(vi)v; + c’{f) . (2.39)
i=1
The total attrition to the ith enemy subforce at time ¢ is given by
t
/ Pi(u,v)dr (2.40)
0
m t n
= E Lisc4iu5(0) /0 exp (—T Z kijgij (vi)vi + c:;) dr + c3ity;
j=1 =1
n
m 1-—-exp (—t 2 k.-_.,-g,-j(v,-)v.->
= Liichjiui(0)————= + i tu;.
Jj=1 Z:l kijgi; (v,-)v,- + c’{;
1=

Suppose that the effectiveness (at time t) of the Blue defender is measured
by

T(t) = i aju;(t), (2.41)
j=1

where the a; are predetermined relative effectiveness constants. If we as-
sume that the fortress is lost when the effectiveness is reduced to some
fraction « of its initial value, that is, when

T(t) < vT(0), (2.42)

then we can use (2.42), in straightforward fashion, to solve for the time of
capture.

This model gives some indication of the power of the simple Lanchester
“laws” in analyzing a “what if” scenario. It is, in large measure, the lack
of “gee-whizziness” of Lanchester’s models that renders them such a useful
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device to the applied worker. Generally, after a few hours of self-instruction,
potential users can reach the level of sophistication where they can flowchart
their own war-games or other forms of scenario analysis.

2.3.1 Herman Kahn and the Winning of the Cold War

John Tukey once told the author that he considered Herman Kahn to be
the world leader and pioneer in Monte Carlo simulation. Kahn turned his
attention in the 1950s to strategies for dealing with Soviet Russia. Kahn was
a model for effective big picture statisticians. His book On Thermonuclear
War was required reading for members of President Kennedy’s cabinet.
Kahn invented the escalation ladder, the use of which was generally agreed
upon both by the United States and Russia. It was a discrete multi-step
upward and downward progression of hostilities. Its use gave both the great
powers time to think before rushing precipitously to full scale nuclear war.
The escalation ladder alone was worth a great deal.

But Kahn went much further. He noted that in the Soviet Union nothing
worked very well except the military. Even before the Communists seized
Russia, it would be a fair analysis to observe that Russia was the successor
to the Mongol Golden Horde, and that it lived by conquest. Its expansion
rate was equivalent to a Belgium-sized country per year. There really was
very little indication that Russia was a normal country. It would either
continue to be a gigantic kleptocracy or its historic model would simply
fail.

The Leonid Brezhnev strategy was straightforward. At a time of its
own choosing, led by 50,000 tanks, the Soviets start a march to the Rhine.
Bcause of the logistic advantages of shorter supply lines than those of the
Americans, by bloody attrition, the Russians drive the Americans to the
point of being conventionally overwhelmed. At this point, the Americans
aredriven to the use of battlefield nuclear weapons. At this point, Brezhnev
calls the West German government and notes that their country is about
to become a nuclear landscape. He suggests the Germans leave NATO and
order the Americans to leave West Germany. An arrangement is achieved
whereby the countries east of the Rhine become quasi-independent satel-
lites, which pay Russia annual tribute.

Herman Kahn understood well that statistics was not only about crunch-
ing numbers. It was about logical conclusions based on facts. And these
facts might be historical precedent. Kahn died in the earliest days of the
Reagan Administration. But his books lived past his lifespan. Reagan’s
personal library reveals that Reagan read and reread them all. In coordi-
nation with German Chancellor Helmut Kohl, Reagan placed Pershing II
missile sites in West Germany. These missile sites were an innovation. Ear-
lier, none of the sites in West Germany contained nuclear weapons which
could reach Moscow or Krasnoyarsk. Thus, an American nuclear attack
would have to be launcehd by SAC, American nuclear submarines, Minute-
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man sites in America and so on. In other words, if NATO escalated, full
scale nuclear war would result.

However, Kahn proposed a distributed system. If the Soviets launched
a panzer blitz, then when they would get within 10 minutes of a U.S.
Pershing silo near Kleindorf, the Amercan commander Colonel Miller would
know he had 20 minutes to live. He also would know that his family in
Kleindorf would have 35 minutes to live. His German counterpart, Oberst
Miller, would be in the same situation. It is a capital offense for a NATO
commander to launch a missile strike without NATO authorization. But
what will Colonel Miller do? Nobody knows. Facing such a situation,
perhaps Brezhnev would simply continue his attack. But not Gorbachev.

Thus, after the Pershing II's are installed, Helmut Kohl offers Gorbachev
$60 billion to remove the Red Army from East Germany. Gorbachev, des-
perate for cash, agrees, assuming this is the beginning of perpetual tribute
from the West.

On June 4, 1989, a Solidarnosc government is formed in Poland. On
November 9, 1989, the Berlin Wall falls. On December 12, 1991, the Soviet
Union dissolves.

2.4 Predation and Immune Response Systems

Let us consider Volterra’s predator—prey model and some consequences for
modeling the human body’s anticancer immune response system. For the
classica | shark—fish model, we follow essentially Haberman [5]. Suppose we
have predators, say sharks, whose numbers are indicated by S, who prey on,
say fish, whose numbers are indicated by F. In the 1920s, it was brought
to the attention of Volterra that there seemed to be a periodic pattern in
the abundance of certain food fish in the Adriatic, and that this pattern
did not seem to be simply seasonal. Volterra attempted to come up with
the simplest logical explanation of this periodicity.

We might suppose that the probability a typical shark gives birth to
another shark (for reasons of simplicity, we treat the sharks as though they
were single-cell creatures) is given by

P(birth in [t,t + At]) = (AF)AL. (2.43)

Here the assumption is that the probability of reproduction is propor-

tional to the food supply, that is, to the size of the fish population. The

probability a shark dies in the time interval is considered to be a con-

stant k& At. Thus, the expected change in the predator population during
t,t + At] is given by

E[AS] = S(\F - k)At. (2.44)

As we have in the past, we shall assume that for a sufficiently large preda-
tor population, we may treat the expectation as essentially deterministic.
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This gives us the differential equation
ds _
dt

Similarly, the probability that a given fish will reproduce in [t,t + At]
minus the probability it will die from natural causes may be treated like

S(AF — k). (2.45)

P(birth in [¢t,t + At]) = aAt. (2.46)

We have assumed that the fish have essentially an unlimited food supply.
The death by predation, on a per fish basis, is obviously the number of
sharks multiplied by their fish eating rate, c, giving the differential equation

dF
— = F(a — cS). 2.47
= Fla - cf) (2.47)
Now the system of Volterra equations given by has no known simple time
domain solution, although numerical solution is obviously trivial. However,
let us examine the F' versus S situation by dividing (2.47) by (2.45). This

gives us

dF F a-cS

B-XF_h 5 (2.48)
The solution is easily seen to be
FkF = FeeSge, (2.49)

with E a constant. Now, let us use trace the path of F' versus S. We note
first that F' = k/) gives an unchanging S population; S = a/c gives an
unchanging F' population.

dF/dt > 0 dF/dt < 0

F ds/dt > 0
/ \Q/dt >0
kA4
das/dt < dsS/dt < 0

a/c S

Figure 2.16. Linear Volterra population plot.
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The consequences of Figure 2.16 are that the F' versus S plot must either
be a closed repeating curve or a spiral. We can use (2.49) to eliminate
the possibility of a spiral. Let us examine the level curves of F' and S
corresponding to the common Z values in

F7kerF — BeeSge = 7. (2.50)

In Figure 2.17, we sketch the shapes of Z versus F' and S, respectively,
and use these values to trace the F' versus S curve. We note that since each
value of Z corresponds to at most four points on the F' versus S curve, a
spiral structure is out of the question, so we obtain the kind of closed curve
that was consistent with the rough data presented to Volterra. Using Figure
2.17 leading the shark curve by 90 degrees.

z\v/z/\

\
&

S, Sz

f

Figure 2.17. Volterra plots.
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Figure 2.18. Volterra plots.

Let us now turn to a seemingly quite different problem, that of modeling
the body’s immune response to cancer. Calling the number of cancer cells
X, let us postulate the existence of antibodies in the human organism that
identify and attempt to destroy cancer cells. Let us call the number of these
“immunoentities” Y, and suppose that they are given in X units; that is,
one unit of Y annihilates and is annihilated by one cancer cell. Then, we
can model the two populations via



68 MODELS OF COMPETITION, SURVIVAL, AND COMBAT

% =A+aX — bXY (2.51)
and
dYy
i cX - bXY. (2.52)

The justification for such a model is as follows. Cancer cells are produced
at a constant rate A, which is a function of environmental factors, inability
of the body to make accurate copies of some of the cells when they divide,
and so on. a is the growth rate of the cancer cells. b is the rate at which
antibodies attack and destroy the cancer cells. c is the rate of response of
the antibody population to the presence of cancer cells.

Y Y = (A +aX)/(bX) Death

Death
c/b

Death

X
Figure 2.19. Immune system plots.

Although we cannot obtain closed-form solutions for the system given
by (2.51) and (2.52), we can sketch a system of curves that will give us
some feel as to which individuals will have immune systems that can cope
with the oncogenesis process. From (2.52), we note that Y decreases if
dY/dt = ¢cX — bXY <0, that is, if Y > ¢/b. If the inequality is reversed,
then Y will increase. Similarly, from (2.51), we note that X decreases if
dX/dt = A +aX —bXY <O, that is, if Y > (A + aX)/bX. Let us examine
the consequences of these facts by looking at Figure 2.19. The prognosis
here would appear to be very bad. The body cannot fight back the cancer
cells and must be overwhelmed.

However, let us examine the more hopeful scenario in Figure 2.20. We
note the change if ¢ increases dramatically relative to a. We now have
regions where the body will arrive at a stable equilibrium of cancer cells
and antibodies. We should also note that in both Figure 2.19 and Figure
2.20 the situation of an individual who starts out with no antibody backup
at the beginning of the process is bad.
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Y = (A +aX)/(bX)

A Life

 ite /

e NLife

ab Ambk Y=a/b
Ambiguous

c/b

! X

Figure 2.20. Optimistic immune plot.

We can glean other insights from the model. For example, a large enough
value of A can overwhelm any value of ¢. Thus, no organism can reason-
ably expect to have the immune response power to overcome all oncogenic
shocks, no matter how big. Next, even if X is very large, provided only
that we can change the biological situation to increase ¢ dramatically, while
suppressing A, the tumor can be defeated.

The model considered here is obviously not only hugely simplified, but
it is purely speculative. We have, at present, no good means of measuring
X and Y. But it should be remembered that the model generally precedes
the collection of data: generally, data are collected in the light of a model.
In the case of Volterra’s fish model, partial data were available because
the selling of fish was measured for economic reasons. Volterra was, in
short, fortunate that he could proceed from a well-developed data set to an
explanatory model. This was serendipitous and unusual.

Generally, we waste much if we insist on dealing only with existing data
sets and refuse to conjecture on the basis of what may be only anecdotal
information. If we are being sufficiently bold, then for every conjecture
that subsequently becomes substantiated, we should expect to be wrong a
dozen times. Model building is not so much the safe and cozy codification
of what we are confident about as it is a means of orderly speculation.

2.5 Pyramid Clubs for Fun and Profit

There are those who hold that the very formalism of the “free market”
will produce good—irrespective of the production of any product or service
other than the right to participate in the “enterprise” itself. One example
of such an enterprise is gambling. Here, the player may understand that he
is engaging in an activity in which his long-run expectations for success are
dim—the odds are against him. Nevertheless, he will enter the enterprise
for fun, excitement, and the chance that, if he only plays the game a small
number of times, he will get lucky and beat the odds.
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Another example of an enterprise that apparently produces no good or
service is that of the pyramid club. Unlike gambling, the pyramid club gives
the participants the notion that they almost certainly will “win”; that is,
their gain will exceed, by a very significant margin, the cost of their partic-
ipation. Let us consider a typical club structure. For the cost of $2000, the
member is allowed to recruit up to six new members. For each member he
recruits, he receives a commission of $1000. Furthermore, each of the new
members is inducted with the same conditions as those of the member who
inducted them. Now for each recruit made by second-level members, the
first-level member receives a commission of $100. This member is allowed
to share in these $100 commissions down through the fifth level. Gener-
ally, there is some time limit as to how long the member has to recruit his
second-level members—typically a year. Thus, his anticipated return is

anticipated return = $1000x6 + (62 4 6% 4 6* + 6%) x$100 (2.53)
$938, 400.

It is this apparent certainty of gain that attracts many to pyramid en-
terprises. Many state governments claim that this hope of gain is hugely
unrealistic, and, thus, that pyramid enterprises constitute fraud. We wish
to examine this claim.

Let us suppose we consider only those members of society who would
become members if asked. Let us say that at any given time those who are
already members will be included in the pool Y and those who have not
yet joined but would if asked are included in the pool X. If we examine
the probability that a member will effect a recruitment in time interval At,
this appears to be given by

kX
At. 2.54
X+Y (2.54)

Here, k is the yearly rate of recruitment if all persons in the pool were
nonmembers (e.g., k = 6). Then we have that the expected number of
recruits by all members in [¢,¢ + At] is given by

P(recruitment in [t,t + At]) =

kXY
X+Y
We will neglect any exodus from the pool. Also, we neglect entries into

the pool. Thus, if we replace the expectation of Y by Y itself, and divide
by At, and let At go to 0, we have

E(number of recruits in [¢,t + At]) = At. (2.55)

£ _ kXY
d  X+Y’
Let us make the assumption that X +Y = ¢, a constant. Then we have
the easily solvable (using partial fractions) equation

(2.56)
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dYy k
So we have
1 Y 1 Yy

Now, when dY/dt = 0, there is no further increase of Y. Thus, the
equilibrium (and maximum) value of Y is given by

Y. =c (2.59)

For the present example, the maximum value of Y, Y, will only be reached
at t = oo. But it is relevant to ask how long it will take before Y equals,
say, .99c. If we assume that Yp equals .0001c, a little computation shows
that ¢ (when Y = .99¢) = 2.3 years.

Now, the rate of recruitment per member per year at any given time is
given by

dY/dt _ k(c—Y)

% - (2.60)
At time t = 2.3, and thereafter,
Y, d
é—}-{—@S0.0S, Y}{dt <0.06. (2.61)

Unfortunately, a member who joins at ¢ = 1.87 or thereafter must replace
the 6 in (2.54) by a number no greater than .06. Thus, the anticipated
return to a member entering at this time is rather less than 938,400:

anticipated return < $1000 x .06 + (.062 + .06% + .06* + .06%)x$100

= 60.38. (2.62)

The difference between a pyramid structure and a bona fide franchising
enterprise is clear. In franchising enterprises in which a reasonable good
or service is being distributed, there is a rational expectation of gain to
members even if they sell no franchises. Potential members may buy into
the enterprise purely on the basis of this expectation. Still, it is clear
that a different kind of saturation effect is important. The owner of a
fast food restaurant may find that he has opened in an area which already
has more such establishments than the pool of potential customers. But a
careful marketing analysis will be enormously helpful in avoiding this kind
of snafu. The primary saturation effect is not caused by a lack of poten-
tial purchasers of fast food restaurants but by an absence of customers.
However, there is little doubt that many franchising operations infuse in
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potential members the idea that their main profit will be realized by selling
distributorships. Indeed, many such operations are de facto pyramid oper-
ations. Thus, it would appear to be impossible for the government to come
up with a nonstifling definition of pyramid clubs which could not be cir-
cumvented by simply providing, in addition to the recruiting license, some
modest good or service (numbered “collectors’ item” bronze paper weights
should work nicely). The old maxim of caveat emptor would appear to be
the best protection for the public.

The model of a pyramid club is an example of epidemic structure, al-
though no transmission of germs is involved. Nor should the term “epi-
demic” be considered always to hav e negative connotations. It simply has
to do with the ability of one population to recruit, willfully or otherwise,
members of another population into its ranks at a self-sustaining rate.

Problems

2.1. We shall begin with what I term a conversational flowchart. In reality,
this sort of rather informal flowchart, mixing verbal and symbolic means
of delineating a time based progression, has long sense replaced the pseudo
electric circuit charts of years past.

By At, we mean a relatively short interval of time. In a combat lasting
over a month, it may well be the case that we may safely take each At to
be a day. Now by Au(t) we will mean the difference between the size of the
blue force u between time ¢t and time t + At . Suppose, for example, that
the size of the blue force at time ¢ = 30 was 4050, and the size of the blue
force at time t + At was 4000. Then, we would have

Au(t) = u(t + At) — u(t) = u(30) = u(31) — u(30) = —50.

Similarly, if we knew that u(t) = 4050 and that Au = —50, then we could
easily compute that

u(t + At) = u(t) + Au(t) = 4050 — 50 = 4000.

Suppose next that we had some model for the change in u. One such is
given in equation (2.10). Namely, we have that the degradation of the blue
force is proportional to the size of the red force at that time:

Au(t) = u(t + At) — u(t) = —crv(t)At.

So, then, if ¢; = .05, and v(0) = 21,500, and u(0) = 70,000, then we would
have

u(1) = u(0) — ¢y (0)At = 73,000 — .05(21, 500) = 71,925.

Of course, the red side will be degraded by the blue force. Let us suppose
the model for this degredation is

Av(t) = vt + At) — v(t) = —cau(t)At.

Then, taking v(0) = 21,500 and c; = .01, we would have

v(1) = v(0) — c2u(0)At = 21,500 — .01(73,000) = 20, 770.

We simply carry on the process in this way for a prescribed number of time
intervals (or until one of the force sizes becomes zero). Thus
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u(2) = u(1) — e1v(1)At = 71,925 — .05(20, 770) = 70, 887,
and

v(2) = v(1) — cou(1)At = 20, 770 — .01(71,925) = 20, 061.

If you can carry this out for 36 days, congratulations. You have achieved a
simulation of the casualty figures of the Battle of Iowa Jima.

Suppose U.S. intelligence had made a mistake, and there were actually
50,000 Japanese troops on the island on day one. Compute the course of
the modeled battle.

Next, to make the simulation more accurate, use the fact that the Amer-
icans stormed the beaches with 54,000 men on the first day, were reinforced
by 6,000 more men on day 3 and 13,000 on day 6. (Here assume a total of
21,500 Japanese troops).

This is the way the modeling was done first time by Engel. It assumes
the Japanese force went to zero by day 36 and was 8,500 on day 21. Engel
had the advantage of not bothering to look and see whether there was
any Japanese force data. Actually, there were 1,500 Japanese troops still
fighting on day 21 and well over zero on day 36.

Maintaining the levels of attrition constants, how long would it have
taken the Americans to eliminate the Japanese if they (the Americans) had
had landed 54,000 troops on the first day and 10,000 daily for the next ten
days? (Assume 21,500 Japanese troops on day one).

See what happens when you use the model in (2.24) with d; = d; =
.0000019. This is the undirected fire model where the combatants cannot
see each other much of the time and are simply firing at sectors where
the enemy is entrenced. Now, it could be argued that the Japanese could
see the Americans, but that the Japanese were concealed during much of
the combat. You might try a hybrid model, where American degredation
proceeds via

Au(t) = u(t + At) — u(t) = —cyv(t)At
and the Japanese degredation proceeds according to

Av(t) = v(t + At) — v(t) = —dav(t)u(t)At.

You might try and model another battle (such as the Alamo). Or you
might try and model another conflict, possibly one that does not involve
warfare. Be creative!

2.2. Starting on September 1, 1939, a force of 188 Polish soldiers defended
the Westerplatte peninsula against, roughly, 3,750 Germans for seven days.
Assuming that all the Poles became casualties, as well as 1,750 Germans,
compute the relative effectiveness of a Polish combatant to that of a German
one. Assume directed fire against the Germans, undirected against the
Poles.

2.3. Pick two opposing forces and use Lanchester theory to describe their
performances under a variety of scenarios. For example, you might con-
sider Confederates versus Yankees at both Fredericksburg and Gettysburg.
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Carefully delineate your work employing something like the conversational
mode flowchart used in Problem 2.1.

2.4. Give a data analysis for the Volterra model applied to specific predator
and prey populations.

2.5. Develop a model for resistance to antibiotics.
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Chapter 3

Epidemics

3.1 Introduction

The author has enjoyed more than three decades of collaboration with
members of Houston’s Texas Medical Center. Oncological modeling has
been a particular interest. But I have spent a great deal of time dealing
with contagious diseases in general and AIDS in particular. It seems strange
to me that most of my colleagues use the word “epidemic” in conjunction
with noncontagious diseases such as cancer and multiple sclerosis, but that
is the case. Indeed, I know only a very few people other than myself who
work with contagious diseases and restrict the use of “epidemic” to describe
diseases of contagion. I gather that the reasons for this kind of twisting
of the language have mainly to do with the sociology and political matrix
in which disease investigators find themselves. Although in other chapters
of this book, we shall deal with such noncontagious diseases as cancer, in
this chapter we shall be concerned with epidemics in the classical contagion
sense.

Among the contagious diseases of history, leprosy has an important po-
sition because it is 8o often mentioned in the Bible. The author has ob-
served that the number of verses in the Old Testament concerning leprosy
is roughly three times the number of verses dealing with the famous kosher
regulations. This disease was typically controlled in ancient cultures by
isolating the infectives from the rest of the population. A harsh system to
be sure, but one which was more effective than some protocols that have
been introduced into Third World Countries by First World medications
that have proved less effective than promised.

It is interesting to note that leprosy has a long history in East Texas.
The time line does not admit of the possibility that it was vectored from,
say, Mexico. The armadillo is one possible candidate for the spread of the

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.
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disease. Asthereduction of the grinding poverty following the War Between
the States has advanced, more Texans have given up undercooked armadillo
meat for alternatives. However, the threat from this disease should not be
underrated.

Please have a look at the short discussion of the shutting down of the
(http://www.abcnews.go.com/sections/us/DailyNews/hansens990329a.html)
Carville, Louisiana, facility. This article issomewhat typical of the “rosy scenario”
view of epidemics. There are some rather bizarre claims in the article. For
example:

Hansen’s Disease is among the least contagious of infectious dis-
eases. More than 95 percent of the population is naturally immune
to it. And its easily treated these days.

“It is only contagious in certain stages, and once medicated, pa-
tients show no risk to the public,” says Dr. Bruce Clements, Carvilles
clinical director of patient care. “Most people who worked with
Hansens Disease sufferers never contracted the disease.”

Note that Dr. Clements does not state that it is extremely rare for people
who work with Hansen’s Disease sufferers to contract the disease. If 95%
were immune to the disease, then, considering that health care workers at
Carville have historically taken careful precautions to protect themselves,
“most people” would have been replaced by “almost all people.” Carville
has traditionally paid high wages to workers and provided rather posh living
conditions for them. This has not been done without reason. The notion
that 95% of the human race is immune to leprosy is probably ridiculous.
Considering the high mortality rates from many diseases, an epidemic to
which only 5% of the population was susceptible would hardly have at-
tracted such stringent policies for epidemiological control. Moreover, we
know that the spouses of lepers who went to Molokai frequently accompa-
nied them. Anecdotal evidence indicates that they generally contracted the
disease themselves, as did the first Molokai mission priest Father Damien.

Working in the late 1980s with Professor of Pathology Raymond McBride
(McBride ran the major pathology lab of Houston) of the Baylor College
of Medicine, I learned that leprosy had been endemic among East Texas
farmers as far back as records were kept. This was not a Third World
importation, it was endemic in the almost completely Anglo East Texas
population. Certainly the relative frequency of the disease has diminished.
Why is that? We really do not know (and probably we should try and
find out). Conjectures abound. For example, some have opined that the
armadillo might be a vector for the disease. Apparently, modern East
Texans prize armadillo stew rather less than did their forbears. They also
live in air-conditioned houses with indoor toilets and running water.

The $18 million which it cost the U.S. taxpayers annually to keep the
Carville Center open was money well spent. The notion that the 200 new
U.S. cases of leprosy per year in the United States can be treated in local
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healthcare centers without danger of spread is an example of the triumph
of hope over experience.

Let us now move to another disease of antiquity (actually virtually all
contagious diseases have been around for thousands of years; there are
no new species of animals and no new diseases), namely smallpox. We
have good historical evidence that it was this disease that destroyed the
inhabitants of the Athens—Piraeus fortifications of Pericles.

Just as we can destroy species of animals, it should be theoretically possi-
ble to destroy bacteria and viruses which cause particular diseases. Such is
the confidence of the U.S. Centers for Disease Control that smallpox (out-
side laboratories) has been eradicated that inoculation against the disease
in the United States has been long since halted. We really have trivial sup-
plies of the vaccine in the event that someone decided to weaponize some
of the virus from laboratories. The risk from the vaccine is infinitesimal.

However, vaccination for whooping cough, a disease much less deadly
than smallpox is essentially a requirement for an American child getting
admitted into the public school system. And the incidence of autism has
skyrocketed in the United States since the whooping cough vaccine became
a requirement to get into school. Correlations, although not a proof, are
an important part of exploratory data analysis.

3.2 John Snow and the East End of London
Cholera Epidemic of 1854

Let us start with an example from 19th century epidemiology. Please read
the material at http://www.cdc.gov/excite/snow.pdf. You should also read
the complete text at http://www.ph.ucla.edu/epi/snow/snowbook.al.html
of 19-century pioneering epidemiologist John Snow (to get the full four in-
stallments, you change al in the above to a2, a3, a4). We are concerned
here with an outbreak of cholera in London. What Snow did was to look
at the frequency of cholera cases plotted on a map and use this information
to seek for an (http://www.ph.ucla.edu/epi/snow/maplea.htm) apparent
cause of the epidemic somewhere in the center of the high-frequency area.
We note that Dr. Snow performed his data analysis without the benefit of
mathematical formulas. His was a good example of “exploratory data anal-
ysis.” EDA, as often as not, relies on graphical procedures. Transmission
by drinking water was one of the candidates thought of as possible by Snow.
A simple plot showing a hash mark for a death pointed Snow to a water
source almost in the center of high death concentration. Truly, it could have
been argued (and was) that the pump was simply coincidentally located in
the center of the death circle. Snow did a great deal of canvassing work.
He noted, for example, that the workers in a brewery close to the pump did
not exhibit cholera deaths. But the owner of the brewery revealed that it
had its own deep well which was used for the making of their beer (which
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the workers consumed in lieu of water). Snow further found instances of
persons remote from the pump who nevertheless obtained their water from
it (including a lady from the upscale West End of London, who daily had a
supply carted to her) and subsequently died of cholera. Snow made a case
for removing the pump handle that was based on his plot plus extensive
interviewing.

Figure 3.1. Vicinity of the “Broad Street Pump”.

The removal of the pump handle from the now famous “Broad Street
Pump” was a matter of inconvenience for many. They had to gather their
water from farther away. Here is a classic example of cost/benefit analysis.
Snow evidently won his argument with the local parish council arguing
that the modest inconvenience was well worth while in light of the fact of
a raging epidemic.

Apparently, a shallow well in the area, served by one pump, had been
contaminated by cholera feces transported to a cesspool that drained into
the well. Removal of the pump handle by Snow caused some inconvenience,
but it seems to have saved hundreds of lives. This is a classic situation in
the treatment of epidemics: isolation of the susceptible population from ac-
tive sources of the infection. Notice how Snow by a very simple sociological
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intervention (removing the handle of the Broad Street Pump) ended a dan-
gerous epidemic without vaccines or antibiotics. Later on in this chapter,
it is argued that a simple sociological intervention could be used against
the United States AIDS epidemic, again without the use of the vaccines
(unavailable for AIDS) or antiviral agents (unavailable for AIDS).

3.3 Prelude: The Postwar Polio Epidemic

Effective immunizations against many of the killing diseases of the 19th
century, plus antibiotics massively used during World War II, gave the
promise of the end to life-threatening contagion in the United States. The
killers of the future would be those largely associated with the aging process,
such as cancer, stroke, and heart attack.

However, in the postwar years, polio, which already had stricken some (in-
cluding President Roosevelt), became a highly visible scourge in a number
of American cities, particularly in the South, particularly among the young.
In 1952, over 55,000 cases were reported. Mortality rates in America, due
to good care, had by that time dropped to well under 10%. Nonetheless, the
spectacle of children confined to wheelchairs or iron lungs was a disturbing
one.

This was in the years before the emigration of the middle classes to
suburbia, and most schools tended to have representation from a wide range
of socioeconomic groups. Incidence rates were the highest in the summers,
when the schools were closed. But, at the intuitive level, it was clear that
polio was a disease predominantly of school age children, and that there
was a fair amount of clustering of cases. Although the causative agent had
not been isolated, there was little doubt that it was a virus, that it favored
young hosts, that the throat was the likely pathway, and that transmission
was greatest in the hot weather.

In such a situation, it might appear that a prudent public health policy
would be to discourage summer gatherings of children, particularly in con-
fined indoor settings or in swimming pools. Such an inference might well be
put down as a prejudice of causation where none existed. Indeed, this was
the era of the kiddie matinee and new municipal swimming facilities given
by city governments to their citizens in celebration of a perceived affluence
following the War. Some parents did, to the displeasure of their children,
attempt to deprive them of matinees and swimming excursions, but such
were in the distinct minority. From time to time, city officials would take
such steps as shutting down municipal swimming pools, but this was un-
usual and always temporary. There was a large economic constituency for
matinees and swimming pools. The constituency for shutting them down
was acting on intuition and without business support. The results were
that the movies and pools generally stayed open all summer. The epidemic
flourished.
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There was a great deal of expectation that “the cavalry will soon ride
to the rescue” in the form of an expected vaccine against the disease. In
1955, the Salk vaccine! did appear, and new polio cases, for the United
States, became a thing of the past. Of course, a residual population of tens
of thousands of Americans remained, crippled by polio.

There was very little in the way of a postmortem examination about how
effective public health policy had been in managing the American polio
epidemic. In fact, there had been essentially no proactive policy at all.
But two effective anti-polio vaccines (Salk and then Sabin) seemed to have
brought everything right in the end. If there were serious efforts to learn
from the mistakes in management of the American polio epidemic, this
author has not seen them.

Polio had, apparently, been simply a bump in the road toward a time
in which life-threatening contagious diseases in America would be a thing
of the past. However, having spent my childhood in Memphis, Tennessee
(one of the epicenters of the postwar polio epidemic), that epidemic was
something I would never forget. My parents were among the number of
those who forbade matinees and swimming pools to their children. But
among my childhood friends there were several who died from polio, and
many others crippled by it.

3.4 AIDS: A New Epidemic for America

In 1983, I was investigating the common practice of using stochastic mod-
els in dealing with various aspects of diseases. When attempting to model
the progression of cancer within an individual, a good case could be made
for going stochastic. For example, one matter of concern with solid tu-
mors is whether the primary tumor throws off a metastasis before it has
been removed surgically. Whether it has or has not will largely determine
whether surgical removal of the primary tumor has cured the patient. Such
a phenomenon needs to be modeled stochastically.

However, when modeling the progression of a contagious disease through
a population, the common current practice of using a stochastic model and
then finding, for example, the moment generating function of the number
Y (t) of infectives seems unnecessarily complicated, particularly if, at the
end of the day, one decides simply to extract E[Y (t)], the expected number
of infectives. Moreover, any sociological data, if available, are likely to be
in terms of aggregate information, such as the average number of contacts
per day.

I had decided to write a paper giving examples where deterministic mod-
eling would probably be appropriate. I selected the AIDS epidemic because

1In 1999, evidence started to appear that contamination of the Salk vaccine by a
monkey virus, not unrelated to HIV, was causing many recipients of the Salk vaccine
to develop a variety of cancers, possibly due to a destruction of parts of their immune
system.
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it was current news, with a few hundred cases reported nationally. Although
reporting at the time tended to downplay the seriousness of the epidemic
(and, of course, the name was pointedly innocuous, the same as an appetite
suppressant of the times), there was a palpable undercurrent of horror in
the medical community. It looked like a study that might be important.

Even at the very early stage of an observed United States AIDS epidemic,
several matters appeared clear to me:

e The disease favored the homosexual male community and outbreaks
seemed most noticeable in areas with sociologically identifiable gay
communities.

e The disease was also killing (generally rather quickly) people with
acute hemophilia.

e Given the virologist’s maxim that there are no new diseases, AIDS, in
the United States, had been identified starting around 1980 because
of some sociological change. A disease endemic under earlier norms,
it had blossomed into an epidemic due to a change in society.

At the time, which was before the HIV virus had been isolated and
identified, there was a great deal of commentary both in the popular press
and in the medical literature (including that of the Centers for Disease
Control) to the effect that AIDS was a new disease. Those statements
were not only putatively false, but were also potentially harmful. First of
all, from a practical virological standpoint, a new disease might have as a
practical implication genetic engineering by a hostile foreign power. This
was a time of high tension in the Cold War, and such an allegation had the
potential for causing serious ramifications at the level of national defense.

Secondly, treating an unknown disease as a new disease essentially re-
moves the possibility of stopping the epidemic sociologically by simply
seeking out and removing (or lessening) the cause(s) that resulted in the
endemic being driven over the epidemiological threshold.

For example, if somehow a disease (say, the Lunar Pox) has been in-
troduced from the moon via the return of moon rocks by American astro-
nauts, that is an entirely different matter than, say, a mysterious outbreak
of dysentery in St. Louis. For dysentery in St. Louis, we check food and
water supplies, and quickly look for “the usual suspects” — unrefrigerated
meat, leakage of toxins into the water supply, and so on. Given proper
resources, eliminating the epidemic should be straightforward.

For the Lunar Pox, there are no usual suspects. We cannot, by reverting
to some sociological status quo ante, solve our problem. We can only look
for a bacterium or virus and try for a cure or vaccine. The age-old way
of eliminating an epidemic by sociological means is difficult — perhaps
impossible.

In 1982, it was already clear that the United States public health estab-
lishment was essentially treating AIDS as though it were the Lunar Pox.
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The epidemic was at levels hardly worthy of the name in Western Europe,
but it was growing. Each of the European countries was following classical
sociological protocols for dealing with a venereal disease. These all involved
some measure of defacilitating contacts between infectives and susceptibles.
The French demanded bright lighting in gay “make-out” areas. Periodic
arrests of transvestite prostitutes on the Bois de Bologne were widely pub-
licized. The Swedes took much more draconian steps, mild in comparison
with those of the Cubans. The Americans took no significant sociological
steps at all.

However, as though following the Lunar Pox strategy, the Americans
outdid the rest of the world in money thrown at research related to AIDS.
Some of this was spent on isolating the unknown virus. However, it was the
French, spending pennies to the Americans’ dollars, at the Pasteur Institute
(financed largely by a legacy from the late Duke and Duchess of Windsor)
who first isolated HIV. In the intervening 30 years since isolation of the
virus, no effective vaccine or cure has been produced.

3.5 Why an AIDS Epidemic in America?

Although the popular press in the early 1980s talked of AIDS as being
a new disease, as noted, prudence and experience indicated that it was
not. Just as new species of animals have not been noted during human
history, the odds for a sudden appearance (absent genetic engineering) of
a new virus are not good. My own discussions with pathologists with some
years of experience gave anecdotal cases of young Anglo males who had
presented with Kaposi’s sarcoma at times going back to early days in the
pathologists’ careers. This pathology, previously seldom seen in persons of
Northern European extraction, now widely associated with AIDS, was at
the time simply noted as isolated and unexplained. Indeed, a few years
after the discovery of the HIV virus, HIV was discovered in decades old
refrigerated human blood samples from both Africa and America.

Although it was clear that AIDS was not a new disease, as an epidemic it
had never been recorded. Because some early cases were from the Congo,
there was an assumption by many that the disease might have its origins
there. Clearly, record keeping in the Congo was not and is not very good.
But Belgian colonial troops had been located in that region for many years.
Any venereal disease acquired in the Congo should have been vectored into
Europe in the 19th century. But no AIDS-like disease had been noted. It
would appear, then, that AIDS was not contracted easily as is the case,
say, with syphilis. Somehow, the appearance of AIDS as an epidemic in
the 1980s, and not previously, might be connected with higher rates of
promiscuous sexual activity made possible by the relative affluence of the
times.

Then there was the matter of the selective appearance of AIDS in the
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American homosexual community. If the disease required virus in some
quantity for effective transmission (the swift progression of the disease in
hemophiliacs plus the lack of notice of AIDS in earlier times gave clues that
such might be the case), then the profiles in Figures 3.2 and 3.3 give some
idea why the epidemic seemed to be centered in the American homosexual
community. If passive to active transmission is much less likely than active
to passive, then clearly the homosexual transmission patterns facilitate the
disease more than the heterosexual ones.
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Figure 3.2. Heterosexual transmission of AIDS.
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Figure 3.3. Homosexual transmission of AIDS.

One important consideration that seemed to have escaped attention was
the appearance of the epidemic in 1980 instead of 10 years earlier. Gay
lifestyles had begun to be tolerated by law enforcement authorities in the
major urban centers of America by the late 1960s. If homosexuality was the
facilitating behavior of the epidemic, then why no epidemic before 19807
Of course, believers in the “new disease” theory could simply claim that the
causative agent was not present until around 1980. In the popular history of
the early American AIDS epidemic, And the Band Played On, Randy Shilts
points at a gay flight attendant from Quebec as a candidate for “patient
zero.” But this “Lunar Pox” theory was not a position that any responsible
epidemiologist could take (and, indeed, as pointed out, later investigations
revealed HIV samples in human blood going back into the 1940s).

What accounts for the significant time differential between civil tolerance
of homosexual behavior prior to 1970 and the appearance of the AIDS
epidemic in the 1980s? Were there some other sociological changes that
had taken place in the late 1970s that might have driven the endemic over
the epidemiological threshold?

It should be noted that in 1983, data were skimpy and incomplete. As is
frequently the case with epidemics, decisions need to be made at the early
stages when one needs to work on the basis of skimpy data, analogy with
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other historical epidemics, and a model constructed on the best information
available.

I remember in 1983 thinking back to the earlier American polio epidemic
that had produced little in the way of sociological intervention and less in
the way of models to explain the progress of the disease. Although po-
lio epidemics had been noted for some years (the first noticed epidemic
occurred around the time of World War I in Stockholm), the American
public health service had indeed treated it like the “Lunar Pox.” That is,
they discarded sociological intervention based on past experience of trans-
mission pathways and relied on the appearance of vaccines at any moment.
They had been somewhat lucky, since Salk started testing his vaccine in
1952 (certainly they were luckier than the thousands who had died and the
tens of thousands who had been permanently crippled). But basing policy
on hope and virological research was a dangerous policy (how dangerous
we are still learning as we face the reality of 650,000 Americans dead by
2011 from AIDS).

Although some evangelical clergymen inveighed against the epidemic as
divine retribution on homosexuals, the function of epidemiologists is to use
their God-given wits to stop epidemics. In 1983, virtually nothing was
being done except to wait for virological miracles.

3.5.1 Political Correctness Can Kill

One possible candidate was the turning of a blind eye by authorities to the
gay bathhouses that started in the late 1970s. These were places where
gays could engage in high frequency anonymous sexual contact. By the
late 1970s they were allowed to operate without regulation in the major
metropolitan centers of America. My initial intuition was that the key
was the total average contact rate among the target population. Was the
marginal increase in the contact rate facilitated by the bathhouses sufficient
to drive the endemic across the epidemiological threshold? It did not seem
likely. Reports were that most gays seldom (many, never) frequented the
bathhouses.

In the matter of the present AIDS epidemic in the United States, a great
deal of money is being spent on AIDS. However, practically nothing in
the way of steps for stopping the transmission of the disease is being done
(beyond education in the use of condoms). Indeed, powerful voices in the
Congress speak against any sort of government intervention. On April 13,
1982, Congressman Henry Waxman (2] stated in a meeting of his Subcom-
mittee on Health and the Environment, “I intend to fight any effort by any-
one at any level to make public health policy regarding Kaposi’s sarcoma
or any other disease on the basis of his or her personal prejudices regarding
other people’s sexual preferences or life styles.” (It is significant to note
that Representative Waxman has been one of the most strident voices in the
fight to stop smoking and global warming, considering rigorous measures
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acceptable to end these threats to human health.) We do not even have a
very good idea as to what fraction of the target population in the United
States is HIV positive, and anything approaching mandatory testing is re-
garded by American political leaders as an unacceptable infringement of
civil liberties. In light of Congressman Waxman’s warnings, it would have
taken brave public health officials to close the gay bathhouses. The Cen-
ters for Disease Control have broad discretionary powers and its members
have military uniforms to indicate their authority. They have no tenure,
however. The Director of the CDC could have closed the bathhouses, but
that would have been an act of courage which could have ended his career.
It appears odd to say so, but of all the players in the United States AIDS
epidemic, Congressman Waxman may be more responsible than any other
for what has turned out to be a death tally exceeding any of America’s
wars, including its most lethal, the American War Between the States (aka
the Civil War).

3.6 The Effect of the Gay Bathhouses

But perhaps my intuitions were wrong. Perhaps it was not onlythe total av-
erage contact rate that was important, but a skewing of contact rates, with
the presence of a high activity subpopulation (the bathhouse customers)
somehow driving the epidemic. It was worth a modeling try.

The model developed in (3] considered the situation in which there are
two subpopulations: the majority, less sexually active, and a minority with
greater activity than that of the majority. We use the subscript “1” to de-
note the majority portion of the target (gay) population, and the subscript
“2” to denote the minority portion. The latter subpopulation, constituting
fraction p of the target population, will be taken to have a contact rate 7
times the rate k of the majority subpopulation. The following differential
equations model the growth of the number of susceptibles X; and infectives
Y; in subpopulation i (i =1,2).
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where

k = number of contacts per month,
a = probability of contact causing AIDS,
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A = immigration rate into the population,

u = emigration rate from the population,

~ = marginal emigration rate from the population due
to sickness and death.

In Thompson [3], it was noted that if we started with 1,000 infectives in
a target population with ko = 0.05, 7 = 1, a susceptible population of
3,000,000 and the best guesses then available (u = 1/(15 x 12) = 0.00556,
v = 0.1, A = 16,666) for the other parameters, the disease advanced as

shown in Table 3.1.

Table 3.1. Extrapolated AIDS cases: ka =0.05, 7 = 1. |
Year Cumulative deaths Fraction infective |

1 1751 0.00034
2 2650 0.00018
3 3112 0.00009
4 3349 0.00005
5 3571 0.00002
10 3594 0.000001

Next, a situation was considered in which the overall contact rate was
the same as in Table 3.1, but it was skewed with the more sexually active
subpopulation 2 (of size 10%) having contact rates 16 times those of the

less active population.

Table 3.2. Extrapolated AIDS cases: ka =0.02, 7 = 16,p = 0.10.

Year Cumulative deaths Fraction infective
1 2,184 0.0007
2 6,536 0.0020
3 20,583 0.0067
4 64,157 0.0197
5 170,030 0.0421
10 855,839 0.0229
15 1,056,571 0.0122
20 1,269,362 0.0182

Even though the overall average contact rate in Table 3.1 and Table 3.2 is
the same (ka)overall = 0.05, the situation is dramatically different in the two
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cases. Here, it seemed, was a prima facie explanation as to how AIDS was
pushed over the threshold to a full-blown epidemic in the United States: a
small but sexually very active subpopulation.

I note that nothing more sophisticated than some numerical quadrature
was required to obtain the results in these tables. In the ensuing arguments
concerning why AIDS became an epidemic in the United States, everything
beyond the simple deterministic model (3.1) will be, essentially, frosting on
the cake. This was the way things stood in 1984 when I presented the paper
at the summer meetings of the Society for Computer Simulation in Vancou-
ver. It hardly created a stir among the mainly pharmacokinetic audience
who attended the talk. And, frankly, at the time I did not think too much
about it because I supposed that probably even as the paper was being
written, the “powers that be” were shutting down the bathhouses. The
deaths at the time were numbered in the hundreds, and I did not suppose
that things would be allowed to proceed much longer without sociological
intervention. Unfortunately, I was mistaken.

In November 1986, the First International Conference on Population Dy-
namics took place at the University of Mississippi where there were some of
the best biomathematical modelers from Europe and the United States. I
presented my AIDS results [6], somewhat updated, at a plenary session. By
this time, I was already alarmed by the progress of the disease (over 40,000
cases diagnosed and the bathhouses still open). The bottom line of the talk
had become more shrill: namely, every month delayed in shutting down the
bathhouses in the United States would result in thousands of deaths. The
reaction of the audience this time was concern, partly because the prognosis
seemed rather chilling, partly because the argument was simple to follow
and seemed to lack holes, and partly because it was clear that something
was pretty much the matter if things had gone so far off track.

After the talk, the well-known Polish probabilist Robert Bartoszyniski,
with whom I had carried out a lengthy modeling investigation of breast
cancer and melanoma (at the Curie-Sklodowska Institute in Poland and
at Rice), took me aside and asked whether I did not feel unsafe making
such claims. “Who,” I asked, “will these claims make unhappy”? “The
homosexuals,” said Bartoszynski. “No, Robert,” I said, “I am trying to
save their lives. It will be the public health establishment who will be
offended.”

And so it has been in the intervening years. I have given AIDS talks
before audiences with significant gay attendance in San Francisco, Hous-
ton, and other locales without any gay person expressing offense. Indeed,
in his 1997 book [1], Gabriel Rotello, one of the leaders of the American
gay community, not only acknowledges the validity of my model but also
constructs a survival plan for gay society in which the bathhouses have no
place.
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3.7 A More Detailed Look at the Model

A threshold investigation of the two-activity population model (3.1) is ap-
propriate here. Even today, let alone in the mid-1980s, there was no chance
that one would have reliable estimates for all the parameters k, a, 7, pu,
A, p, 7. Happily, one of the techniques sometimes available to the modeler
is the opportunity to express the problem in such a form that most of the
parameters will cancel. For the present case, we will attempt to determine
the ka value necessary to sustain the epidemic when the number of infec-
tives is very small. For this epidemic in its early stages one can manage to
get a picture of the bathhouse effect using only a few parameters: namely,
the proportion p of the target population which is sexually very active and
the activity multiplier 7.

For Y; = Y2 = 0 the equilibrium values for X and X; are (1 — p)(A/u)
and p(\/p), respectively. Expanding the right-hand sides of (3.1) in a
Maclaurin series, we have (using lower case symbols for the perturbations
from 0)

dyp _ [ka(l-p) ka(l —p)r

dt [1—p+‘rP (1 +u) W T

dy, katp kar?p

G = Toprpt T Toprp (VM| e
Summing then gives

d d

%+ % = [ka — (7 + p)y1 + [kaT — (v + p)] y2.

In the early stages of the epidemic,

dyy/dt _ (1—p)
dyz/dt pr
That is to say, the new infectives will be generated proportionately to their

relative numerosity in the initial susceptible pool times their relative activ-
ity levels. So, assuming a negligible number of initial infectives, we have

(1-p)

pT
Substituting in the expression for dyi/dt + dy2/dt, we see that for the
epidemic to be sustained, we must have

1+w)(Q-p+7p)
P (v +n). (3.2)

Accordingly we define the heterogeneous threshold via

_(+pQ-ptp)
1-p+pr?

ka >

(v +n).

khetx
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Now, in the homogeneous contact case (i.e., 7 = 1), we note that for the
epidemic not to be sustained, the condition in equation (3.3) must hold.

ka < (v + ). (3.3)

Accordingly we define the homogeneous threshold by

khoma = (7 + ).

For the heterogeneous contact case with ke, the average contact rate is
given by

(I+p)(l-p+7p)
1—-p+pr?

kave = pT(kpetr) + (1 — p)(kpetar) = (v +p)-

Dividing the sustaining value knhoma by the sustaining value kaveax for the
heterogeneous contact case then produces

Q= 1~p+7’2p
 (-p+Tp)?¥

Notice that we have been able here to reduce the parameters necessary
for consideration from seven to two. This is fairly typical for model-based
approaches: the dimensionality of the parameter space may be reducible in
answering specific questions. Figure 3.4 shows a plot of this “enhancement
factor” () as a function of 7. Note that the addition of heterogeneity to the
transmission picture has roughly the same effect as if all members of the
target population had more than doubled their contact rate. Remember
that the picture has been corrected to discount any increase in the overall
contact rate which occurred as a result of adding heterogeneity. In other
words, the enhancement factor is totally a result of heterogeneity. It is this
heterogeneity effect which I have maintained (since 1984) to be the cause
of AIDS getting over the threshold of sustainability in the United States.
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Figure 3.4 Effect of a high activity subpopulation.

If this all still seems counterintuitive, then let us consider the following
argument at the level of one individual infective. Suppose, first of all, that
the disease is such that one contact changes a susceptible to an infective.
Then let us suppose we have an infective who is going to engage in five
contacts. What number of susceptibles (assuming equal mixing) will give
the highest expected number of conversions of susceptibles to infectives?
Note that if the number of susceptibles is small, the expectation will be
lessened by the “overkill effect”: i.e., there is the danger that some of the
contacts will be “wasted” by being applied to an individual already infected
by one of the other five contacts. Clearly, here the optimal value for the
size N of the susceptible pool is infinity, for then the expected number of
conversions from susceptible to infective E(Z | N = oo) is five.

Now let us change the situation to one in which two contacts, rather
than one, are required to change a susceptible to an infective. We will still
assume a total of five contacts. Clearly, if N = 1 then the expected number
of conversions is E = 1; there has been wastage due to overkill. Next,
let us assume the number of susceptibles has grown to N = 2. Then the
probability of two new infectives is given by

ron-a-50)(¢)-2

The probability of only one new infective is 1 — P(2| N = 2). Thus the
expected number of new infectives is

20 12
EI|N=2)=2 (ﬁ) +1 (ﬁ) = 1.625.
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Now when there are N = 3 susceptibles, the contact configurations leading
to two new infectives are of the type (2,2,1) and (3,2,0). All other con-
figurations will produce only one new infective. So the probability of two
new infectives is given by

o= () 3+ () ) ()

and the expected number of new infectives is

150 93
E(IlN—3) =2 <ﬁ) +1 (%) = 1.617.

Additional calculations give E(Z|N = 4) = 1.469 and E(Z|N = 5) =
1.314. For very large N, E(Z) is of order 1/N. Apparently, for the situation
where there are a total of five contacts, the value of the number in the
susceptible pool that maximizes the total number of new infectives from the
one original infective is N = 2, not oo. Obviously, we are oversimplifying,
since we stop after only the contacts of the original infective. The situation
is much more complicated here, since an epidemic is created by the new
infectives infecting others and so on. As well, there is the matter of a
distribution of the number of contacts required to give the disease. We
have in our main model (3.1) avoided the complexities of branching process
modeling by going deterministic. The argument above is given to present
an intuitive feel as to the facilitating potential of a high contact core in
driving a disease over the threshold of sustainability.

In the case of AIDS, the average number of contacts required to break
down the immune system sufficiently to cause the person ultimately to get
AIDS is much larger than two. The obvious implication is that a great fa-
cilitator for the epidemic being sustained i the presence of a subpopulation
of susceptibles whose members have many contacts. In the simple example
above, we note that even if the total number of contacts were precisely
five, from a standpoint of facilitating the epidemic, it would be best to
concentrate the contacts into a small pool of susceptibles. In other words,
if the total number of contacts is fixed at some level, it is best to start
the epidemic by concentrating the contacts within a small subpopulation.
Perhaps the analogy to starting a fire, not by dropping a match onto a pile
of logs, but rather onto some kindling beneath the logs, is helpful.

3.8 Forays into the Public Policy Arena

The senior Professor of Pathology at the Baylor College of Medicine in the
19808 was Raymond McBride. McBride had been one of the pioneers in
immunosuppression for organ transplantation and was the Chief of Pathol-
ogy Services for the Harris County (Houston) Medical District. Distressed
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to see the ravages of AIDS on autopsied victims, he was quite keen to
have municipal authorities act to close down the bathhouses. He and I co-
authored a front page op-ed piece for the Houston Chronicle 4-9-1989 titled
“Close Houston’s Gay Bathhouses” , taking care not to mention the names
and addresses of the two major offending establishments lest some vigilante
act be taken against them. Hardly a ripple of interest, even though Hous-
ton, with less than one-tenth the population of Canada, had more AIDS
cases than that entire country. We tried to motivate members of the City
Council. When interviewed by a reporter, the office of the Councilman
in whose district these two bathhouses were situated shrugged the whole
matter off by asking, “What’s a bathhouse”? I served on the American
Statistical Association’s Ad Hoc Committee on AIDS from its inception
until its demise. But our mandate was never allowed to extend to model-
ing. Only the methodology of data analysis was permitted. Nor were we
allowed, as a committee, to compare America’s AIDS incidence with that
from other countries.

The situation was not unlike that of the earlier polio epidemic. There
were specific interests for not addressing the bathhouse issue, but there was
only a nonspecific general interest for addressing it.

Although I myself had no experience with the blood-testing issue, it
should be noted that early on in the epidemic, long before the discovery of
HIV, it was known that over 90% of the persons with AIDS tested positive
to antibodies against Hepatitis-B. For many months, the major blood col-
lecting agencies in the United States resisted employing the surrogate Hep-
atitis test for contaminated blood. The result was rampant death among
hemophiliacs and significant AIDS infections among persons requiring large
amounts of blood products for surgery.

The statistician/economist/sociologist Vilfredo Pareto remarked that Aris-
totle had made one mistake when he presented to the world the system of
logical thinking. The mistake was Aristotle’s assumption that once hu-
mankind understood logical consistency, actions, including public policy,
would be made on the basis of reason. Pareto noted that the historical
record showed otherwise. The more important the decision, Pareto noted,
the less likely was logical inference based on facts. This a significant concern
in decision making. So, it has unfortunately been with policy concerning
AIDS.

3.9 Modeling the Mature Epidemic

In the United States, the AIDS epidemic crossed the threshold of viability
long ago. Consequently, we should investigate the dynamics of the mature
epidemic. Unfortunately, we then lose the ability to disregard five of the
seven parameters and must content ourselves with picking reasonable values
for those parameters. A detailed analysis is given in Thompson and Go [7].
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In the following, we will make certain ballpark assumptions about some of
the underlying parameters. Suppose the contact rate before the possible
bathhouse closings is given by

(ka)overall = (1 -p+ TP)('Y + l‘)~ (34)

This represents an average contact rate for the two-activity model. We shall
take u = 1/(180 months) and A = 16,666 per month. (We are assuming a
target population, absent the epidemic, of roughly 3,000,000.) For a given
fraction 7 of infectives in the target population, we ask what is the ratio
of contact rates causing elimination of the epidemic for the closings case
divided by that without closings.

Figure 3.5 shows the ratio of contact rates (with closings relative to with-
out closings) as a function of 7 for p = 0.1 and v = 6—10. It would appear
that as long as the proportion of infectives 7 is no greater than 40% of
the target population, there would be a significant benefit from bathhouse
closings. The benefit decreases once we get to 40%. However, because of
the fact that there appears to be a continuing influx of new entrants into
the susceptible pool, there is good reason to close these establishments.
Generally, restoring the sociological status quo ante is an effective means
of stopping an epidemic; often this is difficult to achieve. Closing the bath-
houses continues to be an appropriate action, even though a less effective
one than if it had been taken early on in the history of the epidemic.
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Figure 3.5. Effect of bathhouse closings in a mature epidemic.

How many Americans know than the USA has more AIDS cases than
the rest of the First World combined? The highest American death rate
in any of our wars was the War Between the States. AIDS in America has
already killed more than the 600,000 combat dead from that War.
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18 AZT Effect on Sustaining AIDS Epidemic
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Figure 3.6. AZT and proportion of infectives.

Next, we look at the possible effects on the AIDS epidemic of adminis-
tering a drug, such as AZT, to the entire infective population. Obviously,
infectives who die shortly after contracting a contagious disease represent
less of an enhancement to the viability of an epidemic than those who live
a long time in the infective state. In the case of AIDS, it is probably unrea-
sonable to assume that those who, by the use of medication, increase their
T cell count to an extent where apparently normal health has returned,
will decide to assume a chaste life style for the rest of their lives. We shall
assume that the drug increases life expectancy by two years. Figure 3.6
demonstrates the change in the percent infective if the drug also increases
the period of infectivity by two years for various proportions n of infective
at the time that the drug is administered. The curves plot the ratio of the
proportion infective using AZT to the proportion infective if AZT is not
used (with 7 = 1/60) and they asymptote to 1.4 = 84/60, as should be
the case. The greater pool of infectives in the target population can, under
certain circumstances, create a kind of “Typhoid Mary” effect, where long-
lived infectives wander around spreading the disease. Clearly, it should be
the policy of health care professionals to help extend the time of quality life
for each patient treated. However, it is hardly responsible to fail to realize
that, by so doing, in the case of AIDS, there is an obligation of the treated
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infective to take steps to ensure that he does not transmit the disease to
susceptibles. To the extent that this is not the case, the highly laudable
use of AZT to improve the length and quality of life for AIDS victims is
probably increasing the number of deaths from AIDS.

3.10 AIDS as a Facilitator of Other Epidemics

In 1994 Webster West [11] completed a doctoral dissertation attempting
to see to what extent AIDS could enhance the spread of tuberculosis in
America. As we are primarily concerned here with the spread of AIDS
itself, we shall not dwell very long on the tuberculosis adjuvancy issue.
The reader is referred to relevant papers elsewhere [12,13].

West did discover that if one used stochastic process models and then
took the mean trace, one obtained the same results as those obtained simply
by using deterministic differential equation models. In the United States,
since the Second World War at least, tuberculosis has been a cause of
death mainly of the elderly (for example, Mrs. Eleanor Roosevelt died of
it). Tuberculosis is carried by the air, and its epidemiological progression
is enhanced by infected persons who are well enough to walk around in
elevators, offices, and so on. When tuberculosis is confined to elderly per-
sons, essentially not moving freely about, it is largely self-contained. But
HIV infected persons are generally young, and generally employed, at least
before the later stages of full-blown AIDS.

West discovered that the result of AIDS facilitating tuberculosis was
likely to be only a few hundred additional deaths per year. His model
further revealed that modest resources expended in the early treatment of
persons infected with tuberculosis could bring even these relatively modest
numbers down.

3.11 Comparisons with First World Countries

As noted in Section 3.4, the position of other developed countries toward
defacilitating contacts between infectives and susceptibles was quite dif-
ferent from that in the United States. In a very real sense, these other
countries can be used as a “control” when examining the epidemic in the
United States. Good data for new cases did not become easier and easier to
obtain as the epidemic progressed. Whereas in the earlier time span of the
epidemic fairly good data for all First World countries could be obtained
via “gopher” sites, increasingly it became more and more disconnected as
data bases supposedly moved to the Internet. The reality was that the
information on the gopher sites stayed in place but was not brought up
to date, whereas data on the Internet appeared temporally disconnected.
Great patience was required to follow a group of countries over a period
of time, and because of holes in the data, it was not at all clear whether
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anything but snippet comparisons could be made. I published one of these
at a conference in 1989 [6], but the data available to me at the time gave
only suggestions of what was happening. There seemed to be something
important going on that went to the issue of the United States being a
source of infection for other First World countries.

I kept sending out queries to the Centers for Disease Control and the
World Health Organization (WHO), but without much success. Finally, in
early 1998, Ms. Rachel Mackenzie of the WHO contacted me and provided
me, not with a URL, but with the data itself, which was in the hands of
the Working Group on Global HIV/AIDS, and STD Surveillance which is a
joint Working Group between WHO and UNAIDS. I wish to acknowledge
my gratitude to Ms. Mackenzie and her colleagues for allowing me to use
their database.

Figure 3.7 shows the staggering differences in cumulative number of
AIDS cases between the United States and France, Denmark, Netherlands,
Canada, and the UK. The pool of infectives in the USA dwarfs those of
the other First World countries. Whenever I would bring up the enormous
differential between the AIDS rate in the United States and those in Eu-
rope, my European colleagues would generally attribute all this to a time
lag effect. Somehow the United States had a head start on AIDS, but in
time the European countries would catch up. If other First World coun-
tries were lagging the USA, then one would expect some sort of variation
in new AIDS cases such as that depicted in Figure 3.8. However, Figure
3.9 demonstrates that the time lagging hypothesis is not supported by the
data. No other First World country is catching up to the USA. Moreover,
a downturn in new case rates is observable in all the countries shown.
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Figure 3.7. Cumulative AIDS cases 1985-1995.
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If the USA Simply Leads the Rest of the First World in AIDS
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Figure 3.8. A time lagged scenario.
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Figure 3.9. New case rates by country.

Additional insight is provided by Figure 3.10 in which we divide the
annual incidence of AIDS per 100,000 in the USA by that for various other
First World countries. Note the relative constancy of the new case ratio
across the years for each country when compared to the United States.
Thus, for the United Kingdom, it is around 9, for Denmark 6, etc. It is a
matter of note that this relative constancy of new case rates is maintained
over the period examined (eleven years). In a similar comparison, Figure
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3.11 shows that the cumulative cases per 100,000 of AIDS in the United
States divided by that for other First World countries gives essentially the
same values observed for the new case rates in Figure 3.10.
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Figure 3.10. Comparative new case rates.
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Figure 3.11. Comparative cumulative case incidence.

To investigate further, let us consider a piecewise in time exponential
model for the number of AIDS cases, say in Country A:

dysa
T ka(t)ya. (3.5)

Figure 3.12 gives estimates for the rates k on a year-by-year basis using

new cases per year
cumulative cases

ka(t) =

Note the apparent near equality of rates for the countries considered. To
show this more clearly, Figure 3.13 displays the ratio of the annual estimated
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piecewise national rates divided by the annual estimated rate of the United
States.
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Figure 3.12. kcountry(t) values.
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Figure 3.13. Ratios of piecewise rate estimates.

It is a matter of some interest that the k values are essentially the same
for each of the countries shown in any given year. How shall we explain a
situation where one country has a much greater incidence of new cases, year
by year, yet the rate of increase for all countries is the same? For example,
by mid-1997, the United Kingdom had a cumulative total of 15,081 cases
compared to 612,078 for the United States. This ratio is 40.59 whereas the
ratio of populations is only 4.33. This gives us a comparative incidence
proportion of 9.37. However, at the same time, Canada had a cumulative
AIDS total of 15,101. The United States population is 9.27 times that
of Canada, so the comparative incidence proportion for theUnited States
versus Canada in mid-1997 was 4.37. The comparative incidence of the
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United States vis-a-vis the United Kingdom is over twice that of the United
Statest vis-a-vis Canada. Yet, in all three countries the rate of growth of
AIDS cases is nearly the same. This rate changes from year to year, from
around 0.54 in 1985 to roughly 0.12 in 1995. Yet it is very nearly the same
for each country in any given year. One could therefore predict the number
of new cases in France in a given year, just about as well knowing the case
history of the United States instead of that in France. The correlation of
new cases for the United States with that for each of the other countries
considered is extremely high, generally around 0.96. It is hard to explain
this by an appeal to some sort of magical synchronicity, particularly since
we have the fact that though the growth rates of AIDS in the countries
are roughly the same for any given year, the new case relative incidence
per 100,000 for the United States is several times that of any of the other
countries.

Recall from Section 3.5 the conjecture made in the mid-80s that it was
the bathhouses which caused the stand-alone epidemic in the United States.
But, as we have seen, the bathhouse phenomenon really does not exist in
the rest of the First World. How is it, then, that there are stand-alone AIDS
epidemics in each of these countries? I do not believe there are stand-alone
AIDS epidemics in these countries.

To model this situation, let us suppose there is a country, say Country
Zero, in which the sociology favors a stand-alone AIDS epidemic. From
other First World countries there is extensive travel to and from Country
Zero, as indicated by Figure 3.14. If AIDS, with its very low infectivity
rates, breaks out in Country Zero, then naturally the disease will spread
to the other countries. But if the infectivity level is sufficiently low, then
the maintenance of an apparent epidemic in each of the countries will be
dependent on continuing visits to and from Country Zero.

Figure 3.14. Country Zero.

Now let us suppose the fraction of infectives is low in country j. Thus,
we shall assume that the susceptible pool is roughly constant. Let z; be
the number of infectives in country j and let z be the number of infectives
in Country Zero. Let us suppose we have the empirical fact that, both for



THE EFFECT OF THE GAY BATHHOUSES 101

Country Zero and the other countries, we can use the same [; in the growth
models

dz
Et- = ﬂtz (36)
dz:
—%’ = B (3.7)

Let the population of country j be given by N; and that of Country Zero
be given by Nz. Suppose the new case rate in Country Zero divided by
that for country j is relatively constant over time:

:,/ ;V;] =c;. (3.8)

Let us suppose that, at any given time, the transmission of the disease in
a country is proportional to both the number of infectives in the country
and the number of infectives in Country Zero. Then from (3.7 and (3.8)

dz; Nz
— = aGexi + njrz = (oge + S-CiMie) T = B, (3.9)
dt N;
where a;; and 7, are the transmission rates into country j from that coun-
try’s infectives and Country Zero’s infectives, respectively. We are assuming
that infectives from other countries will have relatively little effect on the
increase of infectives in Country Zero. Thus, for a short time span, (3.6)
gives

2(t) ~ z(0)e’t,
and (3.9) is roughly

dz;
E'J‘ = ;i Tj + njtZ(O)e”"-

Now, we note that the epidemic in a country can be sustained even if o
is negative, provided the transmission from the Country Zero infectives is
sufficiently high. If we wish to look at the comparative effect of Country
Zero transmission on country j vis-a-vis country i, we have
it — Qjt N. j

el
1’_1! Cj Ng 7ht CJ‘ NZ

If for two countries ¢ and j we have a;; = a;¢, then

N5t e it -

1
Using (3.8) this can be expressed as

Tj _ Mt
T Nit
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If nj: doubles, then according to the model, the number of infectives in
country j doubles.

Let us see what the situation would be in Canada if, as a stand alone, the
epidemic is just at the edge of sustainability: i.e., acan,s = 0. Then, going
back to a universal 5; for all countries including Country Zero (America),
we have from (3.9) (using the ccan value for 1995, 4.14).

_ _N Can_ L

MCant = Nusa ccan
26,832,000 1
" 248 709,873 4.14 Be
= 0.0268,

Thus, according to the model, activity rates from USA infectives roughly
2.6% of that experienced in the United States could sustain a Canadian
epidemic at a comparative incidence ratio of around 4 to 1, United States
to Canada. (If someone would conjecture that it is rather the Canadian
infectives who are causing the epidemic in the United States, that would
require the activity rate of Canadian infectives with American susceptibles
to be 1/0.026 = 38.5 times that of Canadian infectives with Canadian
susceptibles.) If this activity rate would double to 5.2%, then the Canadian
total infectives would double, but the rate (1/Zcan) dTcan/dt would still
grow at rate B;. Similar calculations show that

Py, = 0.076,3t,
Nuk,: = 0.0244;,
7pk,: = 0.00345;,
7NLe = 0.00750,.

In summary, we have observed some surprises and have tried to come up
with plausible explanations for those surprises. The relative incidence of
AIDS for various First World countries when compared to that of the United
States appears, for each country, to be relatively constant over time and this
incidence appears to be roughly the same for cumulative ratios and for ratios
of new cases. The rate of growth G; for AIDS changes year by year, but
it seems to be nearly the same for all the First World countries considered
(Figure 3.12), including the United States. The bathhouse phenomenon
is generally not present in First World countries other than the United
States. Yet AIDS has a continuing small (compared to that of the United
States), though significant, presence in First World countries other than the
United States. The new case (piecewise exponential) rate there tracks that
of the United States rather closely, country by country. We have shown
that a model where a term for “travel” from and to the United States is
dominant does show one way in which these surprises can be explained.
Some years ago [3—10], I pointed out that the American gay community
was made unsafe by the presence of a small subpopulation which visited
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the bathhouses, even though the large majority of gays, as individuals,
might not frequent these establishments. The present analysis gives some
indication that the high AIDS incidence in the United States should be a
matter of concern to other First World countries as long as travel to and
from the USA continues at the brisk rates seen since the early 1980s.

Developing a model requires risk taking. The model, if it is to be useful,
will be developed almost always without anything approaching a full data
set. We could always find, as the fuller story comes in, that we were wrong.
Then, in the case of epidemiology, we might find that by the time we
publish our results, the virologists will have come up with a vaccine, perhaps
rendering our model interesting but less than relevant. Most perilous of all,
however, is to neglect the construction of a model.

3.12 Conclusions: A Modeler’s Portfolio

This chapter has given an overview of around 25 years of my work on the
AIDS epidemic. I did not treat this work as an academic exercise. Rather,
by public talks, articles in the popular press, service on the ASA AIDS
Committee, and meetings with public officials, I tried to change the public
policy on the bathhouses, without effect. So it is correct to say that I
have not been successful in influencing public policy as I had wished. I
well recall, by the late 1980s certainly, that things were not going as I had
wished.

I never had the experience of somebody getting up at a professional
meeting and poking holes in my AIDS model. I would get comments like,
“Well, we see that you have shown a plausible way that the epidemic got
started. But that does us little good in providing a plan of action now
that the epidemic is well under way.” Of course, this statement is not
correct, for two reasons. First of all, I have addressed what the effect of
closing the bathhouses would be during the mature epidemic. Secondly,
effective restoration of the status quo ante will, almost always, reverse the
course of an epidemic. In the case of polio, for example, closing of the public
swimming pools and the suburban cinemas would have greatly defacilitated
the epidemic, even after it was well under way.

To my shock, some colleagues took me aside to say that AIDS might be a
very good thing, since it was discouraging a lifestyle of which neither these
colleagues nor I approved. I always responded that our obligation in health
care was to improve the lives of all persons, whether we liked their lifestyles
or not. Moreover, I noted that a continuing entry of young males into
the sociologically defined gay communities showed that the discouragement
induced by the dreadful deaths generally associated with AIDS was not
working the way they supposed. For example, in Houston, most of the
leadership of the gay community had died off by the early 1990s. The
death toll in Houston was staggering, more than in all Canada which has
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over ten times Houston’s population. And yet, the people who died were
replaced by a new wave of infectives.

Perhaps most significantly of all, I would hear amazement that my mod-
eling research was receiving any government support since there seemed to
be little statistical interest in such public policy consequential modeling.
Vast sums had been spent, for example, in support of the design of proce-
dures whereby blood samples could be anonymously dumped into a pool
with that of, say, nine other individuals and this exercise repeated many
times in such a way to determine the fraction of AIDS infectives in the
United States, while ensuring the privacy of those tested. But modeling
the progression of the epidemic was not receiving much NIH or PHS sup-
port. I was fortunate indeed that the Army Research Office has allowed me
to work on modeling problems generally.

The notion of becoming some sort of full-time activist for modification of
government policy toward defacilitating the epidemic was tempting. Some
hold that, like an entrepreneur with a good idea for a product, the researcher
should put all his/her energy into one enterprise at a time. Certainly, to
save the hundreds of thousands of lives which have been needlessly lost to
AIDS, such single-minded fanaticism would have been more than justified.
However, based on the considerable effort that I had expended, it seemed
to me that public policy was not going to be changed. If there had been
some sort of focused attack on my AIDS model, then I might simply have
hoped that a better explanation or a more complete model might win the
day. But I had received the worst possible response: “We see your model,
find no mistakes in it, and concede that it squares with the data, but it
must be flawed because it does not square with policy.”

So I continued my general career policy, which is somewhat similar to that
of an investment portfolio. The basis of portfolio theory is that putting all
of one’s assets in one stock, even one with enormous expected return, is
generally not a good idea. One is much better advised to use the weak law
of large numbers and put one’s capital in several enterprises of reasonably
good expectation of return, so that the variability of the return of the overall
portfolio will be brought down to much better levels than those associated
with a single stock. It seems to me that this is a good idea for modeling
researchers in allocating their intellectual assets.

During the period since the start of my work on AIDS, I founded the
Department of Statistics at Rice, which now has 18 core faculty, 8 of them
Fellows of the ASA. Again, during this period, I wrote eight books (AIDS
figured in only three of these and only as chapters). I produced seven
doctoral students during the interval, only one of these writing on AIDS. I
managed to obtain United Nations funding to start a Quality Control Task
Force in Poland following the fall of Russian domination of that country.
I developed computer intensive strategies for simulation based estimation
and continuous resampling, largely in connection with modeling work in
cancer. I did a modest amount of consulting, saving in the process one or
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two companies from bankruptcy. I started the development of anti-efficient
market theory models which work fine as stochastic simulations, but cannot
be handled in closed form. And so on. If AIDS was part of my professional
“portfolio,” it accounted for only, say, ten percent of the investment. I
could have increased my efforts, but it become fairly clear that this was a
battle which I could not win.

As I have so far been unable to find political support for closing down
bathhouses in America, it could be argued that the AIDS modeling part
of the portfolio was not productive. I disagree. Our business as modelers
is, first of all, to understand the essentials of the process we are modeling.
Only rarely, and generally in relatively simple situations, such as changing
the quality control policy of a corporation, should we expect to be able to
say, “There; I have fixed it.”

The optimism concerning a quick discovery of an AIDS cure has dimmed.
No doubt, one will be found at some time in the future. However, after
tens of billions of dollars already expended without a cure or vaccine, it
is unwise to continue on our present route of muddling through until a
miracle occurs. By this time, so many hundreds of thousands of Ameri-
can lives have been wasted by not shutting down high contact facilitating
establishments that changing policy could leave open a myriad of litigious
possibilities. The families of the dead or dying might have good reason to
ask why such policies were not taken 30 years ago. In the early 1980s I
noted that AIDS might well kill more Americans that those killed in our
bloodiest military conflict, the War between the States, around 600,000. It
has already done so. Nobel laureate Joseph Stiglitz has argued, America’s
recent Middle Eastern Wars have cost the USA $3 trillion. I doubt that the
United States AIDS epidemic will cost less. The loss of over 600,000 lives
and the productivity of those lives is huge.

Why did America allow itself to be drawn into the dreadful conflict in
the Middle East? Certainly, one might opine, as I do, that it was due to
powerful lobbies. But, regarding AIDS, the CDC'’s failing to take the most
elementary epidemiological step of simply closing down the gay bathhouses
as all other First World countries ultimately did, is beyond my compre-
hension. AIDS has no lobby. But political correctness does. I conjecture
that Congressman Waxman’s strictures simply frightened our public health
officials into inactivity.

Modelers are not generally members of the political/economic power
structure, which Pareto termed the “circle of the elites.” We cannot our-
selves hope to change public policy. But it is certainly our business to
develop models that increase understanding of some system or other which
appears to need fixing. We should follow the path of Chaucer’s poor Clerk
of Oxford: “...gladly would he learn and gladly teach.”

Following the American polio epidemic of the postwar years, no modeler
appears to have attempted to describe what went wrong with its manage-
ment. Had that been done, perhaps a totally different response might have
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taken place when AIDS came on the scene. At the very least, I hope that
my modeling of AIDS will have some impact on public policy concerning
the next plague when it comes, and come it surely will.

Problems

3.1. Using data from WHO, I have obtained estimates for the piecewise
growth rates from equation (3.5) as shown in Table 3.5. Construct a boot-
strap test to test the hypothesis that, year by year, the kinetic constant is
the same for the United States as for the other countries shown.

Table 3.5. Estimates of Kinetic Constants.
Year U.S.A. UK. Canada Denmark France | Netherlands

1985 0.518 0.597 0.584 0.513 0.611 0.540
1986 0459 0.535  0.498 0.482 0.569 0.523
1987 0.413 0434 0.428 0.411 0.504 0.482
1988 0.347 0.367 0.341 0.342 0.406 0.393
1989 0.290 0.304 0.289 0.320 0.336 0.321
1990 0.251 0.265  0.230 0.266 0.263 0.256
1991 0229 0224 0.201 0.221 0.232 0.214
1992 0.232 0.202 0.182 0.180 0.205 0.196
1993 0.187 0.184  0.155 0.171 0.179 0.153
1994 0.143 0.158 0.131 0.144 0.163 0.138
1995 0.113 0.127 0.101 0.116 0.123 0.120

3.2. The combinatorics of finding the expected number of infectives created
in the early days of an epidemic can quickly grow tedious. Moreover, it is
very easy to make mistakes. Resampling gives us an easy way out. If there
are n contacts to be spread among N individuals in a short period of time
(say, the time of infectivity of the infectives), we may repeatedly take integer
samples from 1 to N and count the fraction of times integers are repeated
n or more times. Using this approach, if a total of 10 contacts are to be
made, find the size of the susceptible pool which gives the largest number
of expected infections, given that at least three contacts are required to
convert a susceptible into an infective.

3.3. In Table 3.6 we show the ratio of the cumulative incidence of AIDS
per 100,000 population for the United States divided by that for the United
Kingdom, Canada, Denmark, France, and the Netherlands. Construct a
resampling based test of the hypothesis that these ratios are constant over
the 10 year period considered.
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Table 3.6. Ratios of U.S.A. AIDS

Incidences to Those of Other Countries I

| Year UK. | Canada Denmark | France Netherlands |
1985 12.427 3.735 10.693 | 6.092 5.254

1986 10.695  3.468 9.432 5.831 4.193 ,
1987 10.300 3.379 8.318 5.842 3.541
1988 9.982  3.405 7.727 5.888 3.219
1989 9.784  3.408 7.389 5.635 3.010
1990 9.597  3.505 7.346 5.521 2.960
1991 9.669  3.636 7.489 5.581 2.949
1992 10.048 3.871 7.833 5.954 3.050
1993 10.088  4.023 8.163 6.075 3.083
1994 9.904  4.080 8.208 6.067 3.012
1995 9.744 4138 8.140 6.048 2,977

3.4. The assumption of a sexually very active subpopulation is, of course,
not the only way to bring AIDS to epidemic levels. Redo Table 12.3 but
make v = .01. This scenario has increased the sexually active period of an
AIDS infective from 10 months to 100 months.

3.5. Computers have become so fast, storage so plentiful, that we are
tempted to dispense with differential equation aggregates and work directly
with the underlying axioms. Such an approach was suggested in Chapter
3. Let us consider one not quite atomistic approach. Create a population
of 300 susceptibles, 30 of whom have an activity level T times that of the
dominant population. Suppose that one (high activity) infective is intro-
duced into the population. Keep track of all the members of the population
as susceptible individuals S, “retired” susceptible individuals R, infective
individuals Z, and dead individuals D. See what T needs to be to sustain
the epidemic with high probability. At the beginning of the time interval
[t,t + At),

P(new susceptible appears in [t,t + At]) = AAt.

If such a person appears, we add him to the number of susceptibles, ac-
cording to the proportion of .10 for high activity, .90 for low activity.

Then a susceptible may, for whatever reason, remove himself from the
pool of risk.

P(susceptible J, “retires” in [t,t + At)) = pAt.

If this happens, we remove him from the infective pool and add him to the
retired pool.
Next, an infective may die (or be so sick as to be inactive):

P(an infective dies in [t, t + At)) = yAt.
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If this happens, we remove him from the pool of infectives and add him to
the list of the dead.
Then, for each susceptible person,

P(low-activity susceptible, converts to infective in [¢,t + At))
_ kaAtX:1(Y7 +1Y3)
T X1 +Y1+17(Y2 4+ Xa)

If such a change is made, we add the individual to the pool of low-
activity infectives removing him from the pool of low-activity susceptibles.
Similarly,

P(high-activity susceptible, converts to infective in [t,t + At))
_ ThalAtX (Y1 + 7Y2)
ST Xi+ 4 7(Ya+ Xo)'

If such a conversion takes place, we remove the person from the pool of
high-activity susceptibles, adding him to the pool of high-activity infectives.
where

7 = multiple of number of contacts of low-activity
population for high-activity population;
k = number of contacts per month;
a = probability of contact causing AIDS;
A = immigration rate into sexually active gay population;
4 = emigration rate from sexually active gay population;
v = marginal emigration rate from sexually active
gay population due to sickness and death;
X, = number of low-activity susceptibles;
X2 = number of high-activity susceptibles;
Y1 = number of low-activity infectives;
Y> = number of high-activity infectives.

This problem may well indicate the reason that “higher order” languages
are frequently not the choice for nontrivial simulations, which are generally
DO-LOOQOP intensive. The running time for this program in FORTRAN
or C is a tiny fraction of that required when the program is written in
MATLAB or R. There is, naturally, no particular reason why this need be
true. There is no reason why DO-LOOPS cannot be accommodated if only
the compiler be written to do so.

3.6. There are many processes of the empirical birth-and-death variety
related to those for epidemics. For example, there is the whole topic of
simulating warfare. Suppose we have two sides, the Red and the Blue.
Then we may ([4], pp. 55—71), if there are n subforces of Red, and m
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subforces of Blue, write down the heterogeneous force Lanchester equations

du; "
- E
E T i=1 kijc}.ijvi

d'U,; L
rri > lseajiug,
i=1

where k;; represents the allocation (between 0 and 1) such that 2;’;1 ki; <
1 of the ith Red subforce’s firepower against the jth Blue subforce. Also,
c1i; represents the attrition coefficient of the ith Red subforce against the
Jjth Blue subforce; and similarly for /;; and c3;;. Write down the stochastic
laws that one might use to simulate this system at the unit level (e.g.,
one company of Red tanks against two companies of Blue infantry). Such
procedures for combat attrition were used since von Reiswitz introduced
them in 1820 (with dice tosses and patient officers sitting around game
boards). Interestingly, such games can easily be computerized, and their
concordance with historical reality is excellent.
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Chapter 4

Bootstrapping

4.1 Introduction

The monumental work of Peter Bruce in the development of Julian Simon’s
Resampling Stats [7] can be downloaded from Statistics101.net [6] as free-
ware provided you have version 1.4 or later of the Java Runtime Environ-
ment (JRE). You can download the latest version from www_java.sun.com.

The bootstrap is also available in most of the current computer languages.
I have chosen to write bootstrapping programs in Resampling Stats because
of its intuitive relation to actual problems.

Charles Darwin was the originator of the theory of evolution by natural
selection. According to this theory, animals and plants which have superior
survival characteristics are more likely to live to procreate than those with
inferior survival characteristics. Sometimes, these superior survival char-
acteristics are passed on to the next generation. And thus, over millenia,
animals and plants are produced with superior survival characteristics. This
theory, like any other, should be viewed critically and in the light of data.

Darwin carried out some experiments in which he tried to test the hy-
pothesis that cross-fertilized corn plants produced higher stalks than self-
fertilized ones. He had this data analyzed by his cousin Francis Galton, one
of the founders of modern statistics (both Darwin and Galton were knighted
by Queen Victoria for their scientific work). It turns out that Galton’s anal-
ysis (which supported Darwin’s conjecture) was seriously flawed. The data
set was analyzed many years later by Ronald Fisher [5] (knighted by Queen
Elizabeth II), and this time the analysis was much better. But Fisher made
the assumption that the stalk heights observed would follow a particular
probablility distribution, the normal or Gaussian. One of the goals in this

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.
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book is to minimize prior assumptions on the distributions of data sets.

In the case of Darwin’s corn data, we have several possible questions to be
addressed. Naturally, although Darwin was looking specifically at a certain
variety of a specific grain plant, the implicit question is more general: Is
cross-fertilization good or bad? The common wisdom of most cultures is
that it is likely a good thing. And utilizing almost any kind of analysis on
the height based Darwin corn data, we arrive at an answer consistent with
the common wisdom.

In the case of Darwin and Galton and Fisher, we see that the surrogate
for “goodness” is stalk height at a fixed time after sprouting. It could have
been otherwise. Darwin might have used other criteria (e.g., grain yield,
resistance to disease and drought, flavor of grain, etc.). We cannot include
every possible criterion. The sociologist/anthropologist Ashley Montague
noted that by a number of criteria, sponges were superior to human beings.
The selection of a criterion to be measured and analyzed almost always
requires a certain amount of subjectivity.

In the case of the Darwin corn data, the null hypothesis selected is that
there is no difference in stalk height between the cross-fertilized and self-
fertilized plants. But when it comes to the alternative hypothesis the speci-
ficity is more vague. For example, we could select an alternative hypothesis
model (& la Darwin, Galton, and Fisher) that cross-fertilization increases
stalk height with variation from this rule being due to unexplained factors.
Or, we could hypothesize that, on the average, cross-fertilization leads to
increased stalk height. Or, we might opine that the median stalk height of
a group of cross-fertilized plants tends to be greater than that of a group
of self-fertilized plants. Each of these alternative hypotheses is different
(although the first implies the next two). In the case of the Darwin data,
each of the hypothesesseemsto be supported by the data.

Selection of hypotheses is not easy, and the literature is replete with
examples of studies where inappropriate hypotheses led to ridiculous or
pointless conclusions. But an ivory tower disdain of specifying hypotheses
leads, as a practical matter, to the radical position of Ashley Montague,
where Shakespeare is no better than a sponge. That is more multicultur-
alism than is consistent with progress, scientific or otherwise.

4.2 Bootstrapping Analysis of Darwin’s Data

In Table 4.1, we show the data essentially as presented by Darwin to Gal-
ton. We note here a “pot effect” and, possibly, an “adjacency within pot
effect.” At any rate, Darwin presented the data to Galton paired. Natu-
rally, Darwin had made every attempt to equalize soil and water conditions
across pots. It might well seem to us, in retrospect, that such equalization
should be readily obtainable and that we might simply pool the data into
15 cross-fertilized and 15 self-fertilized plants.
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Table 4.1
Case Pot Y Crossed | XSelf-Fertilized Difference
1 I 23.500 17.375 6.125
2 I 12.000 20.375 —8.375
3 I 21.000 20.000 1.000
4 II 22.000 20.000 2.000
5 II 19.124 18.375 0.749
6 II 21.500 18.625 2.875
7 1II 22.125 18.625 3.500
8 1III 20.375 15.250 5.125
9 III 18.250 16.500 1.750
10 III 21.625 18.000 3.625
11 III 23.250 16.250 7.000
12 IV 21.000 18.000 3.000
13 IV 22.125 12.750 9.375
14 IV 23.000 15.500 7.500
15 IV 12.000 18.000 —6.000
Sum 39.25

The sum of the differences for the 15 cases is rounded to 39.25. The
evidence points toward a positive difference between the cross-fertilized
and the self-fertilized, but we need some way of assessing how confident
we can be that the difference is significantly greater than what one would
expect from random choice. Let us assume that the height of a stalk is a
result of three factors:

1. Cross-fertilized versus self-fertilized average effects, pcr and psr

2. Pot effects (ul,nu,uln, or #IV)-

3. Random variation aka noise ¢ which is usually assumed to average
out to zero.

So, if we were looking at cross-fertilized plant number 2, we might say that
CF(2) = pcrF + pr1 + e
Let us consider the differences:

d = Y2—-X, (4.1)
BeF + pr +€— (usr + p1 +€)
= MHcF — psF + zero average noise (4.2)
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and similarly for the other differences.! Then, if we look at the 15 differ-
ences, we can obtain

_ 1 16

Now, let us carry out the following strategy. Pool the cross-fertilized and
self-fertilized plants in each pot. So, Table 4.1 becomes

Table 4.2 |
Pot | |
I 23500 17.375
I 12.000 20.375 l
I 21.000 20.000
II 22.000 20.000
II 19.124 18.375 }
II 21.500 18.625
IIT 22125 18.625
IIT  20.375 15.250
IIT 18.250 16.500
IIT 21.625 18.000
IIT  23.250 16.250
IV 21.000 18.000
IV 22125 12.750
IV 23.000 15.500
IV 12.000 18.000

1. We then sample three plants from Pot I and treat these as being
“cross-fertilized.”

2. We sample three plants from Pot I and treat these as being “self
fertilized.”

We pair the plants and take their differences.
. We carry out similar operations for Pots II, III and IV.

. We sum all the 15 differences so obtained.

= JR < T Ny T

. We repeat the above 5000 times.

A program (zearandom.sta) in the Resampling Stats language to achieve
this is given in Figure 4.1 below. (Recall that the program also runs on the
freeware version at statistics101.net.)

1Each ¢ is a different noise term. When we subtract two es, we get a zero average
noise term which is as likely to be positive as negative.
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'zearandom.sta

‘Within four pots, the cross-fertilized and self-fertilized

‘plants are pooled within pots. So, from Pot I,

‘we obtain a set of six stalk heights. We select randomly

‘with replacement three of these and

‘designate them as “cross-fertilized.”

‘We select randomly and with replacement

¢ three more plants from

‘Pot I and designate them as ”self-fertilized.

‘We proceed similarly for Pots II, III, and IV. We then take the
‘difference between the 15 “cross-fertilized” and “self-fertilized”
‘plants. We repeat the above 5000 times,

¢ sort the 5000 differences

‘so obtained and make a histogram of them.

¢ This gives us a picture

‘of how the differences should look in the original data if there
‘were no difference between cross-fertilized and self-fertilized
‘heights.

maxsize default 10000

copy ( 23.500 12.000 21.000)A1
copy(17.375 20.375 20.000)B1
copy(22.000 19.124 21.500)A2

copy (20.000 18.375 18.625)B2
copy(22.125 20.375 18.250 21.625 23.250)A3
copy(18.625 15.250 16.500 18.000 16.250)B3
copy(21.000 22.125 23.000 12.000)A4
copy(18.000 12.750 15.500 18.000)B4
concat Al Bl Potl

concat A2 B2 Pot2

concat A3 B3 Pot3

concat A4 B4 Potd

repeat 5000

sample 3 Potl P1

sample 3 Potl P2

sample 3 Pot2 P3

sample 3 Pot2 P4

sample 5 Pot3 P5

sample 5 Pot3 P6

sample 4 Pot4 P7

sample 4 Pot4 P8

subtract P1 P2 PP1

subtract P3 P4 PP2

subtract P5 P6 PP3
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subtract P7 P8 PP4

concat PP1 PP2 PP3 PP4 POOL

sum POOL PSUM

Score PSUM F

Sort F S

Mean F K

Variance F L

END

histogram F

Figure 4.1. Pooled within pot (zearandom.sta.).

If the null hypothesis is true,then

HCcF = USF-

We recall that in the actual data set, the sum of the differences was 39.25.
How many of the 5,000 differences where we treat all observations as having
the same p exceed 39.25 or are less than —39.25?

4.3 A Bootstrap Approximation to Fisher’s
Nonparametric Test

When this was done we obtained the histogram in Figure 4.2.

Histogram of "F" in File "zeapotrandom"”
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Figure 4.2. Resampled sum of differences with random
allocation.

In only 56 of these was the sum of differences greater than 39.25 or less
than —39.25. Thus, our resampling test would reject the null hypothesis
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at the 2 x 56/5000 = .0224 level of significance. Naturally, if we carried
out our resampling plan again, we would obtain somewhat different results,
for bootstrapping is based on random sampling. But you should not be
surprised as you repeat the experiment several times, that you keep getting
results which reject the null hypothesis. The evidence is overwhelmingly
against it.

Bootstrapping is a wonderful mental exercise, for generally we can devise
several different resampling strategies to test a null hypothesis. We have
just gone through one such argument with the program given in Figure 4.1.
Let us consider another quite natural way to proceed.

Now, it is a well-known fact that experimental investigators can have a
tendency to present data to the statistician so as to promote the best chance
for a significant argument in favor of significance of the data in support of
an hypothesis. We note that the pairings in each pot might have been made
in some way that this would be achieved. Better, then, to consider looking
at differences in which the pairings are achieved randomly. That is to say,
we do not know how Darwin elected to pair his observations within pot.
But we have reason to suppose that the conditions for growing were rather
uniform throughout each pot. Accordingly, we use the following resampling
strategy (see Resampling Stats code in Figure 4.3):

Resampling Test Based on Within Pot Information

1. Sample (with replacement) three of the crossed plants in Pot I and
then sample (with replacement) three of the self-fertilized plants in
Pot 1.

2. Compute the differences between crossed and self-fertilized plants in
each run where pairings are done randomly.

. Sum the differences.
. Carry out similar resamplings from each of the four pots.

. Compute the sum of differences.

S v s W

. Repeat 5000 times.

'zeapots.sta

¢ Sample (with replacement) three of the crossed plants in Pot I.
‘Then sample (with replacement) three of the self-fertilized plants
’in "Pot L

‘Compute the differences between crossed and self-fertilized plants
’in each run where pairings are done randomly.

¢ Sum the differences.

¢ Carry out similar resamplings from each of the four pots.

¢ Compute the sum of differences.

‘ Repeat 5000 times.
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copy ( 23.500 12.000 21.000)A1
copy(17.375 20.375 20.000)B1
copy(22.000 19.124 21.500)A2

copy (20.000 18.375 18.625)B2
copy(22.125 20.375 18.250 21.625 23.250)A3
copy(18.625 18.625 15.250 16.500 18.000 16.250)B3
copy(21.000 22.125 23.000 12.000)A4
copy(18.000 12.750 15.500 18.000)B4
repeat 5000

sample 3 Al C1

sample 3 B1 D1

sample 3 A2 C2

sample 3 B2 D2

Sample 5 A3 C3

sample 5 B3 D3

sample 4 A4 C4

sample 4 B4 D4

concat C1 C2C3 C4 C

concat D1 D2 D3 D4 D

Subtract CD G

Sum G E

Score E F

END

Sort F FF

histogram FF

Figure 4.3. Within pots bootstrap program zeapots.sta.

Histogram of "FF" in File “zeapots.sta®
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Figure 4.4. Resampled sum of differences with resampling

within pots.
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Only 6 of the 5000 simulations gave a sum less than zero. The assumption
of equality of stalk heights would be rejected at the 2 x 18/5000 = 0.007
level. The mean of the difference distributions computed in this way is
39.48.

4.4 A Resampling-Based Sign Test

Let us suppose that one of the self-fertilized plants had been much taller.
Suppose, for example, that the 12.75 value in Pot IV had been inflated
by misrecording to 32.75. Then, running zeapots.sta with the indicated
change, we find the histogram in Figure 4.5, and we note that 874 (or over
17%) of the resampled means are less than zero. The test is no longer
significant.

Histogram of "FF" in File "zeapots.sta"

1000 -

q

F 4
r 750:
e -
q i
u -y
e 500
o ]
c .
y o
250 -

-100 -75 -50 -25 0 25 50 75 100
Value in FF

Figure 4.5. Within pots bootstrap with one inflated recording.

Suppose we disregard the sizes of the differences, relying completely on
the signs of the differences. Every time the distance between a cross-
fertilized plant and a self-fertilized plant in the same pot is positive, we
score +1. Every time the difference is negative we score —1. Clearly, if
there is no intrinsic difference in the heights of cross-fertilized and self-
fertilized plants, then a plus and a minus are equally likely.

We will now use a program which is essentially the same as zeapots.sta
except we shall code any positive difference as +1 and any negative dif-
ference as —1. Then, we note that if there really is no intrinsic difference,
roughly half the sum of the 15 scores should be less than zero, half greater
than zero.
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¢ Sample (with replacement) three

‘of the crossed plants in Pot 1.

‘Then sample (with replacement) three
¢ of the self-fertilized plants

‘“in Pot I.

¢ Compute the differences between crossed
¢ and self-fertilized plants

‘ in each run where pairings

¢ are done randomly.

¢ Score +1 for each positive difference

¢ and -1 for each negative difference.

¢ Sum the differences.

¢ Carry out similar resamplings from each of the four pots.
¢ Compute the sum of differences.

‘ Repeat 5000 times.

‘Compute the histogram of the sums.
maxsize default 14000

copy ( 23.500 12.000 21.000)A1
copy(17.375 20.375 20.000)B1
copy(22.000 19.124 21.500)A2

copy (20.000 18.375 18.625)B2
copy(22.125 20.375 18.250 21.625 23.250)A3
copy(18.625 15.250 16.500 18.000 16.250)B3
copy(21.000 22.125 23.000 12.000)A4
copy(18.000 22.750 15.500 18.000)B4
repeat 5000

sample 3 Al C1

sample 3 Bl D1

sample 3 A2 C2

sample 3 B2 D2

Sample 5 A3 C3

sample 5 B3 D3

sample 4 A4 C4

sample 4 B4 D4

concat C1 C2C3C4 C

concat D1 D2 D3 D4 D

Subtract CD E

Count E;0 G

Score G F

Sort F S

Mean F K

Variance F L

END

histogram F

Figure 4.6. Sign test zeasign.sta.
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The resulting histogram is shown in Figure 4.7. Not one of the 5000
sum of differences is less than zero. Clearly, then, the null hypothesis
which says there is no intrinsic difference in stalk heights due to cross-
fertilized as opposed to self-fertilized is not supported by the resampling
sign test applied to the data in Table 4.1, even when one of the self-fertilized
observations has been inflated by 20.

Histogram of "F" in File "zeasign.sta"
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Figure 4.7. Bootstrapped sign test with one inflated observation.

4.5 A Bootstrapping Approach for Confidence
Intervals

What can we say about the difference between the heights of cross-fertilized
and self-fertilized zea mays plants? We have measured 15 differences and
found that the total difference is 39.25. That means that our estimate of
d = pcF — psr is given by
d = ficr — fisr = 3925 _ 4 6167.
15

How sure are we that d is precisely equal to 2.6167? We would not be
wise to claim that d is precisely equal to 2.6167, but we can make some
statement of the sort “With 95% confidence we state that the true value of
d lies between d; and d,.” To find this interval, we might first take our 15
observed differences and take a random sample (with replacement) of size
15, then compute the mean of the sample. We do this 5,000 times, rank the
means so obtained from smallest to largest. Counting up from the smallest
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to ranked mean 125 and down from the largest to ranked mean 4,875 we
obtain our 95% confidence interval 15 x d.

To obtain the 95% confidence interval on d, we need to take these values
and divide by 15.

A program for doing this is given in zeaconfint.sta below.

‘zeaconfint.sta

‘We would like to be able to make a

‘statement of the sort that says that

‘if we repeated our corn stalk experiment

‘many times, then with 95‘the sum of the 15 differences will lie
‘between x and y. We achieve this goal

‘by resampling randomly from the 15 differences
‘with replacement 10,000 times, then counting up
‘to the 250th observation and down to the
‘9,750th observation . There is a function in RS
‘which automatically achieves this: Percentile

copy (6.125 -8.375 1.000 2.000 0.749 2.875 3.500 5.125 1.750
3.625 7.000 3.000 9.375 7.500 -6.000)A

repeat 10000

sample 15 A B

sum B C

score C G

End

histogram G

Percentile G(2.5 97.5)Z print Z

Figure 4.8. Zeaconfint.sta for histogram of 15 x d.

Here, we obtain for d 25 and d g75, 2.000/15 = 0.1333 and 71.500/15 =
4.767, respectively. We can therefore express our informed opinion that
with 95% probability, the true value of d = ucr — pusr is between 0.1333
and 4.767.

4.6 Solving IllI-Structured Problems

The question posed by Darwin to his cousin Francis Galton was relatively
well posed. In the real world, we have to make decisions based on poorly
designed experiments and with ill-defined goals.
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Table 4.3. Standardized Reading Scores. |

Group A Group B Group C |
3.5 2.5 -14 |
4.8 2.5 49

—-44 1.7 5.3
-3.2 3.2 14
1.9 5.1 5.3
0.0 3.0 04
1.3 5.4 4.8
3.6 -1.1 8.2
4.0 1.5 9.8
0.5 1.4 5.4
0.3 0.5 -3.6
-2.8 1.2 3.8
-04 3.8 3.0
-2.5 1.6 6.0
5.4 54 5.4
0.0 0.2 3.1
-3.0 2.9 4.9
3.1 3.5 2.6
3.6 3.8 1.5
-0.2 24 9.9
-1.1 —-0.2 4.3
-39 1.4
2.1 4.1
5.7 4.9
1.7
3.0
-2.0
0.7
0.4
-0.3

Let us consider the following problem from the arena of public education.
There is frequently concern over the methodology used for improving stu-
dents’ reading skills. Particularly in suburban school districts, there is an
attempt to improve upon the standard methodology. In this instance, the
statistician is confronted with data from three different ways of improving
the reading skills of fourth graders. In one school, there were three different
classes, each taught by different methodologies. The first method, call it A,
is the standard that has been used for five years. The second method, call
it B, differs only from the standard one in that a different textbook is used.
The third method, call it C, is markedly different from the first two. In C,
there is intervention in the form of extensive instruction, in small student
groups, by doctoral students in education from a nearby state university.
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Whereas A and B have essentially the same cost, method C would, absent
the intervention for free by five doctoral students and their advisor, be very
costly indeed.

At the end of the year, a standardized test is given to students from all
three groups, and their scores are measured as departures from the scores
of students in the past 5 years taking the same test. The scores are given
in Table 4.3.

We have 30 tested students from A, 21 from B, and 24 from C. Of
course, we can point out to the Board of Education that our task has
not been made easier by the fact that there are three different teachers
involved and the “teacher effect” is generally important. But that will
not do us much good. The Board points out that it would have been
practically impossible, under the limitations of size of the school, to have
eliminated the teacher effect. We can, supposedly, take some comfort from
the fact that the principal points out that the teachers, all similar in age
and background, are uniformly “excellent.” We are also assured that, in
the interests of multicultural breadth, students are randomly mixed into
classes from year to year. In any event, the data are as presented, and it
is pointless to dwell too much on what might be done in the best of all
possible worlds. Telling a client that “this job is just hopeless the way you
have presented it to me” is not very good for keeping the consultancy going.
Moreover, such an attitude is generally overly pessimistic

One intuitive measure of the effectiveness of such programs is the mean
score for each of the methods: 0.73, 2.4, and 3.64, respectively. The stan-
dard deviations are 2.81, 1.78, and 3.53, respectively.

The first thing we note is that the improvements, if any, are modest. The
principal replies that such incrementalism is the way that improvements are
made. She wishes to know whether or not the improvements for each of
the two new methods, B and C are real or may simply be disregarded as
due to chance. In Figure 4.9, we show a histogram of bootstrapped means
using a resampling size of 10,000.

Now, the mindset of the bootstrapper is to consider the data to represent
all reality, all possibilities that can ever occur. So, as a first step, we
could compare means of samples (with replacement) of size 21 from B with
means of samples (with replacement) of size 30 from the current pedagogy,
A. Then, we similarly compare the new costlier pedagogy C with that of
the current pedagogy A. Finally, we similarly compare the new costlier
pedagogy C with that of the new less costly pedagogy B. The program for
achieving these three figures is given in the program booktest.sta

‘booktest.sta

‘Here, we have three sets of test data:

‘30 from the class using the old paradigm,
‘21 from the class using new cheaper
‘paradigm,
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‘24 from the class using the new

‘costly paradigm.

‘Since the data are rather numerous,
‘we write them as text files and

‘read them into the program.

‘ We take 10,000 random samples of
‘size 30 from the old paradigm,
‘computing the mean;

‘size 21 from the new cheaper paradigm,
‘computing the mean;

‘size 24 from the new costlier paradigm,
‘computing the mean.

‘For each of the 10,000 runs we compute
‘difference between mean of new cheap
‘and mean of old paradigm;

‘difference between mean of new costly
‘and mean of old;

‘difference between mean of new costlier
‘and mean of new cheaper paradigm.
‘We compute the fraction of times mean of

‘new cheaper paradigm minus mean of old paradigm

‘ is greater than 0 and call this sigcpold.
‘We compute the fraction of times mean of
‘new costlier paradigm minus mean of old
‘paradigm is greater than 0 and call

‘this sigesold.

‘We compute the fraction of times mean of
‘new costlier paradigm minus mean of new
‘costlier paradigm is greater than 0 and
‘call this sigcscp.

read file "tabs” xold xcheap xcostly
repeat 10000

sample 30 xold oldsamp

sample 21 xcheap chpsamp

sample 24 xcostly costsamp

mean oldsamp oldmean

mean costsamp costmean

mean chpsamp chpmean

subtract chpmean oldmean dchpold
score dchpold zdchpold

subtract costmean chpmean dcoschp
score dcoschp zcoschp

subtract costmean oldmean dexold
score dexold zexold

125
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end

histogram zdchpold

count zdchpold;0 sigcount
divide sigcount 10000 sigcpold
print sigcpold

count zexold;0 sigcount
divide sigcount 10000 sigcsold
print sigcsold

count zcoschp;0 sigcount
divide sigcount 10000 sigcscp
print sigcscp

Figure 4.9. Test for differences of the three paradigms.

In Figure 4.10 we show the histogram of differences between the two
procedures using 10,000 resamplings. Here, denoting the resampled sample
mean by u, we note that the average performance of a resampled class us-
ing methodology B is greater than that of methodology A in over 91% of
the runs. This gives us a bootstrapped “significance level” of .086, that is,
the chances are only 8.6% that, if the methodologies were equally effective
based on class average scores on the standardized test, that we would have
seen a performance difference as large or larger than that which we have
observed. Although significance levels are traditionally taken to be .05 or
.01, significance levels should actually be adjusted to the reality of the situ-
ation. The cost of changing textbooks is marginal. The Board of Education
might be well advised, therefore, to consider moving to methodology B.

Histogram of Means
from A andB, 10,000
Runs

4000

N =30 Significance Level = .086
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Figure 4.10. Means histogram of B versus A.
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Next, let us investigate the resampling result when testing means of the
costly procedure, C, versus that of the old standard, A. We demonstrate
these results in Figure 4.11.

Histogram of Means
from C and A, 10,000
Runs

8
8

Significance Level = .044

“oBDoc.o o

g
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Figure 4.11. Means histogram of C versus A.

There seems little question as to the superiority of C to A. We see a
bootstrap significance level of .044. On the other hand, we recall that C
was an experimental, labor-intensive protocol that would be difficult to
implement. Perhaps we should raise the question as to how much better
it is than the cheap B protocol. We give the resampled comparisons of
mean scores from C and B in Figure 4.12. If the two procedures had
equal efficacy, then we would have observed a difference as great as we have
observed 22.2% of the time.
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Figure 4.12. Means histogram of C versus B.
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Our analysis does not give the Board of Education an unambiguous call.
But it would appear that the cost of going to plan B (i.e., changing to the
new textbook) may be the way to go.

Problems

4.1. An IQ test is administered to students from two high schools in the
same city (Table 4.4). Using a bootstrap procedure, comment upon the
conjecture that both groups A and B have the same underlying 1Q.

Table 4.4. Intelligence
Quotient Scores.

Group A Group B
116.7 112.3
98.0 120.2
117.3 120.6
97.2 101.1
119.3 85.9
73.4 90.7
110.4 98.7
88.4 125.3
123.8 84.8
74.3 103.2
144.9 117.2
97.6 121.7
66.7 100.0
114.1 101.1
142.7 128.9
87.1 90.6
109.9 92.8
77.8 1134
74.9 143.5
77.8 120.1
91.1 100.0
86.3 103.2
119.2 112.8
104.5 125.2
95.1 127.3
106.9 127.9
84.6 147.9
99.3
96.9

77.6
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4.2. For the two schools selected, the conjecture is made that there is a sig-
nificant correlation between IQ and family income (measured in thousands
of dollars). Use the data in Table 4.5 to obtain a bootstrap procedure for
testing the conjecture.

Table 4.5. Intelligence Quotient Scores. |

GroupA | Income GroupB Income |
116.7 15.1 112.3 21.4 |
98.0 20.3 120.2 66.2
117.3 25.7 120.6 45.1
97.2 56.3 101.1 23.1
119.3 45.2 85.9 19.1
734 70.2 90.7 22.1
110.4 19.1 98.7 21.1
88.4 14.2 125.3 45.2
123.8 724 84.8 11.1
74.3 14.2 103.2 74.1
144.9 97.3 117.2 441
97.6 36.0 121.7 97.2
66.7 13.2 100.0 23.1
114.1 36.1 101.1 19.3
142.7 19.1 128.9 35.6
87.1 44.7 90.6 22.1
109.9 55.1 92.8 13.1
77.8 72.1 1134 23.8
74.9 15.1 143.5 101.3
77.8 13.9 120.1 87.1
91.1 19.1 100.0 444
86.3 56.2 103.2 28.1
119.2 341 112.8 10.5
104.5 45.1 125.2 36.7
95.1 24.8 127.3 12.3
106.9 16.2 127.9 28.1
84.6 23.1 147.9 15.2
99.3 18.1
96.9 39.9
77.6 15.2

4.3. Now, even before estimating g and u¢ in Table 4.3, we see that
adding on the graduate student teaching assistants appears to have effect.
However, it is possible that this appearance is simply the result of random-
ness. Moreover, the adding on of the teaching assistants is not without cost.
Orthodox Bayesians are generally reluctant to construct significance tests.
Construct a resampling procedure to determine if it is realistic to assume
that the add-on of graduate student teaching assistants is of no benefit.
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Chapter 5

Monte Carlo Solutions of
Differential Equations

5.1 Introduction

In a real sense, computer science was started by the Polish Enigma Code
breaker Marian Rejewski, working with his colleagues Jerzy Rozycki. and
Henryk Zygalski. A true empirical model builder, Rejewski used several
exploratory techniques to reduce the number of the Kriegsmarine’s code
combinations from an impossible 1092 to a manageable 10°. The German
Enigma machine had no electic power. Rejewski and his associates built a
decoding device which did. Their programming operating system might be
regarded as a precursor to UNIX. And they completed their prototype in
1932, a year before Hitler came to power in Germany. The Polish govern-
ment shared their decryption device with its English and French “allies”
before the start of the Second World War. Without the decryption, there is
little doubt England would have been starved into submission by the Ger-
man submarine fleet. Successful in keeping their possession of an Enigma
breaking device secret, the English were even more successful in keeping
the secret of who had built it.

As cryptanalysis is somewhat exotic, we can say that when it comes to
the equations of nuclear reactors and other equations of applied engineer-
ing, the Hungarian John von Neumann could be said to be the “founder of
computer science.” Unlike the Enigma decoder, von Neumann’s computer
worked very much like the computers we still use today. von Neumann con-
ceived of and built the first serious digital computer as a device for handling
simulation algorithms that he had formulated for dealing with problems in

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.
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nuclear engineering.! Ideally, if we are dealing with problems of heat trans-
fer, neutron flux, and so on, in regular and symmetrical regions, the classical
nineteenth and early twentieth century differential-integral-difference equa-
tion formulations can be utilized. However, if the regions are complicated,
if indeed we are concerned about a maze of pipes, cooling vessels, rods, and
8o on, the closed-form solutions are not available. This means that many
person-years would be required to come up with all the approximation-
theoretic quadrature calculations to ensure that a satisfactory plant will
result if the plans are implemented. von Neumann noticed that if large
numbers of simple repetitive computations could be readily performed by
machine, a method could be devised which would serve as an alternative to
quadrature.

In reality, the quadrature issue, which Monte Carlo was largely developed
to address, is rather unimportant compared to the much more important
issue of direct simulation. To make a distinction between Monte Carlo and
simulation, let us consider the following two paradigms shown in Figure
5.1. In the upper flowchart, we note a traditional means of coping with
the numerical results of a model. We start out with axioms at the micro
level which are generally easily understood. For example, one such axiom
might be that a gas particle starts at a particular point and moves step
by step in three-space according to specified laws until it collides with a
wall. Dealing with each specific gas molecule out of a total of, say, 1012
molecules is a hopeless task. Thus, investigators in the nineteenth century
quite naturally and correctly were led to means for summary information
about the gas molecules. That is to say, they had to content themselves
with differential-integral-equation models as average representations of the
effect of trillions of molecules.

Closed N.A. Monte
Form roX.
Attempt Carlo

Pointwise
Tabulation

Axioms

Figure 5.1. Two ways of problem solving.

In Figure 5.1 the upper path gives the paradigm for solving such prob-
lems based on precomputer age models. We start with axioms which are
accepted by most investigators in the field. These are transformed into
a differential-integral-difference-equation type of summary model. Then,

1 The discussion in this chapter -la.rgely follows [3].
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a generally pro forma attempt is made to arrive at a closed-form solu-
tion, that is, a representation which can be holistically comprehended by
an observer and which lends itself to precise numerical evaluation of the
dependent variables as we change the parameters of the model and the in-
dependent variables. This attempt is generally unsuccessful and leads only
to some nonholistic quadrature-like setup for numerical evaluation of the
independent variables. If the dimensionality of the quadrature is greater
than 2, the user moves rather quickly to a random quadrature Monte Carlo
approach. What would have happened had computers been developed a
century before they were? Would differential-integral equation modeling
be the backbone of so much of physical science the way it still is today? It
is an open question.

The fact is that we now have the computer speed to use the algorithm
in the lower part of the diagram. We can now frequently dispense with the
traditional approach by one which goes directly from the microaxioms to
pointwise evaluation of the dependent variables. The technique for making
this “great leap forward” is, in principle, simplicity itself.

Simulation carries out that which would earlier have been thought to
be impossible, namely, to follow the progress of the particles, the cells,
whatever. We do not do this for all the particles, but for a representative
sample. We still do not have the computer speed to deal with 10! particles;
but we can readily deal with, say, 10* or 10°. For many purposes, such a size
is more than sufficient to yield acceptable accuracy. Among the advantages
of a simulation approach is principally that it enables us to eliminate time-
consuming and artificial approximation-theoretic activities and spend our
time in more useful pursuits.

More importantly, simulation enables us to deal with problems which
are so complex in their “closed-form” manifestation that they are presently
attacked only in ad hoc fashion. For example, econometric approaches are
frequently linear, not because such approaches are supported by microeco-
nomic theory, but because the complexities of dealing with the nonlinear
consequences of the microeconomic theory are so overwhelming. Similarly,
in mathematical oncology, the use of linear models is motivated by the
failure of the natural branching process models to lead to numerically ap-
proximateable closed forms.

We have long since passed the point where computers can enable us
to change fundamentally the ways we pose and solve problems. We have
had the hardware capabilities for a long time to implement all the tech-
niques covered in this chapter. But the proliferation of fast computing to
the desktop will encourage private developers to develop simulation-based
procedures for a large and growing market of users who need to get from
specific problems to useful solutions in the shortest time possible. We now
have the ability to use the computer, not as a fast calculator, but as a device
which changes fundamentally the process of going from the microaxioms to
the macrorealization.
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5.2 Gambler’s Ruin

There is an old temptation in applied mathematics to pose new problems,
whenever possible, in classical “toy problem” formulation. One such is that
of “gambler’s ruin” [1]. We consider two gentlemen gamblers, A and B, who
start to gamble in a zero-sum game with stakes z and b — z , respectively.
At each round, each gambler puts up a stake of h dollars. The probability
that A wins a round is p, while the probability that B wins a round is
g = 1 — p. We wish to compute the probability that A ultimately wins
the game. Let us define v(z,t) to be the probability that A wins the game
starting with capital = on or before the tth round. Similarly, u(z, t) is the
probability that B wins the game with his stake of b — z on or before the
tth round. Let w(z,t) be the probability the game has not terminated by
the tth round.

Each of the three variables u, v, and w is bounded below by zero and
above by one. Moreover, u and v are nondecreasing in t. w is nonincreasing
in t. Thus, we can take limits of each of these as t goes to infinity. We shall
call these limits v(z), u(z), and w(z), respectively.

Although we shall briefly digress to get the closed-form solution to gam-
bler’s ruin, such a solution is really unimportant for our differential-integral
simulation purposes. It will be the fundamental recursion in (5.1), which
will be the basis for practically everything we do in this section.

v(z,t) = pv(z + h,t — A) + qu(z — h,t — ). (5.1)

That is, the probability A wins the game on or before the tth round is given
by the probability that he wins the first round and then ultimately wins
the game with his new stake of £ + h in ¢ — A rounds plus the probability
he loses the first round and then wins the game in ¢ — A rounds with his
new stake of £ — h. Here we have used a time increment of .

Taking limits in (5.1), we have

(p + q)v(z) = pv(z + h) + qu(z — h). (5.2)
Rewriting (5.2), we have
p[v(z + h) — v(z)] = glv(z) — v(z — h)). (5.3)

Let us make the further simplifying assumption that b = Nh. Then
v({n +1}h) — v(nh) = (¢/p)[v(nh) — v({n — 1})]. (5.4)
Notes that v(0) = 0 and v(Nh) = 1. So writing (5.4) in ertenso, we have

v(nh) —v({n—1}h) = (¢/p)[v({n - 1}h) — v({n - 2}h)]
v({n - 1}h) —v({n-2}h) = (q¢/p)[v({n—2}h) - v({n - 3}h)]
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v(2h) — v(h)

Substituting up the ladder, we have
v(nh) —v({n —1}h) = (a/p)""'v(h).
Substituting (5.5) in the extenso version of (5.4), we have

v(nh) —v({n - 1}h) (a/p)"'v(h)
v({n — 1}h) — v({n — 2}h) (¢/p)"%v(h)

v(h) v(h).

Adding, we have

v(nh) = (1 + % + (%)2 o+ (%)H) v(h).

Recalling that v(Nh) = 1, we have

1= (1+%+ (%>2+...+ (%)N_l>v(h)

Thus, we have

1+a/p+(a/p)*+... 4+ (a/p)"!
1+q/p+(a/p)* + ...+ (a/p)V!

For p = q = .5, this gives,

v(nh) =

v(nh) = % jie., v(z)= %

Otherwise, multiplying (5.10) by (1 —p/q]/[1 — p/q], we have

1- n
v(nh) = '1_—’((qi//§))7’ ie.,
1— z/h
Now, by symmetry,
u(z) = Y2~ (a/m)

1 (g/p)b*

q/plv(h) —v(0)] = (¢/p)v(h).
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From (5.12) and (5.13), we have

v(z) +u(z) = 1. (5.14)

Consequently, w(z) = 0; that is, the game must terminate with probabil-
ity 1. Thus, we can use a simulation to come up with reasonable estimates
of the probability of A ultimately winning the game. A flowchart of such a
simulation is given in Figure 5.2.

We note that this simulation gives us a ready means of estimating a rough
95% confidence interval for v(z), namely

v(z) = 2‘/W(1 ~W/M) (5.15)
M
M=number of
simulations
N=b/|
n=x/
p=probability of A winning a round
MM=0
w=0
» j=n -4
v —»  Gen u from U[0,1] 3
* —Is u<p ;
1 e jajet
Is j=0 Is ﬁN No
Yes
l Yes
" MM=MM+1 = W1
s MM=M MM=MM-+1
l Yes
No
v(nh) =W/M Is MM=M
v Yes
BND v(nh)=W/M
END

Figure 5.2. Gambler’s ruin.
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5.3 Solution of Simple Differential Equations

Since we have shown a closed-form solution for the gambler’s ruin problem,
it would be ridiculous for us to use a simulation to solve it. It is by means
of an analogy of real-world problems to the general equation (5.1) that
simulation becomes useful. Rewriting (5.3), we have

pAv(z) = qAv(z — h), (5.16)

where
Av(z) = [v(z + h) — v(z)]/h.

Subtracting gAv(z) from both sides of (5.16), we have

(p — 9)Av(z) = g[Av(z — h) — Av(z)), (5.17)
or
A?y(z) + hqu(z) =0, (5.18)
where A A A
A%(z) = A0 AR,
For h sufficiently small, this is an approximation to
d*v
2 + 2ﬂ (5.19)
where p—q
— =24.
gh g

Now, suppose that we are given the boundary conditions of (5.19), v(0) =0
and v(b) = 1. Then our flowchart in Figure 5.2 gives us a ready means of
approximating the solution to (5.19). We simply set p = (28h+1)/(28h+2),
taking care to see that h is sufficiently small, if 3 be negative, to have p
positive. To make sure that we have chosen h sufficiently small that the
simulation is a good approximation to the differential equation, typically
we use simulations with successively smaller h until we see little change in
v(z) ~ W/N.

Suppose that the boundary conditions are less accommodating, for exam-
ple, suppose that v(0) and v(b) take arbitrary values. A moment’s reflection
shows that

o(z) ~ %v(b) + (1 - %) »(0). (5.20)

As a closed-form solution of (5.19) is readily available. We need not con-
sider simulation for this particular problem. But suppose that we generalize
(5.19) to the case where 3 depends on z:

d%v

oz + 200 ) (5.21)
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Again, we use our flowchart in Figure 5.2, except that at each step we
change p via
_2B(x)h +1
P@) = 3phT o

Once again, v(z) ~ W/Nv(b) + (1 — W/N)v(0). And once again, it is an
easy matter to come up with an internal measure of accuracy via (5.15).

It is possible to effect numerous computational efficiencies. For exam-
ple, we need not start afresh for each new grid value of . For each pass
through the flowchart, we can note all grid points visited during the pass
and increase the counter of wins at each of these if the pass terminates at
b, the number of losses if the pass terminates at 0.

(5.22)

5.4  Solution of the Fokker—Planck Equation

It is important to note that the simulation used to solve (5.19) actually
corresponds, in many cases, to the microaxioms of which the differential
equation (5.19) is a summary. This is very much the case for the Fokker-
Planck equation which we consider below. Let us suppose that we do not
eliminate time in (5.1). We will define

v(z,t,0;h, \) = P|particle starting at = will be absorbed at 0
on or before t = mAJ;

v(z, t,b; h,\) = Plparticle starting at = will be absorbed at b
on or before t = mA |;

V(z,t;h,A) = V(0,t)v(z,t,0; h,A) + V(b,t)v(z,t,b; h, ).

We define

. — V .
AV (z,t;h, ) = V(z,t+ A h,A) = V(z,t; A, A)’

A
AzV(z,t;h,A) = V(x+h’t;h”)l)'v(z,t;h,)\,
2V (2, tih,A) — AaV(z — hyt; by
A V(z,t;h ) = AzV(z,t;h,A) ’? (= htihX)

That is, the expected payoff is given by the probability a particle is absorbed
at the left at time t, multiplied by the boundary award V(0,t) plus the
probability the particle is absorbed at the right at time ¢ times the boundary
award V (b, t).

Now, our basic relation in (5.1) still holds, so we have

V(z,t + X h,A) = p(z)V(z + b, t; b, A) + q(z)V(z — h,t h,A).  (5.23)

Subtracting V(z, t; h,l) from both sides of (5.23), we have
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AAV (z,t;h,1) = p(z)[V(z+ h,t;h,A) = V(z,t;h,N)) (5.24)

+q(z)[V(z — h,t; h, ) = V(z,t; b, N))

= p(@)[V(z + h,t;h, A) = V(z,t; b, A)]
—q(z)[V(z,t; h, ) — V(z — h,t; h,N)]

= hp(z)A;V(z,t;h,A) — hq(x) Az V(z — h,t; h, A)

= hlp(z) - 9(z)]A;V(z,t; b, A)
+hq(z)[AZV (z,t; h,A) — AV (z — h,t; by N)]

= hlp(z) — 9()]AzV (z,t; b, A) + h2q(z)Az,cV (T, t; b, N).

Il;:tting p(z) = [B(z) + 2ha(z)]/[28(z) + 2ha(z)) and g(z) = 1 — p(z), we
ve

o op2 (T) 2 B .
AV (z,t; b, A) = 2h%5 5@+ 7has V5 + hale) AggV(z,t; by A).

(5.25)
Next, taking h very small with A\/h%2 = u, we have
a(z) 1
pAV(z, t; hy ) = -E(—EA:V(:::,t; h,A) + §AHV(:c, t;h, ). (5.26)

So the simulation, which proceeds directly from the microaxioms, yields
in the limit as the infinitesimals go to zero a practical pointwise evaluator
of the usual Fokker—Planck equation:

2 _61_2__0($)§_Y_+62_V
ot = “Blz) 9z " 922

(5.27)
The Fokker—Planck equation is generally not solvable in closed form. Note
that we have given a simulation-based approach for solving (5.27), but
more importantly we have given a practical means for arriving at the con-
sequences of the original axioms which brought about Fokker—Planck in
the first place. So we again raise the intriguing possibility that had com-
puters been available 100 years ago, Fokker and Planck might have simply
represented their model in microaxiomatic format instead of giving a dif-
ferential equation summary thereof. Again, our algorithm is essentially the
flowchart in Figure 5.2 with a time counter added on.

5.5 The Dirichlet Problem

Next, we consider another common differential equation model of physics,
that of Dirichlet. In R, let there be given a bounded connected region S
T (Figure 5.3). Let there be given a function F(z) satisfying the equation
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of Laplace inside S :
k

0%,

— =0. (5.28)
2

i=1 az]

The values of ¢ are given explicitly at every boundary point by the piecewise
continuous function f(Q); that is,

¢(z)|r = f(Q). (5.29)

For most boundaries and boundary functions, the determination of ¢
analytically is not known. The usual numerical approximation approach
can require a fair amount of setup work, particularly if the dimensionality
is 3 or greater. We exhibit below a simulation technique which is, in fact,
an actualization of the microaxioms which frequently give rise to (5.28).
Although our discussion is limited to R 2, the generalization to Ry is quite
straightforward. Let us superimpose over S a square grid of length h on
a side. The points of intersection inside S nearest I' will be referred to as
boundary nodes. All other nodes inside S shall be referred to as internal

nodes.
—L“ P—

Ty

S )

N

Figure 5.3. The Dirichlet problem.

In Figure 5.4, we consider an internal node with coordinates (z,y) in
relation to its four immediate neighbors.

[ ]
PJX, y+h

° h ° .(x+h .
F:,’(X— L Y) Pix, y) P, 7

. P‘(x, y-h)

Figure 5.4. Random walk grid for Dirichlet problem.
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Now
6¢/6a:|z,y ~ ¢($ + h/21 y) ;; ¢($ - h/2, y) (530)
and
3¢ (08/0z)|s+h/2,y — (08/0T)|z-n/2,y
3 L = (5.31)
é(z + h,y) + é(z — h,y) — 2¢(z,y)
h? '
Similarly,
8¢ _ é(z,y+h) +d(z,y — h) — 2¢(z,y)
3~ 2 . (5.32)
Equation (5.28) then gives
_ 8% % ¢(P1) +(Po) + ¢(Ps) + ¢(Ps) — 44(P)
0= 502+ 557 = . (5.33)
5o P) + $(P2) + (P
$(P) ~ ¢(P1) + ¢(P2) + ¢(P3) + ¢(Pa) (5.34)

4
Equation (5.34) gives us a ready means of a simulation solution to the
Dirichlet problem. Starting at the internal node (z,y), we randomly walk
to one of the four adjacent points with equal probabilities. We continue
the process until we reach a boundary node, say Q;. After N walks to the
boundary from starting point (z,y), our estimate of ¢(z, y) is given simply
by

N . .
d(z,y) = ;i%f-’iQ—) (5.35)

<

Figure 5.5. Quick steps to the boundary.

where n; is the number of walks terminating at boundary node @; and the
summation is taken over all boundary nodes.

In Figure 5.3, if we wish to show ¢ contours throughout S, we can take
advantage of computational efficiencies. For example, as we walk from
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(z,y) to the boundary, we will traverse (z + h,y) numerous times. By
incorporating the walks which traverse (z + h,y) even though (z + h,y) is
not our starting point, we can increase the total number of walks used in
the evaluation of ¢(x + h,y).

Let us now consider in Figure 5.5 a technique that is particularly useful if
we need to evaluate ¢ at only one point in S. Since it can easily be shown
that @(z,y), the solution to Laplace’s equation inside S, is equal to the
average of all values taken on a circle centered at (z,y) and lying inside S,
we can draw around (z,y) the largest circle lying inside S and then select
a point uniformly on the boundary of that circle, use it as the center of a
new circle, and select a point at random on that circle. We continue the
process until we arrive at a boundary node. Then, again after N walks,

N .
Bz, ) o iz Q) (5.36

This method works, using hyperspheres, for any dimension k. Again, it
should be emphasized that in many cases the simulation is a direct imple-
mentation of the microaxioms that gave rise to Laplace’s equation.

5.6 Solution of General Elliptic Differential
Equations

Next, we consider a general elliptic differential equation in a region S in
two-dimensional space. Again, the values on the boundary I' are given by
f (), which is piecewise continuous on I'. Inside S,

2 2
pugt + st 4SSt a2 =0 G3)

where (11 > 0, B22 > 0, and B11822 — #%, > 0. We consider the difference
equation corresponding to (5.37), namely:

B118z:0 + 201282y + Ba2lyyd + 201820 + 2020, =0.  (5.38)
As convenient approximations to the finite differences, we use
$(x+h,y+h)—¢(x,y+h)—dx+hy)+4(z,y)

A, = Ethy)+ ¢(9;1 - h, y) h—22¢(w, )

A, = $(z,y+h) + ¢(a’:;2y —h) — 24(z,y) (5.39)
A, = 2Eth yz — ¢z, 9)
A, = ¢z, y+h) - Hz,9)

h
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These differences involve five points around (z,y) . Now, we shall develop
a random walk realization of (5.37), which we write out explicitly in Figure
5.6,

° [ ]
Pax,y+hn)  Pyx+h y+n

[ ] [} (]
Fi(x—h,y) P(x, y) Fix +h, y)

oPyx, y-h)

Figure 5.6. Grid for elliptic equation random walk.

¢(x + h‘a y) + ¢($ — h’) — 2¢(.’L‘, y)

B 2
12615 #(z + h,y + h) — ¢(z,y w;zh) — ¢(z+ h,y) + ¢(z,y)
+ ﬂ22¢(z, y+h)+ ¢(ﬂ;l,2y —h) — 2¢(z,y)
190, 2E L, y})l —HEY) | g, @Y+ h}z — & Y) _ o5.40)

We rearrange the terms in (5.40) to give
é(z + hyy)(B11 + 200k — 2612) + ¢(x, ¥ + h)(B22 + 2a2h — 2012)

+¢(I - h’a y)Bll + ¢(.’L‘, Y- h)ﬂ22 + ¢(I + h’y + h)2ﬂ12
= ¢(z,y)[2811 — 2612 + 2022 + 2(a1 + o2h)). (5.41)
Letting D = [2811 — 2812 + 2022 + 2(011 + a2)h], we have

#(z + h,y)p1 + ¢(z,y + h)p2 + ¢(x — h,y)p3 + é(z,y — h)ps

+¢($ +hy+ h)p5 = ¢(.’L‘, y)a (542)
with
_ P11 +20qh — 2613 _ Bea+205h —2B13
p]- - D ? p2 D 3
Pu. _ 1P2n, _ 2b12

P3 = 1;718P4 D s D (5.43)
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Note that in the formulation above, we must exercise some care to assure
that the probabilities are non-negative. By using the indicated probabili-
ties, we walk randomly to the boundary repeatedly and use the estimate

_ SN nif(Qs)
#(z,y) = ——IN—— . (5.44)

5.7 Conclusions

The examples provided in this chapter are given to give the reader a feel as
to the practical implementation of simulation-based algorithms as alterna-
tives to the usual numerical approximation techniques. A certain amount
of practice quickly brings the user to a point where he or she can write sim-
ulation algorithms in days to problems that would require the numerical
analyst months to approach.

Other advantages of the simulation approach could be given. For exam-
ple, since walks to boundaries are so simple to execute, it is easy to concep-
tualize the utilization of parallel processors to speed up the computations
with a minimum of handshaking between the CPUs. But the main advan-
tage of simulation is its ability to enable the user to bypass the traditional
path in Figure 5.1 and go directly from the microaxioms to their macro
consequences. Our algorithm for solving the Fokker—Planck problem and
our algorithm for solving the Dirichlet problem are not simply analogues of
the classical differential-equation formulations of these systems. They are,
in fact, descriptions of the azioms that typically give rise to these problems.
Here we note that the classical differential-equation formulation of many of
the systems of physics and chemistry proceed from the axioms that form
the simulation algorithm. It was simply the case, in a precomputer age,
that the differential-integral equation formulations appeared to give the
best hope of approximate evaluation via series expansions and the like.

omgarison

Figure 5.7. The idealized simulation paradigm.
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Moving further along, we now have the possibility of implementing the
algorithm in Figure 5.7 as a basic model-building paradigm. In the path
shown, computer simulation may obviate the necessity of modeling via, say,
differential equations and then using the computer as a means of approx-
imating solutions, either by numerical techniques or by Monte Carlo to
the axiomitized model. The computer then ceases to be a fast calculator,
and shifts into actually simulating the process under consideration. Such a
path represents a real paradigm shift and will begin the realization of the
computer as a key part of the scientific method.

Problems

5.1. Consider the differential equation

P 2@

dr? dr 0

where v(0) = 1 and v(1) = 2. Use the flowchart in Figure 5.2 to obtain
estimates of v(.2), v(.4), v(.6), and v(.8), together with error bounds for
these quantities.

5.2. Program a quadrature-type differential equation solver for the follow-
ing differential equation, where z(0) =0 and z(1) = 1:

d%z

dz
-(-i—t? +ﬁ(t);i? =0.

Compare its performance with a simulation-based approach using Figure
5.2 for the following candidates for 3:

@) B=4
(b) B=t
(c) B =sin(47t/t +1).

5.3. Consider the differential equation on the unit z interval.

ov ov 8V
B oz T oar

where V(z,t) = 200z exp(—t). Again, use the flowchart in Figure 5.2 to
obtain estimates of V'(.2,t), V(.4,t), V(.6.t), and V'(.8,t), for t = 0,1,2,3.

5.4. Draw contours for T in the interior of the plate shown in Figure 5.8,
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sz
02 2,2)
Toy+1

]
l T =g+l
LI | 2

T=1
ir I
Q) == i _g
2 2
an iy

Figure 5.8. Dirichlet problem for a plate.

using increments of 0.2 in both £ and y based on the Gambler’s Ruin
flowchart in Figure 5.2, given that Laplace’s equation (A) is satisfied in the
interior with the boundary conditions shown. Here, we have a substantial
demonstration of how inefficient it would be to run simulation from each
interior point (z,y) independently of walks from other points which “step
on” (z,y).

5.5. Consider the equation
62¢
@+u)ggs + a ay
which is satisfied inside the unit circle shown in Flgure 5.9, with the bound-

ary condition indicated. Use the standard gambler’s ruin flowchart in Fig-
ure 5.2 to obtain estimates of the ¢ contours inside the unit circle.

32¢ o9

T

=0,

y

dhY
N

Figure 5.9. Elliptic equation on the circle.
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Chapter 6

SIMDAT, SIMEST, and
Pseudoreality

6.1 Introduction

Many of us have had the experience of wishing we had 10 times the data
at hand. Many of us have had the experience of trying to estimate the
parameters of a model in a situation where we found it mathematically
infeasible to write down a likelihood function to maximize. Many of us
have needed to look at a higher-dimensional data set by trying to use our
rather limited three (or four)-dimensional perceptions of reality.

I recall some years ago being on the doctoral committee of an electrical
engineering student who had some time-indexed data, where the sampling
intervals were so wide that he was unable to detect features at the fre-
quencies where his interest lay. His solution (of which he was inordinately
proud) was to create a spline curve-fitting algorithm which would magically
transform his discrete data into continuous data. By one fell swoop he had
rendered Nyquist irrelevant. Although second readers should generally keep
their silence, I had to point out that he had assumed away high-frequency
components by his approach.

Having hosted at Rice in the late 1970s one of the early short courses
on exploratory data analysis, I recall one of the two very distinguished in-
structors in the course making the statement that “EDA (exploratory data
analysis) frees us from the straightjacket of models, allowing the data to
speak to us unfettered by preconceived notions.” During the balance of
the course, whenever a new data set was displayed from one of the dual
projectors, a rude psychometrician in the audience would ostentatiously
cup his hand to his left ear as though to hear the data better. The psy-

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.
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chometrician knew full well that data are perceived via a model, implicit
or explicit. The strength of EDA is that it has provided us with the most
effective analog—digital computer interface currently available, with the hu-
man visual system providing the analog portion of the system. Certainly,
Tukey's exploratory data analysis [27] is one of the most important data
analytical tools of the the last 50 years. But it has tended to tie us to
a three-dimensional perception, which is unlikely to be appropriate when
dealing with data of high dimensionality.

The same criticism may be made of those of us who have tried to push
graphical displays of nonparametric density estimates into high-dimensional
situations in the hope that spinning, coloring, and so on, might somehow
force the data into a realm where our visual systems would suffice to extract
the essence of the system generating the data. For many years now, I have
been artistically impressed by those who would take data sets, color them,
spin them, project them, and/or time lapse them. But, in retrospect, it is
hard to think of many examples where these fun type activities contributed
very much to an understanding of the basic mechanism which formed the
data set in the first place. Unfortunately, it seems as though many computer
intensive studies, in the case of EDA, nonparametric density estimation,
nonparametric regression,and so on, in the hands of many users, have more
or less degenerated into essentially formalist activities, that is, activities in
which we are encouraged not so much to appreciate what data analytical
insights the algorithms contribute, but rather to appreciate the algorithms
sui generis, as intrinsically wonderful.

In the matter of both density estimation and nonparametric regression,
the bulk of the computer intensive work continues to emphasize the one-
dimensional situation, that in which simple-minded methods (e.g., his-
tograms, hand-fit curves, etc.) have been used for a long time with about as
much success as the newer techniques. Is it not interesting to observe that
the histogram is still much the most used of the one-dimensional nonpara-
metric density estimators, and that one-dimensional curve fits are, at their
most effective, psychometric activities, where one tries to automate what a
human observer might do freehand? In the case where several independent
variables are contemplated in nonparametric regression, rather unrealistic
assumptions about additivity tend to be implemented in order to make the
formal mathematics come out tractably.

In the case of one-dimensional nonparametric density estimation, a fair
argument can be made that Rosenblatt obtained much of the practical
knowledge we have today in his 1956 paper [18]. In the case of multi-
variate nonparametric density estimation, we have barely scratched the
surface. Those who favor pushing three-dimensional graphical arguments
into higher dimensions have made definite progress (see, e.g., Scott and
Thompson [19] and Scott [20]). But others take the approach that the way
to proceed is profoundly nonvisual. Boswell [4], Elliott and Thompson [10],
as well as Thompson and Tapia [25] take the position that it is reasonable
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to start by seeking for centers of high density using algebraic, nongraphical,
algorithms. The case where the density is heavily concentrated on curved
manifolds in high-dimensional space is a natural marriage of nonparametric
regression and nonparametric density estimation and has not yet received
the attention one might have hoped.

The case for nonparametric regression has been eloquently and exten-
sively advocated by Hastie and Tibshirani [15]. Other important contribu-
tions include those of Cleveland [6], Cox [7], Eubank [11], Hérdle [13], and
Hart and Wehrly [14]. However, I fear that the nonparametric regressor
is swimming against a sea of intrinsic troubles. First of all, extrapola-
tion continues to be both the major thing we need for application, and
something very difficult to achieve, absent an investigation of the underly-
ing model which generates the data. For interpolation purposes, it would
appear that we really do not have anything more promising than locally
averaged smoothers. The important case here is, of course, the one with
a reasonable number of independent variables. Unfortunately, much of the
work continues to be for the one-independent-variable case, where the job
could be done “with a rusty nail.”

In the cases mentioned, EDA, nonparametric regression, nonparametric
density estimation, algorithms have been and are being developed which
seek to affect data analysis positively by use of the high-speed digital com-
puter. I have to opine that it seems most of this “machine in search of a
problem” approach has not yet been particularly successful.

6.2 The Bootstrap: A Dirac Comb Density
Estimator

There are statistical areas in which the use of the computer has borne
considerable fruit. In Chapter 4, we gave a nontheoretical example laden
treatment of the bootstrap of Efron [8], clearly one of the most influential
algorithms of the last 30 years or so. To motivate the bootstrap, we follow
the discussions in Taylor and Thompson [21], [22], and Thompson and Tapia
[25]. Let us first consider the Dirac comb density estimator associated with
a one-dimensional data set {z;}? ;. The Dirac comb density estimator is
given by

R 18
fs(@) = = > 8z — ). (6.1)
We may represent (z) as
1 2 /0.3
(z) = ki —e 6.2
(z) = lim ———e (6:2)

Waving our hands briskly, §(z) can be viewed as a density function that
is zero everywhere except at the data points. At each of these points,
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the density has mass 1/n. Nonparametric density estimation is frequently
regarded as a subset of smoothing techniques in statistics. f'g(:z:) would seem
to be infinitely rough and decidedly nonsmooth. Moreover, philosophically,
it is strongly nominalist, for it says that all that can happen in any other
experiment is a repeat of the data points already observed, each occurring
with probability 1/n. In other words, the data are considered to be all of
reality.

For many purposes, however, f,; (z) is useful. For example, the mean of

fs() is simply

Bs = /w zfs(x) = %in =TZ. (6.3)
o0 i=1

The sample variance can be represented by

d= [ e-hem=LYe-nr=2 G

=1

So, if we are interested in discrete characterizations of the data (such as a
few lower order moments), a Dirac comb may work quite satisfactorily. The
Dirac comb density estimator may be easily extended to higher dimensions.
Indeed, such an extension is easier than is the case for other estimators,
for it is based on masses at points; and a point in, say, 20-space, is still a
point (hence, of zero dimension). Thus, if we have a sample of size n from

a density of dimension p, f;(:z:) becomes

Jo(X) = = 3" 6(x - X, (6.5)
=1
where
p P2
600 - 1 () o (H2). ©6)

with z; being the j component of X.
For the two-dimensional case, we might wish to develop a 95% confidence
interval for the correlation coefficient,

_ Cov(z,y)
p= —;;Ey—. (6.7)

Now, if we had a sample of size n: {z;,y;}7,, we could construct

fo(@9) = = 3" 8((2,9) - (20, 9). (68)
i=1
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Next, we construct 10,000 resamplings (with replacement) of size n. That
means, for each of the 10,000 resamplings we draw samples from the n data
points (with replacement) of size n. For each of the resamplings we compute
the sample correlation:

Y@ —Z) i — 75)

- . (6.9)
\/Z?:l(zji ~Z;)% i (Y5 — T5)?

Tj

Next, we can rank the sample correlations from smallest to largest. A 95%
confidence interval estimate is given by

T(250) < P < T(9750)- (6.10)

One can view the bootstrap as being based on such a Dirac-comb estima-
tor. Although it is clear that such a procedure may have use for estimating
the lower moments of some interesting parameters, we should never lose
sight of the fact that it is, after all, based on the profoundly discontinuous
Dirac-comb estimator f5. The smoothed bootstrap 9] operates very much
like the bootstrap itself, except that to each resampled point one adds, say,
a normal variate with small variance. Essentially one samples from a fuzzy
Dirac-comb nonparametric density estimator.

Now, for better or for worse, the reality is that much of statistics is
concerned with such tasks as estimating a few moments. When we know the
underlying density function (and history shows that people get away with
assuming that the world is Gaussian more often than might be supposed),
then knowledge of a few moments actually gives a continuous description of
the underlying system [the first and second moments of a Gaussian (normal)
distribution completely characterize the density function everywhere).

However, if the world truly were Gaussian, then we could drop the entire
subject of nonparametrics (and most computer-intensive statistical analy-
ses). Let us consider an example where the data really are Gaussian, but
the use of the Dirac-comb nonparametric density estimator serves us poorly.
For example, suppose we have a sample of size 100 of firings at a bull’s-eye
of radius 5 centimeters. If the distribution of the shots is circular normal
with mean the center of the bull’s-eye and deviation 1 meter, then with a
probability in excess of .88, none of the shots will hit inside the bull’s-eye.
Then any Dirac-comb resampling procedure will tell us the bull’s-eye is a
safe place if we get a base sample (as we probably will) with no shots in
the bullseye. Such a problem with the bootstrap motivated SIMDAT, the
nonparametric density estimator based resampling algorithm of Taylor and
Thompson (21, 22, 25].
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6.3 SIMDAT: A Smooth Resampling
Algorithm

We note that any realization of a bootstrap simulation most likely will
be different from the original sample. Some sample points will disappear.
Others will be repeated multiple times. Indeed, the concatenation of a
bootstrap followed by a bootstrap based on that bootstrapped simulation,
and so on, will lead ultimately to a simulated sample which consists of a
single sample point. This is hardly desirable. It might be hoped that a
single resampling would be of such a character that we would be almost
indifferent as to whether we had this simulation or the original data set.
But, of course, it would be dangerous to wander too far from the original
sample. A resampling of a resampling of a resampling, and so on, is not
nearly as desirable as resamples that always point directly to the original
sample.

The bootstrap is clearly a powerful algorithm for many purposes. How-
ever, given the ubiquity of fast computing, it would usually be preferred to
use resampling schemes based on better nonparametric density estimators
than the Dirac comb. One such would be the 1976 algorithm of Guerra,
Tapia and Thompson [12], where one obtains a smooth of the empirical cdf
and samples from that. This algorithm has been employed for some time
as the RNGCT subroutine of Visual Numerics (formerly IMSL). The disad-
vantage of the algorithm is that it was only written for the one-dimensional
case, and that the estimator of the cdf must be explicitly obtained.

One candidate for a nonparametric density estimator to be used for sim-
ulation purposes would be

fo(X) = £ 3 K(X — Xi, %), (611)

i=1

where K (X, X;) is a normal distribution centered at zero with locally esti-
mated covariance matrix ¥;.

Such an estimator, despite its advantages, would seem to be very difficult
to construct. However, let us recall what it is we seek: not a nonparamet-
ric density estimator, but a random sample from such an estimator. So,
perhaps, we can go directly from the actual sample to the pseudosample.
Of course, this is precisely what the bootstrap estimator does, with the fre-
quently unfortunate properties associated with a Dirac comb. Fortunately,
it is possible to go from the sample directly to the pseudosample in such a
way that the resulting estimator behaves very much like that of the normal
kernel approach above. This is what the SIMDAT algorithm does.
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6.3.1 The SIMDAT Algorithm

Assume given a data set of size n from a p-dimensional variable X, { X} ;.
Assume that we have already rescaled our data set so that the marginal
sample variances in each vector component are the same. For a given integer
m, we can find, for each of the n data points, the m — 1 nearest neighbors.
These will be stored in an array of size n x (m — 1).

Suppose we wish to generate a pseudosample of size N. Note that there
is no reason to suppose that n and N need be the same (as is the case
generally with the bootstrap). To start the algorithm, we sample one of
the n data points with probability 1/n (just as with the bootstrap). Then,
we recall its . — 1 nearest neighbors from memory, and compute the mean
of the resulting set of m points:

X==Y x. (6.12)
i=1

Next, we subtract from each of the data points the local mean X, thus
achieving zero averages of the transformed cloud:

{X3} ={X; - X} (6.13)

Although we go through the computations of sample means and centering
about them here as though they were a part of the simulation process, the
operation will be done once only, just as with the determination of the m—1
nearest neighbors of each data point. The {X ;} values as well as the X
values will be stored in an array of dimension n x (m +1).

Next, we generate a random sample of size m from the one-dimensional
uniform distribution:

(T e

We now generate our centered pseudodata point X', via
m
X = wX{. (6.15)
1=1

Finally, we add back on X to obtain our pseudodata point X:

X=X+X. (6.16)

These, then, are the nuts and bolts of SIMDAT. The major setup cost is
the determination of interpoint distances. The tabulation is for each of the
n data points, a list indicating the m —1 nearest points. Once the resulting
matrix has been obtained, subsequent generation of any desired amount of
pseudodata is very rapid.
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6.3.2 An Empirical Justification of SIMDAT

As m and n get large, the procedure gives results very much like those of
the normal kernel approach mentioned earlier. To see why this is so, we
consider the sampled vector X; and its m — 1 nearest neighbors:

L1

= | . (617)

zkl l=1,...,m

Let us treat this collection of m points as being from a distribution with
mean vector u and covariance matrix X. Now, if {#}]2, is an independent
sample from the uniform distribution in ( 6.14), then

m-—1 .,
3 Cov(us,uj) =0, for i # j. (6.18)

E(w) = —715; Var(u;) =

Then we form the linear combination
m
Z=Y wuX. (6.19)
=1

We note that for the rth component of the vector Z, z, = u1zr1 + u2Zr2 +
<ot + UmTrm,

E(z,) = pr, (6.20)
2, m—1 5
Va.r(z,) =0, + Tu‘r’ (621)
and
m-—1
Cov(zr,2s) = Ors + ——Hrlts. (6.22)

We observe that if the mean vector of X were (0,0,...,0), then the mean
vector and covariance matrix of Z would be the same as that of X, that is,
E(z) =0, Var(z,) = 02, and Cov(z, 2,) = 0y,. Naturally, by translation
to the local sample mean of the nearest-neighbor cloud, we will not quite
have achieved this result. But we will come very close to the generation of
an observation from the truncated distribution that generated the points
in the nearest-neighbor cloud.

For m moderately large, by the central limit theorem, SIMDAT comes
close to sampling from n normal distributions with the mean and covari-
ance matrices corresponding to those of the n, m nearest-neighbor clouds.
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If we were seeking rules for consistency of the nonparametric density esti-
mator corresponding to SIMDAT, we could use the formula of Mack and
Rosenblatt [16] for nearest-neighbor nonparametric density estimators:

m = Cn#/(P+4), (6.23)

Actually, as a practical matter, such formulas have little practical relevance,
since C is usually not available. Furthermore, we ought to remember that
our goal is not to obtain a nonparametric density estimator, but rather,
to generate a data set which appears like that of the data set before us.
Let us suppose that we err on the side of making m far too small, namely,
m = 1. That would yield simply the bootstrap. Suppose that we err on
the side of making m far too large, namely, m = n. That would yield an
estimator which roughly sampled from a multivariate normal distribution
with the mean vector and covariance matrix computed from the data. In
Figure 6.1, we show a sample of size 85 from a mixture of three normal
distributions with the weights indicated, and a pseudodata set of size 85
generated by SIMDAT with m = 5. We note that the emulation of the
data is reasonably good. In Figure 6.2 we go through the same exercise,
but with n = 15. There, effects of a modest oversmoothing are noted.
In general, if the data set is very large, say of size 1000 or greater, good
results are obtained with m ~ .02n. For smaller values of n, m values
in the .05n range appear to work well. A version of SIMDAT in the S
language, written by E.N. Atkinson, is available under the name “gendat”
from http://lib.stat.cmu.edu/S/gendat.
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Figure 6.1. Undersmoothed SIMDAT.
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For really large data sets, the user may wish to use Fortran or C instead
of S. The savings for using the more primitive languages, as opposed to S
or R, may be 100-fold

So far, we have considered basically model-free techniques for examining
data. There are, of course, many situations where exploration of a new data
set may preclude an early conjecture as to a likely model of the mechanism
generating the data. In my opinion, such procedures should usually be first
steps in modeling a process. But, unfortunately, they frequently are as far
as one goes. In essence, the nonparametric techniques use the power of the
computer to bypass altogether the need for the modeling step. Such an
approach is likely to be useful mainly as an interpolative device. When the
dimensionality of a data set becomes high, say five or more, this adhocery
is likely to prove dangerous, since we may be confronted with a number
of widely separated modes, with deserts in between. Dealing with such
data sets, nonparametrically, away from the modes, is an extrapolation
problem, and using the standard smoothed interpolation routines can bring
one quickly to disaster.
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6.4 SIMEST: An Oncological Example

The power of the computer as an aid to modeling does not get the atten-
tion it deserves. Part of the reason is that the human modeling approach
tends to be analog rather than digital. Analog computers were replaced by
digital computers 40 years ago. Most statisticians remain fascinated by the
graphical capabilities of the digital computer. The exploratory data anal-
ysis route tends to attempt to replace modeling by visual displays which
are then interpreted, in a more-or-less instinctive fashion, by an observer.
Statisticians who proceed in this way are functioning somewhat like pro-
totypical cyborgs. After over four decades of seeing data spun, colored,
and graphed in a myriad of ways, I have to admit to being disappointed
when comparing the promise of EDA with its reality. Its influence amongst
academic statisticians has been enormous. Visualization is clearly one of
the major areas in the statistical literature. But the inferences drawn from
these visualizations in the real world are, relatively speaking, not so numer-
ous. Moreover, when visualization-based inferences are drawn, they tend
to give results one might have obtained by classical techniques.

Of course, as in the case of using the computer as a nonparametric
smoother, some uses are better than others. In the 1980s a group of
Bayesian statisticians convinced one of our leading research universities
that the reason statistical analysis had produced marginal results in such
areas as oncology had been the traditional dominance of frequentists in
biometry. The advent of high-speed computing brought forth the possi-
bility that the insights of physicians could be appropriately blended into
priors leading to breakthrough posteriors. Here, we were told that the com-
puter would enable us to carry out another one, two, or three dimensions of
quadrature, thus enabling prior information to be infused into the process.
But, since the desired prior information really was not available (and may
never be in the form required), the computer just enabled people to spin
their wheels faster.

It is extremely unfortunate that some are so multicultural in their outlook
that they rearrange their research agenda in order to accommodate them-
selves to our analog-challenged friends, the digital computers. Perhaps the
greatest disappointment is to see the modeling aspect of our analog friends,
the human beings, being disregarded in favor of using them as gestaltic im-
age processors. This really will not do. We need to rearrange the agenda so
that the human beings can gain the maximal assistance from the computers
in making inferences from data. That is the purpose of SIMEST.

There is an old adage to the effect that quantitative change carried far
enough may produce qualitative change. The fact is that we now have com-
puters so fast and cheap that we can proceed (almost) as though computa-
tion were free and instantaneous (with infinite accessible memory thrown
in as well). This should change, fundamentally, the way we approach data
analysis in the light of models.
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There are now numerous examples in several fields where SIMEST has
been used to obtain estimates of the parameters characterizing a market-
related applied stochastic process (see, e.g., Bridges, Ensor, and Thompson
[5]). Below we consider an oncological application to motivate and to expli-
cate SIMEST. We shall first show a traditional model-based data analysis,
note the serious (generally insurmountable) difficulties involved, and then
give a simulation-based, highly computer-intensive way to get what we re-
quire to understand the process and act on that understanding.

6.4.1 An Exploratory Prelude

In the late 19708, my colleague Barry W. Brown, of the University of Texas
M.D. Anderson Cancer Center, and I had started to investigate some con-
jectures concerning reasons for the relatively poor performance of oncology
in the American “War on Cancer.” Huge amounts of resources had been
spent with less encouraging results than one might have hoped. It was my
view that part of the reason might be that the basic orthodoxy for cancer
progression was, somehow, flawed.
This basic orthodoxy can be summarized briefly as follows:

At some time, for some reason, a single cell goes wild. It,
and its progeny, multiply at rates greater than that required for
replacement. The tumor thus formed grows more or less expo-
nentially. From time to time, a cell may break off (metastasize)
from the tumor and start up a new tumor at some distance from
the primary (original) tumor. The objective of treatment is to
find and excise the primary before it has had a chance to form
metastases. If this is done, then the surgeon (or radiologist) will
have “gotten it all” and the patient is cured. If metastases are
formed before the primary is removed, then a cure is unlikely,
but the life of the patient may be extended and ameliorated
by aggressive administration of chemotherapeutic agents which
will kill tumor cells more vigorously than normal cells. Unfortu-
nately, since the agents do attack normal cells as well, a cure of
metastasized cancer is unlikely, since the patient’s body cannot
sustain the dosage required to kill all the cancer cells.

For some cancers, breast cancer, for example, long-term cure rates had not
improved very much for many years.

6.4.2 Models and Algorithms

One conjecture, consistent with a roughly constant intensity of display of
secondary tumors, is that a patient with a tumor of a particular type is
not displaying breakaway colonies only, but also new primary tumors re-
sulting from suppression of a patient’s immune system to attack tumors of
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a particular type. We can formulate axioms at the micro level which will
incorporate the mechanism of new primaries. Such an axiomitization has
been formulated by Bartoszyriski, Brown, and Thompson [3]. The first five
axioms are consistent with the classical view as to metastatic progression.
Hypothesis 6 is the mechanism we introduce to explain the nonincreasing
intensity function of secondary tumor display.

Hypothesis 1. For any patient, each tumor originates from a single cell
and grows at exponential rate a.

Hypothesis 2. The probability that the primary tumor will be detected
and removed in [t,t + At) is given by bYp(t)At + o(At), and until the
removal of the primary, the probability of a metastasis in [t,t + At) is
aYo(t)At + o(At), where Yy(t) is the size of the primary tumor at time t.

Hypothesis 3. For patients with no discovery of secondary tumors in
the time of observation, S, put mi(t) = Yi(t) + Y2(t) + ..., where Y;(t)
is the size of the ith originating tumor. After removal of the primary, the
probability of a metastasis in [t,t + At) equals am;(t) + o(At), and the
probability of detection of a new tumor in [t,t +.At), is bmi(t) + o(At).

Hypothesis 4. For patients who do display a secondary tumor, after
removal of the primary and before removal of Y7, the probability of detection
of a tumor in [t,t + At) equals bY)(t) + o(At), while the probability of
detection of a metastasis is aY(t) + o(At).

Hypothesis 5. For patients who do display a secondary tumor, the
probability of a metastasis in [t,t + At) is ama(t)At + o(At), while the
probability of detection of a tumor is bmgy(t)At + o(At), where my(t) =
Yo(t)+...

Hypothesis 6. The probability of a systemic occurrence of a tumor
in [t,t + At) equals AAt + o(At), independent of the prior history of the
patient.

Essentially, we shall attempt to develop the likelihood function for this
model so that we can find the values of a,b, o, and A which maximize the
likelihood of the data set observed. It turns out that this is a formidable
task indeed. The SIMEST algorithm which we develop later gives a quick
alternative to finding the likelihood function. However, to give the reader
some feel as to the complexity associated with model aggregation from
seemingly innocent axioms, we shall give some of the details of getting the
likelihood function. First of all, it turns out that in order to have any hope
of obtaining a reasonable approximation to the likelihood function, we will
have to make some further simplifying assumptions. We shall refer to the
period prior to detection of the primary as Phase 0. Phase 1 is the period
from detection of the primary to S’, the first time of detection of a secondary
tumor. For those patients without a secondary tumor, Phase 1 is the time
of observation, S. Phase 2 is the time, if any, between S’ and S. Now for
the two simplifying axioms. T is defined to be the (unobservable) time
between the origination of the primary and the time when it is detected
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and removed (at time t = 0). T, and T, are the times until detection
and removal of the first and second of the subsequent tumors (times to be
counted from ¢ = 0). We shall let X be the total mass of all tumors other
than the primary at ¢t = 0.

Hypothesis 7. For patients who do not display a secondary tumor,
growth of the primary tumor, and of all tumors in Phase 1, is determinis-
tically exponential with the growth of all other tumors treated as a pure
birth process.

Hypothesis 8. For patients who display a secondary tumor, the growth
of the following tumors is treated as deterministic: in Phase 0, tumors Y5 (t)
and Y;(t); in Phase 1, tumor Y;(t) and all tumors which originated in Phase
0; in Phase 2, all tumors. The growth of remaining tumors in Phases 0 and
1 is treated as a pure birth process.

We now define

H(s;t, 2) = exp{-tg-e"“(e‘ —1)log[l+ (e7* —1)e™?)

A ats s

+as - log(1 + e*(e® — 1)]} (6.24)

and b
p(t; 2) = bze™ exp [—Ez(e“t - 1)] . (6.25)

Further, we shall define
v
w(y) = A [ / e Mgy — y] , (6.26)
0

where v(u) is determined from
v
u= / (@a+b+as—ae )" ds. (6.27)
()}

Then, we can establish the following propositions, and from these, the
likelihood function:

p(To > 7) = exp [-b /OT e"‘dtJ = exp [—%(e‘" - 1)] . (6.28)

For patients who do not display a secondary tumor, we have

P(Ty > S|X = z) = exp [—zv(S) + w(S)]. (6.29)

For patients who develop metastases, we have
P(Ty >S) = P(no secondary tumor in (0, S))
00
/ eOp(t: 1) H(v(s); t, 1)dt. (6.30)
0
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Similarly, for patients who do display a secondary tumor, we have

oo pt

P(Ty=58'T,>8)= / / ew(S—S')p(t; Dp(S"; e*)(\ + aea(t—u))
o Jo

xexp [-A(t—w) = Z(@¢W — 1) H(S - §); 5", &™)

xH(v(S ~ S')e"s’; u, e*(t=%))dudt

oo S’ , o
+/ / e®(5=59p(t; 1) exp [—/\t — —(e* - 1)] e~
o Jo «

xp(S' —u; 1)H(v(S — 8'); S’ — u,1)dud6.31)

Finding the likelihood function, even a quadrature approximation to it,
is more than difficult. Furthermore, current symbol manipulation programs
(e.g., Mathematica, Maple) do not have the capability of doing the work.
Accordingly, it must be done by hand. Approximately 1.5 person years were
required to obtain a quadrature approximation to the likelihood. Before
starting this activity, we had no idea of the rather practical difficulties
involved. However, the activity was not without reward.

We found estimates for the parameter values using a data set consisting
of 116 women who presented with primary breast cancer at the Curie-
Sklodowska Cancer Institute in Warsaw (time units in months, volume
units in cells): a = .17 x 1079, b = 23 x 1078, a = .31, and A = .0030.
Using these parameter values, we found excellent agreement between the
proportion free of metastasis versus time obtained from the data and that
obtained from the model, using the parameter values given above. When
we tried to fit the model to the data with the constraint that A = 0 (that
is, disregarding the systemic process as is generally done in oncology), the
attempt failed.

One thing one always expects from a model-based approach is that, once
the relevant parameters have been estimated, many things one had not
planned to look for can be found. For example, tumor doubling time is 2.2
months. The median time from primary origination to detection is 59.2
months and at this time the tumor consists of 9.3 x 107 cells. The prob-
ability of metastasis prior to detection of the primary is .069, and so on.
A model-based approach generally yields such serendipitous results, as a
nonparametric approach generally does not. It is worth mentioning that,
more frequently than one realizes, we need an analysis which is flexible, in
the event that at some future time we need to answer questions different
from those originally posed. The quadrature approximation of the likeli-
hood is relatively inflexible compared to the simulation-based approach we
shall develop shortly.
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Figure 6.3. Metastatic and systemic effects.

Insofar as the relative importance of the systemic and metastatic mecha-
nisms, in causing secondary tumors associated with breast cancer, it would
appear from Figure 6.3 that the systemic is the more important. This result
is surprising, but is consistent with what we have seen in our exploratory
analysis of another tumor system (melanoma). Interestingly, it is by no
means true that for all tumor systems the systemic term has such domi-
nance. For primary lung cancer, for example, the metastatic term appears
to be far more important.

It is not clear how to postulate, in any definitive fashion, a procedure for
testing the null hypothesis of the existence of a systemic mechanism in the
progression of cancer. We have already noted that when we suppress the
systemic hypothesis, we cannot obtain even a poor maximum likelihood fit
to the data. However, someone might argue that a different set of nonsys-
temic axioms should have been proposed. Obviously, we cannot state that
it is simply impossible to manage a good fit without the systemic hypothe-
sis. However, it is true that the nonsystemic axioms we have proposed are
a fair statement of traditional suppositions as to the growth and spread of
cancer.

As a practical matter, we had to use data that were oriented toward the
life of the patient rather than toward the life of a tumor system. This is due
to the fact that human in vivo cancer data is seldom collected with an idea
toward modeling tumor systems. For a number of reasons, including the
difficulty mentioned in obtaining the likelihood function, deep stochastic
modeling has not traditionally been employed by many investigators in on-
cology. Modeling frequently precedes the collection of the kinds of data of
greatest use in the estimation of the parameters of the model. Anyone who
has gone through a modeling exercise such as that covered in this section
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is very likely to treat such an exercise as a once in a lifetime experience.
It simply is too frustrating to have to go through all the flailing around to
come up with a quadrature approximation to the likelihood function. As
soon as a supposed likelihood function has been found, and a correspond-
ing parameter estimation algorithm constructed, the investigator begins a
lengthy “debugging” experience. The algorithm’s failure to work might be
due to any number of reasons (e.g., a poor approximation to the likelihood
function, a poor quadrature routine, a mistake in the code of the algorithm,
inappropriateness of the modeletc.). Typically, the debugging process is
time consuming and difficult. If one is to have any hope for coming up with
a successful model-based investigation, an alternative to the likelihood pro-
cedure for aggregation must be found.

t t t t
0 1 Time 2 3
Figure 6.4. Two possible paths from primary to secondary.

To decide how best to construct an algorithm for parameter estimation
which does not have the difficulties associated with the classical closed-
form approach, we should try to see just what causes the difficulty with the
classical method of aggregating from the microaxioms to the macro level,
where the data lives. A glance at Figure 6.4 reveals the problem with the
closed-form approach.

The axioms of tumor growth and spread are easy enough to implement
in the forward direction. Indeed, they follow the natural forward formula-
tion used since Poisson’s work of 1837 [17]. Essentially, we are overlaying
stochastic processes, one on top of the other, and interdependently to boot.
But when we go through the task of finding the likelihood, we are essen-
tially seeking all possible paths by which the observables could have been
generated. The secondary tumor, originating at time t3, could have been
thrown off from the primary at time t3, or it could have been thrown off
from a tumor that itself was thrown off from another tumor at time ¢,
which itself was thrown off from a tumor at time ¢; from the primary that
originated at time to. The number of possibilities is, of course, infinite.

In other words, the problem with the classical likelihood approach in the
present context is that it is a backward look from a database generated
in the forward direction. To scientists before the present generation of
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fast, cheap computers, the backward approach was, essentially, unavoidable
unless one avoided such problems (a popular way out of the dilemma).
However, we need not be so restricted.

Once we realize the difficulty when one uses a backward approach with
a concatenation of forwardly axiomitized mechanisms, the way out of our
difficulty is clear [1, 23]. We need to analyze the data using a forward
formulation. The most obvious way to carry this out is to pick a guess for
the underlying vector of parameters, put this guess in the micro-axiomitized
model and simulate many times of appearance of secondary tumors. Then,
we can compare the set of simulated quasidata with that of the actual data.

The greater the concordance, the better we will believe we have done in
our guess for the underlying parameters. If we can quantitize this measure
of concordance, then we will have a means for guiding us in our next guess.
One such way to carry this out would be to order the secondary occurrences
in the data set from smallest to largest and divide them into k& bins, each
with the same proportion of the data. Then, we could note the propor-
tions of quasidata points in each of the bins. If the proportions observed
for the quasidata, corresponding to parameter value 6, were denoted by
{m;(8) };?:1, then a Pearson goodness-of-fit statistic would be given by

x*(©) = Z il R ,,3,(;)1 L (6.32)

The minimization of x2(©) provides us with a means of estimating ©.

Typically, the sample size, n, of the data will be much less than N, the
size of the simulated quasidata. With mild regularity conditions, assuming
there is only one local maximum of the likelihood function, 89, as n — oo
(which function we of course do not know), then as N — oo, as n becomes
large and k increases in such a way that lim,_,o, k = 0o and lim,,_, k/n =
0, the minimum x? estimator for ©¢ will have an expected mean square
error which approaches the expected mean square error of the maximum
likelihood estimator. This is, obviously, quite a bonus. Essentially, we will
be able to forfeit the possibility of knowing the likelihood function and
still obtain an estimator with asymptotic efficiency equal to that of the
maximum likelihood estimator. The price to be paid is the acquisition of a
computer swift enough and cheap enough to carry out a very great number,
N, of simulations, say 10,000. This ability to use the computer to get us
out of the “backward trap” is a potent but, as yet seldom used, bonus of
the computer age. Currently, the author is using SIMEST on a 2 gigaherz
personal computer, amply adequate for the task, which now costs around
$1000.

First, we observe how the forward approach enables us to eliminate those
hypotheses which were, essentially a practical necessity if a likelihood func-
tion was to be obtained. Our new axioms are simply:
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Hypothesis 1. For any patient, each tumor originates from a single cell
and grows at exponential rate a.

Hypothesis 2. The probability that the primary tumor will be detected
and removed in [t, t+ At) is given by bYy(t)At+0(At). The probability that
a tumor of size Y (t) will be detected in [, t-+At) is given by bY (t)At+o(At).

Hypothesis 3. The probability of a metastasis in [t,t + A) is aAtx
(total tumor mass present).

Hypothesis 4. The probability of a systemic occurrence of a tumor
in [t,t + At) equals AAt + o(At), independent of the prior history of the
patient.

In order to simulate, for a given value of (a,a,b,)), a quasidata set of
secondary tumors, we must first define:

tp = time of detection of primary tumor;

tym = time of origin of first metastasis;

ts = time of origin of first systemic tumor;

tr = time of origin of first recurrent tumor;

tq = time from tg to detection of first recurrent tumor;

tpr = time from tp to detection of first recurrent tumor.

Now, generating a random number u from the uniform distribution on
the unit interval, if F() is the appropriate cumulative distribution function
for a time, t, we set t = F~!(u). Then, assuming that the tumor volume
at time ¢ is

v(t) = ce®*, where c is the volume of one cell, (6.33)
we have

Fu(t) =1—exp (—%eat"") . (6.34)

Similarly, we have

tp
Fp(tp) = 1-—exp (— bce‘"dr)
0
= 1l—exp (—%e"‘“’) , (6.35)
Fs=1—¢e s, (6.36)
and
be ..
Fy(ty) =1 —exp - 4], (6.37)
Using the actual times of discovery of secondary tumors ¢; < 2 <,...,<

tn, we generate k bins. In actual tumor situations, because of recording
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protocols, we may not be able to put the same number of secondary tumors
in each bin. Let us suppose that the observed proportions are given by
(P1,p2,...,Pr). We shall generate N recurrences 8; < 83 < ... < 8y. The
observed proportions in each of the bins will be denoted 71,2, ..., mx. The
goodness of fit corresponding to (a, A, a, b) will be given by

k

20 3 — (mj(a, A, a,b) — p.’i)2
X (a1 Ny aq b) -_ Z 7rJ (a’ A, a, b) . (6.38)

j=1

As a practical matter, we may replace m;(a, A, a, b) by p;, since with (a, A, a, b)
far away from truth, 7;(o, A, a,b) may well be zero. Then the following al-
gorithm generates the times of detection of quasisecondary tumors for the
particular parameter value (a, A, g, b).

Secondary Tumor Simulation (o, A, a, b)

Generate tp
j=0
1=0
Repeat until tp(j) > tp
ji=j+1
Generate tp(j)
Generate tqp( )
tam(d) «— tam(4) + tm(4)
If tam(4) < tp, then tap(j) «— oo
Repeat until tg > 10tp
i=1+1
Generate tgs(%)
tas(3) « tas(d) +ts(2)
8 «— min [tam(F),tas())]
Return s
End Repeat

This algorithm does still have some simplifying assumptions. For exam-
ple, we assume that metastases of metastases will probably not be detected
before the metastases themselves. We assume that the primary will be
detected before a metastasis, and so on. Note, however, that the algo-
rithm uses much less restrictive simplifying assumptions than those that
led to the terms of the closed-form likelihood such as (6.31). Even more
importantly, the Secondary Tumor Simulation algorithm can be discerned
in a few minutes, whereas a likelihood argument is frequently the work of
months.

Another advantage of the forward simulation approach is its ease of mod-
ification. Those who are familiar with “backward” approaches based on the
likelihood or the moment generating function are only too familiar with the
experience of a slight modification causing the investigator to go back to the
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start and begin anew. This is again a consequence of the tangles required
to be examined if a backward approach is used. However, a modification of
the axioms generally causes slight inconvenience to the forward simulator.

For example, we might add:

Hypothesis 5. A fraction 7 of the patients ceases to be at systemic
risk at the time of removal of the primary tumor if no secondary tumors
exist at that time. A fraction 1~ v of the patients remains at systemic risk
throughout their lives.

Clearly, adding Hypothesis 5 will cause considerable work if we insist on
using the classical aggregation approach of maximum likelihood. However,
in the forward simulation method we simply add the following lines to the
Secondary Tumor Simulation code:

Generate u from U(0,1)
If u > v, then proceed as in the Secondary Tumor Simulation
code
If u < +, then proceed as in the Secondary Tumor Simulation
code except replace the step “Repeat until ts > 10tp” with the
step “Repeat until ¢5(i) > tp.”

In the discussion of metastasis and systemic occurrence of secondary tu-
mors, we have used a model supported by data to try to gain some insight
into a part of the complexities of the progression of cancer in a patient.
Perhaps this sort of approach should be termed speculative data analy-
sis. In the current example, we were guided by a nonparametric intensity
function estimate [2), which was surprisingly nonincreasing, to conjecture
a model, which enabled us to test systemic origin against metastatic origin
on something like a level playing field. The fit without the systemic term
was so bad that anything like a comparison of goodness-of-fit statistics was
unnecessary.

It is interesting to note that the implementation of SIMEST is gener-
ally faster on the computer than working through the estimation with the
closed-form likelihood. In the four-parameter oncological example we have
considered here, the running time of SIMEST was 10% of the likelihood
approach. As a very practical matter, then, the simulation-based approach
would appear to majorize that of the closed-form likelihood method in vir-
tually all particulars. The running time for SIMEST can begin to become
a problem as the dimensionality of the response variable increases past one.
Up to this point, we have been working with the situation where the data
consists of failure times. In the systemic versus metastatic oncogenesis
example, we managed to estimate four parameters based on this kind of
one-dimensional data. As a practical matter, for tumor data, the estima-
tion of five or six parameters for failure time data are the most one can hope
for. Indeed, in the oncogenesis example, we begin to observe the beginnings
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of singularity for four parameters, due to a near trade-off between the pa-
rameters a and b. Clearly, it is to our advantage to be able to increase the
dimensionality of our observables. For example, with cancer data, it would
be to our advantage to use not only the time from primary diagnosis and
removal to secondary discovery and removal, but also the tumor volumes of
the primary and the secondary. Such information enables one to postulate
more individual growth rates for each patient. Thus, it is now appropriate
to address the question of dealing with multivariate response data.

Gaussian Template Criterion. In many cases, it will be possible to
employ a procedure using a criterion function. Such a procedure has proved
quite successful in another context (see [22]). First, we transform the data
{X:}{, by a linear transformation such that for the transformed data set
{U;}2, the mean vector becomes zero and the covariance matrix becomes
I:

U=AX +b. (6.39)

Then, for the current best guess for ©, we simulate a quasidata set of size N.
Next, we apply the same transformation to the quasidata set {¥;(6)}\,,
yielding {Z,-(G)};-Ll. Assuming that both the actual data set and the
simulated data set come from the same density, the likelihood ratio A(O)
should increase as © gets closer to the value of 8, say 8y, which gave rise
to the actual data, where

[Tie expl—3(uf; + ... +uj)]
HN exp[-3(2% +... + zﬁi)]

i=1

A(®) = (6.40)

Assoon as we have a criterion function, we are able to develop an algorithm
for estimating ©¢. The closer 6 is to 8¢, the smaller will A(6) tend to be.

This procedure above that uses a single Gaussian template will work well
in many cases where the data has one distinguishable center and a falling off
away from that center which is not too “taily.” However, there will be cases
where we cannot quite get away with such a simple approach. For example,
it is possible that a data set may have several distinguishable modes and/or
exhibit very heavy tails. In such a case, we may be well advised to try a
more local approach. Suppose that we pick one of the n data points at
random—say z;—and find the m nearest-neighbors amongst the data. We
then treat this m nearest-neighbor cloud as if it came from a Gaussian
distribution centered at the sample mean of the cloud and with covariance
matrix estimated from the cloud. We transform these m + 1 points to zero
mean and identity covariance matrix, via

U= AX +by. (6.41)

Now, from our simulated set of N points, we find the N(m + 1)/n simu-
lated points nearest to the mean of the m + 1 actual data points. This will
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give us an expression like

+1
[T expl—3(ud; + ... + ud))]

HN(m+1)/n

AL(©) = .
i=1 exp[—3(2& +...+ 22|

(6.42)

If we repeat this operation for each of the n data points, we will have a
set of local likelihood ratios {Aj, A2,...,A,}. Then one natural measure
of concordance of the simulated data with the actual data would be

A(B) = " log(Ai(6)). (6.43)
=1

We note that this procedure is not equivalent to one based on density
estimation, because the nearest-neighbor ellipsoids are not disjoint. Never-
theless, we have a level playing field for each of the guesses for © and the
resulting simulated data sets.

A Simple Counting Criterion. Fast computing notwithstanding, with
n in the 1000 range and N around 10,000, the template procedure can
become prohibitively time consuming. Accordingly, we may opt for a subset
counting procedure:

For data size n, pick a smaller value, say nn.

Pick a random subset of the data points of size nn.

Pick a nearest neighbor outreach parameter m, typically
0.02n.

For each of the nn data points, X, find the Euclidean dis-
tance to the mth nearest neighbor, say d; .

For an assumed value of the vector parameter ©, generate
N simulated observations.

For each of the data points in the random subset of the
data, find the number of simulated observations within d;mn,
say Njm.

Then the criterion function becomes

2(ay _ N~ (M +1)/n — Njm/N)?
X (8)—21 (m+1)/n )

Experience indicates that whatever nn size subset of the data points is
selected should be retained throughout the changes of 6. Otherwise, prac-
tical instability may obscure the path to the minimum value of the criterion
function.

A SIMDAT SIMEST Stopping Rule. In Section 4.2 we considered a
situation where we compared the results from resampled data points with
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those from model-based simulations. SIMDAT is not a simple resampling
so much as it is a stochastic interpolator. We can take the original data
and use SIMDAT to generate a SIMDAT pseudodata set of NV values.

Then, for a particular guess of 8, we can compute a SIMEST pseudodata
set of N values. For any region of the space of the vector observable,
the number of SIMEST-generated points should be approximately equal
to the number of SIMDAT-generated points. For example, let us suppose
that we pick nn of the n original data points and find the radius d; ,, of
the hypersphere which includes m of the data points for, say, point Xj;.
Let Njsp be the number of SIMDAT-generated points falling inside the
hypersphere and N; gg be the number of SIMEST-generated points falling
inside the hypersphere. Consider the empirical goodness-of-fit statistic for
the SIMDAT cloud about point X;:

2 _ ((m+1)/n—N;sp/N)?
Xj,SD(e) = (m + 1)/n .
For the SIMEST cloud, we have

((m+1)/n — Njsg/N)?
(m+1)/n '

X;s6(8) =

If the model is correct and if our estimate for © is correct, then xi se(©)
should be, on the average, distributed similarly to ng, se(8). Accordingly,
we can construct a sign test. To do so, let

W; = +1if X?,sp(e) > x5 55(8)
= -1if X?’SD(e) < X?,SE(O)

So, if we let an
1 W
Z = Z N
\/nn
we might decide to terminate our search for estimating © when the absolute
value of Z falls below 3 or 4.

Problems

6.1. Generate a sample of size 100 of firings at a bull’s-eye of radius 5
centimeters where the distribution of the shots is circular normal with mean
the center of the bullseye and deviation 1 meter.

(a) Generate and display a bootstrapped sample of size 1000.Do you find
any simulated points inside the bull’s-eye?

(b) Then using m= 10, generate a SIMDAT pseudosample of size 1000. Do
you find any simulated points inside the bull’s-eye?
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6.2. A multivariate distribution with heavy tales may be generated as
follows. First, we generate a X2 variable v with 2 degrees of freedom.
Then we generate p independent univariate normal variates from a normal
distribution with mean 0 and variance 1. Then X’ = (X, Xs,..., X,) will
have the multivariate normal distribution AN,(0,I). Moreover,

X
v/2

top(p ) = +u

will have a shifted t distribution with 2 degrees of freedom. Generate a
sample of size 500 from the mixture distribution

[ =9N3(0,1) + .1t23(0 ).

Can you tell the difference between the sample from the mixture distribu-
tion above and a sample of size 500 from N3(0,I)?

6.3. Let us consider von Bortkiewicz’s suicide data from eight German
states over a period of 14 years, as shown in Table 6.1

Table 6.1. Actual and Expected Numbers of Suicides per Year
Suicides 0 1 2 3 4 5 6 7 8 9 >10 Sum
Freq. 9 19 17 20 15 11 8 2 3 5 3 112
E(freq) 35 121 21 243 21 146 85 42 19 .7 2 112

Using the Poisson model for k, the number of suicides generated in a year,

_o8*
K

find a SIMEST estimator for 6, using as the criterion function

P(k|6) = e

10
X, — E;)?
Y E2E <k,

i=0
(We recall here that the category “10” here is > 10.)

6.4. Generally speaking, before using an algorithm for parameter estima-
tion on a set of data, it is best to use it on a set of data simulated from
the proposed model. Returning to the problem in Section 6.4.1, generate
a set of times of discovery of secondary tumor (time measured in months
past discovery and removal of primary) of 400 patients with @ = .17 x 109,
b=.23x10"8 o = .31, and A = .0030. Using SIMEST, see if you can
recover the true parameter values from various starting values.

6.5. Using the parameter values given in Problem 6.4, generate a set of
times of discovery of first observed secondary tumor and second observed
secondary tumor. Using SIMEST, see whether you can recover the true
parameter values from various starting values.
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Chapter 7

Exploratory Data
Analysis

7.1 Introduction

The concept of exploratory data analysis (EDA) is generally dismissive of
models. The concept of EDA was proposed by the late John W. Tukey
(1] of Princeton University and Bell Labs (best known in the popular press
for having coined the term “software,” to scientists as possibly the most
important statistician ever). Tukey wrote an entire book on the subject
(Ezploratory Data Analysis, 1977), and an entire semester can easily be
spent studying that book. Nevertheless, we can find out a great deal of
EDA and demonstrate much of its utility in rather a short amount of time.

It is clear to the reader by this time that I personally am of the opin-
ion that we learn by developing a chain of ever improving models. By
“improving,” I mean, in general, getting closer to the truth. EDAers, how-
ever, are rather postmodern in that they question whether the notion of
“truth” is meaningful or relevant. As one of them, Professor William Eddy
of Carnegie Mellon University, put it:

The data analytic method denies the existence of “truth”;
the only knowledge is empirical.

The only purpose of models is to make formal implications.
For far too long statisticians have concentrated on fitting mod-
els to data. And, for reasons I don’t fully understand, they
have “tested” the parameters of these models. The relevance
of models comes only from their implications and the interpre-

0 Pmpirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.
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tation thereof. If we can make predictions without models, I
think we should.

To forecast purely on the basis of empiricism, without understanding the
driving forces of the system under investigation is hardly desirable. Of
course, we have to do this often enough. If we see that a stock is 100 on
Monday and then goes to 110 by the next Monday and 120 the Monday
after that and 130 the Monday after that, we may well be tempted to
forecast that on the Monday after the 130 reading the stock will be around
140. But few of us would like to “bet the farm on the forecast.” Suppose,
however, that we found out that the company had developed a drug for
curing AIDS but had not formally announced the discovery, and insiders
were discreetly buying blocks of the stock, that might make us feel better
about forecasting the 140 price.

Eddy [1] does not just take it as a practical necessity that sometimes
we must predict without understanding the underlying process; he proudly
announces that dispensing with modeling is a good thing. This kind of
radical empiricism has resonance with the “Prince of Nominalists” William
of Ockham. Ockham did not deny the existence of reality. He simply
thought that we, as a practical matter, are unwise to fail to act until we
know that reality rather precisely.

In order to understand the highly anti-modeling paradigm of Exploratory
Data Analysis, we naturally need to model EDA itself. Here are some
personal observations which capture much of the essence of EDA:

—

. The eye expects adjacent pixels to be likely parts of a common whole.
2. The eye expects continuity (not quite the same as (1) ).

3. As points move far apart, the human processor needs training to
decide when points are no longer to be considered part of the common
whole. Because of the ubiquity of situations where the Central Limit
Theorem, in one form or another, applies, a natural benchmark is the
normal distribution.

4. Symmetry reduces the complexity of data.
5. Symmetry essentially demands unimodality.

6. The only function that can be identified by the human eye is the
straight line,

7. A point remains a point in any dimension.



SMOOTHING 177

7.2 Smoothing

During the early days of the U.S. space program, photographs were taken of
the surface of the moon. These were not very useful without some process-
ing because there was a great deal of noise imposed on the signal. However,
let us use the first principle given above

1. The eye expects adjacent pixels to be likely parts of a common whole.

In Figure 7.1, we show five adjacent pixels. If we believe that each of these
has more or less the same light intensity, then we might simply replace the
observed light intensity of the center point by the average of the intensities
of all five points. We know if we have five measurements of the same thing,
each contaminated by noise, then the average gives us a better measure of
the uncontaminated intensity than any single observation.

xy*h

(x—h,y)e ° ® (x +h,y)
(x, y)

o
(x, y=h)
Figure 7.1. Five adjacent pixels.

So one way to improve our estimate of the reflected light intensity at the
point z, y would be to use

I(z,y) + I(z+ hy) + I(z,y+ h) + I(z - h,y) + I(z,y — h)
. :

But this means of proceeding might be a bit extreme, for we do not usually
suppose that the adjacent points all have the same intensity. Accordingly,
we might rather use

Al(z,y) + I(z + h,y) + I(z,y + h) + I(z — h,y) + I(z,y — h)
5 )

I(z,y) —~ (7.1)

I(z,y) « (7.2)

Obviously, we could use this digital filter over and over until we felt we had
about the right resolution. If we use the filter too many times, then every
pixel will have roughly the same intensity. We will have a smooth picture,
for we will have reduced the variability almost to zero. We will be close to
the position of the stopped clock which is, of course, precisely correct twice
in a 24-hour day.

However, if we do not smooth enough, we will have a photograph that
is so jumpy we have difficulty making out any patterns on the moon’s sur-
face. The trick is knowing just when to stop. Human beings can achieve
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this rather well by simply looking at the resulting picture after each smooth.
Something of this sort was done by JPL (Jet Propulsion Laboratory) scien-
tists with the Mariner probe pictures of the moon. The filter was used by
the founder of exploratory data analysis, John Tukey. However, the name
of the filter was given by Tukey to Julius von Hann, a nineteenth-century
Austrian weather scientist, who used something like Hanning in obtaining
land coordinate indexed temperature profiles. With Hanning, we put half
the weight on the intensity of (z,y) and then distribute the rest of the
weight equally on the surrounding points.

| Table 7.1. Production.

1 133
2 155
3 199
4 193
5 201
6 235
7 185
8 160
9 161
10 182
11 149
12 110
13 72
14 101
15 60
16 42
17 15
18 44
19 60
20 86
21 50
22 40
23 34
24 40
25 33
26 67
27 73
28 57
29 85
30 90
I(h) — 2I(z)+ I(z +4h) + I(z h). (7.3)

Consider a small company that makes van modifications transforming
vans into campers. In Table 7.1 we show production figures on 30 consecu-
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tive days. The Hanning smoother originally was developed for dealing with
information indexed by two spatial dimensions. However, it can be used
very nicely to smooth data indexed to a one-dimensional variable.

We graph this information in Figure 7.2. The points we see are real
production figures. There are no errors in them. Nevertheless, most people
would naturally smooth them. Perhaps the figures are real, but the human
observer wants them to be smooth, not rough. One could look upon such a
tendency to want smoothness as being some sort of natural Platonic notion
hardwired into the human brain. We can rationalize this tendency by saying
that the real world has smooth productions contaminated by shocks such
as sudden cancellations of orders, sickness of workers, etc. But the fact is
that most of us would hate to make plans based on such a jumpy plot.

The fact is that the world in which we live does tend to move rather
smoothly in time. If there were so much turbulence that this was not the
case, it would be hard to imagine how any sort of civilized society could
ever have developed. So we ought not despise our apparently instinctive
desire to see smooth curves rather than jumpy ones.

250 -

200 - . -

150 - ° T

UNITS

100 - .

DATE

Figure 7.2. Daily production data.

So, how shall we smooth the data in Table 7.1 (and Figure 7.2)? There
seemsto be no natural unique answer. There are obviously many con-
tenders. One way would be simply to connect all the data points. We
show this graph in Figure 7.3.
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Figure 7.3. Piecewise linear graph.

We might try some sort of freehand smoothing such as that shown in
Figure 7.4.

250 -

UNITS

o 10 20 30
DATE
Figure 7.4. Freehand smooth.

In Figure 7.5 we observe the results of smoothing by Hanning one time. We
note that the smooth appears to be rather local. We have not taken such
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a global smoothing approach as we did in Figure 7.4.
250 ~
200 +

150 |

H1

100 |-

50 -

Figure 7.5. Hanning smooth.

Let us hann the hanning smooth to obtain the H2 graph in Figure 7.6.

250 -

200 -

150 -

100 -

50 -

Figure 7.6. Double Hanning smooth.
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Table 7.2. Various orders of Hannings.
Day | Production | H HH | H5  HI10
1 133 [ 133 1331133 133
2 155 161 1601 157 155
3 199 187 183 178 171
4 193 197 197 192 183
5 201 208 207 199 190
6 235 214 207 198 190
7 185 © 191 191 189 185
8 160 167 173 178 176
9 161 166 167 167 165
10 182 169 163 155 151
11 149 148 144 138 135
12 110 110 114 118 118
13 72 89 93 97 100
14 101 8 81 80 83
15 60 66 64 64 69
16 42 40 44 51 59
17 15 29 35 45 53
18 44 41 43 48 51
19 60 63 59 54 52
20 86 71 65 57 52
21 50 57 56 54 51
22 40 4 44 47 49
23 34 37 38 43 47
24 40 37 38 43 48
25 33 43 46 48 51
26 67 60 58 56 57
27 73 68 66 64 64
28 57 68 71 T2 72
29 85 79 | 79 81 81
30 9 |9 |9 9 9
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Figure 7.7. Fifteen-fold Hanning smooth.

For many purposes, the single Hanning or the double Hanning seems to give
a reasonable smooth one that is more local than the “freechand smooth”
onein Figure 7.4. One problem with Hanning is that “it does not know
when to stop.” For any function other than a straight line, each successive
application of Hanning will change the picture. Note that the 15-fold Han-
ning smooth has eliminated the local mode (peak) on day 20. There are
other problems with hanning. One glitch will spread throughout the data
set. In Table 7.3, we note that a string of ones to which has been added
one 1,000 reading will, after a few hannings spread the glitch throughout
the data.

Table 7.3. Contaminating Hanning Smooth.

Data H HH HHH
1 1 1 1
1 1 1 16.61
1 1 63.44 94.66
1 250.75 250.75 235.14

1,000 50050 375.62 313.18
1 250.75 250.75 235.14
1 1 63.44 94.66
1 1 1 16.61

A Hanning filter has advantages. It was used to provide smoothed pixels
for flyby photographs of the moon in the 1960s. However, it would be nice
if we had a filter that automatically functions without the necessity of a
human observer to fine tune it. Consider Figure 7.8 which is one of many
hundreds of shots taken of the moon by the Clementine Project in 1994.
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Figure 7.8. Clementine shot of moon crater.

For processing such material, we need something which will not destroy
the edges of the crater by oversmoothing. The median smooth of Tukey [1]
has such a desired effect. It replaces the averaging process in (7.2) by the
median process

I(:L',y) « Med (I(:z:,y),I(:z-{- h»y),I(fan‘i‘ h),I(:lI— h, y) +I(I)y— h))

(7.4)
In other words, we replace the raw light intensity at (z,y). by the median
intensity of the five points in the vicinity of (z,y). This smoother “knows
when to stop,” and it does not smooth out crater edges that need to be
seen. We have here an example of a truly revolutionary result that requires
practically no mathematics but is powerful nonetheless. It is also significant
to note that it took decades from the time such a filter was needed until it
was discovered.

Let us apply the median smooth (in one dimension, called the “3 smooth”)
to the production data in Table 7.1. We note that there is no change in
the table after we “smooth by 3R” the second time. Indeed, only one value
changes from the first to the second smoothing by 3’s. And this is the big
advantage of the median smooth. Unlike the Hanning smooth, it will not,
if applied ad infinitum, simply smooth the data to destruction. It auto-
matically stops, usually after no more than three iterations. We show these
results in Table 7.4, where changed values are indicated in boldface. The
expression “3R” means that the median smooth has been applied until no
further changes were observed.

We note that there is a tendency for the 3R (median) smooth to give
artificially broad peaks and valleys. This is generally a very minor problem.
For many applications, the 3R smooth is all we need.
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Table 7.4. 3R Smooth.

30

Day Production 3 33=3R |
1 133 133 133
2 155 155 155
3 199 193 193
4 193 199 199
5 201 201 201
6 235 201 201
7 185 185 185
8 160 161 161
9 161 161 161
10 182 161 161
11 149 149 149
12 110 110 110
13 72 101 101
14 101 72 72
15 60 60 60
16 42 42 42
17 15 42 42
18 4 44 4
19 60 60 60
20 86 60 60
21 50 50 50
22 40 40 40
23 34 40 40
24 40 34 40
25 33 40 40
26 67 67 67
27 73 67 67 l
28 57 73 73
29 85 85 85
30 90 90 90 |
250
200 |
gxso 5
5
100 |
50 |
% 10 mrxz'o '

Figure 7.9. The 3R (median) smooth.
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If we wish to make things look a little better aesthetically, we can take
the results of the 3R smooth and hann them twice as we show in Table
7.5 and Figure 7.10. The advantage of the 3RHH smooth is that it is
fully automated. We need not have an observer in the loop. This is a
big advantage for most applications. The very big deal of this chapter
on smoothing is the median smooth. It simply was done looked at until
the 1960s. This is a really big discovery which requires very little in the
way of mathematical sophistication. It is amazing how frequently such big
discoveries are really simple mathematically. Frequently, genius consists in
thinking of things to try and then seeing whether they work.

Table 7.5. 3RHH Smooth.
Day Production 3 33=3R 3RH 3RHH

1 133 133 133 133 133
2 155 1556 155 159 159
3 199 193 193 185 182
4 193 199 199 198 196
5 201 201 201 201 199
6 235 201 201 197 195
7 185 185 185 183 183
8 160 161 161 167 170
9 161 161 161 161 162
10 182 161 161 158 1585
11 149 149 149 142 140
12 110 110 110 118 118
13 72 101 101 96 97

14 101 72 72 76 7

15 60 60 60 59 60

16 42 42 42 47 49

17 15 42 42 43 45

18 44 44 4 48 49

19 60 60 60 56 55
20 86 60 60 58 55
21 50 50 50 50 50
22 40 40 40 43 44
23 34 40 40 39 39
24 40 34 34 37 40

25 33 33 40 45 47
26 67 67 67 60 59

27 73 67 67 69 69

28 57 73 73 79 79

29 85 85 85 88 86

30 90 90 90 90 90
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Figure 7.10. The 3RHH smooth.

7.3 The Stem and Leaf Plot

In 1965, a smalltown mayor takes a random sample of yearly incomes from
30 householders. The results are (in dollars) 5600, 8700, 9200, 9900, 10,100,
11,200,13,100,16,100,19,300, 23,900, 25,100, 25,800, 28,100, 31,000, 31,300,
32,400, 35,800, 37,600, 40,100, 42,800, 47,600, 49,300, 53,600, 55,600, 58,700,
63,900, 72,500, 81,600, 86,400,156,400. The mayor wants to get some notion
of what the data might be saying about income distributions in his town.
Of course simply looking at the data as a ordered text file above gives her
some information. For example, the average income is 39,423. However,
this one number contains only part of the important information in the 30
numbers. Next, consider the stem and leaf plot, demonstrated in Table 7.6.

Table 7.6. Stem and Leaf Plot.

0 5899
10 01369
20 3558
30 11257
40 0279
50 358
60 3

70 2

8 16

90

100

110

120

130

140

150 6
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We note that the left hand column gives a marker graded in tens of thou-
sands. The rows give the appropriate number of whole thousands of dollars
of income. The table here is a kind of hybrid between a table and a graph.
It looks very much like a histogram turned sideways. Such a table/graph
is called a stem and leaf plot. It retains almost all the information of the
original salary list but displays it in such a way that we immediately can
make rough inferences from it. For example, the the highest income in the
survey looks very different from the rest. The smallest income in the list
does not look atypical of the rest of the incomes in the sense that there
does not be a break in continuity of incomes between that lowest income
and the rest.

7.4 The Five Figure Summary

Now, we know that there are 30 incomes in our list. The sample median
income will be obtained by looking at the average of the fifteenth and
sixteenth incomes.

1
M = 3[31,300 + 32, 400] = 31,850. (7.5)

To obtain a notion of the spread of the income data, we look at the lower
quartile and the upper quartile.One-fourth of 30 is 7.5. So, the lower quartile
is found by taking the average of the seventh and eighth observations. We
will call this value the lower hinge:

LH = —;-[13, 100 + 16, 100] = 14, 600. (7.6)
Similarly, for the upper hinge, we have
1
UH = -2-[53, 600 + 55, 600] = 54, 600. (7.7)

This gives us, then, for the five figure summary of the data:
Table 7.7. Five Figure Summary.

M15 31,850
HS 31,850 54,600
1 5600 156,400

Here, we show the smallest and largest observations, the upper and lower
quartiles (hinges) and the sample median.

7.5 Tukey’s Box Plot

So far, things look rather intuitive. But we now wish to come up with a
scheme for deciding whether some of the observations appear to be rather
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untypical of the others. So we now come up with some spread measures
which do not look, at first glance, to be so intuitive. The first is that of a
step, which is defined to be 1.5 times the difference between the upper and
lower quartiles (hinges). Here,

H =1.5 x (54,600 — 31,850) = 34,125. (7.8)

The notion here is that any observation which is more than one step be-
yond the lower quartile or the upper quartile begins to be suspicious in
consideration of whether it is typical of the rest of the observations. Any
observation that is more than two steps beyond either of the quartiles is
probably not typical of the rest of the observations. One step beyond the
upper quartile is termed the upper inner fence. Two steps beyond the up-
per quartile (upper hinge) is termed the upper outer fence. Here the upper
outer fence is seen to be

UOF =2 x 34,125 + 54,600 = 122, 850. (7.9)

The largest income of 156,400 is seen to be even greater than the UOF,
so it is probably not representative of the other data points. Perhaps,
this individual came into a windfall of profit due to some sale of property.
Perhaps he/she comes from an unusually rich part of the town. The data
alone cannot tell us what is going on. It does tell us that the income here
is unusually high in comparison to the incomes of the group.

Now for the income data at hand, the schematic plot also called a box
plot is given in Figure 7.11.

0 50000 100000 150000 200000

Figure 7.11. Box plot of income data.

We note that the median is clearly shown with a vertical line toward the
middle of the “box.” The upper and lower hinges (quartiles) are shown as
vertical lines forming the limits of the “box.” There is an asterisk showing
any value outside the upper or lower outer fences. The first value inside
the lower inner fence is indicated as the lower boundary of the “whisker”
line. The first value inside the upper inner fence is indicated as the upper
boundary of the “whisker” line. Other than the individual making 156,400,
no person sampled has an income outside the inner fences. The incomes
seem to be somewhat homogeneous except for that one very high income.
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The box plot is a very handy device for getting a preliminary look at a
data set. It does, in a fairly well structured way, things that have histori-
cally been done in a less orderly way. Let us consider an example of Tukey
[1]). During the winter of 1893—94, W.J. Rayleigh was examining deter-
minations of the densities of nitrogen obtained from a variety of sources.
We show these densities in Table 7.8. Now, the “OTHER” refers to any
source other than air. Rayleigh noted that regardless of the source of ni-
trogen (other than air), all the densities appeared to be roughly the same.
He noted this in a somewhat nonspecific search pattern going through his
data. But we can perceive Rayleigh’s discovery easily by making a box plot
of his “OTHER” data as we show in Figure 7.12.

Table 7.8. Measurements of N Densities.

AIR OTHER
2.31024 2.30143
2.31030 2.29816
2.31028 2.30182
2.31017 2.29890
2.30986 2.29940
2.31010 2.29849
2.31001 2.29889

2.29889

| l I L |
2.298 2.299 2.300 2.301 2.302

OTHER

Figure 7.12. Nitrogen densities from sources other than AIR.

We note that the density of nitrogen as measured from the AIR sources are
higher than those from the OTHER sources. To see how much this is so,
let us take the smallest of AIR source observations, 2.30986, and add it to
the OTHER data points, making a box plot of the pooled values (as shown
in Figure 7.13).
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2.295 2.300 2.305 2.310
OTHER

Figure 7.13. Nitrogen densities from OTHER sources plus one
AIR source observation.

We note that the AIR source observation is well outside the upper outer
fence. We should strongly question whether the AIR source nitrogen is
really the same as the OTHER source nitrogen. Indeed, it turns out that
the AIR sources contained traces of a then unknown element, namely argon.
This empirically obtained observation of Lord Rayleigh contributed toward
his receiving a Nobel Prize in Physics in 1906.

Problems

7.1. By means of a sketch supported by an argument, show a hypothetical
data plot for which a Hanning smooth carried out until the smooth looks
statisfactory will be disastrous , but a 3R smooth will work well.

7.2. By means of a sketch and an argument show a hypothetical data
plot for which a 3R smooth is unsatisfactory but a Hanning smooth is
satisfactory.

7.3. Construct a stem-and-leaf plot for county populations in the state
of Texas or the state of California or the state of New York. Carry out
appropriate transformations to symmetrize the plot (if this should be nec-
essary). Construct five figure summaries. Find the inner and outer fences
and construct a schematic plot.

7.4. Given the following table, infer the functional relationship between
X and Y.

X Y

40 0.048
1.10 0.363
191 1.094

422 5.343
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Chapter 8

Noise Killing Chaos

Anything could be true. The so-called laws of nature were
nonsense. The law of gravity was nonsense. “If I wished,”
O’Brien had said, “I could float off this floor like a soap bubble.”
Winston worked it out. “If he thinks he floats off the floor, and
I simultaneously think I see him do it, then the thing happens.”

George Orwell, 1984

8.1 Introduction

Many regard noise and chaos to be the same thing. This impression is
very wrong. Noise is a naturally occurring phenomenon. Willy-nilly, the
television may go dark. The salmon harvest may explode. And, we can go
backward in time to see what caused the disruption. The stock market may
plummet. By looking backward in time, we can generally find the causes
of the fall.

In chaos theory, it is not randomness that is the villain. It is some
underlying part of the mechanism from which we cannot escape. Hence,
weather forecasts are essentially impossible as are forecasting changes in
the stock market.

In the ensuing argument. we will attempt to show that if chaos existed
in the real world, it would be destroyed by naturally occurring noise.

Postmodernism is one of the latest intellectual schools to be inflicted on
the West since the French Revolution. Postmodernism does more than cast
doubt on objective reality; it flatly denies it. The perception of a particular
reality is deemed to be highly subjective and hugely nonstationary, even for

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.
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the same observer. Those schooled in the implicit Aristotelian modality of
reason and logic (and that still includes most scientists) can easily follow
the postmodernist train of thought to the point where they note that the
assumptions of the postmodernists really bring one to such a level of chaos
that conversation itself becomes impractical and useless. 30 years ago one
could find few people presenting papers on such subjects as postmodern
science; this has become more frequent lately. Postmodernism, as the latest
of the pre-Socratic assaults on reason based on facts, was gently smiled at
by scientists simply as a bizarre attempt of their humanistic colleagues to
appear to be doing something useful. In the last few years, however, the
leakage of postmodern modalities of thinking into the sciences has increased
significantly. When one looks in library offerings under such topics as chaos
theory or fuzzy logic, one frequently finds “postmodern” as a correlative
listing. For some of us Aristotelians, this tendency is alarming. But many
mathematicians are pleased to find that their abstract ideas are appreciated
by literati and the popular press.

Every generation or so, there crops up a notion in mainstream science
which is every bit as antilogical and antirealistic as postmodernism itself.
These notions either do not admit of scientific validation or, for some reason,
are somehow exempted from it. Once these new ideas have been imprima-
turized by the scientific establishment and developed into a systematology,
large amounts of funding are provided by government agencies, and persons
practicing such arts are handsomely rewarded by honors and promotion un-
til lack of utility causes the systematology to be superseded or subsumed
by some other new idea.

It is intriguing (and should be noncomforting to stochasticians) that such
new ideas tend to have as a common tendency the promise that practition-
ers of the new art will be able to dispense with such primitive notions as
probability. Stochastics, after all, was simply a patch, an empirical artifice,
to get around certain bumps in the scientific road—which jumps have now
been smoothed level by the new art.

Frequently, not only will the new art not give any hope for solving a
scientific problem, but also it will actually give comfort to an economist,
say, or a meteorologist, or the members of some area of science which has
not lived up to hopes, over the fact that their area simply does not lend
itself to the solution of many of its most fundamental problems. It does not
merely say that these problems are hard, but it argues that they cannot
be solved now or ever. Those who have labored for decades on these hard
problems may now safely down shovels, knowing that they gave their best
to do what could not be done.

We have seen scientists take problems that were supposed to be insoluble
and solve them. The “hopeless” hairtrigger of nuclear war was obviated
by one of the founders of Monte Carlo techniques, Herman Kahn. Kahn
essentially created the escalation ladder, giving the great powers a new
grammar of discourse that enabled staged response to crises.
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High-speed computing broke out of “natural” bounds of feasibility by the
invention first of the transistor and then the microchip. Weather forecasting
is still admittedly primitive, but apparently we are now in a position to
carry out such tasks as forecasting severe as opposed to mild hurricane
seasons.

To introduce the subject of chaos, let us first consider the Mandelbrot
model,

Zn+1 = 2121 +¢, (81)

where z is a complex variable and ¢ is a complex constant. Let us start
with
z; = ¢ = —0.339799 + 0.358623i.
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Figure 8.1. Mendelbrot set.

The iterative structure of this set is given in Figure 8.1. All the points
exist in thin, curved manifolds. Most of the complex plane is empty. And,
to make things more interesting, we do not trace smoothly within each
manifold, but rather jump from manifold, to manifold. It is as though we
started to drive to the opera hall in Houston, but suddenly found ourselves
in downtown Vladivostok. Of course, it could be interesting for somebody
who fantasizes about zipping from one part of the galaxy to another.
Now, the Mandelbrot model may itself be questioned as a bit bizarre
when describing any natural phenomenon. Were it restricted to the reals,
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then it would be, for a growth model, something that we would be unlikely
to experience, because it is explosive. But let that pass. Since we are in the
realm of Gedankenspiel anyway, let us see what happens when we introduce
noise.

Consider the model

Znyl = zg +c+ 0.2un+1 + 0.2‘Un+11 (82)

where the u and v are independent N(0,1) variables. We have been able
to penetrate throughout the former empty space, and now we do not make
quantum leaps from Houston to Vladivostok. Here, in the case of a formal
mathematical structure, we simply note in passing how the introduction of
noise can remove apparent pathology. Noise can and does act as a powerful
smoother in many situations based on aggregation (Figure 8.2).

0.5 -

—015 =

_1.0 ] 1 [
-1.0 -0.5 0.0 0.5 1.0

IMAG
Figure 8.2. Mendelbrot plus noise.

8.2 The Discrete Logistic Model

Let us turn now to an example of a model of a real-world phenomenon,
namely the growth of a population with finite food supply. One of the
earliest was the 1844 logistic model of Verhulst:

%9
Et— =X(a—X), (83)



THE DISCRETE LOGISTIC MODEL 197

where o essentially represents the limit, in population units, of the food
supply. A solution to this model was obtained by Verhulst and is simply

aX(0) exp(at)
a+ X(0)[exp(at) —1]°
Naturally, this model is only an approximation to the real growth of a

population, but the mathematical solution is perfectly regular and without

pathology.
Lorenz (2] has examined a discrete version of the logistic model:

Xp=Xp 1(a-Xpn_1)=—-X2_, +aXn_1. (8.5)

Using X = a/2, he considers the time average of the modeled population
size:

Xt = (8.4)

= lim NZX (8.6)

N—o00

For a values below 1+ /6, the graph of X behaves quite predictably. Above
this value, great instability appears, as we show in Figure 8.3.

2.5
2.4
2.3
2.2
2.1

2.0

3.0 32 34 a 3.6 3.8 4.0

Figure 8.3. Discrete logistic model.
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We note in Figures 8.4 and 8.5 how this fractal structure is maintained
at any level of microscopic examination we might choose.

t=0.0
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Figure 8.4. Discrete logistic model at small scale.
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Figure 8.5. Discrete logistic model at very small scale.

Let us look at Figure 8.3 in light of real-world ecosystems. Do we know
of systems where we increase the food supply slightly and the supported
population crashes, and where we increase it again and it soars? What
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should be our point of view concerning a model that produces results greatly
at variance with the real world? And we recall that actually we have a
perfectly good continuous 150 year old solution to the logistic equation.
The use of the discrete logistic model is really natural only in the sense that
we wish to come up with a model that can be put on a digital computer.
In the case of chaos theory it is frequently the practice of enthusiasts to
question not the model but the reality. So it is argued that, in fact, it is
the discrete model which is the more natural. Let us walk for a time in
that country.

For the kinds of systems the logistic model was supposed to describe, we
could axiomatize by a birth-and-death process as follows:

P(birth in [t,t + At) = B(y— X)XAt
P(death in [t,t + At)) = nXAt. (8.7)

3.0 32 34 a 36 38 4.0

Figure 8.6. Discrete logistic model plus noise.

Perhaps Verhulst would have agreed that what he had in mind to do was
to aggregate from such microaxioms but had not the computational ability
to do so. Equation (8.5) was the best he could do. We have the computing
power to deal directly with the birth-and-death model. However, we can
make essentially the same point by adding a noise component to the logistic
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model. We do so as follows:

Xn = Xn_l(a - Xn——-l) + un—le—l
= Xa-1(la+ pn-1] = Xn-1). (8.8)

where g, is a random variable from the uniform distribution on (—7, 7).
As a convenience, we add a bounceback effect for values of the population
less than zero. Namely, if the model drops the population to —e¢, we record it
as +¢. In Figure 8.6 we note that the stochastic model produces no chaos
(the slight fuzziness is due to the fact that we have averaged only 5000
successive X, values). Nor is there fractal structure at the microscopic
level, as we show in Figure 8.7 (using 70,000 successive X,, values).
Clearly, the noisy version of (8.5) is closer to the real world than the
purely deterministic model. The food supply changes; the reproductive
rate changes; the population is subject to constant change. However, the
change itself induces stability into the system. The extreme sensitivity to a
in Figure 8.3 is referred to as the butterfly effect. The notion is that if (8.5)
described the weather of the United States, then one butterfly flying across
a backyard could dramatically change the climate of the nation. Such an
effect, patently absurd, is a failure of the model (8.5), not of the real world.

t=.03
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Figure 8.7. Discrete logistic model plus noise at small scale.
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8.3 A Chaotic Convection Model

In 1963, after rounding off initial conditions, Lorenz [1] discovered that the
following model was extremely sensitive to the initial value of (z, y, 2).

dx

7 = Wy-z)

dy

il —-z2+ 28z —y (8.9)
e _ -8

a - V73"

In Figure 8.8 we show a plot of the system for 2000 steps using At = .01
and 7 =0.0.

20 40+
10
304
yo z
20.
-10
20 104
Time trace of 2000 steps from
starting point (0.1,0.1,20.1)
40 Deterministic case (+=0)
30
F 4
20
10

Figure 8.8. Lorenz weather model.

We observe the nonrepeating spiral which characterizes this chaotic model.
The point to be made here is that, depending on where one starts the pro-
cess, the position in the remote future will be very different. Lorenz uses
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this model to explain the poor results one has in predicting the weather.
Many have conjectured that such a model corresponds to a kind of uncer-
tainty principle operating in fields ranging from meteorology to economics.
Thus, it is opined that in such fields, although a deterministic model may
accurately describe the system, there is no possibility of making meaningful
long range forecasts, because the smallest change in the initial conditions
dramatically changes the end result. The notion of such an uncertainty
principle has brought comfort to such people as weather scientists and
econometricians who are renowned for their inability to make useful fore-
casts. What better excuse for poor performance than a mathematical basis
for its inevitability?

The philosophical implications of (8.9) are truly significant. Using (8.9),
we know precisely what the value of (z,y, 2) will be at any future time if
we know precisely what the initial values of these variables are (an evident
impossibility). We also know that the slightest change in these initial val-
ues will dramatically alter the result in the remote future. Furthermore,
(8.9) essentially leads us to a dead end. If we believe this model, then it
cannot be improved, for if at some time a better model for forecasting were
available so that we really could know what (z, 3, z) would be at a future
time, then, since the chaos spirals are nonrepeating, we would be able to
use our knowledge of the future to obtain a precise value of the present.
Since infinite precision is not even a measurement possibility, we arrive at
a practical absurdity.

If one accepts the ubiquity of chaos in the real world (experience notwith-
standing), then one is essentially driven back to pre-Socratic modalities of
thought, where experiments were not carried out, since it was thought that
they would not give reproducible results. Experience teaches us that, with
few exceptions, the models we use to describe reality are only rough approx-
imations. Whenever a model is thought to describe a process completely,
we tend to discover, in retrospect, that factors were missing, that pertur-
bations and shocks entered the picture which had not been included in the
model. A common means of trying to account for such phenomena is to
assume that random shocks of varying amplitudes are constantly being ap-
plied to the system. Let us, accordingly, consider a discretized noisy version
of (8.9):

In = (1 + Bzn-1)Tn-1+ At lo(yn—l - -Tn—l)
Yn 1+ l‘y,n—l)yn—l + At(—mn—lyn-l + 28z, — yn—l)(s-lo)

8
Zn 1+ l‘z,n—l)zn—l + At (-’L'n—lyn—l - §zn-l> y
where the p ’s are independently drawn from a uniform distribution on the
interval from (-7, 7).
We consider in Figure 8.9 the final point at the 2500th step of each of 1000
random walks using the two initial points (0.1, 0.1, 20.1) and (—13.839,
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—6.66, 40.289), with 7 = 0.0001. These two starting points are selected
since, in the deterministic case, the end results are dramatically different.
In Figure 8.10, we show quantile-quantile plots for the two cases. We note
that, just as we would expect in a model of the real world, the importance
of the initial conditions diminishes with time, until, as we see from Figures
8.9 and 8.10, the distribution of end results is essentially independent of
the initial conditions.

20 ( 5 10 20 20 -10 0 10 2
2 b 0 y

Figure 8.9. 10,000th step for each of 1000 time traces.
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Figure 8.10. Quantile—quantile plots after 10,000 steps.

8.4 Conclusions

It is intriguing that so many scientists have been drawn to a theory which
promises such a chaotic world that, if it were the real one, one would not
even be able to have a conversation on the merits of the notion. Never-
theless, chaos theory should cause us to rethink aggregation to a supposed
mean trace deterministic model. In many cases we will not get in trou-
ble if we go down this route. For example, for most of the conditions one
would likely put in a logistic model, one would lie in the smooth part of the
curve (i.e., before a = 1++/6). However, as we saw in looking at the logistic
model for a > 1++/86, if we consider a realistic model of a population, where
the model must constantly be subject to noise, since that is the way the
real world operates, then if we aggregate by simulating from the stochastic
model as we did in Figure 8.6, we still obtain smooth, sensible results, even
after the naive discrete logistic model has failed. But, as we have seen us-
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ing two stochastic versions of examples from the work of Lorenz, there are
times when the closed form is itself unreliable, even though the simulation-
based aggregate, proceeding as it does from the microaxioms, is not. As
rapid computing enables us to abandon more and more the closed form, we
will undoubtedly find that simulation and stochastic modeling expand our
ability to perceive the world as it truly is.

In 1993, Lorenz ([3], pp. 181—-184) seriously addressed the question as
to whether the flap of a butterfly’s wings in Brazil could cause a tornado
in Texas. He reckoned that isolation of the Northern Hemisphere from the
Southern in its wind currents might make it impossible, but within the
same hemisphere, it was a possibility. In 1997, ([6], p. 360), remarking
on his view that the weather is a chaotic phenomenon, Ian Stewart wrote,
“Forecasts over a few days, maybe a week—that’s fine. A month? Not a
hope!”

If one listens closely to these statements, it is possible to hear the throb-
bing of the shamans’ tom-toms celebrating the Festival of Unreason. Al-
ready, long-term models for the weather have been dramatically improved
by noting the importance of driving currents in the jet stream. We now
have the capability of forecasting whether winters will be warmer or colder
than the norm in, say, New York. And high-frequency hurricane seasons
are now being predicted rather well. It is large macroeffects—sunspots,
El Nifio, currents in the jet stream that drive the weather—not Brazilian
butterflies. It is the aggregates which drive the weather. The tiny effects
do not matter. In nature, smoothers abound, including noise itself.

Models for the forecasting of the economy have improved as well. Happily,
rather than throwing up their hands at the futility of developing good mod-
els for real-world phenomena, a number of scientists are constantly drawing
upon the scientific method for learning and making forecasts better. One of
the bizarre traits of human beings is the tendency of some to believe models
as stand-alones, unstressed by data. In Chapter 14 it is noted how this can
cause disaster, as in the case of the LTCM investment fund. However, some
people refuse to look at models as having consequences for decision mak-
ing. We noted in Chapter 3 how this has characterized public health policy
in the American AIDS epidemic. It is amazing how the same people can
often take both positions simultaneously. For example, there are scientists
who have worked hard to develop decision-free models for AIDS (this really
takes some doing) and also work on trying to show how biological systems
should be unstable (evidence to the contrary notwithstanding) as a result
of the regions of instability in the discrete logistic model dealt with earlier
in this chapter.

As time progresses, it is becoming ever more clear that naturally occur-
ring realizations of mathematical chaos theory are difficult to find. The
response of chaosticians is increasingly to include as “chaos” situations in
which standard models for describing phenomena are being proved unsat-
isfactory or at least incomplete (see, e.g., Peters [4]). Thus, “chaos” has
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been broadened to include “nonrobust” and “unstable.” That some models
are simply wrong and that others claim a completeness that is mistaken I
do not question. The point being made in this chapter is that just because
one can write down a chaotic model, it need not appear in nature, and that
when it does, we will probably view its effects only through the mediating
and smoothing action of noise. Moreover, a philosophical orientation that
we should give up on forecasting the weather or the economy because some-
body has postulated, without validation, a chaotic model, is an unfortunate
handshaking between the New Age and pre-Socratic times.

A more complete analysis of chaos and noise is given in Thompson et alia
(7] and Thompson and Tapia [8].

Problems

8.1. Let us consider the following birth process amongst single cell organ-
isms. X is the population size, t the time, F' the limiting population.

Prob(birth in [t,t + At)) =.001X(F — X)At.

Starting with an initial population of 10 at time 0, simulate a number of
population tracks using a time increment of .01 and going to a time limit
of 20. Take the time averages of 500 such tracks. Do you see evidence of
chaotic behavior as you change F'?

8.2. Again, consider the more general model
Prob(birth in [t,t + At)) = aX(F — X)AL.

Here a is positive, the initial population is 10. Again, you should satisfy
yourself that, although there is considerable variation over time tracks, the
average time track does not exhibit chaotic behavior.

8.3. Many of the older differential equation models of real world phenom-
ena suffered from the necessity of not easily being able to incorporate the
reality of random shocks. For example, let us consider the well known
predator—prey model of Volterra ([5, 9]):

dzr
il az — bry.
dy
-d_t = —cy+czy.

A simple Simpson’s rule discretization works rather well:

z(t) = z(t—A)+[az(t — A) —bx(t— A)y(t — A)]A
y(t) y(t — A) + [—ay(t — A) + dz(t)y(t — A)IA.
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Here, the z are the fish and the y are the sharks. For (0) = 10, y(0) = 1),
=3,b=2,c=2,d =15, A =.01, we show the resulting plot for the
first 13 units of time in Figure 8.11.

15

10

Figure 8.11. Volterra’s predator—prey model.

Such regularity is, of course, not supported by the evidence. The system is
certainly stable, but not so regular. Show that if you change the discretiza-
tion slightly to:

z(t) = z(t — A)(1+10zA) + [az(t — A) — bz(t — A)y(t — A)]A
y(t) = y(t-A)+[-cy(t - A) +dz(t)y(t - A))A,

where z is a N(0, 1) random variable, then the stability of the system is
maintained, but the path is much more realistically random.

8.4. One realization of the Henon attractor [5] is given, in discrete formu-
lation, by

Tnt1 = yn+1-14z2
Yn+t1 = 0.3zn.

For the Henon attractor, as with that of Lorenz, slight differences in the
initial conditions produce great differences in the trajectories. Examine
this fact and then observe the effect of adding a slight amount of noise to
the system.

8.5. Chaos is frequently the concern of those who are worried about a data
set somehow “on the edge” of stability. Consider, for example, a sample of
size n from the Gaussian N'(0,1). Then, we know that if we compute the
sample mean X and variance s2, then

X

t=s/

S
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has a t distribution with » = n — 1 degrees of freedom. For n = 2, this is
the Cauchy distribution which has neither expectation nor variance but is
symmetrical about zero. For n = oo, this is M(0,1). Let us consider what
happens when we sample from t(v) adding on observations one at a time
and computing the sequential sample mean:

(N-1DT,(N-1)+t,n
N

(a) Give plots of T;(N) for N going from 1 to 5000.

(b) What happens if you throw away the 10% smallest observations and
the 10% largest before computing T1(N) (show this for N = 10, 50, 100
and 5000). This “trimming” is generally an easy way for minimizing the
effects of long-tailed distributions.

(c¢) The Cauchy does not occur very often in nature (although it is easy to
design a hardwired version: Just divide a V(0, 1) signal by another NV (0,1)
signal; but that would not be a good design). Much more realistically, we
carry out (a) but for v = 3.

T,(N)=
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Chapter 9

A Primer in Bayesian
Data Analysis

9.1 Introduction

Within the statistics community, there has for many years a group(we shall
call the Religious Bayesians) who hold that all analysis should be carried
out using Bayes’ Theorem. That is not the position of this author. Nev-
ertheless, there are many situations where Bayesian analysis is very useful.
In this chapter, we give some examples.

Most of the work in this chapter based on one specific data set of Gehan
and Freireich [4]. The convergence properties of the estimation procedures
considered in this chapter, however, apply rather broadly. Those interested
in convergence proofs are referred to Casella and George [1], Cowles and
Carlin [2], or Tanner [6].

Let us consider a process in which failures occur according to an expo-
nential distribution, that is,

F(t) =1 —exp(—6t). (9.1)

Thus the probability no failure takes place on or before t is given by
exp(—6t). Then, based on an independent sample of size n, the likelihood
is given by

Le) =] F'(t;) = 6" [ exp(-6t;) =6"exp [ -0 "t;].  (9:2)
j=1 j=1 Jj=1

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.
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Then, the maximum likelihood estimator of 6 can readily obtained be by
taking the logarithm of the likelihood, differentiating with respect to 8, and
setting the derivative equal to zero:

n
logL(8) = nlog — Gth (9.3)
j=1

8log L(0) n o«
—_— == ; 9.4
5 g (9.4)

This yields
- n

6= , (9.5)

Z;';l tj

where the {t;} represent the n failure times.

Next, let us consider the case where one of the subjects did not yield an
observed failure because the study ended at censoring time 7. Then the
likelihood becomes

n—1
L) = 61! H exp(—6t;) Prob (subject n does not fail by T')
j=1
n—1
= g! H exp(—6t;) exp(—0T). (9.6)
j=1

Then the log likelihood becomes

log L(8) = (n — 1) log(9) — 6 Z t; — 6T, (9.7)
yielding .
o n —
6= —" . 9.8)
TYl4T (

9.2 The EM Algorithm

We note that our classical maximum likelihood estimator does not include
any guess as to the when the nth subject might have failed had T = oo. Yet,
the times that n — 1 individuals did fail does provide us with information
relevant to guessing the nth failure time. Let us assume that our prior
feelings as to the true value of 6 are very vague: Essentially, we will take
any value of 6 from 0 to oo to be equally likely. Then, again, our log
likelihood is given by

n—1
log L(8) =nlogh — 6 ) _t; — 6ty (9.9)
j=1
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Now, the times of the n —1 failures are a matter of fact. The modal value
of § and the time of the unobserved failure time ¢}, are matters of infer-
ence. The EM algorithm is an iterative procedure whereby the hypothesized
failure time t;, can be conjectured and the log likelihood reformulated for
another attempt to obtain a new estimate for the modal value 6. Using our
naive maximum likelihood estimator for 8, we have that the expected value
for t;, is given by

f;o th exp(—élt,';)dt;‘l

"l = ~ 9.10
n,l exp ( _ 91T) ( )
- T+o.
1
Substituting this value in the log likelihood, we have
-1
log L(6) =nlogf —0 ) t; —0(T+ ) (9.11
(®) Z_j j 7 )
This gives us
N n
0, = — (9.12)
Sisiti+ (T+1/6)
We then obtain a new expected value for the n’th failure time via
1
the =T+ —; (9.13)
02

and so on.

In fact, for the exponential failure case, we can handle readily the more
complex situation where n of the subjects fail at times {t;}7_, and k are
censored at times {T;}7,. The m expectation estimates for {¢;}/~, are
given at the kth step by {T; + 1 /ék_ 1}, and the log likelihood to be maxi-
mized is given by

nlog6 — o{z tJ+ZT+é—)] (9.14)

j=1 k—1

Next, let us apply the EM in the analysis of the times of remission of
leukemia patients using a new drug and those using an older modality of
treatment. The data we use are from a clinical trial designed by Gehan
and Freireich [4]. The database has been used by Cox and Oakes [3] as an
example of the EM algorithm. Here we use it to examine the EM algorithm,
data augmentation, chained data augmentation, and the Gibbs sampler.
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Table 9.1. Leukemia Remission Times

Ranked Survival | New Therapy | Old Therapy
1 6* 1
2 6 1
3 6 2
4 6 2
5 7 3
6 9* 4
7 10* 4
8 10 5
9 11* 5
10 13 8
11 16 8
12 17* 8
13 19* 8
14 20* 11
15 22 11
16 23 12
17 25%* 12
18 32* 15
19 32* 17
20 34* 22
21 35* 23

In Table 9.1, an asterisk indicates that a patient’s status was known to
be remission until the (right censored time), at which time the status of
the patient became unavailable. There is no pairing of patients in the
two groups. We have simply ordered each of the two sets of 21 patients
according to time of remission. Using (9.14) recursively to obtain 6 for the
new treatment, we have the results shown in Table 9.2.

The average survival time using the new therapy is 1/.025, or 40 months.
For the old therapy, average survival was only 8.67 months. So, the new
therapy seems relatively promising. We note that in our use of the EM
algorithm, we have not allowed our experience with the old therapy to
influence our analysis of survival times of the new therapy.

We have chosen to explicate the EM algorithm by the use of a relatively
simple example. It should be noted that, like the other algorithms we shall
explore in this chapter, it performs effectively under rather general condi-
tions. Clearly, the EM algorithm is, in fact, a data augmentation approach.
So is the Gibbs sampler. But the name data augmentation algorithm is gen-
erally reserved for the batch Bayesian augmentation approach covered in
the next section.
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Table 9.2. Iterations of EM Algorithm. |

Iteration | 0 |
1 0.082569
2 0.041639
3 0.032448
4 0.028814
5 0.027080
6 0.026180
7 0.025693
8 0.025422
9 0.025270

10 0.025184
11 0.025135
12 0.025107
13 0.025091
14 0.025082
15 0.025077
16 0.025074
17 0.025072
18 0.025071
19 0.025070
20 0.025070

9.3 The Data Augmentation Algorithm

The EM procedure, although formally Bayesian, is, when one uses a diffuse
prior, as we have done, an algorithm with which non-Bayesians generally
feel comfortable. Many Bayesians, however, would be more comfortable
with a procedure that gives the user, not simply the mode of a posterior
distribution, but an estimate of the posterior distribution itself.

For example, let us suppose that the density function of a random variable
X is given by f(z;6), or, in Bayesian notation, f(z|@). The joint density
of a sample of z’s of size n is then given by

[1 #(zil6).

=1

Generally speaking, we will be interested in making inferences about the
parameter 6 in the light of a random sample {:z:_,-};-‘=1. Before we take
any observations, we may well have some feelings about the parameter 6.
Seldom will these feelings be so strong as to be of the sort, “We know that
0 is precisely equal to 150.3741.” If we were really so certain, why bother
to collect data concerning the random variable X? It is much more likely
that our feelings would be of the sort: “We are quite confident that 6 is
greater than 100 but less than 250.” Expressing our prior feelings in terms
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of a prior distribution on the parameter space is not easy, for most people.
Perhaps the major difficulty with a Bayesian approach is not on the basis
of logic but on that of practicality. We may well have ideas about 6, absent
any data. But it is not so easy to express these as a probability density
function.

One way out of the difficulty is to require that the prior density function
be such that the functional form will be unchanged by the addition of data.
That is, the posterior distribution will have the same functional form as
that of the prior density.

Let us return to the problem of exponentially distributed failure times.
Here, we recall that

f(t1,ta,...,tn]) = 6™ exp (—Hth) . (9.15)
i=1

Suppose that we decide to take as the prior density of 6, absent any data,
a gamma density

e—Aol\aga—l
Then
E®) = o/A (9.17)
Var(f) = a/)2 (9.18)

It is not unreasonable to suppose that we have some notion as to our prior
feelings as to the mean and variance of 6. These feelings enable ready
guesses as to appropriate values of A and a. Furthermore, we can then
write down the joint density of # and the failure times as

p(g;tl,tz,...,tn) = p(a)f(tl,t2,,tﬂ|9)
n+a—1)a — .
v — gnta-1) e);?([a)e(/\ + Y- t5)] ' (9.19)

If we then obtain the marginal density of t;,ts,...,tn, h(t1,t2,...,tn),
for example, we can obtain the posterior density of 8, via

_ P(g; ty,12,... atn)

Olt1,ta,... te) = . 9.20
p( | 1 2 ) h(tl,tz,.--,tn) ( )
Here we have
A% i i+m—1
btz otn) = gy |0 exp[—0(A+Zt,)]d0
_ I(m +n) Ao (9.21)

L(a) A+ Xt
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Then, readily, we have

p(B|t1,ta, .. tn) = %0"+°-lexp [—a(,\ + Z tj)] . (9.22)

But this density is also of the gamma form with

A =2+t

and
a*=a+n,
that is,
e—O" (,\a)a‘oa‘—-l
Blt1,ta,...,t,) = , 23
p( Il 2 ﬂ) F(a*) (9 )
where
a* n+ao
E(0t1,ta,...,tp) = — = e 9.2
( l 1, 2y b n) A* A+2t7 ( 4)
and .
Var(8t1,ta, ..., tn) = —— nte (9.25)

TN A+ )
In the case where some of the failure times were missing as a result of
censoring, we could use the EM algorithm to find an improved estimate of
the mode of p(6t1,t2,...,ts) . We shall, however, consider a strategy for
estimating the posterior density itself, through obtaining either a knowl-
edge of the function p(0|t;,t,...,tn) or a pointwise (in ) evaluator of
p(Blt1,t2, ... tn).

Let us suppose we observe the failure times t,,ts,...,t,—,; but are miss-
ing {tj}}=n—m+1, since these individuals were lost from the study at times
{Tj}}=n—m+1- The data augmentation algorithm proceeds as described be-
low:

Data Augmentation Algorithm

1. Sample 8; from p(6;|ty, t2,...,tn)-

2. Generate t,_m4i,. .., tn from 6 exp(—6tn_m+i) (with the restriction
that tn—m+i > Th-m+i)-

3. Repeat Step 2N times.
4. Compute T =1/N Ef;l Z;.'___l tji.
5 Let \*=A+T.

6. Let a* = a + n*.
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7. Then the new iterate for the posterior distribution for 6 is given by

e— 0" (/\*)a' g -1
T(a*)

p(Ota,ta,. .., tp) =

8. Return to Step 1, repeating the cycle M times or until the estimates
A* and o* stabilize.

For the first pass through the cycle, we use for p(|t1,t2,...,ts), simply
the prior density for 6, p(6). Typically, N is quite large, say on the order
of 1000. Again, typically, we will go through the repeat cycle until the
estimates of the posterior distribution for 8 stabilize.

We note that, unlike the EM algorithm, there is no maximization step in
data augmentation, rather a series of expectations. It is interesting to note
that under rather general conditions, data augmentation does stabilize to
a “fixed point” (in function space) under expectation iterations.

Let us consider using the data augmentation algorithm on the remission
data for the new treatment in Table 9.1. First of all, we need to ask
whether there is a reasonable way to obtain the parameters for the gamma
prior distribution of 6. In clinical trials, there is generally the assumption
that the newer treatment must be assumed to be no better than the old
treatment. So, in this case, we might consider obtaining estimates of the
two parameters by looking at the data from the older (control) therapy.
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Figure 9.1. Resampled values of 6.
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Let us use a simple bootstrap approach to achieve this objective. Sam-
pling with replacement 5000 times from the 21 control remission times (we
have used the Resampling Stats package [5], but the algorithm can easily
be programmed in a few lines of Fortran or C code). Now, for each of the
runs, we have computed an estimate for 6§, which is simply the reciprocal
of the average of the remission times. A histogram of these remission times
is given in Figure 9.1.

For the control group, the bootstrap average of 6 is .11877 and the vari-
ance is .00039018. Then, from (9.17) and (9.18), we have as estimates for A
and a, 304.40 and 36.15, respectively. Returning to the data from the new
drug, let us use N = 1000.! After 400 simulations, we find that

400 12
T=1/400) " t; = 53975 (9.26)

i=1 j=1

a* = 36.15+21=57.15
A* = 3044+ 539.75 = 844.15. (9.27)

Computing the posterior mean and variance of 8, we have

*

E@|T) = ?\— = 0677;
Var(6|T) = ;2 = 0000802. (9.28)

Essentially, we can approximate the posterior distribution of # as being
Gaussian with mean .0677 and variance .0000802.

It seems that waiting for such a large number (1000) of simulations to
update our estimates for A* and a* may be somewhat inefficient. Above
we have used N = 1000 and M = 400.

Now, we need not use a large value for N in the generation of plausible
tn-m+j- In fact, by using a large value for N, we may be expending a
large amount of computing time generating t,_m+1,tn—m+2,-.-tn values
for 6 values generated from posterior distribution estimates which are far
from the mark. Let us go through the data augmentation algorithm with
N =50 and M = 10,000. 2 This requires approximately the same number
of computations as the first run (N = 1000 and M = 400) run. We now
have the estimates for the posterior mean and variance of 6 being .06783
and .0000848, respectively. Clearly, the use of a smaller value for N has not
changed our estimate for the parameters for the posterior distribution of 6.
In Figure 9.2, we show a histogram of the 6 values generated for the 10,000

1The author wishes to thank Patrick King and Mary Calizzi for the computations in
the first data augmentation run.

2The author wishes to thank Otto Schwalb for the computations and graphs in the
balance of this chapter.
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runs. On this, we superimpose two Gaussian distributions with variance
0000802, one centered at the mean of the generated 8’s and the other at
the median.

Oata Augmentation

—— normaldensity contered at mean
......... rmorme dunaity centered sl rmedian

40

30

20
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0.04 0.08 3 0.08 0.10 0.12

| tistogram of al 10,000 values o g . N=B0.
Figure 9.2. Histogram of 6.

It could be argued that we might, in fact, advocate recomputing our
guess as to the true posterior distribution after each generation of a set
of missing values. This is the chained data augmentation algorithm. We
note that, now, when we go from Step 1 to Step 8, we “transit” from one
value of 6 to another. We also observe the one step memory of the process.
Knowing p(6;t1,t2,...,ts) is sufficient to generate tn_pm+1,...,tn, which,
in turn, is sufficient to generate p(6;+1lt1,t2,.-.,%5;). Thus, the chained
data augmentation algorithm is Markovian. And, clearly, the more general
data augmentation algorithm is Markovian as well. In the present example,
using N =1 (i.e., the chained data augmentation algorithm) took less than
5% of the running time of the data augmentation algorithm with N = 1000
and M = 400 (with essentially the same results).

At the level of intuition, it would appear that the only reason to use an NV
greater than 1 would be to guarantee some sort of stability in the estimates.
It turns out that this is not necessary, and this fact leads us immediately to
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the dominant simulation-based paradigm by which orthodox Bayesians deal
with missing values, namely, the Gibbs Sampler, which subject we address
in the following section.

9.4 The Gibbs Sampler

Next, let us consider the situation where we decide to model failure times
according to the normal distribution

n

2 h2\™? 1.4 2
f(tl,tz,---,tnllhh)‘—‘(ﬁ) exp [-h7Y ;- |, (929)
i=1

where both 2 and h? = 1/02 are unknown. We start with a data set consist-
ing of failure times t,,%2,...,t,—m but are missing ¢, _m+1,tn—m+2,- -+ tn.
For the most recent estimates for 4 and h? we shall generate surrogates for
the m missing values from a Gaussian distribution, with these estimates
for 4 and h? imposing the restriction that we shall, in the generation of
tn_m+j, 8ay, discard a value less than the censoring time Tr,_m4 ;.

The natural conjugate prior here is

plp, B2 M, V' 0, V)
= Kexp [—%hzn’(u - M’)’] vh? exp[—%th'u'](h2)"'/2”1, (9.30)
where K is a constant of integration. (We shall, in the following, use K

generically, i.e., one symbol, K will be used for all constants of integration.)
Let

1 n
i=1
v = n-—1

1 n
V = ;E 1:(ti—M)z.
1=

Then the posterior distribution is given by

p(ﬂ, h2| M", V”, nll, l/”)
= K exp —%hzn"(p, - M")2] VhZexp [—%(hz)V"u"] (h2)¥"/271, (9.31)

where

n = n'+n
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M" = 7—2177(n'M' +nM)
Vo= V+(n-1)+1
V" = ;}';[(V'V’ +0' M%) + WV +nM? —n"M"?).

Immediately, then, we have the possibility of using the chained data aug-
mentation algorithm via

1. Generate (u,h?) from p(u, K2 M",V" 0" ").

2. Generate {tn—m+;}7%; from

2 h2 1/2 h2
f(tn-majlp, %) = (57?) exp [_?(tn-—m‘ﬂ' - u)z] )

where tn_myj > T.
3. Return to Step 1.

Such a strategy is rather difficult to implement, since it requires the
generation of two-dimensional random variables (u,h2). And we can well
imagine how bad things can get if the number of parameters is, say, four or
more. We have seen in Chapters 1 and 2 that multivariate random num-
ber generation can be unwieldy. There is an easy way out of the trap, as it
turns out, for according to the Gibbs sampler paradigm, we simply generate
from the one-dimensional distributions of the parameters sequentially, con-
ditional upon the last generation of the other parameters and the missing
value data. Let us see how this is done in the case of the current situation.

The posterior density for h? (conditional on the data including the sur-
rogates for the missing failure times) is given by

", n
pra (R2|V", ") = K exp (— yV2” ) g /21, (9.32)

We may then obtain the conditional density for u given h2 and the data by

p(u, | M", V", n", V")
p(h2|V", V”)

Kexp [—%th"(u - M")z] .(9.33)

Puipa(ulh?, M", V", 0" V') =

Similarly, the posterior density for p (conditional on the data including the
surrogates for the missing failure times) is given by

M2 —(v'"+1)/2
————)"—] . (9.39)

p“(mM//, n" V" V") - K [V" + (b= 7
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We may then find the conditional distribution for h? given u and the data
by

ph’lu(hzl’l” M”, V”, nll’ V”)
p(“v h2| M”, V”, nl/’ l/”)
= p,‘(;lllM”, n//’ V", ll”) (9'35)

= K(h?) T -3 (u=M"PP+V V)R]

In summary, the missing failure times are generated from a normal distri-
bution with the current estimates of mean = p and variance = 1/h2. p,
conditional on the generation both of data including missing values for fail-
ures and h?, is generated from a normal distribution with mean M” and
variance 1/ (h?n”). h2, conditional on the data and pseudodata and p, is a
x2 variable with v + 1 degrees of freedom divided by n”’(u— M")2+V"V".
Clearly, such one-dimension-at-a-time samplings are extremely easy.

Let us suppose we observe the failure times ¢;,1s,. . .,t,_, but are miss-
ing {t;}7——m+1, since these individuals were lost from the study at times
{7} —pn—m+1- The Gibbs sampler algorithm proceeds thusly: At the start,
we sﬂall set M" =M, V"=V n"=n/, V" =V".

1. Generate u from p,(u|M”,n", V", V").
2. Generate h? from ppa(h?[V"V").

3. Generate {tn—m+;}j~, from

9 h2 1/2 h2 2
f(tn—m+jlp, h%) = (ﬂ) exp [“'2_(tn-—m+j — K :l .
where tp_m4j > T.
4. Return to Step 1.
By simply recording all the  and h? (hence 02), recorded in sequence of
generation, over, say, 10,000 iterations, we can obtain a histogram picture

of the joint posterior density for (u,h?).
We can do more. Suppose that

M' = Ave{M"}
V" = Ave{V"}.

Then we have

p(p, K21, ta, . - . tn) = p(p, K2 M", V" 0" V). (9.36)
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Figure 9.3. Posterior draws of (u,h?)

For the Gehan—Freireich data, we have n = 21. Using the control group
to obtain the initial parameters of the prior, we have M’ = 8.667, via a
bootstrap sample of size 5000. Looking at the reciprocals of the variances
of 5000 bootstrap samples of size n’ = 21 from the control group, we have
E(h) = .028085 and Var(h) = .00012236. This gives

1
‘/l — — 06
= By - 36
E(h)* _, (.028085)°

=2

Var(h) = 200012236 ~ 128%

vV o= 2

Performing 10,000 samples of 1 and h generated one after the other (with
the first 1000 discarded to minimize startup effects), we arrive at

M" = 15716
V" = 179.203
n = n+n=42
v = 12.89+ 21n = 33.89.

The results of these samplings of (i, h2) are shown in Figure 9.3. The
marginal histograms of x and h? are given in Figures 9.4 and 9.5 respec-
tively.
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Figure 9.5. Posterior draws of h2.
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By way of comparison with the earlier data augmentation approach taken
in Figure 9.4, in Figure 9.6, we show a histogram taken from the values of
450 but coded as § = 1/u. We note that Figure 9.4 and Figure 9.6 are
essentially the same. The average survival posterior mean for the survival
time, in both cases is roughly 15.7 months.
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Figure 9.6. Posterior draws of 1/u

9.5 Conclusions

We have noted that the data augmentation and the Gibbs sampler proce-
dures employed both give, for the new treatment, approximately the same
posterior mean (15.7 months) for the average survival time. This value is
roughly twice as long as the average survival time for the old treatment
(8.7 months). But in the case of the EM algorithm, our estimate for the
average survival time was a much more optimistic 40 months. What is the
reason for the discrepancy?

The discrepancy occurs because in the data augmentation and Gibbs
sampler procedures, we elected to use a prior distribution for the parameters
of interest which was obtained from data using the old treatment. In the EM
algorithm, on the other hand, we used a “noninformative” prior distribution
(i.e., one with a very large variance).
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Philosophically, some Bayesians would object to our utilization of the
results from the old treatment to estimate the parameters of the prior
distribution for the new treatment. It could be argued that such a step
was unduly pessimistic and smacked of an underlying frequentist mindset
whereby the prior distribution was formed with a de facto null hypothesis
in mind, namely that the new therapy produced no better average survival
times than the old. A Bayesian statistician would probably prefer to con-
sult a panel of advocates of the new treatment and using their insights,
attempt to obtain the parameters of the appropriate prior distribution.

In the long run, after the new treatment has been employed on many in-
dividuals, it will not make much difference what (nondegenerate) prior dis-
tribution we elected to use. But a standard Bayesian claim is that Bayesian
techniques enable a more rapid change from a less effective to a more effec-
tive procedure. In the case considered here, we have used what Bayesian
would consider a rather pessimistic prior. This is unusual in Bayesian anal-
ysis. Most Bayesians would tend to use a prior no more pessimistic than
the noninformative prior which we used in the case of the EM algorithm.
And such a prior is generally roughly equivalent to a standard nonBayesian,
frequentist approach. Thus, there is kind of practical bias in favor of the
new therapy in most Bayesian analyses. If there is physician opinion in-
dicating the new treatment is much better, then that is incorporated into
the prior. But, absent good news, the statistician is supposed to default
to a noninformative prior. That may indeed give a running start to those
wishing to change the protocol.

In the problems, we give examples of a variety of possible prior assump-
tions which might be used.

Problems

9.1. Consider the situation where a random variable X has the normal
distribution A(f,1) and 6 has the normal distribution A'(0,1). Create a
sample of size 1000 by first sampling a 8 and then an X 1000 times.

(a) Create a two-dimensional histogram of (6, X).

(b) Create a one-dimensional histogram of the marginal density of X.

(c) Find explicitly the marginal density of X.

9.2. Werecall that a Poisson random variable has the probability function

—o8*
XU

Suppose that 6 has the exponential density

P(X)=e

f@ = efor>0
= 0 for§<0.

Generate first a 6, then an X. Do this 1000 times.
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(a) Show a two-dimensional histogram of (6, X).
(b) Create a one-dimensional histogram of the probability function of X.
(c) Find the one-dimensional probability function of X.

The time that it takes for a member of a group of small inner city businesses
in a particular city to develop credit problems seems to be short. The lend-
ing agency is considering making an attempt to increase the time to failure
by giving companies free counseling at monthly intervals. Two subgroups
of size 25 each have their times until first credit difficulty recorded. The
members of the first group (A) do not receive the counseling. The mem-
bers of the second group (B) do. Below, we show the results of the first
two years. The times (in months) till time of first credit problem are given
in Table 9.3.

Table 9.3.
Time Until First Credit Problem
Rank Group A Group B

1 0 1
2 1 1
3 1 1
4 1 4
5 1 4
6 1 4
7 2 5
8 2 5
9 2 6
10 3 7
11 5 8
12 5 8
13 7 10
14 7 11
15 8 12
16 9 12
17 10 14
18 11 16
19 12 24*
20 14 24*
21 15 24*
22 20 24*
23 24* 24*
24 24* 24*
25 24* 24*

9.3. Assuming that the time to first problem is exponentially distributed,
use the EM algorithm to estimate 6, and 6p.

9.4. One useful Bayesian approach in deciding whether to make the coun-
seling a standard protocol would be to compute the posterior distributions
of 64 and 6. Do this, utilizing the data augmentation algorithm developed
in Section 9.3.
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9.5. Next, let us consider the situation where we decide to model failure
times according to the normal distribution

) h2 n/2 1 n
f(tlvt%"*:tnlﬂ"h ) = (5,;) €xp —Eh’zz(tj _#)2 3
Jj=1

where both u and h? = 1/0? are unknown. Using the approach in Section
9.4, obtain Gibbs sampler estimates for the posterior distributions of (x4,

hf\) and (uB$ th)

9.6. As has been mentioned earlier in this chapter, the results for finding
an estimate for 6 in the case of the Gehan—Freireich leukemia data are
similar for the data augmentation and the Gibbs sampler procedures. But
these results are quite different from those obtained by the use of the EM
algorithm. This would appear to be due to the fact that in the case of
our data augmentation and Gibbs sampler analyses we have used a prior
distribution based on the survival results of the old therapy. Moreover, the
sample size of the old therapy was the same as that of the new therapy. We
noted that the bootstrap estimate for 6 based on the old therapy was .11877.
The EM estimate for § was .02507. The average of these two estimates is
.07192, a figure which is roughly similar to the estimate we obtained with
data augmentation, .0677. It could be argued, therefore, that by using the
old procedure to obtain a prior density for 8, we have blended the good
results of the new therapy with the poorer results of the old therapy.

We recall from equation (9.22) that the posterior distribution of 6 is given
by

e=0A" (\*)2 ga"-1
p(o|t19t21---,tn)= ( )

I(a*) ’
where
o n+a
E(flts,ta,. .. tg) = — = At 3t
and

of n+ta
()2 (A+2t)?

Suppose that we decide to use our resampled value of the prior distribu-
tion’s mean using the data from the old therapy (.11877), but decide that
we wish to increase dramatically the estimate for the variance of the prior
beyond the old therapy resampled value (.00390). Go through the data
augmentation algorithm using higher and higher values for the variance of
the prior distribution for § and see what the data augmentation posterior
means for § are. One might expect that as the variance of the prior in-
creases without limit, the data augmentation and Gibbs sampler results

Var(oltly t2’ DR} tﬂ) =
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would look much more like those obtained by the EM algorithm. Is this
the case?

References
(1] Casella, G. and George, E. I. (1992). “Explaining the Gibbs Sampler,”

Amer. Statist., 167—174.

(2] Cowles, M. K. and Carlin, B. P. (1996). “Markov chain Monte Carlo
convergence diagnostics: a comparative review,” J. Amer. Statist. Assoc.,
883—904.

[3] Cox, D. R., and Oakes, D. (1984). Analysis ofSurvival Data, 8, London:
Chapman & Hall, 166—168.

[4] Gehan, E. A.and Freireich, J. (1965). “A generalized Wilcoxon test for
comparing arbitrarily single-censored samples,” Biometrika, 203—23.

(5] Simon, J. L.(1990). Resampling Stats. Arlington, Va.: Resampling
Stats, Inc.

[6] Tanner, M. A. (1993). Tools for Statistical Inference. New York:
Springer-Verlag.



Chapter 10

Multivariate and Robust
Procedures in Statistical
Process Control

10.1 Introduction

In terms of its economic impact, statistical process control (SPC) is among
the most important topics in modern statistics. Although some statisticians
(see, e.g., Banks [2]) have considered SPC to be trivial and of scant impor-
tance, the market seems to have reacted quite differently. For example, the
American Society for Quality is vastly larger in its membership than the
American Statistical Association. It is clear is that SPC is not going away,
even should many professional statisticians continue in their disdain for it.

At the end of the World War II, Japan was renowned for shoddy goods
produced by automatons living in standards of wretchedness and resigna-
tion. W. Edwards Deming began preaching the paradigm of statistical
process control (originally advocated by Walter Shewhart) in Japan in the
early 19508. By the mid 1960s, Japan was a serious player in electronics
and automobiles. By the 1980s, Japan had taken a dominant position in
consumer electronics and, absent tariffs, automobiles. Even in the most
sophisticated areas of production, such as computing, the Japanese had
achieved a leadership role. The current situation of the Japanese workers
is among the best in the world. A miracle, to be sure, and one far beyond
that of, say postwar Germany, which was a serious contender in all levels
of production before World War II.

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.
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There is little doubt that the SPC paradigm facilitated these significant
changes in Japanese production. Nevertheless, SPC is based on some very
basic notions:

e The key to optimizing the output of a system is the optimization of
the system itself.

e Although the problem of modifying the output of a system is fre-
quently one of linear feedback (easy), the problem of optimizing the
system itself is one of nonlinear feedback (hard).

e The suboptimalities of a system are frequently caused by a small num-
ber of assignable causes. These manifest themselves by intermittent
departures of the output from the overall output averages.

e Hence, it is appropriate to dispense with complex methods of system
optimization and replace these by human intervention whenever one
of these departures is noted.

e Once an assignable cause of suboptimality has been removed, it sel-
dom recurs.

e Thus, we have the indication of an apparently unsophisticated but,
in fact, incredibly effective, paradigm of system optimization.

Perhaps there is a valid comparison between Shewhart and Adam Smith,
who had perceived the power of the free market. But there appears to be no
single implementer of the free market who was as important in validating
The Wealth of Nations as Deming has been in validating the paradigm of
statistical process control. There has never been, in world history, so large
scale an experiment to validate a scientific hypothesis as Deming’s Japanese
validation and extension of the statistical process control paradigm of Dem-
ing and Shewhart.

It is not our intention to dwell on the philosophy of SPC. That topic has
been extensively dealt with elsewhere (see, e.g., Thompson and Koronacki
[9]). We will develop here a modeling framework for SPC and then indicate
natural areas for exploration. Both Shewhart and Deming held doctor-
ates in mathematical physics, so it is reasonable to assume that there was
some reason they did not resort to exotic mathematical control theory type
strategies. In Figure 10.1 we indicate a standard feedback diagram for
achieving the desired output of a system.
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l

Inppt Production
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Feedback

Out put

Desired Output
Figure 10.1. Control of output.

One might pose this as an optimization problem where we desire to mini-
mize, say

/ ! [output(t) — target(t))? dt. (10.1)
0

Such a problem is generally linear and tractable.

However, the task of SPC is not to optimize the output directly, but
rather, to achieve optimization of the system itself. Generally, such an
optimization is an ill-posed problem. At some future time, artificial intelli-
gence and expert systems may bring us to a point where such problems can
be handled, to a large extent, automatically. But Shewhart and Deming
lacked such software/hardware (as we all still lack it). So they resorted to
a piecewise (in time) control strategy based on human intervention (cf. [3]
and [5]).

10.2 A Contamination Model for SPC

It is paradoxical that W. Edwards Deming, one of the most important
statistical figures of all time, never really published a model of his paradigm
of statistical process control (SPC). Deming rightly argued that the key to
quality control of an industrial product was to understand the system that
produced it. But, in the case of the SPC paradigm itself, he was rather
didactic, like the Zen masters of Japan, the country whose economy and
standard of living he did so much to improve. Careful analysis of Deming’s
paradigm led Thompson and Koronacki to their model-based analysis of
the SPC system (9).

To understand one of the key aspects of SPC, let us first of all assume
that there is a “best-of all-possible -worlds” mechanism at the heart of the
process. For example, if we are turning out bolts of 10-cm diameter, we
can assume that there will be, in any lot of measurements of diameters,
a variable, say X, with mean 10 and a variance equal to an acceptably
small number. When we actually observe a diameter, however, we may not
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be seeing only Xp but a sum of Xy plus some other variables which are
a consequence of flaws in the production process. These are not simply
measurement errors but actual parts of the total diameter measurements
which depart from the “best of all possible worlds” distribution of diameter
as a consequence of imperfections in the production process. One of these
imperfections might be excessive lubricant temperature, another bearing
vibration, another nonstandard raw materials, and so on. These add-on
variables will generally be intermittent in time. This intermittency enables
us to find measurements which appear to show “contamination” of the basic
production process. We note how different the situation would be without
the intermittency, if, say, an output variable were the sum of the “best of
all possible worlds” variable Xy and an “out of control” variable X;. Then,
assuming both variables were Gaussian, the output variable would simply
have the distribution M (o + 41,08 +0%), and the SPC control charts would
not work. Perhaps the greatest statistical contribution of Shewhart was
noting the general presence of intermittent contamination in out-of-control
systems.

It is important to remember that the Deming—Shewhart paradigm of
SPC is not oriented toward the detection of faulty lots. Rather, SPC seeks
for atypical lots to be used as an indication of epochs when the system
exhibits possibly correctable suboptimalities. If we miss a bad lot or even
many bad lots, that is not a serious matter from the standpoint of SPC.
If we are dealing with a system that does not produce a sufficiently low
proportion of defectives, we should use 100% end inspection, as we note
from the following argument frequently referred to as Deming’s Theorem:

Let a be the cost of passing a bad item.
Let b be the cost of inspecting an item.
Let = be the proportion of items inspected.
Let y be the proportion of bad items.

Let N be the number of items produced.

Then the cost of inspecting some items and not inspecting others is given
by

C = bzN +ay(l-z)N
= (b—ay)zN +ayN.

Clearly, then, if ay > b, we should inspect all the lots. (If ay < b, we should
inspect none.) Thus, from a sampling end product cost model, we should
sample all or none.

End-product inspection is really not SPC but quality assurance. Most
companies use some sort of quality assurance. SPC, however, is different
from quality assurance. In fact, the experience of Thompson and Koronacki
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when implementing SPC in a number of factories in Poland was that it was
better to leave the quality assurance (a.k.a. quality control) groups in place
and simply build up new SPC departments.

Now, for SPC, we simply cannot have the alarms constantly ringing, or
we shall be wasting our time with false alarms. Accordingly, in SPC, we
should be interested in keeping the probability of a Type I error small
Thus, the testing rules in control charting are typically of the type

P[declaring “out of control” | in control] = 0.002. (10.2)

With such conservatism we may well find an out-of-control situation later
rather than sooner. However, we shall tend to avoid situations where the
alarms are always ringing, frequently to no good purpose. And by the
theory of SPC, suboptimalities, if missed, will occur in the same mode
again.

Proceeding with the contamination model, let us assume that the random
variables are added. In any lot, indexed by the time ¢ of sampling, we will
assume that the measured variable can be written as

k
Y(t)=Xo+ Y L)X, (10.3)

i=1
where X; comes from distribution F; having mean p; and variance af , 1=

1,2,..., k. and indicator
Ii(t) = 1 with probability p;

= 0 with probability 1 — p;. (10.4)
When such a model is appropriate, then, with k assignable causes, there
may be in any lot, 2* possible combinations of random variables contribut-
ing to Y. Not only do we assume that the observations within a lot are
independent and identically distributed, we assume that there is sufficient
temporal separation from lot to lot that the parameters driving the Y pro-
cess are independent from lot to lot. Also, we assume that an indicator

variable I; maintains its value (0 or 1) throughout a lot. Let T be a collec-
tion from i € 1,2,...,k Then

Y(t) = Xo+ Y_ X; with probability (H p.-) ( I[a- p,-)) . (10.5)

€T i€Z i€Ze
Restricting ourselves to the case where each distribution is Gaussian (nor-
mal), the observed variable Y (¢) is given by

Y(t) = N (#0 + o ag+ Y a?) ; (106)

€T i€T

with probability (H p.~> (H (1- p,-)) .

i€T 1€EIC
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Moreover, it is a straightforward matter to show that

k
EY) = po+Y pimi (10.7)

i=1

k k
og+ Y _piol + 3 p(1 - pi)pd.

i=1 i=1

Var(Y)

A major function of the Shewhart control chart is to find epochs of time
which give lots showing characteristics different from those of the “in con-
trol” distribution. We note that no assumption is made that this dominant
distribution necessarily conforms to any predetermined standards or toler-
ances. Deming proposes that we find estimates of the dominant ug and
og and then find times where lots significantly depart from the dominant.
Personal examination of what was unusual about the system when the un-
usual lot was observed enables us to search for the “assignable cause” of
the trouble and fix it. Not a particularly elegant way to proceed perhaps,
but plausible prima facie and proved amazingly effective by experience.

Consider the flowchart of a production process in Figure 10.2. (For rea-
sons of simplicity, we shall neglect effects of time delays in the flow).
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1&2'—»314&5@629)

zg) 0 D) Z(;)J ) 4 2y
7%-‘).%4) mz‘ruzw 12;?713 %
t)

8

Figure 10.2. Simple flowchart of production.

When Deming writes of statistical process control imparting “profound
knowledge,” he is not resorting to hype or boosterism. On the contrary, this
“profound knowledge” is hardnosed and technical. At a very early stage in
the optimization process of SPC, we are urged to draw a flowchart of the
production process. In many cases, that very basic act (i.e., the composi-
tion of the flowchart) is the single most valuable part of the SPC paradigm.
Those who are not familiar with real industrial situations might naively
assume that a flowchart is composed long before the factory is built and
the production begins. Unhappily, such is not the case. To a large extent,
the much maligned ISO 9000 protocol for selling goods in the European
Economic Community is simply the requirement that a manufacturer write
down a flowchart of his or her production process.

The SPC flowchart continually monitors the output of each module and
seeks to find atypical outputs at points in time that can be tracked to a
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particular module. This module is then considered as a candidate for imme-
diate examination for possible suboptimalities, which can then be corrected.
The SPC flowchart approach will respond rather quickly to suboptimalities.
Let us consider an example.

First of all, let us suppose that in Figure 10.2, the output of module 2
is an aqueous solution where the key measure of Z is the exiting concen-
tration of compound A from module 2. We note that Zg is the measured
strength of compound B from module 9. In module 10, a compound AB is
produced, and the output variable Z;q is the strength of that by-product
compound. Let us suppose that the end product Zi4 is the measured re-
flectivity of a strip of metal. Clearly, the system described above may be
one of great complexity. A primitive quality assurance paradigm would
simply examine lots of the end product by looking at lot averages of Z;4
and discarding or reworking lots which do not meet specification standards.
If the output is our only measured variable, then any notion of correcting
problems upstream of Z4 is likely to be attempted by a uniform harangue
of the personnel concerned with the management of each of the modules
“to do better” without any clue as to how this might be done.

The philosophy of Deming’s SPC suggests that we would do much better
to find the source of the defect in the system so that it can be rectified.
This will be achieved by monitoring each of the intermediate output values
Zy,2s,...,214. Simply looking at Z14 will not give us an indication that,
say, there is a problem with the control of Z;o. This is an example of the
truism that “you cannot examine quality into a system.”

Let us recall the Mazim of Pareto: 1 The failures in a system are usually
the consequence of a few assignable causes rather than the consequence of a
general malaise across the system. Suppose that we make the following fur-
ther extension of this Maxim: the failures in a module are usually bunched
together in relatively short time epochs, where contamination intervenes,
rather than being uniformly distributed across the time azis. Thus, we are
postulating that there will be periods where misfunctioning in a flawed
module will be particularly prominent. Statistical process control gives us
a simple means for searching for atypical epochs in the record of observa-
tions. Whenever we find such atypicality, we will attempt to examine the
functioning of the module closely in the hope that we can find the problem
and fix it.

Let us return to Figure 10.2. Suppose that we find an atypical epoch of
Zj0. Since the effect of Z;¢ flows downstream to modules 11 through 14, it
may well be that a glitch in Z;¢ will cause glitches in some or all of these as

lInterestingly, we may look on Pareto’s maxim in the light of Bayes’ axiom (postulate
1). If we have a discrete number of causes of failure, Bayes’ axiom suggests that we put
equal prior probability on each cause. Pareto’s maxim (which, although not explicitly
stated in his works is fairly deemed to be consistent with them) tells us that it is most
likely the probabilities will actually be skewed rather than uniform. The differences
represented by the two postulates are consistent with the different philosophies of Bayes
and Pareto, the first optimistic and democratic, the second pessimistic and oligarchic.
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well. However, our best course will be to find the earliest of the modules in
a series where the glitch occurs, since that is the one where the assignable
cause is most likely to be found (and fixed).

In the example above, let us suppose that we find no atypicality from lot
to lot until we get to module 10. Then we also find atypicality in modules
11 through 14. It seems rather clear that we need to examine module 10
for an assignable cause of the system behaving suboptimally. Once the
assignable cause is found, it can generally be fixed. Once fixed, it will not
S00n recur.

10.3 A Compound Test for SPC Data in
Higher Dimensions

The basic control chart procedure of Deming is not oriented toward seeing
whether a particular lot of items is within predetermined limits, but rather
whether the lot is typical of the dominant distribution of items produced.
In the one-dimensional case, the interval in which we take a lot sample
mean to be “typical,” and hence the production process to be “in control”
is given by

(10.8)

where n is the lot size, T is the mean of a lot, & is an estimator for the stan-
dard deviation of the dominant population of items, and T is an estimator
for the mean of the dominant population. Assuming that ZF is normally
distributed, then the probability that a lot of items coming from the dom-
inant (i.e., “typical”’) population will fall outside the interval is roughly
0.002. Generally speaking, because we will usually have plenty of lots, tak-
ing the sample variance for each lot, and taking the average of these will
give us, essentially, o2.

Now let us go from the one-dimensional to the multivariate situation.
Following Thompson and Koronacki (9], let us assume that the dominant
distribution of output x data is p-variate normal, that is,

£09 = 2 P ep [-Lx-u Y= -], (109)

where g is a constant vector and X is a constant positive definite matrix.
By analogy with the use of control charts to find a change in the distribution
of the output and/or the input of a module, we can describe a likely scenario
of a process going out of control as the mean suddenly changes from, say,
Mo to some other value. Let us suppose that for jth of N lots, the sample
mean is given by X; and the sample covariance matrix by S;. Then the
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natural estimates for g, and ¥ are

and

respectively. Now the Hotelling T2-like statistic for the jth lot assumes the

form e
T? =n(%; -%)'S (% —X), (10.10)

where j =1,2,..., N. Alt has shown [1] that
nN—N—p-{—lT.2
p(n-1)(N-1)"7

has the F' distribution with p and nN — N —p+1 degrees of freedom. Thus,
we consider the jth lot to be out of control if

p(n—-1)(N -1
T > n(T_N(_—IH_in,nN—N—pH(a), (10.11)

where Fp,N_N_p+1(a) is the upper (100c)th percentile of the F' distribu-
tion with p and nIN — N — p+ 1 degrees of freedom. In SPC, it is generally
a fair assumption that NV is large, so that we can declare the jth lot to be

out of control if
T? > xi(a), (10.12)
where xf,(a) is the upper (100a)th percentile of the x? distribution with p

degrees of freedom.
The dispersion matrix (i.e., the covariance matrix of the set of estimates

fx) is given by

Va.rA(ﬂlz Cov(ﬁlk,ﬂg) Cov(;:tl,ffp)
Viprp) = COV(ﬁ'lh#z) Vaf:(#z) COV(Ijz, fip) . (1013)
Covl(fis, iy) Cov(fizfip) ... Var(ip)
where n
fj =75 = % gzi,- (10.14)
for each j.

Let us investigate the power (probability of rejection of the null hypoth-
esis) of the TJ-2 test as a function of the noncentrality:

A= (= Bo) Vipup (B — Ho)- (10.15)
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One can use the approximation [8] for the power of the sz test:

Py = [ 2 (4 X
A) = / dx (p+ ) (10.16)
[(P+A)/ (p+20)]x2 () p+2A

where dx?(p) is the differential of the cumulative distribution function of the
central x? distribution with p degrees of freedom and x2(p) its 100(1— )%
point. Now, in the current application, any attempt at a numerical approx-
imation technique is unwieldy, due to the fact that we shall be advocating
a multivariate strategy based on a battery of nonindependent test. Here is
just one of the myriad of instances in real-world applications where simula-
tion can be used to provide quickly and painlessly to the user an excellent
estimate of what we need to know at the modest cost of a few minutes
crunching on a modern desktop computer.

Current practice is for virtually all testing of p-dimensional data to be
carried out by a battery of p one-dimensional tests. Practitioners rightly
feel that if glitches are predominant in one or another of the p dimensions,
then the information in the p-dimensional multivariate Hotelling statistic
will tend to be obscured by the inclusion of channels that are in control.

As an example, let us consider the case where p = 5. Thompson and
Koronacki [9] have proposed the following compound test:t

1. Perform the five one-dimensional tests at nominal Type I error of a
= 0.002 each.

2. Next, perform the ten two-dimensional tests at nominal a = 0.002 for
each.

3. Then perform the ten three-dimensional tests.
4. Then perform the five four-dimensional tests
5. Finally, perform the one five-dimensional test.

If all the tests were independent, we would expect a pooled Type I error
of
a=1- (1 -0.002)3! = 0.06. (10.17)

Table 10.11. Type I Errors of Compound Test.
1-dTests n=5 n=10 n=15 n=20 n=50 n=100 n=200
.004 .00434 00466 .00494 .00508 .00512 .00528 .00546
.006 .00756 .00722 .00720 .00720 .00704 .00826 .00802
.008 .01126 .01072 .01098 .01098 .01108 .01136 .01050
.010 .01536 .01582 .01552 .01544 .01706 .01670 .01728

ov WD

However, the ten tests are not really independent [so we cannot use (10.16)].
For dimensions two through five, using uncorrelated vector components, we
show in Table 10.1, the Type I errors based on 50,000 simulations per table
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entry. In the second column, we show the Type I errors if only the one-
dimensional tests are carried out (i.e., p X .002). The subsequent columns
give the Type I errors for various lot sizes (n) assuming we use all the
possible 2P — 1 tests. The resulting Type I errors for the pooled tests for
all dimensions are not much higher than those obtained simply by using
only the one-dimensional tests. We note that in the five-dimensional case,
if we use only the five one-dimensional tests, we have a Type I error of
.01. Adding in all the two-dimensional, three-dimensional, four-dimensional
and five-dimensional tests does not even double the Type I error. As a
practical matter, a user can, if desired, simply continue to use the one-
dimensional tests for action, reserving the compound higher-dimensional
tests for exploratory purposes.

We note here how the use of simulation, essentially as a “desk acces-
sory,” enabled us quickly to determine the downside risks of using a new
testing strategy. Slogging through analytical evaluations of the compound
test would have been a formidable task indeed. Using a simulation-based
evaluation, we were able quickly to see that the price for the compound
test was small enough that it should be seriously considered.

10.4 Rank Testing with Higher-Dimensional
SPC Data

In statistical process control, we are looking for a difference in the dis-
tribution of a new lot, anything out of the ordinary. That might seem to
indicate a nonparametric density estimation based procedure. But the gen-
eral ability to look at averages in statistical process control indicates that
for many situations, the central limit theorem enables us to use procedures
that point to distributions somewhat close to the normal distribution as the
standards. In the case where data are truly normal, the functional form of
the underlying density can be based exclusively on the mean vector and the
covariance matrix. However, as we show below, it is a rather easy matter to
create multivariate tests that perform well in the normal case and in heavy
tailed departures from normality.

Consider the case where we have a base sample of N lots, each of size n,
with the dimensionality of the data being given by p. For each of these lots,
compute the sample mean X; and sample covariance matrix S;. Moving
on, compute the average of these N sample means, X, and the average of
the sample covariance matrices S. Then, use the transformation

z=5"1?

X -X), (10.18)
which transforms X into a variate with approximate mean 0 and approxi-
mate covariance matrix I Next, apply this transformation to each of the
N lot means in the base sample. For each of the transformed lots, compute
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the transformed mean and covariance matrix, Z; and Sgz,, respectively. For
each of these, apply, respectively, the location norm

P
7 - 2

IZ:l? =" 25", (10.19)

i=1

and the scale norm

P P
ISl =" 8,02 (10.20)

j=1l=1

Now, if a new lot has location norm higher than any of those in the base
sample, we flag it as atypical. If its scale norm is greater than those of any
lot in the base sample, we flag it as atypical. The Type I error of either test
is given, approximately, by 1/(N + 1), that of the combined test is given
very closely by

1 \2 oN+1
1—(1- ) = 21—, )
( N+1) ESID (10.21)

Let us now compare the performance of the location rank test with that
of the parametric likelihood ratio test when we have as the generator of the
‘in control” data a p-variate normal distribution with mean 0 and covari-
ance matrix I, the identity. We consider as alternatives “slipped” normal
distributions, each with covariance matrix I but with a translated mean
each of whose components is equal to the “slippage” p. In Figure 10.3,
using 20,000 simulations of 50 lots of size 5 per slippage value to obtain
the base information, we compute the efficiency of the rank test to detect
a shifted 51st lot relative to that of the likelihood ratio test [i.e., the ratio
of the power of the rank test to that of the x?(p) test (where p is the di-
mensionality of the data set)]. In other words, here, we assume that both
the base data and the lots to be tested have identity covariance matrix and
that this matrix is known. We note that the efficiency of the rank test
here, in a situation favorable to the likelihood ratio test, is close to 1, with
generally improving performance as the dimensionality increases. Here, we
have used the critical values from tables of the x2 distribution. For such
a situation, the 2 is the likelihood ratio test, so in a sense this is a very
favorable case for the parametric test. In Figure 10.3 we apply the location
test only for the data simulation delineated above.
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1.1
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o

Efficiency
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Slippage per Dimension

Figure 10.3. Monte Carlo estimates of efficiencies (normal data).

Next, we consider applying the rank test for location to t(3) data gener-
ated in the obvious manner as shown in Figure 10.4. First, we generate a
x? variable v with 3 degrees of freedom. Then we generate p independent
univariate normal variates X’ = (X, Xs,...,Xp) from a normal distribu-
tion with mean 0 and variance 1. If we wish to have a mean vector p and
covariance matrix I,

t = i +u (10.22)
v/3
will have a shifted t distribution with 3 degrees of freedom.

Once again the rank test performs well when its power is compared with
that of the parametric test even though we have computed the critical value
for the parametric test assuming the data are known to be t(3). We should
remember, however, that if we had assumed (incorrectly) that the data
were multivariate normal, the likelihood ratio test would have been quite
different and its results very bad. (Naturally, as the lot size becomes large,
the central limit theorem will render the normal theory-based test satisfac-
tory.) The rank test performs well whether the data are normal or much
more diffuse, and it requires no prior information as to whether the data is
normal or otherwise.

So far, we have been assuming that both the base lots and the new
lots were known to have identity covariance matrices. In such a case, the
appropriate parametric test is x2 if the data are normal, and if they are not,
we have employed simulation techniques to find appropriate critical values
for the distribution in question. Now, however, we shift to the situation
where we believe that the covariance matrices of the new lots to be sampled
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may not be diagonal. We have been assuming that the base lots (each of size
5) are drawn from N (0,I). The sampled (bad) lot is drawn from N (g, X),

where

I
L
n= . (10.23)
m
and
1 8 .8 8
8 1 8 8
| f 81 8] 02
8 8 .8
1.3 T T
1.2

engy

'01.0
T
0.9
0.8
0.7
0.6 — :
0 1 2 3

Slippage per Dimension
Figure 10.4. Monte Carlo estimates of efficiencies (t(3) data).

Thus, we are considering the case where the lot comes from a multivariate
normal distribution with equal slippage in each dimension and a covariance
matrix that has unity marginal variances and covariances .8. In Figure
10.5, we note the relative power of the “location” rank test when compared
with that of the Hotelling T2 procedure. The very favorable performance
of the rank test is largely due to the effect that it picks up not only changes
in location but also departures in the covariance matrix of the new lot
from that of the base lots. The basic setting of statistical process control
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lends itself very naturally to the utilization of normal distribution theory,
since computation of lot averages is so customary. But as we have seen,
for modest lot sizes it is possible to run into difficulty if the underlying
distributions have heavy tails.

Efficiency

0.0 1 L 0.0
0.0 0.5 1.0 1.5

Slippage per Dimension

Figure 10.5. Monte Carlo estimates of efficiencies for correlated
data.

In the construction of these rank tests by Thompson, Lawera and Ko-
ronacki, [7, 9], a substantial number of unsuccessful tests was examined
before noting the testing procedure explicated here. Again, the utility of
simulation is demonstrated. It is all very well to try an analytical approach
for such tests, examining, for example, asymptotic properties. But few of
us would willingly expend months of effort on tests that might well “come
a cropper.” Simulation gives us a means of quickly stressing potentially
useful tests quickly and efficiently.

10.5 A Robust Estimation Procedure for
Location in Higher Dimensions

Let us recall that, in the philosophy of Deming, one should not waste much
time in determining whether a lot conforms to some predetermined stan-
dards. Many have thought themselves inspired because they came up with
very strict standards for, say, manufacturing automobile transmissions. The
very statement of strenuous goals is thought by many contemporary Ameri-
can managers (not to mention directors of Soviet five-year plans in a bygone
age, or presidents of American universities in this age) to be a constructive
act. SPC does not work that way. In SPC we seek to see epochs when lots
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appear to have been produced by some variant of the dominant in-control
process which produces most of the lots.

But, how shall we attempt to look into the wilderness of the past record
of lots and determine what actually is, say, the location of the dominant
output? It is not an easy task. Obviously, to the extent that we include
out-of-control lots in our estimate of the location of the in-control lots we
will have contaminated the estimate.

The following King of the Mountain algorithm of Lawera and Thompson
[7] (see also Thompson and Koronacki, [9]) appears to be promising:

“King of the Mountain” Trimmed Mean Algorithm

Set the counter M equal to the historical proportion of bad lots
times number of lots.
For N lots compute the vector sample means of each lot {X;}{¥,.
1. Compute the pooled mean of the means X.
Find the two sample means farthest apart in the cloud of lot means.
From these two sample means, discard the farthest from X.
Let M=M-1land N=N-1.
If the counter is still positive, go to 1; otherwise exit and print out
i as _iT.

To examine the algorithm, we examine a mixture distribution of lot means
W(O,I) + (1 — )N (i, I). (10.25)
Here we assume equal slippage in each dimension, that is,

(1) = (1,1, ). (10.26)

Let us compare the trimmed mean procedure X with the customary procedure
of using the untrimmed mean X. In Tables 10.2 and 10.3 we show for dimensions
two, three, four, and five, the average MSEs of the two estimators when v = 0.70
for simulations of size 1000.

Table 10.2. MSEs for 50 Lots: v = 0.7
d=2 d=2 d=3 d=3 d=4 d=4 d=5 d=5
X X Xr X Xr X Xr X
040 094 043 117 046 142 054 1.72
021 124 017 162 017 200 0.18 2.37
007 185 009 267 012 349 0.15 4.33
006 3.01 009 448 0.12 593 014 7.41
005 461 009 688 011 9.16 0.15 11.52
653 008 985 0.12 13.19 0.14 16.50
006 894 009 1341 0.11 1793 0.14 2233
006 11.58 008 17.46 0.11 2327 0.14 2899
0.06 14.71 0.08 2203 0.11 2940 0.15 36.67
0.06 1813 008 2724 0.11 36.07 0.15 4526
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Table 10.3. MSEs for 100 Lots: v = 0.7

d=2 d=2 d=3 d=3 | d=4 d=4 d=5| d=5
Xr X Xr X | Xr X Xr| X

=|

1 028 071 030 094 032 116 034 | 1.34
2 005 088 006 130 007 1.74 008 2.10
3 003 1.72 005 258 006 337 007 425
4 003 295 004 441 006 586 0.07 7.34
5 003 456 004 825 006 913 0.08 11.39
6 0.03 656 004 831 006 13.08 0.07 16.35
7 003 887 004 1328 0.06 17.67 0.07 22.16
8 003 1161 0.04 1732 0.06 23.17 0.07 28.86
9 0.03 1467 004 2198 006 2928 007 36.61
10 0.03 18.04 004 2712 0.06 36.06 007 4513

In Tables 10.4 and 10.5 we show the MSEs of the trimmed mean and the
customary pooled sample mean for the case where v = 0.95.

Table 10.4. MSEs for 50 Lots: v = 0.95
d=2 d=2 d=3 d=3 d=4 d=4 d=5 d=5

—_— —— — e ————

X Xr X
005 0.10 007 015 009 018 0.12 0.24
005 0.11 007 016 009 020 0.11 0.26
004 011 006 017 008 022 0.11 0.28
004 013 006 0.19 008 026 011 0.33
004 016 006 024 008 032 011 0.41
0.19 006 029 009 040 010 0.49

0.04 024 006 035 008 048 0.11 0.61

004 029 006 042 008 058 0.10 0.71

0.04 033 006 051 008 068 011 0.86
0.042 039 0.06 059 008 079 011 1.01

®
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Table 10.5. MSEs for 100 Lots: v = 0.95

d=2 d=2 d=3 d=3 d=4 d=4 d=5 d=5
Xr X Xr X Xr X Xr X

002 005 004 0.09 005 0.12 0.06 0.14
002 0.07 003 0.10 005 0.14 0.05 0.16
002 009 003 014 004 0.18 005 023
002 013 003 020 0.05 027 006 0.34
0.02 0.18 0.03 027 0.04 037 0.06 0.46
002 024 003 038 004 049 0.05 0.60
002 031 0.03 047 004 062 0.06 0.80
0.02 040 0.03 060 004 080 005 1.00
002 050 0.03 0.74 004 1.00 005 1.21
002 060 003 090 005 120 005 1.50

—
lczooo«to:m.uww»—-‘i:

If the level of contamination is substantial (e.g., if 1 —y= 0.3), the use of
a trimming procedure to find a base estimate of the center of the in-control
distribution contaminated by observations from other distributions may be
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strongly indicated. For more modest but still significant levels of contami-
nation (e.g., if 1 — y= 0.05), simply using X may be satisfactory. We note
that the trimming procedure considered here is computer intensive and is
not realistic to be performed on the usual hand-held calculator. However,
it is easily computed on a personal computer or workstation. Since the
standards for rejecting the null hypothesis that a lot is in control are gen-
erally done by off-line analysis rgularly, we do not feel that the increase in
computational complexity should pose much of a logistical problem.

Problems

10.1. It is desired to simulate a contamination model for training purposes.
We wish to produce sheets of aluminum with thickness 1 mm. Suppose the
dominant distribution is given by A(1,1). Time is divided up into epochs
of 10 minutes. Contamination will occur in each epoch with probability
7. The contaminating distribution will be A'(u,02). Simulate data for a
variety of 4's, u’s, and o’s. Using Shewhart control charting (10.8), see how
effective you are in finding lots that are from contamination periods.
10.2. Let us consider the case where there are four measurables in a pro-
duction process. After some transformation, the in control situation would
be represented by a normal distribution with mean

mp = 0
_| w2 =20
b= us = 0
g = 0

and covariance matrix

onn=1 012=0 013=0 014=0
0’12=0 0’22=1 023 =0 0'24=0
013=0 023=0 o033=1 034=0
014 =0 024=0 024=0 o044=1

We wish to examine the effectiveness of the battery of tests procedure in
Section 10.3, for the following situations, each with lot sizes of 10:
(a) There is 5% contamination from the Gaussian distribution with

pi = 1
| e =1
# puz = 1
gy = 1
and covariance matrix
=1

(b) There is 5% contamination from a Gaussian distribution with
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M1 = 0
| B2 = 2
k= M3 = ~2
Mg = 0
and covariance matrix
=1

(c) There is 10% contamination from a Gaussian distribution with

m o= 1
_| p#2 =1
# s = 1
g = 1

and covariance matrix

o =1 o2 = .6 0’13=.6 0'14=.6
oi2=.6 o02=1 0y33=6 094=.6
o13=6 0203=.6 o033=1 034=.6
014=0 024=0 024=0 o044=1

10.3. Next, let us consider the case where there are three measurables in
a production process. After some transformation, the in control situation
would be represented by a normal distribution with mean

p=10
0

and covariance matrix
=1

There is 10% contamination of lots (i.e., 10% of the lots are from the con-
taminating distribution). The contaminating distribution is multivariate t
with 3 degrees of freedom (see (10.22) ) and translated to

p = 1
u=\ p2 =1
M3 = 1

If lot sizes are 8, compare the effectiveness of the battery of tests above
with the rank test given in Section 10.4.

10.4. You have a six-dimensional data set that turns out to be

YN(0,I) + (1 — 7)ts(1,1).
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The problem is to recover the mean of the uncontaminated Gaussian
distribution for the case where 7 = .2 Lot sizes are 10. See how well the
King of the Mountain Algorithm works for this case compared to using
pooled lot means.
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Chapter 11

Considerations for
Optimization and
Estimation in the Real

(Noisy) World

11.1 Introduction

In 1949, Abraham Wald [19] attempted to clean up the work of Fisher
by proving that the maximum likelihood estimator @, of the parameter
characterizing a probability density function converged to the true value of
the parameter 6o. He was indeed able to show under very general conditions
that if 6, (globally) maximized the likelihood, it did converge almost surely
to 8¢. From a practical standpoint, there is less to the Wald result than
one might have hoped. The problem is that, in most cases, we do not have
good algorithms for global optimization.

Let us suppose that we seek a minimum to a function f(z). In the
minds of many, we should use some variant of Newton’s method to find the
minimum. Now, Newton’s method does not seek to find the minimum of a
function, but rather the (hopefully unique) point where the first derivative
of the function is equal to zero. We recall, then, that the simplest of the
Newton formulations is an iterative procedure, where

f,(zk) (111)
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0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.
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Returning to Wald’s result, let us suppose that we consider data from a

Cauchy density
1

w1+ (z— 00)2] )

Then we can pose the maximum likelihood estimation by minimizing the
negative of the log likelihood:

flz) = (11.2)

L(0|zy,z2,...,zn) = nlog(T) + Zn: log(1 + (z; — 6)9). (11.3)

=1

If we use Newton’s method here, if we have a starting guess to the left of
the smallest point in the data, we will tend to declare that the smallest
of the data is the maximum likelihood estimator for 6y, for that point is
a local minimum of the negative of the log likelihood. If we start to the
right of the largest data value, we will declare the largest data point to
be a maximum likelihood estimator. Now as the data set becomes large,
if we do not start on the fringes, we have much better fortune. We do
not have multiple “bumps” of the log likelihood near the middle of a large
data set. As the data set becomes larger and larger, a starting point that
gave a misleading bump at a data far away from 6y will, in fact, lead
us to an acceptable estimator for 6. In one sense, this is true broadly
for the problem of estimation by maximum likelihood or minimum 2, for
example, by Newton’s method will become less and less as the sample size
increases. We show this stabilization with increasing sample size from a
Cauchy distribution with = 0 in Figure 11.1. ! We see, for example, that
for the data set explored, for a sample size of 10, we have no false local
modes if we start with a positive 6 value less than approximately 13, but if
we start with a greater value, we might, using Newton’s method, wind up
with a false maximum (i.e., one that is not equal to the global maximum).
Picking any interval of starting values for 8 and any values € and §, however,
there will be a sample size such that the probability will be less than e that
Newton’s method will converge to a value more that § removed from the
true global maximum, namely, 6.

This is a phenomenon occurring much more generally than in the case of
Cauchy data. In the case of the use of SIMEST in Chapter 5 in the estima-
tion of parameters in a cancer model, for example, the use of the algorithm
with sample sizes of 150 demonstrated problems with local maxima, unless
one started very near the global maximum. As the number of patients in-
creased past 700, the problem of local maxima of the likelihood (minima
of the x?) essentially disappeared. That was due to the fact that a larger
sample, for maximum likelihood estimation, brings a starting value, unac-
ceptable for smaller samples, into the domain of attraction of the global
maximum, and the bumps which existed for the smaller samples, tend to

1This figure was created by Otto Schwalb.
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“tail off” (i.e., appear remotely from reasonable starting values). As the
sample sizes become large, problems of finding the global maximum of the
sample likelihood tend to become less. So, as a practical matter, Wald’s
result is actually useful if the sample size be sufficiently large.
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Figure 11.1. Cauchy log likelihoods for various n.

Practical Version of Wald’s Result. Let {z1,z3,...,z,} be
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a random sample with a density function f(z|6) with positive
mass throughout its support a < £ < b. a and/or b may or
may not be co. For any fixed (i.e, not changing with n) starting
point between a and b, as n goes to oo, if f is well behaved,
a Newton'’s algorithm maximizer of the log likelihood function
will converge almost surely to 6q.

In other words, for the statistician, the natural piling up of data points
around regions of high density will cause a practical convergence of the
naive maximum likelihood estimator to the truth. Of course, the number
of points required to make this conjecture useful may be enormous, par-
ticularly if we use it for a multivariate random variable and multivariate
characterizing parameter. Statisticians have an advantage over others who
deal in optimization, for, generally speaking, the function to be maximized
in most problems is not a density function, so that the possibility of never
converging to a global maximum is a real one. This, of course, suggests
the attractive possibility of trying to reformulate an objective function as
a probability density function when feasible to do so.

We go further with a conjecture on simulation-based estimation (SIMEST
discussed in Chapter 5). Since the time of Poisson [11], it has been taken
as natural to model time-based processes in the forward direction. For ex-
ample, “with a probability proportional to its size, a tumor will, in any
time interval, produce a metastasis.” Easy to state, easy to simulate—not
so easy to find the likelihood, particularly when the metastatic process is
superimposed upon other simultaneously occurring processes. For exam-
ple, the tumor is also growing in proportion to its size; the tumor may be
discovered and removed with a probability proportional to its size; and so
on. But the simulations superimpose quite readily. Hence, given fast com-
puting, we are tempted to assume the unknown parameters characterizing
the pooled processes, generate relevant events by simulation, and then use
the difference between the simulated process and the actual, say, discovery
of tumors, as a measure of the quality of assumed parameters.

SIMEST Conjecture . Let {Z;,z3,...,Zn} be arandom sam-
ple with a (possibly not known in closed form) density function
f(z|0o). Suppose we can generate, for a given 6, N pseudovalues
of {y;} from the density function. Create bins in an intuitive
way in the data space, for example putting n/k data points and
N; data points into each of k bins. If the maximum likelihood
estimator for 6, in the case where we know the closed form of
the log likelihood converges to 6, then so does an estimator 6,,,
which maximizes the histogram log likelihood function

k
Ly (|zy,x2,...,2n) = Y _ Nilog(n/k)

=1
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based on N pseudodata, as n goes to oo and N goes to oo if we
let k go to oo in such a way that lim,_,o k/n = 0.

The conjecture concerning simulation-based estimation is rather powerful
stuff, because it raises the possibility of parameter estimation in incredibly
complex modeling situations. Naturally, for the situation where X is vector
valued, some care must be taken in finding appropriate binning strategies.
A somewhat differently styled version of the SIMEST conjecture has been
proved by Schwalb [13].

As a matter of fact, the statistician is generally confronted with finding
the maximum of an objective function which is contaminated by noise. In
the case of simulation-based parameter estimation, the noise is introduced
by the modeler himself. The use of Newton-like procedures will generally
be inappropriate, since derivatives and their surrogates will be even more
unstable than pointwise function evaluation. We shall discuss two ways of
dealing with this problem. Interestingly, both the Nelder—Mead algorithm
and the Box—Hunter algorithm were built, not by numerical analysts, but
by statisticians, working in the context of industrial product optimization.
The algorithm of Nelder and Mead essentially gives up on equivalents of
“getting the first derivative equal to zero.” Rather, it follows an ad hoc and
frequently very effective zig-zag path to the maximum using pointwise func-
tion evaluations without any derivative-like evaluation. The essential idea
is to approach the maximum indirectly and, therefore, hopefully, with some
robustness. The mighty quadratic leaps toward the maximum promised by
Newton’s method are not available to the N-M user. On the other hand,
neither are the real-world leaps to nowhere-in-particular that frequently
characterize Newton’s method.

The algorithm of Box and Hunter, however, takes noisy pointwise func-
tion evaluations over a relatively small hyperspherical region and uses them
to estimate the parameters of a locally approximating second degree poly-
nomial. Essentially, with Box—Hunter we do take the derivative of the
fitting polynomial and proceed to the maximum by setting it equal to zero.
But remembering that the fitting validity of the polynomial is generally
credible only in a rather small region, we cannot take the giant leaps to
glory (or perdition) associated with Newton’s method.

11.2 The Nelder—Mead Algorithm

The problem of parameter estimation is only one of many. For most situa-
tions, we will not have samples large enough to enable Newton’s method to
do us much good. Newton method’s is generally not very effective for most
optimization problems, particularly those associated with data analysis.

A more robust algorithm, one pointing more clearly to the direct search
for the minimum (or maximum) of a function, is needed. (And there is
still the problem of trying to find the global minimum, not simple some
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local minimum. We deal with this problem later). More than 30 years
ago, two statisticians, Nelder and Mead [10], designed an algorithm which
searches directly for a minimum rather than for zeros of the derivative of
the function. It does not assume knowledge of derivatives, and it generally
works rather well when there is some noise in the pointwise evaluation of
the function itself. It is not fast, particularly in higher dimensions. This is
due, in part, to the fact that the Nelder—Mead algorithm employs a kind of
envelopment procedure rather than one which, as does Newton’s method,
tries to move directly to the minimum. The Nelder—Mead algorithm is
rather intuitive, and, once learned, is easy to construct. We give the algo-
rithm below with accompanying graphs (Figures 11.2 and 11.3) showing the
strategy of moving toward the minimum. Our task is to find the minimum
of the function f(x). Here, we consider a two-dimensional z.

Nelder—Mead Algorithm

Expansion

P = C + vgr(C — W)(where typically yr = vg = 1)
If f(P) < f(B), then

PP =C+78(C~-W) [a]

If f(PP) < f(P), then

Replace W with PP as new vertex |[c]

o Else

e Accept P as new vertex [b]

e End If

Else

If f(P) < f(2W), then
e Accept P as new vertex [b]
e Else

Contraction

If f(W) < f(P), then
e PP =C+7c(W - B) (typically, ¢ = 1/2) [a%]
o If F(PP) < F(W), Then replace W with PP as new vertex [bx]

e Else replace W with (W +B)/2 and 2W with (2W+B)/2 (total contraction)
[c#]

e End If
Else

Contraction

If f(2W) < f(P), then
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e PP =C+~c(P — B) [aq]
o If f(PP) < f(P), then Replace W with PP as new vertex [bb]
o Elsereplace W with (W+B)/2 and 2W with (2W+B)/2 (total contraction)
[cc]
Else
e Replace W with P
e End If
End If

Partial inside Contraction @

Figure 11.2. Nelder—Mead polytope expansions.
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Total Contraction

(B+2W)2

Partial Outside Contraction

Toml Contraction

(B+2W)/2

®

Figure 11.3. Nelder—Mead polytope contractions.

11.3 The Box—Hunter Algorithm

Both the Nelder—Mead [10] and Box—Hunter [5] algorithms were designed
with an eye for use in the design of industrial experiments. In fact, they
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have been used both as experimental design techniques and as computer
optimization routines. However, the Box—Hunter designs clearly are the
more used in industry, the Nelder—Mead approach the more used in com-
puter optimization. The reasons are not hard to understand. When it
comes to industrial experiments, where great costs are incurred, the rather
free-wheeling nature of Nelder—Mead appears profligate. On the computer,
where an “experiment” generally simply involves a function evaluation, the
Box—Hunter approach appears overly structured, with a “batch” rather
than a continuous-flow flavor. However, the natural parallelization possi-
bilities for Box—Hunter should cause us to rethink whether it might be the
basis for a new theory of computer optimization and estimation.

.
/

J

Figure 11.4. Box—Hunter three-dimensional design.

Essentially, the Box—Hunter rotatable design [17] approach centers at
the current best guess for the optimum. Points are then placed at the
degenerate sphere at that center, the coordinates rescaled so that a move-
ment of one unit in each of the variables produces approximately the same
change in the objective function. Then a design is created with points on
a hypersphere close to the origin and then on another hypersphere farther
out. The experiment is carried out, and the coefficients of an approximat-
ing quadratic are estimated. Then we move to the new apparent optimum
and repeat the process.

In the ensuing discussion, we follow the argument of Lawera and Thomp-
son [9]. The variation of Box—Hunter was created, in large measure, to
deal with the application of SIMEST (see Chapter 5) to parameter estima-
tion in stochastic processes. In Figure 11.4, we show a three-dimensional
Box—Hunter design. In standardized scaling, the points on the inner hy-
persphere are corners of the hypercube of length two on a side. The second
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sphere has “star points” at 2?/4, where p is the dimensionality of the in-
dependent variables over which optimization is taking place. For three di-
mensions, we have points at (0,0,0), (1,1,1), (1,1,-1), (1,-1,1), (1,1, -1),
(_1’ —1’ 1)7 (_1’ _1’ —1)’ (_la 1, 1)’ (_11 1, _1)’ (275,0, 0)) (—2.75a0a 0))
(0,2°75,0), (0,-27%,0), (0,0,27%), and (0,0,—2:7%).

For dimensionality p we start with an orthogonal factorial design having
2P points at the vertices of the (hyper)cube (+1,+1,...,+1). Then we add
2p star points at (+a,0,...,0) (0, +¢,0,...,0), ..., (0,0,...,0,+a). Then
we generally add two points (for, say, p < 5, more for larger dimensionality)
at the origin. A sufficient condition for rotatability of the design, i.e., that,
as above, Var() is a function only of

pPP=X{+X{+.. .+ X2 (11.4)
can be shown to be [4] that
a = (2°)%, (11.5)

In Table 11.1 we show rotatable designs for dimensions 2,3,4, 5, 6 and 7.

Table 11.1. Some Box—Hunter Rotatable Designs.
Dimension Num. Cube Points Num. Center Points _Num. Star Points a
2 4 4 2°

2
3 8 2 6 27°
4 16 4 8 2
5 32 4 10 2%
6 64 6 12 28
7 128 8 14 247

When the response variable has been evaluated at the design points, we
then use least squares to fit a quadratic polynomial to the results.

P p P
J1(8)=Fo+ > Bi8i+ Y ) Bii8:i8;. (11.6)
i=1 i=1 j=1
We then transform the polynomial to canonical form A:
P P
J2(©) = o+ Y Fi8i+ ) _ fii6}. (11.7)
i=1 i=1

Let us now flowchart the Lawera—Thompson version of the Box—Hunter
algorithm. First, we define some notation:

So coordinates of current minimum
D n x 2" + 2n + ng Box—Hunter design matrix
R n x n diagonal matrix used to transform into “absolute”
coordinate system
T n X n matrix which rotates the axes of the design to coincide with

the “absolute” axes
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(Note that the design points as given by matrix D have “absolute” coordi-
nates given by T x R x D + 6g.)

S() the objective function
EC prespecified by the user upper limit on noise level
CONV user-specified constant in the convergence criterion at level 2

Xr

X can be written as 1, (RX D)T,rdy1,...,Tdns), where 1 is a column vector
obtained by elementwise multiplication of the ith and the jth columns of
(R x D)T.

Lawera—Thompson Algorithm

Level 1
Input (initial guess): B¢, Ry, Tp

1.

3.

Perform the level 2 optimization starting from the initial guess. Out-
put: 6,,R,,T).

Perform the level 2 optimization 10 times, starting each time from
the results obtained in (1).

Find Smin(Omin): the best of results obtained in (2).

Output: emin ,Smin (emin)

Level 2
Input: 8¢, Ro,Tp,ECo

1.
2.

6.
7.

EC « ECy

Perform the level 3 optimization using the input values. Output:
6,,R:1,T1,5(8,)

Calculate the distance between 6¢ and 64, i.e., AB = /||8; — 6¢||2.
Calculate the gain from (2): AS = S(8¢) — S(61).

If A© >0and AS > 1.5 x VEC, then 8¢ «+ 61, Ry — R1, Ty «— T}
and go to (1).

Else if EC > CONV, then EC + EC/4, and go to (2).
Else exit to level 1.

Output: 64, Ry, T1,S(81).

Level 3
Input: 8, Ry, To, EC), S(eo)

(2" 4+ 2n + no) x [1 + n + n(n + 1)/2] matrix of regression points
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1. Perform level 4. Output: R,y

. Set Y «— NULL, X — NULL,i + 0, 6; « B,.
. Set Rour +— Rmin.

. Increment i by one.

Evaluate S(8)* = S(To X Rcur X D + 83).

Calculate Xg,,,, -

N e oo A W

Set

X
X(_-(XRCur ).

Y ( }S,(G)* ) .
9. Regress Y on X. Obtain: vector of regression coeflicients {ﬁ} and
the r? statistic.
10. Perform the level 5 optimization. Output: 6*, R*, T*, S(8)*.
11. Calculate the gain from (5): AS = S(8,) — S(8)*.
12. If r2 > 0.9, AS > 1.5 x VEC, i < 20, then
6, —06"R —R T T
Rour < 2 x Royy, and go to (4).
13. Else exit to level 2.
Output: 68, Ry, T1, S(61)
Level 4
Input: 8y, Ro, To, ECo, S(B0)
1. Evaluate S(8¢)* = S(To x Ry x D + 6y).
2. Calculate Xg,.

3. Regress S(8¢)* on Xpg,. Obtain the r? statistic and the error sum of
squares (ESS).

4. If r2 < 09 and [ESS < 2 x ECo, or Max(S(8¢) — Min(S(8y)) <
1.5 x VEC],
then

(a) Set Ry +— 2 x R,.
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(b) Repeat (1)—(4) until 2 > 0.9, or [ ESS > 2x ECo, and Max(S(6¢))—
Min(S(89)) < 1.5 x VEC)).

(c) Exit to level 3.

Else

(a) Set Ry — 0.5 x Ry.

(b) Repeat (1)-(4) until 72 < 0.9, and ESS < 2 x ECy, or
Max(S(6y)) — Min(S(6y)) < 1.5 x VEC.

Set Ry — 2 x Ry.

(c) Exit to level 3.

Output: Ry

Level 5°
Input: (3, quadratic fit to the objective function

1.

5.
6.

Calculate vector b and matrix B such that the quadratic fit has the

form
G=bo+XT xb+XT x Bx X.

Find matrices M and A such that MT x B = A.

Calculate the minimum 6 « —1/2B~! x b.

. If {/||8]|2 > 1, then

(a) Set Min(|84],--.,]|04|) «+ 0.
(b) Repeat (a) until /[|8]|2 < 1.
Calculate the rescaling matrix Ry «— Diag(|);

Set To — M.

7).

Output: By, Ry, Ty

Evaluation
Input: 6, R, T, EC

1

Set i — 0

2. Evaluate S 10 timesat 89 =T x R x D + 6.

3.

Increment ¢ by 7.

4. Calculate the sample mean S and the sample variance V of all 3

evaluations.

2Level 5 is based on Box and Draper [4].
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5. If V/EC > C;i_,, where C;_; is the 95th percentile of the X?—1 dis-
tribution, then go to (2).

6. Else exit.

Output §

Using the Lawera—Thompson variant of the Box—Hunter algorithm on
generated tumor data (150 patients) with o = 0.31, A = 0.003, a =
1.7 x 10719, b = 2.3a x 1072, using a SIMEST sample size of 1500, with
starting value 0(0.5,0.005,4 x10~1°,10~9), and using 10 bins, we converged
to (0.31,0.0032,2 x 10719,2.3 x 10~9). Computations were carried out on a
Levco desktop parallel processor with 16 CPUs. Subsequent availability of
very fast and inexpensive serial machines has caused us, temporarily, to sus-
pend the parallel investigation. It is clear, however, that the Box—Hunter
paradigm, requiring minimal handshaking between CPUs, is a natural can-
didate for parallelization.

11.4 Simulated Annealing

The algorithm of Nelder—Mead and that of Box—Hunter will generally not
stall at a local minimum with the same degree of risk as a Newton’s method
based approach. Nevertheless, it sometimes happens that stalling local
minima do occur with Nelder—Mead. How to get around this problem?

Naturally, there is no easy answer. Practically speaking, there is no
general way to make sure that a minimum is global without doing a search
over the entire feasible region. We might well converge, using Nelder—Mead
to point A in Figure 11.5. We need some way to make sure that we really
have arrived at the global minimum.

c
Figure 11.5. The problem with local minima.

In the example in Figure 11.5, we might argue that we need something to
kick us away from A. Then, we can see if, say using Nelder Mead, we move
to a new candidate for the global minimum, say B, or fall back to A. From
the picture, it is clear that it is a critical matter just how far we move away
from A which determines whether we will progress on to B and thence to
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C, or whether we will fall back into A. Mysterious analogies to Boltzmann
energy levels are probably not very helpful, but we shall mention the idea,
since users of simulated annealing generally do.

In cooling a molten metal too quickly, one may not reach a level of
minimum energy (and hence apparently of crystalline stability). When this
happens, it sometimes happens that a decision is made to reheat the metal
(although not to the molten state, necessarily) and then cool it down again,
slowly, hoping to move to another lower-energy state. The probability of
moving from energy state E; to another energy state E;, when E; — E; =
AE > 0, is given by exp(—AE/(kT) where k is the Boltzmann constant.
The analogy is relatively meaningless, and generally the 1/(kT') is simply
replaced by a finagle factor. The finagle factor will determine how far we
kick away from the apparent minimum. As time progresses, we may well
decide to “stop the kicking.”

Let us suppose that we have used Nelder—Mead to get to a minimum
point zo. Using this as our starting point, we can use an algorithm sug-
gested by Bohachevsky, Johnson, and Stein 1, 12].

BJS “General” Simulated Annealing Algorithm
1. Set fo = f(zo)- If [fo — fm| <€, stop.

2. Generate n independent standard normal variates Y7,Y5,...,Y, Let
Ui=Y/(Y2+Y2+.. .+ YD) 2 fori=1,2,...,n.

3. Set z* = zo + (Ar)U.

4. If z* is not in the feasible set, return to step 2, otherwise, set f; =

f(z*) and Af = f1 — fo.

5. If f1 < fo, set o = z* and fo = f1. If | fo — fm| < €, stop. Otherwise,
go to step 2.

6. If f1 > fo, set p = exp(—BfJAS).
7. Generate a uniform #(0,1) random variate V. If V > p, go to step 2.
IfV < p, set zop = z*, fo = f1 and go to step 2.

It is clear that the above algorithm contains a fair amount of things that
are a bit arbitrary. These include

e Step size Ar
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g
o f3

o fm, assumed value of the global minimum

Before the advent of simulated annealing, investigators tried to seek path-
ways to the global optimum by starting at a random selection of starting
points. Such a multistart approach is still a good idea. Taking a set of local
minima obtained from different starting points, one might try a number
of strategies of starting from each of the local minima and conducting a
random search in hyperspheres around each to see whether better minima
might be obtained, and so on. Any simulated annealing approach will be,
effectively, a random search on a set much smaller than the entire feasible
region of the parameter space. We should despair, in general, of coming up
with a fool-proof method for finding a global optimum that will work with
any and all continuous functions. Much of the supposed success of simu-
lated annealing, as opposed to the kind of multistart algorithm, is probably
a result of the very fast computers that simulated annealers tended to have
available.

11.5 Exploration and Estimation in High
Dimensions

The power of the modern digital computer enables us realistically to carry
out analysis for data of higher dimensionality. Since the important intro-
duction of exploratory data analysis in the 1970s, a great deal of effort
has been expended in creating computer algorithms for visual analysis of
data. One major advantage of EDA compared to classical procedures is
a diminished dependency on assumptions of normality. However, for the
higher-dimensional situation, visualization has serious deficiencies, because
it tends to involve projection into two or three dimensions.

What are typical structures for data in high dimensions? This is a ques-
tion whose answer is only very imperfectly understood at the present time.
Some possible candidates are:

1. Gaussian-like structure in all dimensions.

2. High signal-to-noise ratio in only one, two, or three dimensions, with
only noise appearing in the others. Significant departures from Gaus-
sianity.

3. System of solar systems. That is, clusters of structure about modes
of high density, with mostly empty space away from the local modes.
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4. High signal-to-noise ratio along curved manifolds. Again the astro-
nomical analogy is tempting, one appearance being similar to that of
spiral nebulae.

For structure 1, classical analytical tools are likely to prove sufficient. For
structure 2, EDA techniques, including nonparametric function estimation
and other nonparametric procedures will generally suffice. Since human
beings manage to cope, more or less, using procedures which are no more
than three- or four-dimensional, it might be tempting to assume that stuc-
ture 2 is somehow a natural universal rule. Such an assumption would
be incredibly anthropomorphic, and we do not choose, at this juncture, to
make it. For structure 3, the technique investigated by Thompson and his
students [2, 6—8] is the finding of modes, utilizing these as base camps for
further investigation. For structure 4, very little successful work has been
done. Yet the presence of such phenomena as diverse in size as spiral nebu-
lae and DNA shows that such structures are naturally occurring. One way
in which the astronomical analogy is deceptively simple is that astronom-
ical problems are generally concerned with relatively low dimensionality.
By the time we get past four dimensions, we really are in terra incog-
nita insofar as the statistical literature is concerned. One hears a great
deal about the “curse of dimensionality.” The difficulty of dealing with
higher-dimensional non-Gaussian data is currently a reality. However, for
higher-dimensional Gaussian data, knowledge of data in additional dimen-
sions provides additional information. So may it also be for non-Gaussian
data, if we understood the underlying structure.

Here, we are concerned mainly with structure 3. Mode finding is based
on the mean update algorithm (MUA) 2, 6, 7, 18]:

Mean Update Algorithm
Let 4i; be the initial guess
Let m be a fixed parameter;
1=1;
Repeat until 4531 = 4i;
Begin
Find the sample points { X1, X2, ..., Xm} which are closest to pu;
Let piyy = 2 Z;n:1 Xj;
i=i+1;
end.

Let us consider a sample from a bivariate distribution centered at (0,0).
The human eye easily picks the (0,0) point as a promising candidate for the
“location” of the distribution. Such a Gestaltic visualization analysis is not
as usable in higher dimensions. We will be advocating such an automated
technique as the mean update algorithm. Let us examine Figure 11.6.
Suppose that we have only one dimension of data. Starting at the projection
of 0 on the x-axis, let us find the two nearest neighbors on the z-axis.
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Taking the average of these, brings us to the 1 on the z-axis. And there
the algorithm stalls, at quite a distance from the origin.
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Figure 11.6. Mean update estimation of mode.

Howeveer, if we use the full two dimensional data, we note that the al-
gorithm does not stall until point 3, a good deal closer to the origin. So
increased dimensionality need not be a curse. Here, we note it to be a
blessing.

Let us take this observation further. Suppose we are seeking the location
of the minor mode in a data set which (unbeknownst to us) turns out to be

f(z) = 3N(x;.051,I) + .7TN(z;2.4471,1). (11.8)

If we have a sample of size 100 from this density and use the mean update
algorithm, we can measure the effectiveness of the MUA with increasing
dimensionality using the criterion function

r
MSE(R) = ~ (35 — ) (11.9)

=1

Below we consider numerical averaging over 25 simulations, each of size
100.
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Table 11.2. Mean Square Errors |

P m MSE |
1 20 0.6371
3 20 0.2856
5 20 0.0735
10 20 0.0612
15 20 0.0520

We note in Table 11.2, how, as the dimensionality increases, essentially
all of the 20 nearest neighbors come from the minor mode, approaching the
idealized MSE of 0.05 as p goes to co. Subsequent work [6] has shown that
for multiple modes in dimensions five and over, the MUA appears to find,
automatically, which points to associate with each mode, so that even for
mixtures of rather taily distributions such as T'(3), we come close to the
idealized MSE for the location of each mode, namely, 1/(np) where n is the
total sample size and p is the proportion of the data coming from the mode.
So far from being a curse, an increasing dimensionality can be an enormous
blessing. We really have no very good insights yet as to what happens
in, say, 8-space. This examination of higher-dimensional data is likely to
be one of the big deals in statistical analysis for the next 50 years. The
examination of data in higher-dimensions is made possible by the modern
computer. If we force ourselves, as is currently fashionable, to deal with
higher-dimensional data by visualization techniques (and hence projections
into 3-space) we pay an enormous price and, quite possibly, miss out on the
benefits of high-dimensional examination of data.

The analogy we shall employ is that of moving through space until we
find a “center” of locally high density. We continue the process until we
have found the local modes for the data set. These can be used as centers
for local density estimation, possibly nonparametric, possibly parametric
(e.g., locally Gaussian). It turns out, as we shall see, that finding local
modes in high dimensions can be achieved effectively with sample sizes
orders of magnitude below those generally considered necessary for density
estimation in high dimensions [14—16]. Moreover, as a practical matter,
once we have found the modes in a data set, we will have frequently gleaned
the most important information in the data, rather like the mean in a one-
dimensional data set.

Let us suppose that we have, using each data point from the data set of
size n as a starting point, found mm apparent local modes. As a second
step, let us develop an algorithm for consolidating the apparent local modes
to something more representative of the underlying distribution. There are
many ways to carry out the aggregation part of the algorithm. This is only
one of the possibilities.

Take two of the local modes, say M; and M;. Examine the volume Vi .,
required to get, say, m nearest neighbors of M; and V3, required to get,
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say, m nearest neighbors of Ms. Standing at the midpoint between M; and
M,, say, My2, draw a sphere of volume Vi2,, = Vim + Vo,m. Suppose
that the number of distinct points in the pooled clouds is mj2. Suppose
that the hypersphere centered at M 2 has a density as high as that in the
other two clouds. Let the number of points falling inside the hypersphere
centered at M 2 be n1 2. Then if the number of data points falling inside
that hypersphere is greater than the 5th percentile of a binomial variate of
size m;2 and with p = 0.5, we perform a condensation step by replacing
the two modes M; and M3 by M, 2 as shown in Figure 11.7.

200 12d Simulated Data Points DataslterOne Condensation

., .i ~ H
.t N ‘ \
Data after Two Condensations Final Estimate of Four Modes

- ot

- - . [

Figure 11.7. Condensation progression using MUA.

To examine the progression of the condensation algorithm, we simulate
200 data points from a mixture of four 12-dimensional normal distributions
with mixture weights .40, .24, .19, and .17. The four modes are well esti-
mated both in terms of numerosity and location even for such a small data
set.

Let us apply Elliott’s version [6, 7] of the MUA to the much-studied
Fisher—Anderson iris data. This is a database of three varieties of iris with
50 observations from each of the varieties. The algorithm found four (see
Table 11.4) rather than the hoped-for three clusters shown in Table 11.3.

Table 11.3. Fisher—Anderson Iris Data.
Species Sepal Length Sepal Width Petal Length Petal Width
Setosa 5.006 3.428 1.462 0.246
Versicolor 5.936 2.770 4.260 1.326
Virginica 6.588 2.974 5.552 2.026
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Table 11.4. Estimated Modes Based on 150 Observations

Species Sepal Length Sepal Width Pet. Lgth Pet. Width
Setosa 4.992 3.411 1.462 225
Versicolor 5.642 2.696 4.101 1.267
Virginica 6.762 3.067 5.589 2.218
Versi/Virgin. 6.249 2.893 4.837 1.591

At first, we feared that some fundamental flaw had crept into the algorithm,
which had always performed quite predictably on simulated data. Later,
it seemed plausible, based on the fact Verginica and Versicolor always
spontaneously hybridize and that it is almost impossible not to have this
hybrid present, to believe our eyes. The fourth mode had occurred, in fact,
almost precisely at the mean of the Verginica and Versicolor modes. This
was a rather surprising result, apparently unnoticed in the some fifty years
since the Fisher—Anderson iris data became something of a test bed for
measuring the effectiveness of discrimination and clustering algorithms.
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Figure 11.8. Mode finding when scales of underlying mixtures
are very different.

In another application, Elliott and Thompson 6] have examined a four di-
mensional ballistics data set of size 944 kindly provided by Malcolm Taylor
of the Army Research Laboratory. Consider the two-dimensional projec-
tions displayed in Figure 11.8. Our algorithm was able to find modes from
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overlapping subpopulations whose scales differed by nearly 1000. We see
in the top left quadrant of Figure 11.8 a two-dimensional projection of the
data set. The top right quadrant gives the three estimated modes. In the
lower left quadrant, we have zoomed in on the cluster in the lower left of
the data set. In the lower right quadrant, we have zoomed in to a scale
1073 of that used in the display of the raw data. As we have seen, even in
data sets of dimensionality as low as four, there seems to be appearing a
big bonus for the extra dimension(s) past three for finding modes.

Mean update algorithms show great promise for exploratory purposes.
The problem of nonparametric function estimation is one to which some of
us at Rice University have given some attention for a number of years. Our
foray into the higher dimensions has produced a number of surprises. The
notion that increasing dimensionality is a “curse” seems only to be true
if we insist on graphical approaches. Our multidimensional mode—finding
algorithm dramatically improves with increasing dimensionality.

Problems

11.1. In optimization examples, perhaps the easiest problem is that of
finding the minimum of the dot product. Consider finding the minimum of

J1(8) =62 + 62 + 83 + 2¢

where € is N (0,1). Examine the performance of both the Nelder—Mead
and Box—Hunter algorithms.

11.2. A somewhat more difficult minimization case study is that of the
Rosenbrock function with additive Gaussian noise

J2(8) = 100(8% — 62)2 + (1 - 61)* + 1 +¢,

where ¢ is A'(0,1). Examine the performance of both the Nelder—Mead
and Box—Hunter algorithms.

11.3. Returning to the problem in Section 5.4.1, generate a set of times
of discovery of secondary tumor (time measured in months past discovery
and removal of primary) of 400 patients with a = .17 x 10~%, b = .23 x
10~8, a = .31, and A = .0030. Using SIMEST, see if you can recover the
true parameter values from various starting values, using the Box—Hunter
algorithm.

11.4. Consider the density function
f(z) = 0.5N(z;0.551,T) + 0.3N (z; 21, I) + 0.2N(z; 21, 1)

Generate random samples of size 100 for dimensions 2, 3, 4, 5, and 10.
Examine the efficacy of the MUA in finding the centers of the three distri-
butions.
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Chapter 12

Utility and Group
Preference

12.1 Introduction

If our analysis consisted simply in trying to see what the dollar value of
a stock might be six months from today, that would be difficult enough.
But analysis of the market is complicated by the fact that it is not simply
the dollar value that is of interest. A thousand dollars is not necessarily of
the same subjective value to investor A and investor B. It is actually this
difference in personal utilities which helps create markets.

Narratives concerning the differing values of the same property to indi-
viduals of differing means go back into antiquity. Around 1035 B.C., the
Prophet Nathan told about a rich man with many flocks who slaughtered
the sole lamb of a poor man rather than kill one of his own (2 Samuel 1:12).
King David was enraged to hear of the deed and promised harsh justice to
the evil rich man. One lamb means more to a poor man than to a man with
many lambs. (Of course, then Nathan dropped the punch line which had
to do with David having had Uriah killed, so that David could gain access
to Uriah’s wife Bathsheba. The parable was about King David himself.) In
the New Testament Jesus tells of a poor widow whose gift to the Temple
of two mites, a small multiple of lowest currency in the realm, had moral
value more than the magnificent gifts of the very wealthy, since the widow
had given away everything she had.

All this more or less resonates with us as a matter of common sense. We
understand that the gain or loss of a small amount of property means much
more to a poor person than it does to a wealthy one. Although the effect
of present wealth on the utility of the gain of a certain amount of money

O Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.
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had been clear for millenia, it seems that no attempt had been made un-
til 1738 A.D. to come up with a quantitative measure of the relationship
between present wealth and marginal gain. In that year, the Swiss proto-
statistician Daniel Bernoulli published “Exposition of a New Theory on the
Measurement of Risk” [3]. In this paper Bernoulli laid the basis of utility
theory. Before starting our discussion of Bernoulli’s paper, we should note
that utility theory today in market modeling does not have quite the rel-
evance one might have supposed in the golden age of utility theory, which
ended some time before 1970. To many, a dollar is a dollar, regardless of
one’s wealth. That is unfortunate, for as we shall emphasize repeatedly
in this text, markets are made by diverse individuals who view the same
commodity or security quite differently from one another. Prices are most
efficiently determined by a jostling of buyers and sellers who come together
with different notions of utility and arrive at a trading price by agreement.

When governments or agencies attempt to enforce fair pricing, disaster
is generally the result, even when the government is really high-minded and
has worthy goals. As an extreme example, during the general uprising of
the population of Warsaw against the Nazis in August of 1944, things were
going rather badly for the Poles. Even clean water was all but impossible
to obtain. Some industrious peasants from the suburbs who had access
to water carrier wagons loaded up from the family wells and, risking life
and limb, delivered water to the freedom fighters for a price well above the
peace time price of fresh water. What was a fair price for water delivered to
patriots fighting to the death for the freedom of the nation? The freedom
fighter high command decided it was zero and had the water vendors shot.
Of course this marked the end of fresh water, but at least a politically
correct fair price for water for freedom fighters had been enforced. Fresh
water was both free and unavailable. “Nothin’ ain’t worth nothin’, but it’s
free.”

12.2 The St. Petersburg Paradox

Many are familiar with the following apparently paradoxical question:

How much should you be willing to pay to play a game in
which a coin is repeatedly tossed until the first heads? If the
first heads appears on the first toss, you will receive 2! = 2
dollars. If the first heads appears on the second toss, you will
receive 22 = 4 dollars. If the first heads appears on the kth
toss, you receive 2* dollars. The game terminates on the round
where the first heads is obtained.

Now, on the average the expectation of the pay-off in this game is

k=00 1
V=§2"(§)"=1+1+...=oo, (12.1)
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The expected payoff in the game is infinity. Would anybody pay a million
dollars to play this game? Very likely, the answer is negative. Possibly
somebody who was already incredibly rich might do it, for the chances of
tossing 19 straight tails is small (one in 2!9 = 524,288). A poor person
might be unwilling to pay more than two dollars, the minimum possible
pay-off of the game. There is, it would appear, a relationship between one’s
wealth and the amount one would pay to play this paradoxical game. But
things are more complicated than that. It really is the case that simply
looking at the expected value of the game does not tell the whole story
unless the game is replayed a very large number of times.

As we shall discuss later on, it is customary to talk about the expected
value of an investment and also about its volatility (standard deviation).
But the fact is that these two numbers generally will not give an investor
all the information to determine whether an investment is attractive or not.
Now, for the St. Petersburg game, we know that the probability that the
player will realize at least ($2)%*! is given (for k = 1,2,...) by!

. Ely g

- Z(‘z‘ =(5)" (12.2)
j=1

The player cannot make less than $2. But what is the probability that he
will make at least, say, $10247 From (12.2), the answer is 1/2° = 1/512 =
.001953. This would be roughly two chances in a thousand. Probably, the
player would dismiss such an event as being very unlikely. In Figure 12.1,
we give a profile showing the probabilities that the player will make at least
various amounts of dollars.

The probability profile gives a reasonable insight as to why the St. Pe-
tersburg game is not worth the expectation of payoff, in this case c0.2 We
believe that, for most players, most of the time, it is advisable to look at
the entire probability profile when deciding whether an investment suits
the investor. Most investors will not be as impressed with the fact that
the expected value of the game is infinity as they would with the fact that
in only two chances out of a thousand will the game produce winnings in
excess of $1000. Looking at the overall picture, half the time, a player will
make at least $4. He will never make less than $2. One-fourth of the time,
he will make at least $8. One-eighth of the time he will make at least $16,
etc. In deciding how much he will wager to play the game, the player should
have the entire probability profile at his disposal, not simply the mean and
standard deviation. At the end of the day, the player must decide how
much he is willing to pay to play. In other words, he must combine the
entire probability profile into his decision, “Yea or nay.” It is tempting to

1Here we are using the fact that a series of the form 1 +r +r2 4+ 93 4 ... 49" =
(1 —r")/(1 — r) if r is greater than 0 and less than 1.

21t is interesting to note, of course, that no gambling house exists which could pay
ool
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create a deus ez machina which will automatically decide how much one
should pay to play the game. The expected value is such a rule, and we
have seen that it does not work.
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Figure 12.1. Probability profile of log;(winnings).
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The situation where the utility function U is the dollar value of game
payoff is a special case of the class of reasonable utilities. Here, the utility
is linear in dollar pay-off, i.e., the relation between utility U and payoff X
is given by

U(X)=a+ BX. (12.3)
We note that if we used any function which grows more slowly than X,
then, for the coin flipping example under consideration,

k=00
_v— ky(Lye
EUX)=V= ; U2 (3) (12.4)
is finite. For example, suppose we consider U(X) = v/X, then we have
EU(X)) = kZ_: VeE(3) (12.5)
k=00
= z 27k/2 (12.6)
1 1 1
_ _1_ 1
S V21-1/V2
1

= &4 (12.8)

35
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Another popular utility function isthe logarithm U(X) = log(X). Here,
for the coin-flipping problem 3

k=00

3 log((2)(3)* (129)
k=1

k=00

log() 3. K3)*
k=1
4log(2).

Again, it should be emphasized that for most investors, looking at the
expected utility will be at best a poor substitute for looking at the entire
probability profile of the utilities. We consider such a profile in Figure 12.2
where probability of making at least a value of utiles as those given on
the abscissa is plotted for the case where log(winnings) is the utility. We
note that we have the same probability masses as in Figure 12.1. Only the
abscissa axis has changed, since we are looking at log, (winnings) as opposed
to log,(winnings) (where e = 2.7183). Most investors could work just as
well with Figure 12.1 as with Figure 12.2, even if their utility function
were log,. We really can get into trouble if we do not look at the entire
probability profile (which could appropriately also be referred to as a risk
profile). If we decide to make our decision based on one summary number,
such as the expected value of the utility, we can quite easily lose our grasp
of what the numbers are telling us.

EU(X))

0w - .

0 -

s -

07 -
Prob(I_Itilitsz)(m _
os - -
4 -

3 -
02 -
01 -

00 1 i
0 2 4 6 8 10

Figure 12.2. Probability profile of log(winnings).

Generally speaking, reasonable candidates for utility should be nonde-
creasing in capital. That is, by increasing one’s capital, one’s utility does

3Here we use the fact that 1/(1 — y)% = Ziz‘;" ky*.
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not decrease. There are, of course, exceptions to this rather reasonable
assumption. As with most exceptions to rationality, these are generally
state imposed. For example, during the Socialist government of Olaf Palme
in Sweden, graduated tax rates actually got over 100%. In Lenin’s war
to break the power of free agriculture in Ukraine, “kulaks” (kulek means
“fist”) were defined to be peasants with over a certain modest amount of
holdings. If one had a bit less than the boundary value, one was (for the
time) left alone. But over the value, one was shot. Similarly, in the Red
controlled areas of Spain during the Civil War (1936—1939), there was a
critical boundary between who was a peasant and who was a “landlord.”

The marginal utility of a new increment or decrement of wealth is clearly
a personal matter related to one’s wealth. The loss of ten thousand dollars
is trivial to a wealthy person. To someone in the lower income brackets, it
may be ruinous.

“A billion here, a billion there,” can be easily be doled out by an Amer-
ican politician at the national level. An incremental dollar has utility de-
pendent, somehow, on the assets of the person(s) considered. This rather
obvious fact can be used for many purposes, including graduated taxation.
Here we simply wish to consider the matter from the standpoint of its
practical implications.

One can argue, as did Bernoulli, that the marginal increase in a person’s
wealth by a profit should be measured as a ratio of the new profit to the
assets already in hand before the profit was realized. Expressing this in
symbols, where U is the utility, k is a constant of proportionality, X is
the base amount of wealth, and AX is the change in that wealth, one can
write? AX

AU = k—. (12.10)
This, then, says that an increase in wealth of one dollar changes the utility
of a person with beginning wealth of $100 the same as an increase in wealth
of $1,000 has for a person with beginning wealth of $100,000. This “law”
of Bernoulli’s is, of course, not really a law but rather an assumption with
shortcomings. For example, if both of these hypothetical persons have a
child being held for a ransom of $101,000, then the wealthier individual can
buy his child’s freedom, whereas the poorer one is as far away from achieving
the goal with $101 as with $100. On the other hand, if the ransom is $101,
then the poorer person’s utility goes up much more with the addition of one
dollar than that of the richer one with the addition of $1,000. These are
both examples of “step function” utilities, and Bernoulli wanted to look at
a smooth utility. Objections can be raised that utility functions which have
critical jumps up or down are not realistic. The thousands of bankruptcies
experienced in the United States yearly would seem to be an example of
step function realities.

4If the initial capital is X, then (2.9) is satisfied by U(X, AX) = log[(X + AX)/X].
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Having noted that Bernoulli discovered an insight rather than a law,
we must concede that his insight was valuable. Generally speaking, when
starting to understand a new concept, it is good to try and reason from an
example, even a hypothetical one. Bernoulli gave a hypothetical example
based on Caius, a fictitious merchant of St. Petersburg, Russia, who was
contemplating whether he should take insurance on a shipment from Am-
sterdam to St. Petersburg. The shipment, upon delivery, provides Caius
with 10,000 rubles. But storms are such that, on the average, 5% will be lost
at sea. The Amsterdam underwriters want a full covered policy payment of
800 rubles, or 8% of the profit if no mishap occurs. Should Caius buy the
policy? His expected value if he does not is 9,500 rubles. The underwrit-
ers are clearly demanding a premium of 300 rubles above their expected
payout. Is it worth it for Caius to purchase the policy or to “self-insure”?
If we go by naive ruble values, then he should self-insure. But if Caius
follows Bernoulli’s advice, he should buy the policy if his expected utility
for insuring is greater than that for not insuring. Let us suppose Caius’s
capital is X rubles. We shall, without loss of generality, take k = 1, since
any k will change both the insured and self-insured options in the same
way. Then Caius’s expected utility of not insuring minus that of insuring
is given by

(12.11)

f(X) = 95log [w ] — log [M] .

X X

Setting f(X) = 0, we can easily solve the resulting equation using Newton’s
Method (see Appendix B at the end of this book).

 f(Xn)
FXn)

Starting with 5000 rubles as our first guess, we arrive at the indifference
value of 5042 rubles. If Caius has less than this amount, he should (accord-
ing to Bernoulli), buy the 800 ruble policy. If he has more, he should self
insure (i.e., not buy the insurance).

Next, let us ask the question as to how much the underwriter (insurer)
should have in hand in order to sell the 10,000 ruble policy for the amount
of 800 rubles. Let Y be the assets of the underwriter. Then he should sell
the policy if his assets exceed the Y value in

Xn+1 = Xn

(12.12)

Y + 800
Y

’ﬂﬁ?ﬁ’.} . (12.13)

} + .05log [ %

Again, using Newton’s method, we find that if the underwriter has a stake
of 14,242 rubles or more, Bernoulli’s rule tells us that selling the policy will
improve the underwriter’s position. Going further, let us ask the question
as to what is the minimum price the underwriter might reasonably sell the

g(Y) = 951log [
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10,000 ruble policy if the underwriter has capital of one million rubles. To
achieve this, we simply solve

108 + W 108 + W — 104
108 108

The solution here tells us that the underwriter with capital of 1,000,000
rubles might reasonably sell the 10,000 ruble policy for 502.4 rubles. But
Caius, if he has capital of 5,042 rubles, say, would find it reasonable to pay
up to 800 rubles. Thus, the underwriter is in a position to get more than
his own indifference value for the trade (502.4). Naturally, the underwriter
is largely looking at things from his own standpoint, rather than that of
potential clients. He is only interested in the amount of the policy, the risk
to the underwriter, and charging whatever rate the market will bear. If the
underwriter has no competition, he must remember that there is always
competition from the merchant himself who can decide to self insure. This
is simply a manifestation of substitutability of one service by another. Still,
there is the likelihood that the presence of a second underwriter in the
Amsterdam to St. Petersburg run will drive prices downward. There is
a spread of several hundred rubles where the purchase of the policy is a
good deal, from a utility standpoint, for both underwriter and the insured
merchant.

Note that in the above example, if the underwriter sells Caius a policy
for 650 rubles, then Caius has a good deal. He has the policy for less than
his utility function would make him willing to pay. And the underwriter has
a good deal also, for he is well above the minimum rate his utility function
dictates. Here is an example of the reason transactions take place, for the
deal is good for both parties from the standpoints of their respective utili-
ties. In a true free trade situation where there are a number of merchants
and several underwriters, there will be a jostling back and forth of rates.
The change in riskiness of the transit due to weather, war, pirates, etc.,
will be a major driver in the change of rates. They will never stop their
fluctuation, though at any given point in time, the cost of a 10,000 ruble
policy will be similar from all of the underwriters. It is the difference in
utility functions (driven in part by wealth status) as well as the difference
in personal views as to the value of a commodity or service that cause mar-
kets to exist at all. If Caius were willing to buy the policy for no more than
800 rubles and the underwriter were only willing to sell it for 850 rubles,
then no transaction would take place. By jostling and haggling, any given
selling price will be in the “comfort intervals” of both buyer and seller. The
buyer would always have been willing to have paid a bit more than he did,
the seller always to have taken a bit less.

Human nature being what it is, there will be an attempt by the under-
writers to combine together to set the rates at an unnaturally high level.
They may even decide “for the good of the public” to have the Czar set
the rates. These will tend to be rates determined by the St. Petersburg

h(W) = 0.95 log [ ] +0.05log [ (12.14)
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Association of Underwriters, and thus on the high side. On the other hand,
the Patriotic Association of Merchants will try and get the rates lowered,
particularly for favored clients. But the creation of fixed rates will indeed
“stabilize” the market by fixing the rates. Statist intervention, then, is
really the only means of arriving at a “stable” market. Otherwise, the
rates will fluctuate, and there will always be a market opportunity for an
insurance agent continually to negotiate with all the underwriters to obtain
better deals for the merchants the agent represents.

The presence of variation in market prices over time is woefully mis-
understood. So far from being evidence of chaos in the market, variation
represents a stabilizing continuum of adjustments to the ever changing re-
alities of the market, including the goals, expectations and situations of
the persons and institutions taking part in the market. One example of the
destabilizing effects of statist efforts to “stabilize” markets is rationing. An-
other is the fixing of prices at arbitrary levels. In “People’s” Poland before
the Communists lost power on June 4, 1989, the retail price of milk was set
by the government at one generally below the cost of production. There was
little collectivization in Poland, so the state was forced to buy milk from
independent farmers. It could, naturally, have paid the farmers something
greater than the cost of production by using state funds. It chose, rather,
to force each farmer to deliver a certain quantity of milk to the state at
a price which was generally below the cost of production. Naturally, the
milk sold to the state had a water content considerably in excess of that of
milk which comes straight from the cow. The price stabilized milk that was
made available to the populace had some similarities with milk, but was
something rather different, and it varied greatly in quality from day to day,
from location to location. On the other hand, the state turned more or less
a blind eye to farmers selling a portion of their milk on the black (aka free)
market. Occasionally (once every several years) a “speculator” was shot,
but this was pro forma. Even under Russian control, some realism was ever
present in the European satellites. Black market milk was expensive, and,
since it was produced and vended under irregular conditions, the quality
was variable. Those who could afford to do so generally would strike a deal
with one particular farmer for deliveries of milk on a regular basis. Most
city dwellers, however, were stuck with price stabilized “milk” for the fifty
years of Soviet occupation.

There is much to fault with Bernoulli’s treatment of utility. First of
all, we can observe that the conditions of trade he posed were somewhat
strange. Generally speaking, Caius would have to buy the goods for ship-
ment. A more accurate way to pose the problem, perhaps, would be one in
which Caius has acquired goods in Amsterdam for which he paid, say, 6000
rubles. He can sell the goods in St. Petersburg for 10,000 rubles. When
he buys his insurance policy, he may well have to settle for insuring at the
amount of purchase. Caius may own his own ship, in which case, insuring
the value of the ship is another consideration. And so on. But Bernoulli
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has revealed a most important point: the marginal value of a dollar varies
depending on the financial status of the person involved. Such differences in
utility from person to person should not pass unnoticed. It is one (though
not the only one) reason that markets exist at all. Another problem with
Bernoulli’s treatment is that everything is based on the expected value of
the utility. In order for an investment to have low risk, we need to know
that the probability of a large loss is small. The risk profile cannot be
captured by the expected utility or any other single number.

12.3 von Neumann—Morgenstern Utility

It is generally not a very good idea to assume a utility function for a par-
ticular individual concerning a set of possible transactions contemplated by
an individual. A financial advisor who simply assumed, say, a logarithmic
or square root relation between various returns and the utility of a client
is making an unnecessary assumption. Utility being a matter of personal
assessment, it is frequently possible to come up with a series of questions
which would enable us to extract the implied utility of the various choices.
von Neumann and Morgenstern [6] have given us a set of axioms which
should be satisfied by the preferences of a rational person. These are

1. Transitivity. If the subject is indifferent between outcomes A and
B, and also between B and C, he must be indifferent between A and
C. Symbolically, AZB and BEC = AZC.

2. Continuity of preferences. If A is preferred to B and B is preferred
to no change, then there is a probability @ (0 < a < 1), such that the
subject is indifferent between aA and B.

3. Independence. If A is preferred to B, then for any probability
(0<a<1) aA+ (1 — a)B is preferred to B. (An equivalent axiom
says that if AZB,then aAZaB.)

4. Desire for high probability of success. If A is preferred to no
change, and if &y > aq, then a; A is preferred to azA.

5. Compound probabilities. If one is indifferent between A and B,
and if @ = ajag, then one is indifferent between aja2A and B. In
other words, if the outcomes of one risky event are other risky events,
the subject should act only on the basis of final outcomes and their
associated probabilities.

Let us now go through the largely psychometric exercise for determining
a subject’s utility function and his/her willingness to accept risk. First of
all, notice that all of this discussion abandons the world where utility is
linear in dollars. We shall talk of a new currency, called utiles. This is,
by the way, an interpolation rule. We will not feel very comfortable about
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extrapolating outside the interval where our client can answer the questions
we shall pose. We will start, then, with a range of dollar assets, say $0 to
$1,000,000. We need to define a utility nondecreasing in dollars. It turns
out that our hypothetical client has a utility function equal to the square
root of the amount of dollars (he does not necessarily realize this, but
the answers to our questions will reveal this to be the case). We need to
define the utility at the two endpoints. So, we decide (ourselves, without
consulting yet the client) that U($0) = 0 utiles and U($1, 000, 000) = 1, 000
utiles.

Q. How much would you be willing to pay for a lottery ticket
offering a 50-50 chance of $1,000,000 or $ 0?

A. The client responds “$250,000.” (Of course, we recognize
the expectation in utile scale as being .5x 0 utiles + 0.5x 1,000
utiles = 500 utiles.)

Q. How much would you pay for a 50-50 chance of $250,000 or
nothing?

A. The client responds “$62,500” (which we recognize to be the
expectation on the utile scale, .5x 0 utiles + 0.5 x 500 utiles =
250 utiles).

Q. How much would you pay for a 50-50 chance of $62,500 or
nothing?

A.The client responds “$15,625” (which we recognize to be the
expectation on the utile scale, .5x 0 utiles + .5x250 utiles =
125 utiles).

The above analysis is consistent with the

Utility Maxim of von Neumann and Morgenstern. The
utility of a game (risky event) is not the utility of the expected
value of the game but rather the expected value of the utilities
associated with the outcomes of the game.

In Figure 12.3, we give a spline smoothed plot using the Q&A. We note
that if all we had was the three questions and their answers, we would
see a plot virtually indistinguishable from what we know the functional
relationship is between utiles and dollars, namely

U(X) = VX.
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Figure 12.3. Empirically determined utility function.

Now, we recall that our client may not know that his utility is the square
root of dollars. But his answers to our three questions give us a graph
which is essentially equivalent to the square root.5

We can now ask the following question: How much is it worth to the
client to receive the payoffs $10,000 with probability .3, $90,000 with proba-
bility 0.5, and $490,000 with probability 0.2? Now, the naive answer would
be that associated with the assumption that the utility of the client is
simply the dollar amount:

E(X) = .3 x 10,000 + 0.5 x 90,000 + 0.2 x 490,000 = 146, 000.

But we have already determined that the utility function of the client is
not dollars but the square root of dollars. This gives us:

E(U(X)) = .3 x /10,000 + 5 x /90,000 + .2 x 1/490,000 = 320 utiles.

Going to Figure 12.3 (or recalling the X = U?2), we have that our client
should consider a sure payment of 3202 = $102,400 to be the value of the
game to himself /herself.

Let us consider several scenarios each having expected utility value 500
utiles.

e A. A cash gift of $250,000 = /250,000= 500 utiles. Here E(X)
= $250,000. The standard deviation of the dollar payout is 04 =
/(250,000 — 250,000)2 = $0

5Economists derive the notion of “diminishing marginal utility” from functions of this
sort.
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e B. A game which pays $90,000 with probability .5 and $490,000 with
probability .5. Here E(U) = .5 x/30,000 + .5 x./490,000 = .5x
300 + .5x 700 = 500 utiles. E(X) =.5x $90,000 + .5 x $490,000 =
$290,000. o = \/.5(90, 000 — 290, 000)2 + .5(490,000 — 290, 000)2=
$200,000.

e C. A game which pays $90,000 with probability .5 and $490,000 with
probability .5. Here, E(U) = .5 x,/30,000 + .5 x /890,000 = 500
utiles. E(X) = .5x $90,000 + .5 x $810,000 = $400,000. The stan-
dard deviation of the dollar output is given by o¢c =
+/-5(90, 000 — 400, 000)2 + .5(810,000 — 400,000)2 = $400,000.

e D. A game which pays $1,000,000 with probability .5 and $0 with
probability .5. Here E(U) = .5 x 0 + .5 x+/1,000,000 = 500 utiles.
E(X) = .5 x $1,000,000 = $500,000.
op = 1/.5(1,000,000 — 500,000)2 + .5(0 — 500,000)2= $500,000.

In Figure 12.3, we show the indifference curve for various games each having
a value of 500 utiles.

500,000
400,000
300,000

200,000

Standard Deviation

100,000

1 1 1 1

1
300,000 400,000 500,000
EX)

Figure 12.4. o versus expected payoff with E(U) = 500 utiles.

We note the typical increase in expected payoff as the games become more
risky. We note that the von Neumann-Morgenstern utility paradigm enables
us to assess a rational choice system for a client who has no real notion
of mathematical modeling, provided he or she can answer a few questions
concerning indifference to choice between a sure thing and a set of particular
games.

One major reason for the functioning of a market is that individuals
and corporations will have different utilities for the same thing. Suppose
that everybody valued a stock at $100. What would be the incentive for
the owner of such a stock to sell it at less than $100? He might need money
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for some other purpose. Perhaps he knows of another stock that is selling
for $99 which is worth to him $110. In that case, he might be willing to
sell his share of stock for $99 because he could then use the money to make
a net profit. But if all stocks, services and other properties were evaluated
by all people the same, that would stifle the market.

Let us consider a bar of soap selling in a shop for one dollar. To the
owner of the shop, the bar of soap is worth less than a dollar, or she would
not sell it for a dollar. To the customer who buys the bar of soap, it is
probably worth more than a dollar (to see that this is so, we need only ask
whether the customer would buy the soap bar for $1.01.) The price of sale,
from the standpoints of the buyer and the seller, is in the interval between
what the vendor values the soap and that which the buyer values the soap
(assuming the former is less than the latter, for otherwise no voluntary
transaction will occur). A transaction at any price within the internal will
be Pareto preferred to no transaction, as one on both parties will be better
off without any party being worse off. However, there is no “scientific”
basis for selecting a price within the interval, because each price is Pareto
optimal (a movement from any price to any other price would make one
of the parties worse off). A price outside of the interval will only generate
transactions through coercion, because one of the parties will be worse off
than not transacting at all. For every value within that interval, we have
achieved Pareto efficiency, i.e., the vendor is getting more than he values the
bar of soap and the purchaser is buying it for less than he values it. The task
of the merchant is to raise the price as high as possible without exceeding
the valuation of a significant fraction of his customers. Any notion of fair
market price, a one price for the same item, is achievable only in a state
controlled situation. And such statist controlled prices generally produce
absurdities.

In Soviet-controlled Poland, the state suppressed the price of bread to
well below the cost of production. It made this work, in part, by forcing the
farmers (Poland’s farms were privately owned and operated, for the most
part, even during the Russian occupation) to sell a certain fraction of their
wheat below the cost of production. The price of pork, however, was not
so artificially depressed. So some clever peasants became rich by buying
stale bread and feeding it to their pigs. It was difficult for the authorities to
overcome this strategy, since there was really no other good set of buyers for
stale bread. The best that could be done was to raise the price of stale bread
to nearly that of fresh bread. Ultimately, the only good solution (to escape
embarrassment of the officials) was to raise the price of fresh bread as well.
A market with set prices is very much like a cardiac patient who takes
one medication for his heart plus three other medications to counteract
bad side effects of the heart medication plus five additional medications to
counteract the bad side effects of the three medications taken to counteract
the effects of the primary heart medication.
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12.4 Creating a “St. Petersburg Trust”

In the Enlightenment world of Daniel Bernoulli, neat and concise answers
to virtually any problem were deemed possible if one only had the right
insight. In our modern world, we understand that there is likely to be some
arbitrariness in most simple solutions. All the notions of utility, at which
we have looked, have some underlying assumption that if one only looks at
the proper function of wealth, then decisions become rather clear, using a
simple stochastic (probabilistic) model, relying on a few summary numbers,
such as expected value. By constructing a utility function and then looking
at its expected value in the light of a particular policy, Bernoulli thought
he could capture the entire profile of risk and gain. Simply looking at a
utility linear in money came up, in the case of the St. Petersburg game,
with an absurd result, infinite gain. So, Bernoulli constructed other utility
functions which had other than infinite expectation for the St. Petersburg
game. He really did not, however, achieve his goal: reducing the entire
prospectus of the gain to one scalar number. Moreover, market decisions
these days are still based on dollars—not logarithms of dollars or square
roots of dollars. This is surely evidence that utility theory has not lived up
to the hope some have held for it.

The real essence of constructing a risk profile has to do with looking at
the stochastic process that underlies the investment being considered. (For
detailed information concerning stochastic processes, the reader is referred
to the Appendix A at the end of this book.) We need to look at the
probabilities of various results which might be obtained and decide, in the
aggregate, whether the deal appears good. Of course, at the end of the
day, we must make a decision whether to take the deal or turn it down.
However, we believe that this is better done from the risk profile (time
slices of the cumulative distribution function of the payoff) than from a one
dimensional summary number (which, of course, expectation is).

In our postmodern world, in which few things are really simple, we
should take a different view. It could be argued that Bernoulli was en-
chanted with the notion that a benevolent Providence had constructed the
universe in structures selected to make them easy for human beings to un-
derstand. Or, he might have taken the nominalist (essentially, postmodern)
view of William of Ockham that “truth” was a matter simply of fashion,
so one might as well pick the simplest model that seemed, more or less,
to work. After all, Bernoulli had no notion of fast computing, a primitive
slide rule being the hottest computer available.

The view we shall take is that one should try to use any means avail-
able to get close to the truth (and we do not put quotes around the word),
realizing we will generally use a model at variance with reality, but hope-
fully not too far from it. Bernoulli’s consideration of a game with infinite
expected payoff was unfortunate. In the first place, one should ask who
the croupier would be for such a game. Beyond that, games with infinite
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expectation do not correspond to any real world economic situation (again,
we notice that no casino in the world can offer a payout of co. Everyone
places some maximum betting limit—perhaps high for “high rollers” but
not cc.) Finally, as we show below, a game with an infinite expected value
can be diddled in such a way that a clever player can come up with a very
high gain with high probability.

Next, we will perform some computer simulations to try and understand
better the St. Petersburg Paradox. First of all, we will follow the common
policy of not using a utility function formally, but only implicitly. If we play
the game for $2 payoffs, we get a false sense of value. So let us make the
payoffs to be in the $2 million range. Suppose we take a reasonably well-
to-do individual and ask how much he would pay to play the game using
the profile in Figure 12.1. We note that the investor cannot make less than
$2 million. So that is an obvious floor. We recall that the expected payoff
of the game is infinite, but the chance of making more than $2 million is
only 50%. The chance of making more than $4 million is only 25%. The
chance of making more than, say, $5 million is also 25%. If the person’s
total assets are, say, $5 million, it is hard to believe he will be willing to pay
the full $5 million to play the game, even knowing that there is a $2 million
floor below which he cannot fall. Rather clearly, he would be willing to
pay, say, $2.1 million to play. For figures between, say $2.4 million and $5
million, we would see a variety of decisions made by the variety of possible
players, depending upon their incomes, ages, psychology, and so on. Will
the decision be made on the basis of expected winnings? Of course not. It
will be made utilizing the entire information given in Figure 12.1.

Next, let us see whether the investor can structure the game somewhat
differently. Suppose he notes the possibility of arranging things so that
another investor and he form a trust and strike an agreement with the house
that each will play the game for half the payoffs and the winnings will be
pooled and divided by two. In this case, we note that both players may get
heads first toss. In that case, the pooled winnings will be $2,000,000. This
occurs with probability 0.50 x 0.50 = 0.25. Suppose the first player gets
heads first time, but the second gets tails first time immediately followed by
heads. That would result in net winnings of $3,000,000. Or it could be the
first player gets tails first, then heads. Again, net winnings of $3,000,000.
The probability of one or the other of these is 2 x 0.5 x 0.25 = 0.25. Next,
they could both toss TH for a total winning of $4,000,000. The probability
of this is 0.25 x 0.25 = 0.125. So, then, the probability that the trust wins
more than $2,000,000 is 1 — 0.25 = 0.75. The probability the trust wins
more than $4,000,000 is 1 — 0.25 — 0.25 — 0.125 = 0.375. According to the
original game in which only one player plays, these probabilities were .50
and 0.25, respectively. Clearly, the idea of playing according to each player
playing for half the pay-offs of the original game rules is a good one. We can
carry out computer simulations for games with varying numbers of players:
one, ten, one hundred, one thousand. We show the probability profile in
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Figure 12.5 where sums are in millions of dollars.

Here we see the advantage which can be achieved by pooling in the
rather stylized St. Petersburg Paradox situation. With 1,000 investors
participating, the probability of the trust winning a total in excess of nine
million dollars is 90%. For the same game played by one investor, the
probability of winning in excess of nine million dollars is less than 10%.

It would be a fine thing if there were some sort of way we might develop
a portfolio or trust fund which mimicked the strategy above for dealing with
Bernoulli’s St. Petersburg scenario. Alas, the author is unable to point out
such a strategy. Essentially, our “trust strategy” uses the fact that sample
means converge, with increasing sample size, to the mean (expected value)
of the population. In the St. Petersburg case, this value is infinite. Nature
and the market do not tend to provide such opportunities.

40

30

(million}slof dollars)

20

10

0 20 40 .60 .80 1.00

P(winnings = y)
Figure 12.5. Probability profile for St. Petersburg trust.

There are other flaws with the St. Petersburg scenario of Bernoulli. For
example, the coin throws are taken to occur with constant probability. But
storms in the North Atlantic and Baltic are not of constant probability of
occurrence. A heavy storm period will increase the risks to all shipping
during that period. This happens also in markets. There will be periods of
bull market growth across the market. And there will be periods of bear
market declines. There may be safe harbors during the bear market times.
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But very frequently, as in the 2000—2001 case, a bear market will adversely
affect most securities.

Perhaps the bottom line in our analysis of the St. Petersburg Paradox
is that by examining the full probability profile instead of simply looking
at the expected value of utility, we can gain something of an understanding
of what is going on. We replace arbitrary formalism and a simple answer
with a more complicated, albeit more insightful analysis. Moreover, the real
world may not be one of risk but rather varying degrees of hazy uncertainty.
Finally, almost all people violate the axioms anyway. That is why they
purchase insurance on one day and go to Las Vegas on the next!

12.5 Some Problems with Aggregate Choice
Behavior

So far, we have been concerned with the utility—based choices made by
individuals. We now look at the pooling of individual choices to obtain
pooled choices of groups of individuals. A key part of our treatment will
be to show Kenneth Arrow’s proof [1] that rational rules for preferences
among individuals do not translate into the same rules for the group. We
esgentially follow the treatment given by Thompson (5] in Empirical Model
Building.

To begin, we have a collection of n individuals {1,2,...,n} = G. The
task confronting the individuals is to rank their preferences amongst at
least three decisions D = {a, b,c,...}. By a>1b, we mean that the first
individual in the group prefers a to b. By a>gb, we mean that the group
as a whole prefers a to b, i.e., whatever the underlying mechanism used to
obtain group consensus, the group picks a over b.

Suppose we have the following four axioms for pooling individual pref-
erences into group decision making:

1. For a particular set of individual preferences, suppose the group prefers
a to b (a-gb). Then, suppose that some of the individuals change
their preferences in such a way that preferences for a over b are un-
changed or increased in a’s favor, and that each individual’s preference
between a and any alternative other than b are unchanged. Then, the
group preference for a over b is maintained.

2. (Axiom of the Irrelevant Alternative.) Suppose that the group prefers
a to b. Then, some of the individual preferences between alternatives
other than a and b are changed, but the preferences between a and b
are unchanged. Then, the group preference for a over b is maintained.

3. For any pair of alternatives a and b, there is some collection of indi-
vidual preferences for which a>gb.
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4. (Axiom of Disallowing Dictators). No individual in the group has such
influence that if he or she prefers a to b, and every other member of
the group ranks b over a, then a>¢gb.

Arrow’s Impossibility Theorem. If Axioms 1-3 hold, then Axiom 4
cannot hold, assuming there are two or more decision makers and three or
more possible decisions.®

Definition: Suppose we have k > 3 mutually exclusive decisions for which
each of n > 2 voters have ordered preferences. Let P={P;, Pa,..., P}
represent the ordered preferences (profile) of each of the individual voters.
Let J be a subset of the set of individual voters G and a and b be included
among the set of decisions D. If, for all the individuals in J, aP;b (i.e.,
a>b), we then say that P is J — favored for (a,b). If for all the individuals
not in J, bP,a, then we say that J is strictly J— favored.

Definition: Suppose that the fact that all members in J favor a over b
implies that a F(P) b, where F is the group decision rule (aka “social utility
function”) which integrates the preferences of the individual voters into a
group decision for P (i.e., we suppose that all the members in subset J
deciding for a over b will cause the consensus of the entire group P to
prefer a over b.) Then we say that J is decisive for (a,b).

Definition: A minimal decisive set J is a subset of G which is decisive for
some (@, b) and which has the property that no subset of J is decisive for

6Before proving the theorem, we note that all the axioms appear quite reasonable at
first glance, somewhat less so upon closer inspection. For example, even in North Korea,
the Supreme Leader could not make policy opposed by everyone else on the Politburo.
But then, it is not hard to consider examples where dictators are possible. For example,
a person owning 51% of the stock of a company can make policy disagreerd to by all
the other shareholders. Then, again, looking at the Axiom of the Irrelevant Alternative,
suppose there are two Republican candidates, one strongly pro life, the other strongly pro
choice. 51% of the party strongly supports the pro life position, the other 49% strongly
supports the pro choice position. If the vote were held between these two, the strongly
pro life candidate would win the primary. Of course, this would be done in the light of
the general election, where the Democrats would then be able to capture the votes of
many pro choice Republicans. But then, a third feasible candidate appears, one who is
mildly pro life. In all probability, this third candidate will get the nomination. Clearly,
in bringing forward this example, we have used the fact that decisions are seldom stand
alone. It is the knowledge of the general election which will cause some of the strongly
pro life Republicans to consider voting for the mildly pro life candidate. But let us
suppose the four axioms above are all satisfied. Then, Arrow shows that they cannot be
all satisfied. It is simply an impossibility. Fundamentally, the reason for this fact has
to do with the fact that although in one-dimensional space, it is easy to make orderings
(for example, clearly 2>1), it is not nonarbitrarily possible in higher dimensional spaces
(for example, we cannot say that (2,1)>(1,3) nor that (1,3)>(2,1), unless we arbitrarily
impose a one-dimensional structure onto the two-dimensional space; but if we use as
the criterion the sum of squares of the components, then we can say that (1,3)>(2,1),
since 12 4+ 32 > 22 4 12, Having said this, we shall go through Arrow’s Impossibility
Theorem in part to show how much more important are insight and conjecture than
theorem proving ability in the acquisition of Nobel Prizes. The proof is rather easy. The
conjecture (which is what a theorem is before it has been proved) is profound, and its
consequences are important in the consideration of efficient market theory.
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any other pair of decisions.

Lemma 12.1. Assume Axioms 1—4. Then J is decisive for (a,b) if and
only if there is a set of preferences which are strictly J — favored for (a,b)
and for which aF(P) b.

Proof. Suppose J is decisive for (a,b). Then any strictly J — favored for
(a, b) profile has a F(P)b.

Next, suppose there is a profile P that is strictly J — favored for (a,b) and
for which aF(P )b. Then, every voter in J prefers a to b. But since P is
strictly J —~ favored for (a,b), we know that voters in G — J all prefer b to
a. Let P’ be some other J — favored for (a,b) profile. For all voters in J,
a is preferred to b for this second profile. Thus, insofar as voters in J are
concerned, they all prefer a to b for both P and P’. But for G — J, all the
voters, following profile P prefer b to a. Nevertheless, aF(P )b. However,
for profile P’ it is possible some voters in G — J prefer a to b. By Axiom 1,
then, it must be true that a (P’ )b. Hence, J is decisive for (a, b).

Lemma 12.2. Assuming all the four axioms to be true, the entire group
G is decisive for every (a, b).

Proof. Suppose every voter in G prefers a to b, but that bF(P )a. By Axiom
3, there must be some profile P such that aF(P)b. Now, if every voter in
G prefers a to b, but the group decision is for b over a, then changing some
of the voters’ preferences to b over a can only (by Axiom 1) strengthen the
group resolve to prefer b over a. That would contradict Axiom 3, for then
there would be no profile P such that aF(P)b. Hence, G is decisive for
every (a, b).

Next, let J be a minimal decisive set. We know there is a decisive set,
since the preceding lemma proved that G is decisive for every (a,b). So,
we can remove individuals from G until one more removal would no longer
give a decisive set. Pick one of the voters j from the minimal decisive set
J. We shall prove that j must be a dictator, contrary to Axiom 4.

Suppose J is decisive for (a,b). Pick another decision ¢ which is neither
a nor b. Consider the profile shown in Table 2.1.

Table 12.1.
P;foriin J—j P;forinotinJ P;
c b a
a c b
b a c

D — {a,b,c} D - {a,b,c} D — {a,b,c}

By construction, J is decisive for (a, b). Thus aF(P)b. We note that P is
strictly J — j favored for (c, b). Thus, if cF(P)b, then by Lemma 2.1, J — j



JEFFERSONIAN REALITIES 293

would be decisive for (c, b) contrary to the assumption that J is a minimal
decisive set. Thus, c is not favored over b by the group, and a is favored
over b by the group.

Consequently, we have two possible scenarios for the preference of the
group: either a is preferred to b is preferred to c or a is preferred to b and
¢ and the group ties b and ¢. Then, in both cases, we have a F(P)b. But j
is the only voter who prefers a to ¢. Thus, by Lemma 12.1, j is decisive for
(a,c). Thus j cannot be a proper subset of j, i.e., j = J. So far we have
shown that j is decisive for (a,c) for any ¢ # a.

Next, we shall establish that j is decisive for (d, ¢) for any d, ¢ not equal
to a. Consider the profile in Table 12.2.

Table 12.2.
P, Pifori#j
d c
a d

a

c
D -{a,c,d} D -{a,c,d}

Note that the entire set G is decisive for any pair of decisions as we have
proved in Lemma 12.2. Hence, dF(P)a. Thus the group as a whole ranks
d over a and ranks a over c. Thus, dF(P)c. Therefore, by Lemma 2.1, j is
decisive for (d, ¢).

Finally, we shall demonstrate that j is decisive for (d,a) whenever d # a.
Consider the profile in Table 12.3.

Table 12.3.
Py P, fori#3j
d c
c a
a d

D —{a,c,d} D - {a,c,d}

As j is decisive for (d,c), we have dF(P)a. But j is the only individual
preferring d to a. Hence, j is a dictator, contrary to Axiom 4, and the
theorem is proved!

12.6 Jeffersonian Realities

Arrow’s Impossibility Theorem was perceived intuitively by earlier social
scientists. Vilfredo Pareto, for example, whose father had labored his en-
tire life to bring forth an enlightened Jeffersonian democratic system to
Italy, and who himself believed in the feasibility of such a system until well
into middle age, finally opined that all social systems would naturally be
controlled not by an orderly pooling of individual preferences, but rather
by a circle of elites. In his youth, Pareto assumed that the twin pillars of



294 UTILITY AND GROUP PREFERENCE

Jeffersonian government and Adam Smith policies toward free trade would
bring economies and governments into a state of efficiency and optimality.
Let us look at Arrow’s result in the context of Jeffersonian performance
as opposed to Jeffersonian ideals. In 1792, the Congress was confronted
with the task of deciding how many members of the House of Represen-
tatives would be allocated to each state. Alexander Hamilton, the alleged
opponent of states’ rights, proposed the following rule:

Hamilton’s Rule. Pick the size of the House = n . Divide the
voting population N; of the jth state by the total population N
to give a ratio r;. Multiply this ratio by n to give the quota g;
of seats for the jth state. If this quota is less than one, give the
state one seat. Give each state the number of representatives
equal to the integer part of its quota. Then rank the remainders
of the quotas in descending order. Proceeding down the list, give
one additional seat to each state until the size of the House n
has been equaled.

The method of Hamilton has firmly embodied in it the notion of the state as
the basic entity of indirect democracy. Once the number of Representatives
had been arrived at by a comparison of the populations of the several states,
the congressional districts could be apportioned by the state legislatures
within the states. But the indivisible unit of comparison was that of state
population. If one conducts a poll of educated Americans and asks how
seats in the House of Representatives are apportioned amonggst the several
states, much the most popular rule given is that of Hamilton. It is a very
intuitive rule. Furthermore, if we let a; be the ultimate allocation of seats
to each state, then Hamilton’s Rule minimizes

k
> las —ail, (12.15)
j=1

(i.e., Hamilton’s Rule minimizes the sum of the discrepancies between the
allocations obtainable without consideration of states and those with the
notion of noncrossover of state boundaries to obtain districts.)”

"Census figures are from Balinski and Young [2].
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| Table 12.4. Method of Hamilton. |

State Population | Quota Hamiltonian Voters per
Allocation Seat
Connecticut 236,841 7.860 8 29,605
Delaware 55,540 1.843 2 27,770
Georgia 70, 835 2.351 2 35,417
Kentucky 68,705 2.280 2 34,353
Maryland 278,514 9.243 9 30,946
Massachusetts 475,327 15.774 16 29,708
New Hampshire 141,822 4.707 5 28,364
New Jersey 179,570 5.959 6 29,928
New York 331,589 11.004 11 30,144
North Carolina 353,523 11.732 12 29,460
Pennsylvania 432,879 14.366 14 30,919
Rhode Island 68,446 2.271 2 34,223
South Carolina 206,236 6.844 7 29,462
Vermont 85,533 2.839 3 28,511
Virginia 630,560 20.926 21 30,027
| Total 3,615,920 120 120 |

It is interesting to note that the first Congressional Senate and House
passed a bill embodying the method of Hamilton and the suggested size
of 120 seats. That the bill was vetoed by President George Washington
and a subsequent method, that of Thomas Jefferson, was ultimately passed
and signed into law is an interesting exercise in Realpolitik. The most
advantaged state by the Hamiltonian rule was Delaware, which received a
seat for every 27,770 of its citizens. The most disadvantaged was Georgia
which received a seat for every 35,417 of its citizens. Jefferson’s Virginia
was treated about the same as Hamilton’s New York with a representative
for every 30,027 and 30,144 citizens, respectively. The discrepancy between
the most favored state and the least favored was around 28%, a large num-
ber of which the supporters of the bill were well aware. The allocation
proposed by Hamilton in 1792 did not particularly favor small states. In
general, however, if we assume that a state’s likelihood of being rounded
up or down is independent of its size, the method of Hamilton will favor
somewhat the smaller states if our consideration is the number of voters
per seat. But Hamilton, who was from one of the larger states and who
is generally regarded as favoring a strong centralized government which
de-emphasized the power of the states, is here to be seen as the clear prin-
cipled champion of states’ rights and was apparently willing to give some
advantage to the smaller states as being consistent with, and an extension
of, the notion that each state was to have at least one Representative. Now
let us consider the position of Thomas Jefferson, the legendary defender of
states’ rights. Jefferson was, of course, from the largest of the states, Vir-
ginia. He was loathe to see a system instituted until it had been properly
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manipulated to enhance, to the maximum degree possible, the influence of
Virginia. Unfortunately for Jefferson, one of the best scientific and math-
ematical minds in the United States who undoubtedly recognized at least
an imprecisely stated version of (12.15), the result in (12.15) guaranteed
that there was no other way than Hamilton’s to come up with a reasonable
allocation rule fully consistent with the notion of states’ rights. Given a
choice between states’ rights and an enhancement of the power of Virginia,
Jefferson came up with a rule which would help Virginia, even at some
cost to his own principles. Jefferson arrived at his method of allocation by
departing from the states as the indivisible political units. We consider the
method of Jeffersonas follows:

Jefferson’s Rule. Pick the size of the House = n . Find a
divisor d so that the integer parts of the quotients of the states
when divided by d sum to n. Then assign to each state the
integer part of N;/d.

We note that the notion of a divisor d is an entity which points toward
House allocation which could occur if state boundaries did not stand in the
way of a national assembly without the hindrance of state boundaries. Let
us note the effect of Jefferson’s method using the same census figures as in
Table 12.4.

We note that the discrepancy in the number of voters per representative
varies more with Jefferson’s method than with Hamilton’s—94% versus
28%. In the first exercise of the Presidential veto, Washington, persuaded
by Jefferson, killed the bill embodying the method of Hamilton, paving the
way for the use of Jefferson’s method using a divisor of 33,000 and a total
House size of 105. Let us examine the differences between the method of
Hamilton and that of Jefferson.

The only practical difference between the two allocation systems is to
take away one of Delaware’s two seats and give it to Virginia. The dif-
ference between the maximum and the minimum number of voters per
seat is not diminished using the Jeffersonian method which turns out to
give a relative inequity of 88%; for the Hamiltonian method the difference
is a more modest 57%. The method of Jefferson favors the larger states
pure and simple. Jefferson essentially presented George Washington and
Congress with a black box and the message that to use Hamilton’s Rule
would be unsophisticated, whereas Jefferson’s Rule was somehow very po-
litically correct. It worked. Congress approved the method of Jefferson,
and this method was in use until after the census of 1850 at which time the
method of Hamilton was installed and kept in use until it was modified by
a Democratic Congress in 1941 in favor of yet another scheme.



JEFFERSONIAN REALITIES 297

| Table 12.5. Method of Jefferson (divisor of 27,500). |

State | Population Quotient | Jeffersonian |  Voters
Allocation Seat
CN 236,841 8.310 8 29,605
DE 55,540 1.949 1 55,540
GA 70, 835 2.485 2 35,417
KY 68,705 2.411 2 34,353
MD 278,514 9.772 9 30,946
MA 475,327 16.678 16 29,708
NH 141,822 4.976 4 35,456
NJ 179,570 6.301 6 29,928
NY 331,589 11.635 11 30,144
NC 353,523 12.404 12 29,460
PA 432,879 15.189 15 28,859
RI 68,446 2.402 2 34,223
SC 206,236 7.236 7 29,462
VE 85,533 3.001 3 28,511
VA 630,560 22.125 22 28,662
| Total | 3,615,920 126.88 | 120 |

We have in the 1792 controversy a clear example of the influence on
consensus of one individual who passionately and cleverly advances a pol-
icy about which his colleagues have little concern and less understanding.
Jefferson was the best mathematician involved in the Congressional discus-
sions, and he sold his colleagues on a plan in the fairness of which one must
doubt he truly believed.

Table 12.6. Allocations of Hamilton and Jefferson.

State Population H J  Voters/Seat Voters/Seat
Hamilton Jefferson
CN 236,841 7 7 33,834 33,834
DE 55,540 2 1 27,220 55,440
GA 70, 835 2 2 35,417 35,417
KY 68,705 2 2 34,353 34,353
MD 278,514 8 8 34,814 34,814
MA 475,327 14 14 33,952 33,952
NH 141,822 4 4 35,455 35,455
NJ 179,570 5 5 35,914 35,914
NY 331,589 10 10 33,159 33,159
NC 353,523 10 10 35,352 35,352
PA 432,879 13 13 33,298 33,298
RI 68,446 2 2 34,223 34,223
SC 206,236 7 7 29,462 29,462
VE 85,533 2 2 42,766 42,776
VA 630,560 18 19 35,031 33,187

Total 3,615,920 106 106
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Naturally, as the large state bias of the method of Jefferson began to be
understood, it was inevitable that someone would suggest a plan that, some-
what symmetrically to Jefferson’s method, would favor the small states. We
have such a scheme proposed by John Quincy Adams.

John Quincy Adams’s Rule. Pick the size of the House =
n. Find a divisor d so that the integer parts of the quotients
(when divided by d) plus 1 for each of the states sum to n. Then
assign to each state the integer part of N;/d + 1.

The plan of Adams gives the same kind of advantage to the small states
that that of Jefferson gives to the large states. Needless to say, it has never
been used in this country or any other (although amazingly, Jefferson’s
has). It is interesting to note that Adams, instead of saying, “I see what’s
going on. Let’s go to Hamilton’s Rule,” tried to do for the small states the
same thing Jefferson had done for the large states.

It is interesting to note that Daniel Webster attempted to come up with
a plan which was intermediate to that of Jefferson’s and that of Adams.
He noted that whereas Jefferson rounded the quotient down to the next
smallest integer, Adams rounded up to the next largest integer. Webster,
who was a man of incredible intuition, suggested that fractions above .5
be rounded upward, those below 0.5 be rounded downward. From the
1830’s until 1850 there was very active discussion about the unfairness
of the method of Jefferson and a search for alternatives. It was finally
decided to pick Hamilton’s method, but Webster’s was almost selected and
it was a contender as recently as 1941. As it turns out, there is very little
practical difference between the method of Hamilton and that of Webster.
Both methods would have given identical allocations from the beginning
of the Republic until 1900. Since that time, the differences between the
two methods usually involve one seat per census. The method of Hamilton
was replaced in 1941 by one advocated by Edward Huntington, Professor of
Mathematics at Harvard. Huntington, instead of having the division point
of fractions to be rounded up and rounded down to one half, advocated
that if the size of the quotient of a state were denoted by N;/d then the
dividing point below which rounding down would be indicated would be the
geometric mean /[N;/d]([N;/d] + 1), where [.] denotes “integer part of.”
One might say that such a method violates the notion that such methods
should be kept simple. Furthermore, the rounding boundaries do increase
slightly as the size of the state increases, giving an apparent advantage
to the smaller states. At the last minute, the more popular method of
Webster was rejected in favor of that of Huntington, since its application
using the 1940 census would give a seat to Democratic Arkansas rather
than to Republican Michigan. The Huntington method is in use to this day,
though not one American in a thousand is aware of the fact. And indeed,
it is not a very important issue whether we use the method of Hamilton or
that of Webster or that of Huntington or even that of Jefferson or that of
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Adams. Not one significant piece of legislation would have changed during
the course of the Republic if any one of them were chosen. The subject of
apportionment possibly receives more attention than practicality warrants.

But looking over the history of the apportionment rule should give pause
to those among us who believe in the pristine purity of the Founding Fathers
and the idea that there was a time when Platonic philosophers ruled the
land with no thought except virtue and fair play. Jefferson, the noblest and
wisest and purest of them all, was working for the advantage for his state
under the guise of fairness and sophistication. And George Washington, the
Father of his Country, was tricked into using the first veto in the history of
the Republic to stop a good rule and put one of lesser quality in its place.
All this, in the name of being a good Enlightenment chief of state.

Arrow (1] proved mathematically what Machiavelli had observed and
Pareto had described as being part of a general taxonomy of political be-
havior: in economics, politics and society generally: important public pol-
icy decisions are not made as the orderly aggregation of collective wisdom.
Group decisions are made using mechanisms we do not clearly understand
(and, as Pareto urged, we really should try without passion to learn these
mechanisms). It appears that insiders have a great deal to do with these
decisions. Sometimes, as when Robert Rubin, Secretary of the Treasury,
rushed in to secure Mexican loans made by American financial institutions,
including that of which he had been boss, Goldman-Sachs, one may raise
an eyebrow. Of course, he could respond that he was just following an
example set by arguably the smartest and most idealistic President in the
history of the Republic. Then again, we have the Federal Reserve Board in
recent years presenting the stock market with frequent “Gotcha!” type sur-
prises. What sort of efficiency is possible in a market where interest rates
are changed at the whim of Alan Greenspan and his fellows? Then there
is the matter of anti-trust law. Should a CEO be careful lest his company
be so successful that it is dismembered by the Attorney General?

Some years ago, the author was consultant to a firm that had a well-
designed plan to raise chickens in Yucatan according to the notions of mod-
ern poultry husbandry. In order to purchase buildings, poultry, land, and
equipment, the firm had to convert millions of dollars of cash from dollars
into pesos. It did so on the Friday before the deals were to be paid for on
Monday. During the week-end, the President of Mexico devalued the peso
hugely, wiping out the cash reserves of the firm. Naturally, on Monday,
all the Mexican parties from whom land, structures, equipment, poultry,
etc., were to be purchased, changed their peso prices hugely upward to
reflect the devaluation. (It turns out that prior to the devaluation, the
President of Mexico had leveraged his own cash assets to purchase a num-
ber of villas in Mexico.) Such surprises are hardly helpful to facilitating
market efficiency. One may well ask how an investor can cope with such
inefficiency producing spikes in the market. Pareto’s answer is that one
had better learn how to do precisely that, for such is the real world. There
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is indeed a tendency towards efficiency in most markets. But this is only
part of the market mechanism. In our study, we model an efficient market
tendency and then look at what happens when varieties of contaminating
mechanisms are superimposed upon it.

12.7 Conclusions

In this chapter on utility, we have started with Enlightenment assurance
as to the way rational people should make choices. The buttressing of
Bernoulli by von Neumann and Morgenstern seemed very promising indeed.
But then we ran into Arrow and looked back to Pareto and (shudder)
Thomas Jefferson. And we became less confident about the orderliness of
the way aggregate decisions are made. In Mind and Society, Pareto tells us
that in reality many decisions are made with results which are the equal in
consequence of any Adam Smith might have made. The market may not be
efficient; politicians may not be clones of Lucius Quintus Cincinnatus; but
in some societies (and Pareto always had great hopes for the United States),
the market moves toward efficiency, and political decisions are frequently
Cincinnatus-like in their consequences. The West and its economies are not
at all chaotic. There is a tendency toward efficiency. But it is ridiculous
if we assume efficient markets as an iron law, and then fudge when our
illusions are challenged by reality. In this book, we shall assume a more or
less efficient driver for a given market situation with departures therefrom
taken cognizance of empirically by perturbations to the model.

Problems

12.1. Sempronius owns goods at home worth a total of 4,000 ducats and
in addition possesses 8000 ducats of commodities in foreign countries from
where they can be transported only by sea. However, our daily experience
teaches us that of ten ships, one perishes.

(a) What is Sempronius’ expectation of the commodities?

(b) By how much would his expectation improve if he trusted them equally
to two ships?

(c) What is the limit of his expectation as he trusted them to increasing
numbers of ships?
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12.2. Let us use Bernoulli’s logarithmic utility function

X+8)
o

U(X) = log(

where O is one’s initial wealth. Would it be rational to play a game where
there is a finite probability of losing all one’s wealth? Why? How might
this result be rationalized? Why, in modern first world society, might it be
said that is impossible to lose all one’s wealth?

12.3. Suppose a woman were offered either a certain $230 or a 50—50
chance of $400 or $100. Which option should be taken if:

(a) She possesses a square root utility function,
(b) A Bernoulli utility function with initial wealth of $1,000,

(c) The same as 2, with initial wealth of $100?

12.4. Consider the section on von Neumann—Morgenstern utility.

(a) Determine the certain sum for which the subject in the example would
relinquish the following opportunity:

W Probability
40,000 4
160,000 4
250,000 2

(b) Explain how von Neumann—Morgenstern Axiom 5 treats the utility
derived from gambling itself (i.e., deals with the existence of casinos).

(c) Compare the mean and standard deviation of outcomes in the example
and in (a).

(i) What are the mean and standard deviation in each case of the
certain dollar value for which the subject would be indifferent?

(ii) We now have two sets of (o, u) for each of the two opportunities.
Which of the two games (example or (a)) would the subject prefer to play?

(iii) For what probability a would he be indifferent between ax (game
he prefers) and the game he does not prefer?

12.5. For this problem, assume U = vW and U(0) = 0 and U (1,000, 000) =
1,000 utiles.
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(a) For what 0 < a < 1 would the subject be indifferent between a x
$1,000,000 and a certain $250,0007?

(b) For what a would the subject be indifferent between ax$500,000 and
(1 — a)x$200,000?

12.68. Consider the Last Shall be First Rule for establishing group prefer-
ences:

e Step 1. Select as the group choice, the candidate who was ranked
number one by a majority of the decision makers, if such a candidate
exists.

e Step 2. If no candidate received a majority of number one rankings,
then take all the preference rankings of voters who voted for the
candidate with the smallest number of first choice preferences and
treat them as if their first choice candidate is simply deleted from
their preference lists and all other candidates on their lists moved up
one rung on the preference ladder.

e Step 3. Go to Step 1.

Which of Arrow’s Axioms does this rule fail to satisfy? Discuss its ad-
vantages and disadvantages in three settings:

(a) A mayoral election in an American city of over 10,000 voters
(b) An election for a position on a university committee

(c) A decision making process for picking one of four potential new products
by a board of directors (with 20 members) of a company.

12.7. Consider the Borda Count Rule

e Step 1. Rank the preferences amongst k choices for voter i, one of n
voters.

e Step 2. For each preference a, count the number of choices below a
in the preferences of voter i. This gives us Bi(a).

e Step 3. For each choice sum the Borda counts, e.g., B(a) = 3"} B;(a).

e Step 4. The group chooses the preference with the highest Borda
count sum

A group decision rule defined on the set of all profiles (preferences) on
the set of decisions is said to be Pareto optimal if for every a and b in the



REFERENCES 303

set of decisions whenever a is ranked over b in every ranking of a profile,
then a is ranked over b in the corresponding group ranking.
Prove or disprove the following:

The Borda count rule is Pareto optimal.
12.8. Consider the following Plurality Rule: rank a over b for the group

if and only if a receives more first place votes than b. Is this rule Pareto
optimal?
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Chapter 13

A Primer in Sampling

13.1 Introduction

Typically, when we talk about sampling, we are randomly selecting a rela-
tively few items from a much larger population in order to make inferences
about that much larger popultation. If we fail to pick a subsample of the
population which is typical of the population under consideration, nothing
can save us from false conclusions. Three of the greatest statisticians of all
time, Cochran, Mosteller, and Tukey [2] in examining Kinsey’s (5] surveys
on the sexual behavior of the American male were hoodwinked by failing to
uncover the fact that a large fraction of Kinsey’s sample consisted of male
prostitutes and prison inmates. Had they probed more deeply into Kinsey’s
sampling methods, they could have spared the world years of false science.
In effect, while being somewhat critical, they gave Kinsey a pass. It serves
as an example to all persons examining sampling studies: be very careful
to vet the sampler and his/her sampling strategy.

The increasing uses of sampling are quite significant. For example, two
distinguished law professors, Walker and Monahan (7], have noted the ad-
vantages in time and cost if sampling techniques were used for assessing
damages in class action lawsuits. This would be bad news for trial lawyers,
but good news for society as a whole.

The notion of an opinion poll about various candidates comes immedi-
ately to mind. Most of the time, these opinion polls are amazingly accurate
in assessing the current opinion of the electorate even though the sample
is a tiny fraction, less than one in ten thousand, say, of the electorate. The
polls may tell a presidential candidate that he or she is so far behind in a
particular state, say less than 35% support, that it is simply pointless to
spend significant marketing resources for campaigning in that state. Or it
may tell the candidate that his or her support is so great, say over 65% that

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
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it really is not necessary to expend significant resources in that state. Typ-
ically, based on opinion polling, the candidates will expend most of their
resources in battleground states, states in which no candidate can be at
all certain about the results. Consequently, in the presidential election of
2008, neither McCain nor Obama spent significant resources campaigning
in California or Texas. In California, the polls showed Obama to be the
easy winner. In Texas, the polls showed McCain to be comfortably ahead.
Both candidates spent considerable resources in Indiana, Ohio, North Car-
olina, Virginia and Florida, for in these states neither candidate had polls
showing over 55% strength.

Such neglect by the candidates of vast segmenets of the population is one
argument used against the Electoral College, where one candidate receives
all the electoral votes of the state, and the other receives none. On the
other hand, a system whereby the President is selected on the basis of the
aggregate popular vote without regard to state boundaries, many states
would become “flyover” states. Little time would be spent campaigning in
New Hampshire or Montana or Wyoming, for there are not so many voters
in these states.

Let us next consider two states of very different population sizes, Wyoming
and Texas. Wyoming has a population of roughly 500,000 whereas Texas
has around 20,000,000. In other words, Texas has a population around 40
times that of Wyoming.

Consider a state of size N where there are M persons who prefer Obama.
Let X be the number of voters in a sample of size n who prefer Obama. We
wish to estimate the proportion of voters in the state who prefer Obama.
In Appendix A, we have shown in (A.35) that

EX)=p=mnp (13.1)

where p=M/N andqg=1—p.
In (A.38), we have shown that

E[(X — u)? = 0 = npg(N —n)/(N - 1). (13.2)

Generally, we will have a much larger population than the sample size.
For this reason, we may frequently write the variance as

Var(X) =npg (13.3)

We note that this gives us a conservative estimate for the variance of X,
(i-e., a slightly inflated one). Again, if we do not have a rough idea as to
the value of p, we might use p = 0.5, which will give an inflated estimate
for the variance.

Let us suppose we take a random sample of size 400 from the population
of Wyoming and find that 180 favor Obama. Based on our sample, the
natural estimator for p is = 180/400. What is a natural two—tailed 95%
confidence interval for p? The obvious interval will be
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b+ 1.96/ ﬁn_—@ — 045 + 0.04875. (13.4)

Now, if we should carry out the same survey in Texas, and in a sample
of size 400 received again 180 votes for Obama, we would obtain precisely
the same 95% confidence interval. Many persons confronted with this fact
for the first time are surprised that the size of the state does not enter into
the formula.

On the other hand, suppose the question was to obtain a 95% confidence
interval on the numbers of persons favoring Obama in the two states. Let
us call these two numbers My, and Mr.

Clearly then, we need to multiply by proportions confidence interval by
the populations of the two separate states. This would give us

500, 0005 % 500,000 x 1.964/ ﬁln—_-’i) (13.5)

= 225,000 = .04875 x 500,000
= 225,000 + 24,375.

Mw

For Texas we have

Mr = 20,000,000p % 20,000,000 x 1.964/ pa—ﬂ"?l (13.6)

= 9,000,000 + .04875 x 20,000,000
= 9,000,000 £ 975, 000.

Next, let us consider the situation where we have 800 samplings to use
in Wyoming and Texas. Let us suppose that our goal is to minimize the
variance of the sum of the estimated Obama voters. Our function to be
minimized (assuming the polls are independent) for the two states is

pr(1—pr)
(800 —nw)
(13.7)

Of course, if we actually knew py and pr, we would not have to take a
survey in the first place. Let us suppose, however, that we have, perhaps
on the basis or earlier surveys, have rough a priori estimates of py and
pr—say, pw and pr.

Now, both Wyoming and Texas were not very strong for Obama. Let us
assume that both states had approximately the same p for the proportion
of Obama voters.

Then,

V = Var(Mw) + Var(Mr) = 500, ooo"“’il——i‘—"’“'l + 20,000,000
w

500, 000 + 20, 000.000
nw 800 —nw

A (13.8)

V=] .
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Taking the partial derivative with respect to ny and setting the resulting
equation equal to zero, we have

gV —500,000 20,000,000
onw  nd (800 — nw)?

=0 (13.9)
This gives

39n%, + 1,600ny — 640,000 = 0 (13.10)

with the solution nyw = 109, and nt = 691.

13.1.1 Tracking Polls

Frequently, when looking at public opinion polling, there may be some
advantage to taking an exponentially weighted moving average approach.
Below, we use weight 1 — a for today’s sample proportion favoring a can-
didate, and a weight o for the past sampled proportion. So, starting with
day 1 for the first day of the tracking poll, we have

P, = py. (13.11)
Then, for the second day

P, =aps + (1 — a)P. (13.12)
Continuing in this fashion, we have by day N

Py =opny-_1+ (1 —a)Py_1. (13.13)

The tracking poll is really an exploratory device. During a campaign the
day to day and week to week values of p are likely to be changing some-
what, sometimes a great deal. By letting past week estimates influence
current week estimates of the proportion favoring a candidate the sample
size, though the process has changed, the sample size has effectivley in-
creased. If one wishes to create a sort of rough confidence interval on day
N

P =pN +1.96y/VarPy. (13.14)

We demonstrate a few steps of the temporally indexed estimation process
when a = 0.4.

Table 13.1. Weekly Estimates for p.
nj  Dj P; Var(p;) Var(P;)
100 0.400 0.40 0.0024 0.0024
105 0.42 0.408 0.0023 0.00123
110 043 0420 0.00223 0.00080
85 0428 0.420 0.00290 0.000752
100 0.48 0.4488 0.00175 0.000671

TR W PSS,



STRATIFICATION 309

It would appear that the estimates of the proportion for Obama have not
changed very much during the five week tracking period. This would be
expected if this were a rather solid Republican state in which little had
been spent in advertising either candidate. However, if we chose to look
at a 95% confidence interval about Ps, we would find the upper bound to
be 0.4488 + 0.0507 = 0.4995. Essentially, it would look like Wyoming is
moving Obama’s way. Perhaps he should not count Wyoming out.

13.2 Stratification

Suppose we wish to estimate a total of random variables in m containers.
For example, we might want to estimate the total of voters favoring a
candidate for President in m states. Or, we could be carrying out a survey
to determine an estimate for the total value of items in m warehouses. This
is a common inventory survey, which might be required for the payment of
ad valorem taxes.

Both problems can be dealt with in the same urn model fashion. Let us
start then with the situation where the N; variables in the first urn have
mean y; and variance (o;)2. Similarly, the N variables in the second urn
have mean p2 and variance 0Z. Continuing on in this fashion, we profress
to the mth urn with mean p and variance o2.

We wish to estimate

One natural procedure is to take a sample of size n; in the first urn, ns
in the second, and so on, until we have n,, in the mth urn. Using these
samples, our natural estimator is

T=NX,+NXo+ ...+ NpXpm. (13.16)

It is a fair assumption (usually) that the variables in each urn are inde-
pendent of the variables in the other urns and each other. Using squared
deviation from the true value of T as the loss function to be minimized, we
try to minimize:

Var(T) = N2Var(X,) + N2Var(X3) +...+ N2Var(X,)  (13.17)
2 3 2
= N2L 4 NZ% +... + N3 2=,

1n,

(Note how we have used independence to eliminate cross product terms.)
Now, the question becomes: If we have a total sample size across urns of

m+ng+...+ny, =n, (13.18)
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how shall we optimally allocate the samples across the m urns? Using the
method of Lagrange for optimizing T subject to the constraint in (13.18),
we have

2 F) 2
—N201 +Aa—"=— 27 F+A=0 (13.19)
ni
2U2+A 0

o 02
—Nmn—’g +A=0
1
Isolating A and using the fact that things equal to A are equal to each
other, we have

2 2 2
N N2 o o N2Im 2
=N o (13.20)
This gives
2 2 A2
s a2 N2
— = —5—=. 13.21
= AN 1321
So for each j
N
n; = "lz_ifv—i (13.22)
Thus
n = n (13.23)

And, for any other n;,

O'j j
il 13.2
n; nla 2 (13.24)

Let us return to the election poll. Suppose in state j, there are N; voters.
Suppose for each voter, the probability of each voter voting for Obama is
pj. Then

a;j = p;j(1 - p;)- (13.25)
And, remembering,

n
ny =
Pm(l—Pm Nmm
1+ 2% ”n 1—P1 + 2 1—P1 N1 Mttt le—mSi N

(13.26)
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If we have some prior information as to the various probabilitities—-say
p;— we simply substitute these values in (13.25) and (13.26).
Thus,

nj =ngL =L (13.27)

We see that as the standard deviation in urn j increases, the proportion of
the sample used in urn j increases. And, as the number of units in the urn
increases, so does the sample size in the jth urn increase.

What if our prior guesses for the proportions favoring Obama are off the
mark? Will our estimate for the total number of voters favoring a candidate
be flawed? The answer is that it will not. Our estimates for each state will
be unbiased. As long as we are using correct values for the sizes of the voter
populations on a state—by—state basis and our sampling is done randomly,
our estimate for the total number of voters favoring a candidate will be
unbiased. By using incorrect values for the p; in the formula for the sample
sizes, state by state, we will have sacrificed some efficiency in the estimation
process, but our answer will still be unbiased.

Next, let us apply stratification to an inventory problem. We have goods
in a number of oil tool warehouses. We need to come up with a reasonable
figure for the total worth of the goods on hand. In some of the warehouses,
we may have things as simple as nuts and bolts. In others, we will have
drilling bits and extenders worth many thousands of dollars. How shall we
decide where to invest our sampling of n items. A general assumption, fre-
quently a fair approximation, is that the coefficient of variation is constant
across each warehouse. That is to say, for all the warehouses

NP I (13.28)

H1 H2 Hm

And
uj N;j
n; =ng———=. 13.29
TN, ( )
where, n
n =~ N N No - (13.30)
1+ 8@+ g+ +.. +nim

13.2.1 A Warehouse Inventory

Let us suppose we have a warehouse with three different categories of items,
as in Table 13.2.

Table 13.2. Warehouse Inventory.
J_ N ti; (average value in dollars )
1 100 10,000
2 5000 500
3 25,000 5
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Then from (13.30), we have

100

1+ B00_5000 25000 — 28 (13.31)

™= 5000 . & 25,000
10,000 100 + 10,000 100

And, from (13.29),

500 5,000
5 25,000
" = 15000 100~ X 28 =4 (13.33)

13.3 The Saga of Happy Valley

It is common these days for these cities to attempt to annex affluent inde-
pendent suburban communities. The reasons for doing so are various, but
a major reason is to add the citizens of these communities to the real estate
tax rolls of the city. Of course, once the suburb has been captured by the
city, there may be some subsequent costs involved. For example, it may
be necessary to add sewer lines and water mains, provide professional (as
opposed to volunteer) fire protection, etc. One of the first things the tax
assessor will want to do is to pick houses randomly from the suburb in an
effort to determine the average value. In this way, the city authorities can
make an estimate about the real estate tax revenue which incorporation of
the suburb will add to the city’s coffers. In Table 13.3 we display the results
of such a sample. The Mayor Taxum of Monstropolis is deciding whether
to begin proceedings to annex the upper middle income suburb of Happy
Valley. The house prices may look relatively low, but these data are from
the late 1980s.

Table 13.3. Home Values.
House Number Estimated Value
$107,500
$329,000
$274,500
$174,000
$87,500
$495,500
$295,000
$310,000
$290,500
$478,000

© 00O Utk W=
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The average of the sample is computed via
X==>"x (13.34)

where X;; is the estimated value of the ith house. The rationale for using X
as an estimate for the average value of a house in this suburban community
might be

The ten houses we have examined randomly selected represent
the entire suburban community in microcosm. Within this com-
munity, each house has probability 1/10 of being selected. If we
had to pick one number to represent the idealized “representa-
tive house” from the suburb, X seems a likely candidate. So,
(13.35) represents the “world in a drop of water” estimate of
the value of a house in the community.

The expression the “world in a drop of water” goes back to ancient notions
which exist in most of the world’s major religions about some small part of
the whole being, in a sense, equivalent in kind to the whole. For example,
we find in the Koran:

5:32 That was why We laid it down for the Israelites that who-
ever killed a human being, except as a punishment for murder
or other wicked crimes, should be looked upon as though he had
killed all mankind; and that whoever saved a human life should
be regarded as though he had saved all mankind.

From a data analytical perspective, we might seem to be going back
to John Graunt’s treatment of the records of death in sixteenth—century
London. Recall that analysts prior to Graunt had insisted on looking at
each death individually, and so they could not grasp the big picture. But
Graunt was able to “see the forest” by aggregating deaths into groups
based on age at death. We are talking about grasping the details of the
forest by looking at a small subset of the trees in the forest. There might
well be 20,000 houses in the suburban community. We are not, at this
time, aggregating the houses according to some stratification rule, such as
“126 houses worth $50,000 to $75,000, 520 worth $75,001 to $90,000, etc.”
Frequently, simple economics prevents us from grabbing the entire relevant
data set. So, rather, we are saying that the ten houses we randomly selected
have price characteristics representative of the full set of 20,000 houses in
the suburban community.

The use of the sample mean X as a representative value for a much larger
set has gone on for as long as one can imagine. It is the basis of an area of
data analysis called sampling theory. But, ancient though the use of X is,
the nuances of sampling theory are by no means trivial to grasp.
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13.3.1 The Problem with Standards

Some years ago, a large manufacturer of trucks was deciding whether to ac-
cept a contract for 125,000 trucks from the U.S. Army. Everything looked
reasonable in the contract except for one stipulation. The trucks were to
be produced over a five year period at the rate of 25,000 per year. For
each year of production, an inspector from the Army would pick one of the
trucks and test it over a 100 mile stretch of road. The fuel consumption of
the truck would be compared with the target value in the manufacturer’s
specifications. If the consumption rate was less than that of the specifi-
cation, then the manufacturer would pay no penalty. However, were the
consumption greater than the specification, then the manufacturer would
pay a penalty given by subtracting the actual miles per gallon from the
specified miles per gallon and dividing this into the expected life of the
truck (100,000 miles) times $1.50 per gallon.

Although the engineers at the plant were not statisticians, they felt that

1. The specification was unusual;
2. It could make the deal risky for the manufacturer.

Now the engineers were confident that the fleet average consumption of
the 25,000 trucks would be better than the specified miles per gallon. If
the penalty were based on an orderly recording of the miles per gallon of
each truck, then they would be willing to sign off on the deal. But to base
judgments on 25,000 trucks on the performance of just one of them seemed
to be nonintuitive. Here, one truck is not a big enough drop of water to
represent the world. The Army was unwilling to go to the expense of a
record taking involving all the trucks.

How big must the sample of trucks be to come up with something fair?
This question does not go back into the mists of prehistory. It was first
considered by Karl Frederick Gauss in his lectures on the motions of comets
given at Konigsberg in 1809.

Gauss knew perfectly well how to take several estimates of speed and
combine them to give one improved good estimate of speed. This is just
the sample mean X. But he did not know how to estimate the quality of
his estimate. He tried various strategies. First, he considered looking at
the average miss of each observation from X:

n
Average Error = % Z(X,- - X). (13.35)
i=1

Suppose the sample size were two and the true value of the comet’s
velocity were 1000 kilometers per hour. Suppose we consider two possible
samplings. In the first, the measurements are 500 km/hr and 1500 km /hr.
In the second, the measurements are 999 kin/hr and 1001 km/hr. In both
cases, the Average Error is zero. But, clearly, we feel much better about X
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results based on the second set of measurements, for they are less variable.
Gauss noted that it was unacceptable to use a measure where positive and
negative errors could cancel each other.

So Gauss sought alternative measures. One that he considered, and dis-
carded, was the Mean Absolute Deviation (MAD):

1o _
MAD == - X — X|. 13.36
PR (13.36)
Actually, this is not a bad measure. Why did Gauss reject it? One reason
is the relative complexity of dealing with absolute values. In these days,
when we have computers, the M AD makes a good deal more sense than in
Gauss’s. If we try and look at the problem of finding a the value of a that
minimizes

1 n
MAD ==~ > 1Xi —al, (13.37)

the answer is not the sample mean X, that wonderful estimate which goes
back to prehistory. Moreover, the calculus developed separately by Leibnitz
and Newton finds dealing with absolute values messy.

Gauss decided to use squared deviation of the observations from the
sample mean as a practical measure of the confidence one might have in
the quality of the estimate of how well “the drop represents the world.”
For example, consider the two cases above given for the estimation of the
velocity of a comet. In the case where we have the two sets of observations
above, our two estimates are

1

82 = 3 [(500 — 1000)? + (1500 — 1000)?] = 250, 000
1

sz = 3 [(999 — 1000)? + (1001 — 1000)?] = 1,

respectively. For the first data set, most people would feel they had very
little confidence that X is close to the true velocity. For the second data
set, we have reason to suppose that the true velocity probably is very close
to 1,000 km/hr. For s2 small, we probably feel that the drop of water is
big enough to describe well the world. The statistic

1o o
$% = - > (X - X)? (13.38)

=1

is called the sample variance. The square root of s2 is called the sample
standard deviation s. Note that s and X have the same units of measure-
ment.

Of course, we need to quantify what we mean by the variance being small
or large. Small or large relative to what? The usual way to determine this is
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to divide s by X. This quantity is called the sample coefficient of variation:

cv = I—)f;(—l (13.39)

So, for two cases above, we have

s 250, 000
o= 3% \/1,000

Cv = 3 ,/1’000_.0316

Now, although it is not essential to follow convention, and sometimes it is
even bad to do so, we are going, in the future, to follow the convention,
in obtaining the sample variance of dividing through by n — 1 as opposed
to n. Obviously,for n large, it will make little difference whether we divide
by one or the other. But for n small, one advantage to dividing through
by n — 1 rather than by n is that it gives us a larger value for s2. Thus,
it makes us a bit more cautious in claiming that we have a “drop of water
large enough to describe the world.”

=15.81

13.4 To Annex or Not

Returning to our example about annexation, the mayor of Monstropolis
wants to be very sure before proceeding that the average house value in
Happy Valley is over $250,000 before proceeding with annexation. There
are numerous disadvantages to incorporation of Happy Valley, not the least
of which is that it may bring in tens of thousands of angry Republican
voters to vote against him in the next election. If he is sure the average
tax value for the houses in Happy Valley is at least $250,000, he reckons it
is worth the risk and costs to proceed with incorporation.

Performing the calculations, the mayor’s statistician, Mr. Damnlys,
quickly finds that the sample mean for house values is $284,100, comfort-
ably above the $250,000 threshold. He tells the mayor that, indeed, it
really looks as though Happy Valley houses average more than $250,000.
But Damnlys has not taken into account the variability of the data. We
compute the sample standard deviation to be equal to $136,295. And the
sample coefficient of variation is a rather large .48. Probably, the mayor
would like to be 95% sure that the Happy Valley average was at least
$250,000. Can we assure him of that?

13.4.1 The Bootstrap: The World in a Drop of Water

There are many ways we can try to answer Mayor Taxum’s question. We
are going to use the bootstrap here and quite a lot generally because



To ANNEX OR NOT 317

1. The bootstrap requires few assumptions;

2. The bootstrap intuitively gives us a practical feel as to whether “our
drop of water” is large enough for the purpose at hand;

3. It is very computer intensive, replacing human effort by computer
simulation effort.

Is the bootstrap “prehistoric” or of recent vintage? Here the answer is
ambiguous. Practically speaking, it was little used before Julian Simon [6]
used it in business courses in the 1960s (in those days, fast mainframe com-
puters, such as the IBM 7040, were becoming rather common). Although
Professor Simon used his resampling paradigm on a relatively main frame,
it is generaly available for use on most platforms at no cost. There is, for
example, the freeware site Statistics101.net. Inasmuch as it is written in
JAVA, Statitics101 will work on most platforms. A freeware manual is also
included.

At the level of mathematical statistics, the “bootstrap ” did not truly take
off until Bradley Efron [4] and his colleagues at Stanford started massively
demonstrating its use in the early 1980s. But it is also true that bootstrap-
like algorithms go back at least to Block [1] in 1960 and Dwass (3] in 1957
when the first usable and generally available digital computer, the IBM
650, was on the scene.

When you consider it, a person who, in the 1920s, say, came up with
a procedure which was practically impossible without a computer would
have been very much like a person who today would assume the existence
of an anti-gravity device as an essential part of a scheme for cheap trans-
portation. It just did not happen. The author blushes to admit that he
himself used a bootstrap-like scheme for economic forecasting purposes in
an extensive consultation in 1971. The author blushes because one really
cannot appropriately use bootstrapping for forecasting purposes. The boot-
strap essentially works for one great purpose: assessing variation and its
surrogates. As a practical matter, we will credit the bootstrap partly to
Simon and particularly to Efron. In this course, we will be using a rather
clever and compact computer package called Resampling Stats, which was
developed by Simon and his associates.

13.4.2 Resampling and Histograms

Consider the house price data in Table 13.3. There are ten house prices in
that “drop of water,” and we would like to know whether it is legitimate to
tell Mayor Taxum that he may safely assume that the average house price
in Happy Valley is at least $250,000.

1. Consider first of all that our drop of water has become our mini-
universe. We will treat the ten prices as the only values one can
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possibly get. Each of the ten house prices will have probability one-
tenth of being drawn.

2. Pick at random a house price from the list. It turns out, we pick
house price number 3, namely $274,500.

3. Pick at random, from the full list of ten, another house price. Again,
we get number 3, namely $274, 500.

4. Continue to resample from the full list of ten house prices until we
have a sample of size ten. It turns out that our sample is $107,500,
$329,000, $274,500, $274,500, $174,000,$87,500, $495,500, $495,500,
$310,000, $290,000.

5. Compute X; for this sample. It turns out to be $283,890.

6. Carry out this operation 10,000 times, saving the entire list of
X1,X2,...,X10000-

7. Sort these values and plot them in a histogram as shown in Figure
13.1.

8. See what percentage of the X; values lie to the left of $250,000.

9. Graph the results

We will now take a Grauntian step, i.e., a step of aggregation. We will
count all the X; which occur in the intervals (in increments of $10,000)
from $135,000 through $455,000. Note that, for example, the interval with
center $140,000 counts all X; values from $135,000 through $145,000. We
note that we reexpress counts as percentages in the next column; simply
divide each cell by 10,000 and multiply the resulting fraction by 100%. In
the fourth column we accumulate the percentages. We note that 24% of
the resampled X; values are less than $250,000. We must report to Mayor
Taxum that, assuming our sample of size ten is representative of the total
house population of Happy Valley, there seems to be a 24% chance that the
average value of houses there is less than $250,000. tation of the sample
cumulative distribution function, i.e., column four of Table 13.4.

A number observations < z
CDF(z) = F(z) = total number observations (13.40)




Table 13.4. Occurrence of 10,000 Bootstrapped X;.
Interval Center | Number of X; Percent | Cumulative Percent

140000
150000
160000
170000
180000
190000
200000
210000
220000
230000
240000
250000
260000
270000
280000
290000
300000
310000
320000
330000
340000
350000
360000
370000
380000
390000
400000
410000
420000
430000
440000
450000
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1
7
14
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69
110
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427
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13
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What will Mayor Taxum decide to do? One can only conjecture. If he
has other suburban areas which are more clearly ripe for the picking, he
may leave Happy Valley alone, for the time being. Or he may decide to
take a larger sample of estimated house values from Happy Valley. Clearly,
taking things to the extreme, if he can obtain estimates for all the houses in
Happy Valley, then he has eliminated any doubt as to the true value of the
average of house values for Happy Valley. Generally speaking, however, we
are driven by cost to take a sample much smaller than the entire relevant

population.
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Note that in Figure 13.1, we have essentially displayed a graphical repre-
sentation of the third column in Table 13.4. Such a representation is called
a histogram. Figure 13.1 gives a representation of the resampled house price
averages in cumulative distribution format.

Histogram of 2" in File "houseresample"
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'houseresample

‘A sample of 10 houses in Happx Valley is taken, and the average valuation is
'283,890. How sure can we be that the true average house valuation is at least
‘250,007 The sample values house valuations are listed in A.

'We use the "bootstrap” technique of drawing many bootstrap

‘resamples with replacement from the original sample, and observing

'how the resample means are distributed.

Maxsize Default 50000
COPY (107500 329000 274500 174000 87500 495500
295000 310000 290500 478000)A

REPEAT 10000 ‘Do 10000 trials or simulations

SGMPBLI(E: 10 AB '‘Draw 10 fifetimes from A, randomly and with replacement.
'Find the average lifetime of the 10

DIVIDEC10D

SCORED Z 'Keep score

END

HISTOGRAM percent Z 'Graph the experiment results.

Figure 13.3. Resampling Stats program Happy Valley Houses.

There would appear to be around a 20% chance that the $250,000 average
is overly optimistic. Mayor Taxum’s assistant, Mr. Damnlys, did not know
anything about resampling. He advised the Mayor to go ahead and annex
with confidence.

13.5 Using Sampling to Estimate Total
Population Size

One relatively easy case would be the counting of penguins on an ice shelf
in the Antarctic. Photographs from overflights would probably be fairly
accurate for simply counting the penguins, particularly if these were taken
at a time of day when the penguins were almost all at rest on the ice shelf.

Counting, say the number of robins in a county on a spring day would
be much more difficult. One could very carefully compute the number of
robins on a grid and then impute the density to be the same throughout
the county. This would be a difficult and generally dubious assumption.

For engangered species—such as the Whooping Crane—there is a very
careful and costly attempt to count nests around, say, Port Aransas, Texas,
during nesting season. Fortunately, nest counts show that this species ap-
pears to be in a state of recovery.

Careful counting procedures have established the recovery of the Ameri-
can Bald Eagle. The California Condor’s future is still in doubt, but even
with major forest fire problems in the highlands of California, there appears
to be evidence of recovery.
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13.5.1 The United States Census

For the purpose of allocating congressional seats among the several states
of the United States, the UnitedStatesConstituion provides the method
of enumeration. That means, an attempt should be made to count all U.S.
citizens residing in the United States. The Indians who chose to live on
tribal lands were treated as memebers of separate nations and were not to be
counted. Any Amerinds who chose to live in the general taxed population
were counted. The Amerind provision would seem to make clear, as to
historical precedents, that the U.S. Census was to count American citizens
and not nationals of other countries.

For the 2010 Census, the protocol has been changed to one of counting
everbody, including, for example, members of a foreign sports team taking
months long training in the USA. The headquarters of the United States
Census has actually been moved to the East Wing of the White House,
where its workings can be carefully monitored by the Obama Administra-
tion. It does not require too much cynicism to conjecture as to why this de
facto change in the Constitution has been effected.

At this time, a majority of those persons who vote Democrat pay no
income taxes at all. Nontaxpayers have a vested interest in voting for an
entitlements oriented government. Aliens who reside in the United States
make up well over 10,000,000 persons and tend to reside in areas where
poorer Americans live. Therefore, the more illwgal aliens one counts, the
more Democrat congressmen and the more electoral votes for states that
tend to vote Democrat (though not always: Texas will likely continue to
vote Republican, and the counting of illegal aliens will increase, therefore,
the weight of votes from a Republican state.)

Irregularities in voting in the United States are not uncommon. For
example, in the Election of 1960, it may well have been the case that the
political machinations of Mayor Daley in Chicago and Boss Parr in Duvall
County, Texas, may have falsely given the election to Kennedy rather than
Nixon. (In an earlier election, “missing votes” were presented by the Parr
machine in which the voters voted in alphabetical offer. In New Orleans
there is the old joke that the tombs are built above ground to make it easier
for the dead to walk to the polls and vote.)

13.5.2 Capture Recapture

Considering the wording of the Constitution, it really is not admissible for
any procedure other than enum eration to be employed. That fact will
not prevent creative wizardry going on in the East Wing for the counting
of aliens residing illegally in the United States. One of the most popular
suggestions being considered is that of “capture/recapture”.

To start with, let us consider finding the total number of fish in a lake.
We capture M fish out of a lake and tag them. The total (unknown) number
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of fish in the lake is N. After a few days, we capture z fish from the lake,
noting that z of these are tagged. Assuming no traumatization effect of the
first capture (a big assumption) we can write

M =z
v =5 (13.41)
Then we appear to have a natural estimate for NV, namely
M
N~ Tz (13.42)

Note, however, that if £ = 0, we obtain an infinite estimate for V.
One popular alternative estimator is

P (13.43)
We need to find the expectation of 37 A. Let us define p = 4.
Then, we have
E[——]= Z B gy 13.44)
1 L ErG-a P (13.
Going forward, we find after a few steps, letting z =y — 1,
1 138 (z+1)
E ==Y 2TV g1 —p)tioy, .
[:c+1] zp‘;y!(z+l—y)!p (1-p) (1345)
= i — z2+1) o .i
S (BB
Returning to (13.44) we have that
- M+1z+41
E(M)~ NS —=Z—=~N. (13.46)
Further work shows that
Var(f) » EF DM+ D — 2)(M ~ 7) (13.47)

(z+1)*(z+2)

Now, we are ready to go through a “practical” example. Suppose we go to
an area where many illegal aliens are thought to live. We use sound trucks
and flyers to inform the inhabitants that for the next week the area will
exclude INS agents and any other law enforcement official seeking to capture
illegal aliens. Then the Hispanic Census pollsters go into the neighborhood
and start looking for persons to be counted. Perhaps they offer $5 to anyone
who will fill out a verbally administered census form. We give a metal token
to the person interviewed. After a few days the Census workers return again
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offering $5 to anybody who will fill out the verbally administered census.
If the person produces the metal token, we award him or her another $5.
The results of the poll are 500 persons found on the first census. On the
second poll 1,000 persons are found. Of these 25 have the token.

Our estimate for the illegal aliens is given by

(M +1)(z +1)

N="00 T = 19,289 (13.48)
(1001)(501)(1000 — 25)(500 — 25)

(26)%(27)

How reliable would such an estimate be? Not very. Many will hide. Typ-
ically, each person paid several thousands to get here. Even the captured
fish would be sensitive to a second capture. And people are much more
clever than fish. Anything except enumeration is unconstitutional and,
almost certainly, statistically invalid.

Var(N) =

= 12,725,052  (13.49)

Problems

13.1 In a minor league, surprise drug testing was administered to 200
players, categorized by the number of homeruns hit last season.

Table 13.5. Home runs and Steroids.
Number Home runs Number Number in Sample Testing Positive

More than 30 40 30 18
15< 30 200 75 15
Number< 14 210 95 2

(a) What are the estimates for the overall percentage of drug use in the
league?

(b) What is the estimate for overall variance of the percentage?

(c) Using what you have seen from this league, using minimum total vari-
ance, find the number to be sampled in each of the three homerun groupings
from another league if the total sample size is 200.

13.2. In an attempt to extimate the total number of large mouth bass in a
large lake, 523 are captured and tagged. Then after a week, a sample of size
724 is captured. Of these 72 are found to be tagged. Estimate the number
of large mouth bass in the lake and also the variance of your estimate.

13.3. A chain of jewelry stores is attempting to estimate the value of
diamond rings for ad valorem tax purposes. The chain wishes to minimize
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the variance of the estimate. Give your best guess as to the number of rings
to be sampled from each store if the total sample size is 100.

Table 13.6. Diamond Rings.
Store Number Guess of Average Ring Value Number Rings in Store

I $1000 250
II $2000 300
III $10,000 200

13.4. The Bayou City Foods chain of grocery stores is well known for its
sales. Some have conjectured that the chain fails to enter the sales prices
in its computer and overcharges its customers. This would be a version
of “bait and switch,” and, if true, is illegal. The legal firm of Sueem,
Sueem, and Settle has decided to conduct a sample survey of 35 randomly
selected branches of a basket of $50 to see whether a class action of be-
half of customers of Bayou City Foods might be indicated. Use a boot-
strapping simulation to determine whether there is a prima facie case for
“bait and switch, using the resulting prices the sample customers actually
paid $50.00 $43.14 $50.00 $48.75 $50.00 $43.71 $50.00 $50.00 $56.13 $50.00
$50.00 $50.00 $48.35 $56.75 $50.00 $49.10 $50.00 $57.85 $61.12 $50.00
$50.00 $48.75 $52.35 $58.06 $50.00 $50.00 $49.44 $56.12 $50.00 $48.74
$58.98 $50.00 $51.23 $50.00 $51.12.
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Chapter 14

The Stock Market:
Strategies Based on Data
versus Strategies Based
on Ideology

14.1 Introduction

Many young professionals have the false notion that their futures will be
secure if they simply excel in their professions. Generally speaking, unless
they invest from their salaries in a fairly regular fashion, they will arrive at
retirement with very little to show for it. One, generally speaking, does not
get wealthy by socking away salary money in Treasury Bills or certificates
of deposit. Inflation and taxes will lead them over the cliff. One should set
aside a portion of one’s salary monthly for investment in real estate, a new
on the side venture, sound but high paying bonds, common stocks, etc. In
this chapter, we shall restrict ourselves to buying publicly traded common
stocks.

How shall one invest in the market of common stocks? There are well
over 10,000 publicly traded stocks.Not surprisingly, there are many opin-
ions. Some of these are quite bizarre. One tenured professor of economics
from a major university appeared on a major television talk show some
years ago. He was invited, since he had correctly forecasted a temporary
crash in the market. As the program proceeded, to the apparent horror of
the host of the program, the professor revealed that his insights were based

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.
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on the insights of his guru, who was some sort of Hindu astrologer. In this
chapter, we will not include such bizarre forecasters, although the efficient
market academics have sometimes some of the flavor of the unnamed guru.

The most venerable school is that of the ”value investors” who base
their strategies by seeking underpriced stocks. Perhaps the most famous
of these is Warren Buffett, whose Berkshire-Hathaway portfolio has a 40
year track record of greater than 20% gain per year. Value investors tend
to follow the strategy of Graham and Dodd, who carefully examined the
internal statistics of companies to attempt to find those which appeared
to be undervalued. This approach is not based on ideology or the config-
uration of the stars, but on actual data. Naturally, the huge number of
stocks cries out for some sort of orderly computer analysis, but that is not
80 easy when one is examining the quality of management, working condi-
tions, worker morale, market opportunities, etc. In large measure, Buffett
disdains the use of computer analysis. But it is not necessary that one scan
through thousands of balance sheets. One need not seek for a sharp opti-
mum. Indeed, seeking for a sharp optimum is frequently a fragile approach.
There are plenty of good stocks around. It is not necessary to scan all of
them. Of course, the young professional could simply trust in the insights
of somebody such as Buffett with a long and impressive track record. Buf-
fett’s company, Berkshire-Hathaway has much to recommend it. However,
if one invests in Berkshire-Hathaway, he or she should be aware that they
are investing in a portfolio of stocks which typically has a value, in terms
of assets held, which may be less than 75% of the cost of the Berkshire-
Hathaway stock. Part of the cost of the stock is the quite reasonable high
value placed on the wisdom of "the genius from Omaha.” A decision to in-
vest part of one’s assets in Berkshire-Hathaway stock, might be very wise.
However, no mortal lives forever, and it is a fair question one must ask,
”What happens to the value of a share of Berkshire-Hathawy when Buffett
leaves the scene?” Successors of geniuses in investment firms usually fall
short of their predecessors. Therefore, that the prudent young professional
should tale interest in managing his or her own retirement investments.

Of course, if one wishes to invest on “autopilot” there are ways to do
so. John Bogle has effectively argued [4] that the value of investment coun-
sellors is, in general, not worth their fees. Many years ago, he founded
the Vanguard S&P 500 fund (among others) which maintains a portfolio
balanced according to the market cap values of each of the members of the
Standard and Poor selected basket of top 500 stocks. Thus the weight of
investment in the i’th stock would be

Vi

P 14.1
57 (14.1)

w; =

where V; is the total market value of all the stocks in company i. Inter-
estingly, Bogle’s strategy is actually very close to the “total market index
fund” suggestd by Nobel laureate William Sharpe.
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This brings us to the “Efficient Market Hypothesis” (EMH) According
to this theory, stock purchasers in the aggregate, at any given time, impute
to each of the more than 10,000 publicly traded stocks its accurate value.
It assumes that the current price information, although obviously a one di-
mensional vector, correctly sums up such factors as the past trading prices
of the stock, the past trading prices of all the other stocks, the market situ-
ation, the political environment, the relative quality of management of the
companies, etc. To many data analysts, the EMH appears too simplistic.
In a sense, it smacks of the long defunct Marxist idea that value of an item
consists of the labor which went into its creation.

Nevertheless, the EMH enjoys overwhelming dominance in most schools
of business in the Unted States. Although the author is in strong disagree-
ment with the EMH, he will devote some time to it, for readers need to
be aware of its jargon and its consequences some of which have been quite
destructive.

A third paradigm is that of the technical analyst (chartist, momentum
trader, etc.). Like the EMH advocate the technical analyst will generally
not pay close attention to the operational details of a company. Rather,
the technical analyst will try and extrapolate from the historical records
of stocks. For example, the technical analyst will generally prefer a stock
which has gone up for ten straight trading days to one which has declined
for ten straight trading days. Thanks to the advent of the high storage
high speed computer, it is possible to build “expert systems”which can
train themselves in the utilization of massive data sets for the purposes
of making high returns for the user using constraints on the extrapolated
downside risk.

14.2 Markowitz’s Efficient Frontier:
Portfolio Design as Constrained
Optimization

We will now consider strategies for reducing the risk to an investor as a well
defined constrained optimization problem. The argument follows roughly
that of Markowitz [7—8]. Let us suppose that the proportional gain of a
security is given the symbol X;. Here we are not necessarily assuming X;
is the growth rate of the stock. X; may include as well, for example, the
dividends accruing to the security. And we will treat X; as a Gaussian
(normal) random variable rather than as a constant. We will then assume
that the average (expected value) of X; is u;, and its variance is a?. Then we
shall assume that the covariance of X; and X; is given by o;; (alternatively,
that the correlation is given by p;;). That is, we assume that:

E(X;) = m
E(X;—w)® = ol =ou
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E[(Xi — w)(X5 — pj)] = o0y
pi = —L
b 0‘,‘0’_—,’ )

Our portfolio will be formed by a linear combination of n stocks where the
fraction a; of our portfolio will consist of shares of stock i. Clearly, it would
be a fine thing to have a high value of

n
Mave = Zaiﬂi- (14.2)

i=1

On the other hand, we would like for the portfolio to be as close to a
sure thing as possible, i.e., we would like to minimize the volatility of the
portfolio

n n
S = E) oiXi- ) oum)? (14.3)
=1 i=1
n n
= E E Q055
i=1 j=1

Clearly, there is a problem, for minimizing S would logically drive us to
something like Treasury Bills, which strategy is not historically very good
for maximizing pgye. It might be postulated that what should be done is to
ask an investor what uj,. he requires and then design a portfolio obtaining
a mix of the n stocks so as to minimize S for that target value. This is not
a very natural posing of the problem from the standpoint of the investor
(picking a s, i8 not natural for most). However, from the standpoint of
the mathematician, it is a formulation easily solved. To see that this is so,
consider the Lagrange multiplier formulation which seeks to minimize:

n n n
Z = Z a;a o + ’\I(E Qi — Mave) + /\2(2 a; — 1) (14.4)
i=1

n
i=1j=1 i=1

Differentiating partially with respect to each of the a;, A;, and A2 and
setting the derivatives equal to zero gives us the n + 2 equations (linear in
Qay,Qg,...,0q, /\1, Ag):

YA =

3o = 2Za,~a,~2+22aja¢j+)\1m+z\2=0
@i i=1 j>i

ay = Qilli — fgye = 0

o1 :

VA =
a_AZ = §a¢—1:0.
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This is an easy formulation to solve in the current era of cheap high speed
computing. Naturally, as formulated here, it is possible that some of the a;
may go negative, though it is easy to impose the additional constraint that
all o; be nonnegative. Furthermore, it will happen that the a; will yield
fractional shares of stocks. Generally rounding will give us a satisfactory
approximation to the solution, though we can easily impose the restriction
that all shares be bought as integer lots. All these little details can be
dealt with easily. However, the formulation is not particularly relevant in
practice, for few individuals will find it natural to come up with a hard
number for yxg, ..

Well then, we could also pose the problem where we maximize the gain
of the portfolio subject to some acceptable level of the volatility. But this
is also not (for most people) a natural measure of portfolio riskiness. An
investor probably would like to know his/her probabilities of achieving vary-
ing levels of value as time progresses. This is not an easy task. Indeed, the
assumption of the equivalence of risk and variance is a dramatic oversim-
plification.

B-oo

o2
Figure 14.1. Markowitz’s efficient frontier.

The set of all portfolios with maximum expected gain at a given level of
volatility (or minimum volatility at a given level of expected gain) was de-
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fined by Markowitz as the efficient frontier. His basic method, which is
fairly similar conceptually to the other techniques discussed in this sec-
tion, can perhaps be understood by reference to Figure 14.1. Here the dots
represent security parameters and the boxes represent portfolio parame-
ters. Markowitz set about to minimize a function of the type o2 — fp.
By initializing the procedure at § = oo, the highest return security (F)
is obtained. Note that, because diversification cannot increase return, the
highest return portfolio will be composed entirely of the highest return se-
curity. From this point, Markowitz employed a quadratic programming
algorithm to trace the efficient frontier by allowing 6 to decrease to 0 (at
which point E, the minimum variance portfolio is obtained). In actual-
ity, the iterative procedures only determine “corner” portfolios, which are
those points at which a security enters or leaves the efficient portfolio. The
efficient frontier between two corner portfolios is a linear combination of
the corner portfolios. Aside from the objective function, these techniques
also generally involve constraints, such as the requirement that the weights
assigned to securities be nonnegative and/or sum to one. Now, it would
appear that, according to the EMH, nobody would want to buy the black
circle stocks in Figure 14.1. But people do. The assumption of some sort of
instantaneous group wisdom is the kind of deus ez machina not borne out
in the real world. Actually, if one looks at the relationship between growth
and volatility (standard deviation) for large cap stocks over the period from
1926 through 2000, one finds the correlation to be, not positive, but rather
—.317 as demonstrated in Figure 14.2
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Figure 14.2. Historical relation between p and o.
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14.3 Sharpe’s Super Efficient Frontier: The
Capital Market Line (CML)

Building upon the work of Markowitz, William Sharpe, formed the philo-
sophical underpinings of Index Fund Investment.

If we may assume that investors behave in a manner consistent with
the EMH, then certain statements may be made about the nature of cap-
ital markets as a whole. Before a complete statement of capital market
theory may be advanced, however, certain additional assumptions must be
presented:

1. The px and o of a portfolio adequately describe it for the purpose of
investor decision making [U = f(o, u)].

2. Investors can borrow and lend as much as they want at the riskless
rate of interest.

3. All investors have the same expectations regarding the future, the
same portfolios available to them, and the same time horizon.

4. Taxes, transactions costs, inflation, and changes in interest rates may
be ignored.

Under the assumptions above, all investors will have identical oppor-
tunity sets, borrowing and lending rates (r; = rpg) and, thus, identical
optimal borrowing-lending portfolios, say X (see Figure 14.3). Because all
investors will be seeking to acquire the same portfolio (X), and will then
borrow or lend to move along the Capital Market Line in Figure 14.3, it
must follow for equilibrium to be achieved that all existing securities be
contained in the total market portfolio (X). In other words, all securities
must be owned by somebody, and any security not initially contained in
X would drop in price until it did qualify. Therefore, the portfolio held
by each individual would be identical to all others and a microcosm of the
market, with each security holding bearing the same proportion to the total
portfolio as that security’s total market value would bear to the total mar-
ket value of all securities. In no other way could equilibrium be achieved
in the capital market under the assumptions stated above.
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rL=Tp

g
Figure 14.3. The capital market line (CML).

The borrowing-lending line for the market as whole is called the Capital
Market Line. The securities portfolio (X) employed is the total universe
of available securities (called the market portfolio) by the reasoning given
above. The CML is linear and it represents the combination of a risky
portfolio and a riskless security. One use made of the CML is that its
slope provides the so-called market price of risk, or, that amount of in-
creased return required by market conditions to justify the acceptance of
an increment to risk, that is

The simple difference p(X) —r is called the equity premium, or the expected
return differential for investing in risky equities rather than riskless debt.

This very elegant result of Sharpe indicates that one simply cannot do
better than invest along the Sharpe Superefficient Frontier (CML). Unfor-
tunately, a backlook at 50,000 randomly selected portfolios from the 1,000
largest market cap stocks over a period of 40 years shows that over half lie
above the CML. How it has been that EMH enthusiasts apparently failed to
crunch the numbers is a matter of conjecture. Nor is this result surprising,
since the Standard and Poor Index fund over this period has averaged a
return of somewhat in excess of 10% while Buffett’s Berkshire-Hathaway
has delivered well over 20%.
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Figure 14.4. Randomly selected portfolios in 1993 beating the
super efficient frontier portfolios.

14.4 The Security Market Line

One major question raised by CML analysis involves the means by which
individual securities would be priced if such a system were in equilibrium.
Throughout this chapter, we generally do not assume that markets are in
equilibrium. Therefore, when we combine securities into a portfolio that
has the average return of the component securities but less than the average
risk, we simply ascribe this gain from diversification to our own shrewdness.
In the type of efficient market assumed by the EMH enthusiasts, everyone
will be doing the same thing, and the prices of securities will adjust to
eliminate the windfall gains from diversification.

Sharpe [9,10] has suggested a logical way by which such security pricing
might take place. If everyone were to adopt a portfolio theory approach to
security analysis, then the risk of a given security might be viewed not as
its risk in isolation but rather as the change in the total risk of the portfolio
caused by adding this security. Furthermore, because capital market the-
ory assumes everyone to hold a perfectly diversified (that is, the market)
portfolio, the addition to total portfolio risk caused by adding a particular
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security to the portfolio is that portion of the individual security’s risk that
cannot be eliminated through diversification with all other securities in the
market.!

Because the concept of individual security pricing is rather elusive, let
us restate it. Sharpe argued that the price (and thus return) of a given
security should not be determined in relation to its total risk, because the
security will be combined with other securities in a portfolio and some of the
individual risk will be eliminated by diversification (unless all the securities
have correlation equal to 1). Therefore, the return of the security should
only contain a risk premium to the extent of the risk that will actually be
borne (that is, that portion of the total risk which cannot be eliminated by
diversification—which is variously called nondiversifiable risk or systematic
risk ).

If this logic is accepted, it is then possible to generate a Security Mar-
ket Line as shown in Figure 14.5, where the return on individual securities
is related to their covariance with the market. If capital markets are in
equilibrium and all the other assumptions of this chapter hold, then the
parameters of each security should lie on the SML. Furthermore, because
the risk of a portfolio is the weighted sum of the nondiversifiable risk of its
component securities, all portfolios should also fall on the SML in equilib-
rium. (It should be noted that Sharpe’s theory indicates that all portfolios
will fall on the SML, and as a general rule, no individual securities or port-
folios, should lie on or above the CML.) Of course, the inelegant reality
should trump the elegant theory. Data analysis shows that stocks do not
lie on the SML and it is not true that all stocks and portfolios like below
the CML. If one can do better, on the average, than investing in the total
market portfolio by random portfolio selection, then it should not be sur-
prising that Buffett's value investing was so successful. Nor should it be
surprising that we can beat index portfolios with astounding regularity by
using technical coordinated momentum analayis. One might have hoped
that the EMH enthusiasts would have done a bit of plotting of real world
data to see whether it be true that all securities lie on the SML. Unfor-
tunately, as is their custom, they found it unnecessary to see whether the
reals world conforms to their suppositions.

11f the standard deviation of the market as whole is oas and the standard deviation
of security t is o, and the correlation of security ¢ with the market is p;5s, then the non-
diversifiable portion of the individual security’s risk is the covariance of returns between
the security and the market as a whole, i.e., Cipr = 0i0MPiM.
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Figure 14.5. The security market line (SML).

14.5 The Sharpe Diagonal Model

Although Sharpe’s theory does not lead to anything close to optimality, it
is useful in that it assumes that the return on a security may be related
to an index (such as the DJIA, S&P 500, Wilshire 5000, or whatever) as
follows:

Return; = a; + b; Return; + ¢; (14.5)

pi =i +bipr + ¢

where:

a; and b; are constants,
p1 is the return (including dividends) on the index,
¢; is an error term with pc, = 0 and 0., = a constant.

It is further assumed that c; is not correlated with pj, with itself over time,
nor with any other security’s ¢ (the last implying that securities are only
correlated through their common relationship to the index). Therefore, y;
can be estimated as (a; + bips). The parameters a; and b; can either be
estimated, computed by regression analysis, or both. Furthermore, o., can
be viewed as the variation in p; not caused by variation in p;. The values
a; and b; are referred to as Sharpe’s alpha and beta, respectively. When
people away from detailed information about stock values other than the
increase in one of the major indices, such as the DOW or the S&P 500, hear
that these indices have gone up by 2% day-to-day, they may well heave a
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sigh of relief, for the stock values in the market are generally correlated
with the values of the major indices.
The return of the portfolio becomes:

n
u = Zai(ai+billl+ci)

i=1
n n
= ) ailai+a)+ (Z aeb.~> BI (14.6)
=1 i=1

where the first term is viewed as an investment in the essential nature of
the securities, and the second term is an investment in the index. The risk
of the portfolio is:

n n 2
g = \ g(aidci)2 -+ (;a;bi) 0? (14-7)

where, again, the first term under the radical may be viewed as the risk of
the portfolio attributable to the particular characteristics of the individual
securities, and the second term as the risk attributable to the index.

Thus, the Sharpe model simplifies the input problem by making it di-
rectly amenable to simple regression analysis. In addition, by assuming
that securities are only related through the index, the nonzero elements in
the covariance matrix are reduced to those on the diagonal, thus easing the
computational burden.

To illustrate the Sharpe approach, assume that the index currently
stands at 1000 and, with reinvestment of dividends, it is expected to be
at 1100 at the end of the year. Given the following data, suppose we
wished to determine portfolio i+ and o for a; = .2, a; = 5 and a3z = .3.

agar = 0.10
M1 = 0.06 + 0.1[11;0@1 =0.03
M2 = -0.03 + 2#1; Oy = 0.20

3 = 000+ pr;0¢ = 0.10.
Employing the above we obtain:

g o= (.:2)(.06) + (.5)(—.03) + (.3)(.00) + [(-2)(-1) + (.5)(-2) + (.3)(1)](.10)
= .012 - .015 + (1.32)(.10) = .129 or 12.9%.

Employing (14.7),
VI(:2)(03)2 + [(:5)(:2)) + [(:3)(-)]2 + [(:2)(-1) + (:5)(:2) + (-3)(1))?

= 1/(.006)2 + (.1)2 +(.03)2 + (1.32)%(.1)2
/000036 + .01 + .0009 + .017424 = +/.02836 = .168 or 16.8% .

o

]
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It is also possible to discuss the SML in terms of Sharpe’s index model.

pi =a; +bjur +ci. (14.8)
The b; term (called Sharpe’s beta coefficient), given py, is equal to:
Cir 1
(bilpr) = o_; = u;? (14.9)
which, if the index is a valid depiction of the market:
Cix 1
(bilﬂ'l) = 0’} = Lix 0‘} . (14.10)

Under these assumptions, the abscissa of a point on the SML expressed in
terms of b; is merely 1/0% times that of the same point expressed in terms
of C;x and the two are directly comparable. Viewed another way, the risk
premium an individual security would exhibit in equilibrium is:

-T
pi—1= "’;2 Cix = (1 — 1)bi. (14.11)
X

A major advantage of transferring the discussion into beta terminology
is that the regression coefficient can be used directly to estimate the sys-
tematic risk of the asset. Unfortunately, the beta concept also possesses
serious pitfalls. In the first place, its very simplicity and popularity cause
it to be used by many who fail to understand its limitations. Because the
concept is subject to all the assumptions of both linear regression and the
efficient capital market hypothesis, statistical problems and economic im-
perfections may undermine its usefulness. Many investors are unaware of
these limitations and have blithely assumed that one need only fill a port-
folio with securities possessing large betas to get high returns. At best,
the beta is a risk-measure surrogate and not an indicator of future returns.
The idea that the assumption of large amounts of risk will generate large
returns only approaches being correct over the long run in reasonably effi-
cient markets in equilibrium. Even then it ignores utility considerations. A
further difficulty with the beta concept follows from empirical findings that
betas for small portfolios (and, of course, individual securities) over short
periods can be highly unstable over long holding periods where, of course,
beta approaches one by definition anyway. It would thus appear that one
of the few valid applications of the beta concept would be as a risk-return
measure for large portfolios. An example of how betas can be used in this
regard is presented in the next section.

14.6 Portfolio Evaluation and the Capital
Asset Pricing Model (CAPM)

Several measures directly related to capital market theory have been de-
veloped for the purpose of portfolio evaluation. The latter is essentially a
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retrospective view of how well a particular portfolio or portfolio manager
did over a specified period in the past. Most of the published research in
this area has dealt with mutual funds, seemingly because they are contro-
versial, economically important in certain financial markets, and possessed
of long life with readily available data. Much of the early work in this area
(including the advertisements of the funds themselves) was of a simple time
series nature, showing how well an investor could have done over a given
period in the past if he/she had invested then or else comparing these re-
sults to what the investor could have earned in other funds, or the market
as a whole. The more recent work considers both return and its variability,
contending that mutual funds that invest in riskier securities should exhibit
higher returns. One result of this work, considered subsequently, has been
the finding that investors do as well or better on average by selecting se-
curities at random as they could with the average mutual fund. Another
implication, of more relevance here, is the growing feeling that the man-
agers of any kind of portfolio should be rated not on the return they earn
alone, but rather on the return they earn adjusted for the risk to which
they subject the portfolio and their management fees.

Before proceeding, however, a caveat is in order about the nature of
er post risk and return measures. As in any problem in measurement,
one must delineate (1) why a measurement is being made, (2) what is to
be measured, (3) which measurement technique is appropriate, and (4) the
import of the results of the measurement. If one is not careful ez post return
measurements can easily result in the “if only I had ....” syndrome, which
is a waste of time and effort as far as making an investment in the present
is concerned. For such measures to be of use, one must assume that the
ability of a manager or fund to earn greater-than-average returns in the past
is some indication of ability to do so in the future. As the empirical work
cited below indicates, there is little evidence to support this contention. As
far as risk in concerned, there is some doubt about what the concept of ez
post risk means. Most of the writers in this area are careful to stress the
term “return variability” instead of risk per se. Because the outcomes of all
past events are currently known with certainty, the use of return variability
as a measure of risk in this instance involves a different notion of risk than
we have been using. Again, to make operational investment decisions, it
would seem necessary to assume that past risk-return behavior of managers
or portfolios either could or would be maintained in the future.

Deferring judgment for the moment on the above reservations, let us
consider the proposed evaluation measures. Sharpe [10] has proposed the
use of a reward-to-variability ratio related to the slope of the capital market

line:
Sharpe’s Measure for ith portfolio = l—l'la——t

i

(14.12)

In effect, Sharpe is computing the slope of the borrowing—lending line
going through the given portfolio and arguing that a greater slope is more



PORTFOLIO EVALUATION AND THE CAPITAL ASSET PRICING MODEL 341

desirable.
A second measure on the SML is that of Treynor [14]:

Treynor’s Measure for the ith portfolio or security = _u.b_r (14.13)
1

and the line in (beta, return) space = r+ (u; —7)/(b;) = characteristic line
of security or portfolio i. Treynor’s methodology is fairly similar to that
of Sharpe, except that by using the SML instead of the CML, the Treynor
measure is capable of evaluating individual security holdings as well as
portfolios. A disadvantage is that the accuracy the rankings depends in
part upon the assumption (implicit in the use of the SML) that the fund
evaluated would been held in an otherwise perfectly diversified portfolio.

A third measure, also based on the SML but different from Treynor’s,
is that of Jensen [14]:

Jensen’s Measure = (u; — 1) — bj(ux — 7). (14.14)

This measure is expressed in units of return above or below the riskless
rate of a line drawn through the parameters of the security or portfolio
parallel to the SML. This measure does allow comparisons of a portfolio to
the market and is also amenable to estimation by regression; because of its
treatment of differential risk, however, direct comparisons between funds
or portfolios generally cannot be made. Furthermore, it has been suggested
that all three of the above measures are biased against high risk portfolios
by failing to recognize the inequality of borrowing and lending rates and
the resulting nonlinearity of the SML and CML.

Use of geometric means as an evaluation tool should not be overlooked
as well. Over a given period of time, the geometric mean portfolio return
could be compared to that of other portfolios or some market index. There
are several advantages to such a measure. Assuming that the interval con-
sidered is “sufficiently” long (and if it is not, one may doubt the validity
of any evaluation technique), then undue risk taking should manifest itself
in numerous low period returns and, thus, a reduced geometric mean (or
terminal wealth, which is an equivalent concept in this context). If such
is not the case, then the equivalence of historical variability and risk be-
comes increasingly dubious. The geometric mean also facilitates the use of
very short investment periods (because funds value their holdings several
times a day, thousands of observations per year could be obtained) and
provides a cumulative effect if desired (by simply including each new set of
observations without discarding any of the old).

In its simplest form, the capital asset pricing model (CAPM) is the
more common name for the SML. Over the years, however, efforts have
been made to extend the CAPM to multiple periods, other investment me-
dia, foreign markets, and even human wealth. Unfortunately, however, it
became increasingly apparent that very little of the cross section of securi-
ties’ returns was reliably explained by beta.
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14.7 Views of Risk

Einstein has been quoted as saying that it was more difficult to understand
compound interest that it was to understand special relativity. While this
author cannot agree with Einstein’s statement, I would certainly agree that
the consequences of the manipulation of markets by bankers and politicians
are more intricate and frequently more brutal than the operation of orga-
nized crime. Firstly there really is no honest way to eliminate risk without
reducing profit margins to starvation levels. If one insists on investing in
T-bills, then taxes and inflation will leave one a pauper at retirement time.

There are ways honestly to participate in a growing economy (if only
politicians will allow it to grow). The economy of the United States rises
on a wave of continuing technological progress, whether it be in agriculture,
or health care, or the manufacturing of washing machines. If technological
progress be sufficiently stressed by taxes and regulation, then the ship of
state, including all possible investments (excepting perhaps those in sub-
marines and lifeboats and survivalist provisions), will sink. The United
States, with only 5% of the world’s population, employs 70% of the world’s
lawyers. The proportion of lawyers in Congress exceeds even one third.
Having a country run by one of its least productive segments might be
thought to be other than wise. And, as to the 5% figure, it could be pointed
out that the proportion of engineering baccalaureates in the United States
hovers around 5%. We do produce vast numbers of sociologists, pscyhol-
ogists, historians, etc., who can perform as social workers or perhaps con-
tinue on to acquire law degrees or, as President George W. Bush, go for the
MBA. Both President G.W. Bush and President Barack Obama expressed
the desire that all American students could go to college. The number of
trade high schools, where one might learn a skilled trade has dropped to
near zero in this country.

That being said, there has always been a “muddling through” spirit in
the United States. This author writes this chapter assuming that things
will not be much more chaotic than they have been in the last 75 years.

14.7.1 Diversification

If we have ten stocks, each with the same growth rate and each with the
same volatility, dividing our investment among the ten stocks rather than
putting all our investment in any one of them is almost a “free lunch”
(assuming their returns are not perfectly correlated with each other). Of
course, the lunch is not entirely free. Such diversification should save us
from losing everything in an Enron, but it might kill our hopes of becoming
a Microsoft millionaire (as occurred to many Microsoft clerical personnel
who had retirement plans invested heavily in the stock of their employer,
which is the other side of the coin from the experience of Enron employees).
Diversification of this sort has been used for a long time ( in the nineteenth
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century many farmers planted corn as well as wheat in the event that hail
storms zapped the more profitable wheat).

Unfortunately, a bear market will tend to cause most stocks in the port-
folio to drop. Just as an extended drought will zap both corn and wheat, a
bear market will hurt stocks generally. (An old politically incorrect adage
of Wall Street is “When the paddy wagon comes, good girls are arrested
as well as the bad.”) What other variable can we use for “diversification”?
The answer is time. The historical fact is that investors over longer periods
of time, have the advantage of the fact that in roughly 70% of the years,
the index of large cap U.S. stocks rises rather than falls. And there is the
further encouraging news that in over 40% of the years, the index rises by
over 20%. In 30% of the years, the market rises by over 25%. And in 25%
of the years, the index has risen by over 30%. Over the roughly 75 year
period such records have been kept, the United States has lived through
the Great Depression, the Second World War, the Cold War, Korea, Viet-
nam, assorted massive sociological changes, shifts toward and away from
free markets, and assorted epidemics. These can all be viewed as the polit-
ical/economic/sociological analogs of major “droughts.” It is true that we
have yet to experience Martian invasion, attacks by genetically engineered
viruses or suitcase nuclear devices, or the costs of mounting the Sixth Cru-
sade. We hope such events do not occur, but events of comparable angst
have occurred to other countries of the West over the past 75 years. Poland
was occupied by Russia and Germany in September of 1939, and the Rus-
sian occupation only ended (sort of) in June of 1989. It is hard to imagine
a course of action (other than attempting to take oneself and one’s money
out of Poland and moving to, say, the United States) which would have
saved an investor in the Warsaw Stock Exchange. And it is hard today to
imagine a safe harbor for oneself or one’s property in the event that the
United States falls. Past performance is not an infallible guide for looking
over the risk profile and we do not claim it to be. Moreover, readers have
surely by this point learned that we have not produced any ethical schemes
for getting rich quick. We hope, however, to give clues by which an investor
can hope to become wealthy at a moderate rate of speed. Let us consider
a federally insured certificate of deposit with interest rate r (interest rein-
vested) with a time horizon of, say, five years. Calling the value of the CD
at time ¢, X (t), we can compute the change in the value of the CD over an
increment of time At via

A(X(t) = rX()A(2). (14.15)

We recognize, in the limit as At goes to zero, one of the most venerable of
simple differential equations:

dX(t)

X " rdt (14.16)



344 STRATEGIES BASED ON DATA VERSUS STRATEGIES BASED ON IDEOLOGY

with solution
X(t) = X(0) exp(rt). (14.17)

This is the equation of compound interest of which Einstein is reputed to
have said, “There is no magic in special relativity. Compound interest, now
that is magic.” Actually, there is no magic in compound interest either,
but there is a great deal of dishonest flim-flam in the way that it is used

14.8 Stock Progression as Geometric
Brownian Motion

14.8.1 Ito’s Lemma

Following Hull [6], let us suppose we have a continuously differentiable
function of two variables G(z, t). Then, taking a Taylor’s expansion through
terms of the second order, we have

AG = %%Ax + —aatEAt
+-;-?;§(Aa:)2 + -;-%i—f(m)z + g;%mm. (14.18)
Next let us consider the general Ito process
dz = a(z,t)dt + b(z,t)dz (14.19)
with discrete version
Az = a(z,t)At + b(z, t)eVAt, (14.20)

where dz denotes a Wiener process, and a and b are deterministic functions
of £ and t. We note that

(Ax)? = b%e2At + terms of higher order in At. (14.21)

Now
Var(e) = E(€2) — [E(¢)]2 = 1.

So, since by assumption E(e) = 0,
E(?) = 1.

Furthermore, since € is N'(0, 1), after a little algebra, we have that Var(€2) =
2, and Var(Ate?) = 2(At)2. Thus, if At is very small, through terms of
order (At)?, we have that it is equal to its expected value, namely,

(Az)? = b2At. (14.22)
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Substituting (14.20) and (14.22) into (14.18), we have
Lemma 14.1 (Ito)

oG oG 18%G oG
AG = | — 4 p? —_—
( p a(z, t) + 5 352 b ) At + o beV At (14.23)
o oG 8G 182G oG
_ (9% oG 107G, oG
dG = (61; a(z,t) + 5% T 2522 b ) dt + 5 bdz. (14.24)

14.8.2 A Geometric Brownian Model for Stocks

Let us look at stock growth as noisy compound interest

AS

Again, o (the volatility ) is a measure of the variability of the process
as time increases. Here we will formally take € to be a normal variate with
mean zero and variance 1. In the limit, as At goes to zero, such a process
is uniquely defined and is commonly referred to as a geometric Brownian

process.
d(In S) = pdt + odz. (14.26)

Alternatively, we have
dS = puSdt + 0Sdz. (14.27)

Now, in Ito’s lemma we define G = In S. Then we have

G 1 8G 1 4G _

B 5o &m
Thus G follows a Wiener process:
o2
dG = (p. - —2-) dt + odz. (14.28)

This tells us simply that if the price of the stock at present is given by S(0),
then the value t units in the future will be given by

S(t) = S(0)exp [(u - g;)t + ea\/Z]

S(0) exp [N ((u - g;)t,taz)J

exp [N (log(S(O)) +(u— g;)t,ta"’)] , (14.29)

where N (log(S(0)) + (u — 02/2)t,t0?) is a normal random variable with
mean log(S(0)) + (u — 02/2)t and variance to2. Thus, S(t) is a normal
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variable exponentiated (i.e., it follows the lognormal distribution). The
expectation of S(t) is given by S(0)exp(ut]. In the current context, the
assumption of an underlying geometric Brownian process (and hence that
S(t) follow a lognormal distribution) is somewhat natural. Let us suppose
we consider the prices of a stock at times ¢;, t1 + t2, and t1 +t2 +t3. Then
if we assume S(t; +t2)/S(t1) to be independent of starting time ¢;, and if
we assume S(t; +t2)/S(t1) to be independent of S(t1 + t2 +t3)/S(t1 + t2),
and if we assume the variance of the stock price is finite for finite time, and
if we assume that the price of the stock cannot drop to zero, then, it can
be shown that S(t) must follow geometric Brownian motion and have the
lognormal distribution indicated.

When a stock price S(t) obeys the law given in the three equivalent
forms we say that S(t) is lognormal with growth rate p and volatility c. We
note that the expected value of S(t) is given by

E(5(t) = 5(0) /_ : exp((u — %az)t + a\/fZ)\/—lz;;-e'zz/de
= SOexp((u-30%0) [ expl-3(2 - oviylazet

1 1
= S(0)expl(n— 50"t + (5074
= S(0)e*t. (14.30)
It is a straightforward matter to show that

Var(S(t)) = E[S(t) — E(S(t)))?
S(0)2 exp|2ut][e”*t — 1)

14.9 Estimating y and o
From (14.30), we have, for all t and At
r(t + At t) = i(%“zt)it) = exp [(ﬂ ~ 9;) At + ZO’\/Kt} . (14.31)
Defining R(t + At,t) = log(r(t + At,t)), we have
R(t + At t) = (u - %2) At + eaV/At.

Then 9
E[R(t + At,t)] = <p. - %) At. (14.32)
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Suppose we have a stock that stands at 100 at week zero. In 26 subse-
quent weeks we note the performance of the stock as shown in Table 9.1.
Here At = 1/52. Let

26
> R(3) = .002931.

= 1
"=

Table 14.1. 26 Weeks of Stock Performance |
Week=i  Stock(i) | r(i)=Stock()/Stock(i — 1) | R(i)=log(r(i)) |

1 99.83942 0.99839 —0.001611
2 97.66142 0.97818 —0.02206
3 97.54407 0.99880 —0.00120
4 96.24717 0.98670 —0.01338
5 98.65675 1.02503 0.02473
6 102.30830 1.03701 0.03634
7 103.82212 1.01480 0.01469
8 103.91875 1.00093 0.00093
9 105.11467 1.01151 0.01144
10 104.95000 0.99843 —0.00157
11 105.56152 1.00583 0.00581
12 105.44247 0.99887 —0.00113
13 104.21446 0.98835 -0.01171
14 103.58197 0.99393 —0.00609
15 102.70383 0.99152 —0.00851
16 102.94174 1.00232 0.00231
17 105.32943 1.02320 0.02293
18 105.90627 1.00548 0.00546
19 103.63793 0.97858 —0.02165
20 102.96025 0.99346 —0.00656
21 103.39027 1.00418 0.00417
22 107.18351 1.03669 0.03603
23 106.02782 0.98922 —0.01084
24 106.63995 1.00577 0.00576
25 105.13506 0.98589 —0.01421
26 107.92604 1.02655 0.02620

By the strong law of large numbers, the sample mean R converges almost
surely to its expectation (u — 02/2)At. Next, we note that

[R(t + At,t) — E(R(t + At,1)))? = e20°At, (14.33)

Var[R(t + At, t)) = E[R(t + At, t) — (u - 122-) At]? = 02At.  (14.34)
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For a large number of weeks, this variance is closely approximated by
the sample variance

1

2 __
*RT%96_1

26
> (R(i) — R)? = .000258.
i=1

Then 62 = .000258/At = .000258 x52 = .013416, giving as our volatility
estimate & =.1158. Finally, our estimate for the growth rate is given by

b=Rx52+ — =.1524 4+ .0067 = .1591.

0| Y

14.10 The Time Indexed Distribution of
Portfolio Value

Let us construct, using simulation, the distribution of 1000 possible out-
comes of an investment of $10,000 in a stock with x = 0.10 and o = 0.10
after ten years. We show the results in Figure 14.6. This is not, of course,
a histogram in the usual sense of the term. A histogram is a relative count
register of the number of historical observations which fall into the inter-
vals of value observed in the past. Here, we have taken parameter values
and used them in a model to obtain simulations. So, each simulation gives
an observation of simulated value.(Of course, for this simple case, one can
obtain the density as a Gaussian probability integral. Very quickly, we will
be moving to a situation where such a “closed—sform solution” is no longer
practical.)

015 - - 150
w=0.10
0=0.10
010 - r’F_ $(0)=10,000 - 100
Proportion M = Counts
per Bar I (out of 1,000
simulations)
0.05 - -50
8000 30000 52000 74000

Figure 14.6. Simulated investment values at ten years.
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Next, if we can find 20 stocks, each with 4 = .10 and o = .10, then assuming
they are stochastically independent of each other, we might take the $10,000
and invest $500 in each of the stocks. The distribution of value at ten years
(using 200 possible outcomes) is shown in Figure 14.7. The sample means
for both the one-stock investment and the diversified 20-stock mutual fund
are $27,088 and $26,715, respectively. But the standard deviation for the
one-stock investment ($8,343) is roughly v/20 times that for the mutual fund
investment ($1,875). A portfolio that has such such stochastic independence
would be a truly diversified one. Generally speaking, one should expect
some dependency between the tracks of the stocks.

Now let us recall the general equation for geometric Brownian motion
AS;

—S—~- = At + o€V At. (14.35)

Let us modify (14.35) to allow for a mechanism for dependence:

%’?—i = ult + oe; VAL (14.36)

We shall take 79 to be a Gaussian random variable with mean zero and
variance 1. Similarly, the 20 #; will also be independent Gaussian with
mean zero and variance 1. Then we shall let

€ = c(ano + (1 — a)n;). (14.37)

We wish to select ¢ and a so that a is between zero and 1 and so that
Var(e;) = 1 and any two ¢; and ¢; have positive correlation r. After a little
algebra, we see that this is achieved when

_P=Vr(1-p) (14.38)

@ 20—1

and

2 1

At the singular value of p = 0.5, we use a = 0.5.
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u=0.10
o=0.10
0.15 - $(0)=$10,000
Proporion 10¥ewr
0.10 - Performance
0.05 -

$22,500 $26, 000 $29 500 $33,000
End Price

Figure 14.7. A simulation of an idealized mutual fund value at
ten years.

Let us examine the situation with an initial stake of $500 per stock with
p =0 =.10and p = .8 asshown in Figure 14.8. We employ 500 simulations.
We note that the standard deviation of the portfolio has grown to 7,747.
This roughly follows the rule that the standard deviation of a portfolio
where stocks have the same variance and have correlation p, should be
\/ 1+ (n — 1)p times that of an uncorrelated portfolio.

0.15 p =080
u=0.10
o=0.10

il
0.10 - $(0)=$10,000
Proportion T 10 Year
per Bar Performance
0.05 -
AI;I_}»m [ Y
T

$12,000 $26,000 $40,'000 $54,000 $68,000
nd Price

Figure 14.8. Simulation of mutual fund with correlated stock
prices.
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14.11 Negatively Correlated Portfolios

Is there anything more likely to reduce the variance of a mutual fund port-
folio than the assumption that the stocks move in a stochastically indepen-
dent fashion? We recall that if we have two random variables X; and X,
each with unit variance and the same unknown mean y, the variance of the
sample mean is given by

Var((X; + X»)/2) = %[2 +20). (14.40)

Here the variance can be reduced to zero if p = —1. Let us consider a
situation where we have two stocks each of value $5000 at time zero which
grow according to

ési = pAt+oevVAL (14.41)
1
% = pAt - oeVAE,

2

where € is a Gaussian variate with mean zero and unit variance. Then the
resulting portfolio (based on 500 simulations) is exhibited in Figure 14.9.

- = -1.0
“4lr 1=0.10
o=0.10
0.3
Proportion §(0)=5$10,000
pet Baro.z ] 10 Year
Performance
0.1
1] B

! 1 4 1

$25,000 $32,000 $39,000 $46,000 $53,000
End Price
Figure 14.9. Simulation of two-stock portfolio with p = —1.
We note that the standard deviation of this two-stock portfolio is 1701,
even less than that observed for the 20-stock portfolio with the assumption

of independence of stocks. Now, the assumption that we can actually find
stocks with negative correlation to the tune of —1 is unrealistic. Probably,
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we can find two stocks with rather large negative correlation, however. This
is easily simulated via

A
—5—1 —  pAt+ (aco + (1 — a)e)evBio (14.42)
1
AS,
3 = pAt—(aeo + (1 — a)ex)cVAto,
2

where

_ o+ /D

- L)

2p+1

¢ =1/4/a? + (1 —a)? and ¢, €1, and €2 are normally and independently
distributed with mean zero and variance 1. Let us consider, in Figure 14.10,
the situation where p =-.5.

0.20 -
p= -0.5
- u=0.10
0.15 - - o=0.10
Proportion |
per Bar S(0)=10,000
0.10 - ]
10 Year
— Performance
A B
0.05 -

| |
20000 27000 34000 41000 48000
End Price
Figure 14.10. Simulation of two-stock portfolio with p = —.5.

We note that the standard deviation here has grown to $2,719. When
it comes to utilizing negative correlation as a device for the reduction of
the variance of a portfolio, a number of strategies can be considered. We
know, for example, that if one wishes to minimize the variance of a sample
mean, we can pose the problem as a constrained optimization problem to
find the optimal correlation matrix, where we impose the constraint that the
covariance matrix be positive definite. Our problem here is rather different,
of course.
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We could try something simple, namely take our two-stock negatively
correlated portfolio and repeat it 10 times, (i.e., see to it that the stocks
in each of the ten subportfolio have zero correlation with the stocks in the
other portfolios). Here, each of the 20 stocks has an initial investment of
$500. In Figure 14.11, we show the profile of 500 simulations of such a
portfolio. The standard deviation of the pooled fund is only $1,487.

How realistic is it to find uncorrelated subportfolios with stocks in each
portfolio negatively correlated? Not very. We note that we can increase
the sizes of the subportfolios if we wish, only remembering that we cannot
pick an arbitrary correlation matrix—it must be positive definite. If we
have a subportfolio of k stocks, then if the stocks are all to be equally
negatively correlated, the maximum absolute value of the correlation is
given by 1/(k — 1).

0.20
_ p=-0.5
0.15 - ] u=0.10
Proportion 0=0.10
per Bar - -
0.10 - —. $(0)=10,000 -
_ 10 Yar
Performance
0.05 - r _

T |n

i I
23000 26500 30000 33500 37000

End Price

Figure 14.11. Simulation of ten independent two-stock portfolios
with p = -.5.

Let us consider another type of randomness in the stock market. Super-
imposed over Brownian geometric motion of stocks there are periodic bear
market downturns in the market overall. It is unusual for bull markets to
exhibit sharp sudden rises. But 10% corrections (i.e., rapid declines) are
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quite common, historically averaging a monthly probability of as much as
0.08. Really major downturns, say 20%, happen rather less frequently, say
with a monthly probability of 0.015.

14.12 Bear Jumps

In Figure 14.12 we see the binned results of 500 simulations with the jumps
modeled as above, 0=.10, p = 0, and p = 0.235. The mean here is $ 27,080,
very similar to that of the situation with independent stocks, with u=.10
and o =.1. However, we note that the standard deviation is a hefty $11,269.

0.20 ~ Monthly prob 20% drop=.015
- prob 10% drop=.08
- u=0.235
0.15 ~ _ 0=0.10
Proportion
per Bar $(0) =$10,000
0.10 - ~
_ 10 Year
Performance
0.05 ~
Ml e
0 $35,000 $70,000 $105,000 $140,000
End Price

Figure 14.12. Simulation of portfolio of 20 independent stocks
with bear jumps.

We note that these general (across the market) downward jumps take away
some of the motivation for finding stocks which have local negative corre-
lation in their movements. (For example, had our portfolio had a .8 cor-
relation between the stochastic increments, the standard deviation would
only have increased from 11,269 to 13,522.) It is rather easy to advise an
investor not to put all his/her investments in Apple Computers. It is also
clear that the investor ought not invest in a portfolio consisting of Apple,
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Dell, Compaq, Oracle and HP, for these stocks tend to move together. How-
ever, when a big bear market hits, our investor is very likely to be damaged
even if he/she includes department stores, utilities, drug companies and
restaurant chains. Still, a diversified investor, in the bear market which
started in the last half of 2000, generally fared better than the investor
who only invested in a few high tech stocks. Now, we have arrived at a
situation where nearly 25% of the time, our portfolio performs worse than
a riskless security invested at a 6% return. If we increase the volatility o
to .5, then nearly 40% of the simulated portfolios do worse that the fixed
6% security.

Let us return to looking at the situation where a $100 million university
endowment, consisting of 20 stocks ($5 million invested in each stock) with
stochastically independent geometric Brownian steps, with u= 0.235, o =
0.1 and with monthly probabilities 0.08 of a 10% drop in all the stocks and
a 0.015 probability of a 20% drop in all the stocks. We shall “spend” the
portfolio at the rate of 5% per year. Let us see in Figure 14.18 what the
situation might be after 10 years. With probability 0.08, after 10 years, the
endowment will have shrunk to less than $50 million. With probability 0.22,
it will have shrunk to less than $75 million. With probability 0.34, it will
have shrunk to less than the original $100 million. Given that universities
tend to spend up to their current cash flow, it is easy to see how some of
those which tried such a strategy in the 1960s went through very hard times
in the 1970s and 1980s.

I have discussed how a portfolio of stocks has, historically, been a supe-
rior investment over the long run for retirement purposes. The endowment
problem just discussed applies to those who have followed such a policy as
they near retirement (especially if the timing is mandatory). If the date
falls soon after a bear jump, the options are ugly: Cash out into a fixed
annuity and consume much less than one had anticipated or consume from
the equity portfolio and hope for a big, quick recovery before the portfolio
is literally “eaten up.” Retirement flexibility can moderate this risk (and
is why a lot of people who hoped to retire in 2000-2002 did not). Failing
this, at least a partial shift out of equities as one approaches mandatory
retirement is indicated. However, at the present time, when the Federal
Reserve has continued a policy for some years of artificially keeping inter-
est rates near zero, it could be argued that the burden of the United States
government fighting, without justification, a huge war against the Iraqis
while demanding savings and loan associations allow $600,00 mortgages to
be given to persons with incomes below $50,000, has created a situation in
which there is really no safe ground other than precious commodities, and
that a conscious decision has been made to make retirees pay the cost of
ridiculous government policies.

It is very likely the case that broad sector downward jumps ought to be
included as part of a realistic model of the stock market. The geometric
Brownian part may well account for the bull part of the market. But
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downward movements may very well require a jump component. By simply
noting variations on geometric Brownian drift in stock prices, analysts may
be missing an essential part of the reality of the stock market, namely large
broad market declines which occur very suddenly.

0.2 - _ S(0) = $100,000,000

0.15 -
Proportion T

er Bar
P 0.0 - -

_4: _______ L ! T

0 $100,000,000 $400,000,000
End Price
Figure 14.13. Simulation of $100 million endowment with 5%
payout.

14.13 “Everyman’s” MaxMedian Rule for
Portfolio Management

If index funds, such as Vanguard’s S&P 500 are popular (and with some
justification they are), this is partly due to the fact that over several decades
the market cap weighted portfolio of stocks in the S&P 500 of John Bogle
(which is slightly different from a total market fund) has small operataing
fees currently, less than 0.1% compared to hedge fund management rates
typically around 30 times that of Vanguard. And, with dividends thrown in,
it produces around a 10% return. Many people, perhaps damaged by MBA
toting Poobahs in $5,000 suits living in fancy offices, invest in managed
funds. The results have not been promising, overall, although those dealing
with people like Peter Lynch and Warren Buffet have done generally well.
John Bogle probably did not build his Vanguard funds because of any great
faith in fatwahs coming down from the EMH crowd at the University of
Chicago. Rather, he was arguing that investors were paying too much for
the “wisdom” of the Poobahs. There is little question that John Bogle has
benefited greatly the middle class investor community.

That being said, we have shown earlier in this chapter that market cap
weighted funds do no better (actually worse) than those selected by random
choice. It might, then, be argued that there are nonrandom strategies which
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the individual investor could use to his/her advantage. For example if one
had invested in the stocks with egqual weight in the S&P 100 over the last
40 years rather than by weighting according to market cap, she would have
experienced a significantly higher annual growth (our backtest revealed as
much as a 5% per year difference in favor of the equal weighted portolio).
Moreover, the downside losses in bad years would have been less than with
a market cap weighted fund. Actually, there are now several equal weight
funds. Moreover, their operating fees are rather modest. It would be nice if
we could come up with a strategy which kept only 20 stocks in the portfolio.
Ifoneis into managing ones own portfolio, it would appear that Baggett and
Thompson (1] did about as well as the equal weight of the S&P 100 using a
portfolio size of only 20 stocks. I am harking back to the old morality play
of “Everyman” where the poor average citizen moving through life is largely
abandoned by friends and advisors except for Knowledge who assures him
“Everyman, I will accompany you and be your guide.”

The science of statistics exists, in large measure, as a vehicle for testing
and, when appropriate, modifying models in other sciences. We have a
great deal of evidence to the effect that the academic school of finance
dominant in the United States, that of the efficient market hypothesis,
has not stressed its models sufficiently with market data. This fact has
led to market strategies with poor, frequently disastrous results. If one
looks at a growth versus volatility (standard deviation) plot for stocks and
portfolios of stocks, then the efficient frontier [7—8] of Markowitz gives
a convex curve below and to the right of which no investor would wish
to venture. Beyond that, Sharpe notes [9—10] that if one plots a point
on the left for the zero volatility Treasury Bill, and then goes rightward
and upward to a point representing the total market of all publicly traded
stocks weighted by market cap, then one has the optimal Capital Market
Line (super efficient frontier) above which no stocks or portfolios of stocks
should be found. Were these results, which are a basis of efficient market
hypothesis practice, correct, then one need look no further for investment
in the stock market. One simply picks the volatility level with which one
can live and makes an investment on the CML. That Warren Buffett’s
Berkshire-Hathaway has, for many years, produced returns roughly double
those of an S&P 500 Index Fund seems not to shake the faith of believers
in the EMH.

It turns out that it is not so difficult to form portfolios with performance
above the CML. Wojciechowski and Thompson [18] have shown (looking
back 40 years) how randomly selected portfolios selected from the 1,000
largest market cap stocks lie above the CML over half the time (see Figure
14.4). This empirical fact demonstrates that the search for optimal port-
folios is by no means a closed issue, as would be supposed by advocates
of the EMH. Further, we have observed ([13]—[18]) that the assumptions
of EMH option theory are contradicted by market data. Market prices are
different from those suggested by Black and Scholes (3] analysis. The dis-
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crepancy cannot be avoided by such sharp practices as implied volatility,
since implied volatilities for the same stock at the same execution time tend
to be different for different strike prices. The building of a vast structure for
the trading of derivatives based on specious assumptions has led to a con-
catenation of market catastrophes, starting with the relatively mild ($3.3
billion) Long Term Capital Management fiasco in 1998, then proceeding to
the failure of ENRON in 2001 ($62 billion). Looking for villains on whom
to blame these disasters, few seemed to consider the flawed EMH theo-
ries which had more to do with the problem than the fraudulent off-shore
corporations of some of Enron’s directors. The collapse of a number of
high bandwidth firms seems to have been caused by an unexpected rise in
interest rates by the Federal Reserve, attempting to curb the irrational exu-
berance caused, in large measure, by its earlier managed bail-out of LTCM.
The same Federal Reserve then dropped interest rates to such a level that
millions of retirees living on fixed incomes experienced significant hardship.
Proceeding to the present day, we have observed the subprime mortgage
fiasco including the insurance policies written on subprime mortgages, all
based on EMH premises. We observe a societal cost which is in the trillions
of dollars.

It is not my purpose directly to effect system change. Rather, I present
a simple nonproprietary rule which appears significantly to enhance the
return to an individual investor. (I have developed and patented a better
proprietary algorithm of great computational complexity which will not be
dealt with in this book). However the MaxMedian Rule [1], given below,
is easy to use and appears to beat the Index, on the average, by up to an
annual multiplier of 1.05, an amount which is additionally enhanced by the
power of compound interest. Note that that (1.15/1.00)% = 7.4, a handy
bonus to one who reitres after 45 years. A purpose of the MaxMedian
Rule was to provide individual investors a tool which they could use and
modify without the necessity of massive computing. Others in my classes
have developed their own paradigms, such as the MaxMean Rule. In order
to use such rules, one need only purchase for a very modest one time fee
the Yahoo base hquotes program from hquotes.com. (The author owns no
portion of the hquotes company.)

The MaxMedian Rule

1. For the 500 stocks in the S&P 500 look back at the daily
returns S(j,t) for the preceding year the day to day ratios

r(j,t) = S(j,t)/S(,t-1).
2. Sort these for the year’s trading days.

3. Discard all r values equal to one. in the 500 medians of the
ratios.

4. Invest equally in the 20 stocks with the largest medians.
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5. Hold for one year and then liquidate.

In Figure 14.14 we examine the results of putting one present value
dollar into play in three different investments: 5% yielding T-bill, S&P
500 Index Fund, MaxMedian Rule. First, we shall do the investment sim-
ply without avoiding the intermediate taxing structure. The assumptions
are that interest income is taxed at 35%; capital gains and dividends are
taxed at 15%; and inflation is 2%. As we see, the T-Bill invested dollar
is barely holding its one dollar value over time. The consequences of such
an investment strategy are disastrous as a vehicle for retirement. On the
other hand, after 40 years, the S&P 500 Index Fund dollar has grown to 11
present value dollars. The MaxMedian Rule dollar has grown to 55 present
value dollars. Our investigations indicate that the MaxMedian Rule perf-
prms about as well as an equal weighted S&P 100 portfolio, though the
latter has somewhat less downside in bad yeaars. Of course, it is difficult
for the individual investor to buy into an SP equal weight S&P 100 index
fund. The advantage of the equal weight S&P 500 index fund is only 2%
greater than that of the market cap weight S&P 500. Even so, when one
looks at the compounded advantage over 40 years, it appears to be roughly
a factor of two. It is interesting to note that the bogus Ponzi scheme of
Bernie Madoff claimed returns which appear to be legally attainable either
by the MaxMedian Rule or the equal weight S&P 100 rule. This leads the
author to the conclusion that most of the moguls of finance and the Federal
Reserve Bank have very limited data analytical skills or even motivation to
look at market data.
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Figure 14.14. A comparison of three investment strategies.
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14.13.1 Investing in a 401k

Money invested in a 401-k plan avoids all taxes until the money is with-
drawn, at which time it is taxed at Ourrent level of tax on ordinary income.
In Table 14.2, we demonstrate the results of adding an annual inflation ad-
justed $5,000 addition to a 401k for 40 years, using different assumptions
of annual inflation rates. All values are in current value dollars.

Table 14.2. 40— Year End Results of Three 401k Strategies.
Inflation 2% 3% 5% 8%

T-bill 447229 292,238 190,552 110,197

S&P Index 1,228978 924,158 560,356 254,777
MaxMedian 4,660,901 3,385,738 1,806,669 735,977

We recall that when these dollars are withdrawn, taxes must be paid. So,
in computing the annual cost of living, one should figure in the tax burden.
Let us suppose the cost of living including taxes for a family of two is
$70,000 beyond Social Security retirement checks. (Of course, the federal
government may well decide to eliminate all or part of a family’s Social
Security payments.) We realize that the 401k portion which has not been
withdrawn will continue to grow (though the additions from salary will
have ceased upon retirement). Even for the unrealistically low inflation
rate of 2% the situation is not encouraging for the investor in T-bills. Both
the S&P Index holder and the Max Median holder will be in reasonable
shape. For the inflation rate of 5%, the T-bill holder is in real trouble.
The situation for the Index Fund holder is also risky. The holder in the
MaxMedian rule portfolio appears to be in reasonable shape. Now, by
historical standards, 5% inflation is high for the United States. On the
other hand, we observe that the decline of the dollar against the Euro
during the Bush Administration was as high as 8% per year.

Hence, realistically, 8% could be a possibility to the inflation rate for
the future in the United States. In such a case, of the four strategies consid-
ered only the return available from the MaxMedian rule leaves the family
in reasonable shape. Currently, even the Euro is inflation stressed due to
the social welfare excesses of some of the Eurozone members. From a so-
cietal standpoint, it is not necessary that an individual investor achieve
spectacular returns. What is required is effectiveness, robustness, trans-
parency, and simplicity of use so that the returns will be commensurate
with the normal goals of families: education of children, comfortable retire-
ment, etc. Furthermore, it is within the power of the federal government to
bring the economy to such a pass where even the prudent cannot make do.
The history of Western societies shows that high rates of inflation cannot
be sustained without some sort of revolution, such as that which occurred
at the end of the Weimar Republic. The lack of awareness of basic intuitive
economics among the American people is depressing. Unscrupulous bankers
encourage indebtedness on the unwary, taking their profits at the front end
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and leaving society as a whole to pick up the bill. Naturally, as a scientist,
I would hope that the empirical tules such as the MaxMedian approach of
Baggett and Thompson will lead to fundamental insights about the market
and the economy more generally. Caveat: The MaxMedian rule is freeware
not quality assured or extensively tested. If you use it, remember what you
paid for it. The goal of the MaxMedian rule is to enable the individual
investor to develop his or her own portfolios without the assistance of gen-
erally overpriced and underachieving investment fund managers. Note that
I am not badmouthing the equal weighted index funds, which can be an
attractive autopilot strategy and do indeed have modest management fees.
The investor gets to use all sorts of readily available information in public
libraries, e.g., Investors Business Daily. Indeed, many private investors will
subscribe to IBD as well as to other periodicals. Obviously, even if a stock
is recommended by the MaxMedian rule (or any rule) and there is valuable
knowledge, such as that the company represented by the stock is under sig-
nificant legal attack for patent infringement, oil spills, etc., exclusion of the
stock from the portfolio might be indicated. The bargain brokerage Fidelity
provides abundant free information for its clients and generally charges less
than 8 dollars per trade.

Obviously, one might choose rather a MaxMean rule or a Max 60 Per-
centile rule or an equal weight Index rule. There are many which might
be tested by a forty year backtest. My goal is not to push the MaxMedian
rule or the MaxMean rule or the equal weight S&P 100 rule or any rule,
but rather allow the intelligent investor to invest without paying vast sums
to MBAs in $5000 suits. If, at the end of the day, the investor chooses to
invest in market cap based index funds, that is suboptimal but not ridicu-
lous. What is ridiculous is not to work hard to understand as much as
practicable about investment. This chapter is a very good start. It has to
be observed that at this time in history, investment in US Treasury Bills
or bank cds would appear to be close to suicidal. Both the Federal Reserve
and the investment banks are doing the American middle class no good
service. 0.2% return on Treasury Bills is akin to theft, and what some of
the investment banks do is akin to robbery.

The author has no magic riskless formula for getting rich. (The au-
thor created and owns the patent on a highly computer intensive artificial
intelligence algorithm for buying stocks, which backtested over a 40 year
period at roughly the rate of return of Buffett’s Berkshire-Hathaway. We
shall not discuss that paradigm in this book.) Rather, I shall offer some
opinions about alternatives to things such as buying T-bills. Investing in
market cap index funds is certainly suboptimal. However, it is robustness
and transparency rather than optimality which should be the goal of the
prudent investor. It should be remembered that most investment funds (in-
cluding, alas TIAA-CREF) do charge the investor a fair amount of his/her
basic investment whatever be the results. The EMH is untrue and does
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not justify investment in a market cap weighted index fund. However, the
fact is that, with the exception of such gurus as Warren Buffett and Peter
Lynch, the wisdom of the professional market forecaster seldom justifies
the premium of the guru’s charge. There are very special momentum based
programs (on one of which the author holds a patent), in which the investor
might do well. However, if one simply manages one’s own account, using
MaxMean or MaxMean within an IRA, it would seem to be better than
trusting in gurus who have failed again and again. Berksire-Hathaaewy
has proved to be over the years a vehicle which produces better than 20%
return. For any strategy that the investo is considering, backtesting for,
say, 40 years, is a very good idea. That is not easy to achieve with equal
weight funds, since they have not been around very long. Baggett and
Thompson had to go back using raw S&P 100 data to assess the potential
of an S&P 100 equal weight fund, since, to my knowledge, no such fund is
currently available. If Bernie Madoff (who had the resources to do it), had
set up such a fund, he might well have been able to give his investors the
15% return he promised but did not deliver.

Note that the United States government, with its war of choice in the
Middle East, its forcing of commercial banks to grant mortgage loans to
persons unlikely to be able to repay them, and its willingness to allow com-
mercial banks to engage in speculative derivative sales, is the driving force
behind the market collapse of the late Bush Administration and the Obama
Administration. Just the war cost part of the current crisis due to what
Nobel Laureate Stiglitz has described as something beyond a three trillion
dollar war in the Middle East has damaged both Berkshire-Hathaway’s and
other investment strategies. To survive in the current market situation,
one must be agile indeed. Stiglitz keeps upping his estimates of the cost
of America’s war in the Middle East. Anecdotally,] have seen estimates as
high as six trillion dollars. If we realize that the cost of running the entire
US Federal government is around three trillion dollars per year, then we
can see what a large effect Bush’s war of choice has had on our country’s
aggregate debt. This fact alone would indicate that a future damqging
inflation is all but certain. To some extent, investing in the stock market
could be viewed as a hedge against inflation. In the author’s opinion, it
was Bush’s war of choice in the Middle East which caused the recent and
continuing recession with real employment rates approaching some of the
years of the Great Depression. In the next section, we will examine another
cause of denigration and instability in the economy, the use of derivatives.

14.14 Derivatives

In the period frequently referred to as “The Roaring Twenties,” there were
investment counselors who advised their clients to buy stocks “on margin.”
Margin investing is most easily explained by an example. Suppose an in-
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vestor has $10,000 to invest in a stock. The current price of the stock
is $100. Thus, the investor could simply buy 100 shares of stock. If the
stock’s value climbed to $110, then the investor would have made $1000.
His account in the stock would be worth $11,000. But if the stock declined
in value to $90, then the investor would have lost $1000. His account would
be still be worth $9000.

The stock broker advises the investor to use a margin loan with a factor
of ten times. That would enable the investor to buy 1000 shares of stock.
If the stock price rose to $110, then the investor would have made a tidy
profit of $10,000. This was the good news the investment counselors told
potential investors.

Less common was the warning that if the stock declined in value to
$90, then the margin loan would capture all the shares of stock purchased
by the investor. His losses would have brought his account to zero value.
Notice, also, that as the investment broker started selling recouped shares,
this puts downward pressure on the value of the stock.

On October 28, 1929 there was a 13% fall in the market followed by a
12% fall on October 29. On December 10, there was a run on the Bronx
branch of the (privately owned) Bank of the United States. Thus began
America’s Great Depression. Many things were tried to ameliorate the sit-
uation with various stimuli, but the Great Depression was still continuing
when America entered the Second World War in 1941. To ameliorate the
effect of bank failures on depositors, the Federal Deposit Insurance Corpo-
ration was founded. It has had a positive effect, but the amount of funds
available to it is really rather small. President Roosevelt changed invest-
ment laws to reduce margin loans from ten fold to two fold. At any rate, it
would appear that prudent steps were taken by President Roosevelt, which
might have eliminated the start of the Great Depression in the first place.

14.14.1 Black—Scholes and the Search for Risk
Neutrality

It is a fair statement that those traders who profited greatly from selling
margin portfolios to their customers were harmfull to the nation. It is
also true that President Roosevelt did implement some strategies which
minimized this practice. Unfortunately, the Nobel winning Black—Scholes
equation has been, in large measure, responsible for the continuing receces-
sion which started with Bush’s War and continues with Obama’s War.

A call option is the right (but not the obligation) to buy a specified
asset S at a strike price X T days in the future. If the seller of the option
owns the stock (or commodity) connected with the option, then the option
is said to be covered. If the seller of the option does not own the stock,
then the option is uncovered.

Before deriving the Black—Scholes pricing formula for the price of a Eu-
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ropean call option (defined below), let us look at two older pricing formulas
C 4 and Cp giving the arguments for each. What should be the fair value
for an option to purchase a stock at an exercise price X starting with to-
day’s stock price S(0) and an expiration time of T'? If the rate of growth
of the stock is u, and the volatility is o, then, assuming the lognormal
distribution for S(t), the stock value at the time T" should be

S(0) exp (N ((u - %2)T, T02>> ,

where N (a,b) is a Gaussian random variable with expectation a and vari-
ance b. If we borrow money at a fixed riskless rate r to purchase the option,
then the value of the option could be argued? to be equal to C,4 in

Method A Cj4 = exp(—rT)E[Max(0, S(T) — X)),

where E denotes expectation.

On the other hand, it could also be argued that the person buying the
option out of his assets is incurring an opportunity cost by using money
to buy the option which might as well have been used for purchasing the
stock so that the value of the option should be given by

Method B Cg = exp(—uT) E[Max(0,S(T) — X)].
After a little calculus [11], it can be shown that we have for Method A,

Ca = e-rT{e“TS(O)@(log(S(o>/X>a+¢[;+(az/2)1T)

e (10B(S(0)/X) + [u— (?/2)IT
xe ( VT )} '

For Method B, we have

Ca = om0 (SESOLX) it (/21T
_ log(5(0)/X) + [ — (o?/)IT
xe ( oVT ) >

The formula for the pricing of an option which gives the purchaser the
right to buy a stock for X dollars at future time T, as formulated above,
in the case of C4 depends on knowledge of three parameters, u, o, and r.
Ostensibly, r should be easy to determine. It is frequently argued to be

2The use of the expectation criterion as the measure of value is questionable. We
recall, for example, the St. Petersburg Paradox discussed in Chapter 13 shows how
expectation of gain can give ridiculous results.The question of appropriate criteria is
extremely important, and we have addressed it extensively throughout this book. For
the moment, we stick with expectation, for that is, unfortunately, the standard view.
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simply the riskless interest rate (i.e., that of a Treasury bill). A bit later,
we will question whether a universal r value is reasonable. Knowledge of
4 and o would appear to be more uncertain. They can be estimated quite
handily from past stock records, but we are not talking about the 4 and o
values of the past. Rather we want to use those which are appropriate from
now until the time T' (when the option is exercised or is allowed to expire).

14.14.2 A Game Independent of the Odds

Let us consider the game indicated in Figure 14.15

D

w
Do \
D,
Figure 14.15. Game unlinked to probabilities.

There are two prizes Dyp and Dg,. What is the fair price Dy to pay the
casino to play this game? As we have seen, if the prizes are reasonably
small relative to the wealth of the player, the fair value might be taken to
be the expected value:

Dy = pupDup + panDyn. (14-43)

We can be sure, in the real world, that the casino operator will charge a bit
more than Dy, say D; > Dy to play this game, for a zero rate of return on
his investment (casino, employees, utilities, security, etc.) would soon put
him out of business. It is not reasonable, one might argue, for the player to
become involved with the wager, since in paying D; to play, he will, over
the long run, lose money. Yet casinos do a thriving business. In general,
the casino organization will be happy, in the case of many of its games,
to operate on a reasonably small margin (D, — Dy)/D; of profit, for, over
time, it is almost certain to return, on the game, a profit margin per wager
equal to the profit margin times the total bets wagered on the game.

In casino games of chance, we know precisely the probabilities associated
with each game. But what if one is engaging in a game where one does
not know the probabilities associated with winning and losing? Suppose
one is taking bets, for example, on a horse race. There are horse racing
experts who will set preliminary odds of the sort, Purple Martian has a ten
percent chance of winning the race. So, preliminary odds might be that
Purple Martian, for a one dollar ticket, will pay ten dollars if it wins the
race. But as the bets come in, the track may note that too many people
are betting on Purple Martian at the bet as stated. That means, if Purple
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Martian should win, the track would actually lose money. So, a woman
who bet on Purple Martian would know that the ticket she bought might
pay less than the rate stated at the time of the purchase. The track has
the right to readjust payoffs right up until the time of the start of the race
to make sure it has locked in a profit, irrespective of which horse actually
wins the race. Similarly, if the track finds that too few people are betting
on Purple Martian, it will typically improve the payoff. The whole idea
of the track, then, is to readjust payoffs for all the horses, continuously in
time, to guarantee a profit for the track. Now, in the world of bookmakers,
competition from several “agencies” will tend to drive the payoffs from all
to be similar, for why buy a ticket which pays $10 if another bookmaker
is paying $15? If communications are as rapid as they have been for some
decades, there will be, essentially, a national market for betting on Purple
Martian to win. The only thing which can restrict (partially) the creation of
a nearly efficient market in the victory of Purple Martian is interference by
some governmental or quasi-governmental agency (e.g., organized crime)
to restrict trade in Purple Martian tickets. Notice, then, that the world
of horse racing bookmakers provides us with an example of a market in
outcomes in which the probabilities are not very well known, and that the
bookmakers actually set the rates based, not to their retrospective guesses
as to the probabilities, but rather on volumes of purchases of tickets for
specific pay-off rates.

Notice that the payoff rates are computed by the bookmakers with little
reliance on probability estimates. From the standpoint of an individual
buying Purple Martian tickets, however, the decision is generally based on
the probability of a Purple Martian win as intuited by the individual buying
tickets. Here, the bookmaker has a very different strategy from that of the
woman making the wager. The bookmaker is attempting to hedge his bets
so that he makes a return based, essentially, on commissions.?

Earlier in this chapter we have seen how, given assumptions about g,
r, and o, to obtain the price of a Furopean call option under those as-
sumptions. Moreover, it is clear how one might argue that if we want to
determine a “fair” price to promise to deliver a stock T units in the future,
when that price is to be paid on the day of delivery, it can be determined
by buying the stock at today’s known price S(0) and then borrowing the
money for that purchase at the going interest rate . That would mean that
the futures price at time T is S(0) exp(rT). That means that, assuming the
broker could borrow the money S(0) exp(rT) for rate r, then he could have
a perfect hedge and make a profit exactly equal to his commission for the
transaction. He would be in somewhat the same position of a bookie at the

3The aforementioned description of horse race bookmaking follows clogely the way
investment bankers price new stock issues (IPOs). The initial price increases or decreases
depending on the “book” (even the terminology is similar). Substantial initial interest
(buy orders) will raise the IPO price. If there is weak interest, the IPO price will be set
lower. The size of the issue may also be adjusted depending on interest in the deal.
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races.

From the standpoint of the buyer, however, he or she probably has rea-
son to believe that at time T the stock will be worth more than S(0) exp(rT).
(There are other reasons, of course, for the buyer to purchase the future
instead of simply buying the stock today. For example, it might well be
that other investments will bring into the futures purchaser’s hands a sum
of money at time T at least as great as S(0)exp(rT), a sum which the
purchaser does not have in hand today. This rather obvious hedging price
whereby the vendor can sell a futures contract goes back so far in history
that it can probably be called a “folk theorem.” In the case of a European
call option, one might have inferred that the way to price a riskless (to the
vendor) option would be simply to use the formulae associated with Method
B, except replacing the growth rate p with the bond interest rate r. This
method turns out to be correct, given the assumptions. ¢ However, it was
not proved to be the case until 1973 [3] at some profit to the provers. In
1998, it earned the two surviving members of the research project (Scholes
and Merton) the Nobel Prize in Economics.

In their provocative book Financial Calculus, Baxter and Rennie [2, p.
7] state that for the purpose of pricing derivatives, “ seductive though the
strong law is, it is also completely useless.” They show how serious they are
about this view when they consider a wager which is based on the progress
of a stock [2, p. 15]. At present, the stock is worth $1. In the next tick
of time, it will either move to $2.00 or to $0.50. A wager is offered which
will pay $1.00 if the stock goes up and $0.00 if the stock goes down. The
authors form a portfolio consisting of 2/3 of a unit of stock and a borrowing
of 1/3 of a $1.00 riskless bond. The cost of this portfolio is $0.33 at time
zero. After the tick, it will either be worth 2/3 x $2.00 — 1/3 x $1.00 =
$1.00 or 2/3 x $ 0.50—1/3 x $1.00 = $0.00. From this, they infer that “the
portfolio’s initial value of $0.33 is also the bet’s initial value.” 5

4This “simple” futures approach ignores the risk of “nonexercise” to the seller of the
option. At any given time, an investor who believes that a stock is going to make serious
upward progress over the next six months may purchase an option to buy that stock
six months in the future at a price set today. Such an option is called a European call
option. The price at which he may buy the stock is called the exercise price or strike
price and the time at which the option can be exercised is called the ezpiration date.
The option need not be exercised and will not be unless the value of the stock at the
expiration date is at least as great as the exercise price.

5Some might argue as follows: In fact, several things are occurring in the example
which are often confused and combined. Observe that there are two immediate future
states, up and down. The portfolio exactly replicates the payoff of the bet in each state
and involves a net investment of $0.33. Hence, unless the bet also sold for $0.33, an
arbitrage profit could be earned by buying the cheaper and selling the dearer of the two.
In that no risk would be involved in such a transaction, it would be invariant to (and
devoid of information about) risk preferences. Even if the market for the stock were in
equilibrium (which would imply $.33 was an equilibrium price for the bet), including
general agreement about the stat outcomes, probabilities and risk preferences create a
jointness which cannot be untangled from the information provided. For example, if
the market is employing risk neutral pricing, then prob(up)=1/3, prob(down)=2/3, the
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14.14.3 The Black—Scholes Hedge Using Binomial Trees

Suppose, however, we were to ask another question (“another” because
options are not precisely analogized by payoffs in horse races). Namely,
can we come up with a way in which a brokerage firm could match the
value of a call option by continually readjusting a portfolio consisting of a
mixture of shares of the stock on which the option is based and Treasury
bills, in such a way that there would be no risk to the brokerage firm? If we
neglect transaction costs to the firm, the answer is “Yes”. The brokerage
firm, like a bookie at a race track, makes its money on service fees built into
the cost of the commodity being sold. The brokerage firm does not care
whether the stock goes up or down, provided that it can determine a “risk
neutral” price. Given that the goal has changed from one of forecasting
to one of accounting, we will not be surprised if the stochastic effects are
modest in the solution of the problem of achieving “risk neutrality.”

Let us return to the situation in Figure 14.15 but with the addition of a
stock (with outcomes in the next increment of time s,,;, and s4,) to which
the prizes Dy, and Dy, are linked. We will refer now to the prizes D,, and
Dy, as derivatives.

S0
D g,
Sdn
Figure 14.16. Simple binomial tree with options.

A woman approaches the dealer and states she would like to play a game

expected value of the stock, portfolio and bet are their prices and the expected return on
each upon the revelation is 0. Suppose, however, the market is engaging in risk averse
pricing, such that the probabilities are 50-50. The expected value of the stock is $1.25 and
of the portfolio and bet is $.50. The instantaneous expected return on the first is 25% and
on the latter two is 50%. Further, there is no way to earn an arbitrage profit between the
portfolio and the bet. In particular, there is no way to arbitrage this result back to risk
neutral pricing. If the only concern is the derivation of the hedged, no arbitrage price of
the bet, a shortcut may be employed. In that preferences do not enter this computation,
the simplest approach is to assume the stock price is risk-neutral, extract the implied
probabilities (i.e., 1/3, 2/3), and price the bet (i.e., 1/3 x $1 + 2/3 x 0 = $0.33). By
using this approach, it is not even necessary to derive the hedge portfolio to price the
bet. As discussed above, this procedure in no way implies that the price of the stock or
the bet is actually risk neutral.
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in which she receives D,,,, if the stock goes up in the next step and Dy, if
it goes down. How much should the dealer charge her to play this game?

The dealer decides to emulate the derivative by forming a portfolio of
the u units of the stock on which the derivative is based plus a position of
v in a bond paying interest rate r. Using Figure 14.16, let us determine u
and v.

USyp + verd® = D,p when the stock goes up,
v84n +ve™® = D, when the stock goes down.  (14.44)

Solving for u and v, we have

Dup — an
u = —E__
Sup — Sdn
v o= e—rA(t)(Dup — USyp)-

At time zero, the value of the portfolio (and therefore of the emulated
derivative) is given by

DO = 8y +v
rA(t) _ rA(t) _
= exp(—rA(t)) (ump + (1 _ U) an)
Sup — Sdn Sup — Sdn
= qDyp + ] __Q)an (14.45)
where At
t) _
q=20¢ " %n (14.46)
Sup — Sdn

(Verify that 0 < ¢ <1 )

1. Now, at time zero, the lady who wishes to play the game gives the
dealer Dy in cash.

2. The dealer buys u shares of the stock at a cost of usp.

3. So, at time zero, the dealer has u shares of stock, and cash equal to
Dg — usy = v.

4. If the stock moves up at time A(t), the dealer sells his u shares at
price s,. He then has cash equal to

ra® _ Dw=Dan, \ p ° Dup = Dan

sup = Dup
Sup — Sdn Sup — Sdn

USyp + Ve
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5. If the stock moves down at time A(t), the dealer sells his u shares at
price 8,,. He then has cash equal to

D,, — D Dy, — D
up dn Sdm + Dup _ Yup dn

Sup = Dan
Sup — Sdn Sup — Sdn

USdp +V =
So, then, the dealer has achieved a strategy of buying a portfolio which
gives him zero profit and zero loss whether the stock moves up or down.
By imposing a discipline of buying the right amount of stocks and bonds
at each step, he has achieved, apparently, a situation where he controls the
“state of nature.” We note that

_ scerA(t) — Sdn

Sup — Sdn
has the formal properties of a probability. That is, ¢ is between zero and
one. We have seen that the value of the dealer’s portfolio at time zero is
given by
Dy = e AWM [unp +(1- Q)Dd'n]-
For a price received from the lady Dy, he agrees to pay the lady D, at time
A(t) if the stock moves to Sup and Dy, if it moves down to s4,. At time
A(t), the dealer has a portfolio of value Dy, if the stock goes up and Dgn
if it goes down. The dealer has, it would appear, created his own reality.
Maintaining his strategy of updating the portfolio at each tick of time, he
will have achieved the ability to have assets, absent his obligations, of zero.
This g is, accordingly, frequently referred to as the martingale measure: it
has “expectation” zero. Like a bookie, the dealer has managed to eliminate
his risk and simply live on commissions.
Let us consider a modified version of equation (14.16), namely,

S(t+A@) = S@t)exp[(u— %az)A(t)] explo/A(D)] with prob g

S(t) exp[(p — %az)A(t)] exp{—a+/A(t)]with prob 1 — g.
(14.47)

Note that
B solemA® — eyA(t)—a\/WJ
17 serb®[erv/A® _ goy/AM]
eAWR(r—p) _ g—o\/A(2)

1+ A@)r — p) + A)2(r — p)2/2 = 1+ o /A - 02A(t)/2

B 20/A(t)
- 172 (1 - ,/A(t)[i‘-f’—"i—/i_—’]) .




THE BLACK—SCHOLES HEDGE USING BINOMIAL TREES 371

Again, we look at

S(t) = S(0) exp|(u — —a"~’)t +oypiEn_n \/_ ), (14.48)
But, with the martingale measure, we have
Eq(2X,—n) = 2ng—n
- (1 - mwia/?_—ﬂ) o
v LR itk Rk "i/ 22, (14.49)
Var(2X,) = 4nq(1—q) (14.50)

= n(1-Vifalu+o*/2=r)fo) (1 + AW +0*/2~r)/0)
= n(1-@/n)(@+0*/2=1)/0)?)

— n+ a constant as n becomes large, i.e., as A(t) — 0

Therefore, ox
NG 2o N (Vs +a?/2—1)/0,1). (14.51)
e R R
+o%/2 -1
Z= ﬁ (14.52)
Z is normal with mean zero and unit variance. Then
_ 1, 2X, —n
S(it) = S(0)exp [(p 59 )t + oVt Jn )]
2
—  S(0)exp [(p - 502) \/—\/-[ﬂ ta /2 + a\/fZ] .
(14.53)

Then, under the risk—neutral Q measure,

Bo(5()) = S(0)expl(r— 50°)t)Eq (exploviz)
= S(0)e™. (14.54)

Not surprisingly, considering the way the portfolio is constantly rebalanced,
its return is the same as that of a riskless bond paying the rate r. In
other words, although under the probability model, E(S(t)) = S(0) exp(ut),
the risk neutral hedging model buys and sells the stock in such a way
that the expected value of the stock under the hedging discipline is only
E(S(t)) = S(0) exp(rt) regardless of the stock’s growth rate 4. In essence,
we have taken a risky stock and split it into riskless debt (which the dealer
holds) and a risky call (which is sold to the lady). In a perfect world, this
might work, but it does not in the real world. Here are some reasons why:
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e Transaction costs are not really free. The closer the hedge gets to be-
ing riskless, the more frequently one must rebalance (and this results
in material transaction costs).

e The realistic value of r will be significantly higher than that of a
T—bill.

e Historical records show that the Black—Scholes formula [3], which we
develop below, generally does not give the actual market price of a
call option. To correct this imperfection in nature, it is customary
for some traders to plug in whatever value is necessary for o to give
the market price for the option. We may recall in a chemistry or
physics lab when we did not get the answer demanded by the science,
there was some temptation to plug in whatever would conform to the
established physical model. Such a procedure was called “dry labing”
and generally regarded as cheating. Amongst believers in EMH, such
a plug-in approach to a ¢ so obtained has a much more respectable
name, implied volatility.

e Stock prices may jump (with substantial discontinuities), and this
may defeat the hedging strategy. Stock price evolution is not just a
smooth function of time.

e Investors will vary a great deal on their expectations as to the future
price of the stock. Even in the aggregate, the investment bankers
believe the investors to be more leming-like than they are.

e In the case of horse betting, there is an arbitrary mechanism which
sets payoffs at the instant the race starts. The bookmaker is allowed
to set payoffs with his profit margin locked into the payoff. Suppose
that the bet is placed a week before the instant the race starts. What
costs must the bookmaker incur in the intervening time period to
rebalance the payoffs for the bets he has covered? The answer is
“zero.” And this is the reason the analogy between bookmaking and
selling options is flawed.

Perhaps the Black—Scholes Theorem can be described as a proof of a
result wished by many to be true. Perhaps the best introduction to the
result comes from asking the old question of how much an investor should
pay at time T for a stock which today has price S(0). The answer is deemed
(by many) to be obvious. The seller of the stock future buys the stock today
at a price S(0) using money he borrows at interest rate r. If the agreed
upon price is S(0) exp(rT), then when the buyer pays it at time T, the
seller can pay back the loan he entered upon to buy the stock. So, the
story goes, it really makes no difference what buyer or seller believes the
growth rate of the stock is (that has already been incorporated magically
into the current price of the stock). The broker of the future naturally will
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add a commission to the cost. The only market aspect of the deal will be
the possible competition between brokers to lower their commissions.

Let us turn to the “risk—free” purchase of a European calloption. Recall
that here we pay at time zero for the right to buy the stock at time T for
strike price X.

Cps = e "TEMax(S(T) - X,0)] (14.55)

-t 1 * z 1 o?\ 2
= e Nerer [nlgﬁ](s(o)e — X)exp [—m(z —(r- —2—)t) ] dz

where we note that the formula is the same as that for Method B except
that the growth rate is r rather than u.

The risk neutral determination value for a call option was first given
by Black and Scholes [3]. From Smith’s Lemma (see Problem 2 in this
chapter), taking ¢ = 1, A =y = e~"7, and setting u =7,

Cps = e T{eTS(0)® (log(S(O)/XL—:—/([TT +(0%/2)T

o (108(SQ)/X) + r — (¢¥/2)|T
Xe ( VT >}‘

The Black-Scholes model has had enormous impact on the trading of op-
tions. Consequently, it has itself changed the mechanism of the market.
However, if one looks at the actual market price of an option at a given
time, it is seldom the case that it is the same or even close to the Black-
Scholes value if one uses historical measures of volatility. But since the true
believers know the Black-Scholes value is correct, they take the actual mar-
ket price of the option and calculate backwards to determine the implied
volatility. That this implied volatility will be different for different time
horizons is taken care of by noting that the appropriate average volatility
will naturally be different for longer and shorter time epochs. That the
implied volatility can also be different for the same stock using the same
time horizon but different strike prices is the kind of rude remark that is
best left unsaid in polite financial circles.

) (14.56)

14.15 The Black—Scholes Derivation Using
Differential Equations

We recall the brownian model for stock progression:
dS = pSdt + 0Sdz. (14.57)

Let f be a derivative security (i.e., one thats is contingent on S). Then,
from Ito’s lemma, we have:

2
df = (ggﬂs + % + %%(05)2) dt + %a&u. (14.58)
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Multiplying (14.57) by 8f/8S, and isolating 8 f/8S0Sdz on the left side in
both (14.57) and (14.58), we have:

ﬂanz = -a—de—g—guSdt

s s
of of of L 10°f

A = Y Bl e A R 2
aSanz df (aSuS+ 5t + 2682(05) )dt.
Setting the two right-hand sides equal (stochastic though they be), we have:

2
df — %ds = (%—{ + %2—5‘2—(05)2) dt. (14.59)
Let us consider a portfolio which consists of one unit of the derivative
security and —8f/0S units of the stock. The instantaneous value of the
portfolio is then
p-ys-Yg (14.60)
- s '
Over a short interval of time, the change in the value of the portfolio is
given by 5
. Of . (8f 18F, .,

apP = df "aTS;dS = (5{ + '2-652 (O'S) ) dt. (1461)
Now since (14.61) has no dz term, the portfolio is riskless during the time
interval dt. We note that the portfolio consists both in buying an option
and selling the stock. Since, over an infinitessimal time interval, the Black—
Scholes portfolio is a riskless hedge, it could be argued that the portfolio
should pay at the rate r of a risk free security, such as a Treasury short
term bill. That means that

2
4P = rPdt =r ( - %s) dt = (‘?—3{ + %%(03)2) it (14.62)

Finally, that gives us the Black—Scholes differential equation

2
= (rs 2L+ Y 10 07) (1463)

It is rather amazing that the Black-Scholes formulation has eliminated
both the Wiener term and the stock growth factor y. Interestingly, however,
the stock’s volatility o remains. Essentially, the Black—Scholes evaluation
of a stock is simply driven by its volatility, with high volatility being prized.
We note that 1 has been replaced by the growth rate r of a riskless security.
Over a short period of time, the portfolio will be riskless. (We recall how,
in the Black—Scholes solution, we used a hedge where we bought options
and sold stock simultaneously.) This risklessness will not be maintained at
the level of noninfinitessimal time. However, if one readjusts the portfolio,
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say, daily, then (making the huge assumption that sudden jumps cannot
happen within a short period of time), it could be argued that assuming
one knew the current values of r and o, a profit could be obtained by
purchasing options when the market value was below the Black—Scholes
valuation and selling them when the market value was above that of the
Black—Scholes valuation (assuming no transaction costs). (Such a fact, it
could be argued, in which all traders acted on the Black—Scholes valuation,
would drive the market. In reality, if the Treasury Bill rate is used for r
and historical estimates are used for y and o, the actual value for which an
option is traded is generally significantly different from the Black—Scholes
value.)

Now, we recall that a Furopean call option is an instrument which gives
the owner the right to purchase a share of stock at the exercise price X, T
time units from the date of purchase. Naturally, should the stock actually
be priced less than X at time T', the bearer will not exercise the option to
buy at price X. Although we get to exercise the option only at time T', we
must pay for it today. Hence, we must discount the value of an option by
the factor exp(—rt). Since we have seen that the Black—Scholes equation
involves no noise term, it is tempting to conjecture that the fair evaluation
of an option to purchase a share of stock at exercise price X is given by

e "TE[Max(S(T) - X,0)] (14.64)

— —rt 1 * z __ __1__ A _0_'2_ 2
= e T /1'1[_5%](3(0)6 X)exp[ 2azt(2 (r 3 )t) ]dz

Css

where we note that the growth rate is r rather than p.

14.16 Black—Scholes: Some Limiting Cases

Consider, in Tables 14.3 and 14.4, the Black-Scholes pricing model com-
pared to Model A and Model B in the case where a stock has a rather high
growth rate u = 0.15 with a fixed riskless interest rate of 5% and a variety
of volatilities and strike prices X. (Of course, we are looking at a case
where the option buyer’s estimates of the growth rate u and volatility o
were correct. From the standpoint of the buyer, who decides to buy the call
option, standing at time zero, he probably believes his estimate for (u,0)
is correct. One question we should be examine is the value of the option
to the buyer, given his current state of information.) We shall assume the
option is for an exercise time of six months in the future, and that the price
of the stock at the present time is $100. The purpose of this exercise is
simply to look at Black—Scholes in comparison to two older pricing models
in the very optimistic case where the person using the model knows p and
.
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Table 14.3. Six-Month Options: ¢ = 0.20, u4 = 0.15.

X 102

104 106 108 110 112 114 116 118 120

Cps 589 499 420 351 291 240 198 163 136 1.16

Cgp 858 7.47 646 555 473 4.00 337 282 235 1.95

Ca 902 785 6.79 583 497 4.21 354 296 247 2.05
Table 14.4. Six-Month Options: ¢ = 0.40, u = 0.15.

X 102 104 106 108 110 112 114 116 118 120
Cps 1148 10.63 9.82 9.07 8.37 772 7.11 654 6.01 5.53
Cg 13.84 1289 1200 11.16 10.37 962 892 826 764 7.06
Ca 1455 1355 1262 11.73 1090 10.11 9.37 868 803 743

We note that as the volatility o increases, the three strategies become more
similar. To note the effect of increasing and decreasing o, we show in Tables
14.5 and 14.6 results for very low o (.001) and very high o (2.00).

Table 14.56. Six-Month Options: ¢ = .001 y = .15.

X 102 104 106

108 110 112 114 116 118 120

Cps 052 000 000 000 000 000 000 000 000 0.00

Cp 537 351 166 000 000 000 000 0.00 0.00 0.00

Ca 565 369 174 000 000 000 0.00 0.00 0.00 0.00

Table 14.6 . Bix-Month Options:
o = 2.00 p = .15,

EP 103 104 106 108 —110 113 1i4 116 118 120
Cgs | 53.17 | 61.71 | 51.36 | B0. 50.96 | 40.03 | 40.50 | 40.08 | 48.67 | 48.26 |

Cp 63.37 | 52.91 | 52.45 | 52.00 | 51.66 | 51.13 | 50.70 | 50.28 | 49.87 | 4s.47

Ca 58,11 §5.62 55.14 54.67 54.21 53.75 53.80 52.86 52.43 52.00

Let us consider limiting behavior as the volatility goes first to infinity and
then to zero. Suppose that a stock is currently selling for S(0). We wish
to buy an option T time units in the future with strike price X. As the
volatility of the stock goes to infinity, then we note that both Black—Scholes
(14.56) and Method B (14.3) tell us that the option is so valuable that its
fair price is simply the current value of the stock, namely S(0), irrespective
of the value of .

On the other hand, let us suppose that the value of the volatility is zero.
Then the Black—Scholes price is

S0) —e"TX if S(0)e’T > X
0 otherwise.

Cas
(14.65)

Next, let us consider the situation where the growth rate of the stock is
actually negative (4 = —.15) in Tables 14.7 and 14.8, respectively.

Table 14.7. Six-Month Options: ¢ = .001 x = —.15.

X 102 104 106 108 110 112 114 116 | 118 120
Cps 052 000 000 000 000 000 000 000 ]| 0.00 0.00
Cg 000 000 000 000 0.00 000 0.00 0.000.00 0.00
Cyq 000 000 000 000 0.00 000 000 0.00] 000 o0.00
Table 14.8. Six-Month Options: ¢ = 2.00 p = —.16.

— X 103 104 106 168 110 113 114 116 118 ﬁo_‘l

Cps 53.17 51.71 51.28 50.80 50.36 49.W1 49.50 49.08 48.67 48.28J
Cp 40.77 4930 48.84 48.39 47.95 47.51 47.08 46.66 46.35 45.84
Ca 45.03 44.61 44.19 43.78 43.38 42.99 4260 | 42.22 41.86 4148
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We note that Black—Scholes values a call option at, say $102, equally
whether the growth rate of the stock is +.15 or —.15. Naturally, it is
unfair to note that Method A and Method B are more accurate than
Black—Scholes. That would be true if we really knew u, but generally
we have only noisy estimates for this parameter. Nevertheless, markets are
made, in large measure, by differences in information (opinion).

Table 14.9. Computed Values of Six-Month Options (with Bear Jumps).
o =.20, p=.15.

Ex. Pr. 102 104 106 108 110 112 114 116 118 120
Cgs 589 499 420 351 291 240 198 163 136 1.16
Cg 858 747 646 555 473 4.00 337 282 235 1.95
Ca 902 785 679 583 497 4.21 354 296 247 2.05
Sim. 597 513 438 372 313 262 218 1.80 148 1.21

Table 14.10. Six-Month Options (with Bear Jumps.) o = .40, s = .15

EP 102 104 106 108 110 112 114 116 118 120

Cps 1148 10.63 9.82 9.07 8.37 772 7.1 654 6.01 5.53

Cp 13.84 1289 1200 11.16 10.37 962 892 826 7.64 T7.06

Ca 1455 1355 1262 11.73 1090 10.11 9.37 8.68 8.03 743

Sim. 10.89 10.08 9.33 8.62 7.96 734 6.76 6.23 5.73 5.28

Now, based on Tables 14.9 and 14.10, the pricing of the Black-Scholes
model appears inspired. Of course, we have simply added on the kind of
unexpected downward turn which is not accounted for by the geometric
Brownian walk unmodified. On the other hand, our imposition of bear
jumps has depressed the expected growth rate of the stock to essentially
1%, and most of the value of the option is due to volatility.

The vendor of the option typically has no strong views about a particular
stock. He or she is selling options in many stocks and is only interested that
he or she retrieves his or her supposed opportunity cost rate 7. Accordingly,
the vendor of the option might use use Black—Scholes with r replaced by 7.

Cyendor = € "{e"TS(0)@ (bg(s(”)/ X );/[:T? + (02/2)]T)
_ log(S(0)/X) + [ ~ (¢%/2)]T
xe ( oV T )}- (14.66)

On the other hand, the buyer of the option will have fairly strong views
about the stock and its upside potential. The buyer could use Black—Scholes
replacing r by u, where, typically, p > 1 > r. Thus,

Chuyer = ¢ *T{e*TS(0)® (bg(s(o)/X)+[u+(02/2)]T>

oVT
_X® (10g(5'(0)/x) +[p- (02/2)]T) }.

e (14.67)
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We note that typically, in the mind of the call option buyer, p is rather large.
Perhaps some investors will buy solely on the basis of a large stock volatility,
but this is unusual. Option buying is frequently a leveraging device whereby
an investor can realize a very large gain by buying call options rather than
stocks. The seller of the option is probably expecting an 7 < p value as the
reasonable rate of return on his/her investments overall. It is observed [1]
that the arithmetic mean annual return on U.S. common stocks (including
dividends) from 1926 on is over 10%. Let us suppose we are dealing with
an initial stock price of $100 and that the vendor uses 7 = 0.10 and the
buyer believes g4 = 0.15. In Tables 14.11 and 14.12, we show the values
of C(vendor) and C(buyer)’ respectively. This may appear confusing, for

we have arrived at a price for the vendor and one for the buyer, and they
are generally not the same. Pareto efficiency is the situation where all
parties are better off by undertaking a transaction. Clearly, at least from
their respective viewpoints, we do have Pareto efficiency (assuming that
the commission is not so high as to swamp the anticipated profit to the
buyer). The difference between the price the buyer is willing to pay and
that for which the vendor is willing to sell must be positive, or there will
be no trade.

Suppose that an investor believes the rate of growth of a stock is 0.15
overall, bear jumps included. Then, if we are to include the bear jumps,
we need to increase the value of the Brownian growth to 0.15 + 0.14 =
0.29. So, let us now compute the simulated buyer’s price, with discount
to present value rate being u = 0.15. We also compute the vendor’s price
using the Black—Scholes formula with riskless rate 7 = 0.10 (we will assume
that the vendor will use the nominal volatility values of 0.20 and 0.40, as
shown in Tables 14.11 and 14.12).

Table 14.11. Six-Month Options (with Bear Jumps): ¢ = 0.20, 4 = 0.15.
ExPr 102 104 106 108 110 112 114 116 118 120
Cgs 589 499 420 351 291 240 198 163 136 1.16
Cuendor 717 6.16 526 445 374 3.13 259 213 1.75 142
Chuger 1053 934 824 723 630 546 4.71 4.04 344 291

Table 14.12. Six-Month Options (with Bear Jumps): ¢ = 0.40, 4 = 0.15.
EP 102 104 106 108 110 112 114 116 | 118 120
Cps 11.48 10.63 9.82 9.07 8.37 7.72 7.11 6.54 | 6.01 5.53
Cven 12.63 11.73 10.88 10.08 9.34 8.63 798 736 | 6.79 6.25
Chuy 1556 1454 1358 12.67 11.80 1098 10.21 9.49 | 8.81 8.17

It is unlikely that a buyer will be able to acquire options at the orthodox
Black—Scholes rate (i.e., the one using Treasury bill interest rates of .05).
But suppose she can. Suppose she correctly guesses o = .2. The Black—
Scholes price for a strike price of $108 six months in the future is $3.5357.
Suppose she gets lucky and the growth rate over the next six months is
u = .15. However, this is the aggregate growth (including Poissonian bear
jumps of size 10% once a year and of size 20% once every five years).
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Simulation allows us to see what she can expect. We display the results
in the simugram in Figure 14.17. The expected value of the option is
$7.23. However, she should realize that around 55% of the time she will
have lost her purchase price of the option. There are many other things
the prospective buyer might choose to try before making the decision as
to whether or not the option should be bought. Most of these are rather
easy to achieve with simulation. The point here is that she should view
the purchase of the call option as something risky. Mathematics has not
secured for her a free lunch.

0.6
0.5 -
0.4 -
0.3

002 ]

PROPORTION PER BAR

] 16 32 48
Value d Option

Figure 14.17. Simugram of option (present) values.

In actuality, a buyer of options has many to choose from. Let us suppose
that a rational buyer has computed the value of options (using his own
estimates for the growth rates and the volatilities). Suppose he has confined
himself to stocks with roughly the same volatilities. Suppose further that he
is interested in European call options maturing one year from today. If he
has no emotional attachment to one stock or the other (big and frequently
false assumption), he would then be well advised to purchase options in
the stock which give him the largest positive difference between what his
computations give him for the value of the option and the actual market
price of that option. It will be unusual for the buyer to have the Black-
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Scholes price as his personal valuation of the option, and he will seldom see
the stock offered for the Black—Scholes price on the market.

So, our hypothetical buyer puts down his money for a one year option
in the stock which seems, for a given risk measure, to give him the greatest
expected (or median or twenty percentile) return. When he and others buy
the option, if the volume of sales over a given time interval appears high,
this will encourage vendors of the stock to take note that perhaps they can
raise the option’s price. Similarly, vendors of options which are not selling
at expected volume levels, may decide to lower the prices of their options.

And, as all this is going on, we are aware that there exists a wide
diversity of ways for each buyer to consider balancing expected gain against
volatility. And there are many time horizons for which he can buy an option.
And there are many other possible ways he can invest his capital: in real
estate, bonds, wheat, etc. It is the concatenation of all these opportunities
for buying and selling. viewed from the standpoints of each buyer and seller,
which make up the market. The dynamism of the world in which the market
exists is such that any notion of reaching equilibrium for most potential
investments is generally unlikely so long as the market is allowed to “work
its will.” The possibilities for finding undervalued (from the standpoint of
the buyer) stocks and derivatives to purchase exist day by day, hour by
hour, minute by minute.

14.17 Conclusions

Finally, I cannot emphasize too strongly that the time indexed profile of the
probability distribution of the proposed investment is much more reliable
than simply looking at expected values. It is frequently the case that the
purchase of an option with a high expected value of gain will, most of the
time, be a losing proposition.

At the end of the day, an option based on a stock is simply a security to
be purchased or not depending on its risk profile and the way an investor
views that risk profile in comparison to those of other investments. It might
seem absurd that one could come up with a formula which would give, at
a given time, strike price and execution time, the value of an option on
a stock which is following a random trajectory. Indeed, it is absurd. If
transaction costs are truly zero, then the Black-Scholes evaluation of an
option is correct if one is basing evaluation on the erpected value of the
option. And if cold fusion were a reality and anti-gravitational devices
existed, that would be nice too.

The reality is that transaction costs are not free, and looking only at
the expected value of an option (as opposed to its entire risk profile) will
frequently lead to disaster. In many ways, option trading has become a
useful surrogate for margin buying. Before the Crash of 1929, an investor
could use his portfolio to leverage purchasing of stocks by a factor of ten
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to one. As the market started downward, the broker would dump stocks
in the portfolio to meet margin calls. This put downward pressure on the
prices of the stocks being sold. This kind of feedback mechanism led to the
Crash of 1929. These days, in the United States, margin leveraging is a
more modest two to one.

The purchasing of options appears to be a relatively benign alternative
to margin leveraging. If the buyer purchases an option for a strike price
which the stock does not realize, then he loses the purchase price of the
option without any direct negative pressure on the stock. Indeed, if the
stock price is rising, then vendors of uncovered options will have to go into
the market and purchase shares to cover the calls, thus putting an upward
pressure on the stock price. Though some argue that the availability of
options exerts a stabilizing effect on the market, one has to question this
judgment. The ability of large companies to sell uncovered options can
have disastrous consequences. Enron failed when it could not fulfill the call
options in electricity it had sold in California.

The selling of covered call options may be very desirable for a fund
manager who is trying to maintain a somewhat steady rate of return in
markets good and bad. If the market moves into a phase of low or negative
growth, the selling of the call options will bring in some income even though
the purchasers will not exercise the options. If the market moves into a good
growth phase, then the selling of the call options limits the upside profit
from the stock to that of the strike price minus the original cost of the stock
to the fund. Suppose that, by very clever balancing, the manager of such
a fund managed to obtain a return of, say, 3% in bear markets and 10%
in strong markets. That might be the basis for an attractive alternative to
bonds. In other words, the vendor might be able to use call options as a
way of trading high gains for low risk. In this author’s opinion, however,
the selling of uncovered call options should not be allowed.

From the standpoint of the buyer of call options, it is frequently the
case that the purpose of the trade is to assume high risk in the hopes of
substantial gains. There are situations where this can make a great deal
of sense. But the author wonders how often the purchasers of call options
bother to crank out and examine a risk profile such as that shown in Figure
14.17. The purchaser of a call option ought not believe that the equation
of Black, Scholes and Merton will bring determinism into what is, in fact,
the very risky business of using options for leveraging purposes.

If one wishes to put his or her investment strategy on autopilot, then
finding a good equal weight S&P index fund (such as Vanguard’s) is not a
bad idea. Even a Fidelity or Vanguard market cap weighted fund may be
alright. If one is willing to take the time, one can do better still. What is
really unwise is investing in a fund with high management fees managed
by individuals who do the investor little good service. And investing in
Treasury Bills or derivative funds is probably very dangerous indeed.

The one sure thing about the stock market continues to be that it will
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fluctuate. And this fluctuation produces risk. However, the investor has
two weapons at his/her disposal to reduce risk: portfolio diversification
and time. The investor also has another weapon: reason and the knowl-
edge that if a deal appears too good to be true, it probably is. Without
careful backtesting, investing is beyond risky. The assumption that one can
trust the wisdom of mutual fund managers is generally misplaced. Unfor-
tunately, most companies with 401-k plans for its employees generally force
them into mutual funds. Bactesting of mutual funds comparing their his-
torical performance to the DOW or S&P 500 is a minimal time investment
which can protect the employee. And equity in most mutual funds can be
converted into others after a holding period of 90 days. The days of “buy
and hold” and “trust thy employer who knoweth best” are gone and not
likely to reappear. The area of personal investing is time consuming, but
the time is well spent.
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Problems

14.1. Find the option values for Method A and Method B for a stock with
present value 100, ¢ = 0.10, r = 0.06, 0 = 0.1, strike price X = 110 and
time horizon one year.

14.2. Verify Smith’s Lemma [11].
If S is lognormal with growth rate x4 and volatility o and if

Q = AM—-1XifS-—ypX>0
0 ifS—¢X<0,

then

EQ = /;(AS—vX)f(sws

mas(oe (HSQL - o)+ s+ /T
log(S5(0)/X) — log(y) + [k — (¢2/2)|T
X0 ( A ) . (14.68)

where A, v, and 1) are arbitrary parameters and @ is the standard Gaussian
cumulative distribution function.®

14.3. Consider the Black-Scholes differential equation (11.24) with the
boundary condition that

f(S,7) = SM-XifST)-X>0
= 0, otherwise.

Prove that
0 r+ (o2 —
f(S,t) = 8@ (1 g(S/X) +a[ ;(_ : /2))(T t))
_Xel-rT-0lg (log(S/X ) +a[r ; 87: /2T - t)) |

14.4. A group of investors is considering the possibility of creating a Euro-
pean option-based mutual fund. As a first step in a feasibility study, they

6

o(z) = \/% /_ : exp(—z2/2)dz
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decide to compare investments of $1 million in a portfolio of 20 stocks as
opposed to a portfolio of 20 options. They want to obtain histograms of
investment results after one year. Let us suppose that all stocks in the
portfolios are bought at a cost of $100 per share. Let us assume the usual
model of stock growth,

S(t) = S(0) exp(ut + ov/te),

where € is normally distributed with mean 0 and variance 1. Let us take
two values of u, namely, .10 and .15. Also, let us consider two values of
o, namely, .15 and .30. Consider several strike prices for the options: for
example, the expected value of the stock at the end of one year, and various
multiples thereof. Assume that the options are completely fungible. Thus,
at the end of the year, if a stock is $10 over the strike price, the option
purchased for the Black—Scholes price is worth $10 (i.e., one does not have
to save capital to buy the stock; one can sell the option). For the “riskless”
interest rate, use two values: .06 and .08. Clearly, then, we are consid-
ering a leveraged portfolio and seeing its performance in relationship to a
traditional one. Carry out the study assuming that there is no correlation
between the stocks.

14.5. Carry out the study in Problem 14.4 with the following modification.
Use the p value of .24 and the two o values of .15 and .30. Then assume
that there is an across-the-board bear jump mechanism whereby a sudden
drop of 10% happens, on the average, once a year and a sudden drop of
20% happens on the average once every five years. The overall growth is
still roughly .10. Use the Black—Scholes riskless price as before without
adding in the effect of the Poisson jumps downward.
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Appendix A

A Brief Introduction to
Probability and Statistics

A.1 Craps: An Intuitive Introduction to
Probability

In this game, played with great gusto by millions, the player throws two
six-sided dice. We shall assume that one of these dice is white and the other
is black. If, in the first throw, the player throws a seven (W1B6, W2BS5,
W3B4, W4B3, W5B2, W6B1) or an eleven (W5B6, W6B5), he wins the
game. We note that there are 36 possible results of the throw:

(W1B1, W1B2, W1B3, W1B4, W1B5, W1B6; W2B1, W2B2, W2B3, W2B4,
W2B5, W2B6;W3B1, W3B2, W3B3, W3B4, W3B5, W3B6; W4B1, W4B2,
W4B3, W4B4, W4B5, W4B6; W5B1, W5B2, W5B3, W5B4, W5B5, W5B6;
W6B1, W6B2, W6B3, W6B4, W6B5, W6B6).

This collection would be looked upon as the sample space S. Clearly

P(S) = 1.

We have to get one of the 36 results. Intuitively, each of these 36 results
has the same chance of occurring: 1/36. These 36 elements represent the
basic primitive events of the probability space.

We now give an example of a random variable. For a toss of the dice:

Let X = number of white pips + number of black pips.

A.1.1 Random Variables, Their Means and Variances

What is the probability of winning on the first throw? We need to find
P(7 or 11). How shall do this? We look at the primitive elements which

0 Empirical Model Building: Data, Modeling, and Reality, Second Edition. James R.
Thompson (©)2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons.

387



388 A BRIEF INTRODUCTION TO PROBABILITY AND STATISTICS

map under the random variable to 7 or 11. These are W1B6, W2B5, W3B4,
W4B3, W5B2, W6B1, W5B6, W6B5. Now, we know the probability of each
of these primitive events: each has probability 1/36. So, then the concept
of a random variable is a mapping from the space of primitive events to
some other space (here to the integers 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) in
such a way that the inverse map gets us to the primitive events on which
the probability is naturally defined. A random variable has the property
that the probability that the random variable is equal to a particular value
can be computed from the space of original events:

P(7 or 11 on first toss) =
P (W1B6, W2B5, W3B4, W4B3, W5B2, W6B1, W5B6, W6B5) =
P(W1B6)+ P(W2B5)+ P(W3B4)+ P(W4B3)+ P(W5B2)+ P(W6B1)+

P(W5B6)+P(W6B5) = % = 0.222222.

By simply looking at the primitive events that map into 2,3,4,5,6,7,8,9,10,
11,12, we note that

P@)=P(2) = 5
P@)=P11) = =
P(4) = P(10) = %
PG =PO) = =
P(6) = P(8) = 3—56

PO) = o

The ezpected value of a random variable X is its average value. Here

=12 1 9 3 4
p=EX) = ;XP(X)=2§+3%+4§+5§5+...
= T (A1)

The variance of a random variable is given by

0? = E(X—p)? = E(X?)-2uE(X)+p* = E(X?)—u? = 54.833—7% = 5.833.
(A.2)
Now, the rules of the game of craps tell us that the player loses if he gets
a 2, 3, or 12 on the first throw. What is the probability of this?

Prob (2, 3, or 12 on first throw) = P(WI1B1, W1B2, W2B1, W6B6)
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1 1 1 1
= 36 736 36 36
4
%
Now, the player may throw some number other than 2, 3, 12, 7 or 11.
Suppose the number is 4. The probability of this is

P(4) = P(W1B3)+ P(W2B2)+ P(W3B1) = %.

The rule is that the player wins if he throws a second 4 before throwing a 7.
We have seen already that the probability of a 7 is 6/36. So, the probability
of getting a 4 before a 7 is 3
1
3+6 3

The probability of the player winning the game by throwing a 4 on the first
round and then, on subsequent throws, getting a 4 before rolling a 7 is:

3 1 2

%X X3 0.027778.
Another way the player could win is to throw a 10 on the first round
and then throw a second 10 before throwing a 7. Now the probability of
throwing a 10 is

P(10) = P(W4B6, W5B5, W6B4) = -:—6,
the same as the probability of throwing a 4. Thus, the probability of win-

ning by throwing first a 10 and then throwing another 10 before throwing
av7is

3 1 2
3= 7y = 0.027778.
We then note that the probability of getting a 5 on the first toss is
P(5) = P(W1B4, W2B3, W3B2, W4B1) = -3:%

So, the probability of winning by throwing first a 5 and then throwing
another 5 before getting a 7 is
4 4 4
5 b =16 0.0444444.
By symmetry, we see that this is the same probability as throwing first a 9
and then getting a second 9 before throwing a 7.
Finally, the probability of throwing first a 6 is

S

P(5) = P(W1BS5, W2B4, W3B3, W4B2, W5B1) = .
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Then, the probability of winning by throwing first a 6 and then a second 6
before throwing a 7 is

3 X 2 =0.0631313.

By symmetry, this is the same as the probability of throwing first an 8 and
then throwing another 8 before throwing a 7.
In summary, the probability of winning the game of craps is given by

P(Winning) =P(7 or 11 on first toss)+
2 x [P(4 on first toss)P(4 before 7) + P(5 on first toss)P(5 before 7)
+P(6 on first toss)P(6 before 7)] = 0.492928.

Craps is interesting in that it can be used to capture at the level of
intuition the key concepts of probability theory. We notice, for example,
that all the probabilities in the game are actually generated from the 36
elementary events. Each of these has probability 1/36. But the game itself
pays off on the basis of the sum total of the two dice (without regard to
their color). The sum total of the two faces is a random variable. For any
value of the random variable, we can find the elementary events which form
the basis for the necessary computation.

Here, as we have mentioned, there are only eleven throws of interest to
us (2,3,4,5,6,7,8,9,10,11,12). Suppose we hear that someone has won at
a game of craps, just that he has won. We then want to compute the
probability that the person won on the first round. This could only have
been done if he had thrown a 7 or an 11. That probability we know is
8/36= 0.222222. We have, however, the additional information that the
player has won. Common sense might lead us to the following formula

P(win) P(win on first round|win) = P(win and win on first round)
= P(win N win first round) (A.3)
Here P(win on first round| win) is termed the “conditional probability

that he won on the first toss given that he won at all.” We can then solve
for this conditional probability by using a bit of algebra:

P(win and win on first round)
P(win)

P(win on first round| win) = (A4)

Now, here, we note that the event that he won on the first round implies
that he won at all. Hence the solution to (A.2) is given by

_0.222222
"~ 0.492928
This discussion should be used as a template any time one needs reminding

what a random variable is and how we compute the probability that a
random variable has a particular set of values.

P(win on first round| win) = 0.450816. (A.5)
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Let us get more abstract and ask how many sets could we construct from
the 36 primitive elements (without replacement)? Let us construct one such
set. We can put any number of primitive elements into the set. The first
element W1B1 can either be in our set or out of it. That means two choices
for inclusion of W1B1. And the same choice is available as to whether to
include W1B2 or not. Aggregating across each of the primitive elements,
we find that the number of sets is

2x2x...x2=2%—=6,871,947,674.

We can easily compute the probability P of each of these sets by look-
ing at the primitive events included in each of them and adding up their
probabilities (each equal to 1/36). ?

1We can do more and take arbitrarily many unions of these 6,871,947,674 sets and
intersections, and complements and so forth and so on ad infinitum. The class of sets so
obtained is called the sigma field generated by the primitive events. Now, as noted, we
can find the probability of each of these sets by simply looking to see which primitive
events are included.
For example, the case where none of the elementary sets is included is called the empty
set or @. We have to get one of the elementary events; something must happen; so the
probability that nothing happens is zero. Thus,

P(9)=0.

Now the entire sample space S of all the elementary events (36 of them here) must have
probability one, for one of the elementary tosses must happen:

P(S)=1.

Now, in the set of real numbers, we can consider the connected intervals as the basic
building blocks of a sigma field. And then we can ad infinitum look at unions, inter-
sections, and complements for the real numbers. The resulting sigma field is called the
Borel field. In order for us to compute the probability of a set B of real numbers, we
need to be able to assure ourselves that the inverse X ~!(B) is a member of the sigma
field in our primitive probability space (where we know what the probabilities are). In
such a case,

P'(B) = P(X~}(B)).

So, a random variable is a real variable such that the inverse image of the Borel sets is
a member of the sigma field in the primitive probability space. Thus, the probability
measure P and the random variable X will induce a probability measure P’ on the Borel
sets.
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Figure A.1. Sets and their intersections.

As we see from Figure A.1,
P(AUB) = P(A)+ P(B) - P(AN B). (A.6)
Suppose that we have two sets A and B which have the property that
P(A and B) = P(An B) = P(A) x P(B). (A7)

Then, we say that A and B are stochastically independent under the prob-
ability measure P.

If A and B are disjoint (have no points in common), then we can write
P(A and/or B) = P(AU B) = P(A) + P(B). (A.8)

For any set A on which a probability measure is defined, we must have
0<PA)<1 (A.9)

Let us return briefly to the game of craps. Suppose we have a second
random variable, Y, which is equal to 1 if the sum of the two dice is odd
and 2 if it is even. Let us view the two random variables in the light of the
eleven possible outcomes of X and their probabilities
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Table A.1. The Game of Craps.

Primitive Events X Y XY PXY)
W1B1 2 2 4 1/36
W1B2,W2B1 3 1 3 2/36
W1B3,W2B2,W3B1 4 2 8 3/36
W1B4,W2B3,W3B2,W4B1 5 1 5 4/36
WI1B5,W2B4,W3B3,W4B2,W5B1 6 2 12 5/36
W1B6,W2B5,W3B4,W4B3,W5B2,W6B1 7 1 7 6/36
W2B6,W3B5,W4B4,W5B3,W6B2 8 2 16 5/36
W3B6,W4B5,W5B4,W6B3 9 1 9 4/36
W4B6,W5B5,W6B4 10 2 20 3/36
W5B6,W6B5 1 1 11 2/36
W6B6 12 2 24 1/36

Firstly, we can easily compute the mean and variance of Y.

E(YY) = 2x1/36+3x2/36+...=15
E(Y?) = 22x1/36+3%°x2/36+...=25
Var(Y) = E(Y?) -[EY)?=25-15%=.2.

Generally, we may try to find a simple measure of the apparent interaction
between two variables, X and Y. One such is the covariance of X and Y

Cou(X,Y) = E[(X — px)(Y — py)]. (A.10)

A more popular measure of apparent interaction is the correlation between
X and,
Cov(X,Y)

VOx0y

Now, although covariances can take values from —oo to +00, the correlation
can only take values between —1 and +1. To prove this fact, we note that:

p(X,Y) = (A.11)

0 < Ela(X — nx) — (Y — uy))? = a?0% + 0% — 2aCov(X,Y), (A.12)

where a is an arbitrary real constant which we elect to be Cov(X,Y)/0%.
This gives us immediately a version of Cauchy’s Inequality,

p? <1, (A.13)

Now, the reader should verify that if Y is simply a positive multiple of X,
then p = 1. IfY is a negative multiple of X, then p = —1. We are interested,
in portfolio design, in looking at the correlation between two securities. To
the extent that this correlation is close to 1, the diversification benefit of
including both stocks in the portfolio is marginal.
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A.2 Combinatorics Basics

Let us first compute the number of ways that we can arrange in a distinc-
tive order k objects selected without replacement from n, n > k, distinct
objects. We easily see that there are n ways of selecting the first object,
n — 1 ways of selecting the second object, and so on until we select k¥ — 1
objects and note that the kth object can be selected in n — k + 1 ways. The
total number of ways is called the permutation of n objects taken k at a
time, P(n,k), and is seen to be given by
n!

Pn,k)=nn-1)(n—-2)---(n—-k+1)= TRk (A.14)
where m! = m(m — 1)(m — 2)-.-2 x 1, 0! = 1. In particular, there are
n! ways that we can arrange n objects in a distinctive order. Next, let us
compute in how many ways we can select k£ objects from n objects when
we are not concerned with the distinctive order of selection. This number
of ways is called the combination of n objects taken k at a time, and is
denoted by C(n,k). We can find it by noting that P(n,k) could be first
computed by finding C(n, k) and then multiplying it by the number of ways
k objects could be distinctly arranged (i.e., k!). So we have

P(n, k) = C(n, k)P(k, k) = C(n, k)k!

and thus |
( . ) = C(n,k) = (—1-1—_'3’% (A.15)

For example, the game of stud poker consists in the drawing of 5 cards from
a 52 card deck (4 suits, 13 denominations). The number of possible hands
is given by
C(52,5) = 52 _ 2, 598, 960
YV T4 T T
We are now in a position to compute some basic probabilities which are
slightly harder to obtain than, say, those concerning tossing a die. Each
of the 2,598,960 possible poker hands is equally likely. To compute the
probability of a particular hand, we simply evaluate

number of ways of getting the hand
number of possible hands

P(hand) =

Suppose we wish to find the probability of getting an all-spade hand. There
are C(13,5) ways of selecting 5 spades (without regard to their order) out
of 13 spades. Hence,

P(an all spade hand) = %gg’—g;
_ OQ9ANANAZ) - _ - 455495,

(51)(2, 598, 960)
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Finding the probability of getting four cards of a kind (e.g., four aces,
four kings) is a bit more complicated. There are C(13,1) ways of picking
a denomination, C(4,4) ways of selecting all the four cards of the same
denomination, and C(48, 1) of selecting the remaining card. Thus,

C(13,1)C(4,4)C(48,1)

P(four of a kind) =

C(52,5)
(13)(1)(48) _
5508 560 = 000024

Similarly, to find the probability of getting two pairs, we have

C(13,2)C(4,2)C(4,2)C(44,1)

P(two pairs) =

C(52,5)
(78)(6)(6)(44) _
2,598,960 = 0.0475.

A.3 Bayesian Statistics

A.3.1 Bayes’s Theorem

Suppose that the sample space S can be written as the union of disjoint
sets: S =A; UAaU---UA,. Let the event H be a subset of S which has
nonempty intersections with some of the A;’s. Then

P(H|A:)P(A))
P(H|A1)P(A1) + P(H|A2)P(A2) + -+ + P(HIAn)P(J(‘lX)l'G)

P(A(H) =

To explain the conditional probability given by equation (A.16), consider
a diagram of the sample space, S. Consider that the A;’s represent n
disjoint states of nature. The event H intersects some of the A;’s.
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H
)

A\A /A9

Figure A.2. Bayesian Venn diagram.

Then,
P(HNA,) _ P(A|H)P(H)

PAIAD =" b4y "=~ P4y

Solving forP(A;|H), we get

P(H|A1)P(A:)

P(i|H) = =S,

and in general,
P(H|A;)P(As)

P(AilH) = —=Fn

(A.17)

Now,

PH) = P(HNA))UHNA2)U-U(HNA,))
= Z P(H N A,), since the intersections (H N A;) are disjoint
= ZP(HlAi)P(A,-), where j =1,2,...,n.

Thus, with (A.17) and P(H) given as above, we get (A.16).

The formula (A.16) finds the probability that the true state of nature
is A; given that H is observed. Notice that the probabilities P(A;) must
be known to find P(A;|H). These probabilities are called prior probabil-
ities because they represent information prior to experimental data. The
P(A;|H) are then posterior probabilities. Foreachi = 1,2,...,n, P(A;|H)
is the probability that A; was the state of nature in light of the occurrence
of the event H.
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A.3.2 A Diagnostic Example

Consider patients being tested for a particular disease. It is known from
historical data that 5% of the patients tested have the disease, further,
that 10% of the patients that have the disease test negative for the disease,
and that 20% of the patients who do not have the disease test positive for
the disease. Denote by D% the event that the patient has the disease, by
D~ the event that the patient does not, and denote by Tt the event the
patient tests positive for the disease, and by T~ the event the patient tests
negative.

If a patient tests positive for the disease, what is the probability that
the patient actually has the disease? We seek the conditional probability,
P(D*|T*). Here, T is the observed event, and Dt may be the true state
of nature that exists prior to the test. (We trust that the test does not
cause the disease.) Using Bayes’s theorem,

P(T*|D*)P(DY)
P(T+)
P(T*|DV)P(D)
P(T+|D+)P(D%*) + P(T+|D~)P(D")
09 x .05

= 05 %005 102 %095 = 1915

P(D*|T) (A.18)

Thus, there is nearly a 20% chance given a positive test result that the
patient has the disease. This probability is the posterior probability, and if
the patient is tested again, we can use it as the new prior probability. If the
patient tests positive once more, we use equation (A.18) with an updated
version of P(D%), namely, 0.1915.

The posterior probability now is:

P(T*|D*)P(D¥)
P(TH)
P(T*|D*)P(DY)
P(T+|D+)P(D+) + P(T+|D-)P(D")
0.9 x 0.1915

= 09x01915+02x 03085 _ 05159

P(DHT*) =

Twice the patient tests positive for the disease and the posterior probability
that the patient has the disease is now much higher. As we gather more and
more information with further tests, our posterior probabilities will better
and better describe the true state of nature.

In order to find the posterior probabilities as we have done, we needed
to know the prior probabilities. A major concern in a Bayes application
is the choice of priors, a choice which must be made sometimes with very
little prior information. One suggestion made by Bayes is to assume that
the n states of nature are equally likely (Bayes’ Axiom). If we make this
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assumption in the example above, that is, that P(Dt) = P(D~) = 0.5,
then

P(T+|D*)P(Dt)
P(T+|Dt)P(D+) + P(T+|D~)P(D™)

P(D*TY) =

P(D%) and P(D~) cancel, giving

P(T+|D%)
P(T+|D+) + P(T+|D-)
0.9

0.9+0.2
= 0.8182.

P(DHT*) =

This is much higher than the accurate probability, 0.1912. Depending upon
the type of decisions an analyst has to make, a discrepancy of this magni-
tude may be very serious indeed. As more information is obtained, however,
the effect of the initial choice of priors will become less severe.

A.4 The Binomial Distribution

Let us suppose we are selecting from a very large—effectively infinite—
population of black and white balls. Suppose the probability a ball is black
is p and that the probability a ball is white is ¢ = 1 —p. Suppose that out
of n draws, the first z are black and the next n — z are white. Suppose that
out of n draws we get z black balls and n — = white balls. The probability
is given by

pp---p(1—p)1—p)---(1—p) =p°(1—p)" .

v

z n—z times

But suppose that we are not interested in the order in which the black
balls appear, just their total number z out of n draws. Then we have the
binomial probability function

PX=1)= ( Z )pm(l—p)"“‘”, z=0,1,2,...,n. (A.19)

The binomial distribution may be viewed as the sum of n independent

Bernoulli variables. A Bernoulli variable, Y, takes the value 1 with prob-

ability p and the value 0 with probability ¢ = 1 — p. Thus, the expected

value of Y = px 1 4+ ¢x 0 = p. Similarly, the expected value of Y2 = p x 12

= p. Then the variance of Y = E(Y?) — [E(Y))? = p—p* = p(1 — p).
Returning to the binomial variable z, we have

X=y+y2+...+yn. (A.20)
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So, for the binomial distribution,

E(X) = E(n)+E(y2)+...+ E(yn)
= pt+p+...+p
= np. (A.21)

E(X? = E(y?+y2+...+y2+n?—n terms like yiy; where i # j). (A.22)

Thus,
E(X?) =np+n(n-1)p%. (A.23)

And
Var(X) = E(X?) - [E(X))* = np+n(n—1)p* - (np)? = np(1-p). (A.24)

We now bring in a concept which is used extensively throughout this book,
that of the cumulative probability distribution function:

F(z) = P(X < z). (A.25)

For the binomial distribution, we have
j<z
F(z)=2< n )pf(1—p)"—1, ji=0,1,2,...,n. (A.26)
=0\ d

We note that the binomial distribution is discrete. F(z) is described by step
functions. We show the (cumulative) distribution function of a binomial
variate when p = 0.7 and n = 3 in Figure A.3.
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1.0 1.000
Binomial Distribution with
p=7andn=3
8
F(x)
6 .657
4
.216
2
027
0 1 2 3

X

Figure A.3. CDF of the binomial distribution.

A.5 The Uniform Distribution

We now look at a random variable X which is characterized by its cdf

F(z) = 0,ifz<0
T, if0<z<1
= 1 ifz>1.

(A.27)
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F(x)

0 1
x

Figure A.4. CDF of the uniform distribution.

The uniform distribution has no jumps in the cdf. A uniform random
variable is, therefore, an example of a continuous random variable. For a
continuous random variable, we may desire to look at its derivative, f(z) =
dF(z)/dz. f(z) is called the probability density function of the random
variable X. In the case of the uniform distribution, we note that

f(z) — dl;‘i:c) ——1for0<z<1;

= 0 otherwise .

For simulation purposes, the uniform distribution is of particular impor-
tance. Suppose that we have another continuous random variable X with
cdf F(.). We will now consider F as itself a random variable, Y = F(z).
Its cdf G(y) is easily found by the following argument:

Gly) =P(Y <y)=P(F(z)<y)=P@x<F'(y) =y. (A.28)

The consequence is that if we know the cdf F(z), then we may obtain a
simulated value from the distribution by finding 4 randomly distributed on
the unit interval. Then

T = F~(u). (A.29)
Practically every numerical computer compiler has a uniform random num-

ber generator. So (A.29) will generally yield an easy way for us to generate
a simulated observation of the random variable with cdf F'.
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A.6 Moment—Generating Functions

We now consider the joint density function of n random independent and
identically distributed random variables of a continuous random variable X
having density function f(.). Then a natural definition of the joint density
of (z1,z2,...,Zys) i8

f(z1,z2,...,2n)
- lim P[:E1<X1<$1+€1]P[-'L'2<X2<.’E2+€2]'“
€1,€3,...,—0 €1 €2
= m @a f(za)ea  f(an)en
€1,€3,...,—0 €1 €2 €n
= f(:cl)f(zz) oo f(:z:,.). (A.30)

The late Salomon Bochner once mentioned the rather modest result in
(A.30) as being R. A. Fisher’s greatest contribution to statistics. Note that
it enables us to write the density of an n—dimensional random variable as
the product of n one-dimensional densities.

Next, let X be a random variable with cumulative distribution function
F(z). The moment-generating function Mx(t) via

Mx(t) = E(e"), (A.31)

where t is an arbitrary real variable.
Assuming that differentiation with respect to ¢ commutes with expecta-
tion operator E, we have

M (t) E(XeX)
ML) = E(X2X)

MP ) = BX®etX),
Setting t equal to zero, we see that
MP(0) = E(x*). (A.32)

Thus, we see immediately the reason for the name moment-generating func-
tion (m.g.f.). Once we have obtained Mx(t), we can compute moments of
arbitrary order (assuming they exist) by successively differentiating the
m.g.f. and setting the argument ¢ equal to zero. As an example of this
application, let us consider a random variable distributed according to the
binomial distribution with parameters n and p. Then,

¢ (7 )ra-nr

( . ) (pe’)™(1 — p)"~".

Mx(t) =

3
>
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Now recalling the binomial identity

(2 ) e (oo

0

we have
Mx (t) = [pe* + (1 - p)I". (A.33)
Ne t, differentiating with respect to ¢, we have

M (t) = npe*[pe* + (1 — p)|* . (A.34)
Then, setting ¢ equal to zero, we have
E(X) = Mx(0) = np. (A.35)
Differentiating again with respect to t and setting ¢ equal to zero, we have
E(X?) = M%(0) = np + n(n — 1)p°. (A.36)
To calculate the variance, it suffices to recall that for any r.v. X we have
Var(X) = E(X?) - [E(X)}2 (A.37)
Thus, for the binomial X,
Var(X) = np(1 - p). (A.38)

Of course we have already found the mean and variance of the binomial dis-
tribution via (A.20)—(A.24). Generally speaking the moment—generating
function is an easier way to compute moments than the direct approach.
However, we shall shortly see an even more important use of the moment
generating function.

A.7 The Normal (Gaussian) Distribution

Consider the normal density function

f(z) = exp (—-2%‘2(1: - u)z) , —00< < 00. (A.39)

1
V2nro?

We would like to satisfy ourselves that we have a true density function. We
note, first of all, that f(z) > 0 for all —oo < £ < co. Ne t, we need to
show that F(co0) = 1, i.e, that

1 1 A
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Let us make the transformation

_IH
z=— (A41)
The left hand side of (A.40) becomes
/ L2y, A (A.42)
—oo V2w

Clearly, A is non-negative. Hence it will suffice to show that A2 = 1. Now

o0 o0
=L / / expl— (22 + w?)|dzdw. (A.43)
27 J 0 J =00 2

Let us transform to polar coordinates, with
r? = 2% + w?;tan(d) = w/z.

Thus,
1 [>® [ _, 1 ® a2
A? = —/ / e~ ?rdrdf = —27r/ e 2rdr =1. (A44)
2 0 0 2r 0

The moment—generating function of a normal random variable can be found
via

1 * tz 1 2
Mx(t) = g e“exp —ﬁ(z —p)* ) dz
—o00
_ 1 = 1 2 2 2
= 7, /_oo exp ( 57 (z° —2pz — 20tz + )) dz
= 1 /oo €x] (——1—(:1:2 —2z(u + to?) + p?) ) dz
= ool B p 252 H ©

= ! /oo ex - (z—u*)?)dzexp(t +t202
T V210 S P\ 722 K P 2 )’

where u* = pu + to?. But recognizing that the integral is simply equal to
V2mo, we see that the m.g.f. of the normal distribution is given by

Mx(t) =exp (tu + f’;) . (A.45)

By evaluating the first two derivatives of Mx(t) at 0, the reader may now
easily verify that the mean and variance of the normal distribution are p
and o2, respectively. 2

2A related distribution, of particular interest to persons involved with market models,
is the lognormal distribution. Suppose that we have a random variable X such that its
logarithm is normally distributed with mean u and variance ¢. Then we say that X has
the lognormal distribution with density:

-1 ~ 1 (g — w2
f(x)—mozexp< 202(1112: y.)) for z > 0.
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The possible mechanical advantages of the m.g.f. are clear. One in-
tegration (summation) operation plus k differentiations yield the first k
moments of a random variable. However, the moment-generating aspect
of the m.g.f. pales in importance to some of its properties relating to the
summation of independent random variables. Let us suppose, for exam-
ple, that we have n independently distributed r.v.’s X;, Xa,..., X, with
m.g.f.’s My, M,, ..., My, respectively. Suppose that we wish to investigate
the distribution of the r.v.

Y=61X1+62X2+"‘+Cann

where ¢y, c2, ..., c, are fixed constants. Let us consider using the moment-
generating functions to achieve this task. We have

My(t) = E[exp {t(c1X1 +ceXo+ -+ Can)}]

Using the independence of X, X,..., X, we may write
My(t) = ElexptciXi])E[exptceXa]--- Elexp tc, Xp)
= Mi(cit)Ma(cat) - - - Mu(cat). (A.46)

Given the density (or probability) function, we know what the m.g.f
will be. But it turns out that, under very general conditions, the same is
true in the reverse direction; namely, if we know Mx (t), we can compute a
unique density (probability) function that corresponds to it. The practical
implication is that if we find a random variable with an m.gf. we rec-
ognize as corresponding to a particular density (probability) function, we
know immediately that the random variable has the corresponding density
(probability) function. Thus, in many cases, we are able to use (A.46) to
give ourselves immediately the distribution of Y. Consider, for example,
the sum

Y=X1+X2+4+---+X,

of n independent binomially distributed r.v.’s with the same probability of
success p and the other parameter being equal to ny, ng, . . ., ny, respectively.
Thus, the moment-generating function for Y is

My (t) [pe* + (1 —p)]™ [pe* + (1 —p)]™ --- [pe* + (1 — p)]™
[pet + (1 _ p)]m+nz+---+n...

We note that, not unexpectedly, this is the m.g.f. of a binomial r.v. with
parameters N =n; +ng +--- +n, and p.
Next, we note that the moment generating function for

Z=c1X1+c2Xo+...cnXn

where the X;; are independent normal variables with parameters y; and o7,
is simply

Mz(t) = exp (t > e+ g Z(Cio')2> : (A47)
i=1 =1
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From (A.45), we recognize that Z must be a normal random variable with
mean Y .., ci#t; and variance PO ca?.

A.8 The Central Limit Theorem

We are now in a position to derive one version of the central limit theorem
(CLT). Let us suppose we have a sample X, X3, ..., X, of independently
and identically distributed random variables with mean x and variance o?.
We wish to determine, for n large, the approximate distribution of the
sample mean

X=X1+X2+”.+Xn.
n

We shall examine the distribution of the sample mean when put into the
standard form. Let

_Xop _X-p X—p K-
a/v/n a\/n o\n oyn

Now, using the independence of the X;’s and the fact that they are identi-
cally distributed with the same mean and variance, we can write

E(et?) = ,]‘le [exp (t)f;%u)]
(el (S}
- {E [1 +t)f:\;7_l“ +§(X‘a2_n“)2 p (%)] }n

2 n
(1 + ;—n) —e'’? a5 n - co. (A.48)

zZ

Mz(t)

It

But (A.48) is the m.g.f. of a normal distribution with mean zero and
variance one. Thus, we have been able to show that the distribution of the
sample mean of a random sample of n i.i.d. random variables with mean
u and variance 02 becomes “close” to the normal distribution with mean u
and variance o2/n as n becomes large.

Perhaps the easiest method of remembering the CLT is that if a statistic
is the result of a summing process, then

__ statistic — E(statistic)
+/ Var(statistic)

(A.49)

is approximately normally distributed with mean 0 and variance 1.
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A.9 The Gamma Distribution

Consider the gamma function:
o o]
IN'a) =/ > le"%dz for a > 0. (A.50)
0

Integrating by parts, we obtain
I'a)=(a-1)I'(a—-1) for a>1. (A.51)
When a = n, with n a positive integer, repeating (A.51) n — 1 times yields
L(n)=(n-1), (A.52)

since I'(1) = f0°° e *dz = 1.The random variable X has the gamma distri-
bution with parameters o and f, if its p.d.f. is

1
BT (a)

and zero elsewhere, where both constants, a and 3, are positive. The mean
of X is af and the variance of X is a32.

The gamma distribution with parameter a = 1 is called the (negative)
ezponential distribution with parameter 5. That is, the exponential r.v. X
has the p.d.f.

flx) = 2% e3P for >0 (A.53)

f(z) = %e”’/ﬁ for 7> 0, (A.54)

and zero elsewhere, where § > 0. It also follows from the above that X has
the mean A and variance (2.

The gamma distribution with parameters a = v/2 and 8 = 2, where v is
a positive integer, is called the chi-square (x2 for short) distribution with
v degrees of freedom. The chi-square random variable X has the p.d.f.

f(x) = ):1:"/2—16’”/2 for >0 (A.55)

1
/20 (v/2
and zero elsewhere. The r.v. X has the mean v and variance 2v.

The m.gf. of agamma variate with parameters a and 8 can be computed
in the following way:

M(t) L /oo ez e~ By
I(e)B> Jo

1 % a-1,-z(1-Bt)/8
—_ ox— ~—~Tll— .
= T (a) e /0 % e dz;



408 A BRIEF INTRODUCTION TO PROBABILITY AND STATISTICS

now this integral is finite only for ¢ < 1/ and substituting y = z(1 — 5t)/8
yields

1 @ 1
= ('i—_—a-t'> for t < E, (A56)

where the last equality follows from the form of the p.df. of the gamma
distribution with parameters & and 1. In particular, the m.g.f. for a chi-
square r.v. with v degrees of freedom has the form

v/2
M(t) = (1_—1?) =@1-2t)""? t<1/2 (A.57)

Suppose we consider the moment generating function of the square of a
N(0,1) random variable.

OO
Mz(t) = —-\/12=1;/ e”ae_zz/Zdz
-0

1 [ 1,
= Wir exp(—-2-z (1-2t))dz
—00
- / ” efdw(1 —2t)}
- ‘/2—7'_ o € w( - )
= (1-2t)}, (A.58)
where w = 24/1 — 2t.
Next, let us consider the sum of squares of n random variables indepen-

dently distributed as A(0,1). That is, we wish to consider the moment
generating function of
n
=34

=1

Then, from (A.45) and (A.46), we have

Ma(t) = (j)m (A.59)

We recognize this to be a x? variable with n degrees of freedom.

A.10 Conditional Density Functions

Let us return to questions of interdependence between random variables
and consider briefly conditional distribution of one random variable given
that another random variable has assumed a fixed value.



THE WEAK LAW OF LARGE NUMBERS 409

If tworandom variables X and Y are discrete and have a joint probability
function f(z,y), then, the conditional probability function of the r.v. X,
given that Y = y, has the form

. - = T - — f(z'b y)
f(zily) = P(X = zi]Y =y) T @)’ (A.60)
where
fr(y) = > f@iy)- (A.61)

all values of z;

Next, let us now suppose that random variables X and Y are continuous
and have joint c.d.f.

F(z,y) = /:o [L f(u, v)dudv. (A.62)

We can obtain the marginal density function of Y via

ww)= [ : f(z,y)dz. (A63)

Writing the statement of joint probability for small intervals in X and Y,
we have

Pz<X<z+enNy<X<y+d)
Ply<Y <y+8)P(z<X <z+ely<Y <y+9d).

Now, exploiting the assumption of continuity of the density function, we
can write

z+€ y+95 y+95 T+€
/ / f(z,y)dydz = / fr(y)dy / fxy(z)dz
z Yy Yy ]

= &5f(z,y) = 0fy (y)efxiy(x).

Here, we have used the terms fy and fx), to denote the marginal density
function of Y, and the conditional density function of X given Y = y,
respectively. This gives us immediately

_ f(z,y)
fXIU(z) - fy(y) . (A64)

Note that this is a function of the argument z, whereas y is fixed; y is the
value assumed by the random variable Y.
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A.11 The Weak Law of Large Numbers

Let us now consider the set of n data drawn from some probability distri-
bution. Prior to the experiment which yields the data, they can be treated
as a sequence of n independent and identically distributed (i.i.d.) random
variables X1, X,,...,X,. Such sequence will be labeled as a random sample
of size n. Suppose that the mean and variance of the underlying probability
distribution are p and o2, respectively. Otherwise, the probability distribu-
tion is unknown. We shall find the mean and variance of the sample mean
of the random sample.

It is easy to see that

EX1+Xo+---+X,) E(X))+E(X3)+---+ E(X,)
n - n
prp+---tp
” =4

Mz =

In this derivation, we have not used independence or the fact that all the
r.v.’s have the same distribution, only the fact that they all have the same
(finite) mean. We say that X is an unbiased estimator of u.

Next we shall derive the variance of X:

o} = BI(X -y
_ E[((xl—u)+(Xz—u)+.,.+(xn—u))2]

n n n

2 E[(X; — p)?
Z (( #)]

n2

+ terms like E [(Xl - p)(Xz — u)] .

2
n
i=1

Now, by independence, the expectation of the cross-product terms is zero:

B -0 -] = [ :(x1 — )2 — w)f (21)f (z2)dzrdy
E(Xy—u)E(X2—u)=0

(the argument for discrete distributions is analogous). Thus, we have

2

n

o

"N

We note that in the above derivation the fact that the X;’s are identically
distributed has been superfluous. Only the facts that therandom variables
are independent and have the same p and o2 have been needed. The
property that the variability of X about the true mean p decreases as n
increases is of key importance in experimental science. We shall develop
this notion further below.



WEAK LAW OF LARGE NUMBERS 411

Let us begin by stating the celebrated Chebyshev’s inequality. If Y is any
random variable with mean p, and variance 03, then for any € > 0

2
a.
P(lY — py| >€) < -E% (A.65)

As a practical approximation device, it is not a particularly useful inequal-
ity. However, as an asymptotic device, it is invaluable. Let us consider the
case where Y = X. Then, we have

2
o a
P(|X — ﬂ.l >e) < E, (A.66)

or equivalently
2

P(X —pl<e)>1- iﬁ (A.67)

Equation (A.67) is a form of the weak law of large numbers. The WLLN
tells us that if we are willing to take a sufﬁcient_ly large sample, then we
can obtain an arbitrarily large probability that X will be arbitrarily close
to p. 3.

3In fact, even a more powerful result, the strong law of large numbers, is available.
In order to make the difference between the WLLN and SLLN more transparent, let us
denote the sample mean based on a sample of size n by Xy, so that the dependence of
X on n be emphasized. Now we can write the WLLN in the following way

Jim P(1 X —pl<e)=1 (A.68)
for each positive €. On the other hand, the SLLN states that

P(lim |%n—pl=0)=1 (A.69)

Loosely speaking, in the WLLN, the probability of X, being close to u for only one
n at a time is claimed, whereas in the SLLN, the closeness of X, to x4 for all large n
simultaneously is asserted with probability one. The rather practical advantage of the
SLLN is that if g(x) is some function, then

P( lim 9(Xn) ~ 9(u)] = 0) = 1. (a70)

The WLLN and the SLLN are particular cases of convergence in probability and
almost sure convergence of a sequence of r.v.’s, respectively. Let Y1,Y2,...,Yy,... be
an infinite sequence of r.v.’s. We say that this sequence of r.v.’s converges in probability
or stochastically to a random variable Y if

lim P([Yn-Y|>¢)=0
n—oo

for each positive . Wesay that the sequence Y31, Yz,...,Yy,... converges almost surely
or converges with probability one if

P(lim {Yo - Y|=0)=1.
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A.12 The Multivariate Normal Distribution

The random vector X of dimension p is said to have multivariate normal
(or p-dimensional multinormal or p-variate normal) distribution if its p.d.f.
is given by

f) = rB P expl-g(x— s Y= - )}, (AT

where p is a constant vector and ¥ is a constant positive definite ma-
trix. It can be shown that ¢ and ¥ are the mean vector and covariance
matrix of the random vector X, respectively. For short, we write that
X is N (p ,X) distributed. Now if the covariance matrix ¥ is diagonal,
¥ = diag(o11,022,- - - ,Opp), the density function can be written as:

P
f(x) = [J@rou)/2 exP{"‘;‘(zi — wi)oit (@i — pa)}- (A.72)
i=1

Thus, the elements of X are then mutually independent normal random
variables with means p; and variances oy, ¢ = 1,2,.. ., p, respectively. If the
random vector X is multivariate normal, then the property that its elements
are uncorrelated one with another (i.e., that Cov(X;, X;) = 0,4 # j) implies

their mutual independence.

A.13 The Wiener Process

A stochastic process {X;} is a collection of random variables indexed on
the real variable t. Typically, t is time. Let us suppose the { X;} process
has the property that for any collection of ¢ values t; < 3 < ... < tg,
the vector random variable (X;,, Xi,,...,X:,) is an n dimensional normal
distribution. Then {X.} is a Gaussian process.

Next, suppose that a stochastic process W(t) has the following properties

e W(0)=0;
e For any t, W(t) is normal with mean zero and variance t;

e If the intervals [t;,t2] and [t3, t4] do not overlap, then the random
variables W (t2) — W(t;) and W(t4) — W (t3) are stochastically inde-
pendent.

Then W (t) is called a Wiener process.
We define a Brownian process S(t) as

S(t) = ut+ aW(t), (A.73)

where W (t) is a Wiener process. We write this as the stochastic differential

equation
dS(t) = ut + odW (t). (A.74)
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If the logarithm of S(t) is a Brownian process, then we say that S(t) is a
geometric Brownian process. We may write this as the stochastic differential

equation

‘—ig—(g-:—) = ut + odW (t). (A.75)

Then, we have
S(t) = S(0)exp[(u— %02)t +0ovtZ]
= 5(0)exp(ut) x exp(ovtZ — (%a2t)) (A.76)

where the Z are independently distributed as A/(0,1). To find the percentile
values of a security at time ¢, we use the percentile values from

Zeritical  P(Z > Zeriticat = P(Z < —Zeritical

2.3263 .01
1.6449 .05
1.2816 .10
1.0364 15
.8416 .20
.6745 .25
5244 .30
2533 .40
0 .50

A.14 The Poisson Process and the Poisson
Distribution

Let us consider a counting process described by Poisson’s Four Axioms:
1. P(1 occurrence in [t,t + €]) = Ae;
2. P( more than 1 occurrence in [t,t + €]) = o(e)
where lim,_,g o(€)/e = 0;
3. P(k in [t1,t2) and m in [t3,t4]), = P(k in [t1,t2]) P(m in [t3,t4])
if (1, t2] N[ts, ta] = 0;
4. P(k in [t1,t1 + s]) = P(k in [t2,t2 + s]) for all t1,t2, and s.
Then we may write
P(k +1in [0,t])P(0 in [t,t + €])
+P(k in [0,¢])P(1 in [t,t + €]) + o(€)
P(k +1,t)(1 — Xe) + P(k,t)\e + o(€)

P(k+1in [0,t +¢€])
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where P(k,t) = P(k in [0,]).
Then we have
o(e)

Pk+1,t+ 62 — P(k+1,t) = A[P(k,t) - P(k+1)] + - (A.77)

Taking the limit as € — 0, we have the differential-difference equation:

kE+1
W — MP(k,t) — P(k + L t)]. (A.78)
Taking k = —1, since we know that it is impossible for a negative number
of events to occur, we have
4PO _ 5 p(0,1). (A.79)
dt
So,
P(0,t) = exp(—At). (A.80)
Next, we for for P(1,t) via
P(1,t
G — Nexp(-2t) - P(L,1), (A.81)
with solution,
P(1,t) = exp(—At)(\t). (A.82)

Continuing in this fashion, we quickly conjecture that the general solution

of (A.78) is given by

P ( /\t)k
K

(A.83) defines the Poisson distribution. We can quickly compute the mean

and variance both to be At. If there are N happenings in a time interval of

length T', then a natural estimate for A is found by solving

AT = N. (A.84)

P(k,t) = (A.83)

This gives us
=Y (A.85)
=7 .
Of special interest to us is the probability that no shock (event) occurs
in the interval from t to t + s. Clearly, that is given by P(0, s) = exp(—As).
This immediately enables us to write the cumulative distribution function

of the time it takes to reach an event, namely,
F(t) =1 —exp(—At) (A.86)

Now, we know that the cdf of a continuous random variable is distributed
as a uniform random variable on the interval from 0 to 1. This gives us
a ready means for generating a simulated time until first occurrence of an
event.
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1. Generate u from U(0,1).
2. Set u =1 — exp(—At).
3. t =log(1—u)/A

Once we observe an occurrence time t;, we start over with the new time
origin set at ¢;.

Note that we now have a stochastic process. At any given time ¢, the
probability an event happens in the interval (t,t+ €) is given by A x e. The
probability is stochastically independent of the history prior to t.

A.14.1 Simulating Bear Jumps

Let us suppose we have a bank account of one million pesos which is grow-
ing at the rate of 20% per year. Unfortunately, a random devaluation of
currency in the amount of 10% occurs on the average of once a year. A
random devaluation of currency in the amount of 20% occurs on the aver-
age of once every five years. What will be the value of the bank account
six months in the future in present day pesos? If there are no devaluations,
the answer is

$(10) = 1,000, 000 exp(.5 x .2) = 1,105, 171.

On the other hand, we have to deal with the concatenation of our “sure
thing” bank account with the cancatenation of two Poisson bear jump mech-
anisms. The 10% jumps have Aoy given by:

1
Ao = 1= 1. (A.87)
The 20% jumps have Aygy given by
Mo = £ = 0.2 (A.88)

Returning to (A.84), to handle the 10% jumps, we generate a uniform
random variate u; on [0,1] we have the following downjump multiplier table:

1. If u; < exp(—1 x 0.5) = 0.60653, use multiplier 1.00.
. If 0.60653 < u; < 0.90980, use multiplier 0.9.
. If 0.909080 < u; < 0.98561, use multiplier 0.81.

2

3

4. If 0.98561 < u; < 0.99824, use multiplier 0.729.
5. 1f0.99824 < u; < 0.99982, use multiplier 0.6561.
6

. 1£0.99824 < u1, use multiplier 0.59049.
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To handle the 20% bear jumps, we generate a uniform random variate us.
We then have the following downjump multiplier table.

1. If u1 < exp(—.2 x 0.5) = 0.90484, use multiplier 1.00
2. If 0.90484 < up < 0.99532, use multiplier 0.8

3. 1£ 0.99532 < uz < 0.99985, use multiplier 0.64.

4. If 0.99985 < ug, use multiplier 0.512.

Many standard software packages have automatic Poisson generators. To
use such a routine, one simply enters AT and a random number of bear
jumps, from 0 to infinity, is generated.

A.15 Parametric Simulation

For the standard lognormal model for stock growth, we have
1,
S(t) = S(0) expl(n — 507t + oVtZ). (A.89)
Then, from (A.90), we have, for all t and At

r(t+ At t) = S—(ts%)A—tz = exp [(u - 223) At + Za\/EJ . (A.90)

Defining R(t + At,t) = log(r(t + At,t)), we have
2
R(t+ At t) = (u -~ %) At + eaVAL.

Then .
E[R(t + At,¢)] = (M - %) At. (A.91)

We will take us to be given on an annual basis. Then, ifthe data are taken
at N points separated by At, let the sample mean R be defined by

. 1 &
R=+ ; R(3) (A.92)

By the strong law of large numbers, the sample mean R converges almost
surely to its expectation (i — 02/2)At. Next, we note that

[R(t + At,t) — E(R(t + At,t))]? = €202 At, (A.93)

Var[R(t + At,t)] = E[R(t + At, t) — (p - 3;) At]? = 62At.  (A94)
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N
2= N‘IIT ;(R(i) _ R (A.95)

The most utilized estimation technique in statistics is the method of mo-
ments. By this procedure, we replace the mean by the sample mean, the
variance by the sample variance, etc. Doing this in (A.94), we have

2_ 3R
o% = % (A.96)
Then, from (A.92) we have
. R o2

Having estimated from historical data x and o, we can now simulate the
value of our stock using (A.90) for any desired time horizon.

A.15.1 Simulating a Geometric Brownian Walk

First we start with a simple geometric Brownian case. The program is
incredibly simple. We need only assume available a uniform generator, a
normal generator, and a sorting routine.

Simulation of Portfolios
1. Enter S(0),T, i, and 6.
2. Repeat 10,000 times.
3. Generate normal observation Z with mean zero and variance 1 .
4. Set S(T) = S(0) exp[(n — 30T + oVTZ).
5. End repeat.
6. Sort the 10,000 end values.

7. Then F(v) = Number of %)’gtogd values <v

We will now add on the possibility of two types of bear jumps: a 10%
downturn on the average of once every year (A1 = 1) and a 20% downturn
on the average of once every five years (A2 = .2).

Simulation With Jumps
1. Enter S(O), T, ﬁ, 6’, /\1, A2.
2. Repeat 10,000 times.
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. Generate normalobservation Z with mean zero and variance 1 .
Set S(T) = S(0) exp|(1 — 30T + oVTZ).

. Generate a Poisson variate m; from Po(A\; x T).

. Replace S(T") by .9™ x S(T)

. Generate a Poisson variate mg from Po(A2 x T').

. Replace S(T) by .8™2 x S(T)

© W N o o oa W

. End repeat.
10. Sort the 10,000 end values.

11. Then F(v) = Number of fgl(;ggd values <v.

A.15.2 The Multivariate Case

Now, we assume that we have p securities to be considered in a portfolio
with weights {c;} which are non-negative and sum to one. We estimate the
{u;} and the {o} precisely as in the one security case. Accordingly, for the

Jjth security, we let
N S;(3)
Rj(i) = log (.S’ Ti— 1))

1 N
N;Rj(i)

Then

and
L
2 _ - i\ _ D.\2
SR, = N1 ‘E:l(RJ(z) R;)*.

So we have an estimates for aj? and p;, namely

2 5%
g A; (A.98)
and A
N
pj = Ai +3 < (A.99)

Now, we must also account for the correlation between the growths of
stocks:

N
Oim = 31 D_(Ry(8) ~ By)(Bim() — Eom). (A.100)
i=1
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Then, we have as our estimated covariance matrix

611 612 ... Oyp

s G172 Gz ... &

=] 12 "2 ® 1, (A.101)
b1p Gap ... Opp

For a covariance matrix, we may obtain a Cholesky decomposition
£-11", (A.102)

where L is a lower triangular matrix, frequently referred to as the matrix
square root of 3. Subroutines for obtaining the matrix square root are
available in most standard matrix compatible software such as Matlab,
Splus, and SAS.

Let us generate p independent normal variates with mean 0 and variance
one, putting them into a row vector, Z = (21,22,...,2p). Then, we compute
the row vector

v=2LT = (v1,v2,...,vp).

Then, the price of the jth stock in the joint simulation at time T is given
by

55() = 55(0) expl(s ~ 505”7+ v VT, (A.103)
Then, for the p-dimensional case:
Portfolio Simulation
1. Enter {S,-(O)};-’=1, T, {j;}, and L.
2. Repeat 10,000 times.

3. Generate p independent normal variates with mean 0 and variance
one, putting them into a row vector, Z = (21, 22,...,2p).

4. Compute the row vector

V = ZLT = (v1,v2, ..., ).
5. For each of the p stocks, compute
1
S5;(t) = S;(0) exp(n; — 503'2)T +;VT].

6. For the ith repeat save the (S1(T'), S2(T), ..., Sp(T)) as the row vector
S;.

7. End repeat.
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The multivariate simulation with the two bear jump processes added
becomes:

1.

10.

11.

N o oA W N

Simulation Multivariate With Jumps

Enter {S;(0) JP=1, T, {@i;}, L, Ay and A2.

. Repeat 10,000 times.
. Generate a Poisson variate m; from Po(\ x T).
. Replace S;(0) by .9™ x S;(T)

. Generate a Poisson variate ma from Po(A2 x T).

Replace S;(0) by 8™ x S;(T)

Generate p independent normal variates with mean 0 and variance
one, putting them into a row vector, Z = (21, 22,...,2p).

Compute the row vector

V = 2ZLT = (v1,v2,...,0p).

. For each of the p stocks, compute

S(T) = 5,(0) expl(; ~ 50T + ;9T

For the ith repeat save the (S1(T), S2(T), ..., Sp(T)) as the row vector
Si(T).

End repeat.

Suppose we have a portfolio consisting of p stocks each weighted by c>0
such that A} ¢; = 1. Then to obtain a simulation of the portfolio, we
must look at the 10,000 values from the above simulations, of the form

P(T) = zp: ¢ Si,;(T). (A.104)
Jj=1

Here, the i refers to the number of the simulation. We can then form the
simulation of the portfolio results by sorting the P;(T") and obtaining the
cumulative distribution function. This gives us
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A Simulation Based Portfolio
1. Enter S(T), {c;}.
2. For all i from 1 to 10,000, find P(T) = 3°%_, ¢;S; 5(T).
3. Sort the Pi(T).

4. Flv) = Number of solrg;ggovalues Pi(t)<v.

The Portolio Simulation may then be used for a host of purposes. We might
use it as an assist, for example, in deciding whether one wished to replace
one stock in the portfolio by another.

We wish to make it clear that, due to the fact that one is using historical
estimates of growth and volatility rather than the actual values, rather than
the true ones (which we cannot know), the portfolio optimization based on
such simulations should only be used as an exploratory and speculative tool.
It is not a magic bullet, nor do we claim it to be. It is a useful technique
for what might happen.

A.16 Resampling Simulation

Let us suppose we have a data base showing the year to year change in a
stock or a stock index. We can then obtain a data base of terms like

S(t:)

R; = lOg( S(ti—-l) )

In other words, we know that
S(t:) = S(ti—1) x exp(R;).

Suppose we have a data base of n such terms, {R;, Ra,...,R, }. Let us
make the (frequently reasonable) assumption that the ups and downs of
the stock or the index in the past are a good guide to the ups and downs in
the future. It would not be a good idea, if we wished to forecast the value
of the stock five years in advance, randomly to sample (with replacement)
five of the R;’s, say, { R3, Ry7, R29, R20, R31} and use

5'(5) = §(0) x exp|R3 + Ry7 + Rao + Rz + Ra1].

On the other hand, if we wished to obtain, not a point estimate for S(T'),
but an estimate for the distribution of possible values of S(5), experience
shows that this frequently can be done as follows:
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Portfolio Resampling
1. Enter S(0), T, and the {R;}.
2. Repeat 10,000 times

3. For pass i, randomly sample with replacement T values from {R;, Rz,...,Rn}
say, {Ri1, Ri2, Riz, Rig, - . }.

4. Compute
SS(T) = S(0) x exp[Ri; + Riz + Riz + Ria + . .+
Clearly we use T resampled R values to obtain.

5. Obtain the empirical cumulative distribution function from the re-
sulting 10,000 values of SS(T'). That is, compute

Number of sorted values {SS(T)} < v

Fr(v) = 10, 000

(A.105)

By looking at the simulations for, say, five, ten, twenty and forty years
in the future, an investor can examine the historically based outcomes of
buying a security in the light of his/her anticipated needs.

A.16.1 The Multivariate Case

Here, for each of p stocks, we compute

_ S(tis)
R;; = log(m)-

Multivariate Portfolio Resampling
We then proceed very much as in the parametric case:
L Enter {S;(0)}%_,;, T, and the {R;;}: ;.
2. Repeat 10,000 times

3. For pass i, randomly sample with replacement T' values from the
length of the historical list, say, l;1,4i2,-..,17.

4. For each stock j
88;,;(T) = S;(0) x exP[Rl(a,x),J' + Rl(a,z),j +...+ Rl(.',T)J]

5. Store (SSs1,SS;,2,...,58; ;) as a row vector SS;.
6. End Repeat.
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Now for a portfolio of p stocks, balanced according to
P
P(t) = eiSi(t), (A.106)
i=1

where the weights are non-negative and sum to one, we simply use the,

An Algorithm for Resampling Portfolios
1. Enter SS(T), {c;}.
2. For all i from 1 to 10,000, find P(T) = 3°5_, ¢;SS; ;(T).
3. Sort the P;(T).

4 F(v) = Numberu?(f) £ 3 (T) v

We may then proceed to obtain simulations of the portfolio value at a
given time. Because of the correlations between stock values, it is essential
that, when we randomly select a year, we sample the annual growth factors
of the stocks in the portfolio for that year.

A.17 A Portfolio Case Study

Next, we take the 90 stocks in the S&P 100 that were in business prior
to 1991. The data base we shall use will utilize the 12 years 1990—2001,
utilizing monthly data, both for the estimation of the parameters character-
izing the simple geometrlc Browman model parameters (without Poissonian
jumps), namely the {pu;}/= J_l % and the covariance matrix {oi;}, and for ob-
taining resampling months. We look below at the result of one of many
possible optimization criteria that might have been considered. We find
the allocation of an investment in the portfolio amongst the 90 stocks max-
imizing the one year lower 20 percentile. with the constraint that no stock
has more than 5% of the portfolio share.
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Table A.2. Portfolio Allocation from S&P 100.
Maximizing One Year 20 Percentile
with Max 6% in Any Stock.

id permno ticker u | ¢ | paralloc npar alloc
1 10104 ORCL 0.44 0.65 1 0.05 0.05
2 10107 MSFT 0.39 048 0.05 0.05
3 10145 HON 0.12 044 0.00 0.00
4 10147 EMC 0.48 0.61 0.00 0.01
5 10401 T 0.05 0.40 0.00 0.00
6 10890 uIs 0.36 0.68 0.00 0.01
7 11308 KO 0.07 0.31 0.00 0.00
8 11703 DD 0.05 0.28 0.00 0.00
9 11754 EK -0.11 035 0.00 0.00
10 11850 XOM 0.12 0.17 0.00 0.00
11 12052 GD 0.19 0.25 0.05 0.05
12 12060 GE 0.23 0.26 0.00 0.00
13 12079 GM 0.08 0.36 0.00 0.00
14 12490 IBM 0.32 0.34 0.05 0.00
15 13100 MAY 0.07 0.29 0.00 0.00
16 13856 PEP 0.13 0.28 0.00 0.00
17 13901 MO 0.13 032 0.00 0.00
18 14008 AMGN 0.32 0.39 0.05 0.05
19 14277 SLB 0.12 0.36 0.00 0.00
20 14322 S 0.05 036 0.00 0.00
21 15560 RSH 0.27 0.49 0.05 0.05
22 15579 TXN 0.40 0.56 0.00 0.01
23 16424 G 0.09 0.33 0.00 0.00
24 17830 UTXx 0.21 0.35 0.00 0.00
25 18163 PG 0.16 0.31 0.04 0.00
26 18382 PHA 0.12 0.30 0.00 0.00
27 18411 SO 0.14 0.24 0.05 0.05
28 18729 CL 0.25 0.33 0.05 0.05
29 19393 BMY 0.20 0.26 0.01 0.03
30 19561 BA 0.05 0.35 0.00 c.00
31 20220 BDK 0.06 0.38 0.00 0.00
32 20626 DOW 0.07 030 0.00 0.00
33 21573 IP 0.07 0.36 0.00 0.00
34 21776 EXC 0.17 0.33 0.05 0.05

35 21936 PFE 026 | 0.28 0.05 0.05
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Tables of the Chi-Square Distribution
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