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Preface to the Second Edition

In this second edition, I have corrected all known typos and other errors; I
have (it is hoped) clarified certain passages; I have added some additional
material; and I have enhanced the Index.

I have added a few more comments about vectors and matrices with com-
plex elements, although, as before, unless stated otherwise, all vectors and
matrices in this book are assumed to have real elements. I have begun to
use “det(A)” rather than “|A|” to represent the determinant of A, except in
a few cases. I have also expressed some derivatives as the transposes of the
expressions I used formerly.

I have put more conscious emphasis on “user-friendliness” in this edition.
In a book, user-friendliness is primarily a function of references, both internal
and external, and of the index. As an old software designer, I've always thought
that user-friendliness is very important. To the extent that internal references
were present in the first edition, the positive feedback I received from users of
that edition about the friendliness of those internal references (“I liked the fact
that you said ‘equation (x.xx) on page yy,” instead of just ‘equation (x.xx)’”)
encouraged me to try to make the internal references even more useful. It’s
only when you're “eating your own dog food,” that you become aware of where
details matter, and in using the first edition, I realized that the choice of entries
in the Index was suboptimal. I have spent significant time in organizing it,
and I hope that the user will find the Index to this edition to be very useful.
I think that it has been vastly improved over the Index in the first edition.

The overall organization of chapters has been preserved, but some sec-
tions have been changed. The two chapters that have been changed most are
Chaps. 3 and 12. Chapter 3, on the basics of matrices, got about 30 pages
longer. It is by far the longest chapter in the book, but I just didn’t see any
reasonable way to break it up. In Chap. 12 of the first edition, “Software for
Numerical Linear Algebra,” I discussed four software systems or languages,
C/C++, Fortran, Matlab, and R, and did not express any preference for one

vii



viii Preface to the Second Edition

over another. In this edition, although I occasionally mention various lan-
guages and systems, I now limit most of my discussion to Fortran and R.

There are many reasons for my preference for these two systems. R is ori-
ented toward statistical applications. It is open source and freely distributed.
As for Fortran versus C/C++, Python, or other programming languages, I
agree with the statement by Hanson and Hopkins (2013, page ix), “... For-
tran is currently the best computer language for numerical software.” Many
people, however, still think of Fortran as the language their elders (or they
themselves) used in the 1970s. (On a personal note, Richard Hanson, who
passed away recently, was a member of my team that designed the IMSL C
Libraries in the mid 1980s. Not only was C much cooler than Fortran at the
time, but the ANSI committee working on updating the Fortran language was
so fractured by competing interests that approval of the revision was repeat-
edly delayed. Many numerical analysts who were not concerned with coolness
turned to C because it provided dynamic storage allocation and it allowed
flexible argument lists, and the Fortran constructs could not be agreed upon.)

Language preferences are personal, of course, and there is a strong “cool-
ness factor” in choice of a language. Python is currently one of the coolest
languages, but I personally don’t like the language for most of the stuff I do.

Although this book has separate parts on applications in statistics and
computational issues as before, statistical applications have informed the
choices I made throughout the book, and computational considerations have
given direction to most discussions.

I thank the readers of the first edition who informed me of errors. Two
people in particular made several meaningful comments and suggestions. Clark
Fitzgerald not only identified several typos, he made several broad suggestions
about organization and coverage that resulted in an improved text (I think).
Andreas Eckner found, in addition to typos, some gaps in my logic and also
suggested better lines of reasoning at some places. (Although I don’t follow
an itemized “theorem-proof” format, I try to give reasons for any nonobvious
statements I make.) I thank Clark and Andreas especially for their comments.
Any remaining typos, omissions, gaps in logic, and so on are entirely my
responsibility.

Again, I thank my wife, Maria, to whom this book is dedicated, for everything.
I used TEX via IWTEX 2¢ to write the book. I did all of the typing, program-
ming, etc., myself, so all misteaks (mistakes!) are mine. I would appreciate

receiving suggestions for improvement and notification of errors. Notes on
this book, including errata, are available at

http://mason.gmu.edu/~ jgentle/books/matbk/

Fairfax County, VA, USA James E. Gentle
July 14, 2017



Preface to the First Edition

I began this book as an update of Numerical Linear Algebra for Applications
in Statistics, published by Springer in 1998. There was a modest amount of
new material to add, but I also wanted to supply more of the reasoning behind
the facts about vectors and matrices. I had used material from that text in
some courses, and I had spent a considerable amount of class time proving
assertions made but not proved in that book. As I embarked on this project,
the character of the book began to change markedly. In the previous book,
I apologized for spending 30 pages on the theory and basic facts of linear
algebra before getting on to the main interest: numerical linear algebra. In
this book, discussion of those basic facts takes up over half of the book.

The orientation and perspective of this book remains numerical linear al-
gebra for applications in statistics. Computational considerations inform the
narrative. There is an emphasis on the areas of matrix analysis that are im-
portant for statisticians, and the kinds of matrices encountered in statistical
applications receive special attention.

This book is divided into three parts plus a set of appendices. The three
parts correspond generally to the three areas of the book’s subtitle—theory,
computations, and applications—although the parts are in a different order,
and there is no firm separation of the topics.

Part I, consisting of Chaps. 1 through 7, covers most of the material in
linear algebra needed by statisticians. (The word “matrix” in the title of this
book may suggest a somewhat more limited domain than “linear algebra”;
but I use the former term only because it seems to be more commonly used
by statisticians and is used more or less synonymously with the latter term.)

The first four chapters cover the basics of vectors and matrices, concen-
trating on topics that are particularly relevant for statistical applications. In
Chap. 4, it is assumed that the reader is generally familiar with the basics of
partial differentiation of scalar functions. Chapters 5 through 7 begin to take
on more of an applications flavor, as well as beginning to give more consid-
eration to computational methods. Although the details of the computations
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X Preface to the First Edition

are not covered in those chapters, the topics addressed are oriented more to-
ward computational algorithms. Chapter 5 covers methods for decomposing
matrices into useful factors.

Chapter 6 addresses applications of matrices in setting up and solving
linear systems, including overdetermined systems. We should not confuse sta-
tistical inference with fitting equations to data, although the latter task is a
component of the former activity. In Chap. 6, we address the more mechanical
aspects of the problem of fitting equations to data. Applications in statistical
data analysis are discussed in Chap. 9. In those applications, we need to make
statements (i.e., assumptions) about relevant probability distributions.

Chapter 7 discusses methods for extracting eigenvalues and eigenvectors.
There are many important details of algorithms for eigenanalysis, but they are
beyond the scope of this book. As with other chapters in Part I, Chap. 7 makes
some reference to statistical applications, but it focuses on the mathematical
and mechanical aspects of the problem.

Although the first part is on “theory,” the presentation is informal; neither
definitions nor facts are highlighted by such words as “definition,” “theorem,”
“lemma,” and so forth. It is assumed that the reader follows the natural
development. Most of the facts have simple proofs, and most proofs are given
naturally in the text. No “Proof” and “Q.E.D.” or “N’ appear to indicate
beginning and end; again, it is assumed that the reader is engaged in the
development. For example, on page 341:

If A is nonsingular and symmetric, then A~! is also symmetric because

(A—l)T — (AT)—l — A1
The first part of that sentence could have been stated as a theorem and
given a number, and the last part of the sentence could have been introduced
as the proof, with reference to some previous theorem that the inverse and
transposition operations can be interchanged. (This had already been shown
before page 341—in an unnumbered theorem of course!)

None of the proofs are original (at least, I don’t think they are), but in most
cases, I do not know the original source or even the source where I first saw
them. I would guess that many go back to C. F. Gauss. Most, whether they
are as old as Gauss or not, have appeared somewhere in the work of C. R. Rao.
Some lengthier proofs are only given in outline, but references are given for
the details. Very useful sources of details of the proofs are Harville (1997),
especially for facts relating to applications in linear models, and Horn and
Johnson (1991), for more general topics, especially those relating to stochastic
matrices. The older books by Gantmacher (1959) provide extensive coverage
and often rather novel proofs. These two volumes have been brought back into
print by the American Mathematical Society.

I also sometimes make simple assumptions without stating them explicitly.
For example, I may write “for all i” when 7 is used as an index to a vector.
I hope it is clear that “for all ¢” means only “for ¢ that correspond to indices
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of the vector.” Also, my use of an expression generally implies existence. For
example, if “AB” is used to represent a matrix product, it implies that “A
and B are conformable for the multiplication AB.” Occasionally, I remind the
reader that I am taking such shortcuts.

The material in Part I, as in the entire book, was built up recursively. In
the first pass, I began with some definitions and followed those with some
facts that are useful in applications. In the second pass, I went back and
added definitions and additional facts that led to the results stated in the first
pass. The supporting material was added as close to the point where it was
needed as practical and as necessary to form a logical flow. Facts motivated by
additional applications were also included in the second pass. In subsequent
passes, I continued to add supporting material as necessary and to address
the linear algebra for additional areas of application. I sought a bare-bones
presentation that gets across what I considered to be the theory necessary for
most applications in the data sciences. The material chosen for inclusion is
motivated by applications.

Throughout the book, some attention is given to numerical methods for
computing the various quantities discussed. This is in keeping with my be-
lief that statistical computing should be dispersed throughout the statistics
curriculum and statistical literature generally. Thus, unlike in other books
on matrix “theory,” I describe the “modified” Gram-Schmidt method, rather
than just the “classical” GS. (I put “modified” and “classical” in quotes be-
cause, to me, GS is MGS. History is interesting, but in computational matters,
I do not care to dwell on the methods of the past.) Also, condition numbers
of matrices are introduced in the “theory” part of the book, rather than just
in the “computational” part. Condition numbers also relate to fundamental
properties of the model and the data.

The difference between an expression and a computing method is em-
phasized. For example, often we may write the solution to the linear system
Ax = b as A~1bh. Although this is the solution (so long as A is square and of
full rank), solving the linear system does not involve computing A~*. We may
write A~'b, but we know we can compute the solution without inverting the
matrix.

“This is an instance of a principle that we will encounter repeatedly:
the form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.”

(The statement in quotes appears word for word in several places in the book.)

Standard textbooks on “matrices for statistical applications” emphasize
their uses in the analysis of traditional linear models. This is a large and im-
portant field in which real matrices are of interest, and the important kinds of
real matrices include symmetric, positive definite, projection, and generalized
inverse matrices. This area of application also motivates much of the discussion
in this book. In other areas of statistics, however, there are different matrices
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of interest, including similarity and dissimilarity matrices, stochastic matri-
ces, rotation matrices, and matrices arising from graph-theoretic approaches
to data analysis. These matrices have applications in clustering, data mining,
stochastic processes, and graphics; therefore, I describe these matrices and
their special properties. I also discuss the geometry of matrix algebra. This
provides a better intuition of the operations. Homogeneous coordinates and
special operations in IR? are covered because of their geometrical applications
in statistical graphics.

Part II addresses selected applications in data analysis. Applications are
referred to frequently in Part I, and of course, the choice of topics for coverage
was motivated by applications. The difference in Part II is in its orientation.

Only “selected” applications in data analysis are addressed; there are ap-
plications of matrix algebra in almost all areas of statistics, including the
theory of estimation, which is touched upon in Chap. 4 of Part I. Certain
types of matrices are more common in statistics, and Chap. 8 discusses in
more detail some of the important types of matrices that arise in data anal-
ysis and statistical modeling. Chapter 9 addresses selected applications in
data analysis. The material of Chap. 9 has no obvious definition that could
be covered in a single chapter (or a single part or even a single book), so I
have chosen to discuss briefly a wide range of areas. Most of the sections and
even subsections of Chap. 9 are on topics to which entire books are devoted;
however, I do not believe that any single book addresses all of them.

Part IIT covers some of the important details of numerical computations,
with an emphasis on those for linear algebra. I believe these topics constitute
the most important material for an introductory course in numerical analysis
for statisticians and should be covered in every such course.

Except for specific computational techniques for optimization, random
number generation, and perhaps symbolic computation, Part III provides the
basic material for a course in statistical computing. All statisticians should
have a passing familiarity with the principles.

Chapter 10 provides some basic information on how data are stored and
manipulated in a computer. Some of this material is rather tedious, but it
is important to have a general understanding of computer arithmetic before
considering computations for linear algebra. Some readers may skip or just
skim Chap. 10, but the reader should be aware that the way the computer
stores numbers and performs computations has far-reaching consequences.
Computer arithmetic differs from ordinary arithmetic in many ways; for ex-
ample, computer arithmetic lacks associativity of addition and multiplication,
and series often converge even when they are not supposed to. (On the com-
puter, a straightforward evaluation of Y | x converges!)

I emphasize the differences between the abstract number system IR, called
the reals, and the computer number system IF, the floating-point numbers
unfortunately also often called “real.” Table 10.4 on page 492 summarizes
some of these differences. All statisticians should be aware of the effects of
these differences. I also discuss the differences between 7, the abstract number
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system called the integers, and the computer number system II, the fixed-point
numbers. (Appendix A provides definitions for this and other notation that I
use.)

Chapter 10 also covers some of the fundamentals of algorithms, such as
iterations, recursion, and convergence. It also discusses software development.
Software issues are revisited in Chap. 12.

While Chap. 10 deals with general issues in numerical analysis, Chap. 11
addresses specific issues in numerical methods for computations in linear al-
gebra.

Chapter 12 provides a brief introduction to software available for com-
putations with linear systems. Some specific systems mentioned include the
IMSL™ libraries for Fortran and C, Octave or MATLAB® (or Matlab®),
and R or S-PLUS® (or S-Plus®). All of these systems are easy to use, and
the best way to learn them is to begin using them for simple problems. I do
not use any particular software system in the book, but in some exercises, and
particularly in Part III, I do assume the ability to program in either Fortran
or C and the availability of either R or S-Plus, Octave or Matlab, and Maple®
or Mathematica®. My own preferences for software systems are Fortran and
R, and occasionally, these preferences manifest themselves in the text.

Appendix A collects the notation used in this book. It is generally “stan-
dard” notation, but one thing the reader must become accustomed to is the
lack of notational distinction between a vector and a scalar. All vectors are
“column” vectors, although I usually write them as horizontal lists of their
elements. (Whether vectors are “row” vectors or “column” vectors is generally
only relevant for how we write expressions involving vector/matrix multipli-
cation or partitions of matrices.)

I write algorithms in various ways, sometimes in a form that looks similar
to Fortran or C and sometimes as a list of numbered steps. I believe all of the
descriptions used are straightforward and unambiguous.

This book could serve as a basic reference either for courses in statistical
computing or for courses in linear models or multivariate analysis. When the
book is used as a reference, rather than looking for “definition” or “theo-
rem,” the user should look for items set off with bullets or look for numbered
equations or else should use the Index or Appendix A, beginning on page 589.

The prerequisites for this text are minimal. Obviously, some background in
mathematics is necessary. Some background in statistics or data analysis and
some level of scientific computer literacy are also required. References to rather
advanced mathematical topics are made in a number of places in the text. To
some extent, this is because many sections evolved from class notes that I
developed for various courses that I have taught. All of these courses were at
the graduate level in the computational and statistical sciences, but they have
had wide ranges in mathematical level. I have carefully reread the sections
that refer to groups, fields, measure theory, and so on and am convinced that
if the reader does not know much about these topics, the material is still
understandable but if the reader is familiar with these topics, the references
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add to that reader’s appreciation of the material. In many places, I refer to
computer programming, and some of the exercises require some programming,.
A careful coverage of Part III requires background in numerical programming.

In regard to the use of the book as a text, most of the book evolved in one
way or another for my own use in the classroom. I must quickly admit, how-
ever, that I have never used this whole book as a text for any single course. I
have used Part III in the form of printed notes as the primary text for a course
in the “foundations of computational science” taken by graduate students in
the natural sciences (including a few statistics students, but dominated by
physics students). I have provided several sections from Parts I and II in online
PDF files as supplementary material for a two-semester course in mathemati-
cal statistics at the “baby measure theory” level (using Shao, 2003). Likewise,
for my courses in computational statistics and statistical visualization, I have
provided many sections, either as supplementary material or as the primary
text, in online PDF files or printed notes. I have not taught a regular “applied
statistics” course in almost 30 years, but if I did, I am sure that I would draw
heavily from Parts I and II for courses in regression or multivariate analysis.
If T ever taught a course in “matrices for statistics” (I don’t even know if
such courses exist), this book would be my primary text because I think it
covers most of the things statisticians need to know about matrix theory and
computations.

Some exercises are Monte Carlo studies. I do not discuss Monte Carlo
methods in this text, so the reader lacking background in that area may need
to consult another reference in order to work those exercises. The exercises
should be considered an integral part of the book. For some exercises, the
required software can be obtained from either statlib or netlib (see the
bibliography). Exercises in any of the chapters, not just in Part III, may
require computations or computer programming.

Penultimately, I must make some statement about the relationship of this
book to some other books on similar topics. A much important statistical
theory and many methods make use of matrix theory, and many statisticians
have contributed to the advancement of matrix theory from its very early
days. Widely used books with derivatives of the words “statistics” and “ma-
trices/linearalgebra” in their titles include Basilevsky (1983), Graybill (1983),
Harville (1997), Schott (2004), and Searle (1982). All of these are useful books.
The computational orientation of this book is probably the main difference
between it and these other books. Also, some of these other books only ad-
dress topics of use in linear models, whereas this book also discusses matrices
useful in graph theory, stochastic processes, and other areas of application.
(If the applications are only in linear models, most matrices of interest are
symmetric and all eigenvalues can be considered to be real.) Other differences
among all of these books, of course, involve the authors’ choices of secondary
topics and the ordering of the presentation.

Fairfax County, VA, USA James E. Gentle
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Linear Algebra



1

Basic Vector/Matrix Structure and Notation

Vectors and matrices are useful in representing multivariate numeric data,
and they occur naturally in working with linear equations or when expressing
linear relationships among objects. Numerical algorithms for a variety of tasks
involve matrix and vector arithmetic. An optimization algorithm to find the
minimum of a function, for example, may use a vector of first derivatives and
a matrix of second derivatives; and a method to solve a differential equation
may use a matrix with a few diagonals for computing differences.

There are various precise ways of defining vectors and matrices, but we
will generally think of them merely as linear or rectangular arrays of numbers,
or scalars, on which an algebra is defined. Unless otherwise stated, we will as-
sume the scalars are real numbers. We denote both the set of real numbers
and the field of real numbers as IR. (The field is the set together with the
two operators.) Occasionally we will take a geometrical perspective for vec-
tors and will consider matrices to define geometrical transformations. In all
contexts, however, the elements of vectors or matrices are real numbers (or,
more generally, members of a field). When the elements are not members of
a field (names or characters, for example) we will use more general phrases,
such as “ordered lists” or “arrays”.

Many of the operations covered in the first few chapters, especially the
transformations and factorizations in Chap. 5, are important because of their
use in solving systems of linear equations, which will be discussed in Chap. 6;
in computing eigenvectors, eigenvalues, and singular values, which will be
discussed in Chap. 7; and in the applications in Chap. 9.

Throughout the first few chapters, we emphasize the facts that are impor-
tant in statistical applications. We also occasionally refer to relevant compu-
tational issues, although computational details are addressed specifically in
Part III.

(© Springer International Publishing AG 2017 3
J.E. Gentle, Matriz Algebra, Springer Texts in Statistics,
DOI 10.1007/978-3-319-64867-5 1
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It is very important to understand that the form of a mathematical expres-
sion and the way the expression should be evaluated in actual practice may
be quite different. We remind the reader of this fact from time to time. That
there is a difference in mathematical expressions and computational methods
is one of the main messages of Chaps. 10 and 11. (An example of this, in
notation that we will introduce later, is the expression A~'b. If our goal is to
solve a linear system Ax = b, we probably should never compute the matrix
inverse A~ and then multiply it times b. Nevertheless, it may be entirely
appropriate to write the expression A71b.)

1.1 Vectors

For a positive integer n, a vector (or n-vector) is an n-tuple, ordered (multi)set,
or array of n numbers, called elements or scalars. The number of elements is
called the order, or sometimes the “length”, of the vector. An n-vector can be
thought of as representing a point in n-dimensional space. In this setting, the
“length” of the vector may also mean the Euclidean distance from the origin to
the point represented by the vector; that is, the square root of the sum of the
squares of the elements of the vector. This Euclidean distance will generally
be what we mean when we refer to the length of a vector (see page 27).
In general, “length” is measured by a morm; see Sect. 2.1.5, beginning on
page 25.

We usually use a lowercase letter to represent a vector, and we use the
same letter with a single subscript to represent an element of the vector.

The first element of an n-vector is the first (1°*) element and the last is the
n'™ element. (This statement is not a tautology; in some computer systems,
the first element of an object used to represent a vector is the 0" element
of the object. This sometimes makes it difficult to preserve the relationship
between the computer entity and the object that is of interest.) Although we
are very concerned about computational issues, we will use paradigms and
notation that maintain the priority of the object of interest rather than the
computer entity representing it.

We may write the n-vector = as

T
r=| : (1.1)
'1:77.

or
x=(x1,...,2Zn). (1.2)

We make no distinction between these two notations, although in some con-
texts we think of a vector as a “column”, so the first notation may be more
natural. The simplicity of the second notation recommends it for common use.
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(And this notation does not require the additional symbol for transposition
that some people use when they write the elements of a vector horizontally.)

Two vectors are equal if and only if they are of the same order and each
element of one vector is equal to the corresponding element of the other.

Our view of vectors essentially associates the elements of a vector with
the coordinates of a cartesian geometry. There are other, more abstract, ways
of developing a theory of vectors that are called “coordinate-free”, but we
will not pursue those approaches here. For most applications in statistics, the
approach based on coordinates is more useful.

Thinking of the coordinates simply as real numbers, we use the notation

R" (1.3)

to denote the set of n-vectors with real elements.

This notation reinforces the notion that the coordinates of a vector corre-
spond to the direct product of single coordinates. The direct product of two
sets is denoted as “®”. For sets A and B, it is the set of all ordered doubletons

{(a,b), s.t.a € A,b € B},

hence, R" =IR® --- ® R (n times).

1.2 Arrays

Arrays are structured collections of elements corresponding in shape to lines,
rectangles, or rectangular solids. The number of dimensions of an array is often
called the rank of the array. Thus, a vector is an array of rank 1, and a matrix
is an array of rank 2. A scalar, which can be thought of as a degenerate
array, has rank 0. When referring to computer software objects, “rank” is
generally used in this sense. (This term comes from its use in describing a
tensor. A rank 0 tensor is a scalar, a rank 1 tensor is a vector, a rank 2 tensor
is a square matrix, and so on. In our usage referring to arrays, we do not
require that the dimensions be equal, however.) When we refer to “rank of
an array”, we mean the number of dimensions. When we refer to “rank of
a matrix”, we mean something different, as we discuss in Sect. 3.3. In linear
algebra, this latter usage is far more common than the former.

1.3 Matrices

A matrix is a rectangular or two-dimensional array. We speak of the rows and
columns of a matrix. The rows or columns can be considered to be vectors,
and we often use this equivalence. An n X m matrix is one with n rows and
m columns. The number of rows and the number of columns determine the
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shape of the matrix. Note that the shape is the doubleton (n,m), not just
a single number such as the ratio. If the number of rows is the same as the
number of columns, the matrix is said to be square.

All matrices are two-dimensional in the sense of “dimension” used above.
The word “dimension”, however, when applied to matrices, often means some-
thing different, namely the number of columns. (This usage of “dimension” is
common both in geometry and in traditional statistical applications.)

We usually use an uppercase letter to represent a matrix. To represent an
element of the matrix, we usually use the corresponding lowercase letter with
a subscript to denote the row and a second subscript to represent the column.
If a nontrivial expression is used to denote the row or the column, we separate
the row and column subscripts with a comma.

Although vectors and matrices are fundamentally quite different types of
objects, we can bring some unity to our discussion and notation by occasion-
ally considering a vector to be a “column vector” and in some ways to be the
same as an n X 1 matrix. (This has nothing to do with the way we may write
the elements of a vector. The notation in equation (1.2) is more convenient
than that in equation (1.1) and so will generally be used in this book, but its
use does not change the nature of the vector in any way. Likewise, this has
nothing to do with the way the elements of a vector or a matrix are stored
in the computer.) When we use vectors and matrices in the same expression,
however, we use the symbol “T” (for “transpose”) as a superscript to represent
a vector that is being treated as a 1 X n matrix.

The first row is the 15 (first) row, and the first column is the 15¢ (first)
column. (Again, we remark that computer entities used in some systems to
represent matrices and to store elements of matrices as computer data some-
times index the elements beginning with 0. Furthermore, some systems use
the first index to represent the column and the second index to indicate the
row. We are not speaking here of the storage order—“row major” versus “col-
umn major’—we address that later, in Chap. 11. Rather, we are speaking of
the mechanism of referring to the abstract entities. In image processing, for
example, it is common practice to use the first index to represent the col-
umn and the second index to represent the row. In the software packages IDL
and PV-Wayve, for example, there are two different kinds of two-dimensional
objects: “arrays”, in which the indexing is done as in image processing, and
“matrices”, in which the indexing is done as we have described.)

The n x m matrix A can be written

ail ... Qim
A=1 1  0 . (1.4)
anl -+ Qpm

We also write the matrix A above as

A= (aij), (15)
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with the indices ¢ and j ranging over {1,...,n} and {1,...,m}, respectively.
We use the notation A, «,, to refer to the matrix A and simultaneously to
indicate that it is n X m, and we use the notation

R™*™ (1.6)

to refer to the set of all n x m matrices with real elements.

We use the notation (A);; to refer to the element in the i*® row and the
§* column of the matrix A4; that is, in equation (1.4), (4);; = a;;.

Two matrices are equal if and only if they are of the same shape and each
element of one matrix is equal to the corresponding element of the other.

Although vectors are column vectors and the notation in equations (1.1)
and (1.2) represents the same entity, that would not be the same for matrices.
If z1,..., 2, are scalars

z
X=|: (1.7)

Tn

and
Y =[x1,...,25], (1.8)

then X is an n x 1 matrix and Y is a 1 x n matrix and X # Y unlessn = 1. (Y
is the transpose of X.) Although an n x 1 matrix is a different type of object
from a vector, we may treat X in equation (1.7) or YT in equation (1.8) as a
vector when it is convenient to do so. Furthermore, although a 1 x 1 matrix,
a l-vector, and a scalar are all fundamentally different types of objects, we
will treat a one by one matrix or a vector with only one element as a scalar
whenever it is convenient.

We sometimes use the notation a.; to correspond to the j* column of the
matrix A and use a;. to represent the (column) vector that corresponds to
the it" row. Using that noation, the n x m matrix A4 in equation (1.4) can be
written as

a,
A=1 1 |. (1.9)
Uy
or as
A=, Q] - (1.10)

One of the most important uses of matrices is as a transformation of a vec-
tor by vector/matrix multiplication. Such transformations are linear (a term
that we define later). Although one can occasionally profitably distinguish ma-
trices from linear transformations on vectors, for our present purposes there
is no advantage in doing so. We will often treat matrices and linear transfor-
mations as equivalent.
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Many of the properties of vectors and matrices we discuss hold for an
infinite number of elements, but we will assume throughout this book that
the number is finite.

1.3.1 Subvectors and Submatrices

We sometimes find it useful to work with only some of the elements of a vector
or matrix. We refer to the respective arrays as “subvectors” or “submatrices”.
We also allow the rearrangement of the elements by row or column permuta-
tions and still consider the resulting object as a subvector or submatrix. In
Chap. 3, we will consider special forms of submatrices formed by “partitions”
of given matrices.

The two expressions (1.9) and (1.10) represent special partitions of the
matrix A.

1.4 Representation of Data

Before we can do any serious analysis of data, the data must be represented
in some structure that is amenable to the operations of the analysis. In simple
cases, the data are represented by a list of scalar values. The ordering in the
list may be unimportant, and the analysis may just consist of computation of
simple summary statistics. In other cases, the list represents a time series of
observations, and the relationships of observations to each other as a function
of their order and distance apart in the list are of interest. Often, the data
can be represented meaningfully in two lists that are related to each other by
the positions in the lists. The generalization of this representation is a two-
dimensional array in which each column corresponds to a particular type of
data.

A major consideration, of course, is the nature of the individual items of
data. The observational data may be in various forms: quantitative measures,
colors, text strings, and so on. Prior to most analyses of data, they must be
represented as real numbers. In some cases, they can be represented easily
as real numbers, although there may be restrictions on the mapping into the
reals. (For example, do the data naturally assume only integral values, or
could any real number be mapped back to a possible observation?)

The most common way of representing data is by using a two-dimensional
array in which the rows correspond to observational units (“instances”) and
the columns correspond to particular types of observations (“variables” or
“features”). If the data correspond to real numbers, this representation is the
familiar X data matrix. Much of this book is devoted to the matrix theory
and computational methods for the analysis of data in this form. This type of
matrix, perhaps with an adjoined vector, is the basic structure used in many
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familiar statistical methods, such as regression analysis, principal components
analysis, analysis of variance, multidimensional scaling, and so on.

There are other types of structures based on graphs that are useful in
representing data. A graph is a structure consisting of two components: a
set of points, called vertices or nodes and a set of pairs of the points, called
edges. (Note that this usage of the word “graph” is distinctly different from
the more common one that refers to lines, curves, bars, and so on to represent
data pictorially. The phrase “graph theory” is often used, or overused, to em-
phasize the present meaning of the word.) A graph G = (V, E) with vertices
V ={v1,...,v,} is distinguished primarily by the nature of the edge elements
(vi,v;) in E. Graphs are identified as complete graphs, directed graphs, trees,
and so on, depending on F and its relationship with V. A tree may be used
for data that are naturally aggregated in a hierarchy, such as political unit,
subunit, household, and individual. Trees are also useful for representing clus-
tering of data at different levels of association. In this type of representation,
the individual data elements are the terminal nodes, or “leaves”, of the tree.

In another type of graphical representation that is often useful in “data
mining” or “learning”, where we seek to uncover relationships among objects,
the vertices are the objects, either observational units or features, and the
edges indicate some commonality between vertices. For example, the vertices
may be text documents, and an edge between two documents may indicate
that a certain number of specific words or phrases occur in both documents.
Despite the differences in the basic ways of representing data, in graphical
modeling of data, many of the standard matrix operations used in more tra-
ditional data analysis are applied to matrices that arise naturally from the
graph.

However the data are represented, whether in an array or a network, the
analysis of the data is often facilitated by using “association” matrices. The
most familiar type of association matrix is perhaps a correlation matrix. We
will encounter and use other types of association matrices in Chap. 8.

What You Compute and What You Don’t

The applied mathematician or statistician routinely performs many computa-
tions involving vectors and matrices. Many of those computations follow the
methods discussed in this text.

For a given matrix X, I will often refer to its inverse X ~!, its determinant
det(X), its Gram X" X, a matrix formed by permuting its columns E X, a
matrix formed by permuting its rows X F(,), and other transformations of the
given matrix X. These derived objects are very important and useful. Their
usefulness, however, is primarily conceptual.

When working with a real matrix X whose elements have actual known
values, it is not very often that we need or want the actual values of elements



10 1 Basic Vector/Matrix Notation

of these derived objects. Because of this, some authors try to avoid discussing
or referring directly to these objects.

I do not avoid discussing the objects, but, for example, when I write
(XTX)~'1XTy, I do not mean that you should compute XTX and Xy, then
compute (XTX)™L, and then finally multiply (XTX)~! and XTy. I assume
you know better than to do that. If you don’t know it yet, I hope after reading
this book, you will know why not to.



2

Vectors and Vector Spaces

In this chapter we discuss a wide range of basic topics related to vectors of real
numbers. Some of the properties carry over to vectors over other fields, such
as complex numbers, but the reader should not assume this. Occasionally, for
emphasis, we will refer to “real” vectors or “real” vector spaces, but unless it
is stated otherwise, we are assuming the vectors and vector spaces are real.
The topics and the properties of vectors and vector spaces that we emphasize
are motivated by applications in the data sciences.

2.1 Operations on Vectors

The elements of the vectors we will use in the following are real numbers, that
is, elements of IR. We call elements of IR scalars. Vector operations are defined
in terms of operations on real numbers.

Two vectors can be added if they have the same number of elements.
The sum of two vectors is the vector whose elements are the sums of the
corresponding elements of the vectors being added. Vectors with the same
number of elements are said to be conformable for addition. A vector all of
whose elements are 0 is the additive identity for all conformable vectors.

We overload the usual symbols for the operations on the reals to signify
the corresponding operations on vectors or matrices when the operations are
defined. Hence, “+” can mean addition of scalars, addition of conformable
vectors, or addition of a scalar to a vector. This last meaning of “+” may not
be used in many mathematical treatments of vectors, but it is consistent with
the semantics of modern computer languages such as Fortran, R, and Matlab.
By the addition of a scalar and a vector, we mean the addition of the scalar
to each element of the vector, resulting in a vector of the same number of
elements.

(© Springer International Publishing AG 2017 11
J.E. Gentle, Matriz Algebra, Springer Texts in Statistics,
DOI 10.1007/978-3-319-64867-5 2
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A scalar multiple of a vector (that is, the product of a real number and
a vector) is the vector whose elements are the multiples of the corresponding
elements of the original vector. Juxtaposition of a symbol for a scalar and a
symbol for a vector indicates the multiplication of the scalar with each element
of the vector, resulting in a vector of the same number of elements.

The basic operation in working with vectors is the addition of a scalar
multiple of one vector to another vector,

z=ax +vy, (2.1)

where a is a scalar and x and y are vectors conformable for addition. Viewed
as a single operation with three operands, this is called an azpy operation
for obvious reasons. (Because the Fortran versions of BLAS to perform this
operation were called saxpy and daxpy, the operation is also sometimes called
“saxpy” or “daxpy”. See Sect. 12.2.1 on page 555, for a description of the
BLAS.)

The axpy operation is a linear combination. Such linear combinations of
vectors are the basic operations in most areas of linear algebra. The com-
position of axpy operations is also an axpy; that is, one linear combination
followed by another linear combination is a linear combination. Furthermore,
any linear combination can be decomposed into a sequence of axpy operations.

A special linear combination is called a convex combination. For vectors x
and y, it is the combination

ax + by, (2.2)

where a,b > 0 and a + b = 1. A set of vectors that is closed with respect to
convex combinations is said to be conver.

2.1.1 Linear Combinations and Linear Independence

If a given vector can be formed by a linear combination of one or more vectors,
the set of vectors (including the given one) is said to be linearly dependent;
conversely, if in a set of vectors no one vector can be represented as a linear
combination of any of the others, the set of vectors is said to be linearly
independent. In equation (2.1), for example, the vectors z, y, and z are not
linearly independent. It is possible, however, that any two of these vectors are
linearly independent.

Linear independence is one of the most important concepts in linear alge-
bra.

We can see that the definition of a linearly independent set of vectors

{v1,...,v;} is equivalent to stating that if
a1v1 + - agvg =0, (2.3)
then a; = -+ = ap = 0. If the set of vectors {v1,..., v} is not linearly inde-

pendent, then it is possible to select a maximal linearly independent subset;
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that is, a subset of {v1,...,vx} that is linearly independent and has maxi-
mum cardinality. We do this by selecting an arbitrary vector, v;,, and then
seeking a vector that is independent of v;,. If there are none in the set that
is linearly independent of v;,, then a maximum linearly independent subset
is just the singleton, because all of the vectors must be a linear combination
of just one vector (that is, a scalar multiple of that one vector). If there is a
vector that is linearly independent of v;,, say v;,, we next seek a vector in the
remaining set that is independent of v;; and v;,. If one does not exist, then
{vi,,vi, } is a maximal subset because any other vector can be represented in
terms of these two and hence, within any subset of three vectors, one can be
represented in terms of the two others. Thus, we see how to form a maximal
linearly independent subset, and we see that the maximum cardinality of any
subset of linearly independent vectors is unique however they are formed.

It is easy to see that the maximum number of n-vectors that can form a
set that is linearly independent is n. (We can see this by assuming n linearly
independent vectors and then, for any (n 4 1) vector, showing that it is
a linear combination of the others by building it up one by one from linear
combinations of two of the given linearly independent vectors. In Exercise 2.1,
you are asked to write out these steps.)

Properties of a set of vectors are usually invariant to a permutation of the
elements of the vectors if the same permutation is applied to all vectors in the
set. In particular, if a set of vectors is linearly independent, the set remains
linearly independent if the elements of each vector are permuted in the same
way.

If the elements of each vector in a set of vectors are separated into sub-
vectors, linear independence of any set of corresponding subvectors implies
linear independence of the full vectors. To state this more precisely for a set

of three n-vectors, let * = (z1,...,2n), ¥y = (Y1, --,Yn), and z = (21,..., 2n).
Now let {i1,...,ix} C {1,...,n}, and form the k-vectors = (z;,,..., i, ),
7= (Yirs-- Yip), and Z = (2, ..., 2;, ). Then linear independence of Z, ¢,

and Z implies linear independence of z, y, and z. (This can be shown directly
from the definition of linear independence. It is related to equation (2.19) on
page 20, which you are asked to prove in Exercise 2.5.)

2.1.2 Vector Spaces and Spaces of Vectors

Let V be a set of n-vectors such that any linear combination of the vectors
in V is also in V. Such a set together with the usual vector algebra is called
a vector space. A vector space is a linear space, and it necessarily includes
the additive identity (the zero vector). (To see this, in the axpy operation, let
a=—1and y = z.) A vector space is necessarily convex.

The set consisting only of the additive identity, along with the axpy op-
eration, is a vector space. It is called the “null vector space”. Some people
define “vector space” in a way that excludes it, because its properties do not
conform to many general statements we can make about other vector spaces.
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The “usual algebra” is a linear algebra consisting of two operations: vector
addition and scalar times vector multiplication, which are the two operations
comprising an axpy. It has closure of the space under the combination of those
operations, commutativity and associativity of addition, an additive identity
and inverses, a multiplicative identity, distribution of multiplication over both
vector addition and scalar addition, and associativity of scalar multiplication
and scalar times vector multiplication.

A vector space can also be composed of other objects, such as matrices,
along with their appropriate operations. The key characteristic of a vector
space is a linear algebra.

We generally use a calligraphic font to denote a vector space; V or W, for
example. Often, however, we think of the vector space merely in terms of the
set of vectors on which it is built and denote it by an ordinary capital letter;
V or W, for example. A vector space is an algebraic structure consisting of
a set together with the axpy operation, with the restriction that the set is
closed under the operation. To indicate that it is a structure, rather than just
a set, we may write

V= (V,0),

where V' is just the set and o denotes the axpy operation, or a similar linear
operation under which the set is closed.

2.1.2.1 Generating Sets

Given a set G of vectors of the same order, a vector space can be formed from
the set G together with all vectors that result from the axpy operation being
applied to all combinations of vectors in G and all values of the real number
a; that is, for all v;,v; € G and all real a,

{av; +v;}.

This set together with the axpy operation itself is a vector space. It is
called the space generated by G. We denote this space as

span(G).

We will discuss generating and spanning sets further in Sect. 2.1.3.

2.1.2.2 The Order and the Dimension of a Vector Space

The vector space consisting of all n-vectors with real elements is denoted IR".
(As mentioned earlier, the notation IR™ can also refer to just the set of n-
vectors with real elements; that is, to the set over which the vector space is
defined.)

The dimension of a vector space is the maximum number of linearly inde-
pendent vectors in the vector space. We denote the dimension by
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dim(+),

which is a mapping IR" — Z (where Z denotes the positive integers).

The order of a vector space is the order of the vectors in the space. Because
the maximum number of n-vectors that can form a linearly independent set
is n, as we showed above, the order of a vector space is greater than or equal
to the dimension of the vector space.

Both the order and the dimension of IR are n. A set of m linearly inde-
pendent n-vectors with real elements can generate a vector space within IR"
of order n and dimension m.

We also may use the phrase dimension of a vector to mean the dimension
of the vector space of which the vector is an element. This term is ambiguous,
but its meaning is clear in specific contexts, such as dimension reduction, that
we will discuss later.

2.1.2.3 Vector Spaces with an Infinite Number of Dimensions

It is possible that no finite set of vectors span a given vector space. In that
case, the vector space is said to be of infinite dimension.

Many of the properties of vector spaces that we discuss hold for those with
an infinite number of dimensions; but not all do, such as the equivalence of
norms (see page 29).

Throughout this book, however, unless we state otherwise, we assume the
vector spaces have a finite number of dimensions.

2.1.2.4 Essentially Disjoint Vector Spaces

If the only element in common between two vector spaces V and W is the
additive identity, the spaces are said to be essentially disjoint. Essentially
disjoint vector spaces necessarily have the same order.

If the vector spaces V and W are essentially disjoint, it is clear that any
element in V (except the additive identity) is linearly independent of any set
of elements in W.

2.1.2.5 Some Special Vectors: Notation

We denote the additive identity in a vector space of order n by 0,, or sometimes
by 0. This is the vector consisting of all zeros:

0, = (0,...,0). (2.4)

We call this the zero vector, or the null vector. (A vector x # 0 is called a
“nonnull vector”.) This vector by itself is sometimes called the null vector
space. It is not a vector space in the usual sense; it would have dimension 0.
(All linear combinations are the same.)
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Likewise, we denote the vector consisting of all ones by 1,, or sometimes
by 1:
1, =(1,...,1). (2.5)

We call this the one vector and also the “summing vector” (see page 34). This
vector and all scalar multiples of it are vector spaces with dimension 1. (This
is true of any single nonzero vector; all linear combinations are just scalar
multiples.) Whether 0 and 1 without a subscript represent vectors or scalars
is usually clear from the context.

The zero vector and the one vector are both instances of constant vectors;
that is, vectors all of whose elements are the same. In some cases we may abuse
the notation slightly, as we have done with “0” and “1” above, and use a single
symbol to denote both a scalar and a vector all of whose elements are that
constant; for example, if “c” denotes a scalar constant, we may refer to the
vector all of whose elements are ¢ as “c” also. These notational conveniences
rarely result in any ambiguity. They also allow another interpretation of the
definition of addition of a scalar to a vector that we mentioned at the beginning
of the chapter.

The i*" unit vector, denoted by e;, has a 1 in the i*? position and Os in all
other positions:

e; =(0,...,0,1,0,...,0). (2.6)

Another useful vector is the sign vector, which is formed from signs of the
elements of a given vector. It is denoted by “sign(-)” and for z = (z1,...,2,)
is defined by

sign(z); = 1 if x; >0,
= 0 ifa; =0, (2.7)
=-1 ifz; <.

2.1.2.6 Ordinal Relations Among Vectors

There are several possible ways to form a rank ordering of vectors of the same
order, but no complete ordering is entirely satisfactory. (Note the unfortunate
overloading of the words “order” and “ordering” here.) If z and y are vectors
of the same order and for corresponding elements z; > y;, we say « is greater
than y and write

x> y. (2.8)

In particular, if all of the elements of = are positive, we write x > 0.
If z and y are vectors of the same order and for corresponding elements
x; > y;, We say x is greater than or equal to y and write

x>y. (2.9)

This relationship is a partial ordering (see Exercise 8.2a on page 396 for the
definition of partial ordering).
The expression x > 0 means that all of the elements of x are nonnegative.
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2.1.2.7 Set Operations on Vector Spaces

The ordinary operations of subsetting, intersection, union, direct sum, and
direct product for sets have analogs for vector spaces, and we use some of the
same notation to refer to vector spaces that we use to refer to sets. The set
operations themselves are performed on the individual sets to yield a set of
vectors, and the resulting vector space is the space generated by that set of
vectors.

Unfortunately, there are many inconsistencies in terminology used in the
literature regarding operations on vector spaces. When I use a term and/or
symbol, such as “union” or “U”, for a structure such as a vector space, I use
it in reference to the structure. For example, if V = (V,0) and W = (W, o) are
vector spaces, then V' UU is the ordinary union of the sets; however, VUW is
the union of the vector spaces, and is not necessarily the same as (U U W, o),
which may not even be a vector space. Occasionally in the following discussion,
I will try to point out common variants in usage.

The convention that I follow allows the wellknown relationships among
common set operations to hold for the corresponding operations on vector
spaces; for example, if V and W are vector spaces, ¥V C VUW, just as for sets
V and W.

The properties of vector spaces are proven the same way that properties
of sets are proven, after first requiring that the axpy operation have the same
meaning in the different vector spaces. For example, to prove that one vector
space is a subspace of another, we show that any given vector in the first
vector space is necessarily in the second. To prove that two vector spaces
are equal, we show that each is a subspace of the other. Some properties of
vector spaces and subspaces can be shown more easily using “basis sets” for
the spaces, which we discuss in Sect. 2.1.3, beginning on page 21.

Note that if (Vo) and (W, o) are vector spaces of the same order and U is
some set formed by an operation on V and W, then (U, o) may not be a vector
space because it is not closed under the axpy operation, o. We sometimes refer
to a set of vectors of the same order together with the axpy operator (whether
or not the set is closed with respect to the operator) as a “space of vectors”
(instead of a “vector space”).

2.1.2.8 Subpaces

Given a vector space V = (V,o), if W is any subset of V, then the vector
space W generated by W that is, span(W), is said to be a subspace of V, and
we denote this relationship by W C V.

W CVand W # V, then W is said to be a proper subspace of V. If
W =7V, then WCV and V C W, and the converse is also true.

The maximum number of linearly independent vectors in the subspace
cannot be greater than the maximum number of linearly independent vectors
in the original space; that is, if W C V), then
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dim(W) < dim(V) (2.10)

(Exercise 2.2). If W is a proper subspace of V, then dim(W) < dim(V).

2.1.2.9 Intersections of Vector Spaces

For two vector spaces V and W of the same order with vectors formed from
the same field, we define their intersection, denoted by V N W, to be the set
of vectors consisting of the intersection of the sets in the individual vector
spaces together with the axpy operation.

The intersection of two vector spaces of the same order that are not es-
sentially disjoint is a vector space, as we can see by letting x and y be any
vectors in the intersection & = ¥V N W, and showing, for any real number a,
that ax + y € U. This is easy because both x and y must be in both V and
W.

Note that if V and W are essentially disjoint, then V N'W = (0, o), which,
as we have said, is not a vector space in the usual sense.

Also note that

dim(V N W) < min(dim(V), dim(W)) (2.11)

(Exercise 2.2).

2.1.2.10 Unions and Direct Sums of Vector Spaces

Given two vector spaces V and W of the same order, we define their union,
denoted by VU W, to be the vector space generated by the union of the sets
in the individual vector spaces together with the axpy operation. If V = (V, o)
and W = (W, o), this is the vector space generated by the set of vectors VUW;
that is,

VUW = span(VUW). (2.12)

The union of the sets of vectors in two vector spaces may not be closed
under the axpy operation (Exercise 2.3b), but the union of vector spaces is a
vector space by definition.

The vector space generated by the union of the sets in the individual vector
spaces is easy to form. Since (V,0) and (W, o) are vector spaces (so for any
vector z in either V or W, az is in that set), all we need do is just include all
simple sums of the vectors from the individual sets, that is,

VUW={v+w, st.veV, we W} (2.13)

It is easy to see that this is a vector space by showing that it is closed with
respect to axpy. (As above, we show that for any « and y in V U W and for
any real number a, ax +y is in VUW.)

(Because of the way the union of vector spaces can be formed from simple
addition of the individual elements, some authors call the vector space in
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equation (2.13) the “sum” of V and W, and write it as V + W. Other authors,
including myself, call this the direct sum, and denote it by V®W. Some authors
define “direct sum” only in the cases of vector spaces that are essentially
disjoint. Still other authors define “direct sum” to be what I will call a “direct
product” below.)

Despite the possible confusion with other uses of the notation, I often use
the notation V @ W because it points directly to the nice construction of
equation (2.13). To be clear: to the extent that I use “direct sum” and “®”
for vector spaces V and W, I will mean the direct sum

VeWw=Vuw, (2.14)

as defined above.
Note that

dim(V @ W) =dim(V) + dim(W) — dim(V N W) (2.15)
(Exercise 2.4). Therefore
dim(V & W) > max(dim(V), dim(W))
and
dim(V & W) < dim(V) + dim(W).
2.1.2.11 Direct Sum Decomposition of a Vector Space

In some applications, given a vector space V, it is of interest to find essentially
disjoint vector spaces Vi, ..., V, such that

V=V® - DV

This is called a direct sum decomposition of V. (As I mentioned above, some
authors who do not use “direct sum” as I do would use the term in this context
because the individual matrices are essentially disjoint.)

It is clear that if Vq,...,V, is a direct sum decomposition of V, then
dim(V) =)~ dim(V;) (2.16)
i=1

(Exercise 2.4).

A collection of essentially disjoint vector spaces Vi, ..., V), such that V =
V1@ - BV, is said to be complementary with respect to V.

An important property of a direct sum decomposition is that it allows
a unique representation of a vector in the decomposed space in terms of a
sum of vectors from the individual essentially disjoint spaces; that is, if V =
Vi ®--- @YV, is a direct sum decomposition of V and v € V, then there exist
unique vectors v; € V; such that
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v=wv; +- +v,. (2.17)

We will prove this for the case n = 2. This is without loss, because additional
spaces in the decomposition add nothing different.

Given the direct sum decomposition V = V; & Vs, let v be any vector in
V. Because V; @ V, can be formed as in equation (2.13), there exist vectors
v1 € Vq and ve € Vs such that v = v; 4+ vo. Now all we need to do is to show
that they are unique.

Let u; € V1 and us € Vs be such that v = uj +us. Now we have (v—uy) €
Vo and (v — v1) € Va; hence (v1 — u1) € Vo. However, since vi,u; € Vi,
(v1 —u1) € Vq. Since V; and Vs, are essentially disjoint, and (v1 — uq) is in
both, it must be the case that (v —u1) = 0, or u3 = v;1. In like manner, we
show that uo = wvo; hence, the representation v = v1 + vo is unique.

An important fact is that for any vector space V with dimension 2 or
greater, a direct sum decomposition exists; that is, there exist essentially dis-
joint vector spaces Vi and Vs such that V =V @ Vs.

This is easily shown by first choosing a proper subspace V; of V and then
constructing an essentially disjoint subspace V5 such that V = V; @ Vs. The
details of these steps are made simpler by use of basis sets which we will
discuss in Sect. 2.1.3, in particular the facts listed on page 22.

2.1.2.12 Direct Products of Vector Spaces and Dimension
Reduction

The set operations on vector spaces that we have mentioned so far require
that the vector spaces be of a fixed order. Sometimes in applications, it is
useful to deal with vector spaces of different orders.

The direct product of the vector space V of order n and the vector space
W of order m is the vector space of order n 4+ m on the set of vectors

{(v1, . Uy W1, e oy W), St (V1o 0n) €V (w1, ..., wm) € W), (2.18)

together with the axpy operator defined as the same operator in V and W
applied separately to the first n and the last m elements. The direct product
of V and W is denoted by V @ W.

Notice that while the direct sum operation is commutative, the direct
product is not commutative in general.

The vectors in ¥V and W are sometimes called “subvectors” of the vectors
in ¥V ® W. These subvectors are related to projections, which we will discuss
in more detail in Sect. 2.2.2 (page 36) and Sect. 8.5.2 (page 358).

We can see that the direct product is a vector space using the same method
as above by showing that it is closed under the axpy operation.

Note that

dim(V @ W) = dim(V) + dim(W) (2.19)

(Exercise 2.5).
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Note that for integers 0 < p < n,
R"=RPQIR"P, (2.20)

where the operations in the space IR" are the same as in the component vector
spaces with the meaning adjusted to conform to the larger order of the vectors
in IR™. (Recall that IR" represents the algebraic structure consisting of the
set of n-tuples of real numbers plus the special axpy operator.)

In statistical applications, we often want to do “dimension reduction”.
This means to find a smaller number of coordinates that cover the relevant
regions of a larger-dimensional space. In other words, we are interested in
finding a lower-dimensional vector space in which a given set of vectors in a
higher-dimensional vector space can be approximated by vectors in the lower-
dimensional space. For a given set of vectors of the form x = (x1,...,2,) we
seek a set of vectors of the form z = (z1, ..., 2p) that almost “cover the same
space”. (The transformation from z to z is called a projection.)

2.1.3 Basis Sets for Vector Spaces

If each vector in the vector space V can be expressed as a linear combination
of the vectors in some set G, then G is said to be a generating set or spanning
set of V. The number of vectors in a generating set is at least as great as the
dimension of the vector space.

If all linear combinations of the elements of G are in V, the vector space
is the space generated by G and is denoted by V(G) or by span(G), as we
mentioned on page 14. We will use either notation interchangeably:

V(G) = span(G). (2.21)

Note that G is also a generating or spanning set for W where W C span(QG).
A basis for a vector space is a set of linearly independent vectors that
generate or span the space. For any vector space, a generating set consisting
of the minimum number of vectors of any generating set for that space is a
basis set for the space. A basis set is obviously not unique.
Note that the linear independence implies that a basis set cannot contain
the 0 vector.

An important fact is
e The representation of a given vector in terms of a given basis set is unique.

To see this, let {v1,..., v} be a basis for a vector space that includes the
vector x, and let
T =cC1v1 + - CLUE.

Now suppose
r = byvy + - brug,
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so that we have
0= (c1 —b1)vy + -+ (ck — b)vg.

Since {v1,...,v;} are independent, the only way this is possible is if ¢; = b;
for each .
A related fact is that if {v1,..., v} is a basis for a vector space of order

n that includes the vector z and = = cyv1 + - - - ¢k vk, then z = 0,, if and only
if ¢; = 0 for each 3.

For any vector space, the order of the vectors in a basis set is the same as
the order of the vector space.

Because the vectors in a basis set are independent, the number of vectors
in a basis set is the same as the dimension of the vector space; that is, if B is
a basis set of the vector space V, then

dim(V) = #(B). (2.22)

A simple basis set for the vector space IR" is the set of unit vectors
{e1,...,en}, defined on page 16.

2.1.3.1 Properties of Basis Sets of Vector Subspaces

There are several interesting facts about basis sets for vector spaces and var-
ious combinations of the vector spaces. Verifications of these facts all follow
similar arguments, and most are left as exercises.

e If By is a basis set for V;, By is a basis set for V5, and V; and Vs are

essentially disjoint, then By N By = (.
This fact is easily seen by assuming the contrary; that is, assume that
b € By N Bs. (Note that b cannot be the 0 vector.) This implies, however,
that b is in both V; and Vs, contradicting the hypothesis that they are
essentially disjoint.

e If B is a basis set for V and V; C V, then there exists By, with By C B,
such that Bj is a basis set for V.

e If By is a basis set for V; and By is a basis set for Vs, then By U B> is a
generating set for Vi & Vs.

(We see this easily from the definition of @ because any vector in Vi @ Vo
can be represented as a linear combination of vectors in B; plus a linear
combination of vectors in Bs.)

e If V; and V, are essentially disjoint, B; is a basis set for Vi, and Bs is a
basis set for Vs, then By U Bs is a basis set for V = V| @ Vs.

This is the case that Vi @& Vs is a direct sum decomposition of V.

e Suppose V; is a real vector space of order n; (that is, it is a subspace of
IR™) and Bj is a basis set for V;. Now let V5 be a real vector space of
order ny and Bs be a basis set for V5. For each vector by in By form the
vector

by = (b10,...,0)  where there are ny 0s,
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and let El be the set of all such vectors. (The order of each by € El is
n1 + ng.) Likewise, for each vector by in By form the vector

by = (0,...,0|bz)  where there are n; Os,

and let Eg be the set of all such vectors. Then El UEQ is a basis for V1 ® Vs.

2.1.4 Inner Products

A useful operation on two vectors z and y of the same order is the inner
product, which we denote by (z,y) and define as

(z,y) = in% (2.23)

where Z represents the complex conjugate of z; that is, if z = a + bi, then
Z = a — bi. In general, throughout this book unless stated otherwise, I assume
that we are working with real numbers, and hence, Z = 2. Most statements
will hold whether the numbers are real or complex. When the statements only
hold for reals, I will generally include the exception in the statement. The main
differences have to do with inner products and an important property defined
in terms of an inner product, called orthogonality.
In the case of vectors with real elements, we have

(z,y) = szyz (2.24)

In that case (which is what we generally assume throughout this book), the
inner product is a mapping

R" x R" — IR.

The inner product is also called the dot product or the scalar product.
The dot product is actually a special type of inner product, and there is some
ambiguity in the terminology. The dot product is the most commonly used
inner product in the applications we consider, and so we will use the terms
synonymously.

The inner product is also sometimes written as x - y, hence the name dot
product. Yet another notation for the inner product for real vectors is Ty,
and we will see later that this notation is natural in the context of matrix
multiplication. So for real vectors, we have the equivalent notations

(r,y))=z-y=aTy. (2.25)

(I will mention one more notation that is equivalent for real vectors. This is
the “bra-ket” notation originated by Paul Dirac, and is still used in certain
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areas of application. Dirac referred to T as the “bra z”, and denoted it as
(x|. He referred to an ordinary vector y as the “ket y”, and denoted it as |y).
He then denoted the inner product of the vectors as (z||y), or, omitting one
vertical bar, as (z|y).)

In general, the inner product is a mapping from a real vector space V to
IR that has the following properties:

1. Nonnegativity and mapping of the additive identity:
if x # 0, then (z,z) > 0 and (0,z) = (2,0) = (0,0) = 0.
2. Commutativity:
(z,y) = (y, 7).
3. Factoring of scalar multiplication in dot products:
(az,y) = a{x,y) for real a.
4. Relation of vector addition to addition of dot products:
(T +y,2) = (&, 2) + (y, 2).

These properties in fact define an inner product for mathematical objects for
which an addition, an additive identity, and a multiplication by a scalar are
defined. Notice that the operation defined in equation (2.24) is not an inner
product for vectors over the complex field because, if z is complex, we can
have (z,z) = 0 when z # 0.

A vector space together with an inner product is called an inner product
space.

Inner products are also defined for matrices, as we will discuss on page 97.
We should note in passing that there are two different kinds of multiplication
used in property 3. The first multiplication is scalar multiplication, that is,
an operation from IR x IR"™ to IR", which we have defined above, and the
second multiplication is ordinary multiplication in IR, that is, an operation
from IR x IR to IR. There are also two different kinds of addition used in
property 4. The first addition is vector addition, defined above, and the second
addition is ordinary addition in IR. The dot product can reveal fundamental
relationships between the two vectors, as we will see later.

A useful property of inner products is the Cauchy-Schwarz inequality:

(@,y) < (w,2) 2 (y,y)?. (2.26)

This relationship is also sometimes called the Cauchy-Bunyakovskii-Schwarz
inequality. (Augustin-Louis Cauchy gave the inequality for the kind of dis-
crete inner products we are considering here, and Viktor Bunyakovskii and
Hermann Schwarz independently extended it to more general inner products,
defined on functions, for example.) The inequality is easy to see, by first ob-
serving that for every real number ¢,

0 < ((tz +y), (tr +y))
= (z,2)t* + 2(z, y)t + (y,y)
= at® + bt + ¢,
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where the constants a, b, and ¢ correspond to the dot products in the preceding
equation. This quadratic in ¢ cannot have two distinct real roots. Hence the
discriminant, b — 4ac, must be less than or equal to zero; that is,

1\2
<2b) < ac.

By substituting and taking square roots, we get the Cauchy-Schwarz inequal-
ity. It is also clear from this proof that equality holds only if x = 0 or if y = rx,
for some scalar 7.

Two vectors & and y such that (x,y) = 0 are said to be orthogonal. This
term has such an intuitive meaning that we may use it prior to a careful
definition and study, so I only introduce it here. We will discuss orthogonality
more thoroughly in Sect. 2.1.8 beginning on page 33.

2.1.5 Norms

We consider a set of objects S that has an addition-type operator, +, a cor-
responding additive identity, 0, and a scalar multiplication; that is, a multi-
plication of the objects by a real (or complex) number. On such a set, a norm
is a function, || - ||, from S to IR that satisfies the following three conditions:

1. Nonnegativity and mapping of the additive identity:
if x # 0, then ||z|| > 0, and ||0]| = 0.

2. Relation of scalar multiplication to real multiplication:
llaz|| = |a|||z| for real a.

3. Triangle inequality:
o+ gl < llall + gl

(If property 1 is relaxed to require only ||z|| > 0 for = # 0, the function is
called a seminorm.) Because a norm is a function whose argument is a vector,
we also often use a functional notation such as p(x) to represent a norm of
the vector z.

Sets of various types of objects (functions, for example) can have norms,
but our interest in the present context is in norms for vectors and (later)
for matrices. (The three properties above in fact define a more general norm
for other kinds of mathematical objects for which an addition, an additive
identity, and multiplication by a scalar are defined. Norms are defined for
matrices, as we will discuss later. Note that there are two different kinds of
multiplication used in property 2 and two different kinds of addition used in
property 3.)

A vector space together with a norm is called a normed space.

For some types of objects, a norm of an object may be called its “length”
or its “size”. (Recall the ambiguity of “length” of a vector that we mentioned
at the beginning of this chapter.)
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2.1.5.1 Convexity

A function f(-) over a convex domain S into a range R, where both S and
R have an addition-type operator, +, corresponding additive identities, and
scalar multiplication, is said to be conver, if, for any = and y in S, and a such
that 0 < a <1,

flaz + (1 —a)y) < af(z)+ (1 —a)f(y). (2.27)

If, for = # y and a such that 0 < a < 1, the inequality in (2.27) is sharp, then
the function is said to be strictly convex.
It is clear from the triangle inequality that a norm is convex.

2.1.5.2 Norms Induced by Inner Products

There is a close relationship between a norm and an inner product. For any
inner product space with inner product (-,-), a norm of an element of the
space can be defined in terms of the square root of the inner product of the

element with itself:
]| = /{x, x). (2.28)

Any function | - || defined in this way satisfies the properties of a norm. It is
easy to see that ||z| satisfies the first two properties of a norm, nonnegativity
and scalar equivariance. Now, consider the square of the right-hand side of
the triangle inequality, ||z| + [ly||:

= (z,7) + 2/(z, 2){y, v) + (¥, )
> (z,7) + 2(z,y) + (Y, y)
={(x+y, z+y)

= ||z +yl% (2.29)

(=l + 1l

hence, the triangle inequality holds. Therefore, given an inner product, (z, y),
then /(z, ) is a norm.

Equation (2.28) defines a norm given any inner product. It is called the
norm induced by the inner product.

Norms induced by inner products have some interesting properties. First of
all, they have the Cauchy-Schwarz relationship (inequality (2.26)) with their
associated inner product:

[z o) < llzlllyll- (2.30)

In the sequence of equations above for an induced norm of the sum of two
vectors, one equation (expressed differently) stands out as particularly useful
in later applications:

lz+ 3l = [l + lyll* + 2(z, y). (2.31)
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If (x,y) = 0 (that is, the vectors are orthogonal), equation (2.31) becomes
the Pythagorean theorem:

lz +yl1* = [l + llyll*.

Another useful property of a norm induced by an inner product is the
parallelogram equality:

2|l2(l* + 2y = ll= + ylI* + ll= — y[I*. (2.32)

This is trivial to show, and you are asked to do so in Exercise 2.7. (It is also
the case that if the parallelogram equality holds for every pair of vectors in
the space, then the norm is necessarily induced by an inner product. This fact
is both harder to show and less useful than its converse; I state it only because
it is somewhat surprising.)

A vector space whose norm is induced by an inner product has an inter-
esting structure; for example, the geometric properties such as projections,
orthogonality, and angles between vectors that we discuss in Sect. 2.2 are
defined in terms of inner products and the associated norm.

2.1.5.3 L, Norms

There are many norms that could be defined for vectors. One type of norm is
called an L, norm, often denoted as || - ||,. For p > 1, it is defined as

|||, = (Z |in”> y (2.33)

This is also sometimes called the Minkowski norm and also the Hélder norm.
An L, norm is also called a p-norm, or 1-norm, 2-norm, or oco-norm (defined
by a limit) in those special cases.

It is easy to see that the L, norm satisfies the first two conditions above. For
general p > 1 it is somewhat more difficult to prove the triangular inequality
(which for the L, norms is also called the Minkowski inequality), but for some
special cases it is straightforward, as we will see below.

The most common L, norms, and in fact the most commonly used vector
norms, are:

o |lz[s = >, |z, also called the Manhattan norm because it corresponds
to sums of distances along coordinate axes, as one would travel along the
rectangular street plan of Manhattan (except for Broadway and a few
other streets and avenues).

o |z]l2 = /3,22, also called the Euclidean norm, the Buclidean length,
or just the length of the vector. The Ly norm is induced by an inner
product; it is the square root of the inner product of the vector with itself:
|z]l2 = v/{(z,x). It is the only L, norm induced by an inner product. (See
Exercise 2.9.)
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o ||z||co = max; |z;|, also called the maz norm or the Chebyshev norm. The
Lo norm is defined by taking the limit in an L, norm, and we see that it
is indeed max; |z;| by expressing it as

1
p) ?

1

p
|2]|co = lim ||lz||, = lim (E |xi|p> =m lim (E
(2 (2

with m = max; |z;|. Because the quantity of which we are taking the p!
root is bounded above by the number of elements in z and below by 1,
that factor goes to 1 as p goes to oc.

Ty

m

It is easy to see that, for any n-vector x, the L, norms have the relation-
ships
[2lloe < llzll2 < [l (2.34)

More generally, for given  and for p > 1, we see that ||z||, is a nonincreasing
function of p.
We also have bounds that involve the number of elements in the vector:

lzlloo < llzllz < Vnllz]oo, (2.35)

and
lzllz < =zl < Vnlz(e. (2.36)

The triangle inequality obviously holds for the L; and Lo, norms. For the
Ly norm it can be seen by expanding Y (x; +y;)? and then using the Cauchy-
Schwarz inequality (2.26) on page 24. Rather than approaching it that way,
however, we will show below that the Lo norm can be defined in terms of an
inner product, and then we will establish the triangle inequality for any norm
defined similarly by an inner product; see inequality (2.29). Showing that the
triangle inequality holds for other L, norms is more difficult; see Exercise 2.11.

A generalization of the L, vector norm is the weighted L, vector norm
defined by

%]} wp = (Zwilwilp> : (2.37)

where w; >0 and ), w; = 1.

In the following, if we use the unqualified symbol || - || for a vector norm
and do not state otherwise, we will mean the Lo norm; that is, the Euclidean
norm, the induced norm.

2.1.5.4 Basis Norms

If {v1,...,ux} is a basis for a vector space that includes a vector x with
T = c1v1 + -+ + cxvg, then
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p(x) = (Z c?> (2.38)

is a norm. It is straightforward to see that p(x) is a norm by checking the
following three conditions:

e p(x) > 0 and p(x) = 0 if and only if z = 0 because = 0 if and only if
¢; = 0 for all 7.

plaz) = (5, a2c2)? = |a| (5, ¢)* = lalp(a).

If also y = byvy + - - - + brvg, then

2 2 2
Mw+y%=<2]q+mf> <<§:ﬁ> +<§:@> = p(@) + p(y)-
The last inequality is just the triangle inequality for the L, norm for the
vectors (¢1,- -+ ,c¢x) and (by, .-+, bg).

In Sect. 2.2.5, we will consider special forms of basis sets in which the
norm in equation (2.38) is identically the Ls norm. (This is called Parseval’s
identity, equation (2.60) on page 41.)

2.1.5.5 Equivalence of Norms

There is an equivalence among any two norms over a normed finite-
dimensional linear space in the sense that if || - ||, and || - ||s are norms,
then there are positive numbers r and s such that for any x in the space,

rllzlls < flzlla < sl (2.39)

Expressions (2.35) and (2.36) are examples of this general equivalence for
three L, norms.

We can prove inequality (2.39) by using the norm defined in equa-
tion (2.38). We need only consider the case x # 0, because the inequality
is obviously true if z = 0. Let || - ||, be any norm over a given normed linear
space and let {v1,..., v} be a basis for the space. (Here’s where the assump-
tion of a vector space with finite dimensions comes in.) Any « in the space
has a representation in terms of the basis, z = cyv1 + - - - + cvr. Then

k k
Zcﬂli < Z|Cz| l[villa-
i=1 i=1

Il =

a
Applying the Cauchy-Schwarz inequality to the two vectors (cq,--- ,ci) and
(lvillas -+ s [[oklla), we have

k k 3/ 3
e ol < (zcz) (Zmni) |
=1 1=1 1=1
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Hence, with § = (3, ||vs]|?) 2, which must be positive, we have
[#]la < $p(z).

Now, to establish a lower bound for ||z|4, let us define a subset C' of the
linear space consisting of all vectors (ug,...,ux) such that Y |u;|* = 1. This
set is obviously closed. Next, we define a function f(-) over this closed subset
by

flu) =

k
E UiV;
=1

Because f is continuous, it attains a minimum in this closed subset, say for
the vector u.; that is, f(u.) < f(u) for any u such that >~ |u;|? = 1. Let

’F = f(u*>7

which must be positive, and again consider any z in the normed linear space
and express it in terms of the basis, x = civ1 + - - - cxvg. If  # 0, we have

k
E CiVj
=1

a

[zlla =
;
k 2 || & .
= (ZC?) Z ¢ 1 Uy
=1 =1 (Zf:l Cg) ’
= p(x)f(2),
where ¢ = (cq,- - ,ck)/(Zle c2)'/?. Because ¢ is in the set C, f(&) > r;

hence, combining this with the inequality above, we have
p(x) < |lzlla < Sp().

This expression holds for any norm ||-||, and so, after obtaining similar bounds
for any other norm ||-||, and then combining the inequalities for ||- ||, and ||- ||,
we have the bounds in the equivalence relation (2.39). (This is an equivalence
relation because it is reflexive, symmetric, and transitive. Its transitivity is
seen by the same argument that allowed us to go from the inequalities involv-
ing p(-) to ones involving || - [|».)

As we have mentioned, there are some differences in the properties of
vector spaces that have an infinite number of dimensions and those with finite
dimensions. The equivalence of norms is one of those differences. The argument
above fails in the properties of the continuous function f. (Recall, however,
as we have mentioned, unless we state otherwise, we assume that the vector
spaces we discuss have finite dimensions.)
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2.1.6 Normalized Vectors

The Euclidean norm of a vector corresponds to the length of the vector x in a
natural way; that is, it agrees with our intuition regarding “length”. Although,
as we have seen, this is just one of many vector norms, in most applications
it is the most useful one. (I must warn you, however, that occasionally T will
carelessly but naturally use “length” to refer to the order of a vector; that is,
the number of elements. This usage is common in computer software packages
such as R and SAS IML, and software necessarily shapes our vocabulary.)

Dividing a given vector by its length normalizes the vector, and the re-
sulting vector with length 1 is said to be normalized; thus

1
T
]

is a normalized vector. Normalized vectors are sometimes referred to as “unit
vectors”, although we will generally reserve this term for a special kind of nor-
malized vector (see page 16). A normalized vector is also sometimes referred
to as a “normal vector”. I use “normalized vector” for a vector such as = in
equation (2.40) and use “normal vector” to denote a vector that is orthogonal
to a subspace (as on page 34).

(2.40)

i‘:

2.1.6.1 “Inverse” of a Vector

Because the mapping of an inner product takes the elements of one space into
a different space (the inner product of vectors takes elements of IR" into R),
the concept of an inverse for the inner product does not make sense in the
usual way. First of all, there is no identity with respect to the inner product.

Often in applications, however, inner products are combined with the usual
scalar-vector multiplication in the form (x,y)z; therefore, for given z, it may
be of interest to determine y such that (z,y) = 1, the multiplicative identity
in IR. For z in IR" such that x # 0, the additive identity in IR",

1 1

Y= T = z (2.41)
el el

uniquely satisfies (x,y) = 1. Such a y is called the Samelson inverse of the
vector  and is sometimes denoted as x~! or as [z]7!. It is also sometimes
called the Moore-Penrose vector inverse because it satisfies the four properties
of the definition the Moore-Penrose inverse. (See page 128, where, for example,
the first property is interpreted both as (z, [z]7})x and as x([z] 71, z).)

The norm in equation (2.41) is obviously the Euclidean norm (because of
the way we defined %), but the idea of the inverse could also be extended to
other norms associated with other inner products.

The Samelson inverse has a nice geometric interpretation: it is the inverse
point of z with respect to the unit sphere in IR"™. This inverse arises in the
vector e-algorithm used in accelerating convergence of vector sequences in
numerical computations (see Wynn 1962).
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2.1.7 Metrics and Distances

It is often useful to consider how far apart two objects are; that is, the “dis-
tance” between them. A reasonable distance measure would have to satisfy
certain requirements, such as being a nonnegative real number.

A function A that maps any two objects in a set S to IR is called a metric
on S if, for all x, y, and z in S, it satisfies the following three conditions:

1. A(z,y) > 0if z # y and A(x,y) =0 if x = y;
2. A(z,y) = Aly, z);
3. Az, y) < Az, 2) + Az, y).

These conditions correspond in an intuitive manner to the properties we ex-
pect of a distance between objects.

A vector space together with a metric defined on it is called a metric
space. A normed vector space is a metric space because the norm can induce
a metric. In the following, we may speak almost interchangeably of an inner
product space, a normed space, or a metric space, but we must recognize that
none is a special case of another. (Recall that a normed space whose norm is
the Ly norm is not equivalent to an inner product space, for example.)

2.1.7.1 Metrics Induced by Norms

If subtraction and a norm are defined for the elements of S, the most common
way of forming a metric is by using the norm. If || - || is a norm, we can verify
that

Az,y) = [lz -y (2.42)

is a metric by using the properties of a norm to establish the three properties
of a metric above (Exercise 2.12).

The norm in equation (2.42) may, of course, be induced by an inner prod-
uct.

The general inner products, norms, and metrics defined above are relevant
in a wide range of applications. The sets on which they are defined can consist
of various types of objects. In the context of real vectors, the most common
inner product is the dot product; the most common norm is the Euclidean
norm that arises from the dot product; and the most common metric is the
one defined by the Euclidean norm, called the Euclidean distance.

2.1.7.2 Convergence of Sequences of Vectors

A sequence of real numbers ay,as, ... is said to converge to a finite number a
if for any given € > 0 there is an integer M such that, for k > M, |ar —a| < €,
and we write limg_,., ax = a, or we write ar — a as k — oo.

We define convergence of a sequence of vectors in a normed vector space in
terms of the convergence of a sequence of their norms, which is a sequence of
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real numbers. We say that a sequence of vectors x1, xa, ... (of the same order)
converges to the vector z with respect to the norm || - || if the sequence of real
numbers ||z — ||, ||x2 — ]|, ... converges to 0. Because of the bounds (2.39),

the choice of the norm is irrelevant (for finite dimensional vector spaces), and
so convergence of a sequence of vectors is well-defined without reference to a
specific norm. (This is one reason that equivalence of norms is an important
property.)

A sequence of vectors x1, xa, . .. in the metric space V that come arbitrarily
close to one another (as measured by the given metric) is called a Cauchy
sequence. (In a Cauchy sequence 1, s, ..., for any € > 0 there is a number
N such that for ¢,5 > N, A(z;,z;) < €.) Intuitively, such a sequence should
converge to some fixed vector in V, but this is not necessarily the case. A
metric space in which every Cauchy sequence converges to an element in the
space is said to be a complete metric space or just a complete space. The space
R" (with any norm) is complete.

A complete normed space is called a Banach space, and a complete inner
product space is called a Hilbert space. It is clear that a Hilbert space is a
Banach space (because its inner product induces a norm). As we have indi-
cated, a space with a norm induced by an inner product, such as a Hilbert
space, has an interesting structure. Most of the vector spaces encountered in
statistical applications are Hilbert spaces. The space IR with the Ly norm is
a Hilbert space.

2.1.8 Orthogonal Vectors and Orthogonal Vector Spaces
Two vectors v; and ve such that
(v1,v2) =0 (2.43)

are said to be orthogonal, and this condition is denoted by v1 L ve. (Sometimes
we exclude the zero vector from this definition, but it is not important to
do so.) Normalized vectors that are all orthogonal to each other are called
orthonormal vectors.

An Aside: Complex Vectors

If the elements of the vectors are from the field of complex num-
bers, orthogonality and normality are also defined as above; however,
the inner product in the definition (2.43) must be as defined in equa-
tion (2.23), and the expression xTy in equation (2.25) is not equivalent
to the inner product. We will use a different notation in this case: z'ly.
The relationship between the two notations is

xHy = QETy.

With this interpretation of the inner product, all of the statements
below about orthogonality hold for complex numbers as well as for
real numbers.



34 2 Vectors and Vector Spaces

A set of nonzero vectors that are mutually orthogonal are necessarily lin-
early independent. To see this, we show it for any two orthogonal vectors and
then indicate the pattern that extends to three or more vectors. First, sup-
pose v1 and vg are nonzero and are orthogonal; that is, (vi,v) = 0. We see
immediately that if there is a scalar a such that v; = avs, then a must be
nonzero and we have a contradiction because (vi,v2) = a(ve, v2) # 0. Hence,
we conclude v; and vy are independent (there is no a such that v; = avq). For
three mutually orthogonal vectors, v1, v2, and v3, we consider v; = avs + bvs
for a or b nonzero, and arrive at the same contradiction.

Two vector spaces V; and Vs, are said to be orthogonal, written V; L Vs,
if each vector in one is orthogonal to every vector in the other. If V; L V5 and
V1 ® Vo = IR", then V; is called the orthogonal complement of Vy, and this is
written as Vo = Vi-. More generally, if V1 | V, and V; @ Vo = V, then Vs is
called the orthogonal complement of V; with respect to V. This is obviously
a symmetric relationship; if V5 is the orthogonal complement of Vy, then V;
is the orthogonal complement of Vs.

A vector that is orthogonal to all vectors in a given vector space is said to
be orthogonal to that space or normal to that space. Such a vector is called a
normal vector to that space.

If B is a basis set for V, Bs is a basis set for Vs, and Vs is the orthogonal
complement of V; with respect to V, then By U By is a basis set for V. It is
a basis set because since V; and V, are orthogonal, it must be the case that
By N By = (. (See the properties listed on page 22.)

Vi CcV, Vo CV, Vi L Vs, and dim(Vy) + dim(Vs) = dim(V), then

Vid Ve =V (2.44)

that is, Vs is the orthogonal complement of V;. We see this by first letting B
and B, be bases for V; and V5. Now V; L Vs, implies that By N By = () and
dim(V1) + dim(Vs) = dim(V) implies #(B1) + #(B2) = #(B), for any basis
set B for V; hence, B; U Bs is a basis set for V.

The intersection of two orthogonal vector spaces consists only of the zero
vector (Exercise 2.14).

A set of linearly independent vectors can be mapped to a set of mutu-
ally orthogonal (and orthonormal) vectors by means of the Gram-Schmidt
transformations (see equation (2.56) below).

2.1.9 The “One Vector”

The vector with all elements equal to 1 that we mentioned previously is useful
in various vector operations. We call this the “one vector” and denote it by 1
or by 1,. The one vector can be used in the representation of the sum of the

elements in a vector:
1T => " (2.45)

The one vector is also called the “summing vector”.
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2.1.9.1 The Mean and the Mean Vector

Because the elements of x are real, they can be summed; however, in applica-
tions it may or may not make sense to add the elements in a vector, depending
on what is represented by those elements. If the elements have some kind of
essential commonality, it may make sense to compute their sum as well as
their arithmetic mean, which for the n-vector x is denoted by Z and defined
by

=1 z/n. (2.46)

We also refer to the arithmetic mean as just the “mean” because it is the most
commonly used mean.

It is often useful to think of the mean as an n-vector all of whose elements
are Z. The symbol Z is also used to denote this vector; hence, we have

T =Zl,, (2.47)

in which Z on the left-hand side is a vector and Z on the right-hand side is a
scalar. We also have, for the two different objects,

]2 = nz*. (2.48)

The meaning, whether a scalar or a vector, is usually clear from the con-
text. In any event, an expression such as x — T is unambiguous; the addition
(subtraction) has the same meaning whether Z is interpreted as a vector or a
scalar. (In some mathematical treatments of vectors, addition of a scalar to
a vector is not defined, but here we are following the conventions of modern
computer languages.)

2.2 Cartesian Coordinates and Geometrical
Properties of Vectors

Points in a Cartesian geometry can be identified with vectors, and several
definitions and properties of vectors can be motivated by this geometric in-
terpretation. In this interpretation, vectors are directed line segments with a
common origin. The geometrical properties can be seen most easily in terms
of a Cartesian coordinate system, but the properties of vectors defined in
terms of a Cartesian geometry have analogues in Euclidean geometry without
a coordinate system. In such a system, only length and direction are defined,
and two vectors are considered to be the same vector if they have the same
length and direction. Generally, we will not assume that there is a “location”
or “position” associated with a vector.
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2.2.1 Cartesian Geometry

A Cartesian coordinate system in d dimensions is defined by d unit vectors,
e; in equation (2.6), each with d elements. A unit vector is also called a
principal azis of the coordinate system. The set of unit vectors is orthonormal.
(There is an implied number of elements of a unit vector that is inferred from
the context. Also parenthetically, we remark that the phrase “unit vector” is
sometimes used to refer to a vector the sum of whose squared elements is 1,
that is, whose length, in the Euclidean distance sense, is 1. As we mentioned
above, we refer to this latter type of vector as a “normalized vector”.)
The sum of all of the unit vectors is the one vector:

d
> ei=1la. (2.49)
=1

A point z with Cartesian coordinates (z1,...,x4) is associated with a
vector from the origin to the point, that is, the vector (z1,...,z4). The vector
can be written as the linear combination

T =x161+ ...+ 2464 (2.50)

or, equivalently, as
x={(zx,e1)er + ...+ {(x, eq)eq.

(This is a Fourier expansion, equation (2.58) below.)

2.2.2 Projections

The projection of the vector y onto the nonnull vector z is the vector

j = <||xx|y2>x (2.51)

This definition is consistent with a geometrical interpretation of vectors as
directed line segments with a common origin. The projection of y onto z is
the inner product of the normalized x and y times the normalized x; that is,
(Z,y)Z, where & = z/||z||. Notice that the order of y and z is the same.

An important property of a projection is that when it is subtracted from
the vector that was projected, the resulting vector, called the “residual”, is
orthogonal to the projection; that is, if

2
- e
]

—y—g (2.52)

then r and g are orthogonal, as we can easily see by taking their inner product
(see Fig. 2.2.2). Notice also that the Pythagorean relationship holds:

T =
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2
A

y

Figure 2.1. Projections and angles

Iyl = 171> + [I[1*. (2.53)

As we mentioned on page 35, the mean ¢ can be interpreted either as a
scalar or as a vector all of whose elements are §. As a vector, it is the projection
of y onto the one vector 1,,

(nyy) | _ oy
a2 " n
:gl’l’H

from equations (2.46) and (2.51).

We will consider more general projections (that is, projections onto planes
or other subspaces) on page 352, and on page 409 we will view linear regression
fitting as a projection onto the space spanned by the independent variables.

2.2.3 Angles Between Vectors

The angle between the nonnull vectors z and y is determined by its cosine,
which we can compute from the length of the projection of one vector onto
the other. Hence, denoting the angle between the nonnull vectors x and y as
angle(z,y), we define

angle(z,y) = cos™ ! (||§:|7|yy>|) , (2.54)

with cos™1(-) being taken in the interval [0, 7]. The cosine is £||7||/||y||, with
the sign chosen appropriately; see Fig. 2.2.2. Because of this choice of cos™1(-),
we have that angle(y, z) = angle(x, y)—but see Exercise 2.19e on page 54.

The word “orthogonal” is appropriately defined by equation (2.43) on
page 33 because orthogonality in that sense is equivalent to the corresponding
geometric property. (The cosine is 0.)
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Notice that the angle between two vectors is invariant to scaling of the
vectors; that is, for any positive scalar a, angle(az, y) = angle(z, y).

A given vector can be defined in terms of its length and the angles 6; that
it makes with the unit vectors. The cosines of these angles are just the scaled
coordinates of the vector:

cos(6;) =
= o (2.55)

These quantities are called the direction cosines of the vector.

Although geometrical intuition often helps us in understanding properties
of vectors, sometimes it may lead us astray in high dimensions. Consider the
direction cosines of an arbitrary vector in a vector space with large dimensions.
If the elements of the arbitrary vector are nearly equal (that is, if the vector is
a diagonal through an orthant of the coordinate system), the direction cosine
goes to 0 as the dimension increases. In high dimensions, any two vectors are
“almost orthogonal” to each other; see Exercise 2.16.

The geometric property of the angle between vectors has important im-
plications for certain operations both because it may indicate that rounding
in computations will have deleterious effects and because it may indicate a
deficiency in the understanding of the application.

We will consider more general projections and angles between vectors and
other subspaces on page 359. In Sect. 5.3.3, we will consider rotations of
vectors onto other vectors or subspaces. Rotations are similar to projections,
except that the length of the vector being rotated is preserved.

2.2.4 Orthogonalization Transformations: Gram-Schmidt

Given m nonnull, linearly independent vectors, x1, ..., Z, it is easy to form
m orthonormal vectors, Z1, ..., &, that span the same space. A simple way
to do this is sequentially. First normalize x; and call this Z;. Next, project x»
onto 1 and subtract this projection from xzs. The result is orthogonal to Z1;
hence, normalize this and call it 5. These first two steps, which are illustrated
in Fig. 2.2.4, are

1

= T,
[[z1]]
(2.56)
1

To = - - Ty — (T1,X2)T1)-

w2 = (F1, m2)Z1 | (22 = 1)
These are called Gram-Schmidt transformations.

The Gram-Schmidt transformations have a close relationship to least
squares fitting of overdetermined systems of linear equations and to least
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squares fitting of linear regression models. For example, if equation (6.33) on
page 290 is merely the system of equations in one unknown x1b = x2 — r, and
it is approximated by least squares, then the “residual vector” r is Zo above,
and of course it has the orthogonality property shown in equation (6.37) for
that problem.

The Gram-Schmidt transformations can be continued with all of the vec-
tors in the linearly independent set. There are two straightforward ways equa-
tions (2.56) can be extended. One method generalizes the second equation in
an obvious way:

fork=23...,
k-1 k-1
Fp = (xk — Z(:Ei7xk>ji> / Tp — Z(»@Jk)@ :
i=1 i=1

(2.57)

In this method, at the k" step, we orthogonalize the k™" vector by comput-
ing its residual with respect to the plane formed by all the previous k — 1
orthonormal vectors.

Another way of extending the transformation of equations (2.56) is, at the
k'™ step, to compute the residuals of all remaining vectors with respect just to
the k' normalized vector. If the initial set of vectors are linearly independent,
the residuals at any stage will be nonzero. (This is fairly obvious, but you are
asked to show it in Exercise 2.17.) We describe this method explicitly in
Algorithm 2.1.

Algorithm 2.1 Gram-Schmidt orthonormalization of a set of
linearly independent vectors, x1,..., %,

X2

X2

X4

projection onto

Xy

Figure 2.2. Orthogonalization of 1 and x2
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0. Fork=1,...,m,
{
set T = Tp.
}
1. Ensure that &; # 0;
set i‘l = i‘l/Hi‘l”
2. Ifm>1fork=2,...,m,
{
for j=Fk,...,m,
{ ~ ~ ~ ~ ~
set r; =T; — <$k—17$j>$k—1-
}
ensure that Ty # 0;
set T = .’Ek/H.’EkH

Although the method indicated in equation (2.57) is mathematically equiv-
alent to this method, the use of Algorithm 2.1 is to be preferred for compu-
tations because it is less subject to rounding errors. (This may not be im-
mediately obvious, although a simple numerical example can illustrate the
fact—see Exercise 11.1c on page 537. We will not digress here to consider this
further, but the difference in the two methods has to do with the relative mag-
nitudes of the quantities in the subtraction. The method of Algorithm 2.1 is
sometimes called the “modified Gram-Schmidt method”, although I call it the
“Gram-Schmidt method”. I will discuss this method again in Sect. 11.2.1.3.)
This is an instance of a principle that we will encounter repeatedly: the form
of a mathematical expression and the way the expression should be evaluated
in actual practice may be quite different.

These orthogonalizing transformations result in a set of orthogonal vectors
that span the same space as the original set. They are not unique; if the order
in which the vectors are processed is changed, a different set of orthogonal
vectors will result.

Orthogonal vectors are useful for many reasons: perhaps to improve the
stability of computations; or in data analysis to capture the variability most
efficiently; or for dimension reduction as in principal components analysis
(see Sect. 9.4 beginning on page 424); or in order to form more meaningful
quantities as in a vegetative index in remote sensing. We will discuss various
specific orthogonalizing transformations later.

2.2.5 Orthonormal Basis Sets

A basis for a vector space is often chosen to be an orthonormal set because it
is easy to work with the vectors in such a set.

If wy,...,u, is an orthonormal basis set for a space, then a vector x in
that space can be expressed as
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T =cirul + -+ Cplly, (2.58)

and because of orthonormality, we have
ci = (x, u;). (2.59)

(We see this by taking the inner product of both sides with w;.) A represen-
tation of a vector as a linear combination of orthonormal basis vectors, as in
equation (2.58), is called a Fourier expansion, and the ¢; are called Fourier
coefficients.

By taking the inner product of each side of equation (2.58) with itself, we

have Parseval’s identity:
] =" ¢ (2.60)

This shows that the Ls norm is the same as the norm in equation (2.38) (on
page 29) for the case of an orthogonal basis.

Although the Fourier expansion is not unique because a different orthog-
onal basis set could be chosen, Parseval’s identity removes some of the arbi-
trariness in the choice; no matter what basis is used, the sum of the squares of
the Fourier coefficients is equal to the square of the norm that arises from the
inner product. (“The” inner product means the inner product used in defining
the orthogonality.)

Another useful expression of Parseval’s identity in the Fourier expansion

k
Xr — E C; Uy
i=1

(because the term on the left-hand side is 0).

The expansion (2.58) is a special case of a very useful expansion in an
orthogonal basis set. In the finite-dimensional vector spaces we consider here,
the series is finite. In function spaces, the series is generally infinite, and so
issues of convergence are important. For different types of functions, different
orthogonal basis sets may be appropriate. Polynomials are often used, and
there are some standard sets of orthogonal polynomials, such as Jacobi, Her-
mite, and so on. For periodic functions especially, orthogonal trigonometric
functions are useful.

is
2 k

= (z, ) — Zcf (2.61)

=1

2.2.6 Approximation of Vectors

In high-dimensional vector spaces, it is often useful to approximate a given
vector in terms of vectors from a lower dimensional space. Suppose, for exam-
ple, that V C IR" is a vector space of dimension k (necessarily, k¥ < n) and x
is a given n-vector, not necessarily in V. We wish to determine a vector Z in
V that approximates x. Of course if V = IR", then x € V, and so the problem
is not very interesting. The interesting case is when V C IR".
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2.2.6.1 Optimality of the Fourier Coefficients

The first question, of course, is what constitutes a “good” approximation. One
obvious criterion would be based on a norm of the difference of the given vector
and the approximating vector. So now, choosing the norm as the Euclidean
norm, we may pose the problem as one of finding © € V such that

|l — 2| < ||z —v|| VYve. (2.62)
This difference is a truncation error.
Let uq,...,ux be an orthonormal basis set for V, and let
T =ciuy + -+ cpug, (2.63)

where the ¢; are the Fourier coefficients of x, (x, u;).
Now let v = a1uq + - - - + aguy be any other vector in V, and consider

k
xr — Zaiui
i=1
k k
= <{,C — Zaiui7 xr — Zazul>
i=1 =1

k

k
= (z, z) — 22&1»(96, u;) + Za?
i=1

i=1

2

lo =l =

k

k k k
= (z, x) —22%@4—2&? —l—Zcf —ch2
i=1 i=1 i=1 i=1
k
= (z, x) + Z(ai — i) - Zcf

i=1 i=1

k 2
T — Zciul- + Z(ai —¢)?
i=1
k
xr — Zciui
i=1

i=1
Therefore we have ||[z—Z|| < ||x—wv||, and so & formed by the Fourier coefficients
is the best approximation of x with respect to the Euclidean norm in the k-
dimensional vector space V. (For some other norm, this may not be the case.)

2

> (2.64)

2.2.6.2 Choice of the Best Basis Subset

Now, posing the problem another way, we may seek the best k-dimensional
subspace of IR" from which to choose an approximating vector. This question
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is not well-posed (because the one-dimensional vector space determined by x
is the solution), but we can pose a related interesting question: suppose we
have a Fourier expansion of x in terms of a set of n orthogonal basis vectors,
Uy, ..., U, and we want to choose the “best” k basis vectors from this set and
use them to form an approximation of x. (This restriction of the problem is
equivalent to choosing a coordinate system.) We see the solution immediately
from inequality (2.64): we choose the k u;s corresponding to the k largest ¢;s
in absolute value, and we take

T = Ciy Uiy + -0+ € Ugy (265)

where min({|c;,| : j=1,...,k}) > max({|c;;| : j=k+1,...,n}).

2.2.7 Flats, Affine Spaces, and Hyperplanes

Given an n-dimensional vector space of order n, IR" for example, consider a
system of m linear equations in the n-vector variable x,

T

crr=>b
o = by,
where ¢y, ..., ¢y, are linearly independent n-vectors (and hence m < n). The

set of points defined by these linear equations is called a flat. Although it is not
necessarily a vector space, a flat is also called an affine space. An intersection
of two flats is a flat.

If the equations are homogeneous (that is, if by = --- = by, = 0), then the
point (0,...,0) is included, and the flat is an (n — m)-dimensional subspace
(also a vector space, of course). Stating this another way, a flat through the
origin is a vector space, but other flats are not vector spaces.

If m = 1, the flat is called a hyperplane. A hyperplane through the origin
is an (n — 1)-dimensional vector space.

If m = n—1, the flat is a line. A line through the origin is a one-dimensional
vector space.

2.2.8 Cones

A set of vectors that contains all nonnegative scalar multiples of any vector
in the set is called a cone. A cone always contains the zero vector. (Some
authors define a cone as a set that contains all positive scalar multiples, and
in that case, the zero vector may not be included.) If a set of vectors contains
all scalar multiples of any vector in the set, it is called a double cone.

Geometrically, a cone is just a set, possibly a finite set, of lines or half-
lines. (A double cone is a set of lines.) In general, a cone may not be very
interesting, but certain special cones are of considerable interest.
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Given two (double) cones over the same vector space, both their union
and their intersection are (double) cones. A (double) cone is in general not a
vector space.

2.2.8.1 Convex Cones

A set of vectors C' in a vector space V is a convex cone if, for all vi,vy € C
and all nonnegative real numbers a,b > 0, av; + bvy € C. Such a cone is
called a homogeneous convex cone by some authors. (An equivalent definition
requires that the set C be a cone, and then, more in keeping with the definition
of convexity, includes the requirement a + b = 1 along with a,b > 0 in the
definition of a convex cone.)

If C is a convex cone and if v € C implies —v € C, then C is called a
double conver cone.

A (double) convex cone is in general not a vector space because, for ex-
ample, v; + v may not be in C.

It is clear that a (double) convex cone is a (double) cone; in fact, a convex
cone is the most important type of cone. A convex cone corresponds to a solid
geometric object with a single finite vertex.

An important convex cone in an n-dimensional vector space with a Carte-
sian coordinate system is the positive orthant together with the zero vector.
This convex cone is not closed, in the sense that it does not contain some
limits. The closure of the positive orthant (that is, the nonnegative orthant)
is also a convex cone.

A generating set or spanning set of a cone C is a set of vectors S = {v;}
such that for any vector v in C there exists scalars a; > 0 so that v = Y a;v;.
If, in addition, for any scalars b; > 0 with > b;v; = 0, it is necessary that
b; = 0 for all 4, then S is a basis set for the cone. The concept of a generating
set is of course more interesting in the case of a convex cone.

If a generating set of a convex cone has a finite number of elements, the
cone is a polyhedron. For the common geometric object in three dimensions
with elliptical contours and which is the basis for “conic sections”, any gen-
erating set has an uncountable number of elements. Cones of this type are
sometimes called “Lorentz cones”.

It is easy to see from the definition that if C; and C5 are convex cones
over the same vector space, then C; NCs is a convex cone. On the other hand,
C1 U (s is not necessarily a convex cone. Of course the union of two cones, as
we have seen, is a cone.

2.2.8.2 Dual Cones

Given a set of vectors S in a given vector space (in cases of interest, S is
usually a cone, but not necessarily), the dual cone of S, denoted C*(S5), is
defined as

C*(S) = {v* s.t. (v*,v) > 0forallv € S}.
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See Fig. 2.2.8.2 in which S = {vy,vs,v3}. Clearly, the dual cone is a cone, and
also S C C*(9).

If, as in the most common cases, the underlying set of vectors is a cone,
say C, we generally drop the reference to an underlying set of vectors, and
just denote the dual cone of C as C*.

Geometrically, the dual cone C* of S consists of all vectors that form
nonobtuse angles with the vectors in S.

Notice that for a given set of vectors S, if —S represents the set of vec-
tors v such that —v € S, then C*(=S) = —(C*(S)), or just —C*(S), which
represents the set of vectors v* such that —v* € C*(95).

Further, from the definition, we note that if S; and S are sets of vectors in
the same vector space such that S; C Sy then C*(S1) C C*(S2), or Cf C C5.

A dual cone C*(S) is a closed convex cone. We see this by considering any
v}, v3 € C* and real numbers a,b > 0. For any v € S, it must be the case that
(vy,v) > 0and (v3,v) > 0; hence, ((av] +bvy),v) > 0, that is, av] +bvi € C*,
so C* is a convex cone. The closure property comes from the > condition in
the definition.

X2

N\
y N
X X1

Figure 2.3. A set of vectors {v1,v2,v3}, and the corresponding convex cone C, the
dual cone C*, and the polar cone C°

2.2.8.3 Polar Cones

Given a set of vectors S in a given vector space (in cases of interest, S is
usually a cone, but not necessarily), the polar cone of S, denoted C°(S), is
defined as

CY(8) = {1’ s.t. (v°,v) <0 forallv e S}.

See Fig. 2.2.8.2.

We generally drop the reference to an underlying set of vectors, and just
denote the dual cone of the set C as C°.

From the definition, we note that if S; and S5 are sets of vectors in the
same vector space such that S; C Sy then C°(S1) C C°(S3), or CY C CY.

The polar cone and the dual cone of a double cone are clearly the same.
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From the definitions, it is clear in any case that the polar cone C° can be
formed by multiplying all of the vectors in the corresponding dual cone C*
by —1, and so C° = —C*.

The relationships of the polar cone to the dual cone and the properties we
have established for a dual cone immediately imply that a polar cone is also
a convex cone.

Another interesting property of polar cones is that for any set of vectors
S in a given vector space, S C (C°)°. We generally write (C?)° as just C°.
(The precise notation of course is C°(C?(S)).) We see this by first taking
any v € S. Therefore, if v° € C° then (v,v°) < 0, which implies v € (C?)?,
because

C% = {vs.t. (v,0°) <0 forall v’ € C°}.

2.2.8.4 Additional Properties

As noted above, a cone is a very loose and general structure. In my definition,
the vectors in the set do not even need to be in the same vector space. A
convex cone, on the other hand is a useful structure, and the vectors in a
convex cone must be in the same vector space.

Most cones of interest, in particular, dual cones and polar cones are not
necessarily vector spaces.

Although the definitions of dual cones and polar cones can apply to any
set of vectors, they are of the most interest in the case in which the underlying
set of vectors is a cone in the nonnegative orthant of a Cartesian coordinate
system on IR"™ (the set of n-vectors all of whose elements are nonnegative).
In that case, the dual cone is just the full nonnegative orthant, and the polar
cone is just the nonpositive orthant (the set of all vectors all of whose elements
are nonpositive).

The whole nonnegative orthant itself is a convex cone, and as we have seen
for any convex cone within that orthant, the dual cone is the full nonnegative
orthant.

Because the nonnegative orthant is its own dual, and hence is said to be
“self-dual”. (There is an extension of the property of self-duality that we will
not discuss here.)

Convex cones occur in many optimization problems. The feasible region
in a linear programming problem is generally a convex polyhedral cone, for
example.

2.2.9 Cross Products in IR®

The vector space IR? is especially interesting because it serves as a useful
model of the real world, and many physical processes can be represented as
vectors in it.

For the special case of the vector space IR®, another useful vector product is
the cross product, which is a mapping from IR® x IR? to IR?. Before proceeding,
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we note an overloading of the term “cross product” and of the symbol “x”
used to denote it. If A and B are sets, the set cross product or the set Cartesian
product of A and B is the set consisting of all doubletons (a, b) where a ranges
over all elements of A, and b ranges independently over all elements of B.
Thus, IR? x IR? is the set of all pairs of all real 3-vectors.

The vector cross product of the 3-vectors

€T = (,131,1;2,1;3)

and
Yy = (y17y27y3>7

written x X y, is defined as

x Xy = (T2y3 — T3Y2, T3Y1 — T1Y3, T1Y2 — TaY1)- (2.66)

(We also use the term “cross products” in a different way to refer to another
type of product formed by several inner products; see page 359.) The cross
product has the following properties, which are immediately obvious from the
definition:

1. Self-nilpotency:
r X x =0, for all x.
2. Anti-commutativity:
TXYy=—y Xz
3. Factoring of scalar multiplication;
ar X y = a(x x y) for real a.
4. Relation of vector addition to addition of cross products:
(x4+y)xz=(zx2z)+ (y x 2).

The cross product has the important property (sometimes taken as the
definition),
x xy = |z|/[lyll sin(angle(y, z))e, (2.67)

where e is a vector such that ||e|| = 1 and (e, z) = (e,y) = 0, and angle(y, x)
is interpreted as the “smallest angle through which y would be rotated to
become a nonnegative multiple of 7. (See Exercise 2.19e on page 54.)

In the definition of angles between vectors given on page 37, angle(y, x) =
angle(x,y). As we pointed out there, sometimes it is important to distinguish
the direction of the angle, and this is the case in equation (2.67), as in many
applications in IR®. The direction of angles in IR? often is used to determine
the orientation of the principal axes in a coordinate system. The coordinate
system is often defined to be “right-handed” (see Exercise 2.19f).

The cross product is useful in modeling phenomena in nature, which natu-
rally are often represented as vectors in IR®. The cross product is also useful in
“three-dimensional” computer graphics for determining whether a given sur-
face is visible from a given perspective and for simulating the effect of lighting
on a surface.
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2.3 Centered Vectors and Variances and
Covariances of Vectors

In this section, we define some scalar-valued functions of vectors that are
analogous to functions of random variables averaged over their probabilities or
probability density. The functions of vectors discussed here are the same as the
ones that define sample statistics. This short section illustrates the properties
of norms, inner products, and angles in terms that should be familiar to the
reader.

These functions, and transformations using them, are useful for appli-
cations in the data sciences. It is important to know the effects of various
transformations of data on data analysis.

2.3.1 The Mean and Centered Vectors

When the elements of a vector have some kind of common interpretation, the
sum of the elements or the mean (equation (2.46)) of the vector may have
meaning. In this case, it may make sense to center the vector; that is, to
subtract the mean from each element. For a given vector x, we denote its

centered counterpart as x.:
Te=1x — . (2.68)
We refer to any vector whose sum of elements is 0 as a centered vector; note,
therefore, for any centered vector x,
1Tz, = 0;
or, indeed, for any constant vector a, a*z. = 0.
From the definitions, it is easy to see that

(@ +Y)e =zc+ye (2.69)

(see Exercise 2.20). Interpreting T as a vector, and recalling that it is the
projection of x onto the one vector, we see that x. is the residual in the
sense of equation (2.52). Hence, we see that x. and & are orthogonal, and the
Pythagorean relationship holds:

le[l* = 2] + [l (2.70)

From this we see that the length of a centered vector is less than or equal to the
length of the original vector. (Notice that equation (2.70) is just the formula

familiar to data analysts, which with some rearrangement is > (z; — Z)? =

St a? —nz?)

For any scalar a and n-vector x, expanding the terms, we see that

o = al® = [lzc|* + n(a — 2)*, (2.71)
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where we interpret T as a scalar here. An implication of this equation is that
for all values of a, ||z — a|| is minimized if a = Z.

Notice that a nonzero vector when centered may be the zero vector. This
leads us to suspect that some properties that depend on a dot product are
not invariant to centering. This is indeed the case. The angle between two
vectors, for example, is not invariant to centering; that is, in general,

angle(z., y.) # angle(x, y) (2.72)

(see Exercise 2.21).

2.3.2 The Standard Deviation, the Variance, and Scaled Vectors

We also sometimes find it useful to scale a vector by both its length (normalize
the vector) and by a function of its number of elements. We denote this scaled
vector as zs and define it as

X

xszx/n—l .
flze|l

(2.73)
For comparing vectors, it is usually better to center the vectors prior to any
scaling. We denote this centered and scaled vector as x.s and define it as

L

xCS:\/n—l .
el

(2.74)
Centering and scaling is also called standardizing. Note that the vector is
centered before being scaled. The angle between two vectors is not changed
by scaling (but, of course, it may be changed by centering).

The multiplicative inverse of the scaling factor,

5e = ||z /v — 1, (2.75)

is called the standard deviation of the vector x. The standard deviation of x.
is the same as that of x; in fact, the standard deviation is invariant to the
addition of any constant. The standard deviation is a measure of how much
the elements of the vector vary. If all of the elements of the vector are the
same, the standard deviation is 0 because in that case xz. = 0.

The square of the standard deviation is called the variance, denoted by V:

V(z) = 5225
”‘QCCH2
= el (2.76)

(In perhaps more familiar notation, equation (2.76) is just V(z) = > (z; —
7)?/(n —1).) From equation (2.70), we see that

bl - ).

V(x):n—l
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M ”

(The terms “mean”, “standard deviation”, “variance”, and other terms we will
mention below are also used in an analogous, but slightly different, manner to
refer to properties of random variables. In that context, the terms to refer to
the quantities we are discussing here would be preceded by the word “sample”,
and often for clarity I will use the phrases “sample standard deviation” and
“sample variance” to refer to what is defined above, especially if the elements
of x are interpreted as independent realizations of a random variable. Also,
recall the two possible meanings of “mean”, or T; one is a vector, and one is
a scalar, as in equation (2.47).)

If a and b are scalars (or b is a vector with all elements the same), the
definition, together with equation (2.71), immediately gives

V(azx +b) = a*V(z).
This implies that for the scaled vector xg,
V(zs) = 1.

If a is a scalar and z and y are vectors with the same number of elements,
from the equation above, and using equation (2.31) on page 26, we see that
the variance following an axpy operation is given by

(e, ye)

V(az +y) = a®V(z) + V(y) + 2a " 1

(2.77)
While equation (2.76) appears to be relatively simple, evaluating the ex-
pression for a given z may not be straightforward. We discuss computational
issues for this expression on page 502. This is an instance of a principle that we
will encounter repeatedly: the form of a mathematical expression and the way
the expression should be evaluated in actual practice may be quite different.

2.3.3 Covariances and Correlations Between Vectors
If x and y are n-vectors, the covariance between x and y is

Cov(z,y) = (v =2, y- y) (2.78)
n—1
By representing z — T as * — 1 and y — gy similarly, and expanding, we see
that Cov(z,y) = ((z, y) — nzy)/(n — 1). Also, we see from the definition of
covariance that Cov(x,x) is the variance of the vector z, as defined above.
From the definition and the properties of an inner product given on
page 24, if x, y, and z are conformable vectors, we see immediately that

e Cov(z,y) =0
if V(z) =0or V(y) =0;
e Cov(azx,y) = aCov(z,y)
for any scalar a;



2.3 Variances and Covariances 51

Cov(y,x) = Cov(z,y);
Cov(y,y) = V(y); and
Cov(z + z,y) = Cov(z,y) + Cov(z,y),
in particular,
- Cov(z +y,y) = Cov(z,y) + V(y),and
- Cov(z + a,y) = Cov(z,y)
for any scalar a.

Using the definition of the covariance, we can rewrite equation (2.77) as
V(az +y) = a®V(z) + V(y) + 2aCov(z, y). (2.79)

The covariance is a measure of the extent to which the vectors point in
the same direction. A more meaningful measure of this is obtained by the
covariance of the centered and scaled vectors. This is the correlation between
the vectors, which if ||z¢|| # 0 and |lyc| # 0,

Cor(z,y) = Cov(Zes, Yes)

~ e )
ol el

— <J"C7 yC> . (280)
el llge

If ||zc|| = 0 or ||yc|| = 0, we define Cor(z,y) to be 0. We see immediately from
equation (2.54) that the correlation is the cosine of the angle between . and
Ye!

Cor(z,y) = cos(angle(xc, yc))- (2.81)

(Recall that this is not the same as the angle between x and y.)
An equivalent expression for the correlation, so long as V(z) # 0 and

V(y) #0, is

Cor(z,y) = Cov(z,y) (2.82)

VV(@)V(y)

It is clear that the correlation is in the interval [—1,1] (from the Cauchy-
Schwarz inequality). A correlation of —1 indicates that the vectors point in
opposite directions, a correlation of 1 indicates that the vectors point in the
same direction, and a correlation of 0 indicates that the vectors are orthogonal.

While the covariance is equivariant to scalar multiplication, the absolute
value of the correlation is invariant to it; that is, the correlation changes only
as the sign of the scalar multiplier,

Cor(az,y) = sign(a)Cor(z, y), (2.83)

for any scalar a.
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Exercises
2.1. Write out the step-by-step proof that the maximum number of n-vectors
that can form a set that is linearly independent is n.
2.2. Prove inequalities (2.10) and (2.11).
2.3. a) Give an example of a vector space and a subset of the set of vectors
in it such that that subset together with the axpy operation is not
a vector space.

b) Give an example of two vector spaces such that the union of the sets
of vectors in them together with the axpy operation is not a vector
space.

2.4. Prove the equalities (2.15) and (2.16).
Hint: Use of basis sets makes the details easier.
2.5. Prove (2.19).
2.6. Let {v;}?_; be an orthonormal basis for the n-dimensional vector space
V. Let = € V have the representation
xr = Z bi’l}i.
Show that the Fourier coefficients b; can be computed as
bi = <'1;7 Ui>'
2.7. Show that if the norm is induced by an inner product that the parallel-
ogram equality, equation (2.32), holds.
2.8. Let p = } in equation (2.33); that is, let p(x) be defined for the n-vector
x as
n 2
o) = (Solat)
i=1

Show that p(-) is not a norm.

2.9. Show that the L; norm is not induced by an inner product.

Hint: Find a counterexample that does not satisfy the parallelogram

equality (equation (2.32)).

2.10. Prove equation (2.34) and show that the bounds are sharp by exhibiting
instances of equality. (Use the fact that |z]/. = max; |z;|.)
2.11. Prove the following inequalities.

a) Prove Holder’s inequality: for any p and ¢ such that p > 1 and
P+ q = pq, and for vectors x and y of the same order,

(@, y) <llzllpllyllq-

b) Prove the triangle inequality for any L, norm. (This is sometimes
called Minkowski’s inequality.)
Hint: Use Holder’s inequality.



2.12.

2.13.
2.14.

2.15.

2.16.

2.17.

2.18.
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Show that the expression defined in equation (2.42) on page 32 is a
metric.
Show that equation (2.53) on page 37 is correct.
Show that the intersection of two orthogonal vector spaces consists only
of the zero vector.
From the definition of direction cosines in equation (2.55), it is easy to
see that the sum of the squares of the direction cosines is 1. For the
special case of IR?, draw a sketch and use properties of right triangles
to show this geometrically.
In IR? with a Cartesian coordinate system, the diagonal directed line
segment through the positive quadrant (orthant) makes a 45° angle
with each of the positive axes. In 3 dimensions, what is the angle be-
tween the diagonal and each of the positive axes? In 10 dimensions? In
100 dimensions? In 1000 dimensions? We see that in higher dimensions
any two lines are almost orthogonal. (That is, the angle between them
approaches 90°.) What are some of the implications of this for data
analysis?
Show that if the initial set of vectors are linearly independent, all resid-
uals in Algorithm 2.1 are nonzero. (For given k > 2, all that is required
is to show that

T — (Tp—1, Tp)Th—1 # 0

if 1, and Zx—; are linearly independent. Why?)

Convex cones.

a) I defined a convex cone as a set of vectors (not necessarily a cone)
such that for any two vectors vy, vs in the set and for any nonneg-
ative real numbers a,b > 0, avy + bvs is in the set. Then I stated
that an equivalent definition requires first that the set be a cone,
and then includes the requirement a + b = 1 along with a,b > 0 in
the definition of a convex cone. Show that the two definitions are
equivalent.

b) The restriction that a + b = 1 in the definition of a convex cone
is the kind of restriction that we usually encounter in definitions of
convex objects. Without this restriction, it may seem that the linear
combinations may get “outside” of the object. Show that this is not
the case for convex cones.

In particular in the two-dimensional case, show that if x = (21, z2),
y = (y1,y2), with 1 /x2 < y1/y2 and a,b > 0, then

x1/72 < (az1 +by1)/(azs + by2) < y1/yo.

This should also help to give a geometrical perspective on convex
cones.

¢) Show that if C; and Cy are convex cones over the same vector space,
then C7 N Cs is a convex cone. Give a counterexample to show that
C1 U (s is not necessarily a convex cone.
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2.19. IR® and the cross product.

2.20.
2.21.

2.22.
2.23.

2)
b)

c)

a)

b)

Is the cross product associative? Prove or disprove.

For =,y € IR®, show that the area of the triangle with vertices
(0,0,0), z, and y is ||z X y||/2.

For z,y, z € IR®, show that

(x, yx z) =(x xy, 2).

This is called the “triple scalar product”.
For z,y, z € IR®, show that

zx (yxz)=(z, 2)y - (2, y)2.

This is called the “triple vector product”. It is in the plane deter-
mined by y and z.

The magnitude of the angle between two vectors is determined by
the cosine, formed from the inner product. Show that in the special
case of IR?, the angle is also determined by the sine and the cross
product, and show that this method can determine both the mag-
nitude and the direction of the angle; that is, the way a particular
vector is rotated into the other.

In a Cartesian coordinate system in IR®, the principal axes cor-
respond to the unit vectors e; = (1,0,0), e2 = (0,1,0), and
es = (0,0,1). This system has an indeterminate correspondence to
a physical three-dimensional system; if the plane determined by ey
and es is taken as horizontal, then es could “point upward” or “point
downward”. A simple way that this indeterminacy can be resolved is
to require that the principal axes have the orientation of the thumb,
index finger, and middle finger of the right hand when those digits
are spread in orthogonal directions, where e; corresponds to the in-
dex finger, ey corresponds to the middle finger, and e3 corresponds
to the thumb. This is called a “right-hand” coordinate system.
Show that in a right-hand coordinate system, if we interpret the
angle between e; and e; to be measured in the direction from e; to
ej, then e3 = e; X ez and e3 = —ez X ;.

Using equations (2.46) and (2.68), establish equation (2.69).

Show that the angle between the centered vectors z. and y. is not the
same in general as the angle between the uncentered vectors x and y of
the same order.

Formally prove equation (2.77) (and hence equation (2.79)).

Let z and y be any vectors of the same order over the same field.

Prove
(Cov(z,y))* < V(z)V(y).

Hence, prove
—1 < Cor(z,y)) < 1.
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Basic Properties of Matrices

In this chapter, we build on the notions introduced on page 5, and discuss
a wide range of basic topics related to matrices with real elements. Some of
the properties carry over to matrices with complex elements, but the reader
should not assume this. Occasionally, for emphasis, we will refer to “real”
matrices, but unless it is stated otherwise, we are assuming the matrices are
real.

The topics and the properties of matrices that we choose to discuss are
motivated by applications in the data sciences. In Chap. 8, we will consider in
more detail some special types of matrices that arise in regression analysis and
multivariate data analysis, and then in Chap. 9 we will discuss some specific
applications in statistics.

3.1 Basic Definitions and Notation

It is often useful to treat the rows or columns of a matrix as vectors. Terms
such as linear independence that we have defined for vectors also apply to
rows and/or columns of a matrix. The vector space generated by the columns
of the n x m matrix A is of order n and of dimension m or less, and is called
the column space of A, the range of A, or the manifold of A. This vector space
is denoted by

V(4)

or
span(A).

I make no distinction between these two notations. The notation V(-) em-
phasizes that the result is a vector space. Note that if A € IR™™™, then
V(A) CR"™

(© Springer International Publishing AG 2017 55
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The argument of V() or span(-) can also be a set of vectors instead of a
matrix. Recall from Sect. 2.1.3 that if G is a set of vectors, the symbol span(G)
denotes the vector space generated by the vectors in G.

We also define the row space of A to be the vector space of order m
(and of dimension n or less) generated by the rows of A; notice, however, the
preference given to the column space.

Many of the properties of matrices that we discuss hold for matrices with
an infinite number of elements, but throughout this book we will assume that
the matrices have a finite number of elements, and hence the vector spaces
are of finite order and have a finite number of dimensions.

Given an n xm matrix A with elements a;;, the m xn matrix with elements
aj; is called the transpose of A. We use a superscript “I” to denote the
transpose of a matrix; thus, if A = (a;;), then

AT = (aji). (31)

(In other literature, the transpose is often denoted by a prime, as in A’ =
(a;:) = AT))

If, in the matrix A with elements a;; for all ¢ and j, a;; = aj;, A is said
to be symmetric. A symmetric matrix is necessarily square. A matrix A such
that a;; = —ay; is said to be skew symmetric. Obviously, the diagonal entries
of a skew symmetric matrix must be 0. If a;; = @;; (where @ represents the
conjugate of the complex number a), A is said to be Hermitian. A Hermitian
matrix is also necessarily square with real elements on the diagonal, and, of
course, a real symmetric matrix is Hermitian. A Hermitian matrix is also
called a self-adjoint matrix.

3.1.1 Multiplication of a Matrix by a Scalar

Similar to our definition of multiplication of a vector by a scalar, we define
the multiplication of a matrix A by a scalar ¢ as

cA = (caij).

3.1.2 Diagonal Elements: diag(-) and vecdiag(+)

The a;; elements of a matrix are called diagonal elements. An element a;;
with ¢ < j is said to be “above the diagonal”, and one with ¢ > j is said to
be “below the diagonal”. The vector consisting of all of the a;;’s is called the
principal diagonal or just the diagonal. This definition of principal diagonal
applies whether or not the matrix is square.

We denote the principal diagonal of a matrix A by diag(A4) or by
vecdiag(A). The latter notation is sometimes used because, as we will see on
page 60, diag(j is also used for an argument that is a vector (and the function
produces a matrix). The diag or vecdiag function defined here is a mapping
RAX™ _ IRmin(n,m,)'
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If A is an n x m matrix, and k = min(n,m),
diag(A) = (a11,- - -, ak)- (32)

As noted above, we may also denote this as vecdiag(A), but I will generally
use the notation “diag(-)”.
Note from the definition that

diag(AT) = diag(A), (3.3)

and this is true whether or not A is square.

The diagonal begins in the first row and first column (that is, a11), and
ends at agx, where k is the minimum of the number of rows and the number
of columns.

For ¢ = £1,..., the elements a; ;4. are called “codiagonals” or “minor
diagonals”. The codiagonals a; ;41 are called “supradiagonals”, and the codi-
agonals a;;—1 are called “infradiagonals” If the matrix has m columns, the
@im+1—i elements of the matrix are called skew diagonal elements. We use
terms similar to those for diagonal elements for elements above and below
the skew diagonal elements. These phrases are used with both square and
nonsquare matrices.

3.1.3 Diagonal, Hollow, and Diagonally Dominant Matrices

If all except the principal diagonal elements of a matrix are 0, the matrix is
called a diagonal matriz. A diagonal matrix is the most common and most
important type of “sparse matrix”. If all of the principal diagonal elements of
a matrix are 0, the matrix is called a hollow matriz. A skew symmetric matrix
is hollow, for example. If all except the principal skew diagonal elements of a
matrix are 0, the matrix is called a skew diagonal matriz.

An n x m matrix A for which

|CL“‘| >Z|aij| for eachz'zl,...,n (34)
J#i

is said to be row diagonally dominant; and a matrix A for which |a;;| >
> iz laij| for each j = 1,...,m is said to be column diagonally dominant.
(Some authors refer to this as strict diagonal dominance and use “diagonal
dominance” without qualification to allow the possibility that the inequalities
in the definitions are not strict.) Most interesting properties of such matrices
hold whether the dominance is by row or by column. If A is symmetric, row
and column diagonal dominances are equivalent, so we refer to row or column
diagonally dominant symmetric matrices without the qualification; that is, as
just diagonally dominant.
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3.1.4 Matrices with Special Patterns of Zeroes

If all elements below the diagonal are 0, the matrix is called an upper triangular
matriz; and a lower triangular matriz is defined similarly. If all elements of a
column or row of a triangular matrix are zero, we still refer to the matrix as
triangular, although sometimes we speak of its form as trapezoidal. Another
form called trapezoidal is one in which there are more columns than rows,
and the additional columns are possibly nonzero. The four general forms of
triangular or trapezoidal matrices are shown below, using an intuitive notation
with X and 0 to indicate the pattern.

XXX

XXX XXX XXXX
0XX 0XX 8§§ 0XXX
00X 000 000 00XX

In this notation, X indicates that the element is possibly not zero. It does
not mean each element is the same. In some cases, X and 0 may indicate
“submatrices”, which we discuss in the section on partitioned matrices.

If all elements are 0 except a; i+¢, for some small number of integers cy,
the matrix is called a band matriz (or banded matriz). In many applications,
e € {—w,—w;+1,...,—-1,0,1,...,w, — 1,w,}. In such a case, w; is called
the lower band width and w,, is called the upper band width. These patterned
matrices arise in time series and other stochastic process models as well as in
solutions of differential equations, and so they are very important in certain
applications. Although it is often the case that interesting band matrices are
symmetric, or at least have the same number of codiagonals that are nonzero,
neither of these conditions always occurs in applications of band matrices. If
all elements below the principal skew diagonal elements of a matrix are 0, the
matrix is called a skew upper triangular matriz. A common form of Hankel
matrix, for example, is the skew upper triangular matrix (see page 390). Notice
that the various terms defined here, such as triangular and band, also apply
to nonsquare matrices.

Band matrices occur often in numerical solutions of partial differential
equations. A band matrix with lower and upper band widths of 1 is a tridi-
agonal matriz. If all diagonal elements and all elements a; ;+1 are nonzero, a
tridiagonal matrix is called a “matrix of type 2”. The inverse of a covariance
matrix that occurs in common stationary time series models is a matrix of
type 2 (see page 385).

Using the intuitive notation of X and 0 as above, a band matrix may be

written as

0
XXX--- 0
0XX--- 0

O O O

000--- X X
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Computational methods for matrices may be more efficient if the patterns are
taken into account.

A matrix is in upper Hessenberg form, and is called a Hessenberg matriz, if
it is upper triangular except for the first subdiagonal, which may be nonzero.
That iS, Q5 = 0 for 2 >]+ 1:

(XXX - XX]
XXX - XX
0XX--- XX
00X--- XX
000 XX

A symmetric matrix that is in Hessenberg form is necessarily tridiagonal.

Hessenberg matrices arise in some methods for computing eigenvalues (see
Chap. 7).

Many matrices of interest are sparse; that is, they have a large propor-
tion of elements that are 0. The matrices discussed above are generally not
considered sparse. (“A large proportion” is subjective, but generally means
more than 75%, and in many interesting cases is well over 95%.) Efficient and
accurate computations often require that the sparsity of a matrix be accom-
modated explicitly.

3.1.5 Matrix Shaping Operators

In order to perform certain operations on matrices and vectors, it is often
useful first to reshape a matrix. The most common reshaping operation is
the transpose, which we define in this section. Sometimes we may need to
rearrange the elements of a matrix or form a vector into a special matrix. In
this section, we define three operators for doing this.

3.1.5.1 Transpose

As defined above, the transpose of a matrix is the matrix whose i*" row is the

i*" column of the original matrix and whose j** column is the j** row of the
original matrix. We note immediately that

(ATT = A. (3.5)

If the elements of the matrix are from the field of complex numbers, the
conjugate transpose, also called the adjoint, is more useful than the transpose.
(“Adjoint” is also used to denote another type of matrix, so we will generally
avoid using that term. This meaning of the word is the origin of the other
term for a Hermitian matrix, a “self-adjoint matrix”.) We use a superscript
“H” to denote the conjugate transpose of a matrix; thus, if A = (a;;), then
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AY = (aj;). (3.6)

We also use a similar notation for vectors. (The conjugate transpose is often
denoted by an asterisk, as in A* = (@;;) = AH. This notation is more common
if a prime is used to denote the transpose. We sometimes use the notation A*
to denote a go inverse of the matrix A; see page 128.) As with the transponse,
(AMH = A Tf (and only if) all of the elements of A are all real, then A® = AT,

If (and only if) A is symmetric, A = AT; if (and only if) A is skew sym-
metric, AT = —A; and if (and only if) A is Hermitian, A = A" (and, in that
case, all of the diagonal elements are real).

3.1.5.2 Diagonal Matrices and Diagonal Vectors: diag(:) (Again)

A square diagonal matrix can be specified by a constructor function that
operates on a vector and forms a diagonal matrix with the elements of the
vector along the diagonal. We denote that constructor function by diag(-),
just as we used this name to denote a somewhat similar function on page 57.

dy 0 - 0

. 0dy-- 0
dlag((d17d27"'7dn)) = . . (37)

00---4d,

(Notice that the argument of diag here is a vector; that is why there are
two sets of parentheses in the expression above, although sometimes we omit
one set without loss of clarity.) The diag function defined here is a mapping
R™ — IR™*". Later we will extend this definition slightly.

A very important diagonal matrix has all 1s along the diagonal. If it has
n diagonal elements, it is denoted by I,,; so I,, = diag(1,,). This is called the
identity matriz of order n. The size is often omitted, and we call it the identity
matrix, and denote it by I.

Note that we have overloaded diag(-), which we defined on page 57 with a
matrix argument, to allow its argument to be a vector. (Recall that vecdiag(-)
is the same as diag(-) when the argument is a matrix.) Both the R and Mat-
lab computing systems, for example, use this overloading; that is, they each
provide a single function (called diag in each case).

Note further that over IR™ and IR™*", diag(-) is its own inverse; that is, if
v is a vector,

diag(diag(v)) = v, (3.8)

and if A is a square matrix,

diag(diag(A4)) = A. (3.9)
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3.1.5.3 Forming a Vector from the Elements of a Matrix: vec(-)
and vech(-)

It is sometimes useful to consider the elements of a matrix to be elements of
a single vector. The most common way this is done is to string the columns
of the matrix end-to-end into a vector. The vec(-) function does this:

vec(A) = (af ,a3,...,ak), (3.10)

where a1, as, ..., a,, are the column vectors of the matrix A. The vec function
is also sometimes called the “pack” function. (A note on the notation: the
right side of equation (3.10) is the notation for a column vector with elements
al; see Chap. 1.) The vec function is a mapping R™*™ — R™"™.

For a symmetric matrix A with elements a;;, the “vech” function stacks
the unique elements into a vector:

VeCh(A) = (&11,&21, ey 1,022, 000 s A2y - e ey amm). (3.11)

There are other ways that the unique elements could be stacked that would
be simpler and perhaps more useful (see the discussion of symmetric storage
mode on page 548), but equation (3.11) is the standard definition of vech(-).
The vech function is a mapping IR"*" — IR™("+1)/2,

3.1.6 Partitioned Matrices

We often find it useful to partition a matrix into submatrices; for example,
in many applications in data analysis, it is often convenient to work with
submatrices of various types representing different subsets of the data.

We usually denote the submatrices with capital letters with subscripts
indicating the relative positions of the submatrices. Hence, we may write

A Ao
A= 3.12
[AQI AzJ ’ (3.12)

where the matrices A;; and A5 have the same number of rows, As; and
Aoy have the same number of rows, A7 and As; have the same number of
columns, and A2 and Ass have the same number of columns. Of course, the
submatrices in a partitioned matrix may be denoted by different letters. Also,
for clarity, sometimes we use a vertical bar to indicate a partition:

A=[B|C].

The vertical bar is used just for clarity and has no special meaning in this
representation.

The term “submatrix” is also used to refer to a matrix formed from a
given matrix by deleting various rows and columns of the given matrix. In this
terminology, B is a submatrix of A if for each element b;; there is an ay; with
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k > 1 and | > j such that b;; = ak; that is, the rows and/or columns of the
submatrix are not necessarily contiguous in the original matrix. A more precise
notation specifies the rows and columns of the original matrix. For example,
Aliy,..in)Gs.onji) denotes the submatrix of A formed by rows ig,..., 45 and
columns ji,...,ji. When the entire rows are included, A, . ;. )(x) denotes
the submatrix of A formed from rows i1,...,ix; and Ay, ... j,) denotes the
submatrix formed from columns ji, ..., j; with elements from all rows. Finally,
a;x denotes the vector whose elements correspond to those in the i*" row of
the matrix A. We sometimes emphasize that it is a wvector by writing it in
the form a},. Likewise, a.; denotes the vector whose elements correspond to
those in the j* column of A. See page 599 for a summary of this notation.
This kind of subsetting is often done in data analysis, for example, in variable
selection in linear regression analysis.

A square submatrix whose principal diagonal elements are elements of the
principal diagonal of the given matrix is called a principal submatriz. If A1; in
the example above is square, it is a principal submatrix, and if Ass is square,
it is also a principal submatrix. Sometimes the term “principal submatrix” is
restricted to square submatrices. If a matrix is diagonally dominant, then it
is clear that any principal submatrix of it is also diagonally dominant.

A principal submatrix that contains the (1,1) element and whose rows
and columns are contiguous in the original matrix is called a leading principal
submatriz. If Aq; is square, it is a leading principal submatrix in the example
above.

Partitioned matrices may have useful patterns. A “block diagonal” matrix
is one of the form

where 0 represents a submatrix with all zeros and X represents a general
submatrix with at least some nonzeros.
The diag(-) function previously introduced for a vector is also defined for
a list of matrices:
diag(Al, AQ, . ,Ak)

denotes the block diagonal matrix with submatrices Ay, As, ..., Ax along the
diagonal and zeros elsewhere. A matrix formed in this way is sometimes called
a direct sum of Ay, Aa, ..., Ak, and the operation is denoted by &®:

AL @@ A = diag(A4y,. .., Ag). (3.13)

Although the direct sum is a binary operation, we are justified in defining
it for a list of matrices because the operation is clearly associative.

The A; may be of different sizes and they may not be square, although in
most applications the matrices are square (and some authors define the direct
sum only for square matrices).
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We will define vector spaces of matrices below and then recall the definition
of a direct sum of vector spaces (page 18), which is different from the direct
sum defined above in terms of diag(-).

3.1.6.1 Transposes of Partitioned Matrices

The transpose of a partitioned matrix is formed in the obvious way; for ex-
ample,

ATy Ay

AL, AL . (3.14)

[All Aro A13]T _
Ay AZ,

Aoy Agp Ao

3.1.7 Matrix Addition

The sum of two matrices of the same shape is the matrix whose elements
are the sums of the corresponding elements of the addends. As in the case of
vector addition, we overload the usual symbols for the operations on the reals
to signify the corresponding operations on matrices when the operations are
defined; hence, addition of matrices is also indicated by “47, as with scalar
addition and vector addition. We assume throughout that writing a sum of
matrices A+ B implies that they are of the same shape; that is, that they are
conformable for addition.

The “+” operator can also mean addition of a scalar to a matrix, as in
A+ a, where A is a matrix and « is a scalar. Although this meaning of “4”
is generally not used in mathematical treatments of matrices, in this book
we use it to mean the addition of the scalar to each element of the matrix,
resulting in a matrix of the same shape. This meaning is consistent with the
semantics of modern computer languages such as Fortran and R.

The addition of two n x m matrices or the addition of a scalar to an n xm
matrix requires nm scalar additions.

The matriz additive identity is a matrix with all elements zero. We some-
times denote such a matrix with n rows and m columns as 0,,x,, or just as 0.
We may denote a square additive identity as 0,,.

3.1.7.1 The Transpose of the Sum of Matrices
The transpose of the sum of two matrices is the sum of the transposes:
(A+B)" = AT + BT. (3.15)

The sum of two symmetric matrices is therefore symmetric.
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3.1.7.2 Rank Ordering Matrices

There are several possible ways to form a rank ordering of matrices of the
same shape, but no complete ordering is entirely satisfactory. If all of the
elements of the matrix A are positive, we write

A >0 (3.16)
if all of the elements are nonnegative, we write
A>0. (3.17)

The terms “positive” and “nonnegative” and these symbols are not to be
confused with the terms “positive definite” and “nonnegative definite” and
similar symbols for important classes of matrices having different properties
(which we will introduce on page 92, and discuss further in Sect. 8.3.)

3.1.7.3 Vector Spaces of Matrices

Having defined scalar multiplication and matrix addition (for conformable
matrices), we can define a vector space of n X m matrices as any set that is
closed with respect to those operations. The individual operations of scalar
multiplication and matrix addition allow us to define an axpy operation on
the matrices, as in equation (2.1) on page 12. Closure of this space implies
that it must contain the additive identity, just as we saw on page 13). The
matrix additive identity is the 0 matrix.

As with any vector space, we have the concepts of linear independence,
generating set or spanning set, basis set, essentially disjoint spaces, and direct
sums of matrix vector spaces (as in equation (2.13), which is different from
the direct sum of matrices defined in terms of diag(-) as in equation (3.13)).

An important vector space of matrices is IR™*"". For matrices X,Y €
R™ ™ and a € IR, the axpy operation is aX + Y.

If n > m, a set of nm n xm matrices whose columns consist of all combina-
tions of a set of n n-vectors that span IR" is a basis set for R™*™. If n < m,
we can likewise form a basis set for IR™*"" or for subspaces of R™*™ in a
similar way. If {By,..., Bx} is a basis set for IR"*™, then any n x m matrix
can be represented as Zle c; B;. Subsets of a basis set generate subspaces of
BHXTI’L'

Because the sum of two symmetric matrices is symmetric, and a scalar
multiple of a symmetric matrix is likewise symmetric, we have a vector space
of the n x m symmetric matrices. This is clearly a subspace of the vector
space IR™*"™. All vectors in any basis for this vector space must be symmetric.
Using a process similar to our development of a basis for a general vector
space of matrices, we see that there are n(n + 1)/2 matrices in the basis (see
Exercise 3.1).
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3.1.8 Scalar-Valued Operators on Square Matrices:
The Trace

There are several useful mappings from matrices to real numbers; that is, from
R™™ to IR. Some important ones are norms, which are similar to vector
norms and which we will consider later. In this section and the next, we
define two scalar-valued operators, the trace and the determinant, that apply
to square matrices.

3.1.8.1 The Trace: tr(-)

The sum of the diagonal elements of a square matrix is called the ¢race of the
matrix. We use the notation “tr(A4)” to denote the trace of the matrix A:

tr(A) = Z . (3.18)

3.1.8.2 The Trace of the Transpose of Square Matrices

From the definition, we see

tr(A) = tr(AT). (3.19)

3.1.8.3 The Trace of Scalar Products of Square Matrices
For a scalar ¢ and an n X n matrix A,
tr(cA) = ctr(A4).

This follows immediately from the definition because for tr(cA) each diagonal
element is multiplied by c.

3.1.8.4 The Trace of Partitioned Square Matrices

If the square matrix A is partitioned such that the diagonal blocks are square
submatrices, that is,

Ay Ay
A= 7 3.20
[Am AQJ (3:20)
where A1, and Aso are square, then from the definition, we see that
tr(A4) = tr(Aq1) + tr(Ag2). (3.21)

3.1.8.5 The Trace of the Sum of Square Matrices

If A and B are square matrices of the same order, a useful (and obvious)
property of the trace is

tr(A + B) = tr(A) + tr(B). (3.22)
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3.1.9 Scalar-Valued Operators on Square Matrices:
The Determinant

The determinant, like the trace, is a mapping from IR™*" to IR. Although
it may not be obvious from the definition below, the determinant has far-
reaching applications in matrix theory.

3.1.9.1 The Determinant: det(-)

For an n X n (square) matrix A, consider the product aij, - - - anj,, where
mj = (j1,...,Jn) is one of the n! permutations of the integers from 1 to n.
Define a permutation to be even or odd according to the number of times
that a smaller element follows a larger one in the permutation. For example,
given the tuple (1,2,3), then (1,3,2) is an odd permutation, and (3, 1,2) and
(1,2,3) are even permutations. Let

(3.23)

o(r) = 1 if 7 is an even permutation
—1 otherwise.

Then the determinant of A, denoted by det(A), is defined by

det(A) = Z a(wj)aljl c g, - (324)

all permutations 7

This simple function has many remarkable relationships to various prop-
erties of matrices.

3.1.9.2 Notation and Simple Properties of the Determinant

The determinant is also sometimes written as | A|.

I prefer the notation det(A), because of the possible confusion between
|A| and the absolute value of some quantity. The latter notation, however,
is recommended by its compactness, and I do use it in expressions such as
the PDF of the multivariate normal distribution (see equation (4.73)) that
involve nonnegative definite matrices (see page 91 for the definition). The
determinant of a matrix may be negative, and sometimes, as in measuring
volumes (see page 74 for simple areas and page 215 for special volumes called
Jacobians), we need to specify the absolute value of the determinant, so we
need something of the form |det(A)|.

The definition of the determinant is not as daunting as it may appear
at first glance. Many properties become obvious when we realize that o(-)
is always +1, and it can be built up by elementary exchanges of adjacent
elements. For example, consider o(3,2,1). There are two ways we can use
three elementary exchanges, each beginning with the natural ordering;:

(1,2,3) = (2,1,3) = (2,3,1) = (3,2, 1),
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or
(1,2,3) — (1,3,2) — (3,1,2) — (3,2, 1);

hence, either way, 0(3,2,1) = (—1)3 = —1.

If 7; consists of the interchange of exactly two elements in (1,...,n), say
elements p and ¢ with p < ¢, then there are ¢ — p elements before p that
are larger than p, and there are ¢ — p — 1 elements between ¢ and p in the
permutation each with exactly one larger element preceding it. The total
number is 2¢ — 2p + 1, which is an odd number. Therefore, if 7; consists of

the interchange of exactly two elements, then o(7;) = —1.
If the integers 1, ..., m occur sequentially in a given permutation and are
followed by m + 1,...,n which also occur sequentially in the permutation,

they can be considered separately:

o(J1y- s dn) = 015 Jm)OFmats - - Jn)- (3.25)

Furthermore, we see that the product ay, - - - an;, has exactly one factor from
each unique row-column pair. These observations facilitate the derivation of
various properties of the determinant (although the details are sometimes
quite tedious).

We see immediately from the definition that the determinant of an upper
or lower triangular matrix (or a diagonal matrix) is merely the product of the
diagonal elements (because in each term of equation (3.24) there is a 0, except
in the term in which the subscripts on each factor are the same).

3.1.9.3 Minors, Cofactors, and Adjugate Matrices

Consider the 2 x 2 matrix
= [011 am] '
a1 a22
From the definition of the determinant, we see that
det(A) = aj1a22 — aj2a2:- (3.26)
Now let A be a 3 x 3 matrix:

aii a12 ai3
A= | a2 az ass
as| a3z a3

In the definition of the determinant, consider all of the terms in which the
elements of the first row of A appear. With some manipulation of those terms,
we can express the determinant in terms of determinants of submatrices as
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det(A) = ai1(—1)"*'det ({a” a23D

a32 as3

+ apa(—1)+2det ({“21 “23}) (3.27)

a31 ass

+ aps(—1)1+3det ({a” a”D .

asi as2
Notice that this is the same form as in equation (3.26):
det(A) = all(l)det(azg) + a12(—1)det(a21).

The manipulation in equation (3.27) of the terms in the determinant could
be carried out with other rows of A.

The determinants of the 2 x 2 submatrices in equation (3.27) are called
minors or complementary minors of the associated element. The definition
can be extended to (n—1) x (n— 1) submatrices of an n x n matrix, for n > 2.
We denote the minor associated with the a;; element as

det (A—(i)(j)) , (3.28)

in which A_;)(;) denotes the submatrix that is formed from A by removing
the i*" row and the j* column. The sign associated with the minor corre-
sponding to a;; is (—1)**7. The minor together with its appropriate sign is
called the cofactor of the associated element; that is, the cofactor of a;; is
(—=1)"Jdet (A_(;)(j)). We denote the cofactor of a;; as a(;j):

agj) = (=1)"det (A_)(5)) - (3.29)

Notice that both minors and cofactors are scalars.

The manipulations leading to equation (3.27), though somewhat tedious,
can be carried out for a square matrix of any size larger than 1 x 1, and minors
and cofactors are defined as above. An expression such as in equation (3.27)
is called an expansion in minors or an expansion in cofactors.

The extension of the expansion (3.27) to an expression involving a sum
of signed products of complementary minors arising from (n — 1) x (n — 1)
submatrices of an n X n matrix A is

det(A) = Zaij(—l)”jdet (A—(i)(j))
j=1

= aijagj), (3.30)
j=1

or, over the rows,
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det(A) = " aija)). (3.31)
=1

These expressions are called Laplace expansions. Each determinant det
(A_(i)(j)) can likewise be expressed recursively in a similar expansion.

Expressions (3.30) and (3.31) are special cases of a more general Laplace
expansion based on an extension of the concept of a complementary minor
of an element to that of a complementary minor of a minor. The derivation
of the general Laplace expansion is straightforward but rather tedious (see
Harville 1997, for example, for the details).

Laplace expansions could be used to compute the determinant, but the
main value of these expansions is in proving properties of determinants. For
example, from the special Laplace expansion (3.30) or (3.31), we can quickly
see that the determinant of a matrix with two rows that are the same is zero.
We see this by recursively expanding all of the minors until we have only 2 x 2
matrices consisting of a duplicated row. The determinant of such a matrix is
0, so the expansion is 0.

The expansion in equation (3.30) has an interesting property: if instead of
the elements a;; from the i*" row we use elements from a different row, say
the k' row, the sum is zero. That is, for k # i,

Zak H'Jdet A_ (%) Zakﬂa(m

=0. (3.32)

This is true because such an expansion is exactly the same as an expansion for
the determinant of a matrix whose k' row has been replaced by its it* row;
that is, a matrix with two identical rows. The determinant of such a matrix
is 0, as we saw above.

A certain matrix formed from the cofactors has some interesting properties.
We define the matrix here but defer further discussion. The adjugate of the
n X n matrix A is defined as

adj(A) = (agi)), (3.33)

which is an n X n matrix of the cofactors of the elements of the transposed
matrix. (The adjugate is also called the adjoint or sometimes “classical ad-
joint”, but as we noted above, the term adjoint may also mean the conjugate
transpose. To distinguish it from the conjugate transpose, the adjugate is also
sometimes called the “classical adjoint”. We will generally avoid using the
term “adjoint”.) Note the reversal of the subscripts; that is,
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. T
adj(A) = (a(ij)) .

The adjugate has an interesting property involving matrix multiplication
(which we will define below in Sect. 3.2) and the identity matrix:

Aadj(A) = adj(A)A = det(A)]. (3.34)

To see this, consider the (i,7)™" element of Aadj(A). By the definition of
the multiplication of A and adj(A), that element is >, a;x(adj(A))r;. Now,
noting the reversal of the subscripts in adj(A) in equation (3.33), and using
equations (3.30) and (3.32), we have

;aik(adj(A))kj = {Set(A) i ; ; i

that is, Aadj(A) = det(A)I.
The adjugate has a number of other useful properties, some of which we
will encounter later, as in equation (3.172).

3.1.9.4 The Determinant of the Transpose of Square Matrices

One important property we see immediately from a manipulation of the defi-
nition of the determinant is

det(A) = det(AT). (3.35)

3.1.9.5 The Determinant of Scalar Products of Square Matrices
For a scalar ¢ and an n X n matrix A,
det(cA) = c"det(A). (3.36)

This follows immediately from the definition because, for det(cA), each factor
in each term of equation (3.24) is multiplied by c.

3.1.9.6 The Determinant of an Upper (or Lower) Triangular
Matrix

If Ais an n x n upper (or lower) triangular matrix, then

det(A) = [ ] au- (3.37)

This follows immediately from the definition. It can be generalized, as in the
next section.
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3.1.9.7 The Determinant of Certain Partitioned Square Matrices

Determinants of square partitioned matrices that are block diagonal or upper
or lower block triangular depend only on the diagonal partitions:

aet) o ([4 0 ) =ae ([0 0 1) e ([ 2]

= det (All )det(AQQ ) .
(3.38)

We can see this by considering the individual terms in the determinant, equa-
tion (3.24). Suppose the full matrix is n X n, and Ay; is m X m. Then Ago
is (n—m) x (n—m), Az is (n—m)xm, and A3 is m x (n —m). In
equation (3.24), any addend for which (j1,...,jm) is not a permutation of the
integers 1,...,m contains a factor a;; that is in a 0 diagonal block, and hence
the addend is 0. The determinant consists only of those addends for which
(J1,- - -, Jm) is a permutation of the integers 1, ..., m, and hence (jim+1,-- -, Jjn)
is a permutation of the integers m 4+ 1,...,n,

det(A) = Z Z O'(jl, v 7jm7jm+17 s 7jﬂ)a1j1 © o Omyg,, Am+1,5, 0 Ongp s

where the first sum is taken over all permutations that keep the first m in-
tegers together while maintaining a fixed ordering for the integers m + 1
through n, and the second sum is taken over all permutations of the inte-
gers from m + 1 through n while maintaining a fixed ordering of the integers
from 1 to m. Now, using equation (3.25), we therefore have for A of this
special form

det(A) =Y " "0 (ts- s dmodmtts 2 dn) @1 G Gt oy O,

= E a(J1s -5 Jm)aj, - Amg,, E O(Jmats -5 Jn)@mat s * " Ongn,

= det(A11 )det(A22>7

which is equation (3.38). We use this result to give an expression for the
determinant of more general partitioned matrices in Sect. 3.4.2.
Another useful partitioned matrix of the form of equation (3.20) has A1 =

0 and A21 =1
_ 0A12
A= |:—IA22:| ’

In this case, using equation (3.30), we get
det(A) = ((=1)"T(=1))"det(A12)
= (—1)""det(As2)
= det(A412). (3.39)
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We will consider determinants of a more general partitioning in Sect. 3.4.2,
beginning on page 122.

3.1.9.8 The Determinant of the Sum of Square Matrices

Occasionally it is of interest to consider the determinant of the sum of square
matrices. We note in general that

det(A 4+ B) # det(A) + det(B),

which we can see easily by an example. (Consider matrices in R?*?, for ex-
-1
ample, and let A =1 and B = [ 0 8} 2
In some cases, however, simplified expressions for the determinant of a
sum can be developed. We consider one in the next section.

3.1.9.9 A Diagonal Expansion of the Determinant

A particular sum of matrices whose determinant is of interest is one in which
a diagonal matrix D is added to a square matrix A, that is, det(A+ D). (Such
a determinant arises in eigenanalysis, for example, as we see in Sect. 3.8.4.)

For evaluating the determinant det(A+ D), we can develop another expan-
sion of the determinant by restricting our choice of minors to determinants of
matrices formed by deleting the same rows and columns and then continuing
to delete rows and columns recursively from the resulting matrices. The ex-
pansion is a polynomial in the elements of D; and for our purposes later, that
is the most useful form.

Before considering the details, let us develop some additional notation.
The matrix formed by deleting the same row and column of A is denoted
A_(i)@) as above (following equation (3.28)). In the current context, however,
it is more convenient to adopt the notation A(;, . ;) to represent the matrix
formed from rows i1,...,7; and columns iy,...,7; from a given matrix A.
That is, the notation A, . ;) indicates the rows and columns kept rather
than those deleted; and furthermore, in this notation, the indexes of the rows
and columns are the same. We denote the determinant of this & x k matrix
in the obvious way, det(A, . ;,)). Because the principal diagonal elements
of this matrix are principal diagonal elements of A, we call det(Ag, ... ;,)) a
principal minor of A.

Now consider det(A + D) for the 2 x 2 case:

a1 +di ai
det([ a1 &22+d2]>'

Expanding this, we have

det(A + D) = (a11 + d1)(az2 + d2) — a12a21
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= det ([&11 a12]> + dids 4 asody + a11de
a21 22

= det(A(Lg)) + dids + asadi + a11ds.

Of course, det(A(; 2)) = det(A), but we are writing it this way to develop the
pattern. Now, for the 3 x 3 case, we have

det(A + D) = det(A(1,2,3))
+det(Ag3))di + det(A(y 3))da + det(A 2))d3
+ assdids + agsedids + ay1dads
+ dydads. (3.40)

In the applications of interest, the elements of the diagonal matrix D may be
a single variable: d, say. In this case, the expression simplifies to

det(A + D) = det(A123) + Y det(Agj)d+ Y aid® +d°.  (3.41)
i#£j i

Carefully continuing in this way for an nxn matrix, either as in equation (3.40)
for n variables or as in equation (3.41) for a single variable, we can make use
of a Laplace expansion to evaluate the determinant.

Consider the expansion in a single variable because that will prove most
useful. The pattern persists; the constant term is |A|, the coefficient of the
first-degree term is the sum of the (n — 1)-order principal minors, and, at
the other end, the coefficient of the (n — 1)*'-degree term is the sum of the
first-order principal minors (that is, just the diagonal elements), and finally
the coefficient of the n*"-degree term is 1.

This kind of representation is called a diagonal expansion of the determi-
nant because the coefficients are principal minors. It has occasional use for
matrices with large patterns of zeros, but its main application is in analysis
of eigenvalues, which we consider in Sect. 3.8.4.

3.1.9.10 Computing the Determinant

For an arbitrary matrix, the determinant is rather difficult to compute. The
method for computing a determinant is not the one that would arise directly
from the definition or even from a Laplace expansion. The more efficient meth-
ods involve first factoring the matrix, as we discuss in later sections.

The determinant is not very often directly useful, but although it may not
be obvious from its definition, the determinant, along with minors, cofactors,
and adjoint matrices, is very useful in discovering and proving properties of
matrices. The determinant is used extensively in eigenanalysis (see Sect. 3.8).



74 3 Basic Properties of Matrices
3.1.9.11 A Geometrical Perspective of the Determinant

In Sect. 2.2, we discussed a useful geometric interpretation of vectors in a
linear space with a Cartesian coordinate system. The elements of a vec-
tor correspond to measurements along the respective axes of the coordinate
system. When working with several vectors, or with a matrix in which the
columns (or rows) are associated with vectors, we may designate a vector
x; as x; = (Ti1,...,%q)- A set of d linearly independent d-vectors define a
parallelotope in d dimensions. For example, in a two-dimensional space, the
linearly independent 2-vectors 1 and zo define a parallelogram, as shown in
Fig. 3.1.

The area of this parallelogram is the base times the height, bh, where, in
this case, b is the length of the vector x1, and & is the length of x5 times the
sine of the angle . Thus, making use of equation (2.54) on page 37 for the
cosine of the angle, we have

X2
€z

€4

Figure 3.1. Volume (area) of region determined by x1 and 2

area = bh

= [l [[[|2]| sin(6

(z1,22) \°
T ’ )
Hw iz
= Vs |2lleall? — (a1, 22))?

= \/(95%1 +a35)(23) + 23,) — (F11721 — T12022)°
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= |$11$22 - $12$21|
= [det(X)], (3.42)

where 21 = (211, %12), 2 = (T21,%22), and

X = [xl | LUQ]
_ | %1 221
T12 Tag |

Although we will not go through the details here, this equivalence of a
volume of a parallelotope that has a vertex at the origin and the absolute
value of the determinant of a square matrix whose columns correspond to the
vectors that form the sides of the parallelotope extends to higher dimensions.
In making a change of variables in integrals, as in equation (4.62) on
page 215, we use the absolute value of the determinant of the Jacobian as a

volume element. Another instance of the interpretation of the determinant as
a volume is in the generalized variance, discussed on page 368.

3.2 Multiplication of Matrices and
Multiplication of Vectors and Matrices

The elements of a vector or matrix are elements of a field, and most matrix
and vector operations are defined in terms of the two operations of the field.
Of course, in this book, the field of most interest is the field of real numbers.

3.2.1 Matrix Multiplication (Cayley)

There are various kinds of multiplication of matrices that may be useful. The
most common kind of multiplication is Cayley multiplication. If the number
of columns of the matrix A, with elements a;;, and the number of rows of the
matrix B, with elements b;;, are equal, then the (Cayley) product of A and B
is defined as the matrix C' with elements

Cij = Zaikbkj' (3.43)
k

This is the most common type of matrix product, and we refer to it by the
unqualified phrase “matrix multiplication”.

Cayley matrix multiplication is indicated by juxtaposition, with no inter-
vening symbol for the operation: C = AB.

If the matrix A is n x m and the matrix B is m X p, the product C = AB
isn X p:

C = A B

e
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Cayley matrix multiplication is a mapping,
]RHX’m, X ]Rmxp N ]Rnxp

The multiplication of an n X m matrix and an m X p matrix requires
nmp scalar multiplications and np(m — 1) scalar additions. Here, as always
in numerical analysis, we must remember that the definition of an operation,
such as matrix multiplication, does not necessarily define a good algorithm
for evaluating the operation.

It is obvious that while the product AB may be well-defined, the product
BA is defined only if n = p; that is, if the matrices AB and BA are square.
We assume throughout that writing a product of matrices AB implies that
the number of columns of the first matrix is the same as the number of rows of
the second; that is, they are conformable for multiplication in the order given.

It is easy to see from the definition of matrix multiplication (3.43) that
in general, even for square matrices, AB # BA. It is also obvious that if AB
exists, then BT AT exists and, in fact,

BTAT = (AB)". (3.44)

The product of symmetric matrices is not, in general, symmetric. If (but not
only if) A and B are symmetric, then AB = (BA)T.

Because matrix multiplication is not commutative, we often use the terms
“premultiply” and “postmultiply” and the corresponding nominal forms of
these terms. Thus, in the product AB, we may say B is premultiplied by A,
or, equivalently, A is postmultiplied by B.

Although matrix multiplication is not commutative, it is associative; that
is, if the matrices are conformable,

A(BC) = (AB)C. (3.45)
It is also distributive over addition; that is,
A(B+C) = AB+ AC (3.46)

and
(B+C)A=BA+ CA. (3.47)

These properties are obvious from the definition of matrix multiplication.
(Note that left-sided distribution is not the same as right-sided distribution
because the multiplication is not commutative.)

An nxn matrix consisting of 1s along the diagonal and Os everywhere else is
a multiplicative identity for the set of nxn matrices and Cayley multiplication.
Such a matrix is called the identity matriz of order n, and is denoted by I,
or just by I. The columns of the identity matrix are unit vectors.

The identity matrix is a multiplicative identity for any matrix so long as
the matrices are conformable for the multiplication. If A is n x m, then
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I,A=AI, = A.

Another matrix of interest is a zero matrix, which is any matrix consisting
of all zeros. We denote a zero matrix as 0, with its shape being implied by the
context. Two properties for any matrix A and a zero matrix of the appropriate
shape are immediately obvious:

0A=0

and
0+A=A.

3.2.1.1 Powers of Square Matrices

For a square matrix A, its product with itself is defined, and so we will use the
notation A% to mean the Cayley product AA, with similar meanings for A*
for a positive integer k. As with the analogous scalar case, A* for a negative
integer may or may not exist, and when it exists, it has a meaning for Cayley
multiplication similar to the meaning in ordinary scalar multiplication. We
will consider these issues later (in Sect. 3.3.6).
For an n x n matrix A, if A* exists for negative integral values of k, we
define A° by
A =1,. (3.48)

For a diagonal matrix D = diag ((dy,...,d,)), we have

D* = diag ((df, ..., dF)). (3.49)

3.2.1.2 Nilpotent Matrices

For an n X n matrix A, it may be the case for some positive integer k that
A* = 0. Such a matrix is said to be nilpotent; more generally, we define a
nilpotent matriz of index k, for integer k > 1, as a square matrix A such that

A¥ =0, but AR A£o0. (3.50)

We may use the term “nilpotent” without qualification to refer to a matrix
that is nilpotent of any index; that is, strictly speaking, a nilpotent matrix is
nilpotent of index 2.

A simple example of a matrix that is nilpotent of index 3 is

010[00
001]00
A=1000/00], (3.51)
00001
000[00
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in which I have indicated four submatrices of interest.

All nilpotent matrices have a certain relationship to matrices of the form
of A in equation (3.51). We will identify that form here, but we will not discuss
that form further. Notice two submatrices of A:

010 01
Ny=1{001 and NQ=[OO} (3.52)
000
SO
M3 oo
A‘{o Ng]'

Matrices of the form of N; and Ns, consisting of all Os except for 1s in the
supradiagonal, are called Jordan blocks and the nilpotent matrix A is said be
in Jordan form. An important property, which we will merely state without
proof, is that the index of a nilpotent matrix in Jordan form is the number of
1s in the largest Jordan block.

A nilpotent matrix is necessarily singular. Nilpotent matrices have many
other simple properties, some of which we will list on page 174.

3.2.1.3 Matrix Polynomials

Polynomials in square matrices are similar to the more familiar polynomials
in scalars. We may consider

P(A) = bol + by A+ - by A,

The value of this polynomial is a matrix.
The theory of polynomials in general holds, and in particular, we have the
useful factorizations of monomials: for any positive integer k,

IT—AF = (T - AT +A+-- A, (3.53)
and for an odd positive integer k,

T+ AF =T+ AT —-A+-- A, (3.54)

3.2.2 Multiplication of Matrices with Special Patterns

Various properties of matrices may or may not be preserved under matrix
multiplication. We have seen already that the product of symmetric matrices
is not in general symmetric.

Many of the various patterns of zeroes in matrices discussed on page 58 are
preserved under matrix multiplication. Assume A and B are square matrices
of the same number of rows.
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e If A and B are diagonal, AB is diagonal and the (i,7) element of AB is
aiibii;

e if A and B are block diagonal with conformable blocks, AB is block diag-
onal;

e if A and B are upper triangular, AB is upper triangular and the (i,%)
element of AB is a;;b;;

e if A and B are lower triangular, AB is lower triangular and the (¢,%)
element of AB is a;;b;;;

e if A is upper triangular and B is lower triangular, in general, none of AB,
BA, ATA, BB, AAT, and BB" is triangular.

Each of these statements can be easily proven using the definition of multipli-
cation in equation (3.43). An important special case of diagonal and triangular
matrices is one in which all diagonal elements are 1. Such a diagonal matrix is
the identity, of course, so it a very special multiplicative property. Triangular
matrices with 1s on the diagonal are called “unit triangular” matrices, and
they are often used in matrix factorizations, as we see later in this chapter
and in Chap. 5.

The products of banded matrices are generally banded with a wider band-
width. If the bandwidth is too great, obviously the matrix can no longer be
called banded.

3.2.2.1 Multiplication of Partitioned Matrices

Multiplication and other operations with partitioned matrices are carried out
with their submatrices in the obvious way. Thus, assuming the submatrices
are conformable for multiplication,

A1 A2 | | Bi1 Bio _ A1 B+ A12Ba1 A11Bi2 + A12Ba
Ag1 Aso | | Ba1 Bao A21B11 + A22Bo1 A21Bia + A2 Bao

It is clear that the product of conformable block diagonal matrices is block
diagonal.

Sometimes a matrix may be partitioned such that one partition is just a
single column or row, that is, a vector or the transpose of a vector. In that
case, we may use a notation such as

(X y]

(X |yl

where X is a matrix and y is a vector. We develop the notation in the obvious
fashion; for example,

T T
XXX y] (3.55)

E S



80 3 Basic Properties of Matrices
3.2.3 Elementary Operations on Matrices

Many common computations involving matrices can be performed as a se-
quence of three simple types of operations on either the rows or the columns
of the matrix:

e the interchange of two rows (columns),

e a scalar multiplication of a given row (column), and

e the replacement of a given row (column) by the sum of that row (columns)
and a scalar multiple of another row (column); that is, an axpy operation.

Such an operation on the rows of a matrix can be performed by premultipli-
cation by a matrix in a standard form, and an operation on the columns of
a matrix can be performed by postmultiplication by a matrix in a standard
form. To repeat:

e premultiplication: operation on rows;
e postmultiplication: operation on columns.

The matrix used to perform the operation is called an elementary trans-
formation matriz or elementary operator matriz. Such a matrix is the identity
matrix transformed by the corresponding operation performed on its unit
rows, 657 or columns, e,,.

In actual computations, we do not form the elementary transformation
matrices explicitly, but their formulation allows us to discuss the operations
in a systematic way and better understand the properties of the operations.
Products of any of these elementary operator matrices can be used to effect
more complicated transformations.

Operations on the rows are more common, and that is what we will dis-
cuss here, although operations on columns are completely analogous. These
transformations of rows are called elementary row operations.

3.2.3.1 Interchange of Rows or Columns: Permutation Matrices

By first interchanging the rows or columns of a matrix, it may be possible
to partition the matrix in such a way that the partitions have interesting
or desirable properties. Also, in the course of performing computations on a
matrix, it is often desirable to interchange the rows or columns of the matrix.
(This is an instance of “pivoting”, which will be discussed later, especially
in Chap. 6.) In matrix computations, we almost never actually move data
from one row or column to another; rather, the interchanges are effected by
changing the indexes to the data.

Interchanging two rows of a matrix can be accomplished by premultiply-
ing the matrix by a matrix that is the identity with those same two rows
interchanged; for example,
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1000 | a1 a1z a13 aii a2 ais
0010 |a21 a2 a23| | as1 as ass
0100 |asi as2 ags | | a1 az ass
0001 ] [a41 aq2 aqs (41 (42 043

The first matrix in the expression above is called an elementary permutation
matriz. It is the identity matrix with its second and third rows (or columns)
interchanged. An elementary permutation matrix, which is the identity with
the p'" and ¢*™ rows interchanged, is denoted by E,,. That is, FE,, is the
identity, except the p* row is e] and the ¢ row is e} . Note that Eyq = Egp.
Thus, for example, if the given matrix is 4 x m, to interchange the second and
third rows, we use

1000

0010

0100

0001

Ey3 = E3p =

It is easy to see from the definition that an elementary permutation matrix
is symmetric. Note that the notation E,, does not indicate the order of the
elementary permutation matrix; that must be specified in the context.

Premultiplying a matrix A by a (conformable) E,, results in an inter-
change of the p*™ and ¢'" rows of A as we see above. Any permutation of rows
of A can be accomplished by successive premultiplications by elementary per-
mutation matrices. Note that the order of multiplication matters. Although
a given permutation can be accomplished by different elementary permuta-
tions, the number of elementary permutations that effect a given permutation
is always either even or odd; that is, if an odd number of elementary per-
mutations results in a given permutation, any other sequence of elementary
permutations to yield the given permutation is also odd in number. Any given
permutation can be effected by successive interchanges of adjacent rows.

Postmultiplying a matrix A by a (conformable) E,, results in an inter-
change of the p'" and ¢ columns of A:

aii ai2 a13 100 a11 a13 a12
a21 a22 G23 001] = a21 a23 22
a3l az2 a3s 010 a3l az3 a32
a41 Q42 G443 A41 Q43 A42
Note that
A= EpEpgA = AEpg Epg; (3.56)

that is, as an operator, an elementary permutation matrix is its own inverse
operator: B, Ep, = 1.

Because all of the elements of a permutation matrix are 0 or 1, the trace
of an n X n elementary permutation matrix is n — 2.

The product of elementary permutation matrices is also a permutation
matriz in the sense that it permutes several rows or columns. For example,
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premultiplying A by the matrix Q = EpqE,, will yield a matrix whose ™ row
is the " row of the original A, whose ¢ row is the p*® row of A, and whose
r* row is the ¢'" row of A. We often use the notation E(xy to denote a more
general permutation matrix. This expression will usually be used generically,
but sometimes we will specify the permutation, .

A general permutation matrix (that is, a product of elementary permuta-
tion matrices) is not necessarily symmetric, but its transpose is also a per-
mutation matrix. It is not necessarily its own inverse, but its permutations
can be reversed by a permutation matrix formed by products of permutation
matrices in the opposite order; that is,

T

As a prelude to other matrix operations, we often permute both rows and
columns, so we often have a representation such as

B = E(ﬂ.l)AE(m)7 (3.57)

where F(, ) is a permutation matrix to permute the rows and F(.,) is a per-
mutation matrix to permute the columns. We use these kinds of operations to
form a full rank partitioning as in equation (3.131) on page 104, to obtain an
equivalent canonical form as in equation (3.151) on page 110 and LDU decom-
position of a matrix as in equation (5.32) on page 246. These equations are
used to determine the number of linearly independent rows and columns and
to represent the matrix in a form with a maximal set of linearly independent
rows and columns clearly identified.

3.2.3.2 The Vec-Permutation Matrix

A special permutation matrix is the matrix that transforms the vector vec(A)
into vec(AT). If A is n x m, the matrix K,,, that does this is nm x nm. We

have
vec(AT) = K,vec(A). (3.58)

The matrix K, is called the nm vec-permutation matriz.

3.2.3.3 Scalar Row or Column Multiplication

Often, numerical computations with matrices are more accurate if the rows
have roughly equal norms. For this and other reasons, we often transform a
matrix by multiplying one of its rows by a scalar. This transformation can also
be performed by premultiplication by an elementary transformation matrix.
For multiplication of the p*" row by the scalar, the elementary transformation
matrix, which is denoted by E,(a), is the identity matrix in which the p't
diagonal element has been replaced by a. Thus, for example, if the given
matrix is 4 X m, to multiply the second row by a, we use
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1000
0a00
0010
0001

E2 (a) =

Postmultiplication of a given matrix by the multiplier matrix E,(a) results
in the multiplication of the p*® column by the scalar. For this, E,(a) is asquare
matrix of order equal to the number of columns of the given matrix.

Note that the notation E,(a) does not indicate the number of rows and
columns. This must be specified in the context.

Note that, if a # 0,

A=E,(1/a)E,(a)A, (3.59)

that is, as an operator, the inverse operator is a row multiplication matrix on
the same row and with the reciprocal as the multiplier.

3.2.3.4 Axpy Row or Column Transformations

The other elementary operation is an axpy on two rows and a replacement of
one of those rows with the result

Qp < aGq + Qp.

This operation also can be effected by premultiplication by a matrix formed
from the identity matrix by inserting the scalar in the (p,q) position. Such a
matrix is denoted by E,q(a). Thus, for example, if the given matrix is 4 x m,
to add a times the third row to the second row, we use

1000

01a0
Exs(a) = 10010

0001
Premultiplication of a matrix A by such a matrix,
Epq(a)A, (3.60)

yields a matrix whose pt* row is a times the ¢** row plus the original row.
Given the 4 x 3 matrix A = (a;;), we have

a11 a12 a13
E A— a1 + aagy ase + aaze asz + aass
23(a)A =
a3 a32 a33
Q41 a4q2 a43

Postmultiplication of a matrix A by an axpy operator matrix,

Aqu (a),
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yields a matrix whose ¢*™® column is a times the p™" column plus the original
column. For this, Ep,(a) is a square matrix of order equal to the number of
columns of the given matrix. Note that the column that is changed corresponds
to the second subscript in Epq(a).
Note that
A = Epg(—a)Epq(a)4; (3.61)

that is, as an operator, the inverse operator is the same axpy elementary
operator matrix with the negative of the multiplier.

A common use of axpy operator matrices is to form a matrix with zeros
in all positions of a given column below a given position in the column. These
operations usually follow an operation by a scalar row multiplier matrix that
puts a 1 in the position of interest. For example, given an n x m matrix A
with a;; # 0, to put a 1 in the (i, j) position and 0s in all positions of the ;!
column below the i*" row, we form the product

Em(—anj) e EH_M(—ai+1,j)Ei(1/aij)A. (362)
This process is called Gaussian elimination.
The matrix
Gij = Eni(—an;) - Eir1,i(—ait1,5)Ei(1/aijf) (3.63)

is called a Gaussian transformation matrix. Notice that it is lower triangular,
and its inverse, also lower triangular, is

G;' = Eiaij)Eiy1.i(aiv1) - Eni(ang) (3.64)

Gaussian elimination is often performed sequentially down the diagonal
elements of a matrix (see its use in the LU factorization on page 244, for
example).

To form a matrix with zeros in all positions of a given column except one,
we use additional matrices for the rows above the given element:

Gij = Eni(—an;) -+ Big1,i(—ais1,5) Bic1,i(—ai—1) - - - Bri(—a1;) Ei(1/aij).
(3.65)
This is also called a Gaussian transformation matrix.

We can likewise zero out all elements in the i*® row except the one in the
(i7)th position by similar postmultiplications.

If at some point a; = 0, the operations of equation (3.62) cannot be
performed. In that case, we may first interchange the i*" row with the k*®
row, where k > ¢ and ay; # 0. Such an interchange is called pivoting. We will
discuss pivoting in more detail on page 277 in Chap. 6.

As we mentioned above, in actual computations, we do not form the ele-
mentary transformation matrices explicitly, but their formulation allows us to
discuss the operations in a systematic way and better understand the prop-
erties of the operations.
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This is an instance of a principle that we will encounter repeatedly: the
form of a mathematical expression and the way the expression should be eval-
uated in actual practice may be quite different.

These elementary transformations are the basic operations in Gaussian
elimination, which is discussed in Sects. 5.7 and 6.2.1.

3.2.3.5 Elementary Operator Matrices: Summary of Notation and
Properties

Because we have introduced various notation for elementary operator matri-
ces, it may be worthwhile to review the notation. The notation is useful and
I will use it from time to time, but unfortunately, there is no general form for
the notation. I will generally use an “E” as the root symbol for the matrix,
but the specific type is indicated by various other symbols.

Referring back to the listing of the types of operations on page 80, we have
the various elementary operator matrices:

o E,,: the interchange of rows p and g (Epq is the same as Eg,)

[10---0---0---00T
01---0---0---00

00---0---1---00]|P
Epg=Ep= |1 i i 0 (3.66)
00---1---0---00] g
00---0---0---10
00+ 0---0---01]

It is symmetric,
E), = Epqg, (3.67)

and it is its own inverse,
E ! = Ep, (3.68)

that is, it is orthogonal.
E(r): a general permutation of rows, where 7 denotes a permutation. We
have

By = Ep g, -+ Ep.q., for some py,... . pxand qi,. .., q. (3.69)

e E,(a): multiplication of row p by a.
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[10---0---007
01---0---00
Ey(a)=100---a---00]| P (3.70)
00---0---10
(00---0---01]
Its inverse is
E Y (a) = Ey(1/a). (3.71)

o E,q(a): the replacement of row p by the sum of row p and a times row q.
If ¢ > p,

[10---0--0---00T

01---0---0---00

00.--1---a---00]|P
Bpgla)= | i1 i i i (3.72)
00---0---1---00] g
00---0---0---10
[ 00---0---0---01]

Its inverse is
E 1 a) = Bpy(—a). (3.73)

pq

Recall that these operations are effected by premultiplication. The same kinds
of operations on the columns are effected by postmultiplication.

3.2.3.6 Determinants of Elementary Operator Matrices

The determinant of an elementary permutation matrix E,, has only one term
in the sum that defines the determinant (equation (3.24), page 66), and that
term is 1 times o evaluated at the permutation that exchanges p and q. As
we have seen (page 67), this is an odd permutation; hence, for an elementary
permutation matrix E,g,

det(Epq) = —1. (3.74)

Because a general permutation matrix E(,) can be formed as the product
of elementary permutation matrices which together form the permutation 7,
we have from equation (3.74)

det(Er) = o(m), (3.75)
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where o(7) = 1 if 7 is an even permutation and —1 otherwise, as defined in
equation (3.23).

Because all terms in det(E,;A) are exactly the same terms as in det(A)
but with one different permutation in each term, we have

det(EpgA) = —det(A).

More generally, if A and E(,) are n x n matrices, and E(,) is any permuta-
tion matrix (that is, any product of E,, matrices), then det(E(,)A) is either
det(A) or —det(A) because all terms in det(E,)A) are exactly the same as
the terms in det(A) but possibly with different signs because the permutations
are different. In fact, the differences in the permutations are exactly the same

as the permutation of 1,...,n in E(;); hence,
det(E(ﬂ)A) = det(E(,r)) det(A)
= o(m)det(A).

(In equation (3.81) below, we will see that this equation holds more generally.)

The determinant of an elementary row multiplication matrix E,(a) is
det(Ep(a)) = a. (3.76)
If A and Ep,(a) are n X n matrices, then
det(Ep(a)A) = adet(A),

as we see from the definition of the determinant, equation (3.24). (Again, this
also follows from the general result in equation (3.81) below.)
The determinant of an elementary axpy matrix Ep,(a) is 1,

det(Epy(a)) =1, (3.77)

because the term consisting of the product of the diagonals is the only term
in the determinant.

Now consider det(E)q(a)A) for an n xn matrix A. Expansion in the minors
(equation (3.30)) along the p'" row yields

n

det(Epq(a)A) = (ap; + aaq;)(—1)"det(A ;)

j=1
= ap(—1)Pdet(Aj) + a Y agi(—1)PH det(Ag)).
j=1 j=1

From equation (3.32) on page 69, we see that the second term is 0, and since
the first term is just the determinant of A, we have

det(Epq(a)A) = det(A). (3.78)
(Again, this also follows from the general result in equation (3.81) below. I

have shown the steps in the specific case because I think they help to see the
effect of the elementary operator matrix.)
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3.2.4 The Trace of a Cayley Product That Is Square

A useful property of the trace for the matrices A and B that are conformable
for the multiplications AB and BA is

tr(AB) = tr(BA). (3.79)

This is obvious from the definitions of matrix multiplication and the trace.
Note that A and B may not be square (so the trace is not defined for them),
but if they are conformable for the multiplications, then both AB and BA
are square.
Because of the associativity of matrix multiplication, this relation can be
extended as
tr(ABC) = tr(BCA) = tr(CAB) (3.80)

for matrices A, B, and C' that are conformable for the multiplications indi-
cated. Notice that the individual matrices need not be square. This fact is
very useful in working with quadratic forms, as in equation (3.90).

3.2.5 The Determinant of a Cayley Product of Square Matrices

An important property of the determinant is
det(AB) = det(A) det(B) (3.81)

if A and B are square matrices conformable for multiplication. We see this by

first forming
(L) 3]) o

and then observing from equation (3.39) that the right-hand side is det(AB).
Now consider the left-hand side. The matrix that is the first factor on the
left-hand side is a product of elementary axpy transformation matrices; that
is, it is a matrix that when postmultiplied by another matrix merely adds
multiples of rows in the lower part of the matrix to rows in the upper part of
the matrix. If A and B are n x n (and so the identities are likewise n x n),
the full matrix is the product:

{I A

0 I] = E1n+1(a11) - Eron(a1n)Eapt1(a21) - - Egon(a2.n) -+ - Enon(Gnn).

Hence, applying equation (3.78) recursively, we have

s ([a 7] 3]) = ([ 23])

and from equation (3.38) we have
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A0
det ([—I B} ) = det(A)det(B),

and so finally we have equation (3.81).
From equation (3.81), we see that if A and B are square matrices con-
formable for multiplication, then

det(AB) = det(BA). (3.83)

(Recall, in general, even in the case of square matrices, AB # BA.) This
equation is to be contrasted with equation (3.79), tr(AB) = tr(BA), which
does not even require that the matrices be square. A simple counterexample
for nonsquare matrices is det(zz™) # det(zTx), where z is a vector with
at least two elements. (Here, think of the vector as an n x 1 matrix. This
counterexample can be seen in various ways. One way is to use a fact that we
will encounter on page 117, and observe that det(zzT) = 0 for any = with at
least two elements.)

3.2.6 Multiplication of Matrices and Vectors

It is often convenient to think of a vector as a matrix with only one element
in one of its dimensions. This provides for an immediate extension of the def-
initions of transpose and matrix multiplication to include vectors as either
or both factors. In this scheme, we follow the convention that a vector corre-
sponds to a column; that is, if x is a vector and A is a matrix, Az or 2T A may
be well-defined, but neither A nor AzT would represent anything, except
in the case when all dimensions are 1. In some computer systems for matrix
algebra, these conventions are not enforced; in others, they are not. (R, for
example sometimes does and sometimes does not; see the discussion beginning
on page 572.) The alternative notation 7y we introduced earlier for the dot
product or inner product, (x,y), of the vectors z and y is consistent with this
paradigm.

Vectors and matrices are fundamentally different kinds of mathematical
objects. In general, it is not relevant to say that a vector is a “column” or
a “row”; it is merely a one-dimensional (or rank 1) object. We will continue
to write vectors as x = (z1,...,%y), but this does not imply that the vector
is a “row vector”. Matrices with just one row or one column are different
objects from vectors. We represent a matrix with one row in a form such as
Y = [y11-.-y1n], and we represent a matrix with one column in a form such

Z11
as Z = oras Z =|[z11.. 2mi1|T

Zm1
(Compare the notation in equations (1.1) and (1.2) on page 4.)
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3.2.6.1 The Matrix/Vector Product as a Linear Combination

If we represent the vectors formed by the columns of an n x m matrix A
as ai, ..., am, the matrix/vector product Az is a linear combination of these
columns of A:

Az = inai. (3.84)
i=1

(Here, each x; is a scalar, and each a; is a vector.)
Given the equation Az = b, we have b € span(A); that is, the n-vector b
is in the k-dimensional column space of A, where k < m.

3.2.6.2 The Matrix as a Mapping on Vector Spaces

In this chapter we have considered matrices to be fundamental objects. Only
after defining operations on matrices themselves have we defined an operation
by a matrix on a vector. Another way of thinking about matrices is as a class
of functions or mappings on vector spaces. In this approach, we give primacy
to the vector spaces.

Let V; and Vs be vector spaces of order m and n respectively. Then an
n X m matrix A is a function from V; to Vs, defined for = € V; as

x = Az (3.85)

Matrices are “transformations” of vectors. There is nothing essentially
different in this development of concepts about matrices; it does, however,
motivate terminology based in geometry that we will use from time to time
(“rotations”, “projections”, and so on; see Sect. 5.3).

A matrix changes the “direction” of a vector. The cosine of the angle
between the vector x and the vector Az is the correlation

(r—2)TA(z — 7)

Cor(z, Az) = (2 —2)(x—7)

see page 51. (This expression is the Rayleigh quotient, Ra(z — Z), page 157.)

3.2.7 Outer Products
The outer product of the vectors x and y is the matrix
xyT. (3.86)

Note that the definition of the outer product does not require the vectors to
be of equal length. Note also that while the inner product is commutative,
the outer product is not commutative (although it does have the property

zy" = (yaT)T).
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While the inner product is a mapping from IR"™ x IR™ to IR, the outer
product of two vectors is a mapping

R" x R™ — M C R™™,

where M is the set of n x m matrices of rank one. (We will define and discuss
matrix rank in Sect. 3.3, beginning on page 99. Also, see Exercise 3.14.)
A very common outer product is of a vector with itself:

ZUZ‘T.

The outer product of a vector with itself is obviously a symmetric matrix.

We should again note some subtleties of differences in the types of objects
that result from operations. If A and B are matrices conformable for the
operation, the product AT B is a matriz even if both A and B are n x 1 and
so the result is 1 x 1. For the vectors 2 and y and matrix C, however, 2%y
and 2T Cy are scalars; hence, the dot product and a quadratic form are not
the same as the result of a matrix multiplication. The dot product is a scalar,
and the result of a matrix multiplication is a matrix. The outer product of
vectors is a matrix, even if both vectors have only one element. Nevertheless,
as we have mentioned before, we will treat a one by one matrix or a vector
with only one element as a scalar whenever it is convenient to do so.

3.2.8 Bilinear and Quadratic Forms: Definiteness

Given a matrix A of conformable shape, a variation of the vector dot product,
2T Ay, is called a bilinear form, and the special bilinear form z™ Az is called
a quadratic form. Note

2T AT = 2T Ax and 2T ATy = yTAzx # 2V Ay in general.

Although in the definition of quadratic form we do not require A to be
symmetric—because for a given value of z and a given value of the quadratic
form zT Az there is a unique symmetric matrix A, such that 2T A,z = 2T Az—
we generally work only with symmetric matrices in dealing with quadratic
forms. (The matrix A is }(A+ AT); see Exercise 3.3.) Quadratic forms cor-
respond to sums of squares and hence play an important role in statistical
applications.

3.2.8.1 Nonnegative Definite and Positive Definite Matrices

A symmetric matrix A such that for any (conformable and real) vector z the
quadratic form 2T Az is nonnegative, that is,

T Az >0, (3.87)
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is called a nonnegative definite matriz. (There is another term, “positive
semidefinite matrix” and its acronym PSD, that is often used to mean “non-
negative definite matrix”, but the term is not used consistently in the litera-
ture. I will generally avoid the term “semidefinite”.) We denote the fact that
A is nonnegative definite by

A > 0.

(Note that we consider 0,,x, to be nonnegative definite.)
A symmetric matrix A such that for any (conformable) vector x # 0 the

quadratic form
zT Az >0 (3.88)

is called a positive definite matriz. We denote the fact that A is positive
definite by
A= 0.

(Recall that A > 0 and A > 0 mean, respectively, that all elements of A are
nonnegative and positive.)

Nonnegative and positive definite matrices are very important in applica-
tions. We will encounter them from time to time in this chapter, and then we
will discuss more of their properties in Sect. 8.3.

In this book we use the terms “nonnegative definite” and “positive defi-
nite” only for symmetric matrices. In other literature, these terms may be used
more generally; that is, for any (square) matrix that satisfies (3.87) or (3.88).

3.2.8.2 Ordinal Relations among Symmetric Matrices

When A and B are symmetric matrices of the same order, we write A > B to
mean A— B >0and A > B to mean A— B = 0.

The > relationship is a partial ordering and the > relationship is transi-
tive; that is, if for conformable matrices, A = B and B > C, then A > C
(See Exercise 8.2 on page 396; also compare ordinal relations among vectors,
page 16.)

3.2.8.3 The Trace of Inner and Outer Products

The invariance of the trace to permutations of the factors in a product (equa-
tion (3.79)) is particularly useful in working with bilinear and quadratic forms.
Let A be an n x m matrix, z be an n-vector, and y be an m-vector. Because
the bilinear form is a scalar (or a 1 X 1 matrix), and because of the invariance,
we have the very useful fact

' Ay = tr(zT Ay)
= tr(AyzT). (3.89)

A common instance is when A is square and z = y. We have for the quadratic
form the equality
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2T Az = tr(AzzT). (3.90)

In equation (3.90), if A is the identity I, we have that the inner product of

a vector with itself is the trace of the outer product of the vector with itself,
that is,

aTx = tr(zx™). (3.91)

Also, by letting A be the identity in equation (3.90), we have an alternative
way of showing that for a given vector x and any scalar a, the norm ||z — al|
is minimized when a = Z:

(x —a)(z — a) = tr(zcxl) + n(a — 7). (3.92)

)

(Here, “z” denotes the mean of the elements in x, and “z.’
this with equation (2.71) on page 48.)

is x — . Compare

3.2.9 Anisometric Spaces

In Sect. 2.1, we considered various properties of vectors that depend on the
inner product, such as orthogonality of two vectors, norms of a vector, angles
between two vectors, and distances between two vectors. All of these prop-
erties and measures are invariant to the orientation of the vectors; the space
is isometric with respect to a Cartesian coordinate system. Noting that for
real vectors the inner product is the bilinear form xT Iy, we have a heuristic
generalization to an anisometric space. Suppose, for example, that the scales
of the coordinates differ; say, a given distance along one axis in the natural
units of the axis is equivalent (in some sense depending on the application) to
twice that distance along another axis, again measured in the natural units of
the axis. The properties derived from the inner product, such as a norm and
a metric, may correspond to the application better if we use a bilinear form in
which the matrix reflects the different effective distances along the coordinate
axes. A diagonal matrix whose entries have relative values corresponding to
the inverses of the relative scales of the axes may be more useful. Instead of
2Ty, we may use T Dy, where D is this diagonal matrix.

Rather than differences in scales being just in the directions of the co-
ordinate axes, more generally we may think of anisometries being measured
by general (but perhaps symmetric) matrices. (The covariance and correla-
tion matrices defined on page 367 come to mind.) Any such matrix to be
used in this context should be positive definite because we will generalize the
dot product, which is necessarily nonnegative, in terms of a quadratic form.
A bilinear form 2T Ay may correspond more closely to the properties of the
application than the standard inner product.

3.2.9.1 Conjugacy

We define orthogonality of two vectors real vectors x and y with respect
to A by
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zT Ay = 0. (3.93)

In this case, we say = and y are A-conjugate.

The Lo norm of a vector is the square root of the quadratic form of the
vector with respect to the identity matrix. A generalization of the Ly vector
norm, called an elliptic norm or a conjugate norm, is defined for the vector
x as the square root of the quadratic form T Az for any symmetric positive
definite matrix A. It is sometimes denoted by ||z 4:

|24 = VaT Ax. (3.94)

It is easy to see that ||| 4 satisfies the definition of a norm given on page 25. If
A is a diagonal matrix with elements w; > 0, the elliptic norm is the weighted
Lo norm of equation (2.37).

The elliptic norm yields an elliptic metric in the usual way of defining a
metric in terms of a norm. The distance between the real vectors z and y
with respect to A is \/(z — y)TA(z — y). It is easy to see that this satisfies
the definition of a metric given on page 32.

A metric that is widely useful in statistical applications is the Mahalanobis
distance, which uses a covariance matrix as the scale for a given space. (The
sample covariance matrix is defined in equation (8.67) on page 367.) If S is
the covariance matrix, the Mahalanobis distance, with respect to that matrix,
between the vectors = and y is

V@@= sz - y). (395)

3.2.10 Other Kinds of Matrix Multiplication

The most common kind of product of two matrices is the Cayley product,
and when we speak of matrix multiplication without qualification, we mean
the Cayley product. Three other types of matrix multiplication that are use-
ful are Hadamard multiplication, Kronecker multiplication, and inner product
multiplication.

3.2.10.1 The Hadamard Product

Hadamard multiplication is defined for matrices of the same shape as the
multiplication of each element of one matrix by the corresponding element
of the other matrix. Hadamard multiplication is often denoted by ®; for two
matrices A, xm and By, x., we have

a11bir ... aimbim
AGB=

Gn1 bnl cee anmbnm
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Hadamard multiplication immediately inherits the commutativity, asso-
ciativity, and distribution over addition of the ordinary multiplication of the
underlying field of scalars. Hadamard multiplication is also called array mul-
tiplication and element-wise multiplication. Hadamard matrix multiplication
is a mapping

]RnXm X ]RTLXm N ]RTLXm.

The identity for Hadamard multiplication is the matrix of appropriate
shape whose elements are all 1s.

3.2.10.2 The Kronecker Product

Kronecker multiplication, denoted by ®, is defined for any two matrices A, xm,
and Bpyq as
allB . almB

A@B=|
CLnlB e amnB
The Kronecker product of A and B is np X mgq; that is, Kronecker matrix
multiplication is a mapping

]Rnxm % ]Rpxq N ]Rnpxmq'

The Kronecker product is also called the “right direct product” or just
direct product. (A left direct product is a Kronecker product with the factors
reversed. In some of the earlier literature, “Kronecker product” was used to
mean a left direct product.) Note the similarity of the Kronecker product of
matrices with the direct product of sets, defined on page 5, in the sense that
the result is formed from ordered pairs of elements from the two operands.

Kronecker multiplication is not commutative, but it is associative and it
is distributive over addition, as we will see below. (Again, this parallels the
direct product of sets.)

The identity for Kronecker multiplication is the 1 x 1 matrix with the
element 1; that is, it is the same as the scalar 1.

We can understand the properties of the Kronecker product by expressing
the (i, 7) element of A ® B in terms of the elements of A and B,

(A® B)ij = Al(i—1)/p)+1, [i-1)/a)+1 Bimpli-1)/p), j—alGi-1)/q)-  (3.96)

Some additional properties of Kronecker products that are immediate re-
sults of the definition are, assuming the matrices are conformable for the
indicated operations,

(aA) @ (bB) = ab(A® B)

= (abA) ® B
= A® (abB), for scalars a, b, (3.97)
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(A+B)®(C)=AC+B®C, (3.98)
(A®B)®C=A®(B®(C), (3.99)
(A B)T = AT @ BT, (3.100)

(A® B)(C ® D) = AC ® BD. (3.101)
I® A = diag(4, ..., A). (3.102)

AR = (ayl). (3.103)

These properties are all easy to see by using equation (3.96) to express the
(4, 7) element of the matrix on either side of the equation, taking into account
the size of the matrices involved. For example, in the first equation, if A is
n x m and B is p x g, the (4,7) element on the left-hand side is

aA((i-1)/pl+1, [(i-1)/al+10Bi-pl(i-1)/p], j—-al(i-1)/a]
and that on the right-hand side is

abA(Gi-1)/p]+1, [(i-1)/al+1Bi—pl(i-1)/p], j—al(i—1)/a]-

They are all this easy! Hence, they are Exercise 3.6.

The determinant of the Kronecker product of two square matrices A, xn
and B,,xm has a simple relationship to the determinants of the individual
matrices:

det(A ® B) = det(A)™det(B)"™. (3.104)

The proof of this, like many facts about determinants, is straightforward but
involves tedious manipulation of cofactors. The manipulations in this case can
be facilitated by using the vec-permutation matrix. See Harville (1997) for a
detailed formal proof.

From equation (3.100) we see that the Kronecker product of symmetric
matrices is symmetric.

Another property of the Kronecker product of square matrices is

tr(A® B) = tr(A)tr(B). (3.105)

This is true because the trace of the product is merely the sum of all possible
products of the diagonal elements of the individual matrices.

The Kronecker product and the vec function often find uses in the same
application. For example, an n X m normal random matrix X with parameters
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M, ¥, and ¥ can be expressed in terms of an ordinary np-variate normal
random variable Y = vec(X) with parameters vec(M) and X @¥. (We discuss
matrix random variables briefly on page 220. For a fuller discussion, the reader
is referred to a text on matrix random variables such as Carmeli 1983, or Kollo
and von Rosen 2005.)

A useful relationship between the vec function and Kronecker multiplica-
tion is

vec(ABC) = (C* @ A)vec(B) (3.106)

for matrices A, B, and C that are conformable for the multiplication indicated.
This is easy to show and is left as an exercise.

3.2.10.3 The Inner Product of Matrices

An inner product of two matrices of the same shape is defined as the sum of
the dot products of the vectors formed from the columns of one matrix with
vectors formed from the corresponding columns of the other matrix; that is,
if a1,...,a, are the columns of A and b4,...,b,, are the columns of B, then
the inner product of A and B, denoted (A, B), is
m
(A,B) = (aj,b;). (3.107)

j=1

Similarly as for vectors (page 23), the inner product is sometimes called a “dot
product”, and the notation A- B is sometimes used to denote the matrix inner
product. (I generally try to avoid use of the term dot product for matrices
because the term may be used differently by different people. In Matlab, for
example, “dot product”, implemented in the dot function, can refer either to
1 X m matrix consisting of the individual terms in the sum in equation (3.107),
or to the n x 1 matrix consisting of the dot products of the vectors formed from
the rows of A and B. In the NumPy linear algebra package, the dot function
implements Cayley multiplication! This is probably because someone working
with Python realized the obvious fact that the defining equation of Cayley
multiplication, equation (3.43) on page 75, is actually the dot product of the
vector formed from the elements in the i*" row in the first matrix and the
vector formed from the elements in the 5 column in the first matrix.)
For real matrices, equation (3.107) can be written as

(A,B) = afb;. (3.108)
j=1

As in the case of the product of vectors, the product of matrices defined as in
equation (3.108) over the complex field is not an inner product because the
first property (on page 24 or as listed below) does not hold.

For conformable matrices A, B, and C, we can easily confirm that this
product satisfies the general properties of an inner product listed on page 24:
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If A#0, (A, A) >0, and (0,A) = (4,0) = (0,0) = 0.
(A,B) = (B, A).

(sA, B) = s(A, B), for a scalar s.

(A4 B),C)=(A,C) + (B, C).

As with any inner product (restricted to objects in the field of the reals),
its value is a real number. Thus the matrix inner product is a mapping

]RHX’m, X ]R’n,><m N ]R

We see from the definition above that the inner product of real matrices
satisfies
(A,B) = tr(A™B), (3.109)

which could alternatively be taken as the definition.
Rewriting the definition of (A, B) as 3271, 371 | a;;bij, we see that for real
matrices
(A, B) = (AT, BY). (3.110)

Like any inner product, inner products of matrices obey the Cauchy-
Schwarz inequality (see inequality (2.26), page 24),

(A,B) < (A, A)>(B,B)>, (3.111)

with equality holding only if A =0 or B = sA for some scalar s.

3.2.10.4 Orthonormal Matrices

In Sect. 2.1.8, we defined orthogonality and orthonormality of two or more
vectors in terms of inner products. We can likewise define an orthogonal binary
relationship between two matrices in terms of inner products of matrices. We
say the matrices A and B of the same shape are orthogonal to each other if

(A4,B) =0. (3.112)

We also use the term “orthonormal” to refer to matrices that are orthogonal
to each other and for which each has an inner product with itself of 1. In
Sect. 3.7, we will define orthogonality as a unary property of matrices. The
term “orthogonal”, when applied to matrices, generally refers to that property
rather than the binary property we have defined here. “Orthonormal”, on the
other hand, refers to the binary property.

3.2.10.5 Orthonormal Basis: Fourier Expansion

On page 64 we identified a vector space of matrices and defined a basis for the
space R™*"™. If {Uy, ..., Uy} is a basis set for M C IR™*™ with the property
that (U;,U;) = 0 for i # j and (U;,U;) = 1, then the set is an orthonormal
basis set.
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If A is an n X m matrix, with the Fourier expansion
k
A=)l (3.113)
i=1

we have, analogous to equation (2.59) on page 41,
C; = <A, U1> (3.114)

The ¢; have the same properties (such as the Parseval identity, equation (2.60),
for example) as the Fourier coefficients in any orthonormal expansion. Best
approximations within M can also be expressed as truncations of the sum in
equation (3.113) as in equation (2.63). The objective of course is to reduce the
truncation error, and the optimality of the Fourier expansion in this regard
discussed on page 42 holds in the matrix case as well. (The norms in Parseval’s
identity and in measuring the goodness of an approximation are matrix norms
in this case. We discuss matrix norms in Sect. 3.9 beginning on page 164.)

3.3 Matrix Rank and the Inverse of a Matrix

The linear dependence or independence of the vectors forming the rows or
columns of a matrix is an important characteristic of the matrix.

The maximum number of linearly independent vectors (those forming ei-
ther the rows or the columns) is called the rank of the matrix. We use the
notation

rank(A)

to denote the rank of the matrix A. (We have used the term “rank” before to
denote dimensionality of an array. “Rank” as we have just defined it applies
only to a matrix or to a set of vectors, and this is by far the more common
meaning of the word. The meaning is clear from the context, however.)

Because multiplication by a nonzero scalar does not change the linear
independence of vectors, for the scalar a with a # 0, we have

rank(aA) = rank(A4). (3.115)
From results developed in Sect. 2.1, we see that for the n x m matrix A,
rank(A4) < min(n,m). (3.116)

The rank of the zero matrix is 0, and the rank of any nonzero matrix is
positive.
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3.3.1 Row Rank and Column Rank

We have defined matrix rank in terms of numbers of linearly independent rows
or columns. This is because the number of linearly independent rows is the
same as the number of linearly independent columns. Although we may use
the terms “row rank” or “column rank”, the single word “rank” is sufficient
because they are the same. To see this, assume we have an n X m matrix A
and that there are exactly p linearly independent rows and exactly ¢ linearly
independent columns. We can permute the rows and columns of the matrix
so that the first p rows are linearly independent rows and the first g columns
are linearly independent and the remaining rows or columns are linearly de-
pendent on the first ones. (Recall that applying the same permutation to all
of the elements of each vector in a set of vectors does not change the linear
dependencies over the set.) After these permutations, we have a matrix B
with submatrices W, X, Y, and Z,

B= {prq Xpxm—q (3.117)

)
Yn—pxq Zn—pxm—q

where the rows of R = [W|X] correspond to p linearly independent m-vectors
and the columns of C' = {?j
Without loss of generality, we can assume p < ¢. Now, if p < ¢, it must be
the case that the columns of W are linearly dependent because there are ¢
of them, but they have only p elements. Therefore, there is some g-vector
a # 0 such that Wa = 0. Now, since the rows of R are the full set of linearly
independent rows, any row in [Y'|Z] can be expressed as a linear combination
of the rows of R, and any row in Y can be expressed as a linear combination
of the rows of W. This means, for some n—p X p matrix T, that Y = TW.
In this case, however, Ca = 0. But this contradicts the assumption that the
columns of C' are linearly independent; therefore it cannot be the case that
p < q. We conclude therefore that p = ¢; that is, that the maximum number
of linearly independent rows is the same as the maximum number of linearly
independent columns.

Because the row rank, the column rank, and the rank of A are all the
same, we have

] correspond to ¢ linearly independent n-vectors.

rank(A) = dim(V(A)), (3.118)
rank(AT) = rank(A), (3.119)
dim(V(A1)) = dim(V(A)). (3.120)

(Note, of course, that in general V(AT) # V(A); the orders of the vector spaces
are possibly different.)
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3.3.2 Full Rank Matrices

If the rank of a matrix is the same as its smaller dimension, we say the matrix
is of full rank. In the case of a nonsquare matrix, we may say the matrix is
of full row rank or full column rank just to emphasize which is the smaller
number.

If a matrix is not of full rank, we say it is rank deficient and define the
rank deficiency as the difference between its smaller dimension and its rank.

A full rank matrix that is square is called nonsingular, and one that is not
nonsingular is called singular.

A square matrix that is either row or column diagonally dominant is non-
singular. The proof of this is Exercise 3.9. (It’s easy!)

A positive definite matrix is nonsingular. The proof of this is Exercise 3.10.

Later in this section, we will identify additional properties of square full
rank matrices. (For example, they have inverses and their determinants are
nonzero.)

3.3.3 Rank of Elementary Operator Matrices and Matrix
Products Involving Them

Because within any set of rows of an elementary operator matrix (see
Sect. 3.2.3), for some given column, only one of those rows contains a nonzero
element, the elementary operator matrices are all obviously of full rank (with
the proviso that a # 0 in Ep(a)).

Furthermore, the rank of the product of any given matrix with an elemen-
tary operator matrix is the same as the rank of the given matrix. To see this,
consider each type of elementary operator matrix in turn. For a given matrix
A, the set of rows of E,;A is the same as the set of rows of A; hence, the rank
of E,;A is the same as the rank of A. Likewise, the set of columns of AE,,
is the same as the set of columns of A; hence, again, the rank of AE,, is the
same as the rank of A.

The set of rows of E,(a)A for a # 0 is the same as the set of rows of A,
except for one, which is a nonzero scalar multiple of the corresponding row
of A; therefore, the rank of E,(a)A is the same as the rank of A. Likewise,
the set of columns of AE,(a) is the same as the set of columns of A, except
for one, which is a nonzero scalar multiple of the corresponding row of A;
therefore, again, the rank of AE,(a) is the same as the rank of A.

Finally, the set of rows of Epq(a)A for a # 0 is the same as the set of
rows of A, except for one, which is a nonzero scalar multiple of some row of
A added to the corresponding row of A; therefore, the rank of E,,(a)A is the
same as the rank of A. Likewise, we conclude that the rank of AE,,(a) is the
same as the rank of A.

We therefore have that if P and @ are the products of elementary operator
matrices,
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rank(PAQ) = rank(A4). (3.121)

On page 113, we will extend this result to products by any full rank matrices.

3.3.4 The Rank of Partitioned Matrices, Products of
Matrices, and Sums of Matrices

The partitioning in equation (3.117) leads us to consider partitioned matrices
in more detail.

3.3.4.1 Rank of Partitioned Matrices and Submatrices

Let the matrix A be partitioned as

A Aro
A p—
[Am A22} ’

where any pair of submatrices in a column or row may be null (that is, where
for example, it may be the case that A = [A;1|Ai2]). Then the number of
linearly independent rows of A must be at least as great as the number of
linearly independent rows of [A11|A12] and the number of linearly independent
rows of [Aa1|Aa2]. By the properties of subvectors in Sect. 2.1.1, the number
of linearly independent rows of [A11|A12] must be at least as great as the
number of linearly independent rows of A1 or As;. We could go through a
similar argument relating to the number of linearly independent columns and
arrive at the inequality

rank(A;;) < rank(A). (3.122)
Furthermore, we see that
rank(A) S rank([A11 |A12]) + I‘&Ilk([AQl |A22]) (3123)

because rank(A) is the number of linearly independent columns of A, which
is less than or equal to the number of linearly independent rows of [A11]|A12]
plus the number of linearly independent rows of [A13]|A2z]. Likewise, we have

rank(A) < rank (B; D + rank ({ZED : (3.124)

In a similar manner, by merely counting the number of independent rows,
we see that, if
V ([A11]412]") LV ([A2|A2]"),

then
rank(A) = I‘&Ilk([A11|A12]) + rank([A21|A22]); (3125)
and, if
All A12
1
Y] ()
then

rank(A) = rank ({ﬁ; D + rank ([ﬁ;z D : (3.126)
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3.3.4.2 An Upper Bound on the Rank of Products of Matrices

Because the columns of the product AB are linear combinations of the columns
of A, it is clear that
V(AB) CV(A). (3.127)

The rank of the product of two matrices is less than or equal to the lesser
of the ranks of the two:

rank(AB) < min(rank(A), rank(B)). (3.128)

This follows from equation (3.127). We can also show this by separately con-
sidering two cases for the n X k matrix A and the k x m matrix B. In one
case, we assume k is at least as large as n and n < m, and in the other case
we assume k < n < m. In both cases, we represent the rows of AB as k linear
combinations of the rows of B.

From inequality (3.128), we see that the rank of a nonzero outer product
matrix (that is, a matrix formed as the outer product of two nonzero vectors)
is 1.

The bound in inequality (3.128) is sharp, as we can see by exhibiting
matrices A and B such that rank(AB) = min(rank(A), rank(B)), as you are
asked to do in Exercise 3.12a.

Inequality (3.128) provides a useful upper bound on rank(AB). In
Sect. 3.3.11, we will develop a lower bound on rank(AB).

3.3.4.3 An Upper and a Lower Bound on the Rank of Sums of
Matrices

The rank of the sum of two matrices is less than or equal to the sum of their
ranks; that is,
rank(A 4+ B) < rank(A) + rank(B). (3.129)

We can see this by observing that
1
A+ B =[A|B] [I] ,

and so rank(A + B) < rank([A|B]) by equation (3.128), which in turn is
< rank(A) + rank(B) by equation (3.124).

The bound in inequality (3.129) is sharp, as we can see by exhibiting
matrices A and B such that rank(A + B) = rank(A) + rank(B), as you are
asked to do in Exercise 3.12c.

Using inequality (3.129) and the fact that rank(—B) = rank(B), we write
rank(A— B) < rank(A)+rank(B), and so, replacing A in (3.129) by A+ B, we
have rank(A) < rank(A+ B)+rank(B), or rank(A+ B) > rank(A) —rank(B).
By a similar procedure, we get rank(A + B) > rank(B) — rank(A), or
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rank(A + B) > |rank(A) — rank(B)|. (3.130)

The bound in inequality (3.130) is sharp, as we can see by exhibiting
matrices A and B such that rank(A 4+ B) = |rank(A4) — rank(B)|, as you are
asked to do in Exercise 3.12d.

3.3.5 Full Rank Partitioning

As we saw above, the matrix W in the partitioned B in equation (3.117) is
square; in fact, it is r X r, where r is the rank of B:

WT‘X?” XTX’ITL—T

YTL—TXT Zn—rxm—r

B= (3.131)

This is called a full rank partitioning of B.

The matrix B in equation (3.131) has a very special property: the full set
of linearly independent rows are the first r rows, and the full set of linearly
independent columns are the first r columns.

Any rank r matrix can be put in the form of equation (3.131) by using
permutation matrices as in equation (3.57), assuming that r» > 1. That is, if
A is a nonzero matrix, there is a matrix of the form of B above that has the
same rank. For some permutation matrices E(. ) and E(,),

B = Bz AE(,). (3.132)

The inverses of these permutations coupled with the full rank partitioning of
B form a full rank partitioning of the original matrix A.

For a square matrix of rank r, this kind of partitioning implies that there
is a full rank r x r principal submatrix, and the principal submatrix formed
by including any of the remaining diagonal elements is singular. The princi-
pal minor formed from the full rank principal submatrix is nonzero, but if
the order of the matrix is greater than r, a principal minor formed from a
submatrix larger than r X r is zero.

The partitioning in equation (3.131) is of general interest, and we will
use this type of partitioning often. We express an equivalent partitioning of a
transformed matrix in equation (3.151) below.

The same methods as above can be used to form a full rank square subma-
trix of any order less than or equal to the rank. That is, if the n x m matrix
A is of rank r and ¢ < r, we can form

Elr ABry = |0 Jxmea (3.133)

)
n—gxr Vn—qu—q

where S is of rank q.
It is obvious that the rank of a matrix can never exceed its smaller dimen-
sion (see the discussion of linear independence on page 12). Whether or not
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a matrix has more rows than columns, the rank of the matrix is the same as
the dimension of the column space of the matrix. (As we have just seen, the
dimension of the column space is necessarily the same as the dimension of the
row space, but the order of the column space is different from the order of the
row space unless the matrix is square.)

3.3.6 Full Rank Matrices and Matrix Inverses

We have already seen that full rank matrices have some important properties.
In this section, we consider full rank matrices and matrices that are their
Cayley multiplicative inverses.

3.3.6.1 Solutions of Linear Equations

Important applications of vectors and matrices involve systems of linear equa-
tions:

anay + -+ @, = b
(3.134)

?
Ap1x1 + -+ CGpmTm = bn

or R
Az = b (3.135)

In this system, A is called the coefficient matrix. An x that satisfies this
system of equations is called a solution to the system. For given A and b, a
solution may or may not exist. From equation (3.84), a solution exists if and
only if the n-vector b is in the k-dimensional column space of A, where k < m.
A system for which a solution exists is said to be consistent; otherwise, it is
inconsistent.

We note that if Az = b, for any conformable y,

yTAz =0 <= yTb=0. (3.136)

3.3.6.2 Consistent Systems
A linear system A, x,,x = b is consistent if and only if
rank([A|b]) = rank(A). (3.137)

We can see this following the argument above that b € V(A); that is, the space
spanned by the columns of A is the same as that spanned by the columns of
A and the vector b. Therefore b must be a linear combination of the columns
of A, and furthermore, the linear combination is a solution to the system
Az = b. (Note, of course, that it is not necessary that it be a unique linear
combination.)
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Equation (3.137) implies the equivalence of the conditions
[A|bly=0for somey #0 <« Az =0 for some x # 0. (3.138)
A special case that yields equation (3.137) for any b is
rank(A,xm) = n, (3.139)

and so if A is of full row rank, the system is consistent regardless of the value
of b. In this case, of course, the number of rows of A must be no greater than
the number of columns (by inequality (3.116)). A square system in which A is
nonsingular is clearly consistent. (The condition of consistency is also called
“compatibility” of the system; that is, the linear system Az = b is said to be
compatible if it is consistent.)

A generalization of the linear system Ax = b is AX = B, where B is an
n X k matrix. This is the same as k systems Axy = by,..., Axy = by, where
the x; and the b; are the columns of the respective matrices. Consistency of
AX = B, as above, is the condition for a solution in X to exist, and in that
case the system is also said to be compatible.

It is clear that the system AX = B is consistent if each of the Az; = b;
systems is consistent. Furthermore, if the system is consistent, then every
linear relationship among the rows of A exists among the rows of B; that is,
for any c such that ¢TA = 0, then ¢'B = 0. To see this, let ¢ be such that
¢ A = 0. We then have ¢’ AX = ¢ B = 0, and so the same linear relationship
that exists among the rows of A exists among the rows of B.

As above for Az = b, we also see that the system AX = B is consistent if
and only if any of the following conditions hold:

V(B) CV(A) (3.140)
V([A|B]) = V(A) (3.141)
rank([A| B]) = rank(A). (3.142)

These relations imply that if AX = B is consistent, then for any con-
formable vector ¢,
cTA=0 < c'B=0. (3.143)

It is clear that this condition also implies that AX = B is consistent (because
right-hand implication of the condition implies the relationship (3.140)).

We discuss methods for solving linear systems in Sect. 3.5 and in Chap. 6.
In the next section, we consider a special case of n x n (square) A when
equation (3.139) is satisfied (that is, when A is nonsingular).

3.3.6.3 Matrix Inverses
Let A be an n X n nonsingular matrix, and consider the linear systems

Al‘i = €4,
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where e; is the i*" unit vector. For each e;, this is a consistent system by
equation (3.137).
We can represent all n such systems as

A [x1|...|xn] - [€1|"‘|6n]

or
AX =1,

and this full system must have a solution; that is, there must be an X such
that AX = I,,. Because AX = I, we call X a “right inverse” of A. The matrix
X must be n X n and nonsingular (because I is); hence, it also has a right
inverse, say Y, and XY = I. From AX = I, we have AXY =Y ,s0 A=Y,
and so finally X A = I; that is, the right inverse of A is also the “left inverse”.
We will therefore just call it the inverse of A and denote it as A~!. This is
the Cayley multiplicative inverse. Hence, for an n X n nonsingular matrix A,
we have a matrix A~! such that

ATTA=A47 =1, (3.144)

The inverse of the nonsingular square matrix A is unique. (This follows from
the argument above about a “right inverse” and a “left inverse”.)

We have already encountered the idea of a matrix inverse in our discussions
of elementary transformation matrices. The matrix that performs the inverse
of the elementary operation is the inverse matrix.

From the definitions of the inverse and the transpose, we see that

(A™HT = (AT~ (3.145)

and because in applications we often encounter the inverse of a transpose of
a matrix, we adopt the notation

A_T

to denote the inverse of the transpose.

In the linear system (3.135), if n = m and A is nonsingular, the solution
is

= A"1h. (3.146)

For scalars, the combined operations of inversion and multiplication are
equivalent to the single operation of division. From the analogy with scalar op-
erations, we sometimes denote AB~! by A/B. Because matrix multiplication
is not commutative, we often use the notation “\” to indicate the combined
operations of inversion and multiplication on the left; that is, B\ A is the same
as B~1A. The solution given in equation (3.146) is also sometimes represented
as A\b.

We discuss the solution of systems of equations in Chap. 6, but here we
will point out that when we write an expression that involves computations to
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evaluate it, such as A~'b or A\b, the form of the expression does not specify
how to do the computations. This is an instance of a principle that we will
encounter repeatedly: the form of a mathematical expression and the way the
expression should be evaluated in actual practice may be quite different.

3.3.6.4 Nonsquare Full Rank Matrices: Right and Left Inverses

Suppose A is n x m and rank(A) = n; that is, n < m and A is of full row
rank. Then rank([A | e;]) = rank(A), where e; is the " unit vector of length
n; hence the system

Awi = €;

is comnsistent for each e;, and, as before, we can represent all n such systems
as
A |:fL']_| e |xn] — [61| P |en]

or
AX = 1,.

As above, there must be an X such that AX = I,, and we call X a right
inverse of A. The matrix X must be m x n and it must be of rank n (because
I is). This matrix is not necessarily the inverse of A, however, because A and
X may not be square. We denote the right inverse of A as

AR,

Furthermore, we could only have solved the system AX if A was of full row
rank because n < m and n = rank(l) = rank(AX) < rank(A). To summarize,
A has a right inverse if and only if A is of full row rank.

Now, suppose A is n x m and rank(A4) = m; that is, m < n and A is of
full column rank. Writing YA = I,,, and reversing the roles of the coefficient
matrix and the solution matrix in the argument above, we have that Y exists
and is a left inverse of A. We denote the left inverse of A as

AL

Also, using a similar argument as above, we see that the matrix A has a left
inverse if and only if A is of full column rank.
We also note that if AAT is of full rank, the right inverse of A is

AR = ATAAT) (3.147)
Likewise, if AT A is of full rank, the left inverse of A is

ATE = (ATA)71AT, (3.148)
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3.3.7 Full Rank Factorization

For a given matrix A, it is often of interest to find matrices Ay, ..., Ax such
that Aq,..., Ax have some useful properties and A = A; - - - Ag. This is called
a factorization or decomposition of A. (We will usually use these two words
interchangeably; that is, by “decomposition”, we will usually mean “multi-
plicative decomposition”. Occasionally we will be interested in an additive
decomposition of a matrix, as in Cochran’s theorem, discussed on page 401
and later in Sect. 9.2.3.)

In most cases, the number of factors in A = A --- A, is either 2 or 3.
In this chapter, we will discuss some factorizations as they arise naturally in
the development, and then in Chap. 5 we will discuss factorizations in more
detail.

The partitioning of an n X m matrix as in equation (3.131) on page 104
leads to an interesting factorization of a matrix. Recall that we had an n x m
matrix B partitioned as

_ Wr><r erm—r
B - {}/”L—TXT‘ Z/I’L—T‘Xm—’r‘} ’
where r is the rank of B, W is of full rank, the rows of R = [IW|X] span the
full row space of B, and the columns of C' = [ } span the full column space

of B.
Therefore, for some T, we have [Y|Z] = TR, and for some S, we have

[X] = (CS. From this, we have Y =TW, Z=TX, X =WS,and Z2=YS5,

Y

Z
so Z = TWS. Since W is nonsingular, we have T = YW ~! and § = W~1X,
so Z=YW™lX.
We can therefore write the partitions as

WX
b= [Y YW‘lX]

. [YV[I/_l] WL wlx]. (3.149)

From this, we can form two equivalent factorizations of B:

w _ 1
B= [Y] [TIWlX] = [YW*} (W X].

The matrix B has a very special property: the full set of linearly indepen-
dent rows are the first r rows, and the full set of linearly independent columns
are the first » columns. We have seen, however, that any matrix A of rank
r can be put in this form, and A = F(.,)BE(; ) for an n x n permutation
matrix E(,,) and an m X m permutation matrix E,).
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We therefore have, for the n x m matrix A with rank r, two equivalent
factorizations,

W -
A= [%;Y} [PL| WX Py

both of which are in the general form
An><m - Ln><r Rrxm; (3150)

where L is of full column rank and R is of full row rank. This is called a full rank
factorization of the matrix A. We will use a full rank factorization in proving
various properties of matrices. We will consider other factorizations later in
this chapter and in Chap. 5 that have more practical uses in computations.

3.3.8 Equivalent Matrices

Matrices of the same order that have the same rank are said to be equivalent
matrices.

3.3.8.1 Equivalent Canonical Forms

For any nxm matrix A with rank(A) = r > 0, by combining the permutations
that yield equation (3.131) with other operations, we have, for some matrices
P and @ that are products of various elementary operator matrices,
1.0

PAQ = [0 0} : (3.151)
This is called an equivalent canonical form of A, and it exists for any matrix
A that has at least one nonzero element (which is the same as requiring
rank(4) > 0).

We can see by construction that an equivalent canonical form exists for
any n X m matrix A that has a nonzero element. First, assume a;; # 0. By
two successive permutations, we move a;; to the (1,1) position; specifically,
(EinAE ;)11 = a;;. We then divide the first row by a;;; that is, we form
FE1(1/ai;)Ei1AE1;. We then proceed with a sequence of n — 1 premultipli-
cations by axpy matrices to zero out the first column of the matrix, as in
expression (3.62), followed by a sequence of (m — 1) postmultiplications by
axpy matrices to zero out the first row. We then have a matrix of the form

10---0
0

DX
0

(3.152)



3.3 Matrix Rank and the Inverse of a Matrix 111

If X =0, we are finished; otherwise, we perform the same kinds of operations
on the (n — 1) x (m — 1) matrix X and continue until we have the form of
equation (3.151).

The matrices P and @ in equation (3.151) are not unique. The order in
which they are built from elementary operator matrices can be very important
in preserving the accuracy of the computations.

Although the matrices P and @ in equation (3.151) are not unique, the
equivalent canonical form itself (the right-hand side) is obviously unique be-
cause the only thing that determines it, aside from the shape, is the r in I,
and that is just the rank of the matrix. There are two other, more general,
equivalent forms that are often of interest. These equivalent forms, “row ech-
elon form” and “Hermite form”, are not unique. A matrix R is said to be in
row echelon form, or just echelon form, if

e 71y =0fori>j, and
e if k is such that rj # 0 and ry = 0 for | < k, then r;41; =0 for j < k.

A matrix in echelon form is upper triangular. An upper triangular matrix H
is said to be in Hermite form if

e hy;=0o0rl,
o if h“ = O, then hij =0 for all j, and
o if h“ = 1, then h]ﬂ' =0 for all k& 7é 7.

If H is in Hermite form, then H? = H, as is easily verified. (A matrix H
such that H? = H is said to be idempotent. We discuss idempotent matrices
beginning on page 352.) Another, more specific, equivalent form, called the
Jordan form, is a special row echelon form based on eigenvalues, which we
show on page 151.

Any of these equivalent forms is useful in determining the rank of a ma-
trix. Each form may have special uses in proving properties of matrices. We
will often make use of the equivalent canonical form in other sections of this
chapter.

3.3.8.2 Products with a Nonsingular Matrix

It is easy to see that if A is a square full rank matrix (that is, A is nonsingular),
and if B and C are conformable matrices for the multiplications AB and C'A,
respectively, then

rank(AB) = rank(B) (3.153)

and
rank(CA) = rank(C). (3.154)

This is true because, for a given conformable matrix B, by the inequal-
ity (3.128), we have rank(AB) < rank(B). Forming B = A"'AB, and again
applying the inequality, we have rank(B) < rank(AB); hence, rank(AB) =
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rank(B). Likewise, for a square full rank matrix A, we have rank(CA) =
rank(C'). (Here, we should recall that all matrices are real.)

On page 113, we give a more general result for products with general full
rank matrices.

3.3.8.3 A Factorization Based on an Equivalent Canonical Form

Elementary operator matrices and products of them are of full rank and thus
have inverses. When we introduced the matrix operations that led to the
definitions of the elementary operator matrices in Sect. 3.2.3, we mentioned
the inverse operations, which would then define the inverses of the matrices.

The matrices P and @ in the equivalent canonical form of the matrix
A, PAQ in equation (3.151), have inverses. From an equivalent canonical
form of a matrix A with rank r, we therefore have the equivalent canonical
factorization of A:

A=p7! [g“ 8] Q. (3.155)

A factorization based on an equivalent canonical form is also a full rank fac-
torization and could be written in the same form as equation (3.150).

3.3.8.4 Equivalent Forms of Symmetric Matrices

If A is symmetric, the equivalent form in equation (3.151) can be written
as PAPT = diag(I,,0) and the equivalent canonical factorization of A in
equation (3.155) can be written as

—1 If,« 0 -T
A=P {0 O}P . (3.156)
These facts follow from the same process that yielded equation (3.151) for a
general matrix.
Also a full rank factorization for a symmetric matrix, as in equa-
tion (3.150), can be given as
A=1LL"T. (3.157)

3.3.9 Multiplication by Full Rank Matrices

We have seen that a matrix has an inverse if it is square and of full rank.
Conversely, it has an inverse only if it is square and of full rank. We see that
a matrix that has an inverse must be square because A™1A = AA~!, and
we see that it must be full rank by the inequality (3.128). In this section, we
consider other properties of full rank matrices. In some cases, we require the
matrices to be square, but in other cases, these properties hold whether or
not they are square.

Using matrix inverses allows us to establish important properties of prod-
ucts of matrices in which at least one factor is a full rank matrix.
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3.3.9.1 Products with a General Full Rank Matrix

If C is a full column rank matrix and if B is a matrix conformable for the
multiplication C' B, then

rank(C'B) = rank(B). (3.158)

To see this, consider a full rank n x m matrix C' with rank(C) = m (that is,
m < n) and let B be conformable for the multiplication C'B. Because C' is
of full column rank, it has a left inverse (see page 108); call it C~%, and so
C~LC = I,,,. From inequality (3.128), we have rank(C'B) < rank(B), and ap-
plying the inequality again, we have rank(B) = rank(C~“CB) < rank(CB);
hence rank(CB) = rank(B).

If R is a full row rank matrix and if B is a matrix conformable for the
multiplication BR, then

rank(BR) = rank(B). (3.159)

To see this, consider a full rank n x m matrix R with rank(R) = n (that is,
n < m) and let B be conformable for the multiplication BR. Because R is of
full row rank, it has a right inverse; call it R~®, and so RR™® = I,,. From
inequality (3.128), we have rank(BR) < rank(B), and applying the inequality
again, we have rank(B) = rank(BRR™") < rank(BR); hence rank(BR) =
rank(B).

To state this more simply:

e Premultiplication of a given matrix by a full column rank matrix yields a
product with the same rank as the given matrix, and postmultiplication
of a given matrix by a full row rank matrix yields a product with the same
rank as the given matrix.

From this we see that, given any matrix B, if A is a square matrix of full
rank that is compatible for the multiplication AB = D, then B and D are
equivalent matrices. (And, of course, a similar statement for postmultiplica-
tion by a full-rank matrix holds.)

Furthermore, if the matrix B is square and A is a square matrix of the
same order that is full rank, then

rank(AB) = rank(BA) = rank(B). (3.160)

3.3.9.2 Preservation of Positive Definiteness

A certain type of product of a full rank matrix and a positive definite matrix
preserves not only the rank, but also the positive definiteness: if A is n x n
and positive definite, and C is n x m and of rank m (hence, m < n), then
CT AC is positive definite. (Recall from inequality (3.88) that a matrix A is
positive definite if it is symmetric and for any = # 0, 2T Az > 0.)
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To see this, assume matrices A and C as described. Let x be any m-vector
such that x # 0, and let y = C'z. Because C'is of full column rank, y # 0. We
have

2T (CTAC)z = (Cx)T A(Cx)
=y" Ay
> 0. (3.161)

Therefore, since CTAC is symmetric,

e if Ais positive definite and C is of full column rank, then CT AC is positive
definite.

Furthermore, we have the converse:
o if CTAC is positive definite, then C is of full column rank,
for otherwise there exists an z # 0 such that Cz = 0, and so 2T (CTAC)x = 0.

3.3.9.3 The General Linear Group

Consider the set of all square n x n full rank matrices together with the usual
(Cayley) multiplication. As we have seen, this set is closed under multiplica-
tion. (The product of two square matrices of full rank is of full rank, and of
course the product is also square.) Furthermore, the (multiplicative) identity
is a member of this set, and each matrix in the set has a (multiplicative)
inverse in the set; therefore, the set together with the usual multiplication is
a mathematical structure called a group. (See any text on modern algebra.)
This group is called the general linear group and is denoted by GL(n). The
order of the group is n, the order of the square matrices in the group. General
group-theoretic properties can be used in the derivation of properties of these
full-rank matrices. Note that this group is not commutative.

We note that all matrices in the general linear group of order n are equiv-
alent.

As we mentioned earlier (before we had considered inverses in general), if
A is an n X n matrix and if A=! exists, we define A° to be I, (otherwise, A°
does not exist).

The n X n elementary operator matrices are members of the general linear
group GL(n).

The elements in the general linear group are matrices and, hence, can be
viewed as transformations or operators on n-vectors. Another set of linear
operators on n-vectors are the doubletons (A,v), where A is an n x n full-
rank matrix and v is an n-vector. As an operator on x € R", (A4,v) is the
transformation Az 4+ v, which preserves affine spaces. Two such operators,
(A,v) and (B,w), are combined by composition: (A, v)((B,w)(x)) = ABx +
Aw + v. The set of such doubletons together with composition forms a group,
called the affine group. It is denoted by AL(n). A subset of the elements of
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the affine group with the same first element, together with the axpy operator,
constitute a quotient space.

3.3.10 Gramian Matrices: Products of the Form AT A

Given a real matrix A, an important matrix product is AT A. (This is called
a Gramian matriz, or just a Gram matriz. We will discuss this kind of matrix
in more detail beginning on page 359. I should note here that this is not a
definition of “Gramian” or “Gram”; these terms have more general meanings,
but they do include any matrix expressible as AT A.)

We first note that AAT is a Gramian matrix, and has the same properties
as AT A with any dependencies on A being replaced with dependencies on AT.

3.3.10.1 General Properties of Gramian Matrices

Gramian matrices have several interesting properties. First of all, we note that
for any A, because
(ATA); = ala.; = a;fja*i = (AT A);; (recallnotation, page 600),

AT A is symmetric, and hence has all of the useful properties of symmetric
matrices. (These properties are shown in various places in this book, but
are summarized conveniently in Sect. 8.2 beginning on page 340.) Further-
more, ATA is nonnegative definite, as we see by observing that for any v,
y" (AT A)y = (Ay)T (Ay) > 0.

Another interesting property of a Gramian matrix is that, for any matrices
C and D (that are conformable fo