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Preface to the Classics Edition

Basic Concepts was originally published in 1964; a slightly enlarged second edition
appeared in 1970. It filled the need for an introduction to the fundamental ideas of
modern statistics that was mathematically rigorous but did not require calculus.
This was achieved by restricting attention to discrete situations. The book was
translated into Italian, Hebrew, Danish, and, more recently, Farsi. It went out
of print in 1991 when its publisher, Holden-Day, went out of business.

Despite its age, the book in many ways is modern in outlook. This is
particularly true for its emphasis on models and model-building but also by its
coverage of such topics as survey sampling (both simple and stratified), experimental
design (with a proof of the superiority of factorial design over varying one factor at a
time), its presentation of nonparametric tests such as the Wilcoxon, and its discussion
of power (including the Neyman—Pearson lemma). The book is very much in the spirit
of texts on discrete mathematics and could well be used to supplement high school and
college courses on this subject.

Although the book contains a large number of examples from a great variety
of fields of application, it does not base these on real data. When used as a textbook,
this drawback could be remedied by adding a laboratory in which actual situations
are discussed.

Basic Concepts was written jointly with my friend and colleague Joseph L.
Hodges, Jr. Each section, nearly each sentence, was vigorously debated, drafted,
and then subjected to additional debate. We greatly enjoyed this collaboration.
My delight in seeing the book reissued by SIAM is tempered by the fact that, after
a long period of poor health, Joe died on March 1, 2000, of a heart attack. Seeing
Basic Concepts brought to life again would have given him great pleasure.

E. L. LEHMANN
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CHAPTER 1
PROBABILITY MODELS

1.1 RANDOM EXPERIMENTS

The theories of probability and statistics are mathematical disciplines,
which have found important applications in many different fields of human
activity. They have extended the scope of scientific method, making it
applicable to experiments whose results are not completely determined by
the experimental conditions.

The agreement among scientists regarding the validity of most scientific
theories rests to a considerable extent on the fact that the experiments on
which the theories are based will yield essentially the same results when
they are repeated. When a scientist announces a discovery, other scien-
tists in different parts of the world can verify his findings for themselves.
Sometimes the results of two workers appear to disagree, but this usually
turns out to mean that the experimental conditions were not quite the
same in the two cases. If the same results are obtained when an experi-
ment is repeated under the same conditions, we may say that the result is
determined by the conditions, or that the experiment is deterministic. It
is the deterministic nature of science that permits the use of scientific
theory for predicting what will be observed under specified conditions.

However, there are also experiments whose results vary, in spite of all
efforts to keep the experimental conditions constant. Familiar examples
are provided by gambling games: throwing dice, tossing pennies, dealing
from a shuffled deck of cards can all be thought of as “‘experiments’” with
unpredictable results. More important and interesting instances occur
in many fields. For example, seeds that are apparently identical will
produce plants of differing height, and repeated weighings of the same
object with a chemical balance will show slight variations. A machine
which sews together two pieces of material, occasionally—for no apparent
reason—will miss a stitch. If we are willing to stretch our idea of “‘experi-
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ment,” length of life may be considered a variable experimental result,
since people living under similar conditions will die at different and un-
predictable ages. We shall refer to experiments that are not deterministic,
and thus do not always yield the same result when repeated under the
same conditions, as random experiments. Probability theory and statistics
are the branches of mathematics that have been developed to deal with
random experiments.

Let us now consider two random experiments in more detail. As the
first example, we take the experiment of throwing a die. This is one of
the simplest random experiments and one with which most people are
personally acquainted. In fact, probability theory had its beginnings in
the study of dice games.

ExampLE 1. Throwing a die. Suppose we take a die, shake it vigorously
in a dice cup, and throw it against a vertical board so that it bounces onto
a table. When the die comes to rest, we observe as the experimental result
the number, say X, of points on the upper face. The experiment is not
deterministic: the result X may be any of the six numbers 1, 2, 3, 4, 5, or 6,
and no one can predict which of the values will be obtained on any partic-
ular performance of the experiment. We may make every effort to control
or standardize the experimental conditions, by always placing the die in
the cup in the same position, always shaking the cup the same number of
times, always throwing it against the same spot on the backboard, and so
on. In spite of all such efforts, the result will remain variable and
unpredictable.

ExAMPLE 2. Measuring a distance. It is desired to determine the distance
between two points a few miles apart. A surveying party measures the
distance by use of a surveyor’s chain. It is found in practice that the
measured distance will not be exactly the same if two parties do the job,
or even if the same party does the job on consecutive days. In spite of
the best efforts to measure precisely, small differences will accumulate and
the final measurement will vary from one performance of the experiment
to another.

How is it possible for a scientific theory to be based on indeterminacy?
The paradox is resolved by an empirical observation: while the result on
any particular performance of such an experiment cannot be predicted,
a long sequence of performances, taken together, reveals a stability that
can serve as the basis for quite precise predictions. The property of long-
run stability lies at the root of the ideas of probability and statistics, and
we shall examine it in more detail in the next section.
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1.2 EMPIRICAL BASIS OF PROBABILITY

To obtain some idea about the behavior of results in a sequence of repeti-
tions of a random experiment, we shall now consider some specific examples.

ExamreLe 1. Throwing a die. Figure 1 shows certain results of 5000
throws of a die. In this experiment, we were not interested in the actual
value of the number X of points showing, but only in whether X was less

(a) n~10 (b) n=50 (c) n=250
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Figure 1. Dice

than three (X < 3), or on the contrary was greater than or equal to
three (X = 3). The values of X on the first ten repetitions or trials of
the experiment are as follows:

Trial number 1 2 3 4 5 6 7 8 9 10
Value of X 6 3 2 1 5 6 1 3 5 2

The result (X < 3) occurred on trials 3, 4, 7, and 10 and did not occur on
trials 1, 2, 5, 6, 8, and 9. Thus, the number of occurrences of the result
(X < 3) on the first ten trials was 4: we denote this for brevity by the
formula #(X < 3) = 4. Dividing this by the number 10 of trials, we
obtain the fraction .4, which will be called the frequency of the result
(X < 3). This frrquency will be denoted by f(X < 3), so that f(X < 3)
= .4 in the first 10 trials. In general, if a result R occurs #(R) times in n
trials of an experiment, the frequency f(R) of the result is given by

j®) = £B)

n
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We have been discussing the first sequence of ten trials. In a similar
way, 19 other sequences of ten trials were carried out. On the 20 se-
quences, various values of f(X < 3) were observed, as follows:

Sequence 1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20
fiX<3 46 6240375 2.153336.43.1.2

Thus, on the second sequence of ten trials, the result (X < 3) occurred six
times out of ten, or f(X < 3) = .6. The values observed for f(X < 3)
varied from 0 (Sequence 6) to .7 (Sequence 8). These observations are
displayed in Figure la, where each point corresponds to one sequence of
ten trials; on this diagram, the horizontal scale shows the number of the
sequence, while the vertical scale shows the value of f(X < 3) observed
on that sequence.

An examination of Figure 1a shows that while f(X < 3) varies from one
sequence to another, it never exceeded .7, and we might perhaps predict
that f(X < 3) would not exceed .7 in another sequence of ten trials. Of
course f(X < 3) could be greater than .7, or even as great as 1, since it is
possible that X will be either 1 or 2 every time the die isrolled. However,
our experience of 20 sequences suggests that a value of f(X < 3) larger
than .7 will not occur very often.

Would the behavior of f(X < 3) be less erratic if a longer sequence of
trials were used? If we denote by n the number of trials in the sequence,
Figure 1b shows the values of f(X < 3) in 20 sequences of n = 50 trials
each. These values are still variable, but clearly less so than for n = 10,
since f(X < 3) now ranges from .20 to .48 instead of from O to .7. It
appears that, with longer sequences, the frequency of the result X < 3 is
less variable and hence more predictable than when the sequences are
shorter. After studying Figure 1b, even a cautious person might predict
that in another sequence of n = 50 trials, f(X < 3) is not likely to fall
below .15 or above .55. Thus encouraged, we finally turn to Figure lc,
which shows the values of f(X < 3) in 20 sequences of n = 250 trials each,
based on 5000 throws of the die in all. Again the variation is reduced:
now f(X < 3) ranges only from .276 to .372.

ExampLE 2. Random digits. A rather parallel illustration is provided by
a random digit generator. This device, which has been called an “elec-
tronic roulette wheel,” is designed to produce at random the digits from 0
t0 9. (The precise meaning and usefulness of such “random digits”’ will
be made clear in Section 3.4.) In the present experiment we were not
interested in the actual value of the digit produced but only in whether it
was even, that is, was one of the digits 0, 2, 4, 6, or8. Figure 2 is analogous
to Figure 1. It shows the frequency f(even) with which an even digit
veeurred, in 20 sequences of n = 10, n = 50, and n = 250 digits. Quali-
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tatively the features of Figure 2 agree with those of Figure 1: it appears
that f(even) also stabilizes as n is increased, although the values are placed

somewhat higher on the

vertical scale.
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Ficure 2. RaNDOM DIGITS

ExampLE83. Malebirths. The general features of our preceding examples,
indeterminacy combined with stability as the sequences get longer, may
also appear with sequences of occurrences which at first would not seem to

constitute repetitions of an experiment under constant conditions. Figure
(a) n=10 (b) n=50 (c) n=250
1.0 r — —~
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FiGureE 3. MALE BIRTHS

3 relates to the frequency of males in a sequence of human births, showing
the frequency f(male) for 20 sequences of n = 10, 50, and 250 births.*

* We are indebted to our colleague J. Yerushalmy for the record of sex in 5000 births
represented here.
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Since the parents in the 5000 cases were of course different, how can we
say—even if we agree to regard the sex of a baby as the result of an experi-
ment—that the conditions are constant? Yet, in appearance Figures 2
and 3 are so similar as to suggest that a theory built to deal with one would
also work for the other—as indeed it does.

ExampLE 4. Two-letter words. The data for Figure 4 were obtained by
inspecting 5000 lines in a book, and determining for each line whether or
not it contained at least one two-letter word. Figure 4 shows the fre-

(a) n~10 (b) n=50 (c) n=250
-’g B . 2
2 | R R
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3 051 . 0.5~ 0.5
T » =
g = e o L ] ™o . -
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i . e g . o..o ., -o . .
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10 20 10 20 10 20
Number of Sequence

FiGure 4. TWO-LETTER WORDS

quency f(two-letter word) of getting at least one two-letter word, for 20
sequences of n = 10, 50, and 250 lines. Again, we would hardly think of
an author, when he sits down to write, as performing an experiment which
may result in the appearance of a two-letter word in a line of type, but
operationally the sequence of results seem to portray features quite like
those of the other cases.

A careful examination of Figures 1-4, or of similar records in other
cases, will suggest that the tendency towards stability proceeds at a fairly
definite rate as the number n of trials is increased. The table below gives,
for each of our four experiments and for each of the three values of n, the
difference between the maximum and minimum values observed for f in
the 20 sequences. This difference is known as the range of f. We see
that when the sequences are made five times as long, the ranges become
about half as large.



1.2] EMPIRICAL BASIS OF PROBABILITY 9

TaBLE 1. RaNGE oOF f

Random Male Two-letter
Dice digits births words
n=10 N q N 5
n = 50 .28 .36 .32 .20
n = 250 096 140 144 096

These facts lead to the speculation that we could make f as nearly con-
stant as we please, by taking sufficiently large values for n. In some cases
it is possible to see what happens when n is made very large. For example,
there has been published a table* giving the number of times each of the
ten digits was produced in 20 sequences of n = 50,000 trials of a random
digit generator. If we consider the frequency with which even digits
occurred in these sequences, it is found that the lowest value observed
among the twenty sequences was .4971 and the highest was .5054, giving
a range of only .0083. As a second illustration, let us consider the fre-
quency of males among registered births, which are available from publica-
tions of the U.S. Public Health Service. In the twenty years from 1937 to
1956, f(male) for live births in the state of New York varied between .5126
and .5162, giving a range of .0036. (On the average, the number n of
these births was about 230,000 per year.)

Data of this kind, gathered from many sources over a long period of
time, indicate the following stability property of frequencies: for sequences
of sufficient length the value of f will be practically constant; that is, if we
observed f in several such sequences, we would find it to have practically
the same value in each of them. This long-run frequency may of course
depend on the conditions under which the experiment is performed. The
frequency of an ace in a long sequence of throws of a die, for example, may
depend on the die that is used, on how it is thrown, on who does the throw-
ing, and so forth. Similarly, the frequency of males in human births has
been found to depend, to a greater or lesser extent, on such “conditions of
the experiment” as the nationality of the parents and the order of the
child in the family. In fact, an active field of research in human biology
is concerned with determining just what factors do influence the frequency
of males.

It is essential for the stability of long-run frequencies that the conditions
of the experiment be kept constant. Consider for example the machine
mentioned earlier, which sews together two pieces of material. If the

* The RAND Corporation, “A Million Random Digits with 100,000 Normal Devi-
ates,” Free Press, Glencoe, Illinois, 1955.
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needle that does the stitching gradually begins to blunt, the frequency
with which it will miss stitches might increase instead of settling down,
in which case a plot of the frequencies would look quite different from
Figure 1. Actually, in reality it is of course never possible to keep the
conditions of the experiment exactly constant. There is in fact a circu-
larity in the argument here: we consider that the conditions are essentially
constant as long as the frequency is observed to be stable. As suggested
above in connection with the frequency of males, it may be important and
useful to study what aspects of the experimental conditions influence the
frequency. Thus, special techniques (known as quality control) have
been developed to help isolate those conditions of a production process,
under which the frequency of defective items is high, in order to change
them and thereby improve the quality of the product.

The stability property of frequencies, which we have discussed in this
section, is not a consequence of logical deduction. It is quite possible to
conceive of a world in which frequencies would not stabilize as the number
of repetitions of the experiment becomes large. That frequencies actually
do possess this property is an empirical or observational fact based on
literally millions of observations. This fact is the experimental basis for
the concept of probability with which we are concerned in this book.

PROBLEMS

1. Perform the random experiment of tossing a penny 200 times, and make a plot
like Figure 2a. To standardize the experimental conditions, place the penny on
the thumb heads up and toss it so that it rotates several times and lands on a hard
flat surface. (By combining the results of five such sequences, a figure like 2b can
be produced.) Keep this data for use in Problem 11.3.8.

2. In a long sequence of throws of a die as described in Example 1, let f(1),
f@),...,f(6) denote the frequencies with which the upper face shows 1 point,
2 points, . . ., 6 points. Approximately what values would you expect (1), f(2),

. . . to have if the die is carefully made so that in shape it approximates a perfect
cube and if the material is uniform throughout?

3. State qualitatively what changes you would expect in the answer to the
preceding problem if the die were loaded by placing a weight in the center of the
face with 6 points.

4, State qualitatively what changes you would expect in the answer to Problem 2
if two of the sides of the cube had been shaved so as to bring the sides with 1 point
and 6 points closer together.
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1.3 SIMPLE EVENTS AND THEIR PROBABILITIES

In Section 1, probability theory and statistics were stated to be mathe-
matical disciplines dealing with random experiments. Such experiments
were illustrated, and some of their basic features described, in Section 2.
But how does one deal with them mathematically? Observational phe-
nomena are made accessible to mathematical treatment by constructing
mathematical models for them. Such a model is an abstraction of the real
situation, compared with which it has two important advantages.

(i) Properties and relationships, which in reality hold only approxi-
mately, in the model can be postulated to be mathematically precise, and
their consequences can then be worked out rigorously (that is, as mathe-
matical theorems). This is for example the case with geometry, where
the mathematical theory deals with idealized points, straight lines, ete.,
satisfying certain postulates. The results which are rigorously deduced
from these postulates (for example the theorem of Pythagoras) are then
applied to such approximately straight lines as those laid out by a surveyor.

(i) Each actual situation is in some way unique; results worked out
directly in concrete terms would therefore have only very limited applica~
bility. In the model, on the other hand, the situation is stripped of all
that is special and irrelevant. The results obtained in the model thus are
applicable to all real situations having the same general structure.

It is seen that the construction of 2 mathematical model involves a two-
fold simplification: only the important and relevant features of the actual
situation are portrayed in the model; and in this portrayal they are ideal-
ized, the “imperfections” of the actual situation being smoothed away.
How well a model works depends on how realistic it is in spite of these
simplifications. One of the most important tasks in the application of
mathematical models is to see that the model employed represents the real
situation sufficiently well so that the results deduced from it will have the
desired accuracy. For example, consider the model which represents the
earth as a sphere. For a rough calculation of the surface in terms of the
diameter this may be adequate. For slightly more refined results it may
be necessary to take account of the flattening at the poles and to represent
the earth as a spheroid.

We now turn to the problem of building a mathematical model for a
random experiment. In the experiment, we are interested in the fre-
quencies with which various results occur in the long run. To serve our
purpose, the model will have to have features corresponding to these re-
sults, and to the frequencies with which they occur. Let us first consider
how to represent the results of an experiment.
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In any trial of a random experiment, the record of the result could be
almost indefinitely detailed. When a die is thrown, we could record how
many times it bounces, where on the table it comes to rest, the angle its
edge makes with the edge of the table, how many decibels of noise it pro-
duces, and so forth. However, if we are concerned with the use of the die
in gaming, none of these results is of interest: we just want to know the
number of points on the upper face.

It is important, before conducting any experiment, to decide just which
features are worth recording, or one may find when the experiment is over
that it is not possible to answer the questions of interest. If for example
in an investigation of human births the day but not the hour of each birth
is recorded, it will be possible to study the distribution of births throughout
the year, but not to determine whether more births occur at night than
during the day.

Having decided what to observe, we can (at least in principle) make a
list of all possible results of our observations in such a way that on each
trial of the experiment one and only one of the results on the list will occur.
We shall refer to the results on such a list as the simple results of the experi-
ment. If in the investigation of human births, for example, we have
decided to record just the month of birth because we are only interested in
certain seasonal trends, the simple results would be the twelve months of
the year. If instead we had decided that both the month of birth and the
sex of the child are relevant to the investigation, there would be 24 simple
results: (Jan., male), (Jan., female), (Feb., male), ..., (Dec., female).
In an experiment with a die, if we have decided to observe only the number
of points showing on the die, the six simple results will be 1 point, 2 points,
..., 6 points.

According to the above definition, the list must divide the possible out-
comes of the experiment into categories, which between them cover all
possibilities and which leave no ambiguity as to the category to which the
outcome of an experiment belongs. Suppose for example that we are
interested in the weather, and are considering a list which classifies each
day as sunny, cloudy, rainy. This would not be an adequate list of simple
results. It is not complete, since it does not for example include the pos-
sibility of it snowing. Also, the list is ambiguous since a day may be
rainy in the morning but sunny in the afternoon.

In the model, we shall represent each simple result of the experiment by
an element to be called a simple event. For example, in the experiment of
throwing a die, we may represent the simple result “l1 point” by the
integer 1, “‘2 points” by the integer 2, and so forth. The integers1,. ..,
6 would then constitute the simple events of the model. Equally well, we
could use as simple events the words One, . . ., Six. Again, when a penny
is tossed we may be interested in whether it falls heads or tails. There are
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two simple results, and the model correspondingly needs two simple events,
which may be labeled H (for heads) and T (for tails).

We shall also want our model to possess features that correspond to the
long-run frequencies with which the various simple results occur. To see
how these should be specified, consider any particular simple result, say r.
Suppose that in a long sequence of n performances or trials of the experi-
ment, the result r occurred #(r) times. Its frequency is then f(r) = #(r)/n,
and this is a number satisfying the two inequalities

0=fr) =1,

since #(r) cannot be less than 0 or greater than n. If e is the simple event
corresponding to r, we shall associate with e a number called the probability
of e, to be denoted by P(e). This number represents in the model the long
run frequency f(r) of the corresponding simple result r. Accordingly we
shall require that

0<PlE=1
for every simple event e.
The probability model for a random experiment will thus contain simple
events (corresponding to the simple results of the experiment) to which
are assigned probabilities (corresponding to the long-run frequencies of

the simple results). We illustrate the construction of such models with
two examples.

ExampLe 1. Throwing a die. As we have suggested above, for the
experiment of throwing a die the integers from 1 to 6 may be used as the
simple events. If the die is symmetric, one would expect the six faces to
occur about equally often in a long sequence of throws. Experience
usually bears out this expectation, and the result ““1 point” for instance is
found to occur in about § of the trials; that is, f(1 point) is usually found
to be near §. This suggests that in the model one should set P(1) = 1,
and similarly P(2) = §,..., P(6) =% The customary probability
model for throwing a die thus consists of six simple events, to each of which
is assigned the probability §.

ExampLE 2. Throwing a loaded die. An amusement store offers for
sale dice that are loaded to favor showing the face with one point. The
preceding model would not be reasonable for use with such a die, since
J(1 point) will tend to be larger than } because of the loading. Suppose
that the die is thrown n = 1000 times, and that the number of occurrences

of each face is as follows:

#(1 point) = 214, #(2 points) = 152, #(3 points) = 178
#(4 points) = 188, #(5 points) = 163, #(6 points) = 103.
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For the probabilities in the model we might reasonably take the corre-
sponding frequencies, putting P(1) = .214 and so forth. As we shall see
later, the chance fluctuations in the 1000 throws are so great that there is
little or no validity in the third decimal, and the simpler probabilities

P(1) = .21, P@) = .15, P@) = .18,
P(4) = .19, P(5) = .16, P(6) = .11,

would serve as well.

The two examples illustrate the two principal methods of determining
probabilities in practice. Considerations of symmetry, backed up by
general experience, will in many problems suggest that certain frequencies
should be nearly equal, and one may then reasonably use a model in which
the corresponding probabilities are equal. In other problems one may
rely directly on frequencies observed in a long sequence of repeated experi-
ments. (This corresponds to everyday usage. When the probability of
twins for example is stated to be 1.3%, it means that this was the observed
frequency of twins in an extensive series of birth records.) In more com-
plicated problems, a mixture of observed frequencies and symmetry consid-
erations may be appropriate. Suppose for example that a die is loaded by
placing a weight in the center of the face with six points. This will cause
the die to tend to fall with that face down, and hence with the opposite face
(which has one point) up. However, the remaining four faces are still
symmetric, so that we might want to impose the condition P(2) = P(3) =
P(4) = P(5) on the model. If the observed frequencies are those given in
Example 2, we would retain the values of P(1) and P(6) assumed there but
might replace the probabilities .15, .18, .19, .16 by their average .17, so
that the six simple events would be assigned the probabilities

5 POy =21, P@=.7  P@) =.1,
( P@) =.17.  PG)=.17,  P(@) =1L

ExampLE 8. Tossing a penny. Experience and symmetry suggest that
in tossing a penny, heads and tails will tend to occur about equally often,
so that in a long series of tosses f(heads) and f(tails) would both be near 3.
One might then reasonably form a model consisting of two simple events
H and T, with P(H) = 4 and P(T) = }.

ExAMPLE 4. Boy or girl? What is the probability that a newborn baby
will be a boy? If we have no detailed knowledge of the frequency of male
births, we might feel that there should be about equal numbers of male
and female births (this is also suggested by a consideration of the genetic
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mechanism by which the sex of a child is determined), and hence assign to
the two simple events M (for male) and F (for female) the probabilities

@) P(M) = 3, P(F) = 3.

Actually, examination of any sufficiently extensive sequence of birth
records shows the frequency of male births to be slightly higher than 3.
The observations for the state of New York quoted in Section 1, for ex-
ample, suggest putting

3) PM) = 514, P(F) = .486.

This example shows again that theoretical considerations are not neces-
sarily completely reliable guides to a correct model. In the present case,
of course, the difference between the two models turns out to be rather
slight. For many purposes, the simpler model (2) will be quite adequate,
and we shall in fact later in the book occasionally use it because of its
simplicity.

The various simple events taken together form a collection that will be
called the erent set and denoted by & Thus in both Examples 1 and 2,
& consists of the first six positive integers; in Example 3 it consists of the
two letters H and T; and in Example 4 of the two letters M and I.

PROBLEMS

1. Inaninvestigation concerned with age, decide for each of the following whether
it would be a possible list of simple results.
(i) n = young : less than 25 years

r, = middle : 20-55 years

73 = old : more than 55 years
(i1) 7 = young : less than 20 years

r, = middle : 20-55 years

ry = old : more than 55 years
(iii) 7. = young : less than 20 years

2 = middle : 20-55 years

ry = old : 56-80 years

2. In a study of three-child families, decide for each of the following whether it
would be a possible list of simple results.
(i) 1 = 1st child is a boy
r2 = 2nd child is a boy
r; = 3rd child is a boy
(i) 7, = 1st child is a boy
r2 = st child is a girl
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(iii) 7, = all three children are boys
re = all three children are girls
(iv) r = exactly one child is a boy
r, = exactly two children are boys
rs = all three children are boys

3. In a tasting experiment, subjects are asked to state which of three brands A,
B and C they like best. What outcomes would have to be added to “A is best,”
“B is best,” “C is best”” if a subject is permitted to remain undecided between two
or more brands?

4. In a sociological study, a variable of interest is marriage status. Make a suit-
able list of simple results.

5. For a study of the effects of smoking, make a list of simple results which could
be used to summarize the smoking habits of the subjects.

6. An event set & consists of the three simple events ey, e;, and es. Explain for
each of the following why it cannot be a probability model:

(i) P(er) = .3, P(es) = .6, Ples) = 1.2

(i) P(e)) = .6, P(es) = .9, Ples) = —.5.

7. A die is thrown twice; if you are interested in the numbers of points on both
the first and on the second throws, what would you take as your list of simple
results? How many simple results are there in this list?

8. If a penny and nickel are tossed, make a list of simple results, in such a way
that all of them might be expected to occur with approximately equal frequency.

9. In a study of the effects of birth order, each subject is asked to list his birth
order (i.e., first-born, second-born, etc.). Discuss some complications which
might prevent this from being an adequate list.

10. A box contains three marbles, one blue, one red, and one white. Make a list
of simple results for an experiment consisting of a selection of two of these marbles.

11. In the preceding problem make a list of simple results if the two marbles are
drawn out one after the other (without replacing the first marble before the second
one is drawn) and if the order in which the two marbles are obtained is relevant to
the experiment.

12. Make a list if in the preceding problem the two marbles are drawn out with
replacement, that is, if the first marble is put back into the box before the second
marble is drawn.

13. A box contains six marbles, two white and four red. If an experiment con-
gists of the selection of three of these marbles, make a list of simple results

(i) in terms of the number of white marbles;

(i) in terms of the number of red marbles.

14. A pyramid has as its base an equilateral triangle ABC, and its three sides
ABD, BCD, CAD are congruent isosceles triangles. Assuming that in 1000 throws
the pyramid fell on its base 182 times, use the symmetry with respect to the three
sides to build a model for the four possible results of a throw.
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15. The base of a prism is an equilateral triangle. In 2000 throws, the prism fell
1506 times on its rectangular sides, and the remaining 494 times on its upper and
lower ends. Use the symmetries of the prism to build a model for the five possible
results of a throw.

16. In an amusement park one can shoot 100 times at a circular target with a
bull’s-eye. If for a certain person the target shows 31 hits of which 8 are bull’s-
eyes, build a probability model with the three simple events: bull’s-eye, hit (but
not a bull’s eye), miss.

1.4 DEFINITION OF PROBABILITY MODEL

As is easily checked in all examples considered in the preceding section,
the probabilities of the simple events in the event set add up to 1. To see
why this should be true in general, suppose that the simple results of an
experiment are labeled 1, r5, . . .. On each performance of the experiment
exactly one simple result occurs. In a sequence of n performances we
must therefore have

#r) + 40 + ... = n.
On dividing both sides by =, this equation becomes

Jo) +fr) + ... =L
Let e), e, . . . denote the simple events that in the model correspond to the
simple results ry, rp,. ... Since the probabilities P(e;), P(e,), . . . are to

represent the frequencies f(r1), f(re), . . . when n is large, it seems reasonable
to require that the probabilities in the model should satisfy

Ple)) + Ple)) +...= 1.

The model would not give a satisfactory picture of the experimental situa-
tion if the probabilities were defined so as not to add up to 1.

We can now give a formal definition of a probability model, and describe
its identification with the random experiment.

Definition. By a probability model we mean the following:

(1) there is an event set & which is a set of elements called stmple
events;

(ii) to each simple event e is attached a number P(e) called the prob-
ability of the event e; the probabilities must satisfy 0 £ P(e) £ 1 for each
¢, and their sum must be equal to 1.

In using the model to represent a random experiment, we identify the
simple events of the model with the simple results of the experiment, and
the probability of a simple event with the frequency of the corresponding
result in a long sequence of trials of the experiment. This relationship
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may be summarized in the following “dictionary” for translating from the
real world to the medel and back:

Real World Model
random experiment probability model
simple result simple event
list of simple results event set
long-run frequency probability

A probability model can be exhibited by listing its simple events to-
gether with their probabilities, for example in the form

€y, [ R
Ple), Ples), . . .
In Example 3.2, for instance, the probability model may be specified by

1 2 3 4 b 6
21 15 18 A9 16 A1,

The simple results of an experiment are essentially the “atoms” from
which other results can be built up. Any result consisting of more than
one simple result is said to be composite. Consider for instance the situa-
tion mentioned in the preceding section, in which the simple results are
the month of birth and sex of a child. The following are some examples
of composite results together with the simple results of which they are
composed.

(a) The composite result “The child is a male born during the first
three months of the year” is composed of the simple results (Jan., male),
(Feb., male), (Mar., male).

(b) The composite result “The child is a male” is composed of the
simple results (Jan., male), (IFeb., male), . . ., (Dec., male).

(¢) The composite result “The child is born in January” is composed
of the simple results (Jan., male), (Jan., female).

Suppose now that R is the composite result composed, say, of the two
simple results 7, and r,. This may be indicated by writing R = {ry, rs}.
Since on each trial of the experiment exactly one simple result occurs, we
must have #(R) = #(r1) + #(r2), and hence

J(R) = f(r) + f(r2).

In general the frequency of a composite result is the sum of the frequencies
of the simple results that make it up.

To a composite result R of the experiment, there corresponds in the
model a composite event, say E. This consists of the simple events that
correspond to the simple results making up R. For example, if
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R = {ry, 1, rs} consists of the simple results rs, 75, and rs, then the com-
posite event E corresponding to R in the model consists of the simple
events e, ¢, and . Since the frequency of R would then be given by

f(R) = f(r)) + f(rs) + f(rs), we should have in the model P(E) = P(e;) +
P(es) + P(es). Generalization of this example motivates the following
definition of the probability of a composite event.

Definition. The probability of a composite event E is the sum of the
probabilities of the simple events of which E is composed,

As an illustration, consider the experiment of throwing a die, and the
composite result that the number of points on the upper face is even.
This composite result consists of the three simple results: 2 points, 4 points,
6 points. In the models of Examples 3.1 and 3.2, the corresponding com-
posite event (even) will then consist of the integers 2, 4, and 6, so that

P(even) = P(2) + P(4) + P(6).
In the model of Example 3.1 we thus have

Pleven) =3 +4+3=14=5
while in the model of Example 3.2

P(even) = .15 4+ .19 + .11 = 45.

Since the probabilities of all simple events are nonnegative and add up
to 1, it is clear that for any event E,

0<PE) <1

In presenting probability models, we have so far been very careful to
distinguish between the results of real experiments and the events that
represent them in the model. However, it is sometimes convenient to be
less careful and to employ the same terms for the results and for the corre-
sponding events in the model. Thus, we may for example write “P (die
falls with six points showing)”’ rather than “P(6), where 6 denotes the event
representing the result that the die falls with six points showing,” as we did
in Examples 3.1 and 3.2. When discussing applicational examples, we
shall usually adopt this simpler terminology.

We shall conclude this section with an important example, in which the
values of the probabilities are obtained mainly on the basis of extensive
experience.

ExampLE 1. Life table. Consider the ‘“experiment” that consists in
observing the length of a human life. It is usual to think of life span as a
continuous variable, but for our present purpose it will suffice to observe
merely the decade A in which the individual dies, so that the simple results
are ‘/dies before 10th birthday” (4 = 1), “survives 10th birthday but dies
before 20th” (A = 2),etc. Can we regard such an experiment as random?
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Tt is clearly not repeatable unless we agree that the identity of the indi-
vidual is not essential to the constancy of the conditions. If we observe
the life spans of a number of similar individuals, we might perhaps regard
them as trials of the same experiment. The entire life insurance industry
is founded on the observation that the property of stability does indeed
hold in this case: the fraction of a large number of similar individuals who
die in a specified decade of their lives will be nearly constant and can there-
fore be predicted on the basis of past experience.

The probability model for life span is known as a life table, the earliest
example of which was given by John Graunt in 1662. The simple events
correspond to the age of the individual at death. The probability assigned
to one of these events corresponds to the frequency with which such individ-
uals die in the decade in question. An example of a life table is shown be-
low, where for simplicity we assume there is no chance of reaching age 100,

TasLe 1. LIFE TABLE

Probability Probability
Decade 4 of death Decade A of death
1 064 6 127
2 013 7 21
3 022 8 .269
4 032 9 170
5 064 10 028

The meaning of the entry .032 opposite decade 4 is that among a large
number of individuals, of the kind for whom the table is appropriate,
approximately 3.2, will die between their 30th and 40th birthdays.

According to the above table, what is the probability of reaching the age
of 60? This is a composite result, consisting of the simple results of dying
in the 7th, 8th, 9th, or 10th decade. The probability of reaching 60 is
therefore .211 + .269 4 .170 4+ .028 = .678.

It is important when using a life table to be sure that the table represents
the life spans of individuals of the kind to whom it is to be applied. For
example, women in our culture live considerably longer than men. The
table above is based on experience of white males living in the United
States at the present time—it should not be used for a woman, a Negro,
a resident of Pakistan, or someone in the twenty-first century.

PROBLEMS
1. An event set & consists of the four simple events e, ¢, €, e, Determine for
each of the following whether it satisfies the conditions of a probability model:
@) P(a) = .01, P(es) = .03, P(es) = .11, P(e)) = .35
(i) P(e) = .3, P(ex) = .6, P(es) = .9, Ples) = —.8
(iii) P(e) = .01, P(e;) = .04, P(es) = .06, Pes) = .89
@iv) P(e) = .2, P(e2) = .3, P(&s) = 0, P(es) = .5.
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2. An event set & consists of five simple events ey, . . . , €.
(i) If P(ey) = .01, P(e,) = .02, P(es) = .03, P(e)) = .04, determine P(es).
(i) If Ple) = .01, P(e;) = .02, P(es) = .04, what are the largest and smallest
possible values for P(eg)?
(iii) In part (ii), what is the value of P(e,) if it is known that P(e)) = P(es)?

3. Anevent set & consists of ten simple events ey, . . ., €. Determine the proba-
bilities of these events if their probabilities are all equal.
4. With the model of Example 3.1, find the probability of the following events.
(i) The number of points is at least three.
(ii) The number of points is at most two.
(iit) The number of points is more than four.

5. Find the probabilities of the events (1)—(iii) of the preceding problem for model
(1) of Example 3.2.

6. With model (1) of Example 3.2 would you (at even money) prefer to bet for
or against the die showing an even number of points?

7. A person driving to work every day on a route with four traffic lights has
observed the following to be a suitable probability model for the number R of red
lights encountered on a trip:
P(0 red lights) = .05
P(1 red light) = .25
P(2 red lights) = .36
P(3 red lights) = .26
P(4 red lights) = .08.
Find the probabilities of his encountering
(i) at least 2 red lights;
(i1} more than 2 red lights;
(iii) at most 2 red lights.

8. Ingrading certain boards sold by a sawmill, each board js given 0, 1 or 2 points
on each of two characteristics, namely A: the number of knotholes, and B: the
pattern of the grain. Suppose the following probability model is suitable.

B
0 1 2
A

0 24 19 10
1 16 A2 .06
2 09 03 .01

Here the entry .19 in the first row and second column means that the probability
is .19 of a board receiving 1 point on B and 0 on A.
(i) Check that the table defines a probability model.

Find the probability that a board will receive

(ii) a total number of 4 points;

(iii) a total number of 3 points or more;

(iv) a total number of at most three points;

(v) at least one point on both A and B;

(vi) the same number of points on A as on B.
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9. In the preceding problem suppose that 0 to 3 points are given for B but only
0 or 1 point for A and that the probabilities are as follows:

\B
A N

0 ’ .25 .19 12 07
1 .16 13 06 .02

(i) Check that the table defines a probability model.
Find the probability that a board will receive
(ii) a total of at least 2 points;
(ili) a total of at most 2 points;
(iv) the highest number of points for at least one of the categories;
(v) at least one point on both A and B;
(vi) the same number of points on both A and B.

0 1 2 3

10. In a study of the relationship of the performance in course 1 and 2, a depart-~
ment finds that the following model suitably describes the distribution of grade
points for students completing both courses:

2
\ 0 1 2 3 4
1
0 060 .0 .00 00 .00
1 03 05 04 00 .00
2 01 04 26 05 .00
3 00 03 11 15 .03
4 0 00 .03 07 .09

(i) Check that the table defines a probability model.
Find the probability that a student will

(ii) do better in course 2 than in course 1;

(iii) get the same grade in both courses;

(iv) change his grade by more than one grade point from course 1 to course 2;
(v) get a total of at least six grade points;

(vi) get a total of exactly six grade points;

(vil) get a total of not more than 3 grade points.

11. In a population for which Table 1 is appropriate, find approximately the
median age of death; that is, the age such that the probability is 4 of dying before
that age and 2 of surviving beyond it.

12. In a long sequence of observations on length of life of male rats, it was found
that 98 percent still survived 200 days after birth, 83 percent survived 400 days,
40 percent survived 600 days, 8 percent survived 800 days, and that there were no
survivors after 1000 days. On the basis of this information, construct a probability
model with the simple events ‘“death within the first 200 days,” “death between
200 and 400 days,” etc.
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1.5 UNIFORM PROBABILITY MODELS

A reasonable probability model for throwing a die or tossing a coin is
frequently obtained by assigning equal probability to all simple events.
In general, if all simple events are assigned the same probability, we say
that the probability model is uniform. For the case of a die or a coin we
have discussed this model in Examples 3.1 and 3.3. Surprisingly, such
models, which are of course realistic only if the simple results of the
experiment tend to occur about equally often, are appropriate in a great
many interesting and important cases.

We shall in the next chapter take up applications of the uniform model
to sampling theory, and in later chapters to genetics, quality control, and
the design of scientific experiments. I'or the moment we mention only
that gambling devices other than dice or coins also provide simple illustra-
tions of the uniform model. Thus, when drawing a card from a standard
deck containing 52 cards, it is customary to assign equal probability #5 to
each card of the deck. Similarly, for a roulette wheel one would assign
equal probability to the simple events that correspond to the ball coming
to rest in any particular slot. 1In fact, the use of such devices for gaming
depends on the equal frequency of the outcomes. If, for example, a
roulette wheel favored one slot over the others, gamblers would soon dis-
cover this and break the bank.

The calculation of probabilities is particularly simple when the model is
uniform. Suppose the event set & consists of #(§) simple events. If each
simple event is to have the same probability, and if the sum of the prob-
abilities is to be 1, then the probability of each simple event must be
1/#(&). Consider now a composite event E consisting of #(E) simple
events. Then, by the definition of the probability of a composite event,
the probability of E is the sum of #(E) terms, each equal to 1/#(8), so that

; #E)
1 P(E) = =
M ®) =35
To compute the probability, it is therefore only necessary to count how
many simple events there are in £ and &, and to take the ratio.

ExampLE 1. Drawing a card. A standard bridge deck contains 13 cards
of each of four different suits: two red suits (hearts and diamonds) and
two black suits (clubs and spades). The 13 cards of each suit are Ace,
King, Queen, Jack and cards numbered from 2 to 10. The deck is shuffled
and a card is drawn. What is the probability that it will be a spade, if the
uniform medel is assumed? In the present case, there are 52 simple events
corresponding to the 52 cards, and hence #(8) = 52. Of these 52 events,
13 (namely those corresponding to the 13 spades) make up the event
E = spade. Hence P(E) = #(E)/#(8) = {3 = L.
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High school algebra books often include a section on probability, which
is usually devoted to the uniform model. The simple events are called
‘“equally likely cases,” and the simple events that make up the composite
event whose probability is sought are called “favorable cases.” The
probability of the event is defined as the ratio of the number of favorable
cases to the number of equally likely cases. This of course is in agreement
with formula (1).

The uniform model was used much more freely in the past than it is
today, the simple results of an experiment being often quite uncritically
treated as equally likely. The practice was justified by citing the Prin-
ciple of Insufficient Reason, which declared that cases were equally likely
unless reasons to the contrary were known. Unfortunately, the results
were often quite unrealistic, since events might occur with quite different
frequencies even though the model builder was unaware of the reasons for
the difference. In modern practice, the burden of proof is shifted: it is up
to the model builder to advance reasons for using the uniform model.
Sometimes the model is justified on grounds of the symmetry of the results,
as in the case of the die. The final test, however, is empirical: do the
results occur in practice with nearly equal frequency?

The inadequacy of the Principle of Insufficient Reason is made clear by
the fact that the list of simple results of an experiment may be drawn up
in many different ways. When the uniform model is used with the dif-
ferent lists, different answers are obtained all of which according to the
Principle of Insufficient Reason are equally valid. We illustrate the point
with a simple example.

ExampLE 2. Probability of a boy. What is the chance that a two-child
family will have at least one boy? If the number of boys is denoted by B,
there are three possible results: B =0, B =1, B = 2. Of these three
cases, the last two are favorable to the family having at least one boy, so
that the use of the uniform model gives the value % for the desired
probability.

But we could list the results differently, recording the sex of the first
and second children separately. Then there would be four cases: MM,
MF, M, FF; where for example MF means “first child male, second child
female.”” Of the four cases, the first three imply that there is at least one
boy, so that we get $ for the desired probability if the uniform model is
used with this list.

Which answer is right, 2 or §? Both are correctly deduced from the
premises, and no amount of theoretical argument could prove or disprove
either. To find out which model is the more realistic, it is necessary to
observe the sex distributions actually occurring in two-child families.
When this is done, it is found that the second model is the more realistic,
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although even moderately large samples would convinee us that it too does
not give an adequate description. For example, MM occurs somewhat
more frequently than FT°, reflecting the fact that boys constitute about
51.49, of all births. That boys are more frequent than girls could not
have been predicted by theoretical arguments, and the reason for it is still
not fully understood.

To drive home the point that the test of a model must in the last analysis
be empirical, we will mention two circumstances in which the second model
would be quite wrong. Identical twins are always of the same sex, which
tends to increase the frequency of MM and IIF families. The frequency
of identical twins is in fact low, but if they constituted about % of the two-
child families, then the first model would fit much better than the second.
Again, in some cultures it is thought essential that a family have a son.
Suppose that in such a society, families were terminated as soon as a boy
was born. This would mean that onlv FM and FF could occur in two-
child families; so that both models would be quite wrong.

We conclude the section by giving two further examples of the use of
uniform models.

ExampLE 8. Sum of poinis on two dice. In many dice games, the player
throws two dice, and the outcome of the game depends on the total number
T of points showing. As in Example 2, there are two rather natural ways
to make out the list of simple results. We might observe that T may take
on the 11 different values 2, 3, . . ., 12, and take these as our equally likely
cases. This would, for example, imply P(T = 7) = . Alternatively,
we might record the results of the two dice separately, writing for example
(4, 3) if the first die showed 4 points and the second 3 points. This record
has the following 36 possible values:

(1, 1) (1,2) 1,3) (1,4 (1, 5) (1, 6)

@1 2,2) (2,3) 2,4) 2, 5) (2, 6)
@) 3,1 3,2) @3,3) 3, 4) @3, 5) 3, 6)

(4,1) (4,2) 4,3) (4,4) (4, 5) (4, 6)

6,1 (5,2) 5, 3) (5,4) (5, 5) (5, 6)

6, 1) 6,2) (6, 3) (6, 4) (6, 5) (6, 6)

Of these the following six give T = 7: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2) and
(6,1). With the second model, P(T = 7) = 3% = §, which is nearly
twice as large as {. Which if either of these radically different results is
correct, can be determined only by experience, though analogy with Ex-
ample 2 may lead one to guess that the second model will work better.
Extensive experience justifies attributing equal probability to the 36
simple events displayed above, provided the dice are sufficiently well made.
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ExaMpLE 4. Floods. When building a dam to protect a valley against
the spring flood, the engineers consult the records of the past 50 years and
make the dam just high enough to contain the worst flood recorded. How
likely is it that the dam will hold for the next twenty-five years? As
always, the answer depends on the model. If the climate and vegetation
are not changing, then it seems plausible to assume that the worst flood is
as likely to occur in one year as in another, of the 75 years consisting of the
last 50 and the next 25. With this model, the probability that a larger

flood will occur in the next 25 years than in the past 50, is £ = 3.

PROBLEMS

1. If a card is drawn under the assumptions of Example 1, find the probability
that it is (i) red; (ii) an ace; (iii) a red ace; (iv) an ace or king.

2. A box contains 10 marbles, of which 2 are white, 3 red, and 5 black. A marble
is drawn at random, that is, in such a way that each marble has the same chance of
being selected.
(i) Construct a probability model for this experiment.
{ii) Find the probability that the marble drawn will be white.
(ii1) Find the probability that the marble drawn will be white or red.

3. In Example 3, find the probabilities of the following events.

(i) The numbers of points on both dice are even.

(ii) The number of points on at least one of the two dice is even.

(iii) The sum of the points on the two dice is even.

(iv) The number of points on at least une of the two dice is odd.

(v) The sum of the numbers of points on the two dice is less than six.

(vi) The sum of the numbers of points on the two dice is greater than six.
(vii) The sum of the numbers of points on the two dice is less than three.
(viil) The number of points on at least one of the two dice is less than three.

(ix) The numbers of points on both dice are less than three.

(x) The numbers of points on the two dice are equal.

4. In Example 3, find the probabilities
P(T =2),P(T=3),...,P(T =12).

5. In order to decide which of three persons will pay for a round of drinks,
each tosses a penny. If the result of one toss differs from those of the other two
(i.e., one head and two tails, or one tail and two heads), the “odd man’’ has to pay.
Assuming the 8 possible results HHH, HHT, HTH, HTT, THH, THT, TTH, TTT
to be equally likely, what is the probability that one toss will differ from the other
two?

6. Assuming that in three-child families the 8 cases MMM, MMF, . . ., FFF
are equally likely, find the probabilities of the following events:
(1) at least one boy (iv) exactly two boys
(ii) at least two boys  (v) at most one boy
(iii) exactly one boy  (vi) more boys than girls
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(vii) at least one girl and one boy (ix) the oldest a boy and the youngest
(viii) the oldest a boy a girl
(x) no girl younger than a boy.

7. Twelve keys, of which only one fits, are tried one after another until a door
opens. Let e, correspond to the result that the door opens on the first try; e, to the
result that it opens on the second try; etc., and suppose that the 12 simple events
ey . . ., e are equally likely. Find the probability that the door will be opened
(i) on the twelfth try,
(ii) on none of the first three tries,
(iii) on either the first or the twelfth try.

8. Suppose that a random digit generator produces two digits in such a way that
all 100 cases 00,...,09;10,...,19;...;90,...,99 are equally likely. Inter-
preting 00 to be 0, 01 to be 1, . . ., 09 to be 9, the machine produces a number be-
tween 0 and 99. What is the probability that this number is (i) positive and
divisible by 11; (ii) less than 20; (iii) greater than 65; (iv) greater than 10 but less
than 18?

9. In a surprise quiz, you are given two multiple choice questions, one with
three possible answers g, b, ¢ and the other with five possible answers 4, B, C, D, E.
Let (a, C) denote the event that you give answer a for the first and answer C for
the second question, etc. Suppose that you have no idea as to the right answers
and decide to write all possible combinations

(@, 4),...,(a, E); (b A),..., (b E);(A),...(E)

on separate slips of paper of which you then draw one at random; that is, so that
each has the same chance of being selected. Suppose the correct answers are b
in the first and 4 in the second problem. What is the probability that you will
give:
(i) the correct answer on both questions,

(ii) the incorrect answer on both questions,

(iii) at least one correct answer,

(iv) at most one correct answer,

(v) the correct answer on the first question,

(vi) the correct answer on the first but an incorrect answer on the second

question?

10. In throws with three dice, the sum T' = 9 can be produced in six ways, namely
asl+246,14+3+51+4+424+24+52+3+434+3+3. (1) De-
termine the number of ways in which the sum T = 10 can be produced. (ii)
Would you conclude that P(T = 9) = P(T = 10)?

11. Assume that the 6° = 216 different outcomes of throws with three dice:
(1,1,1),(1,1,2),..., (6,6, 6) are all equally likely. Under this assumption, com-
pute P(T = 9) and P(T = 10), and discuss the difference between this result and
that suggested by the preceding problem.



28 PROBABILITY MODELS [cHAP. 1
1.6 THE ALGEBRA OF EVENTS

Returning now to the consideration of probability models in general, we
shall in the present section study certain relations that may exist between
events, and certain operations that may be performed on them. These
will enable us in the next section to derive desired probabilities from others
that are given or assumed. We shall be working here within the mathe-
matical model, with definitions as precise and proofs as rigorous as those
of plane geometry or any other branch of pure mathematics, but we shall
keep the random experiment in view as motivation for definitions and
proofs.

Together with any result K that may occur on a trial of a random experi-
ment, one may consider another result, namely “R does not occur.”
These two results are said to be complements, or complementary to one
another. For example, the complement of the result that a three-child
family has at least one boy is that all three children are girls. Again, if X
is the number of points showing when a die is thrown, the results “X is
even” and “X is odd” are complementary. We shall denote the comple-
ment of a result by placing a bar above it, so that X < 2 means the same
as X > 2. We shall employ the same terminology in the model.

Definition. The complement of an event E is the event E which consists
just of those simple events in & that do not belong to E.

1t follows from this definition that the sets E and E have no common
member, and that between them they contain all simple events of the
event set & The situation is illustrated in Figure 1, where E consists of

Figure 1. COMPLEMENTARY EVENTS

the simple events e, e, e;, and I/ consists of the remaining simple events
in §, namely e;, e.
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An interesting special case is the complement of the event set & itself.
By definition, & consists of all simple events of the model under discussion,
so that & is a set without members. This set is known as the empty set.
If we think in terms of results, § corresponds to a result that cannot occur,
such as the result X = 7 when rolling a die.

Related to any two given results R, S is the result which occurs when
both the result B and the result S occur, and which will be called the result
“R and S.” For example, if with two-child families R denotes the result
that the first child is a boy and S that the second child is a boy, then “R
and S” denotes the result that both children are boys. Similarly, if R
indicates that a card drawn from a deck is a heart while S indicates that it
is a face card, then the result “R and S’ will occur if a heart face card is
drawn.

Suppose the results R, S are represented in the model by the events E,
F respectively. What event in the model then corresponds to the result
“R and 8” ? To answer this question notice that the result “R and S”
occurs whenever the experiment yields a simple result, which is a simple
result both of R and of S. Therefore the event in the model corresponding
to “R and S”’ will consist of those simple events that belong both to E and
to F. The situation is illustrated in Figure 2a, where E = {e, e;, e, €5}

() (b)

FicURe 2. INTERSECTION AND UNION

corresponds to the result R consisting of the simple results ry, 75, 74, 76, and
where F' = {e, ¢, €5, €1} corresponds to the result S consisting of the simple
results s, 14, 76, 77. Here “R and S” will occur whenever the experiment
yields one of the simple results r, or r,. The event corresponding to the
result “R and S” consists therefore of the simple events e, ¢. It is the
common part or intersection of the two events E, F.

Definition. The intersection (K and F) of two events E, F is the event
which consists of all simple events that belong both to £ and to F.
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It may of course happen that two events E, F have no simple events in
common. The intersection (£ and F) is then the empty set.

Definition. 'Two events E, F are said to be ezclustve if no simple event
belongs to both E and to F.

The results corresponding to two exclusive events will be such that not
both of them can happen on the same trial of the random experiment.
For example, when throwing a die, the results X <2 and X > 4 are
exclusive, but the results “X is even” and “X is divisible by 3" are not,
since both occur when X = 6. Again, for two-child families, the results
“first child is a boy’’ and “both children are girls’” are exclusive, but the
results ‘“first child is a boy’”’ and ‘“‘second child is a boy’’ are not, since both
children may be boys. The case of two exclusive events E and F is illus-
trated in Figure 3.

FIGURE 3. EXCLUSIVE EVENTS

Another result related to the given results R, S is the result “R or S”
which occurs when either the result R occurs or the result S occurs, or both
occur. If for example R denotes the result that the first child of a two-
child family is a boy while S denotes that the second child is a boy, then
“R or §” will occur if at least one of the children is a boy. Similarly, if R
denotes that a card drawn from a deck is a heart, while S denotes that it is
a face card, then “R or S’ will occur if the card is a heart or a face card,
including the case when it is a heart face card.

What event in the model corresponds to the result “R or §”? To
answer this question, notice that the result “R or 8"’ occurs whenever the
experiment yields one of the simple results of R or of S or both. Therefore
the event in the model corresponding to “R or S’ will consist of those
simple events belonging to E or to F or both. The situation is illustrated
in Figure 2b, where as before E = {e,, ¢;, €4, €5} corresponds to the result R
consisting of the simple results 1, 73, 4, s, While F = {e,, ¢, €s, €1} corre-
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sponds to the result S consisting of the simple results 7y, ry, 75, 7. Here
“R or S” will occur whenever the experiment yields one of the simple
results ry, 9, 73, 4, 76, 7. The composite event corresponding to “R or §”
consists therefore of the simple events e, e, ¢;, €, €5, €. It is obtained by
combining or uniting the simple events of E with those of F, producing the
set (E or F) enclosed by the dashed line in Figure 2b.

Definition. The union (E or F) of two events E, F is the event which
consists of all simple events that belong to E, or to F, or to both £ and F.

ExampLE 1. Two dice. In the model for throwing two dice of Example
5.3, let E correspond to the result “first die shows one point,” so that £
consists of the first row of tableau (5.2). Similarly, let F correspond to
“second die shows one point,” consisting of the first column of (5.2).
Then (E or F) consists of the eleven simple events in the top and left mar-
gins of (5.2), and corresponds to the result “at least one die shows one
point.” On the other hand, (¥ and F) consists only of the simple event
(1, 1) and corresponds to the results “both dice show one point.”

ExaMpLE 2. Complementation. Consider an event E and its complement,
E. Since E and E have no simple event in common, they are exclusive.
By the definition of complement, any simple event not in E belongs to E,
so that every simple event belongs either to £ or to E. It follows that the
union of E and E is the entire event set &: (E or E) = &.

The reader should be warned of a confusion that sometimes arises due to
connotations of the word ‘“‘and” in other contexts. From the use of “and”
as a substitute for “plus,” it might be thought that (E and F) should rep-
resent the set obtained by putting together or uniting the sets £ and F.
However, in the algebra of events (E and F) corresponds to the result
“R and S” which occurs only if both R and S occur, and thus (E and F) is
the common part or intersection of E and F.

In many books the notation (E \U F) is used for (£ or F) while (E N F)
is used for (£ and F).

The generalization of the concepts of intersection and union to three or
more sets is obvious.

PROBLEMS

1. An experiment consists of ten tosses with a coin. Give a verbal desecription
of the complement of each of the following events:
(i) at least six heads
(i1) at most six heads
(iii) no heads.
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2. In Problem 5.3, give verbal descriptions of the complements of the events
described in (i), (i), (v), (vii), (ix).

3. In Problem 5.6 give a verbal description of the complements of the events
described in parts (i), (ii), (v), and (viii).

4. In Problem 5.9 give verbal descriptions of the complements of the events
desgribed in parts (i)-(v).

5. In Problem 5.6 give verbal descriptions of the intersections of each of the fol-
lowing pairs of events:

(i) the events (i) and (ii) (vi) the events (i) and (vi)
(ii) the events (i) and (i) (vii) the events (i1) and (vi)
(iii) the events (ii) and (iii) (viii) the events (iii) and (vi)
(iv) the events (i) and (iv) (ix) the events (iv) and (vii)
(v) the events (i) and (v) (x) the events (vi) and (vii).

6. In Problem 5.3, determine the intersections of each of the following pairs of
events:

(i) the events (i) and (vi) (iti) the events (v) and (viii)

(ii) the events (ii) and (viii) (iv) the events (i) and (iii).
7. In Problem 5.6 determine for each of the following pairs whether they are
exclusive:

(i) the events (i) and (i) (v) the events (iv) and (vi)
(ii) the events (i) and (jii) (vi) the events (v) and (vi)
(iii) the events (iii) and (v) (vil) the events (v) and (vii)
(iv) the events (iv) and (v) (viii) the events (vi) and (vii).

8. In Problem 5.9 pick out three pairs from the events described in parts (i)~(vi)
that are exclusive.

9. In Problem 5.3, determine for each of the events (i)-(x) whether it is exclusive
of event (iv).

10. In Problem 5.3, determine the unions of each of the following pairs of events:

(i) the events (v) and (vi)
(ii) the events (iil) and (\[i)
(iii) the events (iv) and (vii).

11. Give verbal descriptions of the unions of each of the pairs of events of Prob-
lem 5.

12. In Problem 5.9, give verbal descriptions of the unions of each of the following
pairs of events:

(i) the events (i) and (iii)
(ii) the events (ii) and (iii).

13. For each of the following statements determine whether it is correct for all E,
F, and G.
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(i) If E, F are exclusive, and F, G are exclusive, then E, @ are exclusive.
(i) If E, F are exclusive, and E, @ are exclusive, then E, (F or @) are exclusive.
(i) If E, (F or G) are exclusive, then E, F are exclusive.

14. From a class of ten, an instructor selects a student to answer a certain ques-
tion; if the first student cannot answer, he selects one of the remaining students;
etc. Let E denote the event that the first student knows the answer, and F the
event that the first student does not know the answer but the second one does.
Are E and F exclusive?

15.  Suppose that the event set & is broken up into exclusive pieces Ei, By, . . . , E,.
Is it true that then any event F ean be written as

1) F = (E\and F) or (E;and F) or. .. (E, and F)?

16. Draw diagrams to illustrate the facts (known as De Morgan’s Laws) that,
for any sets E and F

G EorF)=Eand F

(i) (FandF) = Eor F.

1.7 SOME LAWS OF PROBABILITY

In the preceding section we have defined three operations on events:
complementation, intersection, and union. We shall now consider how
probabilities behave under union and complementation. The probabilities
of intersections will be studied in Chapters 3 and 4.

A law connecting the probability of the union (¥ or F) with the proba-
bilities of E and of F is obtained most easily in the special case that E and
F are exclusive. If R and S are two exclusive results, then not both can
happen on the same trial of the experiment, and therefore in a sequence of
trials

#HR or 8) = #(R) + #(S).

For example, in an evening of poker, the number of red flushes dealt to a
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player will be the sum of the number of heart flushes and the number of
diamond flushes that he receives. Dividing both sides of the displayed
equation by the total number of trials we see that

J(R or 8) = J(R) + f(S) if R, S are exclusive.
Since probability is supposed to represent long-run frequency, this sug-
gests that in the model we should have the equation
¢y P(E or F) = P(E) + P(F) if E, F are exclusive.

The proof of this addition law for exclusive events may be illustrated on
Figure 6.3. There (E or F) consists of the five simple events e, es, es, ¢, s,
so by the definition of the probability of a composite event (Section 4),
P(E or F) = P(e1) + P(es) + P(es) + P(es) + Ples).
The right side may be written as
[P(es) + P(es) + P(&s)] + [P(er) + P(es)]

which is just P(E) + P(F). It is clear that the argument would hold in
general.

ExampLE 1. Two dice. Suppose that in throwing two dice, the 36 simple
events displayed in (5.2) are equally likely. If T denotes the sum of the
points on the two dice, then, as shown in Example 5.3, P(T = 7) = .
The probabilities of the other values of T are as follows (Problem 5.4).

TasiE 1. PROBABILITIES OF VALUES OF T

t |2 3 4 5 6 7 8 9 10 1 12
PT=t)|d & F & & & f & & & &

Let us now find the probability of the event G that the sum T will be
divisible by 5. Since this occurs if and only if T is either equal to 5 or to
10, G is the union of the exclusive events E: T = 5and F: T = 10. Hence

P(G) = P(E) + P(F) = g + 45 = 4%

A special case of the addition law (1) is obtained by taking for F the
complement E of E. Since E and E are exclusive and their union is the
event set &, it follows that

P(E) + P(E) = P(Eor E) = P(§) = 1.
This establishes the important law of complementation
(2) P(E) =1 — P(E).

As we shall see later, the main usefulness of this relation resides in the fact
that it is often easier to calculate the probability that something does not
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happen than that it does happen.

As an illustration of (2), consider once more the model of Example 1 and
suppose we wish to determine the probability of the event E: the sum T
of the points showing on the two dice is three or more. The complement
of E is the event E: T = 2, which has probability ¢%. Hence

P(E) =1~ 5 = 3.
The concept of exclusive events extends readily to more than two events.

Definition. The events E\, E,, . . . are said to be exclusive if no simple
event belongs to more than one of them.

The addition law also extends in the obvious manner:

(3) P(ElorEzor...)=P(E’1)+P(E2)+...
if B, E,, . . . are exclusive.

If E, F are not exclusive, law (1) will in general not be correct, as may
be seen by examining Figure 6.2b. Here

P(E) = P(ex) + P(es) + Ples) + Ples)

P(F) = P(es) + P(es) + P(e2) + Pler)
so that

P(E) + P(F) = P(er) + P(es) + 2P(es) + 2P(es) + P(e2) + Poer)
while
P(E or F) = P(e1) + P(es) + P(es) + P(es) + Ples) + Plen).
Since P(e;) and P(es) occur twice in P(E) + P(F) but only once in
P(E or F), it follows that P(E) + P(F) is greater than P(E or F) (except
in the trivial case when both P(e;) and P(e;) are equal to zero).

A correct law must allow for the double counting of the probabilities of
those simple events which belong both to E and to F, that is to the inter-
section (£ and F). In Figure 6.2a the event (£ and F) consists of ¢, and
€5, 50 that

P(E and F) = P(e;) + P(es).
It follows that

) P(E or F) = P(E) + P(F) — P(E and F).

This addition law holds for all events E, F whether or not they are exclu-
sive. If they happen to be exclusive (as in Figure 6.3), (E and F) will be
empty and have probability 0, in which case (4) reduces to (1).

ExampLE 1. Two dice (continued). In Example 6.1 we considered for
two dice the events E, F corresponding to the results “first die shows one
point” and ‘“second die shows one point”’ respectively. If the 36 simple
events displayed in (5.2) are equally likely, it is seen that

P(E) = P{F) =+, and P(Eand F) = 5.
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The probability of the event (E or F) corresponding to the result that at

least one of the dice shows one point is then, by (4), equal to &% + 5 —

#¢ = 33 This can also be seen directly from the fact that the event

(E or F) consists of 11 simple events each having probability 4.

It is important to keep in mind that law (3) requires the assumption
that the events are exclusive. When they are not, it is necessary to correct
for multiple counting, as is done in law (4) for the case of two events.
The formulas for nonexelusive events become rapidly more complicated
as the number of events is iucreased (see Problem 12).

PROBLEMS

1. In Problem 5.3, find the probabilities of the complements of the events
described in parts (i), (iv), (vi), (viii), and (x).

2. In Problem 5.6, find the probabilities of the complements of the events
described in parts (i), (ii), (v), and (vii).

3. In Problem 5.9, find the probabilities of the complements of the events
described in parts (i)~(v).

4, In Problem 5.8, use the law of complementation to find the probabilities of the
following events:

(i) at least one of the two digits is greater than zero

(ii) at least one of the two digits is even.

5. In Example 1, use the results of Table 1 and the addition law (3) to find the
probabilities of the following events:
@) Tr=z10

) T'<5

(iii) T is divisible by 3.
6. In Example 1, let M be the larger of the numbers of points showing on the two
dice (or their common value if equal). Make a table similar to Table 1 showing
the probabilities of M taking on its various possible values 1,2, ..., 6.

7. Use the table of the preceding problem and the addition law (3) to find the
probabilities of the following events:

i M<3 iv)2<M<5
@) M <3 v)2<M<4.
@) M>5

8. In Problem 5.6 let B be the number of boys. Make a table similar to Table 1
showing the probabilities of B taking on its various possible values 0, 1, 2, and 3.

9. Use the table of the preceding problem and the addition law (3) to find the
probabilities of the following events:
i) B2
(i) B> 2
Git) B = 1.
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10. A manufacturer of fruit drinks wishes to know whether a new formula (say B)
has greater consumer appeal than his old formula (say A). Each of four customers
is presented with two glasses, one prepared from each formula, and is asked to state
which he prefers. The results may be represented by a sequence of four letters;
thus ABAB would mean that the first and third customers preferred A, while the
second and fourth preferred B. Suppose that the 24 = 16 possible outcomes of
the experiment are equally likely, as would be reasonable if the two formulas are
in fact equally attractive. If S denotes the number of consumers preferring the
new formula, make a table similar to Table 1, showing the probabilities of S taking
on its various possible values.

11. Use the table of the preceding problem and the addition law (3) to find the
probabilities of the following events:
(i) at least two of the customers prefer the new product
(ii) at most two of the customers prefer the new product
(iii) more than two of the customers prefer the new product.

12. Generalize Problem 10 to the case of five customers. If S again denotes the
number of customers preferring the new formula, make a table similar to Table 1.

13. Use the table of the preceding problem and the addition law (3) to find the
probabilities of the following events:
(1) at least three of the customers prefer the new product
(i) at most two of the customers prefer the new product
(i) 2< 8 <4
Gv) 2<8<4.
14. In Problem 4.10, make a table similar to Table 1 showing the probabilities of

(i) the number U of grade points in course 1 taking on its various possible

values 0,1,2,3,4;

(ii) the number V of grade points in course 2 taking on its various possible
values;

(iit) the total number W of grade points in the two courses combined taking on
its various possible values;

(iv) the difference D between the grade points in course 2 and those in course 1
taking on its various possible values.

15. Use the table of part (iii) of the preceding problem and the addition law (3)
to find the probabilities of the following events:
) w>6
H) 5SWL7?
(i) 3 < W <8.

16. Use the table of part (iv) of Problem 14 and the addition law (3) to find the
probabilities of the following events:
@ D>0
i) ~1<DX<L1
(i) D < ~20r D> 2.
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17. Let & consist of the six simple events ey, . . ., ¢, and let Ple)) = P(es) = .1,
P(es) = .2, P(es) = .25, P(es) = .3, Pleg) = .05. If

E= {31, 82}7 F = {62) €3, 84}, G = {e2r €z, 95},

find
@) P(E’) (iv) P(F or G)
@) P(F) (v) P(EorFor@).
(iit) P(E or F)
18. Let ¢ consist of the six simple events ey, . . ., €, and let P(e)) = .01, P(es) =

.05, P(es) = .14, P(es) = .1, Ples) = .2, Ples) = .5. If
E = {ely €4, es}, F = {93: €4, 65}, G = {62) e5}1

check for each of the following equations whether it is true by computing both the
right- and left-hand sides:
(i) P(E or F) = P(E) 4+ P(F)
(ii) P(E or G) = P(E) + P(G)
(iii) P(F or @) = P(F) + P(G).
Explain your results.
19. Check equation (4) for the events E and F of Problem 17.

20. Check the following generalization of equation (4) by computing both sides
when E, F, G are the events of Problem 17.

P(E or F or G) = [P(E) + P(F) + P(G)]
— [P(E and F) + P(E and @) + P(F and G)]
+ P(E and F and G)



CHAPTER 2
SAMPLING

2.1 A MODEL FOR SAMPLING

The notion that information about a population may be obtained by
examining a sample drawn from the population has been made familiar to
everyone in recent years. Public opinion polling organizations predict
how millions of people will vote, on the basis of interviews with a few
thousands. Advertisers decide to support or to drop television programs
on the basis of popularity ratings that rest on the viewing practices of a
sample of much less than one percent of the audience. The quality of the
product of large factories is controlled by inspection of a small fraction of
the output. Newspapers carry stories reporting on the cost of living, the
number of unemployed, the acreage planted in certain crops, and many
other economic variables which are estimated from the examination of a
sample. Like anything else sampling may be done well or badly, and it
is desirable for everyone to understand the theoretical basis for an activity
that has become so important to our society. In its application, sampling
involves many complications of detail, but the idea is essentially simple,
and is in fact based on the uniform model.

Since the purpose behind taking a sample is to get information about
the population, it seems natural to select a sample so that it will be repre-
sentatrve of the population. For instance, a fruit grower trying to esti-
mate the harvest from a grove of lemon trees might pick out a few trees
that he judges to be typical of the grove as a whole, count the fruit on the
selected trees, and then assume that the average number of fruit per tree
in the whole orchard is about equal to the average for the sampled trees.
Again, in trying to forecast an election, we might select counties that have
voted like the country as a whole in recent elections, and conduct inter-
views with voters in these counties. While this method of “purposive”
sampling is superficially attractive, it has not worked well in practice.
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Biases of the selector creep in too easily when the items for the sample are
selected purposively by the exercise of judgement. Also, items that are
typical of the population in some respects need not be typical in others.
For instance, counties that vote like the country on the last election may
well not do so on the next, when the issues will be different.

Most sampling experts have come to the conclusion that they cannot
rely on samf les selected purposively, and that the only safe practice is to
have the sample chosen by the operation of chance. Dice, pennies, and
random number generators have the virtue of complete impartiality, and
a sample selected by their operation is not subject to the bias of human
judgement. Greet ingenuity has been exercised in devising efficient ways
to use chance mechanisms in picking the sample, some of which will be
taken up in Chapter 10. We shall here consider only the simplest case,
in which the sample is chosen so that all possible samples of the same size
have the same probability of being chosen. Such a sample is known as a
random sample. The concept can best be presented by means of an
example.

ExampLi 1. The delegation. A city is governed by a council consisting
of a mayor and six councilmen. It is necessary to send three members to
testify in Washington. All seven want to go, and the mayor proposes
that the three delegates be selected by lot. He places in a box seven
marbles, similar in size, weight, etc., and labeled with the integers 1
through 7. A list of the seven men is made, and the names on the list are
similarly numbered. The mayor’s secretary is blindfolded, the marbles
shaken up, and she draws three. The delegation will consist of the three
men whose numbers are the same as those of the three marbles drawn.

The above procedure of selecting the sample by lot seems to be com-
pletely fair and impartial. Because the marbles are alike and are thor-
oughly mixed, and because the drawing is done blindfold, there appears to
be no means whereby one possible three-man delegation could be favored
over another.

We shall now build a probability model for this experiment. The
simple results are the possible three-man delegations, or the possible sets
of three marbles. They may be denoted by triples of integers, as follows:

123 134 146 234 246 345 367
124 135 147 235 247 346 456
0)) 125 136 156 236 256 347 457
126 137 157 237 257 356 467
127 145 167 245 267 357 567

It is seen that there are 35 possible samples of three marbles that the
secretary might draw. Since the experiment is arranged so that none of
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the samples is favored over any other, it seems reasonable to regard all
samples as equally likely.

Let us generalize the idea of the example. Suppose that it is desired to
draw a sample of s items from a population of N items. We shall denote

by (2\:) the number of different samples of size s that can be formed from

Z) is the number of different

samples of three items that can be chosen from a given set of seven items;
tableau (1) shows that G) = 3).

a population of N items. For example, (

We shall say that a sample of size s is drawn from a population of size
N at random if the drawing does not favor any one sample over another,

so that it is reasonable to expect each of the ({Z) possible samples to be

drawn about equally frequently in a long sequence of such draws. (In
practice, it is often difficult to know whether a given method of drawing
the sample has this property.)

In the model representing the drawing of a random sample, it is then

natural to regard all ({Z) samples as equally likely. Each will thus be

assigned probability 1/ (IZ), and the resulting model is a uniform prob-

ability model in the sense of Section 1.5.

Table 1 shows all values of (f) for populations of size N < 10. A more

extensive table, which is discussed in the next section, is given as Table A
at the end of the book. In principle, any entry of these tables could be
computed by writing out a tableau similar to (1). However, much more

convenient methods for obtaining the numerical values of (1‘:’) will be pre-

sented in the next section.

ExaMPLE 1. The delegation (continued). Suppose that the mayor and
three members of the council are Conservatives, while the other three are
Liberals. It turns out that the delegation, although supposedly chosen
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N
TaBLE 1. THE NUMBER ( OF SAMPLES
s

3 1 2 3 4 5 6 7 8 9 10

N

1 1

2 2 1

3 3 3 1

4 4 6 4 1

5 5 10 10 5 1

6 6 15 20 15 6 1

7 7 2 3% 3 2 7 1

8 8§ 28 56 70 56 28 8 1

9 9 36 8 126 126 84 36 9 1
10 10 45 120 210 252 210 120 45 10 |

by lot, consists entirely of Conservatives. Is this so unlikely, under ran-
dom sampling, that the Liberals have good reason for believing the drawing
was rigged? Since there are four Conservatives on the Council, there are

(;) possible three-man delegations consisting entirely of Conservatives,
and from Table 1 we see that (g) = 4. If the drawing is fair, so that the

(;) = 35 delegations are equally likely, the probability of getting a delega-

tion without Liberals is 4% = .11, or about one chance in nine. This is
not small enough to make a strong case for rigging.

ExampLE 2. Quality control. A box of ten fuses contains three that will
not work. If a random sample of four fuses is examined, what is the
chance that no defective fuse will be found? From Table 1 we see that

there are (140

sample is random; that is, all 210 possible samples are equally likely. Since

) = 210 possible samples of size s = 4. By assumption, the

the box contains seven good fuses, there are (7) = 35 samples consisting

4
entirely of good fuses. The probability that no defective fuse will be
found in the sample is therefore %% = .167.
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ExAMPLE 8. Lunch counter. Three persons occupy the seven seats at a
small lunch counter. It is noticed that no two of them are sitting next to
each other. Is this fact evidence that the customers tend to avoid taking
a stool next to one already occupied? If the customers seat themselves
without regard to whether the adjacent seat is occupied, we may think of
them as choosing their places at random. Since three of the seven seats

may be chosen in (;) = 35 different ways, we have only to count the num-

ber of choices which do not bring two customers together. There are 10
such arrangements:

OEOEOEE, OEOEEOE, OEOEEEO, OEEOEOE, OEEOEEO
OEEEOEO, EOEOEOE, EOEOEEO, EOEEOEO, EEOEOEO

The probability of the observed event is therefore 3 = % if the customers
seat themselves at random. This probability is too large for the observed
seating to be very strong evidence in favor of the avoidance theory.

ExAMPLE 4. The diseased poplars. Of a row of ten poplar trees, four
adjacent trees are affected with a disease. Is there reason for thinking
that the disease is spreading from one tree to another? This problem is
much like the preceding. If the disease strikes at random, there are
(140) = 210 possible sets of four that might be affected. Of these arrange-
ments, only seven consist of four adjacent trees. Thus P(affected trees
adjacent) = 335 = %, if the choice is random. This is rather a small
probability, so there is some ground for thinking that a causal relation
underlies the adjacency of the diseased trees.

The method of drawing a random sample by means of numbered marbles,
described in Example 1, is feasible only if the population size N is suffi-
ciently small. For larger N, a more convenient method utilizes a table of
random numbers (see Section 3.4). An essential step in both these
methods, or any others, is the construction of a numbered list of the items
in the population. It is often difficult and expensive to make such a list.
However, to draw a random sample one cannot do without it or some other
equivalent method of numbering the items. Thus, a random sample of
the houses in a block may be obtained by making a sketch map of the
block and numbering the houses on this map. If light bulbs are packed
in cartons in a regular pattern, one may devise a systematic numbering
scheme that attaches to each bulb a different integer, thereby making it
unnecessary actually to write down the list. Sampling experts have
developed many devices to obtain the equivalent of a list at less expense
and trouble.
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PROBLEMS

1. In Example 1, find the probabilities of the following events.
(i) The delegation consists of Liberals only.
(ii) The delegation consists of two Conservatives and one Liberal.
(iii) There are at least two Conservatives on the delegation.

(iv) The mayor is a member of the delegation.

2. Suppose that the council of Example 1 consists of the mayor and eight council-
men, and that the mayor and four of the council members are Conservatives while
the other four are Liberals. Let a delegation of four be selected at random.
(i) How many possible delegations are there?
(ii) What is the probability that the delegation will consist entirely of Con-
servatives?
(iii) What is the probability that the delegation will contain at least one Con-
servative?
(iv) What is the probability that the delegation will contain at least one Liberal?

3. In the preceding problem, suppose that the mayor and three council members
are Conservatives, three members are Liberals, and two are Independents. If a
delegation of three is selected at random, find the answers to parts (i)-(iv) of the
preceding problem.

4. Check the entries (g) and (g) in Table 1 by listing all possible samples of
sizes two and three that can be drawn from the five persons A, B, C, D, E.

5. Suppose you know that a family has six children, two boys and four girls, but
that you don’t know their sexes according to age.
(i) How many possible arrangements bbgggg (two boys, followed by four girls),
bgbggg, . . . are there?
Assuming all possible arrangements of part (i) to be equally likely, find the
probabilities of the following events.
(ii) The oldest child is a girl.
(iii) The two oldest children are both girls.
(iv) The oldest child is a boy and the youngest is a girl.

6. Use the definition of (]Z) to find the value of

® (x) (i) (zlv ) (i) (NA_’ 1).

7. Of a group of seven children, four are selected at random to receive instruction
by method A, while method B will be used on the remaining three. Find the
probability of the following events.
(i) The four most intelligent children are all assigned to method A.

(ii) The three most intelligent children are all assigned to method A.

(iii) The most intelligent child is assigned to method A.
[Hint: In counting the numbers of samples having the properties in question, it
may be helpful to label the children 1, 2, . . ., 7 in order of intelligence.]
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8. Find the probabilities of the three events (i)-(iii) of the preceding problem
assuming that five of the seven children are selected at random to be instructed by
method A, the remaining two receiving instruction by method B.

9. Suppose that of the seven children in Problem 7, four are boys and three girls.
Two of the four boys and two of the three girls are selected at random to be in-
structed by method A.
(i) How many possible samples of two boys and two girls are there?
(ii) Assuming all these samples to be equally likely, find the probability that the
most intelligent boy and the most intelligent girl both receive instruction
by method A.

10. A batch of ten items contains two defectives. If two items are drawn at
random, what is the probability that both are nondefective?

11. In Example 4, what is the probability that no two diseased trees are adjacent?

12. By inspection of Table 1, formulate a rule for obtaining each entry as the sum
of two entries in the row above it. Use the rule to add a new row to the table.

13. It appears in Table 1 that certain pairs of entries in each row are equal
Formulate a rule that specifies when two entries are equal.

14. A square field is divided into nine square plots, arranged in three rows and
three columns. Three plots are chosen at random. What is the probability that
of the chosen plots
(i) all are in the same row;
(i) one is in each column;
(iii) one is in each row and one is in each column?

15. Suppose the field of Problem 14 is divided into eight square blocks, arranged
in two rows and four columns. Two plots are chosen at random. What is the
probability that
(i) both are in the same row;
(i) both are in the same column;
(iii) one is in each row?

16. A rectangular carton of 24 light bulbs consists of 2 layers, each with 3 rows
and 4 columns. Three bulbs are selected at random. What is the probability
that all of the selected bulbs are from corners of the package?

[Hint: (2;) - 2024.]

17. In order to select a law firm at random, it is suggested to draw a lawyer from
an available list of all N lawyers in the city and then select the firm to which he
belongs. Suppose there are in the city 50 firms consisting of only one lawyer, ten
firms consisting of two lawyers each, two firms consisting of three lawyers each, and
one firm consisting of four lawyers. Find the probability that the selected firm
consists of (i) four lawyers, (ii) one lawyer.

(iii) Has the law firm been selected at random?

18. One of the 63 law firms of the preceding problem is selected at random, and
then a lawyer randomly chosen from the firm. Have we selected a lawyer at
random from those of the city?
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2.2 THE NUMBER OF SAMPLES

The nuraber (Jz) of different samples of size s that can be drawn from a

population of size N is of great importance in probability and statistics,
and also in other branches of mathematics. 1t is known as the number of

combinations of N things taken s at a time. The numbers ({:) are also
referred to as binomial coefficients. We shall now point out several features
of these quantities, and show how a table of values of (f) may easily be

computed.
An inspection of Table 1.1 shows that, at least in all cases covered by
the table,

1) (If) =N and (%) = 1.

These relations hold quite generally. Suppose that a sample of size s = 1
is to be drawn. Then each of the N items may serve as this sample, so
that there are N possible samples of size 1. At the other extreme, if the
sample is to have size s = N, the “sample” must consist of the entire
population, and this is possible in just one way.

To discover another property of these numbers, let us look at one of the
rows of Table 1.1, for example the last row:

s |1 2 3 4 5 6 7 8 9 10
2 10 -
) 10 45 120 210 252 210 120 45 10 1

The entries are arranged symmetrically about the largest value, (150> =

10 10 10 10
252. Thus(4) = 210 = (6)’ <3> =120 = <7>,andsoforth. A

similar symmetry holds in the other rows. This phenomenon is easily
explained. For example, when a sample of size s = 3 is drawn from a
population of size N = 10, there is left in the population a remnant of size
N —s=10—3 = 7. We can think of these seven items as a sample of
size 7. Thus to each sample of size 3 that may be removed, there corre-
responds a sample of size 7 that is left. Therefore the number of samples

of size s = 3 equals the number of samples of size N — s = 7, or ( 130> =

( 170> The same argument shows that quite generally
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®) (vL)=()

which is the formal expression of the observed symmetry.
Equation (3) makes it possible to cut in half the size of any table of the

quantities (]Z) A table utilizing this fact and giving all entries with
N £ 26 and s < 13 is given as Table A at the end of the book. If we wish

to use this table for example to obtain the value of (?g), we look up instead

24

the value of (24 — 15

)toﬁnd

24 24
(15) = (9) = 1,307,504.

For values beyond the range of the table, there exist a variety of formulas
and approximations. One such formula will be derived in Section 4.
Equation (3) breaks down in one case, namely when sis equal to 0. The

left side then becomes (%), which by (1) has the value 1; but the right side

becomes <](\)7), which is meaningless. Whenever a mathematical expres-

sion is meaningless because it is undefined, we are free to attach to it any
meaning that we like. Usually, it is convenient to do this in such a way
that certain formulas remain valid for the previously undefined case. This
suggests that we define

) (%) -1

so that equation (3) will continue to be valid when s = 0. With this
definition it is possible to complete the symmetry of the rows of Table 1.1;
by adding the entry for s = 0, the row for N = 7 for example will become:

01 2 3 4 5 67
1 7 21 35 3 21 7 1

()

Finally, we shall discuss a relation which permits much easier computa-
tion of the table than direct enumeration. Inspection of Table 1.1 shows
that any entry is the sum of the entry above it and the entry to the left of

the latter. The entry above (];’) is (N ;- 1), and the entry to the left of

this is ( -1 The suggested relation is therefore

o =T

and this does in fact hold quite generally.
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To see how to prove equation (3), let us consider once more the problem
of choosing a three-man delegation from a seven-man council (Example

1.1). The (;

those to which the mayor belongs, and those to which he does not. There

) = 35 possible delegations may be divided into two types:

. 6 L
are just (2> = 15 of the former, since if the mayor belongs, there are still

two members to be chosen from among the six other councilmen. On the
other hand, the number of three-man delegations without the mayor is

(g) = 20, since for these delegations all three must be chosen from the six

ordinary council members. This proves (5) for the case N =7, s = 3,
and the argument can easily be extended to give a proof of the general case.

Relation (5) can be used to compute a table of ({:’) by obtaining succes-
sively each row from the preceding one. To illustrate the method, let us

get the value (g) from the entries listed above for N = 7. The entry
above (g) is (;) = 35; the entry to the left of this is (;) = 21, and their

sum gives (g) = 354+ 21 = 56. In this manner it is possible to build up

the table quickly. The triangular scheme that is built up in this way is
known as Pascal’s triangle. Table 1.1 may easily be checked by this
device.

The method outlined above has been used on an automatic computer to
compute the values up to N = 200, and the resulting table has been pub-
lished.* The values increase very rapidly; it may interest the reader to
know that (?gg) = 90,548,514,656,103,281,165,404,177,077 484,163,874,
504,589,675,413,336,841,320, which is a number of 59 digits! Values some-

N
times quoted are the number of possible hands at poker, <052> = 2,598,960,

and the number of possible hands at bridge, (’;g) = 635,013,559,600.

ExampLE 1. Poker. What is the chance that a poker hand will be a heart
flush (i.e. consist only of hearts)? A poker hand consists of 5 cards dealt
from a deck of 52 cards. Before they are dealt, the cards are shuffled, and
if the shuffling is sufficiently thorough it is natural to assume that no one
poker hand is more likely to be dealt than any other. This assumption
cannot be directly checked, because the number of poker hands is so large

* Table of Binomial Coefficients, Cambridge University Press, 1954.
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that it is not feasible to deal enough hands to show whether or not they all
arise with equal frequency. It is possible however to check certain conse-
quences of the assumption of the uniform model, and experiments of this
sort have been carried out. The general conclusion is that much more
thorough shuffling than is customary among card players would be needed
before the uniform model could be safely used.

Suppose, however, that we are willing to assume that all hands are
equally likely. It is then easy to compute the probability of a heart flush.
The number of favorable cases is the number of hands that can be chosen

from the 13 hearts in the deck, and this is just (153) = 1287. Therefore,

P(heart flush) = 1287/2 598,960 = .000495, which is about 1 in 2000.
The same argument shows this also to be the probability of each of the
other types of flush.

ExamrLE 2. Inclusion of a specified item. A term paper consists of 24
problems. In order to save time, the instructor corrects only eight of
them which he selects at random. If in your assignment only one problem
is wrong, what is the probability that it will be among those selected for
correction? The total number of possible samples of eight problems is
24 . . .

( 3 ) = 733,471. The number of these including the one incorrect prob-
lem is <‘7 ) = 245,157, since this is the number of ways in which the re-
maining seven problems needed for the sample can be chosen from the 23
correct problems. The desired probability is therefore

245,157 1

735,471 ~ 3

This example illustrates a fact which holds quite generally: the prob-
ability that a random sample of size s includes any specified item of the
population of N items from which the sample is taken is s/N. (In the
example s = 8, N = 24 so that s/N = }; for a general proof see Problem
17.) It follows that the method of random sampling is ‘“fair’ in the sense
that each item has the same probability (namely s/N) of being included
in the sample.

PROBLEMS
. o (20N . 22\ ... (25
1. Use Table A and relation (3) to find (i) (l 6) (i) (1 4) (iii) 17)

2. Use Table A and relation (5) to find (i) (267> (ii) (% - (i) 3(7] .



50 SAMPLING [cHAP. 2

3. Using Table A and making repeated use of relation (5), find (i) (268 ); (i) (ﬁ),

iy (33):  (51)

4. A batch of 20 items contains four defectives. If three items are drawn at
random, find the probability that

(1) all three are nondefective;

(ii) at least one is defective.

5. A batch of 25 items contains five defectives. If three items are drawn at
random, what is the probability that

(i) at least one is defective;

(ii) at most two are defective?

6. A class of 24 students consists of 10 freshmen and 14 sophomores. The in-
structor decides to read a sample of six papers selected at random from an assign-
ment handed in by all students. What is the probability that his sample contains
(i} at least one paper by a freshman;
(ii) at least one paper by a sophomore;
(iil) at least one paper from each group?

7. Suppose that the class of the preceding problem consists of 7 freshmen, 8 sopho-
mores and 9 juniors. Find the probability that the sample of six contains

(i) at least one junior;

(ii) no freshman.

8. During a flu epidemic, 18 patients have volunteered to be treated by an experi-
mental drug. It is decided to give the drug to 12 of the 18 selected at random,
and to use the other 6 as controls by giving them a more conventional treatment.
Suppose that 7 of the patients would, without treatment, have had a serious case
of the flu and the remaining 11 a light case. Find the probability that the control
group contains at least one of the serious cases.

9. A group of 20, one of whom acts as secretary, selects at random a delegation of
five. What is the probability that the secretary is included in the delegation?

10. In a poker hand, what is the probability of a “flush” (i.e., all five cards from
the same suit)?

11. Find the probability that a poker hand contains
(i) at least one black card;
(ii) only Kings, Queens and Jacks.

12. A lot of 25 fuses contains five defectives. How large a sample must one draw
so that the probability of getting at least one defective fuse in the sample will
exceed (i) 3; (i) 4; (ili) &7
13. In Problem 6, find the smallest sample sizc so that, with probability exceed-
ing 4, the sample will contain
(i) at least one sophomore;
(ii) at least one freshman;
(iii) at least one member from each group.
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14. A box contains four red and five white marbles. In how many ways can a
sample be drawn consisting of

(i) one red and one white marble;

(ii) one red and two white marbles?

15. From the box of Problem 14, a sample of size two is drawn at random. What
is the probability that it consists of one red and one white marble?

16. (i) Show that the total number of ways of selecting a committee of s from a
group of N and naming one as chairman is (]Z)(f) [Hint: Select first the
committee; then from the committee members a chairman.]

(ii)) Show that an alternative answer to (i) is (2;;)(];’__11 ) [Hint: select

first the chairman from the whole group; then select the s — 1 ordinary

members.]
(i1) By comparing the answers to (i) and (ii) show that
N N/N -1
6) (s) T s\s—=-1/

17. Using the result of Problem 16, show that the probability that a specified
item is included in a sample of size s taken at random from a population of N is

N -1
s§—1

ANS—1/ 3
¢ "
s
18. By successive application of (6) and the fact that (llc) =k, find (i) (g),

(i) (g) (iif) (D

19. Use (6) to show that

) (];1’) - N(N2— l)_; (i) (g’) _ NN - 16)(N -2)

20. Show that the probability is (N — s + 1) /(2’) that a specified s — 1 items

are included in a sample of size s taken at random from a population of N.

21. Suppose that in the drug test of Problem 8, the new drug is given to 10 of the
18 patients, selected at random, and the remaining 8 serve as controls.
(i) Find the probability that the control group contains at least one of the light
cases.
(i) Find the probability that the control group contains at least two of the light
cases.
[Hint for (ii): Consider the complement of the event in question and use the result
of Problem 20.]
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2.3 ORDERED SAMPLING

In Section 1, we presented the following method for obtaining a random
sample of the desired size from a population of items. Let the N items in
the population be numbered from 1 to N, and let a box contain N marbles
similarly numbered. After thorough mixing, s marbles are taken from
the box, and the sample consists of those s items in the population whose
numbers appear on these s marbles.

Unless s is quite sma., it is difficult to grab exactly s marbles at once.
An obvious method to insure that the desired number of marbles is
obtained, is to take them one at a time until just s have been drawn from
the box. The result of this procedure is a sample of s marbles arranged in
a particular order. One of the marbles in the sample was obtained on the
first draw, another on the second draw, and so forth.

Definition. A sample arranged in order is called an ordered sample.

To distinguish between an ordered sample and the kind discussed pre-
viously, which we may now call “unordered,” we shall adopt in this
section a notational convention. A sample will be indicated by listing its
items, in parentheses when the sample is ordered, in braces when it is
unordered. Thus an unordered sample consisting of the two items A and
B may be denoted indifferently by {A, B} or by {B, A}. On the other
hand, (A, B) and (B, A) denote two different ordered samples consisting
of the items A and B. In (A, B) item A is first and B second; in (B, A)
the order of the two items is reversed.

To illustrate the relation between ordered and unordered samples, con-
sider a population of N = 4 marbles labeled A, B, C, D (they could equally
well be labeled 1, 2, 3, 4, but the use of letters will provide a clearer nota-
tion). An ordered sample of size s = 2 is drawn. The 12 possible
ordered samples are displayed below, arranged in columns corresponding
to the six possible unordered samples of the same size.

Unordered sample ‘ {A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

l e
M Corresponding (A,B) (A,C) A,D) B,C) (B,D) (C,D)

ordered samples | (B, A) (C,A) (D,A) (C,B) (D,B) (D,C)

As a second illustration, suppose that from the same set of marbles we

draw an ordered sample of size s = 3. Each of the (g) = 4 unordered

samples may be arranged in six different orders, giving the 4-6 = 24
ordered samples shown below.
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Unordered sample {ABC} {ABD} {ACD} {BCD}
Corresponding (ABC) (ABD) (ACD) (BCD)
ordered samples (ACB) (ADB) (ADC) (BDC)
@) (BAC) (BAD) (CAD) (CBD)
(BCA) (BDA) (CDA) (CDB)
(CAB) (DAB) (DAC) (DBC)
(CBA) (DBA) (DCA) (DCB)

It will be convenient to introduce the symbol (N), to represent the
number of different ordered samples of size s that can be drawn from a
population of size N. (This quantity is also known as the number of
permutations of N things taken s at a time.) The illustrations above
show that

(4)2 =12 and (4)3 = 24.
Table 1 gives the values of (N), for populations of size 10 and less. These
values are in general much larger than the corresponding values of (]:)

shown in Table 1.1, as is reasonable since each sample of several items
corresponds to many different ordered samples of these items. While the
small entries of the present table could be obtained by making systematic
lists of all ordered samples for the given values of N and s, this would be
too cumbersome for the large entries. All values were actually computed
from the simple formula for (N), given in the next seetion.

TaBLE 1. THE NUMBER (N), OF ORDERED SAMPLES

10

2
o
ot
[
[V
>
o
(=2
-
e o}
©

1 1

2 2 2

3 3 6 6

4 4 12 24 A4

5 5 20 60 120 120

6 6 30 120 360 720 720

7 7 42 210 840 2520 5040 5040

8 8 56 336 1680 6720 20160 40320 40320

9 9 72 504 3024 15120 60480 181440 362880 362880

10 10 90 720 5040 30240 151200 604800 1814400 3628800 3628800

Let us now build a probability model for the random experiment of
drawing an ordered sample of size s from a population of size N. It is
natural to take as the simple eve, s all possible different ordered samples.
What probabilities should be attacned to them? If the N marbles are of
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similar size and weight and are thoroughly mixed, and if the drawing is
done blindfold, we would expect each of the ordered samples to appear
with about equal frequency, and actual experiments with small populations
bear out this expectation. Accordingly we shall treat all (N), ordered
samples as equally likely, and assign to each of them the probability
1/(N),. When an ordered sample is drawn so that this model may reason-
ably be applied, we shall refer to it as a random ordered sample.

The usefulness of ordered sampling for obtaining a random (unordered)
sample rests on the following important fact:

to obtain a random sample of size s from a popula-
3) tion of size N, we may first draw an ordered ran-
dom sample and then disregard the order.

We shall prove this first for the special case of a sample of size s = 3
drawn from a population consisting of N = 4 items. If the items are
numbered A, B, C, D, let us find for example the probability that the
sample, without regard to order, is {A, B, D}. Each of the ordered sam-
ples shown in the tableau (2) has the same probability 47, and it is there-
fore only necessary to count the number of ordered samples corresponding
to {A, B, D}. These are just the six cases listed in the second column of
the tableau, and the desired probability is therefore 5% = 1.

4) = 4 possible

Extending this argument, it is seen that each of the (3

unordered samples
{A’ B’ C}’ {A} B’ D}’ {A, 07 D}, {B’ C’ D}

appears just six times in the tableau (2) of ordered samples. Each of the
four possible unordered samples that can be obtained by first drawing an
ordered sample of size three and then disregarding the order has prob-
ability 1, and the unordered sample obtained in this manner is therefore
random.

The above argument can be used to show quite generally that the
sample obtained from a random ordered sample by disregarding the order
is random. Notice that each unordered sample may be arranged in the
same number, in fact (s),, of different orders. Therefore, in the model for
ordered sampling, all (unordered) samples have the same probability
(s)s/(N)., as was to be proved.

We know, from Section 1, that the probability of each unordered sample

is1 /({Z) Equating this with the expression (s)./(N). just obtained for

the same probability, we see that

@ .= (7)o
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That is, the number of ordered samples is the number of unordered samples
multiplied by the number of ways in which each sample can be ordered.

To discover another important property of ordered sampling, let us
suppose once more that a random ordered sample of size s = 3 is drawn
from the population of four marbles labeled A, B, C, D and find the prob-
ability that marble ID appears on the second draw. Inspection of tahleau
(2) shows the following six ordered samples to have marble D in the second
position:

(4,D,B) (B,D,A) (A, D,C) (CD,A) (B,DC) (CD,B)

The desired probability is therefore % = 1.

In the same manner it is easily checked that each of the four marbles
has the same chance of appearing on the second draw (Problem 10). How
could it be otherwise, since there is nothing to favor any marble over any
other as a candidate for the second spot? This result generalizes to the
following equivalence law of ordered sampling:

if a random ordered sample of size s is drawn from
a population of size A, then on any particular one
of the s draws each of the N items has the same
probability 1/N of appearing.

)

As an illustration, suppose that an instructor has announced that he will
call at random on three students to present solutions of the three home-
work problems at the board. One of the ten students is unable to solve
Problem 2, and wonders what his chances are of being found out. Tn
cffect, the instructor will draw an ordered random sample of size s = 3
from a population of size NV = 10. By the equivalence law, the worried
student has probability 1/N = % of being the person sampled on the
second draw, and hence being asked to work Problem 2.

The equivalence law asserts that each item in the population is equally
likely to be obtained on any specified draw. It is also true that each pair
of items in the population is equally likely to be obtained on any two
specified draws. For example, if we give equal probability to each of the
ordered samples in tableau (2), what is the probability that the items
{A, B} will be obtained on draws 2 and 4? This event occurs with the
following four samples

(C; Aa D) B): (D) Ay C) B)) (C; B, D: A), (D, B: C, A)y

so that the desired probability is #; = L. The same probability attaches
to each of the six (unordered) pairs. The result also extends beyond two

items: each (unordered) triple of items has the same chance 1 / (;;r) of

being obtained on any three specified draws, etc. We shall call this the
“generalized equivalence law of ordered sampling.”
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PROBLEMS

1. Check the values (5); and (5); of Table 1 by enumeration from tableaus similar
to (1) and (2).

2. (i) Check the values (3); and (4), of Table 1 by enumeration.
(ii) Explain why it is always true that (N)x = (N)w_i.
(iii) Is it true that the total number of ways in which N items can be arranged
in order is (N)a?

3. Check the values (3); and (4), by enumeration, and explain why it is always
true that (N), = N.

4. From Table 1, calculate (N)s/(N): for N =2,3,...,10, and conjecture a
general formula for (N)s.

5. From Table 1, caleulate (N)x/(N — 1)y for N =2,3,..., 10, and con-
jecture a general formula for (N)x.

6. In an essay contest, there are three prizes worth $500, $200, and $100 re-
spectively. In how many different ways can these be distributed among (i) nine
contestants; (ii) ten contestants?

7. A newly formed club of ten members decides to select its officers by lot. From
the ten names, four are drawn out one by one. The first one drawn will serve as
President, the second as Vice-President, the third as Treasurer, and the fourth as
Secretary.
(i) How many different possible outconies are there to this lottery?
(it) What is the probability that the only girl in the ¢Jub will become Viee-
President?
(i) What is the probability that the four oldest members will be chosen for the
four offices (not nceessarily in order of importance)?
8. In a food tasting experiment, a subject is asked to rate five brands of coffee
which are sold at different prices. The coffee is served to the subject in five cups
in random order (i.e., so that all possible orders are equally likely). Find the
probability that
(i) the first three cups served are, in order, the most expensive, the next most
expensive, the third most ekpensive;
(i) the first three cups served are the three most expensive brands, but not
necessarily in order.

9. Solve the preceding problem if the number of brands being compared s seven
rather than five.

10. From tableau (2), check that in a random ordered sample of s = 3 drawn from
a population of four items labeled A, B, C, D, each of the four items has the same
probability of being obtained on the second draw.

11. From the tableau of Problem 1, check that in a random ordered sample of
s = 3 drawn from a population of five items, each of the five items has the same
probability of being obtained on the second draw.
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12. A lottery contains one grand prize of $1000; the winning number will be
announced after all customers have drawn their tickets. Two customers arrive
simultaneously, and customer A is permitted to draw a ticket first. Customer B
complains that he is at a disadvantage since if A has drawn the grand prize, B will
have no chance to get it. Is B’s complaint justified?

13. A box contains four red and five white marbles. To obtain a sample, three
marbles are drawn at random, one after another. What is the probability that
(i) the second marble is red.
(ii) the second and third marbles are both red;
(1i1) the second marble is white;
(iv) the second and third marbles are both white?

14. Solve the four parts of the preceding problem if the box econtains three red
and six white marbles, and if four marbles are drawn from the box.

15. A box contains six red, seven white and ten black marbles. Two marbles
are drawn as in Problem 13. Find the probability that
(i) the second marble is white;
(ii) the two marbles are of the same color.
16. Four runners in a ski race, wearing numbers 1, 2, 3, 4 on their backs, are
started one after another in random order. Make a tableau of all possible starting
orders and find the probabilities of the following events.
(1) Runner No. 1 is started first, then runner No. 2, then No. 3, and lastly
No. 4.
(ii) Runner No. 1 is started first.
(iii) The starting position of at least two of the runners coincides with the,
numbers on their backs.
(iv) The starting position of cxactly one runner coincides with the number on
his back.
(v) The starting positions of exactly two runners agree with the numbers on
their backs.

17. A magazine prints the photographs of four movie stars and also (in scrambled
order) a baby picture of each. What is the probability that a reader by purely
random matching of the pictures gets at least two right?

18. Anordered sample of s = 5is drawn from ten items numbered 1 to 10. What
is the probability that the items drawn will appear in order of increasing (not
necessarily consecutive) numbers?

19. Consider an ordered sample of size s drawn at random from a population of
N items. Let E represent the result that a specified item is included in the sample,
Find P(E) by noting that E = (E, or Eyor . . . or E,), where E), Es, . . . represent
the events that the specified item is obtained on the 1st draw, on the 2nd draw, . . ..

2.4 SOME FORMULAS FOR SAMPLING

In the preceding sections we introduced the methods of ordered and un-
ordered random sampling. If the size of the population is N and that of
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the sample s, we denoted by (N), the number of possible ordered samples
and by ({Z) the number of possible samples without regard to order. We

shall first develop general formulas for these quantities and then give some
applications of these formulas.

Let us begin by obtaining a formula for (¥),, the number of ordered
samples of size two that can be drawn from a population of N items num-
bered 1,..., N. Consider the process of drawing such a sample. On
the first draw there are N items to choose from. Whichever item is first
chosen, there will remain N — 1 possibilities for the second draw. There-
fore the number of ordered samples of size two is

¢y (N =N - 1).

For example, there are (5); = 5-4 = 20 ordered samples of size two
that can be drawn from a population of five items. These 20 items may
be displayed as follows:

Gn 62 63 64—

where the five rows correspond to the five possible choices on the first draw,
and the four entries in each row to the four choices remaining for the second
draw after one item has been chosen.

What about (N);, the number of ordered samples of size three? Again
there will be N possibilities on the first draw, and N — 1 possibilities
on the second draw regardless of the choice on the first one. Finally,
however the first two choices are made, there will remain N — 2 possi-
bilities for the third draw. Thus the total number of samples is (N); =
NN — 1)(N — 2). For example, when N = 10 there are 10-9-8 = 720
different ordered samples of size three.

In a quite similar way it can be argued that the number of ordered
samples of size four is N(N — 1)(N — 2)(N — 3), and in general that the
number of ordered samples of size s will be the product of s factors, start-
ing with N and decreasing one each time. What is the last factor? By
the time the sth factor has been reached, the original N will have been
reduced by one s — 1 times, so the last factoris N — (s —1) = N — s+ L
The final formula for the number of ordered samples of size s from a
population of size N is

) N),=NN-DN—-2)---(N—s+1).
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For example, the number of ordered samples of size five from a population
of size ten is 10-9-8-7-6 = 30,240.

An important and interesting special case of formula (2) arises when
s = N, that is, when the entire population is taken into the sample. The
expression (2) then becomes

3) Ny=NN-1H)N-2)---2-1

or just the product of the first N positive integers. This quantity is known
as N factorial and is written N! Thus, (N)y = N!is the number of ways
in which N elements can be arranged in order.

By substituting (2) and (3) into formula (3.4), we obtain

(V) - M=t

4)

An easy way to remember this formula is to notice that the numerator is
the product of s decreasing factors starting with N, while the denominator
contains s increasing factors starting with 1. As an example we compute

10\ _ 10-9-8-7
(4) = T 53 = 10:3:7 =210,

which agrees with the value given in Table 1.1.

TFormula (2) can be used to prove the equivalence law of ordered sam-
pling stated in the preceding section. To prove this law, we must show
that on any particular draw, each of the NV items has the same probability
1/N of being drawn. To fix ideas, consider the probability of obtaining a
particular item, say item A, on the second draw. There are (N), equally
likely ordered samples. How many of these will have item A in second
place? If item A is specified to occupy second place, there will remain
N — 1 other items for the s — 1 other places. The remaining places can
then be filled in (N — 1), different ways. The desired probability is
therefore

N-1Dy _ N-_DN—-2)---(N—-s+1)
(N), NN-1D)N-2)---(N—-s+1)
Clearly, the argument would work equally well for any item and any place,

which proves the desired result. A similar argument leads to the gen-
eralized equivalence law.

1
N

PROBLEMS

1. Use formula (2) to check in Table 3.1 the entries for (i) (7)s; (i) (7)4; (iii) (10)s.
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2. Use formula (4) to check the following entries in Table A: (i) (141) : (if) (137) ;

(i) (150)

3. Use formula (4) to check your answers to Problem 2.3.

4. Solve the three parts of Problem 3.7 when the club has 13 members instead
of 10.

5. Use formula (4) to check that the number of possible poker hands is 2,598,960.

6. Prove the following alternative expression for (IZ):

® ()= oo

7. Give a meaning to 0! in such a way that (5) will remain valid when s = 0 and
when s = N.

8. TUse (5) to prove the relations (2.1), (2.3), (2.5), and (2.6).

9. (i) What is the probability that in three throws with a fair die, different num-
bers occur on all three throws?
(ii) What is the probability that at least two of the throws show the same
number? [Hint: Assume that all 63 = 216 possible results of the three
throws are equally likely.]

10. What is the probability that in six throws with a fair die all six faces occur?
[Hint: Assume that all 6° possible results of the six throws are equally likely.]

11. What is the probability that in a group of s = 5 persons at least two have
their birthday on the same day? [Hint: Neglect Feb. 29 and assume that all
(365)° possible sets of five birthdays are equally likely.]

Note: It is a surprising fact that for s = 23, the desired probability is greater than 3.

12. The binomial theorem states that
_ (N N\ N\ . N
5) (a 4+ b)Y = (O)a” + (1 )a” 1 + (2)a” L (N)bN.

In the expansion of (a + b)!? find the coefficient of (i) a%°; (i) a%7; (iii) a2b?;
(iv) b2,

13. By choosing appropriate values for a and b, prove that

o () () (-
o (8- () (2) - () -

14. Use 13(i) and (2.5) to prove that when N is even

HRAROERRORE
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15. Use (4) to check (2.6).

16. Prove the binomial theorem. [Hint: In multiplyingout (a +b) (@ +b) - - -
(a + b), the terms a*b¥~* arise if a is selected from s of the parentheses and b from

the remaining N — s. How many such terms are there?]



CHAPTER 3
PRODUCT MODELS

3.1 PRODUCT MODELS FOR TWO-PART EXPERIMENTS

Random experiments often consist of two or more parts: for example,
several throws of a die or throws of several dice; drawing two or more
marbles from a box; observing the weather on consecutive days or the
sexes of successive children in a family; etc. Frequently it is relatively
easy to build a satisfactory model for each of the parts separately. The
problem then arises: how should the separate models for the various parts
be combined to provide a model for the experiment as a whole? The
present, chapter is devoted to one type of combined model for the whole
experiment, which we shall call the “product model.” Very many of the
probability models used in practice are of this type.

ExaMpLE 1. Stratified sampling. We have discussed in Chapter 2 some
aspects of random sampling. Irequently the population from which the
sample is drawn is made up of a number of different subpopulations or
strata. Human populations may for example be stratified according to
religion or age, sex, party registration, etc. It may be desirable to avoid
samples which are too unrepresentative, such as samples consisting mainly
of items coming from a single stratum. This can be achieved by the
method of stratified sampling, according to which a random sample of
specified size is drawn from each of the strata. The separate samples
drawn from the different strata then constitute parts of the whole experi-
ment, and each part may be represented by the kind of model eonsidered
in Section 2.1. The problem is how to combine these models to produce
a model for the whole experiment.

ExaMpPLE 2. Two loaded dice. In Example 1.3.2 we developed a model
for the throw of a loaded die. In many dice games two dice are thrown,
both of which may be loaded. If we regard the throw of each die as a part
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of the whole experiment, the problem arises how to combine two models
like that of Example 1.3.2 into a model for the experiment of threwing two
loaded dice.

We shall begin by considering product models for experiments consisting
of only two parts. Let us first see how to choose an event set for a two-
part experiment for both parts of which the event sets have already been
selected. Suppose that part A has an event set §4 consisting of simple

events e, e, . . ., e, corresponding to the simple results ry, 7y, . . ., 75, while
part B has an event set &z consisting of simple events f), fy, . . ., f5 corre-
sponding to the simple results s, s, . . ., s5. When the whole experiment

is performed, we shall want to record the results of both parts. If, for
example, the result of part A is r, and the result of part B is s,, the result of
the whole experiment is “r, and s;.” Since any of the a simple results
T, T2. .., e, of part A may occur in combination with any of the b simple
results s, sy, . . ., 85 of part B, there will be a-b possibilities for the experi-
ment as a whole. (Thus, in Example 2, die A may show any of its a = 6
faces and die B may also show any of its b = 6 faces, so that there will be
6-6 = 36 simple results for the experiment of throwing both dice.)

The event set for the whole experiment will need a-b simple events,
corresponding to the a-b simple results. These simple events may be
conveniently displayed in a tableau of a rows and b columns:

eeand fi ¢ and f, . er and f,
(1) e and f, e and fo e e and f3
€ ;:\.I.ld N es and f, RN e, and f.

Here, for example, (e, and f») is the simple event corresponding to the
simple result “r; and s,.””  'We shall refer to (1) as the product of the event
sets &4 and &g, and denote it by &, X &g.

To complete the model, we must assign probabilities to each of the a-b
simple events in €1 X 8&p. Suppose that for parts A and B of the experi-
ment separately, probability models @ and ® are given with the following
probabilities:

Model @ Model ®
(2) €,€,...,6 fl7f27"”fb
Py, P2 - -5 Da Q9 -, Qb

where of course

3) tpt+...+p.=1 and g+ ¢+...+¢=1

The probabilities to be assigned to the simple events (1) of &, X &g
must be nonnegative and add up to one. This can be done in many dif-
ferent ways. One simple method, which turns out to be realistic in many
cases, consists of assigning to each of the simple events of (1) the product
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of the corresponding probabilities of models @ and 8. Thus, to the simple
event (e; and f:) we assign the probability pig., and so forth. The tableau
of probabilities is then as follows:

Plepand fi)) = pun Pleyand fo) = piga ... Pleand fi) = pigs
<4) P(ez and f1) = Pt P(€2 and fz) =Pq ... P(62 and fb) = Do

Ple.and fi) = pei Pleaand fo) = pugz ... Ples and fo) = pags

Tt is easy to check that tableau (4) does specify a probability model, as
defined in Section 1.4. The probabilities are obviously not negative, and
they add up to 1, as the following argument proves. Consider the sum
of the probabilities in the first row of (4); using (3) we find that

G) pn+pet... top=p@a+et+...+¢)=p1l=np.

Similarly the probabilities in the second row of (4) add up p., and so forth.
The sum of the rows is therefore p1 + p2 + . . . 4 ps, which by (3) equals 1.
The above discussion leads to the following formal definition.

Definition. The model defined by (1) and (4) will be called the product
of models @ and &, and will be denoted by @ X ®& The models G and ®
will be called the factors of model @ X ®.

ExampLE 3. Alultiple-choice quiz. A quiz has two multiple choice ques-
tions, the first offering three choices a, b, ¢, and the second five choices
A, B, C, D, . A student guesses at random on each question. Let us
consider the guess on the first question as part A, and the guess on the
second question as part B, of a two-part experiment. Model @ has three
simple events a, b, ¢, and the statement that the student ‘‘guesses at
random”’ justifies assigning probabilities § to each. Similarly model ®
has the five simple events A, ..., I, to each of which probability { is
assigned. The product model @ X & will then have 3-5 = 15 simple
events:

aand A aand B aand C aand D aand B
(6) band A b and B b and C b and D b and E
¢ and A ¢cand B ¢ and C cand D ¢ and E

to each of which is assigned the probability -1 = ¢s.

ExaMpPLE 2. Two loaded dice (continued). An experiment consists of
throwing two dice. Suppose that for each throw separately the model

(1.3.1) is satisfactory. Let e, . .., es represent the result of getting one,
., six points on the first die. Then py = 21, pa=... =ps = .17,
ps = .11. Similarly, let fi, . . ., fs represent the results on the second die,

with ¢ = 21, g2 = ... = ¢ = .17, ¢¢ = .11. Then the product model
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Pleyand fy) =
21 X .21 = 0441

P(e;and fy) =
17 X .21 = .0357

P(esand f;) =
17 X .21 = 0357

Plesand fi) =
17 X .21 = .0357

P(eyand f)) =
17 X .21 = .0357

P(es and fy) =
.11 X .21 = 0231

P(61 and fz) =

21 X .17 = .0357

P(e;and f) =

17 X .17 = 0289

P(e; and f,) =

17 X .17 = 0289

Pesand fy) =

17 X .17 = 0289

P(es and fg) =

17 X .17 = .0289

P(esand f2) =

11 X .17 = 0187

P(e; and f3) =
21 X .17 = .0357

P(e-z andfa) =
17 X .17 = 10289

P(esand f3) =
17 X .17 = 0289

P(e4 and fa) =
17 X .17 = 10289

P(es and f;) =
17 X .17 = .0289

P(eg and f3) =

11 X .17 = .0187

P(€1 and f4) =
21 X .17 = 0357

P(€2 and f4) =
17 X .17 = 0289

P(es and fy) =
17 X .17 = .0289

P(esand fy) =
17 X .17 = .0289

P(esand fy) =
17 X .17 = .0289

P(es and f,) =
.11 X .17 = 0187

P(e; and f5) =
21 X .17 = .0357

P(e; and fs) =
17 X .17 = .0289

P(ez and fs) =
17 X .17 = .0289

P(esand f5) =
17 X .17 = .0289

P(es and fs) =
17 X .17 = .0289

P(es and f;) =
11 X .17 = 0187

P(€1 and fs) ==

21 X .11 = .0231

P(ez and f) =

17 X .11 = 0187

P(es and fs) =

17 X .11 = .0187

P(esand fo) =

17 X .11 = .0187

P(es and fs) ==

A17-X .11 = .0187

P (65 and fs) =

11 X .11 = .0121

K3
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assigns to its 36 simple events the probabilities shown in the tableau on
page 65.

As these examples show, it is very easy to construct the product of two
given factor models. However, product models provide realistic repre-
sentations of two-part experiments only if certain conditions are satisfied,
and one should not be tempted into indiscriminate use of such models by
the simplicity of their construction. We shall investigate in the next
section the conditions under which product models may be expected to be
appropriate.

For simplicity we have so far restricted the consideration of product
models to experiments with only two parts, but the ideas extend to experi-
ments with three or more parts. In analogy with (1) the simple events
of the product model will then be of the form

) e and f and ¢ and . ..

where ¢, f, g are simple events in the models for the separate parts. Asin
(4), the product model assigns to the event (7) the product of the corre-
sponding probabilities of the factor models, that is,

®) P(e and f and ¢ and ...) = P(e)-P(f)-P(g). ...

It is again not difficult to check that the probabilities (8) add up to 1 as
e, f, g, . . . range independently over the simple events of the factor models,
so that (7) and (8) define a probability model.

We conclude with some remarks on the logical consistency of the notation em-
ployed for product models. We have used, for example, (e; and f,) to denote the
simple event corresponding to the result of getting r, on part A and s; on part B.
Previously (Section 1.6) the word “and” was used to represent the intersection of
two events. Can we regard (e, and f2) as the intersection of ¢; with f,? At first
glance, it would seem that this is not possible, since e, is an event in model @
while f, is an event in model 8. However, these two uses of “and”’ can be recon-
ciled as follows.

Consider the composite event made up of the simple events in the first row of (1):

) {(esand f), (exand f3), . . ., (e and fu)}.

This event corresponds to the occurrence of one of the results (r; and s;), (r; and s3),

., (r1 and s); that is, to the occurrence of the result r, on part A (regardless of
what happens on part B). In model @, 7, is represented by e, so it would not be
unreasonable to use e; also to represent r; in model @ X ®; that is, to use e, to denote
the event (9). The symbol e; would then denote two different events: a simple
event in A, and a composite event in @ X ®, but both corresponding to the same
result r.. Similarly, f> could be used to denote the event in @ X ® consisting of
the second column of (1). With this notation, the intersection of e, (first row) and
/2 (second column) is just the event denoted in (1) by (e, and f5).

With the above convention, two different events are denoted by e, and it is
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then desirable that the same probability be assigned to these two events. This is
in fact the case.  According to (2) the simple event e, of model @ has been assigned
probability p;, while (5) shows that the same probability p; has been assigned to
the composite event e; of model @ X ®.

PROBLEMS

1. Build a product model for the experiment of throwing two fair dice. Compare
this with the model of Example 1.7.1.

2. Build a product model for the sexes of two children in a family, assuming a
boy or girl equally likely for both the first and second child. Compare this with
the mode] of Example 1.5.2.

3. Compare the model assumed in Problem 1.5.9 with the product model of
Example 3.

4. Suppose model @ is a uniform model with simple events e,, . . ., e, and model
® is a uniform model with simple events f, . . ., f,. Show that the product model
@ X ® is again a uniform model.

5. Suppose that models @ and ® each have three simple events with probabilities
Ple)) = .1 Ple)) =.2 Ples) = .7
P(f) =.2 P(f)) =3 P(f:) =.5

construct the product model @ X ®.

6. Suppose that model @ has two simple events e, e; and model ® four simple
events fi, fo, f3, f1+ with probabilities

Ple) =4 Pe) =.6
P(fy =P(f) =1 P(fs)=.3 P(f)=.5

Construct the product model @ X ®.

7. Determine which of the following two models is a product model and find its
factor models:
i) Pl@andf)) = 0 Pleand fo) = .1
P(ezand fi) = .2 Plepand fo) = .5
Ple;and i) = .2 P(esand fo) = 0
() Pleeand fi) = .04 P(eandfo) = .06
P(e;and /i) = .28 Plezand fo) = 42
Plegzand f)) = 08 Pleandfy) = .12
{Hint: Use formulas analogous to (5) to check (4).]
8. Suppose that models @ and ® have simple events e, e,, ¢; and f,, f» respectively

and that P(e; and f;) = 0. What can you say about other simple events of the
product model having zero probability?

9. Determine which of the following two models is a product model and find its
factor models:
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(i) Pleand fi) =.1 Pleandfo) =.1 Ple and(fs) = .3
P(eand fi)) = .2 Ple;andfo) =.1 Plezand f3) = .2
(i) Ple;and fi) = 05 P(eandf,) = .05 P(eyand fi) = .1
P(e:and fi) = .05 Ple;and f2) = .05 P(e;and f3) = .1
P(esand fi) = .15 P(esand f;) = .15 Pesand f3) = .3
10. Suppose that models @ and ® have simple events e, e,...,e, and
fufo . ., fu respectively and that P(e; and fi) = P(e; and f;). What ean you say
about other simple events of the product model having equal probabilities?
11. Suppose that models @ and ® have simple events e, e, e; and fi, fs, fs, fu re-
spectively. In the product model @ X @, if P(e; and fi) = .01, P(e; and fo) = .02,
P(e; and f,) = .04, determine P(e, and fs).
12. In the preceding problem, determine P(e; and f,) if
(l) P(e. and fl) = .01 P(el and fz) = 02 P(Gz and fl) = .05
(ii) P(e;and f;) = .01 P(e;and fo) = .03 P(e and f)) = .04
(iii) P(e;and f;) = .02 Pe;and f;) = .01 Pe: and fi) = .04.
13. Suppose that models @ and ® have simple events e, ¢; and fy, f;, . In the
product model @ X ®, if

Ple,and f;) = .03 Pleandfo) =.1 P(e and fy) = .12
determine the remaining probabilities.
14. Solve the preceding problem if

P(eand fy) = .03 P(erand f2) = .07 Ple and fy) = .1

15. Using the model of Example 2, compute the probability that the total number
of points showing on the two dice is four.

16. Let models @, ®, ¢ each have two simple events with probabilities 3. Con-
struct the product model @ X & X e.

17. If models @, ®, e have a, b, ¢ simple events respectively, how many simple
events are there in the product model @ X & X e?

18. In Problem 5, let E = {e), &5}, F = {fo, fs}. In the product model @ X ®,
find the probability of the events (i) E and F; (ii) E or F.

19. In Problem 6, let E = {&}, F = {fi, fs}. In the product model @ X ®, find
the probability of the events (i) E and F; (ii) E or F.

3.2 REALISM OF PRODUCT MODELS

Suppose that @ and ® are realistic models for parts A and B of a two-part
experiment. It is now necessary to investigate under what conditions the
product model @ X ® will then be realistic for the experiment as a.whole.

Let us consider to this end a simple event e of @ corresponding to a
simple result  of part A of the experiment, and suppose that probability p
has been assigned to e. Since @ is assumed to be a realistic model for
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part A, it follows that the probability p is at least approximately equal to
the long-run frequency with which r occurs; that is, if f(r) is the frequency
with which r occurs in a large number # of trials, then

1) p~Jf(r),

where the symbol ~ means that the two sides are approximately equal.
Similarly, if f is one of the simple events of ®, corresponding to the simple
result s of part B, with probability ¢, the assumed realism of model &
implies that

(2) g~ f(s).

Consider now the simple event (¢ and f) in the product model. By
(1.4), the product model @ X ® assigns to the event (e and f) the prob-
ability
®3) P(e and f) = pq.

This assignment will be realistic if, and only if, the frequency of the corre-
sponding result “r and s’ is approximately equal to pq; that is, if

(4) f(r and s) ~ pq.
Substituting (1) and (2) into (4) gives
®) S(r and 5) ~ f(r)f(s).

Recalling that the frequency of a result is the number of occurrences of
the result, divided by the number n of trials, requirement (5) may be
written as

frands) #r)
®) 089 L H0 ge)
If both sides are muitiplied by n/#(r), equation (6) becomes
#(r and s -
@ Hraal) ~ 1o

This is the form of the requirement which is often most convenient to
apply.

What is the meaning of the ratio on the left-hand side of (7)? In along
sequence of n trials of the whole experiment, certain trials will produce the
result r on part A of the experiment, and #(r) is the number of trials that
do so. Restrict attention to these #(r) trials. Some of them may also
happen to produce the result s on part B; these trials are just the ones
which produce result » on part A and resuit s on part B. Their number
is #(r and s). The ratio on the left-hand side of (7) is therefore the frac-
tion of the trials producing r which also produce s. In other words, it is
the frequency of s among those trials which produce . We shall refer to
this ratio as the conditional frequency of s, given that r has ocecurred, and
denote it by
® stalr) = KD,
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ExampLE 1. Penny and dime. Suppose that an experiment consists of
tossing a penny and a dime and recording for each coin whether it falls
heads or tails. If we regard the toss of the penny as part A of the experi-
ment, and the toss of the dime as part B, then a = b = 2. Inn = 1000
trials of the whole experiment, suppose that the number of occurrences of
the 2.2 = 4 simple results are as follows:

#(penny heads and dime heads) = 238,

#(penny heads and dime tails) = 247
#(penny tails and dime heads) = 267,

#(penny tails and dime tails) = 248.

The penny fell heads in 238 -+ 247 = 485 of the trials. On 238 of these
485 trials, the dime also fell heads. Therefore the conditional frequency
of “dime heads” given “penny heads” is f(dime heads|penny heads) =
238 = 491,

In the notation of conditional frequency, the requirement (7) may be
written as
©) f(slr) ~ f(s).
In words, the product model is realistic only if the frequency f(s) of s in the
whole long sequence of trials is approximately equal to the conditional
frequency f(s|r) of s among those trials which produce r. In our illustra-
tion, f(dime heads) = (238 + 267)/1000 = .505, which is approximately
equal to f(dime heads|penny heads) = .491. We would of course not
expect exact equality because of chance fluctuations.

In a product model the two factors play symmetrical roles, and it is easy
to show (Problem 4) that in fact relation (9) is equivalent to

(10) f(rls) ~ f(r).
The equivalent relations (9) and (10) assert that the frequency of a simple

result in one part of the experiment is not much altered by the fact that a
specified simple result has occurred in the other part.

Definition. 'The parts of a two-part experiment are said to have unre-
lated frequencies or, for short, to be unrelated, if the long-run frequency of
any result in one part of the experiment is approximately equal to the
long-run conditional frequency of that result, given that any specified
result has occurred in the other part of the experiment.

In terms of this definition we can answer the question raised at the
beginning of the section. Assuming always that the factor models are
realistic, the argument leading to (9) and (10) shows that the product
model will be realistic if, and only if, formulas (9) and (10) hold for all
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simple results r and s, that is, if the two parts of the experiment are un-
related in the sense of our definition.

ExampLE 2. Two draws from a box. A box contains six marbles, alike
except for color: one is red, two are white, and three are green. An
ordered sample of size two is drawn from the box, and the colors of the
marbles are noted. The two drawings may be considered as two parts of
the experiment.

Let us consider the first drawing separately, as part A of the whole
experiment. The marble drawn must be one of three colors, which in
model @ may be represented by the three simple events r, (for red), wa (for
white), ga (for green). If the marbles are thoroughly mixed and the
drawing is done blindfold, it seems reasonable to suppose that the six
marbles would occur with about equal frequency, and to complete model @
by assigning to these events the probabilities 1, 2, 2 respectively.

Now consider part B of the experiment, which consists of the second
drawing. It is represented by model ®, for which we shall also need three
simple events, say rs, ws, gs. Because of the equivalence law of ordered
sampling (Section 2.3) the six marbles should also show up with about
equal frequency on the second draw, so that in model ® we should wish to
assign probabilities 4, £, § to the events rs, ws, gs respectively.

The product of the two models gives us model @ X ® in which there
are 3-3 = 9 simple events, with probabilities as follows:

Plra andrp) = 33 =4  P(ra andws) = }-2 =
(11)  P(waandre) = %1 =& P(wa and wg) = 2-2 = %
P(ga andrs) = §-3 =45  Plga andws) = $-3 =

P(ra and gs) = }-3 = 36
P(wy and gs) = 3§ = &%
P(gx and gs) = §-§ = o

Would the product model be realistic for the experiment as a whole?
Obviously not, for consider the event (rx and rg). Since the box contains
only one red marble, we cannot get red on both draws, and the realistic
probability for (ra and rg) is not 5% but 0. In this experiment, the long-
run frequency of “red on second draw” among all trials (which is 1) is not
the same as the conditional frequency of “‘red on second draw” given “red
on first draw” (which is zero), so that the two parts of the experiment are
not unrelated. In fact, the result of the first draw changes the conditions
under which the second marble is drawn. In this case, the result of
part A exerts a direct influence on part B.
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ExampLE 8. Sex of twins. Consider the “experiment” of observing the
sex of the first-born and second-born of two twins. We may regard the
sex of the first-born twin as part A, and that of the second-born as part B,
of a two-part experiment. Part A has two possible results, which in
model @ may be represented by events M, and F,, corresponding to
“first-born is male”” and “first-born is female,” respectively. Similarly,
model ® has the two simple events My and Fg, and model @ X ® for the
whole experiment has 2-2 = 4 simple events: M, and Mg, M, and Fj,
FA and MB, FA and FB.

Would a product model be realistic here? That is, would the frequency
of, say, ‘“second-born is male”’ in a long sequence of observations be about
the same as its frequency among those births on which ““first-born is male’’?
One might say “the first-born cannot exert any influence on the second-
born, whose sex is already determined, and therefore the answer is Yes.”
But experience would not bear this out: actual observations show that
“second-born is male’”’ occurs about 529 of the time among all twin births,
while it occurs about 679, of the time among those twin births for which
the first-born is male. It is true that the sex of the first-born does not
exert any direct influence on the sex of the second-born, but in some cases
the sex of both twins is subject to a common influence. In about one
third of all twin births, the two twins originate from a single egg (identical
twins), and in these cases both are always of the same sex. If we were to
change the experiment by restricting the observations to two-egg (or
fraternal) twins, then a product model would be found to work reasonably
well.

This example illustrates the possibility that there may be a relation
between the frequencies of the two parts of an experiment, arising not
from the direct influence of the result of the first part on the chances of the
second part (as in Example 2), but indirectly from the fact that both parts
are subject to influence from a common ‘“‘outside” factor. The outside
factor in many cases is not known to the experimenter, who may then be
tempted to assume a product model in cases where it is quite unrealistic.

Let us now give an example for which a product model is realistic.

ExampLE 4. Sampling with replacement. Consider once more two draws
from the box of Example 2, but carried out in a different way. After the
first marble has been drawn and its color noted, it is returned to the box,
and the marbles are stirred again before the second draw. When a sample
is drawn in this way, with the box restored to its original condition after
each draw, we say that the sampling is with replacement.

In sampling with replacement, it seems reasonable to suppose that the
result of the first draw will not in any way alter the chances on the second
draw, since the box is restored to its original condition before the second
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‘marble is drawn. One may expect that the conditional frequency of “red
on second draw’’ given “red on first draw’’ would be about the same as the
frequency of “red on second draw” among all trials. Consequently, the
product model (11) should be realistic for the present experiment. Of
course, such speculations can never be definitive, and the final test of the
realism of any model must be experimental.

Since product models are so simple, it is fortunate that in many two-part
experiments experience shows the frequencies to be unrelated, so that the
product of realistic factor models is realistic for the experiment as a whole.
These cases are characterized by the fact that there is no connection, direct
or indirect, between the parts. In addition to the present Example 4,
Iixamples 1, 2 and 3 of the preceding section illustrate situations in which
product models are appropriate.

Product models are characterized by the fact that

(12) P(e and f) = P(e)P(f)

for any simple events e pertaining to the first factor and f pertaining to the
second factor. It follows from (12), (see Problem 11) that

(13) P(E and F) = P(E)P(F)

where E and F are any events (simple or composite) pertaining respec-
tively to the first and second factors of a product model. Equation (13)
has an interpretation in terms of unrelated frequencies exactly analogous
to that given earlier in the section for equation (3).

It is customary to refer to events £ and F for which (13) holds as
“independent.”

Definition. In any probability model, two events E and F satisfying
(13) are said to be independent.

The independent events that we shall have occasion to discuss will nearly
always pertain to separate factors of a product model, but the terminology
is used also in other cases (see Section 4.2).

The results of the present section extend in a natural way to experiments
with more than two parts. Suppose that @, ®, @, . . . are realistic models
for parts A, B, C,... of an experiment. Then the product model
A X ®Xe€X - - -defined by (1.7) and (1.8) will be realistic provided the
parts are unrelated according to the following definition.

Definition. 'The different parts of an experiment with several parts are
said to have unrelated frequencies or, for short, to be unrelated if the long-
run frequency of occurrence of any result on one part is approximately
equal to the long-run conditional frequency of that result, given that any
specified results have occurred on the other parts.
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Analogously to the case of two factors it follows from (1.8) (see Problem
12) that

(14) PEand Fand G ---) = P(E)P(F)P(@) - - -

for any events (simple or composite) E, F, G, . . . pertaining respectively
to the first, second, third, - - - factor of a product model.

Throughout this section we have assumed that the factor models @ and ® are
realistic for parts A and B of the experiment. To complete the discussion, we shall
prove below that model @ X ® cannot be realistic unless the factor models @ and
® are realistic. Combining this fact with the earlier result of this section, we can
then state that the product model @ X ® is réalistic if, and only if, (i) the factor
models @ and ® are realistic, and (ii) the two parts of the experiment have un-
related frequencies.

To prove that model @ X ® can be realistic only if both @ and ® are realistic,
consider once more a simple event ¢ of model @ corresponding to the simple result
r of part A, and suppose that model @& assigns probability p to e. We have then
seen (at the end of Section 1 in small print) that model @ X ® assigns probability
p to the composite event e which represents the result 7 in model @ X ®. Realism
of model @ X ® then requires p ~ f(r) and hence that the probability assigned to
e in model @ be realistic. This shows that realism of @ X ® implies that @ is
realistic and the same argument applies to ®.

PROBLEMS
1. The following table shows the number of students in a class of 50 getting 0-10

points, 11-20 points, 21-30 points respectively on the first and second problems of
a test.

Prob. 2 0-10 11-20 21-30
Prob. 1
0-10 7 4 2
11-20 4 15 5
21-30 1 3 9

(i) Find the conditional frequency with which students get 21-30 points on
the second problem, given that they got 21-30 points on the first problem.

@(ii) Find the frequency with which students get 21-30 points on the second
problem among the totality of students.

(iii) Describe in words analogous to (i) the frequency given by 2/(7 4 4 + 2).
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2. The following table gives the distribution of 100 couples being married, ac-
cording to their marital status.

Groom single widowed divorced
Bride
single 70 2 5
widowed 1 3 2
divorced 6 2 9

(i) Find the conditional frequency with which the bride is a divorcee given
that the groom is a widower.

{ii) What is the frequency with which the groom is a widower among all cases?

(iii) Describe in words analogous to (i) the frequency given by 6/(6 + 2 -+ 9).

3. In an election involving four candidates, a polling organization decides to
interview 200 persons. These are classified in the following table according to
whether they were reached on the first, second, or a later call of the interviewer
and according to their preference for candidate A, B, C or D.

Prefers
Candidate

Inter-
viewed on
1st call 24 38 58 20
2nd call 7 18 20 5
3rd or later call 2 3 4 1

(i) Find the conditional frequency with which candidate C was preferred

among those reached on the first call.

(i) Find the frequency with which candidate B was preferred among all those
interviewed.

(ii1) Find the conditional frequency with which a voter was reached on the first
call among those preferring candidate A.

(iv) Find the frequency with which three or more calls were required among all
those interviewed.

4. Show that relation (9) implies relation (10).

5. For each of the experiments whose results are described

(i) in Problem 1

(ii) in Problem 2,
check whether the two parts appear to be unrelated. Do your findings agree with
what you would expect?

6. In a table giving the age distribution of all married couples in a city, would
you expect the frequencies of the results “husband over 60" and “wife over 50” to
be related or unrelated?
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7. In a table giving the distribution of grades for all students taking Statistics 1B
during the last two years, would you expect the frequency of the resuit “getting
an A in the course” to be related or unrelated to the following results:
(i) getting an A in Statistics 1A;
(ii) getting an A in English 1A;
(iit} being male;
(iv) being a freshman?
8. (i) In a table giving the frequency distribution for pairs of consecutive letters
in works of English prose, would you expect the frequencies of the results
“first letter is a vowel” and “second letter is a consonant” to be related or
unrelated?
(ii) Make a frequency count of the first 100 pairs of letters of this section to
illustrate the point.

9, (i) In a table giving the frequency distribution for pairs of consecutive words
in works of English prose, would you expect the frequencies of the results
“first word has at most three letters” and ‘“second word has more than
three letters” to be related or unrelated?
(i) Make a frequency count of the first 100 pairs of words of the Preface of
this book to check your conjecture.

10. Would you expect a produet model to be appropriate for an experiment whose
two parts consist of

(i) one throw each with two dice,

(ii) two successive throws with the same die?

11. State whether you would expect a product model to fit well an experiment
whose two parts consist in observing the weather (rain or shine)

(i) on February 1 and 2 of the same year,

(ii) on February 1 of two successive years.

12. Build a realistic model for the sex of the first- and that of the second-born of
identical twins. Is this a product model?

13. Use the results of Section 2.3 to build a realistic model for Example 2. Is
this a product model?

14. In the model of Example 1.2 (continued), let E and F denote respectively
the events, ‘“‘the number of points showing on the first die is even” and “the num-
ber of points showing on the second die is even.” Check that (13) holds by finding
P(E), P(F) and P(E and F).

15. Let E consist of the simple events (e;, e;5) of model @, and ¥ of the simple
events (fy, f3, fs) of model ®.

(i) List the simple events in model @ X ® which make up the event (E and F).

(i) If Per) = p1, Ples) = ps, P(f2) = @, P(fs) = g5, P(fs) = ¢s, find P(E and

F).

(iii) Show tha P E and F) = P(E)P(F).
[Hint: see smal} puut at end of Section 2. For (iii), collect together the terms of
P(E and F) involving p: and those involving p;, and factor out p, from the first
and p; from the second of these sums. Note that the resulting factors of p, and p;
are the same.]
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16. Solve the preceding problem if
(1) E consists of the simple events (e, €, es} and F of the simple events (f2, f3, fs);
(ii) E consists of the simple events (e, €;) and F of the simple events (f2, fs, fs, f1).

17. Let E consist of the simple events (e;, ;) of model @, F of the simple events
(f2, fs) of model ®, and G of the simple events (g, gs) of model e. If P(e) = p,,
P(es) = ps, P(fo) = @3, P(fs) = g5, P(@s) = 11, P(g)) = 74, find P(E and F and @)
and show that it is equal to P(E)P(F)P(@). [Hint: Use the method of Problem 15.]

18. In Example 2, compare P(red on first draw) with P(red on first draw|red on
second draw). Would you say that “the result of the second draw changes the
conditions under which the first marble is drawn”?

3.3 BINOMIAL TRIALS

We shall now consider a simple but very important application of product
models. Suppose that a sequence of trials is performed, on each of which
a certain result may or may not happen. The occurrence of the result is
called a success, its nonoccurrence a fatlure. In a sequence of tosses of a
penny, for example, “heads” might be designated a success in which case
“tails” would constitute a failure. This terminology is purely conven-
tional, and the result called success need not be desirable.

Ilach trial may be considered as one part of the whole experiment. If
the trials are unrelated, in the sense of the preceding section, a product
model is appropriate. Each factor model corresponding to a particular
trial then has two simple events corresponding to success and failure. In
the simplest case, in which success has the same probability, say p, and
hence failure has the same probability ¢ = 1 — p, in each factor model,
the product model is called the binomial trials model.

ExampLE 1. Three throws with a die. Consider a dice game in which the
player wins each time the die shows either 1 or 2 points (success) and loses
each time it shows 3, 4, 5, or 6 points (failure). 1f the experiment consists
of three throws, the results may be represented in the model by the events

S8S  8SKF SIS SFF  FSS  FSF  FFS  FFF

with SFS, for example, representing the result that the player wins on the
first and third throws but loses on the second. The binomial trials model
assigns to these events the probabilities

b-p:p ppq P¢P PLY ¢PP ¢PI YD 994
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The probability of the player winning, for example, in exactly two of the
three throws is then

P(SSF) + P(SFS) + P(FSS) = 3p.

If the die is assumed to be fair, then p = §, ¢ = 3, and the desired prob-
ability is 2.

Under what conditions is the binomial trials model realistic for a sequence
of trials? Since it is a product model, the various trials (parts) should
have unrelated frequencies in the sense of the preceding section. Thus if
for example the occurrence of success on one trial tends to increase or
decrease the chance of success on the next trial to a material degree, a
product model would not be realistic. In addition, the binomial trials
model assumes that the probability of success is the same on each trial.

When considering whether to use the model for a sequence of trials, the
following two questions must therefore be asked.

(a) Is the chance of success the same on each trial?

(b) Will the chance of success on any trial be affected by success or

failure on the others?

We shall now consider several examples, and discuss for each whether
the binomial trials model might be expected to work.

ExampLE 2. Sex of children in three-child families. Consider a family
with three children. Each birth may be considered a trial (especially by
the mother) that produces either a male (M) or female (FF) child. When
the records of thousands of such families are assembled, it is found (a) that
the frequency of male on each of the three births is very nearly the same,
being about .514, and (b) that there is little or no relation between the
frequency of males on the different births. TFor example, among the
families in which the first child is of a specified sex (say female), the fre-
quency of males on the second birth is still about .514. Thus, a binomial
trials model with p = .514 is quite realistic. Using this model, we find
that the probability that all three children are female is about (.486)(.486)
(.486) = .115; while the probability that all three are male is about
(.514)* = .136.

When very large numbers of records are assembled, slight departures
from this model become apparent. For example, the frequency of male
births differs slightly in different populations. In general, no mathe-
matical model corresponds exactly to reality, and any probability model
will show deficiencies when a sufficiently great body of data is collected.

ExampLE 8. Defectives in lot sampling. Suppose an ordered sample of
ten items is drawn from a lot of 50 items, and each sampled item is inspected
to see if it is defective. Would it be realistic to use a binomial model? It
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follows from the equivalence law for ordered sampling (2.3.5) that, if the
sampling is random, the probability of a defective is the same on each
draw, so that condition (a) is met. But condition (b) fails, since the
results on the earlier draws will influence the chances on the later ones.
To make this point concrete, suppose the lot contains exactly one defective
item. Then each of the ten draws has the same probability ¥ of producing
a defective, but if the first-drawn item is defective, there is no possibility
of getting a defective on any subsequent draw.

If the sampling were done with replacement, however, the ten trials
would be unrelated, and the binomial trials model would serve very well.
Furthermore, if the size of the lot instead of being 50 were very large com-
pared with the size of the sample, sampling with or without replacement
would nearly always lead to the same result (since the chance of drawing
the same item more than once would then be very small even when sam-
pling with replacement). In this case, the binomial model would therefore
be quite satisfactory.

ExampLE 4. Winning at tennis. The games played by two tennis players
may be thought of as a sequence of trials, on which player A either wins or
loses. Typically, the server has a considerable advantage, so that the
frequency of wins by A will be materially higher when he serves than when
he receives. Condition (a) fails, and the binomial trials model does not
work.

ExampLE 5. Rain on successive days. We may regard successive days as
trials, on each of which it either does or does not rain in a certain city. To
be specific, consider the Saturday, Sunday, and Monday of the first
weekend in July. If we regard the successive years as repetitions of this
three-part experiment, examination of the record may show that the fre-
quency of rain is about the same on the Saturday, Sunday, and Monday;
thus condition (a) is met. However, the frequencies may be found to be
heavily related. A possible explanation is that in some areas rain tends
to come in storms that last for several days. If it rains on a Saturday,
this means that a storm is occurring, and the risk of rain on the next day is
considerably greater than if the Saturday were fair.

ExampLE 6. Red at roulette. A roulette wheel has 37 slots, of which 18
are red. Can a binomial trials model be used for the occurrence or non-
occurrence of red on, say, five successive spins of the wheel? Records kept
over long periods of the play at Monte Carlo and elsewhere can be broken
up into successive sequences of five spins to provide data of repetitions of
the experiment. Such data justify the use of the binomial model, since
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the five spins turn out to be unrelated in the frequency sense, and the
frequency of red is the same (about 3§) on each of the five trials.

This finding contradicts the intuitive belief of many gamblers, who play
according to systems that imply a relationship among the frequencies.
For example, a gambler may wait until the wheel has shown non-red four
times and then bet on red. He feels that “‘the law of averages” will force
the wheel to tend to show red after a run of non-red; or he will argue that
a run of five non-reds is so unlikely that after four non-reds the next spin
should give red. But the wheel has no memory, and (except where the
wheel is dishonestly controlled by a magnet or other device) the record
supports the assumption of unrelated frequencies.

ExaMmpLE 7. Defeclive items in mass production. Suppose an automatic
machine produces certain items one after the other. Occasionally the
machine turns out a defective item. Irequency counts appear to justify
the use of a binomial trials model for many such experiments. Over a very
long period of time, however, an essential part of the machine may gradu-
ally wear out. 1n this case the frequency of defectives rises and condition
(a) fails if a long sequence of trials is considered.

The simple events in a sequence of n binomial trials are sequences of
successes (S) and failures (I'). If n = 5, the outcome of the experiment
might for example be SSFSI' or SSSSY, ete. Since the binomial trials
model is a product model, the probabilities of these events are obtained by
multiplying together the probabilities of the indicated events of the
individual trials. Thus the probability of SSI'SF, for example, is

P(SSFSK) = p-p-q-p-q¢ = P°¢".
Similarly

P(FFSSS) = ¢-q-p-p'p = P°¢"
In this manner we see that the probability of three successes and two
failures in any specified order will be equal to p3q®.

More generally, in a sequence of n binomial trials the probability of
any specified sequence of b successes and n — b failures is a product of b
factors equal to p and n — b factors equal to ¢ = 1 — p, and hence is
equal to

(1) pbgt.

ExampLE 8. Comparing two drugs. To compare two drugs A and B a
doctor decides to give some of his patients drug A and some drug B. In
order to rule out the possibility of his assigning the drugs to the patients
in a manner which might favor one or the other, he selects for each patient
one of the drugs at random, that is with probabilities 3. If the experiment
involves ten patients, let us find the probability that all will get the same
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drug so that no comparison is possible. The ten patients constitute ten
binomial trials with probability } of success (being assigned drug A). The
probability of getting either ten successes or ten failures is

P(10 successes) + P(10 failures)

since the two events are exclusive. The first of these terms is p'* = (3)!°
since p = }; the second one is ¢'° = (3)'° since ¢ = 3. The desired
probability is therefore (3)' 4+ (3)'* = 2(3)' = (3)° = 3is.

ExampLE 9. The shooting gallery. At a fair, a prize is offered to any
person who in a sequence of four shots hits the target three times in a row.
What is the probability of a person getting the prize if his probability of
hitting on any given shot is $? If the shots can be considered to be
unrelated, they constitute four binomial trials with probability p = $ of
success (hitting the target). The prize will be won in the cases SSSS,
SSSF, FSSS, and in no others. The probabilities of these cases are

P(SSSS) = ()* = +%s; P(SSSF) = P(FSSS) = (§)*} = %%

Since the three cases are exclusive, the desired probability is
Fs + Hs + s = 41§ = 520,

The binomial trials model extends in a natural way to situations like
those of Examples 4 and 7, where the trials are unrelated but have unequal
probabilities. To see what becomes of formula (1) in this case, consider
three unrelated trials with success probabilities 1, P2, s and failure proba-
bilities ¢ = 1 — p;, ¢ = 1 — Py, ¢s = 1 — ps. There are then eight
possible patterns of successes and failures, with the following probabilities:

P(SSS) = pipaps, P(SSY) = pipegs, P(SFS) = pigeps, P(SFT) = pigags
P(FSS) = qipsps, P(FSF) = qipags, P(FFS) = qigops, P(FFF) = qiqogs.

This model easily generalizes to more than three trials.

Another extension of the idea of binomial trials is to unrelated trials
with more than two possible outcomes, the probabilities of which do not
change from trial to trial. In the next section we shall consider an example
of such multinomial trials. More general aspects will be taken up in
Section 7.3.

PROBLEMS

1. In Example 1, find the probability that the player who uses a fair die will win
(1) at least two of the three throws; (ii) at most two of the three throws; (iii) exactly
two of the three throws.

2. 1In Example 1, suppose that the player wins when the die shows six points and
loses otherwise. Find the probabilities of the three events of Problem 1.
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3. For the following sequences of trials discuss whether you would expect the
binomial model to work and give your reasons.

(i) A carton of eggs is taken at random from a stack at the grocery without
opening it. At home, the first three eggs are taken out, and for each it is
noted whether or not the egg is cracked.

(i1) A five-letter word is selected at random from a work of English prose, and
for each of the five consecutive letters it is noted whether it is & vowel or a
consonant.

(i1) From a conveyor belt one item is taken every hour and it is classified as
defective or nondefective.

(iv) At a given time and place, you observe for the next ten passing cars whether
each car has two or four doors.

(v) At a given time and place, you observe for the first minute of each hour
whether or not a car is passing.

(vi) On a number of successive weeks it is observed whether or not there occurs
a fatal traffic accident in the town.

(vii) You repeat a number of times the experiment of bisecting a line segment
by eye. After each trial, before you attempt the next one, you are in-
formed whether your point is to the left or to the right of the center, which
are the two results of interest.

4. Give an example of a sequence of trials (different from those in the text) such
that you would expect the binomial model
i) to work well;
(i) to fail for reason (a) but not (b);
(iii) to fail for reason (b) but not (a).

5. In a sequence of five tosses with a fair penny, find the probability of the
following events: (i) HHHHT (four Heads then one Tail); (i) HHHHH; (iii)
HTHTH; (iv) HTTTH.

6. In four binomial trials with success probability p, find the probability of
(i) four successes; (ii) four failures; (iii) exactly one success; (iv) exactly two suc-
cesses; (v) exactly three successes; (vi) exactly one failure; (vii) at most two
successes; (viil) at least one success.

7. In Example 8, what is the probability that as a result of the random assign-
ment the two drugs will be used alternately?

8. In a sequence of five tosses with a fair penny,
(i) what is the probability of observing a run of four successive heads;
(ii) what is the probability of never having a head after a tail?

9. A farmer wishes to determine the value of a fertilizer.
He divides his field into 15 plots, five rows of three plots
each. In each row he selects one of the three plots at
random and applies the fertilizer to it, while giving no
fertilizer to the other two in the row. What is the proba-
bility

(i) that all five fertilized plots are in the first column;

(ii) that all fertilized plots are in the same column?
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10. Solve the preceding problem under the assumption that the field is divided
into 16 plots, four rows of four plots each.

11. (i) In » binomial trials with success probability p find the probability that
all n trials will be successful.
(ii) If p = % how large must n be before the probability exceeds .9 that among
the n trials there is at least one success and one failure?

12. (i) For n binomial trials, find the probability of exactly n — 1 successes and
one failure for n = 2, 3, 4.
(ii) Conjecture a formula for this probability for several n and check it for
n =9y,

13. In a tennis match suppose that the individual games are unrelated, and that
player A has probability % of winning a game in which he serves and probability
% of winning a game in which he receives. The players alternate in serving. What
is the probability that player A will win the first six games?

14. A set in tennis is won by the first player who wins six games provided by that
time his opponent has won at most four games. Under the assumptions of Prob-
lem 13, find the probability that player A will win the set with a score of 6:1 if

(i) he serves in the first game;

(i1) he receives in the first game.

15. Suppose that in training new workers to perform a delicate mechanical oper-
ation, the probabilities that the worker will be suecessful on his first, second, and
third attempt are p; = .08, p» = .06, p; = .11 respectively, and that the three
attempts may be considered to be unrelated. Find to three decimals the proba-
bilities that the worker will be successful (i) all three times; (ii) exactly twice;
(iii) exactly once; (iv) on none of his three attempts.

16. In the preceding problem, let there be four attempts with success probabilities
pr = .01, p» = .02, p; = .03, p, = .05. Find the probabilities that the worker
will succeed (i) all four times; (i) exactly three times; (iii) exactly once; (iv) on
none of the four attempts; (v) exactly twice.

3.4 THE USE OF RANDOM NUMBERS TO DRAW SAMPLES

In Section 2.1 we emphasized the desirability of drawing samples at
random and mentioned that this is most commonly done with the aid of a
table of random numbers. We shall now explain how such tables can be
made, and how they may be used to obtain random samples.

Suppose a box contains ten marbles, identical except that each is labeled
with a different one of the ten digits 0,1,2,...,9. The marbles are
stirred, one of them is drawn from the box, and the digit on it is written
down—suppose it happens to be “1.”” The marble is returned to the box,



84 PRODUCT MODELS [cHAPp. 3

and the process repeated—perhaps “0” is obtained on the second trial, and
then “0,” “9,” “7,” and so forth. The results of 1000 drawings might
look like the following table.

TasLe 1. RaNDOM DIGITS

10097 32533 76520 13586 34673 54876 80959 09117 39292 74945
37542 04805 64894 74296 24805 24037 20636 10402 00822 91665
08422 68953 19645 09303 23209 02560 15953 34764 35080 33606
99019 02529 09376 70715 38311 31165 88676 74397 04436 27659
12807 99970 80157 36147 64032 36653 98951 16877 12171 76833

66065 74717 34072 76850 36697 36170 65813 39885 11199 29170
31060 10805 45571 82406 35303 42614 86799 07439 23403 09732
85269 77602 02051 65692 68665 74818 73053 85247 18623 88579
63573 32135 05325 47048 90553 57548 28468 28709 83491 25624
73796 45753 03529 64778 35808 34282 60935 20344 35273 88435

98520 17767 14905 68607 22109 40558 60970 93433 50500 73998
11805 05431 39808 27732 50725 68248 20405 24201 52775 67851
83452 99634 06288 98083 13746 70078 18475 40610 68711 77817
88685 40200 86507 58401 36766 67951 90364 76493 29609 11062
99594 67348 87517 64969 91826 08928 93785 61368 23478 34113

65481 17674 17468 509050 58047 76974 73039 57186 40218 16544
80124 35635 17727 08015 45318 22374 21115 78253 14385 53763
74350 99817 77402 77214 43236 00210 45521 64237 96286 02655
69916 26803 66252 29148 36936 87203 76621 13990 94400 56418
00893 20505 14225 68514 46427 56788 96207 78822 54382 14598

This is a table of random digits. Because the ten marbles are alike, it is
reasonable to assume that, in any given place in the table, each of the ten
digits has the same probability % of appearing. Furthermore, because
the drawn marble is replaced and the marbles are restirred after each
drawing, it may be assumed that the frequencies of the digits appearing in
the various places are unrelated. The digits therefore constitute the
results of a sequence of multinomial trials, where each trial has ten possible
outcomes. Large random digit tables are produced by electronic machines
rather than by hand drawing. 7The table* from which our Table 1 is
taken contains one million digits, which have been carefully examined by
various frequency counts to check empirically the assumptions of un-
relatedness and equal probability.

We shall explain how random numbers are used in drawing random
samples by taking up a sequence of examples, starting with the simplest
case of a sample of size one.

* “A Million Random Digits with 100,600 Normal Deviaics,”” by The RAND Cor-
poration. The Free Press (1955). (Table 1 reproduced by permission.)
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ExaMpie 1. Choosing one of ten items. A poll taker wishes to choose at
random one of the ten houses on a certain street. After making a sketch
map on which the houses are labeled 0, 1,2, ..., 9, he opens his random
number table and reads off the first digit, ‘‘1.”” The house to be sampled
is then the one labeled “1” on the map. This house may be assumed to
have been drawn at random since each house had the same chance i to
be selected.

ExaMpLE 2. Choosing one of one hundred items. The digits appearing in
two consecutive places in the table form a two-digit number—for example
“10” occupies the first two places in our table. There are 100 two-digit
numbers that might occupy the two places, beginning with 00 and going up
to 99. The assumptions of randomness and unrelatedness of the digits
imply that each of these 100 numbers has the same probability 135 of
appearing.

Suppose the Census Bureau wishes to choose at random one of the 100
counttes of the State of North Carolina. A list of the counties is obtained,
and the counties labeled successively 00,01, 02,...,99. The random
number table is consulted—Ilet us use the sccond line this time—and the
number “37” read off. 1'rom the county list, the county bearing the number
37 is selected.

ExampLE 3. Choosing one of an arbitrary number of ilems. Suppose we
wish to choose at random one of the 876 students attending a certain
college. The registrar provides a list of the students, and they are num-
bered consecutively from 000 to 875. By an easy extension of the argu-
ment in Example 2, it appears that a three-place entry in the table has
probability 1455 of being any of the digits from 000 to 999. Suppose we
use the fourth line, getting the number “990.” Unfortunately the highest
number on the list is 875, so we continue along the line, taking the next
number, “190”" which is usable. The student whose name is opposite 190
on the list is therefore selected.

The above procedure will always eventually yield one of the 876 usable
numbers. Since all 1000 three-digit numbers are equally likely, it is
plausible that each of the 876 usable numbers has the same probability
w15 of being selected in this way. However, a proof of this fact is beyond
the scope of this book.

The procedure illustrated in this example easily generalizes to a method
for selecting one of an arbitrary number of items. One continues drawing
from the table numbers of the appropriate length until one is found that
appears on the list. With this method, each item on the list has the same
chance of being drawn.
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ExamrLe 4. Choosing two of ten ilems. Let us modify Example 1 by
requiring the poll taker to choose two of the ten houses. He takes two
digits from the table—say “1” and “0” if the first line is used—and then
proceeds to the houses labeled “0” and “1” on his map.

A difficulty would arise if the second digit had also been “1.” In that
case it would be necessary to continue until a digit appears that differs from
the first digit obtained. It is intuitively clear that the first digit found to
be different from “1” has the same chance, §, of being each of the 9 digits
other than “1.”” However, a formal argument that justifies regarding the
two houses thus drawn as forming a random sample will again have to be
omitted.

Let us now summarize in a general rule the procedure for drawing a
random sample of s items from a population of NV items. A list of the N
items is made and the items are numbered consecutively. Random
numbers of the required length are read from the table, until s distinet
numbers of the list are obtained. The items having these s numbers form
the sample.

ExampLe 5. Choosing len of the fifty American states. Number the 50
states of the United States in an alphabetical list beginning with Alabama
01 and ending with Wyoming 50. It is desired to select ten of them at
random. For illustration, let us begin with the ninth row of the table,
getting the two-digit numbers

63, 57, 33, 21, 35, 05, 32, 54, 70, 48, 90,

55, 35, 75, 48, 28, 46, 82, 87, 09, 83, 49

Ignoring 00 and numbers above 50, as well as repeats, we obtain the follow-
ing ten distinct usable numbers:
33, 21, 35, 05, 32, 48, 28, 46, 09, 49.

From the alphabetical list we now read off the ten state names; these are
a random sample of size 10:

California (03), I'lorida (09), Massachusetts (21), Nevada (28),

New York (32), North Carolina (33), Ohio (35), Virginia (46),

West Virginia (48), Wisconsin (49).

As in the above examples, it is customary in practice to use a different
line or page of the random number table for each application. Otherwise,
the user may remember that the first digit in the table happens to be a
“1,” and may use this information to destroy the randomness of the sample.
The poll taker of Example 1, for example, may number the houses on his
sketch map so as to avoid attaching “1” to a house he does not wish to
visit, perhaps because he noticed a large dog in the yard. This obviously
leads to bias—dog owners will tend to be underrepresented in the sample!
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PROBLEMS

1. Use Table 1 to obtain a random sample of 10 pages from the text.

2. Use Table 1 to obtain a random sample of six lines from page (i) 12; (i) 43;
(iii) 56; (iv) 69; (v) 71; (vi) 76.

3. (i) For each part of the preceding problem, count the number of words on each

line and use this to estimate the total number of words on the given page.

(it) Count the total number of words on the page and compare the count with
your estimate.

4. Obtain a sample of ten last digits in Table E (the last digit of the entry .5398
in the first column, for instance, is 8)

(i) as a random sample of the 350 last digits given in the table;

(i) by selecting one last digit at random from each of the ten columns.

5. (i) Obtain a stratified sample of pages from Part I of the text by selecting two
pages at random from each chapter.
(ii) For each page of the sample count the number of paragraphs starting on
that page.
(iii) Use the counts of part (il) to estimate the total number of paragraphs in
Part I of the text.

6. (i) Select one item at random from 200 items numbered 0, 1,...,199 by
using the following device: To obtain the first digit (0 or 1), select a digit
at random from Table 1 and call it 0 if it is even and 1 if it is odd.

(i) Use this idea to make the sampling of Example 5 more efficient.

7. A chessboard has eight rows and eight columns. One of the 64 squares could
be selected (a) by selecting at random one of the digits 1, . . ., 64; (b) by selecting
at random one of the rows, and independently one of the columns. In what sense
are these two methods equivalent?

8. (i) To select a sample of five telephone subscribers, carry out the following
process five times: Select at random a page of the directory; on the selected
page, select at random one of the columns; from the selected column,
select at random one of the names.

(ii) Discuss whether the resulting sample is a random sample of telephone
subscribers in the sense of Section 2.1.

9. (i) By throwing a die and tossing a penny, one may get 12 equally likely
events. How may this experiment be used to produce a random digit?
(i) Devise an efficient scheme for using the throw of two dice to obtain a ran-
dom digit.
(iii) Produce three random digits by repeated tosses of a coin.



CHAPTER 4
CONDITIONAL PROBABILITY

4.1 THE CONCEPT OF CONDITIONAL PROBABILITY

It sometimes happens that we acquire partial knowledge of the way a
random experiment is turning out before the complete result becomes
known. During the course of the experiment we may see that certain
results are precluded by what has happened so far, or the experiment may
be completed but its result revealed to us only in part. Examples will
make it clear that when such partial information is obtained, the original
probability model should be modified.

ExampLE I. Poker hands. Suppose a poker player happens, by accident,
to catch a glimpse of the hand dealt to an opponent. The glimpse is too
fleeting for individual cards to be distinguishable, but the player does per-
ceive that all the cards are red. It is then certain that the opponent cannot
have “four of a kind,” as that would require him to have at least two black
cards. In our earlier model for poker hands (Example 2.2.1), every hand
is assigned a positive probability; this model will no longer be realistic,
since it assigns positive probability to an event we know to be impossible.
One also feels that the chance of the opponent holding a “heart flush” is
now higher than it was before the new information was obtained.

ExampLe 2. Life table. Suppose we are observing a life span for which
Table 1.4.1 is appropriate, and that the individual in question has just
celebrated his 20th birthday. The experiment is still in progress, but we
know that neither of the results A = 1 or A = 2 (death in the first or
second decade) can happen. These results are assigned probabilities .064
and .013 in Table 1.4.1, as was appropriate at birth, but we now want
to give them probability zero since they are impossible. On the other
hand, we should want to assign a higher probability to 4 > 6 than at birth,
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since the individual has now survived the dangers of childhood and
adolescence.

In each of these examples, the new information serves to rule out certain
of the simple results that were originally possible. Let us denote by R the
set of simple results that are still possible on the basis of what is now known:
in the first example, R consists of all poker hands formed of red cards only
while in the second example R consists of death in any decade from the
third to the tenth. We shall denote by E the set of simple events that
correspond to the simple results in B. 1t is clear that the original proba-
bility model, according to which events in E have positive probability,
should be replaced by a new model.

We have emphasized in Section 1.2 that the frequency of a result depends
on the conditions of the experiment. Our basic idea is that the probability
attributed to a result on a particular trial of an experiment should corre-
spond to the frequency of the result in a long sequence of trials of the
experiment carried out under essentially the same conditions as the particular
experiment under consideration. We may think of the new information as
serving to change the experimental conditions: in addition to the require-
ments previously given, we now require that the result must be one of those
in R. Any trial that gives a result in 7 is not considered a proper trial
under the new conditions and is thrown out. The original sequence of
trials is reduced to the sequence consisting of those trials that gave a
result in R, and it is the frequency of results in this sequence that we want
to represent in the new model. In the terminology of Section 3.2, what is
now of interest is the conditional frequency, given that R has occurred.
The relation between the probabilities in the two models will depend on the
relation between the frequencies in the two sequences. This can best be
explained by a simple example.

ExampLE 8. The fair die. A fair die has been thrown, and the top face
shows an even number of points. Under this condition, what is the
probability that the die shows two points?

To motivate a model for this problem, let us imagine that the fair die
is thrown 6,000 times. We would then expect each face to appear about
1,000 times. The given condition (top face shows an even number of
points) rules out of consideration the 3,000 or so appearances of one,
three or five points—these trials do not conform to the new conditions of
our experiment. There remain about 3,000 trials that do conform; of
these, about 1,000 each yield the results: two points, four points, six points.
Each of these three outcomes therefore has relative frequency about 1
among the trials satisfying the given condition. This reasoning motivates
the construction of a new model with the probabilities shown in the last
line below.
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Face 1 2 3 4 5 6
Probability without condition T I I I N
Probability with even-points condition 0 3 0 § 0 %

For simplicity we took as our first example a case where the original
model is uniform (Section 1.5), but the basic idea works quite generally.

ExamrLE 4. Loaded die. Suppose that the die of the preceding example
is loaded, and that the experiment of throwing it is adequately represented
by the following model:

Face

1 2 3 4 5 6

Probability 2 1 1 2 3 1
Again the die is thrown and the top face shows an even number of points.
Under this condition, what is the probability that the die shows two points?
In the original model, P(even) = P(2) + P(4) + P(6) = .1 + .2 + .1
= .4. This means that in a long sequence of throws an even face will
occur about 409, of the time. Since the face 2 will occur in about 109,

of all throws, it follows that it occurs in about (.1) + (4) = 1 of those

throws that result in an even face. Thus, we would want to say that the
chance of the face 2 is .23, once it is given that the face is even.

Similarly, given that the face is even there is a 509, chance that it shows
four points and a 259 chance that it shows six points. Faces 1, 3, and 5
are impossible on this throw. We are led to the following model for the
experiment when it is known that the result is an even face:

Face 1 2 3 4 5 6
Probability 0 256 0 .50 0 .25

We are now prepared to give the general definition of conditional proba-
bility. Suppose we have built a model for the original experiment, con-
sisting of an event set & that corresponds to the list ® of simple results of
the experiment, and that a probability P(e) has been assigned to each
simple event ¢ in &, Then new information becomes available: the experi-
ment has in fact produced one of the results on a sub-list R of the original
list ®. Let E be the set of simple events that correspond to the results
of R. We must construct a new model, using the same event set as before,
but assigning to the simple events new probabilities that will be reasonable
in the light of the new information. We shall denote by P(e|E) the proba-
bility assigned by the new model to the simple event e. 1f e does not belong
to E, then of course we shall want to put P(e|E) = 0.

To see what value would be reasonable if e does belong to E, imagine a
sequence of n trials of the original experiment. Suppose that in this



4.1] THE CONCEPT OF CONDITIONAL PROBABILITY 91

sequence the composite result B occurred #(R) times, while the simple
result r corresponding to e occurred on #(r) trials. Those trials on which
R did not occur are irrelevant to our present problem (since in our par-
ticular case R did occur), and by eliminating them from consideration
we obtain a new and more relevant sequence consisting of #(R) trials.
The frequency with which 7 occurred in this sequence, that is the conditional
frequency of r given R, is

ol < 2oL _ 0 408 _ )
TOB =3® =% T 0 TI®

where f(r) and f(R) are frequencies in the original sequence of n trials.
If n is large, we may reasonably expect f(r) to be close to P(e) and f(R)
to be close to P(E), so that f(r|R) should be close to P(e)/P(E). Since
probability is supposed to correspond to frequency, this motivates the
following definition.

Definition. The conditional probability of a simple event e given an
event E is
) P(e|E) = P(e)/P(L) feisin I/
PelE) =0 if e 1s not in £.

With this definition, conditional probability given E corresponds in the
model to the long-term frequency of occurrence of r in a sequence of
experiments in which the result R has occurred; that is, to the conditional
frequency of r given R.

Equation (1) defines a probability model which is known as the con-
ditvonal probability model given E.  (We shall check at the end of the section
that (1) does define a probability model.)

Let us illustrate the definition of conditional probability model on two
further examples.

ExaMpLE 5.  Sampling with and without replacement. A box contains four
marbles labeled A, B, C, D. Two marbles are drawn with replacement.
Given that the same marble does not appear on both draws, what is the
probability that neither of the two marbles is marble B?

Before imposing the condition, it would be reasonable (in accordance
with the discussion of Example 3.2.4) to attribute equal probabilities of %
to each of the 16 possible results shown below:

AA AB AC AD
BA BB BC BD
CA CB CC CD
DA DB DC DD
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Here, for example, CB represents the result “marble C on first draw,
marble B on second draw.” But now we impose the condition that the
same marble does not appear twice. This reduces to 0 the probabilities
of the diagonal entries of our array: AA, BB, CC, DD. The twelve re-
maining simple events are still to have equal probability, so that each is
assigned probability {5 by the conditional model. A simple count now
shows that in the conditional model the event “B does not occur” has prob-
ability P(B does not occur|same marble does not appear twice) = & = 3.

It is interesting to note that the above conditional model has the same
probabilities as the model for ordered sampling (without replacement) dis-
cussed in Section 2.3. The same argument shows that, quite generally,
if we impose on a model for sampling with replacement the condition that
no item is drawn .more than once, the resulting conditional model is
equivalent to the model for ordered sampling without replacement.

ExampLE 2. Life table (continucd). Let us illustrate on the life table ex-
ample the procedure of computing a conditional probability model. Since
the values 1 and 2 of 4 have been ruled out by the fact that the person has
reached his 20th birthday, 1 consists of the simple events A = 3,4, .. ., 10.
From Table 1.4.1 we compute P(F) = P(.1 > 2) = 0224 032+ ...+
028 = .923.  (This value could also be obtained by subtracting from 1
the probabilities I’(A = 1) = .06+ and P(1 = 2) = .013.) Therefore
PA =3]4>2) =" =3)/PA >2) =.022/.923 = .024, and simi-
larly for the other values. The table below compares the probability
distribution of decade of death at birth with the conditional distribution
at age 20.

TaBLE 1. LIFE TABLE AT BIRTH AND FOR 20 YEAR OLDS

a PA=a) PA=2d4>2 ¢ PA=a) PA=4dd4>2)
1 064 0 6 127 138
2 013 0 7 211 229
3 022 024 8 .269 201
4 032 035 9 170 184
5 064 .069 10 028 030

We still must check that (1) really defines a probability model. The
quantities (1) are certainly nonnegative; it is therefore only necessary to
show that the sum of the probabilities P(e|E) extended over all simple
events of the event set & is equal to 1. Since the zero probabilities of the
simple events outside £ do not contribute anything, it is enough to add the
probabilities
@ PCIE) = B
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over all simple events e in E. In doing so, we can place the fraction over
the common denominator P(E) and observe that the numerator, which is
the sum of the probabilities P(e) for all ¢ in E, is just P(£). We thus find
that the sum of the terms (2) for all e in E is

P(E) _ |
PE)
as was to be proved.

Conditional models are appropriate only under more restrictive circumstances
than may at first be apparent. The requirements are that (i) there is an original
unconditional model that is realistic for a sequence of repetitions of a random
experiment, and (ii) partial information eliminates from this sequence all trials
yielding results not in R (the outcome on which we are conditioning) without
eliminating any of the remaining trials. In practice, the partial information will
often not only eliminate all trials of the non-R type, but also selectively some of
the others. If this selection occurs at the same rate for each trial of the R-type,
so that each has the same chance of being eliminated, the conditional model will
continue to be realistic. It is, however, hard to be sure that ‘“differential selection”
is not at work.

To illustrate the difficulty, let us reconsider Example 2. The original life table
is assumed to be realistic for a certain well-specified population, that is, for a
certain sequence of observable life spans. The conditional table, given that A > 2,
is then appropriate for the subsequence consisting of all those life spans in the
original sequence that do not terminate in the first two decades. In most practical
applications, however, one will be concerned with a smaller subsequence consisting
of only some of the members of the population who reach age 20. The realism of
the conditional model then depends on whether the sub-sequence in question is
representative of the subsequence of all members of the population who reach age
20. This is usually not an easy question to answer.

Suppose that an individual is admitted to a hospital on his twentieth birthday
to undergo tests for leukemia. Everyone would agree that a sequence of such
cases is not well-represented by our conditional model. Next, suppose that some-
one appears on his twentieth birthday at an insurance office to purchase a large
policy on his life. Some insurance agents suspect that the survival chances of
such persons are below those of the totality of persons reaching age twenty (while
purchasers of annuities tend to live longer than the average person). If this
suspicion is correct, the conditional model would again not be realistic for a se-
quence of such cases. Finally, suppose that we are attending the twentieth-
birthday party of a friend. Are our friends representative of the whole popula-

tion covered by the table, or do they perhaps belong to a class with above-normal
life expectancy?

ExampLE 6. Two-child families. As a second example of the problem of differ-
ential selection, suppose that a two-child family is moving into the neighborhood.
We learn that not both children are girls. Under this condition, what is the prob-
ability that both are boys? Let us distinguish four family types, say BB, BG,
GB, GG, where for example BG represents “older child boy, younger child girl.”
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If we ignore the slightly higher frequency of boys, we might reasonably use the
following as the original model.

Family type BB BG GB GG
Probability i

'S
i
L0

(We are here tacitly assuming that the sequence of two-child families moving into
our neighborhood is representative of all such families with respect to sex of children.
This in itself may be questionable, but it is not the point at issue here.)

Consider now the partial information: the family is not GG. The conditional
model is then, by (1):

Family type BB BG GB GG
Probability 3 3 3 0

Whether this is realistic depends on how the partial information comes to our
attention. If it comes to us in a way that would eliminate any two-girl family
but would preserve all other cases, then the conditional model is reasonable. But
if the partial information implies a selection among the non-GG families, the
conditional model would be realistic only if the selection affects the other three
types equally.

For example, suppose the partial information consists in our hearing that the
father of the family paid a call on the Director of Admissions of a private school
for boys, which is interpreted (correctly) to mean that he has at least one son.
This information does eliminate the GG possibility—but beyond that, it restricts
attention to families which at least consider enrolling a son in this school. In the
subsequence of such families, do BB cases occur with the same frequency as for
example BG cases? Not if enrollment in the boys’ school is more likely when
there are two boys in the family than when there is only one, as may well be the
case (if only because it is then more likely that at least cne boy will be of school age).

To change the circumstances of the example, suppose the partial information
consists in our happening to see one of the children, and he is a boy. Logically,
“There is at least one boy” is the same as “Not both are girls,” and it is therefore
tempting to apply our conditional model. But in fact, if we select from the
sequence of all two-child families moving into the neighborhood the subsequence
of those in which the first child seen is a boy, will the BB and BG families be equally
represented in this subsequence? Clearly not, since the selection will eliminate
those BG families in which the first child seen is the younger one without elimi-
nating any of the BB families. (For an alternative model in this case, see Problem
3.17.)

PROBLEMS

1. What is the probability that the loaded die of Example 4 will show two points
if we know only that the number of points showing is greater than one?

2. Let the sample space consist of five points with probabilities P(e:) = .1,
P(es) = .15, Ples) = .2, Ples) = .2, Pes) = .35. Let E = {e), e5,¢4}. Find the
conditional probability model given E, and check that it is a model.
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3. Recall Problem 3.2.1. If the instructor picks up one of the tests at random
and finds that the number of points on the first problem is between 21 and 30,
what is the conditional probability that the number of points on the second problem
will also be between 21 and 30?

4. Suppose we are observing a life span for which Table 1.4.1 is appropriate and
that the individual in question has survived to his 60th birthday.
(i) Construct the conditional probability model.
(ii) What is the conditional probability that the individual will survive to the
age of 807

5. Two fair dice are thrown and we are told that the sum of points is 4.
(i) Construct the conditional probability model given this information.
(i) Find the conditional probability P(number of points showing on first die
< 2| sum of the number of points = 4).

6. Solve the two parts of the preceding problem if we are told that the sum of
points is < 4.

7. Suppose that of two unrelated tosses with a coin whose probability of heads
is p, one falls heads and the other tails. Show that the conditional probability
that the first one is heads is 3. [Hint: First construct the appropriate product
model for the original experiment.]

8. Suppose a poker hand is drawn and it is observed that all five cards are red.
In the conditional model, what is the probability of

(i) a hand consisting of any five specified red cards;

(i) a heart flush?

9. Show that, if the original model is uniform, the nonzero probabilities in any
conditional model will all be equal.

10. (i) Suppose that P(e;)/P(e;) = 4 and that e, e; both belong to £. What can
you say about P(e|E)/P(e)|E)?
(i) Formulate a generalization of the result found in part (i).
(iii) Use part (i) to give an alternative solution of Problem 9.

11. (i) In Example 5, construct the conditional probability model given that the
first draw produces marble B.
(ii) Find P(2nd draw = Allist draw = B).

12. (i) In Example 5, construct the conditional probability model given that the
2nd draw produces marble B.
(i) Find P(ist draw = A|2nd draw = B).

13. (i) In Example 5, construct the conditional model given that the first draw
produces either marble A or B.
(ii) Find P(2nd draw = B|1st draw = A or B).
(iii) Find P(2nd draw = C|1st draw = A or B).

14. (1) In Example 5, construct the conditional model given that marble A
occurred on at least one of the two draws.
(ii) Find P(both draws produced marble AJA occurred on at least one of the
two draws).
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4.2 INDEPENDENCE

In the preceding section we have seen how to modify a probability model
to obtain the conditional model corresponding to a given event £. We
shall now derive an important formula which expresses the probability of
a compositc event in the conditional model in terms of probabilitics in the
original model.

Let F be any composite event in & The probability attached to I in
the conditional probability model (1.1) will be called the conditional proba-
bility of I given 12 and will be denoted by P(F|I5). By the general defi-
nition of the probability of a composite event (Section 1.4), P(F|L) is just
the sum of the conditional probabilities I’(e|) for all the simple events e
in . Of course, the simple events that are in /' but outside I will con-
tribute nothing to the sum. It is therefore enough to add up the proba-
bilities I’(e|£) for the simple events that are in both E and F, that is, for
the simple events in (£ and F).

When adding up the numbers P(e|E) = P(e)/P(E) forall ein (E and F),
we can place the fractions over the common denominator P(F) and observe
that the numerators add up to P(¥ and F). This proves the important

formula i i
(1) P(rip) = D)
which permits one to calculate conditional probabilities without first con-
structing the conditional model.

The reader may find it helpful to trace through the argument leading
to (1) in the example of Figure 1.6.2a. There F consists of eq, e4, €5, and e;.
In the conditional distribution given E, we have P(e;|E) = P(es|E) = 0,
while P(esE) = Ples)/P(E) and P(es|E) = P(es)/P(E). Therefore
P(F|E) = 0 + 0 + P(e)/P(E) + P(es)/ P(E) = [P(es) + Ples)]/P(E) =
P(E and F)/P(E).

ExampLe 1. Poker hands. What is the conditional probability that a
poker hand is a heart flush, given that it consists only of red cards? We
shall assume that the hand constitutes a sample of 5 cards drawn at random

from a deck of 52, so that all (52> possible hands are equally likely. The

event I represents the result “all five cards in the hand are red” and F
the result ‘‘the hand is a heart flush,” so that the event (£ and F) stands
for the result “the hand is a heart flush.”” Clearly the number of simple

events in IV is (2.? ) 50 that

o =(3)/ ()

The number of heart flushes is (1;3), and hence

.
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P(E and F) = (13’) / ("f)

The desired probability is therefore
P(F|E) = P(E and F)/P(E) = ({f) / (2_6)

5
Using Table A, we find this to be
1287/65,780 = .0196.

While not a large number, this is relatively much greater than the proba-
bility of a heart flush when nothing is known about the hand, which in
Example 2.2.1 was found to be .000495. These calculations support the
feeling expressed at the end of Example 1.1.

The conditional probability P(F|F) has a frequency interpretation
exactly analogous to that of P(e|E) in Section 1. Let R and 8 be the results
of the experiment represented in the event set & by E and F. Then in a
long sequence of trials of the experiment, one has (in the notation of Section
3.2)

P(E) ~f(R) and P(L and F) ~ f(R and 8),
and hence by (1)

[(Rand S) _#(Rand 8)

JR - HR)
Here the right-hand side is equal to the frequency with which the result
S occurs among those trials in which the result 2 occurred; that is, the

conditional frequency f(S|R) of S given R.  The last displayed relation may
therefore be rewritten as

2 P(FIE) ~ [(8|R).
With a realistic model, a conditional probability is approximately equal to

the corresponding conditional frequency.
Equation (1), on multiplication of both sides by P(E), becomes

(3) P(E and F) = P(E)P(F|E).

In this form, the equation is known as the multiplication law. Of course,
the two forms are equivalent (except that the present form is valid even
when P(FE) = 0), but their uses are entirely different. Equation (1) is
used to compute conditional probabilities from the probabilities of the
original model, while the multiplication law (3) is used to compute the
(unconditional) probability P(E and F) when we know P(E) and the con-
ditional probability P(F|E). We shall give several illustrations of the
use of (3) in the next section.

Both P(F) and P(F|\E) are probabilities of the event F, but they are

P(F|E)
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the probabilities assigned to this event by two different models, and
consequently they will in general have different values. However, as we
shall see below, there is an importarit class of cases in which

(4) P(F|E) = P(F).

When rzlation (4) holds, the imposition of the condition E does not change
the probability of F, and we then say that F is independent of E.

Exampre 2. Heart face card. Consider the experiment of drawing a card
from a shuffled bridge deck, where each of the 52 cards is assigned proba-
bility #5 of being drawn. Let E be the event corresponding to the result
that the card drawn is a heart while F is the event corresponding to the
draw of a face card (King, Queen, or Knave). We see that P(E) = 33,
P(F) =4} = &,and P(Eand F) = %. Thus, by (1), P(F|E) = (%) +
(33) = % = P(F), so that F is independent of £. This means that the
frequency with which a face card is drawn among all trials is approximately
the same as the conditional frequency with which a face card is drawn on
those trials resulting in a heart.

It is interesting to note that, in the above example, P(E|F) = (&%) +
(%) = 33 = P(E), so that it is also true that E is independent of F.
This illustrates the general phenomenon that independence is symmetric:
if F is independent of E, then* E is also independent of F. In fact, it is
easy to see (Problem 12) that each of the conditions P(F|E) = P(F) and
P(E|F) = P(E) is equivalent to the symmetric condition

(5) P(E and F) = P(E)P(F).

Definition. Two events E and F are said to be independent (of each
other) if they satisfy condition (5).

The concept of independence finds its most important use in connection
with experiments having several parts (Section 3.1). In fact, as was
pointed out in Section 3.2, if such an experiment is represented by a
product model, and if E and F are events relating to different factors of
the model, then E and F are independent.

When applying a product model to a specific experiment, the usual
approach (Section 3.1) is first to build the factor models and then to
combine them by means of formula (3.1.4) into a produet model. The
probabilities such as P(E) and P(F) may then be thought of either as
probabilities in the factor models @ and ® or as the equivalent probabilities
in model @ X ®. It is usually convenient to consider P(E) and P(F) as
probabilities in the factor models, and then use (5) to obtain the proba-
bility P(E and F) in the product model, without the necessity of explicitly
constructing the latter.

* Strictly speaking, these statements are correct only if we exclude the trivial cases
P(E) = 0 and P(F) = 0, in which P(F|E) and P(E|F) are not defined.
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ExamreLE 8. Stratified sampling. Consider a residential block having six
houses on the north side and seven houses on the south side (Figure 1).

N

L] L]

S
FiGure 1. SKETCH MAP OF BLOCK

A sample of four houses is to be drawn in a survey to check the accuracy of
tax assessments. The survey leader notices that the houses on the north
side are more substantial than those on the south side. If a sample of four
is drawn randomly from all 13 houses, it could happen by chance that all
four in the sample come from one side or the other. The sample could
thus lead to a quite mistaken idea of the block as a whole, as discussed in
Example 3.1.1.

To forestall this difficulty, it may instead be decided to draw a sample
of two houses from each side. The drawing of two north-side houses may
he considered as part A, and the drawing of two south-side houses as part
B, of a two-part experiment. For part A, a model @ can be built as in
Section 2.1, in which the (g) = 15 possible samples of two north-side houses
are regarded as equally likely. Similarly, in model ® the (;) = 2! possible
samples of two south-side houses are treated as equally likely. Finally, if
the samples are drawn by separate applications of some random mecha-
nism, it seems reasonable to suppose that the frequencies of the two parts
are unrelated, and to represent the experiment as a whole by the product
of the two models.

As an illustration of this product model, let us find the probability that
none of the corner houses appear in the stratified sample. Let E represent
the result “no corner house appears in the sample from the north side.”

Then P(E) = (;) / (g) = -1% = g- Similarly, if F represents “no corner

house appears in the sample from the south side,” P(¥) = (g) / (;) = ;—(1)
According to (5), the probability that no corner house appears in either
sample is then given by

P(E and F) = P(E)-P(F) = §-3% = o = .190.
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ExampLE 4. Two throws of a die. What is the probability that in two
unrelated throws with a fair die we will get at least five points on each
throw? Let E represent “at least five points on the first throw,” and F
represent ‘‘at least five points on the second throw.” In the factor models,
we have P(E) = P(F) = 2 =} and P(Eand F) = P(E)-P(F) = 3)(3)
= §. This result can also be obtained directly from the uniform model of
Example 1.5.3 by counting cases.

When the two sides P(F|E) and P(F) of (4) are not equal, the event F
is said to depend on the event E. When this occurs, if the model is realistic
the corresponding frequencies f (S|R) and f(S) will also be unequal. Sup-
pose for example that f(S|R) is much larger than f(S); i.e., that S occurs
much more frequently in those cases when R occurs, than it does in general.
It is then tempting to conclude that the event R “causes” the event S to
tend to occur. It has, for example, been observed that the conditional
frequency of lung cancer is much higher among persons who are heavy

cigarette smokers than in the population at large. Again, the conditional
frequency of cavities is lower among children in communities with a high
fluorine content in the water supply. It seems natural to conclude that
cigarette smoking tends to cause lung cancer and that fluorine helps to
prevent tooth decay. Many useful causal relations have been discovered
as a result of noticing such empirical frequency relations, but it is important
to realize the pitfalls of the argument. When results R and S tend to go
together, it may not mean that R causes S, but rather that S causes R, or
that both are causally connected with other factors while not exerting any
direct influence on each other. Some examples may make this clear.

ExampLE 5. Sampling without replacement. 'Two marbles are drawn with-
out replacement from a box of three marbles, one of which is red. The
result ‘“‘red on first draw” will occur in about one third of the trials. But
its conditional frequency, given that ““red on second draw’ has occurred,
will be zero. Yet we would not want to say that “red on second draw”
exerts a causal influence on “red on first draw,” since cause operates only
forward in time.

ExamprLE 6. Insulin and diabetes. It may be observed that the con-
ditional frequency of diabetes is much higher among persons taking insulin
than in the general population. Should one conclude that insulin causes
diabetes?

ExampLE 7. Income and politics. When a college faculty was voting on
a controversial issue, it was found that among the faculty members in the
upper half of the income bracket a much higher proportion took the con-
servative side than among those in the lower half. This does not prove
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that higher income tends to make a person more conservative. The
observations may reflect mainly the fact that as persons get older they tend
toward both more conservative outlooks and higher income.

ExampLE 8. Smoking and lung cancer. As mentioned above, the inci-
dence of lung cancer is much higher among persons who are heavy cigarette
smokers than in the population at large. This fact, taken by itself, would
equally well support the conclusions either that lung cancer causes smoking
or that both are caused by some common constitutional or environmental
factors. The mechanism causing the dependence may in part be like that
of Example 7. For example, it is known that people in cities smoke more
heavily than people on farms, and that the air in cities contains more
carcinogens than rural air. The rural-urban difference is thus a factor
that could tend to increase the dependence between smoking and cancer,
and there may be other factors of a similar nature. We do not wish to
imply that these considerations exonerate smoking u¢s a cause of lung

cancer, but merely want to emphasize once again that dependence does not
imply a causal connection. Causal relationships can sometimes be demon-
strated by means of experiments of a kind to be discussed in Chapters
12 and 13. The suspected cause must be applied in some cases and not
in others, this assignment being made with the aid of a random mechanism.

PROBLEMS

1. In the product model @ X ® specified by (3.1.1) and (3.1.4), list the simple
events of which the event (F and F) is composed, and check the validity of equa-
tion (5) for the following cases.

(i) E = {e e&s} and F = {fy, fo, fi};

(“) E= {92, €, 84} and F = {fl’f3: f-‘)}'

2. Suppose you attend two classes consisting of eight and ten students respec-
tively. In the first class, two students are selected at random for recitation, and
in the second class three students are selected at random, without reference to the
selection in the first class.
(i) Construct a probability model for this experiment.
(ii) Use this model to find the probability of your not being ealled upon for
recitation in either class.

3. Suppose that in the situation of the preceding problem, you have the choice
between the following two schemes:

(i) three students are selected from each class;

(i) two studeuts are selected from the first and four from the second class.
If you are anxious not to be called, which scheme would you prefer?

4. In Example 3, suppose that four houses were drawn from the 13 houses on the
block without stratification. What are the probabilities that
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(i) all four come from the same side of the block;
(ii) just two come from each side of the block;
(iii) no corner house is chosen?

5. In Example 3, suppose that there are seven houses on the north side and nine
on the south side. Find the probability that a sample of five houses does not con-
tain any of the corner houses if
(i) the sample is a stratified sample, consisting of two houses drawn at random
from those on the north side and three from those on the south side;
(ii) the sample is drawn at random without stratification from all 16 houses.

6. A classroom consists of two rows: in the first row, there are three freshmen and
six sophomores; in the second row, there are seven freshmen and two sophomores.
Find the probability that a sample of four consists of freshmen only if
(i) the sample is a stratified sample consisting of two students drawn at random
from each row;
(ii) the sample is drawn at random without stratification from all 18 students.

7. In the preceding problem, find the probability that the four students in the
gample are either all freshmen or all sophomores, for the two sampling schemes.

Figure 2.

8. Two fields contain nine and twelve plots respectively, as shown in Fig. 2.
From each field, one plot is selected at random for a soil analysis.
(i) Construct a probability model for this experiment.
(ii) What is the probability that both selected plots are corner plots?
(iii) What is the probability that at least one of the selected plots is a corner plot?

9. Twenty percent of the patients on which a certain heart operation is performed
die during the operation. Of those that survive, ten percent die from the after-
effects. What is the over-all proportion of cases dying from one or the other of
these causes?

10. Let E and F be exclusive. Show that P(F|E) = P(F)/[1 — P(E)]. Is this
relation necessarily correct if £ and F are not exclusive?

11. For two unrelated tosses with a coin, let E, F stand for

E': heads on first toss
F': heads on one toss and tails on the other.

Determine whether E and F are independent
(i) if the coin is fair;
(ii) if the coin is not fair.

[Hint: See Problem 1.7.]
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12. A card is drawn at random from a bridge deck. Determine whether the
events “‘red” and “has an even number of spots” are independent.

13. A box contains three red and four white marbles. Two marbles are drawn
with replacement. Assuming the 72 = 49 choices for the two marbles to be equally
likely, determine whether the events ‘“red on first draw” and “white on second
draw’ are independent.

14. At a lecture there are four freshman boys, six freshman girls and six sopho-
more boys. How many sophomore girls must be present if sex and class are to be
independent when a student is drawn at random?

15. Three square fields each contain nine plots as in the left-hand side of Figure 2.
From each, a plot is selected at random for a soil analysis, the selections being per-
formed without reference to each other.

(i) Construct a probability model for this experiment.

(ii) What is the probability that all three selected plots are corner plots?

16. A classroom consists of three rows, with a distribution of freshmen, sopho-
mores and juniors as indicated

freshmen sophomores juniors
1st row 5 2 1
2nd row 2 5 2
3rd row 2 2 5

Find the probability that a sample of five consists either only of freshmen or only
of sophomores or only of juniors if
(i) the sample is a stratified sample consisting of one student drawn at random
from the first row and two students drawn at random each from the second
and from the third row;
(ii) the sample is drawn at random without stratification.

17. Solve the preceding problem if the distribution of the students is as follows

freshmen sophomores juniors

1st row 5 2 2
2nd row 2 4 3
3rd row 2 2 5

and if
(i) the sample is a stratified sample consisting of two students drawn at random
from each row;
(ii) a sample of six students drawn at random without stratification.
[Hint: Use relation (2.5.5) to extend Table A as far as is necessary for part (ii).]

18. Solve the problem of Example 4 for two unrelated throws with a loaded die,
if for each throw separately the model (1.3.1) is appropriate.

19. Find the probability of at least one six in three unrelated tosses with a fair
die. [Hint: Find the probability of the complementary outcome.]
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20. Five judges each are asked to compare three brands of cigarettes A, B, C.
Suppose that the three brands are indistinguishable so that each of the judges
without any relation to the decisions of the other judges is equally likely to rank
the brands in any of the six possible orders ABC, ACB, BAC, BCA, CAB, CBA.
What is the probability that all judges (i) assign the ranking ABC? (ii) rank A
highest, (iii) prefer A to B?
21. (i) Use (1) to prove that the relation P(F|E) = P(F) is equivalent to (5)
provided P() is not zero.
(ii) Prove that the relation P(E|F) = P(E) is equivalent to (5) provided P(F)
is not zero.
22. Show that if E, F are independent, then E, F are independent. [Hint:
P(E and F) = P(E) — P(E and F).]
23. Show that if E, F are independent, then E, F are independent. [Hint: Use
Problem 22 twice.]

24. Show that if £ and F are exelusive, they cannot be independent unless either
P(E) =0or P(F) = 0.

4.3 TWO-STAGE EXPERIMENTS

Many interesting random experiments are performed in successive stages,
with the chance results of each stage determining the conditions under
which the next stage will be carried out. We shall in this section present
the main ideas involved in building probability models for the simplest
such experiments, those carried out in only two stages. A few illustrations
will indicate the nature of the applications.

(a) When drawing a sample of the labor force of an industry, it is fre-
quently convenient first to draw a sample of factories, and then to visit
the selected factories to draw samples of workers. The first stage is the

sampling of factories, the second stage the sampling of workers within the
seleeted factories.  This is an example of the method of two-stage sampling.

(b) In genetic experiments, animals may be bred to produce a first
generation of offspring. These in turn are bred to produce a second
generation. The chance inheritance of genes by the first generation deter-
mines the genetic constitutions involved in breeding the second generation
(see Section 5).

(¢) When designing an experiment it often happens that not enough is
known about the situation to permit an efficient design, or even to decide
whether a full-scale experiment is worthwhile. In such cases it may pay
to conduct a preliminary or pilot experiment whose results may be used to
make this decision and to plan the main experiment if one proves necessary.
This is known as a two-stage sequential design, the first stage consisting of
the pilot study, and the second stage of the main experiment.

(d) When checking on the quality of a lot of mass-produced articles, it
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is frequently possible to decrease the average sample size by carrying out
the. inspection in two stages. One may for example first take a small
sample and accept the lot if all articles in the sample are satisfactory;
otherwise a larger second sample is inspected.

All of these examples may be thought of as experiments having two parts,
but it would be quite unrealistic to represent them by product models, as
we did for the two-part experiments considered in Chapter 3. In fact,
the use of a product model is equivalent to the assumption that the parts
are unrelated, that is, that the probabilities for the second part are not
influenced by the outcome of the first part. 'This assumption clearly is not
appropriate in the present examples, where the results on the first stage
will alter the conditions under which the second stage is carried out.

Before embarking on a general discussion of models for two-stage experi-
ments, we shall consider a simple artificial example.

ExampLE 1.  The two boxes. Suppose that we have two boxes, for example
two drawers of a desk, of which one contains onc red and one white marble,
and the other three red and one green marble. A box is chosen at random,
and from it a marble is drawn at random. What is the probability of
getting a red marble?

o O O O O O

red white red red red green

Box 1 Box 2

Ficure 1. THE TWO BOXES

An enthusiastic devotee of “equally likely cases”” might argue as follows.
There are six marbles, any one of which may be drawn; since four of them
are red, the probability of getting a red marble is § = 4. To this analysis
it could be objected that one has no right to treat the six marbles as equally
likely. The fact that there are fewer marbles in the first than in the second
box may give those in the first box a greater chance to be chosen. We shall
now present a method for obtaining an alternative model.

The approach is similar to that used in the construction of product
models (Sections 3.1 and 3.2). A produet model @ X ® was built up by
combining two simpler models @ and ® for parts A and B of the experiment.
Analogously, let us begin here by considering a model @ for the first stage
of the two-stage experiment. Suppose that the possible results of the first
stage are r, 75, ..., 7, These will be represented in model @ by the
events ey, e, . . ., e, with probabilities py, ps, . . ., ps satisfying

(1) t+p+...+p.=1
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This model will be realistic only if its probabilities are approximately equal
to the frequencies they represent, that is, if

(2) 41 Nf(T]), 2 Nf(r'l)y cevy Pa Nf(Ta).

The construction of model @ may be illustrated by Example 1. The
first stage consists of drawing a box and it has a = 2 results, “first box
chosen” and ‘“‘second box chosen.” The statement that the box is chosen
at random means that the boxes would be chosen with about equal fre-
quency, which justifies assigning the values p; = { and p, = 3.

The construction of a model for the first stage has been completely
parallel to that of a model for part A of a two-part experiment, with even
the same notation being used. However, the analogy between the second
stage and part B is less close, since a product model was based on the
assumption that the two parts are unrelated while in general the second
stage will depend on the outcome of the first stage. Thus, in Example 1,
if box 1 has been drawn, the marble obtained on the second stage must be
either red or white, while if box 2 has been drawn, it must be either red or
green. The list of results of the second stage must therefore consist of
the three possibilities “red,” “white,” ‘“‘green” if it is to cover all cases that
could arise. In general, for the second stage the list of results, say s,
$3, ..., S, is a comprehensive list which covers the various second-stage
experiments that may arise. These results will be represented by the
events f, fa, . . ., fo. (In Example 1, let f represent ‘“red,” f, “white,”
and f; “green.”)

Because of the dependence of the experimental conditions of the second
stage on the result of the first stage, we have to build a separate second-
stage model corresponding to each possible result of the first stage. Let

us see for example how to build a model 8™ for the second stage when the
result of the first stage is r. The frequencies with which the results

81, 8, . . -, 85 occur, among the cases in which r, has occurred on the first
stage, are the conditional frequencies f (sy|r1), f(s2|r), . - ., f (sb}rl).' Let us
denote the corresponding probabilities by ¢{, ¢, . . . , ¢s”, where of course
we must have
®3) g’ + ¢ +...+ag" =1
The model

(B(l)l fl) f27 "')fb

@, ¢,

will be a realistic model for the second stage given that the result of the first
stage is ry, provided its probabilities are approximately equal to the corre-
sponding conditional frequencies:

4 i’ ~f(slr), @ ~F(slr), ..., @~ flssir).
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Similarly, when the result of the first stage is r5, a model ®® can be built,
which assigns to fi, fy, . . ., f» the probabilities ¢i®, ¢5?, . .., ¢®; and so
forth up to model 8@ when the result of the first stage is r..

These models may again be illustrated by Example 1, with model &®
corresponding to the cases in which box 1 is selected on the first stage, and
® to the cases in which box 2 is selected. In those trials of the experiment
in which box 1 is selected, a marble is drawn at random from a box contain-
ing one red and one white marble. It is natural to expect that these
marbles will occur with about equal (conditional) frequency, which justifies
the assignment in model 8™ of

M 1 ™ _ 1 O _
@' =3 ¢ =3 g =0

(The zero probability reflects the fact that there are no green marbles in
box 1.) Similarly, appropriate probabilities for model 8® are

3 (2) _ 2) _ 1
L & =0, ¢" =4

¢ =
Since the record of a two-stage experiment as a whole consists of noting
the results of both stages, the simple results may conveniently be repre-

sented by the events

ecandfi erandf, ... e andf,

eandfi eandf; ... e;andf,
(5) . .. .

ecandfy e,andfy ... e,andf,

where (¢; and f1) represents the result “r, and s,,” (e; and f,) represents the
result “‘r; and s,,” ete. (This is the same event set that was used with the
product model.) It may happen in the present case that some of the

events correspond to results which are impossible (e.g. “box 1 and green”’),
but since our model will assign probability zero to such events, no trouble
will result.

What probabilities should be assigned to the simple events of (5), for
example to (e; and f,)? If the model is to be realistic, P(e; and f,) must be

close to f(r, and s,). This frequency, in a sequence of n trials, may be
written as

f(r and &) = #(r, B;zld $2) — #(’;‘1) . #(7‘1#8(4;11(; 82),
so that
(6) f(riand s;) = f(r1)f (s5]ry).
If models @ and ® are realistic, we have by (2) and (4)

f(r) ~ P and f (82|7'1) ~ qé“
and hence

f(r and s3) ~ pigs®.
This shows that pigt” will, under the assumptions made, be a realistic
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value for P(e; and f,). Application of similar considerations to the other
cases leads to the assignment

P(e;andf) = pigl” Plerandfo) = pigf® ... Pleaandfs) = pigi®
s P(esand fi) = pgi® Pezandfy) = pog® ... P(erandfy) = pogs®
Pleqand fy) = pagi® Plesandfy) = pogs® ... P(esandfs) = pags®

The model for two-stage experiments defined by (5) and (7) will be denoted
by model 3.

ExampLE 1. The two boxes (continued). Let us illustrate (7) with Ex-
ample 1, where ¢, and e; represent “box 1” and “box 2,” while fi, fo, fs
represent ‘“red,” “white,” and “green.” The probabilities are

Plerand fi)) =33 =1; Plaandfe) =33 =14;
(8) Pleyand f3) = 3-0=0
P(e; and f1) = 2. Plepand fo) = 3-0 = 0;
P(eg andfa) = %‘% = %—.

[
B

e
(T

[N

Here for example the assignment of probability § to (e; and f;) reflects our
assumptions that box 2 will be chosen in about } of the trials, and that in
those cases when box 2 is chosen, a red marble will be drawn about § of
the time.

Having built the model, we ean now answer the original question and
find the probability that the marble drawn is red. The event correspond-
ing to the result of getting a red marble consists of the first columu of
(8) and its probability is therefore { + § = §.

Two different models (the uniform model discussed at the beginning of
the section and that defined by (8)) have given to the probability of getting
a red marble the values 2 and . Which is right? As usual, the only
sure test is experimental. The frequency with which a red marble is
obtained depends on just how the boxes and marbles are chosen. Many
persons approaching a desk with two drawers side by side might tend to
open the one on the right. Again, if the red marbles are larger than the
others, this might tend to favor their choice. But if the box, and then the
marble from the box, is chosen with equal probabilities, for example by
means of a table of random numbers, we would expect to get a red marble
with frequency close to £.

ExampLE 2. Sex of twins. Consider the “experiment’”’ of observing the
sex of the first-born and second-born of a pair of human twins. We have
pointed out in Example 3.2.3 that a product model is not suitable for
analyzing this experiment, and shall now see how it may be represented by
a two-stage model.

Twins are of two types: identical twins originate from a single fertilized
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egg and are consequently always of the same sex; fraternal twins originate
from two separately fertilized eggs, and their sexes are unrelated. Ap-
proximately one third of all human twin pairs are identical. If we treat
the type of twin as the result of the first stage of the experiment, and repre-
sent identical twins by e, and fraternal twins by e,, then a reasonable model
@ is obtained by setting p; = 1, p» = %

We shall view the observation of the sex of first- and second-born twins
as the result of the second stage. Just as in Example 1.5.2 and Problem
3.1.2, we shall represent the four possibilities by fi: MM, f,: MF, f;: FM,
f1: FF, where for instance MF means ‘‘first born is male and second born is
female.” Observations show that the following probabilities are roughly
correct:

lfleM fooMF  fi:FM  fi: FF

. Y | (I __ I __ D _ 1
BU: | ¢ =1 =0 ¢ =0 o =3

. (2 __ 1 2) . 1 2 1 (2)
B (=1 =1 =1 =1}

The zero values assigned to ¢5" and ¢§" reflect the fact mentioned above
that identical twins, arising from a single fertilized egg, cannot be of mixed
sex. At the time of fertilization this egg, like any other, is about equally
likely to receive a male-determining or a female-determining sperm, which
explains the assignments ¢f’ = 3, ¢ = . With fraternal (two-egg)
twins, the two fertilizations are unrelated so that frequencies represented
in the second row behave like those in ordinary two-child families.

Now let us combine models @, 8", and 8®. The resulting probabilities
are, in the usual rectangulur array (7)

| f;: MM le MI* f:tl ™M f4l FF
30
i1
From this model we see at once that the probability that both twins are

maleis 3 + § = 1. For comparison, with ordinary two-child families the
probability that both children are male is about 1 (Problem 3.1.2).

=0
— 1
=%

e;: identical
e2: fraternal
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Several other applications of two-stage models are given in the next
section.

PROBLEMS

1. In Example 1, find the probability that
(i) the only white marble is selected,
(i1) the only green marble is selected.
Give an intuitive explanation of why these probabilities differ.

2. In Example 1, what value of p, would make the six marbles equally likely to
be drawn?
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3. Solve parts (i) and (ii) of Problem 1 for each of the following three situations:
(i) box 1 contains two red and one white marble and box 2 is as in Example 1;

(i) box 2 contains four red and one green marble and box 1 is as in Example 1;
(iii) box 1 contains three red and one white marble and box 2 is as in Example 1.

4. Suppose that we have two boxes, of which one contains three red and two
white marbles, and the other four red and two green marbles. A box is chosen at
random and from it two marbles are drawn at random without replacement.
What is the probability that both are (i) white; (ii) green; (iii) red?

5. In the preceding problem, find the probability that both marbles are red if
one marble is chosen at random from each of the boxes, the two drawings being
unrelated.

6. A classroom consists of four rows, with the following distribution of boys and

girls
row l 1 2 3 4

boys 3 9 9 2
girls 8 4 5 10

To obtain a sample of three, the instructor selects three of the rows at random and
one student at random from each of the selected rows. Find the probability that
all three are (i) boys; (ii) of the same sex.

7. In the model of Example 2, what is the probability that the twins will be of the
same sex?

8. In a game of Russian Roulette, a person selects (at random) one of three
guns, each containing five chambers. The number of empty chambers is four,
three, and two respectively.
(1) Construct a model for this two-stage experiment, with the result of interest
at the second stage being whether the selected chamber is empty or not.
(ii) Find the probability that the person survives this “‘experiment.”

9. Suppose an ordered sample of size two is drawn at random without replacement
from a collection of N items, say marbles numbered 1,2, ..., N.

(i) If e, €, . . ., e~ represent the results that the first marble drawn is marble
number 1, number 2, . . ., number N, what would be reasonable values for
P(e)), Pes), . . ., Plex)?

@) If fi, fo, - - ., fn represent the results that the second marble drawn is
marble number 1, number 2, ..., number N, what would be reasonable
values for P(file)), P(fler), - . ., P(fxlen)? For P(files), P(folea), - . .,
P(fnles)? Ete.

(ii1) Using (i) and (ii), build a model for this two-stage experiment.

(iv) Compare the model of (iii) with the uniform model built for this experiment
in Sections 2.3 and 2.4.

10. A firm which has eight factories in widely different locations wishes to interview
a sample of its workers. For administrative convenience it is decided to interview
workers from only three of the factories. A two-stage sample is therefore taken:
first. three of the eight factories are selected at random; then at each of the chosen
factories, a random sample of 109 of the workers of that factory is obtained. In
the model for this experiment given by (5) and (7):
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(i) What results are represented by e;, €, . . . ?
(ii) What are the possible second stages of this experiment? Is it correct to
say that each possible second stage is a stratified sample?
(iii) What results are represented by fi, fo, . . . ?

11. In Problem 2.1.18, find the probability that the selected lawyer is a specified
lawyer from one of the firms consisting of (i) only one lawyer; (i) two lawyers;
(iti) three lawyers.

12. Suppose that a page in a telephone directory has four columns and that the
same number (say, n) of subscribers is listed in each column. In order to select a
subscriber from the page, you select at random first one of the four columns and
then one of these subscribers from that column. Has the subscriber been selected
at random from the page, i.e., does each subscriber have the same probability of
being selected?

13. Suppose that on each play of slot machine A there is probability }.of winning
$1 and probability 4 of not winning anything, while on slot machine B there is
probability % of winning $1 and probability 1% of winning nothing. Suppose
further that the probability of winning on any play is not influenced by the outcome
of the preceding play. Build two-stage models for the following two experiments:
(i) A player begins with machine A; if he wins, he plays machine A a second
time, otherwise he switches to machine B for his second play.
(i) A player begins with machine B; if he wins, he plays machine B a second
time, otherwise he switches to machine A for his second play.
[Hint: As simple events of the two-stage model use win-win, win-lose, lose-win,
lose-lose.]

14. (i) Build a two-stage model for the experiment of selecting at random (i.e.
with probability 3 each) one of the two machines A and B of Problem 13,
playing it twice if the first play wins and otherwise switching to the other
machine for the second play. [Hint: Use models (i) and (ii) of the pre-
ceding problem for the two possible second stages.]

(ii) Find the probability of winning at least once in the two plays.

15. (i) Build a two-stage model for the experiment of selecting at random one of
the slot machines of Problem 13 and playing it twice.
(i) Find the probability of winning at least once in the two plays.
(iii) Which of the two methods of playing, described in Problems 14(i) and
15(1), do you prefer, and why?
[Hint: Note that a binomial trials model is appropriate for the second stage of
15(31).]

16. (i) Build a two-stage model if the first stage consists of a two-child family
moving into a neighborhood, with the equally likely outcomes BB, BG,
GB, GG (see Example 1.6), and the second stage of our seeing one of the
children of this family, it being equally likely that this is either one of the
two children.
(i) In this model, find the probability that the family is of type BB, given
that the child we saw was a boy.
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4.4 PROPERTIES OF TWO-STAGE MODELS; BAYES’ LAW

We shall now derive certain properties of the model 3 defined by (5) and
(7) of the preceding section. As was the case with the product model
@ X ®, the symbols e, €, . . ., fi, fa, . . . are being used in more than one
sense. In model @, ¢; denotes the simple event that corresponds to the
result r; of the first stage; in model 3, ¢, denotes the composite event con-
sisting of the first row of (3.5), but still represents r,. Since e, represents
the same experimental result in the two models, it should be assigned the
same probability in both models, and this has in fact been done; by (3.7),
the sum of the probabilities in the top row of (3.5) is

1V Pe)=pg" +m¢" + ...+ 08" =pi(g" + " + ...+ ¢")

C . 0 . =p-l=p
which is just the probability of e¢; in model Q.

The same argument applies toe,, . . ., €.. As an immediate consequence
of this fact we see that (3.7) is a legitimate model. The sum of all of the
probabilities of (3.7) is the sum of the row-sums, which by the above result
and B.D)ispi+p:+...+p.=1.

In building model 3 we introduced the ¢’s to represent certain conditional
frequencies, for example ¢§” to represent f(syr). Since in model 3 the
result r; is represented by e; and the result s, by f, one might hope that
¢® would equal P(f;le;). This is in fact the case, as may be seen by
combining (2.1), (3.7), and (1):

P(f:le)) = P(er and f2)/P(er) = (p:gs”)/pr = 8°.

Just as was the case with the ¢’s, the f’s also denote more than one event.
Thus f, represents the result s, not only in model 3, where it is the composite
event consisting of the second column of (3.5), but also in models &V, .
®“, in each of which it is a simple event. However, while e, has the same
probability in both models @ and 3, the probability of f, will be different
in the different models, reflecting the dependence of the second stage on the
outcome of the first. Thus, in model @ the probability assigned to f,
was ¢§, in model ®? it was ¢f, etc. What is the probability of f; in
model 37 Since in model J the event f, consists of the second column of
(3.5), we have

@ P(f) = pigs” + pogf® + . . . + pug®
= P(e)P(filer) + P(e2)P(fales) + . . . + Plea)P(falea).

The probability assigned to f; in model 3 is thus a “weighted average” of
the values assigned in model 8, . . ., ®®, the weights being py, . . ., Pe.
Similar formulas hold for fi, fs, . . ., fo To illustrate this formula, recall
Example 3.1. The conditional probability of a white marble is ¢§° = § if
box 1 has been drawn, and is ¢ = 0 if box 2 has been drawn. The over-
all probability of a white marble is therefore by (2)



4.4] PROPERTIES OF TWO-STAGE MODELS; BAYES' LAW 113

PU) = 33+30=1

There are many interesting and important two-stage experiments in
which one cannot observe the result of the first stage but only that of the
second stage. In such cases, the second-stage result may provide indirect
information about the unobserved first stage, and in fact it is frequently
the purpose of the second stage to provide this indirect information.

ExampLE 1. Diagnostic tests. For many diseases, diagnostic tests have
been developed that are helpful in detecting the presence of the disease.
There is, for example, a skin test for tuberculosis, a blood test for syphilis,
a cytological test for cancer, etc. Unfortunately such tests are never
perfect. A test may on occasion give a positive reaction, i.e., indicate
that the disease is present, even when it is not; such a reaction is called a
false positive. Similarly the test may result in a false negative, by showing
a negative reaction when applied to an individual who is in fact suffering
from the disease.

The application of a diagnostic test may be viewed as a two-stage experi-
ment. The selection of the individual who receives the test constitutes
the first stage; this individual may be either “sick” or “healthy,” i.e., he
may either have or not have the disease in question. The application of
the test to the individual constitutes the second stage, the result of which
is either a positive or a negative reaction.

In the routine application of a diagnostic test, the result of the first stage
ordinarily is not observed. To determine whether or not the disease is
present may require an extensive and expensive period of careful clinical
observation; it may in some cases not become definitely known until much
later when an autopsy is performed. However, the result of the second
stage, a positive or negative reaction on the test, is directly observed. The
purpose of the second stage is in fact to provide (indirect) information
about the individual’s health.

ExamrpLE 2. College admission. Not all of the applicants for admission
to a college would, if admitted, be able to do successful work. We may
accordingly classify the applicants as “able” or ‘“unable’” on this basis.
We shall regard this classification as the first stage of an experiment, al-
though, of course, when an applicant presents himself, the registrar cannot
observe into which category he falls. In order to decide whether to admit
the applicant, the registrar gives him an entrance examination which he
may either pass or fail. This result constitutes the observable second stage.
The purpose of the examination is in fact to provide indirect evidence
about the ability of the student to do successful work.

Suppose that (3.5) and (3.7) provide a satisfactory model for a certain
two-stage experiment, for which the first-stage results, represented by
e, e ..., are of particular interest but cannot be directly observed.
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Prior to the experiment these events have the probabilities P(e;) = py,
P(e;) = p3,. ... We shall call these the prior probabilities of e, ¢, .. ..
Now the experiment is performed, and it is seen that the result represented
by f; has occurred. Once this partial information is in hand, the principles
of Section 1 show that the relevant probabilities for e, e,, . . . are now the
conditional probabilities given fo: Pleilfe), P(eslfa), . . . . We shall call these
the posterior probabilities of ey, e, . . . since they are relevant after the
experiment. The posterior probabilities can be computed from formula
(2.1) for conditional probabilities. Thus we see, for example, from (3.7)
that

P(elfs) = P(er and f2)/P(fs) = P(en)P(faler)/P(fs)

and hence from (2) that
P(e)P(f2ler)
3) P =
@) Pl = peyPle) + PeP(fle) + - + PP
Similar formulas hold in the other cases. This formula, which expresses a

posterior probability in terms of prior and conditional probabilities, is
known as Bayes’' law.

ExampLE 3. The two boxes. Recall Example 3.1, but suppose now that
we are permitted to observe not which box was chosen but only the color
of the selected marble. Prior to this observation, each box has probability
1 or P(e)) = P(e;) = . Suppose that the experiment is performed and
that the selected marble is red. This result is represeuted in the model
by fi. Since P(file)) = %, and P(files) = }, application of Bayes’ law gives

_ P(e))P(file1) - 33 _2
Pl = )Py + PePGle) " 13+ 53 5
. P(es) P(files) = 3% =3
Pl = BeyP(ien + Pe)P(ie) ~ 13 +33 5

These are the posterior probabilities of the two boxes, after it is known that
a red marble was obtained. Before the experiment the two boxes are
equally likely, but after observing a red marble the second box is more likely
than the first. The reason for this is that the probability of a red marble
is higher when drawing from the second box than from the first.

ExampLE I. Diagnostic tests (continued). The authorities of a college are
considering giving a diagnostic test to the entire student body in order to
identify those students who have a certain infectious disease. It is known
that the test gives some false positive reactions, and the plan calls for
subjecting all students with positive reactions to an expensive clinical
examination to determine whether they do in fact have the disease. The
infirmary wants to know what fraction of the students will have to be
examined clinically, i.e. what fraction will give a positive reaction. By (2)
we have
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) P(positive)
= P(sick)P(positive|sick) + P(healthy)P(positivejhealthy).

This formula will be useful only if numerical values can be supplied for the
terms on the right. Suppose that previous studies of the test indicate
that it gives a positive reaction to about 809, of the persons having the
disease, and to about 109} of the persons who do not, so that it is reasonable
to assume P(positive|sick) = .8 and P(positive|healthy) = .1. Suppose
further that general experience with the disease suggests that its incidence
among college students is about 19, so that one may put P(sick) = .01.

With these values, (4) gives P(positive) = .01 X .8 4+ .99 X .1 = .008 +
.099 = .107. Thus, it may be anticipated that about 119, of the students
will have to be examined, and that as a result of the test about 809 of the
students having the disease will be identified.

From the point of view of a student who takes the diagnostic test and
gets a positive reaction, the interesting question (before he undergoes the
clinical examination) is: “How likely am I to have the disease?” The
relevant probability is provided by Bayes’ law:

P(sick|positive) = P(sick)P(positive|sick)/P(positive)
= (.01 X .8)/.107 = .075.

Consider now the frequency interpretation of this probability. It shows
that about 929, of the students who have a positive reaction and must
therefore undergo the clinical examination, are in fact healthy. The
reason for this somewhat startling conclusion is that the disease is quite
rare (incidence of 19}), so that even with a rather low rate of false positives
(10%), the bulk of the positive reactions come from the healthy group.
This illustrates the general fact that, when diagnostic tests for rare diseases
are applied in mass screening surveys, the majority of the positive reactors
are healthy. Nevertheless such surveys may be useful, since they permit
the expensive examination to be restricted to a small fraction of the whole
population.

PROBLEMS

1. Of two boxes, one contains one red and one white marble, the other two red and
three white marbles. A boxis selected at random and a marble is drawn at random
from the selected box. Use (2) to find the probability that the marble is red.

2. Using the model for ordered sampling of Problem 3.9 and (2)
(i) find the probabilities P(f), P(f2), : . ., P(fx);
(ii) corapare P(f;) with P(fyle:) by giving the frequency interpretation of each.

3. In any modsl (not necessarily of a two-stage experiinent) suppose that the
event set & is broken down into the exclusive event sets E;, E,, . . ., so that & =
(Eior E;or...). Prove that for any event F, the probability of F can be com-
puted by the following “breakdown law,”



116 CONDITIONAL PROBABILITY [cHap. 4

5 P(F) = P(E)P(F|E\) + P(E)P(F|Ey) + . . ..

[Hint: Apply first the addition law and then the multiplication law to the right
side of (1.6.1).]

4. A box contains three red and seven white marbles. A marble is drawn at
random and in its place a marble of the other color is put in the box. The marbles
are stirred and another one is drawn at random. Find the probability that it is
red. [Hint: Apply (5), with E,, E, representing the two possible colors of the
first marble drawn.]
5. A box contains three pennies, of which two are fair and the third is two-headed.
(i) A penny is selected at random and tossed. What is the probability that it
will fall heads?
(ii) If the selected penny is tossed twice, what is the probability that it gives
heads both times?
[Hint: Use (5) with E,, E, representing the selection of a fair penny or the two-
headed penny respectively. In (ii), assume that, if a fair penny has been selected,
the two tosses with this penny are unrelated.]

6. A box contains six pennies, which may be fair, two-headed, or two-tailed. A
penny is selected at random and is tossed twice. How many pennies should there
be of each of the three types so that the experiment simulates that of Example 3.2?

7. Suppose that the probability is p that the weather (sunshine or rain) is the
same on any given day as it was on the preceding day. It is raining today. What
is the probability that it will rain the day after tomorrow? [Hint: Use (5), with
E, and E, representing the possible states of the weather tomorrow.]

8. (i) Under the assumptions of Example 1 (continued), find the probability of
an incorreet diagnosis.
(ii) Compare the probability obtained in (i) with the probability of an incorrect
diagnosis for the ‘“diagnostic procedure’ of declaring every student healthy
without performing a test.

9. A lot of 25 items is inspected by the following two-stage sampling plan. A
first sample of five items is drawn. If one or more is bad, the lot is rejected; if all
are good, a second sample of ten items is drawn (from the 20 items remaining),
The lot is rejected if any of the items in the second sample is bad, and is accepted
if all are good. Find the probability of accepting a lot containing two bad items.
{Hint: Use (5), with E,, E, representing the possibilities that the first sample does
or does not contain at least one bad item.)

10. Under the assumptions of Problem 3, prove the following generalization of
Bayes’ law:

6) P(EF) =

11. Use (B) to find
(i) in Problem 1 the probability P(box 1|red);
(ii) in Problem 5(i) the probability that the two-headed penny was selected

given that the penny fell heads;
(iii) in Problem 5(ii) the probability that the two-headed penny was selected

given that the penny fell heads both times.
12. In Example 1 (continued), find the conditional probability P(sick|negative).

P(E)P(F|E,) P(E\)P(F|E,)

P@F)  _ P(E)PWFIE) + P(E)PFIE) + ...
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4.5 APPLICATIONS OF PROBABILITY TO GENETICS

That the inheritance of certain traits could be regarded as a random
experiment was first pointed out by Mendel* in 1866. on the basis of his
studies of the culinary pea. To take a somewhat more explicative example
than any of Mendel’s, suppose that a certain plant may have red (R),
pink (P), or white (W) flowers. It is found that the seeds obtained from
crossing two red-flowered plants will always produce red-flowered plants:
let us represent this fact schematically by the formula R X R — R.
Similarly, we find W X W — Wand R X W — P. But the other crosses
will give variable results. From R X P we may obtain either R or P,
and the record of the successive results will look like the record of a sequence
of penny tosses, the red- and pink-flowering plants occurring in about
equal frequency in a large experiment. Similarly W X P produces W
and P with about equal frequency. Finally the cross P X P will give all
three types, P about half the time and R and W each about one quarter of
the time.

To explain such observations Mendel postulated that there were certain
entities, now called genes, responsible for flower color and passed on from
the plants to their progeny. The present example involves two types of
genes, which we may denote by A and a. Each plant has two genes so
that there are three kinds of plants, or genotypes: AA, Aa, and aa. A plant
(AA), both of whose genes are of type A, will have red flowers. A plant
(aa), both of whose genes are of type a, will have white flowers. Finally,
a plant (Aa) with one gene of each type will have pink flowers.

Each offspring obtains one gene from each parent to make up its own
pair. This explains why R X R — R, since when we cross an AA plant
with another AA plant, the offspring must also be AA. Similarly (aa) X
(aa) — (aa), and (AA) X (aa) — (Aa). The varying results are now also
explained: in the (AA) X (Aa) cross, the offspring is sure to get A from
the first parent, but may receive either A or a from the other, and thus
may be either AA or Aa. Similarly the (Aa) X (Aa) cross may produce
each of the three types. v

To explain the stable frequencies, we now introduce probability assump-
tions into the model. We suppose

(i) from an (Aa) parent, an offspring has probability 3 of receiving
each of the genes A and a;

(i1) the genes obtained by an individual from his two parents are

unrelated.

Breeding experiments also justify another assumption of unrelatedness:
(iii) the genes passed on by a parent to different offspring are unrelated.
With these simple assumptions, all the Mendelian frequencies are ex-

plained. Thus in an (Aa) X (Aa) cross, the probability is 1 that the

* Gregor Mendel, 1822-1884.
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offspring will be (AA), since there is probability 1 of obtaining the A gene
from each parent, and by assumption (ii) these probabilities are to be
multiplied. The table below shows the nine possible crosses, and the
probabilities of each of the three possible offspring in each ease.

TABLE 1. PROBABILITIES OF GENOTYPES

Mother AA Aa aa
Father
AA AA 1 AA i AA 0
Aa 0 Aa 1 Aa 1
aa 0 aa 0 aa 0
Aa AA 1 AA 1 AA 0
Aa 3 Aa 3 Aa 3
aa 0 aa : aa i
aa AA 0 AA 0 AA 0
Aa 1 Aa 1 Aa 0
aa 0 aa 1 a3 1

The Mendelian theory is one of the most satisfying in all of science. It
is simple, elegant, and far-reaching. It is now known that mechanisms
of this sort occur throughout the plant and animal kingdoms. Things
are not always quite as simple as we have here suggested. Many traits
depend on more than two types of genes—for example, the A-B-O blood
groups in man seem to involve three types, disregarding subtypes. Many
traits are determined by more than one pair of genes (hair color, for ex-
ample). And the development of an individual depends not only on his
genetic inheritance, but also on his environment. But there are many
traits in man that can be understood in terms of the simple model we have
presented above.

Among the properties inherited according to the simple mechanism
described above are a number of diseases or crippling defects which appear
in childhood and lead to the death of an affected individual before maturity.
We shall assume, as is frequently the case, that all AA- and Aa-individuals
are healthy, showing no signs of the defect, but that all aa-individuals are
affected. Because of its death-bringing qualities, the gene a in such cases
is called lethal. The lethal gene is harmless in a single dose (Aa) becoming
effective only in a double dose (aa). An individual of the (Aa) type may
be called a carrier of the lethal gene, which is harmless to him but which
he may pass on to his descendants. It follows from the assumptions made
that affected individuals can result only from marriages of two Aa indi-
viduals. Thus there is strong reason for a carrier to marry only an AA
individual, as only this will insure that all his children will escape the lethal
combination aa.

Unfortunately it is usually the case that AA- and Aa-individuals are not
distinguishable: when A is present in even a single dose, it determines the
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physical appearance of the individual. The gene A is then said to be
dominant over the gene a. In this case, the Aa individual will not know
that he is a carrier of the lethal gene since a healthy individual may be
either AA or Aa. Can we attach probabilities to these two possibilities?

Let us suppose that the fraction of healthy adults in the population who
carry the lethal gene is the same for males and females, and let us denote
this fraction by N. (This supposition would not be realistic if the lethal
gene were ‘‘sex-linked.”) We shall indicate in the next section how the
value of A may be estimated, and will now only say that typically X is small.
If an adult male or female individual I is then selected either at random
from the population, or in such a way that the factors leading to his selec-
tion are unrelated to his genetic status, an appropriate model for the
genotype of I is

genotype of 1 ’ AA Aa

1) -
probability \ 1—-2 A

Suppose now however that the person in question comes to our attention
because he is calling on a genetic counselor for advice. The reason for his
seeking advice is frequently that something is known about his genetic
status, and such information may change the probability dramatically.
For example, if the individual has an affected child, it becomes certain
that both he and his spouse are Aa— the probability that he is a carrier
rises from X to 1. If a person has an affected relative, such as a brother,
uncle, or cousin, it follows that the lethal gene runs in the family, and the
probability of his being a carrier also rises. We shall now compute this
probability for two such cases.

ExampLE 1. Affected sib. Suppose that an adult individual I had an
affected brother orsister. This implies that both of I’s parents are carriers,
and hence that the appropriate model for the genotype of I at birth is given
by the central block of Table 1:

genotype of [ { AA Aa aa
@) probability l L1
at birth

However, since I has survived to adulthood, he cannot be aa, and the
appropriate conditional model, given this information, is by (1.1)

genotype of 1 | AA Aa
®) probability l 1 3
in adulthood

where in writing (3) we have for simplicity omitted the genotype aa whose
probability is zero.



120 CONDITIONAL PROBABILITY [cHAP. 4

ExamrLE 2. Affected uncle. As a second example, suppose that an adult
individual I had an uncle or aunt who was affected, say his father’s brother.
This is a considerably more complicated problem than that treated in
Example 1. Its analysis requires a two-stage model: the first stage per-
tains to the genotypes of I's parents, and the second stage to those of
himself. Since I's father F had an affected sib, the appropriate model
for F's genotype is, by Example 1,

genotype of F | AA  Aa
@

probab lity l 3 3

Since I’s mother M is not known to have any affected relatives, we may
use model (1) for her genotype

genotype of M | AA Asa

(6)) —
probability l

1 =X A

If the genotypes of F and M are assumed to be unrelated, the product of
models (4) and (5) may serve as model @ for the first stage:

€ €2 (%] €4
Event (FisAA, (FisAa, (FisAA, (FisAa,
MisAA) MisAA) MisAa) MisAa)
(6) |

Probability

a-» i-» R n

The second stage consists of I’s “choice” of genes from his two parents.
Corresponding to each possible result of the first stage, the conditional
model for the second stage is the appropriate block of Table 1. The prob-
abilities of the four conditional models &®, ..., ®*® corresponding to

ey . - ., & are shown in the following array.
N f fs
(I'is AA) (I is Aa) (I is aa)
®W 1 0 0
(7) ®R? % % 0
®3® % % 0
& : 3 3

Combining (6) and (7) with the aid of (3.7) gives for the 12 events of the
two-stage model the following probabilities, where for example P{e; and fi)
= P(a)P(file)) = 51 — N)-3 = 31 = N).
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| fi fa fs

€ 11 -2 0 0

®) & a-»n  3a-» 0
e N iz 0

€y %)\ %)\ %)\

Summing the columns of (8) we obtain by (4.2) the probabilities for I's
genotype at birth:

Pf)=%-3, P =3+  PU) =3

But since I has reached adulthood, we know that he cannot be aa, and

therefore by (2.1) his probability of being a carrier is the conditional
probability

141
P(I is Aa|l is not aa) = ?i%
— %

As remarked above, \ is usually small, so that to a first approximation one
may neglect X and say that this probability is approximately 3. Roughly
speaking, it is half as dangerous to have an affected uncle or aunt as to
have an affected brother or sister.

A simple intuitive argument leads to this same approximate result.
There is probability 2 that F carries the gene a, and if he does, I has half
a chance of getting it. Therefore I has probability 1 of inheriting the
gene a from his father. Compared with this, the chance of getting gene a
from his mother is negligible.

Similar calculations can be made for other affected relatives. We
summarize in Table 2 the approximate probabilities (assuming A to be

small) that a healthy adult is a carrier given that certain relatives are
affected.

TaBLeE 2. RISK OF BEING A CARRIER

Approximate
Affected relative probability

Child

Brother or sister
Unele or aunt

First cousin

Great uncle or aunt

LR AT X U ]
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The probabilities in this table become very important when two indi-
viduals, both of whom have a family history of the same genetic disease,
are contemplating marriage. For example, if both individuals have an
affected brother or sister, each has two chances in three of being a carrier.
It is reasonable to treat these results as unrelated; and the probability that
both are carriers is therefore 2-2 = 4. Any child they might have would
thus have probability §-1 =  of being affected. This probability might
be large enough to discourage the marriage of such persons.

PROBLEMS

1. Suppose a gene can oceur in any of three types, say A, a or a.
(i) What are the possible genotypes of an individual?
(i) If the father is Aa and the mother is ac, what are the probabilities of the
genotypes of the child?

2. Two carriers marry and have two children. What is the probability that just
one of these children is affected?

3. A genetics counsellor advises a client, whose aunt was affected, that the client
has a 38 percent chance of carrying the gene. How frequent does the counsellor
believe carriers to be in the population at large?

4. (i) What is the probability that a healthy person is a carrier, given that his
' half-brother was affected?
(ii) What is the approximate value of the probability of part (i) if A ‘s small?

5. An individual F is mated with an individual M known to be a carrier. They
have n children all of which are heaithy. How unlikely is this event if F is a
carrier?

6. An individual F is randomly selected from the adult population (whose pro-
portion of carriers is A} and mated with an individual M known to be a carrier.
What is the probability that F is a carrier if it is given that
(i) they have a child C who is healthy;
(i) they have two children, both of whom are healthy;
(iil) they have n children, all of whom are healthy?
[Hint: Use Bayes’ law.]

7. Verify the entries of (8).

8. A man F is known to be the carrier of the lethal gene a. His wife M is ran-
domly chosen from a population of which a proportion A are carriers. How does
the probability that their child C is & carrier depend on A? Explain.

9. An adult woman (S) whose brother (B) has an affected child (and is therefore
a carrier) wishes to know the chance that she is a carrier.
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(1) Find P(B = Aa and S = Aa).
(i) Find P(B = Aa and S = AA).
(ili) Find P(S = Aa|B = Aa).
[Hints: (i) Use the break-down law (4.5) with
F:(B=Aaand S = Aa), Fi:(F=AAand M = Aa),
Fo: (F = Aaand M = AA), F;: (F = Aaand M = Aa).
(i1i) Use (i).]
10. (i) Show that if A is sufficiently small that terms in A2 may be neglected, the
probability in Problem 6(iii) is approximately equal to 3.
(ii) Use part (i) to explain the entry } in Table 2.
11. A man F had an affected uncle and his wife M an affected first cousin. What
approximately is the probability of being diseased for each of their children?

4.6 MARRIAGE OF RELATIVES

In most human societies there is a prohibition against marriages of close
relatives. In this connection it is interesting to observe that the prob-
ability of affected children (in the sense of the preceding section) is typically
much larger in such marriages than in marriages of unrelated persons.
For simplicity, consider the case of brother-sister marriages, which were
actually favored in the royal families of ancient Egypt. What is the
probability that a brother B and sister S are both carriers of the lethal
gene a, so that their marriage would be genetically dangerous, assuming
that their parents are unrelated healthy persons? Again a two-stage
model is required. For the first stage, we assume that the father F and
mother M each has genotype given by model (5.1), and since they are
unrelated (in both senses!), the product model is appropriate for the geno-
types of the parents:

€ [2) €3 e;
event (Fis AA, (Fis Aa, (FisAA, (FisAa,
Mis AA) Mis AA) Mis Aa) M is Aa)

a
) probabilityl (1 —N)? (1—MA A1 -} A

Consider now the second stage, pertaining to the genotypes of B and S.
For each result of the first stage (i.e., for each combination of parental
genotypes), the genotypes at birth of both children are governed by the
appropriate block of Table 5.1. By assumption (iii) of the preceding
section, the model for the genotypes of B and S is given by the product of
this block with itself. It will be enough to distinguish the following three
events on the second stage.

J1: neither B nor S is affected, and at most one is a carrier (in
which case there is no genetic counterindication to their mar-
riage);

fa: both B and 8 are carriers;

fs: at least one of B and 8 is affected.
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To compute for example P(f3¢;), we note that when F is Aa and M is AA,
then B and S each has probability 3 of being a carrier, so that the eondi-
tional probability of both being carriers is 3-3 = . In this way the

following four conditional models are obtained.

l fl f2 fS

®W \ 1 0 0

(2) ®® % % 0
®® l 3 1 0

@ 16 1% 1%

By summing the columns we find that at birth the genotypes of B and S
have probabilities

P(f)) = (1 = N2+ M1 — N) + S\
P(fy) = N1 = \) 4 &
P(fy) = Ter’.

However, once the children are grown, f; is excluded and the relevant
probability of both being carriers is the conditional probability

@3) P(fiinot f3) = 1&_:11%;

Since \ is small, \* will be very small and negligible in comparison with A,
so that an approximate value is

&) P(finot f3) ~ 3\

For example, if A = .01, the exact value (3) is .00498 while the approxi-
mate value (4) is .005.

For comparison with this value, let us see what is the probability that a
healthy man I and a healthy woman J, who are not related to each other,
are both carriers. Since for both males and females the fraction of healthy
adults who are carriers is A\, we may use model (5.1) for both I and J. If
the genotypes of I and J are assumed to be unrelated, these models may
be multiplied together. In the resulting product model,

(5) P(I and J are both carriers) = \2.

When ) is small, both of the probabilities (4) and (5) will be small, but (4)
will be relatively very much greater than (5). For example, if A = .01,
then 3\ = .005 and A2 = .0001, so that (4) is 50 times as large as (5).
This result may seem surprising at first since we have not supposed that
the family of B and 8 has any history of the disease. The mere fact that
they are sibs increases by a factor of 50 the risk that both are carriers, as
compared with the risk that both of the unrelated individuals I and J are
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carriers. The explanation rests on the fact that B and S draw their genes
from the same source (F and M), while I and J draw from different sources.
F and M are no more likely to be carriers than are I and J, but if one of
them is a carrier (the probability of which is about 2)\), there is a substan-
tial chance (1) that both B and S will draw the lethal gene.

Calculations similar to those leading to (4) can be made for marriages
among other close relatives. Some results of this kind are shown in
Table 1. The approximate probability of two relatives both being carriers
is seen to be proportional to A, with the factor of proportionality decreasing
as the relationship becomes more distant. The value of this factor can in
fact be used to define the closeness of the relationship.

TasLE 1

the approximate probability that

If I and J are both I and J are carriers is
Unrelated Az
Brother and sister 1
Father and daughter iA
Half brother and half sister 1
Unecle and nicee 1
First cousins A

The fact that brother-sister marriages are such bad genetic risks is
thought by some anthropologists to explain the taboo against such mar-
riages that has existed in most human societies. If in a primitive society
brother-sister marriages were common, it would soon be observed that
diseased children were primarily to be found among their offspring, and
the conclusion might be drawn that such marriages were not favored by
the gods.

The conclusion that brother-sister marriages are relatively bad genetic
risks rests on the assumption that X is small. For sufficiently large values
of \, the probability (3) actually will be smaller than the probability (5).
For example, in some regions of West Africa, the gene responsible for
sickle-cell anemia is carried by a considerable proportion of the adult
population. If this proportion were for example 509, a brother-sister
marriage would be a slightly better genetic risk than the marriage of un-
related persons (Problem 2).

Let us consider next how one may determine the value of A for a par-
ticular lethal gene. Since carriers Aa do not in general differ in appearance
from AA individuals, one cannot conduct a census to determine the fre-
quency X of carriers in the adult population. However, by (5) we may
expect the proportion of couples Aa X Aa to be 2. From Table 5.1,
about ! of the children of such couples will be affected, and no other
children can be. This suggests that the frequency of affected children in
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the population will be about A% If for example it is observed that one
child in 40,000 is affected, we may estimate that

A2 1

©) 4 40,000

This approach is based on several assumptions that may not be satisfied
in practice. When a child is found to be affected, and the parents thus
learn that they are both carriers, they may well decide to have no further
children. This could result in smaller families among such couples than
in the population at large, and hence to a fraction of affected children
lower than A2/4, so that the estimate (6) for X would be too small. This
difficulty could be overcome by restricting the frequency count of affected
children to first-born children.

Another assumption which may not be satisfied is that leading to (5).
The use of a product is valid only if there is no relation between the geno-
typesof I and J. At first this seems reasonable, since it was assumed that
the possession of a single a gene does not affect appearance. To see that
the assumption of (statistical) unrelatedness may nevertheless not be at
all realistic, consider once more the case of sickle-cell anemia. In the
population of the United States, the gene a for this disease is carried much
more frequently by Negroes than by persons of other races. Since people
tend to marry others of the same race, equation (3) is grossly wrong in this
case. This is an example of indirect dependence (Section 2); the geno-
types of husband and wife become dependent through the indirect effect
of the factor of race.

or A= .01.

PROBLEMS

1. Verify the entries of (2).
Verify that (5) is bigger than (3) when A = }.

(i) What is the probability that a child is affected if his parents are brother
and sister?

(i) What is the approximate value of this probability if \ is sufficiently small
so that terms in A2 can be neglected?

4. In breeding experiments with mice, 17 affected offspring are observed out of
1835 births from brother-sister matings. Use the result of Problem 3(ii) to find
the approximate value of A.

5. A man F is known to be a carrier; the genotype of his wife A/ is given by model
(5.1).
(i) What are the probabilities of the genotypes of their daughter D at birth?
(ii) What is the conditional probability of D being a carrier given that she is
healthy?

6. (i) Suppose that the genotypes of a man F and his wife M are unrelated and
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both given by model (5.1). Show that the probability of both F and his
healthy daughter D being carriers is (A/2) <+ (1 — A/4).
(1) Use (i) to verify an entry in Table 1.
(iii) Use (i) to find for what values of X father-daughter marriages are genetically
safer than the marriages of unrelated persons.
fHint: (i) Use Problem 5(ii).]

4.7 PERSONAL PROBABILITY

So far we have been regarding the probability of a result in a random
experiment as the mathematical abstraction of the frequency with which
the result would occur in a long sequence of similar and unrelated experi-
ments. In addition to this interpretation of probability as freqyency,
there is a quite different interpretation according to which the probability
of a statement represents a certain numerical measure of & person’s degree
of belief in the statement. We shall in this section discuss this alternative
“personal” or “subjective” view of probability and illustrate its use in
several problems.

The use of the word probability in everyday speech often has a personal
aspect. If an astronomer says ‘“‘there is probably vegetable life on Venus,”
or if a sports enthusiast says “the chances are two out of five that the
home team will win tomorrow’s game,” or if a juror thinks “it is unlikely
that the witness told the truth,” they are not thinking of a frequency
interpretation, but are giving a personal assessment of the situation based
on a subjective evaluation of the evidence.

How can one arrive at the numerical value of one’s personal probability
for a given statement? In principle this can always be done by asking
whether or not one would accept a bet offered at various odds. Suppose
that two horses H and L are to run a race, and you wish to discover your
personal probability that horse H will win. If you would be willing to
take either side of an even money bet that H will win, this can be inter-
preted as meaning that you think horse H has half a chance to win, so that
for you, P(H will win) = 4. Now consider another spectator who thinks
that H is more likely to win than L. Suppose he would be indifferent
between the alternatives

(i) getting $2 if H wins,

(i) getting $3 if 1. wins.

It is intuitively plausible that the numbers of dollars he might expect to
win in the two cases are

(i) 2-P(H will win),

(i) 3-P(1, will win).

His indifference may be interpreted as meaning that, for him, (i) and (ii")
are equal. Since

P(H will win) 4+ P(L will win) = I,
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it follows that for him
P(H will win) = ¢, P(L will win) = £.

By such considerations it is theoretically possible for any person to work
out his personal probabilities for any set of possible results. In practice,
many people find it very difiicult to make the required assessment, espe-
cially when the set of results is large.

From the mathematical point of view, the model just developed is
indistinguishable from the probability models we have been using: as
before, there is an event set, and to each event is assigned a nonnegative
probability in such a way that the probabilities add up to 1. Although
the conceptual interpretations of personal and frequency probability differ,
the formal calculus is the same. The addition law, the multiplication law,
Bayes’ law, etc. are used in the same way regardless of the meaning
attached to the probabilities.

One important aspect of personal probability is that it is a function of
the person involved: for two different people, the probabilities of a given
statement may be markedly different, reflecting the different information,
experience, attitudes, or even prejudices, on which they base their beliefs.
To the frequentist, on the other hand, the probability of a result depends
on the conditions of the experiments, but at least ideally ought not to
differ according to personal knowledge and attitudes.

In contrast with the subjective approach, the frequency interpretation
is sometimes called “objective.” This term is somewhat misleading, since
in reality both approaches involve subjective elements. The frequentist
exercises judgement in deciding what assumptions to make in building his
probability model, so the choice of model will inevitably involve sub-
jective evaluations. The subjectivist, on the other hand, will presumably
consider any relevant frequency experience in formulating his personal
probability.

One of the most important differences is that the subjectivist is willing
to apply probability ideas to a wider class of problems than is the fre-
quentist. Suppose you meet a stranger in a bar, who offers to toss a coin
to decide who pays for the drinks. He will pay if the coin falls tails, you
will pay if it falls heads. The thought crosses your mind that the coin
may be two-headed, but you are too delicate to ask to examine it. What
is the probability that the coin is two-headed? The frequentist may
hesitate to answer this question, he may even say that the question is
meaningless, while the subjectivist need in principle only ask himself which
way he would bet at various odds to arrive at his personal probability for
the coin to be two-headed.

An interesting class of problems arises when a subjective probability has
to be modified in the light of fresh evidence to which a frequency interpre-
tation can be given. Suppose for example you accept the stranger’s offer,
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he tosses, and the coin falls heads. This experimental result will reinforce
to some extent your prior suspicions that the coin is two-headed. (If the
coin had fallen tails, your suspicions would by now have disappeared.)
Let us see by how much the suspicion should be increased by the result
“heads,” using a subjective approach.

Suppose that, before the coin was tossed, your personal probability for
the hypothesis “coin is two-headed” was equal to =, so that your personal
probability for “coin is fair” was 1 — x. (We assume for simplicity that
there are only these two possibilities.) If the coin is fair, everyone would
agree that the probability of “heads” is . By Bayes' law,

x-1 _ _2r
rl+0—-n)% 1+7x

P(Coin is two-headed|Heads) =

For example, if originally you thought there was a ten percent chance that
the coin is two-headed, after the coin fell heads you should have increased
the chance to 2(.1)/(1 + .1) = .182. The following table shows how the
probability of two heads after the toss (the posterior probability) depends
on the probability of two heads before the toss (the prior probability):

Prior \ 0 .01 1 5 9 99 1

Posterior | 0 .0198 .182 .667 947 .9950 1

Notice that if you are certain before the experiment that the coin is two-
headed (x = 1) or that the coin is fair (x = 0), then the experiment will
not change your probability. It is generally true that if the prior prob-
ability for any statement is 1, the same is true of the posterior probability
(Problem 3). If a person’s mind is made up, he will not be confused by
the facts!

We conclude with two examples of greater applicational interest.

ExamrpiE 1. Dispuled authorship. There are a number of literary works
whose authorship is in dispute ; for example, certain of the Federalist Papers
are assumed to have been written either by Madison or by Hamilton.
Efforts have been made to resolve the doubt by frequency counts of stylistie
elements in the disputed papers and in known works of the two men.

To simplify the example drastically, suppose that a work whose author
is known to be either M or H contains a certain peculiar stylistic construc-
tion. Author M is fonder of this construction than is author H. 1In fact,
this construction may be found in 609, of the similar works known to be
by M, but in only 109, of those by H. Intuitively, its occurrence in the
disputed work tends to support the claims of M, but how strongly?

Suppose a historian, before the stylistic analysis, attaches personal
probability .3 to the statement “Author is M” and .7 to “Author is H.”
After the stylistic analysis, his posterior probability for ‘“Author is M”
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will according to Bayes’ law be given by

- .. cy 3 X .6 _ .18
P(Author is M|Stylistic analysis) = X 6L Tx 1" 25 72,
This calculation could not of course be defended if the prior assessment

that P(Author is M) = .3 had been based on a consideration of style, for

in that case the stylistic analysis would not constitute entirely new evi-
dence. In practice it might be difficult for the historian to know the
extent to which his prior ideas were influenced by the style of the work.

IixampPLE 2. Probability of guilt. Another interesting use of personal
probability is in criminology, where one wishes to know how likely it is
that a man accused of committing a crime is in fact guilty. Suppose it is
known -that the criminal has a certain property A (he may, for example,
be known to be left handed and to belong to a certain blood group). If
the accused is guilty, he is certain to possess property A. However, even
if he is innocent he may possess property A. If the fraction of persons
with property A in the population is p, one might assign to P(A|innocent)
the value p. Suppose that the accused is found to possess property A.
If for a police official the personal prior probability before this observation
was = that the accused is guilty, his posterior probability is by Bayes’ law

w1 .
=14+ 0 —x)p
The following table shows how this quantity depends on p and .

.53 81 91 .96 .99
27 .69 a7 .89 97
. 46 .67 81 94
14 38 .59 a7 .93
J1 32 53 72 91
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We wish to emphasize that the calculation above could be defended only
if the information about property A was not involved in bringing the
original accusation. In building the model, we assigned to P(Alinnocent)
the frequency p with which property A occurs in the population. This
assignment would certainly not be reasonable if for example the police had
merely looked around for the nearest person with property A and then
accused him of the crime.

One must also be careful to see that the value of p is drawn from relevant
experience. A blood group or type of hair may for example be rare in the
population as a whole, but perhaps be common in the village in which the
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crime was committed. As with all cases of applying mathematical argu-
ments to real situations, great caution is needed to avoid serious fallacies.

PROBLEMS

1. Consider the problem of drinking with the stranger in the bar, under the
assumptions made in the text.
(i) Suppose he tosses the coin twice and gets “heads” each time. What is
your posterior probability that the coin is two-headed (a) for arbitrary =,
() for r = .1?
(i) What, for arbitrary wr, is this posterior probability if he tosses the coin n
times and gets “heads” every time?
(iii) What happens to the posterior probability of (ii) when n is very large
(@) forr < 1, (b) for v = 1?

2. Verify the entry in (1) forr = .7, p = .3.

3. Suppose that the prior probability for a statement S is 1, and that an event A
is observed which is possible according to 8. Use Bayes’ law to find P(S|A).

4. Let the prior probability of a statement Sbe w. The ratio =/(1 — =) is called
the prior odds ratio for S. An event A is observed. How is the posterior odds
ratio P(S[A)/[1 — P(S[A)] related to the prior odds ratio?

5. A detective, informed that a criminal had red hair, accused the nearest red-
haired person. What would be a reasonable value to assign to P(accused has red
hair|accused is innocent)?



CHAPTER 5
RANDOM VARIABLES

5.1 DEFINITIONS

When a random experiment is performed, we are often not interested in
all the details of the result, but only in the value of some numerical quan-
tity determined by the result. For example, when deciding on the quality
of a lot of mass-produced items by inspecting a random sample, we are
interested only in the total number of defective items in the sample—
which particular sampled items are good, and which are bad, is of no
concern to us. Again, the dice player may be interested not in the number
of points showing on each die separately but only in the total points show-
ing on the two dice together. It is natural to refer to a quantity whose
value is determined by the result of a random experiment as a random
quantity.

ExXAMPLE I. Number of boys in a two-child family. 1If two-child families
are classified according to the sex of the first and second child, four simple
results are possible as listed in the first column of the tableau. Suppose
we are interested in the random quantity ‘“‘number of boys.” The value
of this quantity for each simple result is shown in the second column.

Simple result Number of boys
first child male, second child male 2
first child male, second child female 1
first child female, second child male 1
first child female, second child female 0

ExampLE 2. Number of malchings. A magazine prints a row of three
pictures of movie stars, say Alice, Barbara, and Charlotte. Also given
are baby pictures of the three stars, and the reader is invited to match
them. He may put the baby pictures in 3! = 6 different orders shown in
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column one of the tableau. The quantity of interest is the ‘“number of
matchings.” The value of this quantity corresponding to each simple
result is shown in the second column.

Simple result Number of matchings

Alice, Barbara, Charlotte
Alice, Charlotte, Barbara
Barbara, Alice, Charlotte
Barbara, Charlotte, Alice
Charlotte, Alice, Barbara
Charlotte, Barbara, Alice

O O e (O

A random quantity is represented in the model by a random variable.
Just as a random quantity attaches a value to each simple result of a
random experiment, the corresponding random variable attaches a value
to each simple event. (In the language of mathematics, a random variable
is thus a function of the simple event.) We shall consistently use capital
letters to denote random variables.

ExaMpLE 1. Number of boys in a two-child family (continued). Let us
represent the random quantity “number of boys” by the random variable
B. In the notation of Example 1.5.2, the tableau of Example 1 becomes

Simple event Value of B
MM 2
MF 1
M 1
FF 0

ExampLE 2. Number of maichings (conlinued). Let us represent the
random quantity “number of matchings” by the random variable M. If
we use ABC to represent the arrangement ‘‘Alice, Barbara, Charlotte,”
etc., the tableau of Example 2 becomes

Simple event Value of M

ABC
ACB
BAC
BCA
CAB
CBA

— O O e e GO

For general discussion, suppose that a random experiment has simple
results r;, 75, . . ., and that the corresponding values of a random quantity
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g are g(r1), g(r2), . . .. It is not necessary for the numbers q(r), q(r), . . .
all to be distinct, as both examples show. The set of distinct values of q
is known as its value sef. Thus, in Example 1 the value set of “number of
boys” is {0, 1, 2}, while in Example 2 the value set of “number of match-
ings” is {0, 1, 3}. As other examples, the value set of the total number of
points showing when two dice are thrown is {2, 3, . . ., 12} ; when a random
sample of size 25 is drawn from a lot consisting of 20 good and 30 defective
items, the value set of the number of defective items in the sample is
{5,6,...,25}.

Suppose that the random quantity ¢, which attaches value ¢(r;) to the
simple result r, etc., is represented in the model by the random variable Z,
which attaches the value Z(e,) to the simple event e, etc.

Random experiment Model

Simple result Value of ¢ Simple event Value of Z
71 q (TI) €1 Z (61)
T2 Q(Tz) €3 Z (62)

The reader will notice that, in both examples, the second columns of the
two tableaus are identical. This will be the case quite generally if the
random variable Z is to represent the random quantity g. That is, if ¢
corresponds to 7, ete., we must have

1 Z(e) = q(r), Z(ex) = q(rs), . - ..
Thus, the value set of Z will always coincide with that of q.

As we have pointed out, the numbers q(r1), ¢(r2), . . . need not be dis-
tinct. Therefore, the occurrence of a particular value of the random
quantity ¢ may be a composite result. Thus, in Example 1, the result
“pumber of boys is one” is composed of the two simple results ““first child
male, second child female” and “first child female, second child male.”
This compostte result is represented in the model by the composite event
{MF, FM}, consisting of the two simple events for which B takes on the
value 1. Tt is therefore natural to denote this composite event by the
formula B = 1, as we have in fact already done in Example 1.5.2. Simi-
larly, in Example 2, M = 1 denotes the composite event {ACB, BAC,
CBA} which represents the composite result “number of matchings is
one.” In general, if z is one of the possible values of a random variable Z,
we shall denote by Z = z the event consisting of all simple events e for
which Z(e) = z. The event Z = z represents in the model the result
(which may be simple or composite) that the random quantity g takes on
the value 2.
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Jonsider now the probability of the event Z = 2, corresponding to the
frequency with which the random quantity takes on the value z. It
follows from Section 1.4 and the definition of the event Z = 2 that P(Z = 2)
is the sum of the probabilities of all those simple events ¢ for which Z(e) = z.
Therefore the value of P(Z = z) will depend on the probabilities that are
sssigned to the simple events of the model. Thus, use in Example 1 of
the probabilities

2) P(MM) =%, PMF)=1% PFEM)=1% PFF=1
gives
PB=0)=1 PB=D=4+1=% PB=2=1
On the other hand, the produet model suggested in Example 3.3.2 assigns
to the simple events the probabilities
P(MM) = (514) = 264, P(MF) = P(FM) = .514 X .486 = .250,
P(FF) = (.486)? = .236,

and hence gives (as was already computed in Example 4.1.3),

P(B = () = 264, P(B = 1) = .250 4 .250 = .500, P(B = 2) = .236.

PROBLEMS

1. What is the value set of the sum of points on (i) three dice, (i) n dice?

2. When a random sample of size s is drawn from a lot containing 20 good and
8 defective items, what is the value set of the number of defective items in the
sample when (i) s = 5; (ii) s = 9; (iii) s = 12; (iv) s = 25?

3. Solve the four parts of the preceding problem when the lot contains 8 good
and 20 defective items.

4, In three tosses with a fair die, find the value sets of the following random
variables:
(i) the maximum of the numbers of points on the first two tosses;
(i1) the maximum of the numbers of points on all three tosses;
(iii) the product of the numbers of points on the first two tosses;
(iv) the difference between the numbers of points on the first and second tosses.

5. In Example 2, what are the possible values of 3/
(i) if there are four movie stars;
(ii) if there are five movie stars?

6. Let D represent the difference between the number of heads and the number
of tails when a coin is tossed n times. What is the value set of D?

7. If a random variable Z is defined over an event set & consisting of n simple
events, (i) what is the maximum number of elements that the value set of Z can
contain; (ii) what is the minimum number?



136 RANDOM VARIABLES [cuap. 5

8. For the random variable 7 of Example 1.5.3, list the simple events (1.5.2)
making up each of theevents T =2, T =3, T =4,...,T = 12,

9. In the model of Example 2.1.1, suppose that the marbles numbered 1, 2, 3
represent the Liberals, while 4, 5, 6, 7 represent the Conservatives. If D repre-
sents the number of Conservatives included in the delegation,

(i) list the simple events from (2.1.1) making up the event D = 1;

(i) what value does D assign to the simple event (346)?

10. If M denotes the random variable described in part (i) of Problem 4, list the
simple events making up the events (i) M = 1; (ii)) M = 2.

11. Under the assumptions of Problem 1.5.6,
(i) find the value set of the random quantity “number of boys in the family”’;
(i) if this random quantity is represented in the model by B, what value does
B assign to the simple event FMF;
(ii1) list the simple events making up the event B > 0;
(iv) find the probability P(B > 0).
[Hint: (iii) The event B > 0 is the union of the events B =1, B = 2, and B = 3.]

12. If two digits are produced by the random digit generator of Problem 1.5.8,
and if Z represents the product of the two digits,
(i) list the simple events making up the event Z = 12;
(1) find the probability of the event Z = 12;
(iii) list the simple events making up the event Z < 5;
(iv) find the probability of the event Z < 5.

13. Under the assumptions of Problem 1.5.9, let Z represent the number of
correct answers.
(i) List the simple events making up the event Z = 2.
(i) Find the probability P(Z = 2).
(iii) Find the probability P(Z < 1).
(Hint: (i) “Z =< 1” is read “Z is less than or equal to 1" and is the union of the
events (Z = 0) and (Z = 1).]

14. If U denotes the random variable described in part (iii) of Problem 4, find
1) P(U = 4); (ii) P(U = 6); (i) P(U = 12).

15. If D denotes the random variable described in part (iv) of Problem 4, find
1) P(D = —4); (i) P(D = 0); (ih) P(D = 4).
16. For the total number T of points showing in two throws with a die, find the
probability of the event T’ = 4 if the two throws are unrelated and

(i) the die is loaded and its probabilities are specified by (1.3.1);

(it) the die is fair.

17. Let T represent the sum of the number of points on three unrelated throws
with a fair die.
(i) If the simple events are labeled as in Problem 1.5.11, list the simple events
making up the event T' = 5.
(ii) Find the probability P(T = 5).
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18. In n tosses of a coin, let player A win 2 dollars each time the coin comes up
heads and lose 2 dollars each time the coin comes up tails. Express player A’s
total winnings in the n tosses in terms of the random variable D of Problem 6.

19. List four random quantities that might be of interest when considering the
performance in a course in which there was a midterm and a final.

5.2 DISTRIBUTION OF A RANDOM VARIABLE

The most important aspects of a random variable are its value set and the
probabilities of it taking on its various possible values. As an illustration,
consider the random variable T which represents the sum of the number
of points showing on two dice. With the model of Example 1.5.3, the
possible values ¢ of T' and their probabilities are given by

t l 2 3 4 5 6 7 8 9 10 11 12
(1)
P(T=1 | %6 Ts D6 36 T6 Ts 5 T 35 35 36

(Problem 1.5.4).

A table like (1) which associates with each possible value z of a random
variable Z the probability P(Z = z) that the value z will occur, is known
as the distribution of the random variable. (The distribution assigns a
real number to each element in the value set and is therefore a function
defined over the value set.) Since a random variable always assumes just
one of its possible values, these values represent exclusive events that
between them exhaust all the possibilities. It follows that the sum of the
numbers ’(Z = z) over all values of z in its value set must be equal to 1.
This fact provides a useful check when we are computing a distribution;
for example, the probabilities displayed in the second row of (1) are seen
to add up to 1.

LxampLE 1. The delegation. A very important class of problems, which
we shall examine at length in Section 6.2, arises in the theory of sampling.
In Example 2.1.1, we considered the drawing of a sample of three as a
delegation from a seven-man council consisting of four Conservatives and
three Liberals. The number of Conservatives in the delegation is a quan-
tity whose value is determined by the result of the random selection of the
sample. Therefore it is a random quantity, and we shall represent it in
the model by the random variable D. The computation of Example 2.1.1
shows that P(D = 3) = 4%; we shall now obtain the complete distribution
of D.

To facilitate the discussion, let us suppose that the Liberal members of
the council are numbered 1, 2, 3 while the Conservative members are

numbered 4, 5, 6, 7. The 35 possible samples are shown below, grouped
according to the value of D.
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D =0: 123
D=1: 124 125 126 127
134 135 136 137
234 235 236 237
D=2: 145 146 147 156 157 167

245 246 247 256 257 267
345 346 347 356 357 367
D =3: 456 457 467 567

If we regard the <§) = 35 samples as equally likely, the probability

P(D = d) that D takes on any specified value d can be found simply by
counting the number of samples for which D has the value d, and dividing
by 35. In this way, we find the following distribution for D, of which the
last term agrees with the value found earlier.

(1\0123

PO =d) | 4 4 4 o
Notice that the probabilities add up to 1.

ExampLE 2. Indicator. A very simple but frequently useful kind of
random variable is one whose value set is {0, 1} ; such a random variable
is called an ¢ndicator. Let / be an indicator random variable, and let £
be the set of simple events for which I takes on the value 1. Then E must
be the set of simple events for which I takes on its other possible value, 0.
Thus I = 1if and only if the event E occurs, and we say that I “indicates”
the occurrence of K. For instance, suppose that I = 1 if and only if
D = 3 in the previous example; then I indicates a delegation made up
entirely of Conservative members. If the probability that I = 1 is p,
then the distribution of I is

7 l 0 1
PA=4) | 1-p p

It is important to notice that quite different random variables may have
the same distribution. This point is illustrated in Problems 16 and 17.

It is often instructive to present a distribution in a graphical form.
Since P(Z = z) takes on numerical values corresponding to the possible
values z, we can do this by plotting the points (2, P(Z = 2)) on graph
paper. Another, slightly different, method that will have advantages for
us later is illustrated for distribution (1) in Figure 1. Instead of plotting
the point (z, P(Z = 2)), one may draw a rectangle whose base is centered
at z and whose area is equal to P(Z = 2). This graphical representation
of a distribution is called a histogram. (Each bar of the histogram in Fig-
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ure 1 has unit width, since the values of the random variable are consecutive
integers, and height equal to the probability of the value to which it
corresponds.)

!
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Ficure 1. HISTOGRAM FOR POINTS ON TWO DICE
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When dealing with experiments composed of several parts, one is fre-
quently concerned with random quantities each of which relates to a
different part. (Thus, in two throws of a die, one may be interested in the
number of points on the first and the number of points on the second
throw.) Let these be represented in the model by the random variables Z
and W, and let E denote the event that Z takes on some particular value z,
and F that W takes on some particular value w. Then, if a product model
is being used, the probability that Z = z and W = w is the probability of
the event (£ and F), which by (3.2.13) equals P(E)P(F).

This argument shows quite generally that if Z and W correspond to
different factors of a product model, we have

2) PZ=zand W =w) = P(Z = 2)P(W = w) for all z, w.

Corresponding to the terminology for independent events mentioned in
Section 3.2, it is customary to refer to random variables Z and W for which
(2) holds as “independent.”

Definition. Two random variables Z and W defined on any probability
model are said to be independent if they satisfy (2).

In this terminology we have proved above that two random variables
defined on different factors of a product model are independent. In fact,
random variables defined on different factors will be the only independent
random variables that we shall have occasion to discuss.

These remarks easily generalize to experiments with more than two
parts. If the random variables Z, Z,, Z;, . . . represent random quantities
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relating to different parts and a product model is being used, then formula
(3.2.14) shows that for any possible values z,, 2,, z;, . . . we have

P(Z=zand Z, = zyand Z; = z; and . . )
= P(Zl = ZI)P(Zz = Zg)P(Z3 = ZS) . e,

Again extending the terminology for independent events, random variables
Z\, Zy, Zs, . . . defined over any probability model are said to be independent
if they satisfy (3) for all 2y, 2o, 23, . . .. Thus in particular, random vari-
ables defined over different factors of a product model are independent.

®3)

PROBLEMS

1. Let B denote the number of boys in a three-child family. Assuming the 8
cases MMM, MMF, . . ., FFF to be equally likely, find the distribution of B.

2. In a surprise quiz, you are given two multiple-choice questions, one with three
and the other with five possible answers. If you are completely unprepared and
select one of the 15 possible answer combinations at random, find the distribution
of the number Z of correct answers.

3. In two throws with a fair die, let D denote the difference between the number
of points on the second and on the first die. Find the distribution of D.

4. For two throws with the loaded die whose probabilities are specified by formula
(1.3.1) find the distribution of each of the following random variables:

(i) the sum of points;

(ii) the product of points.

5. Find P(I = 1) when I is the indicator of the following event:
(i) at least two sixes occur in three unrelated throws with a fair die;
(1) you will not be called upon for recitation in either of the classes of Problem
422,

6. Find P(I = 0) when I is the indicator of the following event:
(i) the reader of Problem 2.3.17 by purely random matching gets exactly two
of the pictures right;
(ii) at most three successes occur in four binomial trials with probability  of
success.

7. (i) If I is an indicator, can you find a relationship between I and I%?
(it) If I is the indicator of an event E, show that 1 — I is also an indicator and
find the event it indicates.
@iii) If I,, I, are indicators of two events E, F respectively, show that 1,1, is
also an indicator, and find the event it indicates.

8. If I is an indicator with distribution P(I = 1) = p, P(I = 0) = ¢, find the
distribution of the random variables (i) 2I; (ii) —1I; (iii) 31 -+ 2.

9. Draw a histogram for the distribution of (i) the random variable D of Example
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1; (i) the random variable A of Example 1.4.1; (iii) the random variable B of
Problem 1; (iv) the random variable S of Problem 1.7.10.

10. In two throws with the die of Problem 4, what is the probability that the
number of points in both throws is even?

11. From a half-dozen eggs, of which two are rotten, two are selected at random.
If D denotes the number of rotten eggs in the sample, (i) find P(D = 0) and
P(D = 2); (ii) using the fact that the sum of the probabilities of all values is 1,
find P(D = 1).

12. From the city council of Example 1, a delegation of three is selected at random
in April; in September it is necessary to send to Washington another delegation,
of two members, and it is decided again to select it at random from the full council.
What is the probability that both delegations consist entirely of Liberals? [Hint:
Build a product model.]

13. Let I, and I, each indicate an event of probability 3. What is the maximum
possible value of P(I,J, = 1)? The minimum?

14. 1If I,, I, are two indicators, each having the distribution of the indicator I of
Problem 8, and if I, and I, are independent, find the distribution of (i) I + Iy;
(it) Iz — Iy; (iii) Iilo.
15. Solve the three parts of the preceding problem if I, and I, are independent
but have different distributions, namely if P(I, = 1) = p;, P(I. = 1) = pa.
16. In three tosses with a fair coin, let Z be the number of tails and W the number
of heads.

(i) Show that Z and W have the same distribution.

(ii) Show that Z and W are different random variables.
[Hint: (i) Find the distribution of Z and that of W. (ii) Find a simple event ¢ for
which Z(e) and W (e) are not equal.]

17. If a model and two random variables Z and W are given by the following table

€ I € (23 €3 €4 €5
PO | 4 3 & 1 1
Z(e) 3 6 6 3 8
We) 8 8 8 6 3

determine whether Z and W have the same distribution.
18. In the preceding problem, find the distribution of () Z + W; (i) W — Z;
(iii) ZW.

5.3 EXPECTATION

Like many of the ideas of probability, the notion of expectation arose in
the study of gambling games, and was later found to have broader applica-
tions. As the motivating example, let us suppose that a gambler is to pay
a casino a fixed price for the privilege of playing a chance game that may
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pay him varying amounts. If one disregards the casino’s need to meet its
overhead and make a profit, it would generally be agreed that a “fair”
price for the game would be the amount the gambler might expect, on the
average, to win. An example will illustrate the point.

ExamprLe 1. Throwing a die. Suppose the gambler throws a fair die,
after which the casino pays him as many doliars as there are points on the
upper face. If he plays many times, the gambler may expect to win one
dollar about 2 of the time, two dollars § of the time, and so forth. Thus
his average winning per game would be about

Pl 324 +46=3042+...+6) =% =}

dollars. This sum might be taken as a fair price to pay for the privilege
of playing the game; a gambler paying this price would, in a long sequence
of games, probably have an average winning per game near zero.

Study of the example will suggest how one may calculate for any random
quantity the value which it may be expected to have on the average. So
that we may refer to them easily, let us number the simple results, denoting
them by ri, 7, ..., and denote the corresponding simple events by e,
e, .... In a sequence of n trials of the experiment, let #(r), #(rs), . . .
denote the numbers of occurrences of the results ri, 7, . ... Consider a
random quantity that is represented in the model by the random variable
Z. We shall now compute the sum of the n values taken on by the random
quantity in these n trials. Whenever r, occurs, the value of the random
quantity is Z(e), so that the #(r;) occurrences of r, contribute Z(e;)#(r:)
to the sum. Similarly, the #(rz) occurrences of r, contribute Z(ex)#(r2),
and so on. Therefore the sum of all » values is

Z(ef(r) + Z(e)f(r) + . . ..

Dividing this total by n we see that the average of the observed values of
the random quantity is

Z{enf(n) + Ze)f(ra) + .. ..

Our basic idea of probability as representing long-run frequency suggests
that when = is large, the frequencies f(r1), f(r2), . . . should be close to the
probabilities P(e;), P(es), . - ., so that the average of a great many observed
values should be close to Z(e))P(e)) + Z{es)P(e;) + . ... This is what
we would expect the random quantity to be on the average. It is called
the expected value of Z, or the expectation of Z, and is denoted by E(Z).

Definition. The expected value of the random variable Z is

1) E(Z) = Z(e)P(e)) + Z(e)Ples) + . . ..
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The expectation of Z in the model represents the long-run average value
of the random quantity that Z represents, just as probability represents
long-run frequency.

ExampLE 1. Throwing a die (continued). Let us apply the definition to
our motivating example. If X represents the number of points showing
when a fair die is thrown, and we use the model of Example 1.3.1 which
assigns probability § to each of the six simple events, then ¥(X) is seen to
have the value { calculated ahove.

Just as it is important to make a coneeptual distinction between a result,
which is something that may happen when a random experiment is per-
formed, and the event that represents this result in the mathematical model
for the experiment, it is important to distinguish between a random quan-
tity and the random variable that represents this quantity in the model.
However, in discussing specific applications it is often convenient to be
somewhat careless, and to employ the same terms and notations for both.
Thus, we may say that X “is”’ the number of points showing rather than
that X ‘“‘represents in the model” the number of points showing, or to
speak of the ‘‘expected number of points’” when in reality we mean the
“expected value of the random variable representing the number of
points.”  This short-cut usage is customary, and is exactly parallel to that
discussed for results and events in Section 1.4.

ExampLe 2. The delegation. What is the expected value of D, the
random variable representing the number of Conservatives in the delega-
tion of Example 2.17 The possible values of D are 0, 1, 2, 3 with prob-
abilities 4%, %, 3§, 4% respectively. Therefore

ED) =045+ 1:33 + 2-38 + 395 = 3 = 17L

ExampLE 8. Bridge bonus. In the game of bridge, a rubber is won by
the team that first wins two games. If the team wins a rubber by the
score of two games to none (2-0), it gets a bonus of 700 points. If it wins
the rubber 2-1, its bonus is 500 points. It sometimes happens that a
rubber is interrupted when the score stands 1-0. What would be a fair
bonus to give to the leading team in that case?

Let us suppose that each team has probability  of winning each game,
and that the games are unrelated, so that the binomial trials model with
p = § may be used. If the rubber had been continued, there would have
been three possible outcomes, shown in the first two columns below. The
third column lists the bonus won by the leading team in each case, while
the last column gives the probabilities of the various possible outcomes.



144 RANDOM VARIABLES [enar. 5

Leading team on

2nd game 3rd game Bonus Probability
Wins — 700 3
Loses Wins 500 1
Loses Loses —500 i

The expected bonus is
700-5 + 500-1 — 500-1 = 350.

Actually, the rules of bridge provide a bonus of only 300 points. This
may reflect the fact that the leading team (called “vulnerable’) is placed
at a disadvantage by the rules, so that its chance of winning the next game
is somewhat less than %, and the binomial trials model is not appropriate.

ExAMPLE 4. Gambling systems. A gambler who has 7 dollars plays the
following system. At the first toss of a coin, he bets 1 dollar on heads,
and quits if he wins. If he loses, he bets 2 dollars on heads at the second
toss, and quits if he wins. If he loses again, he bets his final 4 dollars on
heads at the third toss. His system gives him probability § of win-
ning a dollar but what is the expected value of his final gain G? We
distinguish four simple events, with the corresponding gains g and proba-
bilities that G = g as shown.

Event H TH TTH TTT
g 1 1 1 -7
PG=0 % t % 3

The expected gain is then

E@=14+114+14~7}=0
Thus the gambler will on the average come out even: the game is “fair.”
Although he has a good chance to win a small amount, this is counterbal-
anced by the large loss he sustains if he loses. (It is a general fact, not

recognized by many advocates of gambling systems, that in a game that is
fair on each play, no system can give a positive expected gain.)

ExampLe 5. Lottery. The following model provides the basis for the
important topic of sampling by variables which will be discussed in the
second part of the book. Suppose that the amount of the prize in a lottery
is to be determined by drawing a ticket from a box. The box contains N
tickets, on each of which is written an amount. Iet », be the amount
written on the first ticket, », the amount on the second ticket, and so forth
up to vy. The tickets are thoroughly mixed and one is drawn at random.
The prize is then equal to the amount written on the ticket that is drawn.
(Most actual lotteries are of course conducted in a somewhat different



~

5.3] EXPECTATION 145

way, but “lottery” will be a convenient label for the model described
above.)

We shall assume that each ticket has the same probability 1/N of being
drawn. Since the amount of the prize is determined by the result of the
random draw, it is a random quantity; the random variable representing
it in the model will be denoted by Y. The expected value of ¥ by formula
(1) is

B =v s dm st ot m=x @ttt

N N N N T ’

4

which is the arithmetic mean of the amounts written on the N tickets.
We shall denote such an arithmetic mean by placing a bar over the symbol
that denotes the values being averaged:

ntovt... .+

V= N

(read “v bar”).

The formula
) EY)=7

asserts that the expected value of the prize is the arithmetic mean of the
amounts shown on the tickets. As a numerical illustration suppose there
are N = 10 tickets, showing amounts

=25 n=vn=0=2 vG=v=...=0=0.
The expectation of Y is then
1=(+24+24+24+0+...4+0)/10 =11

If the amounts are in dollars, $1.10 would be a fair price to pay for playing
the lottery.

PROBLEMS

1. Throw a die 100 times, recording the numbers shown. Compare the average
of these numbers with the expected value } found in Example 1.

2. Let D be a digit drawn at random from 0, 1,...,9. Find E(D) and compare
it with the average value of the digits in Table 3.4.1.

3. Find the expected number B of boys in a three-child family under the assump-
tions of Problem 2.1.

4. Tf X is the number of points on a loaded die with probabilities P(1) = .21,
P@2) = P(3) = P(4) = P(5) = .17, P(6) = .11, determine (i) E(X), (ii) E(X?).

5. Find the expected value of the random variable R of Problem 1.4.7.
6. Find the expected value of the random variable Z of Problem 2.2.



146 RANDOM VARIABLES [cuar. 5

7. For two throws with the loaded die whose probabilities are specified by formula
(1.3.1), find the expected value of

(i) the maximum of the two numbers of points;

(i1) the difference between the numbers of points on the second and first throw.

8. Find the expected number of pictures matched correctly in Problem 2.3.17.

9. Suppose that in training new workers to perform a delicate mechanica} opera-
tion, the probabilities that the worker will be successful on his first, second and
third attempt are p. = &, P = 1%, ps = 1% respectively. Find the expected
number of successes the worker will have in these three attempts.

10. In Problem 2.17, find (i) E(Z); (ii) E(W); (iii) E(Z + W); (iv) E(ZW).

11. In Example 3, for what value of the probability that the vulnerable team will
win, is the 300 point bonus fair? [Hint: Find the expected value of the bonus
when the probability is p.]

12. A lottery of the type of Example 5 has first prize of $1000, second prize $500,
and five $100 prizes. Would you want to pay $1 for a ticket if there were (i) 1000
tickets, (i) 3000 tickets?

13. Study Example 4, and devise a system whereby a gambler with 31 dollars can
arrange to win a dollar with probability 3}. With this system, what is his expected
gain?

14. If Z denotes the number of plays the gambler of Example 4 will make before
quitting, find E(Z).

15. Give the value set and distribution of the random variable Y in the numerical
illustration of Example 5.

16. Determine for each of the following two statements whether it is true:
(i) The expected value of a random variable X can never exceed all the values
in the value set of X.
(ii) The expected value of a random variable X is always equal to one of the
values in the value set of X.

17. Would you prefer to have half a chance to win $2,000,000, or a tenth of a
chance to win $11,000,000 (tax free)? Discuss your preference in the light of the
concept of expected winning.

18. (i) If each value of a random variable is doubled, what happens to its expected
value?
(i) If each value of a random variable is increased by three, what happens to
its expected value?

19. In the famous Petersburg game, the gambler wins two roubles with prob-
ability 4, four rubles with probability , eight rubles with probability 3, ete.
(i) Before making any calculations, how much would you be willing to pay to
play this game?
(i) Try to find a fair price for playing the game by using (1).
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5.4 PROPERTIES OF EXPECTATION

Formula (1) of the preceding section

1) E(Z) = Z{e))P(e)) + Z(e))P(e2) + . . .

may be put into an alternative form which is often simpler to use. To
introduce the idea of the simplification, let us recall Example 3.5. In that
example, as so often happens, the random variable takes on the same value
for two or more simple events. Thus, Y has the value 2 for three different
tickets, which together contribute to E(Y) the amount

2t + 24 + 2% =2+ =2.P(Y =2).

The single ticket with ¥ = 5 contributes 5-P(Y = 5) to the value of E(Y)
and the six tickets labeled 0 contribute nothing. Thus

E(Y)=5-P(Y =5)+2:P(Y =2) + 0-P(Y =0)
=57+ 2% + 0% = L1

The example suggests how formula (1) may be simplified in general.
Let the distinct possible values of Z be denoted by z,, 25, . . .. Consider
first -all of the simple events for which Z takes on the value z; let the
set of these be Ej, so that P(E;) = P(Z = z). In the corresponding
terms of (1), the first factor is always z;.. Their total contribution to (1) is
therefore z; multiplied by the sum of the probabilities of the simple events
in Ky, that is, z,P(E)). In just the same way, let E, denote the set of
simple events for which Z takes on the value z,. The contribution of these
terms to (1) is then z,P(¥,). By continuing in this way we see that (1)
and therefore £(Z) can be written as

E(Z) = 2;-P(E)) + 2 P(E) + . . .,
or equivalently as
@ EZ)=aPZ=n)+2uPZ=2)+....

When the probability distribution of Z is known, formula (2) is usually
more convenient than formula (1). Furthermore, (2) shows that the
expected value of a random variable depends only on the distribution of
the random variable, that is, the values it can take on and the probabilities
of taking on these values, and not on the random variable itself. (For an
example of the distinction, see Problem 2.16.) For some purposes however,
(1) is very convenient, as it does not require us to know the distribution of
Z but only the model and the definition of Z.

ExampLE 1. Gambling systems. The expectation E(G) of Example 3.4
can be computed by the use of (2) instead of (1). Since G takes on the
values 1 and —7 with probabilities P(G = 1) = § and P(G = ~7) = 4,
we find E(G) = 1-7 — 7-3 = 0, as before.
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ExampLE 2. Indicators. Let I be an indicator; that is, a random variable
whose only values are 0 and 1. Then

EI)=0-PU=0)+1-P(I =1),
so that
E(I) =PI =1).

In words, the expected value of an indicator is the probability of the
indicated event.

The expected value of a random variable Z is often used to represent the
center of the distribution of Z. The interpretation of E(Z) as a central
value of the distribution is supported by two considerations.

(1) The expected value is exactly analogous to the physical concept of
center of gravity of a.mass distribution. Let us imagine that the z axis is a
weightless rod with mass P(Z = z,) located at z;, mass P(Z = z,) located
at 2, etc. Thus a unit of mass is distributed along the rod in the same way
as the unit of probability is distributed along the z axis. The point at
which the z axis would then be in balance is known as its center of gravity,
and as we shall show below, this point is always at E(Z). This is illus-
trated in Figure 1a for the distribution of the random variable D of Ex-
ample 2.1, and in Figure 1b for the number B of heads that appear when
three fair pennies are tossed (see Problem 5). In each case the center of
gravity is marked by A.

Figure 1. CENTER OF GRAVITY

(ii) We shall say that the distribution of Z is symmetric about a point u
if it assigns equal probabilities to points equally distant from x in both
directions; that is, if
3) PZ=u+2)=PZ=p—12) for every z.

(Thus in Figure 1b the distribution is symmetric about p = 1.5.) It can
be shown (Problem 15) that then E(Z) = u, so that the expected value of
& symmetrically distributed random variable is its “center of symmetry.”
The result is intuitively plausible from (i); for if the mass distribution is
symmetric about u, we would expect the rod to balance at u.

In spite of its role as center of the distribution, £(Z) need not be a
typical, nor even a possible, value of Z (see for example I'igure 1). I‘ur-
thermore, if a distribution is highly asymmetric, it can happen that almost
all of the probability lies on one side of the expected value. Ior example,
if Z can take on only the two values 0 and 100 with probabilities P(Z = 0)
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= .99 and P(Z = 100) = .01, then E(Z) = 1, so that 999, of the proba-
bility lies to the left of E(Z). Again, suppose one very rich family has a
summer cottage in a village of poor fishermen. If Z denotes the wealth of
a family selected at random from this village, then £(Z) will give a rather
distorted picture of the prosperity of the village.

To avoid this difficulty, the median is sometimes proposed as an alterna-
tive value for the center of a distribution. Roughly speaking, the median
is the value which has half of the distribution on either side of it.

The equation

4) E(Z) = zlP(El) + 2P(E) + ...
is valid (and useful) under somewhat more general conditions than those leading
to (2). Suppose that E|, Ee, . . . are exclusive events such that every simple cvent

belongs to one of the E’s. If Z(e) has the same value 2; for all simple events e in
E,, the same value z; for all simple events in E,, and so on, then the argument lead-
ing to (2) shows (4) to hold even though z, 2, . . . may not all be distinct.

For readers acquainted with clementary statics, we now give a proof of the
relationship between expectation and center of gravity stated above. We have
to show that the sum of the torques tending to turn the rod about the point (%),

(0 = EDIPZ=2)+ [0 - EDIPZ =2 + ...,
is zero. Since the probabilitics of (Z = 2,), (Z = 2»), . . . add up to one, we have
EZ)y=EZPZ =2)+ EZ)P(Z =2)+....

Subtracting this equation from (2) gives the desired result.

PROBLEMS

1. Use formula (2) to find the expected value of a ticket in the lottery of Problem
3.12(3) and 3.12(i).

2. Under the assumptions of Problem 2.11, find the expected number of rotten
eggs in the sample.

3. Find the expected number of keys that must be tried to open the door of
Problem 1.5.7.

4. Use (2) to find
(1) the expectation of the random variable Z of Problem 2.2;

(i1) the expected value of the random variable T whose distribution is given by
(2.1).

5. Calculate the distribution, and use (2) to obtain the expectation, of the number
B of heads that appear when three fair pennies are tossed. (See Figure 1b.)

6. Find the expected value of
(i) the random variable D of Problem 2.3;

(ii) the maximum M of the numbers of points obtained in two throws with a
fair die (cf. Problem 1.7.6).



150 RANDOM VARIABLES [cnar. 5

7. Find the distributions of the random variables of parts (i) and (ii) of Problem
3.7, and then use formula (2) to find their expectations. Compare your results
with those of Problem 3.7.

8. Find the expectations of the two random variables of Problem 2.4.

9. Find the expected number of customers preferring the new formula (i) in
Problem 1.7.10; (ii) in Problem 1.7.12.

10. Find the expectations of the four random variables defined in parts (i)~(iv)
of Problem 1.7.14.

11. Let I be an indicator random variable. Can you find any relationship be-
tween E(I) and E(I2)? Between I and I?? Generalize to higher powers of I.

12. Check for each of the following distributions whether it is symmetric, and if
so0 find the point of symmetry.
(i) The distribution of T given by (2.1).

(i) The distribution of D in Example 2.1.

(iii) The distribution of G in Example 3.4.

(iv) The distribution of the number of keys that must be tried to open the door

of Problem 1.5.7.
(v) The distribution of B in Problem 5.

13. Let Z be a random variable which takes on the values 1, 2, ..., N each with
probability 1/N. Show that this distribution is symmetric about the value
1(N 4 1) and hence that E(Z) = 3}(N 4+ 1). Use (2) to derive the identity

NN +1)

®) 14+2+...+N ="

which will be used in Sections 6.8 and 12.4.

14. Find the expected gain for the gambling schemes of (i) Problem 4.3.15(i),
(ii) Problem 4.3.16().
15. If Z is symmetric about u, show that

(i) the random variables Z — u and p — Z have the same distributions;

() E(Z) = u.
[Hint: ) P(u — Z = 2) = P(Z — p = —x); apply @). (i) By (), E(Z — p) =
E(uw—12)]

16. If Z and —Z have the same distribution, show that Z is symmetric about zero.

5.5 LAWS OF EXPECTATION

In this section we shall develop several useful laws connecting the expected
values of certain random variables which are defined on the same model.
These laws often permit us to calculate expectations by expressing them
in terms of other expectations that we already know, and thus to avoid
the necessity of using formulas (1) or (2) of the preceding section. With
their aid we shall obtain the expectations of several important random
variables.
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The simplest kind of random variable is one capable of assuming only a
single value, say c, so that Z(e) = c,forallein&. Such a random variable,
which does not vary at all, is called a constant random variable. Since it
is always equal to ¢, it will clearly be equal to ¢ on the average, and so its
expected value must also bec. If we conveniently use ¢ to denote a random
variable that is constantly equal to the number ¢, this may be expressed by

0y E() =¢

and proved formally by reference to equation (2) of the preceding section.
In faet, if ¢ is the only possible value of Z, P(Z = ¢) = 1, so that

EZ)y=c¢cPZ=¢)=c1=c

If Z is any random variable, and ¢ is any constant, we can obtain a new
random variable by adding ¢ to the value of Z. Let us denote the new
random variable by Z 4 ¢.  For example, if Z denotes the random amount
a salesman will earn through commissions during a month and if ¢ is his
fixed monthly salary, then Z + ¢ will be his total monthly income. The
expectation of the random variable Z + cis related to that of Z by equation

@) E(Z +c¢) = E(Z) +c.

In words, when a constant ¢ is added to a random variable, the same con-
stant is added to its expected value. This relation is just what one would
expect: if Z is increased by c in each case, it will be increased by ¢ on the
average. A formal proof will be given following the proof of equation (4)
below.

Relation (2) concerns the effect of adding a constant; analogously,
multiplication by a constant gives
3) E(eZ) = ¢ E(Z).
This is again intuitively plausible since if the value of Z is multiplied by
the constant ¢ in each case, its average value will be multiplied by the
same constant. (The proof of this is left as an exercise. See Problem 1.)

We now come to the most important law, the addition law of expectation:
for any two random variables Z and W,

€ E(Z + W) = E(Z) + E(W).

In words, the expectation of the sum of two random variables is the sum
of their expectations. To get an intuitive understanding of the addition
law, let us imagine a gambler who is paid an amount Z by the casino,
depending on the roll of a die. In addition, the gambler makes a side-bet
with a colleague, which pays him W. Then Z + W is the total amount
he receives on a play of the game. The expectation E(Z + W) stands for
the average of his total receipts in a long series of plays. Clearly the
average value of his total winnings from both sources will equal the sum
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of his average winnings from the two sources separately. If we replace
average by expectation, this statement becomes (4).

To obtain a formal proof of (4), we note that for the simple event ¢, the
random variable Z + W takes on the value Z(e;) + W (e, for e, the value
Z(es) + W(es), etc. Therefore, from formula (3.1),

E(Z + W) = [Z(e)) + W(e)]P(er) + [Z(e2) + W(e))]P(e2) + . ...
By rearranging terms, the right-hand side may be rewritten
[Z(e)P(er) + Z(e2)Ples) + .. .1 + [W(e)P(er) + W(e)Plew) + . . .];

but this is of course equal to E(Z) + E(W), which completes the proof.
If in (4) we take for ¥ the constant random variable ¢, then (4) reduces
to E(Z + ¢) = E(Z) + E(c). By (1), this is equal to E(Z) + ¢, which
proves (2).
It is easy to extend the addition law to more than two random variables.
Thus, we may regard Z + W + V as the sum of the random variable
(Z + W) and the random variable V. Therefore, by (4),

EZA+W+V)=EZ+ W)+ EQ).

Now we may apply (4) again to break up E(Z + W) into E(Z) + E(W),
showing 7
EZ+W+V)=EZ) + EW)+ EV).

More generally, if Z\, Z,, . . ., Z, are any n random variables,

(6) EZi+Z:+...+Z)=EZ) + EZ) + ...+ EZ).

This general addition law is useful when we can express a complicated
random variable as the sum of several simple ones whose expectations are
easier to compute.

ExampLE I. Dice. Let T be the total number of points showing when
two dice are thrown. If X, and X, denote the numbers on the two dice
separately, then 7 = X, + X,, and hence E(T) = E(X,)) + E(X;). By
Example 3.1, E(X,) = E(X:) = §, so that E(T) = 7. The same answer
can be obtained less simply by a direct evaluation of E(T) (see Problem
4.4(i)).

ExampLe 2. Lottery. Recall Example 3.5. We shall now modify it by
supposing that two tickets are drawn from the box, without replacement.
Let ¥, denote the amount written on the first ticket drawn, while Y,
denotes the amount on the second ticket drawn. The total amount paid
in prizes is Y, + Y,, and by (4) we have E(Y; + Y:) = E(Y)) + E(Y3).

To evaluate this sum, we shall use the model for ordered sampling
developed in Section 2.3, with s = 2. According to the equivalence law,
on each of the two draws each ticket has probability 1/N of appearing.
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Therefore Y, and Y, each has the same distribution as the random variable
Y considered in Example 3.5. It follows from (3.2) that E(Y,) = E(Y:) =
7, and hence the expected total paid out is E(Y, + Y:) = v+ v = 20.
(Notice that the same would be true if the sampling were with replacement,
since in that case Y, and Y, would again have the same distribution as Y.)

An extension of the argument shows that if s > 2 tickets are drawn
(with or without replacement), the expected total paid out is s.

ExampLe 3. Stratified sampling. In a survey of a three-block district,
one dwelling is to be sampled from each block. Some of the dwellings are
apartment houses, as shown below:

Block | 1 2 3
Number of apartment houses 2 5 1
Number of private residences 11 4 9

What is the expected value of the number A of apartment houses in the
sample?

Let I, denote the number of apartment houses drawn from Block 1.
Clearly, I, will be either 0 or 1, and in fact I, indicates that the dwelling
drawn from Block 1 is an apartment house. Similarly, let I, and I; denote
the numbers of apartment houses drawn from Blocks 2 and 3. Thus
I, + I + I; = A is the total number of apartment houses in the sample.

By the addition law (5),
EA) = E()) + E(I,) + E(Iy).

We know (Example 4.2) that the expected value of an indicator is just the
probability of the indicated event. Therefore E(I,) is the probability
that the dwelling drawn from Block 1 is an apartment house, so that
E(l)) = % = .154. Similarly, E(I,) = § = 556 and E(I;) = ¢ = .100.
Finally therefore

E(A) = .154 + .556 + .100 = .810.

The method used in this example is widely applicable. Often the
number of occurrences of some event may be represented as a sum of
indicators, each of which specifies whether the event occurred on one
occasion. The reader may convince himself of the usefulness of the
method of indicators by calculating E(4) by the methods of Section 4.

ExAMPLE 4. Matching. A box contains five tickets numbered from 1 to 5.
They are drawn out one by one. What is the expected value of the number
M of occasions when the number on the ticket matches the ordinal number
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of the draw (e.g., ticket number 2 obtained on second draw)?

Let I, ..., Iy indicate that a match occurs on draws one, ..., five.
(Thus I, = 1 if and only if the second ticket drawn bears number 2, ete.)
Clearly M = I, + ...+ Is. Let us compute E(l;). Since each ticket
has the same probability of appearing on the second draw (equivalence law
of ordered sampling), P(I, = 1) = } = E(I,). Similarly E(I;) = E(l5) =
E(l) = E(I;) = %, and hence E(M) = 1.

The method applies equally well with any number of tickets; the ex-
pected number of correct matchings is always 1.

It is natural to ask whether there is a multiplication law of expectation
analogous to the addition law: is the expected value of the product of two
random variables equal to the product of their expectations? That this
is not always true may be seen by a simple example. Let Z be the number
of heads, and W be the number of tails, observed when a fair penny is
tossed. Then E(Z) = } and E(W) = %, so that E(Z)-E(W) = 1. But
the product ZW is always equal to 0, so that E(ZW) = 0 # 1.

There is however an important case in which the multiplication law does
hold. Suppose that the random variables are defined on a product model
with two factors, and that Z refers only to the first and W only to the
second factor model. (For example, the random variables X, and X, of
Example 1 refer to the throws of two different dice, for which a product
model is used.)

We then have the following multiplication law of expectation:
(6) E@ZW) = E(Z)-E(W) if Z and W are defined on different factors.

The proof of (6) rests on the definition (3.1.4) of probabilities in a product
model. Consider the value of the product ZW corresponding, for example,
to the simple event (e; and f2) of the product model. Since Z refers only to
the first factor, Z in this case has the value Z(e;). Similarly W has the
value W(f,), so that ZW has the value Z(e;) W(f;). By (3.1.4), the proba-
bility of this event is pig.. Thus the contribution to the expectation of ZW
is Z(e)W(f2)p1gz-  The contributions of the other simple events are ob-
tained analogously and hence, by the definition (3.1) of expectation, E(ZW)
equals

ZedW(f)pa + Ze)W()pge + . . .
+ Z(e)W(f)pu + Z(e)W (f2)poge + - . .
+....

Taking out the factor Z(e;)p, from the first row, Z(e;)p, from the second
row, ete., we find

EZW) = [Z(e)pr + Z(e)p + . . JIW()a + W(fa)ge + . . ]
= E(Z)E(W). |
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The multiplication law of expectation is in fact true for any independent
random variables Z and W (Problem 21); however, we shall have occasion
to use it only in the special case proved above.

PROBLEMS

1. Prove that E(cZ) = cE(Z).

2. Let Y denote the amount you will win in a gambling game and suppose that
E(Y) = $2.00.
(i If you have to pay $2.50 to be allowed to play, what is your total expected
gain or loss?
(ii) State what law you have used in part (i).

3. How many points may we expect
(i) when three dice are thrown;
(ii) when n dice are thrown?

4. From a half-dozen eggs of which two are rotten, four are selected at random.
Find the expected value of the number R of rotten eggs in the sample using the
answer to Problem 4.2 by representing R as R = 2 — D where D is the number of
rotten eggs not included in the sample.

5. Prove that
E(Z - W)= E(Z) — EW).

[Hint: Write Z — W = Z + (=1)-W.]

6. Prove that
E(cZ 4 dW) = ¢E(Z) + dE(W)

where ¢ and d are constants.

7. If Zy, Zs, . . ., Z, are any n random variables having a common expectation {,
and if Z denotes their average, prove that B(Z) = ¢.

8. Suppose that 10 percent of the parcels sent abroad do not reach their destina-
tion. A person wishing to send two dresses could send them either (a) in a single
parcel or (b) in two separate parcels.

(i) For both methods, find the value the sender can expect to reach the desti-
nation if the dresses are worth $10 and $15 respectively.
(i) For both methods find the probability that both dresses will reach their
destination.
(iii) For both methods find the probability that at least one of the dresses will
reach its destination.
(iv) For each of the criteria (i), (ii), (iii) determine which of the methods is
preferable.
[Hints: (ii), (iii) Assume that different mailings are unrelated so that a product
model is appropriate for the mailing of two packages.]
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9. Use the method of indicators to find the expectation of the following random
variables:
(i) B of Problem 2.1;
(ii) Z of Problem 2.2;
(iii) D of Problem 2.11;
(iv) the number of keys that must be tried in Problem 1.5.7.

10. Use (4) to find the expectation of the random variable W defined in Problem
1.7.14(iii).

11. Use the result of Problem 5 to find the expectation of the random variable D
of Problem 1.7.14(iv).

12. In two throws with a die which may be loaded, let D denote the difference
between the number of points on the second and on the first throw. What can
you say about the expectation of D?

13. Let A be the number of aces in a five-card poker hand. Calculate E(4) by
the following two metheds:
(i) letting I, . .., Is indicate the appearance of an ace on the first, .. ., fifth
card dealt;
(ii) letting J,, J2, J3, J4 indicate that the ace of spades, hearts, diamonds, clubs
appears in the hand. (See Problem 2.2.17.)

14. If five dice are thrown, how many different faces may be expected to show?
[Hint: Let I, indicate that at least one die shows an ace, etc.]

15. If three persons are seated at random at a lunch counter with six seats, how
many persons may expect to have no one sitting next to them? [Hint: This prob-

lem may be worked by listing the (g) = 20 equally likely arrangements, and for

each the number of isolated persons. Alternatively, one may let I, indicate that
the first seat is occupied by an isolated person, etc.]

16. Under the assumptions of Problem 4.2.20, find
(i) the expected rank assigned to Brand A by a single judge,
(ii) the expected value of the sum of the ranks assigned to Brand A by the 5
judges,
(ili) the expected average value of the ranks assigned to Brand A by the 5 judges.
17. Use the method of indicators to find the expected number of corner plots in
the sample of Problem 4.2.15.

18. Use the method of indicators to find the expected number of successes in
Problem 3.9.
19. (i) Find the distribution of X;-X, in Example 1 by considering its value in
each of the 36 equally likely cases.
(ii) Use (i) to find E(X,X,) and verify that it equals E(X,)- E(X,) = (§)2
20. Use (6) to prove
P(E and F) = P(E)P(F)

if E and F relate to different factors of a product model.
[Hint: Let Z indicate E and let W indicate F, and note that then ZW is also an
indicator random variable.]
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21. Prove that (6) holds whenever Z and W are independent.
(Hint: Compute the left-hand side of (6) using (4.4) where E,, . . . are the events
(Z = zyand W = wy), ete.]

5.6 VARIANCE

We noted in Section 4 that the expected value of a random variable can
be used to specify the center of the distribution of the random variable.
However, two distributions with the same expectation, and hence centered
at the same point, may still be very different. Thus E(Z) = 0 if Z takes
on the values —1, 0, 1 with probabilities }, 4, } respectively; but also
E(W) = 0 if W takes on the values —5, 0, 5 with probabilities §, 3, {
respectively (see Figure 1). A much more complete idea of a distribution
is obtained if in addition to knowing its expectation, which tells us where it

db o 1] o

-1 0 1 -5 0 b
Distribution of Z Distribution of W

Figure 1.

is centered, we also know the extent to which the distribution is dispersed
away from this center. In this section we shall study the quantity that is
most commonly used to specify the dispersion of a distribution.

To simplify the writing, we shall denote the expected value E(Z) of the
random variable Z by the Greek letter {. It is customary to use, as a
measure of dispersion, the expected value of (Z — )% This is known as
the variance of Z, and is denoted by Var(Z).

Definition. The variance of the random variable Z is
1) Var(Z) = E(Z — )

In words, the variance of a random variable is the expectation of the
square of the difference between Z and its expectation. (This measure of
dispersion was introduced by K. F. Gauss (1777-1855).)

To see in what sense (1) measures the dispersion of the distribution of
Z, note that if the distribution is widely dispersed, Z will with high proba-
bility differ greatly from ¢, so that (Z — {)? will probably be large, and
hence will be large “‘on the average.” Thus if the distribution of Z is
widely dispersed, Var(Z) will be large. (Variance is the analog of the
physical concept of the moment of inertia of a mass distribution about its
center of gravity.)

The reader may wonder why the difference Z — { is squared in defining



158 RANDOM VARIABLES [cHAP. §

variance. Suppose that instead we had tried to define a measure of dis-
persion by using the expected value of Z — { itself. Since E(Z — ¢) =
E(Z) — ¢, we see that K(Z — ¢) = 0, so that as our measure of dispersion
we would always get zero. The reason for this is that Z — { is sometimes
positive and sometimes negative, as Z happens to fall to the right or to the
left of ¢, the positive and negative values just balancing out on the average.
This difficulty is avoided by squaring, since (Z — ¢)? can never be negative.
There are other ways of making Z — { positive; for example, one might
use £|Z — {| as a measure of dispersion, where the absolute value |Z — ¢|
means the quantity Z — ¢ always taken with positive sign. This measure
was proposed by P. S. Laplace (1749-1827). Laplace’s measure is also
reasonable, but it turns out that Gauss’ measure is easier to work with and
has nicer mathematical properties.

ExampLe 1. Throwing a die. We shall calculate the variance of the
number X of points showing when a fair die is thrown. In Example 3.1
the expected value of X was computed to be F(X) = . The table below
lists each possible value x of X, the corresponding probability, and the value
of (x — §)2 (For example, whenz = 2, (x — §)? = (2 — §)2 = 4.

r 1123456

PX=x) | 4 4 ¢ 44 &
1 1

@-9* |21ty

Using formula (1) and recalling the definition of expectation (formula 3.1),
we find

Var(X) = X — 9= 33+ b+ b+ i+ i+ 2
— 706 _— 835
=323 T 1%

As further illustrations, the reader may check that the distributions of
Figure 1 have Var(Z) = } and Var(W) = 42,

There is an alternative to formula (1) which is sometimes more conven-
ient for computing variances. Squaring out (Z — {)? gives 2% — 2Z¢ + {2
Using the laws of expectation, we then find Var(Z) = E(Z?) — 2¢E(Z)
+ ¢%  Since E(Z) = ¢, we see that 2tE(Z) = 2¢2, and hence
2) Var(Z) = E(Z?%) — {2
Formula (2) is more convenient than (1) in that it dispenses with the
differences Z — ¢. Thus, in Example 1,

EX)=13+434+94+163 +25-4 1+ 36-3 = 24

so that by formula (2), Var(X) = % — (§)? = $§; this agrees with the
value found earlier with the aid of (1).

ExampiE 2. Lottery. As in Example 3.5 suppose that a box contains N
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tickets, on which are written amounts vy, ...,v~v. If ¥V denotes the
amount written on a ticket drawn at random, we saw that E(Y) = , the
arithmetic mean of v, ..., vy. Let us now consider the variance of Y.
By formula (1),

Va.r(Y):(v,—v)f-%+...+(vy—5)z-§

= [(01 - 17)2 + e + (t)N - 1—))2]/N.
This is the arithmetic mean of the N quantities (v; — 7)%, ..., (ox — B)?,
which are the squared deviations of the amounts vy, ..., vy from their

arithmetic mean ¥, and is called the mean square deviation of the numbers
vy, ...,0y. We shall denote it by 72, so that

3) = —9)*+...+ (v — 7)?]/N.
The formula
4) Var(Y) = 72

will be important in Section 9.1 in the discussion of sampling by variables.
[f the ¢'s have the numerical values assumed in Exampie 3.5, we find

= {5— L1242 - L1742 — LI+ (2 — L1)
+0—1D)2+...4+ (0~ 1.1)2/10
= [(3.9)% + 3(0.9) + 6(1.1)2]/10 = 2.49.
There is an alternative way to compute r2 that is sometimes more con-

venient. Since E(Y) = ¢ and Var(Y) = 7% it follows from (2) that
7 = E(Y?) — #? and hence

5) 12=%(vl’+...+vﬁ)—62.

Using this method, we find for the numerical example above
E(Y?) = (52 +3-22 + 6-0%)/10 = 3.7

so that 72 = 3.7 — (1.1)? = 2.49 as before.

The mean square deviation defined above (which is also sometimes called
the “population variance”) is a measure of the extent to which the numbers
vy, . .., vyareunequal. As the average of squares it is always greater than
or equal to zero; it is zero if and only if all the v’s are equal.

ExAMPLE 8. [Indicators. For later use we now obtain the variance of an
indicator random variable. Since an indicator I takes on only the values
1 and 0, and since 12 = 1 and 02 = 0, it follows that I? = I in all cases and
hence that E(I?) = E(I). Thus, by formula (2),

Var(l) = E(I) — [E(D)? = E(D[t — E)].
If the probability of the event indicated by 7 is p (that is, P(I = 1) = p),
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we have
(6) Var(I) = p(1 — p).

PROBLEMS

1. Compute the variance of the random variable D of Example 3.2, by both
formulas (1) and (2).

2. Compute the variance of the maximum M of the numbers of points obtained
in two throws with a fair die (cf. Problem 4.6(ii)).

3. Compute the variance of
(i) the bridge bonus of Example 3.3;
(ii) the random variable B of Problem 2.1.

4. Compute the variance of the random variable
(i) R of Problem 1.4.7;
(ii) Z of Problem 3.14.

5. Compute the variance of
(i) the random variable Z of Problem 2.2;
(ii) the random variable T whose distribution is given by (2.1).

6. Compute the variance of the number of customers preferring the new formula
in Problem 1.7.10 {(c¢f. Problem 4.9(1)).

7. Compute the variance of the random variables
(i) U defined in Problem 1.7.14(i);
(ii) V defined in Problem 1.7.14(ii).

8. Compute the variance of
(i) the random variable D of Problem 2.11;
(ii) the random variable B of Problem 4.5.

9. Suppose that the lottery of Example 2 has an even number of tickets, half of
which have the value 0 and half the value 1. Find Var(Y).

10. In Problem 5.8 let Z denote the value of the dresses that reach their destina-
tion. Find Var(Z) for both methods of mailing.

11. Find the variance of the value Y of a ticket drawn from the lottery of (i)
Problem 3.12(i), (i) Problem 3.12(ii).

12. Let J be a random variable which takes on the values —1, 0, 1 with proba-
bilities p, g, r respectively. Find E(J) and Var(J).

13. ILet D denote the number of rotten eggs of Problem 2.11 and let I, and I indi-
cate respectively that the first egg and second egg are rotten, so that D = I, + I..
Find Var(l,) and Var(l,). By comparing Var(,) + Var(Z,) with Var(Z, + I) =
Var(D) computed in Problem 8(1), show that the variances of & sum is not always
equal to the sum of the variances.

14. By applying the idea of the preceding problem to the number of correct
answers of Problem 1.5.9 (the variance of which was computed in Problem 5(i))
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show that the variance of a sum may be equal to the sum of the variances.

15. Compute Laplace’s measure of dispersion EIZ — {|is Z is

(i) the random variable D of Example 3.2;

(ii) the random variable R of Problem 3.5.
16. Let a random variable X take on the values —1, 1, a with probability § each.
Find Var(X) for a = 0, 2, 4, 6, 10 and discuss what happens as a tends to infinity.
17. Let a random variable X take on the values 1, 2, 4 with probabilities 4, §, 1
respectively. Find Var(X), Var(X + 1) and Var(X + 2). What can you say

about Var(X + ¢) for varying ¢? Do you think the same result is true for other
random variables X?

5.7 LAWS OF VARIANCE

Variance is governed by laws analogous to the laws of expectation. Corre-
sponding to (1)-(3) of Section 5, we have

(1) Var(c) = 0
(2) Var(Z + ¢) = Var(%)
3) Var(cZ) = ¢? Var(Z).

These are all intuitively plausible. If a random variable is always equal
to the constant ¢, clearly ¢ will also be its expectation. Since it therefore
never differs from its expectation, its dispersion about this expectation will
be 0. Again, if we add the constant ¢ to the random variable Z, the expecta-
tion ¢ of Z is also increased by ¢ (thisis just the law (5.2)). It follows that
the difference Z — { is unchanged, and the variance is therefore also un-
changed. Finally, multiplying a random variable by ¢ will also multiply
its expectation by ¢, so that the difference Z — ¢ will be ¢ times as large as
before. Its square is then c? times as large, and it follows from (5.3) that
the variance is multiplied by ¢%. As a special case of (3) we obtain by
putting ¢ = ~1

4) Var(—2Z) = Var(Z).

According to (3), multiplying a random variable by a constant multiplies
its variance by the square of the constant. For example, if we convert
from measuring in feet to measuring in inches, all measurements are multi-
plied by 12, so that in the new units the variance of the measurement is
144 times as large as before. For some purposes, it is more convenient
to have a measure of dispersion that changes by the same factor as the
scale, instead of its square. This has led to the introduction of the
standard deviation of & random variable Z, denoted by SD(Z) and defined
as the (positive) square root of the variance.

Definition. The standard deviation of the random variable Z is
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(5) SD(Z) = V' Var(Z).

Consider now SD(cZ) = V' Var(cZ). It follows from (3) that this is
equal to

Vet Var(Z) = ¢V'Var(Z) if ¢ is positive,
and hence

(6) SD(cZ) = ¢-SD(Z) if ¢ is positive.

Thus, the standard deviation of a measurement in inches is just 12 times
the standard deviation of the measurement in feet.

As was the case for expectation, the most important laws for variance
are the addition laws. By analogy with the addition law of expectation,
one might hope for an addition law of variance that would assert that
“the variance of the sum of two random variables is the sum of their
variances.” The following examples show that such a law holds in some
cases but not in others.

(a) Recall Example 5.1 where T = X, 4+ X is the total number of points
showing when two dice are thrown. From the distribution of 7 given by
(2.1) it is easy to calculate that Var(T) = Var(X, 4+ X,) = 5% (Problem
4.4(i1)). We have seen in Example 6.1 that Var(X,) = Var(X,) = {3, so
that at least in this case the addition law holds.

(b) For any random variable Z it follows from (3) that Var(Z + Z)
Var(2Z) = 4 Var(Z). Since this does not equal Var(Z) 4 Var(Z)
2 Var(Z), the addition law does not hold in this case.

To find the conditions under which the addition law holds, let us obtain
a general formula for Var(Z + W). To simplify the writing we shall
denote E(Z) by ¢ and E(W) by n. From (5.4) E(Z + W) = { + 1; the
difference between Z + W and its expectation { 4 7 is

Z+W)-C+n=Z -0+ W —n).
The square of this expression is
@) Z -2 +2Z-0W —n) + W — )
Since the variance of Z + W is by definition the expectation of (7),
(8) Var(Z + W) = Var(Z) + Var(W) + 2E[(Z — »)(W — n)].

The quantity E[(Z — {)(W — 5)] appearing on the right-hand side is
known as the covariance of Z and W, and is denoted by Cov(Z, W).

([

Definition. The covariance of the random variables Z and W is

9) Cov(Z, W) = E[(Z — H)(W — n)].
In this notation, (8) may be written as
(10) Var(Z + W) = Var(Z) + Var(W) 4+ 2 Cov(Z, W),

and the desired addition law for variance is seen to be
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(11) Var(Z + W) = Var(Z) + Var(W) if Cov(Z, W) =0.

A detailed discussion of the properties and meaning of covariance, which
is a measure of the tendency of two random variables to vary together, is
not required at this point and will be postponed to Section 7.2. However
we shall here note two simple properties. By multiplying out the product
indicated on the right side of (9), and then applying the addition law for
expectation, we find
E{(Z — )W — n)] = E[ZW — W — 2Z + {n]

= E(ZW) — {E(W) — 2E(Z) + {n = E(ZW) — (7.

Hence, (9) may be written in the alternative form
(12) Cov(Z, W) = E(ZW) — E(Z)E(W),

which is analogous to the second form for variance given by (6.2).
Recalling (5.6), we see from (12) that if Z and W are defined on different
factors of a product model, then

13) Cov(Z, W) = 0.

Combining (11) and (13) gives the useful special form of the addition law
(14) Var(Z + W) = Var(Z) + Var(W)
if Z, W are defined on different factors
of a product model.

Extension of the argument (which is given in Section 7.2) leads to

(15) Var(Zi+ Z,+...) = Var(Z)) + Var(Z;) + . ..
if Zy, Z, ... are defined on different
factors of a product model.

More generally, equations (13), (14), and (15) hold for any independent
random variables (Problem 12). However, we shall have occasion to use
them only for the special case for which they are stated above.

ExampLE 1. Several dice. Suppose T is the total number of points show-
ing when n dice are thrown. Then, if X;, X,, ..., X, are the numbers
showing on the n dice separately, wehave T = X, + X, + ...+ X,.. If
a product model is used to represent the experiment, the addition law
(15) applies and gives

Var(T) = Var(X,) + Var(Xy) 4+ ... + Var(X,).
By Example 6.1, each of these n terms equals $§, and hence Var(T) =
35n/12.

We conclude the section by obtaining a useful identity. Consider a random
variable Z and an arbitrary constant a. If E(Z) = { and if we put X = Z — g,
it follows from (5.2) and (2) that
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E(X)=¢—a and Var(X) = Var(Z).
By (6.2),
Var(X) = E(X?) — [EX)]*=E(Z — a)*— (§{ — a)*

and hence the expected squared difference between Z and a is
(16) E(Z — a)* = Var(Z) + (¢ — a)2

Let us now apply the identity (16) to the lottery model of Example 6.2, replacing
Zby Y. The variable Y takes on the values v, . . ., v~ each with probability 1/N,
so that

(17) EY —a)?=[(m—a)?’+...+ (vn—a)’]/N.

Since E(Y) = v and Var(Y) = 72, it is seen from (16) that the left-hand side of
(17) is equal to 72+ (7 — a)2 Multiplying through by N and using the ex-
pression (6.3) for 72, we find

18) m—-art+...+wv—0a=0:—-0+...+ (v -0+ N@ — a)
This identity, which will be useful in proving several results later in the book, is
also easily verified by direct computation (Problem 13). An important special
case of (18) arises when a = 0, giving

(19) 012+...+1‘N2—Ni).2=(1)1"'5)2+...+(0N'—U_)2.

Relation (19) may be obtained also by comparing (6.3) and (6.5).

PROBLEMS

1. Note that the distributions of Figure 6.1 are those of two random variables,
one of which is a constant multiple of the other. Check that (6) holds in this case.

2. Compute the variance of the random variable B of Problem 5.4 by the method
suggested there for computing E(R), and Problem 6.8(i).
3. Suppose a fair die is thrown and you receive 60 cents if the number of points
showing is six.
(i) If Y is the amount you will win, find Var(Y).
(i) If you have to pay 10 cents to be allowed to play this game, use (i) and the
laws of variance to find the variance of your total gain or loss.

4. (i) Prove that if Z and W are random variables defined on different factors
of a product model, and if ¢ and d are constants, then

Var(cZ + dW) = ¢? Var(Z) + d?* Var(W).
(i) Use (i) to find Var(Z — W).

5. If Zy,...,Z, are n unrelated random variables having a common variance
o?, and if Z denotes their average, prove that Var(Z) = ¢%/n.

6. Let I and J be the indicators of two events E and F. Show that
Cov(l, J) = P(E and F) — P(E)P(F).
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7. Find the covariance of the random variables Z and W defined in Problem 2.16.
8. Use the definition (6.1) and the laws of expectation to write out formal proofs
of (1), (2), and (3).

9. If a random variable is multiplied by a negative constant, what happens to
its standard deviation?

10. Find the variance of the random variable A of Example 5.3. [Hint: Use the
method of indicators.]

11. Use the method of indicators to find the variance of the random variable
(i) B of Problem 2.1; (ii) Z of Problem 2.2.

12. Prove that (13) and (14) hold whenever Z and W are independent. [Hint:
Use the result of Problem 5.21.]

13. Prove the identity (18) by writing »; — a as (v; — ) + (# — a), and similarly
for v, — a,. .., vy — a, and then squaring out the terms of the left-hand side of
(18).

14. Let Z be any random variable, and let { be its expectation. Show that the
value of ¢ which makes E(Z — a)?smallest isa = {. [Hint: Note that the second
term on the right-hand side of (16) is positive for all values of a different from ¢,
and hence that for all a  { the left-hand side of (16) is greater than the first term
of the right-hand side.]

15. Show that the value of a which makes ( — @) + . . . 4 (vy — a)? smallest
isa = 7. [Hint: Apply the argument of the preceding problem to (18).]

16. Show that the variance of a random variable Z is always strictly positive
(not only nonnegative) unless Z is constant. [Hint: If Z has at least two possible
values, at least one of them must differ from E(Z) = ¢. Apply (6.1).]



CHAPTER 6
SPECIAL DISTRIBUTIONS

6.1 THE BINOMIAL DISTRIBUTION

In Section 3.3 we introduced the concept of a sequence of binomial trials.
These are trials on each of which there are just two possible results, con-
ventionally called “success” and “failure.” It is assumed that the various
trials are unrelated, so that a product model is appropriate, and that the
probability of success is the same, say p, on each trial. From these
assumptions it was shown to follow that the probability of getting successes
on b specified trials of a sequence of » trials, and failures on the remaining
n — b trials, is given by

m Py

where ¢ = 1 — p is the (constant) probability of failure on each trial.

However, in many cases we do not care on which particular trials the
successes occurred, but are interested only in the total number of successes.
Since this number is determined by the experimental results, it is a random
variable, which we shall denote by B. Examples are the number of aces
when a die is thrown ten times, the number of boys in a family of five
children, the number of defectives among 20 items produced by a machine.
We shall now obtain a formula for the distribution of B.

Let us begin by finding the probability that B = 2 when n = 5. In
five trials, two successes occur in the following patterns of successes (S)
and failures (F):

SSFFF, SFSFF, SFFSF, SFFFS, FSSFF,
FSFSF, FSFFS, FFSSF, FFSFS, FFFSS.

Since these are exclusive, the probability that B = 2 is the sum of the
probabilities of these ten patterns. According to (1), the probability of
each of these patterns is p%g?®, and hence P(B = 2) = 10p*¢’.
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We could have determined the number of patterns without actually
listing them. Each pattern is specified by indicating which two of the
five trials are to be successes, and the number of ways of choosing two out
of the five trials is just (;) = 10.

The argument extends easily to the general case. The number of

) . A\ L
patterns with b successes and n — b failures is (b) T'hese patterns are

the (exclusive) ways of getting just b successes, and the probability of each
pattern is pb¢*~?, as given by (1). Therefore the probability of getting
just b successes in n binomial trials is

@ = = (3)pe,

Definition. 'The number B of successes in n binomial trials each having
success probability p is called a binomial random variable. Its distribution
(2) will be referred to as the ‘binomial distribution (n, p).”

For illustration, consider once more the case n = 5. From formula (2)
and Table A we find that the binomial distribution (n = 5, p) is

b |0 1 2 3 4 5
3)

PB=b) | ¢ 5p¢ 10p%¢ 10pg* Sp'g p’

The term “binomial” derives from the fact that the probabilities (2) are
the terms in the binomial formula for the expansion of (¢ + p)*. The
reader may check that when (¢ + p)® is expanded, the successive terms
are those in (3) (Problem 21).

ExamPLE 1. Random digits. What is the distribution of the number B of
zeros produced when a random digit generator is operated 5 times? We
can regard the five operations as n = 5 binomial trials with probability of
success (i.e. getting a zero) p = .1. Therefore the desired distribution is
obtained by putting p = .1 in (3):

b 0 1 2 3 4 5

P(B =b) 5905 3280 .0729 .0081 .0005 .0000

The six entries must of course add up to 1, which gives a check on the work.

The importance of the binomial distribution is attested by the publi-
cation of several extensive tables for it. The most notable are the tables
published by the Ordnance Corps of the U.S. Army in 1952, which gives
the binomial distribution to seven decimal places for all values of n up to
150, and for p at intervals of .01; and that published by Harvard University
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in 1955, which for these values of p gives the binomial distribution to five
decimal places for selected values of » up to 1000.*

We give in Tables B and C at the back of the book a few examples of
binomial distributions. Table B covers all values of n up to 15 for the
five values p = .05, .1, .2, .3, and 4, while Table C is for p = .5 and
n < 30.

ExamrrLe 2. Multiple choice examination. An examination consists of
eight multiple choice questions, each of which offers a choice between five
answers of which only one is correct. To pass, it is necessary to answer at
least three of the questions correctly. What is the probability that a
student will pass who, being completely unprepared, for each of the
questions selects one of the answers at random?

We can view the eight questions as eight unrelated trials; the probability
of success (correct answer) isp = 3 = .2foreach. The desired probability
is then the probability of at least three successes in eight binomial trials
with p = .2. The probability of passing is therefore P(B 2 3) where B
has the binomial distribution (n = 8, p = .2). Table B gives

P(B z 3) = .1468 4 .0439 4 .0092 + .0011 4 .0001 = .2031.

The reader will notice that no values of p greater than  are given in
our tables. Such values have been omitted, thereby cutting the size of
Table B in half, because a binomial probability for p > 3 can be reduced
to one with p < 1. To see how this is done, suppose we wish to find the
probability of getting seven hits (and three misses) when firing ten times
at a target, where it is assumed that the shots are unrelated and that the
probability of a hit is .6 on each shot. If we call a hit a “‘success,” the
desired probability is P(B = 7) for the binomial distribution (n = 10,
p = .6), which is not given in Table B. However, if we instead call a miss
a ‘“success,” then the desired probability is P(B = 3) for the binomial
distribution (» = 10, p = .4), which from Table B is seen to be .2150.
By means of this device, which amounts to interchanging the roles of
“success” and ‘“failure,” one sees that P(B = b) for the binomial distri-
bution (n, p) is equal to P(B = n — b) for the binomial distribution
(n, 1 - p). The same identity may be proved from formula (2) (Problem
23).

In the special case when p = }, replacing p by | — p changes nothing,
so that our identity in this special case states

PB=0b)=PB=mn->b) when p=13.

* Table of the Cumulative Binomial Probabilities, Ordnance Corps Pamphlet ORDP
20-1 (1952). 577 pages.

Tables of the Cumulative Binomial Probability Distribution, Harvard University Press
(1935). 503 pages.
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That is, when p = 1, B has a distribution which is symmetric about n/2
in the sense of Section 5.4 (Problem 18). Thus, when p = } it suffices to
give the values of P(B = b) for b < n/2; this fact permits Table C to be
half as large as would otherwise be necessary. For example, if we need
P(B = 7) for the binomial distribution (n = 10, p = 1), this is the same
as P(B = 3) for that distribution, which from Table C is seen to be .1172.

ExampLE 8.  Quality control. Itisa characteristic of mass production that
not all items coming off a production line will conform to specifications.
Items that fail to conform may be called defectives. 1t is one of the tasks of
quality control to seek to identify and eliminate the causes leading to de-
fective items, but even after this has been done an occasional defective
will appear as if by accident. The successive items coming off the line
may in fact behave like binomial trials, with the appearance of a defective
item constituting a “success.” If this is the case, and if the probability of
a defective is satisfactorily low, the process is said to be “in a state of
(statistical) control.”

A process which is in control may of course at any time lose this property
if some part of the process deteriorates or breaks down. It is important
to check, by regular inspection of the items produced, whether the process
is still in control. To illustrate how this can be done, suppose that the
process has been in control for some time and that observation during this
period has shown the average frequency of defectives to be 5 percent. As
a check, ten items of the day’s production are inspected each day. If the
process continues under control, it is reasonable to assume that the number
B of defectives has the binomial distribution (n = 10, p = .05). The dis-
tribution of B is then given by the following table (taken from Table B);

b I 0 1 2 3 4 5

P(B=1b) | 5087 3151 0746 .0105 .0010 .0001

with the probabilities for b > 5 being negligible. Suppose now that it has
been agreed to institute a careful physical check of the whole process on
any day on which the sample contains three or more defectives. As long
as the process remains in control, we see from the table that P(B = 3) =
.0116. With this inspection procedure, we would therefore on the average
institute the complete check unnecessarily on about one percent of the days.
A more detailed discussion of the methods used for deciding such questions
will be presented in Chapter 11.

(4)

ExaAmMPLE 4. Size of an experiment. It is known from past experience
that on the average about 20 percent of the animals entering a certain
experiment die before termination of the experiment. If we want to have
probability at least .98 of having at least five animals complete the experi-
ment, with how many animals should we start? It seems natural to regard
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the number B of surviving animals as the number of successes in n binomial
trials with probability p = .8 of success, and we wish then to find the
smallest number n of trials such that P(B = 5) = .98.

Let us first try n = 7. What is the probability of getting five or more
successes on n = 7 trials with p = .87 Interchanging “success” and
“failure’ as discussed above, we see that the desired probability is the same
as the probability of obtaining two or fewer successes with » = 7 and
p = .2. From Table B we find this to be .2097 4 .3670 4 .2753 = .8520.
Thus seven animals are not enough since the probability that five of them
or more will survive is only 85%,. A similar calculation shows that there
is a probability .9437 of five or more survivors when eight animals are
used, and a probability .9804 when nine are used. Thus nine is the smallest
pumber of animals guaranteeing the desired result.

We will now find the expectation and variance of the binomial ran-
dom variable B. To compute the expectation of the number B of
successes in n binomial trials, we could multiply each possible value b

of B by its probability (7;) pbgm*, and then add all these terms. There is

however a much simpler method, based on the representation of B as a
sum of indicators, an idea already employed in Section 5.5. The total
number of successes in n trials is the number of successes in the first trial
plus the number of successes in the second trial plus . . . plus the number

of successes in the nth trial. Therefore, if 1), Io, ..., I, denote the
numbers of successes in the first, second, . . ., nth trial respectively, then
(5) B=11+Ig+...+lu.

This equation can also be verified in a slightly different way. The number
I, of successes in the first trial is 1 if the first trial is a success and 0 if the
first trial is a failure. It is thus an indicator random variable, indicating
success in the first trial. Similarly, I, indicates success in the second
trial, and so forth. Since each indicator equals 1 if the corresponding
trial succeeds and is otherwise 0, the number of successes is the number of
indicators equal to 1, which is the sum of the indicators, as was to be
proved. Now by Example 5.4.2, the expected value of each of the indi-

cators I, . . ., I.isp. It follows from (5) that E(B) is the sum of n terms,
each equal to p, so that
(6) E(B) = np.

This elegant, important, and useful formula asserts that in a sequence of
binomial trials, the expected number of successes is the product of the
number of trials and the success probability.

The representation (5) of B as a sum of indicators also gives us the vari-
ance of B. Since the indicators Iy, . . . , I, are defined on different factors
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of a product model, it follows from the addition law for variance (5.7.15)
that
Var(B) = Var({y) + . .. + Var(l,).

The variance of each I was seen in Ilxample 5.6.3 to be equal to p(1 — p)
= pq so that

) Var(B) = apq.

To illustrate formulas (6) and (7), let us recall Example 3, where n = 10
and p = .05. The number B of defectives in this example has expectation
E(B) = .5 and variance Var(B) = 475. The reader may checlf these
values by computing E(B) and Var(B) from (5.4.2) and (5.6.2), using the
distribution (4).

At the end of Section 3.3, we briefly considered the extension of the
binomial trials model to the case of unrelated trials with variable success
probabilities. Suppose there are n unrelated trials, with suceess prob-
abilities i, p, . . . and failure probabilities a=1—p,=1-—np,..
Then the probability of the result SFSSF- - . is P192PsPags- - -, and similarly
for any other pattern of successes and failures. The resulting model is
the generalized binomial trials model. (Also known as “Poisson binomial
trials,” after Siméon D. Poisson (1781-1840).) The distribution of the
total number 7' of successes can in principle be obtained by computing
and adding the probabilities of the different patterns with this number of
successes, but this is cumbersome unless % is quite small.

Fortunately, there is a simple approximation, which is effective when
P, Py, - - . are not too different from each other. Let us denote the arith-
metic mean of the success probabilities by p=(+p+...)/n and et
B be the number of successes in 7 binomial trials with success probability 5.
Since this sequence of trials has the same average chance of success as the
sequence first considered, one may hope that the higher success prob-
abilities on some of the trials will balance the lower probabilities on others,
so that the distributions of T and B will be close. This turns out tu be
the case, and one may therefore use the binomial distribution (n,p) to
approximate the distribution of 7'

ExaMPLE 6. The marksmen. Four marksmen of unequal skill have prob-
abilities .05, .06, .13, .16 of hitting the bull’s eye. If each fires once, what
is the distribution of the total number T of hits on the bull’s eye?

Here n = 4 and 5 = (.05 + .06 + .13 + .16)/4 = .1, so the binomial
approximation can be obtained from Table B. A comparison of the ap-
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proximate with the correct values (Problem 24) shows the approximation
to be satisfactory:

¢ 0 1 2 3 4

P(T = t) approx. | .6561 .2916 .0486 .0036 .0001
P(T = t) correct | .6526 .2978 .0466 .0029 0001

The approximation would have worked less well if success probabilities
that differed more widely had been used. (As is illustrated by Problem 25,
the error goes up like the sum of squares (py — )2 + (p. — P)2 +....)

PROBLEMS

1. Use Table C to find the probabilities P(B = b) for the following values of n
and bwhenp=3:n=4b=2,n=6,b=3;n=8 b=+, n=10,b = 5;
n=20b0=10;n=30,b=15.

2. Use Tables B and C to find the probabilities P(B = b) for the following values
of n, p, and b:

Dn=35 p=2,b=2
Wn=35 p=.8b=3
(i) n =10,p = .6, b =7
(iv) n =20, p = .5 b =13

3. Forn = 6, p = .3 find the probabilitics of

(i) at least three successes

(ii) at most three suceesses.
4. Plot the histogram for the binomial distributions (i) n = 15, p = .2, (ii) n = 30,
p = .5.
5. Each student in a class of fourteen is asked to write down at random one of the
digits 0, 1, ..., 9. The instructor believes that digits 3 and 7 are especially
attractive. If the digits are really selected at random, how surprising would it be
if six or more students chose one of these “attractive” digits?
6. In the preceding problem how surprising would it be if fewer than three digits
were even?
7. In Example 3.3.8, what is the probability that cight or more patients receive
the same drug?
8. Compute the distribution of the number B of male children in a three-child
family, assuming P(Male) = 514
9. (1) If n = 3, how small must p be before P(B = 0) > P(B = 1)?

(ii) Solve the problem for an arbitrary value of n.

10. What is the most probable number of successes in eight binomial trials with
success probability p = .1?
11. In Table B, verify the entry P(B = 2) = .2458 whenn = 6 and p = .2 from
formula (2).
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12. In Example 3, suppose that the process has gone out of control, so that the
probability of a defective has jumped from its usual value of .05 to the value .2.
How likely is it that the inspection procedure will eall for a check?

13. Find the probability that the frequency f of heads in n tosses with a fair coin
lies between .4 and .6 inclusive for (i) n = 5, (i) n = 10, and (iii) n = 20.

14. Use formulas (5.4.2) and (2) to check that E(B) = np for the casesn = 1,2,3.

15. (i) Find formulas for the expectation and variance of the frequency B/n of
success in 7 binomial trials.
(i) What can be said about the behavior of the variance as n becomes very
large?
16. Find formulas for the expectation and variance of the number of failures in
n binomial trials with success probability p.
17. In Example 4, if nine animals are used, (i) what is the expectation of the
number of survivors? (i) What is its variance?
18. Using formulas (2.2.3) and (2), show that the binomial distribution is sym=
metric about E(B) = n/2 when p = 3.

19. Find the expectation and variance of the number of successes in n unrelated

trials when the probability of success is p, on the first trial, p; on the second trial,
., Pn on the nth trial. Are these trials binomial?

20. Certain textbooks state that np is the value of B most likely to occur. Criti-
cize this statement.

21. Expand the binomial (g + p)® by multiplication and check the assertion made
in the text about (3).

22. Use the fact that the probabilities (2) are the terms in the expansion of
(g + p) to show that these probabilities add up to one.

23. Use formula (2) to prove that P(B = b) for the binomial distribution (n, p)
is equal to P(B = n — b) for the binomial distribution (n, 1 — p).

24. Verify the entries in the last row of the tableau of Example 5.

25. Consider two unrelated trials with success probabilities 7 + A and p — A.
(i) Find the distribution of the number T of successes. (ii) For any value t of T,
find the maximum error if the exact distribution of 7 is replaced by the binomial
distribution (n = 2, P).

6.2 THE HYPERGEOMETRIC DISTRIBUTION

We hwve already on several occasions considered the problem of drawing
a sample from a population containing two different kinds of items: red
and white marbles, defective and nondefective fuses, Conservatives and

Liberals, etc. To have a general terminology, let us refer to the items of
one kind as special and the remaining items as ordinary. Then the number

D of special items appearing in the sample is a random variable, and we
shall now obtain its distribution.

Let the size of the population be N and the size of the sample s, and
suppose that the population contains r special and N — r ordinary items.
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The distribution of D was already obtained in Example 5.2.1 for the case
N =7, r =4, s =3, if we regard the four Conservatives as the special
items. A study of this example reveals the general method. An exami-
nation of the samples giving D = 2 in the example shows that the samples
are arranged in a tableau of three rows and six columns, or 3:6 = 18
4 . .
2) = 6 ways in which
two Conservatives can be selected from the four available Conservative

samples in all. The columns correspond to the (

members: 45, 46, 47, 56, 57, 67. 'The rows correspond to the (?) = 3 ways
in which one Liberal can be selected from the three available Liberals:
1,2 3.

Let us now carry through the argument in general. How many samples

of size s can be formed to contain just d special, and hence s ~ d ordinary,
items? There are r special items available, so that the special items for

the sample may be chosen in (;) ways. Similarly, the s — d ordinary
items must be chosen from the N — r such items in the population, which
can be done in (]:—_dr) ways. [Lach choice of the special items may be
combined with each choice of the ordinary items. Therefore the number of
samples with D = d is <r> <N - r). If all (::) samples are assumed to

d § — d
.

be equally likely, this gives
AY
(V)

Definition. The number D of special items in a random sample of size s
from a population of size N that contains r special items is called a hyper-
geometric random variable. Its distribution (1) will be referred to as the
“hypergeometric distribution (N, r, 5).” (The term has its origin in the
fact that the quantities (1) appear in a series of that name studied in
analysis.)

As an illustration, let us use this formula to derive the hypergeometric
distribution of Example 5.2.1. Putting N =7, r = 4, s = 3 in (1), we
obtain the following results, which agree with those obtained earlier by

direct enumeration.
) - ) =
d 3 d P(D d)

) P(D =d) =

d

0 1 1 s
1 4 3 32
2 6 3 3
3 4 1

67

1
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The hypergeometriec probabilities (1) depend on four quantities: N, r, s,
and d. It would be essentially impossible to publish a table covering all
values that might arise in practice. A table* has been published giving
the probabilities to six decimal places for populations of size N < 50, and
certain selected higher values.

To obtain the expected value of D, one might use formula (5.4.2), writing
E(D) as the sum of the produets of the possible values d and the correspond-
ing probabilities (1), and then simplifying the result. (This method was
illustrated in Example 5.3.2.) A much simpler derivation may be based
on the method of indicators, used in the preceding section for the binomial
random variable. Recalling from Section 2.3 that a random sample can
be obtained by drawing an ordered random sample, we may think of D as
the number of special items in an ordered sample of size s. In this model,
D will have the same distribution (and hence the same expectation) as
before.

The total number of special items included in s draws is the number of
special items obtained on the first draw plus the number of special items
obtained on the second draw plus. . . plus the number of special items

obtained on the sth draw. Therefore, if I, I, . . ., I, denote the number
of special items obtained on the first, second, . . ., sth draw respectively,
then

(2) D=L+L+...4+1.

As in the binomial case, this equation can also be seen in a slightly
different way. The number I, of special items on the first draw is 1 or 0
as the first draw produces a special or an ordinary item. It is thus an
indicator random variable, indicating success on the first draw. Similarly
I, indicates a special item on the second draw, and so forth. Since each
indicator equals 1 if the corresponding draw produces a special item and is
otherwise 0, the number of special items in the sample is the number of
indicators equal to 1, which is the sum of the indicators, as was to be shown.
To compute £(D) it is now only necessary to find the expectation of each
of the I's.

By Example 5.4.2, we have E(I,) = P(I, = 1), which is the probability
that the first item drawn is special. Since all N items are equally likely
to be drawn on the first draw and since r of them are special, it follows that

E(L) =

=z~

By the same argument, k(I;) = P(I, = 1) is the probability that the
second item is special. By the equivalence law of ordered sampling
(2.3.5), on each draw the probability of getting a special item is r/N and

therefore E(I;) = ... = E(I,) = r/N. Hence by applying the addition
law of expectation to (2) we find
3) ED)=s-

* Tables of the Hypergeometric Probability Distribution, by Gerald J. Lieberman and
Donald B. Owen. Stanford University Press (1961). 726 pages.
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We shall now develop an approximation for the hypergeometric distri-
bution which is accurate when the sample constitutes only a small fraction
of the population, so that the sampling fraction s/N is small. Suppose
that a sample of s items is drawn with replacement from the population of
N items of which r are special. On each draw the chance of getting a
special item is 7/N, just as it was for sampling without replacement, but
now the s draws are unrelated. Therefore they form a sequence of s
binomial trials, and the number of special items in the sample has the
binomial distribution with n = sand p = r/N.

As we have remarked in Ixample 3.3.3, when the sampling fraction
s/N is small, it should make little difference whether sampling is done with
or without replacement. This suggests that the distribution of D, the
number of special items when sampling without replacement, will be ap-
proximately the same as the binomial distribution withn = sand p = r/N,
provided s/N is small. Lor example, if in fact 1) has the hypergeometric

hypergeometric

~~nmmnnns binomial

Mﬁ
0 1 2 3 4 5 6

Figure 1. BINOMIAL APPROXIMATION TO HYPERGEOMETRIC

distribution (¥ = 100, r = 20, s = 10), we might as an approximation
treat D as if it had the binomial distribution (n = 10, p = .2). Figure 1
shows the two histograms to be in reasonably good agreement. It is
common practice to use the binomial tables for the computation of hyper-
geometric probabilities when the sampling fraction is small.

The expected value of the approximating binomial distribution with
n = s and p = r/N is of course np = s-r/N, which agrees exactly with
E(D). Thus the exact and approximate distributions are centered at the
same place. The reason for this agreement is that whether we sample
with or without replacement, the number of special items in the sample is
the sum

L+IL+...4+1,

of the indicators of special items on the s draws. With either sampling
method, each indicator has the same expectation r/N.

The variance of the approximating binomial distribution, from formula
(1.7) withn = sand p =7 N, is

) s-%-(l—-f/)'
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Will this again agree exactly with Var(D)? We should not expect this to
happen, because in deriving (1.7) use was made of the unrelatedness of the
indicators, which does not hold for sampling without replacement. The
formula for Var(D) requires a correction factor, which turns out to be
(N — s)/(N — 1). Thisgives for the variance of a hypergeometric random
variable

N —3s r r
5) Var(D)=N_1-s'N(1—N)-
This formula will be proved in Section 7.2.

We note that the correction factor is always less than 1 (unless s = 1 in
which case there is no difference between sampling with and without
replacement) but that if N is much larger than s, it is quite close to 1.
That the two formulas for the variance are in close agreement when s/N
is small corresponds to the fact noted earlier that in this case it makes
little difference whether the sampling is with or without replacement.

In the special case when s = N, in which the “sample’” consists of the
entire population, we see that Var(D) = 0. This is as it should be, since
D has the constant value 7 if we take the entire population into the sample.

PROBLEMS

1. Use (1) to check the distribution of the random variable D of Problem 5.2.11.

2. Compute the distribution of the number of red cards in a poker hand, using

Table A and the value ( 552) — 2,508,960. Give the probabilities to three decimals

and graph the histogram.

3. A sample of size s = 5 is drawn from a population of N = 20 items. For
what values of r is P(D = 0) > P(D = 1)?

4. A batch of 20 items contains five defectives. Find the probability that a
sample of four will contain more than one defective.

5. Suppose that the sample of four houses of Example 4.2.3 is drawn at random
from all 13 houses rather than by the method of stratified sampling. Find the
distribution of

(i) the number of corner houses included in the sample;

(ii) the number of houses from the south side of the street included in the sample.

6. Suppose that in Example 3.3.8, so as to avoid the possibility that most of the
ten patients receive the same drug, drug A is assigned to five of the patients at
random with the other five receiving drug B. If five of the patients have a light
case of the disease and five a severe case, what is the probability that at least four of
the severe cases will receive drug A?

7. Using formula (1), solve (i) Problem 2.2.5, (ii) Problem 2.2.9.
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8. A lot of ten items contains five defectives. Plot the histogram of the distri-
bution of the number D of defectives in a sample of four, and that of the binomial
approximation to this distribution.

9. Work the preceding problem if the number of defectives is four instead of five.

10. Work Problem 8 if the lot size is 20 and the sample size is 5 when the number
of defectives in the lot is (1) 10, (ii) 8, (iii) 6.

11. A sample of ten items is drawn from a lot of 1000, which contains 50 defective
items. Use the binomial approximation to find approximately the probability
that the sample will contain two or more defectives.

12. Solve the preceding problem when the lot contains 100 instead of 50 defective
items.

13. The 200 students in a class are divided at random into 20 sections of 10 each.
Suppose the class consists of 160 undergraduates and 40 graduates, and let G denote
the number of graduates in Section 1. Use the binomial approximation to find
approximately the probability that G = 3.

14. Derive formulas for the expectation and variance of the fraction D/s of
special items, when the distribution of D is given by (1).

15. A sample of size s is drawn from a population of N items, of which r are special.
Derive formulas for the expectation and variance of the number of special items
left in the population after the sample has been drawn. What is the distribution
of this number?

16. A box contains nine marbles, three red, three white, three blue.
(1) What is the probability that a sample of four will contain marbles of only
two colors?
(ii) How many colors do you expect in such a sample?
(iii) What is the distribution of the number of red marbles?

17. A stratified sample is obtained by drawing unrelated samples from four blocks

as follows:
Block l 1 2 3 4

Private dwellings 8 10 13 7

Apartment houses 4 3 25

Sample size 2 2 3 2
Find the expectation and variance of the number of apartment houses included in
the sample. [Hint: Let 4, be the number of apartment houses drawn from block
1, ete.]
18. In the preceding problem, find the probability that the sample includes at
least one apartment house from each block.

19. In Problem 17, find the probability that no apartment house is drawn.

20. The random variable D of equation (2) may be represented as a sum of indi-
cators in a different way. Number the special items from 1 to 7, and let J; indicate
that the first special item is included in the sample, etc.

(i) Provethat D =J,+ J.+ ...+ J..

(i) Use this representation to obtain an alternative proof of (3).
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21. Find the expected number of corner houses in the samples of Problems 4.2.5(1)
and 4.2.5(ii).

22. Find the expected number of freshmen in the samples of Problems 4.2.6(i)
and 4.2.6(ii).

23. Find the expected number of freshmen in the samples of Problems 4.2.16(i)
and 4.2.16(ii).

6.3 STANDARD UNITS

One of the most remarkable facts in probability theory, and perhaps in all
of mathematics, is that the histograms of a wide variety of different distri-
butions are very nearly the same when the right units are used on the hori-
zontal axis. We cannot present the theoretical reasons underlying this
fact, but we can and shall support it by some computational evidence, and
then show how it may be used to calculate, with little effort, approximate
values for certain probabilities that would be very cumbersome to compute
exactly. Let us begin by considering an example.

ExampLE 1. The sum of points on several dice. We obtained in Problem
1.5.4 the distribution of the number, say 7', of points showing when two
dice are thrown. By an extension of the method used there, it is possible
in principle to find the distribution of the number T, of points showing
when n dice are thrown, for any value of n, although the work gets heavier
as n is increased. We present the histograms for n = 1, 2, 4, and 8 in
Figure 1 (here T denotes the number of points on a single die).

A study of this figure will make clear the following points. (a) As
the number n of dice is increased, the distribution moves off to the right.
This is not surprising since it is easily seen (Problem 5.5.3) that E(T,) =
7n/2. The distribution of T, is centered at E(7,), which gets arbitrarily
large as n gets sufficiently large. (b) The distribution tends to get more
spread out as n gets larger. This is also reasonable, since we know
(Example 5.7.1) that SD(7,) = V$§-Vn. The standard deviation is a
measure of the spread of the distribution and as n becomes large, so does

V'n, and hence so does SD(T,). We note also that the minimum and
maximum values of T, are n and 6n respectively, so that the range of T,
is 6n — n = 5n, which also becomes large with n. (¢) The histogram is
a rectangle when n = 1, and roughly the shape of a triangle when n = 2.
As n increases, the histogram appears to smooth out, though for n = 8 it is
already so low and spread out that its shape cannot be seen very clearly.

In order to bring the distribution into sharper focus, we shall make a
change in the units of the graphs. To overcome the tendency of the distri-
bution to move off to the right, let us take E(T.) as the new origin on the
horizontal axis. This can be achieved by considering the random variable
T, — E(T,), whose expected value is 0, so that its histogram is centered
at 0. Similarly, the tendency to spread out may be overcome by using
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Ficure 1. SUM OF POINTS ON 7 DICE

SD(T,) as the new unit of scale, or equivalently by considering the random
variable
T = T, — E(Tw.

" SD(T')

The change of origin and scale that we have suggested for 7, may be
applied to any random variable Z, and leads to the consideration of the
“standardized” variable

_Z-EZ)

) Z“‘smm’

which is also known as the random variable Z “reduced to standard units.”

It is seen that
, _E[Z - E(Z)] _
EZ) ="5p@) =0
and
Var[Z — E(Z)] _ Var(Z)
[SD(Z))2 = Var(Z)

Var(Z*) = 1,
so that a random variable, when it has been reduced to standard units, has
expectation 0 and variance 1.

To see how to construet the histograms of standardized variables, let us
recall from Section 5.2 that a histogram is a row of contiguous bars, one for
each possible value of the random variable. Each bar is centered at the
value it represents, and its area is equal to the probability of that value.
As an example consider the number B of successes in two binomial trials
with success probability p = §. Since
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EB) =% and SD(B) = V2-1.8 =%
the distributions of B and B* are given in the following table.

b | 0 1 2
" 0-@®__2 1-@®_7 2-@ _16
+ 4 3 4 4 4
Probability & 3 #r

The three bars of the histogram of B* are centered at —$, at %, and at 4#
respectively, as shown in Figure 2. The distance between successive
centers is

i-(-9=% and ¥ -7=1%

]

3t

2R

A

1A l Y R |
3B _z2 5 1 B 1 4
-8 i 8 I 8 4 8

FiGUureE 2. HISTOGRAM OF A STANDARDIZED BINOMIAL

Each bar must therefore have width £ extending half this amount on either
side of the center. For example, the bar corresponding to the value
b = 0 covers the interval from

“t-1i=-% to —3+ii=i
Similarly, the second bar of the histogram covers the interval from § to
43, and the third one the interval from 22 to 4%,
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Let us next consider the height of the first bar. This is determined by
the fact that
area = height X width

and that the area (by definition of a histogram) must equal the probability,
which is §4¢. Since the width is §, we must have
2 X height = 84
or
height = §$-4 = 33¢.
Similarly, the height of the second bar is found to be %% and that of the
last bar +$5.

Let us now generalize this result. Suppose that Z is a random variable
whose possible values are consecutive integers. To simplify the notation,
let

E(Z)=¢ and SD(Z) =o.
If zis any possible value of Z, the next value is z + 1, and the corresponding
values of Z* are

2=¢ and i ol Sl
g /2

The distance between these two values is
zt+1-¢ z2-¢

g g

1
@) ==
(This agrees with the value 4 between successive values in the example,
since there SD(Z) = 4.) Since this is the distance between any two
successive values, it follows as in the example that each bar of the histogram
must have width 1/¢, extending half this amount on either side of the
center. The bar of the histogram corresponding to z therefore has as its
base the interval

(L“_f,},l,z—u_l,l) or (Z'—f—%,Z—{‘FE—q).
2 v

o 2 o o o o

Since the area of the bar is P(Z = z) and its width is 1 /g, its height must
satisfy the equation

height -

Q e

= P(Z = 2),
so that

height = o P(Z = z).
In more general notation, we have proved that the bar of the histogram of
Z* corresponding to the value Z = z has as its base the interval with
end points

@) z—{!!Z}—.S and z—~KEZ)+ 5
SD(Z) SD(Z)
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while its height is
@) SD(Z)-P(Z = 2)

as shown in Figure 3.

SD(2)

P(Z=2)

1
Z-E(Z)-.5 Z-E(Z) Z-E(Z)+.5
SD(2) SD(2) SD(Z)

Fi1GURE 3. SINGLE BAR OF HISTOGRAM OF Z*

Application of these formulas gives the histograms of 7%, T3, T4, and T3
shown in Figure 4. Comparing this with Figure 1, it is seen that in the
new units it is much easier to perceive the shapes of the histograms and

that they become smoother as = is increased.

In calculating a standard deviation, it is necessary to extract the square
root of a variance. While there are arithmetic methods for extracting
square roots, it is frequently quicker to use a table such as Table D. This

table gives the square roots of the integers from 1 to 99, and also (as V/ 1—0;)
the square roots of the integers 10, 20, 30, . . ., 990. Some examples will
indicate how the table is used.

() V17 = 4.1231

(b) V470 = 21.679

() V1700 = V17 X 100 = V17 X V100 = V17 X 10 = 41.231

(d) V047 = V470/10,000 = V470/100 = .21679

(e) To find vV ﬁg, we must use interpolation. The table gives V/ 17 =
4.1231 and VI8 = 4.2426. Since 17.3 is three-tenths of the way

from 17 to 18, it is natural to take v/ 17.3 to be three-tenths of the
way from 4.1231 to 4.2426. To obtain V17.3, we therefore start
with V17 and add to it three-tenths of the difference between V18
and V' 1—7_, that is

V173 = 41231 + .3(4.2426 — 4.1231) = 4.1231 + .3(.1195)

= 4.1590.
(The correct value is 4.1593.)
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(f) The computation of v/ 1.53 would seem to call for interpolation
between V1 and V'2; however Vn is changing too rapidly here for
the interpolation to be accurate. Since V'1.53 = V153/ 10, we may

instead interpolate between V150 = 12.247 and V160 = 12.649 to
obtain the result v'1.53 = 12.368/10 = 1.2368. (The correct value

is 1.2369.)

PROBLEMS

1. Construct the histogram for B* where B is the number of successes in 10
binomial trials with probability of success p = .5.
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2. Let B have the binomial distribution with n = 100, p = 1. Find the beginning
and end point of the base of the bar in the histogram of B* corresponding to the
values (i) B = 50, (ii) B = 47, (iii) B = 52.

3. Construct the histogram for D* where D is the random variable defined in
Example 5.2.1.

4. Let D have the hypergeometric distribution with N = 200, r = 30, s = 20.
Find the beginning and end point of the base of the bar in the histogram of D*
corresponding to the values (i) D = 2, (ii) D = 3, (iii) D = 5.

5. Let T be the sum of points on two throws with a fair die. Find the beginning
and end point of the base of the bar in the histogram of T* corresponding to the
values (i) T =2; (i1) T = 4; (iii)) T = 6.

6. TFind the heights of the bars in parts (i)-(iii) of the preceding problem.

7. Let M be the number of matchings of Example 5.1.2. Construct the histo-
gram of (i) M; (i) M*.

8. Use Table D to find the square roots of (i) 900, (ii) 47,000, (iii) .000173, (iv)
.963.

6.4 THE NORMAL CURVE AND THE CENTRAL LIMIT THEOREM

In Figure 4 of the preceding section we saw that the histograms of the
standardized variables T (where T, is the sum of the number of points on
n dice) appear to smooth out and take on a definite shape as n increases.
In more advanced treatments of probability theory it is proved in fact
that as n increases indefinitely, the histogram of 7% tends to the smooth
curve pictured in Figure 1, which is known as the normal curve. Some of
its properties will be discussed later in this section, but we first give another
example of distributions tending to the normal curve.

Ficure 1. THE NORMAL CURVE



n=10

7=30 \_LI—I_\—

ﬁ

n=90

(a) p=.05 (b) p=.2 (c) p=.5

FicUure 2. HISTOGRAMS OF STANDARDIZED BINOMIALS

981

SNOILAMIYLSIA TVIOAdS

9 "dvHO]



6.4] NORMAL CURVE AND CENTRAL LIMIT THEOREM 187

ExampLE 1. Binomial distributions. In Section 1 we defined the binomial
random variable B as the number of successes in n binomial trials each
having success probability p. Since E(B) = np and Var(B) = npgq, where
¢ = 1 — p, the variable B in standard units is

0 pe - 12
npq

We show in Figure 2 the histograms of B* for increasing n (10, 30, 90) and
for three different values of p (.03, .2, .5). The figure shows that for each
fixed value of p, as n is increased the histogram of B* looks more and more
like the normal curve. Notice that the approach to the normal curve is
considerably slower for p = .05 than for p = .5. Generally, the approach
to the normal curve is slower the further p is from .5; if p is close either to
0 or to 1, » must be quite large before the approximation is acceptable.
As a rough rule-of-thumb, the approximation is fairly good provided npq
exceeds 10.

The behavior of Ti and B* illustrates a quite general phenomenon.
Whenever a random variable Z is the sum of a large number of independ-
ent random variables, all of which have the same distribution,t then
Z* = [Z — E(Z)]/SD(Z) will have a histogram close to the normal curve.
(Thus T, = X; 4+ ... + X, is the sum of independent random variables
representing the numbers of points on the n dice, while B = I, + ... + I,
is the sum of #z independent indicator random variables.) If Z = Z;, +
...+ Z,, where the Z’s are independent and have the same distribution, it
can be shown that as n increases without limit, the histogram of Z* tends
to the normal curve. This result is known as the ceniral limit theorem.

Since the central limit theorem tells us that certain histograms are close
to the normal curve, it often justifies the use of areas under the normal
curve as approximations to the corresponding areas of these histograms,
and hence as approximations to certain probabilities. The details of this
procedure will be explained in the next section, but first let us introduce a
table o! areas under the normal curve.

It is customary to denote by ®(z) the area under the normal curve,
above the horizontal axis, and to the left of the vertical line at z. Thus
®(2) is the area of the shaded region of Figure 3. A short table of ®(z) for
positive values of z is given as Table I. Table E may be supplemented by
several remarks about .

(a) The total area under the normal curve equals 1. This is not sur-
prising since the curve is a limit of histograms each having total area
equal to 1.

1 Actually this result requires a mild restriction on the distribution, which is, however,
automatically satisfied when the value set of the distribution is finite, as is assumed
throughout this book. ’
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FIGURE 3. AREA UNDER NORMAL CURVE

(b) According to Table E, #(3.90) = 1.0000. The value of (3.90) is
not exactly 1, but it is 1 to four decimals of accuracy. In fact #(3.90) =
999952 to six decimals.

(c) An immediate consequence of (a) is that

2) Area to the right of 2 = 1 — &(2).

For example, the area to the right of 2 = 1.21is 1 — #(1.2) = 1 — .8849
= .1151.

(d) The normal curve is symmetric about 0. Since the total area under
the curve is 1, it follows that the area to the left of 0 and that to the right
of 0 are both %, which checks the entry $(0) = .5000. More generally, it
follows from the symmetry of the curve that the area to the left of —¢z,
which is ®( —z), is equal to the area to the right of z, which by (2) is equal to
1 — ®(z), so that
3) B(—z) =1 — 2(2),
as illustrated in Figure 4a. This explains why it is not necessary to extend
Table E to negative values of z. To obtain for example ®(—1.3) one
computes $(—1.3) = 1 — $(1.3) = 1 — .9032 = .0968.

(e) It is often required to find the area under the normal curve befween
two vertical lines. Such areas can be obtained as the difference of two
values of ®. The area between z and 2/, where z < 2/, is the area to the
left of 2’ minus the area to the left of z. This is illustrated in Figure 4b,
where the shaded region has area ®(z') — ®(z). For example, the area
between .4 and 1.3 is

®(1.3) — &(.4) = .9032 — .6554 = .2478.

w /%
-2 0 z z 4

(a) (b)

FiGcure 4.
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As another example, let us find the area between —.35 and 1.24. The
area to the left of 1.24 is ®(1.24) = .8925; that to the left of —.35 is
1 — &(.35) = .3632; thus, the desired area is .8925 — .3632 = .5293.

(f) Table E gives values of ®(z) only for values of z that are multiples
of one hundredth. Other values may be obtained by interpolation. Let
us illustrate the method by finding a value for #(.364). The table gives
$(.36) = .6406 and &(.37) = .6443. Since .364 is four-tenths of the way
from .36 to .37, it is natural to take ®(.364) to be four-tenths of the way
from .6406 to .6443. To obtain #(.364), we therefore start with &(.36)
and add to it four-tenths of the difference between #(.37) and #(.36),
that is,

$(.364) = .6406 + .4(.6443 — .6406) = .6406 + .4(.0037)

= .6406 + .0015 = .6421.

(g) In applications one often wishes to find the value of z corresponding
to a given value of ®(z). Such values can of course be obtained by inter-
polating backwards in Table E, but for convenience we give at the bottom
of Table E a small auxiliary table of this “inverse” function. The auxiliary
table also shows how rapidly ®(z) approaches 1 as z increases.

PROBLEMS

1. Find the area under the normal curve to the left of (i) .87, (i) —1.46, (iii) 1.072,
(iv) —.156.

2. Find the area under the normal curve to the right of (i) .04, (i) —3.97, (iii) .423,
(iv) —1.006.

3. Find the area under the normal curve between (i) .41 and 1.09, (i) —.26 and
2.13, (i) —1.41 and —.07, (iv) —1.237 and 1.237.

4. Find the area under the normal curve outside the interval (i) (—1.82, 1.82),
(i) (—.37, .37), (i) (.08, 2.15), (iv) (—.91, —.16), (v) (—1.15,.09), (vi) (—2.01,
1.89).

5. Find the value of z such that the area under the normal curve to the left of z is
(i) .9732, (ii) .2912, (iii) .6780, (iv) .1960.

6. Find the value of z such that the area under the normal curve to the right of
z is (i) .8186, (ii) .0071, (ii) .85.

7. Find the value of z such that the area between —z and z is (i) .6826, (ii) .5,
(i11) .08.

8. Find a value of z such that the area between (i) z and 2z is .1; (i) z and 2z is
.12; (iii) 2z and 3z is .1.

6.5 THE NORMAL APPROXIMATION

Let us now consider some examples of the use of the normal curve in
obtaining approximate values of probabilities.
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ExampLE 1. The sum of points on three dice. 'What is the probability that
the number T'; of points showing on three dice is equal to 15? The desired
probability is the area of the corresponding bar of the histogram of T4%.
From Example 3.1 we know that I/(T3) = 3(§) = 10.5 and SD(T;) =
v 5;3—5 = 2.958. According to (3.3), this bar covers the interval from
(156 — 10.5 — .5)/2.958 = 1.352 to (15 — 10.5 + .5)/2.958 = 1.690. The
normal approximation to the probability is the area under the normal curve
above this interval, or $(1.690) — #(1.352) = .9545 — 0118 = .0427, as
illustrated in Figure la. For comparison, the true value of P(T; = 15) is-
21% = .0463. The approximation is thus in error by .0427 — .0463 =
—.0036; it is too small by 87, of the true value. For many purposes this
degree of accuracy would suffice.

N
\\
N
| \
AN T,=13 | N
\ ' " | \
| Ty=14,
N ! N
Ty=15 ! | Ty-15
i |
1 1 1 ! | { 1
1.2 1.6 8 1.2 1.6
(a) (b)

Ficure 1. NORMAL APPROXIMATION TO DISTRIBUTION oF T

The method extends readily to the sum of the probabilities of several
consecutive values. As an example, let us compute the probability
P(13 = T; £ 15) that T; lies between 13 and 15 inclusive. By the ad-
dition law, this is

P(Ts = 13) + P(Ts = 14) + P(T;s = 15),
which is the sum of the areas of the adjacent bars covering the intervals
(12.5, 13.5), (13.5, 14.5), and (14.5, 15.5). Together, these bars cover
the interval (12.5, 15.5). When we go over to standard units, this becomes
the interval from (12.5 — 10.5)/2.958 = .676 to (15.5 — 10.5)/2.958 =
1.690, as shown in Figure 1b. The normal curve area above this interval is
$(1.690) — ®(.676) = .9545 — .7505 = .2040
which may be compared with the exact value
P(13 £ Ts < 15) = A& = .2130.

The approximation is low by .0090 which is 49, of the true value.
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Let us now generalize the foregoing results. Suppose Z is any random
variable taking on consecutive integers as its possible values, and let a
and b be any of these values, with @ < b. We are interested in obtaining
an approximation for the probability

PagZzsb)=PZ=a)+PZ=a+1)+...+PZ=0).
This probability is the sum of the areas of the bars in the Z histogram that

cover the interval (¢ — .5, b + .5). The corresponding bars in the Z*
histogram extend from

[a — .5 — E(Z)]/SD(Z) to [b+ .5 — E(Z)]/SD(Z).
The desired approximation is therefore

W reszan -+ (5550 -+ (b )

ExampLE 2. Male births. Of the 5000 births from New York State repre-
sented in Figure 1.2.3¢, 2641 or 52.89, were boys. A twenty-year record
of over two million births from New York State gives 51.49, boys. Is the
higher frequency of boys in our 5000 cases evidence that they really differ
in this regard from the general experience? Let us see how likely would
be so large or larger a number of boys, if in fact p = P(Male) = .514.
To compute P(B = 2641) when the number B has the binomial distri-
bution with n = 5000, p = .514 exactly from formula (1.2) would be
tedious, and no binomial table covers so large a value of n. To obtain
an approximation for this probability, we apply (1) with B instead of Z
and E(Z) = 5000 X .514 = 2570,8D(Z) = V5000 X .514 X .486 = 35.34,
a = 2641 and b = 5000. Substitution in (1) gives for the desired proba-
bility the approximate value
& <5000.5 — 2570) _ % (2640.:') — 2:')70)
35.34 35.34

= ®(68.77) — $(1.995)

=1 - 9770 = .0230.

This probability is small enough to cast some doubt on the hypothesis that
these 5000 births are in accord with the general experience in New York
State. (We shall consider the interpretation of such “significance proba-
bilities”” in Section 11.2.)

When in (1) the value of b is the largest value that Z can take on, so that
the left-hand side of (1) can be written as P(Z = a), as was the case in the
preceding example, a simplification of (1) is possible. The value of

® (%ﬁl) (in the preceding example it was ®(68.77)), is then

usually so close to 1 that one may simplify (1) to
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(2) Pa < Z) =1—¢(u_—ﬂg))

SD(Z)

Similarly, when « is the smallest possible value of Z,® (g__S’;)ﬁ(—Z)E(Z)>

will be nearly 0, and we get

3) PZ<b)=a (%%Z—’)

While many random variables have a representation as a sum of inde-
pendent terms with the same distribution, this is by no means true of all
random variables. The central limit theorem, however, has many ex-
tensions to sums of independent random variables not all having the same

distribution, and also to certain sums of dependent variables. Examples
of the first of these possibilities are found in Problem 20 and in Sections 12.6
and 12.7; the second possibility is illustrated by the following two examples.

ExampLE 3. Hypergeomelric. The hypergeometric random variable D,
introduced in Section 2, is seen by formula (2.2) to be the sum of s indi-
cators; these all have the same distribution but are not independent. It is
shown in more advanced treatments of probability theory that the his-
togram of D, expressed in standard units, is close to the normal curve
provided Var(D) is not too small. Figure 2 shows the histogram of D* for
the hypergeometric distribution (N = 20, r = 8, s = 7), with the normal
curve superimposed.

\\
[ N

Figure 2. NORMAL APPROXIMATION TO HYPERGEOMETRIC DISTRIBUTION

Experience has shown that a great many variable quantities encountered
in nature are distributed in a shape closely resembling the normal. For
example, if we measure the heights of a large number of men and plot the
frequencies with which various heights are observed, we obtain an empirical
histogram whose shape is nearly of the normal form. We may give a
theoretical argument to explain this phenomenon. The height of any
individual is the resultant of the action of a large number of more or less
unrelated genetic and environmental effects, so that the central limit
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theorem would lead us to expect a normal form. It should not however
be thought that all distributions encountered in nature are normal. For
example, in certain regions of central Africa, the distribution of heights of
adult males would resemble Figure 3a: one factor (whether the man is or
is not a pygmy) in this case dominates the other factors. Another non-
normal distribution is that of individual income: a few individuals have

(@ (b)

Figure 3. DISTRIBUTIONS NOT RESEMBLING THE NORMAL CURVE

incomes far larger than the rest, so that the distribution (Figure 3b) has a
long “tail” to the right.

PROBLEMS

1. Suppose B has the binomia! distribution (n = 100, p = .2). Calculate the
normal approximations to (i) P(B = 20), (ii) P(B < 18), (iii) P(B £ 17), (iv)
P(24 < B < 29), (v) P(B > 29)

2. Suppose B has the binomial distribution (n = 10, p = .6). Calculate the
normal approximations to (i) P(B = 1), (ii) P(B = 3), (iii) P(B = 5) and compare
them with the exact values.

3. Let B be the number of successes in 100 binomial trials with probability p = }
of success. Use the normal approximation to find a number c¢ such that the proba-
bility P(B < ¢) is approximately (i) .95, (i) .8, (i) .5. [Hint: (i) use the approxi-

mate formula
NB<a=¢G:%E)

and the fact that $(1.645) = .95 to get an equation for ¢.]

4. Let B be the number of successes in 300 trials with probability § of success.
Use the method of the preceding problem to find a number ¢ such that P(B < ¢) is
approximately (i) .95, (ii) .9, (iii) .75.

5. Under the assumptions of the preceding problem find ¢ such that P(B > ¢) is
approximately (i) .95, (i) .7.

6. Under the assumptions of Problem 3 find a number ¢ such that P( B — 20| < ¢)
is approximately (i) .95, (i) .8, (iii) .5. [Hint: |B — 20| < ¢ means that 20 —
¢ < B =20+ c.. Use formula (4.3).]

7. A college has invited 800 guests to a charter-day picnic. For the purpose of
ordering the picnic baskets, it is assumed that the decisions of the guests are un-
related, and that each has a probability 2 of accepting the invitation. With this
assumption, how many baskets should be ordered if the college wishes to be
(approximately) 999, certain that there will be a basket for each guest who comes?
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8. If A is the number of apartment houses in the stratified sample of Problem
2.17, calculate the normal approximation to P(4A Z 5).

9. A random digit generator is operated n times. Find the approximate proba-
bility that the frequency f(even) of even digits satisfies .4 £ f(even) < .6, when
(i) n = 50, (il) n = 250, (iii) » = 50,000.

10. Suppose D has the hypergeometric distribution (2.1) with N = 800, r = 200,
s = 40. Calculate the normal approximation to (i) P(D = 10), (ii)) P(D < 8),
Gil) P(D £12), (iv) PA0O £ D £ 13), (v) P(D > 9).

11. Suppose D has the hypergeometric distribution (2.1) with N = 1000, r = 300,
s = 50. Use the normal approximation to find a number ¢ such that the proba-
bility P(D = ¢) is approximately (i) .9, (ii) .5, (iii) .05. [Hint: see Problem 3.)

12. Suppose D has the hypergeometric distribution (2.1) with N = 1200, r = 600,
s = 80. Use the normal approximation to find a number ¢ such that the proba-
bility P(D £ ¢) is approximately (i) .9, (ii) .5, (iii) .05. [Hint: See Problem 3.]

13. A city with 10,000 voters is holding an election involving two candidates A
and B. To make a forecast, a random sample of size s is taken two days before
the election. If D denotes the number of voters who express a preference for A,
the poll will predict A as the winner if D/s > 4 and B as the winner if D/s < 4.
If actually 519, of the voters prefer A, what is the probability that the poll will
prediet the election correctly if (i) s = 50, (i) s = 100, (i) s = 200? [Hint: Use
the normal approximation and assume that every voter is willing to express his
preference correctly, that all voters will cast a ballot, and that no one will change
his mind between the poll and the election.]

14. Work the three parts of the preceding problem if the proportion of voters
prefering A is 52%, rather than 519%,.

15. Work Problem 13 if the number of voters is 100,000 instead of 10,000 and if
(i) s = 100, (i) s = 200, (iii) s = 500, (iv) s = 1000.

16. In Problem 13, how large does s have to be so that the probability of cor-
rectly predicting the winner is (i) .9, (ii) .95, (i) .99?

17. Solve the preceding problem if the number of voters instead of being 10,000
is (i) 50,000, (ii) 100,000, (iii) 500,000.

18. A bag contains a two-headed penny and a two-tailed penny. A penny is
chosen at random from the bag and is then tossed five times.
(i) Obtain the distribution of the number H of heads and plot its histogram.
(ii) Calculate E(H) and Var(H), and show that the normal approximation is
not satisfactory in this case.
(ili) Would the normal approximation be better if the coin were tossed many
times rather than only five times?
(iv) Would the normal approximation be better if the coin were returned to the
bag and a fresh draw were made before each toss?
[This problem uses the concepts and results of Sections 4.3 and 4.4.]

19. Suppose the possible values of the random variable Z are 0,¢,2¢, 3¢, . ... If
b is one of these values, how should (3) be modified to give a normal approximation
for P(Z < b)?
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20. Consider the generalized binomial trials model of Section 6.1.
(1) Find E(T) and Var(T).
(i) Forn =4 and p, = .2, p, = 4, p; = .6, p, = .8, calculate the distribution
of T and compare it with its normal approximation.
(iii) Why does the binomial approximation of Section 6.1 work poorly in this
example?

6.6 THE POISSON APPROXIMATION FOR np =1

As was pointed out in Section 4, the normal approximation to the binomial
distribution does not work very well if p is near 0 unless » is quite large.
Since ¢ = 1 — p is then close to 1, the rule of thumb given in Example 4.1
suggests that the normal approximation could be relied upon for small p
only if np is greater than or equal to 10. We would not, for example,
expect it to work well when p = .01 and n» = 100, in which case np = 1.
Fortunately there is available a quite different method, the Poisson ap-
proximation, which gives good results when p is near 0. (By the device of
relabeling failures as successes, the same method can also be used for values
of p near 1.)

To explain the Poisson approximation, let us at first fix the expected
number of successes, K(B) = np, at the value 1. Table 1 shows five
different binomial distributions, corresponding to n = 2, 5, 10, 20, and 40,
with p respectively 3, 1, 1%, v%, and #%, so that in each case np = 1.

TaBLE 1. BINOMIAL DISTRIBUTIONS WITH np = 1

Poisson
approximation:
n=2 n=5 n=10 n=20 n=40 n very large

p=3 P=% p=1 P=4 P=% ... p=1/n
b=0 2500 .3277 3487 3585  .3632 .3679
1 .5000 4096 3874 3774 3725 3679
2 2500 .2048 .1937 .1887  .1863 .1839
3 0512 0574 0596  .0605 .0613
4 0064 0112 0133 0143 0153
5 0003 .0015 .0022 .0026 .0031
6 .0001  .0003 .0004 .0005
7 .0001

If the first two rows of the table are compared, it is apparent that the
values of P(B = 0) and P(B = 1) come closer together as n is increased
and correspondingly p is decreased. When n = 2, P(B = 1) is twice as
large as P(B = 0), but by the time n = 40, the ratio of P(B = 1) to
P(B = 0)isonly .3725/.3632 = 1.026. This suggests that, when = is very
large, P(B = 1)/P(B = 0) might be very close to 1, so that to a good
approximation the same value could be used for both P(B = 1) and
P(B = 0).
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It is easy to verify this suggestion. It follows from the formula for

binomial probabilities (1.2) and the fact that (g) = 1and (’{) = n, that

PB=0)=g¢ and P(B=1)=npg.

Since for the present we are only dealing with the case np = 1, this means

that
PB=1) 1
0 PB=0) ¢

If p is close to 0, then ¢ = 1 — p is close to 1, and therefore so is 1/q.
This proves the suggestion that the ratio (1) will be near 1 if p is near 0.
Therefore, if n is large and p = 1/n is correspondingly small, we have

P(B =1) = P(B = 0)

where = means that the two expressions are approximately equal.

In a precisely similar way, it can be shown that P(B = 2)/P(B = 1)
will be close to 3 when = is large and p small and np = 1 (see Problem 1).
Since P(B = 2) is about half as large as P(B = 1), which in turn is close
to P(B = 0), we have the approximation

P(B=2)=1PB =0).
Continuing in the same way, we find

P(B =3) = 1-1P(B = 0) = }P(B = 0)
P(B = 4) = }-3-4P(B = 0) = JP(B = 0)

and so forth. But of course the probabilities of all possible values of B
must add up to 1, so that

1=PB=0+PB=1)4+ P(B=2)
+PB=3)+PB=4)+...
2) = P(B=0)+ P(B=0)+ 3iP(B=0)
+iPB=0)+H4PB=0)+...
—PB=0{1+1+}+i+k+..]
where in the last step the quantity P(B = 0) has been factored out.

The factor 1 + 1 4+ 2 + 1 4+ 4 + . . . can be calculated numerically to
any desired degree of accuracy. The work is shown in Table 2, where the
factor is computed to four decimal places, giving the value 2.7183. We
have added up only eight terms, and could have continued to add as many
more as we wished, but the remaining ones are so small that they do not
amount to much even when taken all together. (This fact is proved
rigorously in theoretically more advanced books.) The number we have
computed to four decimals is a very important. one in mathematics, and is
denoted by the letter e, in honor of the Swiss mathematician Leonhard
Fuler (1707-1783).
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TaBLE 2. CaLcutaTioN oF 1+ 143+ 34+ 4+...=¢
1 = 1.0000
1 = 1.0000
3 = .5000
1/2:3=1%1 = .1667

1/2:3-4 = ¢ = .0417
1/2-3-4-5 = 135 = .0083
1/2-3-4-5-6 = +}5 = .0014
1/2-3-4-5-6-7 = v = .0002

2.7183

Now let us substitute this result in (2), to find
1 = P(B = 0)2.7183.

Dividing, we get for P(B = 0) the approximate value 1/2.7183 = .3679.
That is to say, if = is large, so that p = 1/n is small, the probability that
there will be no successes is approximately .3679, regardless of the precise
values of n and p = 1/n. This approximation is already reasonably good
when n = 40 and p = ¢, where the correct value is .3632, and the larger
n is, the better the approximation will be. Since P(B = 1) = P(B = 0),
the same value .3679 may be used to approximate P(B = 1); since
P(B = 2) = }P(B = 0), the value %(.3679) = .1839 may be used to
approximate P(B = 2), and so forth. The approximate values are shown
as the last column of Table 1.

Exampre 1. Triplets. 1t is stated that the chance of triplets in human
births is 1/10,000. What is the probability of observing at least 4 sets of
triplets in a record of 10,000 human births?

Let us regard the births as unrelated, so that the number B of sets of
triplets has the binomial distribution corresponding to n = 10,000 and
p = 1/10,000. Since np = 1 and = is very large, we may use the Poisson
approximation shown in the last column of Table 1. Thus

PB24)=PB=4)+PB=5+PB=6)+...
0153 + .0031 + .0005 + .0001
.0190.

There is a little less than a 2%, chance of observing so many sets of triplets.

I 1

PROBLEMS

1. (i) Show that P(B = 2) = w pig»2. [Hint: Problem 2.2.19.]
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(ii) In the case np = 1, show that the preceding formula reduces to P(B = 2)

N R |
T2 (1 n) ¢~
(iii) Use result (ii) to establish that when np = 1,

1

P(B = 2)/P(B = 1) = 5(1 _1-1) .

(iv) Use result (iii) to explain why P(B = 2) = 1P(B = 1), whennislarge and
p = 1/n is small.

2. By steps parallel to those of Problem 1, explain why P(B = 3) = {P(B = 2)
when 7 is large and p = 1/n is small.

3. Calculate the Poisson approximation for the following binomial probabilities:
(1) P(B > 4) when n = 300 and p = 1/300,
(ii) P3 < B < 5) whenn = 80 and p = 1/80,
(mi) P(B £ 1) whenn = 50 and p = 1/50.
4. A machine is claimed on the average to produce only one defeetive in a hundred.

If the claim is true, how surprising would it be to find five or more defectives in a
lot of 100?

5. Refine the computations in Table 2 to obtain a five-decimal value for e.

6. Under the assumptions of Example 1, determine the largest ¢ for which
PBzc¢) 2 5

7. A lot of 2000 items contains 20 defectives. If a sample of 100 is selected at
random, use the Poisson approximation to find the probability that the sample

will contain at least 2 defectives. [Hint: As an intermediate step use the hinomial
approximation to the hypergeometric distribution.]

8. In Example 1, use the Poisson approximation to find the probability of observ-
ing no triplets in 20,000 births. [Hint: Let the number of triplets be B = B, + B,
where B; and B, denote the numbers of triplets in the first and se¢ond set of 10,000
births respectively. Then P(B = 0) = P(B, = 0)P(B: = 0).]

9. Under the assumptions of the preceding problem, find (1) P(B = 1), (i)
P(B = 2), (ii)) P(B = 3).

10. Let B denote the number of successes in n binomial trials with success prob-
ability p. Use the method of Problems 8 and 9 to find (i) P(B = 0), (ii) P(B = 1),
(iii) P(B = 2) when np = 3 and = is large.

6.7 THE POISSON APPROXIMATION: GENERAL CASE

For simplicity of exposition, in the preceding section we considered only the
casenp = 1, but the method is applicable to any fixed value of E(B) = np.
Suppose we consider the binomial distributions with np fixed at the vaiue
1) np = \

We shall be interested in obtaining an approximation to these distri-
butions when p is close to 0 and hence n is very large. Just as in the case
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np = 1, we have
PB=0)=g¢" and P(B =1) = npg+?

and hence
PB=1) np
PB=0) ¢
Since ¢ is close to 1, and np is equal to A, we have for large n
PB=1) . A
P(B=10)
or
2) P(B =1) = \P(B =0).
By an exactly analogous argument we find
PB=2) . ,,
PB=1) *
(3) ﬂ_B_:_) 2 1 N
PB=2 °?
P(B = 4)

= 1
PB=3) " i\ ete

To see how these relations can be used to obtain approximate probabilities,
suppose that A = 2. Then it is found by exactly the same method as for
the case A = 1 in the preceding section that

(4) P(B =2) = }4P(B =0), P(B=3) = 18P(B = 0),
P(B = 4) = %16P(B = 0)

and so forth. Adding the probabilities and factoring out the common
factor P(B = 0) gives, in analogy to (6.2),

1=PB=0)[1+2+3+18+...]

The factor in brackets can be calculated to any desired degree of accuracy.
Taking only the first 12 terms gives to it the value 7.3891 and hence gives
P(B = 0) = .1353. The probabilities of the other values can now be
computed from (2) and (4).

This method can be used to obtain the Poisson approximation corre-
sponding to any given value of A. Table F shows the results for 20
different values of A ranging from .1 to 10. The Poisson approximation
applies not only to the binomial random variable B, but also to a more
general random variable T to be defined below, and for this reason the
headings of Table F are in terms of T rather than B. A much more ex-
tensive table is available giving to eight decimal places the probabilities
for values of A ranging from .0000001 to 205.*

As an illustration of the use of Table F, let us find P(B £ 3) when B
has the binomial distribution corresponding to n = 120 and p = .04.

* Tables of the Individual and Cumulative Terms of Poisson Distribution, D. Van
Nostrand Co., Inc. (1962). 202 pages.
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Here E(B) = np = 4.8, which is too small to permit safe use of the normal
approximation. But, since n is large and p is small, we may use the Poisson
approximation. By adding the four entries forA = 5and 7 =0, 1, 2, 3
from Table F, we find that P(B < 3) is about .2650 when E(B) = .
Similarly P(B £ 3) is about .4335 when \ = E(B) = 4. As E(B) = 4.8
in the present case, it is necessary to interpolate to find P(B < 3) = .2987.
(The correct value, computed from the binomial formula, is .2887.)

As another illustration, let us find an approximation for P(B = 60) when
n = 60 and p = 32. In this case, p is near 1, while the Poisson approxi-
mation requires that p be near 0. We can make the method applicable
by looking at failures rather than successes. The chance of a failure is 4'5,
and 60 successes means 0 failures. The desired probability is therefore the
same as P(B = 0) when n = 60 and p = %. For this problem np = 3,
and the result .0498 may be read directly from Table F. (The correct
value computed from the binomial formula is .0461.)

We have developed the Poisson approximation for use with the binomial
distribution, but it is also applicable in certain cases of the generalized
binomial trials considered at the end of Section 6.1. As was pointed out
there, if the success probabilities py, ps, . . . of n unrelated trials are not too
different from each other, the total number T of successes has a distribution
very close to the binomial distribution (n,p), where 5 is the arithmetic
mean of the success probabilities. If in addition py, py, . . . are all smali,
they will of necessity be close to each other; also,  will then be small,
and the Poisson distribution with

A=np=pt+pt--tp
will be reasonably close to the binomial distribution (»,p). By combining

these two approximations, it is seen that the distribution of T can reason-
ably be approximated by the Poisson approximation with this value of \.

ExampLi 1. Effect of training. Suppose that in the training of new
workers to perform a delicate mechanical operation, the probabilities that
the worker will be successful on his first, second and third attempt are
p = .03, p, = .06, ps = .11 respectively, and that the attempts may be
considered to be unrelated. The distribution of the number T of successes
among these three attempts, which was obtained in Problem 3.3.15, is
shown below. We also give the binomial approximation with 5 = .20/3
= .0667, and the Poisson approximation corresponding to A = .03 + .06
+ .11 = .20.

t 0 1 2 3 =4
P(T =1) 8115 .1772 0111 0002 .0000
Binomial approx. 8130 .1742 .0124 .0003 .0000

Poisson approx. 8187 .1637 .0164 .0011 .0001
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As was the case in Example 1.5, the binomial approximation to the
generalized binomial is excellent. The Poisson approximation is also good,
but the value of 7 is a little too large for best results. Generally speaking,
when dealing with a generalized binomial with small p;, p,, . . ., the bi-
nomial approximation (n,p) will work better than the Poisson approxima-
tion (A = np). Why then ever use the latter? Essentially for the same
two reasons that the Poisson approximation to the binomial distribution
itself is so useful. First, the Poisson tables require only two entries (\)
rather than the three (n,p,b) or (n,5,b) needed by the binomial; this permits
a much finer coverage by the table in the same number of pages, easier
interpolation, ete. Second, the Poisson approximation requires knowledge
only of the product A = np or X = np, rather than the separate values of
n and p or of the separate probabilities py, po, . . .. Two typical examples
will illustrate this point.

ExampLE 2. Telephone traffic. A telephone company anticipates that
there will be, on the average, five lines in use at any given moment between
two communities during the peak hours. How many lines should be
built so that there is less than one chance in twenty a subscriber will find all
lines in use when he makes a call?

Let T be the number of subscribers who are using their telephones for a
call between the two communities at a given moment. Each subscriber
is a “trial” having only a small chance of “success,” i.e. of making a call
at that moment. Under ordinary circumstances these trials, although
certainly not having the same success probability, will be unrelated, so
that the Poisson approximation can be used for the distribution of T. This
will of course not be the case if some event causes many subscribers to call
the other community at the same time.

From Table F we see that with A = 5, P(T = 9) = .0680 while
P(T = 10) = .0317. Thus, under the assumption that the number of
lines in use at a given moment follows the Poisson distribution, the com-
pany will want to provide ten lines.

ExampLE 3. Suicides. During the week following the suicide of a
film star, a newspaper columnist notes that in his city there were 12 suicides
as compared with an average figure of 8 per week. He attributes the extra
deaths to the suggestive effect of the star’s suicide. Is this explanation
convineing?

Let T be the number of suicides committed in the city during a given
week. Considering each inhabitant of the city as a trial, the assumptions
underlying the Poisson approximation appear not unreasonable. From
Table F with A = 8, we find P(T = 12) = .1118. Thus, if we assume the
number of suicides per week to follow the Poisson approximation, there
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would be 12 or more suicides in about one ninth of the weeks. The ob-
served number could well be explained as a chance event, without the
necessity of invoking a suggestion effect.

Notice that, in the two preceding examples; it was not necessary to know
the value of n or of the probabilities py, ps, . . .

In Section 6 we mentioned that when A = np = 1, the probability P(T = 0) is
equal to 1/e where e is the number 2.7183 . . . calculated to four decimal places in
Table 6.2. More generally, it is shown in more advanced treatments of the subject
that in the Poisson approximation for arbitrary A\, one has P(T = 0) = 1/¢

Each of the columns of Table F consists of a sequence of positive numbers which
(except for rounding errors) add up to 1. It is natural to think of such a sequence
as defining a probability distribution for 4 random variable whose possible values
ares = 0,1,2 .... This Poisson random variable, unlike those we have previ-
ously considered, has an infinite number of possible values. An interesting feature
of the Poisson distribution is that its expected value and variance areequal. This
fact can be seen intuitively by considering the formula for binomis! variance,

Var(B) = np(1 — p) = E(B)(1 — p).
If p is very small, 1 — p will be very close to 1, and Var(B) will nearly equal E(B).
Thus, if T is a Poisson random variable with E(T) = A, then we have Var(T) = A
and hence SD(T) = VA,

Table F gives the Poisson distribution for A < 10; for larger values of A the

normal approximation gives good results. That is, if X is as large as 10, one may
apply formula (5.3) to get the approximation

®) P(T <= ¢(‘i§_fl‘).

PROBLEMS

1. Verify the first approximate equation of (3) by the method of Problem 6.1.
2. Check the value 7.3891 derived in the text from (4).

3. Compare the Poisson approximation with the correct binomial probability for
the following cases:

(1) P(B = 3) whenn = 8 and p = .05,
(ii)) P(B=9) when n = 10 and p = .95,
(iii) Pl S B<4) whenn=10and p = .1,
Giv) PB = 2) whenn =9 and p = .05.

4. Use the Poisson approximation to find the following binomial probabilities:
(i) P(B = 3) when n = 800, p = .005,
(ii) P(B> 3) whenn =12, p = 3,
(iii) P(B < 144) when n = 150, p = .98.
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5. Work Example 2 if the average number of lines in use is (i) 4, (ii) 6, (iii) 8.

6. Solve the three parts of the preceding problem if the chance that a subscriber
will find all lines in use when he makes a call is to be less than one in fifty.

7. In Example 3, suppose that the average number of suicides per week (instead
of 8) had been 6 and the number in the particular week in question 11 (instead of
12). How convincing is the explanation in this case?

8. Solve Problem 5.7 under the assumption that each guest has a probability of
.99 of accepting the invitation.

9. If a table such as Table F is subject on the average to one erroneous digit out
of 1000, how likely is it that Table F is error free?

10. If you buy a lottery ticket in 100 lotteries, in each of which your chance of
winning a prize is 447, what is the (approximate) probability that you will win a
prize (i) at least once, (ii) exactly once, (iit) exactly twice?

11. Compute the (approximate) probabilities of the preceding problem if the
probability of winning a prize is 5% in 20 of the 100 lotteries and g}y in the remaining
80 lotteries.

The remaining problems relate to the material of the section that is in small print.

12. Duplicate the analysis of Example 1 if there are four attempts with proba-
bilities p; = .01, p; = .02, ps = .03, ps = .05. [See Problem 3.3.16.]

13. If T has the Poisson distribution with A = 10, compare the normal approxi-
mation (5) of P(T £ 7) with the correct value given by Table F.

14. Given that T has the Poisson distribution with X = .1, check numerically
from Table F that E(T') and Var(T) are both equal to \.

15. Obtain a formula for E(T?) when T has a Poisson distribution, using the fact
that Var(T) = E(T) = \.

16. Let Z; and Z; be independent random variables having Poisson distributions
with E(Z)) = .1 and E(Z,) = 3.
(i) The distribution of Z, is a good approximation to the distribution of the
number B; of successes in 100 binomial trials with success probability
p = .001; the distribution of Z, is a good approximation to the distribution
of the number B, of successes in 300 binomial trials with success probability
p = .001. What is the distribution of the random variable B, + B,? By
considering the Poisson approximation to this distribution, conjecture the
distribution of Z, + Z..
(ii) Check your conjecture from Table F. [Hint: P(Z, + Z, = 0) = P(Z, =
0)P(Z,=0);P(Z,+ Z:=1) = P(Z, =0)PZ; = 1) + P(Z, = )P(Z, =
0); ete.]
(iii) Carry out the work of parts (i) and (ii) for the case E(Z;) = .2 and
E(Zz) = 3.
17. Show that in the generalized binomial trials model
P(T=1)

PT=1)_a_ ¢ . . &
PT=0 o mt o
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6.8 THE UNIFORM AND MATCHING DISTRIBUTIONS

In this section we present two simple distributions which further illustrate
the concept of this chapter and which will have applications in Part II.
() The uniform distribution. Suppose that a box contains N tickets
which bear the labels 1,2, ..., N. A ticket is chosen at random and the
number X written on the ticket is observed. If the phrase ‘“‘chosen at
random” means that each ticket has the same probability 1/N of being
chosen, then the random variable X has probability 1/N of assuming each
of its possible values 1,2, ..., N, so that its probability distribution is

z | 12.--N

11 1

(1) PX =12) NN N
If the events X = 1, ..., X = N constitute the simple events of the

model, the model is uniform in the sense of Section 1.5. Correspondingly
the distribution of X is called the uniform distribution (on the integers
1,..., N). It is also known as the rectangular distribution since the
histogram of X has the form of a rectangle.

We already encountered this distribution when considering the experi-
ment of throwing a fair die. The number X of points showing when a
fair die is thrown has the uniform distribution for N = 6. As another
illustration, let X be a digit produced by a random digit generator (Ex-
ample 1.2.2); then X + 1 has the uniform distribution for N = 10. The
following examples illustrate some other situations in which a uniform
distribution may arise.

(i) When a calculation is carried to five decimal places and then rounded
off to four decimals, the digit X appearing in the fifth place must be one of
0,1,2,...,9. In many types of calculation it appears that these ten
digits occur about equally often; that is, we may suppose that X 4 1 has
the uniform distribution on the integers 1, ..., 10. This model is often
employed in studying the accumulation of rounding errors in high-speed
computing machines.

(ii) Students of industrial accidents may conjecture that because of a
fatigue effect accidents are more likely to occur late than early in the day,
or in the week. A skeptic maintains that no such effect exists, and that
an accident is equally likely to occur on Monday, . . ., Friday. If the
days of the work week are numbered 1 to 5, he would assume a uniform
model for the number X of the day on which an accident occurs. By
observing the numbers X for several unrelated accidents, one may in-
vestigate the adequacy of the uniform model in comparison with a “fatigue
effect” model. A similar approach can be used when studying the possi-
bility of a “birth order effect” for rare maladies which some geneticists
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think more likely in later than in earlier children of a family; in the study
of a possible seasonal effect on earthquakes; ete. Methods for dealing
with such problems will be discussed in Part I1.

What is the expectation of the uniform random variable X defined by
(1)? From (5.4.2) and (1), we have

1 1 1
E(X)=1-7V——I—2-N+...+N-Z—V;=(l+2+...+N)/N.

It is shown in elementary books on algebra that
@) 1424...+N=INN+1)
from which it follows that
3) E(X) = (N + 1)

This formula shows, for example, that the expected number of points show-
ing when a fair die is thrown, is § (see Example 5.3.1). For an alternative

proof of (2) and (3), see Problem 1. In a similar way, the algebraic formula
for the sum of squares,

4) 124224 ...+ N2= NN+ 12N +1)
shows that
6)) E(X?) =N+ 1D@N + 1)
and hence that
(6) Var(X) = Y= 1
12

Again, the laws of expectation provide an alternative proof of (4) and (5)
(see Problem 2). The formulas (3) and (6) will prove useful when we
discuss the Wilcoxon test in Section 12.4.

(b) The matching distribution. As in case (a), consider again N tickets
labeled 1,2,..., N, but now suppose that all N tickets are drawn at
random one at a time and are laid out in a row. Whenever the label on
the ticket agrees with the number of its position in the row, we say that a
malch has occurred. Let M denote the number of such matches; then the
distribution of M is called the matching distribution.

For illustration, suppose that N = 4 and that the tickets are laid out

3 2 1 4

Here the ticket labeled 2 is in the second position and the ticket labeled 4
is in the fourth position; hence two matches have occurred and M = 2.

What is the distribution of M? If “drawn at random’ means that the
N! possible orderings of the N tickets are equally likely (see Section 2.4),
it is only necessary to count the number of orderings giving each value of
M to find the desired distribution. Again using N = 4 for illustration, we
know from Table 2.3.1 that there are 4! = 24 possible orderings. They are
shown in the tableau below, grouped according to the value of M. (Here
each instance of a match is indicated by italics.)
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M =0: 2143 2341 2413 3412 3421 3142 4321 4312 4123
M=1: 1342 1423 3241 4213 2431 4132 2314 3124
M =2 1243 1432 1324 4231 3214 2134

M=4: 123
Thus, when N = 4, the distribution of M is
m I 0 1 2 3 4
POL=m) | & & o 0 %

In general, there will always be exactly one ordering which gives a match
in every place, so that P(M = N) = 1/N!. Since it is not possible to
have all but one place matched, P(M = N — 1) = 0. The entire distri-
bution for any particular value of N can in principle be worked out by
listing all cases as we have done for N = 4 (Problem 7), but the work
rapidly becomes prohibitive as N increases. In Problem 10 we present a
short-cut method by means of which the entries i Table 1 were obtained.
This table gives the number C(m, N) of orderings of N tickets which have
exactly m matches, for N £ 8.

TasLe 1. C(m, N)

N=1 2 3 4 5 6 7 8
m =0 0 1 2 9 44 265 1854 14833
1 1 0 3 8 45 264 1855 14832
2 1 0 6 20 135 924 7420
3 1 0 10 40 315 2464
4 1 0 15 70 630
5 1 0 21 112
6 1 0 28
7 1 0
8 1

Nl=@W)y=1 2 6 24 120 720 5040 40,320

ExXAMPLE 1. Baby pictures. A magazine prints the photographs of five
movie stars, and also (in scrambled order) a baby pieture of each. If a
reader correctly matches at least three of them, can he justly claim to have
demonstrated an ability to recognize resemblances? It might be argued
that the correct matchings were just luck—after all, even if the reader
matched at random, he might happen to get three or more right. But
how likely would this be?

From Table 1 for N = 5, we see that the probability of getting three or
more correct matches by luck is (10 + 1)/120 = 0.092. That is, about
one out of every 11 persons who matches at random will do as well or
better as the reader who makes three correct identifications.
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As was shown in Example 5.5.4, the expected value of M is for all N
equal to one,

) EQN = 1.
It is a remarkable fact that we expect exactly one match, regardless of the

number of tickets. The variance of M turns out to be also equal to one
for all N (Problem 7.2.20),

(8) Var(M) = 1.

If the sampling of the N tickets had been done with replacement, the number M
of matches would have the binomial distribution corresponding to N trials with
success probability 1/N on each trial. For large N we would therefore by Sections
6 and 7 expect the distribution of M to be approximately the Poisson distribution
corresponding to A = N(1/N) = 1. It is another remarkable fact, which unfortu-
nately we cannot prove here, that the matching distribution is well approximated
by this Poisson distribution even though the sampling is done without replacement.
The reader may compare the distribution of M for N = 8 with the Poisson distri-
bution with A = 1 (Problem 9).

PROBLEMS

1. Let the distribution of X be given by (1).

(i) Apply formula (5.4.2) to obtain expressions for E(X?) and E(X + 1)%. By

forming the difference of these two expressions, show that
EX+ 12 -EX)=[(N+12-1]/N=N+2
(ii) Use the fact that
EX+12—-EX)=EX+1)-X]=2EX)+1

and the result of (i) to find E(X).

(ili) By comparing the expression (5.4.2) of E(X) with its value found in (ii),
prove (2).

2. (i) Using the results and methods of the preceding problem, prove (5) by

taking the difference of E(X + 1)? and E(X3).

(ii) Use the result of (i) to prove (4).

3. (i) If X has the distribution (1), what are the possible values of Z = 2X — 1
and what are the probabilities of these values?

(ii) By comparing the expression for E(Z) obtained from (5.4.2) with the value
2E(X) — 1 obtained from (3), prove that the sum of the first N odd
integers is

9) 1+3+5+...4+ (2N —1) =Nz
4. By applying the method of Problem 3 to E(Z?) instead of E(Z), prove that
(10) 124-324+524 ...+ 2N — 1)2= NU4Nt — 1)/3.



208 SPECIAL DISTRIBUTIONS [cirap, 6

5. Let X,, X, be independent random variables, each having the distribution (1),
and let Y be the larger of X; and X..

(i) Show that P(Y < y) = y*/N*fory =1,2,...,N.

(ii) Show that P(Y = y) = (2y — 1)/N*fory =1,2,...,N.
6. Let X, X, be independent random variables, each having the distribution (1).
Find the distribution of Y = X, + X,.

7. Check the value C(2, 5) of Table 1 by enumeration.

8. Suppose that the magazine of Example 1 asks its readers to match the pictures
of eight (instead of five) movie stars. What is the probability that by purely
random matching a reader will get at least four right?

9. Compare the distribution of M for N = 8 with the Poisson distribution for
=1

10. (i) Show that C(2, 5) = (g) C(0, 3) by counting the number of choices of the

two tickets which are to provide the matchings, and the number of order-
ings of the remaining tickets which will not lead to any additional
matchings.

(ii) Obtain analogous formulas for C(1, 5) and C(3, 5), and from these formulas
compute C(1, 5), C(2, 5), C(3, 5) using the first four columns of Table 1.

(iii) Find C(0, 5) by using the fact that

C(0, 5) + C(1, 5) + C(2, 5) + €3, 5) + C(5, 5) = 5!
and compare the values C(0, 5),...,C(3,5) obtained with the fifth
column of Table 1.
11. Use the method of the preceding problem to extend Table 1 to the case N = 9.

12. Show that for all values of N, C(N,N) =1, C(N — 1, N) = 0, and

CN — 2,N) = (22")

6.9 THE LAW OF LARGE NUMBERS

In this section we shall derive a law which, in a sense, justifies the model
for probability built in Chapter 1. The justification consists in showing
that this model predicts the phenomenon of long-run stability which was
the conceptual basis for our notion of probability.

We begin by putting into a quantitative form the notion, introduced in
Section 5.6, that a widely dispersed random variable Z must have a large
variance. Let us again denote E(Z) by ¢, and consider an interval cen-
tered at ¢, say (f — ¢, I + ¢) where ¢ is any positive number. Of the
possible values of Z, some may fall outside this interval and some inside
it. Denote the possible values of Z outside (or on the end points of) the
interval by 2,2, . . . and those inside it by wi,ws, . . .. By the definitions
(5.6.1) of variance and (5.4.2) of expectation, the variance of Z can then
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be written in the form
Var{(Z) = E(Z — ¢)?
(1) =@ —-PZ=2a)+ (22— )PZ=2)+.
+ (wy — $)*P(Z = wy) + (w2 — $)?P(Z = wz) + .

Since the values 2,2, . . . all lie outside the interval (¢ — ¢, ¢ + ¢) (or on
its end points) each of the quantities (21 — {)?, (22 — {)? . . . is at least as
large as ¢ We shall therefore not increase the right side of (1) if we re-
place (2 — §)?, (22 — )% ... each by ¢ The terms in the last row of

(1) are all nonnegative, so we shall again decrease (or at least not increase)
the right side of (1) if we eliminate these terms. Consequently

2) Var(Z) 2 P(Z =2) + PZ =2) + . . ..

Factoring out ¢* the right-hand side can be written as [P(Z = z;) +
P(Z = z) + ...]. Since 2,2, ... are the possible values of Z outside
the interval (¢ — ¢, ¢ + ¢), the probabilities in brackets add up to the
probability that Z falls outside the interval, or P(|Z — {| 2 ¢). This
proves the famous Chebyshev inequality, that

@) Var(Z) =z eP(1Z — ¢| 2 ¢

for any random variable Z and any positive number c.

This inequality gives quantitative expression to the idea that wide dis-
persion means large variance. If the distribution of Z is widely dispersed,
there exists a large number ¢ such that a substantial probability lies out-
side ({ — ¢, ¢ + ¢); that is, such that P(]Z — {| = c) is substantial. Since
¢ is large, ¢¢ will be very large, and the right side of (3) must be large.
But by (3), the variance of Z is then still larger.

The inequality holds for any random variable Z. Let us apply it to
the particular random variable B/n, where B has the binomial distribution
(n,p) introduced in Section 1. The expectation and variance of B /n are
E(B/n) = p by (1.6) and (5.5.3), and Var(B/n) = pg/n by (1.7) and
(5.7.3). Substituting these values in (3) and dividing by ¢, we get

@) p( B

for any positive number ¢ and any binomial distribution (n,p).

B
— >
. P2

The inequality (4) has an important consequence which serves to rein-
force our concept of probability as long-run frequency. We began (Sec-
tion 1.2) by presenting empirical evidence for the fact that when a long
sequence of unrelated trials is performed under similar conditions, the fre-
quency of a specified result (a “‘success’) tends to be stable. Conceptually,
the probability p of success represents in the model this stable frequency.
The binomial trials model (Section 3.3) was constructed to represent a
sequence of unrelated trials under constant conditions, and in this model
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B/n represents the frequency of success. If the model is realistic, it should
then turn out that within the model B/n is in some sense close to p, at
least if n is large.

The inequality (4) expresses a sense in which B/n is close to p when
n is large enough. For let ¢ be a small number, so that the interval
(p — ¢, p + ¢) is a narrow interval centered at p. Since ¢ is small, ¢ will
be very small and hence pg/c® will be very large. In spite of this, by
taking n large enough, we can make pg/nc? as small as we please, and by
(4), P(|B/n — p| = ¢) will then be still smaller; that is, by taking n large
enough we can make sure that B/n is very unlikely to differ from p by
as much as ¢. In other words, if the number of trials is large enough, it
is unlikely that the frequency B/n of success will differ much from the
probability p of success. This fact, which was discovered by James
Bernoulli (1654-1705), is known as the law of large numbers.

It is important to realize that the law of large numbers does not ‘“‘prove”
experimental long-run frequencies to be stable. The real world is not
under the sway of mathematical arguments; rather, mathematical models
are realistic only to the extent that their conclusions correspond to obser-
vation. Long-run stability is an empirical fact. The law of large num-
bers merely asserts that our model for probability is sufficiently realistic
to agree with this fact. A model for probability that led to an opposite
conclusion would presumably not be sufficiently realistic to be of much use.

While the consequences of (4) are of great conceptual interest and
theoretical value, the bound provided by the right side is usually very
crude. (This is only to be expected in view of the wholesale reductions
involved in passing from (1) to (2).) As an illustration, consider the
special case p = 3. Table 1 provides a comparison of the actual prob-
ability P(|B/n — 4| 2 ¢) with the bound (4), which in the present case is
pg/nct = 1/4nc?, for several values of n and ¢. The last column of Table 1
shows the normal approximation (6.5.1) for P(|B/n — p| 2 ¢). We see
that the normal approximation is good, but that the bound (4) is often far
larger than the true value. Thus, B/n tends to be actually much closer

to p than is guaranteed by (4).
TaBLE 1. ILLUSTRATION OF THE BOUND FOR p = }

B _ 1 1 normal
¢ n P ( n 2’ 2 c) 4nct approx.
1 50 203 b .203
100 0567 .25 0574
200 .00568 0125 .00582
.05 100 .368 1 .368
200 179 5 179
400 0510 25 0512

800 00518 125 .00522
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The inequality (4) and its consequences may easily be generalized to deal
with averages rather than frequencies. Recall that, in Section 5.3, the
expectation of a random variable Z was motivated as corresponding to the
long-run average value of many unrelated observations on the quantity
that Z represents. Let these observations be represented by random vari-
ables 2\, Z,, . . . , Z, which are defined on different factors of a product
model, and each of which has expectation { and variance ¢%. Let the
average of these random variables be denoted by

Z=(Z1+ZZ+---+Zn)/n'

It is then easy to see that £(Z) = ¢ and Var(Z) = ¢?/n (Problem 5.7.5).
If we now apply (3) to Z, we find

(5) P(Z — ¢ 2 ¢) £ o¥/nct.

This is a generalization of (4) to which it specializes when Z), Zs, . . . are
indicators (see (1.5)). It follows from (5) that it is unlikely that Z will be
far from its expected value ¢, if n is sufficiently large. This theorem sup-
ports the common practice of averaging many unrelated observations on
a quantity when one wishes to determine it with high precision.

PROBLEMS

1. For p = 4, n = 30 and three suitable values of ¢, compare the right side
of (4) with the corresponding probabilities from Table C.

2. Verify the entry .0574 of Table 1, using Table E.

3. Let Z be a random variable, with E(Z) = 0 and Var(Z) = 1, whose distribu-
tion is adequately described by the normal curve. Use Table E to find the value
of ¢ for which the right side of (3) is largest.

4. Try to find values of » and ¢ for which the bound provided by the right side
of (4) is close to the value on the left side, for p = 3.
5. (i) Find a distribution for Z and a value of ¢ for which the two sides of (3)
are equal.

(1)) Describe all distributions of Z for which this can occur.
[Hint: Equality requires that nothing is thrown away in passing from (1) to 2).]
6. (i) Show that pg = p(1 — p) is equal to } — - P

(i) Use (i) to prove that pg < 1 for all values of P.

(iii) Use (ii) to prove the uniform law of large numbers

B
P (l; - pl 2 c) =< 1/4nc?
in which the right side no longer depends on P.

7. Consider n unrelated trials with success probabilities py,py, . . ., Pa.

@) Ifp=(p+...+ pa)/n, and S denotes the number of successes in the
n trials, show that
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s -
(-

(ii) What does this inequality tell us about the behavior of the success fre-
quency S/n for large n?
[Hint (i): In (3), use the variance for S found in Problem 1.19, and apply the in-
equality obtained in part (ii) of the preceding problem.]

8. If Z* denotes the random variable Z reduced to standard units as defined in
(3.1), show that

(6) P(Z2* z d) = 1/a
[Hint: In (5), replace ¢ by do/ \/;.}

2 c’) =< 1/4nck

9. Let Z have the uniform distribution on the integers 1,...,9. Compare the
left and right sides of (3) forc = 1, 2, 3 and 4. [Hint: Use the results of Section
6.8.]

10. Obtain the entries for the last two columns of Table 1 if p (instead of being
equal to }) has the values (i) 4, (ii) .

11. Prepare a table analogous to that asked for in the preceding problem, for the
hypergeometric random variable D with distribution (2.1) when N = 100,000,
r = 50,000, ¢ = .1 and 05 and s = 100, 200, 500.

6.10 SEQUENTIAL STOPPING

In deriving the binomial distribution for the number B of successes in
n binomial trials (Section 1), we assumed that the number = of trials was
fixed in advance, regardless of how the trials would turn out. When the
trials are performed sequentially, with the outcome of each trial known
before the next trial is performed, it is possible to let the number of trials
depend on the results obtained. A medical experiment may, for example,
be abandoned if there are too many failures; the length of the world series
in baseball depends on the outcomes of ‘the successive games; the number
of attempts needed to reach a person by telephone depends on the number
of times the line is found busy; and so on. In such situations, the number
of trials becomes a random variable, and the number of successes no longer
has a binomial distribution. A model for sequential binomial trials will
depend not only on the success probability p for single trials, but also on
the stopping rule which specifies when observation is discontinued.

ExampLE 1. World Series. In matches between two contestants or teams,
the rules often specify that the number of games played to determine the
winner will depend on the outcomes. The baseball world series, for ex-
ample, continues until one of the two teams has won four games. (Other
examples occur in bridge, tennis, yacht races, etc.) It is of interest in
such a series to know how many games will be played, and what is the
chance that a given team will win.
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Let us treat the successive games as a series of binomial trials, in which
Team A has fixed probability p of winning any one game (which we shall
call a “success’”’). The stopping rule is: continue the trials until a total
of four successes or four failures has occurred and then stop. The record
of play can be represented by a sequence of the letters S and F, where for
example FSSFSFS would mean that Team A won the second, third, fifth
and seventh games and hence the series. Under the assumptions made,
the probability of this pattern is ¢ppgpgp = p'¢®. There are in fact 70
possible patterns, which may be grouped according to the numbers Ng
and Ny of successes and failures, as shown in tableau (1):

ns ny P(Ns = ng and N¢ = np)
4 0 p*
4 1 4pYq
4 2 10p*¢?
1 4 3 20p*g®
3 4 20p¢*
2 4 10p%¢
1 4 4pqt
0 4 ¢

Here, for example, the second line reflects the fact that four patterns
(FSSSS, SFSSS, SSFSS, SSSFS) give the result (Ns = 4 and N = 1),
and each pattern has probability p*q. Notice that in this case the four
patterns correspond to the four possible positions of the one failure among
the first four trials. Similarly, the coefficient 10 in P(Ng = 4, Ny = 2)
represents the (§) = 10 ways of placing two F’s among the first five sym-
bols, and so forth.

From tableau (1) it is possible to obtain answers to various questions
related to the series. For example, the number N = Ng + Ny of games
played has the distribution shown below, which is also given numerically
for several values of p. As one might expect, the series tends to be longer
when the teams are evenly matched than when one team is superior to
the other.

n P(N = n) p=.5 p=.6 p=.7
4 P+ ¢ .1250 1552 2482
5 | 4pg(p* + ¢ .2500 .2688 .3108
6 10p°¢*(p* + ¢*) 3125 .2995 2558
7 20p%¢* 3125 .2765 .1852
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The probability that Team A wins can also be obtained from (1), but
even more simply by another method. Imagine a different rule of play,
under which the teams always play seven games with victory going to the
team that wins four or more. It is clear that this rule would always result
in the same outcome as that actually used, since the team winning four or
more out of seven games is also the first team to win four. Under the
new rule, however, the number of trials is fixed at n = 7, so that the
number B of games won by Team A has the binomial distribution (n = 7,
p). Thus, Table B gives as the probability of Team A winning the series
for several values of p:

P 5 6 1 8 9 95

P(Team A wins series) | .5 .7102 .8740 .9667 .9973 .9998

ExampLE 2. Sequentially stopped families. Parents sometimes have a
preference with regard to the sexes of their children, and may then base
the decision whether to have another child on the sexes of their present
children. If the sexes of successive children are regarded as binomial
trials with fixed probability p of a boy on any given birth, the exercise of
such a decision amounts to a sequential stopping rule. What influence
would parental favoritism for children of one sex or the other have on the
frequencies of the sexes in the population? In particular, could the ob-
served slight excess of boys be explained by a favoritism for boys?

In an attempt to throw some light on these questions, let us consider
the extreme case in which the parents are insistent on having a son, but
otherwise want as small a family as possible. Then their rule will be:
continue having children until a son is born, and then stop. Since we do
not wish to consider families of indefinitely large size, let us fix a maximum
number of children in the family, say {. Then possible family patterns,
the associated number B of boys, G of girls, and C of children, and the
probabilities of the patterns, are shewn in tableau (2):

Pattern b g c Probability
M 0 1 P
FM 1 1 2 qp

2) FFM 1 2 3 ¢*p
FF.-..-FM 1 t—-1 ¢ g p
F¥...FF 0 ¢ ¢ q

What will be the frequency of boys in a large population of families
generated according to (2)? Suppose there are k such families, the first
family having B, boys, G, girls and C; = B, + G, children; the second
family having B; boys, G girls, and C; = B; + G; children; and so forth.
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The frequency of boys is the total number of boys divided by the total
number of children, or

_B1+.--+Bk=(Bl+"'+B")/k
oY) = o G (Gt F Ok

By the law of large numbers, if k is large, (B, + . .. + Bi)/k will prob-
ably be close to E(B), the expected number of boys in a single family.
Similarly (C; + . .. + Ci)/k will probably be close to E(C). Therefore,
it is probable that f(boys) will be close to E(B)/E(C).

From (2) it is seen that E(B) = 1 — ¢*. It can be shown (Problem 5)
that E(C) = (1 — ¢*)/p, so that E(B)/E(C) = p. This equation shows
that the frequency of boys in a large population of families generated by
our rule is likely to be close to p, the probability of a boy on a single birth.
Thus, even an extreme stopping rule does not alter the frequency of boys
in a large population.

The fact that even a stopping rule that favors boys in such an extreme
way does not alter the frequency of boys suggests that this frequency
would also remain constant with less extreme rules. An intuitive argu-
ment can be given for this conjecture. Suppose that the probability of a
boy is p, and that the sexes of children are unrelated. Suppose that each
family determines its size in its own way, which may differ from one family
to another. Then regardless of how family sizes are decided, the fre-
quency of males in the population will be near p. To see this, consider
the analogous problem of a group of gamblers who are tossing a penny
for which the probability of heads is p. The first gambler tosses it, using
the stopping rule of the first family (identify ‘‘heads” with “boy”’). When
he has stopped, he passes the penny to the second gambler, who uses the
stopping rule of the second family, etc. From the point of view of the
coin, which is indifferent to who is doing the tossing, there is one long
sequence of tosses, and the long-run frequency of heads will be close to
the probability p of heads on a single toss. Analogously, the frequency
of males in the population will be near the probability of a male on a single
birth, regardless of the stopping rules used by the various families.

The situation is different, however, if the chance of a male varies from
family to family, as some biologists believe. In this case, paradoxically,
the effect of the assumptions leading to (2), which were motivated by a
preference for boys, increase the frequency of girls. This can be seen
intuitively by noting that under the assumed rules, girl-prone families will
tend to be larger than boy-prone families. (This phenomenon is illustrated
in Problem 7.)

PROBLEMS

1. Two teams continue playing until one of them has won (i) two games, (ii)
three games. For each of these cases obtain a tableau analogous to (1).
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2. If the probability of team A winning a single game is p = .7, find the prob-
ability of team A winning the series under the assumptions (i) and (ii) of the
preceding problem, and compare your results with the corresponding one of Ex-
ample 1.

3. Discuss the relation of Example 2 with the gambling system of Problem 5.3.13.

4. Using the fact that the probabilities in the last column of (2) must add up to
one, show that
I+g+¢+...+¢7=010-q¢)/p

5. In a family generated according to (2), let C denote the total number of chil-
dren, and let I, indicate that C = 1, I, indicate that C = 2,. .., I, indicate that
C =t Show that

HC=hL+L+...4+1,

@) Ey) =L EI) =4q,...,E(l) = ¢,

(i) E(C) = (1 — ¢Y)/p.
[Hint (iii): Combine (ii) with the result of Problem 4.]
6. Give a formula for the expected number of girls in a family generated accord-
ing to (2). [Hint: G = C — B.]
7. Suppose that a population consists of 1000 families with p = .4 and 1000
families with p = .6. Find the expected number of boys and of girls in this popu-
lation if

(i) each family has three children,

(ii) each family is generated according to (2) with ¢ = 4.
[Hint: the number of boys in the population is the sum of the numbers of boys in
the 2000 families; use the addition theorem of expectation.)

8. Calculate the expected number of children in the family (2) when p = } and
t =2, 4,8 16. What do you think happens to E(C) when ¢ becomes indefinitely
large? Suggest an approximation for E(C) in model (2) if ¢ is large.



CHAPTER 7
MULTIVARIATE DISTRIBUTIONS

7.1 JOINT DISTRIBUTIONS

We have defined a random quantity as a quantity whose value is determined
by the result of a random experiment. Actually, an experiment usually
will determine the values of many different quantities. For example, when
two dice are thrown the experiment determines the number of points on
the first die, the number of points on the second die, the total number of
points, the number of dice showing an odd number of points, etc. All of
these quantities are random quantities determined by one and the same
trial of the experiment. Again, when a random sample of items is drawn
from a population, one usually observes two or more quantities for each
item in the sample. Thus, for each child in a sample drawn from a school,
the investigator may record both age and 1Q; when a sample is drawn
from a lot of ball bearings, the inspector may measure both diameter and
hardness of each bearing in the sample. In many cases one is interested
in the joint behavior of two or more random quantities, relating to the same
experiment, which are represented in the model by random variables.

ExampLE 1. Two dice. In a throw of two dice let F denote the maximum
of the numbers of points on the two dice and G the number of dice showing
an even number of points. Let us list all possible pairs of values F and ¢
and caleulate the probability for each pair of values, assuming the dice to
be fair. These probabilities can be found by listing the 36 equally likely
results, as was done in Example 1.5.3, and can be exhibited conveniently
in a table, whose rows correspond to the possible values of G and columns
correspond to the possible values of F, and whose entries are the proba-
bilities.

Thus the result (G = 0 and F = 2) is impossible, since if the maximum
of the numbers showing on the two dice is two (i.e. ¥ = 2}, at least one of
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f 1 2 3 4 5 6 Total
g
0 W 0 % 0 76 0 3
1 0 B W e % Ei i
2 0 £ 0 i 0 X i)
Total 75 % s 7 L) % #=1

the dice must show an even number of points (¢ > 0). The entry &% at
(G = 1and F = 2) is obtained by noting that the only results with just one
die showing an even number and with the maximum of the two numbers
being 2, are (1, 2) and (2, 1).

The table above shows the joint distribution of the random variables ¢
and F. In general, the joint distribution of two random variables Z and
W gives, for each pair of possible values z of Z and w of W, the probability

(1) P(Z=zand W = w)
of these values occurring on the same trial of the experiment. If Z can
take on the values zj, 2, ... and W the values wy, w,, ..., the joint

distribution can be exhibited in a table as follows.

w We

2 PZ=zand W =w) P(Z =zand W = w)
@) = PZ=zand W =uw) P(Z=zand W = w)

ExampLE 2. Double lottery. An important general class of problems is
obtained by generalizing the lottery model (Examples 5.3.5, 5.5.2, 5.6.2).
In this model, a ticket is chosen at random from N tickets bearing the
numbers vy, . . ., vy. If the number on the chosen ticket is denoted by
Y, then the distribution, expectation, and variance of Y can be expressed
in terms of the numbers vy, . . . , vn.

Let us now suppose that each ticket bears two numbers, say » and w.
Thus, on the first ticket are written the numbers », and w;, on the second
ticket the numbers v, and w,, ete. A ticket is drawn at random, and as
before Y denotes the v number on the ticket while the w number on the same
ticket is denoted by Z. Then Y and Z are jointly distributed random
variables. In fact, P(Y = v and Z = w) is just the fraction of the N
tickets which bear the numbers » and w. This model arises whenever we
draw an item at random from a population and are concerned with two
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characteristics of the items. This is illustrated by the following example
(other applications are made in Section 9.4).

ExampLE 3. Dastribution of boys and girls. Suppose that 100 families are
classified according to the number of male and female children as follows.

Girls 0 1 2 3 4 Total
Boys

0 7 11 4 4 2 28
1 6 12 12 6 1 37
2 7 9 8 4 0 28
3 3 2 1 1 0 7

Total 23 34 25 15 3 100

A family is drawn at random and we observe the number B of boys and G
of girls in the family. Fere we may represent each of the 100 families by
a ticket on which is written the number of boys and girls in that family.
The random variables B and G correspond to the variables Y and Z of the
general discussion above. The joint distfibution of B and G may be ob-
tained by dividing each entry of the table by 100. Thus, P(B = 2 and
G =1) = 135 = .09, since just 9 of the 100 equally likely families have
these values for B and G.

EXAMPLE 4. Items of three types. We considered in Section 6.2 the prob-
lem of drawing a random sample of s from a population of N items of
two types, called ordinary and special. The number D of special items
in the sample is a random variable having the hypergeometric distribution.
Let us now see how this distribution generalizes when the items are of
three types and we are interested in the numbers of each type that appear
in the sample. These numbers will be jointly distributed random vari-

ables.
To be specific, suppose that a lot of N = 20 manufactured items consists

of 2 having major defects, 5 having minor (but no major) defects, and 13
which are without defects. As a check on the lot, a sample of s = 4 is
drawn at random. The numbers D, of items with major defects and D,

with minor defects have a joint distribution which can be read from the
table on page 220.

The table shows the number of different samples having d; items with
major and d» with minor defeets, and the probability P(D; = d; and
D, = dy) is found by dividing the appropriate entry of the table by the

total number of samples, which is <z£> = 4845.
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dy 0 I 2 3 4 Total

d;
0 715 1430 780 130 5 3060
1 572 780 260 20 0 1632
2 78 65 10 0 0 153
Total 1365 2275 1050 150 5 4845

To see how the table was computed, let us find the entry tor d; = 0 and
dy = 2. The number of ways of selecting two items with minor defects

for the sample from the five items with minor defects in the lot is (;) = 10.

The remainder of the sample must consist of two nondefective items, and
these can be chosen in (123 ) = 78 ways so that the total number of samples

with D, = 0 and D, = 2is 10-78 = 780.
As another example consider the entry d; = 1 and d; = 2. We must

now choose two items with minor defects, (g) = 10 possibilities; one item
with major defects, (?) = 2 possibilities; and one nondefective item,

(113> = 13 possibilities. Altogether, there are therefore 10-2-13 = 260

possible samples with D; = 1 and D, = 2.

In a situation in which the joint distribution of two random variables
Z and W is given, it may be of interest to find the distribution of each
random variable separately, the so-called marginal distributions of Z and
W. How can we, from (2), obtain the marginal distribution of Z, that is
the probabilities P(Z = z)), P(Z = z),...? The event Z = 2 occurs
when Z takes on the value z; and W any one of the values wy, w,, . . ., so
that

Z=2)=[(Z=zand W =w)or(Z=2zand W =mw)or...]

Since the events on the right-hand side of this equation are exclusive, it
follows that

B PZ=2z)=PZ=znandW =w)+P(Z=zandW =w,)+....

The probability P(Z = z) is therefore obtained from (2) by adding all the
probabilities in the row corresponding to z;. Similarly P(Z = z,) is the
sum of the probabilities in the row corresponding to 2;, etc. The same
argument also shows that P(W = wy) is the sum of the probabilities in the
column corresponding to w; and analogously for the other values of W.
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The term “marginal distribution” derives from the fact that the sum of
the probabilities of each row and column is frequently shown in the margin
of the table, as was done in the examples above. Thus in Example 1, we
read off the marginal distribution of G from the right-hand margin of the
table as

PG =0)=45 PG=1) =14} PG=2) =4
and similarly that of F from the bottom margin of the table. Analogously,
in Example 3, the marginal distribution of the number G of girls is seen to
be

PG =0)=.23, PG=1) =234 PG =2)=.25
PG =3) = .15 P@G=4) = .03

The marginal probability distribution of W gives us the probabilities that
W takes on the values wy, ws, . . .. What can we say about these proba-
bilities if we are given the value of Z? The probability that W = w given
that Z = z is the conditional probability P(W = w|Z = z) (see Section
4.2). Thus for example, if z is any given value of Z, the conditional
probability that W = w,, given Z = 2, is

PW =wand Z = 2)

P(W=w1lZ=z)=

P(Z = 2)
It is easy to check (Problem 5) that the conditional probabilities
€Y} PW =w|Z =2), PW=wlZ =2),...

add up to one, and thus constitute a distribution.

Definition. The distribution which assigns to w,, w,, ... the proba-
bilities (4) is called the conditional distribution of W given Z = 2.

This distribution has of course an expectation, known as the conditional
expectation of W given Z = z, and denoted by E(W|Z = z).

Tllustrations of conditional distributions are provided by each of the
rows and columns of Examples 1, 3, and 4. In Example 1, for instance,
the conditional distribution of G given that F = 3 is obtained by dividing
the entries of the column f = 3 by the total of that column:

PG=0F=3) =% PG@=1F=3)=% PG=2F=3)=0.
The joint distribution of Z and W is particularly simple if Z and W are
independent (Section 5.2), i.e. if
(5) PZ=zand W =w) = P(Z =2)-P(W =w) for all 2, w.
In this case, the conditional distribution of W, given that Z = z, is the same

as the marginal distribution of W, for all z (Problem 12).
The concepts of this section extend in a natural way to more than two
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variables. For example, if Z, W, and V are any three random variables,
their joint distribution is given by the probabilities

(6) P(Z=2 W=w and V =yv)

that Z, W, and V take on any particular values z, w, and v. The marginal
distribution of Z is obtained by summing the probabilities (6) over all
possible pairs of values w and v; the joint marginal distribution of Z and
W is obtained by summing the probabilities (6) over all possible values v.
The conditional distribution of V given Z = z and W = w is given by the
probabilities

PV=vwZ=zand W=w), PV=wZ=zand W =w),...

ete.

PROBLEMS

1. Let Z and W be the minimum and maximum of the numbers of points showing
when two fair dice are thrown. Find the joint distribution of Z and W.

2. Let S and D denote the sum and (absolute) difference of the numbers of points
showing when two fair dice are thrown. Find the joint distribution of S and D.

3. A sample of five items is drawn at random from a population of 25 items, of
which six have major defects and four have minor defects (but no major ones).
Find the joint distribution of the numbers of items in the sample having major
defects and having minor defects.

4., Let Z and W denote the number of ones and the number of twos appearing
when three fair dice are thrown. Find the joint distribution of Z and W.

5. Find the marginal distribution of the random variable D, of Example 4 from
formula (6.2.1) and check this against the marginal distribution of D, read from
the table of Example 4.

6. Check that the probabilities (4) add up to one. [Hint: Use formula (4.4.5).]

7. Find the following conditional distributions:
(i) the distribution of F given G = 1 in Example 1;
(ii) the distribution of B given G = 3 in Example 3.

8. Find the conditional distribution of D, given D, = 1 in Example 4
(i) from the table of Example 4;
(ii) using the fact that this conditional distribution is hypergeometric.

9, If U and V are the random variables defined in Problem 1..7.14 find the condi-
tional distribution of V given that () U = 0, (ii)) U = 1, (iii)) U = 2, (iv) U = 3,
W)U = 4.

10. If U and W are the random variables defined in Problem 1.7.14 find the con-
ditional distribution of W given that (i) U =0, Gi) U =1, Gii) U = 2, (iv)
U=3, (v)U=4.
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11. In Example 1,
(i) find the conditional expectation of the random variable F, given each of the
possible values of G(G = 0,G = 1, G = 2);
(ii) show that
PG = O)E(FIG = 0) + P(G = )E(F|G = 1) + P(G = 2)E(F|G = 2) = E(F).
12. (i) Find the conditional expectation of the random variable G of Example 3,
given each of the possible values of B.
(1) In analogy to Problem 11(ii), show that E(G) ean be computed by adding
the conditional expectations of part (i) each multiplied by the probability
of the corresponding value of B.

13. Under the assumptions of Problem 1.7.14, find the conditional expectation of
(i) V given each of the possible values of U, (U =0, 1, 2, 3, 4);
(ii) D given each of the possible values of U.

14. For any two random variables Z and W, let ¢(w) = E(Z|W = w). Then
Eo(W) = E(Z). Prove this result for the case that Z can take on three values
21, 23, 23, and W two values wi, we.

15. Check the conditional distribution of G given F = 3 given in the text by
enumerating all possible simple events (pairs of values of the two dice) and con-
structing a conditional model (given the event F = 3) using (4.1.1).

16. Prove that if Z and W are independent, then the conditional distribution of
W given that Z has any particular value z agrees with the marginal distribution
of W.

17. Let the joint distribution of Z, W, and V be given by

i=PZ=0andW=0andV=0=PZ=0andW=1and V =1)
=PZ=1andW=0andV =1) = P(Z = land W = 1and V = 0).
(i) Find the joint marginal distribution of Z and W and show that Z and W are
independent.
(ii) Show that Z and V are independent and that W and V are independent.
(iii) Find the conditional distribution of V given Z = 0and W = 0. Determine
whether this is equal to the marginal distribution of V.

7.2 COVARIANCE AND CORRELATION

When developing a formula for the variance of the sum of two random
variables Z and W in Section 5.7, we were led to define the covariance of
Z and W by

1) Cov(Z, W) = E[(Z — £)(W — n)]

where { = E(Z) and n = E(W). We shall now discuss and illustrate the
meaning of covariance, derive certain laws of covariance, and use these to
obtain certain results for variance. In particular, these will provide proofs
of formulas (5.7.15) and (6.2.5).
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As mentioned in Section 5.7, the covariance of two random variables is
a measure of their tendency to vary in the same way. Suppose in fact
that the joint distribution of Z and W is such that large values of Z and
W usually occur together, and that smail values tend to occur together.
This would be the case for example if Z and W were the grades on the
midterm and final examinations of a randomly selected student, or if they
were the ages of husband and wife of a randomly selected couple. When
this happens, the quantities Z — ¢ and W — » will usually both be positive
or both negative, so that the product

2) (Z - YW — 1)

will usually be positive, and its expectation (1) will therefore typically also
be positive (but see Problem 7).

On the other hand, suppose that large values of Z tend to go together
with small values of W and vice versa (for example, if Z is the number of
cigarettes smoked between the ages of 20 and 25 and W is the age at time
of death, or if Z denotes the number of hours spent watching TV and W
the number of books read). Then if one of the factors of (2) is positive,
the other factor, and hence the product, will usually be negative. The
covariance (1) will then typically also be negative.

ExampLe I Two penmes Suppose that two fair pennies are tossed.
Let Z denote the number of heads on the first penny and W the total
number of heads on the two pennies. Here large values of Z and W, and
small values of Z and W, tend to occur together, so that we expect. the co-
variance to be positive. The joint distribution of Z and W is shown in the
following table. The covariance of Z and W is therefore

Cov(Z, W) = 13 +3-0+30+13 =1

which is positive as we expected.

Event  Probability z w z—¢§ w—219 G—Ow—19)

HH i T2 3 1 3
HT i o1 3 0 0
TH ] 0 1 Y 0 0
TT 1 0 0 -1 -1 3

If instead we consider the covariance of Z with the total number of tails
on the two tosses, we would expect a negative result (Problem 1).

ExaMpLE 2. Double lottery. As a second example let us obtain an ex-
pression for the covariance of the numbers Y and Z appearing on the
randomly selected ticket of the double lottery discussed in Example 1.2,
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which we shall denote by
(3) A = Cov(Y, Z).

Since each of the N tickets has probability 1/N of being drawn, and since
E(Y) = 7 and E(Z) = W, we see from (1) and the definition of expectation
that

) A= [(n — O)(wr — B) + ...+ (oy — ) (wy — W)]/N.

The quantity on the right side of (4) is known as the ‘“‘population
covariance.” Equations (3) and (4) are analogous to (5.6.3) and (5.6.4)
concerning the population variance.

Covariance obeys a number of simple laws, somewhat analogous to the
laws of variance. Two of these were developed in Section 5.7:

) Cov(Z, W) = E(ZW) — E(Z)E(W)
and
(6) Cov(Z, W) =0 if Z and W are defined on

different factors of a
product model.

From the definition it is clear that covariance is commutative; that is, that
) Cov(Z, W) = Cov(W, Z).

It is also easily seen from (1) that the covariance of any random variable
with a constant is zero,

(8) Cov(Z,c) = 0.

As further consequences of (1) we find that the covariance of Z and W
is unchanged if any constants are added to Z and W,

©)) Cov(Z + a, W + b) = Cov(Z, W);
while multiplication by constants gives

(10) Cov(aZ, bW) = ab Cov(Z, W).
Finally, we have an addition law for covariance:

(11) Cov(Z + W, V) = Cov(Z, V) + Cov(W, V).

The proofs of these laws are left to the reader (Problem 8).

As mentioned in Section 5.7, equation (6) holds quite generally for any
independent random variables Z and W. Thus, independent random vari-
ables always have zero covariance. The converse, however, is not true.
Two random variables may be ecompletely dependent, in the sense that the
value of one is determined by the value of the other, but still have covari-
ance equal to zero. For example, let Z take on the values —1, 0, 1 with
probabilities ¢, 3, 1 and let W = Z%. Here W is very strongly dependent
on Z, being in fact known as soon as Z is known. On the other hand,
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since E(Z) = 0, it follows from (3) that
Cov(Z, W) = E(ZW) = {(—1) + 3(0) + {(1) = 0.

Equations (9) and (10) show that covariance is unchanged by addition
of arbitrary constants to the two variables, but not if the variables are
multiplied by constants. A measure of the tendency of the two variables
to vary together, which is unchanged both by addition and by multipli-
cation with positive constants, is the correlation coefficient defined by

Cov(Z, W)
V' Var(Z)-Var(W)
(The correlation coefficient is undefined if either Var(Z) or Var(W) is
zero.) Since the denominator of (12) is always positive, the correlation
coefficient always has the same sign as the covariance. It follows that
typically p is positive if Z and W tend to vary in the same direction, and is

negative if they tend to vary in opposite directions. Tt is seen from (6)
and (12) that

(13) p(Z, W) =0 if Z and W are defined on
different factors of a prod-
uct model

and indeed (13) holds also if Z and W are independent. Two random
variables whose correlation coefficient. is zero are said to be uncorrelated.

It is important to realize that the correlation coefficient is not, as is
frequently believed, a measure of how strongly the variables Z and W
depend on each other, but only of the extent to which they vary together
or in opposite direetion.  As shown above, two variables may be very
strongly dependent without varying either together or in opposite di-
rections, and the correlation coefficient in such a situation may be zero.

We must still show that p(Z, W) is unchanged if arbitrary constants are
added to Z and W, or if Z and W are multiplied by positive constants,
The first statement is immediate since Cov(Z, W), Var(Z), and Var(W)
are all unchanged if Z and W are replaced by Z + aand W 4+ b. To see
the second, we compute

plaZ, DTV) = — Cov(aZ, bW) - n,f) Cov{Z, W) )
VVar(aZ) -Var(bW)  Va> Var(Z)-b* Var(i¥)
The correlation coefficient has the further property that it always lies
between —1 and 41 so that for any two random variables Z, I
(14) -1 2pZ, W)= L.
For a proof of this statement see Problem 15.

As an application of the laws of covariance, we shall now extend the
addition law for variance (3.7.10),

(12) pZ, W) =
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(15) Var(Z + W) = Var(Z) + Var(W) + 2 Cov(Z, W)

to obtain a formula for the variance of three random variables, say Z, W,
and V. If we think of Z + W + V as the sum of Z + W and V, then
(15) shows that

Var(Z + W + V) = Var[(Z + W) + V] = Var(Z + W) + Var(V)
+ 2Cov(Z + W, V).
Now apply (15) again and (11) to find

Var(Z + W + V) = Var(Z) + Var(W) 4 Var(V)
+ 2[Cov(Z, W) + Cov(Z, V) + Cov(}¥, V)].
The argument leading to (16) may be extended to more than three sum-

mands (Problem 16). One then obtains the general addition law of vari-
ance:

(16)

Var(Z,+ ...+ Z,) = Var(Z,)) + ...+ Var(Z,)

s

2) pairs of the random

an + 2 [the sum of the covariances of the (

variables Z,, . . ., Z,].

In the particular case when the random variables Z, . . ., Z, are defined
on different factors of a product model (or indeed when they are inde-
pendent), each of the covariances is zero and (17) implies (5.7.15).

As a further application of (17) we shall now derive the correction factor
(N — s)/(N — 1) for the variance of a hypergeometric random variable,
encountered in Section 6.2. Consider first a somewhat more general
problem.

ExampLE 3. Variance in the lottery model. Recalling the lottery model
of Examples 5.3.5, 5.5.2, and 5.6.2, suppose that s tickets are drawn without
replacement from a box containing N tickets labeled with values vy, . . ., vy,
Let the numbers appearing on the s successively drawn tickets be Yy, . . .,
Y,. These are jointly distributed random variables, and by the equi-
valence law of ordered sampling, each of the Y’s has the distribution of the
random variable Y of Example 5.6.2. Thus in particular

Var(Y,) = ... = Var(Y,) = 12,

where 7% is defined in (5.6.3). Similarly, each of the (;) =3s(s—1)

pairs of the Y’s has the same joint distribution, and hence the same
covariance, which we shall for the moment denote by v. From (17), it
then follows that

(18) Var(Yi+ ...+ Y,) = st 4+ s(s — 1)y.
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There remains the problem of determining the value of v, which can be
solved by means of a trick. Since formula (18) is valid for any value of
s = N, let us consider the special case s = N, which gives

Var(Yi+ ...+ ¥Yn) = N72 4+ N(N — 1)y.

But Y, + ...+ Yy is the sum of the v values on all tickets and hence is
equal tov; + . . . + vy, which is a constant, and which therefore by (5.7.1)
has variance zero. Therefore

0=N24+NWN-1)y or y=—72/(N—1).
Substitution in (18) gives
Var(Yo+ ...+ Y,) =sr* —s(s — 1)7¥/(N - 1)

and hence
, N —s
(19) Var(;, 4+ ... 4+ Y,) = 57—

N -1

st

We recognize the factor (N — s)/(N — 1) as the correction factor for
sampling without replacement discussed in Section 6.2. In fact, if the s
tickets were drawn with replacement, the s drawings would be unrelated,
so that a product model would be appropriate. In this model each of the
random variables Y, . . ., Y, would have variance 72, and by (5.7.15) we
would have Var(}Y; 4+ ...+ Y,) = sr% which differs from (19) by just
the factor in question.

Since the covariance v of any two Y’s is —72/(N — 1) and the variance
of each Y is 72, it is seen as a by-produet of the above argument that the
correlation coefficient of any two Y’s is

(20) p=—1/(N-1,

provided only that all tickets do not bear the same number. It is remark-
able that this value is independent of the values vy, . . ., vy marked on the
tickets.

Examert 4. Variance of the hypergeomelric distribution. The hypergeo-
metric distribution may be viewed as the special case of the lottery model
when r of the tickets have » values one and the remaining N — r tickets
have v value zero. In this special case, # = r/N and

v12+.--+vN2=r'
Hence, by (5.6.5),
72 = (N — r)/N2

Since the random variable D of Section 6.2 is equal to Y1+ ...+ Y,
we see from (19) that
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N —3s r T
@n Var(D) = No1 SN(I - N)

which agrees with (6.2.5).

PROBLEMS

1. If U denotes the total number of tails on the two tosses of Example 1, find
Cov(U, Z).

2. A sample of size s = 2 is drawn without replacement from a population con-
sisting of » special and N — r ordinary items, If I; indicates that a special item is
obtained on the first draw and I, that a special item is obtained on the second
draw, find Cov(y, I,) using formula (5).

3. Apply (5) to show that the population covariance X of Example 2 can be
written as

(22) A= ]lv (vawy + . . . 4 vywn) — 7-W.

4. Find the covariance of the random variables F and G of Example 1.1.
5. Find the covariance of the random variables Z and W of Problem 1.4.
6. Find the covariance of the random variables U and V of Problem 1.7.14.

7. Consider the four-point bivariate distribution, which assigns probability
3(1 — p) to each of the points (1, 1) and (—1, —1) in the (z, w)-plane, and proba-
bility 3p to each of the points (10, —10) and (—10, 10). Show that p may be
chosen so that (2) is positive with high probability but (1) is negative.

8. Write out formal proofs of laws (9), (10), and (11).

9. Find the correlation coefficient of the pair of random variables whose covariance
was found in (i) Example 1, (ii) Problem 1, (iii) Problem 2, (iv) Problem 5.

10. Let Z take on the values —e, 0, ¢ with probabilities p/2, 1 — p, p/2 respec-
tively and let W = Z% Find the correlation coefficient of Z and W.

11. Let X, Y, Z be independent random variables with zero expectations and
variances Var(X) = ¢?, Var(Y) = Var(Z) = 72
(i) Determine the correlation coefficient of U =X +Y and V=X + Z.
What is the value of this correlation coefficient when ¢ = 7?
(1) Show that the correlation coefficient is unchanged if the expectations of
X, Y, Zare E(X) = N\, E(Y) = u, E(Z) = v instead of being zero.
12. For the distribution of Problem7, obtain the correlation coefficient p of Z and
W as a function of p.

13. What happens to the correlation coefficient p of two random variables Z and W
(i) if Z is multiplied by a negative constant?
(i) if both Z and W are multiplied by negative constants?



230 MULTIVARIATE DISTRIBUTIONS [cuap. 7

14. Show that
Var(aZ + bW) = a® Var(Z) + 2ab Cov(Z, W) + b2 Var(W).

15. For all random variables Z, W show that

(i) for any constant a

Var(Z) + 2a Cov(Z, W) + a* Var(W) = 0;

(ii) [Cov(Z, W)]* £ Var(Z) Var(W);

(iii) [p(Z, W)]? < 1, and hence (14).
[Hint: (i) Use the fact that Var(Z 4+ aW) cannot be negative; (ii) apply the
result of (i) with a = —Cov(Z, W)/Var(W); (iii) use (ii).]
16. Prove (17) for the case s = 4. [Hint: Obtain this result from (16) by the
method used to obtain (16) from (15).]
17. Why does formula (20) require the assumption that all tickets do not bear
the same number?

18. Suppose that in the double lottery of Lxample 2, s tickets are drawn without
replacement.  Let (1), Z,) denote the v and w values on the first ticket, (Y5, Z,)
the values on the second ticket, ete.
(i) If g = Cov(Yy, Z;), show that u is in fact the covariance of any Y and Z
with different subscripts, and that
(23) p= =X\ -1).
MY =0 +...+V)sand Z = (Zi+ ...+ Z)/s, use (i) and (3) to
show that

(24) Cov(T, Z) =

N5 )
N—-1 s

(iii) Find the correlation coeflicient of (Y. 7).
[Hint for (i): Use (3), (7), and (1) toexpressCov(¥1+ ...+ Y, Zi+ ...+ Z)
in terms of A and g, and put s = N in the resulting expression as in Example 3.]

19. Obtain the results corresponding to the three parts of the preceding problem
under the assumption that the s tickets are drawn with replacement.

20. Show that the variance of the random variable M of Section 6.8 (the number
of matchings) is Var(M) = 1. [Hint: Use the representation M = I, + ... Iy
of Section 6.8, the addition law (17), and the equivalence law of ordered sampling,
to find

Var(M) = N Var(l)) + NN — 1) Cov({y, I,).
Complete the solution by finding Var I, and Cov(],, I.).]

7.3 THE MULTINOMIAL DISTRIBUTION

As we mentioned at the end of Section 3.3, the concept of binomial trials
extends in a natural way to unrelated trials with more than two possible
outcomes. Suppose that on each trial of a sequence there are k possible
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&

outcomes, just one of which will oceur. In addition, suppose that the
probability of the first outcome is the same, say p;, on each of the trials;
the probability of the second outcome is the same, say p,, on each of the
trials; ete. We must of course have py4+ p.+ ...+ pr = 1. These
assumptions amount to representing each of the trials by a model with £
simple events to which are assigned the probhabilities py, ps, . . ., pe. I
in addition we are willing to assume that the trials are unrelated, a model
for the whole experiment may be formed as the product of the models for
the separate trials. This product will be called the multinomial trials
model.
In deciding whether to use a multinomial trials model for a sequence
of trials, two questions must be considered, just as in the binomial case:
(a) For each of the outcomes, is the chance of its occurrence the same
on all trials?
(b) Are the triaks unrelated; that is, are the chances on each trial un-
affected by what happens on the other trials?
We shall now consider several examples, for which a multinomial trials
model may be appropriate.

EXAMPLE 1. The loaded die.  Recall model (1.3.1) for a single throw of a
loaded die. In the present notation, if the outcomes of interest are “one
point showing,” . . ., “six points showing,” then py = .21, py = . .. = ps
= 17, ps = .11. For several throws of this die, the multinomial trials
model may be used with k£ = 6.

ExampLE 2. Random digits. On each trial with a random digit generator

(Example 1.2.2) there are ten possible outcomes, the digits 0,1,...,9.
If the generator is working properly, the multinomial trials model may be
used withk = 10and p, = ... = pp = .1

ExampLE 3.  Qualily conlrol. Recall Example 6.1.3, but suppose that each
item coming off the production line is classified as having major defects,
minor defects but no major ones, or no defects. If the process is in a state
of control, we may use the multinomial model with £ = 3. The model will
be realistic provided p;, ps, ps are close to the long-run frequencies with
which the three types of items are produced.

ExaMmpLE 4. Election forecasting. Suppose that a polling organization
samples the electorate to find how many voters favor Candidate A, how
many favor Candidate B, and how many are undecided. Each interview
with a voter may be regarded as a trial having three possible outcomes,
with probabilities equal to the fractions py, p., ps of the electorate who
favor A, favor B, or are undecided. The trials are of course related



232 MULTIVARIATE DISTRIBUTIONS [cuaP. 7

(unless the sampling is done with replacement), but if the sampling
fraction is small, the degree of relationship is negligible, and a multinomial
model with £ = 3 may be used (see the discussion in Example 3.3.3).

As in the binomial case, the interest in a sequence of multinomial trials
is often centered on the numbers of occurrences of each possible outcome.
In a sequence of n multinomial trials, let By, By, . . ., B be the numbers of
occurrences of the k possible outcomes, where of course By + B; 4 ... 4
B; = n. (Thus, in Example 4, n would be the number of voters inter-
viewed, and Bi, B;, B; would be the numbers of them who favor Candidate
A, who favor Candidate B, and who are undecided.) The random vari-
ables By, By, . . ., B; are known as multinomial random variables. Since
the k random variables have the fixed sum =, it is enough to consider any
k — 1 of them, for example By, By, . . ., Bi_1; their values determine the
value of the remaining one.

In a multinomial model, the marginal distribution of any one of the B’s,
for example B, is binomial. This may be seen by labeling the first outcome
“success”’ and lumping the other k¥ — 1 outcomes together as “failure.”
Since the trials are unrelated, and since on each trial the probability of
“success” is p, it follows that B; has the binomial distribution (n, p1). It
follows that

E(B;) = NP, ey E(Bk) = NPk

W VarB)Y = apd ~ p), ..., Var(B) = np(l = pa).

Furthermore, it is easy to verify (Problems 4 and 5) that
(2) Cov(B,, B;) = —npip.

and similarly for the other pairs.

The joint distribution of any & — 1 of the random variables (B, B,,
..., By) is known as a multinomial distribution, or more specifically as a
k-nomial distribution. In the special case k = 2, there are only two
possible results, and one is dealing with a sequence of binomial trials;
then either of the random variables B, or B, has a 2-nomial, or binomial,
distribution, in agreement with our earlier terminology. When k = 3, the
joint distribution of any pair of (Bi, Bs, B;) is 3-nomial, or trinomial. To
keep the discussion simple we shall treat only this case.

Let us denote by S;, S, S; that a trial results in the first, second, or third
of the three possible outcomes.  (Thus S,8,8,S;, for example, indicates that
the first trial results in outcome 2, the second and third in outcome 1, and
the fourth in ocutcome 3). Then the probability of getting b, results S,
b, results S., and by = n — b; — b, results S; in some specified order (such
as for example S1S1 PN SpSgSz P SQS;{S:} e Sa) is

() PYPEDS.
(This corresponds to formula (3.3.1) in the binomial case.)
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Let us denote by ( b n»b ) the number of ways to choose b; of the trials for
1y U2

Si and b, other trials for S;.- Then P(B, = by and B, = by) is the sum of
" ) terms, each equal to (3), and hence
bl, b2

4) P(B, = byand B, = by) = " )p’,”p;’-’pg’.
bl, b2
The number < b nb ) can easily be expressed in terms of numbers of combi-
1, 02
nations. There are ( 1? ) ways to choose the b, trials for 8. ¥For each such
1

choice there remain n — by trials, of which b, may be chosen in (n ; b’)
2

ways for S.. Therefore

o) () = G (0"

IxamerLe 1. The loaded die (continued). Suppose that the die is loaded
so that the face with one point (ace) appears .2 of the time and the opposite
face (six) only .1 of the time. 'The other faces together then appear .7 of
the time. The die is thrown n = 10 times and the numbers B, of aces and
B, of sixes are observed. The joint (trinomial) distribution of B; and B,
is shown in the table (where only those entries are given that are at least
.0001 to four decimal accuracy).

b O 1 2 3 4 5 6 7 Total
bs
0 0282 0807 .1038 .0791 .0395 .0136 .0032 .0005 | .3486
1 0404 .1038 .1186 .0791 .0339 .0097 .0018 .0002 | .3875
2 0259 0593 .0593 .0339 0121 .0028 .0004 1937
3 0099 0198 .0169 .0081 .0023 .0004 0574
4 0025 .0042 0030 .0012 .0002 011
5 0004 .0006 .0003 .0001 0014
6 0001 .0001

Total { 1074 2684 .3019 .2015 .0880 .0265 .0054 .0007

As an illustration, let us check one of the entries, say that corresponding
tob, = 2and b, = 3. According to (4),

P(B, = 2and B; = 3) = (21°3> (2)21)%(7)

10 10\ (8Y _ 1r rn _ on
(2,3)‘“(2)(3)‘4' 56 = 2520

where
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and on carrying through the calculation, the desired probability is seen to
be .0169.

It is an interesting property of the multinomial distribution that ail of
the marginal and conditional distributions associated with it are again
multinomial. For example, if k = 5, the joint marginal distribution of B,
and B, is trinomial with n trials and probabilities py, p;; while the con-
ditional distribution of Bs;, By given B, = b; and B, = b, is trinomial with
n — by — b, trials and probabilities ps/(ps + p« + ps) and ps(ps + ps + D)
(Problem 11).

Just as the binomial distribution has been generalized to the multinomial
distribution, so the hypergeometric distribution may be generalized to the
multiple hypergeometric distribution, providing a model for a more precise
analysis of experiments such as that of Example 4 where a sample is drawn
without replacement from a population of items of more than two types
(see Example 7.1.4 and Problems 12-16).

PROBLEMS

1. Check the entry .1186 in the table of Example 1.

2. Suppose that in a production line on the average 3%, of the items have ir-
reparable defects while 109 have reparable defects. In a day’s production of 100
items, let B, and B, be the numbers of items with irreparable and reparable defects.

@) Use (1) and (2) to find E(B)), E(B.), Var(By), Var(B,}, Cov(B,, B,).

(ii) Suppose that it costs $10 to repair an item, and there is a 850 loss when an
item isirreparable. Let L be the loss due to defects in the day’s production.
Find E(L), Var(L). [Hint: See Problems 7.2.14 and 6.5.19.]

(iii) Use the normal approximation to find the probability that L exceeds $350.

3. In a multinomial model, what is the distribution of B, + B,? [Hint: Use an
argument analogous to that showing the marginal distribution of B, to be binomial.}
4.. Find Var(B, + B,) from Problem 3, and usc this result together with the
addition law of variance to verify (2).

5. Verify (2) by representing B, and B: as sums of indicators.

6. In how many ways can ten councilmen he distributed among three committees

so that just two councilmen are put on Committee .\, threc others on Committee B,
and the remaining five on Committee €7 [Hint: See derivation of (5).]

7. Generalize (5) to obtain a formula for the numhr*r( ) of ways to choose

n
by, bay by
b, trials for Sy, by trials for Sy, by trials for Sy in a sequence of n quadrinomial trials.
8. Ingencralization of (4) and (5), let k = 4 and find the quadrinomial distribution
of By, By, Bs.

9, TUsing the table of Example 1 and Table B,
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(i) check the distribution of B, against the binomial distribution (n = 10,
p=.2);
(ii) find the distribution of B; and check it against the binomial distribution
(n=10,p =.7).
10. Let B, and B, have the trinomial distribution (4). Using (5) and (4.2.1),
show that the conditional distribution of B,, given that B, = b, is binomial

(n — by, po/(p2 + p3)). Check this result on the table of Example 1 for the case
b, = 4.

11. Show that in a multinomial distribution with & = 5 and probabilities
Dy D2y e -y Do
(i) the joint marginal distribution of B, and B, is trinomial with » trials and
probabilities py, p»;
(ii) the conditional distribution of Bs, B, given By = by, By = b, is trinomial with
n — by — b, trials und probabilities ps/(ps + ps + Ps), P/ (Vs + s + ps).
Problems 12-16 are concerned with the multiple hypergeometric distribution.

12. Ina population of A" items there are r, ro, r3 items of types 1, 2, 3 respectively
(ri4 7+ r; = N).  If a random sample of s items is drawn and D, D., D; denote
the numbers of items of the three types in the sample, show that

P(D, = dy and Dy = dy) = (2) (2) (2)/ (g)

13. In the preceding problem
(i) what are the marginal distributions of D), Ds, Ds;
(ii) what is E(D,) and Var(D))?

14. In Problem 12, what is the conditional distribution of D, given D, = d\?

15. In Problem 12, what is the distribution of D; 4 D,?

16. Find Cov(D,, Ds)

(i) by specializing formula (2.4);

(ii) in analogy with Problem 4, using Problem 15.
[Hint for (i): For items of type 1, set v = 1, w = 0; for items of type 2, set v = 0,
w = 1; for items of type 3, set v = w = 0.]
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INTRODUCTION

In Part II we shall take up the subject of statistics. The meaning of this
word has undergone a great change during the last two centuries. The
word statistics, which is cognate with the word state, originally denoted
the art and science of government: the first professors of statistics at
German universities in the Lighteenth Century would today be called
political scientists. As governmental decisions are to some extent based
on data concerning the population, trade, agriculture, and so forth, the
statistician naturally became interested in such data, and gradually
statistics came to mean the collection of data about the state, and then the
collection and handling of data generally. This is still a popular meaning
of the word, but a further change is now taking place. There is no point
in collecting data unless some use is made of it, and the statistician natu-
rally became involved in the interpretation of the data. The modern stat-
istician is a student of methods of drawing conclusions about a population,
on the basis of data that ordinarily is collected from only a sample of the
population.

To make clear the relation as well as the distinction between statistics
and probability theory, let us consider an example. Suppose a customer is
interested in the fraction of a boxcar-load of electric motors that conform
to a specified quality standard. As it would be too expensive to take all
of the motors apart, he chooses a random sample for examination. Using
the notation of the preceding chapters, we suppose that there are N motors
in the shipment of which r are below standard, that s of them are examined,
and that D of those examined are below standard. In the model we
developed for this problem in Section 6.2, D is a random variable having the
hypergeometric distribution, and we calculated the probability that D will
assume one of its possible values d to be

v (O C)

This is a typical result in the theory of probability.



240 INTRODUCTION

But is the result relevant to the problem facing the customer? Before
we can compute (1), we must know r, and if r were known no inspection
would be necessary. Also, (1) gives merely the chance that D will take
on various values, while the customer will in practice ohserve the value that
D actually has. The problem at hand then is not to find the distribution
of D knowing r, but rather to draw a conelusion about r after observing D.
This is a statistical problem: to draw a conclusion about a population on
the basis of a sample. We may think of statistics and probability theory
as working in opposite directions. I’robability theory proceeds from a
known population to derive distributions related to a sample from the
population, while statistics proceeds from the observed sample to draw
conclusions about the unknown features of the population.

The domain of statistics is far broader than sampling, however. In
general, a statistical problem arises when we observe a random variable
whose distribution is only partially known to us. The quantity D above
is an example, since the distribution of D) involves the unknown quantity
r  As another illustration, suppose B is the number of males among n
births. We may be willing to assume that B has the binomial distribution
(n, p), but not know the probability p that a child is male.

In both of the examples cited, there is in the probability model a quantity
(r, p) knowledge of whose value would completely specify the distribution.
We shall refer to such a quantity as a paramcter. We may define statistics
as the branch of mathematics concerned with methods of drawing con-
clusions about parameters on the basis of the observed values of random
variables whose distributions depend on the parameters. Statistics leans
heavily on probability theory, to specify the distributions corresponding to
various values of the parameters, but in a sense goes beyond probability
theory to deal with the more complicated questions that arise when the
underlying distributions are not completely specified.

Statistical problems fall into certain classes according to the nature of
the conclusion that is to be drawn. Sometimes we wish merely to make
the closest estimate that we can of an unknown parameter: this will con-
front us with a problem of esttmation. 1f our estimate is a single numerical
value, it is called a point estimate; in other problems we may try to speeify
a range within which the parameter is thought to lie—such a range is called
an interval esttmate. Various ideas of point estimation will be introduced
and illustrated in Chapters 8-10.

Often we are confronted with the necessity of choosing between two
clearly defined courses of action, the proper course depending on the value
of an unknown parameter. For example, the customer of our illustration
above must either purchase the consignment of electric motors or return
them to the manufacturer. If he knew the value of r, he would presumably
know which action to take. Again, an anthropologist who believes he may
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have discovered a primitive tribe with an unusually high proportion of
male births, must decide whether to publish his finding or to wait until he
has collected more data. ¥inally, the public health authorities may have
to decide, on the basis of data collected from a clinical trial of a new
vaccine, the distribution of which depends on the unknown degree of pro-
tection it affords, whether to recommend its use by the public. In each
of these cases, it is necessary to choose between two actions on the basis of
the observed value of a random variable whose distribution depends on a
parameter, the value of which would indicate the correet action. The
branch of statistics' concerned with such problems, known as hypothesis
testing, is taken up in Chapters 11-13.

Tor any particular statistical problem, the mathematical analysis will
characteristically develop through several stages. At the beginning, when
the problem is first recognized and formally described, interest centers on
finding some plausible technique for dealing with it. The technique is
usually advanced on a quite intuitive basis at first. For example, in the
lot inspection problem described above it seems intuitively plausible to
use the observed fraction D/s of defectives in the sample, as an estimate
for the unknown fraction r/N of defectives in the entire lot.

A second stage of development is reached when the properties of the
technique are studied, and its performance is measured according to some
standard. Thus, the distribution of the estimate D/s can be worked out,
and we can see how satisfactory the estimate is by calculating how fre-
quently the estimate will be reasonably close to the quantity r/N being
estimated.

A third stage is concerned with a comparison of several different tech-
niques for the same problem on the basis of their performance, in order to
select the one most suitable for the purpose at hand. It can for example
be shown that the estimate /s is, in terms of the criteria of performance
for estimates we shall advance in Chapter 8, the best of all possible esti-
mates for r/N.

A fourth stage, in many ways the most interesting, involves questions of
design of expertments. How large should the sample size s be? Is it best
to select the sample completely at random, or could more information be
gained at less cost in some other way? o illustrate, suppose that the
shipment of N motors is packed in three different crates, each the product
of a different factory, and that there is reason to believe that the three
factories differ in the quality of their output. In this case, it would be
better to think of the entire lot of N motors as consisting of the three
sub-lots or strata, and to draw independent smaller samples separately
from each stratum. The possibilities of improving the sampling design
by stratification will be taken up in Section 10.3.

In addition to estimation and hypothesis testing there are many other
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types of statistical problems—for example, the problem of choosing be-
tween three or more actions—but the ones we have mentioned will serve
to introduce the subject. The field is at present in a rapid state of develop-
ment, with exciting new ideas and results appearing nearly every year.
Statistics is in close contact with mathematics and with nearly every field
of science, and statistical ideas are often involved in new advances in many

scientific disciplines.



CHAPTER 8
ESTIMATION

8.1 UNBIASED ESTIMATION

The term estimation is used in statistics in a way very similar to its use
in everyday language. The contractor estimates the cost of building a
house; the physician estimates a patient’s length of stay in a hospital; the
aircraft pilot estimates the time of arrival; the surveyor estimates the
distance which he is about to measure; and the city planner estimates the
population of the city.

In statistics the quantity to be estimated is one of the parameters of the
probability model, or some quantity whose value depends on the pa-
rameters. The available information consists of the observed values of
the random variables and certain known aspects of the experiment. The
estimate is computed from these values, using the assumptions of the
model.

IExampLE 1. Binomial model. Let B be a random variable having the
binomial distribution corresponding to n trials with success probability p.
Here n will usually be known but p is an unknown parameter. It may be
desired to use the observed value of B, and the known number n, to esti-
mate p. Thus we may wish for example to estimate the probability of a
cure in a sequence of patients who are given a new treatment; the proba-
bility of a defective in a sequence of items produced by a certain manu-
facturing process; the probability of twins in a sequence of births; and so
forth. The binomial model is of course appropriate in these examples only
if the trials are unrelated and the chance for success is constant.

Since probability corresponds to frequency, it seems natural to use the
observed frequency of success B/n as an estimate of the unknown success
probability p. Thus, if a slot machine is observed to pay off 17 times in
1000 trials, we would estimate the pay-off probability to be .017. Similarly
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if there are 521 males in 1000 births of some species, we would estimate
the probability of a male to be .521 in the species.

An estimate, since it is computed from random variables, will itself be a
random variable. Thus, B/n is a random variable whose possible values
are

12 n—1
y n’ ’)], e

The distribution of the estimate will in general depend on the distribution
of the random variables, and henee on the parameters of the model. The
estimate B/n for example will be equal to b/n if and only if B = ), so that
P(B/n = b/n) is the same as P(B = b) = (’;) p*(1 — p)*—* which de-
pends on p. Quite generally, an estimate 7' for a parameter 6 will be a
random variable, whose distribution depends on the value of 6.

When is an estimate a good one? The objective of estimation is, of
course, to produce an estimate T’ which is close to the actual value of the
quantity 6 that is being estimated.  Since T is a random variable, it is not
usually possible to be sure that T is close to 8, but one may be able to find
an estimate T having a high probability of being close to 8.

To insure that an estimate T will be close to 8 with high probability, one
would want to require as a first step that the distribution of 7" be centered
at or near 8. The situation is illustrated in Ifigure 1, which shows the

A _dlH

] [
@ T (b) T

Figurre 1.

distributions of two different estimates T’y and 7' of the same parameter 6.
Clearly T, is a better estimate than 7', in the sense that it is much more
likely to fall close to 8. The reason is that the distribution of 77 is centered
at 8, while the distribution of 7'y is centered at a point some distance away
from 6.

An analogy may help to make the discussion more conerete.  Consider
a rifleman who fires repeatedly at a target. His shots will not all fall at
the same point, but will be distributed in a “pattern of fire.”  Other things
being equal, he will want to have his pattern of fire centered on the bull’s-
eye, rather than to its right or to its left.  Similarly, the statistician wants
his estimate to have a distribution centered at the parameter; otherwise
he is not even “‘shooting at the right target.”
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There are many different ways of defining the center of a distribution,
but most commonly the center is taken to bhe the expected value (see
Section 5.4). The proposed requirement, that the distribution of an esti-
mate 7' should be centered on the parameter value, then becomes the
requirement that the expected value E(T) should equal the value 8 of the
parameter, whatever this value may be.

Definition. An cstimate T of the parameter 6 is unbiased if
1) E(T) =9, whatever ¢ may he.

If (1) does not hold, T is said to be biased, being biased toward large
values if E(T) > 8, and toward small values if %(7T) < #. Since the ex-
pected value represents the average value in the long run, we may say that
an unbiased estimate will be “right on the average.”

ExampLe 1. Binomial model (continued). Let us check whether the esti-
mate B/n proposed in Example 1 is unbiased. Since E(B) = np (see
(6.1.6)),

@) E(B/n) = p.

This is true, whatever value p may happen to have. Thus, B/n is an
unbiased estimate for p.

ExampLE 2.  Hypergeomelric model. Let D be the hypergeometric vari-
able discussed in Section 6.2. The distribution of D depends on the
parameter » (the number of special items in the population) as well as on
the known quantities N (population size) and s (sample size). Let us
consider how one might use the observed value of D to estimate the
parameter /N, the fraction of special items in the population. This may
for example be the fraction of voters in a city favoring a proposed issue of
school bonds; the proportion of defective items in a shipment; the pro-
portion of television viewers watching a certain program; and so forth.
The hypergeometric model will of course be appropriate in these examples
only if the sample is a random sample from the population in question.

1t seems intuitively reasonable that the fraction D/s of special items in
the sample could be used to estimate the fraction r/N of special items in
the population. Since E(D) = sr/N (see (6.2.3)), it follows that

3) E(D/s) = r/N,

whatever the value of r may be, so that D/s is an unbiased estimate for
r/N. It is interesting to notice that this estimate does not require know:-
edge of the population size N.

To illustrate, suppose that a sample of s = 50 items drawn at random
from a lot of N items is found to contain D = 7 defective items. Then
D/s = ¢ is our estimate of the fraction of defective items in the lot.
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ExamprLe 3. Difference of two binomials. Consider two unrelated se-
quences of n; and n, binomial trials with success probabilities p; and p.
respectively. The numbers of successes in the two sequences are observed
to be B, and B,, and we wish to estimate the difference p, — p;. We may
want to determine, for example, how much the addition to a medication
of a somewhat toxic ingredient increases the chance of a cure; how much an
expensive refinement of a production process cuts down the probability of
defectives; by how much a certain biochemical treatment will increase the
chance that a calf in a dairy herd will be female. In each of these cases,
a number of trials are performed under two conditions (with and without
the toxic ingredient, etc.). If all the trials are unrelated, and if the proba-
bilities are constant under each of the two conditions, a product of two
binomial models will be appropriate; the numbers B, and B; of successes
under the two conditions will be defined on different factors of the model,
and each will have a binomial distribution.

The natural estimate for p, — p: is the difference of the estimates
Bs/ny of po and By/m; of pr. Since both of these estimates are unbiased,
it is clear from (2) and the laws of expectation that

B, _B,
N2 - Ny

is an unbiased estimate of p, — pi.

This example indicates a general method for constructing unbiased
estimates of the difference of two parameters. If T, is an unbiased esti-
mate of 6, and T is an unbiased estimate of 6;, then T, — 7' will be an
unbiased estimate of 8, — 6.

The property of unbiasedness is desirable, but we do not wish to leave
the impression that it is essential. A small bias may not be very important
and, as is illustrated in Figure 2, an estimate that is slightly biased but
tightly distributed may be preferable to one which is unbiased but whose
distribution is widely dispersed.

] ]
(a) ()
Fiaure 2.

Tt is clear that a reasonable choice between estimates (a) and (b) will
require that one consider not only the center of the distribution of T, but
also its dispersion. This consideration will be explored in the next section.
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We coriclude this section by illustrating another possible difficulty in applying the
method of unbiased estimation: namely that an unbiased estumate may not exist.

Examerr 1. Binomial model (continued). In hinomial trials one is sometimes
interested in the ratio p/(1 — p) rather than in p itself.  (In studics of human
populations, for example, the sex ratio is usually defined as the proportion of males
to females.) It turns out that no unbiased estimate for p,/(1 — p) exists. To
show this, let us consider the case n = 2 and suppose there did exist an unbiased
estimate T. Denote by a, b, ¢ the values taken on by T when B = 0,1, 2 re-
spectively.  Then, if we denote 1T — p by ¢, unbiasedness would mean that

(4) E(T) = aq® + 2bpq + cp® = p/q, for all p between 0 and 1.

To sce that no a, b, ¢ exist for which this holds, consider what happens to the right-
hand side of the displayed equation as p gets close to 1. The numerator will then
be close to 1 and the denominator elose to 0, so that the ratio p /¢ will be very large.
In fact, by choosing p sufficiently close to 1, p/¢ can be made as large as we please.
To make p/g = 1000 for example, let p = 1000.1001. Then g = 11001 and
p.¢ = 1000. Similarly p/¢ = 1,000,000 if p = 1,000,¢CC, 1,C0C,(€1. and so on.
To match this, the left-hand side would also bave to beeome arbitrarily large as p
gets cloge to 1. Rinee p and ¢ are between 0 and 1, the quantities p, py. and ¢ will
all be at most 1, and the left-hand side therefore cannot cexceed the number
a + 20 4 ¢, no matter how close p gets to 1. Therefore, however large may be the
fixed values assigned to a, b, and ¢, there wll exist p sufticiently close to 1 so that
the right side of (4) will exceed the left side.  The displayed equation therefore
cannot hold for all p, and no unbiased estimute exists for p,'g. A similar argument
holds for other values of n.

The nonexistence of an unbiased estimate does not mean that no reasonable
estimate of p-¢ can exist. In fact, when n is large, B,/n should be near p and
(n — B)/n near ¢, so that their ratio [B/n] + [(n — B),n] = B/(n — B) should
be near p/y. Thus at least for large n, B,'(n — B) is a reasonable estimate of p,q.

PROBLEMS

1. In n binomial trials, find an unbiased estimate for

(i) the failure probability ¢ = 1 — p;

(ii) the difference ¢ — p = 1 — 2p.
2. Find the probability that the estimate B/n of a binomial probability p does not
differ from p by more than .1if p = } and (i) n = 5, (i) n = 10, (iii) n = 20.
3. Solve the three parts of the preceding problem when p = .4. [Hint: Use the
normal approximation for part (iii).]
4. Let T be a statistic with expectation E(T) = 20 — 1. Find an unbiased
estimate of 6.
5. Solve the preceding problem when (i) E(T) = 36 4 2; (i) B(T) = 2 — 36.

6. Under the assumptions of Example 2, find an unbiased estimate
(i) for the number r of special items in the population;
(ii) for the number of ordinary items in the population.
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7. Ii T\ and T. are unbiased estimates for 8; and 6. respectively, find unbiased
estimates for

(i) 6, + 6, (iii) (6, + 26:)/3

(“) (81 + 8‘2)/ 2 (lV) (2161 + asz.

8. If Ty and T, are unbiased estimates for 6,
(i) show that (T + 27T:)/3 is also an unbiased estimate for 8,
(i1) find other combinations of T; and T, that are unbiased estimates of 6.

9. Let T;, T: be statistics with expectations E(T}) = 0, + 6, E(T2) = 6, — 0.
Find unbiased estimates of (i) 6;; (ii) 6.

10. Solve both parts of the preceding problem when
() E(T)) = 6, + 0, E(T2) = 20, + 36,
@) E(T)) = 6, + 26,; E(T2) = 26, — 30,.

11. If Th,..., T.are unbiased estimates of 8,
(i) show that (T + ...+ T.)/n is also an unbiased estimate of 6;
(ii) show that (¢.Ti + ...+ ¢ Tw)/(c1+ ...+ ¢ca) is an unbiased estimate
of 6 for any constants ¢1,. .., ¢, Withey 4+ ... + ¢ # 0.

12. If Ty, T, are independent and if both are unbiased estimates of 8, find an
unbiased estimate of (i) 62; (ii) (1 — 6).
13. The voters in a city are listed in five precincts with Ny, ..., Ns voters re-
spectively. A random sample of voters is taken from each precinet. the sample
sizes being 8y, . . ., ssand the numbers of voters in the five samples (say D, . . ., Ds)
who favor school bonds are observed. Use Dy, . . ., Ds to find an unbiased estimate
of the total number r of voters in the city who favor the bonds. [Hint:Ifry, ..., 75
denote the numbers of voters in the five precincts that favor the bonds, then
r=r+...+ 1]
14. (i) If B has the binomial distribution (n, p) and if p is known but n unknown,
find an unbiased estimate for n.
(ii) If you are told that in a number of tosses with a fair coin the coin fell heads
ten times, what is your estimate of the total number of tosses?

15. If B has the binomial distribution (n, p), of what quantity is the random
variable B? an unbiased estimate? [Hint: For any variable Z, it follows from
(5.6.2) that E(Z2) = Var(Z) + [E(Z)]*]

16. If D has the hypergeometric distribution (6.2.1), of what quantity is the
random variable D? an estimate?

17. Use the result of the preceding problem to find an unbiased estimate of (i) r%;
(ii) Var(D).
18. Use the result of the preceding problem to find an unbiased estimate of (i) p?
(ii) Var(B).

19. A lot of N = 1000 items contains r = 200 special items. A random sample
of unknown size s contains D = 18 special items. Find an unbiased estimate of s.

20. We wish to estimate 1/(1 + p) in Example 1. Suggest a reasonable estimate.
Is it unbiased in the case n = 17
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21. To estimate the number N of fish in a lake, a biologist catches r = 100 fish,
tags them, and then releases them. A few days later, a sample of fish is obtained
from the lake and it is found that 3%, of the fish have tags. Suggest a reasonable
estimate for N. [Hint: Equate the fraction of tagged fish in the lake to 3%,.]

22. If X has the uniform distribution (6.8.1), find an estimate of the form aX + &
which is unbiased for estimating N. [Note: This problem is based on the first
half of Section 6.8.]

8.2 THE ACCURACY OF AN UNBIASED ESTIMATE

The condition of unbiasedness was introduced in the preceding section as
a first step toward obtaining a good estimate, that is, one whose distribution
is concentrated near the parameter 6 being estimated. Unbiasedness alone
is not enough however, since a distribution can be centered on 6 without
being highly concentrated there. This is illustrated in Figure 1, which
shows the histograms of two estimates 7, and 7,. Both are unbiased
but the distribution of T} is more concentrated than that of T, and hence
T, will usually be closer to 6 than T,. An estimate, even if unbiased, will
be satisfactory only if its distribution is not too widely dispersed.

In terms of the analogy of target shooting, it is not.enough that the
pattern of fire be centered at the bull’s-eye, the pattern should also be
tightly concentrated. If both of these conditions hold, most of the shots
will land close to the bull’s-eye. Similarly, an estimate which is unbiased
and has a tightly concentrated distribution will usually give values that
are close to the true value being estimated.

aflllr

0
(@) T, () T,

Ficure 1.

Just as there are many ways of specifying the center of a distribution,
there are many different measures of its degree of dispersion. We intro-
duced in Section 5.6 the variance as the most commonly used such measure.
By definition, the variance of T is the expected squared deviation of T
from its expected value E(T). If T is an unbiased estimate of 6, then
E(T) = 0. Therefore
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¢)) Var(T) = E(T — 6)?, provided T is unbiased.

The variance of an unbiased estimate T is thus the expected squared devi-
ation of T from the parameter value 8 being estimated, and we shall adopt
this as the measure of accuracy of an unbiased estimate.

An estimate becomes much more useful if it is accompanied by an
indication of its accuracy. After all, any number might be regarded as an
estimate, perhaps a very inaccurate one, of any parameter. The user of an
estimate needs to know how much reliance he may place on it. The most
common way to provide this information is to give, along with an estimate,
its variance or (equivalently) its standard deviation. As we shall see, in
most cases the standard deviation cannot be given exactly but can be
itself estimated. A common style for presenting an estimate and its
(estimated) standard deviation is in the form

(estimate) + (standard deviation)

For example, if in a scientific paper one reads “The weight gain is 12.6 +
1.8 kilograms,” this would mean that the estimated weight gain is 12.6
kilograms, and that this estimate has the standard deviation 1.8 kilograms,
or at least 1.8 is an estimate for the standard deviation. At the end of
this section, we shall give a more specific justification of the use of the
standard deviation as a measure of accuracy.

Let us now illustrate the computation of variances (and hence of stand-
ard deviations) by considering the unbiased estimates proposed in the
examples of Section 1.

Exampii 1. Binomial model. In Example 1.1 we found B/n to be an
unbiased estimate for p in the binomial model. What is the standard
deviation of this estimate? Recalling (6.1.7) that Var(B) = np(1 — p),
and (5.7.3), we see that

(2) Var(B/n) = Var(B)/n? = p(1 — p)/n
and hence
(3) SD(B/n) = Vp(l = p)/Vn.

Notice that the standard deviation of the estimate B/n for p will become
smaller as n is made larger. In fact, SD(B/n) can be made as small as
one pleases by taking n large enough. That is, the frequency of success
will estimate the probability p of success with high accuracy if the number
of trials is sufficiently large. This corresponds (within the model) to our
basic concept of probability as long-run frequency.

ExampLe 2. Hypergeometric model. In a similar way, formula (6.2.5)
enables us to compute the variance of the unbiased estimate D/s for the
parameter r/N of Example 1.2. Since Var(D/s) = Var(D)/s? it follows
that
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D\_N-s r EATE
() Var(s)-N—l‘N(l_N)"s
and
5 D\_ N=-s rf, 1\ L
®) SD(S)“\/N—l N(l N) s

As the sample size s is increased, these quantities become smaller. In
the extreme case s = N, they are in fact equal to zero. This is reasonable
since the estimate is perfect (that is, always coincides with the true value
of the parameter) when the entire population is taken into the sample.

ExamrLE 3. Difference of two binomials. For estimating the difference
p2 — 1, we proposed in Example 1.3 the estimate (By/ns) — (Bi/mi).
Since B, and B, are defined on different factors of a product model, it
follows from (2) and (5.7.14) that

(6) Var (_BQ - E—‘) _ P —p) + pl — py)

Ny Ny g ny

Again, the variance may be made as small as one pleases by taking n, and
n, sufficiently large.

We have pointed out earlier (Sections 5.4 and 5.6) that expectation and
variance are not always satisfactory measures of the center and dispersion

of a distribution. However, for those distributions for which the normal
approximation of Chapter 6 is adequate, the standard deviation of an
unbiased estimate T of 6 can be directly related to the accuracy of the
estimate in terms of the probability that 7" will be close to 6.

Suppose that T is an unbiased estimate of 8 such that the histogram of
the standardized variable

T* = (T — 0)/SD(,1‘)

is well approximated by the normal curve. The probability that T be
within a given distance d of 8 is then

(7) M=P—-d<T-0<d),

which can also be written as

(el e i)
n= (- 5555 < <spm)

Since our normal approximation applies to T*, this probability is approxi-
mately equal to

() ~ *(svim) ~ 2 (o)

so that equation (7) becomes (approximately)

®) =2 (sn%) —1
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This equation relates the probability IT that an unbiased estimate T will
be within a distance d of 6, to the ratio d/SD(T). Reading the right-hand
side of (8) from a normal table, we obtain the following values,

TaBLE 1

d/SD(T) ‘ 1.0 1.5 2.0 2.5 3.0

Il l .683 866 954 .988 .997

In order to have for example I equal to .95, we must have d/SD(T) = 2
and hence require the standard deviation SD(7') to be d/2.

As an illustration of this method, suppose we would like to have an 80
percent chance of 7' being within .25 units of 8. How small must SD(7")
be? It follows from equation (8) that IT = .8 if 2&(d/SD(T)) = 1.8 and
hence if #(d/SD(T)) = .9. From the auxiliary entries of Table E we read
$(1.282) = .9. We should therefore have d/SD(T) = 1.282 and hence

25
SD(T) = 1983 = 195.

It is worth noting that if for a certain SD(T) the probability is Il of T
lying within a distance d of 8, then for any smaller value of SD(T), the
probability of T lying within a distance d of 8 is even higher than II. To
see this, consider the right-hand side of (8). If SD(T) is decreased,
d/SD(T) is increased; then ®(d/SD(T)) is also increased, and so therefore
isII. The smaller SD(T) is, the larger is therefore the probability that T
will differ from 6 by less than any given amount d. This agrees with our
idea that the accuracy of the estimate T improves as SD(T) gets smaller.

PROBLEMS

1. TFind the variance of the unbiased estimates of (i) Problem 1.1(i); (ii) Problem
1.1(i); (iii) Problem 1.6(i); (iv) Problem 1.6(ii).

2. Find the variance of the unbiased estimate of (i) Problem 1.4; (ii) Problem
1.5(); (iii) Problem 1.5(ii). [Express the answers in terms of Var(T).]

3. Assuming T: and T, to be independent, find the variance of each of the four
unbiased estimates of Problem 1.7 in terms of Var(7T)) and Var(T:).

4. Under the assumptions of Problem 1.8 determine which of the unbiased esti-
mates (Ty + T.)/2 and (T1 + 2T2)/3 of 8 you would prefer if T, and T are inde-
pendent and (i) Var(T,) = Var(Ty), (ii) Var(T,) = 3 Var(T2).

5. Assuming the statistics T, and T’ of Problems 1.9 and 1.10 to be independent,
find the variances of the unbiased estimates of 6, and 6, in (i) Problem 1.9; (ii)
Problem 1.10(); (iii) Problem 1.10(i).
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6. Let T, T, be unbiased estimates of 8, independent, and have variances
Var(T)) = o* Var(Ts) = 12

(i) Show that (T, + T2)/2 is a better unbiased estimate than T if 72 = o2

(ii) Find values of o2 and 72 for which 7} is better than (T, + T.)/2.

7. If Ty, Ty, Ts are unbiased estimates of 6, are independent, and all have the same
variance, determine which of the three unbiased estimates of 6

(Ty + 2T: + Ts)/4, (2T, + T. + 2T3)/5, (T + T:+ T3)/3
you would prefer.

8. Solve the preceding problem if
(i) Var(T,) = o2, Var(T)) = Var(Ts) = lo?
(ii) Var(Ty) = a2, Var(T\) = Var(Ts) = 402

9, A merchant receives shipments of 100 fuses from each of two manufacturers,
and wishes to estimate the total number of defectives among the 200 fuses. He
considers two procedures, each requiring him to inspect 40 fuses:
(a) to take a random sample of 40 fuses from the 200 and to observe the number
D of defectives;
(b) to take unrelated samples of 20 fuses from each shipment and to observe the
numbers D, and D, of defectives.
Suppose that the actual numbers of defectives in the two shipments are r; and ro.
(i) Construct unbiased estimates for r; + 7, based on methods (a) and (b).
(ii) Compare the variances of these two estimates in case 7, = 7 and r, = 18.

10. In Example 3, determine which of three pairs of numbers of trials

(8) m = 500, no = 500; (b) n, = 400, n, = 600;
(¢) ny = 300, ny = 700

produces the most accurate estimate of p, — py if (i) pr = .5, p2 = .5; () ;1 = .2,
D2 = 5.

11. In order to estimate the difference between the proportions of voters favoring
a candidate in two cities having N, and N voters respectively, a random sample
of 8, voters is taken from the first city and an unrelated random sample of s; voters
from the second city. If D, and D, denote the number of voters in the two samples
favoring the candidate, find an unbiased estimate of the difference in question and
give its variance.

12. Let T be an unbiased estimate of 8 whose distribution can adequately be
approximated by the normal curve. For each of the values SD(T) = .5, 1, 2, find
the probability that T lies within d units of 8 when (i) d = .5, (ii} d = 1, (ili) d = 2,
and present the nine answers in a table.

13. Under the assumptions of the preceding problem, suppose that SD(T) = .8.
Within what distance of 8 can we be (i) 809, (ii) 90%, (iit) 959, sure that 7' will
lie?

14. Under the assumptions of Problem 12, how small must SD(T') be if we require
a 909, chance of T being within .41 units of 87 (Use the approximation ®(1.64) =
95.)
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15. Supplement Table 1 by finding the entires in the second row corresponding
to the following entries in the first row: (i) 1.25, (i) 1.75, (iii) 2.25, (iv) 2.75.

16. Find the entires for the first line of Table 1 that would correspond to the
following entries in the second line: (i) .7, (i) .75, (iii) .8, (iv) .9, (v) .95.

17. What is the probability that the estimate B/n of p given in Example 1 falls
between .4 and .6 (inclusive) when p = .5and n = 257 Find the exact probability
and compare it with the normal approximation.

18. If » = 64, what is the probability that the estimate B/n of p given in Ex-
ample 1 falls between
(i) 4 and .6 when p = .5;
(it) .3 and .5 when p = 4;
(iii) .2 and .4 when p = .37

19. What is the probability that the estimate of p; — p; given in Example 3 falls
between —.1 and .1 when (a) p» = p1 = 3, (b) po = pr = 4, (¢) p2 = p, = .5and
(i) ny = ny = 40; (1) n; = 30, n. = 50; (iii) n, = 20, n, = 60?

20. Is it possible for an estimate of @ to have high probability of being close to 8,
even if its variance is large? [Hint: Suppose a random variable X takes on the
value 8 with probability .99 and the value 6 + 1000 with probability .01. What
is the variance of X, what the probability of X being close to 7]

21. A statistician wants his estimate to have the maximum possible probability
of falling within two units of the parameter §. Estimate T, is unbiased and has
standard deviation 1. Estimate T, is biased but has standard deviation 3. How
large must the bias of T’ be before the statistician would prefer T,? Assume that
both T; and T. are approximately normally distributed. [Hint: Note that
E(T,) = fand E(Ty) = 0 + b, where b is the bias of T,. Use the normal approxi-
mation to find P(|T) — 6] < 2) and P(|T. — 6] £ 2).]

8.3 SAMPLE SIZE

In the planning of almost any random experiment the question arises:
“How many ohservations will be needed?”’” To answer this question,
one must of course first be clear about the objectives of the experiment.
In estimation problems, the objective relates to the degree of accuracy
that is required for the estimate. In the preceding section, we have pro-
posed the variance (or standard deviation) as a measure of accuracy.
Alternatively, one might be interested in controlling the probability with
which the estimate falls within a given distance of the parameter beirg
estimated. As we have seen, for estimates to which the normal approxi-
mation is applicable, this can again be achieved by controlling the variance
of the estimate.

et us now translate the specification of the variance of an estimate into
a specification of sample size. We have seen in the examples of Section 2
that in each case the variance becomes small as the number of observations
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becomes large, and can be made arbitrarily small by taking sufficiently
many observations. Unfortunately, the same formulas show that the vari-
ances depend not only on the sample sizes but also on the parameters of
the model, which of course are unknown. Does this mean that sample
size cannot be rationally determined? Usually, one has some idea in
advance of the experiment as to the possible or likely values of the unknown
quantities, and this permits at least a rough calculation of the appropriate
sample size, as is illustrated by the following examples.

ExampLE 1. Binomial model. Suppose a biologist wishes to estimate
the frequency of twin births in a species. Let p denote the probability
that a birth will produce twins, and suppose that he wishes his estimate
of p to have standard deviation .01 (the estimate will then by Table 2.1
have probability about .95 of falling within .02 of the correct value).

He observes B twin births in a sequence of n births, and (as suggested
in Example 1.1) uses B/n to estimate p. The standard deviation of B/n
is, by (2.3), Vp(1 — p)/Vn. Setting this equal to the desired value .01
gives

1-—

n = (mo—lﬂ> ~ 10,000 p(1 — p),

which depends on p. If it is known from earlier studies that p is near .1,
the biologist should plan to observe about n = 10,000 X .1 X .9 = 900
*births.

To emphasize the dependence of n on p, let us change the problem to that
of estimating the frequency of males, which we shall assume to be near .53.
Then, to have an estimate with standard deviation .01 would require
n = 10,000 X .5 X .5 = 2500 observations. The number n of observa-
tions required to estimate binomial p with standard deviation A is in general

1) n = p(l ~ p)/A%

which is proportional to p(1 — p). In IFigure 1 we show p(1 — p) plotted
against p. It is seen that p(1 — p) reaches a maximum of } at p = }

25

0 5 1
Ficure 1. THE curve p(l — p)

‘Problem 5). This implies that if one uses n = 1/(4A?), which is the
appropriate value of n in case p = .5, one will have enough observations
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to give an estimate for p with standard deviation A or less. Furthermore,
the curve of Iigure 1 is flat near its maximum; hence, if the value of p is
near .5, the proportion of observations taken unnecessarily as the result
of using n = 1/(4A?) will be small. For example, if p = .4 or .6, 1/(44A?) is
only 49, larger than would be required (Problem 6).

The situation is quite different when estimating a probability p known
to be near 0 or near 1, because then the appropriate value of n depends
heavily on the true value of p. For example, if one believes that p = .02,
and wishes to have an estimate with standard deviation A = .001, one
might plan to take n = .02 X .98/(.001)? = 19,600. If in fact p = .04,
the proper value would be n = .04 X .96/(.001)? = 38,400, nearly twice as:
large. In such a situation it is often reasonable to use a completely differ-
ent design. For example, one might conduct a pilot study, the result of
which would give a preliminary estimate for p which could be used to
determine the number of observations in the main study. This is an
example of what is known as “two-stage’ design.

Inspection of formula (1) shows that the number n of observations re-
quired increases very rapidly when the desired standard deviation A is
decreased. The reason is that SD(B/n) is inversely proportional to the
square root of n, and hence decreases very slowly as n increases. This is
known as the square root law. It means that one must take four times as
many observations to obtain twice as much accuracy, when accuracy is
measured by standard deviation. If one wishes to cut the standard devi-
ation of the estimate to {4 its value, one must take 100 times as many
observations, etc.

ExampLe 2. Hypergeomelric model. Planning the sample size s for the
hypergeometric model is rather similar to the corresponding problem in
the binomial case. The unbiased estimate D/s for the fraction r/N of
special items in a population has variance (see (2.4))

D N—s r T 1
r Y _ . — 3. =
\ar(s)_N~l N(l N) )

To illustrate the determination of sample size in this case, suppose that a
polling organization wishes to estimate the proportion of voters who favor
candidate A in a forthcoming election for Mayor. There are only two
candidates, and the election is expected to be close so that it is reasonable
to assume the proportion /N to be close to 3. The number of voters is
N = 10,000, and the standard deviation of the estimate is not to exceed
.01 and hence the variance is not to exceed .0001. (This will give a
probability II = .95 that the estimate D/s will be within .02 of r/N.)
The desired accuracy will be achieved if the number s of voters to be inter-
viewed satisfies the equation
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_ 10000 —s 1
0001 = o009 " 45’
or s = 10,000/4.9996 = 2000.
Let us now change the problem by supposing that the election is for
Governor {(and is again close) and that the number of voters is N =
1,000,000. If the estimate D/s is to achieve the same precision, the sample

size s must satisfy the equation

999,999  4s

which gives s = 1,000,000/4000.9996 = 2494.
Surprisingly, only 259, more interviews are required to forecast an
election with 100 times as many voters. It seems very strange at first
that the sample size depends so little on the size of the population. The
result may appear less paradoxical if one realizes that the sample size
would not depend on the size N of the population at all if the sampling
were done with replacement. In that case, the voters drawn would be
unrelated, each having probability r/N of favoring candidate A. There-
fore, D would have the binomial distribution (n = s, p = r/N), so that

0001 = 1,000,000 — s 1

N

fraction r/N favoring A, the precision of the estimate /s would thereforce
be the same regardless of the sizes of the two populations. The only way
population size influences Var(D/s) is through the correction factor

N—-—s 1-(s/N)

N—-1 1-(1/N)
and this will be very nearly 1 (and therefore essentially constant) as soon
as N is large enough to make s/N very small. Even when forecasting a
presidential election involving 50,000,000 voters, a sample of a few thou-
sand would suffice, if it were feasible to draw a simple random sample from
the voting population and if there were no complicating factors such as
the Electoral College. (Of course in practice many of those interviewed
will refuse to state how they intend to vote, or will give false information,
or change their minds, or not vote, so that no sample size will be large
enough to permit really accurate election forecasts.)

Yar(D/s) would be E . —:— (1 - i) In two populations having the same

PROBLEMS

1. The biologist of Example 1 wishes to estimate p within .05 with probability .8.
Calculate the needed sample size under the assumption that (i) p = .1, (ii) p = .2,
(iit) p = .3.

2. In the preceding problem, what is the approximate probability that the esti-
mate will be within .05 of the true value if p is in fact (i) .2 in part (i); (i) .3 in
part (ii); (iii) .4 in part (iii)?
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3. Solve the three parts of Problems 1 and 2 ander the assumption that the
biologist wishes to estimate p within .05 with probability .9.

4. A doctor wishes to estimate the fraction of cases that will be cured by a new
treatment.

(i) To how many cases does he have to apply the treatment if he wishes his
estimate to have standard deviation .05, and if he believes that the treatment
will cure about 2 of all cases?

(if) With the experiment of part (i), what approximately is the probability that
the estimate will exceed .8 when actually the treatment cures only 609, of
all cases?

5. (i) Show that p(1 — p) = 1 — (p — $)2
(i) Use (i) and the fact that a square is always =0 to prove that p(1 — p)
reaches its maximum value § at p = 3.
(iii) Use (1) to show that p(1 — p) increases as p increases from 0 to 3 and
decreases as p increases from 1 to 1.

6. (1) In Example 1, show that 1/(4A?% observations exceed by only 4%, the
number that is necessary to achieve standard deviation A if p = .4 or
p = .6.
(ii) By what percentage do 1/(4A?) observations exceed the number necessary
to achieve standard deviation Aif p = 3orp = .7?

7. [n Example 2, compute the required size s of the poll if the population size
N is (i) 1000, (ii) 5000, (iii) 20,000, (iv) 50,000, (v) 50,000,000. Exhibit the re-
sults of this problem together with those of Example 2 in a table which shows how
the size of the poll increases with the size of the population.

8. Solve the five parts of the preceding problem if it is only required that the
standard deviation of the estimate not exceed .02 (rather than .01).

9. Suppose in Example 2 that the race is between three candidates all of which
have about equal chances of getting the plurality. If » denotes as before the num-
ber voting for candidate A, it is then reasonable to assume r/N to be close to %.
If the standard deviation of the estimate D/s is not to exceed .01, find the sample
size required if (i) N = 1,000, (ii) N = 4,000, (iii) N = 10,000, (iv) N = 100,000,
(v) N = 10,000,000.

10. In the preceding problem, let 7 denote the number of persons voting for
candidate B. Find an unbiased estimate of the difference r’ — r in the numbers
of votes for candidates B and A.

11. A customer who receives a shipment of 8000 parts wishes to estimate the
fraction that will withstand a given stress. He believes this fraction to be near .8.
How many parts should be tested if the chance that the estimate will be off by not
more than .1 is to be (i) 709, (i) 75%, (iii) 909, (iv) 9597

12. Solve the four parts of the preceding problem if the customer believes the
fraction to be near (a) .7, (b) .9.

13. Use Problem 5(i) to show that the variance of D/s in Example 2 never exceeds
N-s 1

N-—-1 4s
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14. In Example 2.3 suppose that we believe both p, and p: to be close to § and
that we plan an experiment with n; = n,. How many trials are required alto-
gether if the standard deviation of the estimate is to be .01? Compare this with

the number of trials required to estimate a single binomial probability p with the
same standard deviation.

15. Suppose in Example 2.3 that we believe p; to be approximately 3 and p.
approximately 1. It is desired to have Var(B,/n, — By/m) £ §. This result
may be achieved with various combinations of n; and n.. By trial and error find
the combination using the smallest total number of trials.

16. Suppose that p, and p. are the success probabilities in n; and n. binomial trials
respectively and that it is desired to estimate p. — p; within .02 with probability .9.
If n, = np = n, calculate the needed sample size n under the assumption that
Q) pr = p2 = .5; (i) p1 = po = .25; (iil) p1 = pp = .1

17. Solve the preceding problem under the assumption that (i) p1 = 4, p2 = .6;
(li) = .3, P2 = .5, (\il) = .2, P2 = 4.



CHAPTER 9

ESTIMATION IN MEASUREMENT
AND SAMPLING MODELS

9.1 A MODEL FOR SAMPLING

We have already discussed (Section 2.1) the idea of obtaining information
about a population by examining a sample drawn at random from the
population. In Sections 2.1 and 6.2 we considered examples in which the
quantity of interest was the proportion of the population having a given
property or attribute, for example the proportion of defective items in a
lot, or of persons in some group belonging to a specified political party.
We shall now generalize the discussion. Suppose there is attached to each
item in the population a value of some variable quantity capable of taking
on a spectrum of values, and that we are interested in knowing something
about these values. A few examples will indicate in how many different
contexts such situations arise.

ExaMmPLE 1. Wheat acreage. An agricultural agency needs to know the
total acreage planted to wheat in a geographical district. There is a list
of the farms in the district. Each farm has a certain acreage planted to
wheat. The agency takes a random sample of the farms, and sends a
surveyor to each farm in the sample to measure the acreage in wheat on
that farm.

LxampLE 2. Shaft diameter.  An automatic lathe turns out shafts that
are machined to a specified diameter. The lathe is not perfect, and each
shaft has an actual diameter that departs more or less from the desired
value. The inspector takes a sample from a lot and measures the actual
diameters of the sampled shafts.

ExampLE 3. Medical expenses. A labor union is considering starting a
health insurance scheme for its members. It wants to know how much
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the members spend on medical care. A sample of members are asked to
submit a careful record of their medical expenses for one year.

For dealing with the problem of “sampling by variables” we shall use
the model already developed in Chapter 5 in the context of a lottery.
(The reader should at this point review Examples 5.3.5, 5.5.2, and 5.6.2.)
In conformance with our earlier notation, let N denote the number of items
in the population (e.g., the number of tickets in the box, the number of
farms, the number of shafts, the number of union members). The quan-
tity of interest (prize, wheat acreage, diameter, medical expenses) will be
denoted by v; the value of this quantity for the first item in the population
is v, for the second item is vy, and so forth. The average value of v in the
population is (Example 5.3.5)

(1) b=(m+...+wv)/VN
while the mean square deviation of these values is (see (5.6.3))
2) ?=[nn—-0*+...4+ (ox — 9)?]/N.

An (ordered) random sample of size s is drawn from the population.
Let Yy denote the v value of the first item drawn, Y, the » value of the
second item drawn, and so forth up to Y.. By the equivalence law of
ordered sampling, each of the N items has the same chance of being
selected on any given draw. It follows that the random variables Yy, . . .,
Y, all have the same distribution. Their common expectation and vari-
ance is given by (see (5.3.2))

(3) EY)y=...=EY,)=1%
and (see (5.6.4))
(4) Var(Y,) = ... = Var(Y,) = %

The purpose of sampling is to gain information about the v values of the
population. In particular, we shall be interested in estimating the average
v value 7. It seems intuitively natural to use the mean

») Y=+t .. 4+ Vs

of the values observed in the sample as an estimate of the mean 7 of the
values in the population.

Before discussing the expectation and variance of ¥, let us first consider
an alternative sampling scheme. Suppose that s items are drawn with
replacement, i.e., each item drawn is replaced before the next item is drawn.
As was pointed out in Section 6.2, when sampling with replacement it is
reasonable to assume that the s draws are unrelated, and to use a product
model. Tn this model, each factor coincides with the model of Example
5.3.5 for the random drawing of a single item, so that the v values Y, Vs,
..., Y, appearing on the successive draws each have the distribution of
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the random variable Y of Example 5.3.5. Therefore formulas (3) and (1)
are valid whether the drawing is with or without replacement.

Since each of the Y’s has # as its expected value, it follows from the laws
of expectation that

(6) EY) =14,

so that Y is an unbiased estimate of 5. This is true whether the sampling
is done with or without replacement.

The variance of the estimate Y will however depend on which method of
sampling is used. If one samples with replacement, the random variables
Y, Yy, ..., Y, are defined on different factors of a product model, and
since each has variance 72, it follows from (4), the addition law for variance
(5.7.15), and (5.7.3) that

(7) Var(Y) = r%/s (with replacement).
On the other hand, if the sampling is without replacement, the random
variables Yy, ..., Y, are dependent. In this case, the formula for the

variance must be modified by the factor (¥ — s)/(NV — 1) which corrects
for dependence, and which we have already encountered in Section 6.2.
Thus, for sampling without replacement,

o N-s 1 .
(8) Var(Y) = No1 s (without replacement).
(This formula follows from (7.2.19).)

In planning a sampling investigation the question will always arise: how
large a sample should be taken? As pointed out in Section 8.3, this de-
pends on the degree of accuracy required for the estimate. Since Var(Y)
depends on 72, one must also have at least some idea of the value of 72
before a rational choice of s is possible. Information about 2 may be
available from studies made earlier on the same or on similar populations.
Once the desired variance of the estimate is specified, and a value for 72 is
obtained, the solution of equation (8) for s is exactly similar to that in the
hypergeometric Example 8.3.2. (In fact, the hypergeometric model is a
special case of the sampling model, as was discussed in Example 7.2.4.)

ExampLE 4. Pre-school children. To aid its planning, a school board
wishes to know the number of pre-school children in its district. A sample
of s is taken from the N households in the district, and the numbers
Yy, ..., Y, of pre-school children in these s households is determined.
The board would like to estimate the average number & of pre-school
children, where v, . . ., vy are the numbers in the N households, with a
standard deviation of .1.

In a study already made in a neighboring city it was found that 549,
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of the households had no pre-school children, while 2197 had 1, 16¢{ had 2,
7¢ had 3, and 2¢7 had 4. For that population,
7= 0054) + 1(.21) 4+ 2(.16) + 3(.07) 4+ 4(.02) = .82
and (using (5.6.5))
2= [0054) + 1(21) 4 4(.16) + 9(.07) + 16(.02)] — (.82)? = 1.13.

The board believes that its distriet is sufficiently similar to that of the
other city that it may use the value 7> = 1.13 in planning its study. There
arc N = 1200 households in its district. Thus s is determined by the
equation

Lo 1200 =k 113

T T s

’

ors = 103.

It is of course possible that in the board’s district the numbers of pre-
school children are somewhat more variable than in the neighboring city.
In this case, the estimate based on 103 observations will be somewhat
less precise than desired. It will however still be an unbiased estimate of
the average number of pre-school children among the households in the
district.

In many cases a sufficiently accurate prior value for =2 may not be
available. It may then be desirable to conduct a pilot study whose
purpose is to determine a reasonable size for the main sample. I'rom the
data gained in such a pilot study, the value of 7> may be estimated by the
methods developed in Section 5.

PROBLEMS

1. Of the N = 1000 familics in a town, 140 own no car, 675 own one car, 158 own
two cars, and 27 own three cars. Calculate 7 and 72 where the v value of each
family is the number of cars it owns.

2. For the N = 63 law firms of Problem 2.1.17, calculate ¥ and 7* where the »
value-of each firm is the number of lawyers who belong to it.

3. How will 7 and 72 be changed if every v value is
(i) increased by a constant amount a;
(ii) multiplied by a constant amount b?
(Note the analogy with the laws of expectation and variance.)

4, A population of N = 10 ites has the following ¢ values: 876, 871, 875, 872,
871, 875, 871, 876, 878, 879. (ompute 7 and 72 for this population. [Hint: Use
the idea of Problem 3(i); that is, work first with the “coded” vulues 876 ~ 870 = ¢,
871-870 = 1, cte.]
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5. Solve the preceding problem if the population has N = 12 items with the
following » values: 1012.1, 1013.4, 1012.6, 1012.1, 1012.8, 1013.7, 1013.1, 1011.9,
1018.3, 1012.0, 1012.4.

6. If you believe that the “outlying” value 1018.3 represents an error (perhaps
a copying mistake?) you might compute ¥ and 72 for the “trimmed” set of the
eleven values remaining after the outlier has heen removed. Carry this out and
compare the resulting values of 7 and 72 with those of the preceding problem.

7. Solve Problem 4 if N = 8 and the » values are: &, 1%, %, % o 0 7o
[Hint: Use the idea of Problem 3(ii).]

8. A sample of size s = 2 is drawn without replacement from the N = 5 integers
1,2,3,4,5. LetY,and Y, denote the first and second integers drawn,
(i) obtain the distribution of ¥ = (Y, + ¥»)/2;
(ii) calculate E(Y) and Var(Y) from this distribution and compare them with
the values given by (6) and (8).

9. It is planned to draw a sample of s = 50 items from a population of N = 100
items, with replacement. If instead the sampling were done without replacement,
how many fewer observations would be required to produce an estimate of ¥ with
the same variance?

10. What is Var(Y) for sampling with replacement when s = N? Explain this
result intuitively.

11. Suggest an unbiased estimate for the population total », + . . . + vy based on
Yy, ..., Y, Give formulas for the variance of your estimate when sampling (i)
with (ii) without replacement.

12. A population of size N is divided into strata of sizes N', N/, ... (N = N’' +

N” 4+ ...). Samples of sizes s’, s, ... are drawn from these strata, and the
sample averages Y’, ¥”, ... are to be used to estimate the over-all population
average .

(i) Express 7 in terms of the strata averages #', 7",

(ii) Give an unbiased estimate of 7.
(ili) State the variance of your estimate.

13. The v value of r of the N items in a population is equal to ¢/, and that of the
remaining N — r items is equal to v"".
(i) In a sample of size s, where s is smaller than both r and N — r, what are the
possible values of ¥?
(ii) What is the probability that ¥ = +'?

14. Two years after the complete count was made that is reported in Problem 1,
a survey is planned to estimate the average number of cars per family in the town.
How large a sample should be taken if the standard deviation of the estimate is to
be about .05? [Hint: Assume that N and 72 have not changed materially during
the two years.]

15. In Example 4, how large a sample is required if v is to be estimated with
standard deviation (i} .05; (ii) .02?
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9.2 A MODEL FOR MEASUREMENTS

In the first section of the book we gave, as an example of a random exper-
iment, the measurement of the distance between two points. When a
distance is measured repeatedly, the value that is obtained will usually not
be exactly the same on the various trials. The differences are attributed
to measurement error, and much work in seience and technology is related
to attempts to control and reduce errors of measurement. Not only the
measurement of distance but the measurement of all sorts of quautities is
afflicted with error.

Examrre 1. Velocity of light. A variety of techniques has been devised
in the attempt to reduce the error of measuring the velocity of light in a
vacuum, but even the most refined methods will yield varying values on
repeated determinations.

ExampLE 2. Intelligence. Psychologists have devised tests whose scores
are intended to measure the intelligence quotient of individuals. When
the IQ of an individual is measured several times, the values obtained
will in general be somewhat different.

ExampLe 3. Bioassay. The potency of a drug is often measured by
finding out how much of it is required to elicit a given response in experi-
mental animals. This process of the bioassay of the drug will not yield
quite the same value when it is repeated.

In each of these examples, and in countless others, if the measurement is
repeated many times under carefully controlled conditions, the results will
portray the features of a random experiment. While the value obtained
will differ from trial to trial, the frequency with which a given value is
obtained will tend to be stable in a long sequence of trials. This empirical
fact suggests that probability models might be useful for the analysis of
measurement error. We shall in this section develop a simple model, and
in this and later sections show how statistical methods can be applied to
gain some knowledge concerning the parameters of the model.

Let us denote the different values that may be obtained when a par-
ticular measurement is made, by wy, us,. ... On any one trial, exactly
one of these values will occur. These values may serve as the simple
events of our model. If the measurement werc to be repeated many times
under stable conditions, the value u; would occur with a certain frequency
J(w). Corresponding to this frequency we shall in the model assign a
probability p; to the simple event ;. Similarly to u, will be assigned the
probability p., etc. The probabilities py, p,, . . . must of course be non-
negative, and must add up to 1.

Now consider any one trial. On this trial, the measured value will
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depend on the result of the random experiment, and will therefore be a
random quantity. Let us represent this quantity by the random variable
X. A possible value of X is u,, and in fact P(X = w;) = p.  Similarly,
P(X = w) = ps, ete. We shall be particularly interested in £(X), the
expected value of the measured quantity. For brevity we shall denote
E(X) by the single letter u. According to (5.4.2),

(1) p=E(X)=u1p1+u2p2+....

The variance of X, which we shall denote by ¢% is according to (5.6.1)
given by

&) o’ =Var(X) = (1 — w)pr + (w2 — wW)?p2+ . ...

We shall refer to the model we have just developed as the measurement
model.

Let us consider next a more complicated experiment, in which two
quantities are to be measured. For example, a physicist may wish to
measure the velocity of light in a vacuum and in air, or the distance be-
tween two mountain peaks may be measured by two different teams of
surveyors. For each of the two measurements separately, a measurement
model of the kind described above would be appropriate. Let X and ¥
be the random variables representing the first and second measurements.
The two measurements may be regarded as two parts of the experiment,
and if they are made in such a way that their results are unrelated, we may
use the product of the two measurement models as a model for the experi-
ment as a whole. In such a product model, the random variables X and
Y are independent (see Section 5.2).

These considerations extend at once to three or more measurements,
represented by random variables X, Y, Z,.... For each measurement
separately, a measurement model may be used. If, in addition, the
several measurements are unrelated, the product of these separate models
will serve as a model for the whole experiment, within which X, Y, Z, . ..
are independent random variables. We shall refer to this product model
as a model for several measurements.

In the statistical analysis of such experiments, it is often necessary to
consider linear combinations of the measurements, of the form aX + bY +
¢Z + ... where a, b, c. .. are constants. It follows immediately from
(5.5.5) and (5.5.3) that the expectation of such a linear combination is
given by
3) E@X+bY+cZ+...)=aEX)+bEY)+ckZ)+....
Furthermore, since aX, bY, ¢Z, . . . relate to separate factors of a product
model, it follows from the laws (5.7.15) and (5.7.3) of variance that

4 Var(aX +bY +c¢Z +...)
) = a2 Var(X) + b? Var(¥) + ¢ Var(Z) + . . ..
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An important special case of the model for several measurements arises
when several, say n, measurements are made on the same quantity. In
this case it is convenient to represent the n successive measurements by
Xy, X5, ..., X.. Since the measurements are of the same quantity, it is
natural to use the same factor model for each. The resulting product
model will be called the model for repeated measurements. The common
expectation of the X’s, defined by (1), will be denoted by u:

po=EX) = X)) = ...=EX.);
and the common variance, defined by (2), will be denoted by ¢*:
o? = Var(X,) = Var(X,) = ... = Var(Xy).

In this model, x and o* are parameters whose values are usually unknown.
The purpose of taking the measurements is to obtain information concern-
ing these unknown parameters. In the present section we shall consider
the problem of estimating x, which one may think of as the quantity being
measured. (The estimation of ¢2, the precision of the measuring process,
will be taken up in Section 5.) For the repeated measurements model,
formulas (3) and (4) simplify to

(5) EaXi+... +a.X)=(@+...+a)u
and
(6) Var(a: Xy + ... 4+ a.X,) = (a2 + . . . + a.})o

For estimating the quantity g, it is common practice to use the arithmetic
mean X of the measurements,

- Xi+...+X, 1 1
X-—-————-—n —-nX1+...+nX,,.
Application of (5) with a; = ... = a, = 1/n gives
7 EX) = u.

Thus, X is an unbiased estimate of the common expected value u of the
measurements. It follows similarly from (6) that

(8) Var(X) = o?/n,
and hence that
(9) SD(X) = o/Vn.

Thus the standard deviation of the arithmetic mean of n measurements
equals the standard deviation ¢ of a single measurement, divided by v/ n.
The estimate X for u can therefore be made as precise as desired by taking
a sufficiently large number of measurements.

There is another way of examining the behavior of the estimate X when the num-
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ber n of repeated measurements is very large. Reeall the Chebyshev inequality,
developed in Section 6.9. Formula (6.9.5) with X in place of Z (and u in place of {)
states that
P(X — pl > ¢) < o%/ne?,
or equivalently
P(p—c<X<u+c)21—:—;-
This inequality holds for any positive number ¢, and we shall now suppose that ¢
is very small, so that (up — ¢, p + ¢) is a very small interval. Although ¢?%/c? is
then very large, we can—by taking n sufficiently large—make o2/nc? as small as
we please, and hence
Ppu—c<X<pu+eo

as close to 1 as we please. That is, for any fixed interval (u — ¢, g + ¢}, no matter
how small, we can make it as nearly certain as we wish that X will fall in this
interval, by taking sufficiently many measurements. A method of estimation
(such as estimating u by the average X), which has the property that the estimate
is practically certain to fall very close to the parameter u being estimated, pro-
vided there are sufficiently many observatious, is called consistent.

When planning to make a number of measurements the question usually
arises: how many should be made? As in the binomial and hypergeo-
metric cases, the number of observations required will depend on the
desired degree of precision. It also depends on g, the standard deviation
of an individual measurement. Unfortunately, this quantity is not usually
known. Just as with the analogous problem of determining the size of a
sample (Section 1) where 7 plays the same role as o plays here, one must
either take a value of ¢ from previous work with measurements of similar
precision, or carry out a pilot study to estimate ¢ by the method to be
discussed in Section 5. Once a value of o is obtained, the required number

n of measurements is from (8) _
n = ¢¥/Var(X),

where Var(X) is the desired variance of the estimate.

ExampLE 4. Weighing with a chemical balance. An object weighing about
3 grams is to be weighed with a standard deviation of 0.03 gram. From
previous experience, the balance is known to provide weights for such
objects with a standard deviation of approximately ¢ = 0.1 gram. There-
fore we will need to make approximately (.1)%/(.03)2, or n = 11 determi-
nations.

The model for several measurements and its special case, the model for repeated
measurements, are product models. Accordingly they can be realistic only if the
several measurements are unrelated (see Section 3.2). In particular, if the
measurements are made in such a way that the results found on some of the
measurements exert an influence on the values obtained on others, unrelatedness
would not hold. The danger of such an influence is greatest in the case of repeated
measurements by the same observer of the same quantity. The observer re-
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members what he found previously, and this knowledge may influence his later
findings, especially if the measurement involves a large degree of subjective judge-
ment. Before adopting the model for repeated measurements, one should carefully
consider whether the measurements are unrelated, or nearly so.

Just as the hypergeometric model can be viewed as a special case of the sampling
model by assigning to each item in the population a v value that is 1 or 0, so the
binomial model can be viewed as a special case of the model for repeated measure-
ments by assigning to each trial a u value that is 1 or 0. Depending on whether a
trial is a success or failure, we assign to it the ‘“measurement” 1 or 0. The
“measurements” X, ..., X, are then just the indicator variables that indicate
success on the n trials. The total number

B=X+...+ X,

of successes has the binomial distribution corresponding to n independent trials
each with success probability p = P(X = 1). The expectation u of the X’sin this
case is p and the estimate X of u = p reduces to B 'n, the estimate proposed for p
in Section 8.1.

The model for repeated measurements has important applications also to the
problem of sampling. As we remarked in the preceding section, if the sampling is
done with replacement, the variables Y, ..., Y, (representing the v values of
successive items) not only all have the same distribution but in addition are inde-
pendent. The model for sampling with replacement is therefore formally identical
with the measurement model, with the distincet values among o), vs, . . . playing the
role of w, u, . .., With ¥ = g, etc. Suppose now that sampling is without replace-
ment but that the sampling fraction s, N is small. Since the sample is then only a
small fraction of the population, a replaced item is unlikely to be drawn again, so
that the distinction between sampling with and without replacement becomes
unimportant. (Formally, the }'s are dependent but the. dependence is so slight
that it may be disregarded.) In this case, the model for sampling with replacement,
and hence the measurement model, frequently serves as a good approximation.

While the estimate X for 4 may be made as precise as desired by taking n large
enough, there is an important practical difficulty that the experimenter must keep
in mind. The quantity near which X will probabily be is u, the expected value of
any single measurement. Unfortunately, 4 may not be the quantity that one
wants to measure, in which case the measurements are said to be biased. Suppose,
for example, that several IQ tests are given to a candidate in order to obtain a
very accurate determination of his intelligence. No increase in the number of tests
will improve the determination if he has persuaded a more intelligent friend to take
the tests in his place. Similarly, it is useless to multiply thermometer readings to
obtain a very accurate determination of a temperature if the thermometer being
used is not calibrated correctly. Averaging a large number of biased measurements
will produce a result X that is very precise (in the sense that its variability is small)
but not very accurate (in the sense that X will not be close to the quantity of
interest). To take another simple illustration, suppose we measure the length of
a ship one hundred times using a meter stick very carefully, and average the results.
Our final value will be very precise but inaccurate if by mistake we have used a
stick that is one yard instead of one meter long.
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The purpose of making repeated measurements on a quantity p is of course to
obtain a more precise estimate for u than is possible with a single measurement.
As we see from (9), the standard deviation of X, which measures its precision, can
be made as small as desired by increasing the number n of measurements suffi-
ciently. Unfortunately, just as in the binomial model (Section 8.3), the standard
deviation goes down only slowly as n is increased; the “square root law” holds also
in the measurement model. To increase precision tenfold, 100 times as many
measurements are required.

PROBLEMS

1. Cut a piece of paper into 20 strips of equal width. On the upper edge of each
strip, make a pencil mark at the point which appears to you (by eye) to be the
midpoint. After all 20 strips have been bisected visually, determine the midpoint
of each strip using a ruler. In all 20 cases measure the error of the midpoint ob-
tained visually, and estimate the expected value of your error, that is, of the bias
of the visual method. (Keep the observations for later reference; sce Problem 5.1.)

2. Make 10 measurements of the width of a room using a foot rule. Use these
measurements to estimate the width of the room. (Keep the observations for
later reference; see Problem 5.1.)

3. Explain the relevance of the measurement model when the numbers of points
are observed on repeated throws with a die. What are the possible values u,,
Uy, . . . of this “measurement”? What is the meaning of u? How would you
estimate u?

4. Ts the measurement model appropriate for a set of n digits produced by a
random digit generator?

5. The following are 29 measurements of a physical quantity:

6.59 6.62 688 6.08 626 6.65 636 629 6.58 6.65
6.55 6.63 6.39 644 634 6.79 620 637 6.39 643
6.63 634 646 6.30 6.75 6.68 6.85 6.57 6.49

Obtain an estimate of this quantity. [Hint: See Problem 1.4.]

6. Repeated measurements X, . . ., X, are to be taken of a physical quantity g,
and it is known that the variance of each measurement is approximately equal to 4.
How many observations are required if we wish the standard deviation of the
estimate X of u to be (i) .4; (i) .1?
7. Solve the two parts of the preceding problem if the variance of each measure-
ment is equal to (i) 2; (ii) 16.
8. Let X, X, be two unrelated measurements of u, with E(X)) = E(Xs) = p.
(i) Show that for any constant e, the statistic T = aXi + (1 — @)X, is an
unbiased estimate for u.
(i) Assuming that Var(X,) = Var(X,) = ¢?, find the variance of T for the
valuesa = 1, %, 4, %, 2. Which value of a would you prefer?
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(iif) Assuming instead that Var(X,) = 1 Var(X,), find the variance of T for the
same values of a as in part (ii). Which value of ¢ would you prefer now?

9. Three objects A, B, and C have true weights a, 8, and v. They are weighed
in pairs: A and B together have weight X; B and C together have weight ¥'; C and
A together have weight Z. We assume that the weighing process is free of bias,
so that E(X) = a + 8, and so on.

(i) Find unbiased estimates of «, 8, and ¥.

(ii) Find the variances of the unbiased estimates of part (i) and compare them
with the variances of direct single weighings of each object, which also pro-
vide estimates of «, 8, and 7 in three weighings. (Assume that any weighing
has variance ¢? and that the weighings are unrelated.)

10. Three objects A, B, and C have true weights , 8, and v. In each of three
weighings, two of the objects are put on one side of the scale and the third on the
other side. If X is the weight that has to be added to C to balance the scale when
A and B are on the other side, E(X) = «a + 8 — 7. Similarly E(Y) = a+7vy - 8
and E(Z) =8+ v — a.

(i) Find unbiased estimates of a, 8, and 4.

(ii) Find the variances of the unbiased estimates of part (i) and compare them
with the variances of the estimates of the preceding problem. (Assume as
before that any weighing has variance ¢% and that the weighings are
unrelated.)

11. Four objects A, B, C, and D have true weights «, 8, v, and 8. Suggest three
different methods of using four weighings which provide unbiased estimates of
a, B, v, and &, and compare the variances of the estimates for the three different
methods. (Hint: Methods are suggested by Problems 9 and 10.)

12. A chemical balance produces weighings with standard deviation 24 units.
How many repeated measurements must be averaged to produce an estimate with
standard deviation equal to (i) 2 units; (ii) 1 unit?
13. From a large population, n persons are selected at random and. are asked
whether they prefer product A or B, or whether they are indifferent. Let p, ¢, r
denote the probabilities that a person prefers A, is indifferent, or prefers B. Each
person is assigned a score: +1 for preferring A, —1 for preferring B, 0 for indif-
ference. In a model for repeated measurements these scores are denoted by
Xy, X0
(i) Express p in terms of p, g, 7.
(i) Express o2 in terms of p, ¢, 7.
(iti) Express the estimate X in terms of the numbers of persons in the three
categories.

14. Measurements now cost $1 each. For $3 we could obtain measurements
with standard deviation only half as large as the present measurements. Would
this be a good idea?

15. Suppose, in the model for repeated measurements, we happen to know that
p =17, while ¢ is unknown. Suggest an estimate for ¢2 [Hint: What is the
value of E(X, — 7)2? of E(X, — 7)¥?]
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9.3 COMPARING TWO QUANTITIES OR POPULATIONS

One frequently wishes to determine the difference between two quantities,
for example the difference in the velocity of light in two media, or the
difference in potency of two drugs. Similarly, one may wish to know the
difference between the average value of a certain quantity, such as income
or intelligence, in two different populations. In such cases, where one is
comparing two quantities or two populations, the experimental data will
consist of observations made under two different circumstances. We shall
now use the ideas of the preceding sections to develop models for analyzing
such comparative data. These models together with those of the next
section form the basis for the statistical analysis of comparative experi-
ments.

ExampeLE 1. Comparison of two measured quantities. Let us first consider
experiments for comparing two quantities. To provide a basis for the
comparison, suppose that a number of measurements are made on each
quantity, say n measurements on the first and & measurements on the
second. If the n 4 & measurements are unrelated, we may use the model
for several measurements of Section 2; denoting by X, X,, ..., X, the
random variables which represent the n measuremeuts on the first quantity,
and by Xi, X3,..., X{ the random variables which represent the k
measurements on the second quantity. All n 4 k random variables are
independent. Since X, X,, . . ., X, represent measurements on the same
(first) quantity, it is natural to assume that they all have the same distri-
bution, and hence in particular the same expectation, say u, and the same
variance, say ¢2. Similarly X{, X3, . . ., X; all have the same distribution,
and hence the same expectation, say y’, and the same variance, say o¢'%

In accordance with the discussion of the repeated measurement model of
Section 2, one may use X = (X; + X, + ... + X.)/n to estimate », and
X' = (Xi+ X3+ ...+ Xi)/k to estimate . Then it is natural to use
X’ — X as the estimate.for x' — u. Since

. ¢ X X Xa
’ - —_— e —
X—-X—-k-i—...—}-k T T

we can apply (2.5) to find that

(1) EX —X)=u —pn,
so that X’ — X is an unbiased estimate for ¢’ — u; and apply (2.4) to find
(2) Var(X' — X) = o'?/k + o*/n.

In designing an experiment to compare two measurements, two sample
sizes, n and k, must be selected. The problem of making this choice will
be discussed in Section 10.2.

The above model for comparison of two measured quantities may be
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thought of as the product of a model for n repeated measurements on the
first quantity, and of a model for k repeated measurements on the second
quantity. With this point of view, (2.7) gives E(X) = pand E(X’) = 4/,
from which (1) follows. Turthermore, (2.8) gives Var(X) = ¢?/n and
Var(X’) = ¢"%/k, from which (2) follows using the fact that X and X’ are
independent. This approach gives alternative proofs of (1) and (2).

IixampLe 2. Comparison of populations. Now let us turn to the problem
of determining the difference between the average values of a quantity in
two different populations. A sample is drawn from each population, and
the value of the quantity is determined for each item in each sample.
Suppose for example that one wishes to know the difference in the average
amount of engine wear in two fleets of trucks. A sample is taken from
each fleet, and the wear determined on the trucks in the two samples.
Again, in a study to compare caries rates of children in two cities with
different amounts of fluorides in the water supply, samples of children are
drawn from the first-grade children in each city, and dentists determine
the number of caries for each child in each sample. For each sample
separately, a model for sampling (as discussed in Section 1) is appropriate;
and, if the samples are so drawn that they are unrelated, the product of the
two models may be used for the whole experiment.

Let the first population consist of N individuals, having valuesv,, . . ., vy
for the quantity of interest, and the second population of K individuals,
having values »i,...,vk. In accordance with our earlier notation we
shall denote the average of the v values by 7 and that of the ¢’ values by ¥'.
Similarly we shall denote by 7% and 7’2 respectively the population variance
of the v values and of the v’ values. Let us represent the observed values
in the sample of s from the first population by the random variables

Yy, ..., Y, and those in the sample of ¢ from the second population by
Yi,...,Y/.. We know from (1.6) that Y is an unbiased estimate for #
and Y’ is an unbiased estimate for #’. Therefore

3) Y -Y

is an unbiased estimate for 7/ — ¥, the difference in the mean values of the
quantity with two populations. Since Y and Y’ are independent, formula
(1.8) gives

@) Var(Y' — 7) = K-t o2

N—5s 72
N1 sTK-1 ¢

PROBLEMS

1. TUse (2.5) and (2.6) to write out a formal proof of (1) and (2).

2. Suppose in Example 1 that ¢'? = 402
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(i) For each possible combination of n and k for. which the total number n + &
of measurements is equal to nine, find the variance (2), and plot these
variances as a function of n forn = 1,2,...,8.

(ii) Among the combinations of part (i), find that which makes the variance (2)
as small as possible.

3. In Example 1 suppose that n = k. Find the number n of measurements
required if the standard deviation of the estimate X'~ X is to be .1 when
()e2=¢g?=1;({) o= 1,0 =4
4. The following are ten measurements of u’ and eight measurements of u:

Wi 173, 17.1,18.2, 17.5, 15.8, 16.9, 17.0, 17.5, 17.8, 17.1

u: 32,32, 89,6 33,27,34,40,2.9.
Obtain an estimate of p' — p.
5. Samples of 100 families are taken in each of two towns. The number of cars

owned by each of the 200 families is observed and the information summarized in
the following table.

Nocars Onecar Twocars Three cars[ Total

100
100

Sample 1 23 58 14 5
Sample 2 17 51 26 6

(i) Estimate the difference in the average number of cars owned by families in
the first town and in the second town.

(ii) Estimate the difference in the (relative) frequency with which a family owns
at least one car in the first town and in the second town.

6. In Example 2 devise an unbiased estimate of
Q) @+...+ow)— @ +...+rk)
(i) @+ ...+ + @+ ..+ k)
(i) v+ 7.
7. Tind the variances of the estimates proposed for the three parts of the pre-
ceding problem.

8. Suppose in Example 2 that N = K = 101 and that 7'2 = 272 Find by trial
and error the combination of sample sizes s and ¢ which make the variance (4) as
small as possible, subject to the condition that the total sample size s + ¢ is equal
to six.

9. In Example 2, assume N = K = 101 and suppose that & = ¢. Find the sample
size s required if 7 =1, 7 = 1.5 and if the standard deviation of the estimate
Y’ — P is to be (i) .1; (ii) .05.

10. Solve part (i) of the preceding problem if the sample sizes, instead of being
equal, are to be in the relationship ¢/s = 3.

11. Show that the method of estimating ' — u by X’ — X proposed in Example 1
is consistent as k and u get large.
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9.4 ESTIMATING THE EFFECT OF A TREATMENT

In scientific and technical work, one is often interested in determining the
magnitude of the effect a treatment will have when it is applied to subjects
of a specified kind. In the present section we shall develop a model that
may be used in designing and analyzing experiments for estimating the
average effect of a treatment in a population of subjects. We begin by
giving examples of such situations.

ExampLe 1. Vaccine boosters. The passage of time will usually attenuate
the protection afforded by a vaccine, as is reflected by a slow decrease in
the level of antibody in the blood. It may then be desirable to administer
a “booster,” intended to raise the antibody level again and thus to restore
the protection. A question of interest about such a booster is: how much
does it raise the level?

ExampLE 2. Engine-oil addilives. Petroleum engineers devise many
chemicals of which it is hoped that they will prolong the life of automobile
engines when added to the engine oil. For example, consider an additive
which is intended to increase the number of miles a car may be driven
before it begins to require oil between changes. For such an additive, it is
of importance to know how many miles of additional driving it will afford.

ExampLE 8. Rainmaking. There are firms which offer, for a fee, to
“seed” the clouds of a storm in order to increase the amount of precipi-
tation. The question then arises: by how much will seeding increase the
precipitation?

In each of these examples we may distinguish a treatment (booster,
additive, cloud-seeding) that may be applied to subjects (persons, engines,
storms) in an attempt to change a response (antibody level, miles before
oil must be added, amount of rainfall). Let us now specify just what is
meant by the “effect” of such a treatment.

Consider one particular subject, and suppose that his response would be
equal to w if he were given the treatment, while it would be equal to » if
he were not given the treatment. Then the difference w — v is the
additional response elicited by the treatment, above what it would have
been without the treatment. We shall define this difference to be the
effect of the treatment on that subject, and denote it by A; that is,

A=w— v

For example, if a particular storm would produce 2.4 inches of rain without
seeding, and w = 2.7 inches with seeding, then the effect of seeding on that
storm is A = 2.7 — 2.4 = .3 inch.
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It is not to be expected that a treatment has exactly the same effect on
all subjects, and what is usually of primary interest is its average effect on
subjects of a specified kind. Consider a population of N subjects of the
kind in question, and suppose that the first subject would give responses
w; and », with and without treatment, so that the effect of the treatment
on the first subject is A, = w; — v, Similarly, for the second subject the
effect is Ay = w, — vy, and so on up to Ay = wy — vy. Then the average
effect of the treatment ¢n this population is A = (A, + . . . + Ax)/N.

While the effects Ay, . . ., Ay of the treatment on the different subjects
in the population are never exactly equal, the estimation of A is of interest
mainly in those cases when they are not too different. Indeed, if the treat-
ment effects are drastically different, this fact would usually be of greater
importance than the value of A itself. For example, if a drug will speed up
the recovery of half the patients by two months, while slowing down the
recovery of the other half by two months, A is 0; but the importart question
would be to identify the patients whom the drug will benefit. Iortunately,
in many areas of experimentation the treatment effects are rather similar
for the different subjects, so that most of them are close to A. The ideal

case would arise in the constant effect model, in which the effects A, . . ., Ay
are all equal so that
(1) A1=...=AN=Z.

Experiments for estimating A fall into two main types, according to
whether it is, or is not, feasible to observe both the v value and the w value
of the same subject.

Type (a). In Example 1, it is possible to measure a subject’s antibody
level, give him the booster, and then (after an appropriate interval)
measure the level again. We may then interpret the first measurement
as the subject’s level v without treatment, and the second measurement
as the subject’s level w with treatment, and by subtraction find the magni-
tude A = w — v of the treatment effect for this subject.

Type (b). In Examples 2 and 3 it is difficult to see how both » and w
could be determined for the same subject. l'or example, if a storm is
seeded, one can observe how much rain w it produces when treated, but it
is then not possible to observe how much rain » that same storm would
have produced if it had not been seeded.

We shall now propose experimental designs suitable for these two types
of experiments.

Desiax A:  Both responses observable on the same subject. In this case,
an estimate for A may be obtained as follows. Draw a random sample of,
say, s subjects from the population of N subjects. For each subject in the
sample, observe both » and w values, and by taking their difference find
the treatment effect for that subject. Let these effects be denoted by
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D, ..., D, for the s subjects. Then the model of Section 1 applies, with
Ay, . .., Ay playing the role of vy, . . ., vy, and Dy, . . ., D, playing the role
of Yy,..., Y, By(.6),D = (D,+ ...+ D,)/sisan unbiased estimate
of A, and the variance of the cstimate is by (1.8)
— N —s &

I —_ . —
2) Var(D) N=1
where §? is the population variance of 4, . . ., Ay, i.e.,
3) 0= [(Ar — A+ ...+ (Ay — B)?]/N.

Now let us turn to experiments of type (b), in which it is not possible
to observe both the v value and the w value on the same subject. In this
case, one can never discover the A value of any subject; yet, fortunately,
it is still possible to estimate the average A value in the population. By
averaging the equations A, = w, ~ v;,. .., Ay = wy — vy, we find that

4) A=

that is, the average treatment effect in the population is the difference of
the average responses with and without treatment. 7The following design
makes it possible to estimate @ and #, and hence A.

DEsioN B:  Only one response observed on a given subject. Draw two
distinct samples, of sizes s and {, from the population. On the first sample
of s subjects observe the v values, which may be denoted by Y, Y,, . . ., Y,.
The model of Section 1 applies, so that ¥ is an unbiased estimate of 7.
On the second sample of ¢ subjects observe the w va'ues, which may be
denoted by Zi, Z,, ..., Z,. Again using the model of Section 1, Z is
seen to be an unbiased estimate of w. It follows that Z — Y is an un-
biased estimate of W — 7 = A. Thus, the difference between the average
response of the ¢ treated subjects and the average response of the s un-
treated subjects provides an unbiased estimate of the average effect of the
treatment in the population from which the two samples come. (The
validity of the above argument rests on the fact that the second sample
behaves like a random sample drawn from the entire population. This
follows from the generalized equivalence law of ordered sampling (Section
2.3), applied to the total sample of s + ¢ observations.)

The calculation of the exact variance of the estimate Z — ¥ is somewhat
technical (see Problem 6), but there is an easy approximation in case both
of the sampling fractions s/N and t/N are small. In this case, it wouid
make little difference whether we sampled with or without replacement.
For sampling with replacement, a product model is appropriate for the
s 4 t draws and hence we may use for the random variables Y, . . ., ¥V,
Zy, ...,Z, essentially the same special case of the model for several
measurements already employed in Example 3.1. If we again denote the
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population variance of vy, ..., oy by 7%, and similarly denote the popu-
lation variance of wy, . . ., wy by «?, it follows from (3.2) that

_ R . L.
5) Var(Z — T) = 7?2 | w? (approximation for s/N,

s t t/N small).

In applications of (i), the requirement that s/N and t/N be small often
presents a difficulty. An experimenter is seldom so fortunate as to be able
to draw random samples from a number N of suitable subjects so large
that the sizes s and ¢ of the two experimental groups constitute only small
fractions of N. Rather, he will assemble (perhaps with difficulty) as many
suitable subjects as he needs, so that often all N subjects are used for the
experiment. In this case, s +¢{ = N and s/V and ¢/N are not small.
Fortunately, there is another situation in which (5) holds. In the constant
effect model (1), we have (sce Problem 3) 72 = »? and unless N is very
small (see Problem 7)

, (approximation for con-
-+ TT, stant effect model, N
not small).

(6) Var(Z - ¥) =

w |3,

Thus, our simple approximation for the variance of the estimate of A
holds if either the sampling fractions are small, or the effect is constant.

Since there often is available much past experience with responses in the
absence of treatment, so that the value of # may be taken as known, it is a
common practice to dispense with the first sample of design B, using the
known value of # rather than its estimate ¥. This is, however, not good
practice, since the circumstances under which the past information about
7 was acquired may differ materially from those under which the current
observations are made. It is seldom safe to dispense with current obser-
vations Y,, ..., Y, without treatment. These are known as the control
observations, since they provide the basis against which the treated re-
sponses may be gauged. (In this language, in design A we may say that
“each subject is its own control.”’) For further discussion of the need for
controls see Section 12.1.

Design B can of course be used even in those cases in which design A is
applicable, and the question then arises, which design to use. This choice
involves two main issues.

(i) When it is applicable, design A is usually much more efficient than
design B, for the following reasons. We have remarked that the estimation
of B is of interest principally in those cases where A,, . .., Ay are rather
similar to each other, so that their population variance 8% is small. It
then follows from (2) that Var(D) is small even with a sample whose size s
is quite modest. In the ideal case of the constant effect model (1), it is
easy to see from (3) that 8 = 0, so that D provides a perfect estimate even
with a sample of size 1. While the ideal is never attained in practice, it is
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usually the case that A is less variable than cither v or w. Then & is
smaller than either 72 or ?, and hence Var(D) is smaller than Var(Z — Y)
as given by (5), when equal numbers of observations arc used in the
two desigus.

(i) Design A, however, may involve a risk of bias that is absent from
design B. When both v and w values ave observed on the same subject, it
is often difficult to avoid the possibility that the two observations are
taRen under different conditions. Thus, in Ixample 1, it may take some
time for the booster shot to achieve its full effect, so that the measurement
w of antibody level with treatment is made at a considerably later time than
the measurement » of antibody level without treatment. The fact that
the levels are measured at widely separated times tends to reduce their
comparability. In other cases, the mere act of making the first measure-
ment may influence the value of the second measurement. For example,
a psychologist wishes to investigate the possibility that a stimulating drug
improves performance on an 1Q test. He administers the test to a subject
to measure his response v without treatment, then gives the drug and re-
administers the test to measure his response w with treatment. Clearly,
the fact that the subject has taken the test before might tend to improve
his performance the second time, apart from any specific influence of the
drug.

For clarity of exposition, we have written of comparing treated subjects
with untreated controls. Actually, the interest may reside in comparing
two treatments with each other. In such cases, the machinery we have
developed can be applied, with one of the treatments playing the role of
“no treatment.” Thus, vy, . . ., vy become the responses to the first treat-
ment while wy, . . ., wy are the responses to the second treatment, and A
is the average superiority of the second treatment over the first.

While the question is not really within the technical domain of statisties,
it should be pointed out that a crucial matter to be settled in planning a
treatment-response experiment is the choice of the response variable to be
observed. Two issues govern this choice: the response should be easily
and accurately observable; but, more important, it must be closely related
to the actual effect of interest. Thus, in an experiment to compare two
methods of teaching the caleulus, it is easy to observe a student’s score on
a standardized examination, but much more difficult to determine the
depth of understanding which the student has acquired. If the exami-
nation score is chosen as the response variable, there is a real danger that
the experiment will favor a superficial instructional method that prepares
the students for the specific examination. Again, in Example 1, the
response variable was taken to be the antibody level in the person’s blood.
The actual effect of interest is of course the degree of protection against
the disease, which is very difficult to observe, but which according to
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theory should be closely related to antibody level. If this theory is wrong,
the experimental conclusions could be most misleading.

PROBLEMS

1. Suppose the untreated and treated responses in a population of size N = 5 are
v=152,=903=27,04 =21, 0, = 6
w o= 22, w, = 8, w3 = 34, wy = 24, w; = 12.
(i) If design B is used with s = 3 and { = 2, obtain the distribution of Z-7Y.
(ii) If design A is used, obtain the distribution of D for s = 1.
(iii) Graph the histograms for the distributions of (i) and (ii) on a common
scale and decide which design scems best. [Hint: (i) For each of the
$) = 10 possible choices of Z, and Z. list the values of Z, Y, and Z — ¥.]

2. Compute 7%, w?, A, and 0% for the population of Problem 1, where A is the
population covariance (7.2.22).

3. (i) Show that if (1) holds, then
@ 2= w2 =\

(ii) Show conversely that (7) implies (1). [Hint: (ii) Note that (7) implies
62 = 0.]

4. Under the assumptions of Problem 1(i) compute Var(Z — )
(i) from the distribution of Z — ¥ obtained in Problem 1(i),
(i1) from formula (8) below.

5. Compute Var(D) under the assumptions of Problem 1(ii) and compare this
variance with Var(Z — ¥) of the preceding problem.

6. (This problem depends on Section 7.2.) Let ¥ and Z be the estimates of ¥
and w of design B.
(i) Show that Cov(Y, Z) = —\/(N — 1) where X is the population covariance
(7.2.4).
(it) Show that

—872 N-—-tw 2\

“is TNt -1

(iii) Explain why you would expect (8) to be close to (5) if s and ¢ are small but
N is large.

®) Var(Z — V) = %

[Hint: (i) It is a consequence of (7.2.23) that the covariance of the r value of any

randomly drawn item with the w value of any other randomly drawn item is
=N = 1]

7. Use (3) to show that in the constant effect model, (8) reduces to

N AT
® N—l(s+t)
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9.5 ESTIMATION OF VARIANCE

We have pointed out, in Section 8.2, that it is customary when reporting
an estimate to give its standard deviation, so that the user of the report
has an idea of the accuracy and reliability of the estimate. The estimate
is then frequently presented as

estimate -+ standard deviation of estimate.

Thus, a chemist may write: “The material was found to contain 7.32 + .16
grams of calcium.” This means that his estimate for the amount of
caleium is 7.32 grams, and that the standard deviation of the estimate is
.16 gram. Similarly, an agronomist may report: “The fertilizer increased
the yield at the rate of 120 + 30 pounds per acre,” or the report of a
public opinion poll may say: “Candidate A has the support of 62 + 39 of
the voters.” Note that this is not a guarantee that the support falls
between 62 — 3 = 599, and 62 + 3 = 659; the figure following the +
is the standard deviation rather than the extreme limit of error, and it is
quite possible that an estimate will be off by more than one standard
deviation. In fact, if the distribution of the estimate may be approxi-
mated by the normal curve, there is something like a 329, chance that this
will oceur (see Table 8.2.1).

The variance of an unbiased estimate was worked out in a number of
examples in the preceding sections. In cach case, the reader may observe
that the formula for the variance of the estimate involves unknown quan-
tities. Thus, in Ixample 8.1.1 we suggested that B/n be used to estimate
p in the binomial model. The variance of the estimate is Var(B/n) =
p(1 — p)/n, which involves the unknown quantity p. Again, the estimate
X for u in the model for repeated measurements (Section 2) has variance
o%/n, and o? is usually not precisely known. llow then is it possible to
report the variance of the estimate? What is done in practice is to report
not the exact value of the variance or standard deviation but an estimate
of that value. Naturally it would be nicer if the exact value could be
given, but this is impossible, and practical needs are usually served by
giving the estimated value. When the chemist reports 7.32 + .16 grams
of calcium, he is really saying ““I estimate that there are 7.32 grams. This
estimate has a standard deviation of about .16 gram; that is, the standard
deviation of the estimate 7.32 is itself estimated to be .16.”” In this section
we shall take up the problem of estimating the variance and standard
deviation of an estimate.

ExaMPLE 1. Repeated measurements. On the basis of unrelated measure-
ments, X, X,, . .., X, with common expectation u and common variance

o' =FE(Xi—p)P =EXy —pu)=...=EX.—np?
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we wish to estimate ¢%. If 4 were known, we could compute the n quanti-
ties

(Xy= ) (X — ) oo (X — w)?
and, by the interpretation of expectation as ‘“long-run average,” would
expect the arithmetic mean of these n quantities to be close to their common
expected value o2 This would suggest

M L - = K- )

as a reasonable estimate for ¢®. Actually, 4 is unknown, but it can be
estimated by X. Replacing in (1) the unknown quantity u by its estimate
X gives

2) }L[(Xl - X4 X=X+ 4 (X - X))

Expression (2) should be approximately equal to (1), and hence may serve
as an estimate for ¢2. Using the identity (5.7.19) we see that the estimate
(2) is equal to

3) % X2+ X2 +... 4+ X2 — X2

Since each of the equivalent quantities (2) and (3) provides an estimate of
o2, the square root of either quantity may be used to estimate . Further,
since Var(X) = ¢?/n, division of either (2) or (3) by n provides an estimate
for Var(X), whose square root will then be an estimate for SD(X) =
VVar(X).

To illustrate, suppose that the distance between two points has been
measured 20 times, yielding the observations (in feet)

8715 8714 8733 8725 8714
8718 8722 8729 8712 8725
8714 8734 8722 8721 8729
8706 8712 8708 8719 8728.

The average of the twenty measurements is X = 8720. Subtracting this
from each measurement gives the 20 differences
-5 —6 i3 5 —6
-2 2 9 -8 5
-6 14 2 1 9
-4 -8 —-12 -1 8.
These differences will of course add up to zero. The sum of the squares
of the differences is (=5)2+ (—=2)2+ ...+ (8)2*=254+4+...+ 64
= 1256. This is divided by n = 20 to give the estimate 62.8 for the
variance o of the measurements, or the estimate V62.8 = 7.92 for o.
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Further, 62.8/20 = 3.14 is an estimate for Var(X), and its square root

V3.14 = 1.8 is an estimate for SD(X). The final report would read: “The
distance is estimated to be 8720 + 1.8 feet.”

FxampLe 2. Sampling. The estimate ¥ of 5 was seen in (1.7) and (1.8)
to have variance proportional to 72. To estimate this variance we need
first to estimate 72 An argument similar to that of Example 1 suggests
that 72 be estimated by

) @ = P (0= D+ (V- T

This quantity multiplied by (V — s)/(N — 1)s will then be a reasonable
estimate of (1.8),

=

-1

)

I_?
S

= Var(T).

=

ItxampLE 8. Binomial model. As was pointed out in Section 2, the
binomial model is a special case of the measurement model, with p(1 — p)
playing the role of ¢ and B/n the role of X. The estimate (3) can be
simplified in this case, by using the fact that an indicator is always equal
to its square (see Problem 5.4.11). Since in the binomial case X3, . . ., X,
indicate success on the binomial trials, X2 4 ...+ X,2= X, 4+ ...
+ X, = B, and (3) becomes

B (B) - E(1- %)
n n - n n

which is an estimate for p(1 — p). It is interesting to note that this esti-
mate is obtained by replacing p in the quantity p(1 — p) by its estimate
B/n.

In Sections 1 and 2 we pointed out that knowledge of 72 or ¢2 is needed
for the calculation of sample size when planning an investigation in which
the models for sampling or repeated measurements are used. Sometimes
a pilot study will be undertaken for the purpose of estimating one of these
parameters so that the required size of the main study may be determined.

These estimates can then be obtained from the observations in the pilot
study using formulas (4) or (2).

As with other estimates, we should also inquire into the accuracy of the
estimates (2) for ¢ and (4) for 72 This is, however, a more difficult
problem, about which we shall only say that, under realistic assumptions
about the distribution of the measurements X and the population values v,
a rather large sample is required to produce satisfactorily precise estimates.

Are the estimates (2) and (4) unbiased? To answer this question it is



284  ESTIMATION IN MEASUREMENT AND SAMPLING MODELS  [CHAP. 9

necessary to determine their expected values. As we shall show below, (2)
has the expected value

(5) n ;; 1 o

while (4) can be shown to have the expected value
N s—1,

(6) N -1 s

The estimates are therefore slightly biased, but the bias is negligible if n
and s are not too small, and can if desired be corrected (Problems 5 and 8).

To illustrate the calculations required to obtain (5) and (6), consider the estimate
(2). Applying the identity (5.7.18) with X,,..., X, in place of v, ..., on
and u in place of ¢, we find that the estimate (2) is equal to

1
™ LI = @t K= )] = (8 —
Now E(X, — p)2=...=E(X, — u)? =0 and E(X — p)? = Var(X) = ¢?¥/n.
The expected value of (7), and hence of the estimate (2), is therefore
1 g? g2 n-—1
n[a2+...+02]—n =a’——n - a2,

PROBLEMS

1. Compute the estimate (2) of the variance ¢2 of the measurements of (i) Problem
2.1, (ii) Problem 2.2, (iii) Problem 2.5.

2. Let X,,..., X. be n measurements of u, each having variance o¢2; and let
X1, ..., Xi be k measurements of u’ each having variance ¢’2. If all measure-
ments are unrelated, suggest an estimate of the variance Var(X’' — X).

3. How is the estimate (2) for o2 altered
(i) if every measurement is increased by the constant amount a?
(ii) if every measurement is multiplied by the constant amount 4?

4. A pilot sample of s = 10 from a population of N = 500 gives the following
v values;

17 25 8 19 21 17 18 12 3 10.

(1) Calculate the estimate (4) of the population variance 72,
(it) Assuming that this estimate is correct, determine the sample size required
if it is desired to estimate the population mean 7 with standard deviation 3.

5. Show that the estimate (2) becomes unbiased if the factor 1/x is replaced by
1/(n — 1).

6. Give an unbiased estimate of p(1 — p) by specializing the result of Problem 5
to the binomial case. [Hint: Use the method of Example 3.}
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7. Check the result of Problem 6 by comparing it with part (ii) of Problem 8.1.18.
8. Use (6) to find an unbiased estimate of 72

9. (i) Using the fact that (2) and (3) are equal, and letting s and Yy,..., 7Y,
play the roles of n and X, . . ., X, show that (4) is equal to

1
(8) ;[Yﬁ +...+¥7-T:

(ii) Using (5.6.2), (1.6), and (1.8), show that the expected value of (8) is
given by (6).
10. (i) In the sampling model of Section 1, suppose that » of the v’s are equal
to 1 and N — r equal to 0. Show that ¥ = /N and 72 = ﬁ(l ~ ﬁ)
(The second of these equations is proved in Example 7.2.4.)
(ii) The number D of items in the sample having v value 1 is given by D = s¥
and has a hypergeometric distribution.
(iii) The estimate (4) of 72 = Al,(l - ]%) reduces to SQ (1 - ?)
[Hint: (iii) The argument parallels that of Example 3.]



CHAPTER 10
OPTIMUM METHODS OF ESTIMATION

10.1 CHOICE OF AN ESTIMATE

For each of the problems considered in Chapters 8 and 9 an intuitively
appealing estimate was available for the parameter being estimated: the
frequency of success as the estimate of the probability of success; the
average of the measurements as the estimate of the quantity being meas-
ured; and so forth. Tiach of these estimates was seen to be unbiased, and
its variance was calculated. This corresponded to the first two stages of
the development of statistical methodology outlined in the introduction
to Part 1I: an inference method is devised on intuitive grounds for dealing
with a statistical problem, and the performance properties of the method
are investigated.

In more complex problems there is frequently a choice between a number
of reasonable estimates. The problem of selecting the best of these, which
constitutes the third of the four stages, will be illustrated in the present
section. In the following section we shall consider the perhaps even more
important fourth stage, which is concerned with the proper design of the
experiment; that is, the question of what to observe and how to conduct the
experiment.

ExampLE 1. Sevcral measurements of the same quantity. Suppose that
there are available several measurements X, Y, Z, . . . for the same quan-
tity u. How should these measurements be combined to produce an
estimate for u?

If the way in which the measurements were made justifies treating them
as unrelated, it is natural to use the model for several measurements intro-
duced in Section 9.2. If in addition we are willing to assume that each
measurement is free of bias, we may specialize that model by assuming

(1) EX)=yp EXY)=u EZ)=p....
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The measurements X, Y, Z, . . . could in principle be combined in many
different ways. One type of combination that is frequently employed is
the weighted average

(2) aX+bY +cZ+ ... where a+b+c+...=1.

Here we say that measurcment X is given weight a, measurement Y is
given weight b, ete. The weights are required to add up to one.

There are of course many different weighted averages. Under as-
sumption (1), it is easily scen from (9.2.3) that all of them are unbiased
estimates for u:

E@X +bY +¢cZ+...)=ak(X)+ VEXY) +ck(Z) + . ..
= (a—{—b+c+...)u=y.
Since all weighted averages are unbiased, the considerations of Section 8.2

suggest that the choice among them may be made on the basis of variance.
If we write for brevity

3) Var(X) = ¢?, Var(Y) = 72, Var(Z) = «?
it follows from (9.2.4) that

4) Var(aX +bY +cZ+...) =a*c?* + b2 4+ cl? + . . ..

Which of the weighted averages (2) has the smallest variance? This is a
typical problem of the third stage of the development of statistics—that
of selecting the “best” of several possible procedures—and as we shall see
below, it turns out to have a very simple and elegant solution.

Before discussing the gencral solution, let us consider the simplest
special case, in which all the measurements have the same variance,

y e

) ol=7t=wl= ...,

Since in this case the individual measurements are all equally good, it would
seem natural to give all of them the same weight. The weights must add
up to 1; so if there are (say) n measurements, each would receive weight
1/n. In this special case, the weighted average becomes the ordinary
arithmetic mean.

If however the measurements are not equally precise, intuition suggests
that they should not receive equal weight but that more weight should be
given to the more precise measurements than to the less precise ones. To
make this consideration specific, suppose there are two measurements X
and Y, and that ¢ = 1 while 72 = 4. If we insisted on giving equal
weight to X and Y, using the estimate $X + Y = {(X 4 V), we would
have variance

VarGX +3Y) =i+ 12 =11 4+ 4) = &

In this example, the arithmetic mean of the two measurements is a 259,
poorer estimate (in the sense of having 259, larger variance) than the
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single measurement X alone! There exist however weighted averages of
the two measurements which are better than X. For example, $X + %
has variance

Var(gX + ) = 430° + 97’ = ¢,
which is 209}, smaller than the variance of X alone.

We are now ready to state the solution to the problem of finding the
best or optimum weights. As mentioned above, it is intuitively clear that
the weight should be the smaller, the larger is the variance of the measure-
ment. It turns out that in fact the optimum weights for the several measure-
ments are inversely proportional to the variances of those measurements. This
“rule of inverse proportionality,” combined with the requirement that the
weights add up to one, yields the weights

. 1/q . R
© Tl e+ T et e et L)
c 1/w?

VRS

It is easily checked that these weights do add up to one, and that they are
proportional to the reciprocals of the variances, as was required.

We shall postpone the proof of the optimality of the weights (6) to
Section 4, but will now illustrate their meaning and use.

IxamrLE 2. Repeated measurcments. Recall the model for repeated
measurements of Section 9.2, which is a special case of Example 1. Since
in this case the variances of the n measurements are all equal, (6) implies
that the weights should all be cqual, leading to the estimate X. This
estimate, presented on intuitive grounds in Section 9.2, is therefore shown
by (6) to be the best weighted average of the repeated measurements.

ExampLe 3. Two laboratories. Suppose that a physical constant p has
been measured by two laboratories, and that the first laboratory reports
the value X while the second reports ). Past experience suggests that
the first laboratory is three tiines as precise as the second, in the sense that
72 = 302 Then the optimum weights for combining X and Y are

B 1/6? _ 3¢ 3
@= ]/02+1/T2_¢72+T2_0’2+3U2—4
b = L/r* - a* _ g* _ 1

T 1jet 1/ o+t o2+ 36 4

so that the “best” weighted average is X + 1Y, Its variance is {%0? +
L2 3,2

167 — 10" )

Note that we have not assumed kuowledge of the actual values of the

variances ¢ and 72, but only that they are in the ratio 1:3.  (In general,
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the optimum weights (6) require only knowledge of the ratios of the vari-
ances of the several measurements.) But even the ratio will not in
practice be exactly known. Fortunately, the variance of a weighted
average is only very slightly increased if the weights are not quite the
optimum ones, so that if the assumed ratio of the variances of the measure-
ments is not quite correct, the weights (6) will still be nearly optimal.

As an illustration, suppose that we believe that 2 = 4¢? when in reality
72 = 302 We shall then use the weighted average ¢X + 1YV instead of
using the best combination X + 1Y, and the variance of the estimate will
be 3§o® + 572 = $20? = .76 ¢? instead of the smallest possible variance
362 = .75 o which we could achieve hy usinga = 2, b = 1. The increase
is negligible.

ExampLE 4. Sampling. In Section 9.1, we proposed on intuitive grounds
that the arithmetic mean ¥ of the observations in a sample might be used
as an estimate of the population mean #, and showed that Y is an unbiased
estimate for 7. 'The ideas of the present section suggest that one might
consider more general estimates, and in particular a weighted average

aY14+ ...+ a), where 44 ... 4+ a, = 1.

It is easy to check from (9.1.3) that all such weighted averages are unbiased
estimates for 5. Which has the smallest variance? The symmetry of the
problem, and analogy with Ixample 2, suggests that Y is the optimum
weighted average, and this is indeed the case. In fact, the argument of
Example 2 would apply here if the sampling were done with replacement.

To prove that Y is the weighted average having minimum variance is
less simple when the sampling is done without replacement, since then
we cannot treat 1y, . .., Y, as independent random variables. We shall
give the proof only for the case s = 2.

It was seen earlier ((9.1.4) and Example 7.2.3) that
Var(}y) = Var(}y) = 72 and Cov(Yy, 1) = —7%/(N — 1).

To show that 3}, + 31, has smaller variance than any other weighted average,
consider an arbitrary weighted average and denote by 3 + a the weight it attaches
to Yi. Since the weights must add to 1, it then gives weight 1 — (3 +a) =1 —a
to Y., so that it can be written as

GH+ati+  —a)Y.
The variance of this estimate is
(3 + @)* Var(})) + 3 — )2 Var(}) + 2(3 + a)(3 — a) Cov(Y,, V).

Multiplying out the coefficients, and substituting the variances and covariance,
this becomes

Grata)+ G —a+a)r? - 201 — a)r?/(N - 1).
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By combining the terms in a2 and those not involving a at all (the terms in ¢ cancel
out), this reduces to

(-759) v (14 5759) ]

Since a? is positive for any a different from 0, this quantity is least when ¢ = 0,
as was to be proved.

While the inverse variance rule gives the best weighted average of inde-
pendent estimates, there are estimation problems in which no weighted
average does a satisfactory job, and some entirely different type of estimate
is preferable. We can best make the point by means of an artificial
example.

ExampLE 5. Outliers. Suppose that in the preceding example all of the
v values are the same except two of them, one of which is far above, and
the other equally far below, the others. To be specific, put

Ul'-“—i"i"A, Uzzﬁ—A

v3=1"0, v,=7, ..., tn=17

where A is some large number. We do not know the values of 7 or A, and
wish to estimate ¥ from the v values Y,,.. ., Y, of a sample. This is an
extreme version of the fairly common practical situation that most of the
v values are clustered near some point, while there are a few outliers or
extreme values that lie far from this point. In our artificial example, v
and v, are the outliers.

The arithmetic mean of the N v values is of course 7, and the variance
72 of a single observation is

=%[(Ul—17)2"*-(02—17)2+...+(1;N—5)?] (Az_l_Ae)_g]%
If A is sufficiently large, 72 may be enormous, and since Var(Y) =

‘;,r : f . %1 , Var(Y) may also be very large, except in the case (s = N)

when the entire population is taken into the sample.

Thus, the best weighted average may be a very poor estimate. And
yet, provided s is at least equal to 3, there exists for this problem an
unbiased estimate whose variance is zero! Since there is only one outlier
in each direction, if outliers appear in a sample of three or more they may
be identified and eliminated, leaving only sample values equal to 7, so

that the value of 7 can always be exactly determined from a sample of only
three items.

Although the example is admittedly highly artificial, it points the way to
reasonable methods of handling outliers. If in the sample most values are
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clustered together, while a few are far away in one direction or the other,
it is natural to regard the latter as outliers and ignore them when estimating
the central value of the population. A variety of methods has been
developed to put this idea into practice. For example, one may arrange
the s sample values in increasing order, eliminate the smallest and largest,
and then average the s — 2 that remain. Or one may eliminate the two
smallest and two largest, etc. The most extreme version of this procedure
calls for using only the middle one of the s sample values, which is known
as the sample median. Except under rather artificial assumptions, as in
our example above, all of these estimates will be biased estimates for 7, and
may be heavily biased. However, they may be very reasonable estimates
for the central v value if this is defined in some other way. For example,
the sample median is often a reasonable estimate for the (population)
median mentioned at the end of Section 5.4.

We have discussed outliers in the context of sampling, but the same
issues arise with the model for repeated measurements. 1f the X’s have a
common distribution most of which is concentrated near g, but with a small
probability of observing an X value far from u, some other estimate (such
as the sample median) may be a more accurate estimate for u than is X.
The situation arises when the measurement is subject to being occasionally
very far off. These extreme errors are called gross errors.  They typically
arise when from time to time the measuring process is subject to erratic
behavior that will produce a measurement drastically different from those
routinely obtained. Even a rather small risk of gross errors can then sway
the balance in favor of the median.

PROBLEMS

1. One laboratory gives an estimate X for u that is based on averaging m measure-
ments X, . . ., Xn; another gives the estimate ¥ based on averaging n measure-
ments Yy,..., Y, If the measurements are equally accurate, what weighted
average of X and ¥ should be used if (i) m = 3, n = 5; (il) m = 5, n = 10; (iii)
m=3n=9

2. Solve the three parts of the preceding problem if the variance of the X’s is o2
and that of the Y’s is 72 = 202

3. Three laboratories give estimates X, ¥ and Z for u that are based on averaging
observations Xi,...,Xm; Yy,..., Y. and Z),...,Z: respectively. If the
measurements are equally accurate, what weighted average of X, ¥ and Z should
beusedif ) m=2;,n=5,k=10; i) m=n=3,k=09.

4. Solve the two parts of the preceding problem if the variance of the X’s is ¢?
that of the ¥’s is 202, and that of the Z’s is }o2
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5. Measurements X, . . ., X4 of 4 with variance ¢? are produced by one method,
measurements Yy, ..., Ys of p with variance 2¢2 by another method. What
weighted average of the ten measurements should be used for estimating u?

6. Show that the variance of the optimum estimate, that is, the estimate with
weights given by (6), is equal to
1

/e + /) + Q/od + ...
7. Prove directly that in Example 3 with 72 = 352 the best weights are a = §,
b=1—a = }asfollows. Thevarianceof aX 4+ (1 — a)Yis[a? 4+ 3(1 — a)%]o>
To minimize this variance, write a = § + A and show that a?+ 3(1 — a)? =
2 4 4A%  This quantity takes on its minimum value when A = 0 and hence when
a=1
8. Use the method of the preceding problem to prove that when 72 = 402 the
best weightsarea = $andb=1—a = .
9. In Example 3 with 72 = ko?, how large must the factor &k be before the esti-
mate 3(X + Y) is a worse estimate of u than X alone?

10. In Problem 1, is it possible for ¥ to be a better estimate of p than
(Xl+---+Xm+ Yl+---+Yn)/(m+n)?

11. In Example 3 with 72 = ko?, how large must &k be so that the estimate
3(X + Y) has twice the variance of the best estimate (6)? [Hint: Use the result
of Problem 4.]

12. Two unbiased estimates X and Y for u have Var(X) = 1, Var(Y) = 2, and
Cov(X, Y) = 1. By trial and error find approximately the best weights.

13. (i) In Example 3, we assumed that the separate estimates X and Y are inde-
pendent. Suppose they are dependent but that their covariance is zero.
Would a = # still give the best weighted average?
(ii) More generally, what happens to rule (6) if the assumption of inde-
pendence is replaced by the assumption that each pair of measurements
has zero covariance?

14. In Example 4, suppose that N =5, vy =0, vo = —1, s = 1, vy = —A4,
vs = A, and 8 = 3.
(i) Use (9.1.8) to find Var(Y). (Note that your result will involve A.)
(ii) Find the distribution of the median Y for each of the following values of A:
A=0,.51,15. _
(iii) For each of the A values of part (ii) find Var(Y).
(iv) For every value of A = 0 determine whether ¥ or Y is the better estimate.

10.2 EXPERIMENTAL DESIGN

An important aspect of statistical theory is to devise experiments that will
yield the maximum amount of useful information for a given cost. A
properly designed experiment of modest size will often be more informative
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than a considerably larger experiment badly laid out. The ramifications
of the theory of experimental design are complex, but even at the ele-
mentary level of this book the savings made possible by good design can
be exemplified.

ExamriLe 1. Allocation in estimating difference. Recall Example 9.3.1
where we studied the problem of estimating the difference u’ — u of two
quantities each of which may be estimated by averaging repeated un-
related measurements.

As before, let X3, . . ., X, represent the n measurements of the first and
X1, ..., X those of the second quantity. TFor these n + k-random vari-
ables we assumed the model for several measurements introduced in Section
9.2, with the additional assumption that X}, . . ., X, have common expec-
tation u and variance ¢?, and that Xj, . . ., X; have common expectation
' and variance ¢’2. Then X’ — X was shown to be an unbiased estimate
of the difference p’ — p and its variance was found to be

. _ _ _ e g2
1) Var(X' — X) = Var(X') 4+ Var(X) = - + a
The total number of measurements is n + &, which we may suppose to be
fixed at n + k = m by the available budget or experimental time. The
question now arises as to how one should allocate the total number m of
measurements between those made on p and those made on p’ so that
Var(X’ — X) may be as small as possible. The best values are said to
constitute the optimum allocation.

If measurements of the two quantities u and u’ are equally precise (i.e.,
if ¢ = o) then it seems plausible to use equal allocation, and to make the
same number of measurements on each quantity (i.e., take n = k). On
the other hand, if the measurements are of different precision, it might be
desirable to devote more observations to the quantity which is more
difficult to measure. In fact, it turns out that the optimum allocation
divides the measurements between the two quantities just in the ratio of
their standard deviations,

@)

~

3 )=
il
a |

This elegant formula will be proved in Section 4, but let us now illustrate
itsuse. Suppose that a total of n + k = 40 measurements are to be made,
and that ¢’ = 3¢. Then (2) givesk = 3norn = 10, k = 30. With these
values, (1) shows that the estimate X’ — X has variance (3¢)%/30 +
a2/10 = %02

To see the meaning of optimum allocation more clearly, let .us suppose
that in the above problem one were instead to use equal allocation, i.e.,
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n =k = 20. Then the estimate X’ — X would have variance (3¢)2/20 +
02/20 = 162 This variance is 255 larger than that achieved with the
same total number of observations allocated optimally. To put it another
way, with equal allocation one would need 50 observations rather than 40
to achieve the variance Z¢® (See Problem 2.)

ExampLi 2. Allocation in estimaling treatment effect.  Very similar con-
siderations apply to the allocation of a total sample when estimating the
effect of a treatment. Recalling design B of Section 9.4, let Y;, ..., ¥,
be the responses of a sample of s subjects serving as controls, and Z,, . . ., Z,
be the responses of a sample of ¢ different subjects receiving the treatment.
Then Z — Y estimates the difference @ — o attributable to the superiority
of the treatment. If the sampling fractions s/N and {/N are small, the
variance of the estimate Z — ¥ is by (9.4.5) approximately
1,‘1 w‘l

3) bl s
where w? and 72 are the population variances for the population of N
responses when the treatment is and is not applied respectively. If the
total number of subjects s + ¢ is fixed, how should it be divided between
the two samples? Except for notation, this problem is identical with that
of Example 1, and the optimum allocation by (2) is such that s/t = 7/w.

The application of this formula requires knowledge of the ratio 7/w.
In most problems, the ratio is near 1, so that equal allocation s = ¢t will
often be nearly the best. In particular, if the constant effect model is
appropriate (Section 9.4), then 72 = w? (Problem 9.4.3), and equal alloca-
tion is optimum.

Exampre 3. Estimating the effects of lwo treatments. Suppose there are
two treatments both of which are of interest, whose effects are to be
estimated. For example, an agronomist may be interested in the effect on
yield of each of two fertilizers, or of a fertilizer and also of planting date.
Or a surgeon may wish to know the effect on time of recovery from an
operation of a special diet and of certain exercises. Or an educator may be
interested in the effect of television instruction and a new kind of textbook
on the amount students learn in a calculus course. Let us denote the two
treatments by A and B, and assume that they have the constant effects
aand 8. That is, if a subject has response v when not treated, we assume
that if given treatment A his response will be » + «a, while given treatment
B his response will be v + 8. How should an experiment be designed to
provide good estimates of « and 8?

In each of the four designs to be considered below, we shall give unbiased
estimates for « and 8; the designs can then be compared in terms of the
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variances of these estimates. The assumption of constant treatment effect
made above implies (P’roblem 9.4.3) that the variance of response will be
the same, say 7?, regardless of treatment, and that the difference of mean
response in two treatment groups will have the variance given by (9.4.6).

Design 1. One might think of simply conducting two separate experi-
ments, one for estimating each of the effects. To illustrate, suppose that
a total of 200 subjects is drawn from a population so large that all obser-
vations ean be treated as unrelated. We could devote 100 of these to each
effect. Let us consider first the estimation of a. As in Example 2 it may
be shown that if we counsider only the problem of estimating «, the 100
subjects should be equally allocated, 50 to the group to receive treatment
A and 50 to the control group. Let us denote the mean response of the
treated subjects by Y, and the mean response of the control subjects by
Yc. Then Y, has expectation ¢ + a while Y¢ has expectation 7, so that

Ya — V¢ is an unbiased estimate for a. By (9.4.6) with s = { = 50 this
estimate has variance approximately .04 72.  (The correct variance is .0404
72; see Problem 9.4.7.) The other experiment would he similar and pro-
duce an equally good estimate for g.

Design 2. A little thought will show how design 1 can be greatly im-
proved. Fach of the two parts of the experiment has a control group whose
purpose is to estimate the average untreated response 3. Why do this
twice? The estimate Y for # from the first part could also be used in the
second part, saving the 50 control observations of that part. Thus, instead
of using 200 subjects one could use only 150, divided into two treated groups
of 50 each (giving mean responses Y, and Ys) and a control group of 50
(with mean response Y¢). Then Ya — Yc and Yy — Y are unbiased
estimates for o and § respectively, and each estimate has the same variance

.04 7% as with design 1. We have saved one-fourth of the observations
without loss of accuracy.

Design 8. 1Is it best to allocate the 150 subjects of design 2 into three
equal groups? When estimating a single treatment effect equal allocation
was correct, but now things are different. Since Y¢ is used twice, it is
perhaps more important to have it accurate than to have Y, and Ys
accurate. A little trial and error will show that the allocation of 60
subjects to the control group and 43 to each treatment group will (by 9.4.6)
give estimates of variance (g5 + 45)72 = .0399 2.  This estimate, very
slightly better than that of design 2, requires only 60 + 43 + 43 = 146
subjects instead of 150. The reduction is small, but in some experiments
a saving of even 4 subjects may be worthwhile. (If more than two effects
are to be estimated, still larger savings are possible by using a control group
somewhat bigger than the treatment groups; see Problem 6.)
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Design 4. Under an additional assumption, a more dramatic saving is
possible. Suppose that the treatments A and B are such that both may be
applied at the same time, and that their operations on subjects do not inter-
fere with each other. One might then be willing to make the assumption
of additive effects:

4) a subject with untreated response » would have response
v 4+ a -+ B if both treatments A and B are applied.

We shall examine the reasonableness of this assumption below, but first
let us see what its consequences are for the design.

The idea suggests itself of using four groups, the three of design 2 plus a
fourth group of subjects receiving both treatments. Let us denote the
mean response in this group by Yap. For illustration suppose that each
group is assigned 25 subjects, or 100 subjects in all. Then Ye, Va, Yg,
and T a5 have expected values E(Ye) = &, E(Ya) =0 + o, E(Ys) =T + 8,
E(Yss) =0+ a+ 8 Thus Yo — Yc and Yap — Y3 are both unbiased
estimates for «, and so therefore is their average

(5) 3(Yas + Ya) — (Y5 + Vo)l

By Problem 13, the variance of this estimate is approximately .04 r2.
Similarly

(6) H(Yas + Vs) — (Ya + Yo)]

is an unbiased estimate for 8 with variance .04 72. These estimates are
just as good as those of the earlier designs, but require only a total of 100
observations, instead of the 146 required by design 3!

This is the simplest example of a factorial design. In effect, we are now
using all 100 observations to estimate «, and at the same time are using all
100 observations to estimate 8, and are getting estimates just as precise
as we would get if 100 observations had been made for doing just one of the
two jobs. The basic idea of factorial experimentation, introduced mainly
by R. A. Fisher, is capable of great elaboration to deal with a wide variety
of experimental problems.

Let us now return to examine the meaning of the assumption (4), that
the effects are additive. Is it reasonable to suppose that the increased
response elicited when two treatments are applied simultaneously is just
the sum of the increases that they would separately produce? For ex-
ample, if one fertilizer will increase yield by three pounds and another will
increase yield by two pounds, may we expect both together to give a five
pound increase? Not necessarily; it may be that the first fertilizer supplies
all the nutrients that the plant needs, in which case the addition of the
second may have little or no effect. As another example, calculus instrue-
tion by television may reduce the students’ test scores if it is used with a
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conventional textbook, but perhaps be beneficial if used with a novel
textbook written with television in mind. Medical practice often calls
for the joint use of two synergistic drugs, which together have several times
the effect of either used separately. In all of these examples the effects
do not simply add; rather, the presence of one treatment will influence
the action of the other. In such cases the treatments are said to interact.

When the treatments A and B interact, the effect of either of them is not
a constant, but depends on whether or not the other is present. As before,
let « denote the effect of A when B is absent, and denote by o' the effect of
A when B is present. Then Y, — Y is an unbiased estimate for «, while
Yas — Yg is an unbiased estimate for /. The estimate (5) thcrefore has
the expected value 3(a + '), which is known as the main effect of A, and
of which we may think as the average effect of A. Similarly, 8 and 8’ are
the effects of B in the absence and presence of A, and (6) estimates the
main effect of B, which is 3(8 + 8').

Since o’ is the effect of A in the presence of B and « the effect of A in the
absence of B, the quantity o’ — « indicates how much the presence of B im-
proves the effect of A, and hence measures the strength of the interaction
of A and B. (In advanced texts, interaction is defined for technieal
reasons as i(a’ — a) by some authors and as i{(e¢’ — a) by others.)
Alternatively, the interaction of A and B could be defined in terms of
B’ — B, which measures how much the presence of A improves the effect
of B. Tt turns out (Problem 9) that these two measures of interaction
coincide, and that they are zero if and only if the additivity assumption
(4) holds, Combining the unbiased estimates of @ and o’ given above, it is
seen that the quantity o’ — « = 8’ — 8 is estimated by
(7 Yas — Y5 — Ya+ Yo

1t is clear that design 4 is better than any of the others if there is no inter-
action, as it provides equally good estimates at lower cost. But if inter-
action is present, the situation is not clearcut. In some cases one is
equally interested in all four effects «, &', 8, and f', wanting to know the
effect of each treatment both with and without the other. In such cases,
the factorial design is called for, as the others do not provide estimates for
all four parameters. In other cases one is mainly interested in knowing
the average effects, or in estimating the magnitude of interaction, and
again the factorial design is indicated. But in some problems, where one is
considering the use of one treatment or the other but not both, design 3
will be better than 4, as it provides estimates of « and 8 of given precision
at lower cost. To provide estimates of « and 8 with variance .04 72, when
there is interaction, design 4 will require 50 subjects in each group or a
total of 200, 54 more than required by design 3. In this case, as in all

statistical problems, the correct answer depends very heavily on the
circumstances.
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PROBLEMS

1. If ¢’ = 902, determine the best division of (i) 40, (ii) 60, (iii) 100 observations
in Example 1.

2. Show that in Example 1 with ¢’ = 3¢ and equal allocation, one requires 50
observations to achieve variance o2

3. Prove directly that in Example 1 with ¢’ = 30 the best allocation of n + &
observationsis n = 10, k = 30, as follows. Since with this allocation the variance

of the estimate is $o? while with allocationnand £ = 40 — nitis o2 [i + i 2 ]
-_n 4
9

40-n<5
5n(40 — n), this is seen to be equivalent (for 0 < n < 40) to the true inequality
n?—20n 4 100 = (n — 10)2 = 0.
4. The observations X;, X, . . . cost $1 each, while the observations X D ¢ T
cost $2 each. A budget of $20 is available for observation. What allocation of
this budget to the two kinds of measurement will give the smallest variance to
X’ — X if the two kinds of measurement are equally precise (¢'? = 0%)?

. 1 2
it is only necessary to prove that .t = Multiplying through by

5. Suppose that the observations X, X, . . . cost ¢ dollars each and have variance
o?, while the observations X}, X3, . . . cost ¢’ dollars each and have variance ¢"%.
Use result (2) to show that with a fixed total budget the best allocation is such that
k_oVe
n oV

12 2 Ve NI
[Hint: We must minimize Var(X’ — X) = "7 + ‘;’; = ("cnc) + c,kcl, with
cn + ¢’k being fixed.]

6. Twenty experimental subjects are to be used to estimate the effects of three
treatments. Suppose that n subjects are to be allocated to each of the three treat-
ments and that & are to serve as controls so that 3n 4 k = 20 and that the division
into four groups is at random. Assuming a constant effect model so that all
observations may be taken to have the same variance and using (9.4.6), find (by
trial and error) the value of k that minimizes the variances of ¥1 — ¥, T — Y.
and ¥, — T, where T, is the average response of the k controls, and Y, T, T
are the average responses of the three treatment samples.

7. Suppose in Example 1 that the total number n + k of observations is fixed at
m. Show that the optimum allocation (2) implies

n=mo/(c 4+ d), k=ms/(s+ a.
8. Use the result of the preceding problem to show that when the total number
n + k of observations is fixed at m, the minimum value of Var(X' — X) is
(¢ + o')2/m.
9. Show that the quantities a, B, &, 8’ in design 4 of Example 3 are related by the

equation « + 8’ = o’ + 8. [Hint: o' is the expected difference in response when
A and B are applied and when B is applied alone, and the other quantities are
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defined analogously.]

10. In design 4 of Example 3, if v is the untreated response of a subject, show that
the response is

v + a when A alone is applied,
v + 8 when B alone is applied,
v+ a + B =v+4+ f + a when both A and B are applied.

11. Use Problem 10 to show that the interaction of A and B is zero if and only if
the additivity assumption (4) holds.

12, Let A, B, C, D be four objects whose weights a, 8, v, 6 we wish to determine.
In any one weighing, we can weigh any sum or difference of the objects by placing
them either on the same or on opposite sides of a chemical balance. Suppose that
the variance of any individual weighing is o* and that a measurement model is
appropriate. Consider the followiug three designs:

Design 1 (16 weighings). Object A is weighed four times, yielding readings

X], Xz, Xa, X4 V\ith
E(X)) = E(X,) = E(X3) = E(X) = a

Similarly each of the objects B, C, D is weighed four times.

Destgn 2 (8 weighings). Two weighings Yy, Y, are obtained of o + 8 and two
weighings Y3 Y, of @ — 8 so that

EY)=EY,)=a+8; E(Y,) =EY)=0a-23

Similarly two weighings each are obtained of ¥ + 6 and of ¥ — 8.

Design 3 (4 weighings). Four weighings Z,, Z,, Zs, 7, are obtained such that
EZ)=a+B+v+95 E@Z)=a—-B+7v—-38
EZ)=a+B-v—3% ElZ)=a-B-v+4

For all three designs, find unbiased estimates of e, 8, v, § and compare their

variances.
13. Suppose that in design 4, 4s subjects are randomly divided into four treatment
groups of s each. Using the fact that each term in the numerator of (5) has

variance (N — s)7/(N — 1)s, and Problems 9.4.6(1) and 9.4.3(i) show that the
variance of (5) is N72/(N — 1)s.

10.3 STRATIFIED SAMPLING

In Section 9.1 we considered a method of obtaining an estimate for the
average value 7 of some quantity » in a population, by drawing a simple
random sample of s items from the population, observing their » values
Yy, ..., Y, and then computing the average Y. As a further illustration
of the concept of experimental design, we shall now discuss an alternative
design that sometimes produces an equally good estimate for v with far
fewer observations.
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It is often possible to divide the population into a number of subpopula-
tions, called strata, within each of which the value of » is more nearly con-
stant than it is in the population as a whole. For example, a city may be
divided into districts within each of which the expenditure on housirg is
nearly the same for all households; or a state may be divided into counties
or blocks of counties within each of which the farms have a nearly constant
percentage of their area planted to wheat. When such a stratification is
possible, marked savings in the cost of a sample survey can usually be
achieved by drawing unrelated small samples from each stratum sepa-
rately instead of taking a single large sample from the entire population.
This procedure is known as siratified sampling. (Examples 3.1.1, 4.2.3,
5.5.3.)

The possibility of saving through stratification can be seen intuitively
by considering the extreme case that the quantity v is exactly constant

within each stratum. Then a single item drawn from each stratum will
enable us to determine the population average value v exactly, while a
much larger simple random sample from the entire population would not
provide a perfect estimate. This suggests that even in less extreme cases
a stratified sample might be advantageous.

Let us suppose that there are L strata numbered from 1 to L, containing

N,, ..., N, items respectively so that
N1+...+NL=N.
We shall assume that we know Ny, . . ., N; in practice, this places a severe

limitation on the kinds of stratification that can be used. let the average
value of the quantity » with which we are concerned be 7, in the first

stratum, 7 in the second, . ... Then% = (Ni#; + ...+ Ni#.)/N, or
__ Ni_ N._

(1) v=—]\71v1+...+—]\71’vb
Suppose that from the first stratum a random sample of s, items is dravy_n,
from the second stratum a random of s, items, ..., and denote by Y,
Y., . . . the average v values in these samples. Then by (9.1.6)
(2) EY) =%, ..., E(Y) =1
and by (9.1.8)

__Nl—.su T_lf‘r __NL—sL.Ié
@) Va(Y?,) = N1 e Var(YL) = Mol &

where 7,2 is the variance of a single observation from the first stratum, . . .,
7.2 the variance of a single observation from the L stratum. If our
attempt was successful to define strata within which » is nearly constant,
the strata variances 7., . . ., 7.2 will be small compared with the variance

72 of v within the entire population.
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The separate estimates Y, for », ..., Y. for 5, may now be combined
to produce an estimate Y* for 7 given by

@) Y*=]J—VV—‘~71+...+%-}_’L.

This is a weighted average of the means of the samples from the various
strata, the weights being proportional to the stratum sizes. Unless the
stratum sizes Ny, ..., N. were known, the estimate Y* could not in
practice be computed.

By taking expectations on both sides of (4), the estimate Y* is seen to
be unbiased. Furthermore, if %, . . ., ¥, are completely unknown, as we
assume them to be, Y* is the only weighted average of Y, ..., ¥, that is
unbiased for estimating 7 (Problem 3). If the drawings from the different
strata are unrelated, a product model with L factors is appropriate for the

experiment as a whole, and Y,, . . ., ¥, are defined on different factors of
this product. Hence the variance of Y* is

- N o Nt o

Var(Y*) = XT‘;\ar(Yl) + .o+ 1\52 Var(Yy).
To simplify the calculations, we shall now suppose that the finite correc-
tion factors can be neglected in the variances of Yy, ..., ¥,—which is
reasonable if the sampling fractions s;/Ny, . . ., s./N . are small—so that

Var(Yy) = r2/sy, ..., Var(Y.) = r.2/s..

Then we have
(5) Var(Y*) = [Ni®r®/st + .. . + Ni?r.?/s]/N2.

(For the exact formula see Problem 4.)
This formula shows that the accuracy of Y* will depend on the numbers
81, . ..,s.. If the total sample size

S=31+...+8L

is fixed, for example by the available funds, the problem arises of deciding
how to allocate the sample among the strata. Perhaps the most natural
procedure is to divide the sample among the strata in proportion to the
sizes of the strata. This implies (Problem 5) that

N . .
©) S1=8-5 ..., s,=¢g- % (proportional allocation).

(The number of observations from each stratum must of course be an
integer; in addition, there should be at least one observation from each
stratum so that the quantities V,, ..., ¥, can be computed. Therefore
in practice one cannot use the exact values for s, s,, ... given by (6);
instead one might take positive integral values, adding up to s, and as close
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to (6) as possible. To simply further calculations, however, we shall ignore
these small rounding corrections.)

When the values (6) are substituted in (5), we obtain the variance for
proportional allocation

N N. .,
(7 Var(Y*) = [W] .+ T’L n.'] /s.
We shall show at the end of the section that this is always less than or equal
to the variance of the estimate Y available from a single random sample

of size s. Since by (9.1.7) the variance of the average Y of the values in a
simple random sample of size s is approximately given by

(8) Var(Y) = 7%/s,

we see that the estimate Y* based on stratified sampling with proportional

allocation and the same total sample size s will be substantially better
than Y provided

%‘ln’-i- RN +NN-LTL’
is substantially smaller than
12=%12+...+%72;

i.e., when we have succeeded in finding strata that are considerably less
variable than the population as a whole. We shall however show at the
end of the section that (7) is in any case never larger than (8).

ExampLE 1. Smoking. The college physician in a men’s college wishes
to estimate the average daily consumption 7 of cigarettes by undergraduates
of his college. He can obtain such an estimate by drawing a random
sample of, say, s = 100 from the registrar’s list of undergraduates, and
then interview each of the selected students to determine the number v of
cigarettes he smokes per day. If then the standard deviation of v in the
population is for example r = 6, the estimate for 7 obtained by averaging
the 100 consumption figures would have variance 62/100 = .36.

Let us suppose that cigarette smoking tends to increase with age of
student, so that the freshmen smoke relatively little compared with the
seniors. This means that the students within any given class tend to
resemble each other in this regard, and hence that the variance within any
one class would be smaller than the variance within the entire under-
graduate population. To get an idea of the numerical effect of stratified
sampling with proportional allocation, suppose that the actual standard
deviations within the four classes are as shown in column 3 of the following
table.



10.3] STRATIFIED SAMPLING 303
Number of Standard

Class students deviation
Freshman 3100 2
Sophomore 2700 3
Junior 2300 4
Senior 1900 5

Total 10,000 6

The variance of the estimate Y* based on proportional allocation given
by (7) can now be computed, using the class sizes given in the table:

Var(Y*) = [(31)4 + (27)9 + (:23)16 + (.19)25]/s = 12.1/s.

We can therefore attain the variance .30, provided by a sample of 100
drawn at random from the whole school, by using = stratified sample

whose size is given by the equation 12.1/s = .36, that is, s = 33.61. The

allocation of a sample of 34 as nearly as possible in proportion to class size
is as follows:

Freshman Sophomore Junior Senior
10 9 8 7

The variance of Y* with this allocation, as computed from (7), is in fact
.346, even slightly better than .36. Through stratification, we have thus
obtained a slightly better estimate with only about one third as many
observations!

In some cases, even if a simple random sample has been drawn, it will be possible
to compute an estimate nearly as good as the estimate Y* based on stratified
sampling with proportional allocation. After a simple random sample is taken from
the whole population, the items in the sample may be classified according to the
strata from which they happen to have come, and one may compute the avcrage
values, say ¥y, . .., ¥, of the observations from the various strata. These may
be combined to produce the estimate

R R )

for 8. This procedure is of course possible only if there happened to be at least
one observation from each stratum, which is very likely to happen if the samplc
size ¢ is large. It can be shown that, with large s, the estimate ¥ is nearly as
accurate as the estimate 1'* based on proportional allocation of the same total
sample size. However, Y'* is always at least somewhat better, and it also exists
(and is unbiased) in all cases since one would alwavs allocate at least one observation
to each stratum.

So far, we have considered only a stratified sumple with proportional allocation,
but perhaps further improvements could be obtained by a different scheme of
allocation. Intuitively, it would scem reasonable to take into account not only
the size of the strata but also their variability. We shall show in the next section
that the variance (5) is minimized, for a given total sample s, by making s, . . ., sz,
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proportional to N7y, . . ., No71, so that

Nir Nir
9 - - 17t . . = _ LTL
( ) 8 S}\‘|T| + P +A\VI,T', ! st sl\]T] + .. .+NLTL

With this optimum or Tschuprow-Neyman allocation, the variance (5) reduces to
(10) \73]_()7*) = (IVlTl + -‘s.\-”,+ .‘\’LTL\,2 - _1_ (1\"17! + . -\; + NLTL)Q.
AR 3 ]

The table below shows for Iixample 1 the division of a total sample of 34 accord-
ing to optimal allocation, and for comparison that aceording to proportional
allocation considered earlier.

‘ Freshman Sophomore Junior Senior
Optimum allocation 6 8 10 10
Proportional allocation 10 9 8 7

In this example, optimum allocation gives an estimate with variance .321, somewhat
better than the .346 of proportional allocation.

The use of formula (9) for optimum allocation requires knowledge of the stratum
standard deviations 7, ..., 7. If these are radically different, optimum al-
location may give a substantial improvement over proportional allocation. How-
ever, as the numerical illustration suggests, the differences between 7), . . ., 7. must
be extreme before the gain is appreciable. Since this seldom happens, and since
knowledge of 7y, ..., 7. is often uncertain, proportional allocation is frequently
used in practice.

The idea of stratification is exceedingly useful also in connection with
experiments for estimating the average effect A of a treatment in a popula-
tion of subjects. Recall design B of Section 9.4, where ¥ is the mean
response of a sample of s untreated subjects, Z is the mean response of a
distinct sample of ¢ treated subjects, and Z — ¥ is an unbiased estimate
of & with (approximately)

VarZ - Y) = %2 + ‘i;f

In many cases, the responses of the subjects in the population differ con-
siderably among each other, so that 72 and «? are large, and hence large
sample sizes s and ¢ are required to produce an accurate estimate with this
design.

However, the experimenter is frequently able to divide the subjects into
subpopulations that are relatively homogeneous in responsiveness. For
example, the plots to be used in an agricultural experiment for comparing
two varieties of wheat may be grouped into those of high fertility, medium
fertility, and low fertility. Again, in the clinical trial of a new drug, the
patients may be divided according to age, sex, and grade of disease into
subgroups that are similar with regard to their time required for recovery.

These groups or subpopulations play the role of the strata. As before,
let L denote the number of groups and suppose that they contain
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Ny, ..., Nosubjects. Letrs? ..., r.?denote the variances of the v values
within the L groups, while ws?, . . . , w;? denote the corresponding variances
of the w values. If the grouping has been successful, these values will be
much smallér than 72 and »?. As a modification of design B, suppose that
distinct samples of size s; and t; are drawn from the first group providing
an estimate Z, — Y, for the average effect 4, of the treatment in the first
group, and so forth. These estimates may, in analogy with (4), be com-
bined to produce the estimate

(11) %(ZI—YIH... I—I‘%(ZL—VL)

for A. This estimate is unbiased (Problem 7), and its variance may easily
be computed (Problem 8). If the grouping has produced homogeneity,
the estimate (11) will be much more precise than the estimate Z — Y of
design B applied to the whole population with the same total number of
subjects.

To conclude this section, let us prove that the variance (8) of the esti-
mate Y based on a single sumple of size s is always greater than or equal
to the variance (7) of the estimate Y* based on proportional allocation.
This is in fact an immediate consequence of the identity (see Problem 9)

(12) Var(T) = Var(Y'¥) + 18[%;‘ = t... + ]—‘ﬁ’ (1 — 5)2]

where 7, . . ., @, are the strata means and where 7 is given by (1), since
the second term on the right side of (12) cannot be negative.

Equation (12) throws some light on the effect of different stratifications.
Since the left side of (12) is fixed, that is, does not depend on how the
population is stratified, any decrease in Var(Y*) results in a corresponding
increase of the quantity

(13) Lw-ap+. +L@-o

and vice versa. Now it is clear from (7) that Var(Y*) will be small (and
hence stratification successful) if the strata variances 7.2, . . ., 7.2 are small,
that is, if the strata are homogeneous. On the other hand, the quantity
(13) will be large if the strata means 7, . . ., v, differ widely from the
over-all mean 7, and hence if they differ widely among each other. The
expression (13) therefore shows that to obtain homogeneity within strata
one must have wide differences between the strata.

PROBLEMS

1. What stratification would you suggest for estimating the average weight of
children in a public grammar school?

2. A population of ten subjects is divided into two strata of five subjects each,
having these » values:
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Stratum 1: 16, 13, 24, 17, 15
Stratum 2: 34, 22, 30, 28, 31

(i) Find the variance of the estimate (4) of ¥if 8, = 5, = 1.
(i) How large a sample would be required to produce as small a variance if simple
random sampling from the whole population were used?

3. Let E(V)) =#,...,E(Y.) = o1 where ,, . .., . are completely unknown.
Show that (4) is the only weighted average which provides an unbiased estimate of
(1). [Hint: Write down the expected value of an arbitrary weighted average
@Y1+ ...+ a.T. and equate this to (1). Then suppose for example that
51=1, 52=...=EL=0.]
4. Show that the variance of the estimate (4) is

NN, = o1 NNy~ sis?

NN, -1 g N2 N.—-1 s
5. Show that the numberss,, . . ., s with 8, + . . . + s. = sthat are proportional
to the numbers Ny, ..., N, with Ny 4+ ...+ N = N are given by (6). [Hint:
Proportionality means the existence of a number %k such that s = kN, ...,
sy = kN 1,.]
6. Show that the allocations given in Example 1 as “proportional” and “optimal”’
are as close to these properties as possible.

+...4+

7. Prove that (11) is an unbiased estimate of 4.

8. Show that if 8/N,, ..., s:/N. and &/N,, ..., /N are small, then the
variance of (11) is approximately
Nefrd | o N fr? | w2
An(sl+t1)+...+N2 8L+tl, '
9. Prove equation (12). [Hint: Denote the » values in the first stratum by
vy, ..., v, The contribution of the first stratum to 72 is then

I—{,—[(vl—v)z+...+<»~l—a)=]=%ne+%<m—w

where the equality follows from (5.7.18). Adding this confribution to the corre-
sponding ones from the other strata gives (12).]

10. Compare proportional and optimum allocation in the special case when all
stratum variances are equal, 7,2 = T,* = ... = 7%

10.4 AN INEQUALITY AND ITS APPLICATIONS

In the present section we shall prove three results stated earlier: (a) that
the best weighted average of several independent unbiased estimates uses
weights proportional to the reciprocals of the variances (1.6); (b) that the
optimum allocation for estimating a difference is given by (2.2); (c¢) that
the best allocation in stratified sampling is the Tschuprow-Neyman alloca-
tion (3.9). The reader willing to accept these theorems without proof
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may omit this section. All three proofs rest on the following inequality:

for any positive numbers a, b, ¢,...and A, B, C, . ..
@t+bt+c+. f b*
() E b Rl R A

To prove (1) we recall from (5.6.2) that the variance of any random
variable Z is given by E(Z%) — [E(Z)]%. Since a variance is never nega-
tive, it follows that for any random variable Z

@) [E@)]* = E(ZY).

Let us now consider a random variable Z with the following probability
distribution. To simplify the notation, we write Sfor4 + B+ C + .. ..

Value taken by Z ‘ a/A b/B ...

Probability of this value | A/S B/S...

Then
_a A b B _atbte+...
E’(Z)—A S+B S+...— S
Similarly,
b B a® | b? 1
Bz = Gstmsto = (55 )%

Substituting these expressions in (2) and ¢ancelling a common factor
1/(A + B+ C +...) from both sides gives exactly (1).

As the first application of (1), recall from Example 1.1 the problem of
finding those weights q, b, . . . with

@3) a+b+...=
which minimize the variance of aX + bY + ..., where X, Y, ... rep-
resent unrelated measurements of u with variances Var(X) = o, Var(Y) =
7% . ... If we define

A=1/¢®, B=1/7 ...
then by (9.2.4)

4) Var(eX +bY +...) =a*/A + /B +....

We wish to show that this variance is smallest for the values a, b, . ..
given by (1.6), ie, for a = 4/8, b = B/S, .... With these weights,
(4) becomes

®) 4 B 1

A+BT. T GaFB+. . T "TaA¥xBF.

Using (3), the fact that (4) is always at least equal to (5) follows from (1).
Let us consider next the problem of optimum allocation discussed in

Example 2.1.  The variance of the unbiased estimate X'.— X of p’ — p is
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ar(X —X) = T T
(6) Var(X X) = i + .

If the total sample size k + n is fixed, equal to m say, the problem is to
find those values of n and &k with n 4+ k& = m, for which (6) is as small as
possible. We shall show that the optimum allocation consists in devoting
to each of the two quantities a number of measurements proportional to
the standard deviation of those measurements, that is, by putting

!
g

g
) n=oram and k—a

When these values are used for n and k, the variance of the estimate
reduces to (¢ + ¢')?/m. To prove that (7) is the optimum allocation we
must show that any other allocation will make the variance larger. That
is, we must show

5 m

et o) ot o”

n+k T on k
whatever be the positive numbers n and k. This follows from inequality
(1) with ¢, ¢’, n, k in place of a, b, 4, B.

We conclude by proving that the best allocation in stratified sampling
is provided by the Tschuprow-Neyman allocation, defined by (3.9). To
this end we must show that the variance (3.9) never exceeds the variance
(3.5) of an arbitrary allocation of the same total sample size, i.e., that

_1.(N1T1+N272+---)2$(N12712+1ET_22+ ) 1

s N 81 Sg N2

Ifin (1) weset a-= N1, b = Nory, . . . and A = s;, B = s, . . . and then
divide by N2, the result follows.

From the fact (Problem 5.7.16) that Var Z > 0 unless Z is constant,
it follows that the left side of (1) is strictly smaller than the right side
unless a/A = b/B = .... From this it can be shown that in the three
applications of (1) considered above, the optimum solution is always
unique.



CHAPTER 11
TESTS OF SIGNIFICANCE

11.1 FIRST CONCEPTS OF TESTING

By a statistical hypothesis we mean a statement about the way a random
variable is distributed. In this section we shall explain how the observed
value of the random variable can be used to test a statistical hypothesis.

The use of a random experiment to test a statistical hypothesis is an
extension of the method of testing scientific hypotheses by means of non-
random experiments. The following experiment, apocryphally attributed
to Galileo, provides a simple illustration of this method. In order to test
the hypothesis that two objects of different weights will fall at the same
speed, Galileo is reported to have dropped from the leaning tower of isa
one large and one small cannon ball. His hypothesis was supported by
the observation that the cannon balls did indeed strike at nearly the same
instant.

To see the general structure of this method, suppose that an observable
quantity = according to the hypothesis should have the value x,, while
alternative theories predict values different from z,. (In the example,
z would be the difference in the times of impact of the two cannon balls,
and xz, would be zero.) If on performing the experiment we find that x is
different from 2, we must reject the hypothesis since its predictions are
not fulfilled. The observation that 2 = x,, on the other hand, serves to
support the hypothesis, though it cannot be regarded as proving it since
there may be other theories that would also predict x = z,.

When the hypothesis is statistical, the situation is not quite so clearcut.
The observable quantity is then a random variable, say X, and the
hypothesis states that X is distributed in a certain way. Usually, the
hypothesis will assign positive probability to all possible values of X; no
matter which value is observed it could therefore have occurred under the
hypothesis, so that no observation can rule out the hypothesis with cer-
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tainty. However, certain values of X may cast such serious doubt on the
hypothesis as to persuade us to abandon it. This will be illustrated by
the following examples.

ExampLE 1. Changing the sex ratio. In the dairy industry, a male calf is
much less valuable than a female one. A biochemist claims to have found
a treatment that increases the chance of females above its usual value of 1.
The association of dairy farmers is skeptical regarding this claim, and
proposes an experiment to test their suspicion that the treatment is worth-
less. The treatment is applied in 20 cases, and the number F of females
among the 20 calves is observed. According to the association’s hypoth-
esis, F' has the binomial distribution (n = 20, p = .5). Since each of the
possible values of F, 0, 1,..., 20, has positive probability under this
distribution, no observation can definitely disprove the hypothesis. How-
ever, an observation of ¥ = 20 might well persuade the association to
“reject its hypothesis,” that is, to abandon its skepticism and grant the
biochemist’s claim, since such an observation would be extremely unlikely
if the hypothesis were true but is the type of result expected if the new
treatment is highly effective.

The example suggests a general approach to the problem of testing a
statistical hypothesis H. Suppose that an experiment is performed re-
sulting in the observation of a random variable 7' and that certain values,
say large values, of 7 are very unlikely under H bhut quite likely under
some alternative theory. Then if 7' is observed to have a sufficiently
large value, we would be inclined to reject H in favor of such an alternative
theory. The random variable 7 is called a test statistic; the hypothesis H
is called the hypothesis tested, or the null hypothesis since it is often an
assertion that there is nothing to certain claims.

ExampLe 2. Extrasensory perception. A spiritualist claims to have
clairvoyant powers that permit her to perceive the arrangement of a deck
of cards in the next room. If she were to claim complete accuracy, the
problem would be nonstatistical and there would be little difficulty in
checking her claim. However, she pleads that the identification of each
card requires great concentration and admits that she is only partly suc-
cessful. A psychologist who doubts that even this partial claim has any
validity wishes to test the null hypothesis that she has no such powers at
all. He numbers eight cards from 1 to 8, shuffles them thoroughly, and
invites the lady to arrange a similar deck in what she believes to be the
same order. He will then count the number 3 of cards that occupy the
same position in the two decks. Under his hypothesis, matchings will
occur only by chance and M will have a distribution of the type illustrated
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in Example 5.5.4. It is intuitively clear that large values of M will be
more likely if the lady’s claim is justified, than if the matching is at random.
Therefore 3 would be a reasonable test statistic, with large values of M
throwing doubt on the null hypothesis.

So far, we have considered qualitatively how observations may influence
our attitude toward a hypothesis being tested, by raising or quieting doubts
concerning its validity. However, frequently something more specific is
required: a decision between two possible recommendations or actions,
one of them appropriate if the null hypothesis is true, the other if it is
false. Thus in Iixample 1, the association may have to decide whether or
not to recommend the new treatment. In kixample 2, the psychologist
may be faced with the choice of either dismissing the clairvoyant or retain-
ing her for further study. The decision to act as if the null hypothesis H
were true will be called acceptance of H; that appropriate if H is false will
be called rejection of H. In the two examples, rejection would stand re-
spectively for recommending the new treatment and retaining the
clairvoyant.

If a statistical hypothesis is to be rejected when a test statistic T is
sufficiently extreme, it is necessary to decide just where to draw the line
between acceptance and rejection. (To simplify the discussion, let us
suppose that large values of T' are the ones that are “significant,” i.e. that
cause us to doubt H.) If it is agreed to reject the null hypothesis when
T = cand to accept it for T' < ¢, the boundary value ¢ is called the critical
value. It is the smallest value of the test statistic that leads to rejection.
For example, if the dairy association decided to reject the null hypothesis
(and hence to recommend the treatment) if # = 18, and to accept it (i.e.
not recommend the treatment) if F < 18, it would be using 18 as the
critical value of F.

There are several issues involved in the choice of a critical value, which
will be discussed in Chapter 13. In the present section we shall consider
only one issue: the possibility of choosing the critical value to control the
risk of false rejection of the null hypothesis, that is, of rejecting the null
hypothesis when it is actually true. This risk is measured by the prob-
ability of false rejection Pu(T Z c), where Py denotes a probability com-
puted under the assumption that the null hypothesis H is true. It is
customary to denote the probability of false rejection by «, and

1) a=Pu(T 20¢)

is also known as the level of significance of the test. When a null hypothesis
is tested at significance level a and is rejected, the outcome of the experi-
ment is said to be “significant at level .” Instead of selecting directly a
critical value ¢, it is customary to select a value of a—the probability that
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we wish to control—and then determine ¢ through equation (1). Before
showing how this is done, we discuss briefly the choice of a.

In deciding how to choose a, it is important to be clear about the mean-
ing of this probability. To be specific, suppose that « = .01. What
implications does this have in each of the examples? In Lixample 1, the
probability is then 134 of recommending the treatment when it is actually
completely ineffectual in raising the proportion of females. Perhaps it is
one of the functions of the dairy association to test various new discoveries,
treatments, etc., that might he of benefit to its members. Adoption in
each such test of the level @ = .01 means that the association will mis-
takenly recommend to its members about 19 of the useless “discoveries”
submitted to its scrutiny, successfully screening out the remaining 999%.
Similarly, in Example 2, adoption of the level « = .01 means that if the
clairvoyant has no special powers of extrasensory perception, there is only
a chance of 117 that she will uselessly be retained for further study.

It is seen from (1) that a decreases as the critical value ¢ increases. We
shall now illustrate with the two examples how to determine ¢ so as to
reduce a to a satisfactorily low value.

Examrre 1. Changing the sex ratio (continued). According to the null
hypothesis, / has the binomial distribution (n = 20, p = .5) Using
Table C we can compute Pu(F = ¢) for ¢ = 20, 19, ..., and then add

these terms to find suceessively Pu(F = ¢) for ¢ = 20, 19, . . ., as shown
below.

¢ 20 19 18 17 16 15 14
Py(l = ¢) .0000 .0000 .0002 0011 .0046 0148 0370
Pu(F 2z ¢) .0000 .0000 .0002 .0013 .0059 0207 0577

This table shows that « can have only certain values. There is no critical
value ¢ for which « is exactly .01. If we wanted one chance in a hundred
of false rejection, we would have to settle for ¢ = 15 and get a = .0207.
or use ¢ = 16 and get a = .0059. Similarly, if we wanted five chances in
a hundred of false rejection, the choice of critical value lies between 14
and 15 and that for a correspondingly between .0577 and .0207

In this example we formulated the null hypothesis as p = } under the
assumption that this is the probability of a female calf when the treatment
has no effect. Actually, for most animals as for humans the probability
of a female birth is not exactly 3. Suppose that for the kind of cattle
under consideration this probability (under the assumption of no treat-
ment effect) is .48. Then the rejection probability Pu(F Z ¢) should be
computed for the binomial distribution corresponding to p = .48 rather
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than that eorresponding to p = .5, giving rather different values than those
listed in the table.

Actually, it is better in such circumstances not to speculate about a
value of p which is either not exactly known or which, even if it is known
for cattle in general, may not apply to the particular herd which is used
for the experiment. Instead, there should be included in the experiment
control cases to which the treatment being tested is not applied. (Con-
trols are needed here for essentially the same reasons as when estimating
a treatment effect; see Section 9.4.) In this way, it is possible to study
the effect of the treatment directly by a comparison of treated and un-
treated cases. The problem of testing the effect of the treatment for this
type of experiment will be studied in detail in Chapter 12.

ExampLe 2. Extrasensory perception (continued). Ior a second numerical
iltustration of the relation between « and ¢, we use Table 6.8.1, which gives
the distribution of the number M of matchings when A items are arranged
in random order. (It is not necessary to read Section 6.8 to follow this
illustration.) In that table, (N)y is the number of equally likely orderings
of N items, and C(m, N) is the number of these which give exactly M = m
matchings. For example, for N = 8 the table shows that there are
(8)s = 40,320 possible orderings, of which (4, 8) = (30 have exactly
M = 4 matchings. Thus, if matching is done at random, Py(M = 4) =

630/40,320 = .0156. Proceeding similarly, the following table can be ob-
tained.

¢ 8 7 6 5 4
Pa(M = ¢) .0000 .0000 .0007 .0028 0156
Pr(M 2 ¢) .0000 .0000 .0007 .0035 0191

Supposing the psychologist decides to reject the null hypothesis (and
therefore retain the clairvoyant) provided she correctly places 5 or more
cards, his risk of retaining her is .0035 if she has no powers of extrasensory

perception. (In this case, ¢ = 5 and a = .0035.)

The distinction between statistical and nonstatistical hypotheses made
at the beginning of the section is not as sharp as it may seem, since all
observations involve at least some degree of uncertainty. Thus it would,
for example, not be possible to observe exactly the difference in time of
impact of Galileo’s two cannon balls. A more careful model for this
experiment would treat this time difference as a random variable, to which
Galileo’s hypothesis assigns the expected value zero. However, in this
case the random element is so minor that it can be neglected, and the
observed quantity treated as nonrandom.
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PROBLEMS

1. An instructor asks each member of his class of ten students to write down “at
random” one of the digits 0,1,...,9. Since he believes that people incline to
select the digits 3 and 7, he counts the number S of students selecting 3 or 7.
(i) What is the distribution of S if the students do select at random?
(ii) How large must S be before the hypothesis of randomness would be rejected
at significance level @ = .1?

2. Solve the preceding problem if the instructor believes that people incline to
select an odd digit in preference to an even one and if S denotes the number of
students selecting an odd digit.

3. Solve the preceding problem if the number of students is 15 and a = .05.

4. A surgeon believes he has found an improved technique for performing a certain
heart operation for which the mortality has been 30%. He performs the operation
on 10 patients all but one of whom survive. At the 3%, significance level, is he
justified in claiming to have proved the success of his innovation?

5. In the preceding problem, suppose the mortality had been 40%. If all but
one of the ten patients survive, is the surgeon justified in his claim at the 19, level?

6. A manufacturer of a certain food product believes that he can use less expensive
ingredients without noticeably lowering the quality of his product. To test the
hypothesis that the cheapening cannot be detected, he presents 25 customers with
samples of both products and asks them to state which they prefer. 1If 17 prefer
the old and only 8 the new product, is this result significant at the 1%, level, at the
5% level, at the 109, level? (Assume that a customer who cannot distinguish the
products chooses at random.)

7. In the preceding problem, suppose the number of customers is 20, of which 14
prefer the old and 6 the new product. Is this result significant at the 19, level,
at the 59 level, at the 109, level?

8. A delegation of three is selected from the council of Example 2.1.1 consisting
of four Conservatives and three Liberals. All three members chosen for the dele-
gation (supposedly at random) turn out to be Conservatives. At significance
level 59, would the Liberals reject the hypothesis that the delegation was selected
at random?

9. In the preceding problem, suppose that the council consists of nine members,
five Conservatives and four Liberals, and that a delegation of five is to be selected.
Let D denote the number of Conservatives included in the delegation.
(i) What is the distribution of D under the hypothesis that the delegation has
been selected at random?
(ii) For what values of D should the Liberals reject the hypothesis of random
selection at approximate significance level 5%,?

10. In Example 2, suppose that the spiritualist is shown eight cards (face down
and in random order) and is told that four are black and four red. She is asked to
identify the four red cards. Let D be the number of red cards among the four
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cards she selects.
(i) What is the distribution of D under the hypothesis that she has no extra-
sensory powers at all?
(ii) For what values of D would you reject the hypothesis of no extrasensory
powers—in favor of recognizing the lady’s claim at approximate significance
level .02?

11. What significance levels between .005 and .1 are available if, under the hy-

pothesis, T has the binomial distribution with n trials and success probability p,

and if the hypothesis is rejected for large values of T, in the following cases:
Gn="7p=2 () n=297p=.1, (iii) » = 14, p = .5.

12. Under the assumptions of the preceding problem, find the significance level
closest to .05 when
(1) n= 6; pP= '3’ (11) n= 10) = '47 (lll) n = 25! b= 5.

13. What significance levels between .005 and .1 are available if, under the hy-
pothesis, T' has the hypergeometric distribution (1) of the random variable D in
Section 6.2 and if the hypothesis is rejected for large values of T, when

(i) N=15r=10,s = 6; (i) N =20,r =10,s = 8?

14. Let X denote the number of heads obtained when a fair penny is tossed »
times.
(i) Suppose you observe X and believe that n was equal to 18 but are not sure
that you did not lose count and that actually n was greater than 18. Would
you reject H: n = 18 against the alternatives n > 18 for small values of X
or for large values of X and why?
(ii) At significance level @ = .1, would you reject it if X = 157

15. Solve the preceding problem if the hypothesis H: n = 15 is to be tested against
the alternatives n > 15, if X = 12 and o = .05.

16. Let B denote the number of successes in n binomial trials with success proba-
bility p. For testing p = .3 against the alternatives that p < .3, would you reject
H for small values of B or for large values of B?

17. You wish to test the hypothesis H that in a certain species of animals the
probability p of an offspring being male is . Since you believe it possible that p
may be either > § or <4, you wish to test H against the alternatives p = 1. If
M denotes the number of male offspring in n = 16 births, for what values of M
would you reject H at level « = .02, .05, .1?

18. Solve the preceding problem if n = 14.

19. Suppose H is rejected when 7' is sufficiently large, and that in particular when
T = 6, H is rejected at level o = .05. Determine for each of the following levels
o' whether for T = 6, H should definitely be rejected, definitely accepted, or
whether not enough information is given to tell:

(i) o = .01, (i) o = .02, (iii) o = .1.
[Hint: Suppose H is rejected when T 2 ¢.  What is the relation between ¢ and 6,
and how is Pa(T = ¢) related to a?]

20. In Problem 1, suppose that S is observed to be equal to 5. What is the
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smallest significance level a for which the hypothesis of random selection would
be rejected?

21. In Example 2, suppose the psychologist uses a deck of N cards, and rejects
the null hypothesis (of no clairvoyant powers) only if the spiritualist arranges all
N in the correct order (M = N). How large must N be for a to be less than .01?
[Hint: Use Table 6.8.1.]

22, If one wishes to test p = .4 against p < .4 with a value of n in the range
12 £ n £ 15, and if « is to be as near .05 as possible, what values of n and ¢ should
be used?

11.2 METHODS FOR COMPUTING SIGNIFICANCE

In the preceding section we illustrated the exact computation of the rela-
tion between the critical value ¢ of a test statistic 7 (large values of which
are significant) and the corresponding significance level & = Py(T 2 ¢).
We shall now develop a short-cut method and an approximation for this
computation.

To emphasize the fact that the probability of the event 7' = ¢ is com-
puted under the assumption that the null hypothesis H is true, we have
written Pa(7 = t). However, to simplify the notation, we shall omit the
subscript H in the remainder of this chapter and in Chapter 12. The
reader should keep in mind that in this part of the book all probabilities,
expectations, and variances are computed under H.  In Chapter 13, where
probabilities are computed under various hypotheses, a subscript notation
will have to be reintroduced.

ExampLE 1. Matching. On return from a sabbatical year in France,
a professor astonishes his friends by claiming to have become a connoisseur
of French clarets. To test his claim, they get clarets from nine famous
chateaux and ask him to match the wines with the list of chateaux in a
blindfold test. He correctly matches seven out of the nine. It is of
course possible that he knows nothing about wine and is just guessing at
random (null hypothesis). Is his achievement significant evidence against
the null hypothesis at the 19, level?

If M denotes the number of correct matchings, large values of M are
significant. The distribution of M when N items are matched at random
was discussed in Example 1.2. However, Table 6.8.1 unfortunately
extends only up to N = 8. Is it necessary to extend that table to
N = 0 in order to answer the question of the significance of the professor’s
performance? Tortunately not, since we know (Problem 6.8.12) that
c(7,9) = 36, ¢(8,9) =0 and ¢(9,9) = 1, and hence that the number
among the (9), equally likely arrangements leading to seven or more
correct matchings is 37. Since (9)s = 362,880 by Table 2.3.1, it follows
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that under the null hypothesis, P(M = 7) = 3z3Lq4y = .000102.

If the entire distribution of M were available, we would know exactly
what significance level a corresponds to each possible critical value ¢
The computation we have just made shows that level a = .000102 corre-
sponds to ¢ = 7. Clearly, a larger level would correspond to any ¢ smaller
than 7, and a smaller level to any ¢ larger than 7. Thus, we know that
the observation M = 7 is significant at all possible levels greater than or
equal to .000102 and henee in particular at the one percent level, without
the labor of computing the values of a corresponding toc =6, 5, .. ..

The short-cut device just illustrated is often helpful. Let T be any test
statistic, large values of which are significant, and suppose that in the
experiment we observe T' = t. We compute the probability P(T = ¢) of
observing a value of T as significant as, or even more significant than, the
value ¢ actually observed. This probability is known as the significance
probability of the observed value ¢ of 7. By the argument given above,
the significance probability tells us just at which levels « the hypotheses
would be rejected, without the necessity of computing the entire distribu-
tion of 7. The observation T = ¢ will be significant at each level greater
than or equal to P(T = t), and not significant at any level less than
P(T z4).

When reporting the result of an experiment designed to test a null
hypothesis, it is better practice to give the significance probability than
merely to assert whether or not the experiment is significant at a prechosen
level. This has the advantage that a reader of the report can decide for
himself what significance level he wishes to use. For example, suppose
P(T 2 i) = .04, and the report merely says “‘the experiment was signifi-
cant at the 59, level.” A user of the report, who would prefer to use the
2% level, does not know whether to reject the null hypothesis at that level;
but publication of the value .04 of P(T 2 ) tells him to accept the hy-
pothesis at level .02.

The significance probability may be thought of as giving, in a single
convenient number, a measure of the degree of surprise which the experi-
ment should cause a believer of the null hypothesis. Behind this inter-

pretation lies the assumption that large values of the test statistic are just
what would be expected under the alternative hypothesis. Thus, if the
professor really has acquired a fine taste in French clarets, it would be
cxpeeted that he can correctly identify the chateaux in most cases. For
this reason, the very small probability P(M = 7) = .000102 casts very
strong doubt on the null hypothesis that he is just guessing.

In many cases, the significance level corresponding to a given critical
value, or the critical value appropriate for a desired significance level, can
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be approximated to a satisfactory degree of accuracy by use of the normal
approximation. This requires only knowledge of the expectation and
variance of the test statistic under the null hypothesis.

ExampLE 2. Triangular taste tests. A manufacturer of powdered coffee
is considering a change in the production process which would reduce his
costs, but he does not wish to make the change if it would result in an
alteration in flavor that could be detected by his customers. He arranges
to conduct taste trials in a supermarket. Each of 500 customers will be
offered in random order three cups of coffee, one of which is made by the
new process and the other two by the old process. He is then asked to
identify which cup is different from the other two. 1f the customers are
in fact unable to distinguish the change in flavor, each will have one chance
in three of correctly guessing which cup is different. Let B denote the
number of customers who correctly identify the cup made by the new
process. Under the null hypothesis of no chiange in flavor, B has the
binomial distribution with n = 500, p = 1. If the flavor has been altered,
B would tend to have large values. What is the critical value for B corre-
sponding to the 59 level?

We seek that value ¢ for which ’(B = ¢) = .05. IFormulas (6.1.6)
and (6.1.7) give E(B) = 380 = 166.67 and Var(B) = 1802 = 11].11
so that SD(B) = 10.54, where of course the expectation and variance are
computed assuming H. The normal approximation gives

0s N 166.67)'
V5 =PB<c)=19% (#—“10.54
Comparing this with the equation
95 = $(1.645),
we see that
. _¢c—.5—16667 -
1.645 = T omx v = 184.5.

Now ¢ must be an integer. Tor ¢ = 184, the normal approximation gives
a = P(B = 184) = .0552, while for ¢ = 185, a = I’(B = 185) = .0453.
(The correct values, obtained from a large table of the binomial
distribution, are in fact .0560 and .0462.) Thus, if 185 or more customers
correctly identify the cup made by the new process, the experiment is
significant at the five percent level.

PROBLEMS

1. Find the significance probability in the following cases: (i) in Problem 1.1 if
S = 4; (i) in Problem 1.4; (iii) in Problem 1.6; (iv) in Problem 1.9 if D = 4;
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(v) in Problem 1.10if D = 3.

2. In Problem 1.1 use the normal approximation to find the critical value of S if
the number n of students and the significance level are (i) n = 64, a = .1; (ii)
n =64, a =.05; (iii) n =100, a = .1; (iv) n = 100, « = .05; (v) n = 100,
a = .01.

3. In Problem 1.4 suppose that the operation is performed on n patients, S of
whom survive. At significance level @ = .01, use the normal approximation to
find the critical value of S if (i) n = 80, (ii) n = 120, (iii) n = 160.

4. In the preceding problem, use the normal approximation to find the signifi-
cance probability if (i) n = 90,8 = 65; (ii) n = 90,8 = 70; (iii) n = 900, S = 650;
(iv) n = 900, S = 700.

5. In Problem 1.6 suppose that n customers are asked to state their preference and
that S of the n prefer the old product. Use the normal approximation to find the
critical value of S if n = 100 at significance levels

(i) a = .01 (iii) o = .05
(1) a = .02 (iv) a = .10.

6. To test the hypothesis H that a coin is fair, suppose it is tossed n times, the
number S of heads is observed, and H is accepted if —¢c <8 —in Z¢. TUse
the normal approximation to find the critical value ¢ corresponding to significance
level @ = .05 if (i) n = 50, (ii) n = 100.

7. In Example 2, suppose that the taste test is given to 200 customers. Use the
normal approximation to find the significance probability if B takes on the value
(1) 75, (ii) 90.

8. A teacher of a class of 100 children is instructed to select a treatment group
of 50 at random to receive a daily supplement of orange juice in their school lunches,
the other 50 to serve as controls. When the results of the experiment are analyzed,
it is found that 30 of the 100 children came from an orphanage and that 23 of these
30 were included in the treatment group. At significance level .05, would you
reject the hypothesis that the teacher followed instructions and instead entertain
the suspicion that he tended to favor the orphans with the juice? [Hint: If D is
the number of orphans included in the treatment group, what is the distribution of
D when the hypothesis of random assignment is true?]

9. In the preceding problem, find the significance probability if the class consists
of 150 children, of which 75 receive the juice and 75 serve as controls, and if 40
come from the orphanage of which 25 are included in the treatment group.

10. Find the significance probability in the following cases: (i) Problem 1.14;
(i1) Problem 1.15; (iii) Problem 1.16 when B = 5.

11. In Problem 1.17, find the significance probability when M = 5. [Hint:
Put T = |M — 8| and note that large values of T are significant.]

12. In Problem 1.18, find the significance probability when M = 3.
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13. In Problem 6, find the significance probability when (i) n = 100, S = 40;
(i) » = 200, S = 75.
14. A new drug cures nine of 200 patients suffering from a type of cancer for which

the historical cure rate is two percent. How significant is this result? [Hint:
Use the Poisson approximation developed in Section 6.7.]

11.3 THE CHI-SQUARE TEST FOR GOODNESS OF FIT

The basic concept underlying this book is that of a probability model
representing a random experiment, as described in Chapter 1. Before
applying any such model one should ask: is the model realistic? Deciding
whether a proposed model is realistic may be viewed as a problem of
testing a statistical hypothesis, and we shall now present a test appropriate
for this purpose. The theoretical basis for this test is the multinomial
distribution discussed in Section 7.3.

To be specific, suppose a model is being considered with k simple events,
to which are assigned probabilities py, ps, . . ., px. This model is supposed
to represent a random experiment with k simple results. A test of realism
requires the collection of suitable data. Suppose to this end we perform
the experiment n times and observe the numbers of times, say By, B,, . . .,
B;, that the various simple results occur. Intuitively, one would judge
the model to be realistic if the observed frequencies By/n, By/n, . . ., Bi/n
are close enough to the probabilities py, ps, . . ., pr that are supposed to
represent them.

ExampLe 1. Random digit generator. The idea of a random digit gener-
ator was introduced in Example 1.2.2, and was discussed further in Section
3.4. The probability model for the experiment of operating the generator
to produce a random digit has ten simple events (k = 10) corresponding
to the ten digits, and assigns equal probability to each (;p1=p. = ... =
P = 15)- The results of n = 250 trials of the experiment are given in
the first five rows of Table 3.4.1. Inspection of this table shows that the
digit zero occurred 32 times, or with frequency 57 = .128. The other digits
may be counted similarly, giving the following results:

Digit 0 1 2 3 4 5 6 7 8 9
Number of

M occurrences 32 22 23 31 21 23 28 25 18 27
Frequency 128 .088 .092 .124 .084 .092 .112 .100 .072 .108

“In the long run,” each of the ten frequencies is supposed to be .1.  While
the frequencies are not expected to be exactly equal to this value in the
short run, are the observed discrepancies perhaps too large to be attributed
to chance fluctuations, and hence cast doubt on the operation of the gener-
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ator? To help answer this question, we need a reasonable test statistic
for which we can compute the significance probability.

Many different reasonable measures could be suggested for the dis-
crepancy between the frequencies Bi/n, By/n, . .. and the corresponding
probabilities py, p,, . . . ; and each such measure could be used to test the
proposed model. For example, one might consider the maximum bdf the
absolute differences |(B)/n) — pil, |(Be/n) — pal,. ... Another possi-
bility is the sum of the squared differences [(Bi/n) — p]2 + [(By/n) — p.]?
+ . ... The measure most commonly used in practice is

_ Bi—np)* | (B: — npy)? (Br_— npi)*,

@) Q= " + o +...+ v
Large values of @ correspond to large discrepancies, so that large values of
@ are significant. This test was proposed by Karl Pearson in 1900, and
is known as the chi-square lest of goodness of fit (of the observed frequencies
to the probabilities of the model).

In order to carry out the test it is necessary to know the distribution of
Q under the null hypothesis, i.e., according to the mode! being tested. If
the model is correct, and if the n trials of the experiment are unrelated so
that a product model may be used, the random variables (By, B,, . . ., By)
have a k-nomial distribution as discussed in Section 7.3. From this result,
the null distribution of @ can be obtained by listing all possible sets of
values of (By, Bs,. .., i), and for each set computing both its null
probability according to the method of Section 7.3, and also the associated
value of @ from (2).

ExampLE 2. Computation of null distribution of Q. To illustrate the
method, let us take k =3, p1= .5, po= .3, p3= .2 and n = 4. The
fifteen possible sets (b, by, by) are shown in Table 1 arranged in order of
decreasing value of Q. Consider for example the row (by =1, by = 3,
by = 0). For this case, the value of Q is by (2)

C1-20)0, 3-12)?, 0—08)?
@=""7%0 T 12 t g =*

and the probability that (B, = 1, B; = 3, B; = 0) is by (7.3.4)

(&) (5)(3)(2)° = .0540.

The column P(Q = ¢) of Table 1 gives the significance probabilities,
obtained by adding the probabilities of the sets with  as large or larger
than the observed value g. Suppose for example that one observed B; = 0,
B; =1, B; = 3. These values are represented in the third row of the
table, and give @ = 8.08. The significance probability is P(Q = 8.08) =
.0193.
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The procedure illustrated in Example 2 is clearly not practical unless n
is quite small, and we shall therefore consider an approximation. It is a
remarkable fact, discovered by Pearson, that when = is large the null
distribution of Q is very nearly independent of the values of py, Py, . . ., Px,
depending essentially only on the value of k. Since most applications do
involve a large value of n, this means that in practice it is usually sufficient
to employ Pearson’s approximation, values of which are shown in Table G.

It can be shown (Problem 2) that E(Q) = k — 1, and we shall for brevity
denote this value by k& — 1 = », where » is often called the “degrees of
freedom.” Large values of @ are significant, and it is values of @ larger
than the expected value that are of primary interest. Accordingly, Table
G gives Pearson’s approximation to P(Q = ¢) only for values of ¢ that
exceed ». In fact, the columns of the table are headed with values of
g — v, the amount by which the observed value ¢ exceeds the expected
value v of @. The use of Table G is illustrated by the following examples.

TasLeE 1. NULL DISTRIBUTION OF Q

bbb ¢ PQ=0 P@zo PHTL
0 0 4 16.00 0016 0016 .000
0 4 0 9.33 .0081 0097 010
0 1 3 8.08 0096 .0193 017
1 0 3 7.75 .0160 0353 021
0 3 1 475 0216 0569 094
0 2 2 4.33 .0216 0785 115
4 0 0 4.00 0625

1 3 0 4.00 .0540 .1950 135
2 0 2 3.00 .0600 .2550 224
1 1 2 2.33 0720 3270 313
3 0 1 1.75 1000 4210

3 1 0 1.33 ~.1500

2 2 0 1.33 1350 7120

1 2 1 1.08 .1080 .8200

2 1 1 .08 .1800 1.0000

ExamprLe 2. Compulation of null distribution of Q (continued). Let us
return to Example 2 and consider the problem of finding the approximate
significance probability of the observation (B; = 1, B, = 0, B; = 3). For
this observation, @ has the value 7.75, so that the desired probability is
P(Q = 7.75). This probability was computed exactly and found to be
.0353; let us see what value is given by Pearson’s approximation. Since

= 3, and hence » = k — 1 = 2, the appropriate row of Table G is the
first. The columns of Table G are headed with values of ¢ — », which in
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this case means ¢ — 2. Since we are concerned with the value ¢ = 7.75,
we wish to enter the table at 7.75 — 2 = 5.75. There is no column headed
5.75, but we can interpolate between the values ¢ — v = 5.5and ¢ — v =
6.0. The entry in the 5.5 column is .024, while the entry in the 6.0 column
is .018. Interpolation gives P(Q = ¢) = .021, which may be compared
with the correct value .0353.

This method was used to compute the final column of Table 1, which
should be compared with the corresponding correct entries given in the
penultimate column. The reader will see that the approximation is far
from perfect, as is only to be expected since in this case n = 4 while the
approximation is based on the assumption that » is large. Nevertheless,
even with this extremely small n, the approximation gives a fair idea of the
magnitude of the significance probabilities. Pearson’s approximation im-
proves as the numbers npy, . . ., np; increase, and it is a common rule-
of-thumb that the approximation is reliable when all of these numbers are
5 ormore. Our example, in which these numbers are np, = 2.0, np, = 1.2

and np; = 0.8, suggests that the approximation may be useful even for
values of npy, . . ., np; less than 5.

ExamrLe 1. Random digit generator (continued). Let us now apply the
chi-square test to answer the question raised in Example 1: are the dis-
crepancies between the observed frequencies of the ten digits and their
probabilities too great to be explained by chance? Applying formula (2)
to the data given in (1), we have k = 10, n = 250, p; = ... = py = .1,
and

0= 32 -2-_25)2 L@ i) ONG .Lk  L

5] 25 25
In this case » = 10 — 1 = 9, so that E(Q) = 9. The observed value is
actually smaller than the expected value, so that the discrepancies are
certainly not significant. Table G gives P(Q = ») to be .433 for » = 8
and .440 for » = 10; thus by interpolation it is .436 for » = 9. Since our
observed ¢ is less than », P(Q = 7.2) exceeds .436. In fact, from a more
complete table of Pearson’s approximation* it appears that the value is
.616.

The chi-square test can also be used for a more general problem than
that discussed here, namely for testing the goodness of fit of a model whose
probabilities are not completely specified. The application of the test in
such cases is explained in more advanced books.

* Biometrika Tables for Statisticians, Vol. 1 (edited by E. S. Pearson and H. O.
Hartley), Cambridge University Press (1954). Table 7.
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PROBLEMS

1. Check the values of ¢ and P(Q = ¢) for the following entries in Table 1:
(@ bi=10,b;=1,b; = 3; @bh=14Lb=15b=2

2. Show that E(Q) = k — 1.
[Hint: E(B, — np,)? is just the variance of the binomial random variable B, and
similarly for B,, . . ., B;.]

3. Use Table G to check the entries in the last column of Table 1 for the cases
1D bi=0,b=4,b;=0; (ii) by =2,b, = 0, b5 = 2.

4. Use Table G to find an approximate value for P@Q = q) when k = 10 and
¢ = 12.2. [Hint: This value requires interpolation in both directions, which should
be done as follows: since ¢ = 122 and » = 9, ¢ — » = 3.2 s0 we must interpolate
between the columns headed 3.0 and 3.5. This can be done both for rows » = 8
and » = 10, and the average of these values used for the desired » = 9.]

5. Use Table G and the method of the preceding problem to find an approximate
value for P(Q = ¢) whenkt = 34 and ¢ = 33.1.

6. Use the last ten rows of Table 3.4.1 to test the fit of the model discussed in
Example 1.

7. Carry out the experiment of throwing a die 60 times, and record the frequencies
of the results “one point,” . . ., “six points.” For testing the hypothesis that the
die is fair, compute @ and use Table G to determine whether @ is significant at the
109, significance level.

8. Divide the 200 tosses with a coin performed as Problem 1.2.1 into 100 pairs of
two consecutive tosses and count the numbers of cases with two heads, one head and
one tail, and two tails. For testing the hypothesis that the coin is fair and the
tosses are unrelated, so that the probabilities of the three simple events are, respec-
tively, 1, 3 and §, compute @ and use Table G to determine whether @ is significant
at the 89 significance level.

9. (i) For the case k = 2 (and hence » = 1) which is not covered by Table G,
show that the quantity Q defined by (2) reduces to Q = (B, — np))2/ap:(1 — p)).

(ii) Use the normal approximation to the binomial distribution for computing
approximately the probability @ = ¢ when k = 2, n = 100, p1 = { and ¢ = 4.
[Hint: (ii) B, has a binomial distribution, and @ in this case is the square of the
standardized binomial variable B,*.]

10. Obtain the exact distribution of @ and sketch its histogram for k = 3, p, =
p:=ps= jand

@) n=3, (i) n = 6, (i) n=9.
[Hint: Since p; = p: = ps, both the value of @ and its probability do not depend
on the order of the values by, b, and bs, which greatly reduces the number of cases.]
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11. Use Table 1 to find the significance probability of the observation By = 1,
B, = 3, B; = 0 if instead of @ the following measures of discrepancy are used as
test statistics:
(1) the maximum of the absolute differences
|(Bi/n) — py), |(Bo/n) — o, [(Bs/n) — pal;
(i) the sum of the squared differences
[(Bl/n) e pn]z -+ [(32/n) - Pz]’ + [(B;;/n) - 1)3]2:
(iii) the sum of the absolute differences
[(Bi/n) = pi| + |(Bo/n) — po} + |(Bs/n) — pal.

12. Suppose that in Example 2 the observed values are B, = 1, B, = 3, B; = 0.
Then the largest of the absolute differences |B, — npil, |Bs — nps|, |Bs — npy| is
|B; — nps| = |3 — 1.2| = 1.8. Since B; has the binomial distribution with n = 4,
pe = .3, it is tempting to compute the significance probability of the value 1.8 from
this distribution, using Table B.
(i) Compute the probability in this way.
(ii) Explain why this does not give the correct significance probability of the
observed result.
(ili) Determine without computation whether the correct value is larger or
smaller than that computed in (i).
(iv) Find the correct significance probability.
[Hint: (iv) See Problem 11(i).]



CHAPTER 12
TESTS FOR COMPARATIVE EXPERIMENTS

12.1 COMPARATIVE EXPERIMENTS

In nearly all areas of human endeavor, efforts are constantly being made
to find better methods of doing things. When a new method is proposed
it becomes necessary to decide whether it really is superior to the method
currently used, and if so by how much. The problem of estimating the
magnitude of the improvement provided by a new method was discussed
in Section 9.4 as the problem of “estimating the effect of a treatment.”
In the present chapter, we shall develop methods for testing whether there
is an improvement at all. In spite of the fact that essentially the same
experimental designs are used to provide answers for both questions, the
present development will be independent of the earlier one, at the price
of some repetition.

ExampLE 1. Salk vaccine. To find out whether the Salk vaccine would
give protection against polio, a large field trial was conducted in the United
States in 1954. In this trial, 200,745 children were given the vaccine,
while 201,229 other children received no vaccine. The numbers of cases
of polio in the two groups were then compared (see Example 2.2).

ExaMpPLE 2. Rainmaking. Experiments have been carried out in various
parts of the world to test the effectiveness of techniques for artificial rain-
making by cloud seeding. In a typical experiment, some storms were
seeded and the others left alone, and the frequency and amount of rainfall
were compared for the two groups of storms.

ExampLE 8. Fertilizer. To find out whether a new fertilizer gives better
results than the type currently in use with cotton crops, a farmer applies
each type to a number of plots of land, and weighs the lint cotton produced
from each plot to obtain a comparison.
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Exampre 4. Physics by T'V. A research foundation sponsors an experi-
ment to determine whether physies can be taught as well by television as
in the classroom. A number of students are instructed by television while
others are taught in the ordinary way. At the end of the course, all
students take the same final examination and their scores are compared.

Despite the variety of applications, all of these examples have the same
basic structure. In each case, two ways of doing something, to which we
shall refer as two treatments, are being compared. One of these is the
standard treatment, the one now i use (which may as in Examples 1 and
2 consist in doing nothing), the other is the new treatment that has been
proposed as a possible improvement. The experiment requires the use of
experimental subjects (children, storms, plots, students), each of which
receives one treatment or the other. The experiment consists in observing
the response of each subject (polio or no polio, amount of rainfall, pounds
of cotton, test score), and then comparing the responses of the subjects
receiving the new treatment with those receiving the standard treatment.

We wish to emphasize the importance in such experiments of having a
group of subjects who receive the standard treatment. These subjects
are called the controls and are used as a background against which to com-
pare the results of the experimental subjects. Yrequently experimenters
will omit the controls, feeling that their inclusion would be a waste of
experimental facilities. They then compare the responses of the experi-
mental subjects with past experience with the standard treatment, or with
the response they would have expected from theoretical considerations if
the standard treatment had been used. This is in most cases a very
hazardous practice, as a little consideration of the examples will show.
In the rainmaking experiment, for instance, we might seed all the storms
this year, and compare the rainfall with that obtained in previous years.
However, some years are much wetter than others, and if this should
happen to be a wet year we would conclude that cloud seeding was effective
even if it were not.  Similarly, the incidence of polio and the yield of crops
varies from one year to another. Another instance of the same difficulty
occeurs in the evaluation of a new experimental treatment for mental
patients. Here the inclusion of a patient in the experiment and the re-
sulting additional attention he receives may produce an improvement
which will be attributed to the new treatment, unless a control group of
patients is also included in the experiment. In almost all cases of this
kind, it is better practice to build a control group into the experiment.

Even worse than the omission of controls is the use of a control group
that is not comparable to the experimental group in its responsiveness to
treatment, since this lends to the experiment an entirely misleading aura
of objectivity. If the control group consists of subjects who are on the
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whole less able to respond, then the new treatment may look good even if
in fact it is worthless. On the other hand, the new treatment would not
have a fair chance if it is applied to subjects less responsive than those who
serve as controls. A doctor once ‘“‘demonstrated” the ability of a vaccine
to prevent tuberculosis by giving it to his private patients living in a
suburb, and using as controls the patients at a clinic in a slum area.

It can even happen that biases are introduced as a consequence of a
well-intentioned effort to assure comparability of the control and experi-
mental groups. In a famous experiment on the nutritive value of milk
for school children, carried out in 67 Scottish schools in 1930, half of the
children in each school were “randomly” selected to be given milk for a
four-month period beginning in February, with the other half serving as
controls. It was found that the weight gain of the treated children was
dramatically greater (about 409;) than that of the controls. The validity
of this plausible finding was however later challenged. The control
children were definitely taller and heavier at the beginning of the experi-
ment than the treated children, so that bias appears to have entered into
the selection. The original report stated: “In any particular school where
there was any group to which these methods [random selection] had given
an undue proportion of well-fed or ill-nourished children, others were sub-
stituted in order to obtain a more level selection.” It may be presumed
that the teachers, acting from the most humane motives, would be more
inclined to make such a substitution when it resulted in giving the milk
to children who obviously needed it; thus, needy children would be over-
represented in the treatment group. Since the children were weighed in
their clothes, and since the reduction in clothing weight from February to
June was presumably greater for wealthy children than for needy ones,
the overrepresentation of the latter group would tend to exaggerate the
apparent effect of the milk.

In order to insure comparability of the experimental and control groups,
one may attempt to use experimental subjects who are alike; then we could
be sure that the observed differences in response are attributable to the
differences in treatment rather than to differences in the subjects. Al-
though this ideal is unattainable, experimenters should try to obtain sub-
jects as homogeneous as possible. Thus, the children being compared in
a vaccine trial should perhaps be of the same age, live in the same part of
town, and attend the same school; the plots of land used in a fertilizer test
should be contiguous and should all have been treated alike in recent
vears; the students in an experiment to compare teaching methods should
have similar aptitude scores. In order to produce homogeneous material
for animal experiments, pure strains of mice and other laboratory animals
have been bred which have very similar genetic composition.

In general, in spite of the best efforts to the contrary, there will of course
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remain differences between the experimental subjects. This opens the
door to the introduction of bias for purely accidental reasons, as in the
milk experiment mentioned above. Also, frequently an experimenter has
a strong desire for the new treatment to show up well, and there is the
possibility that this will cause him unconsciously to assign to the control
group the subjects less likely to give a good response. Finally, even if
such a bias does not exist, critical observers may believe that it does.
There is one very simple way for an experimenter to remove both the
possibility and the suspicion of any such assignment bias: to assign the
subjects to the treatment groups at random. One can rely on the im-
partiality of a set of random number tables!

In addition to providing a safeguard against bias or suspicion of bias,
randomization has another important function: it furnishes the basis for
the probabilistic evaluation of the results. The situation is quite analogous
to that in sampling where the random character of the sample drawn gave
insurance against a biased selection of the sample and at the same time
assigned to the sample a probability distribution which provided a basis
for estimation. This analogy between randomization and sampling is not
accidental; as we shall see below, randomization is actually carried out by
means of sampling, with different sampling designs leading to different
methods of randomization. We shall now briefly outline three such
methods.

(1) Complete randomization. Suppose that N subjects are available for
the experiment. Of these, t are to receive the treatment, with the remain-
ing s = N — t serving as controls. The simplest randomized method of
dividing the N subjects into s controls and ¢ treatment subjects, consists
in selecting the ¢ treatment subjects completely at random; that is, in such

a manner that all (12[) possible choices of the £ subjects have the same prob-

ability, which is therefore

/()

With this procedure, the s = N — { remaining subjects who will serve as
controls also constitute a random sample (of size s) from the given set of
N subjects. (See Section 2.3.)

(i) Randomzzation within blocks. As remarked above, it is desirable
that the subjects used in a comparative experiment be as homogeneous as
possible so that any observed difference in response to the two treatments
may be attributed to difference in treatment, rather than to difference in
the subjects. Homogeneity may often be attained by imposing conditions
on the experimental subjects, to make them more nearly alike. For
example, in the clinical trial of a new drug, one may require that all patients
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be of the same sex, of nearly the same age, and be afflicted by the disease
to a similar degree. Unfortunately, such conditions will often reduce the
number of available subjects so drastically that not enough will remain
for the experiment.

An important technique devised to get around this difficulty is blocking.
The available subjects are divided into homogeneous blocks, those within
each block being like each other, while subjects in different blocks may be
quite dissimilar. Within each block, a certain number of subjects will
then be treated, with the rest serving as controls. The subjects in each
block are randomly divided into treatment and control groups. As the
random divisions of the various blocks are performed separately, we may
regard them as unrelated parts of the whole experiment, and use a product
model each factor of which has structure (1).

To be specific, suppose there are n blocks. The first, consisting of N,
subjects, is to be divided into s, controls and t, = N, — s, treatment sub-
jects; the second, consisting of N, subjects, is to be divided into s, and
t; = Ny — s5; and so on. The probability that the {, + 6+ ...+,
treatment subjects will consist of a particular set of ¢ from the first block,
a particular set of ; from the second block, etc. is just the product of the
corresponding probabilities (1), i.e.

@ /) ()

The idea of blocking is completely parallel to that of stratification dis-
cussed in Section 10.3, with the blocks playing the role of the strata. The
4+ te + . .. + t. treatment subjects constitute in fact a stratified sample.

(iii) Paired comparisons. An extreme case of blocking occurs when
pairs of subjects form natural blocks, as is the case for example when
identical twins are available for the experiment or when the “subjects”
are human hands. Then in each block of two, one subject receives the
treatment and the other serves as control, the assignment being made at

random. In this case Ny=Ny=...=N,=2and h =L =...=
t» = 1. Therefore <]:I‘) = (]:,2) =...= (]:[”) = 2 and the probability
1 2 n

of any particular set of n subjects receiving the treatment is seen from (2)
to be
3) @)

Although methods exist for testing the effectiveness of a treatment in
the general case of blocking, based on the equal probabilities (2), we shall
in this book for simplicity restrict ourselves to the two extreme cases of
designs (i) and (iii). Tests for ddsign (i) are discussed in Sections 2—1,
while Sections 5 and 6 present tests for design (jii).
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Strictly speaking, conclusions reached from comparative experiments
of types (i)-(iii) are valid only for the particular subjects that were used,
and extrapolation of the conclusions to other subjects must always be
somewhat questionable. 1t is not unreasonable, for example, to assume
that a chemical that appears worthless when tried on one set of cancer
patients will also prove worthless for another. On the other hand, such
an assumption may be unjustified, and a valuable discovery may thus be
missed. However, scientific work is possible only if one proceeds on the
basis of such assumptions.

I'rom the point of view of extrapolating a finding made on a few experi-
mental subjects to a large population of subjects, it is obviously desirable
to use for the experiment subjects which are as representative as possible,
and correspondingly dangerous to use subjects selected for their uniformity.
On the other hand, as discussed above, uniformity is desirable in order to
avoid masking the possible effect of the treatment by the variability of
the subjects. A happy compromise is provided by the blocking design (ii).

The tests presented in Sections 3 and 6 of this chapter (and also a test
to be given in Section 6 of the next chapter) are called “rank tests’” because
they employ the ranks of the observations with respect to each other,
rather than using the observations directly. Rank tests were first intro-
duced for their ease of use, as short-cut methods. It then came to be
realized that they have another advantage: their validity does not require
the specific assumptions needed by the tests that had been used previously.
These often unreliable assumptions are expressed in terms of probability
models that are mathematical functions precisely specified except for the
values of some parameters. (In contrast to the older tests based on such
parametric formulation, the rank tests are called ‘“nonparametric.”’) In
recent years it has been learned that rank tests, in addition to the ad-
vantages of simplicity and freedom from parametric assumption, are often
more sensitive than the parametric tests for detecting treatment effects of
the kind that arise in practical work.

PROBLEMS

1. In a primitive country in which on the average it rains on only 3%, of the
summer days, it was observed that it rained on 279, of the days following a special
rain dance. Examine the experiment for possible bias in the assignment of treat-
ment (dance or no dance) to subjects (summer days).

2. In an agricultural field trial, ten plots are available. of which five are selected
at random to receive a new variety of wheat. Find the probability that

(i) the five most fertile plots are selected;

(ii) at least four of the five most fertile plots are selected.
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3. In the preceding problem suppose that the ten plots are divided into five pairs,
one of each pair being randomly chosen for the new variety. Find the probability
that the new variety will be assigned to the more fertile plot

(i) in each pair;

(ii) in at least four of the five pairs.

4. Among the designs (i)—(iii), the number of possible choi es of the subjects is
largest for (i) and smallest for (iii). To illustrate this, find the number of possible
choices of ¢ subjects from a population of 2¢ both when the ¢ subjects are chosen at
random and when the population is divided into ¢ pairs and one subject is chosen at
random from each pair, in the cases (i) ¢t = 4, (ii) ¢t = 6, (iii) ¢t = 8. [Hint: Use
Table A.]

5. In an experiment to evaluate instruction by television, the lectures are given
in one classroom and are carried by television into another room. Students are
permitted to choose at the beginning of the term which room they will attend. At
the end of the term, all take the same examination, and the marks of the two rooms
are compared.

(i) Discuss the possibility of the conclusions being invalidated by bias;

(il) Suggest a bias-free design which does not require the assignment of unwilling

students to one room or the other.

6. In Problem 5, suggest reasonable ways of forming blocks for the use of design

(ii).

12.2 THE FISHER-IRWIN TEST FOR TWO-BY-TWO TABLES

Experiments for the comparison of two treatments may be classified not
only according to the design used but also according to the nature of the
observed response. In an important class of problems, one is primarily
interested in which of two possible responses occurs: one observes for
example whether a child does or does not contract polio, whether or not it
rains, or whether or not a surgical patient survives an operation. In these
experiments we say the response is all-or-none or quantal. Alternatively,
one may observe a graded response, which can take on many different
numerical values, for example, the degree of paralysis, amount of rainfall,
or length of life following an operation. Any graded response can be
converted into a quantal one by recording only whether or not it exceeds
a specified value. Thus, studies of cancer therapy often report merely
how many patients survive five years, rather than giving the exact time of
survival of the patients. We shall discuss now the analysis of comparative
experiments with quantal response, taking up the consideration of graded
response in the next two sections.

The data from a comparative experiment with complete randomization
and quantal response can be summarized by giving the numbers of sub-
jects with each of the two possible responses among those treated and
among the controls. These can be arranged in a two-by-two table, as is
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shown in the following example.

FExampLE 1. A heart treatment. A physician believes that a certain treat-
ment may prolong the life of persons who have suffered a coronary attack.
To test his belief, an experiment is carried out in which five patients receive
the treatment and five do not. The ten patients are carefully selected to
be similar with regard to age, severity of attack, and general health, and
then five are selected at random from the ten to receive the treatment, the
remaining five serving as controls. Five years later, it is found that of
the patients who received the treatment four are still alive, while of the
control patients only two have survived. The data can be exhibited in
the following two-by-two table.

Alive Dead Total
Treated 4 1 5
Control 2 3 5
Total 6 4 10

The table suggests that the treatment helps, but the numbers are very
small and perhaps it is only a result of chance that more of the treated
than of the untreated patients lived for five years. In order to see whether
this is a real possibility, we may test the null hypothesis that the treatment
is completely without effect. Under this hypothesis the fate of each
patient will be the same whether or not he is treated. We may think of
his fate as determined even before it was decided (by lot) which patients
would receive the treatment and which would serve as controls. Regard-
less of the outcome of this lottery, the six patients who did survive were
“saved” (that is, were destined to survive the next five years) and the four
who died were “doomed” to die before the termination of this period.

We may thus think of four of the patients as labeled “doomed,” the
remaining six carrying the label “saved.” From these ten patients, five
are chosen at random to constitute the treatment group. This means that

all of the (150> = 252 possible choices of a treatment group are equally

likely: a random sample of five was drawn from a lot of size ten of whom
four are doomed and six saved. The number D of doomed patients found
in the sample, that is, in the treatment group, is a random variable capable
of taking on the values 0, 1, 2, 3, 4. Under the null hypothesis, D has the
hypergeometric distribution (N = 10, r = 4, s = j).

The variable D is a reasonable test statistic with small values of D
furnishing evidence against the null hypothesis of no treatment effect,
since D will tend to be smaller when the treatment is effective than when
it is without value. The significance probability of the experiment is
therefore by (6.2.1)
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The evidence offered by the experiment against the null hypothesis is not
very strong, since even if the treatment is without effect there is a chance
of more than } that D < 1. Actually, the experiment is too small to
provide a satisfactory test: even the most extreme value D = 0 has a
probability of .024 under the hypothesis, so that at significance level

a = .01 we would accept the hypothesis regardless of how the observa-
tions come out.

The test we have just illustrated is called the Fisher-Irwin test since it
was proposed independently by R. A. Fisher and J. O. Irwin. We shall
now give another illustration of the test where however the numbers are
s0 large that we shall use the normal approximation to the hypergeometric
distribution instead of calculating the significance probability exactly.

ExamrLE 2. Salk vaccine. The data from part of the 1954 trial of the
Salk polio vaccine (see Example 1.1) may be summarized in the following
two-by-two table.

Polio No Polio Total
Vaccinated 33 200,712 200,745
Control 115 201,114 201,229
Total 148 401,826 401,974

The situation is quite analogous to that discussed in the preceding example.
The null hypothesis of no treatment effect implies that the vaccine gave
no protection, and hence that regardiess of which children were vaccinated,
the same 148 children would have contracted polio, the other 401,826
being spared. We may thus, under the null hypothesis, think of the
children used in the experiment (the experimental subjects), as a “lot” of
size N = 401,974 of which r = 148 are marked “polio,” the remaining
401,826 being labeled “no polio.” Irom this lot,* a sample of size
s = 200,745 is selected at random to constitute the treatment group (that
is, be vaccinated). It then follows, under the null hypothesis, that the
number D of polio cases in the vaccinated group has the hypergeometric

* The method of randomization actually used was more complicated, but to simplify
the discussion we shall analyze the experiment as if complete randomization had been

employed. An analysis based on the actual randomization would yield essentially the
same results.
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distribution (N = 401,974, r = 148, s = 200,745), Since small values
of D are to be expected if the vaceine is effective, we are inclined to reject
the null hypothesis when D is small. The exact calculation of the signifi-
cance probability P(D = 33) of the experiment is laborious, but we may
use the nornial approximation. Since by (6.2.3) and (6.2.5)

) _ sr , _N—-—s r(N—r) _
EWD) = N= 73.9 and Var(D) = No1° N = 36.99
we find that approximately
P(D <33) =& (“—3—%00%59) = ®(—6.64).

This value is extremely small. From the auxiliary entries of Table E, and
the symmetry of ®(z), we see that it is less than one in ten million. One
need not trust the normal approximation to seven decimal places to be quite
confident that the apparent reduction of polio in the vaceinated group is
not due to chance. In particular, we would reject the null hypothesis for
example at level & = .0001.

Frequently the experimental subjects enter the experiment, and must be
dealt with, one at a time. For example, we cannot collect 20 rainstorms,
choose 10 at random, and seed them. Again, in Example 1, a heart patient
must be treated as soon as his disease has been diagnosed. How, in such
circumstances, can we choose the treated group at random? This is in
fact not difficult. Suppose in a rainmaking experiment it has been de-
cided to observe twelve storms of which six are to be seeded. From the
first twelve integers, we choose six at random, and seed the storms occurring
at the corresponding six positions in time. I'or example, if our sample
consists of the integers 1, 3, 4, 9, 10, and 12, we will seed the first storm
that comes along, use the second as a control, seed the third and fourth,
use the fifth as a control, and so on.

It is often necessary for the experimenter to exercise judgement in de-
ciding whether a subject qualifies for inclusion in the experiment, and
whenever there is an exercise of judgement there is also a possibility of
bias. Suppose for example that the cloud seeding experiment is to be
conducted by a professional rainmaker who has a heavy financial stake in
proving that his service is effective. He insists that he select the storms
that are to be included in the study, since not all storms are suitable for
treatment by this method. Thus, when a storm approaches the test area,
the rainmaker studies the weather map and announces whether this storm
is suitable for seeding.

Now suppose he knows that of the storms selected by him as suitable,
those numbered 1, 3, 4, 9, 10, and 12 are to be seeded, with storms 2, 5, 6,
7, 8, and 11 serving as controls. Since he then knows that the first storm
he selects will be seeded, he is under great temptation to wait for a heavy
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storm to serve as number 1; since the second is to be a control, he may
thereafter wait for a rather small storm to select as number 2; and so forth.
As a result, the treated storms would give heavier rain than the controls
even if the treatment is completely without effect: the experiment is biased
in favor of the treatment. We may refer to bias that enters through the
selection of subjects as selection bias.

A simple device will greatly reduce the risk of selection bias: we may
keep secret from the experimenter the-serial numbers of the subjects to be
treated. This can be achieved by having one person (for example, a
statistician) do the random sampling, and another (the rainmaker) select
the storms. When the rainmaker has decided that a storm is suitable, he
informs the statistician, who only then reveals whether the storm is to be
treated or used as a control.

Even this device will not completely eliminate the bias if the rainmaker knows
that, in all, 6 storms are to go into each group. After storm 4 in the example
above, he knows that of the remaining 8, only 3 are to be treated. It is therefore
more likely (probability = §) that the next storm will be a control, and by picking
a small one to serve as number 5 the rainmaker can again bias the experiment in his
favor, although to a much lesser degree than before. Similarly, after storm 8 the
odds favor the treatment of the next storm, so that the rainmaker will be tempted
to pick a juicy one. If this possibility were used deliberately and to full advantage,
the bias would be large enough completely to destroy the validity of the experiment.

The possibility of selection bias can be eliminated completely by changing the
design of the experiment. Instead of deciding in advance to treat 6 storms and
have 6 controls, the decision may be made independently each time on the toss of
a penny, The storm will be treated or used as control as the penny falls heads or
tails. In this case the probability is always } that the next selected storm will be
treated, and there is no way for selection bias to enter.

This design involves the new difficulty that the numbers of treated and control
storms now are random variables instead of being predetermined constants. This
requires a different analysis, which we shall not discuss here.

As we remarked earlier in the section, the random assignment of subjects
to the two groups gives protection from biased assignment, but it should
not be thought that no further concern about bias is necessary. Bias is
also possible in the conduct and interpretation of the experiment, and may
enter in an almost unbelievable variety of ways. Consider, for example,
an experiment to compare two teaching methods. If the person grading
the final examination papers has an interest in the outcome of the experi-
ment, this may unconsciously influence his grading. In a psychiatric ex-
periment involving two different methods of treatment, the assessment of
the improvement of the patients is clearly highly subjective, and may quite
easily be influenced, at least to some degree, if the psychiatrist strongly be-
lieves in one of the treatments. Such assessment bias may enter even if the
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results of the experiment are measurements of length, weight readings, or
counts of particles or stars on a photographic plate. Even with great care,
it easily happens when counting a large number of dots that some are
omitted or some counted twice. This phenomenon of assessment bias has
often been demonstrated by presenting to an observer two groups of sub-
jects in fact all treated alike, but telling the observer that only one group
has received the treatment. It then frequently turned out that the ob-
servers reported higher responses in the group they believed to have been
treated. To prevent such bias it is desirable that whenever possible the
experimenter himself be kept in ignorance of the identity of the treated sub-
jects until after he has recorded his assessment of the responses, or that this
assessment be carried out by someone else who is not aware of the identity
of the treated subjects.

A similar bias arises when the subjects themselves are people, who may
believe in the treatment. Physicians are well acquainted with the fact
that patients feel better merely because they are receiving attention, and
frequently some innocuous prescription (called a placebo) is made when
patients demand medication that the doctor considers unnecessary. The
existence of a placebo effect has frequently been shown by giving sugar pills
to an experimental group and nothing to a contro! group: usually, the
patients in the experimental group respond significantly better. It is
clear that the placebo effect may introduce a powerful bias. If the experi-
mental group receives an active drug and the control group gets nothing,
how can we be sure that the better response of the treated patients is due
to the action of the drug and not merely to the fact that the patients are
receiving attention? A simple way to avoid this bias is to give the control
patients a placebo indistinguishable from the drug (or injection) given to
the treated subjects, and to keep all patients in ignorance as to which ones
are in which group. A clinical trial that is conducted in this manner is
called blind. 1If in addition, in order to avoid assessment bias, the doctor
evaluating the success of the treatment in each case is also ignorant as to
which patients are the controls, the experiment is said to be double blind.
For example, in the 1954 trials of the Salk vaccine, half the vials contained
a placebo instead of the vaccine, and the vials were labeled with code
numbers whose meaning was not revealed, even to the physicians conduct-
ing the experiment, until after their diagnoses of polio were on file.

PROBLEMS
1. In Example 1, what would be the available significance levels less than 1 if

(i) 5 of the 10 patients had died within 5 years;
(ii) 3 of the 10 patients had died within 5 years?
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2. In Example 1, suppose the actual survival times, in years, were

Treated 6.5, 4.2, 178, 7.9, 13.2
Control 6.7, 4, 2.9, 1.2, 5.6

Find the significance probability if the only available information for each patient
is whether or not he is alive after seven years.

3. In Example 1, find the significance probability if there are twelve patients and
if the data are given by the following table.

i) I Alive Dead (ii) | Alive Dead
Treated 5 2 Treated 5 2
Control 2 3 Control 3 2

4. To determine whether an engine oil additive decreases the chances of needing
an engine overhaul within two years, a truck company with 25 new trucks selects
ten of these at random to be given the additive. The results of the experiment are
given in the following table.

No overhaul Overhaul Total
Additive 5 5 10
No additive 3 12 15
Total 8 17 25

Find the significance probability, and determine whether the results are significant
at the 5%, level.

S. A group of 200 students is used to test whether a certain law course improves
the chances of passing the bar examination. One hundred of the students are
selected at random to attend the course, the other hundred serve as controls, with
the following results.

Pass Fail Total
Attend course 75 25 100
Do not attend 57 43 100
Total 132 68 200

Use the normal approximation to find the significance probability, and determine
whether the results are significant at the 29 level.

6. In the preceding problem find the significance probability if among those
attending the course 70 passed and 30 failed.

7. The results of a comparative experiment are given by the following table.

Success Failure Total
Treated 73 727 800
Control 72 928 1000
Total 145 1655 1800

Is the number of successes in the treated group significantly high at the 59 level?
(Use the normal approximation.)

8. 1In order to determine whether a more expensive method of storing would, as
claimed, give better protection against spoilage, 1000 items are assigned at random,

500 to each of the two methods. If the number of spoiled items turns out to be
30 among those stored in the standard way and 20 among those stored in the more
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expensive way, is this result significant at the 39, level against the null hypothesis
that there is no difference between the two methods?

9. In the preceding problem, let there be 1000k items of which half are assigned
to each of the two methods, and suppose that the number of spoiled items under
the standard and more expensive way are 30k and 20k respectively. Find the
significance probability if (1) k = .5; (1) k = 1; (i) k = 1.5; (iv) kb = 2.

10. Suppose that in a comparative experiment with 100 treatment subjects and
100 controls, 50 of the controls are successes and 50 failures. How many successes
must there be among the treated subjects for the experiment to be significant at
the 1% level? [Hint: Denote the number of successes among the treated subjects
by D and use the normal approximation.]

12.3 THE WILCOXON TWO-SAMPLE TEST

In the preceding section we saw how to test the hypothesis of equality of
two treatments for the case of quantal response; we shall now consider the
same problem when the response is graded (that is, able to take on many
different numerical values). As before, we assume a completely ran-
domized design.

ExampLe 1. A heart treatment. Let us suppose that in Example 2.1 the
response observed is the length of life of each patient instead of merely
whether the patient survives five years. Let the actual survival times, in
years, be as follows:

Treated 4.2, 6.5, 7.9, 132, 178
Control 4, 12, 29, 56, 6.7

The two-by-two table of Example 2.1 is obtainable from these data by
ignoring the actual values and recording only that four of the treated and
two of the control patients survived five years. We may refer to this
process as ‘‘quantizing’’ the data.

It is intuitively clear that quantizing will in general involve a loss
of information, since it suppresses the relationship among the observed
values that are grouped together. Thus, in the example, not only did four
treated patients survive five years as compared with but two control
patients, but the four tended to live longer than the two. Similarly,
among those that did not survive five years, the one treated patient lived
longer (4.2 years) than any of the three control patients. These interrela-
tionships can be made clear visually by plotting the two sets of data on a
common time scale (Fig. 1).

Treated

||_l_l___l+.l_l|_.l } I | L } Years
0 10 20

Control

FiGure 1.
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It is seen that the survival times of the treated patients tend to lie to the
right of those of the control patients, and it is clear that this fact tends to
undermine the null hypothesis of no treatment effect. We shall now
present a test that pays attention to all of the order relationships between
the two groups of survival times.

Let us arrange the ten survival times in order and number them from
the smallest to the largest:

4 12 29 42 56 65 67 79 132 178
1 2 3 4 5 6 7 8 9 10

The number that each observation receives in this way is called the rank
of the observation. Thus we say that the smallest observation .4 has
rank 1, the largest 17.8 has rank 10, and so forth. (Note that all ten
survival times are different, which permits them to be ranked unambigu-
ously. A method for dealing with ‘“tied ranks” will be discussed in
Section 12.7.) We have underscored the ranks of the treated survival
times. The fact that the treated patients, as a group, lived longer is re-
flected by their having, in general, higher ranks (4, 6, 8, 9, 10) than do the
control patients (1, 2, 3, 5, 7).

A simple but highly effective test statistic is the sum Wr of the ranks of
the treated subjects, which in our example would be Wr =4+ 6 + 8
+ 9+ 10 = 37. If the treatment has the desired effect of increasing a
subject’s response, the response of the treated subjects will tend to have
large values and hence large ranks. The sum of the ranks of the treated
subjects will then tend to be larger than if the treatment had no effect,
so that one would tend to reject the null hypothesis when Wy is large.

We could equally well have used as test statistic the sum W¢ of the ranks
of the control subjects, rejecting the null hypothesis when W¢ is small.
Since W¢ -+ Wt is the sum of all 10 ranks, it must be true that

Wet+We=14+24+...4+10=2055

however the experiment turned out; thus, each of the two rank sums deter-
mines the other. With large values of Wt and small values of W¢ con-
sidered significant, the two statistics determine in fact the same test, which
was proposed by Frank Wilcoxon in 1945 and which is known as the
Wilcozon two-sample test.

To determine the relationship between the critical value of W¢ and the
level of significance, we must find the distribution of W¢ under the null
hypothesis. The basic argument here is very similar to that used for the
Tisher-Irwin test. If the null hypothesis is correct, the treatment has no
effect and the five treated patients would have lived just as long without
treatment. The ten observed survival times may be regarded as ten fixed
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numbers, which are determined even before it is decided which patients
are to be treated and which to serve as controls. At the time this
assignment is made, each patient may thus be considered as being la-
beled with his survival time and with the rank of this time (one patient
for example with the time .4 and rank 1, another patient with the time
1.2 and rank 2, etc.). The selection of five patients (and hence of five
ranks between 1 and 10) to constitute the control group is then made at

0 . . .
random, so that all (l_) > = 252 possible choices of the control ranks are

equally likely. Each such choice gives to ' a value equal to the sum of
the five chosen ranks. The situation may be represented schematically
by a lottery in which ten tickets are available paying prizesof 1,2, . . ., 10.
We select five of the tickets at random and V¢ denotes the total prize won
by these five tickets. (This problem was considered in Example 5.3.5.)
The entire distribution of W¢ can be found by listing the 252 sets of five
of the first ten positive integers, forming the sum of each set, and counting
the number of tines each of the possible values of W oceurs in this process.

Since this is rather laborious, it is fortunate that we do not need the
entire distribution to determine the significance probabi'lity of the result
W = 37, or equivalently We = 18. To find the probability that
We £ 18, it is only necessary to determine in how many ways five distinet
positive integers between 1 and 10 may be chosen to produce a sum less
than or equal to 18. It is easy to list all such choices by inspection, as
follows:

14+2434+44+5=15
1+2+3+4+6=16
1+24+3+4+44+7=17

1+24+34+54+6=17
1+42+3+4+8=18
1+2+3+54+7=18
1+2+44+54+6=18

Out of the 252 equally likely cases, seven are favorable to the event
We £ 18, so that P(W¢ < 18) = 7/252 = .026. 'This is considerably
smaller than the value .26 obtained by applying the Fisher-Irwin test to
the same data. The Fisher-Irwin test does not always give a larger sig-
nificance probability, but when both tests are applicable, the Wilcoxon
test may in general be expected to be the more sensitive. The basic

reason for this is that quantization of the data throws away useful in-
formation.

In the above example, the numbers of subjects in the treated and control
groups were equal. The Wilcoxon test is however not restricted to this
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case. If there were, for example, five controls and eight treated subjects,
the ranks of the five controls would be randomly selected from the positive
integers 1,2, ..., 13 and the significance probability of the sum of these
ranks could be computed as before. In the next section we shall discuss
a table which gives the null distribution of W¢ (and of Wr) for small
numbers of treated and control subjects.

‘When the group sizes are too large to be covered by the table, it has been
found that a normal approximation gives good results. For this approxi-
mation we need the expectation and variance of W¢ and Wq, which at the
end of the section will be shown to be given by

1) E(7e) = L, gy < D
and
@) Var(We) = Var(Wx) = §’—@12i—1—)

where, as in Section 1, ¢ and s denote the numbers of treated and control
subjects, and where N = s + .

ExampLE 2. Rainmaking. In a rainmaking experiment (Example 1.2),
there were 13 storms of which eight were selected at random and treated
by seeding. The average amounts of rainfall in a system of rain gauges
were as follows:

Treated storms: .06, .13, .15, .28, .41, .62, .83, 1.26
Control storms: .02, .09, .21, .29, 1.09

Here the control storms have ranks 1, 3, 6, 8, 12 while the treated storms
have ranks 2, 4, 5,7, 9, 10, 11, 13 so that W¢ = 30 and Wy = 61, where of
course We+Wr=14+2+4...+13=0901. If the treatment werc
effective, the treated ranks and hence W1 would tend to be large, while the
control ranks and hence W¢ would tend to be small. Thus one could
either use large values of Wt or small values of W¢ to indicate significance.
Choosing for example the former, we may ask: is the result W = 61 sig-
nificant at the 59, level? We find E(Wrt) = (8-14)/2 = 56, Var(Wr) =
(5-8-14)/12 = 149 and SD(Wr) = V142 = 6.83. Since the upper 5%
point on the normal curve is at 1.645, the corresponding critical value ¢
for Wr would be approximately given by

c~—-.5—56

6.83

Thus, the observed value Wt = 61 is far from being significant at the 5%,
level. In fact, P(Wr = 61) is approximately

61 — .5 — 56 . )
1 - d)( 683 ) =1 — ®(.659) = .255.
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(In Problem 4.1(v) the exact value will be found to be P(Wr = 61) =
P(W¢ £ 30) = &% = .262, so that the normal approximation is reason-
ably close.)

In both of our examples, the treatment, if effective, would tend to
increase the response (lifetime, amount of rain) and hence to increase the
ranks of the treated subjects. Accordingly, it is large values of Wy (and
small values of W¢) which are significant. However, in other experiments,
the treatment effect being tested may tend to decrease response. In those
cases, it will of course be small values of W+t and large values of W¢ that
are significant.

Suppose for example that the response is the number of points obtained
on the final examination in Example 1.4. Here we wish to know whether
the treatment (TV) has the effect of lowering the response. Thus low
values of Wr and high values of W¢ are significant. On the other hand,
if the final is a multiple-choice examination, and the observed response is
the number of wrong answers, the situation is reversed. In this case, high
values of Wy and low values of W are significant.

We shall now derive formulas (1) and (2). Since W is the sum of s integers
chosen at random from the integers 1,2,..., N = 8 4, we can apply the results
obtained for the sampling model in Section 9.1. In the notation of that section,
vy, . . ., vy denote the integers from 1 to N, and Y, . . ., Y, the s chosen integers,
so that

We=Yi+...4Y, and 9=(0+2+4...4+N)/N = 4N 4 1).

Hence from formula (9.1.6)

as was to be proved.
From formula (9.1.8) it follows that

8

Var(We) = Var(Yar + ...+ Y,) = x = >

st
where by (5.6.5)

Lty 4N,
N

7t =

Since ¥ = (N + 1) and the sum of the squares of the first N integers is
AN(N + 1)(2N + 1) (see (6.8.4)), 72 simplifies to



344 TESTS FOR COMPARATIVE EXPERIMENTS [cHaPp. 12
2= (N+1)(2N+1)__(N+1)2=N’—1
6 2 12

Substitution of this in the formula for Var(W¢) completes the proof of (3.2).

Since Wr is the sum of a random sample of ¢ of the integers, instead of s, the
formulas apply to Wr with s and ¢ interchanged.

PROBLEMS

1. Let N subjects be divided at random into ¢ treatment subjects and s = N — ¢
controls, and let a graded response be observed for each subject.
(i) What is the smallest possible value of W¢?
(i) Assuming the null hypothesis of no treatment effect, find the probability
that W takes on this smallest possible value.
[Hint: See (6.8.2).]

2. Under the assumptions of Problem 1, find the largest possible value of W¢.

3. Under the assumptions of Problem 1 and assuming the hypothesis of no treat-
ment effect, determine the distribution of W¢ when s = 1.

4. Use the distribution of W¢ determined in the preceding problem to find (i)
En(W¢); (ii) Vara(We) and check your results with formulas (1) and (2).

5. Under the assumptions of Problem 1, find a formula for W¢ + W1 and check
it against the value W¢ + Wr = 55 found in Example 1 for s = { = 5.

6. Under the assumptions of Problem 1, find
(i) the second smallest value of W¢;
(i) the probability of this value, assuming the hypothesis of no treatment effect.

7. Suppose that in Example 1, we have s = 4, { = 5 and the following nine
survival times:

Treated 1.8, 2.7, 6.3, 8.1, 88
Control .6, 1.1, 4.5, 5.1

Use the method of Example 1 to find the significance probability of We.

8. To find out whether preparation can raise one’s IQ as measured by an intelli-
gence test, five of eleven available subjects are selected at random, and permitted
to see the questions and answers on a similar test. The other six serve as controls
and receive no preparation. All eleven are then given the test with the following
results:

Preparation 108, 112, 114, 120, 126
No preparation 98, 101, 102, 105, 110, 111
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(i) Would high or low values of Wy be significant?
(i) Find the significance probability of Wr.

9. In the preceding problem, suppose that N = 29 students are involved in the
study and that the results are as follows:

Preparation
97, 108, 111, 112, 114, 118, 120, 121, 123, 125, 126, 128, 131, 139
No Preparation
94, 95, 98, 100, 101, 102, 105, 107, 108, 109, 113, 117, 119, 122, 127

Compute the significance probability using the normal approximation.

10. In Example 2, suppose eight storms were treated and six served as controls
with the following results:

Treated .07, .26, .29, .68, .73, .89, 1.02, 1.14
Control .03, .05, .11, .23, .67, .81

Use the normal approximation to find the significance probability of We.

11. In the preceding problem, find the significance probability of the data under
the Fisher-Irwin test if it is only known for each storm whether the amount of
rainfall was above or below (i) .1, (ii) .2, (iii) .3.

12. In Problem 9, use the normal approximation to find the significance proba-
bility of the data under the Fisher-Irwin test if it is only known for each student
whether the result of the test was above or below (i) 103; (ii) 110; (iii) 116; (iv) 124.

13. Suppose that of 20 students volunteering for the television experiment of
Example 1.4, ten are selected at random to receive instruction by TV, the other
ten receiving their instruction directly and thereby serving as controls. Low
values of Wy being significant, use the normal approximation to find the signifi-
cance probability of Wr if the number of points received by the students on the
final examination are as follows:

TV instruction 3, 6, 18, 25, 37, 48, 49, 53, 81, 89
Direct instruction 9, 34, 57, 61, 64, 75, 91, 93, 98, 100
14. Solve the preceding problem if N = 24 and the results were as follows:

TV instruction 3, 5 6, 13, 19, 23, 25 38, 44, 49, 74, 08
Direct instruction 9, 10, 34, 40, 57, 62, 65, 72, 88, 95 96, 100
15. Construct other survival times for Example 1 satisfying the restrictions of

Example 2.1 and such that the Wilcoxon test has

(i) the maximum significance probability possible under these restrictions;
(ii) the minimum significance probability possible under these restrictions.

16. Solve the two parts of the preceding problem for the data of Problem 2.3(i)
and Problem 2.3(ii).
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12.4 THE WILCOXON DISTRIBUTION

As is the case with the normal approximation to other distributions such
as the binomial and hypergeometric, the normal approximation to the null
distribution of the Wilcoxon rank-sum test statistic illustrated in the pre-
ceding section tends to be accurate only if the sample sizes are not too
small. In this section we shall discuss a table, given as Table H at the end
of the book, which gives the exact null probabilities when neither s nor ¢
exceeds eight; this table, together with the normal approximation, covers
most practical uses of the test.

We can best present Table H by asking the reader first to work through
a simple illustration. Suppose there are ¢t = 2 treated subjects and s = 3
control subjects. Then the two treated subjects can be chosen from the
2
are ranked, say from smallest to largest, the sum Wt of the ranks of the
treated subjects can have any value from 1 +2 =3to4+ 5 =9. Let
#(Wr = w) be the number of choices of two of the five ranks for which
Wr has the value w. Since under the null hypothesis the 10 choices are
equally likely, the probability that Wy = w is then

P(W'r = w) = #(WT = w)/lO
Tableau (1) shows #(Wr = w) forw = 3,4,...,9.

total number N = 5 of subjects in ( ) = 10 ways. If the five responses

w | 34567809101 12
¢y #(WT=w)’ll22211
#We = w) 1122 2 1 1

The reader should check these entries by actually listing the ten possible
choices of two out of the five ranks together with the values of Wr resulting

from each choice.
Also shown in tableau (1) is the distribution of the sum W¢ of-the three
control ranks. Each choice of two subjects for treatment leaves three as

3
PWe = w) = #(W¢ = w)/10.

controls, so there are again 10 = (5) possible cases, and

The reader will notice that the distributions of W¢ and Wr are the same,
except that W runs from 6 (=1 +2+3)to 12.(=3+ 4+ 5) rather
than from 3 to 9. The two distributions can be made to coincide, thereby
permitting the table to be cut in half, by subtracting from each statistic
its minimum value, so that after the subtraction each begins at zero. Let
the resulting statistics be Ur = Wr — 3 and Uc = W¢ — 6. Then Us
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and Uc have the same distribution, shown in tableau (2), so that the sub-
seript may be omitted. We also give in (2) the number of cases for which
U = u, which is more convenient for obtaining significance probabilities.

u |0 1 2345 6
2) #U = u) 112221 1
#U<w |1 2 46 8 9 10

Another saving is possible in the size of the table. Suppose there had
been ¢t = 3 treated and s = 2 control subjects, instead of the other way
around. Then Wt would have been the sum of three of the five ranks,
and would have therefore had the distribution of W¢ shown in (1). Simi-
larly, W¢ would have had the distribution of Wy. It follows that the
distribution (2) serves not only for either statistic, but also for group
sizes 2 and 3 regardless of which is treated and which is control. The
simple distribution (2) thus covers four different cases. This welcome
consolidation is not an accident of the particular group sizes 2 and 3, but
holds for any pair of group sizes, as we shall show later in the section.

We are now ready to present Table H. Each row of the table corre-
sponds to a pair of group sizes—one treated, the other control, it does not
matter which is which. The table can be used for either Wt or W¢, but
from the chosen statistic one must first subtract its minimum possible
value. By (6.8.2) this is

1424 -+t =3t+1) for Wy
and
1424 - 4+s=13(s+1) for W,
so that the resulting statistics are
3) Ur =W —3tit+1) and Uc = We — 3s(s + 1).

Since Ur and Uc have the same distribution, as we shall show below, we
can omit the subscript. The entries in the table give, for each value of u,
the number of equally likely cases #(U < u) that have that value of u or
a smaller value. Division of this number by the total number (1:[) = (]:7)
of possible cases gives the probability P(U < u). These binomial coeffi-
cients are of course obtainable from Table A, but for convenience they are
also given as the second column of Table H. (When expressed in terms
of the statistic Ur or Ug, the test of the preceding section is known as the
Mann-W hitney test.)

It is not necessary in Table H to provide also the probabilities PU 2z u);
for by proper choice of the statistic Wr or Wc, one can always arrange it
so that small values of the chosen statistic will be significant. (Alterna-
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tively, but less conveniently, the probability P(U = u) can be obtained
from those given in the table by using the fact that the distribution of U
is symmetric about the point }st, as will be shown below.)

To illustrate the use of the table, consider once more Example 3.1. Here
s =1 = 5and W¢ = 18, so that by (3), Uc = 18 — 15 = 3. Since in this
example small values of W¢ are significant, the significance probability is
P(Wc = 18) = P(Uc = 3). Entering Table H in the row corresponding
to the group sizes (5, 5) and the column corresponding to the value u = 3,
we find that #(U S ) = 7. The denominator (%) = () = 262 is
given in the second column and the desired significance probability is
therefore P(U < 3) = 7/252 = 026, in agreement with the result found
in Example 3.1 by counting eases.

Let us now show that Ur and Uc always have the same distribution.
To this end, we shall show first that the distribution of Wy is symmetric
about the point 3t(t + 1) + st = 3¢(N + 1). (Thus, when { = 2, s = 3,
any value of w above 6 = -2-(5 + 1) is as likely as the value equally far
below 6.) The responses of the subjects are usually ranked from smallest
to largest, but suppose that they are instead assigned the inverse ranks
from largest to smallest. Thus the subject with rank 1 has inverse rank N,
the subject with rank 2 has inverse rank N — 1, etc. For each subject,
the sum of his rank and his inverse rank is always N + 1. If Wr is the
sum of the inverse ranks of the ¢ treatment subjects, then the total of the
ranks and inverse ranks of these subjects is {(N + 1), so that Wr + W =
t(N + 1), or

4) Wr— 3N+ 1) = —[Wr — 5N +D].
However W%, like W, is just the sum of ¢ integers chosen at random from
1,2, ..., N, so that it has the same distribution as Wr. Therefore the

right-hand side of (4) has the same distribution as —[Wr — (N + 1)].
It follows that the left-hand side has the same distribution as its negative
and hence is symmetrically distributed about zero. (See Problem 5.4.16.)

We shall now use this result to prove that Ur and Uc have the same
distribution. Note first that We + W is the sum of all the integers from
1 to N and hence

We+ Wr = 3NN +1) = 3s(N+1) + 3N+ 1),

or
® We = 3s(N +1) = —[Wr — 3N + 1)].

By the symmetry just established, the right-hand side of (5) has the same
distribution as its negative. It follows that

Wy — 3N 4+1) = Ur + 3st
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has the same distribution as
We — 3s(N + 1) = Uc + Lst.

Hence Ur and Ug have the same distribution, as was to be shown.
The common distribution runs from 0 to st, and is symmetric about ist
(Problem 11).

We now have to explain the last row of Table H. An inspection of the
columns of Table H shows that as the group sizes are increased, the entries
in a given column at first also increase but eventuglly achieve a stable
maximum. In fact, this maximum is attained as soon as both group sizes
reach the value of u that heads the column. For example, the entries
in the column » = 5 are equal to 19 for all pairs of group sizes both of
which are at least 5. This phenomenon, the reason for which is given
below, makes it possible to present in the last row of Table H values of
#(U £ u) which hold for any pair of group sizes both of which are at least
equal to u.

To illustrate this last row, let us show how to find the probability
P(W¢ £ 43) when s = 8, t = 9, in spite of the fact that the pair (8,9) is
outside of the range of the table. Since 3s(s + 1) = 36, the desired prob-
ability is equal to P(Uc = 7). Neither group size is less than 7, and
we may therefore use the last row of Table H to find #(Uc £ 7) = 45.
It now follows from Table A that the desired probability is P(Uc < u) =
45/24310 = .00185.

To see why the entries in the u column of Table H are the same for all rows for
which both s = u and ¢ 2 u, consider W+ for a fixed number ¢ of treated subjects
and a fixed value of u, but with varying s. Since the minimum value of Wr is
1+2+4 -+ 4+t thevalue of Wristhenfixedatw =[1+ --- 4+ (¢ — 1) + ] + =.
The desired entry is the number of ways of finding ¢ distinct positive integers with
sum w, subject to the restriction that none of the summands may exceed N = t + s.
Without this restriction, what is the largest integer that could enter into such a
sum? It is obtained from the arrangement

w=[14+24 -+ = D]+ ¢+ ),
in which the first ¢ — 1 summands are as small as possible and hence the last one
as large as possible. Without the restriction, the largest usable integer is there-
fore t + u. 1t follows that the restriction, that no summand may exceed ¢ + s,
does not cut down the number of possibilities as soon as s = u. The analogous
consideration of W¢ shows that the restriction has no effect on the distribution of
Uc as soon as { = u, and this completes the proof.

PROBLEMS

1. Use Table H to find the following probabilities, and check each against its
normal approximation.
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(i) P(W¢ < 27) whens = 6,t = 8;
(ii) P(Wc < 55) whens = ¢t = §;
(iii) P(Wr < 36) whens =8t =7;
(iv) P(Wr < 34) whens =t = 6;

(v) P(Wc¢ < 30) whens = 5,1 = 8.

2. Use Table H to find the following probabilities.
(i) P(We = 31) whens = 5, = 8;
(ii) P(Wr = 38) whens = 4,{=17.
3. (i) Compute by enumeration the entries required to extend Table H to the
cases s =2, t=2;8=2,i=4;8=2,t= 6.
(ii) Conjecture a general formula for s = 2 and ¢ even.
(iii) Make a similar analysis for s = 2 and ¢ odd.

4. TFind the probability P(W¢ = 11) when s = 3 and ¢t = 5 by listing cases.

5. Use Tables A and H to find the following probabilities.
i) PWr=£9) whens=9,t =3;
@ii) P(Wr £ 9) when s = 12, ¢t = 3;
(i) P(W¢ < 26) when s = 6, = 10;

(iv) P(W¢e < 35) whens =17,¢ = 10.

6. From a class of 15 students, eight are selected at random to receive a daily
vitamin pill, the other seven serving as controls. At the 5% level, can the vitamins
be said to have reduced significantly the number of school days missed on account
of illness, if the results are as follows:

l Number of Days Missed
Treated l o 2 3 7, 8 10, 13, 18
Control 4, 11, 12, 15 20, 21, 27

Use Table H to find the significance probability of W¢ and eompare this probability
with its normal approximation.

7. Solve the preceding problem if the data are as follows:
l Number of Days Missed

Treated 0, 1, 4, 7, 8, 10, 16, 18
Control 3, 11, 14, 17, 20, 21, 47
8. Fors=4,t=7 find (i) P(W¢c = 35), (i) P(W¢ 2 35), using Table H and
the fact that the distribution of We is symmetric about 3s(N + 1) = 24.
9, Fors=8t=235find () P(Wr =48); (ii) P(Wr = 48), using Table H and
the fact that the distribution of Wr is symmetric about 3(N + 1).
10. Find (i) the expectation and (ii) the variance of the random variable U (i.e.,
Uc or Ur) given by (3).
11. (i) Show that the valueset of Uis 0, 1,. .., st
(ii) Show that the distribution of U is symmetric about 3st.

12. Suppose that s = { and that the ranks of the control responses are
1,3,..., 2s — 1 and those of the treatment responses 2, 4, ..., 2s. If the hy-
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pothesis is rejected for small values of We,
(1) find the significance probability for s = 2, 4, 6;
(if) use the normal approximation to find the (approximate) significance prob-
ability for s = 10, 20, 30;
(iii) determine from the normal approximation what happens as s tends to

infinity.
13. Suppose the ordered responses are assigned the scores 2, 4, 6, . . . instead of
theranks1,2,3,.... How would the critical value of the Wilcoxon test be altered

by the use of these “even ranks”? What if the odd ranks 1, 3, 5, . . . were used
instead?

14. Isit possible for the Wilcoxon test to show that the treatment of Example 2.1
significantly prolongs life, even though on the average the control patients lived
longer?

15. Suppose the ranks in Example 1 had been assigned inversely, giving time
17.8 years the rank 1, time 13.2 years the rank 2, etc. How would this have
changed the significance probability of the data?

16. Suppose the ordered subject responses are numbered from both ends toward
the middle in this way:

1 4 5 8 9 7 6 3 2

The sum S for the treated subjects of these scores is the Siegel-Tukey test statistic.
What is the null distribution of §? Qualitatively, for what sort of treatment
effect would S tend to have a small value? A large value?

17. Let #(w; s, t) be the number of possible choices of s integers from the integers

1,...,s+ tsuch that the sum 6f the s chosen integers is equal to w. Prove the
recursion formula

2 #w; s, 8) = fw — N; s — 1, 1) + #w; s, ¢t~ 1).

[Hint: How many choices are there if the s integers are to be selected from 1, . . .,

s+t — 1 (ie., do not inciude the integer s + {)? How many choices are there if
one of the s integers to be sclected is s - ¢7]

18. Tse (2), (which was used to compute Table H), and Problem 3.3 to add to
Table H the rows (2, 9), (3, 9), and (4, 9).

19. It the s control responses be denoted by Xy, ..., X, and the ¢ treatment
responses by Y, ..., Y, and let U denote the number among all possible pairs
(X, 1)

(X, 1), A, 1), ..., (XY

for which X is less than Y. Prove (3), by noting that the number of X’s less than
the smallest ¥ (which has rank s,) is s, — 1; the number of X’s less than the second
smallest Y is s, — 2; etc.

12.5 THE SIGN TEST FOR PAIRED COMPARISONS

In Section 1 we discussed three designs for comparative experiments:
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(i) the completely randomized design, (ii) randomization within blocks,
and (i11) the design for paired comparisons, also called the “matched pairs”
design, to which (i) specializes when the blocks are of size two. We shall
now discuss tests that may be used with design (iit). As distinguished
from (i), the assighment of subjects to treatment or control is not com-
pletely at random in design (iii) but rather the randomization is restricted
to occur separately within each pair. This design is particularly appro-
priate when the subjects arc naturally paired as in Examples 1 and 4
below. If may however also be used in other cases by grouping the sub-
jects into artificial pairs, as illustrated in Iixamples 2 and 3.

Exampik I. Twins. In an experiment to compare the synthetic (pho-
netic) and analytic (“look-say’’) methods of teaching children to read, the
comparison is complicated by the faet that different children learn at such
different rates, even when taught the same way. Identical twins form an
ideal pair for this and many other experiments. They have the same
genetic composition, are the same age, and usually have very similar
environments. The reading methods may be compared by using a number
of such pairs of twins, one twin being instructed by each method.

ExamreLe 2. Agricultural field trials. To compare two methods of irri-
gating cotton, a field is divided into 40 parallel strips of equal area. The
strip is the subject, and the response is the yield of cotton from the strip.
The yield will be influenced not only by the irrigation method, but by
many other factors, such as soil fertility and insect damage. Two strips
that are close together are likely to be similar with respect to these other
factors. Therefore it seems reasonable to match two adjacent strips as a
pair, considering the field as divided into 20 blocks, each block consisting
of two adjacent strips.

ExampLE 8. Clinical trials. When two drugs or methods of treating a
disease are to be compared, the clinician must take into account the great
variability of patients in their rates of recovery. The disturbing effect of
this variability may be reduced by arranging the patients who are to be
the experimental subjects into pairs of patients with similar prognosis.
For example, if age is known to influence the speed of recovery, it will be
desirable to put into the same pair two patients of about the same age.
Sex, severity of the disease, and medical history are other factors that may
be considered when forming the pairs. The design is successful to the
degree that the two patients within each pair will behave alike in their
response to the same therapy, so that differences in response are attri-
butable to treatment differences.

The aim of matching is to pair together subjects as alike as possible,



12.5] THE SIGN TEST FOR PAIRED COMPARISONS 353

but of course no two subjects are identical and even if they were treated
alike they would not give identicai responses. As was pointed out in
Section 1, the fairness of the comparison can be insured by randomization.
In the case of matched pairs, this can be done simply by tossing a coin for
each pair to decide which subject of the pair gets which treatment. When
the assignment of treatments to subjects within each pair is random, there
is no possibility of the experimenter favoring one treatment over the other.

In addition to preventing assignment bias the act of random assignment,
as in the case of complete randomization, has another important property.
As we shall see below, it provides the probabilistic basis for a test of the
null hypothesis of no treatment effect. Let us illustrate the procedure
by an example.

ExaMpPLE 4. Sun-tan lotions. The manufacturer of a sun-tan lotion
wishes to know whether a new ingredient increases the protection his
lotion gives against sunburn. Seven volunteers have their backs exposed
to the sun, with the old lotion on one side and the new lotion on the other
side of the spine. Here the block is the volunteer, and the two matched
“subjects” are the two sides of the volunteer’s back.

Suppose that the experimental data on degree of sunburn (as measured en
some scale) for the seven volunteers was as follows:

Volunteer 1 2 3 4 5 6 7
Burn on side

with old lotion 42 51 31 61 44 55 48
Burn on side

with new lotion 38 53 36 52 33 49 36
Difference 4 -2 -5 9 11 6 12

Consider in particular Volunteer 1, and suppose that the fall of the coin
happened to assign the new lotion to his right side. As it turned out, his
right side was burnt less (a reading of 38) than his left side (a reading of 42).
Perhaps this is attributable to greater protection given by the new lotion.
However, it is also possible that the lotions are really equally good, and
that the difference is attributable to other factors: perhaps his right side is
a little less sensitive, or happened to get a little less exposure. The null
hypothesis, i.e., that the lotions are equivalent, asserts that the readings
38 and 42 are not influenced by the way the lotions happened to be assigned.
Under the null hypothesis, if the coin had chanced to fall the other way
so that the new lotion went on the left, still the left would have given the
reading 42 and the right would have given 38. Then the numbers 42
and 38 in our table would have been reversed, and the difference would
have been —4 instead of 4. The sign of the difference, plus or minus,
is determined by whether the coin falls heads or tails, if the null hypo-
thesis is correct. A similar analysis holds for the other six volunteers.
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(It might of course have happened that a difference is 0. How to handle
such cases will be taken up in Section 12.7.)

As the data are given, there are five positive differences and two negative
differences. If the null hypothesis is correct, each difference had equal
chances of being positive or negative, and the signs of the differences are
unrelated, since the coin is assumed to be fair and the tosses unrelated.
The number, say B, of positive signs is accordingly binomially distributed
withn = 7 and p = 4.

Now let us consider how B would tend to behave if the new lotion is
really superior to the old. Imagine first an extreme possibility. If its
superiority were great enough, so great as to override the other factors such
as differences in sensitivity or in exposure, then the side protected by the
new lotion would be less burned than the other side in every case. That is,
every sign would be positive and B would equal 7. In a less extreme case,
in which the new lotion is superior but not overwhelmingly so, there would
still be a tendency for the side with the new lotion to be the less burned, and
accordingly a tendency for the signs to be positive and for B to be large.

This analysis suggests that B can serve as a statistic for testing the
hypothesis that the treatments are equally good, with large values of B
significant evidence against the null hypothesis, in favor of the alternative
that the new treatment is superior to the old. This test is known as the
sign tect, because B is the number of positive signs. The significance
probability P(B 2 5) can be obtained from Table C by the method
discussed in Section 6.1. In fact, P(B = 5) = P(B £ 2) = .2266. (An
alternative argument consists in observing that the number B’ of negative
signs is just B’ = 7 — B, so that the test based on rejecting H for large B
is equivalent to the test based on rejecting H for small B’. Since B’ also
has the binomial distribution (n = 7, p = .5) under H, we may obtain
P(B’ £ 2) = .2266 directly from the table.) The data given above is
therefore not significant at the twenty percent level, when analyzed with
the sign test.

In general, the sign test can be used whenever an experiment is conducted
to compare a treatment with a control on a number, say n, of matched
pairsy provided the two treatments are assigned to the members of each
pair at random (for example by tossing a fair coin). To test the null
hypothesis that the new treatment is indistinguishable from the control,
against the alternative that the new treatment is better, we simply observe
the number B of pairs for which the new treatment gives better results.
Large values of B are significant, and the null distribution of B is binomial
(n, p = %). Fortunately, the normal approximation to the binomial dis-
tribution is especially accurate when p = 3.
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The sign test is not the only reasonable test for the matched pairs design,
and we shall in the next section suggest an alternative test that has certain
advantages. However, the sign test is often used, not only because it is
so very simple and easy to apply, but also because it is applicable when
the comparisons are qualitative rather than quantitative. For instance,
suppose that in Example 4 we did not have actual readings of degree of
burn, but that a judgement was made for each volunteer as to which side
of his back was less severely burned. If B is the number of volunteers
having less burn on the side with the new lotion, then B again has (under
the null hypothesis) the binomial distribution (n = 7, p = }).

The dangers of bias in interpretation, discussed in Section 1, are of course
also present with the matched pairs design, and are particularly serious
when the observations are subjective. If the person who judges which
side is less burned knows how the lotions were assigned, it will be difficult
for him to avoid having his judgement influenced by this knowledge. It is
therefore very desirable to keep the judge in ignorance of the assignment.
Similarly, in a clinical trial, the physician who decides which of two patients
is making the better recovery should if possible not know which therapy
was used on each.

The model of matched pairs is often used in situations where there is not
a random assignment of treatments, and where in consequence the con-
clusions are questionable. For example, a study of the relation of cigarette
smoking to lung cancer could be made as follows. A number of heavy
cigarette smokers are located. To each of them there is matched another
person who is a nonsmoker but who is similar with regard to various factors,
such as age, sex, occupation, and area of residence. Then the two matched
persons are treated as a pair, and the responses (i.e., development or
nondevelopment of lung cancer) are compared. The trouble is that there
is no random assignment. The subjects decided themselves whether or not
to become smokers. Perhaps there is a tendency for persons whose lung
tissue is sensitive to cancer-causing agents in the atmosphere, to find
inhaling cigarette smoke pleasurable. This would be an example of self-
selection bias.

Another difficulty that arises in practice is the necessity of insuring the
unrelatedness of the subjects. Suppose a military installation is to be used
to test the influence of room temperature on susceptibility to the common
cold. Tifty soldiers are matched into 25 pairs, according to tendency to
colds and general health, and one of each pair is randomly assigned to a
barracks that will be kept at very low temperature. If it turns out that
colds arc very frequent in this barracks, we are not justified in using the
sign test, because the 25 soldiers there are not unrelated with regard to
colds, which they may catch from each other.
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PROBLEMS

1. In Example 4, suppose that the number of subjects is n = 18 of which 13 show
less burn on the side receiving the new lotion. Find the significance probability
of this result.

2. To see whether a new material for contact lenses reduces irritation as claimed,
23 volunteers are given a standard lens for one of the eyes and one made of the
new material for the other; which eye receives the standard is determined by
tossing a coin for each volunteer.

(i) Let B denote the number among the volunteers for whom the eye receiving
the standard lens shows more irritation. For what values of B will the
hypothesis H of no difference between the lenses be rejected at (approximate)
significance level .05?

(ii) Compare the exact significance level of part (i) with the approximate level
obtained by using the normal approximation.

3. Use the normal approximation to give an approximate solution to the pre-
ceding problem if, instead of 23, the number of volunteers is (i) 100, (ii) 200, (iii)
300.
4. In a paired comparisons experiment involving 7 pairs of subjects, what sig-
nificance levels between .05 and .1 are available if

i) n =10, (ii) n = 20, (iii) n = 30?
5. In the preceding problem find the significance level closest to .05 when

i) n =5, @ii) n = 15, (i) »n = 25.

6. In Problem 2 suppose that B is observed to be equal to 17. What is the
smallest significance level a for which H would be rejected?

7. Suppose that in a paired comparison experiment involving n pairs of subjects,
the treated subject comes out ahead in 609, of the pairs. Find the significance
probability of this result when

i) n =35, (i) n = 10, (iii) n = 20.

8. In the preceding problem, use the normal approximation to find the approxi-
mate significance probability when
(i) n =150, (i) » =100, (i) n = 150.

9. In the preceding problem, make a conjecture as to the behavior of the signifi-
cance probability as n tends to infinity and prove your result.

10. Suppose that in a paired comparison experiment involving n pairs of subjects,
the treated subject comes out ahead in (i) 55%, (ii) 51% of the pairs. Find the
significance probability when n = 100, 200 and 300 and determine what happens
as n tends to infinity.

11. Suggest three experiments in which there are natural pairs, other than those
already considered.

12. A paired comparisons experiment is performed on 28 pairs of subjects to see
whether there is any difference in the effectiveness between two new treatments A
and A’. Let B be the number of pairs for which the effect observed on A’ exceeds
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that observed on A. Suppose the hypothesis that the treatments do not differ is
rejected both when B £ k and when B = 29 — k. Find the value k for which the
resulting test has (approximately) significance level .05.

Why is it reasonable in such a case to reject both when B is too large and too
small?

12,6 WILCOXON’S TEST FOR PAIRED COMPARISONS

In the preceding section we discussed the sign test for testing the hypothesis
H of no treatment effect with paired comparisons. This test, just as the
Fisher-Irwin test, involves quantization and neglects an important aspect
of the data. Even if the values of the differences for all the pairs are
available, the sign test takes notice only of whether they are greater or less
than zero.
ExampLe 1. Sun-tan lotions. Consider once more the differences between
the treatment and control observations in Example 5.4. Of these differ-
ences, two are negative (—2, —5) and five positive (4, 6,9, 11, 12). How-
ever, not only are most of the differences positive, but the positive
differences are on the whole of larger absolute size than the negative ones.
Intuitively, this seems to provide further evidence that the new treatment
is superior to the old. It scems plausible that a test which also pays
attention to the magnitudes of the absolute differences would be more
sensitive in detecting a treatment effect than a test which considers only
the signs. We shall now present such a test.

Let us arrange the seven differences in order of size, without regard to
their signs, and assign to each its rank:

Differences —2 4 -5 6 9 11 12
Ranks 1 2 3 45 6 7

Let V_ denote the sum of the ranks of the negative differences, so that in
the example V_ = 1 4+ 3 = 4. This small value of V_ reflects both that
only few of the differences are negative, and also that these negative
differences tend to be smaller in absolute size than the positive ones. Thus,
small values of V_ are evidence against the null hypothesis of no treatment
effect, in favor of the alternative that the new lotion tends to give greater
protection than the old. We could equally well have considered the sum
V. of the ranks of the positive differences. In fact, V_ + V, is the sum
of all the ranks, i.e., the fixed number 1 + 2 + ...+ 7 = 28. Therefore
the test based on rejecting the null hypothesis when V_ is small (large)
is equivalent to rejecting when V', is large (small).

In order to determine the significance probability of the observed value
of V., we require its distribution under II. When the hypothesis is true,
we have seen in the preceding section that the assignment of plus and minus
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signs to the seven differences constitute seven binomial trials with proba-
bility p = 3. By (3.3.1), all 27 = 128 possible assignments of signs there-
fore have the same probability (3)*. To tind (V. £ 4) we need only
count how many of the 128 equally likely cases give a value of V_ not
greater than 4. The statistic 1'_ takes on its'smallest value 0 if all differ-
ences are positive; its next smallest value 1 if only the smallest difference
(i.e., the difference with rank 1) receives a negative sign; etc. We list
below, for each value of V_ up to 4, all the sets of ranks whose sum gives
that value of V_.

Value of V_  Sets of ranks totaling V_
0 Empty set
1 {n
2 2}
) {3}x {17 2}

4 H’)y {]’ 3}

There are seven ‘“favorable” cases out of 128, so that the significance
probability of the observed value of V_is P(V_ £ 4) = 135 = .0547.

The test based on the rank sum V_ or V, as the corresponding test for
complete randomization, was proposed by Wilcoxon in 1945; it is known
as the Wilcoxon paired-comparison test.

We give in Tables I, J, and K values from which the significance proba-
bilities can be obtained provided the number n of matched pairs is not too
large. Since V_ and V, have the same null distribution (Problem 16), it
is not necessary to distinguish between them in the tables, where V stands
for either V_ or V,. With n matched pairs, there are 2" equally likely
choices of signs for the n ranks; the values of 2*, for 1 £ n < 20, are shown
in Table I. The null distribution of V is given by

PV £0) = 4§V £0v)/2"

where #(V < v) is the number of the 2" equally likely choices of signs
giving a value of V not exceeding v.

A table of #(V = v) splits naturally into two parts, according as v S n
or v > n. The reason for this is that, when » < n, the number #V = v)
does not depend on n, while when v > n, #V =< v) does depend on n
(Problem 13). Table J covers the former case for all values of » up to 20,
while Table K covers the latter case for v — n £ 30 and n £ 20.

To illustrate the use of Table J, suppose there are n = 12 matched pairs,
and the observed value of Vis v = 10. Since 10 < 12 we use Table J, to
find #(V £ 10) = 43. From Table I we read 2'2 = 4006. Therefore,
under the null hypothesis P(V £ 10) = 435 = .0105.

To illustrate the use of Table K, suppose again that n = 12, but that
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now the observed valueis» = 16,so thatv > nandv — n = 4. From the
column headed n = 12 and the row headed v — n = 4, we read #(V < 16)
= 158, so that P(V £ 16) = #7% = .0386. (For larger values of n and »
than those covered in Table K, a normal approximation may be used as
discussed below.)

Since the tables cover only the lower tail of the distribution, it is con-
venient to make the choice between V_ and V, in such a way that small
values of the chosen statistic are significant. This choice is illustrated in
the next example.

ExaMpLE 2. College entrance tests. To find out whether hypnosis can
improve performance on a standard college entrance examination, 12 pairs
of twins are used. One twin of each pair, chosen at random, is hypnotized
and told that he will do well; the other twin serves as control. The differ-
ences between the scores of hypnotized and nonhypnotized twins are

—-10 12 -8 -23 7 -5 2 14 19 6 27 16.

Large values of V indicate success for the treatment, and in the present
case Vy=14+3+4+74+8+4+9+10+4 12 = 54. The significance
probability is P(V, = 54). However, since Tables J and K give only the
lower tail of the distribution, it is more convenient to use the equiva-
lent test based on V., small values of which are significant. Here
Vo=2+4+54 6411 = 24, and we need P(V_ < 24). Entering Table
Katn =12, v = 24, we find P(V_ £ 24) = 845% = .133. An improve-
ment by hypnosis would therefore not be clearly established by this data.

For values of n and » not covered by the table, it is again found that a
normal approximation gives good results. The expectation and standard
deviation of V under the null hypothesis, which are needed for this approxi-
mation, are (see Problems 19 and 20)

(1) E(V) =n(n + 1)/4
and
2) SD(V) = Va(n + 1)(2n + 1)/24.

Table I gives the values of E(V) and SD(V) for 11 £ n £ 30.

ExampLE 2. College entrance tests (continued). In Example 2, n = 12 so
that from Table I, E(V) = 39.0 and SD(V) = v162.5 = 12.75. Hence
P(V. £ 24) is approximately
245 — 39
® ( 12.75

which may be compared with the correct value .133.

) = B(—1.137) = 128,



360 TESTS FOR COMPARATIVE EXPERIMENTS [cHAP. 12

The null distribution arising here also provides the basis for a rank test
in a different testing problem (the ‘‘one-sample” problem) to be taken up
in Section 13.6.

PROBLEMS

1. If n pairs of subjects are used, find
(i) the largest possible value of 1_,
(i) the probability that V_ takes on this largest value under the null hypothesis
of no treatment effect.

2. If n pairs of subjects are used, find P(V_ = 1).

3. If n pairs of subjects are used, find a formula for V_ 4 V, and check it against
the value V_ 4 V, = 28 found in Example 1 forn = 7.

4. Suppose that in Example 1, we have n = 8 and the following degrees of burn

0Old lotion 37 34 50 53 41 61 47 59
New lotion 41 29 47 45 47 51 35 52

(1) Use the method of Example 1 to find the significance probability of V.
(ii) What significance probability does the sign test attach to the data?

3. 1f in three out of four pairs of subjects the treated subject gives higher
(improved) response than the control, find
(i) the largest possible value of 1_,

(ii) the significance probability attached to the data by the sign test,

(iii) the significance probability of the value of V_ found in part (i), where the
differences are obtained by subtracting the control responses from the
treated responses.

6. Construct other values for the measurements in Example 5.4 such that the
new lotion comes out ahead in 5 of the 7 cases and the Wilcoxon test has
(i) the maximum significance probability possible under these restrictions;
(ii) the minimum significance probability possible under these restrictions.

7. Solve the preceding problem when the new lotion comes out ahead in 4 of the
7 cases.

8. Use Table I, J and K to find the following four probabilities and check each
against its normal approximation.

(i) P(V £19) when n = 20, (iii) P(V < 45) when n = 15,

@ii)) P(V £ 19) whenn = 7, (iv) P(V < 35) when n = 12.
9, For n = 4 find the distribution of V by enumeration, and graph its histogram.
Use your results to check the entries in column n = 4 of Table K.

10. Use the distribution of V determined in the preceding problem to find (i)
E(V), (ii) Var(V) and check your results against formulas (1) and (2).

11. Find the distribution of V in the case n = 10 from Tables J and K and the
fact that the distribution is symmetric about }n(n + 1).

12. Suppose the 20 students of Problem 3.14 are not divided at random into two
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groups of 10 each but instead are divided into 10 matched pairs on the basis of
their performance in a previous course. Of the two members of each pair, one is
assigned at random to treatment and the other to control. Suppose the numbers
of points received by the 10 pairs of students on the final examination are as follows:

TV instruction 35 6 18 25 37 48 49 53 81 89
Direct instruction 34 57 9 64 61 75 91 100 98 93

Find the significance probability attached to the data (i) by the sign test; (ii) by
the Wilcoxon paired-comparison test.
13. (i) Show that for v £ n, #(V < v) is the number of ways in which v can be
represented as the sum of distinet integers chosen from 1, 2,..., .
(ii) Use (i) to show that for < n, #(V < v) is independent of n.
[Hint: (i) Note that if any of theranksv + 1, ..., nisincluded in V, then V > v.]

14. For n = 8, find P(V = 24) using Table K and the fact that the distribution
of V is symmetric about in(n 4 1) = 18,

15. For n = 13, find P(V = 151) using Table K and the fact that the distribu-
tion of V is symmetric about in(n + 1).

16. (i) Explain why V_ and V, have the same null distribution.
(ii) Use (i) and Problem 3 to show that the distribution of V_ is symmetric
about {n(n 4+ 1).

17. Suppose that n = 2k and that the ranks of the absolute values of the negative
differences are 1, 3, . . ., 2k — 1 and those of the positive differences 2, 4, . . ., 2k.
If small values of V_ are significant, find the significance probability of the results
forn=24,6,8

(i) for the sign test,

(i) for the Wilecoxon paired-comparison test.

18. In the preceding problem, use the normal approximation to

(i) find the (approximate) significance probability for n = 60, 80, 100;

(ii) determine what happens as n tends to infinity.
19. For a paired comparisons experiment involving n pairs of subjects, let I,
indicate the event that a positive sign is attached to the difference with rank 1,
let I, indicate that a positive sign is attached to rank 2, etc. Show that
3) Vi=L+2L+...+nl,.

20. Use (3) to prove (1) and (2). [Hint: Under the hypothesis of no treatment
effect, I, . . ., I, indicate n binomial trials with success probability p = 3. Use
formulas (6.8.2) and (6.8.4).]

21. Let #(v;n) be the number of choices of n signs giving to V, the value v.
Prove the recursion formula

4) #;n) =F@;n ~ 1) + #0o —n;n = 1).

[Hint: How many choices are there such that the difference with rank » receives a
minus sign? How many such that it receives a plus sign?]

22. Work Problem 12.4.13 for the Wilcoxon paired-comparison test.
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12.7 THE PROBLEM OF TIES

Throughout this chapter we have tacitly assumed that it will be clear from
the data which of two responses (or two response differences) is the larger.
Unfortunately, in practice, ambiguities may arise. Suppose for instance
that the longest surviving control patient in Example 3.1 had lived 7.9
instead of 6.7 years. He would then be tied with the treated patient who
survived 7.9 years. The two patients would share the ranks 7 and 8, but
we would not know which had rank 7 and which rank 8 and would thus be
unable to compute the Wilcoxon two-sample statistic. As another illustra-
tion, consider the data of Example 5.4. If volunteer 4 had received score
63 instead of 61 on the side with the old lotion, his difference would be 11
instead of 9, and in the ranking of absolute differences he would be tied
with volunteer 5 for ranks 5 and 6. A somewhat similar difficulty may
arise in the sign test (if we do not know whether a difference is positive
or negative) and in the Fisher-Irwin test (if the response category of some
subjects may be unclear).

The present section is concerned with methods of dealing with such ties,
but these should be prefaced with the advice: avoid ties if you ean! Pros-
pects for doing so vary with the origin of the tie, and one may distinguish
between four main types.

(i) I'mprecise record or observation. The most common source of ties is
the failure to record observations with sufficient precision. Many experi-
ments involve a continuously variable response, such as time, height,
weight, breaking strength or temperature. If the measuring instrument
is read with sufficient precision, it is unlikely that two subjects will have
exactly the same response. (It is of course possible that the instrument
is so crude that sufficiently precise values cannot be obtained; in this case,
the situation is essentially that described in (ii).)

(i1) Discrete response. In some experiments the response is an integer,
such as the number of eggs laid by a hen, or the number of wrong answers
on a true-false examination. Here it is often easy to break ties in a reason-
able way by considering an auxiliary variable. For example, if two hens
have laid the same number of eggs, they may be ranked according to the
average weight of the eggs. Similarly, two students tied on the final
examination may be ranked by the total score on their homework.

(iii) Judged response. It is a great virtue of the tests discussed in this
chapter that they can be used in cases where the responses are not measured
but the subjects are ranked by an exercise of subjective judgement.
(These judgements should of course be ““blind”’ in the sense of Section 2.)
If a judge finds it difficult to distinguish between two or more subjects,
it may be possible to break the resulting tie by bringing in a second judge.
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(iv) Truncated observations. Quite often all the ranks will be distinct
except for those at one eud or the other. For example, the observed
survival times of surgical patients will be distinct except for those who die
during the operation, or who are still alive when the study is being pub-
lished. Similarly, the breaking strengths of steel rods are distinct except
for those which withstand the maximum stress of which the testing ma-
chine is capable. Fortunately, when all the ties occur at one end, Table H
can still be used to compute the significance probability of the Wilcoxon
two-sample test, by means of a device explained at the end of the section.

One method of breaking ties is always available: by means of a random
decision. If two subjects are tied for ranks 6 and 7, a penny can be tossed
to decide which subject gets which rank. While we are ardent advocates
of randomization before the experiment (this being necessary to protect
against bias and to provide the probabilistic basis of the analysis), we do
not recommend randomization after the experiment as an aid to analyzing
the data. It is in a sense the purpose of the analysis to extract the true
situation from data that reflect random disturbances, and it then seems
illogical to inject into the data an extraneous element of randomness. In
addition, it is troublesome that two workers, applying the same test to the
same data, could reach opposite conclusions.

While ties can in many cases be avoided by some foresight, data will
often reach us with ties which we are unable to resolve. How to handle
the ties will then depend on the problem and on the test to be used, and
we begin by considering the Wilcoxon two-sample test. Suppose the data
are those of Example 3.1, except that treated and control subject are tied
for ranks 7 and 8. It is then natural to assign to both of these subjects
the mean rank 7.5 (and, in general, to each of a number of tied subjects
the average of the ranks for which they are tied). The resulting ranks
are then

Ranks Sum
Treated 4, 6, 7.5, 9, 10 36.5
Control 1, 2, 3, 5 75 18.5

55

Let us continue to denote the sum of control and treated (mean) ranks by
We and Wr. Small values of W will still be significant, and the sig-
nificance probability is then P(W¢ = 18.5).

This probability must be calculated under the null hypothesis, according
to which the 10 survival times are fixed numbers, unaffected by the random
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assignment of 5 patients to the treatment. Since the survival times are
fixed, so are their ranks or mean ranks. The statistic W¢ is therefore the
sum of 5 numbers chosen at random from the set

1, 2, 3, 4, 5 6, 75 75 9, 10

(This random choice is another example of the lottery model.) To obtain
the desired probability, we need only count the choices yielding a sum of
18.5 or less, namely

1+424+34+4+5 =15 1424+3+5+6 =17
1+2+3+4+6 =16 1+24+3+5+756=185
14+24+3+4+75=175 14+24+3+5+4+75=185
14+42+34+4+75=175 1+24+4+4+5+6 =18

There are 8 “favorable” cases among (1,? ) = 252 equally likely cases, so
that

P(We £ 18.5) = 8/252 = .0317.

Calculation of the significance probability by enumeration is in principle
always possible, but it is feasible only if there are not too many favorable
cases. Unfortunately, there is no hope of publishing a table like Table H
for the mean ranks, since each of the many possible patterns of ties would
require a separate table. However, if the group sizes are sufficiently large,
the normal approximation may again be used. Replacing the ranks by
mean ranks does not change the expectation of W¢ or Wr (Problem 7(i)),
but for each set of d tied ranks it reduces the variance by
1) std(d*— 1)/12N(N — 1)
below the value given by (3.2). (See Problem 7(ii).)

As an illustration, let us compute the normal approximation to the
probability P(W¢ < 18.5) computed above. The expectation of W¢ is
27.5 and application of the correction (1) to the variance formula (3.2)
shows the variance to be 22.778 and hence the standard deviation 4.7726
(Problem 8). Due to the presence of the mean rank 7.5, W¢ can take on
not only integral values but also half-integer values. As a result (Problem
6.5.19), the normal approximation to P(W¢ £ 18.5) is

18.75 — 27.5
[ 4.7726
while the correct value is .0317. The normal approximation is thus reason-
ably satisfactory. In general, the presence of ties tends to reduce its
accuracy since the distribution of a rank sum becomes less smooth and
regular when the ranks are not equally spaced.

] = $(—1.833) = 0334,

Let us next consider the problem of ties in the sign test and the Wilcoxon
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paired-comparison test. Here two kinds of ties may arise: (a) ties among
the absolute differences being ranked; and (b) ties among the two re-
sponses within a pair, which result in zero differences and leave us in doubt
even as to which of the two subjects in the pair came out ahead.

Suppose that there are eight pairs of subjects and that within each pair
one is chosen at random, with the following observations:

Pair 1 2 3 4 5 6 7 8
Treated
response 4 6 6 5 5 5 3 3
Control
response 1 26 2 7 3 3 4
Difference 3403 -2 20 -1

The sign test is based on the number of positive, or equivalently the number
of negative, differences. In the present case we do not know whether
pairs 3 and 7 are positive or negative, although this might have been
known had the responses been observed with greater precision. As things
stand, these two pairs are of no help in deciding which of the treatments
is better, and we shall therefore disregard them. (A high proportion of
zeros would of course be informative in another way: it would suggest
that the treatment effeet, whatever its direction, is small in relation to the
precision with which the comparisons are being made.)

Under the null hypothesis, the remaining six pairs are independent and
each is equally likely to be positive or negative. As in Section 12.5, we
canuse the number B of positive signs among the six as test statistic, with
large values providing significant evidence of a favorable treatment effect.
The null distribution of B is the binomial distribution (n = 6, p = }), and
Table C shows the significance probability tobe P(B 2 4) = P(B < 2) =
.3438.

If we wish to use the Wilcoxon paired-comparison test instead of the
sign test, we are faced with the same difficulty of not knowing whether
the differences of pairs 3 and 7 are positive or negative. These pairs are
again uninformative, and we shall disregard them as before. In view of
the distribution of the signs of the remaining six pairs discussed above,
the 2% = 64 possible assignments of 4+ or — to the six differences are
equally likely, and this provides the probabilistic basis for the test.

The ties encountered when we attempt to rank the six pairs by their
absolute differences can be handled by the mean-rank method as follows:

Pair l 8 5 6 1 4 2

Difference -1 -2 2 3 3 4
Rank 1 25 25 45 45 6



366 TESTS FOR COMPARATIVE EXPERIMENTS [criap. 12

The rank sum V_ of the negative differences is 1 4 2.5 = 3.5. Its sig-
nificance probability can be found by enumeration. Among the 64 equally
likely assignments of 4+ or — to the differences, V_ is seen to be 3.5 or less
in just six cases, indicated below by listing for each case the set of negative
pairs: the empty set (no negatives); pair 8; pair 5; pair 6; pairs 8 and 5;
pairs 8 and 6. Thus, P(V. < 3.5) = 6/64 = .0938. That the Wilcoxon
test attaches greater significance to the data than the sign test reflects the
fact that the two negative signs are associated with differences of low
absolute rank.

When enumeration becomes too cumbersome because there are too many
cases to be listed, we can again fall back on the normal approximation.
The expectation of V_ is given by (6.1) even in the presence of ties,
where n is now the number of nonzero differences. The previous value
n{n 4+ 1)(2n + 1)/24 of the variance is reduced by

(2) d(d* — 1)/48

for each set of d tied ranks among the (nonzero) absolute differences
(Problem 14). In the example computed by enumeration above, the
number of nonzero differences is n = 6, so that E(V_) = 6-7/4 = 10.5.
If there were no ties, formula (6.2) would have shown the variance to
be 6:7-13/24 = 22.75. From this value, however, we must subtract
2(4 — 1)/48 = .125 for each of the pairs of tied ranks, getting Var(V_) =
22.5. The normal approximation to P(V_ < 3.5) is thus

o [3.75 ~ 105
V225

compared with the correct value .0938. The number n = 6 is too small
for the normal approximation to be very accurate.

] — (—1.4230) = 0774,

To conclude the secticn, let us show how Table H can be used to compute the
significance probability of the Wilcoxon two-sample test when all the ties occur at
one end.

ExampLE 1. Breaking strength. In an experiment to compare the breaking
strengths of ¢ = 9 steel rods given a special tempering, with the strengths of s = 8
control rods, three of the treated rods and one control rod failed to break even
when the testing machine was exerting its maximum stress. Each of these four
rods is accordingly assigned the mean rank (14 + 154 16 + 17)/4 = 15.5.
The other 13 rods broke at stresses measured sufficiently precisely to avoid ties;
the ranks of the control rods were 1, 2, 4, 5,7, 9, and 12. The value of W¢ was
thus 55.5, with small values being significant.

To calculate P(W¢ < 55.5), note from Table A that there are (187 ) = 24,310
ways of choosing 8 of the (mean) ranks 1, 2, 3,. . ., 13, 15.5, 15.5, 15.5, 15.5, and
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that all these choices are equally likely under the null hypothesis. How many of
these cases are ‘“‘favorable,” in the sense of giving a total W¢ < 55.57 Let us
classify the favorable cases according to the number of mean ranks 15.5 included
in the set of 8. Consider first the cases where none is included. The 8 numbers
whose sum is W¢ must then be chosen from the set 1,2, ..., 13. The number of
ways of choosing 8 of these 13 integers so that their sum is not greater than 55.5
(or, since this sum is an integer, not greater than 55) can be found in row (5, 8) of
Table H, in the column corresponding to u = 55 — 3-8-9 = 19, and is seen to be
607. Next consider the cases where just one of the mean ranks 15.5 is included in
the set of 8. There are 4 of these mean ranks, any of which may be chosen. For
each such choice, the set is completed by choosing 7 of the first 13 integers to pro-
duce a total of 55.5 — 15.5 = 40 or less. From the (6,7) row of Table H at
u=40—%-7-8 =12 we see that this can be done in 201 ways. Similarly,

2
set of 8 can be completed in 7 ways, as shown by the entry at « = 3 in row (6, 7)
of Table H. Since the inclusion of three or more of the mean ranks 15.5 in the set
of 8 would lead to a total above 55.5, this completes the count. The total number
of favorable cases is therefore

607 + 4 X 201 + 6 X 7 = 1453,
and the significance probability is

P(W¢ £ 55.5) = 1453/24310 = .0598.

For comparison, let us compute the normal approximation. From our earlier
results we see (Problem 17) that E(W¢) = 72 and Var(W¢) = 106.676. The
normal approximation to P(W¢ < 55.5) is therefore

55.75 — 72
@[ 10.328

two of the mean ranks 15.5 can be chosen in (4) = 6 ways, and for each choice the

] = B(—1.573) = .0579.

PROBLEMS

1. Suppose that s = ¢ = 4, the treated observations are .7, .8, 1.8, 1.1 and the
controls .1, .5, .7, .8.
(i) Find the mean ranks of the 8 observations.
(ii) If small values of W¢ are significant, enumerate cases to find the significance
probability of the data.

2. Solve the preceding problem if s = 4, t = 5, the treated observations are .6,
.9, .9, 1.0, 1.1 and the controls .3, .6, .8, .9.

3. Suppose that s = ¢t = 4, the treated observations are .6, .8, 1.0, 1.4 and the
controls .1, 4, .4, .7. The argument is sometimes given that the value of W is
independent of how the tie at .4 is broken, and that the usual null distribution of
We (given in Table H) is therefore applicable. Do you find this convincing?

4. Suppose that s = 3, ¢ = 5, and that there are ties between ranks 1 and 2, and
also between ranks 5, 6 and 7. By listing all 56 cases, find the distribution of We,
and compare each possible value of P(W¢ £ w) with its normal approximation.
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5. Let ui, ..., us be any d numbers and % their arithmetic mean. If each of
w, . . ., ug is replaced by @, show that

(i) the sum of the numbers is unchanged;

(ii) the sum of the squares of the numbers is reduced by

@) ( ~ w2+ -+ (ua — B)2%

[Hint for (ii): Use (5) of Section 5.7 with w,, . . ., uq in place of vy, . . ., vy.]

6. In the preceding problem, let uyy=a+ 1, u=a+2,...,ua=a+dbed
successive integers. Show that

(i) @=a+3d+1);
(it) if the w’s are replaced by @, the sum of squares of the u’s is reduced by

d(dr — 1)/12.
[Hint for (ii): Use part (ii) of the preceding problem; note that (3) is unchanged
if the %’s are replaced by 1,...,d (see for example Problem 9.1.3); apply the

formula for 72 at the bottom of p. 000 with d in place of N.]

7. Use the results of Problems 5 and 6 to show that if W¢ is the sum of the mean
ranks of the controls,
(i) the expectation of W¢ is still given by (12.3.1);
(ii) the variance of W is obtained from (3.2) by subtracting the quantity (1)
for any d values that are tied.

8. Verify the values of the expectation and variance required in the normal
approximation to P(W¢ < 18.5) in the text.

9. Consider the extreme case of ties, in which only two.different response values
are observed, say 0 and 1. Suppose that the total number of responses equal to
0is @ and those equal to 1 is b = N — @; and that the number of control responses
equal to 1 is Z and those equal to 0 is s — Z.

(i) Express W¢in terms of Z.

(ii) How does the Wilcoxon test in this case compare with the Fisher-Irwin test?

10. Headache sufferers are asked to say whether a remedy gives no relief, a little
relief, or substantial relief. Discuss how the Wilcoxon two-sample test with mean
ranks can be used to analyze comparative data in such a situation.

11. In a paired-comparison experiment the responses are (4,3), (4,4), (3,6),
4, 5), (5,5), (5,5), (8,10), (5,4), with the first member of each pair being the
control and the second the treatment observation.

(i) Find the mean ranks of the absolute values of the nonzero differences.

(i1) Find the significance probability of V_ if small values are significant.

12. Solve the preceding problem if the observations are (4, 3), (4, 4), (3, 6), (4, 5),
4, 5), (7, 5), (8,11), (4, 5).

13. Obtain the normal approximation to the significance probability of the two
preceding problems, and compare it with the exact value.

14. Prove that the expectation and variance of V_ (or V) in the presence of ties
is as stated in the text.

[Hint: Use the representation (3) of Problem 6.12 and the results of Problems 5
and 6.}
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The remaining problems relate to the material in small print.

15. In Example 1 find the significance probability if the ranks of the untied con-
trolsare 1,2,4,6,7,9, 12instead of 1, 2, 4, 5,7, 9, 12.

16. Under the assumptions of Example 1, find the significance probability if 4 of
the treated rods and one of the controls fail to break under maximum stress, and
if the ranks of the remaining control rods are 1, 2, 4, 6, 8, 9, 11.

17.  Check the expectation and variance of W given at the end of Example 1.

18. Compute the normal approximation to the significance probability obtained
in (i) Problem 15; (ii) Problem 16.



CHAPTER 13
THE CONCEPT OF POWER

13.1 THE TWO KINDS OF ERROR

In Section 11.1 we introduced one of the desiderata of a test of a statistical
hypothesis. Suppose that the test consists in rejecting the hypothesis
whenever a test statistic T is greater than or equal to a critical value c.
Because it is usually a serious mistake to reject the hypothesis when it is
correct, we are anxious that the probability

a = Pu(T 2 )

of making this mistake should be small, and we have spent some time seeing
in a variety of problems how to determine ¢ so that a will have an ac-
ceptably small value.

A little reflection will show, however, that it is not enough to achieve
satisfactory control of a. If we had to worry only about the error of false
rejection, we could simply decide always to accept the hypothesis. This
would reduce « to 0, since if the hypothesis is never rejected at all, it can
never be rejected falsely. l‘urthermore, such a policy would save us the
trouble and expense of experimentation, for there is no need to collect data
if we have decided in advance to ignore them!

The difficulty is of course that the hypothesis may in fact be wrong, in
which case the policy of universal acceptance will result in a different kind
of mistake. 1If the hypothesis is wrong and is mistakenly accepted, we
say that the error of false acceptance has been committed. In most circum-
stances this will also be a serious mistake, though quite different in its
nature and consequences from the error of false rejection, as the coun-
sideration of a few examples will show.

ExaMmPLE 1. Changing the sex ratio. Recall Example 11.1.1 where we
considered an experiment to test a biochemist’s claim of being able to
increase the chance that a calf will be female. The null hypothesis asserts
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that the claim is without substance. Here, false rejection would mean
that the dairy association, which is conducting the test, recommends the
method as effective though in fact it is not.  As a result the dairy industry
might waste a great deal of money on an ineffective treatment. I'alse
acceptance, on the other hand, would occur if the association decides the
method is valueless when in fact it works. This error would be a source of
regret to the biochemist, whose discovery is denied recognition, and would
deprive the industry of a technique of great commercial value. The
seriousness of this error will of course depend on how effective the method
really is: if it serves to increase the chance of a female only from .5 to .53
the consequences of aceepting the null hypothesis would be much less
serious than if the chance is increased to .7.

ExampLE 2. Chemotherapy. The U.S. Government is supporting a large-
scale screening program for cancer therapy. New chemicals by the tens of
thousands are tried out on animal cancers, in the hope of finding a few
that will at least retard the speed of growth of human cancer. We may
think of the test of each such chemical as a test of the null hypothesis that
it is useless. False rejection of this null hypothesis means that the experi-
mental facilities of the program (cancer patients who volunteer for the new
treatment, doctors who are willing to apply it under controlled conditions,
ete.) are wasted on a worthless chemical. Talse acceptance means that
society loses, perhaps forever, a treatment that is in fact helpful.

Only one of the two errors is possible in any given situation, since
false rejection can occur only if the null hypothesis H is correct, while
false aecceptance can arise only if H is wrong. Unfortunately, however,
it is not known whether H is correct or wrong, and we must therefore try
to protect ourselves against both errors. To measure the risk of false
rejection one uses the probability o = Pu(T = c¢) of rejecting IT when it is
true. Analogously, the risk of committing the other error is measured by
the probability, which we shall denote by B, of accepting the hypothesis
when it is false. Since a null hypothesis may be false in many different ways
and to varying extents, 8 will be precisely specified only if one specifies an
alternative, say A, to the null hypothesis. If P, denotes a probability
computed under the assumption that A is true, 8 is given by

B=Pia(T <¢)

since the null hypothesis is accepted when 7' < ¢. Let us now illustrate
the computation of 8.

ExampLe 1. Changing the sex ratio (continued). Suppose the dairy as-
sociation decides to recommend the biochemist’s technique to its members
if the number F of females among 20 calves is 15 or more; that is, the null
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hypothesis (which says the treatment is worthless) is rejected if F = 15,
so that the eritical value is ¢ = 15. The significance level of this test was
seen in Section 11.1 to be a = Py(F = 15) = .021; this was computed by
giving to F the binomial distribution (n = 20, p = ). Let us now con-
sider the alternative hypothesis A that the biochemist’s technique raises
the proportion of female calves to 709 on the average, this being a degree
of success that would make the technique economically very attractive.
According to A, the test statistic I still has a binomial distribution with
n = 20, but now with success probability p = .7. The probability
B = Pa(F < 15) = PA(F = 14) can therefore be computed by summing
the relevant binomial probabilities, giving

B=PA(F=14)+PA(F=]3)+...
20 14 6 20 =\137 2\7
(28) e + (3g) enmear + ..

J92 + 199 4. .. = 584

(This value can also be read directly from a table of the binomial distri-
bution, or can be obtained approximately from a normal table.)

The biochemist will undoubtedly be very dissatisfied with a test which
has so great a probability of deciding against his technique if in fact it
increases the chance of a female calf to 709, and the association would not
want to take that large a risk of overlooking so valuable a discovery. Thus,
while the test gives satisfactory control of false rejection (a = .021), the
value 8 = .584 shows that the risk of false acceptance is not controlled
sufficiently well.

Can anything be done to reduce this large value of 8 to a more satis-
factory level? We had previously chosen the critical value ¢ = 15, so that
the null hypothesis of the biochemist’s treatment being worthless was
rejected when the number F of female calves is 15 or more. Let us now
see whether it is possible to lower 8, without increasing « to an unacceptable
level, by changing c. Since the test statistic ¥ has the binomial distri-
bution (n = 20, p) with p = .5 under H and p = .7 under A, we can
compite a = Pu(F' 2 ¢) and B = Px(F < ¢), obtaining the following
values:

i

i

c| 1 12 13 4 15 16

o | 412 252 132 058 .021 .006
g |.048 .113 .228 .392 .583 .762

An inspection of the bottom row shows that the use of ¢ = 11 gives 8 a
reasonably small value .048 —but now ais too large. The dairy association
certainly would not be willing to run a 419, chance of recommending the
technique if it is worthless. Perhaps the most reasonable compromise
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would be ¢ = 13, giving a 139, chance of rejecting 1 whon p = S and a
239 chance of accepting H when p = .7. Actually, in this case both «
and g are undesirably large. There is no satisfactory choice; the experi-
ment is too small to permit us to distinguish with reasonable reliability
between p = .5and p = .7.

Two main considerations are involved in striking a balance between the
conflicting requirements of low « and low 8.  We saw earlier in this section
that the consequences of false rejection and false acceptance are usually
unpleasant in different ways. If the consequences are ahout equally
serious, we would have an approximately equal interest in « and 8, and we
would then choose ¢ so as to get these two probabilities as nearly equal as
possible. If on the other hand the consequences of one error are much
more serious than those of the other, it would be reasonable to reduce the
probability of the more serious error at the expense of increasing that of the
less serious one.

The following example may help to illustrate how the seriousness of the
errors depends on the circumstances of the problem. Suppose a botanist,
who is mapping the flora of a region, is uncertain whether to record a plant
as species A or B. The two errors he may make (listing A if it is actually
B, or listing B if it is A) are presumably about equally serious—in either
case he has made an erroneous report that will mislead other scholars and
damage his reputation if it is later found out. He might accordingly want
aand 8 about equal. Let us now change the circumstances of the problem:
suppose we have found what are either A edible or B poisonous mushrooms;
shall we eat them for supper? If the null hypothesis is species A, false
rejection means foregoing a treat, while the consequences of false accept-
ance will be considerably more unpleasant. It is now desirable to have g8
extremely small, even if this forces « to be rather large. In fact, many
people refuse to eat field mushrooms at all, thereby reducing 8 to 0 at
the expense of having « = 1. Let us finally change the circumstances
once more: a castaway on a desert island finds mushrooms as the only
source of food. Now false rejection means death from starvation, and
the balance will shift to favor small c.

The example illustrates the fact that the reasonable compromise in choos-
ing the critical value will depend on the consequences of the two errors.
However, it also depends on the circumstances of the problem in another
way. If the null hypothesis is very firmly believed, on the basis of much
past experience or of a well-verified theory, one would not lightly reject it
and hence would tend to use a very small &. On the other hand, a large
« would be appropriate for testing a null hypothesis about which one is
highly doubtful prior to the experiment. For example, most psychologists
are firmly convinced that extrasensory powers do not exist. "They would
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therefore demand overwhelmingly convincing evidence (that is, an ex-
tremely small «) before publishing a rejection of the hypothesis that a
supposed clairvoyant is just guessing. On the other hand in Example 1,
if the biochemist can present a convineing theory explaining why his treat-
ment should work, the dairy association might be prepared to believe the
null hypothesis to be false, and accordingly be willing to use a rather large
o,

The concepts and computations relevant to testing a null hypothesis
have more general applications. It is frequently necessary on the basis
of chance data to choose between two actions or decisions. In making
such a choice there ave two possible ervors and it is helpful to know their
probabilities. Suppose that the data are summarized by a random variable
T, large values of which indicate that one decision is appropriate while
small values indicate the other decision. It is then necessary to choose a
critical value ¢ and to take one or the other decision as T = cor 7' < c.
The choice of ¢ should be made in the light of the resulting error proba-
bilities.

ExampLE 3. College admassion. A college bases its admission of a student
on his score 7' in an entrance examination, requiring a score of ¢ or more
(T = c¢) for admission. The two possible errors here consist in admitting
students who will prove to be unsuccessful in their studies, or conversely
in excluding students who would have been successful. The minimum
score for admission (the critical value ¢) should be chosen to balance the
risks of these two errors.

ExampLE 4. Lot-sampling inspection. A manufacturer is negotiating with
a consumer to whom he will send regular shipments of a lot of certain
mass-produced items. As a safeguard against poor quality, it is agreed
that the customer will inspect a random sample of s items from each lot,
and will return the lot to the manufacturer if too many of the inspected
items prove to be defective. It is necessary to specify in the contract how
many of the s inspected items must be defective before the lot is to be
returned.

If N denotes the total number of items and r the number of defectives
in the lot, then r is a measure of lot quality. The number D of defective
items found in the sample of size s has a hypergeometric distribution
(Section 6.2). Suppose the lot is rejected if D = ¢, and accepted if D < ¢.
There are again two possible errors: returning the lot although its quality
(i.e., the number r of defectives) is satisfactory, or failing to return an
unsatisfactory lot. The probabilities of these two errors depend on the
choice of c.

The situation is quite analogous to that of testing a statistical hypothesis.
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The role of the test statistic is played by D, with ¢ serving as the eritical
value. Rejecting the lot corresponds to rejecting the hypothesis that the
lot is of good quality. Suppose that ry is the largest value of r that would
correspond to good lot quality. Perhaps the manufacturer guarantees
that r will not exceed ry.  Then the probability that D = ¢ when r = ry
is the probability that a lot will be rejected, assuming that it just barely
meets the manufacturer’s guarantee. This probability, say Pu(D 2 ¢),
then corresponds to the level of significance . In industrial practice it is
called the “producer’s risk,” as it is the risk the producer runs of having
rejected a lot which does (just barely) conform to his guarantee. Of
course, if 7 is smaller than ry, the chance of finding 1) = ¢ would be even
smaller than o, so that a = P(D 2 ¢) is the maximum chance of rejecting
a good lot.

Now let us look at the inspection scheme from the customer’s point of
view. His main interest is to protect himself against accepting a lot of
really poor quality. Let ri > ry be a number of defective items so large
that the customer would definitely want to reject the lot if r were as great
as ra. The customer will then want the probability of accepting such a
lot, say I’a{D) < ¢), to be small. This probability is known as the “con-
sumer’s risk.” It represents the maximum chance of accepting a lot with
4 or more defectives. The consumer’s risk corresponds to the probability
8 of falsely accepting the hypothesis.

Now consider how a = Pu(D = ¢) aud 8 = Pa(D < ¢) will vary as ¢
is changed. When ¢ is made smaller, it becomes more likely that the lot
will be rejected, so that « goes up and 8 comes down. This will favor the
customer at the expense of the manufacturer. The value of ¢ is often
negotiated between the parties and written into the contract.

To illustrate these ideas, suppose N = 1000, ry = 20, and ry = 120.
That is, the lot of 1000 would be considered of good quality if there are
20 or fewer defective items in it (29 defective), and to be of bad quality if
there are 120 or more defective items (129 defective).

Suppose that s = 100 items are inspected. Then the following values of
a and B for ¢ = 5, 6, and 7, are obtained from formula (6.2.1) for the
hypergeometric distribution.

¢ B 6 7

a | 0415 0104 .00211
B | .00375 .0117 .0308

If the two kinds of error are about equally important, it might be desirable
to have the producer’s risk « and the consumer’s risk 8 approximate'y equal,
and this is achieved by taking ¢ equal to 6. Actually, the two partics
might be satisfied with somewhat larger values of « and 8, say both « and



376 THE CONCEPT OF POWER [cHap. 13

8 not exceeding .05, if something were gained by this. Permitting larger
crror probabilities does of course have a compensating advantage: it
permits a smaller sample. How to determine the smallest size giving a
stated protection for both error probabilities will be discussed in the next
section.

PROBLEMS

1. Describe the consequences of false rejection and false acceptance in the fol-
lowing cases.
(i) In a court trial the hypothesis is that the aceused is innocent; the alternative
that he is guilty.
(i1) The hypothesis is that a contemplated operation will cure a patient from a
severe chronic backache; the alternative is that it will paralyze him.

2. In Example 1, use the normal approximation to
(i) find B against the alternative p = .8 when H is rejected for I 2 15;
(i1) discuss the choice of ¢ so as to achieve a balance between a and 8 for the
alternative p = 8.

3. In Example 1, suppose that the treatment is applied in n = 60 cases. Use
the normal approximation

(i) to find the critical values ¢ giving a = .01, a = .05, @ = .1;

(i1) for each case of part (i) to find the value of 8 when p = .7.

4. Solve the preceding problem if the alternative of interest is p = .6 rather than
p=.1.

5. In Problem 3, use the normal approximation to find 8 when p = .4 and (i)
a = .05, (i) a = .1.
Do you find this value of 8 alarming or reassuring?

6. The standard technique for a certain heart operation has shown a mortality
of 30%. A new technique, hoped to be safer, is tried on ten patients. Consider
the null hypothesis H that the new technique is just as dangerous as the standard
one, and suppose that the hypothesis is to be rejected if all ten patients survive
the new operation.
(i) What is the significance level of the test?
(ii) What is the value of 8 for the alternatives that the new technique has long-
run mortality (a) 20%, (b) 10%, (c) 5%, (d) 0%?
(iii) Work parts (i) and (ii) if the test rejects H when either nine or ten patients
survive the new operation.

7. Work parts (i) and (ii) of the preceding problem under the assumptions that
the number of patients is 60 and that H is rejected if 48 or more patients survive
the operation.

8. Suppose that in Problem 6 the new operation is performed on 80 patients rather
than ten, and that B denotes the number of deaths.



13.2] DETERMINATION OF SAMPLE SIZE 377

(i) To test H against the alternative that the new operation is safer, should H
be rejected for small B, large B, or both?

(1)) Using the normal approximation, find a critical value that will give o near
.05.

(1) With this critical value, find the approximate value of 8 for the alternative
that the new technique has a 209, mortality rate.

(iv) Against what mortality rate does the test give approximately 109, chance
of false acceptance?

9. In the preceding problem, find the probability of rejecting H when the mor-
tality rate of the new technique is in fact 35%,. Discuss the consequences of this
finding.
10. In Problem 11.2.6(ii), find B if the critical value of the test is ¢ = 11, and if
the probability of heads is (i) .55, (ii) .60, (iii) .65.
11.  Under the assumptions of Example 11.2.2, find the value of 8 when (i) p = .36,
@) p = 4.
12. In Problem 11.1.10, suppose that the hypothesis of no extrasensory powers
(and hence random selection) is rejected if the spiritualist correctly picks all four
red cards.
(i) What is the value of a?
(i) If the spiritualist manages to see one of the red cards as it is put down, and
selects the other three at random from the remaining seven, what is the
value of 8?

13. In Example 4, with ra = 80 instead of 120,
@) find B when ¢ = 6,
(i) by trial and error find a value of ¢ which makes a and 8 nearly equal. (Use
the normal approximation.)

14. In Example 1, discuss the choice of ¢ so as to achieve a balance between a and
B for the alternative p = .7 when n = 50. [Hint: Use the normal approximation
for a and B, and equate the two to get an equation for ¢.]

13.2 DETERMINATION OF SAMPLE SIZE. POWER OF A TEST

In the preceding section we have seen that it may not be possible, witha
given sample size, to reduce « and 8 simultaneously to a satisfactorily low
level. When this happens, it is natural to ask whether the desired values
could be achieved by increasing the sample size. More observations should
provide more information and permit a reduction in the probabilities of
erroneous decisions.

FxampLE 1. Changing the sex ratio. Let us investigate this possibility for
Example 11.1, in which the results of 20 binomial trials were used to-test
the hypothesis H: p = .5 against the alternative A:p = .7. Suppose we
wish to reduce « and 8 from the values .132 and .228, which we were able
to obtain with n = 20, to the values « = .05 and 8 = .10. To try to
achieve this, let us increase the number of trials from n = 20 to n = 100.
Ior any critical value ¢, the error probabilities « and 8 can then be com-
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puted, or obtained from a large binomial table. The results, for several
values of ¢ are shown below.

¢ 59 60 61 62 63 64

a 0555 0364 .0230 .0140 .00825 .00467
B 00877 0150 .0249 .0397 .0611  .0907

With 100 trials (that is, in the specific context of the example, with 100
calves), it is thus possible to obtain much more satisfactory control of the
error probabilities than with 20 trials. For example, the critical value
¢ = (2 gives error probability o = .0140, which is well below the specified
objective of « = .05, and at the same time gives a 8 (.0397) well below the
specified 8 = .10. Is it desirable to have « and 8 so much smaller than
required? One might say, “the smaller the better,” but the cost of the
experiment must also be considered. Presumably n = 100 is larger than
necessary. How large must n be taken so that a will be about .05 and 8
about .10?

This question can be answered by inspection of a set of binomial tables,
but if these are unavailable or if the required values lie outside the tabu-
lated range, the normal approximation can be used. If as before F' denotes
the number of successes (female calves) in the n trials, then

E(F) =np and Var(F) = np(l — p).

Putting p = } as specified by the null hypothesis, we find 1 — a =

Pa(F < c) to be approximately ®[(c — ¥ — 4n)/V .25n]. Since a is to be

.05, we must have 1 — a = .95 and hence get the approximate equation
®[(c — & — yn)/V.25n] = .95.

The normal table gives
®(1.645) = .95,
and by combining these two equations it follows that (¢ — 3 — 3n)/V .25n
= 1.645, which may be rewritten as
¢ — % = 0.5n + 0.8225 Vn.
Similarly, putting p = .7, 8 = PAa(F < ¢) is seen to be approximately
®[(c — 3 — .7n)/V.21n]. Since B is to be .10, ¢ and n must also satisfy
P[(c — ¥ — .7n)/V .21n] = .10.

The normal table shows
®(—1.282) = .10

so that (¢ — 1 — .7n)/V 21n = —1.282, or equivalently
¢c— 3% =0.7n - 0.5875 V.
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Ilquating the two expressions for ¢ —  and dividing by V' n leads to the
equation ~
5V + 8225 = .7 Vn — 5875

-

This may be solved for Vn to give Vn = 7.05 or n = 49.7. Substitution
of this value in either of the equations for ¢ — } gives ¢ = 31.1.

These values are of course not exact, because the actual binomial
probabilities were replaced by normal approximations, and because n and ¢
must be integers. It is natural to try the integers closest to the values
obtained: n = 50-and ¢ = 31. The corresponding error probabilities a
and B can be computed from the binomial formula (or read from a suitable
table) as a = .0595, § = .0848. The first of these is still somewhat too
large. If we insist on a < .05 and B8 < .10, binomial tables show the
solution to be n = 53, ¢ = 33, giving a = .0492 and 8 = .0862.

The choice of a sample size n and critical value ¢ involves a balancing of
three conflicting objectives: to keep down a, 8 and n. If cost were no
object, one could make both « and B arbitrarily small by taking n
sufficiently large. Our intuitive notion of probability suggests that F/n
will be very close to p if n is very large. In fact, with » sufficiently large,
it is possible to distinguish between any two values of p, such as p = .5
and p = .7, with negligible risk of error. Unfortunately, the cost of an
experiment can never be ignored, and an experimenter must settle for a
degree of control of the error probabilities that he can afford.

A careful consideration of the levels at which the error probabilities are
to be controlled, the sample size necessary to achieve these levels and, if this
exceeds the resources available for the experiment, a reasonable compromise
between the various requirements, is one of the most important aspects of
planning an experiment. Unless such a prior analysis is made, the experi-
ment may either achieve quite unnecessarily high precision (as in the above
example with n = 100), and thereby waste resources which could be used
more profitably for other experimental purposes, or not permit satisfactory
control of both error probabilities (as in the above example with n = 20).
In the latter case, the conclusions to be drawn from the experiment may be
so unreliable as to defeat its purpose.

ExaMpLE 2. Sampling tnspection. We shall now illustrate the methods
and principles of sample-size determination on a lot sampling problem
similar to that of Example 4 of the preceding section. In writing a contract
for N = 500 electric lamps, the manufacturer asserts that not more than
5% of his lamps will fail under a specified degree of overload, while the
customer is anxious to be at least sure that not more than 159 of the lamps
will do so. The parties agree that a random sample of s of the lamps
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should be overloaded, and that the customer need not accept the order if
the number D which fail is as large asc. We may say that the lot is “good”
if 5%, of the lamps would fail and “bad” if this proportion is instead 159.
What values must be given to s and ¢ so that the manufacturer’s risk of
having a good lot rejected is only & = .10 (and hence even less if the lot is
better than “good”’), while the customer’s risk of accepting a bad lot is only
B8 = .05 (and hence even less if the lot is worse than “bad”)?

According to the null hypothesis H that 59 of the lamps would fail, the
number of defective lamps in the lot is r = 25, and D has a hypergeometric
distribution with Eg(D) = rs/N = .05s and

T J
x:f-s-i,-]i;—’;oooogaw(s()()—s)s
or SDu(D) = 009757 V(500 — s)s. Combining the normal approximation

Pu(D < ¢) = ®[(c — 1 — .055)/.009757 V(500 — s)s]
with the condition
Pa(D<c)=1—a=.9=d1.282)

Varu(D) =

gives
¢ — 3 = .05s + .01251 V(500 — s)s.
Similarly, if 15% of the lJamps would fail, »/N = .15, so that
E\ (D) = .15s and SDy(D) = .01598 \/m
We therefore get the approximation
Pa(D < ¢) = ¥[(c — } — .155)/.01598 V(500 — s)s],
which we combine with the condition
Pa(D <¢) = = .05 = $(—1.645)
to obtain the second equation
¢ - 1= 15 — .02629 V(500 — s)s.
Equating these two expressions for ¢ — 3, we find
ds = 03880 V(300 — 8)s.

Squaring both sides and cancelling ¢ gives a linear equation for s, which has
the solution s = 65.4. Substitution of this value in either of the equations
for ¢ — 1 gives ¢ = 5.88. As before, these values are only approximations
since s and ¢ have to be integers. If we put s = 65 and ¢ = 6, the normal
approximation gives a = .0851 and 8 = .0569. (For comparison the
correct values, computed from the hypergeometric formula, are o = .0911
and 8 = .0498.)
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PROBLEMS

1. In Example 1, find the sample size required if

i) a=.01,8=.1,; (i) a = .05, B = .05; (iii) « = .01, 8 = .05.
2. Solve the three parts of the preceding problem if the stated value is to be
achieved against the alternative A = p = .6 instead of p = .7.

3. In Problem 11.1.4, find the sample size required if @ = .03 and if 8 is to be .05
when the mortality under the improved technique is (i) .25, (i) .2, (iii) .15.

4. Assume that S has the binomial distribution (n, p). We wish to test the null
hypothesis H: p = .3 against-the alternative A:p = .8, and insist on having @ £ .1
and 8 £ .2. By inspection of Table B, determine the smallest possible value of n.

5. The Army will accept a shipment of rockets only if all of those that are test-
fired function properly. Regulations require that 8 < .1 whenever /N = 10%,.
(i) What is the value of ¢?
(ii) How many of a shipment of 20 rockets must be test-fired?
(iii) Is the sampling plan realistic? How could it be made more so?
[Hint: (ii) Use formula (6.2.1) and Table A.]

6. A geneticist is told that in a certain community the fraction p of males is about
.55, instead of the customary .514. He plans to study the recorded births at the
community hospital to see if there are indeed unusually many males. He is willing
to take only one chance in a hundred of publishing the statement that the com-
munity is exceptional if it is not. On the other hand, he will tolerate one chance
in twenty of failing to publish if the community in fact has p = .55. How many
birth records need he examine?

7. In Example 2, find the sample size required if

i) a=.1,8=.01; (i) a = .05, 8 = .05; (i) a = .05, 8 = .01.
8. Solve the three parts of the preceding problem if the stated value of 8 is to be
achieved when the proportion of failing lamps is 109, (instead of 15%).

9. Design a sampling plan for inspecting a lot of 25 items, so that @ < .1 when
there are 5 defectives and 8 < .2 when there are 10 defectives. [Hint: First use
the normal approximation to determine trial values of s and ¢, and then use Table
A to correct the trial values.]

10. In Example 11.2.2, find the sample size required if & = .05 and if it is desired
to have 8 = .08 when (i) p = J%; (i) p = &.

13.3 THE POWER CURVE

When discussing the probabilities of the two kinds of error, it is necessary
to specify not only the null hypothesis but also a particular alternative A,
such as p = .7 in Example 1.1, or /N = 15%, in Example 2.2. The
reader may have felt that the choice of such an alternative is rather arbi-
trary, and a clearer picture of the performance of a test is in fact obtained
by computing the probability of false acceptance for a number of different
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alternatives. A certain unification is then possible, as will be seen below,
by considering, instead of 8 itself, the quantity 1 — 8.

For a particular alternative A, 1 — 8 is known as the power of the test
against the alternative A, and we shall denote it by . By the law of
complementation,

r=1-3

is the probability of rejecting the null hypothesis when the alternative A
is true, and hence of correctly detecting the hypothesis to be false. Thus
in Example 1.1, we found for the alternative p = .7 that 8 = .584, so that
w = .416. This is the probability that the test will correctly detect the
effectiveness of the biochemist’s treatment when actually p = .7. Simi-
larly, in Example 1.4 the probability 8 was seen to have the value .0038 for
the alternative r = 120, if critical value ¢ = 5 is used. Hence = = .9962,
which is the probability of returning the shipment when it contains 120
defective motors, using ¢ = 5.

Let us now consider the quantity » for varying alternatives. In Ix-
ample 1.1, for instance, = depends on the true probability p of a female calf,
and we may write it as n(p) to emphasize this dependence: thus =(p) is
the probability of recommending the biochemist’s treatment when it
actually increases the probability of a female calf to the value p. Let us
generalize our earlier notations Py and P, and write P, to mean a proba-
bility computed using p as the probability of a female calf. Then

wn(p) = Py(rejection) = P,(F = ¢).

Given values of n and ¢, for example our earlier values n = 20 and ¢ = 15,
we can compute this probability for a number of values of p, as 8 was
computed for p = .7 earlier, and then graph these values to obtain a power
curve.

The unification alluded to above is obtained by extending the power
curve also to values p < 1. If in particular we put p = }, we are assuming
the null hypothesis to be correct, so that x(3) — the value of the curve at
p = } —equals Pu(F = ¢) = a. For values of p < 3, (p) is the proba-
bility of recommending the technique when it actually reduces the chance
of a female, It is intuitively clear that the smaller p is, the smaller is the
probability that F will be ¢ or greater and hence that the null hypothesis
will be rejected, so that w(p) decreases as p decreases. It follows that for
p <3 mp) <7(3) =«

Table 1 shows x(p) for ¢ = 15 and for several different values of p.

TasLE 1

P 0 4 5 6 7 8 9 1

wp) | O .00161 .0207 126 416 .804 0888 1
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From the entries in this table, we can plot the points shown in Figure 1
and then sketch the entire power curve. This curve shows just how the

w(p)
1.0

0 -
0 5 Lo d

Figurre 1. POWER CURVE FOR EXAMPLE 2.1

chance of our test discovering that the treatment works varies with the
effectiveness of the treatment. At one extreme, if the treatment raises
the probability of a female to p = 1, we are certain to decide that it works:
w(1) = 1. At the other extreme, if in fact the treatment reduces the
chance of a female much below }, we are very unlikely to recommend it
as useful. As we expected on intuitive grounds, the graph shows =(p) to
be increasing as p increases.

The performance of the test of Example 1.4 can be studied quite analo-
gously. In this case, the probabilities # and 8 depend on the (discrete)
number r of defective motors in the shipment. Some values of »(r) =
P/D z 5) are given in Table 2 (the binomial approximation was used),

TasLe 2

r i 0 10 20 30 40 50 60 70 80 90 100

1r(r)§0 003  .051 182 371 564 723 837 910 953 976

and permit sketching the power curve shown in Figure 2. This curve
summarizes the entire story of how well the inspection plan is performing
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FIGURE 2. POWER CURVE FOR EXAMPLE 1.4

its tasks. The probability that the shipment will be returned as unac-
ceptable increases with r, rising from negligible values for small r to near
certainty when r is sufficiently large. The value for r = 20 is of course
just « by definition. (The discrepancy between the value .051 given in
Table 2 and the correct value a = .0415 given in Section 1 is explained by
the use here of the binomial approximation.)

We conclude by giving two other ilustrations of power computations.

Examerg 1. The Wilcoxon two-sample test. A farmer wishes to know
whether pigs will grow faster when an antibiotic is added to their feed.
He has a litter of six pigs, and selects three of these at random to receive
the antibiotic. If these three turn out to gain more weight than the others,

he will decide to use the antibiotic regularly. Since <6> = 20, and since

3
he will reject the null hypothesis only if the rank-sum W of the controls
has its smallest value 1 + 2 + 3 = 6, the significance level of his test is
a = g% = .05. What is its power? This depends on how effective the
antibiotic is, and also on how variable the pigs are in normal growth.

To illustrate, let us suppose that without the treatment the six pigs would
gain 23, 27, 32, 35, 41, and 48 pounds, and let A denote the additional
gain caused by giving the antibiotic, which for simplicity we assume to be
the same for all pigs. The null hypothesis states that A = (0. The power
= of the test depends on A, If in fact A = 10, what 1s the chance that the
farmer will decide to use the antibiotic? We can by inspection list the
different treatment groups that will lead to rejection of the null hypothesis.
For example, if the treatment is given to the pigs with natural weight gains
32, 35, and 48 pounds, they will actually gain 42, 45, and 38 pounds com-
pared with gains of 23, 27, and 41 pounds for the controls, and the hypoth-
esis will be rejected. On the other hand, the hypothesis will be accepted
if the treated pigs happen to be those with natural gains 27, 35, and 48,
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since in this case the observed treatment gains 37, 45, and 58 are not all
above the control gains 23, 32, and 41. The treatment groups leading te
rejection are:

(35, 41, 48), (27,41, 48), (32, 41, 48), (32, 35, 48).

Thus #(10) = % = .2. If a weight gain of 10 pounds is economically
important, this power is unsatisfactorily low, and a better test or more
informative experiment is needed.

ExAMPLE 2. A poelry quiz. An instructor in English wishes to test his
students’ knowledge of English poetry. He gives them the titles of eight
poems, and (in random order) quotations from these poems. The students
are asked to mateh the quotations with the titles. How many correct
matchings should constitute a passing grade?

Let M be the number of titles matched correctly by a student, and sup-
pose that a value of M = cis passing. The instructor wants ¢ to be high
enough so that a student who knows nothing and merely matches at
random is very unlikely to pass. Referring to Table 6.8.1, we see that
Pu(M z 4) = 1356 = .019 where H denotes the null hypothesis of com-
plete ignorance. Thus with a passing grade of 4, on the average only
about one out of every 50 completely ignorant students will pass.

A student who definitely recognizes four or more of the poems is sure to
pass this test, but even recognizing one considerably improves his chances.
If he matches the remaining seven at random and M’ denotes the number
among these that he gets right by chance, he will pass if M’ = 3. The
probabiiity of his passing if he knows a single poem is therefore Py(M' = 3)
= &% = .081, four times as large as when he knows none of the poems.
The power of the test here is the probability of the student passing, and
this depends on the number k of poems he knows. Denoting it by x(k),
we have seen that #(1) = .081 and that =(k) = 1 when k = 4. By the
same method that led to =(1) we find #(2) = .265 and =(3) = .633
(Problem 9). (These calculations are for simplicity made under the un-
realistic assumption that the student either knows the title for sure, or else

matches at random.)

Figure 2 showed that x(r) = P,(D = 5) increases as the number r of defective
items in the lot is increased. The following argument proves quite generally that
if D has the hypergeometric distribution (N, r, s) then P(D = ¢) increases as r is
increased. To see this, let r < ' £ N and consider a box containing N marbles,
of which r are red, »' — r pink and N — ' white. Then the number D of red
marbles in a sample of s has the hypergeometric distribution (N, r, s), while the
number D’ of colored marbles in the sample has the hypergeometric distribution
(N, 7', 8). Since the number of colored marbles in a sample is at least as large as
the number of red marbles, it is always true that D’ = D and for some samples D’
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is actually greater than D. Thus there are more samples with D’ = ¢ than with
D = c and hence P(D' z ¢) > P(D 2 ¢). A similar argument for binomia] tests
is given in Problem 9.

PROBLEMS

1. Sketch the power curve of the test whose 3-values were obtained in Problem
1.6(i1).

2. In Problem 1.6 suppose that the mortality of the standard operation is 40%,
and that the hypothesis is to be rejected if at least nine of the ten patients survive
the new operation. Sketch the power curve of the test.

3. Use the normal approximation to sketch the power curve of the test whose
critical value was found in Problem 11.2.3(ii).

4. TUse the normal approximation to sketch the power curve of the test of Problem
11.2.63i).
5. (i) Is it reasonable to use the binomial approximation in computing Table 2?
(ii) Compute by the normal approximation the value of x(90) for comparison
with the entry in Table 2.

6. (i) In Example 1, find v(20).

(ii) How large must A be to give 7 = .7?
7. In Example 1, find the power of the test against the alternative that the addi-
tional gain caused by giving the antibiotic, instead of being constant, is 40% of the
amount the pigs would gain without the treatment.

8. In Example 1, suppose that the weight gains without treatment would be 10,
12, 17, 18, 26 and 42 pounds. Find (i) =(3), (ii) #(4), (iii) =(10), (iv) =(13).

9. Verify the values of w(2) and #(3) given in Example 2, and plot the power
“curve.”

10. In Example 12.6.1, suppose that there are only four subjects and that H is
rejected if V_ < 1. Suppose that the new lotion has the effect of reducing the
amount of burn by A from the amount the same skin area would receive with the
old lotion. Find #(A) for (i) A =0, (ii)) A = .1, (ili) A = .5, (iv) A = .7 if the
burns on the subjects with both sides receiving the old lotion would have been
(38, 38.35), (46.1, 46.51), (51.2, 51.73), (41.9, 42.2), (38.3, 38.7), (43.5, 44.1).

11. Solve the preceding problem if H is rejected when V_ < 2.

12. Solve the preceding problem if the sign test is used instead of the Wilcoxon
test, but at the same significance level.

13. If B has the binomial distribution (n, p), prove that P(B 2 c¢) is increased by
increasing p. [Hint: Let p < p’ = 1 and consider a sequence of n trinomial trials
(Section 7.3) whose three possible outcomes have probabilities p, p’ — p, 1 — P,
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with numbers of occurrences By, By, B; (B; + By + B; = n). As pointed out in
Section 7.3, B has the binomial distribution (n, p) while by Problem 7.3.3, B, 4 B,
has the binomial distribution (n, p’).]

13.4 ONE- AND TWO-SIDED TESTS

Once the test statistic 7' has been chosen, it is necessary to decide what
range of its values will be regarded as significant. 1In the preceding sec-
tions, we considered this choice as rather self-evident. Thus in Example
11.1.1 it clearly seemed appropriate to reject the null hypothesis for large
values of F (the number of female calves), while in Example 12.2.1 it
seemed equally clear that small values of D (the number of treated patients
who did not survive five years) should be regarded as significant. In
general, values { of the test statistic T were considered as offering significant
evidence against the null hypothesis H and in favor of the alternative A,
if they were relatively likely to occur according to A but relatively unlikely
according to H.  We shall in this section examine more carefully the issues
involved in deciding which values of a test statistic should be regarded as
significant.

ExampLE 1. Changing the sex ratio. To fix the ideas, let us return to the
sex-ratio example considered in several previous sections. To test the
null hypothesis that the probability p of a female calf is £, we observed
the number F of females among n = 20 calves, and rejected the hypothesis
if F is large, say F = 15. The reader may wonder why we do not also
reject the hypothesis when F < 5. After all, if p = 1, the distribution
of F' is symmetric about its expected value of 10, and F == 5 is just as great
a departure from what is expected, and is just as unlikely to occur, as
F = 15.

There could be two rather different reasons for using the asymmetric
test that we have adopted. Perhaps the biochemist has given convincing
reasons for believing that his treatment, if it has any effect at all, can only
serve to increase p. If the reasons are sufficiently convincing, we might
want to assume that p 2 3. In this case, while F < 5 is unlikely to occur
when p = 3, it is still less likely according to the only permissible alterna-
tives, namely that p > 3. The observation F £ 5 should therefore not
be considered evidence against H in favor of the permissible alternatives.

There is, however, in the present case a second, and stronger, reason for
using the asymmetric test. If p were known to be 1, the dairy association
would want to recommend against adoption of the treatment. If instéad
p were known to be less than 3, there would be even more reason for a
negative recommendation. Thus, the same action (negative recommenda-
tion) is appropriate when p < 1 as when p = 1. Since small values of F
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indicate small values of p, it is therefore reasonable to recommend nega-
tively whenever F is sufficiently small. Thus, a test which “rejects the
hypothesis” (i.e., which leads to a favorable recommendation) when F is
large, is appropriate even when one cannot exclude the possibility that
p < 3. (In this case one could reformulate the problem, and take the
hypothesis to be p < } rather than p = }.

Let us now change the conditions of the problem. Suppose the bio-
chemist believes that a certain treatment might affect the sex ratio, but
if so does not know whether it would favor males or females. He applies
the treatment to 20 laboratory animals, which naturally have sex ratio
near }, to see whether the method is sufficiently promising to warrant
further study. Let us suppose that for simplicity he formulates the null
hypothesis as p = 4. Neither of the two earlier reasons for an asymmetric
test now applies. In the new circumstances there is no reason for excluding
the possibility p < 1. Furthermore, the same action (continued investiga-
tion of the treatment) would be appropriate both when p is, say, .3 and
when it is .7. Tt is therefore reasonable to reject the null hypothesis (i.e.,
to continue investigation of the treatment) if F departs significantly from
10 in either direction. One might, for example, reject p = 3 if either
F<b5orF =15

Since rejection is now desirable when p departs materially from 4 in
either direction, we would wish the power of the test to be large against
both these types of alternatives. In the present example, where the null
hypothesis is rejected if either F < 5 or F = 15, the power against any
alternative p is given by

w(p) = Pp(F £ 5) + Po(F 2 15).

The following is a table of x(p) for a number of different values of p:

P I 0 dl 2 3 4 5 6 7 8 9 10

=(p) I 1.000 .989 .804 .416 .127 .041 .127 416 .804 .989 1.000

From these values, the power curve of the test is sketched in Figure 1.
The value at p = 1, n(}) = .041, is of course the significance level of the
test.

In comparing the power curve of the present test with Figure 3.1, the
power curve of the test that rejects only when F = 15, a striking feature is
the different shape. This corresponds to the fact, already mentioned, that
in the earlier test it was desired to have a low probability of rejection when
p < 1, while for the present test we wish this probability to be high. There
is however another important difference: the significance level of the earlier
test was .021, only half of what it is for the present test. This is of course
clear without computation since previously @ = Py,(F Z 15) while now
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a = Pip(F £5) + Pip(F 2 15),

and the binomial distribution for p = 1 is symmetric about }n.

= (p)

5

0 L —= D
0 5 1.0

Ficure 1.

It is important to realize this difference in « since it is a common mistake
in hypothesis testing to pretend one is using a one-sided test when in fact
a two-sided test is being employed. To illustrate, let us consider the work
of John Graunt, who in 1662 published a collection of figures of birth and
death for London. One finding that particularly interested him was the
excess of men over women. Suppose that in 4000 births he had found the
numbers to be 2050 and 1950 respectively. How greatly should he have
been surprised if he expected the probability to be 3? Applying the normal
approximation we find that

1950.5 — 2000

Pyp(F < 1950 =<I>< —
1/2( = O) %\/4000

) = $(—1.565) = .059,

and hence we might be tempted to attach to his result the significance
probability .059. However, Graunt would clearly have been equally sur-
prised if the numbers had been reversed. The relevant significance proba-
bility is therefore

Pyo(F £ 1950) 4 Pio(F = 2050) = .118.

Actually, Graunt’s data were much more extensive. He writes that ‘“‘there
have been buried from the year 1628 to the year 1662 exclusive, 209436
Males and but 190474 Females,” and draws from this the blunt con-
clusion “that there must be more Males than Females.” The probability
of observing so large a deviation from what would be expected if p were 1,
is indeed negligible.

Let us consider somewhat more generally the hypothesis that a pa-
rameter 8 (such as the quantities p or r specifying a binomial or hyper-
geometric distribution), has the value 85. What issues are involved in
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deciding between the two-sided test, which rejects when the test statistic T
satisfies
T<c¢c or Tz=d,

or one of the two one-sided tests which reject the hypothesis only for
T = d, or only for T < ¢, but not for both? In this discussion, we shall
suppose that large values of 7' are likely to oceur when 6 is large, small
values of T are likely to occur when 8 is small, while for 8 near 84 inter-
mediate values of T are most likely. (The reader may check that these
suppositions hold in our binomal and hypergeometric examples.)

Our earlier discussion suggests the following three possibilities.

() If it is assumed that the permissible alternatives to the null hy-
pothesis all lie in the same direction from 8y, either to its right (6 > 6u),
or to its left (§ < 8y), clearly the one-sided test appropriate to this direc-
tion should be used.

(i) Suppose there is a choice between two decisions, one of which is
appropriate if the null hypothesis is true or if it is false in one direction
(for example 6 < 6y) while the other decision is appropriate if the null
hypothesis is false in the other direction (6 > 61). One is then really test-
ing the hypothesis 8 < 0y against the alternative 8 > 8y, and again a one-
sided test is appropriate.

(iii) If alternatives 8 on both sides of 6y are assumed possible, and if the
same decision or action would be called for against both, a two-sided test is
appropriate.

We shall now give one example of each of these possibilities.

ExampLe 2. Triangular taste tests. Recall Example 11.2.2, in which a
manufacturer of powdered coffee finds a method of producing his product
more cheaply, and wonders if it causes a detectable alteration of taste. He
prepares the product by both methods and presents to each of 500 con-
sumers a tray with three cups, identical in appearance and randomly
ordered, one of which contains the new product while the other two contain
the old. The consumers are asked to identify the cup that is different
from the other two.

If there is no difference in taste, each consumer has one chance in three of
correctly guessing which cup contains the new product. Under the null
hypothesis of no difference, the number B of consumers who guess correctly
therefore has the binomial distribution (n = 500, p = 1). What are the
permissible alternatives? If there is a difference in taste, the chance of a
consumer correctly identifying the cup that differs from the other two is
increased. It is hard to see how a change of taste could lead to a decrease
in the ability of guessing correctly unless the customers are willfully un-
cooperative. The manufacturer may therefore wish to assume p = 3, so
that we are in case (i). The appropriate test would be one-sided and
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reject if B = ¢, where ¢ is the critical value chosen so as to provide the
desired compromise between a and 8.

ExamrLE 8. A heart treatment. In Example 12.2.1 we formulated the
null hypothesis that a certain treatment for victims of coronary attack
would have no influence on whether the patient survives five years. The
test proposed was based on the number D of early deaths among treated
patients, with small values considered significant. Clearly, a very large
value of D would also make one doubt that the treatment is without effect,
and lead one to believe on the contrary that it is harmful. However,
although alternatives on both sides of the null hypothesis of no effect are
reasonable here, a one-sided test is appropriate. We have here an example
of case (ii), since the physician would come to the same decision—against
the use of the treatment—whether he knew it to be merely useless or
actually harmful.

ExampLE 4. The Mendelian theory. With an inherited trait which is eon-
trolled by a single pair of genes, each offspring of a cross of two hybrids has
probability % of being recessive according to the simplest assumption of
the Mendelian theory. (We have given a discussion of this theory in
Section 4.5, but an understanding of it is not necessary to follow this
example.) A geneticist wonders whether a certain trait is inherited in
this way. He collects 30 cases that are offspring of hybrid crosses, and
observes the number T possessing the trait, in order to test the null
(Mendelian) hypothesis. If the 30 trials are assumed to be unrelated,
then according to the hypothesis T' will have the the binomial distribution
(n = 30, p = §). If the geneticist has no particular alternative value of p
in mind, he would want to reject the hypothesis if p departed materially
from } in either direction. He would accordingly use a two-sided test,
rejecting the hypothesis H:p = 1if T < corif T = d. The value of the
significance level will depend on the values used for ¢ and d. For ¢ = 2
and d = 13, for example we may calculate from the binomial formula that
Pu(T = ¢) = .0106 and Pu(T = d) = .0216, so that « = .0106 + .0216 =
.0322. With this test, the power 7(p) = 1 — P,(3 < T £ 12) may also
be calculated from the binomial formula. A few values are shown below.

p [0 1 2 25 3 4 5

x(p) l 1 411 .0473 .0322 .0866 .422 .819

Unfortunately, the test is not very sensitive to small departures of p from

1. More than 30 cases would therefore be needed before acceptance of

the hypothesis would be very convincing.
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For two-sided tests, the problem arises of choosing two critical values
¢ and d. The most common practice is to choose them so that the two
one-sided probabilities Pu(T = ¢) and Pu(T = d) are equal, or at least
approximately so. The resulting test is said to have equal tails. Actually,
an equal-tailed test is reasonable only if the interest in the alternatives on
the two sides is about equal. If in a two-sided problem one is nearly
(but not quite) certain that 8 < 6x may be ruled out, it would be reasonable
to take Pu(T = c¢) smaller than Py(T = d), so that the test will have
greater power against the alternatives ¢ > du, while still providing some
power against the implausible alternatives 8 < 6x.

For a test to be equal-tailed when the null distribution of T is symmetric
about a point g, the critical value d must be just as far above p as ¢ is below
it, that is, d — p = p — ¢. Furthermore, since the probabilities in the
two tails are equal, the value of a will be just twice what it is for the one-
sided test which rejects for 7' < ¢. Therefore, a table of the significance
levels of the one-sided test can also be used for the two-sided test: it is only
necessary to double the tabled value of «. For-example, from Table H of
the Wilcoxon distribution when s = 4 and ¢ = 7, we see that the test which
rejects for W = 13 has a = Py(W £ 13) = gfg = .0212. Since W is
symmetric about ¢ = }-4-12 = 24, the corresponding two-sided test re-
jects when W < 13 or W = 35, and this test has significance level a =
2Py(W = 13) = 2(.0212) = .0424.

Two-sided tests are sometimes used for a class of problems, which are
actually more complicated. Suppose one action would be appropriate if
8 = 6y, a second one if § < 0y, and a third one if 8 > 6. The choice then
lies not between two actions but three: we are dealing with a three-decision
problem. These problems are more complicated than testing statistical
hypotheses since, for example, six different errors are possible instead of
only two. However, such problems can be handled by the machinery of
a two-sided test. If the null hypothesis 8 = 8y is accepted, the first action
is taken; if it is rejected, either the second or third action is taken according
asT ScorT = d.

PROBLEMS

1. Suppose in Example 1 that there are only 10 experimental animals instead of 20.
(1) Find the equal-tailed, two-sided test for H:p = 4 which has significance level
as near .1 as possible.
(ii) Compute and sketch the power curve of this test.

2. Suppose S has the binomial distribution (400, p). To test H: p = .b an
experimenter proposes to use the statistic T = |S — 200].
(i) Is this a one-sided or a two-sided test?



13.5] CHOICE OF TEST STATISTIC 393

(i) If he wants a to be approximately .1, what critical value should be used
for T?

(iii) What is the power against the alternative p = .55”

(iv) If the experimenter were willing to assume p = .5, what test should he use?

(v) What would be the power of his test against p = 55 at level @ = .1?

3. In Example 2 the manufacturer wants o to be near .03.
(i) What eritical value should be used for B?
(ii) What is the power of this test against the alternative p = 4?7

4. Of 15 experimental subjeets, 7 are selected at random for treatment, the other
8 serving as controls. A two-sided Wileoxon test is to be used to test the hypothesis
of no treatment effect against the two-sided alternatives A 5 0 (positive or nega-
tive) approximately at the 109 significance level.

(i) Find eritical values for which the test is approximately equal-tailed.

(ii) Suppose you are fairlyv sure (but not certain) that A = 0. Determine
critical values so that the 109 rejection probability under H is distributed
approximately in the ratio 3:1 between the two tails.

5. In Example 4, suppose the geneticist is fairly sure (but not certain) that p = }.
If he collects 200 cases and wishes to use a two-sided test at level .1, determine
approximate critical values so that the 109, rejection probability is distributed in
the ratio (i) 9:1; (ii) 4:1; (iii) 2:1.
6. In the three parts of the preceding problem, use the normal approximation to
sketch the power curve of the test.

13.5 CHOICE OF TEST STATISTIC

In the examples considered so far, we have presented on intuitive grounds

a function of the experimental observations to be used as the test statistic.
In most examples there actually appeared to be only one reasonable

statistic. In order to test the quality of a lot, for example, after having
observed the number D of defectives in a random sample from this lot,
it is difficult to imagine any reasonable test not based on the test statistic 1.

In more complicated testing problems, however, there will frequently
exist a variety of apparently reasonable and essentially different test
statistics, and it then becomes necessary to choose one of them. The
main criterion of choice is the power of the resulting test: if one statistic
provides greater power than another when both are applied at the same
level of significance, we prefer the more powerful statistic since its use
results in a smaller probability of false acceptance.

That the first statistic which comes to mind is not necessarily the best
may be illustrated by the following example.

ExampLE 1. The loaded die. A gambler produces a die, and offers to bet
that it will fall with the ace on top. His colleagues not unnaturally
suspect that it may be loaded so that P(Ace) > 3. They decide to throw it
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200 times to see whether Ace does tend to occur more often than one time
in six. If this is not the case, they will aceept his bet, and otherwise will
take appropriate action.

Perhaps the most natural test statistic is the number X of times Ace
appears in the 200 throws, with large values of X significant evidence

against the null hypothesis H that P(Ace) = ¢, in favor of the alternative
that P(Ace) > &. According to H, the random variable X has the
binomial distribution (n = 200, p = }). If the critical value is taken as
¢ = 43, the level of significance is « = Pu(X = 43) = .0444. The power
of the test depends on how much P(Ace) exceeds §, that is, on how heavily
the die is loaded. Against the alternative A that P(Ace) = .20, for
example, the power is

7(.20) = PA(X 2 43) = .324.

This power is not at all satisfactory, since the other gamblers would not
want to take a chance as large as 689, of playing with a die so heavily
loaded against them. One possible method of increasing the power, with-
out raising the significance level, would be to increase the sample size by
throwing the die more than 200 times. However, some improvement can
be obtained simply by using the available data to better advantage. If a
die is loaded to favor Ace, it will at the same time decrease the probability
of the opposite side (Six) turning up. Let us therefore consider the number
Y of times that Six appears. Small values of Y will also constitute
evidence against the null hypothesis, and this evidence is ignored when X
is used as the test statistic.

Whether the use of X or Y will lead to the more powerful test will depend
on just how the die is loaded. Tor purposes of illustration, suppose that
under the alternative A4 the six faces have the following probabilities:

Face Ace Two Three Four TFive Six

@

Probability 20 17 17 A7 17 12

In testing H with the aid of ¥, we should want to reject when ¥ is small.
If H is rejected when Y < 24, we have

a =Py (¥ <24) = 0426 and #(.12) = Py (Y £ 24) = .554.

Against this particular alternative, the test based on Y is therefore better
than the test based on X, since it has a slightly smaller probability of false
rejection and a considerably larger power.

However, Y is still not the best available test statistic. Both X and Y
contain information on whether or not H is true, and a better test can be
constructed by utilizing all of this information. If the die is loaded in the
manner indicated, X will tend to be large and ¥ small. Hence the statistic
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T = X — Y will be large for two reasons, and large values of T will reflect
both sources of information.

The exact distribution of 7' is complicated. However, the distribution
of T can be approximated by the normal curve. We obtain this approxi-
mation by extending the idea of an indicator random variable, defining /, as

1 Ace
J1 =< —1if the first toss gives < Six
0 Two, Three, Four, or Five,
and analogously Jy, ..., Juo as 1, —1, 0 as the 2nd, . . ., 200th throw

gives Ace, Six, or one of the other results. The sum of all the J’s is then
equal to the number of J’s that are equal to 1, minus the number that are
equal to —1, and hence

¢) T=dh+d+...4+ Ju.
If the 200 throws are unrelated, so that a product model is appropriate, the
random variables Jy, . . ., Juo are independent (Section 5.2) and hence

according to the central limit theorem (Section 6.4) the normal approxi-
mation may be applied to 7. This approximation requires the expectation
and variance of T, which we shall now compute.

Let us write ’(Ace) = p;, P(Two) = py, ..., P(Six) = ps. Note that

E(Jl) =,..= E(Jgoo) = D1 — Ps.
Since J} is an indicator,
EUJY) =PUt=1)=p+ ps
so that
Var(J)) = ... = Var(Ju) = p1 + ps - (1 — po)2.
From (2) it follows that
E(T) = 200(p; — ps),

and, from the addition law for variance (5.7.15),
Var(T) = 200[p, + ps — (21 ~ po)?].
When H is true, P(Ace) = P(Six) = 1, so that
Ew(T) =0 and Vary(T) = 232,

By the normal approximation, the test which rejects H when T = ¢, has
for ¢ = 15 the significance level a = .0379. Under the alternative A,
P(Ace) = .20 and P(Six) = .12. Hence

EA(T) = 200(.20 — .12) = 16,
Vara(T) = 200[.32 — (.08)2] = 62.72,
and the normal approximation shows the power of the test to be r =
Px(T 2 15) = .575. Comparison with the test based on Y alone, shows



396 THE CONCEPT OF POWER [cuap. 13

the new test to have slightly higher power and a considerably smaller
significance level. The test based on 7' is therefore better than either of
the two previously considered. We shall see below that even this test is
not the best possible.

The example shows that it is not always obvious what test statistic
should be used, and that the choice can be of importance. We shall now
give a method for constructing the best possible test.

A hypothesis or alternative is called simple if it completely specifies the
distribution of the observed random variables. (For example p = .5 and
r = 20 are simple, while p > .5 and » £ 20 are not.) Let us consider the
problem of testing a simple hypothesis H against a simple alternative A.
We have suggested in Section 11.1 that H should be rejected for those
values ¢ of a test statistic 7', for which P,(T = t) is relatively large com-
pared with Py(7 = t). Intuitively, an event which is, relatively speaking,
unlikely to occur if H is true, but likely to occur if A is true, would seem to
provide a good basis for rejecting H in favor of A. This idea suggests
classifying the simple events e in the event set & according to how many
times more likely they are under A than under H; that is, according to the
value of the probab:lity ratio

Ae) = %:%-

The larger this ratio is, the stronger is the evidence against H and in favor
of A. Accordingly, we may choose a critical value ¢ and decide to reject
H whenever AMe) = ¢. The resulting tests are called probability ratio tests.
A basic theorem of the theory of testing hypotheses, known as the Neyman-
Pearson Fundamental Lemma, states that a probability ratio test is more
powerful (against A) than any other test with the same or a smaller level
of significance. When it is applicable (i.e., when we have a particular
alternative in mind), this theorem answers two questions that we have
discussed before: what test statistic should be used, and what range of
values of the statistic should be regarded as significant. Before giving a
proof of the theorem, we shall illustrate its use on a number of examples.

FixampLE 2. Testing binomial p. Suppose that B is a binomial random
variable corresponding to n trials with success probability p, and that it is
desired to test the hypothesis p = py against the alternative p = pa, where
pu and py are given numbers with pa > pu. Here the simple events are
the possible values b = 0, 1,...,n of B. By (6.1.2), the probabilities of
these values under A and H are

Pa) = () st =
and

Pa(b) = (Z) pi(l — pu)".
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By definition, A(b) is the ratio P (b)/Pxu(b), which may be written

| - (=) (z Lomy:.
3) Mb)—(l-l’ﬂ) (PH 1 —pa

Since pa > pu, both of the ratios pa/py and (1 — pu)/(1 — pa) are greater
than 1, and therefore so is their product. The first factor on the right
side of (3) does not change with b, while the second factor, as the bth power
of a number greater than 1, increases as b is increased. It follows that

4) MO) < M1) < ... < \n).

A probability ratio test always rejects for large values of Ae). In the
present example, this means rejection for large values of A(b), which by
(4) means rejection for large observed values b of B.

It follows from the Neyman-Pearson lemma that a test which rejects
when B 2 ¢, is most powerful at its level of significance for testing H:
P = pu against the alternative p = ps, provided ps > pu. For the ap-
plication of the lemma it was necessary to specify a simple alternative
value pa. It is seen however that the same test (B = ¢) is most powerful
regardless of which alternative p, > py we selected. The test is therefore
simultaneously (or uniformly) most powerful for testing H: p = pu against
all alternatives p > pu. This conclusion justifies our intuitive choice of
test in the sex-ratio problem (I’xample 11.1).

That the same test is the most powerful solution for all alternatives of
interest in I’xample 2 is a happy accident, which one should not expect to
happen in general. Suppose for example that we are testing H:p = 1
against the alternatives that p may be either less or greater than 1. In
Example 4.1 we have suggested for this problem the two-sided test that
rejects when F < cor F = d. The most powerful test of H against the
alternatives p > } has just been seen to reject when F is too large; analo-
gously (Problem 3), the most powerful test against the alternatives p<i
rejects when F is too small. Since these tests do not agree, there exists
in this case no test which is simultaneously most powerful against all
alternatives of interest. The two-sided test is a compromise solution
which, by sacrificing some power on each side of P = 3, achieves reasonably
good power simultaneously against all alternatives.

ExamrL 3. Combination of two binomials. Suppose that in the preceding
example, while our experiment is in progress, we hear of another experiment
conducted to test the same hypothesis.  In order to obtain a more powerful
test, it is agreed to pool the observations from the two experiments.
Suppose that in the other experiment, the number B’ of successes in 1’ trials
is being observed, so that the total observational material consists of the
pair of numbers (B, B’). The simple events in this case cousist of the nn’
points (b, V') with b =0,1,...,n and &' = 0,1,...,n. If the two
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experiments are unrelated, a product model is appropriate, and the proba-
bility of the simple event (b, 0’) under A:p = pa is

Pi(b, V") = ( >pA(l — pat- b(b,>v,\(l = p)"Y
and under H: p = py is

Pu(b, V') = < )pu = pu)" "( )pu I — pu)'=".

The ratio of these two probabilities is, after some simplification,

1) = (LS 2Y (2 Ly
Ay 1 — Pu Pu 1 — Pa

This is exactly the expression obtained for the corresponding ratio in th:
preceding example, with n + n’ in place of n and b 4 b’ in place of b.
I'rom the discussion given there, it therefore follows that the probability
ratio test in the present case rejects when B + B’ = ¢. Since B+ B’ is
the number of successes among the total n + n’ trials in the two experi-
ments, the test is the same as if we were observing the number of successes
in a single experiment of n + »n’ trials.

lixampLe 1. Theloaded dic (continued). 1n LExample 1, we proposed T =
X — Y as a reasonable test statistic for deciding whether a die is loaded to
favor Ace, but stated that further improvement is still possible. The best
test against the simple alternative A defined by (1) is, according to the
Neyman-Pearson lemma, given by the probability ratio test, which we
shall now derive. When the die is thrown n times, one can observe the
numbers of times cach face appears. We shall label these as follows:

Face Ace Six Two Three Four Five

Number of appearances X Y U v W Z

These six random variables have a multinomial distribution (Section 7.3),

so that according to the alternative A,

PX=zandY =yand U =wandV =vand W =wand Z = 2) =
K(2)*(.12)¥(. 17)utotwtz

where A is an integer whose value we shall not need. According to the

hypothesis H that the die is fair, the probability of the same event is

]((Tli,)x-{»u+u+v+uv+z.
Since « + y -+ v + ¢ + w + 2z = n, the probability ratio is therefore
67(.2)*(.12)v(.17)" v,
which (exeept for a constant factor) is

(3) (11) (:f) = (1.176)4(.706)".
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The desirability of rejecting H for various observed pairs (z,y) is
measured. by the size of the quantity (5). The calculations are simplified
by using logarithms. Since the logarithm of (5) is

(6) xlog1.176 + y log .706 = 0704z — .1512y = (.0704)(z — 2.15 ),

and since the probability ratio test calls for rejecting for large values of
(5), which means large values of (6), we see that the probability ratio test
rejects for large values of X — 2.15 Y. The best statistic is therefore not
X — Y but rather X — 2.15 Y. Intuitively, Y contains more information
than X, and should be more heavily weighted when the two are combined.
However, the particular weighting X — 2.15 Y depends on the particular
alternative A that we selected. For certain alternatives (Problem 4)
greater weight should be given to X than to Y. Since the precise proba-
bilities that result from loading the die are in practice unknown, the
statistic T = X — Y may be a reasonable one to use.

We shall now give a proof of the Neyman-Pearson lemma. Let R denote the
set of simple events for which the probability ratio test rejects the hypothesis H.
Then R consists of the simple events e for which A(e) = ¢ or equivalently
) Pale) = cPule),

where ¢ is a positive number. If a denotes the significance level of this test,
a = Pr(R). Consider any other test whose significance level ¢ satisfies o’ £ a,
and let S denote the set of simple events for which this test rejects the hypothesis.
"The set R may be partitioned into the two exclusive parts (R and S) and (R and 5),

so that _
a = Pa(R and S) + Pa(R and S)

by the addition law. Similarly,

o' = Px(R and S) + Pa(R and S).
Since @ = ', we must therefore have
(8) Px(R and S) = Pa(R and S).

By (7),
d Pa(e)/c z Pnle)

for every simple event e in R, and therefore for every simple event in (R and S),
so that

) PA(R and S)/¢ = Pa(R and S).

Similarly, Pa(e) > Pa(e)/c for every simple event e in R, and therefore for every
simple event ¢ in (R and S), so that

(10) Pu(R and S) > Pa(R and S)/c.
By combining (9), (8) and (10), we see that
Pu(R and S)/c = Pu(R and S) = Pa(R and S) > Pa(R and S)/c,
©9) @® (10)

and it follows that the leftmost member of this string of inequalities is larger than
the rightmost member. Cancelling the common factor 1/¢, we find
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Pu(R and S) > Pa(R and 8).
Finally, by adding Pa(R and S) to both sides, it follows that
PA(R) > Pa(S).
This proves that the probability ratio test R is more powerful than any other test .S
whose significance level does not exceed that of R.

PROBLEMS

1. In Example 1, use the normal approximation to determine the number n of
tosses required to distinguish between H and A with @ = 8 = .01, with the test
statistic (i) X, (i) Y, (iii) 7, (iv) X — 2Y.

2. In Example 1, calculate the correlation of X and Y (i) under H, (ii) under A.
(Hint: Recall Var(X — Y) = Var(X) + Var(¥) — 2 Cov(X,Y).]

3. Show that in Example 2, the most powerful test for testing the hypothesis
P = pg against any alternative value pa < pg rejects when B is less than or equal
to some constant c.

4. Find an alternative loading for the loaded die of Example 1, such that the most
powerful test statistic for testing the hypothesis of no loading gives more weight to
X thanto Y. :

5. A box contains NV items numbered from 1 to N. One item is selected at random
and its number X is observed. We wish to test the hypothesis H that N = 5 at
significance level @ = .2. Kince an observation X > 5 definitely disproves H, the
hypothesis should of course be rejected whenever X > 5. The following five
tests T, ..., Ts are thus available at the desired level: T, rejects Hif X =1 or
X >5;Torejects Hif X = 20r X > 5;ete.
(1) Calculate and sketch the power curve of each of these tests against the
alternatives N = 1,2,3,4,6,7,....

(i) Is there a uniformly most powerful test among Ty, T, . . ., T's?

(iii) Suppose that N = 2, that two items are drawn at random from the box
without replacement, and are found to be numbered X and Y. Suggest a
good test for H at level .1, and sketch its power function against
N=22346717....

6. Consider a model in which the event set & has four points whose probabilities
according to H and A are as follows:
e e (2] €3 €4
Py .05 .05 .10 .80
Pa .10 .20 .36 .34
(i) List the possible probability ratio tests, and give the significance level « and
power 7 of each.
(ii) Suppose that a is required to be .1 or less. List all tests available at this
level (not necessarily probability ratio tests) and give the power of each.
(iii) Consider the following rejection rule: H is rejected if e, is observed and is
accepted if e, or e, is observed; if e; is observed, a fair coin is tossed, and H
is rejected if the coin falls Tails and accepted if it falls Heads. Compute o
and = for this randomized test and compare with the tests of part (ii).
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13.6 THE X, t AND WILCOXON ONE-SAMPLE TESTS

Consider a process for obtaining a sequence X,, X5, - - - of observations or
measurements of the same kind. For example, the X’s may be the heights
of a sequence of male freshmen enrolling at a college, the yields of a variety
of wheat grown on a sequence of test plots, or quality judgements on a
sample of cans taken from the production line of a packing plant. The
long-run average value of X is represented by the expectation p = E(X).

The problem of estimating u was treated in Section 9.2. We shall now
take up the problem of testing the hypothesis that u is equal to some
specified value. The following examples will illustrate how this problem
may arise.

ExAMPLE 1. Life testing. A manufacturer guarantees that his light bulbs
will on the average burn for 1000 hours. A testing laboratory buys 20
of the bulbs and burns them until they fail, observing the 20 times to
failure. The 20 observed life times are to be used to test the manu-
facturer’s guarantee.

Exampre 2. Quality improvement. 'The quality of a mass-produced item
is measured on a numerical scale, for example, by length of life, brightness,
hardness, and so on. The average value of quality is known for the
currently used production process. It is believed that the quality can be
raised by making a certain change in the process. A number of items is
produced by the new method and their quality is measured. Do they
justify the belief that the new method constitutes an improvement?

ExampLE 3. Testing for adulteration. The purchaser of a gold ring sus-
pects that the ring is adulterated with silver. He measures the specific
gravity of the ring several times to find out whether the ring has the known
specific gravity of gold, or a lower value.

In all three examples, the problem is that of testing the hypothesis H
that x has a specified value ug. Thus, in Example 1, ug is 1000 hours;
in Example 2, it is the average quality with the current process; in Example
3, it is 19.3, the specific gravity of gold. The alternative in some cases
is that 4 > un (as in Example 2), in others, that 4 < pu (as in Examples 1
and 3). To be specific, suppose that the alternative under consideration
1S u > un.

To obtain a test of 4 = un against x > uy, one may take a number, say n,
of observations and compute their arithmetic mean

X=X+ +X)/n,

which in Section 9.2 was proposed as a reasonable estimate of u. If X is
sufficiently much larger than uy, it would seem reasonable to conclude that
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the expectation u of the X’s is greater than ux and hence to reject H. The
proposed test, which we shall call the X-fest, therefore rejects H if

(1) X—mz2g
where c is an appropriate critical value.

In order to determine ¢, we shall employ the model for repeated measure-
ments developed in Section 9.2. This model represents the observations
Xy, ..., X, as independent random variables, all having the same distri-
bution. Their common expectation is denoted by x4 and their common

standard deviation by o.
The critical value ¢ in (1) is determined so that the test has the pre-

scribed significance level @. Ip principle, this critical value or the sig-
nificance probability could be calculated once the precise form of the
common distribution had been specified. In practice, this calculation
would often be difficult; in addition, one is frequently uncertain about the
form of the distribution of the observations X. It is therefore doubly
fortunate that the central limit theorem (Section 6.4) provides a simple
approximation, which does not require any assumption about the form of
the distribution of X.

To apply the central limit theorem, we need to express X in standard
units, as in Section 6.5. This standardization requires knowledge only of
the expectation and standard deviation of X, which were found in Section
9.2 to be

) EX) =y, SD(X) = o/Vhn.

If the null hypothesis 4 = ugn is correct, the standardized test statistic is

therefore
3) X —um _ V(X - pH)
q/\/ n G
The hypothesis is rejected if X — uu is too large, or equivalently if
V(X — pn)/o is too large, say, if
4) VX ~ pn)/o 2 .

In this form of the X-test, which is equivalent but more convenient than
the earlier (1), the critical value « is determined by

PHI:—\/—;Mgu:'=a.

o

(5)

By the central limit theorem, the null distribution of the statistic (3)
is approximated by the appropriate area under the normal curve, and in
particular the left-hand side of (5) is approximately equal to the area
1 — &(u) to the right of u. The critical value u of (4) can therefore be
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obtained approximately from the equation
(6) 1 - d(u) = a

This approximation typically proves to be adequate even for samples as
small as 5 or 10, provided the distribution of X is not too strongly asym-
metric.

An exactly analogous argument applies if the hypothesis H is to be tested
against the alternatives ¢ < pn.  The hypothesis is then rejected when

(7) V(X - wn)/o S v,
where v is determined by the equation (Problem 3)
(8) ®(v) = a.

LkxampLE 8. Testing for adulteration (continued). Suppose a method for
measuring specific gravity has standard deviation ¢ = .2. (This value
represents the precision of the method as revealed by past experience.)
Suppose that 10 readings are to be taken on the suspected gold ring. It is
desired to have a = .01; that is, the customer wishes to run only a 19,
risk of mistakenly accusing the seller of fraud if in fact the ring is unadul-
terated. Since Table E shows that ®(—2.327) = .01, it is seen that the
critical value vin (8) isv = —2.327.
If the readings are

18.83, 19.03, 18.61, 19.46, 18.80, 18.96, 19.37, 19.20, 18.88, 19.34

we have X = 19.048 or \/1_1(7 — pu)/e = —3.984, which is less than .
With these measurements, the customer would therefore allege fraud.

The same method can be used to find (approximately) the power curve
of the test (1). The power depends on the value of x, and it will be con-
venient to express it in terms of the difference A = y — uy. The event (4)
of rejecting H is the same as the events

\/;L({ —#) -+ \/:A 2 u or ————-\/Z({ _‘—”2 = u— @-

Since V(X — #)/o is just the random variable X expressed in standard
units, the probability of this event is approximately equal to the area under
the normal curve to the right of u — (\/nA/a). The power 7(A) against
an alternative A is the probability of rejection when this particular value
of A is true, and is therefore approximately equal to

\/Fi).

g

9) r(A) =1—& (u —

When H is true, p = un and hence A = 0, and (9) reducesto 1 — &(u) = a,
as it should.
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Analogously, the power of the test (7) is approximated by
(10) w(A) = & (v - \/—TA>

As an illustration of (10), let us compute the power of the test in Ex-
ample 3 (continued) against the alternative u = 19.1; that is, the prob-
ability of detecting such a degree of adulteration with 10 observations.
Since A = —.2, we have \/r—aA/a = —V10 = —3.162 and x(4) =
d(—2.328 + 3.162) = $(.834) = .798.

Suppose that this power is too low. Can we find a larger sample size
n for which the power against the alternative u = 19.1 is equal to .9?
Formula (10) shows that this aim will b~ achieved (approximately) pro-

vided v
( 2,398 — —:’é) -9

From Table E we see that ®(1.282) = .9, so that n must satisfy the
equation

\/_
~2.328 — —U"—A = 1.282.

Since in our case A/e¢ = —1, it follows that Vn = 3.61 and hence n = 13.

In this way, formulas (9) and (10) can be used quite generally to de-
termine the sample size required, at a given significance level, to achieve a
given power against a specific alternative.

Let us finally consider the shape of the power curve m(4). When testing
u = up against u > un, and hence A = 0 against A > 0, one would in-
tuitively expect the power to increase as A increases. This is in fact true
and is shown approximately by formula (9) as follows. As A increases,
u — (V'nA/o) decreases, and the area under the normal curve to the right
of u — (\/ZA/ o) therefore increases; but this is just the right-hand side of

(9). Also, as A increases indefinitely, so does \/ﬁA/ o, s0 that u — (\/;A/ )
takes on increasingly large negative values; the area to the right of this
value then increases toward 1. Similarly, n(4) decreases toward zero as
A decreases indefinitely, and the power curve is thus seen to have the same
general shape as those depicted in Figures 3.1 and 3.2.

In the foregoing, we have assumed that the standard deviation ¢ is
known, as it might be, for example, from extensive past observation on X.
In practice however, it is usually unwise to assume that ¢ still has the same
value it used to have. The new factors, whose effect on the expectation
of X is being investigated, may also have changed the variability of the
observations. To avoid the serious misinterpretation of the data that
would follow from the use of an assumed false value of ¢ in (4) (see for
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example Problem 23), it has been the general practice to use instead a value
for ¢ that is estimated from the current observations themselves. In
Section 9.5, we developed in formula (2) and Problem 5 the unbiased
estimate

8 =[5 -X)P+ X -X+ -+ X = X%/ (0~ 1)
for ¢2. Replacement of ¢ by S in (3) yields the test statistic known as
Student’s t:
VX - ph)

A

(11 T =

An extension of the central limit theorem shows that the distribution of 7'
(and hence the significance probability of the associated test) can be ap-
proximated by the same area under the normal eurve as the distribution
of the statistic (3). This is not surprising, since for very large n, S will be
a very accurate estimate of ¢, so that 7 and the statistic (3) will have
nearly the same distribution. However, in the present case, much larger
values of n are required for the approximation to be reliable, particularly
if the distribution of X may not be symmetric. Unfortunately, it is not
known just how large n has to be for the approximation to be safe for the
kinds of distribution often encountered in practice.

When n is small, the distribution of T depends more heavily than that of X on
the precise form of the distribution of X. For any given form, it is in principle
possible to work out the null distribution of 7, and hence to obtain the significance
probability of the test. Historical and theoretical interest attaches to one such
result. If the histogram of the distribution of an observation X looks like the
normal curve (see Figure 6.4.1), the observations are said to be normally dis-
tributed. The null distribution of T for such observations was conjectured by
W. 8. Gosset (“Student”) in 1908, and verified by R. A. Fisher in 1923. The
critical values associated with this Student’s {-distribution have been extensively
published and the test is widely used with these values.

We shall here give only an approximation to these published values. Consider
once more the test against the alternatives u > uy so that large values of T are
significant. If n is not too small (say, n > 10), the critical value corresponding
to significance level « is approximately equal to

(12) u+ %f_tlz

(Note that as n increases, (12) approaches u.) Furthermore, for an observed
value ¢ of T near such a critical value, the significance probability is about

(13) 1 - q{z - ‘(‘24“; D1

We stated earlier that the critical value of the t-test can be approximated by u
regardless of the distribution of X, but that at least a moderately large value of n
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is required before this approximation becomes reliable. The modification of «
given by (12) or by the critical value found in a table of the i{-distribution tends to
provide an improvement over this approximation not only when the distribution
of X is normal, but fairly generally. However, even with this improvement, the
remarks made in connection with the normal approximation continue to apply.

A reasonable rank test is available for testing the hypothesis u = un
against the alternative u > uy if we can assume that (under the null
hypothesis) the observations are symmetrically distributed about un. By
(5.4.3), this assumption means that when an observation X falls at a given
distance from up, it is as likely to fall to the left as to the right. As a
result, the sign attached to the absolute difference |X — un| is equally
likely to be 4+ or —. Consider now = independent observations X, . . .,
X., each having the same distribution which under the hypothesis is sym-
metric about ug. Then the sign of each of the absolute differences

(14) ‘Xl - #HI) IX2 - I~‘H|) ceey |Xn - I‘HI

is as likely to be 4+ or —. The 2" possible ways of assigning + or — signs
to these n absolute values are therefore equally likely, so that each has
probability 1/2=.

The reader will find the situation reminiscent of that encountered in
Section 12.6 in connection with the problem of paired comparisons, and we
can in fact use the null distribution developed there. Let us rank the
absolute differences (14), and let V_ denote the sum of the ranks of those
differences to which a negative sign is attached. Then small values of V_
are significant, with the significance probability obtainable from Tables I,
Jand K. The test based on this null distribution is known as the Wilcoxon
one-sample test.

ExampLE 4. The effect of a growth hormone. An experiment station wishes
to test whether a growth hormone will increase the yield of wheat above
the average value of 100 units per plot produced under the currently
standard conditions. Twelve plots treated with the hormone give these
yields:

141, 102, 73, 171, 137, 91, 81, 157, 146, 69, 121, 134.
We subtract the hypothetical value of 100 from each yield, and arrange
the differences in order of increasing absolute value, with the following
results:

2, —-9, =19, 21, -27, 31, 34, 37, 41, 46, 57, 71.

The negative differences have ranks 2, 3, 5 and 6, so that the sum of their
ranks is V. = 16. Reference to Tables I and K shows the significance
probability of these data to be 158/4096 = 0.0386 by the Wilcoxon one-
sample test. The validity of this result requires that the yields are sym-
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metrically distributed, but no further distributional assumption is needed.

If in addition we are willing to assume that the yields are normally
distributed, we may use the Student t-test. The values of X and S are
(Problem 20) X = 118.583 and S = 34.437, so that

T = V12(118.583 — 100)/34.437 = 1.8693.

Using (12), the approximate significance probability is 1 — #(1.694) =
.045. (The value given by a table of Student’s t-distribution is .044; the
approximation (12) is not usually quite this good.)

If the reader will work through the details of these calculations, he will
see how much easier the Wilcoxon test is to apply than is the t-test. In
addition, the significance probability of the i-test is exactly valid only for
normal data, while the Wilcoxon test requires only the weaker assumption
of symmetry. (However, if the sample sizes are very large, the t-test has
an advantage: its significance probabilities are then approximately correct
even if the sampled population is not symmetric.) From the standpoint
of power, the two tests are about equally good. The Wilcoxon test is
slightly inferior to the t-test for normally distributed observations, but it
is superior for certain types of non-normal data fairly common in practice.

PROBLEMS

1. In Example 3 (continued), find the approximate significance probability of the
observations.

2. Find the relationship between the quantities « and » defined by (6) and (8),
respectively.

3. Show that the critical value v of (7) is approximately determined by (8).

4. Find the approximate significance probability of n observations X, ..., X,
if large values of X are significant and
(i) pp=—250=13,X=-17,n=12;
(i) up =4.01,0 = .2, X =426, n = 4;
(i) pw = .352,0 = .08, X = .369, n = 20.

5. For each part of the preceding problems determine whether the data are signifi-
cant at significance level (a) a = .01, (b) a = .05, (c) a = .1.

6. Find the approximate significance probability of n observations X,,. .., X,
if small values of X are significant and
) pp=0,0=3,X=3,n=10;
(i) uw = 2.13,0 = .03, X = 2.12, » = 30;
(i) pp = 5,06 =1,X =.7,n = 20
7. The (symmetrical) two-sided test of the hypothesis 4 = ux against the alterna-
tives u # uy rejects if

(15) VX — pal/o 2 w.
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Find the equation, corresponding to (6) and (8), that determines w for a given
value of a.

8. Find the significance probability of the data of (i) Problem 4(i); (ii) Problem
6(1); (iii) Problem 6(iii) if the two-sided test of the preceding problem is used.

9. Based on the results of the preceding problem, make a general conjecture con-
cerning the relation of the significance probabilities of a value of X based on the
one-sided tests (4) or (7) and the two-sided test (15).

10. Find the approximate power of the test (4) at level @ = .01 when n = 25,
uy = 1, 0 = 2 against the alternatives (i) 4 = 1.5, (i) u = 2.0, (iii) p = 2.5.

11, Find the approximate power of the test (4) at level a = .02 against the
alternative p = 1 when ug = .5, ¢ = 1 and (i) n = 9, (ii) n = 25, (iii) n = 36.

12. How large does n have to be in the test (4) if = .05, py = —.8, 0 = 3 and
if it is desired to have power .95 against the alternative (i) p = —.5, (ii) 4 = —.6,
)= -.77

13. Discuss the shape of the power function x(A) given by (10).

14. Find the approximate power of the two-sided test (15) at level & = .01 when
n =25 py =2, ¢ = 2 against the alternatives (i) ¢ = 2.5, (ii) p = —2.5, (iii)
u=30 (v) p = 3.5.

15. Solve Problem 12 if the two-sided test (15) is used rather than the one-sided
test (4).

16. Discuss the shape of the power function m(A) of the test given by (15).

17. Use the test based on (11) and (13) to find the approximate significance prob-
ability of the data of Problem 9.2.5 for testing that the physical quantity being
measured is 6.4 against the alternatives that it is greater than 6.4.

18. let X,, ..., X. be n measurements of a quantity u and X1, ..., Xi k meas-
urements of a quantity u’, and denote their averages by X and X’ respectively.

(i) Express X’ — X in standard units.

(i) Letting A = u’ — u, use the normal approximation to find an approximate
test of the hypothesis A = 0 against the alternatives A > 0 which is an
analogue of (4).

[Note: By an extension of the central limit theorem, the distribution of X' — X
in standard units can be approximated by the appropriate area under the normal
curve. See Example 9.3.1.]

19. Iin=4k=20,0=1, 0 =2, determine the approximate significance prob-
ability under the test of the preceding problem if () X = .3, X' = 1.4; (i) X = -2,
X' = ~15; (i) X = 1.2, X' = 28.

20. Verify the values of X and 8 given in Example 4.

21. How must the Wilcoxon one-sample test be modified to test p = py against
the alternative u < un? Against alternatives on both sides?

22. Find the significance probability for the data of Example 3 (continued) when
(i) the Student ¢-test is used with formula (13); (ii) the Wilcoxon one-sample test
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is used. What use is made by these tests of the fact that o is known to be .2?

23. Compare the estimate S for ¢ in Problem 22(i) with the value assumed for
o in Example 3 (continued). Use this comparison to discuss the contrast between
the significance probabilities of the X-test and t-test for this data.



TABLES



N
TaBLE A. NUMBER OF COMBINATIONS s ) OF N THINGS TAKEN § AT A TIME

(484

AE: 3 4 5 6 7 8 9 10 11 12 13

2 1

3 3 1

4 6 4 1

5 10 10 5 1

6 15 20 15 6 1

7 21 35 35 2 7 1

8 28 56 70 56 28 8 1

9o 3 8 126 126 84 36 9 1

10 45 120 210 252 210 120 45 10 1
11 55 165 330 462 462 330 165 55 11 1
12 66 220 495 792 924 792 495 220 66 12 1
13 78 286 715 1287 1716 1,716 1,287 715 286 78 13 1
14 91 364 1,000 2002 3003 3432 3,003 2,002 1,001 364 91 14
15 105 455 1365 3003 5005 6435 6,435 5,005 3,003 1,365 455 105
16 120 560 1820 4368 8008 11,440 12,870 11,440 8,008 4,368 1,820 560
17 136 680 2380 6,188 12376 19,448 24310 24310 19,448 12,376 6,188 2,380
18 153 816 3060 8568 18564 31,824 43,758 48620 43758 31,824 18,564 8,568
19 171 969 35876 11,628 27,132 50,388 75582 92378 92378 75582 50,388 27,132
20 190 1,140 4,845 15504 38760 77,520 125970 167,960 184,756 167,960 125970 77,520
21 210 1330 5985 20,349 54,264 116280 203490 203,930 352,716 352,716 203,930 503,490
22 231 1540 7315 26334 74,613 170,544 319770 497,420 646,646 705432 646,646 497,420
23 253 1771 8855 33,640 100,947 245157 490,314 817,190 1,144,066 1,352,078 1,352,078 1,144,066
24 276 2024 10,626 42,504 134,596 346,104 735471 1,307,504 1,961,256 2,406,144 2,704,156 2,496,144
25 300 2,300 12,650 53,130 177,100 480,700 1,081,575 2,042,975 3,268,760 4,457,400 5200300 5,200,300
% 325 2600 14950 65780 230,230 657,800 1,562,275 3,124,550 5,311,735 7,726,160 9,657,700 10,400,600
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TagLe B. P(B =} FORr THE BINOMIAL DISTRIBUTION (n, D)

b p=.05p=.1p=2p=33p=.4 n b p=05p=1p=2p=3p=.4
9025 .8100 .6400 .4900 .3600 11 0 .5688 .3138 .0859 .0198 .0036
L0950 .1800 .3200 .4200 .4800 1 .3293 .3835 .2362 .0032 .0266
.0025 .0100 .0400 .0900 .1600 2 .0867 .2131 .2953 ,1908 .0887
8574 .7200 .5120 .3430 .2160 3 .0137 .0710 .2215 .2568 .1774
1354  .2430 .3840 .4410 .4320 4 .0014 0158 .1107 .2201 .2365
0071 .0270 .0960 .1890 .2880 5 .0001 .0025 .0388 .1321 .2207
.0001 .0010 .0080 .0270 .0640 g -0003 ggg; -gfgg (1);(7):
8145 .6561 .4096 .2401 .1296 8 .0002 .0037 ‘0234
715 .2916 4096 4116  .3456 9 : '0005 '0052
0135 .0486 .1536 .2646 .3456 10 : '0007
.000. .0036 .0256 .0756 .1536 -

S ool ome 0081 Oss6 12 0 5404 2824 0687 0138 0022

3413 .3766 .2062 .0712 .0174
0988 .2301 .2835 .1678 .0639
.0173 .0852 .2362 .2397 .1419
0021 0213 .1329 .2311 .2128
.0002 .0038 .0532 .1585 .2270
.0005 0155 .0792 .1766

.0033 .0291 .1009

7738 5905 .3277 .1681 .0778
.2036 .3280 .4096 .3602 .2592
0214 .0729 .2048 .3087 .3456
0011 .0081 .0512 .1323 .2304
0005 .0064 .0284 .0768

0003 .002¢4 .0102

7351 L5314 .2621 .1176 .0467
2321 L3543 3932 .3025 .1866
0305 .0984 .2458 .3241 3110
0021  .0146 0819 .1852 .2765
0001 .0012 .0154 .0595 .1382
.0001 .0015 .0102 .0369

.0001 .0007 .0041

.0005 .0078 .0420
0001 .0015 .0125
.0002 .0025

.0003

5133 .2542 0550 .0097 .0013
3512 .3672 .1787 .0540 .0113

-

13

1109 .2448 .2680 .1388 .0453
0214  .0997 .2457 .2181 .1107
.0028 .0277 .1535 .2337 .1845
.0003 .0055 .0691 .1803 .2214
.0008 .0230 .1030 .1968
.0001 .0058 .0442 .1312

0011 .0142 .0656

.0001 .0034 .0243

6983 4783 .2097 .0824 .0280
2573 3720 .3670 2471 .1308
L0406 1240 2753 .3176  .2613
0036 .0230 .1147 .2269 .2903
.0002 .0026 .0287 .0972 .1935
.0002 .0043 .0250 .0774

.0004 .0036 .0172

CONDU WA O = ORI DD e W~

.0002 .0016 10 .0006 .0065
6634 .4305 .1678 .0576 .0168 11 0001 .0012
2793 3826 .3355 .1977 .0896 12 .0001
L0515 .1488 .2936 .2965 .2090 14 0 .4877 .2288 .0440 .0068 .0008

.0054 .0331 .1468 .2541 2787 1 .3593 .3559 .1539 .0407 .0073

BN~ O OISR BEWNN =N NANR =0 NSO RRN—~O AN AN O AN = O RN~ O W=D =D

.0004 .0046 .0459 .1361 .2322 2 .1229 .2570 .2501 .1134 .0317
.0004 .0092 .0467 .1239 3 .0259 .1142 .2501 .1943 .0845

.0011  .0100 .0413 4 .0037 .0349 .1720 .2290 .1549

.0001 .0012 .0079 5 .0004 .0078 .0860 .1963 .2066

.0001 0007 6 L0013 .0322 1262 .2066

6302 .3874 .1342 .0404 .0101 7 0002 .0092 .0618 .1574
.2985 .3874 .3020 .1556 .0605 8 .0020 .0232 .0918
0629  .1722  .3020 .2668 .1612 9 .0003 .0066 .0408
0077 .0446 .1762 .2668 .2508 10 0014 .0136
.0006 .0074 .0661 .1715 .2508 11 0002 .0033
.0008 .0165 .0735 .1672 12 0005

.0001 .0028 .0210 .0743 i3 .0001

-0003 .0039 .0212 15 0 .4633 .2059 .0352 .0047 .0005

-0004 .0035 1 .3658 .3432 .1319 .0305 .0047

-0003 2 .1348 .2669 .2309 .0916 .0219

5987 .3487 .1074 .0282 .0060 3 .0307 .1285 .2501 .1700 .0634
3151 .3874 .2684 .1211 .0403 4 0049 .0428 .I1876 .2186 .1268
0746 .1937 3020 .2335 .1209 5 .0006 .0I105 .1032 .2061 .1859
0105 .0574 .2013 .2668 .2150 6 L0019 .0430 .1472 .2066
.0010 .0112 .088F .2001 .2508 7 .0003 .0138 .0811 .1771

5 .0001 .0015 .0264 .1029 .2007 8 .0035 .0348 .1181
6 .0001 .0055 .0368 .1115 9 .0007 .0116 .0612
7 .0008 .0090 .0425 10 0001 .0030 .0245
8 .0001 .0014 .0106 11 .0006 .0074
9 .0001 .0016 12 0001 0016
10 .0001 13 .0003
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TasrLe C. P(B = b) FOR THE BINOMIAL DISTRIBUTION (n,.5)

n b p=.5 n b p=.5 n b p=. " b p=.5 n b p=.5
2 0 .2500 13 0 .0001 18 0 .0000 23 2 .0000 27 3 .0000
1 5000 1 .0016 1 .0001 3 .0002 4 .0001
30 1250 2 .0095 2 .0006 4 0011 5 .0006
1 3750 3 .0349 3 .0031 5  .0040 6 .0022
_ 4 0873 4 o007 6 .0120 7 .0066
4 0 002 5 1571 5 .0327 7 .0292 8 .0165
1 .2500 6 .2095 6 .0708 8 .0584 9  .0349
2 3750 120 .0001 7 1214 9 .0074 10 .0629
5 0 .0312 1 6000 8 1689 101364 11 .0971
1 .1562 2 0056 9 .1855 11612 121205
2_ 3126 3 .0222 19 1 .0000 24 2 .0000 13 1494
6 0 .0156 4 0611 2 .0003 3 .0001 2% 3 .0000
1 .0938 5 L1222 3 .0018 4 .0006 4 .0001
2 2344 6 .1833 4 .0074 5 0025 5 .0004
3 .3125 7 .2095 5 0222 6 .0080 6 .0014
0 008 ; X 6 .0518 7 .0206 7 .0044
4 1 0547 15 ? gggg 7 .0961 8 .0438 8 .0116
2 1841 2 0032 8 1442 9 0779 9 .0257
3 9734 3 0139 9 1762 10 .1169 100489
5o 003 4 o7 20 1 0000 111488 11 .0800
S e 5 0010 2 6002 121612 12 .1133
2 1094 6 .1527 3 .0011 25 2 .0000 13 .1395
3 2188 7 1964 4 .0046 3 .0001 14 144
i o734 0 0000 5 .0148 4 .0004 29 4 .0000
6 .0370 5 .0016 5 .0002
9 0 .0020 1 .0002
7 .0739 6 .0053 6 .0009
1 .0178 2 .0018
2 o708 3 0085 8  .1201 7 .0143 7 .0029
. 9, .1602 8 .0322 8 .0030
3 .1641 4 .0278 .
S a6l 5 0667 10 ° .1762 9 .0609 9 .0187
s 1222 21 1 .0000 10 .0974 10 .0373
10 0 .0010 7 1746 2 0001 11 1328 11 .0844
1 .0098 8 105 3 0006 12 .1550 12 .0967
2 .0439 e %8 30000 :
£ 4 .0029 26 3 .0000 131264
3 . 17 0 .0000 14 1445
s o0nt 1 o001 5 .0097 4 0002
5 oder 2 oolo 6 .0259 5 .0010 30 4 .0000
-2461 3 0052 7 0554 6 .0034 5 .0001
11 0 .0005 4 0182 8 .0970 7 .0088 6 .0006
1 .0054 5 0172 9 .1402 8 .0233 7 .0019
2 .0260 PR 10 .1682 9 .0406 8  .0055
3 .0806 7 1484 55 1 .0000 10 .0792 9 .0133
4 1611 s 1855 2 0001 11 .151 10 .0280
5 .2250 : 3 000t 12 .1439 11 .0509
12 0 .0002 4 .0017 13 .1550 12 .0806
1 .0029 5 .0063 T 131115
2 .0161 6 .0178 141354
3 0537 7 .0407 15 1445
4 1208 8 .0762
5 .1934 9 .1186
6 .2256 10 1542

11 .1682
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n vV V108 n Vn V10 n Vn v10n
1 1.0000 3.1623 34 5.8310 18.439 67 8.1854 25.884
2 1.4142 44721 35 5.9161 18.708 68 8.2462 26.077
3 1.7321 5.4772 36 6.0000 18.974 69 8.3066 26.268
4 2.0000 6.3246 37 6.0828 19.235 70 8.3666 26.458
5 2.2361 7.0711 38 6.1644 19.494 71 8.4261 26.646
6 2.4495 7.7460 39 6.2450 19.748 72 8.4853 26.833
7 2.6458 8.3666 40 6.3246 20.000 73 8.5440 27.019
8 2.8284 8.9443 41 6.4031 20.248 74 8.6023 27.203
9 3.0000 9.4868 42 6.4807 20.494 75 8.6603 27.386

10 3.1623 10.000 43 6.5574 20.736 76 8.7178 27.568

11 3.3166 10.488 44 6.6332 20.976 77 8.7750 27.748

12 3.4641 10.954 45 6.7082 21.213 7 8.8318 27.928

13 3.6056 11.402 46 6.7823 21.448 79 8.8882 28.107

14 3.7417 11.832 47 6.8557 21.679 80 8.9443 28.284

15 3.8730 12.247 48 6.9282 21.909 81 9.0000 28.460

16 4.0000 12.649 49 7.0000 22.136 82 9.0554 28.636

17 4.1231 13.038 50 7.0711 22.361 83 9.1104 28.810

18 4.2426 13.416 51 7.1414 22.583 84 9.1652 28.983

19 4.3589 13.784 52 7.2111 22.804 85 9.2195 20.155

20 4.4721 14.142 53 7.2801 23.022 86 0.2736 29.326

21 4.5826 14.491 54 7.3485 23.238 87 9.3274 29.496

22 4.6904 14.832 55 7.4162 23.452 88 9.3808 29.665

23 4.7958 15.166 56 7.4833 23.664 89 9.4340 29.833

24 4.8990 15.492 57 7.5498 23.875 90 9.4868 30.000

25 5.0000 15.811 58 7.6158 24.083 91 9.5394 30.166

26 5.0990 16.125 59 7.6811 24.290 92 9.5917 30.332

27 5.1962 16.432 60 7.7460 24.495 93 9.6437 30.496

28 5.2915 16.733 61 7.8102 24.698 94 9.6954 30.659

29 5.3852 17.029 62 7.8740 24.900 95 9.7468 30.822

30 54772 17.321 63 7.9373 25.100 96 9.7980 30.984

31 5.5678 17.607 64 8.0000 25.298 97 9.8489 31.145

32 5.6569 17.889 65 8.0623 25.495 08 9.8995 31.305

33 5.7446 18.166 66 8.1240 25.690 99 9.9499 31.464
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TasrLe E. Arra ®(z) UNDER THE NORMAL CURVE TO THE LEFT OF 2

z 00 01 .02 .03 .04 .05 .06 .07 08 .09
0] 5000 5040 5080 5120 .5160 5199  .5239  .5279 .5319  .5359
1| 6398 5438 5478 5517  .6557  .55U6  .5036 .5675 .5714  .5753
21 5793 5832 5871 .5910 5948 5987 .6026 .6064 .6103 .6141
31 .6179 6217 6256 6293 .6331 .6368 .6406 .6443 .6480 6517
4 | 6654 6591 .6628 6664 6700 6736 6772 .6808 .6844 6879
516915 6950 6985 7019 7054 7088 7123 7167 7190 7224
61 7257 7291 7324 7367 7389 7422 7454 7486 .7517 .7549
7| 7580 7611 7642 7673 7704 7734 7764 7794 7823 7852
8| 7881 7910 7939 .7967 7995 .8023 .8051 .8078 .8106 .8133
9| 8159 8186 .8212 8238 8264 .8289 8315 .8340 8365 .8389
10| 8413 .8438 8461 .8485 8508 .8531 8554 8577 .8599 .8621
1.1 | 8643 8665 8686 .8708 8724 8749 8770 8790 .8810 .8830
1.2 | 8849 8869 8888 .8907 8925 .8Y44 8962 8980 8997 9015
1.3 | .9032 9049 9066 .9082 9099 9115 9131 9147 9162 9177
14 | 9192 9207 9222 9236 9251 9265 9279 9292 9306 .9319
1.5 1.9332 9345 9357 9370 9382 9394 9406 9418 .9429 9441
1.6 | 9452 9463 9474 9484 9495 9505 9515 9525 9535 .9545
1.7 | 9554 9564 9573 0582 9591 9599 9608 9616 .9625 .9633
181 9641 9649 U656 9664 0671 9678 9686 0693 9699 .9706
19 | 9713 9719 9726 9732 49738 9744 9750 9756 9761 9767
20! 9772 9778 9783 9788 9793 9798 9803 9808 .9812 .9817
2.1 | 0821 Y826 9830 U834 0838 .0842 9846 9850 9854 .9857
22 | 9861 98G4 9868 4871 Y875 0878 9881 9884 9887 .9890
231 .08u3 98u6 0838 6001 U904 4906 8909 9911 9913 9916
24 | 0018 9920 9922 9925 9927 0929 9931 9932 9934 .9936
95 1 0938 9940 9941 9943 0945 9946 9948 9949 9951 .9952
26 | 9953 9955 9956  .9957 9959 9960 9961 9962 .9963  .9964
27 1 9965 9966 G967 9068 9969 0070 9971 9972 9973 9974
98 | 9974 9975 0976 97T 9977 9978 4979 9979 9980 .9981
2.9 | 9981 0082 9982 9083 .9984 .0981 9985 9985 .9986 .9986
3.0 | D987 0087 D087 0988 0088 0089  .9989 9989 .9990  .9990
2.1 10080 9001 Q001 9991 9992 0992 9992 9992 9903  .9993
392 1 0003 0003 09994 H004 9901 0094 9994 9995 9995 9995
33 1 .0905 0995 0095 00996 0006 9996 9996 9996 9996 9997
3.4 1 .9997 997 KT H097 0997 0997 9997 9997 9097  .9998
AUXILIARY TABLE OF z IN TERMS OF &(z)
2(2) 2z ®(2) z ®(2) z
.50 0 91 1.341 .995 2.576
95 .126 .92 1.405 .999 3.090
.60 253 .93 1.476 .9995 3.291
.65 .385 .94 1.555 .9999 3.719
.70 524 .95 1.645 .99995 3.891
75 674 .96 1.751 .99999 4.265
.80 .842 .97 1.881 .999995 4.417
.85 1.036 .98 2.054 .999999 4.753
.90 1.282 .99 2.326 .9999999 5.199




TasLe F. THE PoissoNn approximaTiON P(T =1)

417

E(T) =X
A2 3 4 5 6 7 8 9 1.0
0 9048 8187 7408 6703 6065 .5488 4066 4493 4066 3679
1 .0905 1637 2222 2681 3033 3203 3476 3595 3650 3679
2 0045 0164 0333 0536 0758 0988 1217 .1438 .1647 .1839
3 .0002 0011 0033 0072 0126 .0198 0284 0383 0494 0613
4 0001 0003 0007 .0016 .0030 0050 0077 0111 0153
5 0001 0002 0004 .0007 .0012 .0020 0031
6 0001 0002 .0003 .0005
7 0001
E(T) =

t 1 2 3 4 5 6 7 8 9 10
0 3679 .1353 .0498 0183 0067 .0025 .0009 .0003 .0001 .0000
13679 2707 1494 0733 0337 .0149 .0064 .0027 .00i1 .0005
2 1839 2707 2240 1465 0842 .0446 .0223 .0107 .0050 .0023
3 0613 .1804 .2240 1054 .1404 0892 .0521 0286 .0150 .0076
4 0153 .0902 1680 .1954 .1755 .1339 0012 0572 .0337 0189
5 0031 .0361 .1008 .1563 .1755 .1606 .1277 .0916 .0607 .0378
6 .0005 .0120 .0504 .1042 1462 .1606 .1490 1221 .0911 .0631
7 0001 .0034 0216 .0595 1044 1377 1490 1396 1171 0901
8 0009 0081 .0298 0653 .1033 .1304 .1396 .1318 .1126
9 0002 .0027 0132 0363 .0688 .1014 .1241 1318 .1251
10 0008 0053 .0181 .0413 0710 .0993 1186 .1251
11 0002 0019 0082 0225 0452 0722 .0970 .1137
12 0001 .0006 .003%4 0113 0264 0481 0728 .0948
13 0002 0013 0052 .0142 0296 .0504 .0729
14 0001 0005 .0022 0071 0169 0324 .0521
15 0002 .0009 .0033 .0090 0194 0347
16 0003 .0014 0045 0109 0217
17 0001 0006 .0021 0058 .0128
18 0002 .0009 .0020 0071
19 0001 .0004 .0014 .0037
20 0002 .0006  .0019
21 0001 0003 .0009
22 0001 .0004
23 .0002
24 .0001




TasLe G. APPROXIMATE SIGNIFICANCE PROBABILITIES P(Q = ¢) OF THE CHI-SQUARE TEST

yv 0 4 .8 1.2 1.6 2.0 2.5 3.0 3.6 4.0 4.5 5.0 5.5 6 7 8 9 10 12 14 16 18
14

2 368 .301  .246 .202 .165 .135 .105 .082 .064 .050 .039 .030 024 .018 .01l 007 .004 .002 .001

3 392 334 284 241 .204 172 139 112 .090 072 058 .046 037 .029 .0l9 012 .007 .005 .002 .001

4 .406 .355 .308 .267 .231 .199 .165 .136 .112 .092 .075 .061 .050 .040 .027 .017 .011 007 .003 .001

5 416 .369 .326 .287 .252 .221 .18 .156 .131 .108 .091 .075 .062 .051 .035 .023 .016 .010 .004 .002 .0O1

) 423 380 .340 .303 .269 .238 .204 .174 .147 .125 .105 .088 .074 .062 .043 .030 .020 .014 .006 .003 .001 .001

7 429 .388 .351 .315 .283 .253 .218 .189 .162 .13 .118 .101 .08 .072 .051 .036 .025 .017 008 .004 .002 .001
0 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6 7 8 9 10 12 14 16 20 24

8 433 .38 .342 .302 .265 .231 .202 .175 .151 .130 .112 .096 .082 .059 .042 .030 .021 .010 .005 .002

10 440 398 .358 .320 285 .253 .224 .197 .173 .151 .132 .115 .100 .074 .055 .040 .029 .015 .008 .004 .001

12 446  .406 .36 .33¢ 301 .270 .241 215 .191 .16 .150 .132 .116 .089 .067 .050 .038 .020 .011 .006 .001

14 450  .413 .378 .345 313 .284 .256 .231 .207 .185 .165 .147 .130 .102 .079 .060 .046 .026 .0I4 .008 .002 .001

16 452 419 .386 .35¢ 324 205 .269 .244 .220 .199 179 .160 .143 114 .090 .070 .054 .032 .018 .010 .003 .001

18 456 .423 392 .362 .333 .305 .279 .255 .232 .211 191 .172 155 .125 .100 .079 .062 .037 .022 .013 .004 .001

20 458 427 .397 .368 .341 .314 .289 .265 .242 .221 .201 .183 .166 .135 .109 .088 .070 .043 .026 .015 .005 .002
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 20 24 28 32 36

20 458 .397 .341 .28 .242 .201 .166 .135 .109 .088 .070 .055 .043 .034¢ .026 .015 .009 .005 .002

25 482 408 .356 .308 .264 .224 .189 .158 .131 .108 .088 .072 .058 .046 .037 .023 014 .008 .003 .001

30 466 .415 368 .323 .281 .243 .208 177 .150 .126 .105 .087 .072 .059 .048 031 .020 012 .005 .002 .001

40 470 426 .384 .344 306 .271 .238 .208 .180 .156 .134 .114 .097 .082 .069 .048 .040 .033 .009 .004 .001 .001

50 473 434 .396 .359 .324 .291 .260 .231 .204 .180 .157 .137 .119 .103 .088 064 .046 .032 .015 .007 .003 .001
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TaBLE H. WILCOXON TWO-SAMPLE DISTRIBUTION

N
Group sizes s

% = w — (minimum value of W)

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3,3 20 1 2 4 7 10 13 16 18 l‘) 20

3,4 3% 1 2 4 7 11 15 20 24 28 31 33 34 35

4,4 0 1 2 4 7 12 17 24 31 39 46 53 58 63 66 68 69 70

3,5 56 1 2 4 7 11 16 22 28 34 40 45 40 52 54 55 56

4,5 126 1 2 4 7 12 18 26 35 46 57 69 80 91 100 108 114 119 122 124 125 226
5,6 252 1 2 4 7 12 19 28 39 53 64 87 106 126 146 165 183 199 213 224 233 240
3,6 8 1 2 4 7 11 16 23 30 38 46 54 61 68 3 w7 80 82 83 84

4,6 210 1 2 4 7 12 18 27 37 50 64 80 96 114 130 146 160 173 183 192 198 203
5,6 462 1 2 4 7 12 19 29 41 57 76 99 124 1583 183 215 247 279 309 338 363 3
6,6 924 1 2 4 7 12 19 30 43 61 83 111 143 182 224 272 323 378 433 491 546 601
3,7 120 1 2 4 7 11 16 23 31 40 50 60 70 80 849 97 104 109 113 116 118 119
4,7 330 1 2 4 7 12 18 27 38 52 68 87 107 130 153 177 200 223 243 262 278 202
5,7 792 1 2 4 7 12 19 29 42 59 80 106 136 ITL 2010 253 299 347 306 445 493 539
6,7 1716 1 2 4 7 12 19 30 44 63 87 118 155 201 253 314 382 458 539 627 TIT 811
7,7 3432 1 2 4 7 12 19 30 45 65 91 125 167 220 283 358 445 545 657 782 918 1064
3,8 65 1 2 4 7 11 16 23 31 41 52 64 76 8) 101 113 124 134 142 149 154 158
4,8 495 1 2 4 7 12 18 27 38 53 70 91 1}4 141 169 200 231 264 205 326 354 381
5,8 1287 1 2 4 7 12 19 29 42 60 2 110 143 183 228 280 337 400 466 536 607 680
6,8 3003 1 2 4 7 12 19 30 4 64 89 122 162 213 272 343 424 518 621 737 860 994
7,8 6435 1 2 4 7 12 19 30 45 66 93 1290 174 232 302 388 483 600 746 904 1080 1277
8,8 12870 1 2 4 7 12 19 30 45 67 95 133 181 244 321 418 534 675 839 1033 1254 1500

sZzu,t2u 1 2 4 7 12 19 30 45 67 97 139 195 272 373 508 684 915 1212 1597 2089 2714

61%
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TasLE 1. AUXILIARY TABLE FOR THE WILCOXON PAIRED-COMPARISON TEST

2 on n In E()  Sha) n EQN SH(V)
1 2 11 2,048 33.0 11.25 21 115.5 2877
2 4 12 4,096 39.0 12.75 22 126.5 30.80
3 8 13 8,102 45.0 14.31 23 138.0 32.88
4 16 14 16,384 52.0 15.93 24 150.0 35.00
5 32 15 32,768 60.0 17.61 25 162.5 37.17
6 64 16 65,536 68.0 19.34 26 175.5 30.37
7 128 17 131,072 76.5 21.12 27 189.0 41.62
8 256 18 262,144 85.5 22.96 28 203.0 43.4091
[{] 512 19 524,288 95.0 24.85 24 2175 46.25
10 1,024 20 1,048,576 105.0 26.79 30 232.5 48.62

TasLe J. #V £ ) For v £ n 1IN THE WILCOXON PAIRED-COMPARISON TEST

v (VS 0) T O v HV S0
0 1 6 14 11 55 16 169
1 2 7 19 12 70 17 207
2 3 8 25 13 88 18 253
3 5 9 33 14 110 19 307
4 7 10 43 15 137 20 371
5 10




TarLe K. #(V £ v) FOR v > n IN THE WILCOXON PA{RED-COMPARISON TEST
"N 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 6 9 13 18 24 32 42 54 69 87 109 136 168 206 252 306 370 446
2 7 11 16 22 30 40 52 67 85 107 134 166 204 250 304 368 444 533
3 8 13 19 27 37 49 64 82 104 131 163 201 247 301 365 441 530 634
4 14 22 32 44 59 77 99 126 158 196 242 206 360 436 525 629 751
5 15 25 37 52 7 92 119 151 189 235 2849 353 429 518 622 744 886
6 16 27 42 60 82 109 141 179 225 279 343 419 508 612 734 876 1,041
7 29 45 68 95 127 165 211 205 329 405 494 598 720 862 1,027 1,219
8 30 50 76 108 146 192 246 310 386 475 579 701 843 1,008 1,200 1,422
9 31 54 84 121 167 221 285 361 450 554 676 818 983 1,175 1,397 1 653
10 32 57 91 135 188 252 328 417 521 643 785 950 1,142 1,364 1,620 1,916
11 59 08 148 210 285 374 478 600 742 907 1,099 1,321 1,577 1,873 2,213
12 61 104 161 253 320 423 545 687 852 1,044 1,266 1,522 1,818 2,158 2,548
13 62 109 174 256 356 476 617 782 974 1,196 1,452 1,748 2,088 2,478 2,926
14 63 114 186 279 394 532 695 886 1,108 1,364 1,660 2,000 2,390 2,838 3,350
15 64 118 197 302 433 591 779 999 1,254 1,650 1,890 2,280 2,728 3,240 3,825
16 121 207 324 472 653 868 1,120 1,414 1,753 2,143 2,591 3,103 3,688 4,356
17 123 216 345 512 717 962 1,251 1,587 1,975 2,422 2,934 3,519 4,187 4,947
18 125 224 366 552 783 1,062 1,391 1,774 2,218 2,728 3,312 3,980 4,740 5,604
19 126 231 385 591 851 1,166 1,539 1,976 2,481 3,062 3,728 4,487 5351 6,333
20 127 237 403 630 920 1,274 1,697 2,192 2,766 3,427 4,183 5045 6,026 7,139
21 128 242 420 668 989 1,387 1,863 2,423 3,074 3,823 4,680 5,658 6,769 8,028
22 246 435 704 1,059 1,502 2,037 2,669 3,404 4,251 5222 6,328 7,584 9,008
23 249 448 739 1,128 1,620 2,219 2,929 3,757 4,714 5,810 7,059 8,478 10,084
24 251 460 772 1,197 1,741 2,408 3,203 4,135 5212 6,447 7,856 9,455 11,264
25 253 470 803 1,265 1,863 2,603 3,492 4,536 5,746 7,136 8,721 10,520 12,557
26 254 479 832 1,331 1,986 2,805 3,794 4,961 6,318 7,878 9,658 11,681 13,968
27 255 487 859 1,395 2,110 3,012 4,109 5411 6,928 8,675 10,673 12,941 15,506
28 256 493 883 1,457 2,233 3,223 4,437 5,884 7,576 9,531 11,766 14,306 17,180
29 498 905 1,516 2355 3,438 4,776 6,380 8,265 10,445 12,942 15,783 18 997
30 502 925 1,572 2476 3,656 5,126 6,901 8,993 11,420 14,206 17,377 20,966

12y
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CHAPTER 1
1.3.1. (i) no; (ii) yes; (iii) no 1.6.1. (1) not more than five heads
3.7. 36 6.7. (iii) no; (vi) yes
3.13. (i) number of white marbles: 6.9. (iil) no; (vi) no; (ix) no
01,2 6.13. (ii) yes
3.14. P(ABC) 182, P(ABD) = 6.15. yes
P(BCD) = P(CAD) = 2121 17.1. (iv) &; (viii) §
1.4.1. (i) no; (1) yes 72. (i) }
4.2. (ii) largest .93, smallest 0 7.3. (i) 1%; (v) 1%
44. (i)} 74. (i) 3
4.?. Eii;) 2 7.5, (iii) 4
4.7. (i) .34
48. (i) .10; (v) .22 6. M |112]3|415]6
4.9. (i) .85; (v) .21 PM) |dsld!dsldldlid
4.10. (iii) .55; (v) .37 79. (i) &
1.51. () 3; Gid) o 711, Gi) ;%
52. (i) P(W) =1} 7 13' (i) 3
53. (i) 4; (v o5 () & e
5.5. 7.14. Gi) V 0'1‘2'3!4
3. 3y 1. (5 1
o 8:3 ; W) §; (o) 4 P(V = v) |.04[.13].44| 27] 12
5.8. (i) 133; (i) %% 7.15. (ii) .44
59. (i) %;(v) 3 7.16. (i) .93
511. P(T = 9) = &%, P(T = 10) =  7.17. (i) .65
&% 7.18. (ii) true
CHAPTER 2
2.1.1. (i) ¥%; Gv) 2 2.10. 75%%0
1.2. (i) 13s; (iv) 142 2.12. (1) 7
13. (i) &; (v) 3¢ 2.13. (i) 2
1.5. (i) %; (v) &% 2.14. (i) 40
1.6. (i) N 2.21. (ii) .43747/.43758 = .999
1.7. (i) &% 2.3.2. (iii) yes
1.8. (i) % 3.6. (i) 720
1.9. (i) 3 3.7. (i) zis
1.11. &% 38. (i) &
1.14. (i) &% 3.13. (i) 3; (v) %
1.15. (i) % 3.14. (iii) %
1.16. 3824 3.15. (i) &%
1.17. (i) § 3.16. (i) §; Gv) 3
2.21. (i) 319,770 3.17. ¥4
22. (i) 8,436,285 3.19. s/N
2.3. (i) 40,116,600; (iv) 4,292,145 244. (1) 5
24. (i) 22 47. 01 =1
2.5. (i) $28 49. (i) $
26. (i) .998 4.10. 334
2.7. (i) .0919 4.11. .027
28. .975 4.12. (i) 792; (iv) 1



3.1.5.

1.7.
1.9.

1.10.

1.11.
1.12.
1.14.

1.15.
1.18.
1.19.

3.2.1.
2.2
2.3.

4.1.2.
1.3
14.
1.5.

1.8.

1.10.
1.11.
1.13.

4.2.2,
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

2.14.
2.15.
2.17.
2.19.
2.20.

4.3.1.
3.2.
3.3.

CHAPTER 3

P(e; and f;) = .02, P(e; and f;)  2.6.

=.10 2.10.
(ii) Ple) = .1,P(fy) = .6 3.3.1.
(i) Ples) = .60 3.2.
Ple;and fi) = Ple;andfo) 1 =1,  3.6.

cea,m
08 37.
@) .12 38.
P(e; and f;) = .12, P(ez and f2) 3.9

= 28, P(e;and f;) = .40 3.10.
.1003 3.11.
(i) .86 3.13.
() .24 3.14.
(i) &% 3.15.
() % 3.16.
(1) #d; (iv) o

CHAPTER 4

P(e|E) = 4 3.4.
e 3.6.
(i) .292 3.8.
(i) % 3.11.
. 26 3.13.
® 1/( 5) 3.15.
(i) P(elE)/P(e|E) = } 44.1.
(i) 44,
(i) § 4.5.
(i) 43 48.
(i) % 49.
(i) &% 4.11.
(i) +F7 4.12.
(i) % 4.5.3.
(i) 4% 5.4.
289, 5.6.
9 5.9.
(i) % 5.11.
(i) .001 4.6.3.
i 6.4.
() 4% 6.6.
(i) %
3 4.7.1.

.
() &
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related

(i) yes

(i) 33

(iii) %5

(i) 4pg®; (v) 4p’g; (vii) ¢* +
4pg® + 6p*¢?

E%?

(i) %

() 2is

(i) 35

(i) 5

27

(i) ¥4

(i) .011; (iv) .812

(i) .000; (v) .004

(ii) o5

(ii) .208

(i) §

(i) 15

(ii) .56

(ii) §

%

5

(i) 3

() .101

75

(iii) §

.00224

1]

(ii) 3

(ii) 9N/(16 — 7A)

(i) $r4 — 3N)

5

(i) N/8

i = 074

(iii) safer for A 2 2 — V2 =
.59

(i) (d) v%
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5.1.2.

1.3.

L.5.

1.11.
1.12.
1.14.
1.15.
1.16.

5.2.1.
23.

2.5.
2.6.
2.10.
2.11.

2.18.

5.3.2.
34.
3.5.
3.7.
3.10.

6.1.2.
13.
1.5.
17.
1.9.
1.12.
1.13.
1.17.

1.24.

CHAPTER 5
Gi) {0,1,2,...,8}; 3.14. 1.75
(iv) {5,6,7,8} 5.4.1. (ii) % dollar

(i) {4,5,...,12} 43. 65
() {0,1,2,3,5} 44. (i) 7
(iv) & 4.6. (i) 447
(iV) 700 ;
(i) 47. () m ' 3
(i) 4 P(max = m) |.1581
(i) 0833 48. (i) 10.5625
B | 1 49. (i) 2.5
4.10. (ii) 2.30; (iv) —.26
PB=b | i 4.14. () 32
D ‘ -3 ] 2 5.53. (i) 3+
5.8. (i) (b) .81; (iii) (a) .9
PD=d) | &% | & L o
(i) %5 5.13.
() ¢ 5.15. ¢
-2025 5.16. (i) 10
(i) & 5.6.2. 1.9715
@ j I 11 6.3. (i) .75
; 6.4. (i) 1.025
PZ+ W =) 3 6.5. (i) 32
(iii) 7 l 18 6.7. (i) .9264
6.8. (i) .75
PWZ=5 | 1% 6.10. (b) 132
45 6.11. (ii) 432 §
(i) 3.25 6.15. (i) .7924
207 57.7. —%
(i) 4.1985; (i) 0 7.10. 467
(ii) 42; (iv) 232
CHAPTER 6
(i) .2048 622. d 2
(ii) .9294 ——
.1094 24, .2487
i) p<i 2.6. .103
3222 2.11. .0862
(i) .6563 2.13. .3222
(i) 1.44 2.16. (i) 2.64
S 1 2.17. Var(A) = 1.468
e A 2.19. 049
Exact 77 2.21. (i) 3%
N A
Approx. [.175 ;gg 8;) ;;;q_




6.3.2.
34.
3.5.
3.6.
3.8.

6.4.1.
4.2.
43.
4.4.
4.5.
4.6.
4.7.
4.8.

6.5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.9.
5.10.
5.11.
5.12.
5.13.
5.14.
5.15.
5.16.

7.1.2,
1.7.
1.8.
1.9.
1.10.
1.11.
1.13.

7.2.1.
24.

Gi) -7, ~5

(i) —.988, —.329
(i) —1.449, —1.035
(iii) .335

(ii) 216.79

(i) 0721

(iii) .3361

(ii) .5860

(i) 7114; (v) .5892
(i) ~.55

Gi) 2.45

Gi) 6745

(ii) =.345 or +1.11
(i) 2659 (iv) .1215
(ii) 0414

(ii) 23.87

(i) 235.12

(i) 212.16

(ii) 4.63

564

(ii) .9988

Gi) .1746; (iv) 4791
(i) 14.5

(ii) 36.58

(iii) .5849

(ii) .6186

(i) .5841

(if) 4094

5.17.
5.20.

6.6.3.
6.4.
6.7.
6.9.

6.10.

6.7.4.
7.5.
7.6.
7.8.

7.10.
7.12.

7.15.

6.8.8.
6.9.3.

9.10.

CHAPTER 7

P(S=4andD = 2) = &

(i) PF=4G=1)
(i) P(D, =2|D\ =
@ity POV =14U =
(i) P(W = 3|U

(i) E(FiG=1) =
(i) E(DIU = 2)

1

Cov(F @) =

n=
=2)

L

2
k)

1)

T%

4

2.6.
2.9.

2.12.

7.3.2.
3.6.

3.14.

3.16.

(ii) 4171, 6676, 12,304

@ii) b

P(B=1b) |

Normal
Approx.
(n) .0797
0037
2642
(i) .2707
(i) .1494
(i1) .0008
(iii) 14
(i) 13
798
(i) .3033

T 1

Exact 102

Poisson |.099

E(TH) =X+ )\
0191
1.19

1

2464

2414

427

@) e = .1, n = 200, §nc®

1111, normal

.0035

Cov(U, V) = .642

() —Vv2/2

(1 — 101p)/(1 4 99p)

(iii) .1184
2520

hypergeometric (N — 1), s

)

(N—;) Fe o (oim)

approx.

]

— dl’
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CHAPTER 8
812. (i) .6563 2.15. d/SD(T) = 1.75, 7 = 9198
1.3. (i) .746 2.18. (ii) .8974
1.5. (i) 3@-1T) 2.19. (a) (i) .6552, (b) (iii) .5704,
1.7. Gii) (T) + 2T2)/3 (¢) (iii) .5616
1.14. (i) 20 221. b=1.16
8.3.1. (i) 105
. N=8Ds—D
1.17. (i) (~—~i)_(—s—) 32. (i) 736
N(is—1) .
34. (i) 75
1.21. 3§33 3.6. (i) 209
8.2.2. (ii) 9 Var(T) 3.7. (i) 1667; (iv) 2381
24. (i) (Ty +2T)/3 39. (i) 1429; (iv) 2174
27. (h+ T+ T9/3 3.11. (i) 22; (iv) 62
28. (i) (T: + 272 + T3)/4 3.12. (a) (i) 28, (iv) 80; (b) (ii) 12,
29. (i) Var(T)) = 87.9, Var(Ts) = (iv) 35
.85.9 3.16. (i) 2537
2.13. (i1) 1.316 3.17. (i) 3112
2.14. 25
CHAPTER 9
9.12. 7= 127,12 = .356 3.3. (i) 500
14. = 8744, 17 = 8.04 3.5. (i) —.06
1.6. 7= 101245 7 = 45
18. () PY =9 =.2 3.7. (i) ( ) /s +
. N2(N — ) s) k—t ,
LIL i) Sy - 7 (k—:i) gy
1.14. 139 39. (i) 94
1.15. (ll) 843 3.10. s = 60, t =90
9.26. (i) 400 94.1. i) PD=3) =1
28. (i) a = 4, Var(T) = (3)¢? 492. o =848
2.12. (i) 576 4.5. 944
213. () ptr—(p—n)? 9.5.1. (iii) .038
932. (i)n=23k=26 54. (i) 121
CHAPTER 10
10.1.2. (i) 3X + 37 10.2.1. (i) n = 15
24. k=6,n=28
14, Gi) 2—X—+—¥5ig 26. n=4 k=8
2.12. (iii)
19. k>3 %[ZI+ZQ+Z3+Z4] for «
111. k= 3+ 2V2 12, — Zy + Zs — Z4] for B
1.14. () 250 + A?); (i) A= 15, etc.
P(med = 1) = .3 Variances all 02/4

10.3.2. (1) 5
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CHAPTER 11
11.1.2. () S=8 2.4. (iii) .0780
19. () D=5 2.5. (i) 61; (iv) 57
1.11. (i) .0083, .0529 2.6. (i) 10
1.12. (i) .0548 2.9. .049
1.18. @ = .05 Reject if M =0,1,2,  2.10. (i) .0176
12, 13, 14 2.11. .21
1.20. .0328 2.13. (i) .0004
121. N =5 2.14. 0213
11.2.1. (i) .1493; (iv) .1667 11.34. .202
2.2. (i) S 19;(v) S 230 3.9. (i) .057
23. (i) 8=z 97 3.12. (iv) .1950
CHAPTER 12
12.1.2. (i) .103 12.5.1. .0482
1.3. (i) .1875 5.3. (i) reject if B = 58
1.4. (i) 924, 64 5.4. (i) .0577
12.2.1. (i) .083 5.5. (iii) .0539
2.3. (i) .5758 5.7. (i) .377
2.5. .006, significant 5.8. (i1) .0287
2.7. 0803, not significant 5.10. (il) .4602, .4160, .3863
2.9. (i) .096; (iv) .026 5.12. 8
2.10. 68 12.6.2. ()
12.32. (s/2)[N +t+ 1] 6.4. (i) .1445
36. () ss+1)/2+1 6.5. (i) .3125
3.7. 095 6.8. (iii) Exact .2106, approx. .2051
3.9. .004 6.12. (ii) .0068
3.11. (i) .175 6.15. .1698
3.12. (i) .007; (iv) 074 12.7.2. (i) .0555
3.13. .018 7.4. w = 10.5 Exact .2321, approx.
12.4.1. (ii) Exact .0974, approx. .0946 1990
4.2, (ii) .0576
44, 089 79. () We=Zatset
4.5. (i) .0154; (iv) 0023 -
48. (i) .0212 7.12. (i) .219
49. (i) 0326 7.16. .0667
4.12. (i) .399, .415, .426 7.18. (i) .0655
CHAPTER 13
13.1.4. (1) .8218, .5524, 4476 1.10. (ii) .6203
1.5. (ii) .9988 1.11. (i) .0786
1.6. (i) (b) .6513; (iii) (a) .1493 1.14. 31

1.8. (iv) .155 13.2.1. (i) 63
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2.2.
2.3.
2.6.
27.
28.
2.9.
2.10.
13.3.5.
3.8.
3.10.
3.11.
3.12.
13.4.3.

(ii) 266

(iii) 94

3030

(ii) 76

(i) 237
s=14,c=35
(i) 2957

(i) .951

(i) .1; (iv) .25
(i) §; (iv) 1
() §; (i) §
(i) o; (i) §
(i) 9214

44.
4.5.
13.5.1.
5.2.
5.6.
13.6.4.
6.6.
6.8.

6.10.
6.11.
6.12.
6.15.
6.17.
6.19.

(ii) accept if 39 < Wr < 69
(i1) acceptif 37 < T < 60
(ii) 1054; (iv) 953

(i) —.1846

(i) a=.1, 7= .38

(i) .0062

(i) .0339

(i) .0016

(ii) .5688

(i) .6722

(i) 2436

(i1) 2925

0034

(i) .1587



INDEX

Index Terms

A

Acceptance of a null hypothesis
false
Accuracy (of an unbiased estimate)
See also Laplace’s measure of
dispersion; Precision; Sample
size; Standard deviation; Variance
Addition law: for exclusive events
for general events
of expectation
of variance
of covariance
Additivity (of treatment effects)
Algebra of events
Allocation (of observations) : equal
optimum
in estimating a difference
in estimating a treatment effect
optimum
in estimating the effects of
two treatments
in stratified sampling
proportional

Alternative (to the null hypothesis)

Links

311
370
250

34

35
151
162
225
296

28
293
293
293
294
293

294
301
301
372

373
252

35
38

163

31

298
307

298

303

303
381

269

227

303

308

283

307



Index Terms

Arithmetic mean
coded computation of

See also Average of n random

variables; Population mean

Assessment bias
See also Bias
Assignment bias
See also Bias
Average of n random variables:
expectation of
variance of
law of large numbers for
as estimate
as best weighted average
as test statistic
See also Arithmetic mean

Average treatment effect

B

Bayes’ law: for simple events
for composite events
in subjective approach
Bernoulli, J.
Bias
of purposive sampling
in using random numbers
of estimates
in measuring

in assessing a treatment effect

Links

145
263

336

353

155
164
211
261
288
401

276

114
116
129
210
328

40

86
245
269
279

164

355

363

267

294

329

284

327

261

335



Index Terms Links

Bias (Cont.)

correction for 250

selection 336

assessment 336 355
assignment 329 353 363
self-selection 355

See also Unbiased estimate
Binomial coefficients 47

See also Number of samples

Binomial distribution 167
tables of 167 413 414
use of Tables B and C for 168
symmetry in 169 173
expectation of 170
variance of 171
as approximation to hypergeometric 176
standardized 181
normal tendency of 186 187
normal approximation to 191 210
Poisson approximation to 195 198
generalized 200 211
as approximation to generalized binomial 200
as multinomial marginal 232
in sign test 354 365

See also Multinomial distribution;
Quality control; Statistical control;

Test of binomial probability



Index Terms

Binomial probabilities; estimation of

comparing two
See also Test of binomial probability
Binomial random variable
as sum of indicators
expectation of
variance of
and law of large numbers
Binomial theorem
Binomial trials
Binomial (trials) model
realism of
relation to sampling model of
for defectives in mass production
probabilities in
generalization to unequal probabilities
sequential
estimation of p in
estimation of p/g in
estimation of n in
sample size in
as measurement model
estimation of p(1—p) in
as basis for sign test
as basis for Wilcoxon
paired-comparison test

combination of two

Links

243
255
246

167
170
170
171
209
60
77
77
78
78
80
80
81
212
243
247
248
255
269
283
354

357
397

245

251

167
80

176

169

200

245

257

284

247

173
166

211

250

250



Index Terms

Binomial (trials) model (Cont.)
See also Multinomial model;
Test of binomial probability

Birthdays

Blind (clinical) trial

Blocking
See also Stratified sampling

Breakdown law

Bridge

Brother-sister marriage

C

Carrier
Causality
Center of a distribution
See also Expectation; Median
Center of gravity
Central limit theorem
Chebyshev inequality
Chi-square test (of goodness of fit)
table of
Clinical trials: blind
double blind
paired comparisons in
Coding of observations
Coins
Combinations

See also Number of samples

Links

60
337
330

115
23
123

118
100
148

148
187
209
321
322
337
337
352
263

14

47

362

48
125

121

245

192

268

418
362

70

143

123

402

95

126

224



Index Terms

Comparative experiments
for two binomial probabilities
for two hypergeometric models
for two measured quantities
for two populations

for two treatments

stratification in
See also Bias; Fisher-Irwin test
Paired comparisons; Randomization
Sign test; Wilcoxon paired-
comparison test; Wilcoxon
two-sample test

Complement

Complementation law

Composite event

Composite result

Conditional distribution

Conditional expectation

Conditional frequency

Conditional probability
See also Bayes’ law

Conditional probability model
realism of

Consistency of notation for product models

Consistent estimate

Constant effect model

Constant random variable

Consumer’s risk

Links

80
246
253
272
273
276
357
304

28
34
18
18

221

221
69
91

91
93
66
268
276
151
375

326

332

31

235
223
89
96

92

278
161

339

34

91
114

280

351

97



Index Terms

Controls
See also Bias
Comparative experiments
Correction factor for sampling
without replacement
Correlation coefficient
Covariance
of two indicators
in double lottery model
population
addition law of
in multinomial distribution
in multiple hypergeometric distribution
See also Correlation coefficient

Critical value (of a test statistic)

D

Defectives: in lot sampling
in mass production
See also Sampling
Degrees of freedom
De Morgan’s laws
Dependence: indirect
of events
of random variables
Design
use of binomial trials in
two-stage sequential

factorial

Links

278

177
226
162
164
225
225
225
232
235

311

78
80

322
33
72

100

225

241
80

104

296

313

228
228
223

230
229

372

219
169

100

276
336
263

327

257
230

280
280

374

374
231

126

293

262

379

303



Index Terms

Design (Cont.)
weighing
See also Allocation Blocking;
Stratified sampling
Deterministic experiments
Diagnostic tests
See also Clinical trials
Dice
loaded
testing
Difference: of two random variables
of two binomial probabilities
of two proportions
of two measurements
of two population averages
Differential selection
Discrete response
Dispersion of a random variable
Laplace’s measure of
See also Accuracy; Standard
deviation Variance
Distribution (of a random variable)
of indicator
histogram of
center of
symmetry of
dispersion of
of standardized variable

normal approximation to

Links

271

113

13
383
155
246
253
272
273

93
362
157
158

137
138
138
148
148
157
180
190

299

114

25

64

398

251

209

180
245

116

190

233



Index Terms

Distribution (of a random variable) (Cont.)
rectangular
of maximum
joint
multiple hypergeometric
marginal
conditional
trinomial
quadrinomial
of an estimate
of a measurement
See also Expectation Normal
approximation, Random variable;

Symmetry; Variance and the following

distributions: Binomial
Hypergeometric; Matching
Multinomial;, Uniform; Poisson;
Wilcoxon paired-comparison;
Wilcoxon two-sample

Dominance

Double blind (clinical) trial

Double lottery model
as basis for estimating treatment effect
allocation in comparison of two
as basis for power of Wilcoxon
two-sample test

See also Lottery model

Links

183

208

218

219 234 235
220 222

221

232

234

244

265

119

337

218 224 230
276 280

294

384

280



Index Terms

E

e
Effect. See Treatment effect
Election forecasting
Empirical basis of probability
Empirical histogram
Empty set
Equal allocation
Equally likely cases
Equal-tails test
Equivalence law of ordered sampling
generalized
Error probabilities
Estimate: consistent
Estimation
interval
point
unbiased
of binomial p
of a proportion
of difference of two binomial p’s
of population size
of a population average
of a measured quantity
of the difference of two
measured quantities
of the difference of two

population averages

Links

196

231

10
192

29
293

24
392

55

55
371
268
240
240
240
245
243
245
246
249
261
267

272

273

202

256
25

30

105

59

59
373

243

250
250
251

299
286

293

277
377

255
256

303
307

307



Index Terms

Estimation (Cont.)
of average treatment effect
of two treatment effects
See also Accuracy Bias; Design;
Estimation of variance; Sample size
Estimation of variance
in repeated measurements model
accuracy of
in lottery model
in binomial model
bias corrections for
Euler, L.
Events: simple
composite
complement of
intersection of two
exclusive
union of two
See also Independent events
Event set
product of two
Exclusive events
Expectation
as long-run average
of indicator
as center of gravity
addition law of
multiplication law of

minimizes expected squared error

Links

276
294

281
281
283
283
283
284
196
12
18
28
29
30
31
433
15
63
30
142
142
148
148
151
154
165

294

18

31

31

33

18

33
147

304

34

35

35
149

102

102



Index Terms

Expectation (Cont.)

of binomial

of hypergeometric

of Poisson

of uniform

of matching

conditional

as expectation of conditional

expectation

of sample average

of measurement

of average

of weighted average

of Wilcoxon two-sample statistic

of Wilcoxon paired-comparison statistic
Expected value

See also Expectation
Experiment: deterministic

with several parts

See also Random experiment
Experimental design. See Design

Extreme values

F

Factor model
Factorial
Factorial design
Failure

Fair price (for a game)

Links

170
175
202
205
153
221

223
262
266
267
253
342
359
142

62

290

64
59
296
77
142

180

207

343

98



Index Terms

False acceptance

False negative (positive)
False rejection
Father-daughter marriage
Favorable cases
Federalist papers

Fisher, R. A.
Fisher-Irwin test
Frequency

of males

long-run
stability property of
conditional

unrelated

G

Galileo

Gambling
odds in personal probability
systems

Gauss, K. F.

Gene
lethal

General addition law: for expectation
for variance

Generalized binomial trials model

Generalized equivalence law of

ordered sampling

Links

370
113
311
127

24
129
296
334

309

23
127
144
157
117
118
152
227

81

55

373

373

334
362
13

13
10
89
73

79

146

125

200

59

405

17
15

18

91

142

147

211

277

25

250

97



Index Terms

Genetic counseling
Genotype
Goodness of fit
Gosset, W. S.
Graded response
Graunt, J.

Gross error

H

Hamilton, A.
Histogram
of standardized variable
empirical
of estimates
Homogeneity of subjects
Hypergeometric distribution
tables of
binomial approximation to
expectation of
variance of
normal approximation to
muliple
in Fisher-Irwin test
Hypergeometric model
as lottery model

estimation of proportion in

testing of proportion in

Links

119
117
321
405
332

20
291

129
138
182
192
244
328
138
175
176
175
177
192
219
333

41
225
245
285
374

339
389

184

246

352
174

229

280

234

138

250

379

186

249

239

235

239

256

383

245

258



Index Terms

Hypergeometric model (Cont.)
See also Binomial model;
Election forecasting; Lot sampling;
Proportion Quality control; Sampling
Hypergeometric random variable
as sum of indicators
expectation of
variance of
in Fisher-Irwin test
Hypothesis testing

See also Testing

Independent events
Independent random variables
multiplication law of expectation for
addition law of variance for
and central limit theorem
in joint distributions
and zero correlation
Indicator (random variable)
expectation of
variance of
covariance of
extended
See also Method of indicators
Indirect dependence
Insufficient reason, principle of

Interaction

Links

138
175
143
177
333
241

73
139
155
163
187
221
226
138
148
159
164
395

72
24
297

174
176
175
229

310

98

223

141

100

299

178
178

102

225

150

126



Index Terms

Intersection

See also Multiplication law
Interval estimation
Inverse ranks

Irwin, J. O.

J

Joint distribution
marginal

Judged response

L

Laplace, P. S.
Laplace’s measure of dispersion
Law of large numbers
uniform
Laws: of complementation
of averages
of expectation
of variance

of covariance

See also Addition law; Bayes’ law;

De Morgan’s laws Equivalence

law of ordered sampling

Law of large numbers; Multiplication law

Lethal gene
Level of significance

Life table

Links

29

240
348
334

218
222
362

158
158
210
211

34

80
151
161
163

118
311
19

31

234

152
164
225

125
317
20

154
227

370
88

155
230



Index Terms

List of simple results
Loaded dice
Long-run frequency
Long-run stability
Lot sampling

See also Quality control; Sampling

Lottery model (for samp ling by variables)

variance of sample mean in

covariance in

hypergeometric model as special case of

sample size in
approximation by repeated
measurements model
comparison of two
estimation of variance in
weighted means in

as model for outliers

stratification of

as basis for Wilcoxon two-sample test

See also Double lottery model;

Hypergeometric model

M

Madison, J.
Main effect
Mann-Whitney test

See also Wilcoxon two-sample test

Links

12
13

78
374

144
261
227
228
228
262

236
273
283
289
290
300
343

129
297
347

18
64
13

208

219

379

152

262

285

364

24

18
210
234

158

384

233
250

239

164



Index Terms

Marginal distribution
of multinomial distribution
Matched pairs
See also Paired comparisons
Matching distribution
expectation of
table of
variance of
Poisson approximation for
in testing for randomness
See also Number of matchings
Mathematical model
Mean rank method
Mean square deviation
See also Population variance
Measurement
error
model
See also Model
Median
Mendel, G.
Mendelian theory
Method of indicators

See also Indicator
Model: mathematical

uniform

for sampling

for ordered sampling

Links

220
234
352

205
153
206
207
207
310

11
363
159

265
266

22
117
118
153
216

11
23
42
53

222

358

208

208
230

313

365

265

401

149

391

170
361

261
92

316

291

175

269
110

385

178



Index Terms

Model: mathematical (Cont.)
factor
for two-stage experiments
multinomial
measurement
for several measurements

for repeated measurements

See also the Binomial, Double lottery,

Hypergeometric, Lottery, and
Probability models
Moment of inertia
Multinomial distribution
marginal and conditional
in chi-square test
probability ratio test for
Multinomial: trials
(trials) model
random variables
Multiple hypergeometric distribution
Multiplication law: for probabilities
of expectation
See also Independent events;
Independent random variables;

Product model

N

Neyman, J. v.

Neyman-Pearson fundamental lemma

Links

64
108
231
266
266
267

157
232
234
321
398

81
231
232
219

97
154

304
396

112
321

278
281

235

84
321

234
156
157

308
399

288

231
398

235

396

401

399



Index Terms Links

Nonparametric tests vii 331
See also Fisher-Irwin, Sign,

and Wilcoxon tests

Normal approximation 190
to binomial 191 210
to hypergeometric 192 380
failure of 193
to Poisson 202
in estimation problems 251
in hypothesis testing 318 378 380 395
to Fisher-Irwin test 335
to Wilcoxon 342 359 364 366
to power 372 395 403
to X-test 402
Normal curve 185 192
figure of 185
use of table of 187
table for 416
Normally distributed observations 405
Null hypothesis 310 316
Number of arrangements 58
Number of combinations 47

See also Number of samples

Number of matchings 132 133 205
expectation of 153
as sum of indicators 154 230
variance of 207 230
in testing for randomness 310 313 316 385

See also Matching distribution



Index Terms

Number of ordered samples
table of
Number of permutations
See also Number of ordered samples
Number of samples (or combinations)
tables of
formulas for

generalized

0]

Odds ratio
One-sample problem
One-sided test
Optimum: weights of weighted average
allocation
test
Ordered sample
See also Number of ordered samples
Ordered sampling
equivalence law of
See also Number of ordered samples

Outliers

P

Paired comparisons
Parameter
Part of an experiment

Pascal’s triangle

Links

53
53
53

42
42
51

233

151
360
390
288
293
396

52

52
55

290

330
240
62
48

55

47
48
54

247

307
298

58
59

352
245

58

412
59

303

92

357
389

60

307

110



Index Terms

Pearson, E. S.
Pearson, K.

Permutations

See also Number of ordered samples

Personal probability
Petersburg game
Placebo effect
Point estimation
See also Estimation
Poisson, S. D.
Poisson approximation: to binomial
table of
to generalized binomial
to matching
Poisson binomial trials model
Poisson distribution
table of
normal approximation to
Poisson random variable
expectation of
variance of
sum of two
Poker
Population covariance
Population mean
estimation of
difference of two
stratified estimate of

See also Arithmetic mean

Links

396
321
53

127
146
337
240

171
195
199
200
207
171
202
199
202
202
202
202
203

48
225
261
262
273
300

399

198
417

417

88
229

289

280



Index Terms

Populaiton size, estimation of
Population variance
coded computation of
estimation of
Posterior probabilities
Power (of a test)
normal approximation to
binomial
hypergeometric
Wilcoxon two-sample
matching
X
Power curve
Precision
See also Accuracy
Principle of insufficient reason
Prior probabilities
Probability
empirical basis for
and long-run frequency
determined by symmetry
determined by frequency
of a composite event
conditional

personal

See also Binomial probabilities

Probability model
uniform

conditional

Links

249
159
263
283
114
382
372
382
383
384
385
404
383
269

24
114
13
10
13
14
14
19
91
127

13
23
91

227

129
388
395
385
385

389

129
18
25

250

23
96

17

92

261

407
403

404

114

18

283



Index Terms

Probability model (Cont.)
goodness of fit of
See also Model
Probability of false acceptance
Probability ratio test
Producer’s risk

Product model

realism of
with several parts
See also Binomial trials; Independent
events, Model for several measurements;
Multinomial trials; Random variables
defined on factors of a product
model; Stratified sampling

Product of event sets

Proportion: estimation of

testing of

See also Binomial probabilities;

Chisquare test; Frequency;

Hypergeometric distribution
Proportional allocation

Purposive sampling

Q

Quadrinomial distribution
Quality control

See also Defectives

Links

320

371
396
375
62
154
68

63
245
285
374

301
39

234
10

373

64
156
70

250

379

303

80

256

383

169

98

259

231



Index Terms

Quantal response

Quantization of data

R

Random digit

generator
Random experiment
with several parts
Random numbers
See also Random digit
Random ordered sample
Random quantity
See also
Random variable
Random sample
See also Ordered sampling; Sampling
Random variables
defined on factors of a product model
constant
standardized
uncorrelated
multinomial
See also Distribution: Expectation
Independent random variables
Number of matchings; Variance;
and the Binomial, Hypergeometric,

Indicator and Poisson random variables

Links

332
339

231

55
43

54
132

41

133
139
151
180
226
232

357

320
18

83

143

42

143
154
161

265

217

52

163

167

54

225



Index Terms

Randomization
complete
within blocks
in paired comparisons
See also Sampling
Randomized test
Range
Rank (of an observation)
inverse
tied
Rank test
See also Wilcoxon tests
Realism: of mathematical models
of probability models
of product models
of the binomial model
of the conditional probability model
of the multinomial model
of the model for several measurements
of the additivity assumption
See also Bias
Rectangular distribution
See also Uniform distribution
Recursion formula; for binomial coefficients
for matching distribution
for Wilcoxon two -sample distribution
for Wilcoxon paired-comparison
distribution

Rejection of a null hypothesis

Links

363
329
329
330

400

340
348
362
331

11
15
68
78
93
231
268
296

204
47
208

351

361
311

332

352

357

406

24
70

51

341

354

320
74



Index Terms

Repeated measurements model
Response

quantal

graded

discrete

judged
Results: simple

list of simple

composite

Rounding errors

S

Sample
purposive
random
ordered
stratified
Sample size
for estimating binomial probability
for estimating a proportion
for estimating a measurable quantity
pilot study for determining
in hypothesis testing
See also Square root law
Sampling
purposive

with replacement

without replacement

Links

267
275
332
332
362
362

12

12

18
204

39
39
41
52
300
169
255
256
268
263
377

39
39
72
261
92

281
327

339

18
18

42

254

262

268
404

83

79

269
100

288

89
24

52

283

173

91

401

54

176



Index Terms

Sampling (Cont.)
two-stage

See also Lot sampling; Lottery

model; Model for sampling; Ordered

sampling; Stratified sampling
Sampling by variables

See also Lottery model
Sampling fraction
Selection bias

See also Bias
Self-selection bias

See also Bias
Sequential binomial trials
Several measurements, model for
Sign test

ties in
Significance
Significance level
Significance probability

normal approximation to
Simple event
Simple hypothesis (alternative)
Simple result
Special items

Square root law

Square roots: explanation of table of

table of
Stability property of frequencies

See also Long-run frequency

Links

104

144

79
336

355

212
266
354
365
311
311
191
318

12
396

12
173
256
183
415

261

176

317

317

317

18

18

270

10

269

343
370
364

89

208

278

210



Index Terms

Standard deviation

See also Variance
Standard units
Standardized test statistic
Standardized variable
Statistical control

See also Defectives
Statistical hypothesis
Statistics: history of

relation to probability theory

four stages of
Stopping rule
Strata

Stratified sampling

Student’s ¢: distribution
statistic
test
Subject (experimental)
homogeneity of
Subjective probability
Success
Sum: of integers
of squares
of odd integers

of squares of odd integers

Links

161
267

180
402
180
169

309
239
239
241
212

62

62
248
330
405
405
407
275
328
127

77
205
205
207
207

180
281

231

313

286

241
99
264

327

352

207
207

250

300
153
300

251

305
178
304



Index Terms

Symmetry
as basis for probability
of number of samples
of binomial distribution
of normal curve
of Wilcoxon two-sample distribution

of Wilcoxon paired-comparison
distribution
Synergistic drugs

T

t-test: See Student’s ¢

Table: of number of samples
(binomial coefficients, number
of combinations)
of number of ordered samples
of random digits
of binomial distribution
of square roots
of normal approximation
of Pois son approximation
of matching distribution
of chi-square approximation
of Wilcoxon two-sample distribution
of Wilcoxon paired-comparison
distribution

Test (of a statistical hypothesis)
statistic
significance of

chi--square

Links

148
14
41

169

188

348
361

297

42
53
84

168

183

187

199

206

322

347

358
241
310
311
321

150

173

48

413
415
416
417

418
349

420
311
387
317

406

412

414

366

421

393
343

419

370



Index Terms

Test (of a statistical hypothesis) (Cont.)

goodness-of-fit
Fisher-Irwin
Wilcoxon two-sample
Mann-Whitney

sign

Wilcoxon paired comparison

error probabilities in
one-sided
two-sided
equal-tails

choice of

optimum
probability ratio
uniformly most powerful
randomized

X

t

See also Power; Test of binomial

probability; Testing; Wilcoxon tests

Test of binomial probability

normal approximation for
as sign test

false acceptance in
sample size for

power of

two-sided

as probability ratio test

Links

321
334
340
347
354
358
371
390
390
392
393
396
396
397
400
402
407

310
394
318
354
371
377
382
387
396

362

377

312

386

390

391



Index Terms

Testing
of random matching
for goodness of fit

for absence of treatment effect

of a proportion
See also Power; Sample size;
Test; Test of binomial probability
Three-decision problem
Tied rank
Ties: in Wilcoxon two-sample test
in sign test
in Wilcoxon paired-comparison test
Treatment
Treatment effects
estimation of
two
additivity of
comparison of two

test for absence of

See also Bias, Comparative experiments;
Constant effect model; Randomization
Trial
binomial
multinomial
See also Clinical trials
Trinomial distribution

Truncated observation

Links

241
310
321
333
384
374

392
362
363
365
365
275
275
276
294
296
327
333
384

77
81

232
363

310
313

339

379

294

294

332

339

80
84

316

352

383

327

304

352

166
231

385

357

357



Index Terms

Tschuprow, A. A.
Tchuprow-Neyman allocation
Twins

identical

fraternal

as subjects for paired comparisons
Two-by-two table
Two-decision problems
Two-part experiments

See also Product model
Two-sided test
Two-stage design
Two-stage experiments

model for

in genetics

Two-stage sampling

U

Unbiased estimate

nonexistence of

accuracy of

through correction for bias

See also Bias; Estimation
Uncorrelated random variables

See also Independent random

variables, Random variables defined

on factors of a product model

Links

304
304
25
25
72
352
332
374
62

390
104
104
108
120
104

215
247
250
284

226

308
308
72
72
109

407
263

112
123

252

108

269



Index Terms

Uniform distribution
expectation of
variance of
Uniform law of large numbers
Uniform probability model
product of two
conditional
Uniformly most poweful test
Union
See also Addition law; Break-down law
Unordered sample
Unrelated frequencies

See also Independent events

v

Value set of a random variable
Variance

population

of indicator

in lottery model

addition law of

of binomial

of hypergeometric

of Poisson

of uniform

of matching

as measure of accuracy

of sample average

of measurement

Links

150
205
205
211
23
67
95
397
31

52
70

134
157
159
159
159
162
171
177
202
205
207
249
262
266

204
207

73

158
227

227

163

283
229

230

282

400

283

283
227

285



Index Terms

Variance (Cont.)
of average
of estimate of difference
of estimated treatment effect
estimation of
of weighted average
of optimum estimate
of stratified estimate
of Wilcoxon- two-sample statistic
of Wilcoxon paired-comparison statistic
See also Estimation of variance;
Law of large numbers; Laws or

variance; Population variance

W

Weighing design
Weighted average

Wilcoxon, F.

Wilcoxon one-sample test
See also Wilcoxon paired-comparison
distribution

Wilcoxon paired-comparison distribution
expectation of
variance of
normal approximation to
tables for

symmetry of

Links

267
272
278
281
287
292
301
342
359

277
112
307
340
406

358
359
359
359
358
361

273
280
283

306
343
366

299
287

358

366
366
420

405

364

290

421

301



Index Terms

Wilcoxon paired-comparison
distribution (Cont.)
recursion formula for
ties in
Wilcoxon paired-comparison test
Wilcoxon two-sample distribution
expectation of
variance of
table of
symmetry of
recursion formula for
Wilcoxon two-sample test
Mann-Whitney form of
ties in

power of

X

X-test

extension to two quantities

Y

Yerushalmy, J.

Links

361
365
358
340
342
342
347
348
351
340
347
363
384

402
408

346
343
343
349

364
366

419



INDEX OF EXAMPLES

Index Terms

A

acreage see Wheat

additives see Engine-oil

admissions see College

adulterations see Testing

Affected sib

Affected uncle

Agricultural field trials

Allocation in estimating difference
Allocation in estimating treatment effect

authorship see Disputed
B

Baby pictures
balance see Weighing
Binomial distributions

Binomial model

binomials see Combination, Difference,
Testing
Bioassay

births see Male

Links

119
120
352
293
294

206

187

243
255

265

245
283

247

250



Index Terms

bonus see Bridge

boosters see Vaccine

boxes see Two, Two draws

Boy or girl?

boys see Distribution, Number, Probability
Breaking strength

Bridge bonus

C

cancer see Smoking
card see Drawing, Heart

Changing the sex ratio

chemical balance see Weighing
Chemotherapy

children see Pre-school, Sex

Choosing one of an arbitrary number of items
Choosing one of one hundred items
Choosing one of ten items

Choosing ten of the fifty American states
Choosing two of ten items

Clinical trials

College admissions

College entrance tests

Combination of two binomials
Comparing two drugs

Comparison of populations

Comparison of two measured quantities

Complementation

Links

14

366
143

310
377

371

85
85
85
86
86
352
113
359
397
30
273
272
31

312
387

374

370

371



Index Terms Links

Computation of null distribution of Q 321
control see Quality

counter see Lunch

D

days see Rain

Defective items in mass production 80
Defectives in lot sampling 78
Delegation 40

diabetes see Insulin
Diagnostic tests 113
diameter see Shaft
Dice 152
dice see Loaded, Several, Sum, Three,

Throwing, Two, Two loaded, Two throws
dic see Fair
Difference of two binomials 246
difference see Allocation
digits see Random

dime see Penny

discased poplars 43

Disputed authorship 129

distance see Measuring

Distribution of boys and girls 219

distributions see Binomial, Computation,
Variance

Drawing a card 23

draws see Two

drugs see Comparing

322

41 137

114

251

143



Index Terms Links

Double lottery 218 224
E

Effect of a growth hormone 406

Effect of training 200

effects see Allocation, Estimating

Election forecasting 231

Engine-oil additives 275

entrance tests see College

Estimating the effects of two treatments 294
estimating difference see Allocation

estimating treatment effect see Allocation
examination see Multiple-choice

expenses see Medical

experiment see Size

Extrasensory perception 310 313

F

face card see Heart

Fair die 89

families see Number, Sequentially, Sex,
Two-child

Fertilizer 326

field trials see Agricultural

Floods 26

forecasting see Election



Index Terms

G

gallery see Shooting
Gambling systems
generator see Random
girls see Boy, Distribution
growth hormone see Effect

guilt see Probability
H

hands see Poker

Heart face card

Heart treatment
hormone see Effect
Hypergeometric
Hypergeometric model

hypergeometric see Variance

improvement see Quality

Inclusion of a specified item

Income and politics

Indicators

inspection see Lot-Sampling, Sampling
Insulin and diabetes

Intelligence

Items of several types

Items of three types

Links

144 147

98
333 339

192
245 250

49
100
138 148

100
265
219
219

391

256

159



Index Terms Links

items see Choosing, Defective, Inclusion

L

laboratories see Two

Life table 19

Life testing 401

light see Velocity

Loaded die 90
398

loaded dice see Throwing, Two

lotions see Sun-Tan

Lot-sampling inspection 374
lot sampling see Defectives

Lottery 144
lottery see Double

lottery model see Variance

Lunch counter 48

lung cancer see Smoking

M
Male births 7
Marksmen 171

mass production see Defective

Matching 153
matchings see Number

measured quantities see Comparison
measurements see Repeated, Several

Measuring a distance 4

38 92
231 233
152 158
191
316

393



Index Terms

Medical expenses

Mendelian theory

model see Binomial, Hypergeometric,

Variance
Multiple-choice quiz

Multiple-choice examination

N

null distribution see Computation

Number of boys in a two-child family

Number of matchings

0]

Outliers

P

Penny and dime

pennies see Tossing, Two
perception see Extrasensory
Physics by TV

pictures see Baby

Poetry quiz

points see Sum

Poker

Poker hands

politics see Income
poplars see Discased

populations see Comparison

Links

260
391

64
168

132 133
132 133

290

70

327

385

48
38 96



Index Terms

Pre-school children
Probability of a boy
Probability of guilt

production see Defective

Q

Quality control
Quality improvement
quantities see Comparison, Several

quiz see Multiple-choice, Poetry
R

Rainmaking

Rain on successive days

Random digits

Random digit generator

Red at roulette

Repeated measurements

replacement see Sampling

roulette see Red

Salk vaccine

Sampling

Sampling inspection

Sampling with and without replacement
Sampling with replacement

Sampling without replacement
sempling see Defectives, Lot-sampling,

Stratified

Links

262
24
130

42
401

275
79

320
79
281

326
283
379
91
72
100

169

326

167
323

288

334
289

231

342

231



Index Terms

Sequentially stopped families
series see World

Several dice

Several measurements of the same quantity
Sex of children in three-child families
Sex of twins

sex ratio see Changing

Shaft diameter

Shooting gallery

sib see Affected

Size of an experiment
Smoking

Smoking and lung cancer
specified item see Inclusion
states see Choosing

stopped see Sequentially
Stratified sampling

strength see Breaking
successive days see Rain
Suicides

Sum of points on several dice
Sum of points on three dice
Sum of points on two dice
Sun-tan lotions

systems see Gambling

T

table see Life

taste tests see Triangular

Links

214

163
286
78
72 108

260
31

169
302
101

62 99

201
179
190
25
353 357

153



Index Terms

Telephone traffic

tennis see Winning

Testing binomial p

Testing for adulteration

testing see Life

tests see College, Diagnostic,
Triangular, Wilcoxon

Three throws with a die

three-child families see Sex

three dice see Sum

three types see Items

Throwing a die

Throwing a loaded die
throws see Two
Tossing a penny
traffic see Telephone

training see Effect

treatment effect see Allocation
treatments see Estimating, Heart
trials see Agricultural, Clinical

Triangular taste tests

Triplets

TV see Physics

Twins

twins see Sex

Two boxes

two-child family see Number

Two dice

Links

201

396
401

77

143
13

14

318
197

352

105

31

403
5 13

158

398
108 114
34 35

142

217



Index Terms

two dice see Sum

Two draws from a box

Two laboratories

Two-letter words

Two loaded dice

Two pennies

two-sample test see Wilcoxon
Two throws of a die

two treatments see Estimating

types see Items
U
uncle see Affected

v

Vaccine boosters

vaccine see Salk

Variance in the hypergeometric distribution
Variance in the lottery model

Velocity of light
W

Weighing with a chemical balance
Wheat acreage

Wilcoxon two-sample test
Winning at tennis

words see Two-letter

World Series

Links

71

288

62
224

100

275

228
227
265

268
260
384

79

212

64



