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Preface 

This really is the golden age of Mathematics. It has been said that half the Mathe­
matics ever created has been in the last 100 years and that half the mathematicians 
who have ever lived are alive today. We have seen such achievements as the resolu­
tion of the four-colour problem and Fermat's last theorem, with the latter being a 
special manifestation of a much more general result! 

It is befitting that the golden Jubilee of the Indian Institute of Technology 
Kharagpur, happens to fall in the golden age of Mathematics. As a senior professor 
in the Department of Mathematics, I felt encouraged to bring out a series of books 
covering all the major areas of Mathematical Sciences during this period of historic 
importance. 

This book is an important member of the aforesaid series and consists of chapters 
that deal with important topics in Biomathematics. A glance through any mod­
ern textbook or journal in the fields of ecology, genetics, physiology or biochem­
istry reveals that there has been an increasing use of mathematics which ranges 
from the solution of complicated differential equation in population studies to the 
use of transfer functions in the analysis of eye-tracking mechanisms. This volume 
deals with Applied Mathematics in Biology and Medicine and is concerned with ap­
plied mathematical models and computer simulation in the areas of Molecular and 
Cellular Biology, Biological Soft Tissues and Structures as well as Bio-engineering. 

In this volume an attempt has been made to cover biological background and 
mathematical techniques whenever required. The aim has been to formulate various 
mathematical models on a fairly general platform, making the biological assump­
tions quite explicit and to perform the analysis in relatively rigorous terms. I hope, 
the choice and treatment of the problems will enable the readers to understand and 
evaluate detailed analyses of specific models and applications in the literature. 

The purpose of bringing out this volume on Biomathematics dealing with in­
terdisciplinary topics has been twofold. The objectives are to promote research 
in applied mathematical problems of the life sciences and to enhance cooperation 
and exchanges between mathematical scientists, biologists and medical researchers. 
This volume has both a synthetic and analytic effect. The different chapters of the 
volume have been mostly concerned with model building and verification in different 
areas of biology and the medical sciences. 

I believe, people in the entire spectrum of those with an interest in ecology, 
from field biologists seeking a conceptual framework for their observations to math­
ematicians seeking fruitful areas of application, will find stimulation here. It may 
so happen that some readers may find some parts of this volume trivial and some 
of the parts incomprehensible. Keeping this in view extensive bibliographies have 
been given at the end of each chapter which do attempt to provide an entry to the 
corresponding areas of study. 

For over three decades I have been engaged in teaching and research at several 
well-known institutions of India, Germany and North America. Publication of the 
series of books has been the fruit of a long period of collaboration together with 
relentless perseverance. It has been our endeavour to make these books useful to 
a large section of people interested in mathematical sciences, professional as well 
as amateur. The volumes have been so designed and planned that illustrative 
examples and exercises as well as fairly comprehensive bibliography are included 
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in the various chapters. This will help strengthen the level of understanding of 
the learners. Thus the books of this series will be of interest not only to graduate 
students but also to instructors, research scientists and professionals. The volumes 
of the series might not exactly serve as textbooks, but will definitely be worthwhile 
supplements. Our labour will be deemed amply rewarded if at least some of those 
for whom the volumes are meant derive benefit from them. 

I am thankful to the members of the ICRAMS committee for their kind en­
couragement in publishing the mathematical science series on the occasion of the 
Golden Jubilee of our Institute. I feel highly indebted to the contributors of all 
the volumes of the series who have so kindly accepted my invitation to contribute 
chapters. The enormous pleasure and enthusiasm with which they have accepted 
my invitation have touched me deeply, boosting my interest in the publication of 
the series. 

I. I. T. Kharagpur J. C. Misra 
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TOWARDS A NONSUBJECTIVE 

BAYESIAN PARADIGM 

Jayanta K. Ghosh and Tapas Samanta 

Indian Statistical Institute, Calcutta, India and Purdue university, USA 

and Indian Statistical Institute, Calcutta, India 

Abstract 

We examine the historical development of the three major paradigms in Statis­

tics and how they have influenced each other in a positive way. We then go on to 

argue that it is still necessary to make a choice and that the Bayesian formulation 

appears to be the most appropriate. Since elicitation of priors remains difficult 

inspite of some progress, it is suggested that nonsubjective Bayesian analysis has 

an important role to play. We present an overview of how nonsubjective priors are 

constructed and how they are used in different problems of inference involving low 

or high dimensional models. In particular, it is shown that many of the common 

perceptions or criticisms of nonsubjective Bayesian analysis are not justified. 

Keywords: Hierarchical Bayes; Jeffreys prior; Parametric empirical Bayes; Proba­

bility matching; Reference prior; Uniform distributions 
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1. Introduction 

There are three major paradigms in Statistics, namely, Data Analysis, 

Classical Statistics, also called Frequentist or Neyman-Pearsonian Statistics 

and Bayesian Analysis. We use all three names for Classical Statistics, choos­

ing the one that best fits the context. Data Analysis may not even use any 

stochastic model like pre-Gaussian least squares. We assume most readers 

are familiar with Classical Statistics, where stochastic models are routinely 

used for data but the models contain unknown constants or parameters which 

are not treated as random variables — probabilistic calculations are applied 

only to repeatable uncertain events like tossing a coin but not to questions 

about non-repeatable uncertain events or statements like "this particular coin 

is fair". This restricted application of probability only in repeatable cases is 

called the Frequentist view of probability. In the Bayesian paradigm all un­

certainties can be quantified into probability as in the case of gambling on 

one particular occasion. In particular, in the least squares problem both the 

regression coefficients /3 and Y in the model 

Y = XP + e 

are treated as random variables. 

In addition to the three major paradigms, there are half way houses, like 

Conditional Frequentist Inference or Nonsubjective Bayesian Analysis, the 
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subject of the present chapter. What is quite noticeable today is mutual tol­

erance and even some overlap and convergence towards a consensus. This was 

not the case even a couple of decades ago when there were heated controver­

sies on foundations of Statistics. Some of these basic issues are discussed in 

the next section. In the subsequent sections it is shown to some extent how 

through some modification of the three major paradigms, some reconciliation 

between them is possible. However, it is not one of our premises or one of our 

theses, that all major differences have disappeared. That too is not the case. 

We argue in this chapter that it is still important to choose a paradigm 

and justify its choice. Showing the chosen Bayesian paradigm in action and 

the fact that it does very well in applying Statistics to real life is part of 

the argument, not an excuse for not engaging in an argument, as suggested 

by the authors of two excellent books on what we regard as nonsubjective 

Bayesian Data Analysis, namely, Carlin and Louis ([20]) and Gelman et al. 

([31]). Indeed, even Carlin and Louis ([20]), contrary to their professed view 

in their introduction, feel a need to reproduce some of the famous examples 

and arguments (e.g., [20], Ch. 1, 2) but such arguments are not explored in 

full, occasionally creating confusing or false expectations about nonsubjective 

Bayesian Analysis. To illustrate this we consider later Example 1.2 of [20] and 

the role of the likelihood principle in Section 6. A similar comment applies 

to the book by Gelman et al. ([31]), which is essentially about nonsubjective 
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Bayesian analysis but the excellent bibliographic note provided by on pp. 24, 

25 focuses on foundational issues in the context of the subjective Bayesian 

paradigm. Basic references to Bayesian Analysis include [6], [16], [53] and 

[57]. 

The purpose of this chapter is to supplement books and papers in applied 

nonsubjective Bayesian Analysis by a critical re-examination of both the old 

foundational issues that dominated the sixties and seventies of the last century 

and specific criticisms brought against nonsubjective Bayesian methods. 

We believe the Bayesian paradigm can be flexible enough to accommodate 

both subjective and nonsubjective Bayesians but at least for now our methods 

for eliciting subjective priors are so weak that most applications are nonsub­

jective. There can be other reasons why a future Bayesian may want to be 

flexible. We discuss this at the very end of the chapter. 

Section 2 provides a brief history of least squares and all that came from 

it. It gives some idea of how the three paradigms developed with close inter­

actions, sometimes friendly, sometimes not. In Section 3 — Why Should We 

All Be a Bayesian — we examine the three paradigms and argue in favour 

of being a Bayesian. In Sections 4 and 5 we discuss what we mean by non-

subjective priors, the motivation for using them and methods of construction. 

Roughly speaking, a subjective prior for a person, who may be an expert in 

the subject, is a quantification of uncertainty about unknown parameters in a 
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model whereas a nonsubjective prior arises from a general algorithm applied 

to the particular problem in hand. A nonsubjective prior may also be vali­

dated by some introspection but introspection is not essential. Usually some 

Frequentist validation is sought when justifying the algorithms. Section 6 pro­

vides a critical discussion of nonsubjective priors, indicating why many of the 

common perceptions or criticisms are not justified. We also discuss in this 

section how far inferences based on these priors satisfy the Likelihood Prin­

ciple and the Stopping Rule Principle. In particular, Example 1.2 of [20] is 

re-examined. Section 7 discusses nonsubjective Bayesian estimation and test­

ing. High dimensional problems are briefly discussed in Section 8. The last 

section (Section 9) contains a discussion of some related major points. 

2. How Did It All Start 

Developments in geodesy and astronomy in the eighteenth century pro­

duced in each case many observations connected through a number of equa­

tions with much fewer parameters. Generally there would be n equations 

involving p unknowns, p being much less than n. Throughout the eighteenth 

century some of the best minds, including Laplace, Euler, Gauss and Legen­

dre, considered this problem. This culminated in the discovery of the principle 

of least squares by Legendre in 1805. Credit is also given to Gauss who said he 

had discovered the principle but did not publish it. The principle determines 
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the unknown constants in the equations so that the sum of squares of devi­

ations between observations and values assigned by the equations with these 

constants is a minimum. This is a purely data analytic principle. 

In 1823 Gauss provided an elegant stochastic model and proved the famous 

Gauss-Markov theorem that the principle of least squares leads to best linear 

unbiased estimates (BLUE). This may be regarded as the beginning of Classi­

cal Statistics but throughout eighteenth and nineteenth centuries the attitude 

to unknown parameters was ambiguous. Probability statements made about 

them were interpreted both as Frequentist confidence intervals and Bayesian 

credibility intervals given the particular data in hand. 

The ambiguity has its source in the following instructive example, central 

to the development of much of Statistics. 

Example 1. Suppose X\,X2,... ,Xn are independent and identically dis­

tributed (i.i.d.) observations with normal distribution N(6,1). Suppose the 

prior for 9, namely, n(0) is the (improper) uniform distribution on the param­

eter space JR. Let X be the sample mean and za/2 the upper a/2-point of 

iV(0,1), 0 < a < 1. Then the following are true. 

Pr{0 e(X- za/2/y/n, X + za/2/^) |0} = 1 - a (1) 

Pi{8e(X-za/2/^i,X + za/2/V^)\X} = 1 - a (2) 

The first probability holds over many repetitions of samples — it is a classical 
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Frequentist probability. In the second equation the probability, given X is 

held fixed, has a Bayesian meaning. The event considered is the same but 

the conditioning leads to different interpretation. The prior n(6) is (exactly) 

probability matching in the sense of [36]. 

The idea of a prior distribution that interacts with the likelihood or prob­

ability of observation to produce a posterior probability first appeared in Rev­

erend Bayes's posthumous paper ([5]). The equation that shows how the prior 

and likelihood interact is called Bayes Theorem — an elementary result of 

great philosophical and methodological significance. These ideas were redis­

covered and popularized by Laplace. 

One of the great achievements that arose as a consequence of attention to 

X is Laplace's famous limit theorem ([50]) which says if X/s are i.i.d. with 

mean 6 and variance a2, then X is approximately normal with mean 9 and 

variance a2/n. This implies that equation (1) can be used approximately in 

a great many cases. Equation (2) was used by Laplace to prove what would 

now be called posterior consistency as well as to find a credibility interval 

for 6 that would be easy to interpret in a Frequentist way. It may thus be 

thought of as a forerunner of the Bernstein-von Mises theorem on posterior 

normality, just as Laplace's limit theorem is an early version of the Central 

Limit Theorem which occupied a central role in the theory of probability for 

many years. Both were rigorously proved only in the twentieth century. 
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Regression equations and the Least Squares principle, as we now use it, 

grew from the work of Francis Galton and Karl Pearson in Biometry. They 

took their final shape in the hands of G.U. Yule in early twentieth century. 

The logical distinction between (1) and (2) was first pointed out by R.A. 

Fisher who began a systematic development of methods of estimation, test­

ing and design of experiments using only classical Frequentist probability. By 

1940, they had reached their present form in the hands of Neyman, Pearson 

and Wald. A few years later the restriction to linear estimates was removed 

and a new theory of minimum variance unbiased estimates was born. The ma­

jor results were the Cramer-Rao inequality, the Rao-Blackwell theorem and 

the major tool was the notion of a complete sufficient statistic. These, along 

with the earlier Neyman-Pearson Lemma and Basu's Theorem on indepen­

dence of complete sufficient statistics and ancillary statistics, have been the 

core of a first advanced undergraduate course in Classical Statistics. 

With Wald had come decision theory and attention had shifted away from 

unbiasedness to general estimates for which minimaxity was introduced by 

Wald and admissibility by Lehmann. Nearly a hundred years after Gauss, 

we knew that under the additional assumption of Gaussian distribution, X 

is not only BLUE but UMVUE (uniformly minimum variance unbiased esti­

mate), minimax and admissible too. Also Robbins introduced the Nonpara-

metric Empirical Bayes approach and Stein proved his apparently paradoxical 
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result that for estimating a normal mean the sample mean X ceases to be 

admissible for dimension greater than two. By the seventies it was clear that 

the Stein paradox was ubiquitous whenever one estimates many parameters 

having structural similarities and new insight into this was provided by the 

Parametric Empirical Bayes (PEB) approach of Efron and Morris. A fully 

Bayes approach, called Hierarchical Bayes, soon developed and calculation of 

posterior was made feasible by the new simulation technique of MCMC in the 

late eighties. This method has some advantage over PEB even in a Frequen-

tist sense. The last decade was full of successful Hierarchical Bayes modelling 

of uncertainty in many, many real life high dimensional problems with cal­

culation of posterior through some form of MCMC. These applications show 

that not only has the Bayesian paradigm better logical foundations than Clas­

sical Statistics but it can handle better complex practical problems as well. 

This must have been a major reason for the dramatic upsurge of interest in 

Bayesian Analysis. 

This brief history indicates, among other things, how closely the develop­

ment of the three different paradigms have been interlinked at different points 

of time. 

3. Why Should We All Be a Bayesian 

We have followed the growth of Least Squares and all it led to for nearly 
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three centuries — eighteenth to twentieth — and how features of all three 

paradigms pervade our subject. Data Analysis provides innovative new meth­

ods and quick insight. It borrows strength from Descriptive Statistics and 

common sense. It does not require theoretical underpinnings or complicated 

mathematical justifictions based on probability theory. However, a discipline 

based only on ad hoc data analytic techniques cannot survive for long. One of 

the great achievements of Classical Statistics in the twentieth century was to 

provide a unified logical foundation to various inferential questions of Statis­

tics and statistical methods developed over centuries. Let us examine this 

aspect in some detail. 

Classical Neyman-Pearsonian Statistics emerged as a paradigm in the 

fundamental papers of Neyman and Pearson on testing hypotheses. The 

starting point in this paradigm is a set of random variables Xi,X2,- • • ,Xn 

and a stochastic model from which one can calculate their joint density 

p(xi,x2, • • •, xn). The model or models do not specify the density p(xi,..., xn) 

completely, it is allowed to depend in a well-defined way on a set of "unknown" 

parameters, which are treated as unknown constants rather than random vari­

ables. This is a point of departure from Bayes. Secondly, they consider a test 

<f)(xi,x2,..., xn) which is a function or an algorithm that selects a particular 

hypothesis from the candidate hypotheses, e.g., H0 : 6 = 0 vs. Hi : 9 > 0 

for N(9, 1), given any data. If (f>(x\,... ,xn) = 1 one chooses Hi, if 4> — 0 
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one chooses Ho- If for x\,... ,xn, (j) is between 0 and 1, one chooses Hi with 

probability <fi. This is a major point of departure from past practices, where 

statisticians, as data analysts, only considered what is to be done with the data 

in hand, not what would have happened with other possible data. Thirdly, a 

test is evaluated by its performance over all possible data. The evaluation of 

probability of error for a test cf> for different values of a parameter is its risk 

R{<j),6) = Ee{<p), i f 0 = 0 

= l-Ee{<f>), if 0 > O . 

Neyman and Pearson showed that if one looked at all <j> with a bound on 

the probability of error of first kind, namely rejecting Ho when Ho is true, 

R{<t>, 0) < a, then there exists 4>o that minimizes R((j), 9) for all 6 > 0. More­

over, 4>o is easy to describe. This is their famous UMP (uniformly most pow­

erful) test. Very general minimax results of this type were proved later by 

Huber and Strassen ([46], [47]). A beautiful example of this kind is the robust 

version of the Neyman-Pearson lemma given in [53]. 

Classical Statistics introduced a new approach to decision making and 

inference, and evaluation and comparison of different algorithms or procedures 

based on performance over the whole sample space. It also provided many 

benchmarks and lower bounds. Thus the Gauss-Markov theorem may be 

treated as a precursor and the many novel developments that are described 
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in the previous section could not have taken place if this pardigm change had 

not taken place in the nineteen thirties. 

Some of its advantages over, say, simple minded data analysis can clarify 

the intellectual revolution brought about by Classical Statistics. Given any 

new method, Classical Statistics can test it out on many simulated stochastic 

models as well as compare with known benchmarks. In contrast, Data Analysis 

will try it out on a small list of standard available examples. Of course, 

if a method survives this first test, many subsequent practical applications 

eventually will settle if it is any good. But Classical Statistics does it faster 

and more systematically. Secondly, any new problem, difficult to solve in 

Data Analysis, may not be so difficult in a well-defined logical paradigm. We 

illustrate this in the next paragraph. 

Often in image analysis, one would wish to merge two images. For exam­

ple, they could be two pictures of the same object, say, a tumour, taken by 

tomography and ultrasonography, or they could be two pictures of the same 

subject, say, an absconding criminal, at slightly different angles. This is re­

garded as a challenging new problem in data analytic image analysis. Yet, in 

principle, it is no more difficult than the problem of combining two observa­

tions using linear models and Gauss's theorem. For an application of these 

ideas to image analysis see [38]. 

Why then does one want to move beyond Classical Statistics? There are 
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several reasons. We list the more important ones. 

1. Flaws in foundation. The paradigm is flawed because all its evaluations 

are based on averaging over the sample space, i.e., on performance for all 

possible data. While such measures are important, specially at the planning 

or design stage, they are irrelevant once the data are in hand. For example, 

variance of an estimate or the probability of error of a test relevant for the 

particular data being analyzed are the appropriate posterior risk given data 

— E{(T - 6»)2|X1; ...,Xn} for an estimate T of 9 or P(Ho\Xu . . . , X„)<£ + 

P(H\\X\,..., Xn)(l — <j>) for a test (f> — which can be calculated only in the 

Bayesian paradigm. It is no wonder that clients — engineers and doctors — 

coming to classical statisticians almost always misinterpret the quantities that 

are presented to them. They interpret p-values etc. as a sort of posterior risk. 

2. The second reason is connected with the first reason. Quite often the 

variance or risk calculations are patently absurd even to classical statisticians. 

Here are two examples. 

Example 2 (Cox, [22]). You have to take samples from N(9,1) and estimate 

6. Suppose you toss a fair coin. If you get a head, you take a sample of size 

n = 2. If it is a tail, you take a sample of size n — 100. Admittedly, this is an 

odd sampling scheme but let us continue our analysis of this from a classical 

point of view. 

Given n — 2, the classical statistician estimates 9 by T = Xi = {X\ + 
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X2)/2 and, similarly for n =100, by T = XWo- He says rightly, that T is 

an unbiased estimate for 9 with variance = ^- (§ + Too) ^ 4 ( a PP r o x i m a t e ly ) . 

Suppose he actually gets a tail and has a sample of size n = 100. Should he 

quote this very large variance, namely, 1/4 or the more natural 1/100 ? Most 

classical statisticians confronted with this example concede they would prefer 

the second number. 

Example 3 (Welch). You have a sample of size n — 2 from the uniform 

distribution on (0 — | , 9 + | ) . You want a 100(1 — a)% confidence interval for 

0,0 < a < 1 and usually a = 0.05 or 0.01. It is easy to see that this being 

a location parameter family, you can choose h > 0 such that Pe{X — h < 

0<X + h} = l — a, i.e., X ± h is a solution to this problem. Suppose 

now your actual data are X\ = 1,X2 = 2. The only way such data can come 

as sample from the range (9 — 1/2,9 + 1/2) is to have Xi = 9 — 1/2, X 2 = 

9 + 1/2 so that you know for sure X = 9. But you will say you have only 

100(1 — a)% confidence that your interval X ± h contains 9. This is also 

patently absurd that classical statisticians concede this. Incidentally, the fact 

that Xi = 9 — 1/2, X2 = 9+1/2 with probability zero need not cause concern. 

If Xi and X2 are very close to 9 ± 1/2 instead of being exactly equal, you 

would intuitively expect the true confidence to be very close to one rather 

than (1 — a). You can verify by calculating conditional probability of covering 

9, given \X2 — X\\. Alternatively, one can choose a discrete version of this 
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problem as in [7]. 

These are examples of what are called conditionality paradoxes, first 

pointed out by Fisher. Fisher suggested that in each example there is a 

statistic, the sample size n in Example 2 and \X2 — Xi\ in Example 3, whose 

distribution does not depend on 9 but whose value seems to indicate how infor­

mative is the sample. Fisher called such a statistic ancillary and suggested one 

should make inference condtional on an appropriate ancillay. Such examples 

are treated in detail by Basu ([4]), Brown ([19]) and Kiefer ([50]). Conditional 

Inference has also received a lot of attention from Barndorff-Nielsen and Cox, 

who have shown how one can make conditional asymptotic inference based on 

the maximum likelihood estimate (MLE) given asymptotic ancillaries ([1] and 

[2])-

3. Even though most classical statisticians accept the contidionality prin­

ciple (CP) (see Appendix), acceptance of CP and the sufficiency principle 

(SP) leads to further problems, as first pointed out by Birnbaum. The suffi­

ciency principle (SP) says inference should be based on the (minimal) sufficient 

statistic, which extracts all the information in the data in a well-defined math­

ematical way; P{data|minimal sufficient statistic} is free of the parameter 6 

and so the data cannot contain any additional information. Birnbaum showed 

that CP and SP together imply the likelihood principle (LP) which says that 

two likelihood functions p(x\9) and p'(x'\9) lead to the same inference about 
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9 if they are proportional to each other (as function of 9) and therefore, after 

x is observed, the inference should be based on the likelihood function for the 

observed x. Since classical methods are based on integration over the whole 

sample space rather than the data alone, most of them violate LP. It should be 

mentioned that Birnbaum's theorem is a mathematical theorem, in the spirit 

of metamathematics rather than a matter of personal philosophical belief. A 

proof is given in the Appendix. 

We give two examples in one of which a popular classical method violates 

LP. 

Example 4- Let Xi,X%,... ,Xn be i.i.d B(l,9), i.e., 

pe{Xi = 1} = e,pg{Xi = o} = I - e,o < e < 1. 

The sample size n may be fixed (Case 1) or random, e.g., as in inverse sam­

pling: n = first i such that Xi = 1 (Case 2). A classical approximate 95% 

confidence interval for 9 is 

0±1.96/fi 

where 9 = r/n is the MLE, r = T%=1Xh 

„ 2 _ o?2log L, 
a ~ de* '" 

and log L is the loglikelihood given by 

log L = r log 9 + (n — r) log(l — 9). 
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This is same in both Case (1) and Case (2) though they involve different 

sample spaces. It is easy to see that the method satisfies LP. 

Example 5. Let X\, X2,..., Xn be i.i.d having a Cauchy distribution with 

density 

p{x*0) = l-i + (x)-er 
As in Example 4, n is fixed (Case 1) or n is a random variable not depending 

on 9 except possibly through X's. 

Let 1(6) be the Fisher information defined by 

I{9) ~ ~E' [ dW~ 

In this case 1(9) = 1(0), a constant. Let 9 be the MLE of 6. A popular 

approximate 95% confidence interval for 9 is 9dtl.96Jl/(nI(0)) which violates 

the LP and in fact is not appropriate for Case 2. However 

***{-*& ' 
does not violate LP and is appropriate for both Case 1 and Case 2. 

4. Practical and Methodological Reasons for Preferring Bayesian Analysis. 

So far we have been discussing somewhat abstract foundational reasons. There 

are also several impressive practical or methodological reasons. 

The exact methods of Classical Statistics, for example, UMVUE or UMP 

test can only be applied in very simple cases. Slight change in the problem, 
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for example even extra information, can cause difficulties. 

Example 6. Let Xi,X2,...,Xn be i.i.d. JV(0,1),—00 < 6 < oo. It is 

well-known that X is UMVUE. Suppose you have information a < 0 < b. The 

UMVUE is still X and is obviously absurd because it need not lie in the given 

interval [a, b]. The MLE, namely, XI(a < X < b) + aI(X < a) + bI(X > b), 

is inadmissible and also somewhat absurd because it suddenly becomes flat 

to the left of a and right of b. In contrast Bayes estimates are in the given 

range, admissible and exhibit better behaviour as X crosses a and b and moves 

towards ±oo. 

In complex real life problems all exact classical methods break down and 

approximate methods based on MLE have to be used. By contrast Bayesian 

methods are exact and can use all available information in sensible way. Also 

Bayesian methods generally provide better inference than MLE; see [3], [11] 

and [17]. 

5. Axiomatic Justification of Bayesian Analysis. Finally, there are nat­

ural rationality axioms on how one should make inference or decision under 

uncertainty, which force one to act like a Bayesian with a prior probability. 

De Finetti makes out a compelling mathematical case that unless one is co­

herent, i.e., has at least a finitely additive probability measure, one would 

be a sure loser as a gambler. This result has been extended by Heath and 

Sudderth ([45]) to show unless one acts as a Bayesian with a prior that is 
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at least finitely additive and uses the corresponding posterior, one's inference 

procedure would be uniformly inadmissible. Other similar rationality axioms, 

due to Ramsey ([61]), Savage ([63]) and others, show how a rational linearly 

ordered preference pattern leads logically to the existence of a prior (subjec­

tive probability measure over the #-space) and a utility or loss function. If one 

is rational in any one of several possible senses of being rational, one is forced 

to be a Bayesian. A good exposition of these ideas can be found in [64]. 

6. Decision Theoretic Reasons. Classical statistical decision theory has 

two kinds of theorems which lend support to the remarks in the previous 

paragraph. One class of theorems show unless a decision procedure, e.g., a 

test or estimate, is based on a prior or a sequence of priors, it would be inad­

missible. The other kind of theorems show that a class of decision procedures 

is complete, i.e., given any decision procedure outside it there is procedure 

with lower risk within the class, if it is the closure of Bayes procedures. 

To sum up there are many practical, methodological and theoretical rea­

sons why we should be a Bayesian. However, this does not mean a Bayesian 

has nothing to learn from the other two paradigms. Bayesians believe in 

Frequentist validation in the real world. One formulation of this is the pre-

quential framework of Dawid ([27], [28]). Another, even more Frequentist 

formulation, is the notion of posterior consistency at a given true 90, due to 
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Laplace, von Mises, Bernstein and Freedman. This is a kind of weak valida­

tion of a Bayesian procedure against virtual, i.e., simulated reality. Diaconis 

and Freedman ([29]) refers to it as a sort of "What if ", a validation through 

a thought experiment. The frequentist notions of bias and variance and an 

appropriate trade off between them in model selection remain useful in un­

derstanding Bayesian model selection. Thus a complex model reduces bias 

but increases variability of parameters and their estimates, often leading to 

inferior prediction as compared to simpler models. Other similar applications 

of frequentist ideas appear in later sections. 

A Bayesian also finds it useful to use some of the common descriptive 

data analytic methods to get a quick feel for data or communicate to clients. 

The Bayesian answers are usually refinements of the data analytic answers 

— comparison of the two can lead to insight and better understanding of the 

former. An extremely important new book on high dimensional and often 

nonlinear data analysis which draws on both Classical Statistics and Bayesian 

ideas is [44]. 

4. Choice of Prior 

Given a data set X = (Xi,... ,Xn) a Bayesian has a stochastic model 

p(x\9) for the joint density as in Classical Statistics. The Bayesian interprets 

this as likelihood or conditional density of data given 6. To set the Bayesian 
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inference engine in motion, he needs a prior n(9), namely, the prior probability 

density of 9. This reflects his belief or knowledge, prior to seeing data. In the 

light of data, his belief is quantified in the posterior density p(6\X) given by 

Bayes Theorem as 

n(e)P(x\e) mx) = J^mxWe- (3) 

Essentially, the prior is being moved towards those values of 9 which make the 

observed data more likely. 

In relatively simple problems of inference one needs to report the posterior 

and some descriptive measures like posterior mean or median and posterior 

variance or posterior quantiles. 

If one has a decision problem with an action space and a loss function, one 

chooses an action "a" (depending on the observed X) to minimize the average 

posterior loss (see Section 7). 

To drive this Bayesian engine one needs the prior n(9). All non-Bayesians 

generally agree that but for the problem of choice of the prior, the Bayesian 

paradigm is indeed very attractive. So let us examine critically how a prior 

can be chosen and what effect it has on inference. 

Ideally, the prior should reflect the subjective belief or knowledge of the 

client or the analyst or a subject matter expert. Unfortunately, eliciting a prior 

from experts is not easy. Empirical studies have shown certain professions, 

experience and maturity help. For example, a businessman or a doctor or a 
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lawyer will be better able to assign a probability to an uncertain event within 

his domain of expertize than most other people. However, usually it is not 

realistic to expect that one would be able to elicit more than a prior mean 

and variance. Occasionally, one can elicit prior covariance in an indirect way. 

While all Bayesians expect that this situation will improve in the future, it is 

hard to believe that in all but very simple situation a full subjective prior can 

be elicited. So it is customary to choose priors in a nonsubjective, conventional 

way, incorporating as much of prior information as has been elicitied. 

What would be the consequences of substituting a nonsubjective prior for 

a subjective prior? This depends on the relative magnitude of the amount 

of information in data, which for i.i.d. observations may be measured by the 

sample size n or nl(9), and the amount of information in the prior, which is 

discussed in the next section. If the former dominates, then there is hardly 

anything lost and in most cases of low dimensional parameter space, the sit­

uation is like that. A Bayesian would refer to it as washing away of the prior 

by the data. There are several mathematical theorems embodying this phe­

nomenon. One such result is posterior normality and its refinements (see, for 

example, [34], [39] [52] and [64]). However, occasionally one may be very con­

fident of certain aspects of the prior and does not wish to change it even if 

there is some conflict with data. 

Sometimes the analyst will not have any prior information and will want 
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to use a purely nonsubjective prior, also called a noninformative prior in the 

past. Such a prior may also be used to report the results of an analysis 

from a relatively impartial point of view. The next section describes some 

standard algorithms for producing purely nonsubjective priors. While such 

priors produced by different algorithms are not unique in general, they are 

very similar and even for a small data set generate nearly identical posteriors. 

The older terminology of noninformative priors is no longer in favour 

among nonsubjective Bayesians. The older terminology leads to an expec­

tation that such a prior reflects complete lack of information, which is im­

possible to define. As Poincare observed, noninformative priors do not exist. 

On the other hand the purely nonsubjective priors do have low information in 

well-defined senses of Shannon's missing entropy or non-Euclidean geometry 

and lead to mostly data dependent posteriors. For somewhat similar reasons 

the term objective priors used by Jeffreys can lead to somewhat wrong expec­

tations. Another popular term is default. A nosubjectiver prior is, at least 

approximately, both noninformative and objective in the sense of not putting 

in much prior input but the relatively neutral term nonsubjective comes closest 

to what is meant. 

5. Nonsubjective Priors 

To construct nonsubjective prior on a given parameter space, one has to 
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do one of the following things — (1) define a uniform distribution that fits 

the topology of the parameter space for a suitable topology induced by the 

Hellinger metric or a Riemannian metric arising from the Fisher information 

matrix, or (2) maximize a suitable measure of entropy (i.e., minimize infor­

mation in this sense) or (3) choose a prior with some form of Frequentist 

validation since the use of a prior with little information should lead to the 

same sort of inference as what a Frequentist would do. 

The simplest choice of a (purely) nonsubjective or so called noninformative 

prior is the uniform, used for different reasons by both Laplace and Bayes. It 

has been used in this chapter earlier in Example 1. 

There are various problems with the uniform, though it still remains a 

reasonable choice when the other methods are not easy to apply. The three 

major problems with the uniform are as follows. 

First, as pointed out by Fisher, it is not invariant under (continuously 

differentiable) one-one transformations of 6 and it seems natural to require 

some invariance of this sort. One looks for a method that produces priors 

7Ti(#) for 0 and 7r2(r/) for any smooth one-one function rj(9) of 6 such that one 

can pass from one to the other by the usual jacobian formula 

(4) 

Secondly, it does not go naturally with the Riemannian geometry induced 

*!(O) = *M0)) 
drj 
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by the metric which is obtained through the integration of 

i J 

over all curves connecting 6 to 6' and minimizing over curves. This metric was 

introduced by C.R. Rao and is known to be "natural" in the sense that it is 

the only Riemannian metric that transforms as expected under continuously 

differentiable one-one transformations of 0 onto itself, vide [21] and [62]. 

Finally, the uniform seems to maximize the wrong entropy 

H(p) = - f p(9)logp(9)d0. 

Shannon used H(-) very successfully when Q is a finite set, where the discrete 

uniform is everybody's choice of a noninformative prior. But H(•) depends 

on the dominating measure (vide [15]), and is not invariant under continously 

differentiable one-one transformations, vide [66]. 

We take up the last point and define a measure of information appropriate 

here. The transition from the prior to the posterior distribution is an indi­

cation of the (additonal) amount of information in data X = (X\,... ,Xn), 

relative to a particular prior. The last qualification is important. The change 

from prior to posterior has been used by Bernardo ([15]) to measure how in­

formative is a prior. A measure of change from the prior to the posterior is 

given by the expected Kullback-Leibler divergence between the posterior and 
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the prior 

K{p{6\X)M9)) = E fa*^} (5) 

where the expectation is with respect to the joint distribution of X and 6. 

Bernardo suggests that if a prior is already very informative, say, degenerate 

at some 90, then the posterior is the same as prior and K = 0, the data cannot 

provide any additional information. Bernardo maximizes (5) asymptotically 

to get his "noninformative" prior. He calls it a reference prior, in the sense 

that information in other priors may be calibrated by taking Bernardo's prior 

as a reference point or origin. 

We now present an algorithm for asymptotically maximizing (5). We as­

sume throughout this section that X^s are i.i.d. Fix an increasing sequence of 

compact sets C$ whose union is the whole parameter space. In the following 

initially we fix Ci and let n —> oo. Then, as indicated in [36], under suitable 

regularity conditions, 

K(p(9\X),7r(e)) = ^ l o g ^ + Jcn(d)log{detI(e)}^de 

- f Tr(e)logn(6)d6 + o(l) (6) 

where d is the dimension of 6, detA denotes the determinant of a matrix A 

and 1(6) — [lij(0)] is d x d Fisher information matrix given by 

'diogpix^e) dhgpix^ey 
i(e) = E0 d$i d6j 
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which is assumed to be positive definte. Thus K(p(9\X),n(9)) is the sum of 

a constant, which does not depend on the prior, and a term which converges 

to the functional 

{detl{9)}1'2 

J{*(-),Ci)= [ 7 T ( 0 ) l o g ^ 
Jd TT 

<w. 

^(9) 

If we maximize J(TT(-), Ci) with respect to all priors over d, we get the Jeffreys 

prior concentrated on d, i.e., 

const.fdet/^)}1/2, if 6 e Q 

0, otherwise. 

If we now let i —> oo to make d tend to the whole of 0 we may regard 7r,'s 

as converging to the Jeffreys improper prior (see [34]) 

nj(9) = (de t /^)} 1 / 2 . (7) 

Thus under suitable regularity conditions the Jeffreys prior is a reference prior. 

When parameters can be arranged according to order of importance, 

Bernardo ([15]) and Berger and Bernardo ([9]) suggest a step by step maxi­

mization. In fact, they suggest stepwise maximization in all cases, with suit­

able reparametrization. This leads to a modification of the Jeffreys prior. It 

has worked very successfully in many examples ([9]). It is these latter priors 

that are now called reference priors. 

In case partial information is available (vide [6], Sec. 3.4), on prior mo­

ments or quantiles, one can minimize with respect to TT, the Kullback-Leibler 
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functional 

K(n,n0) = f n(0)\og 
Je 

* < * > . * 

subject to 

[ 9i{0)n(9)d9 = Ai,i = l,...,k. 
Je 

Here no is a nonsubjective prior, Jeffreys or reference or probability matching, 

that one starts with and gi(9) is 6* or an indicator IBX®) where Bi is some 

interval (ci,di). For example, if one wants to specify the three quartiles, one 

would set Bt = (Qi-i, Qi), i = 1,2,3, where QQ = —oo and Qi denotes the ith 

quartile, i = 1,2,3, and A\ — A2 = A3 = 1/4. Let 

/ k 

TT1(9) = constant, exp I ^ \gi{9) 

where Aj's are chosen to satisfy the given constraints. Then, subject to TT 

satisfying the constraints, 

K(n, TTO) = / TT(0) log ^§rdB + K(n, TT,) = £ \A{ + K(n, TT,) 
Je TTO{0) ^ 

is clearly minimized if TT = -n\. 

Sun and Berger ([71]) derive reference priors for multiparameter cases 

where prior information is available for some of the parameters. Given a 

subjective conditional prior density 7T5(02|0i), where 9 = (^1,̂ 2)1 or a sub­

jective marginal prior density 7rs(#i), they derive respectively the marginal 

reference prior irr(9i) or conditional reference prior nr(92\9i). Also, a method 
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for finding marginal reference priors is proposed when #1 and 62 are known to 

be independent. 

We now indicate how Jeffreys prior can be obtained as a Lebesgue measure 

after transformation. Consider a one-one smooth transformation ip(6) of 6 

such that the information matrix 1^ with the new parametrization ip is identity 

(/) at ip(Oo). This means the local geometry in the ip space is Euclidean near 

ip{0o) and so the Lebesgue measure dtp is a suitable uniform distribution near 

ip(60). If we lift this back to the 9 space making use of the jacobian and the 

elementary fact 

dB, 

dipt [hM\ 
de3 
dipt 

= r" = i. (8) 

we get Jeffreys prior in the 6 space, namely 

dtp det 
Mi 
dipi 

- l 

dti = {detl(8)}1/2d9. 

An alternative way is to put a uniform distribution on a finite set of points in 

the parameter space that approximate well all parameter points and then put 

a discrete uniform prior on this. If the metric used is Hellinger then it can 

be shown that the discrete uniforms converge weakly as the approximation is 

refined more and more and the limit is the Jeffreys distribution. The same 

procedure can be applied to infinite dimensional cases also. For details see 

[32]. For a more direct derivation of the Jeffreys prior from the Hellinger 

metric see [43], Sec. 5.4. 
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One can easily see that under the usual regularity conditions the Jeffreys 

prior is also invariant in the sense of (4). Jeffreys prior for 8 is given by (7). 

It is easily verified from (8) that the Jeffreys prior in the 77-space given by 

.W-{«[*(2^lfi.2iig&lfi)]p 

satisfies (4). 

The most popular nonsubjective priors are Jeffreys, reference and uniform. 

Carlin and Louis ([20]) suggest some other ad hoc priors which are easier to 

calculate in high dimensions. However, use of nonsubjective priors, in general, 

needs more care than they seem to suggest. This is discussed in [23] and our 

Section 6. 

Another popular way of generating nonsubjective priors is by matching 

posterior and Frequentist probabilities. This is based on the intuition that 

the probability statements of a Bayesian with a nonsubjective prior can be 

validated by a Frequentist interpretation also. These have been called proba­

bility matching by Ghosh and Mukerjee ([36]). For simplicity let us consider 

only a two-dimensional parameter 9 = (9\,02) where 9\ is the parameter of 

interest. Let us first assume that the nuisance parameter 92 is orthogonal to 

#i in the sense of [24]. Ghosh and Mukerjee ([36]) indicate how the Bayesian 

and Frequentist Bartlett corrections can be used to choose a prior IT such that 

a likelihood ratio based confidence set has the same frequentist and posterior 
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probability of covering the true value up to 0{rT2). We choose a confidence set 

Ai^a(X) for Qi (that depends on the prior) such that the posterior probability 

P(91 € A - a P O | X ) = 1 - a + 0(n~2). 

Suppose we now wish to choose the prior n, and hence A\-a, such that the 

frequentist probability 

Pe{91 e Ai-a{X)) = 1 - a + 0(n-
2) (Va) (9) 

uniformly on compact sets of 9. 

As indicated in [36] (see, e.g., [34] for details) a solution of (9) is given by 

the second-order partial differential equation for ir, 

d 
d9i 

7Tio(0) fi^lO.20 ^12 

Il\l22) J 992 I A 1̂ 22 J hi I i?l 

where 7rlo(0) = dn(9)/d9u Ktj = Eg {di+nogp(Xl\9)/d9[d0J
2} , In = 

-K2o, I22 = -Km and 

Kim, = Ee [{tf+nogpixM/deidei} {di'+j'\ogP(x1\9)/d9i;d9{}}. 

Example 7. Let X^s be i.i.d. N(/j,,a). If /x is the parameter of interest, 

the probability matching equation (10) turns out to be 

2d
2ir(n,a) d 

This equation is satisfied, for example, by any prior proportional to 1/u. 
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In case a is the parameter of interest, the probability matching differential 

equation for 7r(/x, a) is 

d_ 
da 

1 2dir(ii,o) 5 
= 0 

which is satisfied by a prior of the form q((J>)/a where #(//) is an arbitrary 

function of (i. 

It is to be noted that the Jeffreys prior nj(fi, a) = 1/a2 is not probability 

matching in both these cases. 

If we start with one-sided confidence intervals, i.e., we choose 6itCt(X), 

depending on the prior n, such that 

P(6i < 0iAx)\x) = 1 - « + 0{n~l), 

and wish to choose the prior such that 

(a) Pe{9l < 6ha(X)) = 1 - a + 0{n-l)Va 

(uniformly on compact sets of 0) 

or 

or 

(b) (no nuisance parameter) 

PeA^i <el,a(X)) = l-a + 0{n-l)Ma 

(uniformly on compact sets of 9i). 

(c) (integrated out nuisance parameter given conditional prior 7r(02|#i) 
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/Pe{Oi < 91,a{X))n{92\91)d92 = 1 - a + 0{n^) V a 

(uniformly on compact sets of #1). 

For one-sided intervals matching is, in general, not possible beyond 0{n~l) 

(see [34]). 

The solution for (b), due to Welch and Peers ([73]) and Stein ([69]), is the 

Jeffreys prior. It can be shown that no such result is available if the dimension 

of d\ is more than one. The differential equation corresponding to (a), due to 

Tibshirani ([72]) ( see also [60]), is 

-d(In)l'2/d91 = (In)V\w(6)/Tr(e), 

where J11 = (-/n) -1- The solution to this is 

7r(0) = {/ll(0)}1/29(02), 

where q(92) is an arbitrary function and, as before, In(9) is the (per observa­

tion) Fisher information for 9\ when 92 is held fixed. 

Condition (c) leads to the equation 

> \*>i I /I'i'wJ illm 

On writing TT(9) = TT(9I)IT(92\9I) where IT(92\9I) is given, e.g., n(92\9i) = 

•I liy 

-̂ 22 (9), we get the solution 

TT(0I) = constant x If n{92\91)In
/2(9)d92\ . 
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This is similar to the reference prior in this case (see, e.g., [36], Sec. 2) except 

that the reference prior obtained as 

7r(0i) = constant x exp ^J IT (0 2 |0I) logl{[2(9)d92\ 

is the geometric mean of / J (9) with respect to n(92\9i) whereas the (prob­

ability matching) prior obtained here is the harmonic mean of l\{2{9) with 

respect to TT(92\9I). It is interesting to note that in the case of construction 

of a nonsubjective prior by taking limits of discrete uniform, as mentioned 

above in this section, we get square root of the arithmetic mean of ln(0) with 

respect to TT(02|0I) = ll2{9) ([32])-

So far we have considered only the case with two orthogonal parameters 

9\ and 92 (or just a single parameter 9{). Probability matching differential 

equations for the nonorthogonal cases are obtained e.g., in [25] and [30]; see 

also [57] and the references therein. We present below the result of Datta and 

Ghosh ([25]). 

Let XiS be i.i.d. with a common density involving a d-dimensional param­

eter 9 and g(9) be a real-valued twice continuously differentiable parametric 

function of interest. Consider a prior density n(0) of 9 with the following 

property of matching frequentist and posterior probability 

Pe[yfr(9(e)-9(d))/Vi < A = P[yfr(g(6)-g(e))/yfi < z \X]+Op(n-
1) (11) 

for all z. In (11), 9 is the posterior mode or MLE of 9 and v is the asymptotic 
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variance of v^(0(0) - 9(0)) upto Op{n-1'2). 

Datta and Ghosh ([25]) show that (11) holds if and only if 

E£{»&(0M*)} = o (12) 

, = i <Mj 

where rj(6) = {r)i(0), ••-, %(#))' is denned as 

m = w-w/. with v » = ^ • • • • £ « < • » ' 

Example 7 (continued). X/s arei.i.d. AT(/x, CT). For the parametric function 

g(/i, CT) = /i/<r, the probability matching equation (12) turns out to be 

d_ 
d/j, 

V2a2 

(M
2 + 2a2)1/2 ir(fx,a) d_ 

da 

\ia 

V2(M2 + 2a2)1/2 
j—7r(/X, O") = 0. 

This equation is satisfied by n(/j,,a) oc l/o\ 

With the cases g([J,,cr) = \i and g(n,o) = a, the probability matching 

equations reduce to 

— [<77r(//, cr)] = 0 and — [cr7r(/i,cr)] = 0 

respectively. Both these equations are satisfied by n(fj,,a) oc 1/CT. 

Two comments are in order. Very often the nonsubjective priors are im­

proper. They can be used in an example only if the application of Bayes the­

orem produces a proper posterior, i.e. one needs fp(xi,..., xn\d)ft(9)d9 < oo 

for almost all x\, x2, • • •, xn. It is an odd fact that Jeffreys prior and reference 
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priors have this property more often than the uniform or probability match­

ing priors. An example where the Jeffreys or reference prior does not lead to 

proper posterior is given in [35]. 

ft was mentioned above that a similarity exists between inference based on 

nonsubjective priors and that based on Frequentist ideas, i.e., Classical Statis­

tics. Why would then one prefer nonsubjective Bayesian Analysis? Bayesian 

Analysis produces posteriors and data based estimates of risk, Classical Statis­

tics lacks these. 

There are several criticisms of nonsubjective Bayesian Analysis. We take 

them up in the next section. 

The nonsubjective priors discussed so far can be used for point and interval 

estimation problems but can cause difficulties in model selection or testing 

problems, as first pointed out by Jeffreys. The source of the difficulty is that 

an improper prior, unlike a proper prior, is not normalized, it is defined only 

up to a multiplicative constant. This does not matter in estimation because 

the undetermined constant appears both in the numerator and denominator 

of the posterior and so gets cancelled. We explain below very briefly how this 

problem is tackled in testing. 

Example 8. Let Xi,X2, • • • ,Xn be i.i.d. N(0,1). We wish to test H0 : 

9 = 0 vs. H\ : 0 ^ 0. Suppose H0 and Hi have equal probabilities (this 
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is a nonsubjective choice) and, given Hi, 9 has a uniform distribution, i.e., 

•K(9\HI) = c, —oo < 9 < oo. Bayesian hypothesis testing is based on the 

posterior probability of H0 which is given by 

P(x1,...,xn\e = o) 
P(Xi, ...,xn\e = o) + cj^piXi,..., xn\e)de-

To get rid of c, we use one of the observations, say Xx, to get a proper prior 

and the remaining to get the likelihood. 

Start with TT(9\HI) — c and calculate 

rati v^ c^eM-UX^-°)2) 1 , l , v n\2s 
7T(9 HuXi) = — - ^ r - T ? ^ r r r — = ^ = exp( - -{X r - 9)2). 

/ c ^ e x p ( - i ( X i -9)2)d9 V2TT 2 V 

Similarly, -K{9\HQ,X{) remains the point mass at 9 — 0. Now take -K{9\HI) as 

-p= exp(—\{Xi — 9)2) and use X2,.. •, Xn as data and recalculate the posterior 

probability of H0. 

It is interesting to observe that the posterior ir(0\Hi,Xi,..., Xn) with prior 

•K{9\H\) = c is the same as the posterior ir(9\Hi,X2, • • • ,Xn) obtained from 

the prior TT(9\HI,XI) = N(Xi, 1), so estimation under Hi does not change. 

One might ask why condition on Xx? Why not on any other X{1 Why 

not on Xix,..., Xim ? A new methodology which answers these questions is 

available in [12], [13], [14], [40], [41] [42] and [59]. This is discussed in Section 7. 

For reconciliation of posterior probability of H0, when H0 is rejected, with 

appropriate Frequentist evidence, see [10]. 
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6. Nonsubjective Priors Re-examined 

Having argued in favour of the nonsubjective Bayesian paradigm, we now 

turn to some of its criticisms. There are several of them. The most important 

ones are listed below as comments or questions. 

1. "Noninformative priors do not exist" (Poincare, Lindley and others) (as 

mentioned earlier, "noninformative prior" is an older terminology for what we 

are calling nonsubjective prior.) 

2. Nonsubjective Bayesian Analysis is ad hoc and hence no better than 

the ad hoc paradigms subjective Bayesian Analysis tries to replace. 

3. There are too many nonsubjective priors for a problem. Which one to 

use? 

4. Nonsubjective priors are typically improper. One should not use im­

proper priors which do not make sense as quantification of belief (Lindley and 

others). 

5. If the parameter 9 has a uniform distribution because of lack of igno­

rance, then this should also be true for any smooth one-one function r\ = g{6) 

(Fisher and others). 

6. Why should a nonsubjective prior depend on the model of the data? 

(Lindley and almost all critics). 

7. What are the impact of this dependence on coherence and likelihood 
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principle? 

Our responses to these criticisms are as follows. First, The object of non-

subjective Bayesian Analysis is not to search for "nonexistent" noninformative 

priors but to produce posteriors which are approximations to possible poste­

riors that would result if one could elicit subjective priors. As it indeed leads 

to such posteriors it is not ad hoc. It tries to find posteriors which reflect the 

data "as much as possible". Definition of reference priors indicates one precise 

way of doing this. 

Although there may be many nonsubjective priors, the posterior (and 

hence inference derived from it) based on nonsubjective priors usually does 

not change much if one switches from one prior to the other. In such cases we 

may hope for some sort of consensus in a "conventional prior" which is likely 

to be Jeffreys or reference prior. 

In some cases the posterior based on an improper prior is identical with 

the posterior based on a proper but finitely additive (not countably addi­

tive) prior (see, e.g., [45]). In fact many characterizations of "coherence" are 

through finitely additive priors. Moreover, we have been stressing the poste­

rior rather than the prior. A nonsubjective, improper prior is a convenient 

tool for producing a proper, mostly data driven posterior. It is the posterior 

which should be used to make inference, not the prior. Finally, if one feels 

a need to compare prior probability of two subsets, the subsets should both 
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have finite measure. Otherwise the comparison can indeed be misleading. 

As for the objection raised in (5), note that one does not look for priors 

which represent complete lack of information. Complete lack of information 

has not been defined satisfactorily. But some invariance under transforma­

tions is desirable and most nonsubjective priors possess such properties. The 

Jeffreys prior has this property for all smooth one-one function g{6). Weaker 

invariance properties hold for reference and probability matching priors. Also, 

the Jeffreys prior is a uniform prior for all ??'s as interpreted properly in the 

previous section. 

We turn now to the last two points, namely, (6) and (7). We have argued 

in the last section that the Shannon entropy is not appropriate for measuring 

information in a prior density. Indeed the lack of any such measure in informa­

tion theory suggests that the information in a prior cannot be defined except 

in the context of an experiment. Further support comes from the measure of 

information in a prior used by Bernardo for constructing a reference prior. In 

view of the dependence of the notion of information on an experiment, it is 

but natural that nonsubjective priors should depend on the model. 

As regards coherence in the sense of Heath and Sudderth there is no prob­

lem since their definition is in the context of a given model. So a (proper) 

prior depending on the model does not lead to incoherence. 

The impact on LP is more tricky. The LP in its strict sense is violated 
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because the prior and hence the posterior depend on the experiment as well 

as the likelihood function corresponding to a given data. However, for a 

fixed experiment, the LP is not violated, and the posterior, decision based on 

the posterior and posterior risk depend only on the likelihood function. The 

consequences are further discussed below. 

Inference based on nonsubjective priors violates the stopping rule princi­

ple for different stopping rules lead to different experiments. In particular, 

in Example 1.2 of [20], originally suggested by Lindley and Phillips ([55]), 

one would get different answers according to a binomial or negative binomial 

model. The data consists of 9 heads and 3 tails in 12 independent tosses of a 

coin. The Fisher information contained in all the observations is 12/(0(1 — 6)) 

for the binomial model and 3/(0(1 — 6)2) for the negative binomial where 6 

is the probability of head in a trial. So the Jeffreys priors are similar but 

slightly different. Suppose we want to test the null hypothesis H0 : 0 = 1/2 

versus the alternative hypothesis Hi : 9 > 1/2. As reported in [20, p. 4], the 

p-values for the binomial and negative binomial models are respectively 0.075 

and 0.0325 and therefore, with the usual 5% Type I error level, the two model 

assumptions lead to two different decisions. A Bayes test will be based on 

a nonsubjective Bayes factor (BF) described in Section 7. We assume that 

Ho and H\ have equal prior probabilities (a nonsubjective choice). For the 

binomial model the Jeffreys prior is proportional to #_ 1 /2(1 — 9)~ll2 which 
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can be normalized to get a proper prior. For the negative binomial model the 

Jeffreys prior is proportional to 0_1/2(1 — 8)~l which is improper and so cannot 

be used in testing. One way out would be to treat this as data on three i.i.d. 

geometrically distributed random variables and find the intrinsic prior (see 

[12]) in this case. One can then calculate the BF under the negative binomial 

model also. The BF under the binomial model (with Jeffreys prior) and the 

BF under the negative binomial model (with the intrinsic prior) are respec­

tively 2.073 and 2.662. They are different as were the p-values of Classical 

Statistics but unlike the p-values, one of which is double the other, the BF's 

are quite close. Incidentally, Bernardo and Smith [16, p. 249] point out that 

even from a subjective Bayesian point of view there is a difference between 

the two cases for in the case of a binomial model, 6 can be one but not for a 

negative binomial that stops with the rth tail. See also [9, Example 4] and 

[74]. 

However, we argue the violation indicated in the previous paragraph is less 

serious. If the stopping time is ancillary as in Cox's example (Example 2) and 

the observations are i.i.d., Jeffreys, reference and probability matching priors 

will not depend on the stopping rule. Most deviations from fixed sample size 

are of this kind. 

We would also suggest, not by way of a defence or justification but as a 

sort of apology, that the violation of the strict LP is not such a bad thing if 
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we have to have some Frequentist validation. Surely, a paradigm that seeks 

such validation cannot avoid depending on the model for an experiment. 

7. Nonsubjective Bayesian Estimation and Testing 

We have described in Section 5 how priors can be chosen in a nonsubjective 

way. Having chosen the prior one uses the Bayes theorem to update it in the 

light of the given data and finds the posterior, on which the inference is based. 

We briefly discuss below Bayesian estimation and testing with nonsubjective 

priors. 

7.1 Estimation 

Posterior distribution of 9 is obtained via Bayes's formula given in equation 

(3) of Section 4. Consider a nonsubjective prior -K for which the integral in 

the denominator of (3) converges. This leads to a proper posterior. Even if 

the prior is improper, often with sufficient amount of data the posterior turns 

out to be proper. 

Consider for simplicity the case with a real parameter 9. The usual point 

estimates of 9 are summary measures of the posterior, such as its mean, median 

or mode. If estimation of 9 is considered as a decision problem with a loss 

L(9,a), the posterior risk in estimating 9 by "a" is given by the average 

posterior loss 

ip{a\X) = f L{9,a)Tr(9\X)d9. 
Je 
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Given the observed data X, a Bayesian chooses "a" to minimize ip(a\X) and 

reports this minimizing "a" as Bayes estimate of 9 and the corresponding 

ip(a\X) as a measure of risk for the given data. For example, for squared error 

loss L(9,a) = (9 — a)2, the Bayes estiamte is given by E(9\X), the poste­

rior mean and the corresponding risk is evaluated by Vai(0\X), the posterior 

variance. 

Example 9. Let X\, • • •, Xn be i.i.d Bin (1,9), 0 < 9 < 1. Consider a Beta 

(a, 0) prior for 9 given by the density 

n(9;a,f3) = ^ ± ® p - \ l - 9f~\0< 9 < 1. (13) 

Depending on a and j3 this prior can take on a variety of shapes and is proper 

for any a, j3 > 0. 

With a = j3 = 1/2 we have the Jeffreys prior for this problem: 

7rJ((9) = 7r(e;l/2,l /2)oc[(?(l-e)]-1 /2 . 

If we take a = j3 = 1, (13) gives the uniform prior ni(9) = 1,0 < 9 < 1. 

Another nonsubjective prior proposed in the literature is the improper prior 

T T ^ H ^ l - f l ) ] - 1 

which corresponds to the case a = f3 = 0. 

The posterior obtained from the Beta (a, /?) prior via Bayes's formula 

turns out to be a Beta distribution again with parameter a' = a + S and 
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n 
B' = 0 + n — S where S = T, Xi} and hence the Bayes estimate for squared 

fc=i 

error loss is the posterior mean 

E(9\X) = a'/(a' + 8') = {a + S)/(a + B + n). 

It is interesting to note that the Bayes estimate may be expressed as a weighted 

average of the prior estimate a/(a+ 8) and the classical estimate (MLE) S/n: 

E(9\X) = ( a + P ) a + ( n ) S 
{ ' a + 0 + n!'a + 0 a + B + n'n' 

The Bayes estimates for the nonsubjective priors nj,ni, and 7r2, obtained as 

special cases, are respectively 

~ S + (1/2) - 5 + 1 J . S _ _ , 
dj = i-f-^, 6X = — — and 62 = - MLE . 

n + 1 n + 2 n 

Thus the three nonsubjective priors are very similar in their answers and one 

of them, namely 7T2, leads exactly to the classical estimate S/n. We note that 

the posterior obtained from the improper prior TT2 is proper if both S and 

(n — S) are > 0, i.e., Xj's are not all zero or not all one. 

7.2 Hypotheses Testing or Model Selection 

A statistical hypothesis may be represented by a probability model for the 

given data X. Bayesian approach to hypothesis testing is based on calculation 

of the posterior probabilities of the models representing the hypotheses under 

consideration. 
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Consider two models Mi and M2 for data X with density pi(x\0i) under 

model Mi, 9i being an unknown parameter of dimension di,i = 1,2. Given 

prior specifications 7r,(^) for parameter 9t and prior probabilities P{Mi) for 

model Mi, the posterior probabilities of the models can be obtained, via Bayes 

Theorem, as 

P(M.\x) = P(Mi)ml(x) 
n , | X ; P(M1)m1(x) + P{M2)m2{x)' ' 

where m,i(x) — Jpi(x\9j)'Ki(9i)d9i is the marginal density of x under Mt. 

Bayesian hypothesis testing or model selection is achieved by comparing 

the posterior probabilities P(Mi\x), and hence may be based on the ratio 

P(M2\x) P(M2) p , . , _ 

pjm = pjM7)B2l{x)' (14) 

where B2\ = B2i{x), known as the Bayes factor (BF) of M2 to Mi is defined as 

B2i = m2{x)/mi(x). If the models are a priori judged equally likely, P(M{) = 

P(M2) (a nonsubjective choice), the ratio in (14) is equal to the Bayes factor 

•621-

As already mentioned and illustrated at the end of Section 5, for improper 

nonsubjective priors 7Tj which are defined only upto arbitrary multiplicative 

constants, the Bayes factor is indeterminate. This indeterminacy, noted by 

Jeffreys ([48]), has been the main motivation of new nonsubjective methods. 

A number of methods have been proposed in [67], [66], [12], [13], [14], [42], 
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[59] and others, including [48]. For a review of these methods we refer to [12], 

[14], [40], [41] and [42]. Below we briefly discuss only some of these methods. 

The Intrinsic Bayes Factor. 

A solution to the problem with improper priors is to use part of the data 

as a training sample. The idea is to use the training sample to obtain proper 

posterior distributions for the parameters which can then be used as priors to 

compute a Bayes factor with the remainder of the data. This was illustrated 

earlier through Example 8 of Section 5. 

Let Xi,X2, • • • ,Xn constitute the whole sample. For a subsample 

Xh,Xh,...,Xjm(l < jx < j2 < . . . < jm < n), the posterior density of 

9i given Xjx,..., Xjm under Mj is given by 

7ri(6i\Xjl,...,Xjm) - fl(xn,...,xjm\ei)7ri(el) 
3ml mi(Xh,...,Xjm) 

fi{Xjl,...,Xjm\9i)ni(0i) i = l 2 (15) 
jfi(xjl,...,xjm\ei)7h(ei)dei 

Berger and Pericchi ([12]) use training sample of minimal size, leaving most 

part of the data for model comparison. Let m be the mimimum sam­

ple size such that ni(9i\Xj1,... ,Xjm),i = 1,2, are proper or equivalently, 

mi(Xj1,... ,Xjm), i = 1,2, are finite. Let Xj1,... ,Xjm be such a minimal 

training sample. The Bayes factor with the remainder of the data using the 

above iTi(9i\Xj1,..., Xjm) in (15) as priors (conditional BF) is given by 
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Jl'" if^::^%-M^---^jdel 

~ B-m2(xn,...,xJmy (16) 

It is to be noted that the arbitrary constant multiplier of B2\ is cancelled by 

that of mi(Xj1,..., Xjm)/m2(Xj1,..., Xjm) so that the indeterminacy of the 

Bayes factor is removed in (16). However, this conditional BF in (16) depends 

on the choice of the training sample Xji:..., Xjm. Berger and Pericchi ([12]) 

suggest considering all possible training samples and taking average of the MM 

conditional BF's B2\{ji, • • • ,jm)'s to obtain what is called the intrinsic Bayes 

factor (IBF). For example, taking an arithmetic average leads to 

AIBF21 = B 2 ' j : Zfyn,---,X
x
Jm\ (17) 

while the geometric average gives 

the sum and product in (17) and (18) being taken over the QJ possible 

training samples X^,..., Xjm with 1 < j \ < ... < j m < n. 

Berger and Pericchi ([12]) also suggest using trimmed averages or the me­

dian (complete trimming) of the conditional BF's when taking an average of 

all the conditional BFs does not seem reasonable (e.g., when the conditional 
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BFs vary much). AIBF and GIBF have good properties but are affected by 

outliers. If the sample size is very small, using a part of the sample as a 

training sample may be impractical and Berger and Pericchi ([12]) recom­

mend using expected intrinsic Bayes factors that replace the averages in (17) 

and (18) by their expectations, evaluated at the MLE. The AIBF is justified 

by the possibility of its correspondence to actual Bayes factors with respect 

to "intrinsic" proper priors at least asymptotically. Berger and Pericchi ([12] 

and [14]) and Ghosh and Samanta ([41]) have argued that these intrinsic priors 

may be considered to be natural "default" priors for the testing problems. 

The Fractional Bayes Factor 

O'Hagan ([59]) proposes a solution using a fractional part of the full likeli­

hood in place of using training samples and averaging over them. The resulting 

"partial" Bayes factor, called the fractional Bayes factor (FBF) is given by 

m2(X,b) 
r at2\ - , > 

mi{X,b) 

where b is a fraction and 

m,i(X,b) 

To make the FBF comparable with the IBF one may take b = m/n where m 

is the size of a minimal training sample as defined in the case of IBF. O'Hagan 

also recommends other choices of b, e.g., b = ^fnjn or log n/n. 
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Example 8 (continued). Here size of a minimal training sample is one and 

the conditional BF, conditined on a single Xiy is 

n - ^ e x p K l ^ X n X 2 - * ? ) ] . 

The IBF's are obtained by averaging these n conditional BF's. The AIBF in 

this case approximately equals the BF with a N(0,2) prior for 9. 

The FBF, with fraction b is given by 

Vbexp[n{l-b)X2/2] 

and is exactly equal to the BF with a iV(0, (b~1 — l)/n) prior. 

8. High Dimensional Problems, PEB and HB 

The nonsubjective Bayesian methods discussed earlier do not work well 

when the dimension of 9 is large. However, two satisfactory nonsubjective 

Bayesian methods have been developed, namely, Parametric Empirical Bayes 

(PEB) and Hierarchical Bayes (HB). Basically these are methods for handling 

high dimensional random effects. 

Suppose we have p similar but not identical populations with densities 

f(x, 6i),..., f(x, 9P) and from the jth we have samples Xji,..., Xjr,j = 

1, 2 , . . . ,p. The total number of observations is n = pr. These p populations 

may correspond to p clinical studies at p hospitals or p villages or countries 

etc. 
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Often it seems natural to model 0i,...,9pas exchangeable and hence given 

a hyperparameter vector rj , i.i.d. For fixed 77, one may choose one of the 

partially specified nonsubjective priors for 0$ — e.g., conjugate priors or their 

mixtures. 

Thus for fixed t], 9j's are i.i.d. Tr(9i\r]) and given 77 and #j's, Xji's are 

independent, Xji ~ f(xji\9j). 

We illustrate with a simple but illuminating example. The p populations 

are N(9j,a2), a2 assumed known for simplicity, r = 1 so that the observations 

are simply X\ = Xn,X2 = X2\,... ,XP = Xpi, and 0j's are i.i.d. N(T],T2) 

where again r 2 is assumed known for simplicity. Let r\ have uniform distribu­

tion on M. The following facts are easy to verify. 

(1) Given 77, (integrating out 0's) Xj's are i.i.d. N(r),a2 + r 2 ) 

(2)n(ej\V,Xu...,Xp) = n(9j\r,,Xj)=N(*^,g&) 

(3)Tr(r,\Xl,...,Xp)=N(X,*2 + T2) 

(4) iriOjlXu ...,XP) = J 7r(^|r7, Xj)N(X, a2 + T2){drj) 

The last relation in this Hierarchical Bayesian Analysis describes how the 

Bayesian inference engine provides inference about 0j given the full data set. 

It may seem puzzling that inference about 9j should depend not only on Xj 

but the full data set. This happens because the full data set is used for r] via 

(3) and then used in the integral apprearing in (4). The hyperparameter 77 
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captures some aspect common in the p similar populations. Use of it through 

(3) makes (4) superior to the posterior n(6j\Xj) depending only on Xj. If we 

had put a noninformative prior for 9j's our estimates would have been Xj for 

dj. The HB method produces instead an estimate that shrinks the estiamte 

of 6j towards X. Note 

E{0j\Xu ..., Xp) = f E(6j\r], Xj)N(X, a2 + T2)dr, = (Xa2 + XjT2)/{a2 + r2) . 

Parametric Empricial Bayes does not put a prior on rj but replaces rj by 

an estimate f), e.g., MLE or UMVUE of r\ based on (1), i.e., in this example rj 

is replaced by X. Then (2) can be used instead of (4) with 77 replaced by X. 

The point estimates for 9j are almost indistinguishable in the two methods 

described above but the variances of the estimate of 6j can differ substantially. 

The HB uses 

(5) E{{6j - 9j)2\Xu ...,XP} where 0,- = E{6j\Xu ...,XP) 

whereas (naive) PEB uses 

(6) E{(9j - 9j)2\f),Xj} where dj = E{9j\fj,Xj). 

The second expression is somewhat inappropriate because it does not provide 

for the variation of 77 around fj either in a Bayesian or a Frequentist sense. 
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In this particular example (6) tends to be an underestimate. Hence (naive) 

confidence (credibility) intervals for 9j of the form 9j ± za/2 x v/(6) cover 

Oj with probability less then 1 - a. Morris ([56]) has provided an ad hoc 

approximation to (5) and suggested the use of this approximation instead of 

(6) in the PEB confidence interval. He has conjectured that the PEB coverage 

probability will then be > 1 — a. Subsequent developments for this example 

as well as the general case are discussed with great clarity and detail in [20, 

Ch. 3]. Morris's conjecture is re-examined in [37]. See also [26]. Both these 

papers make use of the techniques of higher order asymptotics and probability 

matching discussed in Section 5. 

In complicated problems the posteriors cannot be written down as easily 

as in this example. One has to use MCMC. Good sources for methods and 

discussion are [20], [31] and [64]. In such problems the estimate f] required 

by PEB is not available in explicit form. The last two books contain a good 

discussion of how fj can be found numerically by a judicious application of the 

EM algorithm. 

A few general remarks are in order. There is a lot of information on 77 for 

moderately large p, as is evident from (3) and posterior normality. It is less 

clear but true that there is a lot of information in the empirical distribution of 

Xi's which can be used to guess the approximate form of 7r(0j|?7, XJ), provided 
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mixtures are identifiable. In particular, one should be able to assess whether 

the assumed normality in the likelihood and prior is valid for X/s or only 

after a suitable transformation. The methods just discussed, namely, PEB 

and HB do so well compared to classical Frequentist intervals for dj based on 

Xj because of these two facts. That the improvement can be very dramatic 

is evident from Table 3.4 of [20, p. 101]. Average length of 95% confidence 

intervals goes down from 39 to about 5 for naive PEB and about 8 for adjusted 

PEB. An adjustment is needed to get the confidence coefficient right. 

9. Concluding Remarks 

A nonsubjective Bayesian accepts subjective input but faces the fact that 

it is often not available at all and even when available specifies only parts of 

the prior, so that nonsubjective priors need to be constructed and used for 

posterior analysis. He also believes in a certain amount of Frequentist vali­

dation. We believe as the Bayesian paradigm becomes the central paradigm 

of our subject and is applied to all kinds of old and new data, there will be 

no alternative to being more flexible without losing a hard core of subjectiv­

ity, namely, that inference takes place through interaction of data and the 

analyst's knowledge and belief. Using nonsubjective priors is part of such 

flexibility. 

We have tried to justify a move towards a nonsubjective Bayesian 
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paradigm, away from both Data Analysis and Classical Statistics. The new 

paradigm has the strengths of the last two but avoids their weaknesses. We 

have sketched out briefly how the approach works in low and high dimensional 

problems and pointed out how one can ensure Frequentist validation as well as 

data based posterior (rather than integrated) risk estimates. Cox ([23]) pro­

vides brief critical overview of some aspects of these methods from the point 

of view of Classical Statistics. 

For lack of space we have not discussed any of these issues in the infinite 

dimensional case of Bayesian nonparametrics. Frequentist validation is con­

siderably weaker in this context and consists in checking posterior consistency 

and optimum rates of its convergence (in a Frequentist sense), see, e.g., [33] 

and the references therein. Hopefully, future work will also lead to Bernstein-

von Mises theorems on posterior normality for many interesting functionals. 

Ghosal et al. ([32]) present a general procedure for getting a uniform distribu­

tion in infinite dimensional cases that leads to the Jeffreys prior and analogues 

of reference priors in the finite dimensional parametric cases. For more details 

on all these points we refer the reader to [39]. 

No discussion of nonsubjective Bayesian Analysis can be complete without 

some observations on Bayesian robustness, or more precisely, robustness with 

respect to prior. Robustness is taken care of in different ways for different 
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purposes. 

The minimum that needs to be done is to do some analysis of sensitivity of 

posterior with respect to prior. Most MCMC programmes can easily accomo­

date calculation of posterior quantities for different priors. Both Carlin and 

Louis ([20]) and Gelman et al. ([31]) discuss this aspect in detail with quite 

specific advice about how to handle outliers. They also discuss in detail model 

assessment through residuals and cross validations. One leaves out a part of 

the data and uses the rest to produce a predictive distribution. The predictive 

distribution is then tested on the first set. One can also approach robustness 

from a theoretical point of view with general nonparametric contamination 

classes of priors 

7TC = 7To(l - C ) + 6 7 r G , 

•KG belongs to some nonparametric class Q. A good, comprehensive discussion 

can be found in [6] and [8]. 

At a third level one may think of robust Bayesian Analysis as an alter­

native, nonsubjective Bayesian paradigm which rests on relaxed rationality 

axioms. The preference ordering is assumed to be a partial rather than linear 

order. One then gets a (subjective) family of priors rather than a single sub­

jective prior. This class leads to quantification of uncertainty via upper and 

lower probability. It has striking similarities with a theory of such probabili-
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ties due to A.P. Dempster and Glenn Shafer. For details see [65] and [49]. The 

method of lower and upper probabilities, once quite popular among engineers, 

seems to be less used now because it is not easy to implement and can lead 

to counter intuitive inference. 

Appendix: Birnbaum's Theorem on Likelihood 

Principle 

The object of this appendix is to rewrite the usual proof (e.g., as given in [4]) 

using only mathematical statements and carefully defining all symbols and 

the domain of discourse. 

Let 9 G 6 be the parameter of interest. A statistical experiment £ is 

performed to generate a sample x. An experiment £ is given by the triplet 

(X,A,p) where X is the sample space, A is a class of (measurable) subsets 

of X and p = {p{-\9),6 6 0 } is a family of probability functions on (X,A), 

indexed by the parameter space 0 . For simplicity, we assume both X and 0 

are finite sets; A is taken to be the class of all subsets. Below we consider 

experiments with a fixed parameter space 0 . 

A (finite) mixture of experiments £\,...,£k with mixture probabilities 

7ri,...,7rfc (nonnegative numbers free of 6, summing to unity), which may 

k 

be written as £ nfii, is defined as a two stage experiment where one first 
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selects Si with probability TXi and then observe Xi G Xi by performing the 

experiment £». 

Consider now a class of experiments closed under the formation of (finite) 

mixtures. We use equivalence relations to represent different principles. Let 

£ = (X, A,p) and £' = (X1, A',p') be two experiments and x G X, x' G X'. By 

equivalence of the two points (£,x) and (£',x'), we mean one makes the same 

inference on 0 if one performs £ and observes x or performs £' and observes 

x', and we denote this as 

(£,x)~(£',x'). 

We now consider the following principles. 

The likelihood principle (LP): We say that the equivalence relation "~" 

obeys the likelihood principle if (£,x) ~ (£',x') whenever 

p{x\6) = cp'(x'\9) for all 9 G 6 

for some constant c > 0. 

The weak conditionality principle (WCP): An equivalence relation "~" 

satisfies WCP if for a mixture of experiments £ = £?= i 7Tj5j, 

{£,(i,Xi}) ~ (£i,Xi) 

for any i G { 1 , . . . , k} and Xi G Xt. 
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The sufficiency principle (SP): An equivalence relation "~" satisfies SP if 

(€,x) ~ (£,x') whenever S(x) = S(x') for some sufficient statistic S (for 0). 

The weak sufficiency principle (WSP): An equivalence relation "~" satis­

fies WSP if (S,x) ~ {£,xl) whenever p(x\6) =p{x'\6) for all 6. 

If follows that SP implies WSP which can be seen by noting that 

is a (minimal) sufficient statistic. We assume without loss of generality that 

E p(x\6) > 0 for all xeX. 
eee 

We now state and prove Birnbaum's theorem on Likelihood principle ([18]). 

Theorem. WCP and WSP together imply LP, i.e., if an equivalence relation 

satisfies WCP and WSP then it also satisfies LP. 

Proof. Suppose an equivalence relation "~" satisfies WCP and WSP. Consider 

two experiments £x = (XxA\,p\) and £2 = (X2,A2,P2) with same 0 and 

samples Xj 6 Xi, i = 1,2, such that 

Pi(si |0) = cp2{x2\6) for all 9 G 6 (Al) 

for some c > 0. 

We are to show that (£\,x\) ~ (£2,22)- Consider the mixture experiment 

£ of £\ and £2 with mixture probabilities 1/(1 + c) and c / ( l + c) respectively, 
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i.e., 

1 c „ 
£ = ^—£1 + T—£2-

1 + c 1 + c 

The points (l,£i) and (2,x2) in the sample space of £ have probabilities 

Pi(xi\6)/(l + c) and p2(a;2|#)c/(l + c) respectively, which are the same by 

(Al). WSP then implies that 

(e,(l,Xl))~(£,(2,x2)). (A2) 

Also, by WCP 

{£, (1, x0) ~ {£u Xl) and {£, (2, x2)) ~ (f2) x2). (A3) 

From (A2) and (A3) we have (£1,2:1) ~ (£2,x2)-
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ON SOME PROBLEMS OF ESTIMATION FOR SOME 
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 

B.L.S. Prakasa Rao 

Indian Statistical Institute, New Delhi 

Abstract 

Stochastic partial differential equations (SPDE) are used for stochastic modelling , for 

instance, in the study of neuronal behaviour in neurophysiology, in modelling sea surface 

temparature and sea surface height in physical oceanography , in building stochastic models 

for turbulence and in modelling environmental pollution. Probabilistic theory underlying the 

subject of SPDE is discussed in Ito [2] and more recently in Kallianpur and Xiong [11] among 

others. The study of statistical inference for the parameters involved in SPDE is more recent. 

Asymptotic theory of maximum likelihood estimators for a class of SPDE is discussed in 

Huebner, Khasminskii and Itozovskii [7] and Huebner and Rozovskii [8] following the methods 

in Ibragimov and Khasminskii [9]. Bayes estimation problems for such a class of SPDE are 

investigated in Prakasa Rao [21,25] following the techniques developed in Borwanker et al. [2]. 

An analogue of the Bernstein-von Mises theorem for parabolic stochastic partial differential 

equations is proved in Prakasa Rao [21]. As a consequence, the asymptotic properties of the 

Bayes estimators of the parameters are investigated. Asymptotic properties of estimators 

obtained by the method of minimum distance estimation are discussed in Prakasa Rao [30]. 

Nonparametric estimation of a linear multiplier for some classes of SPDE is studied in Prakasa 

Rao [26,27] by the kernel method of density estimation following the techniques in Kutoyants 

[12]. In all the papers cited above , it was assumed that a continuous observation of the 

random field satisfying the SPDE is available. It is obvious that this assumption is not 

tenable in practice for various reasons. The question is how to study problem of estimation 

when there is only a discrete sampling on the random field. A simplified version of this 

problem is investigated in Prakasa Rao [28,29,30,31]. A review of these and related results 

is given. 

Key words: Bernstein-von Mises theorem, Stochastic partial differential equation, Max­

imum likelihood estimation, Bayes estimation, Minimum distance estimation, Parametric 

inference, Nonparametric inference, Linear multiplier, Continuous sampling, Discrete sam­

pling. 
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A M S S u b j e c t c l a s s i f i c a t i on ( 2 0 0 0 ) : Pr imary 62M40; Secondary 60H15, 35 R 60. 

1 Introduction 

Stochastic part ial differential equat ions(SPDE) are used for stochastic modelling, for in­

stance, in the study of neuronal behviour in neurophysiology , in modelling sea surface tem­

perature and sea surface height in physical oceanography and in building stochastic models 

for the behaviour of turbulence and in modelling environmental pollution(cf. Kallianpur 

and Xiong [11]). The probabilistic theory of SPDE is investigated in Ito [2], Rozovskii [33], 

Kallianpur and Xiong [11] and De Pra to and Zabczyk [3] among others. Huebner et al. 

[7] s tarted the investigation of maximum likelihood estimation of parameters for a class of 

SPDE and extended their results to parabolic SPDE in Huebner and Rozovskii [8] following 

the approach of Ibragimov and Khasminskii [9]. Bernstein -von Mises type theorems were 

developed for such S P D E in Prakasa Rao [21, 25] following the techniques in Borwanker et 

al. [2] and Prakasa Rao [18]. Asymptot ic properties of the Bayes estimators of parameters 

for S P D E were discussed in Prakasa Rao [21,25]. Statistical inference for diffusion type pro­

cesses and semi martingales in general is studied in Prakasa Rao [22,23]. As a consequence, 

the asymptot ic properties of the Bayes estimators of the parameters are investigated using the 

asymptotic properties of maximum likelihood estimators proved in Huebner and Rozovskii 

[8]. Asymptot ic properties obtained by the method of minimum distance estimation are dis­

cussed in Prakasa Rao [30]. Nonparametr ic estimation of a linear multiplier for some classes 

of SPDE are studied in Prakasa Rao [26,27] by the kernel method of density estimation fol­

lowing the techniques in Kutoyants [12]. In all the papers cited above , it was assumed that 

a continuous observation of the random field satisfying the S P D E is available. It is obvious 

that this assumption is not tenable in practice for various reasons. The question is how to 

study the problem of estimation when there is only a discrete sampling on the underlying 

random field. A simplified version of this problem is discussed in Prakasa Rao [28,29] and in 

Prakasa Rao [30,31] . 

Our aim in this paper is to review some of our earlier work and to present some new 

results. 



73 

2 Stochastic modelling 

Any problem of statistical inference based on data can be termed as data assimilation or sum­

marization. The problem is to develop suitable models to study the underlying phenomenon, 

estimate the unknown coefficients in the model, predict the future observations based on the 

model, validate the model by comparing the predicted values with actual observations and 

revise the model based on the experience so obtained and continue this cycle of operations. 

As Kallianpur and Xiong [11] indicate , stochastic partial differential equations arise from 

attempts to introduce randomness in a meaningful way into phenomena regarded as deter­

ministic. Examples of such modelling occur in chemical-reactor diffusions, neurophysiology, 

physical oceanography, study of turbulence and more recently in modelling of environmental 

pollution. Hodgkin and Huxley [6] studied the electrical behaviour of neuronal membranes 

and the role of ionic currents. They modeled the flow of current through the surface mem­

brane of the giant axon from a Loligo Squid through partial differential equations. Kallianpur 

and Xiong [11] point out that, in a realistic description of neuronal activity, one needs to 

take into account synaptic inputs occuring randomly in time and at different sites on the 

neurons' surface leading to a SPDE. Another area of stochastic modeling by SPDE occurs in 

physical oceanography, for instance, in the study of modeling sea surface temperature and 

sea surface height (Piterbarg and Rozovskii [15]). In both these problems and in any other 

problem involved in modelling by an SPDE, the problem of estimation of coefficients involved 

in the SPDE from the observed data is of paramount importance. 

We will now study the problems of estimation for some classes of parabolic SPDE which 

are amenable for statistical inference. 

3 Parametric Estimation for Stochastic PDE with linear 

drift (Absolutely continuous case) (Continuous sampling) 

Let (Q,J-,P) be a probability space and consider the process ue(t,x),0 < x < 1,0 < t < T 

governed by the stochastic partial differential equation 

(3. 1) due(t,x) = (AuE{t,x) + 0u€(t,x))dt + sdWQ(t,x) 
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o2 

where A = #-5-. Suppose that £ - > 0 and 8 £ 0 C R. Suppose the initial and the boundary 

conditions are given by 

' «,(o,*) = /(x),/ei2[o,i] 
(3. 2) 

1 ue(t, 0) = ue(t, 1) = 0,0 < t < T 

and Q is the nuclear covariance operator for the Wiener process Wq(t,x) taking values in 

I2[0,1] so that 

WQ(t,x) = Ql'2W(t,x) 

and W(t,x) is a cylindrical Brownian motion in L,2[0,1]. Then, it is known that (cf. Rozovskii 

[33]) 
OO 

(3. 3) WQ(t,x) = J2qt
l2ei{x)Wi{t) a.s. 

1 = 1 

where {W t(i),0 < t < T},i > 1 are independent one- dimensional standard Wiener processes 

and {e,} is a complete orthonormal system in £2(0,1] consisting of eigen vectors of Q and 
{<?,} eigen values of Q. 

Let us consider a special covariance operator Q with e^ = smkwx,k > 1 and Â  = 

(irk)2,k > 1. Then {ejj is a complete orthonormal system with eigen values g; = (1 + 

^ i ) - 1 ) ' ^ ^ f° r t n e operator Q and Q = (I — A ) - 1 . Further more 

dWq = Q^2dW. 

We define a solution uc(t, x) of (3.1) as a formal sum 

0 0 

(3.4) ue(t,x) = Y^v-ie{t)ei{x) 
t ' = l 

(cf. Rozovskii [33]). It is known that the Fourier coefficient «te(f) satisfies the stochastic 

differential equation 

(3. 5) duic(t) = {6- X{)uic{t)dt + J—.dWi(t), 0<t<T 

with the initial condition 

(3. 6) «.-e(0) = Vi, Vi = / f(x)ei(x)dx. 
Jo 

It is further known that ue(t,x) as defined above belongs to L2([0,T] x H; £2(0,1]) together 

with its derivative in t. Further more ue{t, x) is the only solution to (3.1) under the boundary 

condition (3.2). Let PQ be the measure generated by ue when 6 is the true parameter. 



75 

Suppose 80 is the t rue parameter .It has been shown by Huebner et al. [7] tha t the family of 

measures {Pg , 9 £ 0 } are mutually absolutely continuous and 

dP(e) 

(3-?) l o g 7i)W are0 

° ° \ . i i rT i rT 

= E ^ - [ ( 9 - ^ ) / uic(t)du„(t)--{{0-\tf-{6o-\tf} ul(t)dt}. 
~[ £ JO ^ Vo 

M a x i m u m Like l ihood E s t i m a t i o n 

It can be checked tha t the MLE 6e of 0 based on ue satisfies the likelihood equation 

(3. 8) ae = e-\dE - 0o)/3£ 

when #o is the true parameter where 

OO . J 

(3. 9) ac = V x A T + 1 / «,-e(t)<fly,-(t) 

and 

(3. 10) ft = 5 > , - + 1) / «?e(0rf*. 

Huebner et al. [7] proved tha t the est imator 8£ is consistent and asymptotically iV(O, / (0) _ 1 ) 

and asymptotically efficient in the Hajek - Le Cam sense. They proved tha t 

( 3 . 1 1 ) lim sup Ee,ew{£-\e*-e))>Ew(i) 
s^°\e-e0\<6 

where £ is N(Q,I(6)~1) for any est imator 6* based on ue(t,x) for a class of loss functions 

w(x) which are bounded, symmetric with w(0) = 0 and w(x) monotone for x > 0. Here 

(3.12) 7 W = l £ ^ ± i l ; 2 ( 1 _ e - 2 ( ^ , ) T ) . 

B e r n s t e i n - V o n M i s e s T h e o r e m 

Suppose tha t A is a prior probability measure on ( 0 , B) where B is the cr-algebra of Borel 

subsets of an open set Q C R. Further suppose that A has the density A(-) with respect to the 

Lebesgue measure and the density A(-) is continuous and positive in an open neighborhood 

of 80, the t rue parameter . The posterior density of 8 given us(t,x),0 < x < 1,0 < t <T is 

(3. 13) P{0\ue) = 

rfp(e) 

d.p\ M 
Je %fo(«,)W)dO 
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Let T = e-1{0-6E) and 

( 3 . 1 4 ) p*(T\ue)=£P{6c+ET\uc). 

Then p*{r\uE) is the posterior density of e~l(8 — 9e). Let 

dPf] rfP-(£) dP^ 
(3.15) i/,(r) = g ' + r /—TT = V r n - 5 -

In view of (3.7), it follows tha t 

( 3 . 1 6 ) logJ>£(r) = T Q £ - r - 1 ^ - y / 3 E a.s . 

T 2 

from the equations (3.5) and (3.8) . Let 

/

oo 
Ve(T)\(Oe + £T)dT. 

-oo 

It can be seen that 

(3. 18) P*(r|ue) = C?vt{r)\{et -f er). 

Suppose the following conditions hold. 

(CI ) There exists a constant /? > 0 such tha t /3C = £ £ i ( A > ' + 1) J0
T u%(t)dt -> /? > 

0 a.s. [Pfl0] as £ —* 0. 

(C2) The maximum likelihood est imator 6e is strongly consistent, tha t is , 

6e -> ^o a.s. [PQ0] as £ -> 0; 

and 

(C3) A'(-) is a nonnegative function such tha t , for some 0 < 7 < /?, 

/ ° ° A-( r )e -2 T 2 (^ -^)dr < 00. 
J—00 

We have now the following main theorem which is an analogue of the Bernstein -von Mises 

theorem in Borwanker et al. [2]. For proof, see Prakasa Rao [25]. 
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Theorem 3.1 : Suppose the conditions (CI) to (C4) hold where A(-) is a prior density which 

is continuous and positive in an open neighborhood of do, the true parameter. Then 

(3. 19) lim r K(r)\p'(r\ue) - {JL)U2e-frr> \dr = 0 a.s. [P„0] 
E - > O J _ O O 27T 

As a consequence of Theorem 3.1, it is easy to see that the following result holds (cf. 

Borwanker et al. [2]). 

Theorem 3.2 : Suppose the following conditions hold : 

(Dl) 6e - 0O a.s. [PSo] as e - 0 ; 

(D2) fl£ - p > 0 a.s. [Pg0] as e — 0 ; 

(D3) A(-) is a prior density which is continuous and positive in an open neighborhood of #o, 

the true parameter ; and 

(D4) J^ \8\m\(6)d6 < oo for some integer m > 0. 

Then 

(3. 20) lim r | r r | p* ( r | « e ) - ( A ) i / V * * T V = 0 a.s. [Pg0]. 
E-* °J-oo L'K 

Remark: It is clear that the condition (D4) holds for m = 0. Suppose the conditions (Dl) 

to (D3) hold. Then it follows that 

(3. 21) lim r |p*(r|«e) - ( | - ) 1 / 2
e - > 2 \dr = 0 a.s.[P„„]. 

This is the analogue of the Bernstein - von Mises Theorem in the classical statistical inference. 

As a special case of Theorem 3.2, we obtain that 

(3. 22) Ee0[e-\9£ - 60)}
m - E[Zm] as e -» 0 

where Z is ^ ( O , ^ - 1 ) . 

Bayes Estimation 

We define a Bayes estimator 6£ of 6, based on the path ue and the prior density A(0), to 

be a minimizer of the function 

(3. 23) Be(4>) = f L(6,<l>)p{6\us)d6,<t> £ 0 

./e 
where L(9, (j>) is a given loss function defined on 0 X 0 . Suppose there exists a Bayes estimator 

6C. Further suppose that the loss function satisfies the following conditions : 
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(El) L(e,<f>) = L(\0-4>\)>0; 

(E2) L(t) is non decreasing for / > 0; 

(E3) there exist nonnegative functions RC,K(T) and G(r) such that 

(a) RcL(re) < G(T) for all E > 0, 

(b) RCL(T£) —* K{T) as e —» 0 uniformly on bounded intervals of r, 

(c) the function f^° K(T + m)e~2^T rfr achieves its minimum at m — 0, and 

(d) G(r) satisfies the conditions akin to (C3) and (C4) . 

The following result can be proved by arguments similar to those given in Borwanker et al. 

[2])-

Theorem 3.3 : Suppose the conditions, (Dl) - (D3) of Theorem 3.2 hold. In addition 

suppose that the loss function L(8, <j>) satisfies the conditions (El) - (E3) stated above. Then 

(3. 24) £-\§e - Be) -+ 0 a.s. [PBo] as e -» 0 

and 

(3.25) lim ReBJ8e) = Mm ReBABA 
£ - . 0 e-»0 

Relations (3.8) to (3.10) and the central limit theorem for stochastic integrals prove that 

(3.26) e-l(8e-0a)£ A^O,/?"1) as c ^ 0 

under the probability measure Pea. As a consequence of Theorem 3.3 and the condition (Dl), 

it follows that 

(3. 27) 6\ - • 00 a.s. [P8o] as e -* 0 

and 

(3.28) £-\6c-60)-^ N(O,0-1)as£ ^0. 

In other words, the Bayes estimator of the parameter 8 in the SPDE given by (3.1) is 

asymptotically normal and asymptotically efficient under the conditions stated in Theorem 

3.3. 
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M i n i m u m D i s t a n c e E s t i m a t i o n 

We have discussed asymptot ic properties of the maximum likelihood est imators (MLE) 

and the Bayes est imators and it is known tha t these est imators are consistent, asymptotically 

normal and asymptotically efficient. In spite of having such nice properties, the MLE have 

some short comings. Their calculation is cumbersome and difficult as the expressions for MLE 

involve stochastic integrals which need good approximants for computat ion. Further more 

the MLE are not robust in the sense tha t a slight per turbat ion in the noise component, say, 

from a Wiener process to a Gaussian process with finite variation will change the properties 

of the MLE . In order to circumvent this problem, an al ternate approach to est imate the 

parameter 8 can be adapted and tha t is estimation by the method of minimum distance. 

The theory of minimum distance estimation in a general frame work is given in Millar [14]. 

Observe tha t the parameter 0 in the SPDE (3.1) can be estimated from the equation (3.5). 

We now apply the minimum distance approach adapted by Kutoyants and Pilibossian [13] 

to est imate the parameter 0 satisfying the equation (3.5). We define the minimum Li-norm 

estimate 6iex by the relation 

S,ST - A, + arg inf / \uie(t) - U{(t,0)\ dt 
060 JO 

where U{(t,9) is the solution of the ordinary differential equation 

^ ^ = ( 0 - A , > ; ( t ) , « i ( O , *) = !><. 

It is easy to see tha t 

Ui{t,0) = VicV>-Xi)t. 

Let 

gi{6)= inf / \ui{t,0) - Ui(t,0o)\dt. 
\e-e0\>s Jo 

The following theorem is a consequence of Theorem 1 of Kutoyants and Plibossian [13]. 

T h e o r e m 3.4 : For any /> > 0, 

Pe?(\0i*T - »oI >6)< 2exp{-*,-(A,- + l)fl,?(«)e-2} 

where 

k, = e x p { - 2 | 0 o - A i | T} / (2T) 3 . 

Let 

Yt(t) = e(o°-A')< f e-(»o-A0» dWi(s). 
Jo 
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Note that the process Y,-(i) is a gaussian process. Define 

rT 
C,T = arginf f \Y,(t) - utv.eS6*-^ u Jo 

dt. 

The following theorem is again a consequence of Theorems 2 and 3 of Kutoyants and 

Plibossian [13]. 

Theorem 3.5 : For any fixed T > 0, 

( J~)-\0uT ~ Bo) i f o M E - 0 
V Ai + 1 

where 0O is the true parameter. Further more if do > A;, then 

QTTvi^2(e0 - Xi) ^ N{0,1) as T - oo. 

We now state and prove a lemma. 

Lemma 3.6 : Suppose that for every T > 0, 

and further suppose that 

Then 

XCT -^ YT as e -v 0 

y T ^ F as T -+ oo. 

Xex —• Y as e —» 0 and T —• oo. 

Proof: Let F be a closed set and i^ = {x : p(x,F) < 6} where p(x,F) denotes the distance 

between the point x and the closed set F. Note that F$ decreases to the set F as 6 decreases 

to zero. Then 

(3. 29) P(XeT £F)< P(YT G FS) + P{\XeT - YT\ > 6). 

Hence 

lim sup P(XeT G F) < P{YT G Fg) + lim sup P(\XeT - YT\ > 6) 
£-.0 C->0 

= P(YTeFs) 

since XCT -^>YT as £ —> 0. Taking limit as T -+ oo in the above inequalities, we get that 

lim sup lim sup P{XeT £ F) < lim sup P(YT G Fs) 
T—oo £->0 T->oo 

< P(YeF6) 
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since the set F$ is closed and Y? -» Y as T -» oo. Let 5 -> 0. Then we have 

lim sup lim sup P{XeT £ F) < P(Y £ F) 
T-KX i - » 0 

for every closed set F. Hence, by the standard results from the theory of weak convergence, 

it follows that 

(3. 30) XcT 5- Y as e -» 0 and T -+ oo. 

Let 

(3. 31) XeT = ( _ ^ = ) - J ( f l i i e T - 0o)Tvisj2(6o - A;), 

(3. 32) YT = CerTviy/00 - \{ 

and Y be a standard normal random variable. Applying the Lemma 3.6, we get the following 

result. 

Theorem 3.7 : If So > A;,then 

(3. 33) ( £ )-\9ieT - 9o)TviJ2(0o - A,-) £ N(0,l) as e -* 0 and T - oo. 
V A, + 1 

In view of Theorem 3.7, the variance of the limiting normal distribution of estimator OUT 

is proportional to [v?(9o — A,-)(A,- + 1)]_ 1 . Note that the estimators OUT, l > 1 a r e independent 

estimators of the parameter 0 since the processes {Wi(t),t > 0},i > 1 are independent stan­

dard Wiener processes. We will now construct an optimum estimator out of the estimators 

OUT, 1 < i < iV for any TV > 1. 

Let 0ET = 52iLi ot{6uT where a;, 1 < i < N is a nonrandom sequence of coefficients to be 

chosen. Note that 
N 

0ET -^ £ a | 0 as e -* 0 and T -> oo 
1 = 1 

by Theorem 3.7 and hence 0ET is a consistent estimator for 0Q as £ -+ 0 and as T —+ oo 

provided YliLi ai = *• Further more 

N 
£-xT{0eT - 0O) -^ A ^ O ^ a ^ ^ C o - A-')(A< + I)]"1) as e ^ 0 and T - oo. 

t = i 

This follows again by Theorem 3.7 and the independence of the estimators {OUT, 1 < » < N}. 

We now obtain the optimum combination of the coefficients {a ; , ! < i < N} by minimizing 
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the asymptotic variance 
N 

$>?[2i;?(flo - A0(A,-+ I)]"1 

t = i 

subject to the condition E;=i ai = 1- It is easy to see that a; is proportional to [(#o — A;)(A; + 

1)] and the optimal choice of {a,-,l < i < N) leads to the "estimator" 

E;=i "i (#0 - A;)(A; + 1) 

It is easy to see that 

0*T ^ <?o as E — 0 and T -> oo 

and 

JV 

e_1T(fl*T - 0O) ^ JV(0, E 2v2i(90 - A,)(A, + l)]"1) as e - 0 and T - • oo 
2 = 1 

again due to the independence of the estimators 8iex, I < i < N. However the random 

variable 8*T cannot be considered as an estimator of the parameter 0O since it depends on 

the unknown parameter 90. In order to avoid this problem, we consider a modified estimator 

a _ E £ i » ? ( » « T ~ A,)(A, + l)6teT (3. 35) 
Er=i ",2(^T - A0(A,- + 1) 

which is obtained from #*T by substituting the estimator 6{CT for the unknown parameter 8Q 

in the i-th term in the numerator and the denominator in (3.34). In view of the independence, 

consistency and asymptotic normality of the estimators S^T, 1 < i < JV, it follows that the 

estimator 8CT is consistent and asymptotically normal for the parameter do and we have the 

following result. 

Theorem 3.8: Under the probability measure Pg0, 

8£T -^ 80 as £ - > 0 and T —> oo 

and if 0O > JV'V, then 

N 

e-lT{8eT - 80) -£ JV(O,[^2t>?(0o - A,)(A; + l)]"1) as e - 0 and T - oo. 
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4 Parametric Estimation for Stochastic PDE with linear 

drift (Singular case) ( Continuous sampling) 

Let (Q, T,P) be a probability space and consider the process ue(t,x),0 < x < 1,0 < t < T 

governed by the stochastic partial differential equation 

(4. 1) due(t, x) = 9 Aue(t,x)dt + e(I - A)_ 1 /2dW(t, x) 

where 9 > 0 satisfying the initial and the boundary conditions 

(4.2) ue(0,x) = f(x), 0 < x < 1, fe i 2 [0 , l ] , 

uE(t,0) = ue(t,l) - 0, 0 < t < T. 

Here / is the identity operator, A = tP-j as defined in Section 3 and the process W(t,x) is 

the cylindrical Brownian motion in L2[0,1].. In analogy with (3.5), the Fourier coefficients 

v,ie(t) satisfy the stochastic differential equations 

(4. 3) dui£(t) = -9\iuie(t)dt + E dWj(t), 0 < t < T, 
\/A; + 1 

with 

(4.4) uie(0) = Vi,vi= / f(x)ei(x)dx. 
Jo 

Let Pjf' be the measure generated by ue when 9 is the true parameter. It can be shown that 

the family of measures {Pg , 9 £ 0 } do not form a family of equivalent probability measures. 

In fact, Pg is singular with respect to Pg,' whenever 9 ^ 9' in 0 (cf. Huebner et al. [7]). 

Let u[ (t,x) be the projection of ue(t,x) onto the subspace spanned by {ei,- • • , e/y} in 

.£2(0,1]. In other words 

(4.5) u{N\t,x) = J2Mt)ei(x). 

Let Pg be the probability measure generated by ?4 cm the subspace spanned by 

{ej, • • • ,e;v} in /^[0,1]. It can be shown that the measures {Pg ,9 S 0} from an equivalent 

family and 

(4.6) 

Hp('.N) 

&dP^[ ' ] 
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Maximum Likelihood Estimation 

It can be checked that the MLE 9CiN of 9 based on «iW) satisfies the likelihood equation 

(4- 7) ac,N = -e-\0c,N-6o)j3e<N 

when 6Q is the true parameter where 

N ,T 

(4. 8) ae,N = £A,VA7TT / uie{t)dWi{t) 
~[ Jo 

and 
N T 

(4. 9) fie<N = £ ( A ; + !)A? / «?«(<)*• 

Huebner et al. [7] prove that, for any fixed N > 1, the estimator 0e # is consistent and 

asymptotically N(Q,IN(90)~
1) under Pjf' ' as e —• 0 where 

(4- 10) /*(*) = ^ £ A,(A,' + l)vH± - e-2eX'T). 

They further prove that, for any fixed £ > 0, 

(4. 11) ee<N i 90 under Ps
(
o
£) as N -> oo 

and 

(4. 12) QN]6(&O){0C,N ~ 0o) -^ iV(0,1) under i>W as TV ^ oo 

where 

(4.13) Qw.e(0)= ff^A?(A,- + l )£y '«? e (0dtj 

In addition, they show that, for any fixed e and for any estimator 9* N based on u\ '(t,x), 

(4. 14) lim sup E^{w(Q-N\(6)(9lN - 9))} > Ew(Q 

where ( is 7V(0,1) for a class of loss functions v>(x) which are bounded, symmetric with 

w(0) = 0 and w(x) monotone for x > 0. Here E$c denotes the expectation under the 

probability measure Pf' '. 

We will now investigate the asymptotic behaviour of the Bayes estimators of 6 as £ —> 0 

for fixed N and as N —• oo for fixed £ > 0. The former case is similar to the results discussed 

in Section 2. 
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Bernstein - von Mises Theorem (when N is fixed as e —» 0) 

Suppose that A is a prior probability measure on (0 , B) where B is the u-algebra of Borel 

subsets of an open set 0 C R. Further suppose that A has a density A(-) with respect to the 

Lebesgue measure and the density A(-) is continuous and positive in an open neighbourhood 

of 90, the true parameter. 

The posterior density of 8 given ?4 is 

dP (,',") 
dP 

(4- 15) ?(%<">) = - ^ T 

,(N) 
TTTTK ') \(6) 

e dFe0 

Let 

(4.16) T = e-\8-de,N) 

and 

(4. 17) P*(MN)) = e p(0£,N + ET\UW). 

Then p*(r\uc ) is the posterior density of £_1(0 — 0C<N). Let 

(4-18) v<Mr) = ^ p r / ^ p , a-s- ipk' 

It is easy to see that 

(4- 19) logi/e,jv(T) = - y A j v a.s. [P%' '} 

in view of (4.7). Suppose the following conditions hold: 

(CI)' pttN = £ ^ ( A , + 1)A? TJul(t)dt - 0N > 0 a.s. under {PfcN)} as £ - 0; 
o 

(C2)' the maximum likelihood estimator 6e^ is strongly consistent as e —• 0, that is, 

&e,N —* $o a-s- under {Pe } as £ —> 0; 

(C3)' A'(-) is a nonnegative function such that, for some 0 < 7 < (3N, 

0 0 

/ A'(r)e-JT2^"-^W < 00; 
— OO 

and 
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(C4)' for every 77 > 0 and 6 > 0 

"£ 2 J A'(re_ 1)A(^,w + r ) d r - > 0 a.; 

M>« 

ider {Pf'N)} as e - 0. 

Under the conditions (Cl ) ' — (C4)', the following theorems can be proved by arguments 

analogous to those given in the proofs of Theorems 3.1 and Theorem 3.2. 

Theorem 4.1 : Suppose the conditions (Cl) ' — (C4)' hold where A(-) is a prior density 

which is continuous and positive in an open neighbourhood of 6a, the true parameter. Then 

dr = 0 a.s. (4. 20) lim 7 K(r) p'(r\u^) - [^Lfne-\PM^ 

—00 

under {pfc*}. 

Theorem 4.2 : Suppose the following conditions hold: 

(Dl)' 0£,N -» d0 a.s. under pfcN) as e -> 0; 

(D2)' pCtN -+ /?N > 0 a.s. under { P ^ ' ^ } as e -* 0; 

(D3)' A(-) is a prior density which is continuous and positive in an open neighbourhood of 

60, the true parameter; and 
0 0 

(D4)' / \8\m\(e)d6 < 00 for some integer m > 0. 
— CO 

Then 
0 0 

(4. 21) lim / \r\m p*(r|uf >) - ( ^ ) i / V * / ^ 
—00 

under { P ^ } . 

dr = 0 a.s.. 

Bayes Estimation (when N is fixed and £ —> 0) 

,.("> We define a Bayes estimator 0£IJV of # based on the path u\ ' and the prior density \(8) 

as an estimator which minimizes 

(4. 22) Be<N{<i>) = jL{o,4>)p(e\uW)do 
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where L{6,4>) is a loss function satisfying the properties (E1)-(E3) stated in Section 3. One 

can prove the following theorem as an application of Theorem 4.2. 

Theorem 4.3 : Suppose the conditions (-D1)' — (-D3)' of Theorem 4.2 hold. In addition 

suppose the loss function L{Q,4>) satisfies the conditions (E1)-(E3) stated in Section 3. Then 

(4. 23) £-1(0£,N - 0CtN) -> 0 a.s. under {P^} as e -> 0 

and 

lim RcBcN(0.N) = lim ReBCiN{6€ N) 
e—>0 £—*0 

/a \ l / 2 °? 
(4.24) = f^-J K{r)e-2^T2dr a.s. 

— OO 

under {P^}. 

In particular, it follows that 

(4. 25) 0e,N - • #o a.s. under { . P £ ' N ) } as e -> 0 

and 

(4. 26) e_1(0e,jv - «o) ^ ^ (O , / ^ 1 ) as e -» 0 

giving the asymptotic properties of the Bayes estimator #£,jv-

Let us now consider the problem of Bayes estimation for the stochastic PDE given by 

(4.1) as N —> oo for any fixed e > 0. 

Bernstein - von Mises theorem and Bayes estimation (when e is fixed and N —* oo) 

Let 

(4. 27) Q(N]{6)= (JTxJiXi + VE^juUVdt] 

and suppose that 

(DQ)Q$(0) -> 0 as TV -> oo for any fixed e > 0. Let 

(4.28) r = Q#(0)-1(0-tf«,Jv), 

-1/2 
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(4- 29) P(T\UW) = Q$(6We,N + Q # ( 0 ) r | u W ) , 

and 

(A 'Xf\\ r, tr\ B:N+QN WT / $',N r „ ( E , / V ) n 

(4- J ° ) "'."(i") = —£&) / -^JT) a ' s- [pe0 1 • 

It can be checked that 

(4- 31) l o g ^ ( r ) = - 5 | ^ r 3 A , w a.s. [P<^>] 

in view of (4.7). Note that £ is a fixed positive constant in the present discussison. Suppose 

the following conditions hold: 

( C 1 ) „ QWWP..S ^ ! a s u n d e r {pW)} ^ iv ^ oo; 

(C2)" the maximum likelihood estimator 6C^ is strongly consistent as N —> oo, that is 

®e,N —> $o a-s- under {Pg } as TV —• oo; 

(C3)" the function K(-) is a nonnegative function such that for some 0 < 7 < 1, 

0 0 

f K{T)e~^2^-i)dT < 00; 
—00 

and 

(C4)" for every r\ > 0 and 8 > 0 

OO 

f,-oQ(^(M-2 / h-(rQ^r\l)o))\(0CiN + T)<IT -> 0 a.s. under {P^'*0} as TV -* 00. 
—00 

The following analogues of Theorem 3.1 to 3.3 hold under the conditions (C1)"-(C4)". We 

omit the details. 

Theorem 4.4 : Suppose the conditions (CI)" - (C4)" hold where A(-) is a prior density 

which is continuous and positive in an open neighbourhood of #0, the true parameter. Then, 

for any fixed e > 0, 

0 0 

(4. 32) lim / # ( r ) | p ( r | « W ) - (±-?W\dT = 0 a.s. [p£>]. 
— 00 

Theorem 4.5 : Suppose the following conditions hold, for a fixed e > 0, in addition to the 

condition (DO) stated above: 
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(Dl)" 6,<N -* do a.s. [p£]] as N -> oo; 

( D 2 )„ i^Qpo? _ x &s [p(e}] a s ^ ^ oo . 

(D3)" A(-) is a prior density which is continuous and positive in an open neighbourhood of 

8Q, the true parameter ; and 
0 0 

(D4)" / \9\m\(6)d9 < 00 for some integer m > 0. 
— OO 

Then 
OO 

(4. 33) Jirn^ / \r\m\p(T\uW) - ( J L j V V i ^ l d r = 0 a.s. under {PfcN)}. 

—00 

Theorem 4.6 : Suppose the conditions (Dl)" - (D3)" of Theorem 4.5 hold. In addition 

suppose the loss function L(8,cj>) satisfies the conditions (E1)-(E3) stated in Section 3. Then, 

for any fixed e > 0, 

(4. 34) QW(80)(8C,N - ~8£,N) - 0 a.s. [/»£>] M N _ > 0 O > 

and 

(4. 35) lim -Rn(.),fl ,nCtN(6eN) = lim tfn(.),fl ,Bc<N(6eN) 
00 

= ( ^ ) 1 / 2 / A ' ( r ) e - P d r a . s . [ P ^ ] . 
—00 

As a consequence of Theorem 4.6 and the relations (4.11) and (4.12) it follows that, for 

any fixed e > 0, 

(4. 36) 8£iN -» 0O a.s. under {P{/0'
N)} as N -* 00 

and 

(4. 37) Q $ ~ ' (80){8C<N - 9a) 4 JV(0,1) as N - 00. 

Minimum Distance Estimation 

An alternate approach for the estimation of the parameter 8 is by the minimum distance 

method. Observe that the parameter 8 can be estimated from the equation (4.3). We now 

again apply the minimum distance approach adapted by Kutoyants and Pilibossian [13] as 

before to estimate the parameter 8 satisfying the equation (3.3). We define the minimum 

Li-norm estimate 0;£T by the relation 

rT 
8ieT = -A" 1 arg inf / \uie(t) - «;(*,0)| dt 

o€® Jo 
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where u,-(t,0) is the solution of the ordinary differential equation 

dui(t) 

dt 

It is easy to see that 

Let 

= -0A;U;(t),U,-(O,0) = i;;. 

gi(6)= inf I \ui{t,e)-ui(t,e0)\dt. 
\e-6o\ys\-1 Jo 

The following theorem is a consequence of Theorem 1 of Kutoyants and Pilibossian [13]. 

Theorem 4.7 : For any <5 > 0, 

PfJWieT - 00\ > SX-1) < 2exp{-ki(\i + l)gf(S)e-2} 

where 

ki = exp{-2|e0 |TA1}/(2T)3. 

Let 

Y,(t) = e-"°>l( / ee"x's dW,{s). 
Jo 

Note that the process Yi(t) is a gaussian process. Define 

TUT = arginf / \Yi(t) - utvie-e°Xit\ dt. 
" Jo 

The following theorem is again a consequence of Theorems 2 and 3 of Kutoyants and 

Pilibossian [13]. 

Theorem 4.8 : For any fixed T > 0, 

( S-—)-\9UT - 6o)\ - ^ -vnr a* £ -» 0 

where 0$ is the true parameter. Further more if 0O < 0, then 

» 7 , T 7 W - 2 0 O A ; ^ W(0, 1 ) M T - > OO. 

Applying the Lemma 3.6, we get the following result. 

file:///e-6o/ys/-1
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Theorem 4.9 : Under the probability measure Pg0, if 0Q < 0, then 

(4. 38) ( )"1A,-(g,-eT - 80)Tvis/-260\, -=• iV(0,l) as e -> 0 and T -+ oo. 
v A, + 1 

In view of Theorem 4.9, the variance of the limiting normal distribution of estimator Biej 

is proportional to [-#o^A'?(A, + 1)]_1 . Note that the estimators 6uT,i > 1 are independent 

estimators of the parameter 8 since the processes {W,-(f), t > 0}, i > 1 are independent Wiener 

processes. We will now construct an optimum estimator out of the estimators 6{CT, 1 < i < N 

for any N > 1. 

Let 9ej- = YliLi ai@ieT where a;, 1 < i < N is a nonrandom sequence of coefficients to be 

chosen. Note that 
N 

^ T -^ E (*i\6o as e -* 0 and T -+ oo 
i= i 

by Theorem 4.9 and hence dej- is a consistent estimator for ^ as £ -^ 0 and as T —> oo 

provided Yl,i=\ <*«' = 1- Further more 

N 

£-lT{6er - 00) ^ N(0,^]a?[-20ov,?A?(A,- + l)]"1) as e -» 0 and T -> oo. 
i = i 

This follows again by Theorem 4.9 and the independence of the estimators {O^T, 1 < i < JV}. 

We now obtain the optimum combination of the coefficients {a,-,l < i < N} by minimizing 

the asymptotic variance 

Y2an-2e0vf\UXi + l)}-' 
i = l 

subject to the condition Y^i=i a; = 1- It is easy to see that a; is proportional to [—#oA?(A, + l)] 

and the optimal choice of {a;, 1 < i < N} leads to the estimator 

( 4 ' 3 9 ) ^ " E £ i ^ A 3 ( A I + l) • 

It is easy to see that 

(9*T —> (9o as £ —» 0 and T —> oo 

and 

£_1T(6>*T - 6»0) ^ iV(0,[-2^6lo^A?(Ai + l)]-1) as e -» 0 and T -> oo 
i = l 

again due to the independence of the estimators 0;£y, 1 < i < N and we have the following 

result. 



92 

Theorem 4.10: Under the probability measure Pg0, 

9*T —> 9o as e —> 0 and T —> oo 

and, if #o < 0, then 

A/ 

s~lT(e;T - 0O) ^ iV(0,[-2^6lo^A?(Ai + 1)]_1) as e - • 0 and T - oo 
t = i 

for any fixed N > 1. 

5 Parametric Estimation for Parabolic SPDE (Continuous 

sampling) 

Let (Q,J-,P) be a probability space and consider a stochastic partial differential equation 

(SPDE) of the form 

(5. 1) due(t,x) = A°u°(t,x)dt + dW{t,x),0 < t <T,x £ G 

where A6 — 6A\ + Ao, Ai and A0 being partial differential operators, 6 G 0 c R and 

W(t,x) is a cylindrical Brownian motion in L2(G),G being a bounded domain in Rd with 

the boundary dG as a C°°-manifold of dimension (d— 1) and locally G is totally on one side 

of dG. For the definition of cylindrical Drownian motion, see, Kallianpur and Xiong [11], 

p.93. 

The order Ord(A) of a partial differential operator A is defined to be the order of the 

highest partial derivative in A. Let mo and mi be the orders of the operators Ao and A\ 

respectively. We assume that the operators A0 and A\ commute, mi is even and 

(CO) m, > ^(Ord{Ae) - d) 

in the following discussion. 

Suppose the solution u°(l,x) of (5.1) has to satisfy the boundary conditions 

(5. 2) ue(0,x) = u0(x) 

and 

(5.3) Z?V(t,x) |8o = 0 
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for all multiindices 7 such tha t |-y| = m - 1 where 1m = m a x ( m i , m 0 ) . Here 

f)\l\ 
(5. 4) DVW = g^^ufi') 

with j-yI = 71 + • • • + 7d. Suppose tha t 

( 5 . 5 ) A , - ( * ) u = - Y, (-l)lalDa(af{x)D>3u) 
\a\,\0\<mi 

where 

(5. 6) af{x) 6 C°°(G). 

Let 

( 5 . 7 ) a^(0,x) = 9af(x) + af{x). 

Suppose #0 is the true parameter . 

We follow the notat ion introduced in Huebner and Rozovskii [8]. Assume tha t the fol­

lowing conditions hold. 

(HI ) The operators A0 and Aj satisfy the condition 

/ Aiuvdx = / uAivdx,u,v £ Cg°(G) , i = 0 , 1 . 
JG JG 

(H2) There is a compact neighbourghood 0 of 9Q so that {A$,9 £ 0 } is a family of 

uniformly strongly elliptic operators of order 1m = max(m\,mo). 

For s > 0, denote the closure of Cg°(G) in the Sobolev space WS'2(G) by WQ'2. 

The operator A0 with boundary conditions defined by (5.2) and (5.3) can be extended 

to a closed self-adjoint operator £# on L2(G) (Shimakura [34]). In view of the condition 

(H2) , the operator £g is lower semibounded, that is there exists a constant k(9) such that 

-CQ + k(9)I > 0 and the resolvent (k(9)I — Cg)-1 is compact. Let AQ — (k(9)I — £ 0 ) 2 ^ . 

Let hi(9) be an or thonormal system of eigen functions of A#. We assume tha t the following 

condition holds. 

(H3) There exists a complete or thonormal system {/i;,i > 1} independent of 9 such that 

Kehi = \i(9)hi,9£Q. 

The elements of the basis {/i,,i > 1} are also eigen functions for the operator £0, tha t is 

£$hi = Hi hi 
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where 

/x? = - A ? m ( 0 ) + *(*)• 

For s > 0, define II'| to be the set of all u £ Li(G) such tha t 

oo 

IMI*.« = ( £ W ) | ( M , O M G ) I 2 ) 1 / 2 < ° ° -

For s < 0, Hg is denned to be the closure of i 2 (<?) in the norm ||u||s,0 given above. Then 

Hg is a Hilbert space with respect to the inner product (.,.)s,e associated with the norm 

||.||s,0 and the functions h\g = \~s(9)hi,i > 1 form an orthonormal basis in Hg. Condition 

(H2) imples tha t for every s ,the spaces Hg are equivalent for all 9. We identify the spaces 

Hg (denoted by IIs) and the norms \\.\\s,e for different 9 £ 0 . 

In addition to the conditions (H1)-(H3), we assume tha t 

(II4)u0 G H-a where a > \. Note tha t u0 6 L2(G), 

(H5) the operator A^ is uniformly strongly elliptic of even order m\ and has the same system 

of eigen functions {/i;,« > 1} as £g. 

The conditons (H1)-(H5) described above are the same as those in Huebner and Rozovskii 

(1995). 

Note tha t u0 £ H~a. For 9 e&, define 

(5.8) <• = («0,fc,7)-«. 

Then the random field 
oo 

(5.9) «'(*,*) = 5>?(0A,7"(*) 

is the solution of (5.1) subject t o the boundary conditions (5.2) and (5.3) where ttf(2) is the 

unique solution of the stochastic differential equation 

(5. 10) duei{t) = tie
xu

ei{t)dt + \;a(9)dWi(t),0 <t<T, 

( 5 . 1 1 ) «i8 )(0) = «$,-

Let vN be the orthogonal projection operator of H~a onto the subspace spanned by 

{h-e°,\<i<N}. Let 

(5. 12) uN'e(t,x) = xNv?(t,x) 

= £«?(0A«*(*) 
i=l 
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where uf (t) is the solution of (5.10) subject to (5.11). Note that 

(5. 13) duN'e(t, x) = AeuN'e(t, x)dt + dWN(t,x), 0 < t < T, x G G 

with 

(5.14) uN'°{Q,x) = itNu0{x) 

and 

(5. 15) WN(t,x) = J2KaWi(tKea(x)-

Here {Wi(t),t > 0},i > 1 are independent standard Wiener processes. 

Let PQ1 be the probability measure generated by uN'e on C{{0,T];RN). Let hja denote 

h~g , uN denote uN'e° and u denote ue° when 8Q is the true parameter. It is known that, for 

any 0 6 0 , the measures P^ and P^ are absolutely continuous with respect to each other 

and 

d
d%

{uN) = (0-0o)J{Axu
N{s),duN{s))o-^-JoljUiu

N{,)\\lds 
"- o o 

T 

l ° g T ^ v ( « 

(5. 16) -{6 - 60) y ( A 1 « N ( 5 ) , A0u
N{s))ods. 

o 

Maximum Likelihood Estimation 

It is easy check that (cf. Huebner and Rozovskii [8]) 

J{Alu
N{s),dWN(s))0 

(5. 17) 9N-90 = 9 — j 

JWAm^Wlds 
o 

where #jv is the maximum likelihood estimator of 6Q- Huebner and Rozovskii [8] studied the 

asymptotic properties of this estimator under the conditions (H1)-(H5). Further more the 

Fisher information is given by 

T 

(5.18) IN = E j WAm^^Wlds. 
o 

Note that 1^ —> oo &s N —* oo from the Lemma 2.1 of Huebner and Rozovskii [8]. 
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Bernstein-Von Mises Theorem 

Suppose that A is a prior probability measure on (0 , B) where B is the a-algebra of Borel 

subsets of set 0 C R. We assume that the true parameter 6o G 0° , the interior of 0 . Further 

suppose that A has the density A(-) with respect to the Lebesgue measure and the density 

A(-) is continuous and positive in an open neighbourhood of 6o, the true parameter. 

Let 

(5. 19) r = l]*\0 - BN) 

and 

(5. 20) P%T\UN) = rN
ll2p{0N + rI-1/2\uN) 

where p[6\uN) is the posterior density of 9 given uN. Note that 

(5. 21) p(0\uN) .di 

e 
I jfi{u»)\{e)de 

and let p*(r\uN) denote the posterior density of 1^ (6 — ON). Let 

(5. 22) UN(T) = 
<>N+TIN I eN 

dP? _U2 
SN+TIN

1/2 

dp" a , s ' 
ON 

In view of (5.16), it follows that 

T 

(5. 23) log^(r) = - I T V / P I ^ W I I S ^ 

/ ( ^ " ( s ^ d u ^ s ) - A0(s)uN{s)ds)0 

(5.24) eN = °-— 

o 

Let 

(5. 25) CN = j VN(T)\{6N + rl^'2)dr. 
— OO 

It can bo chocked that, 

(5. 26) P*{r\uN) = C-N
1VN{T)\{6N + rl~1/2) 

Note that 
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(CI) 0N = I^JwAt^WWlds -* 1 a.s. [Pg0] as N -* oo 
o 

from the Lemma 2.2 of Huebner and Rozovskii [8]. Then the following relations hold: 

(i) J i m VN(T) = e x p ( - - r 2 ) a.s. [P„0], 

(ii) Tor any 0 < 7 < I, 

log t / N ( r ) < ~ 2 T ' 2 ( 1 - 7 ) 

for every r for sufficiently large N, and 

(iii) for every 6 > 0, there exists 7 ' > 0 such tha t 

sup i / N ( r ) < e x p { - - 7 / 7 ^ 1 } 

|r|>*/J,/a 

as JV -> 00. 

Further more 

(C2) the maximum likelihood est imator 6pj is strongly consistent, tha t is 

&N -> #o a-s- [Pe0]
 a s N -* o° 

from the Lemmas 2.1 and 2.2 in Huebner and Rozovskii [8]. Suppose tha t 

(C3) A'(-) is a nonnegative function such tha t , for some 0 < 7 < 1, 

00 

f A ' ( r ) e - f T 2 ( , - ' T ' d r < o o . 

— OO 

(C4) For every r\ > 0 and S > 0, 

e ~ " 7 ^ J K(Tln1/2)\(6N + T)dT^Oz.s[Peo] 

| T | > 5 

as JV —> 00. 

We now have the following main theorem which is an analogue of the Bernstein-von Mises 

theorem (cf.Prakasa Rao [18,19]) for diffusion processes and diffusion fields. A special case 

of this result for some classes of SPDE's was proved in Prakasa Rao [25]. 

T h e o r e m 5 .1: Suppose the conditions (C3) and (C4) hold in addition to the conditions 

(H1)-(H5) stated earlier where A(-) is a prior density which is continuous and positive in an 
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open neighbourhood of 8Q, the true parameter. Then 

(5. 27) Yrn^ j K{T)\V'{T\UN) - (J-'j e~^\dr = 0 a.s. [/>,„]. 
— oo 

As a consequence of Theorem 5.1, it is easy to get the following result. 

Theorem 5.2: Suppose the conditions (H1)-(H5) hold. In addition suppose that: 

(Dl) A(-) is a prior density which is continuous and positive in an open neighbourhood of 

#o, the true parameter; and 
oo 

(D2) / \6\mX{8)dO < oo for some integer m > 0. 
— oo 

Then 
oo I 

(5. 28) ^ J M - V C r l t i " ) - ( i ) 2 e'^\dr = 0 a.s. [Pg0]. 
— oo 

Remarks: It is obvious that the condition (D2) holds for m = 0. Suppose the condition 

(Dl) holds. Then it follows that 

oo j / 2 

(5. 29) Ytrn^ J \P'(T\UN) - ( i - ) e~^\dr = 0 a.s. [P9o]. 
— oo 

This is the analogue of the Bernstein-von Mises theorem in the classical statistical inference. 

As a particular case of Theorem 5.2, we obtain that 

(5. 30) E6a[l]i\6N - 0O)P -• E[Z}m as JV -• oo 

where Z is JV(0,1). 

For proofs of Theorems 5.1 and 5.2, see Prakasa Rao [21]. 

Bayes estimation 

We define an estimator 0N for 0 to be a Bayes estimator based on the path uN corre­

sponding to the loss function L(0,<p) and the prior density X(8) if it is an estimator which 

minimizes the function 

BN(<p) = JL{6,<f>)p{9\uN)dO,V£® 
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where L{6, ip) is defined on 0 x 0 . Suppose there exist a Bayes estimator 6^- Further suppose 

that the loss function L(6,ip) satisfies the following conditions: 

(El) l(B,v) = L(\B-H>\)>Q; 

(E2) L(t) is nondecreasing for /, > 0; 

(E3) there exists nonnegative functions RN,K(T) and G(T) such that 

(a) RNL(TI^1/2) < G(T) for all N > 1; 

— 1/2 
(b) RNL(TIN ' ) —• K(T) as N —» oo uniformly on bounded intervals of r; 

(c) the function 
oo 

/ K(T + m)e~2T dr 

—oo 

achieves its minimum at m — 0, and 

(d) G(T) satisfies the conditions similar to (C3) and (C4). 

The following result can be proved by arguments similar to those given in Borwanker et 

al. [2]. We omit the proof. 

Theorem 5.3: Suppose the conditions (D1)-(D2) of Theorem 5.2 hold in addition to (Hl)-

(H5) stated earlier. In addition , suppose that the loss function L(8,<p) satisfies the conditions 

(El) - (E3) stated above. Then 

(5. 31) IN*(ON - M - • 0 a.s. [Pg0] as JV - oo 

and 

(5. 32) lim RNBN(6N) = lim RNBN(9N) 
N—*oo N - + o o 

—oo 

Huebner and Rozovskii [8] proved that 

(5. 33) 6N -+ 0O a.s. [PBo] as N -+ oo 

and 

(5. 34) ill2(ON ~ Oo) ^ N{Q, 1) as N -» oo 
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under the conditions (H1)-(H5). As a consequence of Theorem 5.3, it follows that 

(5. 35) 9N -> do a.s [PBo] as N - • oo 

and 

(5. 36) l]{2{()N - 90) 5 W(0,1) as N -> oo. 

In other words the Bayes estimator ON of the paramaeter 9 in the parabolic SPDE given 

by (5.1) is strongly consistent, asymptotically normal and asymptotically efficient as TV —> oo 

under the conditions (H1)-(H5) of Huebner and Rozovskii [8] and the conditions stated in 

Theorem 5.3. 

Remarks: A general approach for the study of asymptotic properties of maximum likeli­

hood estimators and Bayes estimators is by proving the local asymptotic normality of the 

loglikelihood ratio process as was done in Prakasa Rao [17], Ibragimov and Khasminskii [9] 

in the classical i.i.d. cases and by Huebner and Rozovskii [8] for some classes of SPDE. Our 

approach for Bayes estimation, via the comparison of the rates of convergence of the differ­

ence between the maximum likelihood estimator and the Bayes estimator, is a consequence 

of the the Bernstein - Von Mises type theorem. 

Minimum Distance Estimation 

We now apply the minimum distance approach for the estimation of the parameter 9 in 

the SPDE (5.1). Observe that the parameter 9 can be estimated from the equation (5.10). 

We now again apply the minimum distance approach adapted by Kutoyants and Pilibossian 

[13] as before to estimate the parameter 9 satisfying the equation (5.10). We define the 

minimum ii-norm estimate 9{ci by the relation 

H,(9ieT) = arg inf / |u?e(t) - < ( t , 0 ) | dt 
060 Jo 

where u*(t,9) is the solution of the ordinary differential equation 

^ ^ = w (»K(0,«?(o, ») = «,-. 

It is easy to see that 

Let 

!('•(«)-w(flo)|>« Jo 
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The following theorem is a consequence of Theorem 1 of Kutoyants and Pilibossian [13]. 

Theorem 5.4 : For any 8 > 0, 

PeodmiOuT - M M > «) < 2exp{-?,A,2a(0o)/>?(«)£-2} 

where 

q{ = exp{-2\ni(60)\T}/(2T)3. 

Let 

Ji(t) = e"^") ' / e -«( e °) s dWi(s). 
Jo 

Note that the process Ji(t) is a gaussian process. Define 

rT 
fiT = arginf / |J,-(i) - u i u . W 0 ) ' ! di. u Jo 

The following theorem is again a consequence of Theorems 2 and 3 of Kutoyants and 

Pilibossian [13]. 

Theorem 5.5 : For any fixed T > 0, 

(E\-ayl(fii(d,eT) - /x.-(#o)) - J ,T as £ -» 0 

when #o is the true parameter. Further more if /i;(#o) > 0, then 

JiTTvi<j2ni(0o) -4 JV(0,1) as T -> oo. 

Applying the Lemma 3.6, we get the following result. 

Theorem 5.6 : Under the probability measure Pg0, if /i;(#o) > 0, then 

(5. 37) (eX~a)-\iT(iii(eicT) - iii(90))sj2jdeo) -^ N(Q,l) as s -> 0 and T -» oo. 

In addition to the conditions (H1)-(H5), suppose that 

(H6) the functions m(9) are differentiable with respect to 9 with nonzero derivatives. 

Let fJ,\{9) denote the derivative of the function fJ.i{9) with respect to 9. Applying the delta 

method, we obtain the following result. 

Theorem 5.7 : Under the probability measure Pg0, if /J,(#O) > 0, then 

(5. 38) ( £ A p ) - S t T ( ^ T - 0o))>/2/ii(0o) ^ N{0, W(flo)]-2) as £ - + 0 and T - + o o . 
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In view of Theorem 5.7, the variance of the limiting normal distribution of estimator 6^T 

is proportional to 

K2
W(0o)A?a(0o)[/4(0o)]T1-

Note that the estimators #,e7V > 1 are independent estimators of the parameter do since the 

processes {Wi(t),t > 0},i > 1 are independent Wiener processes. We will now construct an 

optimum estimator out of the estimators OUT, 1 < i < N for any N > 1. 

Let 6£T = 52iLi aiOieT where a,, 1 < i < N is a nonrandom sequence of coefficients to be 

chosen. Note that 
N 

OeT "^ [ J 2 Ql ']"° a S £ —* 0 a n ( ^ 71 —> CO 
i = l 

by Theorem 5.7 and hence #ET is a consistent estimator for 8Q as e —> 0 and as T —• oo 

provided X)i=i Qt = 1- Further more 

N 

E-lT(8£T - 90) ^ N(0,^al{'2v?,j.1(8o)\?
a(6o)[ti'l(9o)}

2}-1) as e - 0 and T -* oo. 
i= l 

This follows again by Theorem 5.7 and the independence of the estimators {6i£Xi 1 < » < -W}-

We now obtain the optimum combination of the coefficients { Q , , 1 < i < N} by minimizing 

the asymptotic variance 

t = i 

subject to the condition ]T '̂=i a,- — 1. It is easy to see that a,- is proportional to 

{«?/x.-(*o)A?"(0oM«o)n 
and the optimal choice of {a,, 1 < i < TV} leads to the estimator 

(5. 39) , . _ E,=i v?V,(W*(<>oM(0o)}2^T 

Efei «,V.-(»o)A?0(flo)W(flo)I 

It is easy to see that 

and 

N 
C 

^> 9n as £ —> 0 and T -> oo 

£-1T(^T-e0)AjV(0,E{27;1
2 / i ,(eo)A?a(eo)[/i;(«o)]2]"1) as £ - 0 and T -» oo 
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again due to the independence of the estimators 6iex, 1 < i < N. However the random 

variable 8*T cannot be considered as an estimator of the parameter 80 since it depends on 

the unknown parameter 80. In order to avoid this problem, we consider a modified estimator 

^livf^(e,eT)\]a(o1£TM(Q',eT)}2e,CT 
(5. 40) 9eT 

Eii, '\?/^T)A?o(0«rM«,*r)P 

which is obtained from 8*T by substituting the estimator 8{tj for the unknown parameter 6Q 

in the i-th term in the numerator and the denominator in (5.39). In view of the independence, 

consistency and asymptotic normality of the estimators 8ief,l < i < N, it follows that the 

estimator 0ET is consistent and asymptotically normal for the parameter #o and we have the 

following result. 

Theorem 5.8 : Under the probability measure Pg0, 

6eT —> 6Q as £ —* 0 and T —• oo 

and, if m(80) < 0,1 < i < N, then 

N 
£-'T(6cT - 60) $ N(Q,{2Y,"'!lit(e0)\?(eoM(8o)}2}-1) as e - 0 and T-+ex, 

.= i 

for any fixed N > 1. 

6 Nonparametric Estimation for Stochastic PDE with lin­

ear multiplier ( Continuous sampling) 

Example I 

Let (il,T,P) be a probability space and consider the process ue(t,x),0 < x < 1,0 < t <T 

governed by the stochastic partial differential equation 

(6. 1) du£(t,x)=:(Auc(t,x) + 0(t)ue(t,x))dt + £dWQ(t,x) 

where A = J-j-. Suppose that £ —> 0 and 9 £ 0 where 0 is a class of real valued functions 

8(t),Q <t<T uniformly bounded , k times continuously differentiable and suppose that the 

fc-th derivative #(*)(.) satisfies the Lipschitz condition of order a £ (0,1], that is, 

(6. 2) |0<*>(t) - 6W{s)\ <\t- s\a,p = k + a. 
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Further suppose the initial and the boundary conditions are given by 

u«(o,z) = /(*),/e£j[0,i] 
(6. 3) 

ue(t,0) = ue(t,l) = 0,a<t<T 

and Q is the nuclear covariance operator for the Wiener process WQ(J,,X) taking values in 

L2[0,1] so that 

WQ(l,x) = Q"2W(t,x) 

and W{t, x) is a cylindrical Brownian motion on £2(0,1]. Then, it is known that (cf. Rozovskii 

[33], Kallianpur and Xiong [11]) 

00 

(6. 4) WQ{t, x) = £ q]l2ei{x)Wi{t) a.s. 
.'=1 

where {W,-(i),0 < t < T},i > 1 are independent one - dimensional standard Wiener processes 

and {e;} is a complete orthonormal system in £2(0,1] consisting of eigen vectors of Q and 

{<?,} eigen values of Q. 

We assume that the operator Q is a special covariance operator Q with e^ = sin(kwx), k > 

1 and Xk = {rk)2,k > 1. Then {ek} is a complete orthonormal system with eigen values 

q{ = (1 + A;) - 1 , i > 1 for the operator Q and Q = (I - A ) - 1 . Note that 

(6. 5) dWQ = Q1/2dW. 

We define a solution ue(t,x) of (6.1) as a formal sum 

0 0 

(6 .6 ) ue(t,x) = ^2ui'(t)e'(x) 
1=1 

(cf. Rozovskii [33]). It can be checked that the Fourier coefficient uu(t) satisfies the stochastic 

differential equation 

(6. 7) duie(t) = (0(t) - \i)uie(t)dt + -yJL=dWi{t), 0<t<T 
V A; + 1 

with the initial condition 

(6. 8) «,-e(0) = Vi, Vi = / f(x)ei(x)dx. 
Jo 

We assume that the initial function / in (6.3) is such that 

Vi = / }{x)ei{x)dx > 0, i > 1. 
Jo 
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Estimation of linear multiplier 

We now consider the problem of estimation of the function 0(2), 0 < t < T based on 

the observation of the Fourier coefficients ii,-e(i), 1 < i < N over [0,T] or equivalently the 

projection ue (t,x) of the process ue(t,x) onto the subspace spanned by {ei, . . . ,ejv} in 

i 2 [0 , l ] . 

We will at first construct an estimator of 0(.) based on the path {u;e(/),0 < t < T}. Our 

technique follows the methods in Kutoyants [12], p.155. 

Let us suppose that 

(6. 9) sup sup \8(t)\ < L0. 
0eso<t<T 

Consider the differential equation 

(6. 10) ^ ^ = (9(t) - A,-)K(t), «<(0) = Vi,0<t<T. 

It is easy to see that 

ul{t) = vie^sy^d%Q<t <T 

and hence 

(6. 11) «,(/) > vie-
M'\Q <t<T 

where 

(6. 12) M{ = L0 + Xi. 

From the Lemma 1.13 of Kutoyants [12], it follows that 

(6. 13) sup |««(fl) - Ui(s)\ < J—e^ sup \Wi(s)\ 
0<s<T V *i + 1 0<s<T 

almost surely. Let 

(6. 14) A® = {u : inf• « i e(a) > U ^ ^ } 
0<s<t Z 

and At = A^. Note that A{
t'

] contains the set A; for 0 < t < T. 

Define the process {Y,E(£),0 < t < T} by the stochastic differential equation 
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dY'c(t) = -2(\t + l)U"2{t)x{At))di 

(6. 15) +u-1(t)x(A
i
t
i))duUt),0 < t < T 

where x{E) denotes the indicator function of a set E. Let (f>e —> 0 as e —• 0 and define 

(6. 16) 4 ( 0 = A.' + x{Ai)<t>:X fT G(~)dYtc(s) 
JO Pe 

where G(.) is a bounded kernel with finite support , that is , there exists constants a and 

b such that 

(6. 17) / G(u)du = l,G(u) = 0 for u < a and u > b. 
J a 

We suppose that a < 0 and b > 0. Further suppose that the kernel G(.) satisfies the 

additional condition 

/

OO 

G(u)uJdu = 0, j = l , . . . , fc . 
- O O 

Note that 0u(t), 1 < i < N are independent estimators of 6{t) since the processes W,-, 1 < 

i < N are independent Wiener processes. 
2D 

Let 7e = £ 2"+1. Suppose that Under some additional conditions , it can be shown (cf. 

Prakasa Rao [24]) that the estimators 6is(t), 1 < i < N are independent estimators of 9(t) 

such that 
(6.19) sup \E[Ou(t) - 0{t)]\ < CI£*P+ 

1 <i<N 

and 

(6. 20) sup E[Bie{t) - 6{t)f < C 2 t w 

l<t '<Af 

where C\ and Ci are constants depending on the kernel G(.), the Lipschitz constant LQ 

and N. Note that the estimators 8ie(t), 1 < i < N are the best estimators of 6(t) as far 

as the rate of mean square error are concerned by Theorem 4.6 in Kutoyants [12]. We now 

combine these estimators in an optimum fashion to get an estimator using all the information 

available. Define (6 .2 i ) eNe(t) = 
Er=1(Ai + i)«?(t) 
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Note that the random variable 6^s(t) is not an estimator of 0(t) as the functions «,•(/) depend 

on the function 9(t). However the random variable 6^e(t) is a linear function of independent 

random variables 0;£(f), 1 < i < N. From the earlier calculations , it can be checked that 

E{6Ne{t)-8(t))2 = Var(6Ne(t)) + (E(6Nc(t)-6(t))2 

(6. 22) < CS£^. 

Let 

Ef=1(A,+ l)ul{t) 
where 

(6. 24) «,-,(*) = Vielo&'^-W'. 

The following results can be proved. For details, see Prakasa Rao [24]. 

Theorem 6.1: For 0 < t < T, 

(6. 25) 0*Ne{t) -£• 9{t) as e — 0. 

Since the estimators 0,e(<), 1 < i < N are independent random variables, it follows that 

the estimator 0*Ne(t) is asymptotically normal and we have the following theorem. For details, 

see Prakasa Rao [24]. 

Theorem 6.2: For 0 < t < T, 

(6. 26) 7«(«W*) - »(0) ^ JV(0, °\t)) as £ - 0 

where 

(6 . 27 ) 7 £ = £"2/3+1 

and 
1 y ° ° 

(6-28) a\t) = _ ^ - _ _ — - / G 2 ( « ) ^ -
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Remarks l:If k — 0 and 0=1, that is, the function 9(.) E 0 where 0 is the class of 

uniformly bounded functions which are Lipschitzian of order one, then it follows that 

(6. 29) e~Ho*Ne(t) - <?(0) "^ N(0,(T2(t)) as e -> 0. 

Remarks 2: It is known that the probability measures generated by stochastic processes 

satisfying the SPDE given by (6.1) are absolutely continuous with respect to each other 

when 9(.) is a constant (cf. Huebner et al. [7]). There are classes of SPDE which generate 

probability measures which are singular with respect to each other when 6(.) is a constant. 

We now study the problem of nonparametric inference for a linear multiplier for such a class 

of SPDE by the above methods(cf. Prakasa Rao [27]). 

Example I I 

Let (SI, T, P) be a probability space and consider the process u e ( f , a ; ) , 0 < a ; < l , 0 < i < T 

governed by the stochastic partial differential equation 

(6. 30) due(t, x) = 9(t)Auc(t, x)dt + edWQ(t, x) 

where A = S-%. Suppose that e —> 0 and 0 £ 0 where 0 is a class of positive valued functions 

0(0)0 — * — T uniformly bounded , k times continuously differentiate and that the k-th 

derivative 9^k\.) satisfies the Lipschitz condition of order a G (0,1], that is, 

(6. 31) |6»W(«) - 0W(s)| <\t- s\a,P = k + a. 

Further suppose the initial and the boundary conditions are given by 

( 6 3 2 ) U ( o , i ) = / ( i ) , / e i j [ o , i ] 

and Q is the nuclear covariance operator for the Wiener process Wq(t,x) taking values in 

i 2[0, l ] so that 

WQ{t,x) = Q1^W(t,x) 

and W(t, x) is a cylindrical Brownian motion in £2(0,1]. Then, it is known that (cf. Rozovskii 

[33], Kallianpur and Xiong [11]) 

(6. 33) WQ{t, x) = Y, q\l2ei{x)Wi{t) a.s. 
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where {Wi(t), 0 < t < T} , i > 1 are independent one - dimensional standard Wiener processes 

and {e,} is a complete orthonormal system in L2[0,l] consisting of eigen vectors of Q and 

{qi} eigen values of Q. 

We assume that the operator Q is a special covariance operator Q with ek = sin(kirx),k > 

1 and Xk = (wky,k > 1. Then {ek} is a complete orthonormal system with eigen values 

</,• = (1 + Ai) - 1 , i > 1 for the operator Q and Q = (I - A ) - 1 . Note that 

(6. 34) dWQ = Q1/2dW. 

We define a solution ue(t,x) of (6.29) as a formal sum 

oo 

(6.35) ue{t,x) = ^2uu{t)ei(x) 

(cf. Rozovskii [33]). It can be checked that the Fourier coefficient M,£(<) satisfies the stochastic 

differential equation 

(6. 36) duic{t) = -6(t)\iUic{t)dt + £ dWjjt), 0<t<T 
V A; + 1 

with the initial condition 

(6. 37) u;e(0) = vi, Vi = / f(x)e{(x)dx. 
Jo 

We assume that the initial function / in (6.32) is such that 

Vi = / f(x)ei(x)dx > 0, i > 1. 
Jo 

Est imat ion 

We now consider the problem of estimation of the function 8(t),0 < t < T based on 

the observation of the Fourier coefficients Ui£(t), 1 < i < N over [0,T] or equivalently the 

projection ue (i,x) of the process ue(t,x) onto the subspace spanned by {ei, . . . ,ejv} in 

ia[0, l] . 

We will at first construct an estimator of #(.) based on the path {u;E(/),0 < t <T}. Our 

technique follows the methods in Kutoyants [12], p.155 as before. 

Let us suppose that 

(6. 38) sup sup 6(t) < LQ. 
ee@o<t<T 
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Consider the differential equation 

(6. 39) ^ ^ = -0(t)\iUi(t),Ui(Q) = Vi,Q<t<T. 

at 

It is easy to see that 

Ui(t) = vie-
x'5oe^is,0<t <T 

and hence 

(6.40) u,(t) > vie-
Mit,0< t <T 

where 

(6. 41) M, = L0\. 

From Lemma 1.13 of Kutoyants [12], it follows that 

(6. 42) sup \uie(s) - Ui(s)\ < - 7 J = e M ' ( sup |Wj(a)| 
0<s<t V*i + J- 0<s<« 

almost surely. Let 

(6. 43) A™ = {w : inf «,-,(*) > ^ i e " M ' ' } 
0<s<t Z 

and A{ = A ^ . Note that A]'' contains the set Ai for 0 < t < T. 
Define the process {Yie(t),Q < t < T] by the stochastic differential equation 

(6. 44) +u-1(t)X(A(
i
i))duu(t),0<t<T 

where x{E) denotes the indicator function of a set E. Let 4>c —* 0 as £ —• 0 and define 

(6. 45) Ml )Ai = -{xCAWr 1 [TG(t-^-)dYlt(s)} 
JO <Pe 

where G(.) is a bounded kernel with finite support , that is , there exists constants a and 

b such that 

(6. 46) / G(u)du = l,G(u) = 0 for u < a and u > b. 
Ja 
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We suppose that a < 0 and 6 > 0. Further suppose that the kernel G(.) satisfies the 

additional condition 

/

oo 
G(u)u3du = Q,j = l , . . . , fc . 

-oo 

Note that f)le(l), 1 < i < N are independent estimators of 9(t) since the processes W{, 1 < 

i < N are independent Wiener processes. 

Let 7£ = e w 1 . Under some conditions, it can be shown that the estimators (?;£(<),1 < 

i < N are independent estimators of 9{i) such that 

(6. 48) sup \E[9ie(t) - 9(t)]\ < C6e^ 
l<i<N 

and 

(6. 49) sup E[9ic(t) - 9(t)]2 < C7e w 
l<i<N 

where CQ and Cj are constants depending on the kernel G(.), the Lipschitz constant L0 and 

N. Note that the estimators 6ie(t), l < i < N are the best estimators of 9{t) as far as the rate 

of mean square error are concerned by Theorem 4.6 in Kutoyants [12]. We now combine these 

estimators in an optimum fashion to get an estimator using all the information available. 

Define 

(6' 5 0 ) °N'{t) - £ & > ? ( * . • + !)«?(«) • 

Note that the random variable 0Ne{t) is n ° t an estimator of 9{t) as the functions «,-(t) depend 

on the function 9{t). However the random variable #/vc(0 is a linear function of independent 

random variables #;£(/), 1 < i < N. It can be checked that 

(6.51) E(9NE(t)-8(t))2 = Var(0Nt(t)) + (E{6Ne(t)-O(t))2 

< Ci0e2's+1. 

As a consequence, we have the following result. 

Theorem 6.3: For 0 < t < T, 

(i) 6Ne(t) -^ 0(t) as E -> 0; 

(ii) E(6Ne{t)) -> 0(t) as e - • 0; 
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(6. 

Let 

(6. 

52) 

53) 

(iii) lim£_o E(0Nc(t) - 6{t))2 -> as £ — 0; 

(iv) l imsup£^0 E(6Nc{t) - 6(t))2e™^ < oo; 

(v) £*&(0Ns(t) - 0(t)) -£• N(0,a2(t)) as £ -> 0 

where N(0,a2(t)) denotes the normal distribution with mean zero and variance <r2(t)) given 

1 roo 

a2(t) = —J, / G2(u)du. 

fl. m _ ZiLJUtWXj + WUt) 

where 

(6. 54) iiie(t) = vie-Xi£'*&*'. 

Theorem 6.4: For 0 < t < T, 

(6.55) B*Ne(t)Z0(t)asE-+0. 

Note that 

E £ i A?(A,- + l)ui(t) U J 

Eili7.(g,-.(Q-g(Q)A?(A< + !)&?„(*) 

E £ i A?(A,- + i)«?E(i) 

Since 

(i) 7 , (4(<) - 0(0) ^ N(0,a2(t)) as £ ^ 0 for 1 < i < N, 

(ii) uie(t) -£• u,-(<) as e -> 0 for 1 < i < N, 

for 0 < t < T, and since the estimators (?,>(<), 1 < i < N are independent random variables, it 

follows that the estimator 0*Ne(t) is asymptotically normal and we have the following theorem. 

Theorem 6.5: For 0 < t < T, 

(6. 56) 7e(*we(0 - *(*)) ^ ^ ( 0 . * 2 (0 ) as £ - 0 

where 



113 

1 r°° 
(t) = —fj / G2(u)du. 

For details, see Prakasa Rao [27]. 

Remarks :(l)If k = 0 and /? = l,that is, the function 9(.) S 0 where 0 is the class of 

uniformly bounded nonegative functions which are Lipschitzian of order one, then it follows 

that, for 0 < * < T, 

(6. 59) £~'(0'Ne(t) - 0(/)) ^ N(0,a2(t)) as e - 0. 

(2) It is well known that if a,-, 1 < i < N are unbiased estimators of a parameter 9 with 

variances a2,1 < i < N respectively, then a better estimator, in the sense of smaller variance, 

can be obtained by taking a linear combination of a,-,l < i < N with the coefficient of a, 

inversely proportional to the variance a2 and adjusting the proprtionality constant so that 

the new estimator is also unbiased. Here the estimators 01£(f),l < i < N are asymptotically 

unbiased estimators of 8(t) and the estimator 0*Ne(t) is obtained following the above procedure 

so that this estimator has smaller asymptotic variance compared to the asymptotic variances 

of 9ie(t),l <i<N. 

(3)It should be possible to study nonparametric estimation of the function 6{t) in the 

examples I and II and by other methods of estimation such as the Method of Sieves or the 

Method of Wavelets (cf. Prakasa Rao [22]) and recover the function 9(t) either by keeping £ 

fixed and letting N —• oo or by linking e and JV such that N = N(E) —> oo. 

7 Parameter Estimation for Stochastic PDE with linear drift 

(Absolutely continuous case) (Discrete sampling) 

In all the earlier sections, it was assumed that a continuous observation of a random field 

ue(x,t) satisfying a SPDE over the region [0,1] X [0,T] is available. It is obvious that this 

assumption is not tenable in practice and the problem of interest is to develop methods of 

estimation of the parameters from a random field uE(x,t) observed at discrete times t and at 

(6. 57) 

and 

(6. 58) 
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discrete positions x or from the Fourier coefficients v,ie(t) observed at discrete time instants. 

We will discuss the latter problem in this paper for two types of SPDE's. Prakasa Rao [20] 

discusses statistical inference from sampled data for stochastic processes in general and the 

methods of statistical inference for the special class of diffusion type processes is investigated 

extensively in Prakasa Rao [22]. 

Let us consider the SPDE (3.1) discussed in Section 3. 

Suppose the collection of observations consists of {«,-e(jA), 0 < j < n , l < t < N} where 

A > 0. The problem of estimation of the parameter 0 can be considered from three differ­

ent angles (i) discretise the likelihood equation obtained from the continuous observation 

by approximating the terms aE and /3E in the likelihood equation by suitable approximating 

sums and then solve for an approximate maximum likelihood estimator, (ii) discretise the 

maximum likelihood estimator obtained from the continuous observation and (iii) compute 

the likelihood function based on the discrete set of observations and the maximize the corre­

sponding likelihood. All these approaches have been studied for the estimation of parameters 

for diffusion type processes (cf.Prakasa Rao [22]). 

We now approach the problem following the techniques in Bibby and Sorensen [1]. The 

Fourier coefficients u,-e(2) of the random field ue(t,x) satisfy the stochastic differential equa­

tion 

(7. 1) duic(t) = {d- \i)ui€(t)dt + E dWjjt), 0<t<T 
V A; + 1 

with the initial condition 

(7. 2) u;£(0) = Vi, V{ = / f(x)ei(x)dx. 
Jo 

Note that the process {uie(t),0 < t < T} is the Ornstein-Uhlenbeck process and it is well 

known that the conditional distribution of «,£(A) given Uie(Q) is normal with mean i>;e(9_A')A 

and variance 2}e-x )(x + iV • ̂  c a n °e s n o w n that 

(7. 3) Gn(9) = ^ J2 uUU - l)A)(«,-,(jA) - «,-.((j - l)A) e"A) 

is proportional to the optimal estimating function for the estimation of the parameter 8 — X{ 

(cf. Bibby and Sorensen [1]) and an estimator for 8 is of the form 

(7-4) ^ = Al + A log E?.^(0--DA) ' 
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This estimator is also the maximum likelihood estimator of 6 based on the discrete data 

uu(jA),0<j < n. 

Since 0 < 0, it is well known that the solution of (7.1) is ergodic with the stationary 

measure with density fig given by the normal distribution with mean zero and variance 

0f(6) — £2{2(A,- - 9){\{ + l ) } - 1 - Further more we have already noted that the transition 

probability density 7r̂  of M, £ (A) given that u;E(0) = x is the normal probability density with 
(0-A.1A J • £

2 ( e
2 ( B -* i )A- i ) 

mean xey " and variance 2(g-\ \{\ +il • 

The following result can be proved. For details, see Prakasa Rao [28]. 

Theorem 7.1: The estimator #1£ converges in probability to 8 as n —» oo and 

7 1 ^ ^ ( 4 - 0) ^ Af(0,e-2A<e-A'» - 1) as n ^ oo. 

Remarks : Note that the estimators {#1£,1 < i < N} are independent, consistent and 

asymptotically normal for the parameter 8 in the stochastic partial differential equation 

(3.1). We will now discuss a method for combining these estimators to get an improved 

estimator. 

Let 8e — YAL\ ai@ie where Q , , 1 < i < N is a nonrandom sequence of coefficients to be 

chosen. Note that 
N 

8e —• [ ^ ai\8 as n —• oo 
i=i 

by the Theorem 7.1 and hence 8E is consistent for 8 provided ^2i=i ai = 1- Further more 

N 
V^A(0£ -0)± NiO^afie-2^0-^ - 1)) as n -» oo. 

i = i 

This follows from the Theorem 7.1 and the independence of the estimators {6^, 1 < i < N}. 

We now obtain the optimum combination of the coefficients {a ; , l < i < N} by minimising 

the asymptotic variance 

f>?(c-2A<»-Ai> - 1) 
i = l 

subject to the condition YiiLi «; = 1.It is easy to show that a,- is proportional to (e2A(Ai~9) -

1)_ 1 and the optimum choice of a;, 1 < i < N leads to the "estimator" 

,7 ^ r - Tl^^-»-i)-leie 
('• b> "< E£ i (e 2 A ( A i " e ) - 1)_ 1 ' 
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It is easy to see that 

0* A 0 as n —> oo 

and 
N 

V^A(6t -0)£ J V ( 0 , ( 5 > " 2 A ( ' " A i ) - l ) - 1 ) - 1 ) as n - oo 
!=1 

again due to the independence of the estimators {#,e,l < i < N}. However the random 

variable 0* cannot be considered as an estimator of 0 in the true sense since it depends 

on the unknown parameter 9. In order to avoid this problem, we can consider a modified 

estimator 
E N / „2A(Ai-a i t ) i i - l a 

E ^ ^ e 2 ^ * ' - 9 " ) - I ) " 1 

which is obtained from 0* by substituting the estimator 0,-e for the unknown parameter 8 

in the i-th term in the numerator and denominator in (7.5). In view of the independence, 

consistency and asymptotic normality of the estimators 0,-e,l < i < N, it follows that the 

estimator 6e is consistent and asymptotically normal for the parameter 6 and we have the 

following result. 

Theorem 7.2: Under the conditions stated above, 

9e —• ff as n —* oo 

and 
N 

n"2A(6c - 0)) £ JV(0,(5>-aA<*-Ai> - I )" 1 )" 1 ) as n - oo 
•= i 

for any fixed N > 1. 

8 Parametric Estimation for Stochastic PDE with linear 

drift (Singular case) (Discrete sampling) 

Let us consider the SPDE (4.1) in the Section 4. 

Suppose the collection of observations consists of {uie(jA),0 < j < n, 1 < i < N} where 

A > 0. As discussed in the previous section, consider the stochastic differential equation 

(8. 1) duie{t) = -0\iuie{t)di + dWj(t), 0<t<T 
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with the initial condition 

(8. 2) Mie(O) = Vi, V{ = / f(x)ei(x)dx. 
Jo 

Note that the process {ut-e(t),0 < i < T) is the Ornstein-Uhlenbeck process and it is well 

known that the conditional distribution of u,-e(A) given u,>(0) is normal with mean u,e~9A'A 

£ 2 / e ~ 2 e A t A _ j \ 

and variance /_2g> WA +l) • ̂  c a n ^ e s n o w n t n a t 

(8. 3) ffn(0) = ^ ± ± £ « !£((j - l)A)(«,-.(jA) - u1£((j - l ) A ) e - M ' A ) 

is proportional to the optimal estimating function for the estimation of the parameter 0 (cf. 

Bibby and Sorensen [1]) and an estimator for 0 is of the form 

(8.4) * , = -A, A log ^ , ^ - D A ) • 

This estimator is also the maximum likelihood estimator of 0 based on the discrete data 

uic(jA),0 <j<n. 

Since 0 > 0, it is well known that the solution of (8.1) is ergodic with the stationary 

measure with density Pg given by the normal distribution with mean zero and variance Cf(0) = 

e2{2\i0{\i + l)}-1. Further more we have already noted that the transition probability density 

7r̂  of u,£(A) given that u,£(0) = x is the normal probability density with mean ze ' - 9 * ' ) A 

and variance £
2/1^A i?A +iV • ^e* ^ be a random variable with stationary measure vg and Y 

be a random variable such that the conditional density of Y given X = x is given by 7r^. 

Note that 

(8. 5) E[XY] = E[XE(Y\X)] = £ [ I I e ( - w ' » 4 ] 

= g(0)e-ex'* 

and 

(8. 6) E[X2} = (?(0). 

It is easy to check that the Condition 3.1 in Bibby and Sorensen [1] holds in this case and 

applying the Lemma 3.1 in Bibby and Sorensen [1] (cf. Florens-Zmirou [4]), we obtain that 

1 n 

— ^2 u«(jA)«,-e((j - 1)A) -> £[XY] in probability as n -> oo 
71 , 
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and 

1 
71 , 

Y,UU(J - !)A) -> E\x2\ i n probability as n —» oo. 

The above relations imply that 

E ? = 1 u1E(jA)u„((j - 1)A) £ [ X y ] . 

E?=i«? e(( j- i)A) ' ^ P H m p r o b a b l l l t y *•" - ° ° -

The following result follows as a consequence of the above observation and the relations 

(8.5) and (8.6). 

Theorem 8.1: The estimator 6ic converges in probability to 8 as n —• oo. 

Let V;(0) = e-°x'A Note that 

l f 6 , E"=i «,>(JA)««(CJ - i)A) 

W . J - E ? = i t I ? e ( ( j _ 1 ) A ) • 

Hence 

^ . fi , , , . u n-1/a£7=1[t t f e(jA)u,-«((j - 1)A) - fr(g)u?.((j - 1)A)] 
SHWu) - MO)} = n - ^ U u W - m • 

Since 

E[ut€(jA)uiE((j - l)A)|«,-,((j - 1)A)] = lfc(*)«?e(0" - l)A), 

it follows by the Lemma 3.1 of Bibby and Sorensen [1] that 

n 

n~1/2 5 > , £ ( j A H E ( ( j - 1)A) - i>i(9)ul((j - 1)A)] 
3 = 1 

converges in distribution to the normal distribution with mean zero and variance equal to 

Ti(9) = E[XY - E(XY\X)}2 where the random variables X and Y are as defined above. It 

can be checked that 

^ - 2 ( U ) ( A i + 1 ) ^ -
Applying the 6 - method , we obtain that 

n^2A(§ic - 6) 

converges in distribution to the normal distribution with mean zero and variance 

A~2e2A9Air;(#)e~4(#) and we have the following theorem. 
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Theorem 8.2: Under the conditions stated above 

n1 /2A(0,£ -0)±> JV(0, A-2(e2AW- - 1)) as n - 00. 

Remarks: Note that the estimators {0;e,l < i < N] are independent, consistent and 

asymptotically normal for the parameter 8 in the stochastic partial differential equation 

(4.1). We will now discuss a method for combining these estimators to get an improved 

estimator. 

Let 8E = J2i=i ai@ie where a,-, 1 < i < N is a nonrandom sequence of coefficients to be 

chosen. Note that 
N 

8C —*• [ \J ai\6 as n —• co 
i=\ 

by the Theorem 8.1 and hence 8e is consistent for 8 provided E*=i <*; = 1- Further more 

N 
v/^A(0£ - 8) -5. Ar (0 ,^a 2 A- 2 (e 2 A 9 A ' - 1)) as n - oo. 

t = i 

This follows from the Theorem 8.2 and the independence of the estimators {#,£, 1 < i < JV}. 

We now obtain the optimum combination of the coefficients {a,-, 1 < i < N} by minimising 

the asymptotic variance 

£>?ArVAMi-i) 

subject to the condition J2i-i ai = 1- It is e a s v to show that a, is proportional to A2(e ' — 

1)_ 1 and the optimum choice of a;, 1 < i < N leads to the "estimator" 

( j c ~ E £ i A 2 ( e ^ . * _ i ) - i • 

It is easy to see that 

8* —> 8 as n —> oo 

and 

^ A ( 0 £ ' - 9) £ JV(0 , (£> 2 (e 2 A W - - l ) " 1 ) - 1 ) a s n - o o 

again due to the independence of the estimators {#J£,1 < i < N}. However the random 

variable #* cannot be considered as an estimator of 8 since it depends on the unknown 

parameter 8. In order to avoid this problem, we can consider a modified estimator 

(8.8) 
E £ i A2(e2AM,< _ 1)-1 



120 

which is obtained from 8* by substituting the estimator 0,£ for the unknown parameter 8 

in the i-th term in the numerator and denominator in (8.7). In view of the independence, 

consistency and asymptotic normality of the estimators 9ic, 1 < i < N, it follows that the 

estimator 9C is consistent and asymptotically normal for the parameter 8 and we have the 

following result. 

Theorem 8.3: Under the conditions stated above, 

8S —• 6 as n —» oo 

and 
N 

n ^ A ^ - 9)) ± JV(0,(£>?(e 2 A ( U ' - l ) " 1 )" 1 ) as n - oo 

for any fixed N > 1. 

9 Paramet r i c Est imat ion for Some SPDE ( Discrete sam­

pling) 

We have discussed the problem of estimation of a parameter 9 when it is present only in 

the "trend" part of an SPDE. We will now discuss the problem of estimation when the 

parameter involved occurs in the "trend" part as well as in the "forcing" part of the SPDE. 

Prakasa Rao [20] discusses statistical inference from sampled data for stochastic processes in 

general and the methods of statistical inference for the special class of diffusion type processes 

is investigated extensively in Prakasa Rao [22]. Piterbarg and Rozovskii [16] studied the 

properties of maximum likelihood estimators based on discrete time sampling for parameters 

invoved in parabolic stochastic partial differential equations when the " trend" part of the 

SPDE involves the parameter but not the " forcing part of the SPDE. 

Example I 

Let (fi, J7, P) be a probability space and consider the process uc(t,x),0 < x < 1,0 < t <T 

governed by the stochastic partial differential equation 

(9. 1) duc(t,x) = {Aue(t,x) + b(9)us(t,x))dt + ea(9)dWQ(t,x) 

where A — g^j-. Suppose that 9 S 0 C R- Assume that the function b(9) < 0 for all 9 6 0 . 

Further suppose that the functional form of the function b{9) is known and it is differentiable 

with respect to 9 with non zero derivative. In addition assume that the function a(9) > 0 is 
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known but the parameter 6 £ 0 is unknown. Suppose the initial and the boundary conditions 

are given by 

(9 2) J *,(<>,*) = / (* ) , / e i 2 [o , i ] 
\ uc{t,0) = ue(t,l) = 0,Q<t<T 

and Q is the nuclear covariance operator for the Wiener process Wq(i,x) taking values in 

L2[0,1] so that 

WQ(t,x) = Q1'2W{t,x) 

and W(t,x) is a cylindrical Brownian motion in £2[0,1]. Then, it is known that (cf. Itozovskii 

[33]) 

(9. 3) WQ(t, x) = 5 2 q]/2ei(x)Wi{t) a.s. 

where {W,(i), 0 < t < T} , i > 1 are independent one - dimensional standard Wiener processes 

and {e,} is a complete orthonormal system in £2(0,1] consisting of the eigen vectors of Q 

and {qi} the eigen values of Q. 

Let us consider a special covariance operator Q with ejt = sinA:7ra;,fc > 1 and Ajt = 

(wk)2,k > 1. Then {ej.} is a complete orthonormal system with the eigen values qi = (1 + 

^i)~l ,i > 1 for the operator Q and Q — (I — A ) - 1 . Further more 

dWQ = Q^dW. 

We define a solution ue(t,x) of (9.1) as a formal sum 

0 0 

(9.4) uE(t,x) = £ ] "ieW^C1) 
t'=i 

(cf. Rozovskii [33]). It can be checked that the Fourier coefficient M,c(f) satisfies the stochastic 

differential equation 

(9. 5) du1E(t) = (6(6/) - X,)uic{t)dt + £ a(0)dWj(t), 0 < t < T 
V A,- + 1 

with the initial condition 

(9. 6) ttte(O) = Vi, v{ = / f(x)e{(x)dx. 
Jo 

Suppose the collection of observations consists of {u1£(jA), 0 < j < r a , l < i < J V } where 

A > 0. We now approach the problem following the techniques in Bibby and Sorensen [1] 

using the method of estimating functions. 
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Note that the process {uI£(t),0 < t < T} is the Ornstein-Uhlenbeck process and it is 

well known that the conditional distribution of ii,£(A) given u;£(0) is normal with mean 

v t-eW) -A ')A and variance e a
2(b}e)-\ )(\ +1)" ^ c a n ^ e s n o w n t n a t 

(9. 7) Gn(9) = ^ ~ JT b'(9)uic(U - l)A)(«,-.(iA) - ™,E((j - l)A)eW>^^A) 

is proportional to the optimal estimating function for the estimation of the parameter 6 (cf. 

Bibby and Sorensen [1]) and an estimator for b(8) is of the form 

(9-8) 6!£ = A! + A log E ? = i ^ ( ( j _ 1 ) A ) • 

Since b(9) < 0, it is well known that the solution of (9.5) is ergodic with the stationary 

measure with the density fig given by the normal distribution with mean zero and variance 

P?(0) = e2a2(6){2(\i - 6(0))(A,- + l ) } - 1 . Further more we have already noted that the transi­

tion probability density TT^ of «,£(A) given that M,E(0) = x is the normal probability density 

with mean i e l l ' •' and variance —2(b(0)-X )(\ +i\— ^et ^ ^ e a r a n ( lom variable with 

the stationary measure fig and Y be a random variable such that the conditional density of 

Y given X = x is given by 7r^. Note that 

(9. 9) E[XY] = E[XE(Y\X)] = £ [ J I e W J ' - A ' » A ] 

= #(0)eW«)-*i)A 

and 

(9. 10) E[X2} = p}{0). 

It is easy to check that the Condition 3.1 in Bibby and Sorensen [1] holds in this case and 

applying the Lemma 3.1 in Bibby and Sorensen [1] (cf. Florens-Zmirou [4]), we obtain that 

1 n 

— Yj u«(jA)tiie((j — 1)A) —> 7?[Xy] in probability as n —> oo 
71 

J = l 

and 

1 n 

- Z UU(J ~ 1)A) -> £ [ ^ 2 ] i n probability as n —* oo. 
J = I 

The above relations imply that 
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E"=i nU(jA)uie({j - 1)A) E[XY] . 

ZU <W ~ M ~* W" " Pr y**" " ° ° ' 
The following result follows as a consequence of the above observation and the relations 

(9.9) and (9.10). 

Theorem 9.1: The estimator 6,E converges in probability to b(8) as n —> oo. 

Since the function b(9) has a continuous inverse function, the following result is a conse­

quence of Theorem 9.1. 

Theorem 9.2: The estimator 0;£ = 6-1(bi£) converges in probability to 0 as n —> oo. 

Let i/>,(0) = eA(fc(0)-A,)_ N o t e t h a t 

E?=i*«(JA)««((j-l)A) 
E?=i«?.(( i- i )A) • &•(»«) = - r^n—,7a 

Hence 

/-/ / , ^ / ,/m ""1 / 2E?= 1K(JA)M ,£(( j - 1)A) - fr(fl)t&((j - 1)A)] 
V**( f t . ) - *(«)> = n - ^ = 1 t 4 ( ( i - l ) A ) • 

Since 

£[u ie(jA)u,-e((j - 1 ) A ) K ( 0 ' - 1)A)] = i><(0)ul((j - l)A) 

it follows by Lemma 3.1 of Bibby and Sorensen (1995) that 

« " 1 / 2 i > « ( J A ) « i e ( ( j - 1)A) - ^(e)«?«((i - 1)A)1 

converges in distribution to the normal distribution with mean zero and variance equal to 

7,(0) = E[XY - E(XY\X)]2 where the random variables X and Y are as defined above. It 

can be checked that 

_ £ V ( g ) ( e 2 W > - ^ - l ) 2 
7 1 W - 2(6(0) - At)(A, + 1) ftW 

= (1 _ e W ) - A . ) A ) / 3 4 W 

Applying the i - method , we obtain that 

n1/2A(6(0,-.) - 6(A)) 
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converges in distribution to the normal distribution with mean zero and variance 

e-2A(i>(«)-Xi)7l-(0)/?:-4(0) and we have the following theorem. 

Theorem 9.3: Under the conditions stated above 

n 1 / 2 A(6(4 ) - b(6)) h JV(0,e-2AW)-A '> - 1) as n - • oo. 

Applying the <S-method once again, we obtain that 

nx/2A(4 - 0) 

converges in distribution to the normal distribution with mean zero and variance 

b'(e)-2e-2A(-hW-x^ji{e)l3f4(0) and we have the following theorem. 

Theorem 9.4: Under the conditions stated above 

n 1 / 2 A ( 4 - 0) £ N(O,(b'(0))-\e-2A(bW-x^ - 1)) as n -> oo. 

Remarks : Note that the estimators {0 l e,l < i < N} are independent, consistent and 

asymptotically normal for the parameter 6 in the stochastic partial differential equation 

(9.1). We will now discuss a method for combining these estimators to get an improved 

estimator. 

Let 6e = YLi=i ai0ie where «;, 1 < i < N is a nonrandom sequence of coefficients to be 

chosen. Note that 
N 

0C —• [Y^ a\fi as « —» oo 

by the Theorem 9.2 and hence 0e is consistent for 0 provided J2iLi ai = !• Further more 

N 

^A(0e-0)^N(O,(b'{0))-2J2<*l(e~mm~X')-V) as n -* oo. 

This follows from the Theorem 9.4 and the independence of the estimators {0,£, 1 < i < N}. 

We now obtain the optimum combination of the coefficients {Q,-,1 < i< N} by minimising 

the asymptotic variance 

^ a 2 ( e - 2 A W ) - A , ) _ 1 ) 

i=l 
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subject to the condition J2iLi Qi = !• ^ ' s e a s v *° show that a; is proportional to 

(e2A(Ai-!>(9)) _ ^ - 1 a n d t n e 0 pt i m um choice of a ; , l < i < JV leads to the "Estimator" 

ro in r _ ENi(e2A(>,-K„)) _ i r l g . e 

It is easy to see that 

9* —» 9 as n —• oo 

and 
N 

v/^A(0E* - fl) £ AT(0,(6'(^))"2(E(e_2A(! , (9 )~> '0 - 1)~ 1)" 1) as n ^ oo 

1 = 1 

again due to the independence of the estimators {0,£,1 < i < N}. However the random 

variable 6* cannot be considered as an estimator of 9 in the true sense since it depends 

on the unknown parameter 9. In order to avoid this problem, we can consider a modified 

estimator 

. E£i(e2A(A<~M - l ) - ' 4 
(9- 12 ) 6e ~ E^Ce^^-M - l)-i 
which is obtained from 9* by substituting the estimator 0,£ for the unknown parameter 9 

in the i-th term in the numerator and denominator in (9.11). In view of the independence, 

consistency and asymptotic normality of the estimators #I£,1 < i < N, it follows that the 

estimator. 9e is consistent and asymptotically normal for the parameter 9 and we have the 

following result. 

Theorem 9.5: Under the conditions stated above, 

9C —• 9 as n - K » 

and 

nl'*A(9. - 9)) h N(0,(b'(9)r2(£(e~2A{b{BhX,) ~ l ) " 1 )" 1 ) as n - oo 
i = i 

for any fixed N > 1. 

Example II 

Let (Q, J7, P) be a probability space and consider the process ue(t,x),Q < x < 1,0 <t <T 

governed by the stochastic partial differential equation 

(9. 13) due(t,x) = b(9) Auc(t,x)dt + ea{e)(I-A)-1f2dW(t,x) 
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Suppose that 8 6 0 C R. Assume that the function b(8) > 0 for all 6 £ 0 . Further suppose 

that the functional form of the function b(8) is known and it is different!able with respect to 

0 with non zero derivative. In addition assume that the function a{8) > 0 is known but the 

parameter 8 € 0 is unknown. Suppose further the following the initial and the boundary 

conditions 

(9-14) ue(0,x) = / (* ) , 0 < z < 1, / £ i , [ 0 , l ] , 

ue(t,0) = ue(t,l) = 0, 0 < t <T. 

hold. Here I is the identity operator, A = -^ and the process W(t,x) is the cylindrical 

Brownian motion in Z/2[0,1]. The Fourier coefficients «,>(<) satisfy the stochastic differential 

equations 

(9. 15) dui£(t) = -b(0)\iuie{t)dt + a{6) £ =dWj(t), 0 < 2 < T, 
V A,- + 1 

with 

(9. 16) uie(0) = Vi,vi = / f(x)ei(x)dx. 
Jo 

Suppose the collection of observations consists of {u{£(jA),0 < j < n, 1 < i < N} where 

A > 0. 

Note that the process {«,-e(t),0 < t < T} is the Ornstein-Uhlenbeck process and it is 

well known that the conditional distribution of uie(A) given M,£(0) is normal with mean 

v.e-b{6)\,A a n c j v a r j a n c e ff2(fl);j2
e
t(MA w'A ~ i | . It can be shown that 

(9. 17) Hn(8) = _ iL+i .^6 ' ( f f )A,-« , - e ( ( j - l)A)(«,£(iA) - ute((j - l ) A ) e - W A ' A ) 

is proportional to the optimal estimating function for the estimation of the parameter 8 (cf. 

Bibby and Sorensen [1]) and an estimator for b(8) is of the form 

(9-18) 6l£ = -A, A l o g - ^ — m - m - . 

Since b(8) > 0, it is well known that the solution of (9.15) is ergodic with the stationary 

measure with density vg given by the normal distribution with mean zero and variance 

(f(8) = e2a2{8){2Xib(8){\x + 1)} _ 1 . Further more we have already noted that the transition 

probability density 7r̂  of «!E(A) given that u;£(0) = x is the normal probability density 

with mean xe_f ,(^A 'A and variance ^(^^( ' l^AiKA.+iV' L e t X b e a r a n d o m v a r i a b l e w i t h 
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stationary measure ve and Y be a random variable such that the conditional density of Y 

given X = x is given by ire
A. Note that 

(9. 19) E[XY] = E[XE(Y\X)} = E[XXerb^x-A] 

and 

(9. 20) E[X2} = (f(9). 

It is easy to check that the Condition 3.1 in Bibby and Sorensen [1] holds in this case and 

applying the Lemma 3.1 in Bibby and Sorensen [1] (cf. Florens-Zmirou [4]), we obtain that 

1 n 

- ^2 ute{jA)v>ie({j - 1)A) -> flLXY] in probability as n -> oo 
n i=\ 

and 

1 n 

- 5 3 «L((i - 1)A) - > -E[^"2] in probability as n -> oo. 

The above relations imply that 

E ? = i ^ ( j A ) u , - t ( ( j - i ) A ) j?[xy] . 

E?=i«?e(0'-DA) > M^T , n p r o b a b l l l t y a s " - ° ° -
The following result follows as a consequence of the above observation and the relations 

(9.19) and (9.20). 
Theorem 9.6: The estimator 6,-e converges in probability to b(6) as n —• oo. 

Since the function b(B) has a continuous inverse function, the following result is a conse­

quence of Theorem 9.6. 

Theorem 9.7: The estimator 0;e = b~l(bi£) converges in probability to 6 as n —> oo. 

Let </>,(#) = e-b^x'A. Note that 

E ? = i M j A ) M ( j - i)A) 
E ? = i « ? e ( ( j - i ) A ) • 

Hence 

l f c ( 9 « ) - v>n „ j , 

, - , , , * , . , „ „ " - 1 / 2 E ^ = 1 K ( j A ) ^ ( ( j - 1)A) - fr(0)tt?g((j - l)A)] 
^{*(««) - *(«)> = n - i E ? = 1 ^ ( y - l ) A ) ' 
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Since 

E[uie(jA)ut£((j - l ) A ) M ( j - 1)A)] = UO)uU{i - 1)A), 

it follows by the Lemma 3.1 of Bibby and Sorensen [1] that 

n-"2 E k . 0 ' A K £ ( ( j - 1)A) - M0)«W - 1)A)] 

converges in distribution to the normal distribution with mean zero and variance equal to 

7"i(0) = E[XY — E(XY\X)]2 where the random variables X and Y are as defined above. It 

can be checked that 

p.2/ -26(0)AiA _ i \ 

= ( l - e - 2 M » ) ^ . A ) C 4 W . 

Applying the 6 - method , we obtain that 

n"2A(b(6i6) - b(9)) 

converges in distribution to the normal distribution with mean zero and variance 

Ar2e2A6C>A'-Tv(0)C~4(0) and we have the following theorem. 

Theorem 9.8: Under the conditions stated above 

n ^ 2 A ( 6 ( 4 ) - b(0)) ^ N(0,\-2(e2Ab^x' - 1)) as n - oo. 

Applying the (5-method once again, we obtain that 

nll2A{6iE - 9) 

converges in distribution to the normal distribution with mean zero and variance 

(6'(0)r2A-2(e2A6WA ')T7(0)/?-4(0) and we have the following theorem. 

Theorem 9.9: Under the conditions stated above 

nl'2A(9tE -0)£ N(0,(b'{9))-2\-2(e2Ab^' - 1)) as n - oo. 

Remarks: Note that the estimators {0,-e,l < i < N} are independent, consistent and 

asymptotically normal for the parameter 8 in the stochastic partial differential equation 

(9.13). We will now discuss a method for combining these estimators to get an improved 

estimator. 
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Let 8£ = YjiLiai®ie where »;,1 < i < N is a nonrandom sequence of coefficients to be 

chosen. Note that 
N 

8C -^> [V" ai}8 as n —> oo 
1 = 1 

by the Theorem 9.7 and hence 8€ is consistent for 8 provided YiiLi ai = 1- Further more 

VSA(fle - 0) -£ 7 V ( 0 , f > 2 C > ' W r 2 A 7 V A 6 W ' - 1)) as n - oo. 

This follows from the Theorem 9.9 and the independence of the estimators {8ic, \<i< N}. 

We now obtain the optimum combination of the coefficients {Q,-,1 < i < N} by minimising 

the asymptotic variance 

X>2(&'wr2v v A W A - - 1 ) 
i = i 

subject to the condi tion Ejl i" . ' = 1. It is easy to show that a, is proportional to 

A^e2AA,6(») _ ^ - 1 a n d t h e o p t i m u m choice of a ; , l < i < N leads to the "Estimator" 

y-AT j,2( 2AA,t(fl) _ i \ - l« . 
(9.21) 0 . _ 2 - . = i M « i) »« 

It is easy to see that 

and 
N 

V^A(0£* -0)± N(0,((b'(8))-2^2\](e2AbWX' - l ) - 1 ) " 1 ) as n -> oo 
i = l 

again due to the independence of the estimators {0;£,1 < i < N}. However the random 

variable 0* cannot be considered as an estimator of 8 since it depends on the unknown 

parameter 8. In order to avoid this problem, we can consider a modified estimator 

(9.22) 4 - L , = l M >---
Ei=l A?(e2AA,t„ _ !)- l 

which is obtained from 8*e by substituting the estimator 0;£ for the unknown parameter 8 

in the i-th term in the numerator and denominator in (9.21). In view of the independence, 

consistency and asymptotic normality of the estimators 0;e,l < i < N, it follows that the 

estimator 8E is consistent and asymptotically normal for the parameter 8 and we have the 

following result. 
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Theorem 9.10: Under the conditions stated above, 

8C —* 6 as n —• oo 

and 

N 
n 1 / 2 A ( ^ - ^ ) ^ 7 V ( 0 , ( ( 6 ' ( e ) ) - 2 ^ A 1

2 ( e
2 A 6 ( ^ - l ) - 1 ) - 1 ) as n - oo 

i= i 
for any fixed JV > 1. 

Remarks : In the two examples discussed above, we have assumed that the drift coefficient 

and the diffusion coefficient are known except for the parameter 9 which is to be estimated 

from the data. Since the estimating functions considered above are linear martingale esti­

mating functions , the function b(0) in the diffusion coefficient is only involved and not the 

function o{6) which makes the procedure inefficient. However we get explicit solution for the 

estimator if we make use of linear martingale estimating functions. If one uses the quadratic 

martingale estimating functions as described by Sorensen [35] (cf . Prakasa Rao [22]), the 

estimating function involves both the functions b(8) and a{9) but the resulting equations are 

too complex to solve for a user. Since the discretely observed Ornstein -Uhlenbeck processes 

encountered in both the examples are autoregressive processes, the likelihood function can 

be computed and the maximum likelihood estimator can be obtained which is asymptotically 

efficient. The estimators 6!E described in the equations (9.8) and (9.18) are the the maximum 

likelihood estimators in the natural parametrization, that is when the reparametrization by 

means of the functions b(8) and a{8) is done away with, and the scalar parameter 8 in the 

drift and the scalar parameter a in the diffusion term are allowed to vary independently 

keeping the a fixed eventually, as the interest centers around the parameter 6. In such a 

case, the combined estimator 8C, described in (9.22), of the parameter 8 in the drift term is 

asymptotically efficient. 

10 Nonparametric Estimation for some Special SPDE (Dis­

crete sampling) 

We now discuss nonparametric estimation of a function 0(t) involved in the "forcing" term 

for a class of SPDE's. The problem of estimation of the diffusion coefficient in a SDE 

from discrete observations has attracted lot of attention recently in view of the applications 

in mathematical finance especially for modelling interest rates. Our work here deals with a 
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similar probem for a SPDE. A short review of recent results on parametric and nonparametric 

inference for SPDE's is given in Prakasa Rao [24]. 

Example I 

Let (H, T, P) be a probability space and consider the process uE(£, x), 0 < i < 1,0 < £ < T 

governed by the stochastic partial differential equation 

(10. 1) du£(t,x) = (Auc(t,x) + uc(t,x))dt + £ 9(t) dWQ(t,x) 

where A = Jp-. Suppose that 0(.) is a positive valued function with 0(t) G Cm([0,oo)) for 

some m > 1. Further suppose that 92(.) £ L2(R) and that the function 8(.) has a compact 

support contained in the interval [—e,T + e] for some £ > 0. 

Further suppose the initial and the boundary conditions are given by 

( 1 0 2 ) f ««(0,x) = / ( x ) , / € L 2 [ 0 , l ] 

\ ue(*,0) = « £ ( t , l ) = 0,0 < t < T 

and Q is the nuclear covariance operator for the Wiener process Wg(t,x) taking values in 

7,2 [0,1] so that 

WQ(t,x) = Q1'2W(t,x) 

and W(t,x) is a cylindrical Brownian motion in £2(0,1]. Then, it is known that (cf. Rozovskii 

[33], Kallianpur and Xiong [11]) 

(10. 3) WQ{t,x) = Yiq
1
l
,2ei(x)Wi(t) a.s. 1/2 
r * 

where {VF,(t), 0 < i < T} , i > 1 are independent one - dimensional standard Wiener processes 

and {e;} is a complete orthonormal system in £2(0,1] consisting of eigen vectors of Q and 

{(?,} eigen values of Q. 

We assume that the operator Q is a special covariance operator Q with e^ = sin(kirx), k > 

1 and Afc = (irk) ,k > 1. Then {e^} is a complete orthonormal system with the eigen values 

<fc = (1 + A,) - 1 , i > 1 for the operator Q and Q = (I - A ) - 1 . Note that 

(10. 4) dWQ = Qll2dW. 

We define a solution u£(t,x) of (10.1) as a formal sum 

00 

(10.5) u6{t,x) = '$2uic(t)ei(x) 
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(cf. Rozovskii [33]). It can be checked that the Fourier coefficient «,£(<) satisfies the stochastic 

differential equation 

(10. 6) dut£(t) = (1 - \i)uie(t)dt + £ 8(t)dWj(t), 0<t<T 
V A; + 1 

with the initial condition 

(10. 7) ute{0) = Vi, Vi = / f(x)ei{x)dx. 
Jo 

Estimation 

We now consider the problem of estimation of the function 0(t),O < t < T based on 

the observation of the Fourier coefficients U{E(tj),tj = j2~n,j = 0 , 1 , . . . ,[2nT], 1 < i < N, 

or equivalently based on the observations u\ '(tj,x),tj = j2~n,j = 0 , 1 , . . . , [2"T] of the 

projection of the process ue(t,x) onto the subspace spanned by {e i , . . . , e^} in £2(0,1]. Here 

[x] denotes the largest integer less than or equal to x. 

We will at first construct an estimator of 0(.) based on the observations {u,-e(Jj),tj = 

j2~n,j = 0 , 1 , . . . , [2nT]}. Our technique follows the methods in Genon-Catalot et al. [5]. 

Let {Vj, -00 < j < 00} be an increasing sequence of closed subspaces of L2(R). Suppose 

the family {Vj, —00 < j < 00} is an r-regular multiresolution analysis of L2(R) such that the 

associated scale function <j> and wavelet function tji are compactly supported and belong to 

Cr(R). For a short introduction to the properties of wavelets and multiresolution analysis, 

see Prakasa Rao [22]. 

Let Wj be the subspace defined by 

(10. 8) vj+1 = V3 © Wj 

and define 

(10.9) 4>jtk(x) = 2 » ^ ( 2 ' z - J f c ) , - o o < j , i f c < o o 

(10. 10) Vj,*(z) = 2 j /2V(2Jx - k), - 0 0 < j , k < 00 . 

Then (i) for all -00 < j < 00, the collection of functions {4>j,k, -00 < k < 00} is an 

orthonormal basis of Vj ; (ii) for all -00 < j < 00, the collection of functions {^j., -00 < k < 

00} is an orthonormal basis of Wj ; and (iii) the collection of functions {i/>j,k, - ° ° < j , k < 00} 

is an orthonormal basis of L2(R). 
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In view of the earlier assumptions made on the function 0(t), it follows that the function 

8{t) belongs to the Sobolev space Hm{R). Let j(n) be an increasing sequence of positive 

integers tending to infinity as n —> co. The space L2(R) has the following decomposition: 

(10. 11) L'{R) = Vj{n)®{®j>iln)Wj). 

The function 02(t) can be represented in the form 

CO 

(10. 12) 92(t) = £ fi3{n)^j{n)M{t) + £ "j.k^.kW 
fc=— oo j >J{TI) ,—oo<fc<oo 

where 

(10. 13) iij,k = / 6\t)<j>j<k{t)dt 
JR 

and 

(10. 14) viM = / 92(t)^,k(t)dt. 
J R 

We will now define estimators of the coefficients fj,jik based on the observations {u;£(ir),2r = 

r 2 - n , j = 0 , l , . . . , [ 2 n r ] } . Define 

A + 1 M~l 

(10. 15) A •',! = - = - 2 - £ 4>i,k{tr){uit{tT+1) - uu{tr))
2 

£ r=0 

where M = [2nT]. 

The subspace V, is not finite dimensional. However, the functions 92 and the functions 

4> are compactly supported. Hence, for each resolution j , the set of all k such that ji^k ^ 0 

and the set of all k such that fij^ ^ 0 is a finite set Lj depending only on the constant T 

and the support of <j> and the cardinality of the set is 0(2 J ) . 

Define the estimator of 92{t) by 

(io. 16) em = £ /$B),t*i(B).*(0 

(io- 17) = £ £$o,*^<»).*(0-
—oo<fc<oo 

Note that for any function / such that 

rT 
< oo, 

it can be shown that 

M-i 

/ f(t)62(t)dt 
Jo 

Y\ f(U){uie{tr+1) - uic(tr))
2 i —£-— I f{t)92{t)dt as n 

f—' Ai + l Jo 
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Hence 

(10. 18) /}vj. •?* fijtk as n -» oo. 

Let /t(.) be a continuous function on [0,T] with compact support contained in (0,T) and 

belonging to the Sobolev space Hm'(R) with m' > | . Let /ij be the projection of h on the 

space Vj. Further more suppose that 

(10.19) r Am + r Am' > 2,j(n) = [an] 

with 

(10.20) (2(r A m + r A m')) _ 1 < a < -. 

Note that r is the regularity of the multiresolution analysis, m is the exponent of the Soblev 

space to which 82 belongs to and m' is the exponent of the Soblev space to which h belongs 

to. Applying the Proposition 3.1 of Genon-Catalot et al. [5], we obtain that the following 

representation holds: 

rT 
Jin = 2n'2 ( h(t)(9f(t) - 62(t))dt 

Jo 

= ^ £ h
3(n)(tr)[(J 6(S) dWiis))2 - J e2(S)ds} + Rh 

r=0 r r 

where i i ! n = op(l) as n —• oo. Further more 

(10. 21) Jin^M{Q,2 I h2(t)04(t) dt) a s n - 4 0 0 
./o 

by Theorem 3.1 of Genon-Catalot et al. [5]. Note the estimators {&,((), i > 1} are independent 

estimators of 6(t) for any fixed t since the processes {Wi, i > 1} are independent Wiener 

processes. 

Let 7(2) be a nonegative continuous function with support contained in the interval [0,T]. 

Define 

(10. 22) Q,n = E{[ 7(*)(»?(0 - 02(t))2dt}. 

Jo 

Note that Qin is the integrated mean square error of the estimator 02(l) of the function 02(t) 

corresponding to the weight function 7(2). It can be written in the form 

(10. 23) Qin = B2
n + Vin 
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where 

(10.24) Bl= [Ti(t){E6Ut)-02{t))2dt 
Jo 

is the integrated square of the bias term with the weight function -/(t) and 

(10. 25) Vm = E{ [T
 7 (0 (# (* ) - E6}{t)fdt} 

Jo 

is the integrated square of the variance term with the weight function 7(i). Let 

(10. 26) Dtn = E{ fT{9Ut) - E6l{t))2dt) 
Jo 

and suppose that sup{7(<) : t € [0,T]} < K. Further suppose that j (n) — f —> —oo. Then it 

follows, by Theorem 4.1 of Genon-Catalot et al. [5], that there exists a constant C; depending 

on £,A, and the functions cj>,y and 62 such that 

(10. 27) B\n < Ci(24 j<n ' -2n + 2-2^n '<mAr) + 2-") 

and 

(10. 28) Din = V^-n2 / 64{t)dt + o(2 J(n ' -n) . 
Jo 

Further more 

(10. 29) Vm < KDin. 

Let 

(10.30) «TU0 = £ £ « ? ( * ) • 
1 N 

* . • = , 

It is obvious that, for any function h satisfying the conditions stated above, and for any fixed 

integer N > 1, 

2"/2 / h{t){9l,(t) - e2(t))dl 
Jo 

N 

N M " ' f«r+l rlr+1 N 

= TV"1 £ { 2 " / 2 J2 hj(n)(tr)[{ / *(a) ^ i W ) 2 - / 0\s) ds}} + JV-1 £ ft-
i = l r=0 *r ( r i = l 

= 2n/2 £ ^(n)(^){^_ 1 £ [ ( / *W dWt(s)f - / 02(s) ds]} + iV"1 J ] *,-„. 
r=0 i= l ' ' ' '• •'''• i= l 
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From the independence of the estimators #,(£), 1 < i < N, it follows from the Theorem 3.1 

of Genon-Catalot et al. [5] that 

(10. 31) 2n /2 / h(t)(82
N(t) - 82(t))dt -4 NiQ^N-1 J h2{t)8\t) dt) as n - oo. 

Jo Jo 

We have the following theorem. 

Theorem 10.1 : Under the conditions stated above , the estimator 82
N{t) of 82{t) satisfies 

the following property for any function h{i) as defined earlier: 

(10. 32) T>2 I h(t){62
N(t)-62(t))dt^N{Q,2N-1 f h2(t)04(t) dt) as n -+ oo. 

Jo Jo 

Let 7(2) be a nonegative continuous function with support contained in the interval [0,T]. 

Define 

(10. 33) Qn = E{j i{t){82
N{t) - 82{t))2dt). 

Jo 

Note that Qn is the integrated mean square error of the estimator 82
N{t) of the function 82(t) 

corresponding to the weight function 7(2). It can be written in the form 

(10. 34) Qn = Bl + Vn 

where 

(10. 35) D2
n = fT j(t)(E92

N(t) - 92{t))2dt 
Jo 

is the integrated square of the bias term with the weight function 7(2) and 

rT 
(10. 36) Vn = E{[ i(t)(6%(t) - E02(t))2dt} 

Jo 

is the integrated square of the variance term with the weight fu: 

(10. 37) Dn = E{j (82
N(t) - E82(t))2dt}. 

Jo 

is the integrated square of the variance term with the weight function f(t). Let 

Jo 

We have the following theorem from the estimates on {/J,n, 1 < i < N] and on {/?;n, 1 < i < 

N} given above. 

Theorem 10.2: Suppose that j(n) — f —> —00. Then there exists a constant CV depending 

on N, </>,7,02 such that 

(10. 38) B2 < CN (24j '(")-2n + 2-2rtnHmArl + 2-n) 
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and 

(10. 39) Dn = JV-12 j ( n )-"2 / 0\t)dt + o(N~1 2j{n)~n). 
Jo 

Further more 

(10. 40) Vn < KDn 

where K - sup{7(i) : 0 < t < T}. 

Example II 

Let (ft, T, P) be a probability space and consider the process ue(t,x),0 < x < 1,0 < t < T 

governed by the stochastic partial differential equation 

(10. 41) du£(t,x) = Aue(t,x)dt + e 9(t) ( 7 - A ) _ 1 / 2 dW(t,x) 

where A = -^. Suppose that 6(.) is a positive valued function with 6(t) £ Cm([0,oo]) for 

some m > 1. Further suppose that #2(.) G L2(R) and that the function 0(.) has a compact 

support contained in the interval [—e,T + e] for some e > 0. 

Further suppose the initial and the boundary conditions are given by 

(1Q 42) { «e(0,*) = /(x),/el2[0,l] 

\ uc(t,Q) = ue(t,l) = 0,0<t<T 

We define a solution uc(t,x) of (10.41) as a formal sum 
oo 

(10. 43) ue{t,x) = ^2 uie{t)ei(x) 
i = i 

(cf. Rozovskii [33]). It can be checked that the Fourier coefficient u,-e(l) satisfies the stochastic 

differential equation 

(10. 44) duu(t) = -\iuic(t)dt + £ 0{t)dWj(t), 0<t<T 

with the initial condition 

(10. 45) w«(0) = t)i, Vi = / /(x)e;(x)di. 

Estimation 

We now consider the problem of estimation of the function 6(t), 0 < t < T based on the 

observation of the Fourier coefficients u,-e(tj),lj = j2~n,j = 0 , 1 , . . . ,[2nT], 1 < i < N, or 
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equivalently based on discrete observations u\ '(tj,x),tj = j2~n,j = 0 , 1 , . . . , [2"T] of the 

projection of the process ue(t,x) onto the subspace spanned by {e i , . . . ,ejy} in £2(0, 1]. 

We will at first construct an estimator of #(.) based on the observations {u;£(i,),t, = 

j2~n,j = 0 , 1 , . . . , [2nT]}. Our technique again follows the methods in Genon-Catalot et al. 

[5] using the method of wavelets. 

In view of the earlier assumptions made on the function 8(t), it follows that the function 

6(f) belongs to the Sobolev space Hm(R). Let j(n) be an increasing sequence of positive 

integers tending to infinity as n —> oo. The space L2(R) has the following decomposition: 

(10. 46) L\R) = Vj(n) ffi (®3>j{n)W3). 

The function 02(t) can be represented in the form 

oo 

(10. 47) 9\t) = £ n](n)^m<k{t) + £ uhk^k{t) 
k~ — oo j>j(n),-oo</:<oo 

where 

(10. 48) N,k = j 9\t)4>]ik{t)dt 
JR 

and 

(10. 49) viM = [ 6\t)4>hk{t)dt. 
J Ft 

We will now define estimators of the coefficients \ijk based on the observations {u,£(t r),i r = 

r2~n,j = 0 , 1 , . . . , [2"T]}. Define 

(10. 50) AJ!l = - 7 F £ ^,*(tr)(«,-e(<r+l) - Uie(tT)f 

where M = [2nT]. 

The subspace Vj is not finite dimensional. However, the functions 02 and the functions 

(p are compactly supported. Hence, for each resolution j , the set of all k such that \i^k ^ 0 

and the set of all k such that fij:k / 0 is a finite set Lj depending only on the constant T 

and the support of <f> and the cardinality of the set is 0 (2 ; ) . 

Define the estimator of 62(t) by 

00.51) 8Kt) = £ /$„),**;<»).*(<) 

(10- 52) = £ /$„),*^-(»),*(*)-
—oo</c<oo 
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Note that for any function / such that 

[T f(t)0\t)dt 
Jo 

< 00, 

it can be shown that 

M-\ 2 ,T 
V f(tT)(uu(tr+1) - uie(tr))

2 i — — / f{t)62{t)dt as n - oo. 
r=o A, + U 0 

Hence 

(10. 53) fi''k —> /i^jt as n —• oo. 

Let /i(.) be a continuous function on [0,T] with compact support contained in (0,T) and 

belonging to the Sobolev space Hm (72) with m' > | . Let /ij be the projection of h on the 

space Vj. Further more suppose that 

(10. 54) rAm + rAm'> 2, j(n) = [an] 

with 

(10.55) (2(r Am + r A m ' ) ) - 1 < Q < - . 

Note that r is the regularity of the multiresolution analysis, m is the exponent of the Soblev 

space to which 82 belongs to and m' is the exponent of the Soblev space to which h belongs 

to. Applying the Proposition 3.1 of Genon-Catalot et al. [5], we obtain that the following 

representation holds: 

rT 
j i n = 2n'2 f h(t)(6?(t) - 6\t))dt 

Jo 
... M~} ffr+l „ ftr+1 „ 

= T'2 Y , H n ^ r t i 6(S) dW,(s))2 - e2(s)ds] + R,i 
r=0 f r Jtr 

where Rin = op(l) as n —> oo. Further more 

(10. 56) J , n ^ A ^ ( 0 , 2 / h2(t)64(t) dt) as n -* oo 

Jo 

by Theorem 3.1 of Genon-Catalot et al. [5]. Note the estimators {9{(t),i > 1} are independent 

estimators of 0(1) for any fixed i since the processes {W^,i > 1} are independent Wiener 

processes. 

Let 7(2) be a nonegative continuous function with support contained in the interval [0,T]. 

Define 
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(10. 57) Qin = E{ J 7(0(*?(0 - 0\t)fdt}. 
Jo 
r 

Jo 

Note that Qin is the integrated mean square error of the estimator 0f(t) of the function 02(t) 

corresponding to the weight function 7(2). It can be written in the form 

(10. 58) Qin = Bl + Vtn 

where 

(10.59) Bfn= / T
7 W ( E e ? ( t ) - 0 2 ( t ) ) 2 d t 

Jo 
is the integrated square of the bias term with the weight function -y(t) and 

(10. 60) Vin = E{[ y(t)(0?(t) - E6?(t))2dt} 
Jo 

is the integrated square of the variance term with the weight function 7(f). Let 

(10. 61) An = E{ fT(8?(t) - E8f{t)fdt} 
Jo 

and suppose that sup{7(2) : t £ [0,T]} < K. Further suppose that j(n) - f -* - 0 0 . Then it 

follows, by Theorem 4.1 of Genon-Catalot et al. [5], that there exists a constant C; depending 

on E,\i and the functions <f>,~j and 82 such that 

(10. 62) B2
m < C,(24j'<n»-2n + 2-2^n)(m A r ' + 2"") 

and 

(10. 63) Din = 2 j(n ' -"2 / e\t)dt + o(2^n>-n). 
Jo 

Further more 

(10. 64) Vin < KDin. 

Let 

(10.65) » M * ) = ^ !)«?(*)• 

It is obvious that, for any function h satisfying the conditions stated above, and for any fixed 

integer JV > 1, 

2"/2 / h(t){PN(i) - 82{t))dt 
Jo 

N 
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tf-1 ^ { 2 n/2 £ hj(n){tr)[( / *(a) rf^s))2 _ / 02{a) ds]} + N-l £ £. 
i= l r=0 ^ i r Jtr i= l 

2n/2 E '•i(»)(<r){^_1 Etc / *(5) <^(s))2 - / <?2« ds]} + ^ _ 1 £ * -
• r=0 t=l Jt' Jtr ,=1 

From the independence of the estimators #,(2),1 < i < iV, it follows from the Theorem 3.1 

of Genon-Catalot, et al. [5] that 

(10. 66) 2 n / 2 / h{t)(6%{t) - 62(t))dt -^ AfiQ^N-1 f h2(t)9l{t) dt) as n -* oo. 
Jo ./o 

We have the following theorem. 

Theorem 10.3: Under the conditions stated above , the estimator 6%{t) of 02(2) satisfies 

the following property for any function h(t) as defined earlier: 

(10. 67) 2n'2 I h(t)(62
N(t) - 62{t))dt -£• M(Q,2N~l f h2(t)d\t) dt) as n -* oo. 

Jo Jo 

Let 7(2) be a nonegative continuous function with support contained in the interval [0,T]. 

Define 

(10. 68) Qn = E{ fT f(t)(62
N(t) - e\t)fdt}. 

Jo 

Note that Qn is the integrated mean square error of the estimator 9%(t) of the function 82(t) 

corresponding to the weight function 7(2). It can be written in the form 

(10. 69) Qn = Bl + Vn 

where 

(10. 70) Bl = fT i(t){E62
N{t) - S2{t)fdt 

Jo 
is the integrated square of the bias term with the weight function 7(2) and 

(10. 71) vn = E{ fTi{t){PN(t) - E'e\t)fdt} 

Jo 

is the integrated square of the variance term with the weight function 7(2). Let 

(10. 72) Dn = E{[ (62
N(t) - E~62{t)fdt}. 

Jo 

We have the following theorem from the estimates on {Bin, 1 < i < N} and on {Din, 1 < i < 

N} given above. 
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Theorem 10.4: Suppose that j(n) — f —> — oo. Then there exists a constant CV depending 

on N,<t>,i,62 such that 

(10. 73) B2
n < CN (24j '(n)-2n + 2-2J'(nXmAr) + 2-") 

and 

(10. 74) l \ = JV" V ( n ) - " 2 / 6\t)dt + o(JV_1 2j^'n). 
Jo 

Further more 

(10. 75) Vn < KDn 

where K = sup{7(i) : 0 < t < T}. 

Remarks : It can be seen, from the Theorems 10.1 and 10.2 and from the Theorems 10.3 

and 10.4, that the limiting behaviour of the estimator 92
N(t) of 92(t) does not depend on the 

"trend" terms in the SPDE's discussed in both the examples as long as the "trend" terms 

in the SDE's satisfied by the Fourier coefficients do not depend on the function 8(t) or any 

other unknown functions. This has also been pointed out by Genon-Catalot et al. [5] in their 

work on the estimation of the diffusion coefficient for SDE's. 

11 Nonparamet r ic Est imat ion for Parabolic SPDE (Discrete 

sampling) 

Let ( f i , ^ , P) be a probability space and consider a stochastic partial differential equation 

(SPDE) of the form 

(11. 1) du(t,x) = Au(l,x)dt + 6(t)dW(t,x),0<t<T,xeG 

where A is a partial differential operator, 8{i) is a positive valued function with 6(t) £ 

Cm([0,oo)] for some m > 1 and W(t,x) is a cylindrical Brownian motion in L2{G),G being 

a bounded domain in Rd with the boundary dG as a C°°-manifold of dimension (d — 1) and 

locally G is totally on one side of dG. For the definition of cylindrical Brownian motion, see, 

Kallianpur and Xiong [11], p.93. 

Suppose the solution u(t,x) of (11.1) has to satisfy the boundary conditions 

(11. 2) u(0,x) = u0(x) 

and 

(11. 3) D^u{t,x)\9G = 0 
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for all multiindices 7 such that |-y| = \t — 1 where I is positive even integer. Here 

("• 4) ^ / ( x ) = . 7. . . , / ( » ) 

with |7 | = 71 + • • • + 7 J . Suppose that 

(11.5) /l(a;)u = - £ (-l)^Do,(aaP{x)D0u) 
\a\,\P\<t 

where 

(11. 6) a"p(x) e C°°{G). 

We follow the notation introduced in Huebner and Rozovskii [8]. Assume that the fol­

lowing conditions hold. 

(HI) The operator A satisfies the condition 

/ Auvdx = / uAvdx,u,v £ Cff(G). 
JG JG 

(H2) A is a uniformly strongly elliptic operator of order L 

For s > 0, denote the closure of C^{G) in the Sobolev space WS'2(G) by W0
S'2. 

The operator A with boundary conditions defined above can be extended to a closed self-

adjoint operator C on //2(G) (Shirnakura [34]). In view of the condition (H2) , the operator 

C is lower semibounded, that is there exists a constant k such that — C + kl > 0 and the 

resolvent (kl — £ ) - 1 is compact. Let A = (kl — £)7 where m = Ord(A). Let hi be an 

orthonormal system of eigen functions of A. We assume that the following condition holds. 

(H3) There exists a complete orthonormal system {/i,-,i > 1} such that 

Ah,- = A;/i;. 

The elements of the basis {hi, i > 1} are also eigen functions for the operator £, that is 

Chi = flihi 

where 

For s > 0, define II' to be the set of all u 6 L2(G) such that 
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IM|s = (EAflK^k2(G)l2)1/2<~-
3 = 1 

For s < 0, IIs is defined to be the closure of ^ ( G ) in the norm | |«| | s given above. Then 

IIs is a Hilbert space with respect to the inner product (.,)s associated with the norm ||.||s 

and the functions h\ = \~shi,i > 1 form an orthonormal basis in IIs. 

In addition to the conditions (H1)-(H3), we assume that 

(H4)M0 e H~a where a > §. Note that u0 € L2{G). 

(H5) The operator A is a uniformly strongly elliptic of even order £ and has the same 

system of eigen functions {h,-,i > 1} as C. 

The conditons (H1)-(H5) described above are similar as those in Huebner and Rozovskii 

[8]. 

Note that u0 G H~°. Define 

(11.7) u0l = (uo,h-°).a. 

Then the random field 
oo 

(11.8) u(t,x) = J2ut(t)h;"(x) 
1=1 

is the solution of (11.1) subject to the boundary conditions (11.2) and (11.3) where «,-(*) is 

the unique solution of the stochastic differential equation 

(11. 9) dv.i(t) = mui{t)dt + \-a9(t)dWi(t),0 < t < T, 

(11. 10) Ui{0) = uoi. 

Let TN be the orthogonal projection operator of H~a onto the subspace spanned by 

{A~°,l < i < N). Let 

(11. 11) uN{t,x) = irNu{t,x) 

•=i 

where Ui(t) is the solution of (11.9) subject to (11.10). Note that 

(11. 12) duN(t,x) = AuN{t,x)dt + 8(t)dWN{t,x),Q < t < T,x e G 

with 

(11.13) UN{0,X) = KNUO(X) 
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and 
N 

(ii. i4) wN{t, x) = j2 Arwco/ir(*). 
Here {Wi(t),t > 0},z > 1 are independent s tandard Wiener processes. 

We now consider the problem of estimation of the function 9(t),0 < t < T based on 

the observation of the Fourier coefficients U{(tj),tj — j2~n,j = 0 , 1 , . . . , [2™T], 1 < i < N, 

or equivalently based on the observations uN(tj,x),tj — j2~n,j = 0 , 1 , . . . , [ 2 n T] . Here [x] 

denotes the largest integer less than or equal to x. 

We will at first construct an est imator of 9(.) based on the observations {ui(tj),tj = 

j2~n,j = 0 , 1 , . . . , [2 n T]}. Our technique follows the methods in Genon-Catalot et al. [5] as 

before. 

Let {Vj, — oo < j < oo] be an increasing sequence of closed subspaces of L2(R), Suppose 

the family {Vj, - o o < j < oo} is an r-regular multiresolution analysis of L2(R) such tha t the 

associated scale function <j> a n d wavelet function iji are compactly supported and belong to 

Cr(R). For a short introduct ion to the properties of wavelets and multiresolution analysis, 

see Prakasa Rao [22]. 

Let Wj be the subspace defined by 

(11. 15) Vj+i = V3 © Wj 

and define 

(11 .16 ) <t>j,k{x) - V/2(t>(2jx-k),-oo<j,k<oo 

( 1 1 . 1 7 ) Tl>j,k(x) = 2 3 / V ( 2 j i - f c ) , - o o <j,k < oo. 

Then (i) for all —oo < j < oo, the collection of functions {^^,—00 < k < 00} is an 

orthonormal basis of Vj ; (ii) for all —00 < j < 00, the collection of functions {i/>j,fc, —00 < k < 

00} is an or thonormal basis of Wj ; and (iii) the collection of functions {V'j.t, —00 < j,k < 00} 

is an orthonormal basis of L2(R). 

In view of the earlier assumptions made on the function 9(t), it follows tha t the function 

6{t) belongs to the Sobolev space Hm(R). Let j(n) be an increasing sequence of positive 

integers tending to infinity as n —> 00. The space L2(R) has the following decomposition: 

(11. 18) L\R) = Vj ( n ) © (ff i ,> j ( n)Wg. 

The function 92{t) can be represented in the form 

0 0 

(11. 19) 9\t) = Y, /M»).k^(n),k(0 + £ "i,nMO 
k=— 00 j>j(n),—oo<A:<oo 
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where 

( i i . 20) N,k = f e\t)<t>3,k(t)dt 
J R 

and 

(11. 21) uhk = / e2(t)i>jik(t)dt. 
J Ft 

We will now define estimators of the coefficients fijj, based on the observations {ui(tr),tT = 

r2~n,j = 0,l,...,[2nT}}. Define 

M-i 

(11. 22) £<;] = \2° J2 ^.*(*r)(«,-(*r+l) - <U))2 

where M = [2nT]. 

The subspace Vj is not finite dimensional. However, the functions 82 and the functions 

<f> are compactly supported. Hence, for each resolution j , the set of all k such that n^k ^ 0 

and the set of all k such that / i ,^ / 0 is a finite set Lj depending only on the constant T 

and the support of 4> and the cardinality of the set is 0(23). 

Define the estimator of B2(t) by 

(11-23) 92(t) = £ /$»).**><»>.*(') 

—oo<fc<oo 

Note that for any function / such that 

/ f(t)e2(t)dt 
Jo 

< 00, 

it can be shown that 

V f{tr)(ui{tr+1) - u,{tr))
2 Z —-— / f(t)62(t)dt as n ^ oo. 

fr'o A,- + 1 70 

Hence 

(11. 25) /ivj. -^ ^ f c as n -* oo. 

Let h(.) be a continuous function on [0,T] with compact support contained in (0,T) and 

belonging to the Sobolev space Hm (R) with m' > i . Let /ij be the projection of h on the 

space Vj. Further more suppose that 

(11.26) i - A m | r A r a ' > 2 , j ( n ) = [an] 
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with 

(11.27) (2 ( rAm + r A m ' ) ) " ' < a < i 

Note that r is the regularity of the multiresolution analysis, m is the exponent of the Soblev 

space to which 82 belongs to and m! is the exponent of the Soblev space to which h belongs 

to. Applying the Proposition 3.1 of Genon-Catalot et al. [5], we obtain that the following 

representation holds: 

Jin = 2n/2 fTh(t)(6?(t)-d2(t))dt 
Jo 
M _ 1 /'ir+l fir+1 

= 2"/2 Y, h3{n)(tr)[( 6(s) dW,(s))2- 62(s) ds] + Rtn 

where Rin = op(l) as n —> oo. Further more 

(11. 28) Jin ^ Af(0,2 / h2(t)64(l) dt) as n -* oo 

Jo 

by Theorem 3.1 of Genon-Catalot et al. [5]. Note the estimators {#,(£), i > 1} are independent 

estimators of 0(1.) for any fixed t since the processes {W^i > 1} are independent Wiener 

processes. 

Let 7(4) be a nonegative continuous function with support contained in the interval [0,T]. 

Define 

(11- 29) Qm = E{ [T 7 ( 0 ( ^ ( 0 " e\t)fdt). 
Jo 

Note that Q,n is the integrated mean square error of the estimator 92(t) of the function 02(t) 

corresponding to the weight function 7(f). It can be written in the form 

(11-30) Q,n = B2
n + Vln 

where 

(11.31) Bl= fT
1(t)(E9Kt)-e2(t)fdt 

Jo 
is the integrated square of the bias term with the weight function 7(i) and 

(11. 32) Vm = E{ f 7 ( 0 ( ^ ( 0 - E62(t)?dt} 
Jo 

is the integrated square of the variance term with the weight function f(t). Let 

(11. 33) A n = E{ fT(e2(t) - E02(t))2dt} 
Jo 
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and suppose that sup{7(i) : t € [0,T]} < K. Further suppose that j(n) — | —» —oo. Then it 

follows, by Theorem 4.1 of Genon-Catalot et al. [5], that there exists a constant C; depending 

on e,A,- and the functions 4>,~/ and 02 such that 

(11. 34) B2
in < Ci(24j(n)-2n + 2-2J(n)(mAT) + 2 _ n ) 

rT 
Dln = 2 J ' n ' - n 2 / 6\t)dt + o{V^-n). 

Jo 

Vin < KD,n. 

It is obvious that, for any function h satisfying the conditions stated above, and for any fixed 

integer N > 1, 

2" '2 / h(l)(02
N(t) - e\l))dl 

Jo 

N 

t = l 

= N-1 £ { 2 " / 2 £ hHn)(tT)[( / ' ' + 1 0(8) dW,(s))2 - / ' " + I 02(s) ds]} + TV"1 £ Rtn 
1=1 r=0 Jtr Jtr i-\ 

= 2" '2 £ ^ ( ( ^ { J V - 1 £ [ ( / 0(s) dW^s))2 - / 02(s) ds}} + TV"1 £ *,-„. 
r = 0 i = l •'''• ^ ' r , '=1 

and 

(11. 35) 

Further more 

(11. 

Let 

(11. 

36) 

37) 

From the independence of the estimators <?;(*), 1 < i < N, it follows from the Theorem 3.1 

of Genon-Catalot et al. [5] that 

T 
as n —> oo. (11. 38) 2 n / 2 / h(l,)(02

N(i) - 02(l))dt ^ MiO^N'1 f h2{t)0\t) dt) 
Jo Jo 

We have the following theorem. 

Theorem 11.1 : Under the conditions stated above , the estimator 0%(t) of 02(t) satisfies 

the following property for any function h(t) as defined earlier: 

rT /• rT 
(11. 39) 2 n / 2 / h(t)(02

N{t)-02(t))dt^N{Q,2N-1 I h2(t)0\t) dt) as n 
Jo Jo 

0 0 . 



149 

Let 7(2) be a nonegative continuous function with support contained in the interval [0,T]. 

Define 

(11. 40) Qn = E{ [T
 7(0(»5UO - 6\t)fdt). 

Jo 

Note that Qn is the integrated mean square error of the estimator 0fj{t) of the function 92(t) 

corresponding to the weight function 7(4). It can be written in the form 

(11.41) Qn = B2
n + Vn 

where 

(11.42) Bl= [Ti(t)(EPN(t)-0\t))2dt 
Jo 

is the integrated square of the bias term with the weight function 7(1) and 

(11. 43) Vn = E{[ 7(t)(Ajv(0 - E~62(t))2dt] 
Jo 

is the integrated square of the variance term with the weight function y{t). Let 

(11. 44) Dn = E{ fT(62
N(t) - E82(t)fdt}. 

Jo 

We have the following theorem from the estimates on {/?,-„, 1 < i < N} and on {Di„, 1 < i < 

N] given above. 

Theorem 11.2: Suppose that j(n) — | —> —00. Then there exists a constant CJV depending 

on N,4>,~f,62 such that 

(11. 45) B2
n < CN (24j '(n '-2n + 2 -« ( n » m A r ) + 2~n) 

and 

(11. 46) D n = 7V-12J("»-'l2 / 64{t)dt + oiN'1 2^" ' - " ) . 
Jo 

Further more 

(11. 47) Vn < KDn 

where K = sup{7(f) : 0 < t < T}. 
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12 Remarks 

We have considered the problems of nonparametr ic and parametr ic estimation of coefficients 

involved in a special class of parabolic SPDE' s which can be reduced to infinite systems of 

stochastic differential equations. It is possible such a decoupling might not be possible for 

several classes of SPDE ' s which occur in stochastic modelling. The problem is to develop 

statistical methods of inference for such SPDE's in the case of continuous observation of 

the random field u(t,x) over t ime and space variables. In our discussion on estimation 

problems for SPDE ' s based on discrete sampling, we have assumed tha t discrete da t a on the 

Fourier coefficients of the random field u(t,x) are available. This assumption is also more of 

mathematical convenience and it amounts to continuous observation of the random field over 

the space variable x. A more realistic problem is to est imate the coefficients of the SPDE 

satisfied from observations on the random field observed at discrete times t,-,l < i < N and 

at discrete points Xj, 1 < j < M. As far as the author is aware, this problem has not been 

studied. The problems of finding methods for simulation as well as methods for numerical 

approximation of general SPDE ' s has not been studied much in the l i terature 
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SOME UNIFYING TECHNIQUES IN 
THE THEORY OF ORDER 

STATISTICS 

H. A. David 
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Abstract 

Let Xi,..., Xn be any n random variables (rv's) and let Xim < . . . < Xn:n denote 

the same variables arranged in nondecreasing order. Then X r : n is called the rth 

order statistic, r = 1 , . . . ,n. When one of the X's is dropped at random, there 

results a simple relation between the order statistics in the original and the reduced 

samples. This "dropping" argument will be shown to provide a unified approach 

to establishing recurrence relations between moments of order statistics, whatever 

the dependence structure of the observations. Also useful in studying recurrence 

relations is the classical theorem on the probability of occurrence of r events out 

of n. 

It will also be shown that a simple general method of obtaining universal bounds 

for linear functions of order statistics in terms of the sample standard deviation 

can be based on Cauchy's inequality coupled with convexity arguments. 

Keywords: Recurrence relations; "dropping" argument; universal bounds; Cauchy's 

inequality; convexity. 
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1 INTRODUCTION 

I greatly appreciate being asked to contribute a paper to this volume. An article 

on order statistics is particularly appropriate, since Indian statisticians have made 

major contributions to the subject. Two massive multi-authored volumes, [1] and 

[2], recently published, summarize much of the theory and applications of order 

statistics. Their indexes list 70 distinct areas of application including life testing 

and reliability, the treatment of outlying observations, median and order-statistics 

filters in signal or image processing, the estimation of parameters and hypothesis 

testing, etc. The theory of order statistics draws on a rich variety of mathemat­

ical techniques. Beyond the familiar mathematical branches, authors have used 

the theories of convexity and majorization, stochastic orderings and inequalities, 

functional and integral equations, the calculus of variations, linear programming, 

combinatorial analysis, and no doubt other techniques. 

In this paper we deal with two quite different aspects of order statistics, but 

show in each case how a few techniques illuminate, unify, and provide easy proofs 

of key results. 

2 RECURRENCE RELATIONS 

We need a few preliminaries. Let 

Fr:n(x) = Pr(Xr:n < x) 

denote the cumulative distribution function (cdf) of Xr:n, and 

A*r:n = E(Xr:n) 

the expectation or mean or first moment of Xr:n. Continuing to the joint cdf of 

Xr:n and Xs:n(r < s), we define 

Fr,,:n(x,y) - Pr(Xr:n < x,Xs:n < y) 
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and the product moments 

Finally, we say the random variables (rv's) Xi,...,Xn are exchangeable if the 

joint distribution of any subset depends only on the size of the subset and not on 

which X's are in the subset. Exchangeable variates are a first generalization of 

independent, identically distributed (iid) rv's, much used in statistics. 

Many authors have studied recurrence relations between the moments of order 

statistics, both for their intrinsic interest and for their usefulness in reducing the 

number of independent calculations required for the evaluation of the moments. 

Relation 1. Let X\,...,Xn be exchangeable variates with Pr{Xr:n < x} = 

Fr:n(x) and E(Xr:n) = p r:„,r = l , . . . , n . Then subject to the existence of all 

terms involved, 

(n - r)/j.r:n + riir+1:n = np r :n-i-

Proof. We use the following "dropping" argument, [10]: Drop one of Xx,... ,Xn 

at random and suppose this is Xi:n(i — l , . . . , n ) . The resulting ordered variate 

Xr:n-i in the sample of n — 1 exchangeable rv's is then given by 

Xr :n_i - Xr+i:n for i = l , . . . , r (A) 

= Xr:n for i — r + 1 , . . . , n (B) 

since for (A) the rv with rank r + 1 in the sample of n has rank r in the sample of 

n — l, etc. But the events A and B have respective probabilities r/n and (n — r)/n, 

so that 

Pr{Xr..n^ < x} = Pr{A}Pr{Xr:n^ < x\A} 

+ Pr{B}Pr{Xr:n^ < x\B} 

= -Pr{Xr+1:n <x} + "—-Pr{Xr:n < x} 
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or 

nFr:n-i(x) = rFr+Un(x) + (n - r)FrM(x). (1) 

Relation 1 follows. 

Comments. 

1. Relation 1 was first obtained in [6] for iid continuous variables. 

2. The "dropping" argument generalizes easily to give the well-known relation 

for 1 < r < s < n 

rf*r+l,,+l:n + (s - r ) ^ r , , + 1 : n + (fl - s)/ir,»:n = «/^r,s:n-l, 

first proved in the iid continuous case in [12]. 

Generalization of Relation 1 to any variates X\,... ,X„. In [18] it is shown 

that even when the Xi have an arbitrary joint distribution, a generalization of (1) 

is possible, namely 

rFr+1:n(x) + (n- r)Fr:n(x) = £ ^ ( z ) , (2) 

t= i 

where iv:„_1(a;) denotes the cdf of Xr:n-i when Xi has been dropped from Xi,..., Xn(i 

l , . . . , n ) . 

The "dropping" argument provides a simple proof of (2), [8]. Consider drop­

ping at random one of Xi:n, •.. ,Xn:n. The resulting variates may be denoted by 

X\.2-i ,-••, -if n-i:n-i) where J has a discrete uniform distribution over j = 1 , . . . , n. 

Then (A) and (B) will still apply if Xr:n.x is replaced by X^-i- Eq. (2) now fol­

lows, since by conditioning on J = i, we see that the cdf of Xf.J_t is 

"• . ' = 1 

Relation 2. In the situation of Relation 1 
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Thus the moments of Xr:n are expressible in terms of the simpler moments of the 

maxima in samples of r, r + 1 , . . . , n. 

This relation can be established by repeated application of Relation 1, or al­

gebraically. We again use a probabilistic argument, [9], that lends itself to gen­

eralization. By a classical result in probability theory, the probability pr<n of the 

realization of at least r out of the n events Ai,...,An is given by (e.g., [11, p. 99]) 

Pr,n = E ( - i r r ( J
r : | ) S ; - (3) 

where 

Sj= J2 Pr{Ail...Aij}. 
l < i i < . . . < i j < n 

If Ai is the event Xi < x,i = 1 , . . . , n, then pr:n = Pr{Xr:n < x} = Fr:n(x). Eq. 

(3) clearly becomes 

^™(x) = ±(-iy~r ^ I J) (j) F,,(x), (4) 

which gives Relation 2 as before. 

Duality Principle. If Ai in (3) is taken to be the event X, > x, i = 1 , . . . , n, then 

Pr,n = Pr{Xn-r+i:n > x}. With F(x) = 1 - F(x), eq. (3) now gives 

Fn_r+l!B(x) = £ ( - i r r ^ " | ) Q F1:j(x). 

Setting x = —oo, we have 

and hence obtain the "dual" of (4) 

Fn_r+1..n(x) = ±(-iy- ^ " J) Q Fv,(x) (5) 

Clearly, to reach (5) from (4) we simply need to change Fa:i,{x) to F(,_a+1.;,(a:), 1 < 

a < b < n. 
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This argument may be extended to the general case of dependent rv's Xx,..., Xn. 

The result is made explicit in [5], where the "duality principle" is introduced 

through a different, slightly less general approach. 

Interdependence of Linear Relations. It is interesting to note that eq. (1) can be 

deduced by applying (4) to each term of (1). Since each of (1) and (4) can be 

obtained from the other, they must be equivalent. More generally, any recurrence 

relation linear in the F,:J- must be of the form 

£ J2 ai3Fi:j(x) = ££ bijFi-A*), (6) 
j=i;=i j-i«=i 

where the a^ and bij are constants. By (4) each side of (6) must equal the same 

linear function J2]=i cjFj:j{x)> sav> since for arbitrary F(x) there can be no linear 

identity linking F\:i(x),..., Fn:n(x) for all x (except in the trivial case Pr{X\ = 

. . . = Xn} = 1). In other words, any linear recurrence relation for arbitrary F(x) 

must be deducible from (4) and therefore also from (1). If proved in the simple 

case when X\,..., Xn are iid and continuous, it must automatically hold also when 

the X's are exchangeable, whether continuous or not. 

Generalizations to any variates Xi,... ,Xn. By repeated application of (2), 

eq. (4) is generalized in [3] to 

Fr..n(x) = ±(-iy- (j : J) Q Ffr>\z), (7) 

where, with an extension of the "dropping" notation, 

F%~'\*)= E 1$ ^(x)- (8) 
l < ! l < . . . < « „ _ j < n 

It is seen that (7) also follows immediately from (3), since Sj equals the RHS of 

(8). Hence the dual of (7) is, in generalization of (5), 

Fn-r+Un(x) = ±(-iy- (J
r I J) Q Ftr\x). 

Further extensions to the joint cdf of two order statistics are given in [9]. 



161 

3 BOUNDS FOR LINEAR FUNCTIONS OF OR­
DER STATISTICS 

Let x j , . . . , x „ be any n observations and c i , . . . , c n any n constants. With £ 

denoting summation from 1 to n, we show how Cauchy's inequality may be used 

to unify the construction of bounds for £c;a:,-:n in terms of the sample mean x and 

sample standard deviation 5 = \J2{xi ~ x)2 j{n — l)]1 . Holder's inequality could 

be used similarly to give more general results, but we confine ourselves to this most 

important special case. Several examples illustrate the usefulness of the bounds. 

Since £ci(x;:n — x) = £(c; — c)(xj:n — x), we have from Cauchy's inequality that 

\Xci(xim -x)\< [E(c< - c)2E(x,:n - x)2}1'2. (9) 

Focusing for definiteness on finding upper bounds, we take £c;(a:,:n — x) > 0, so 

that from (9) 

Ec,xi:n < xEc,- + [(n - 1)E(CJ - c)2}l'2s. (10) 

Equality holds iff for some constant k (which must be positive) 

Xi-.n — x = k(ci — c) = x'{ (say) i = 1 , . . . ,n. (11) 

It follows that the c; must be nondecreasing in i for (10) to give sharp bounds. 

Example 1. For the internally studentized extreme deviate from the sample mean 

dn = {xn:n - x)/s 

we have Q = ... = cn-i = —-,cn = 1 — ^, so that Ec,- = 0 and from (10) 

<*« < (n - 1)/V^ = <C 

From (11) we see that the maximizing configuration is given by x[ = ... — x'n_l — 

-*-,x'= *=±k. 
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• 1 n-1 • n=5 
x[ 0 x'n 

This is the oldest result of this type, already obtained by a different method in 

[14]. In fact, also obtained there is a bound d'n_1 for </n_i = (xn-Un — x)/s. The 

authors noted that for x > <ijl_1 

Pr(Dn > x) = nPr{{Xl - X)/S > x), 

enabling them to find exact upper percentage points of Dn in the normal case 

for n < 14 (5%) and n < 19 (1%) by using the relation of (Xt - X)fS to the 

t-distribution. They noted also that if there are two equal outliers in a sample of 

n < 14, neither can be detected by this test at the 5% level, a phenomenon later 

termed the "masking effect". 

See [7] for other examples where the c, are nondecreasing. In such cases i = 

YiCiXi.n is a convex function. A function </> of n variables is convex in a region Rn 

if for any two points x and y in Rn and 0 < a < 1. 

4>{ax + (1 - a)y) < a<f>{x) + (1 - a)^(y) . 

Clearly, xn:n is convex, since 

(ax + (1 - a)y)n : n < axn:n + (1 - a)yn:n, 

and so is any <f> expressible as a maximum. In particular, 5,- — xn:n + . . . + 

xn-i+\:n, i= 1 , . . . n, is convex, since 5,- = rnaxi<j1<...<ji<n(xji + ... + Xji). But 

i = CiSn + (C2 - Ci)Sn-l + • • • + (C„ - Cn_i)5i 

and such a combination of convex functions with nonnegative coefficients is itself 

convex (see [13, p. 451]). 

Correspondingly, £ is concave if the c,- are nonincreasing. Finding the maximum 

ct- in this case requires a special approach, as does finding the minimum when I is 
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convex (see [19] or [7] for a method due to C.L. Mallows). All other situations can 

be handled as in the following examples. We first need a simple result. 

Suppose Ci+i < a. Then, writing c\ = c'i+1 — | (c ; + c;+i), we have 

C,X;:rv + C,-+iX,-+i:n - c'iXi-.n - c'i+lXi+i:n = -(Xi+i:n - X ; : n ) ( c , + 1 - Ci) < 0. 

Thus, 

CiXi:n + Ci+lXi+l:n < C;X(,:n) + c j - + 1 l j + i : n , (12) 

with equality holding iff x):n = Xi+un. Continuing this process until convexity of 

J2 c'iXi-.n is achieved requires averaging two or more c< in nonconvex subgroups. The 

upper bound of SciXl:n is then the attainable upper bound of Ec;X,:n. 

Example 2. dr = (xr:n — x)/s r — 2 , . . . , n — 1. For x 1 ? . . . , xn arbitrary, dr 

is neither convex nor concave. To make dr convex, we simply set xr:n = xr+i:n = 

. . . = xn;n, thereby changing the a to ĉ  as follows: 

c- = Ci = i = l , . . . , i — 1 
n 

°i ~ n ( n - r + l) l-r>->n 

Hence, by (10), 

dr < 
(n-l)(r-l)11/2 

= d'r (say) r = 2 , . . . , n - 1 
n(n — r + 1) 

which holds for r = n also. The maximizing configuration is given by x[ = . . . = 

x'r_x = -k/n, x'r = . . . = x'n = k(r - l)/[n(n - r + 1)] 

\\ n=5, r=3 

Example 3. qr = (xm:n + xm + 1 : n - x r :n - xn + 1_ r : n)/s r = 1 , . . . ,m - 1; m = 

n/2 = 2 , 3 , . . . . The numerator is 2 (median-midquasirange). To make the c[ 



164 

nondecreasing we must take c[ = ... = c'r = — 1/r, c'r+1 = .. . = c'm__1 — 0,c'm 

... = c'n = l/(m + 1). This gives 

,2 1 1 n + 2 + 2r 
T,c = - + • -

r m+1 r(n + 2) 

Hence, from (10) and symmetry considerations, we have 

l?r|< 
( n - l ) ( n + 2 + 2 r ) l l / 2 

r(n + 2) 

For n — 8, r = 2 the maximizing configuration is proportional to 

'• 0.5 • 0.2 • 

x\ 0 x'n 

Example 2 and other examples of this convexity creating approach were given in 

[7], but inequality (12), which provides a formal justification of the procedure used, 

is new here. In the meantime, Rychlik in [15], using quite different arguments, had 

arrived at essentially the same results and had formalized obtaining the c[. See also 

the related review paper [16] and the monograph [17] for further unifying results. 

A c k n o w l e d g e m e n t This paper is a modified version of a presentation to the 

International Conference on Order Statistics and Extreme Values, Mysore, India, 

December 2000. I am indebted to T. Rychlik for drawing my at tent ion to his 1992 

paper [15]. 
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In this paper we review some of the results obtained recently in the area of stochas­
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1 Introduction 

The simplest and the most common way of comparing two random variables is through 

their means and variances. It may happen that in some cases the median of X is larger 

than that of Y, while the mean of X is smaller than the mean of Y. However, this 

confusion will not arise if the random variables are stochastically ordered. Similarly, 

the same may happen if one would like to compare the variability of X with that 

of Y based only on numerical measures like standard deviation etc. Besides, these 

characteristics of distributions might not exist in some cases. In most cases one 

can express various forms of knowledge about the underlying distributions in terms 

of their survival functions, hazard rate functions, mean residual functions, quantile 

functions and other suitable functions of probability distributions. These methods 

are much more informative than those based only on few numerical characteristics 

of distributions. Comparisons of random variables based on such functions usually 

establish partial orders among them. We call them as stochastic orders. 

Stochastic models are usually sufficiently complex in various fields of statistics, 

particularly in reliability theory. Obtaining bounds and approximations for their 

characteristics is of practical importance. That is, the approximation of a stochastic 

model either by a simpler model or by a model with simple constituent components 

might lead to convenient bounds and approximations for some particular and desired 

characteristics of the model. The study of changes in the properties of a model, as 

the constituent components vary, is also of great interest. Accordingly, since the 

stochastic components of models involve random variables, the topic of stochastic 

orders among random variables plays an important role in these areas. 

Order statistics and spacings are of great interest in many areas of statistics and 

they have received a lot of attention from many researchers. Let Xi,... ,Xn be n 

random variables. The ith order statistic, the ith smallest of X,'s, is denoted by 
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Xi:n. A A;-out-of-n system of n components functions if at least k of n components 

function. The time of a fe-out-of-n system of n components with life times Xi,...,Xn 

corresponds to the (n — k + l)th order statistic. Thus, the study of lifetimes of k-out-

of-n systems is equivalent to the study of the stochastic properties of order statistics. 

Spacings, the differences between successive order statistics, and their functions are 

also important in statistics, in general, and in particular in the context of life testing 

and reliability models. Lot of work has been done in the literature on different aspects 

of order statistics and spacings. For a glimpse of this, see the books by David (1981), 

and Arnold, Balakrishnan and Nagaraja (1992); and two volumes of papers on this 

topic by Balakrishnan and Rao (1998 a and b). But most of this work has been 

confined to the case when the observations are i.i.d. In many practical situations, 

like in reliability theory, the observations are not necessarily i.i.d. Because of the 

complicated nature of the problem, not much work has been done for the non i.i.d. 

case. Some references for this case are Sen (1970), David (1981, p.22), Shaked and 

Tong (1984), Bapat and Beg (1989), Boland et al. (1996), Kochar (1996), and Nappo 

and Spizzichino (1998), among others. 

Some interesting partial ordering results on order statistics and spacings from 

independent but non-identically random variables have been obtained by Pledger 

and Proschan (1971), Proschan and Sethuraman (1976), Bapat and Kochar (1994), 

Boland, El-Neweihi, and Proschan (1994 ), Kochar and Kirmani (1995), Kochar and 

Korwar (1996), Kochar and Rojo (1996), Dykstra, Kochar, and Rojo (1997), Kochar 

and Ma (1999), Bon and Paltanea (1999), Kochar (1999), Khaledi and Kochar (1999), 

Khaledi and Kochar (2000 a,b,c), and Khaledi and Kochar (2001). 

In this chapter, we discuss some newly obtained results on stochastic comparisons 

of order statistics and spacings. Kochar (1998) and Boland, Shaked and Shanthiku-

mar (1998) have given comprehensive reviews on this topic upto 1998. In Section 

2, we introduce the required notation and definitions. Section 3 and 4 are devoted 
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to stochastic comparisons of order statistics in one-sample and two-sample problems, 

respectively. In Sections 5, we discuss the stochastic ordering among spacings in 

one-sample problem and two sample problem. Section 6 is devoted to stochastic 

properties of sample range Throughout this chapter increasing means nondecreasing 

and decreasing means nonincreasing; and we shall be assuming that all distributions 

under study are absolutely continuous. 

2 Definitions 

Let X and Y be univariate random variables with distribution functions F and G, 

survival functions F and G, density functions / and g; and hazard rates rp (= f/F) 

and ra {— g/G), respectively. Let lx {ly) and ux (wy) be the left and the right 

endpoints of the support of X (Y). 

Stochastic orderings 

Definition 2.1 X is said to be stochastically smaller than Y (denoted by X <st Y) 

ifF(x) <G(x) for all x. 

This is equivalent to saying that.Eg(X) < Eg(Y) for any increasing function g for 

which expectations exist. 

Definition 2.2 X is said to be smaller than Y in hazard rate ordering (denoted by 

X <hr Y) if G(x)/F(x) is increasing in x £ (-co, max(ux,UY))-

It is worth noting that X <hr Y is equivalent to the inequalities 

P[X - t > x\X > t] < P[Y -t> x\Y > t), for all x > 0 and t. 

In other words, the conditional distributions, given that the random variables are at 

least of a certain size, are all stochastically ordered (in the standard sense) in the 
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same direction. Thus, if X and Y represent the survival times of different models of 

an appliance that satisfy this ordering, one model is better (in the sense of stochastic 

ordering) when the appliances are new, the same appliance is better when both are one 

month old, and in fact is better no matter how much time has elapsed. It is clearly 

useful to know when this strong type of stochastic ordering holds since quantities 

judgements are then easy to make. In case the hazard rates exist, it is easy to see 

that X <hT Y, if and only if, ra{x) < rF(x) for every x. The hazard rate ordering is 

also known as uniform stochastic ordering in the literature. 

Definition 2.3 X is said to be smaller than Y in likelihood ratio ordering (denoted 

by X <ir Y) if g{x)/' f{x) is increasing in x 6 {lx,ux) U (IY,UY)-

When the supports of X and Y have a common left end-point, we have the following 

chain of implications among the above stochastic orders : 

X <ir Y => X <hr Y =• X <st Y. (2.1) 

Definition 2.4 The random vector X = (Xi,.. .,Xn) is smaller than the random 
at 

vector Y — (Yi,. . . ,Yn) in the multivariate stochastic order (denoted by~K< Y) if 

/i(X) <st h(Y) for all increasing functions h. 

It is easy to see that multivariate stochastic ordering implies component-wise usual 

stochastic ordering. For more details on stochastic orderings, see Chapters 1 and 4 

of Shaked and Shanthikumar (1994). 

One of the basic criteria for comparing variability in probability distributions is 

that of dispersive ordering. Let F _ 1 and G~l be the right continuous inverses (quantile 

functions) of F and G, respectively. We say that X is less dispersed than Y (denoted 

by X <disp Y) if F"x(/3) - F~l{a) < G'1^) - G ^ a ) , for all 0 < a < (3 < 1. From 

this one can easily obtain that 

X <disp Y ^=* g(x) < f (F-'Gix)) V x, (2.2) 
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when the random variables X and Y admit densities. A consequence of X <disp Y 

is that |A"i — X2\ <st \Y± — Y2\ and which in turn implies var(X) < var(Y) as well 

as iĴ I-Xx — X2\] < E[\Yi — Y2\], where Xi,X2 (Yi,Y2) are two independent copies of 

X (y). For details, see Saunders and Moran (1978), Lewis and Thompson (1981), 

Deshpande and Kochar (1983), Bagai and Kochar (1986), Bartoszewicz (1986, 1987); 

and Section 2.B of Shaked and Shanthikumar (1994). 

Notions of Majorization and related orderings 

One of the basic tools in establishing various inequalities in statistics and proba­

bility is the notion of majorization. 

Let {a;(i) < £(2) < • • • < x(n)} denote the increasing arrangement of the compo­

nents of the vector x = (xi, x2,..., xn). 

m 

Definition 2.5 The vector x is said to majorize the vector y (written x. h y) if 

£i=i x(i) < Ei=i V(i) forj = l,...,n-l and E"=i x(i) = £"=1 V(i) • 

Functions that preserve the majorization ordering are called Schur-convex functions. 
w 

The vector x is said to majorize the vector y weakly (written x > y) if Yll-i x(i) < 

y?i=i y{i) for j = 1 , . . . ,n. Marshall and Olkin (1979) provides extensive and compre­

hensive details on the theory of majorization and its applications in statistics. 

Recently Bon and Paltanea (1999) have considered a pre-order on M+n, which 

they call as a p-larger order. 

Definition 2.6 A vector x in M+n is said to be p-larger than another vector y also 
v 

in R+n (written x y y) if Ul=i x(i) < ULi V(i),j = 1,. • •, rt. 

Let log(x) denote the vector of logarithms of the coordinates of x. It is easy to 

verify that 
V w 

x h y & log(x) t log(y). (2.3) 
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m w 

It is known that x y y ==>• (g(xi),... ,g(xn)) y (g(yi), ••• ,g{yn)) for all concave 

functions g (cf. Marshal and Olkin, 1979, p. 115). From this and (2.3), it follows 

that when x, y G M+n 

m p 

x h y = > x >: y. 
p 

The converse is, however, not true. For example, the vectors (0.2,1,5) y (1,2,3) but 

majorization does not hold between these two vectors. 

Notions of Aging 

Let X be a random variable with distribution function F and let Xt denote a 

random variable with the same distribution as that of X — t\X > t. We will use the 

following notions of aging in this article. 

(a) X is said to have an increasing failure rate (denoted by IFR) distribution if 

Xt <st Xt, for t > t'. This is equivalent to saying that F(x + t)/F(t) decreasing 

in t for x > 0. It is easy to see that in case the random variable X admits density, 

F is IFR if and only if, the hazard rate TF(^) = f(t)/F(t) is increasing in t. 

(b) X is said to have a decreasing failure rate (denoted by DFR) distribution if 

Xt >st Xf, for t > t'. This is equivalent to F(x + t)/F(t) increasing in t for 

z > 0 . 

Next theorem due to Bagai and Kochar (1986) and Bartoszewicz (1987) establishes 

a connection between dispersive ordering and hazard rate ordering. 

THEOREM 2.1 Let X and Y be random variables with distribution function F and 

G, respectively. Then, 

(a) X <hr Y and F or G being DFR implies X <disp Y; 

(b) X <diSp Y and F or G being IFR implies X <hr Y. 
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3 Stochastic Comparisons of Order Statistics in 

one-sample problem 

Let Xi,..., Xn be a set of independent random variables. It is easy to see that 

Xi-.n <st Xj-.n, for all i < j . Boland, El-Neweihi and Proschan (1994) extended 

this result from usual stochastic order to hazard rate order. Using the definition of 

likelihood ratio ordering, it is not hard to prove that Xi-n <;r Xj:n for i < j . Shaked 

and Shanthikumar (1994) considered the problem of comparing order statistics from 

samples with possibly unequal sample sizes. They showed that if random variables 

XSs are iid, then Xn:n <;r Xn+i:n^.i and X\-,n >j r X\[n^-i. Raqab and Amin (1996) 

strengthened this result and proved that X^n <ir Xj:m, whenever i < j and n — i > 

m — j . Using implications (2.1), we get, for i < j and n — i > rn — j , Xi:n <hT 

Xj.m which in turn implies that Xi:n <st Xj.m. Removing the identically distributed 

assumption, it is interesting to investigate the above stochastic inequalities among 

order statistics. Boland, El-Neweihi and Proschan (1994) showed that if random 

variables are independent and Xk <hr Xn+i, k = l,...,n, then X,_1:„ <h r X; :n+1, 

i = 1 , . . . , n + 1. They also proved that if Xi's are independent and Xn+1 <hT Xk, 

k = 2 , . . . , n , then Xi:n >/„. Xim+i, i = l,...,n. The reader may be wondering 

whether likelihood ratio ordering among order statistics holds for the case when Xt's 

are independent but not necessarily identically distributed. Assuming Xi <lr X2 <ir 

... <ir X„, Bapat an Kochar (1994) proved that Xi:n <;r Xj.n, i < j . 

We end this section by discussing some results on dispersive ordering of order 

statistics. David and Groenveld (1982) proved that if X^s are iid random variables 

with a common DFR distribution, then var(Xi:n) < var(Xj.n), for i < j . Kochar 

(1996) strengthened this result to prove that under the same conditions, X(.n <disp 

Xj-.n, i < j - In Theorem 3.2 below, due to Khaledi and Kochar (2000 a), this result 
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has been further extended. It is proved that if Xi's are iid with DFR distribution, 

then Xi:n <diSp Xj:m, whenever i < j and n — i > m — j . We will find the following 

result useful in proving it. 

THEOREM 3.1 (Saunders (1984))- The random variable X satisfies X <disp X+ Y. 

for any random variable Y independent of X if and only if X has a log-concave 

density. 

Using Theorem 3.1, first the result is proved for exponential distribution. 

LEMMA 3.1 Let Xi:n be the ith order statistic of a random sample of size n from an 

exponential distribution. Then 

Xr.n <disP Xj.m for i < j and n- i > rn - j . (3.1) 

P R O O F : Suppose we have two independent random samples, Xv, • • •, Xn and Xx,..., X'ri 

of sizes n and m from an exponential distribution with failure rate A. The ith order 

statistic Xi:n can be written as a convolutions of the sample spacings as 

Xi;n = {Xi-n — Xi-i:n) + • • • + (X2:„ — Xl:n) + Xl:n 

^ J2En_i+k (3.2) 

it=i 

where for k = l,...,i, En_i+k is an exponential random variable with failure rate 

(n — i + k)X. It is a well known fact that En_i+k's are independent. Similarly we can 

express Xj.m as 

Km
d=iE'm-j+k (3-3) 

where again for k = 1 , . . . , j , E'm_-+k is an exponential random variable with failure 

rate (m— j + k)X and E'm_j+k
,s are independent. It is easy to verify that En-i+i <disp 

£ m _ j + 1 for n - i > m - j . 
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Since the class of distributions with log-concave densities is closed under convo­

lutions (cf. Dharmadhiakri and Joag-dev (1988), p. 17), it follows from the repeated 

applications of Theorem 3.1 that 

i i 

5Z En-i+k <diap 22 Em_j+k. (3.4) 
fc=l k=l 

Again since 52{=i+i E'm_j+k, being the sum of independent exponential random vari­

ables has a log-concave density and since it is independent of J2\=i E'n_i+k, it follows 

from Theorem 3.1 that the R.H.S of (3.4) is less dispersed than Y?k=i E'm-j+k f° r i < 3 

That is, 
« i 

y dist v-^ jp ^ ^ ~ ^ T-I' dist Y' 
•^i-.n — 2-i ^n-i+k ^disp 2 ^ ^m-j+k ~ ^j-.m' 

k=l k=l 

Since Xj.m and X, :m are stochastically equivalent, (3.1) follows from this. • 

The proof of the next lemma can be found in Bartoszewicz (1987). 

LEMMA 3.2 Let 4> '• R+ —> R+ be o function such that </>(0) = 0 and 4>(x) — x is 

increasing. Then for every convex and strictly increasing function ij; : R+ —> R+ the 

function ip<jnl)~l{x) — x is increasing. 

In the next theorem we extend Lemma 3.1 to the case when F is a DFR distribution. 

THEOREM 3.2 Let Xi:n be the ith order statistic of a random sample of size n from 

a DFR distribution F. Then 

Xim <disP
 xj:m for i < j and n- i >m- j . 

PROOF : The distribution function of Xj.m is Fj.m(x) = Bj.mF(x), where Bj.m is the 

distribution function of the beta distribution with parameters (j, m — j + 1). 

Let G denote the distribution function of a unit mean exponential random variable. 

Then Hj:m(x) = Bj:mG(x) is the distribution function of the jth order statistic in a 
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random sample of size m from a unit mean exponential distribution. We can express 

&j:m 3*> 

Fjm(x) = Bj:mGG"lF{x) 

= Hj..mG-lF{x). (3.5) 

To prove the required result, we have to show that for i < j and n — i >m — j , 

F^Fi:n(x) — x is increasing in x 

<£• F-lGHj^nHi..nG-lF{x) -x is increasing in x. (3.6) 

By Lemma 3.1, H^Hi:n(x) — x is increasing in x for i < j and n — i > m - j . 

Also the function ip(x) — F~1G(x) is strictly increasing and it is convex if F is DFR. 

The required result now follows from Lemma 3.2. • 

REMARK: A consequence of Theorem 3.2 is that if we have random samples from a 

DFR distribution, then 

Xi-.n+i <disp Xi:n <disp ^ i + l : n + l j for i = 1, . • . ,Tl. 

4 Stochastic Comparisons of Order Statistics in 

two-sample problem 

Let X\,..., Xn be a set of independent random variables and Yx,..., Yn be another set 

of independent random variables. Ross (1983) proved that if Xj < s t Yt, i = 1 , . . . , n, 

then (Xi,. ..,Xn) <st (Yx,... ,Yn). A consequence of this result is that Xi:n <st 

Yi:n for i — 1 , . . . ,n. Lynch, Mimmack and Proschan (1987) generalized this result 

from stochastic ordering to hazard rate ordering. They showed that if Xi </,r Yj, 
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i, j £ { 1 , . . . , n}, then Xi-n <hr Yi-.n, i = 1 , . . . , n. A similar result for likelihood ratio 

ordering has been proved by Chan, Proshcan and Sethuraman (1991). They proved 

that if Xi <iT Yj, i,j G { 1 , . . . , n}, then Xim <[T Yim, i = 1 , . . . , n. Lillo, Nanda and 

Shaked (2000) strengthened this result to the case when the number of X,'s and Fj's 

are possibly different. 

THEOREM 4.1 Let Xi,... ,Xn be independent random variables and Yi,... ,Ym be 

another set of independent random variables, all having absolutely continuous dis­

tributions. Then Xi <;r Yj for all i,j implies Xi-n <;r Yj]m whenever i < j and 

n — i> m — j . 

In the next theorem we establish dispersive ordering between order statistics when 

the random samples are drawn from different distributions. 

THEOREM 4.2 Let X\,... ,Xn be a random sample of size n from a continuous dis­

tribution F and letYi..., Ym be a random sample of size m from another continuous 

distribution G. If either F or G is DFR, then 

X <disP Y => Xi:n <disp Yj,m for i < j and n-i >m - j . (4.1) 

PROOF: Let F be a DFR distribution. The proof for the case when G is DFR is 

similar. By Theorem 3.2, Xi-n <disp Xj.m for i < j and n — i > m — j . Bartoszewicz 

(1986) proved that if X <diap Y then Xj.m <di3p Yj:m. Combining these we get the 

required result. • 

Since the property X <^r Y together with the condition that either F or G is 

DFR implies that X <disp Y (Theorem 2.1), we get the following result from the 

above theorem. 

COROLLARY 4.1 Let Xi,...,Xn be o random sample of size n from a continuous 

distribution F and Y\...,Ym be a random sample of size m from another continuous 
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distribution G. If either F or G is DFR, then 

•A- S/ir * ^ X-i-.n Sdisp r j : m . 

Stochastic comparisons of order statistics from heterogeneous populations 

An assumption often made in reliability models is that the n components have 

lifetimes with proportional hazards. Let Xi denote the lifetime of the ith component 

of a reliability system with survival function Fi(t), i = 1 , . . . ,n. Then they have 

proportional hazard rates (PHR) if there exist constants A t , . . . , A„ and a (cumulative 

hazard) function R(t) > 0 such that Ft(t) = e~XiR^ for i = 1 , . . . , n.Clearly then the 

hazard rate of X, is r;(i) = XiR'(t) (assuming it exists). An example of such a situa­

tion is when the components have independent exponential lifetimes with respective 

hazard rates Ai , . . . , A„. Many researchers have investigated the effect on the survival 

function, the hazard rate function and other characteristics of the time to failure of 

this system when we switch the vector (Ai, . . . , An) to another vector say (A*,..., A*). 

Pledger and Proschan (1971), for the first time, studied this problem and proved the 

following interesting result among many other results. 

THEOREM 4.3 Let {X\,... ,Xn) and {XI,... ,X*) be two random vectors of indepen­

dent lifetimes with proportional hazards with Ai , . . . , A„ and A*,... A* as the constants 

of proportionality. Suppose that 
771 

Then 

Xi:n>StX*n, i = l , . . . , n . (4.2) 

Proshcan and Sethuraman (1976) generalized this result from component wise stochas­

tic ordering to multivariate stochastic ordering. That is, under the same assumptions 

of Theorem 4.3, they showed that 

(Xi:n, . .., Xn:n) >st (X1:n, . . . , X^.n). 
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Boland, El-Neweihi and Proschan (1994 ) proved that for n = 2 the above result 

can be extended from stochastic ordering to hazard rate ordering. They also showed 

with the help of a counterexample that for n > 2, (4.2) cannot be strengthened from 

stochastic ordering to hazard rate ordering. 

Dykstra, Kochar and Rojo (1997) studied the problem of stochastically comparing 

the largest order statistic of a set of n independent and non-identically distributed 

exponential random variables with that corresponding to a set of n independent and 

identically distributed exponential random variables. Let Xi,..., Xn be independent 

exponential random variables with Xi having hazard rate Aj, for i = 1, . . . ,n. Let 

Yi,..., Yn be a random sample of size n from an exponential distribution with common 

hazard rate A = £™=iAj/n, the arithmetic mean of the A '̂s. They proved that Xn:n is 

greater than Yn:n according to dispersive as well as hazard rate orderings. In Theorem 

4.4 below we prove that similar results hold if instead, we assume that for i = 1 , . . . , n, 

the random variable F, has exponential distribution with hazard rate A = (n"=i K)l^n, 

the geometric mean of the Aj's. To prove dispersive ordering between Xn.n and Yn:n 

in Theorem 4.4 we shall need the following lemma. 

LEMMA 4.1 Forz > 0, the functions g(z) = (l-e~z)/z andh(z) = (z2e~z)/(l-e~z)2 

are both decreasing. 

PROOF : The numerator of the derivative of g(z) is k(z) = (1 + z)e~z — 1, which is 

a decreasing function of z. This implies that k(z) < 0 for z > 0, since k(0) = 0. 

It is easy to see after some simplifications that 

Using the fact that k{z) is negative, one can verify that the numerator of (4.3) is 

decreasing, from which the required result follows. • 
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THEOREM 4.4 Let Xi,..., Xn be independent exponential random variables with Xi 

having hazard rate \ , i = 1 , . . . , n. Let Yi,..., Yn be a random sample of size n from 

an exponential distribution with common hazard rate A = (Il"=i Aj)1/". Then 

(aj A n : n ^disp in:n i 

( 0 / -A-n-.n C-hr *n:n • 

PROOF : (a) The distribution function of Xn.n is 

FxnJx) = f[(l-e-^), 
i=l 

with density function as 

n \ -\ix n 

i=\ L e » = 1 

Replacing A, with A in (4.4), we see that the distribution function and the density 

function of Yn:n are 

FYnJx) = (l - e~^)n and fYn:n(x) = nXe^ ( l - e " ^ ) " " 1 , 

respectively. It is easy to verify that Fy^n(x) = — i log (l — xl^nj. Using these 

observations, it follows that 

/Y„:n (Fy^F^Jx)) =n\{\- n ( l - e-*n1,n) ( j l ( l ~ e ^ " ) 1 ' " ) " . (4.5) 

To prove that Xn-n >disp Yn-n, it follows from relation (2.2) that it is sufficient to 

show that 

fxn.Jx)<fYn:n(Fyn]nFXnJx)) V z > 0 . (4.6) 

Using expressions (4.4) and (4.5) in (4.6), one can see after some simplifications 

that (4.6) is equivalent to 

±Y^--mY^)1/n <t^-nIl(X^ • (4.7) 
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To prove that (4.7) holds for all A* > 0, i = 1 , . . . , n, it is sufficient to show that the 

L.H.S. of (4.7) (denoted by h{x)) is increasing in x since for x > 0, 

n n 

h(x) < lirnx-y+00h{x) = ^ A, - nJ[(Xi)1/n , 
i=l i=l 

the right hand side of (4.7). 

The derivative of h{x) is 

h'(\ - ( r Xi6~XiX \ (ft Xi Y'" f x"e~XiX 

/ » A ie-A^ \ / n \ _ » A 2 e~^ 

~ Ifel 1 - e-AiV VE?=1 i = ^ ) k (1 - ^ * ) 2 ' 
since the geometric mean of a set of numbers is always greater than or equal to its 

harmonic mean. Now h'(x) > 0 if and only if, 

Multiplying both sides of (4.8) by x(> 0) and replacing the AjX with zt for i = 1 , . . . , n, 

it is enough to prove that 

L , . . . , » < / , 

The inequality in (4.9) follows immediately from Cebysev's inequality (Theorem 1, p. 

36 of Mitrinovic, 1970), Lemma 4.1 and by writing 

zte~Zi ( zfe~Zi \ (l — e~ 

l - e ~ * \ ( l - e - * < ) 2 

This proves that h(x) is increasing in x and hence the result. 

(b) It follows from Theorem 5.8 of Barlow and Proschan (1981) that Yn.n is IFR. 

Using this and part (a), the required result follows from Theorem 2.1. • 

Prom the above results, we get the following convenient bounds on the hazard 

rate and the variance of Xn:n. 
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COROLLARY 4.2 Under the conditions of Theorem 4-4> 

(a) the hazard rate rxn.„ of Xn:n satisfies 

nX (l - exp(-Xx)) exp(-Xx) 

1 — (1 — exp{—Xx)\ 

(b) 

var(Xn..n-,X)>l±{n_l+l)2. 

Dykstra, Kochar and Rojo (1997) proved a result similar to Theorem 4.4 by as­

suming that the random variables Yi's are exponential with common hazard rate 

A = EiLi ^i/n a Qd obtained bounds on the hazard rate and the variance of Xn.n 

in terms of A. The new bounds given in Corollary 4.2 are better because rYn:n and 

var(Yn:n) are increasing and decreasing function of A, respectively, and the fact that 

the geometric mean of A;'s is smaller than their arithmetic mean. 

Figure 4.1. Graphs of hazard rates of X3:3 
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Figure 4.2. Graphs of hazard rates of X3.3 

In Figures 4.1. and 4.2. above, we plot the hazard rates of parallel systems of three 

exponential components along with the upper bounds as given by Dykstra, Kochar 

and Rojo (1997) and the one's given by Corollary 4.2 (a). The vector of parameters 

in Figure 4.1 is Ax = (1,2,3) and that in Figure 4.2 is A2 = (0.2,2,3.8). Note that 
771 

A2 h Ai. It appears from these figures that the improvements in the bounds are 

relatively more if A,'s are more dispersed in the sense of majorization. This is true 

because the geometric mean is Schur-concave and the hazard rate of a parallel system 

of i.i.d. exponential components with a common parameter A is increasing in A. 

Let F denote the survival function of a nonnegative random variable X with 

hazard rate h. According to the PHR model, the random variables Xi,...,Xn are 

independent with Xi having survival function F '(.), so that its hazard rate is AJ/J(.), 

i = 1 , . . . ,n. 

Next, we extend Theorem 4.4 from exponential to PHR models. To prove this we 

need the following theorem due to Rojo and He (1991). 

THEOREM 4.5 Let X and Y be two random variables such that X <st Y. Then 

X <disP Y implies that j(X) <d,sp ^(Y) where 7 is a nondecreasing convex function. 
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THEOREM 4.6 Let X\,... ,Xn be independent random variables with Xi having sur­

vival function F ' (x), i = 1 , . . . , n. Let Y\,...,Yn be a random sample of size n from 

a distribution with survival function F {x), where A = (n"=i KY^n- Then 

(a) Xn:n >hr Yn.n ; and 

(b) if F is DFR, then Xn.n >disp Yn.n . 

P R O O F : (a) 

Let H{x) = -\ogF(x) denote the cumulative hazard of F. Let Z, = H(Xi), 

i = 1 , . . . ,n and Wi — H(Yi), i = 1 , . . . ,n. Since Xi's follow the PHR model, then 

it is easy to show that Zi is exponential with hazard rate A*, i = 1 , . . . , n. Similarly, 

Wi is exponential with hazard rate A, i = l,...,n. Theorem 4.4 (b) implies that 

Zn-.n >hr Wn-n. Using this fact, (since H-1, the right inverse of H, is nondecreasing) 

it is easy to show that H~1(Znm) >hr i?_1(Wn;n) from which the part (a) follows. 

(b) Theorem 4.4 (a) and (b), respectively, imply that Zn:n >disp Wn:n and Zn-n >st 

Wn:n. The function iJ~1(a;) is convex, since F is DFR, and is nondecreasing. Using 

these observations, it follows from Theorem 4.5 that H~1(Zn:n) >diSp H~1(Wn:n) 

which is equivalent to Xn:n >disp Yn:n. u 

In Theorem 4.9 below we prove that for the largest order statistic, the conclusion 

of Theorem 4.3 holds under the weaker p-larger ordering. The proof of this theorem 

hinges on the following results. 

THEOREM 4.7 ( Marshall and Olkin, 1979, p. 57) Let I C IR be an open interval 

and let (J) : In -+ IR be continuously differentiable. Necessary and sufficient conditions 

for <j) to be Schur-convex on In are 4> is symmetric on In and for all i ^ j , 

{zi - Zj)[4>{i)(zi) - <p(j)(zj)} > 0 for all z e /", 

where (p^) (z) denotes the partial derivative of (j) with respect to its ith argument. 
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THEOREM 4.8 (Marshall and Olkin, 1979, p. 59) A real-valued function </> on the 

set A c IRn satisfies 

*yy on A =$• <£(x) > (f>(y) 

if and only if <j) is decreasing and Schur-convex on A. 

LEMMA 4.2 The function ij> : M+n -> M satisfies 

x ^ y = > VW > V(y) (4.10) 

if and only if, 

(i) ip(eai,..., e°") is Schur-convex in (o i , . . . , an) 

(ii) V(e a i , . . . , ea") is decreasing in at, for i = 1 , . . . , n, 

where a, = logo;,, for i = 1,... ,n. 

P R O O F : Using relation (2.3), we see that (4.10) is equivalent to 

a ^ b = > V(e a i , . . . ,e°") > ip{eb\ ... ,e6"), (4.11) 

where a* = logo;* and b, — logy,, for i = 1,...,n. 

Taking <f>(ai,... ,an) — tp{eai,...,e"n) in Theorem 4.8, we get the required result. 

• 
Now we are ready to prove the next theorem. 

THEOREM 4.9 Let X\,... ,Xn be independent random variables with Xi having sur­

vival function F '(x), z = 1 , . . . ,ra. LetYi,... ,Yn be another set of random variables 

with Yi having survival function F ' (x), i = 1 , . . . , n. Then 

p 
<* c -̂  — ' Xn:n >st Yn:n-
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P R O O F : The survival function of Xn-n can be written as 

FxnJx) = l-f[(l-e-^^% (4.12) 
8=1 

where a; = log A*, i = l,...,n and H(x) = - l ogF(x ) . 

Using Lemma 4.2, we find that it is enough to show that the function Fxn:n given 

by (4.12) is Schur-convex and decreasing in aj's. To prove its Schur-convexity, it 

follows from Theorem 4.7 that, we have to show that for i ̂  j , (ô  — Qj)( g*":" — 

^j*"-) > o. That is, 

/ n \ / oj: -eaJH{x) ai-e
aiH{x)\ 

H{x){ai - aj) ( n ( l - e - ^ ' W ) J ( r z ^ j ^ y - ' _ % » ( * ) ) * °' f ° r * * ' 

(4.13) 

since 

It is easy to see that the function be~bH^ / (I — e~bH^) is decreasing in b, for each fixed 

x > 0. Replacing 6 with eai, it follows that the function eaie~ea'H^/(l - e~e"iH(-x^) 

is also decreasing in aj for i = 1, . . . ,n. This proves that (4.13) holds. The partial 

derivative of FXn:n with respect to at is negative and which in turn implies that the 

survival function of Xn-.n is decreasing in Oj for i = 1 , . . . , n. This completes the proof. 

• 
The following result due to Khaledi and Kochar (2000 b) is a special case of 

Theorem 4.9. 

COROLLARY 4.3 Let Xi,... ,Xn be independent exponential random variables with 

Xi having hazard rate Aj, i = 1,. . . ,n. Let Yi,...,Yn be another set of independent 

exponential random variables mth Yi having hazard rate \*[, i = 1 , . . . , n. Then 

v 
A y A —> Xn:n >st Yn:n. 
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Boland, El-Neweihi and Proschan (1994 ) pointed out that for n > 2, (4.2) cannot 

be strengthened from stochastic ordering to hazard rate ordering. Since majorization 

implies p-larger ordering, it follows that, in general, Theorem 4.9 cannot be strength­

ened to hazard rate ordering. 

As shown in the next example, a result similar to Theorem 4.9 may not hold for 

other order statistics. 

EXAMPLE 4.1 : Let X\,X2,X$ be independent exponential random variables 

with A = (0.1,1, 7.9) and Yj., Yz, Y3 be independent exponential random variables with 
p 

A* = (1,2,5). It is easy to see that A y A*. The X1:3 and F1:3 have exponential 

distributions with respective hazard rates 9 and 8 and which implies that Yh3 >st Xi:3. 

5 Stochastic Comparisons of Sample Spacings 

Let Xi,..., Xn be n random variables. The random variables Di:n = Xi:n — Xi_l:n and 

D*.n — (n — i+ l)Di:n, i — 1 , . . . , n, with X0:n = 0, are respectively called spacings 

and normalized spacings. They are of great interest in various areas of statistics, 

in particular, in characterizations of distributions, goodness-of-fit tests, life testing 

and reliability models. In the reliability context they correspond to times elapsed 

between successive failures of components in a system. It is well known that the 

normalized spacings of a random sample from an exponential distribution are i.i.d. 

random variables having the same exponential distribution. Such a characterization 

may not hold for other distributions and much of the reliability theory deals with 

this aspect of spacings. In this section we review stochastic properties of spacings 

when original random variables are i.i.d. as well as when they are independent but 

not identically distributed. 

Many authors have studied the stochastic properties of spacings from restricted 

families of distributions. Barlow and Proschan (1966) proved that if Xx,... ,Xn is 
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a random sample from a DFR distribution, then the successive normalized spacings 

are stochastically increasing. Kochar and Kirmani (1995) strengthened this result 

from stochastic ordering to hazard rate ordering, that is, for i — 1 , . . . , n — 1, 

D*M < h T D*i+1:n. (5.1) 

The corresponding problem when the random variables are not identically distributed, 

has also been studied by many researchers, including Pledger and Proschan (1971), 

Shaked and Tong (1984), Kochar and Korwar (1996), Kochar and Rojo (1996), Nappo 

and Spizzichino (1998), among others. For a review of this topic see Kochar (1998). 

Here we give some new results obtained recently by the authors. 

Kochar and Korwar (1996) conjectured that a result similar to (5.1) holds in the 

case when Xi,..., Xn are independent exponential random variables with Xi having 

hazard rate Aj, for i = 1 , . . . ,n. Khaledi and Kochar (2001) proved this conjecture 

when random variables Xj's follow a single outlier model with parameters A and A*, 

that is when Ai = . . . = An_i = A and A„ = A*. To prove this we shall be using the 

following results. 

The joint density function of the spacings when Aj's are possibly different is given 

by (cf. Kochar and Korwar, 1996), 

/ D I : „ , . . ,D„ : „(*I , • • •, xn) = £ " j b ^ f l ( £ Hri))exp{-Xi t Afa)}, (5.2) 
(r) l l i = l Z ^ j = j A\? j) j = i j-i j-i 

for Xi > 0, i = 1 , . . . , n, where (r) = ( r i , . . . , r„) is a permutation of ( 1 , . . . , n) and 

X(i) = Aj. It is a mixture of products of exponential random variables. From (5.2) it 

is easy to find that the joint pdf of (Di-n, Dj]n) for 1 < i < j < n, is 

fDtM,Djm{x,y) = E rrn ^n w _ N ( 5 - 3 ) 

n n n n 
x ( E A(rm))exp{-x JZ Krm)}(Yl Krm))exp{-y J2 A(rm)}, 

m=t m—i m=j m=j 
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for x, y > 0. Now (5.2) can be written as 

(n-l)lX*(X)n-1 

fDu„,-,D„,n(
xl, • • • >xn) — Z^^t) 

\ n?=i((n - i)X + X*) m=e+l(n - t + 1)A 

x J J { ( n - i ) X + A*)e-«
n-i)A+A*)x- f[ (n - i + l)Ae-("-<+1)As ', (5.4) 

which can be further expressed as 

/D1 :„ r ^ f a , . . . ,xn) = J2 KB) I I afe-*** f[ a^^', 
0=1 i = l «=0+l 

where OJJ = (n — i + 1)A, a* = (n — i)X + A*, i = 1 , . . . , n and using at and a*, the 

function h is given by 

The marginal density function of Di:n can be expressed as 

fD,Jx) = Hiaie-a<x + ~Hiale-a*x, (5.6) 

where 
i - l 

Hi = J2h(6), i = 2,...,n and # , = 0. (5.7) 
9=1 

Thus, the density function of £>,:„ is a mixture of two exponential random variables 

with parameters cti and a*. Now we prove the main theorem. 

THEOREM 5.1 Let Xi,... ,Xn follow the single-outlier exponential model with pa­

rameters X and A*. Then 

A*+l:n ^-hr D*n, i = 1, . . . , Tl - 1. 

P R O O F : We prove the result when A* > A. The proof for the case A* < A follows 

using the same kind of arguments. From (5.6) we find that the survival function of 
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Dln is FDtn{x) = Hie~Xx + Hie-**, where m = ("„!)
i
A

+
+
1
A* • To prove the theorem we 

have to show that for any i G { 1 , . . . , n — 1}, 

F o*„ (z ) 

is increasing in x. The numerator of g (x), the derivative of g(x) is 

4(z) = [Hie-*' + Hie-"iX}[-XHi+le-Xx - r,i+1Hl+1e-J>^x] 

+[Hi+le-Xx^ Hi+le-^x)[\Hie-Xx + jfctfie-*1] 

= (A* - A) ( HiHi+1 e-^+»x 

Hi+iHi -(K^+X)* HjHj+i jVi+Vi+l)x 
n — i (n — i-\- l)(n — i) 

> (A' \\n — i + l n — i 
-( i ) i + i+A)i 

_ HjHi+1 ^ . + m + i )x 1 
{n - i + l){n - i) J 

= 7 ( -v~ A Ln { {(n - *)^ -(«"* + l)Hi+i + OTHI } 
(n — i)(n — i + 1) 11 J 

x e-
(,ii+1+A):c - HiH~i+le-{,]>+,>i+l)x } . (5.9) 

The inequality in (5.8) follows, since A* > A implies rn+i > ?jj. 

Again A* > A implies A < rji and which in turn implies e~^m+1+x^x > e-{vi+vi+i)x 

for every x > 0. Also for A* > A , 

{(n-i)Hi-(n-i + l)Hi+i} = (n-i)h(i) - Hi+i 

> 0, (5.10) 

since for A* > A, h(j) is a decreasing function of j . Using these results in (5.9) we 

find that A(x) and hence g'(x) is nonnegative for a; > 0. This proves the required 

result. • 
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Let X\,..., Xn be independent exponential random variables with hazard rates 

Ai , . . . , A„, respectively. Pledger and Proschan (1971) proved that for i e { 1 , . . . , n}, 

Di:n is stochastically larger when the hazard rates are unequal than when they are all 

equal. Kochar and Rojo (1996) strengthened this result to likelihood ratio ordering. 

The natural question is to examine whether the survival function of Di-.n is Schur-

convex in (Ai, . . . , Xn). Pledger and Proschan (1971) came up with a counterexample 

to show that this is not true in general. Kochar and Korwar (1996) proved that in 

the special case of second spacing, whereas the survival function of D2:jl is Schur-

convex in (Ai , . . . , Xn), its hazard rate is not Schur-concave. They proved, however, 

that the hazard rate of Z?2:2 is Schur-concave. We now examine this question when 

X\,..., Xn follow the single-outlier exponential model with parameters A and A*. In 

the rest of this section, we assume that A* < A. We will treat it as a part of the 
771 

model. It is easy to see that in this case, (A*, Ai , . . . , Ai) >_ (XI, A2 , . . . , A2) if and only 

if A* < A2 < A2 < Xi and A* + (n - l)Ai = X? + (n — 1)A2. We prove later in this 

section that for the single-outlier model, for i e { 1 , . . . , n}, the hazard rate of Di:n is 

Schur-concave in A's. To prove it we need the following lemmas. 

LEMMA 5.1 Let Xi,...,Xn follow the single-outlier exponential model with parame­

ters X and A*. Then 

A* < X^Ht<
 l-^, fori = l,...,n, (5.11) 

n 

where Hi is given by (5.7). The inequality in (5.11) is reversed for A* > A. 

P R O O F : A* < A implies that the function h(j) in (5.5) is increasing in j , j; = 1 , . . . , n. 

Note that 
m 

(h(l),h(2),...,h{n))t0-/n,...,l/n). 

The required result follows from the definition of majorization. 

The proof for the case A* > A follows from the same kind of arguments. • 
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LEMMA 5.2 Let Xi,... ,Xn follow the single-outlier exponential model with param­

eters Ai and A*. Let Yi,...,Yn be another set of random variables following the 

single-outlier exponential model with parameters A2 and A2. If 

(i) At < A2 < A2 < Ai, then 9 i > i r 9 2 , 

(ii) Xi < A2 < A2 < A*, then Gi < i r Q2, 

where Gi and Q2 correspond to random variable Q with probability mass function h(j) 

in (5.5) for Xt 's and Yt 's, respectively. 

P R O O F : (i) We prove that 

h2(6 + l) h2{6) 

hxie + i) - hx{ey 

where hi and h2 are probability mass functions of Qx and Q2, respectively. This 

inequality holds if and only if 

(n-9-l)Xi + Xl <X1 

{n-0-l)X2 + X*2 - A2'
 l • ; 

Since A* < A2 and A2 < Ai, it is easy to see that (5.12) is true. 

(ii) In this case the inequality in (5.12) is reversed which in turn implies that 

Gi <(r Q2. This proves the result. • 

THEOREM 5.2 Let X\,...,Xn follow the single-outlier exponential model with pa­

rameters Ai and AJ with A* < Ai. Then for i e { 1 , . . . , n), the hazard rate of Di:n is 

Schur-concave in {X\,..., Ai, A*}. 

PROOF: Let Y\,..., Yn be another set of random variables following the single-outlier 

exponential model with parameters A2 and AJj (X2 < A2) such that (AJ,Ai,..., Ai) 
m 

h (A2, A2 , . . . , A2). As discussed above this holds if and only if AJ < A2 < A2 < Ai and 
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A* + (n — l)Ai = A2 + (n - 1)A2. Without loss of generality, let us assume that 

A* + (n — l)Ai = 1. We have to prove that under the given conditions for i = 1 , . . . , n, 

where D\J (A :») denotes the ith spacing of X^s (Yt's). From (5.6) the survival 

functions of Z),-J and £>,-.„ are 

FDW(x)=Pie-a"x + Pie-a'^, 
i:n 

7Dm(x) = Qie-aa'+Qie-a"', 

where P; and Qi correspond to Hi in (5.6) for £>,-.„ and /},-.„, respectively and an = 

(n — i+ l)Ai, an = (n — i)Xi + A*, aa — (n - i + 1)A2 and a*2 = (n - «)A2 + A2. 

We have to show that _ 

is increasing in x. After some simplifications we find that the numerator of (j>(x), the 

derivative of tj>(x) is 

ff(i) = -(an - aa)nQie-la»+a»>x + (a*2 - c ^ F ^ e " ^ ^ ) * 

- (a*! - aa)QiPit-^+a^x + (a*2 - a n ) ^ - 0 " ^ * , (5.13) 

Using the assumption A* < A2 < A2 < Ai and the fact the A* + (n - l)Aj — 1, 

i = 1,2 , it follows, an + a*2 < an + aa, an + a*2 > a*} + a*2, an + a*2 > an + ai2 

and all (aa — a i2), (a*2 — a*n), (a,2 - an), are nonnegative. Using these observations 

in (5.13), we see 

g(x) > e-^+^i-ian-a^PiQi + ia^-a^PiQi 

-(an - a*2)QiPi + (oa - a&JQiPj 
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e - (a< i+aT 2 )x 

> n _ l {Qi-Pi- n(Qi - P ^ } (5.14) 

= n - 1 (Qi-Pi)(l-nA;) 

> 0. (5.15) 

The inequality in (5.14) follows, since by Lemma 5.1 P, < — and A* < \*2. From 

Lemma 5.2 it follows that Qi > P,, since it is known the likelihood ratio ordering 

implies usual stochastic ordering. This observation along with the fact that A£ < 1/n 

implies the inequality in (5.15). • 

Remark : The conclusion of Theorem 5.2 holds if instead of A* < Ai and \% < A2 

we assume that A* > Ai and A?; > A2. 

It is known that spacings of independent exponential random variables have DFR. 

distributions (cf. Kochar and Korwar, 1996). Combining this observation with The­

orem 2.1, we have proved the following corollary. 

COROLLARY 5.1 Under the assumptions of Theorem 5.2, 

^I'.n —disp '-'i.n-

A consequence of Corollary 5.1 is that var{D\.l) > var(D\.2), i = 1 , . . . , n. 

6 Stochastic ordering for sample range 

Sample range is one of the criteria for comparing variabilities among distributions and 

hence it is important to study its stochastic properties. First we study the stochastic 

properties of the range of a random sample from a continuous distribution. Let 

Xi,..., Xn be a random sample from F and let Y\,..., Yn be an independent random 

sample from another distribution G. It follows from Lemma 3(c) of Bartoszewic 
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(1986) that X >disP Y =4> Xn]n — X\-n >st Yn:n — Y\:n. This observation along with 

Theorem 2.1 (a) leads to the following theorem. 

THEOREM 6.1 Let X >hr Y and let either F or G be DFR. Then 

Xn-.n — Xi:n >st Yn:n — Y\.n. (6-1) 

Next we consider the case when the parent observations are independent expo­

nentials but with unequal parameters. Let Xi,... ,Xn be independent exponential 

random variables with Xi having hazard rate Â , i = 1 , . . . , n. Let Yx,... ,Yn be a 

random sample of size n from an exponential distribution with common hazard rate A, 

the arithmetic mean of the A,'s. Finally, let Rx = Xn:n — X\..n and Ry = Yn:n — YUn 

denote the sample ranges of X,'s and Fj's, respectively. Kochar and Rojo (1996) 

proved that Rx >st RY- Khaledi and Kochar (2000 c) proved the following result 

which is in terms of A, the geometric mean of the A '̂s. 

THEOREM 6.2 Let Xi,... ,Xn be independent exponential random variables with Xi 

having hazard rate A,, for i = \,...,n. Let Yu...,Yn be a random sample of size n 

from an exponential distribution with common hazard rate A . Then, 

Rx >st RY-

PROOF : The distribution function of Rx (see David, 1981, p. 26) is 

F«Ax) = ^±Y^rxmi-*-x'xy (6.2) 
2 ^ i = i A * j = i L e i=i 

and that of Ry is 

GRY(x) = (l-e-'^)n'\ (6.3) 
Using (6.2) and (6.3), we have to show that 

11~^ fid - «"*') < t Ai (l - e ^ T 1 . (6.4) 
8 = 1 X C j = l j = l 
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Multiplying both sides of (6.4) by x(> 0), it is sufficient to prove that 

i=l x e i=l \i=l / 

Dykstra, Kochar and Rojo (1997) proved that 

n / n \ n 

i=l x e \i=l / i=l 

where yt > 0 for ? = 1 , . . . , n. Making use of this inequality on the L.H.S. of (6.5), 

we get 

En^n(i-^)< teHn(i--i • (6.6) 
« = 1 -1 c i=l \i=l / i=l 

A consequence of Theorem 4.4 (b) is that Xn:n >st Yn:n, which is equivalent to n"=i (1 — 

g-Aji^i/n < i _ e~Xx. Using this result, we find that the expression on the R.H.S. of 

(6.6) is less than or equal to that on the R.H.S. of (6.5) and from which the required 

result follows. • 

As a consequence of this result we get the following upper bound on the distribu­

tion function of Rx in terms A. 

COROLLARY 6.1 Under the conditions of Theorem 6.2, for x > 0, 

P[Xn:n - XlM <x]<[l- e~'Xx]""' . (6.7) 

This bound is better than the one obtained in Kochar and Rojo (1996) in terms of 

A, since the expression on the R.H.S. of (6.7) is increasing in A and A < A. 

Now we extend Theorem 6.1 to the PHR model. We assume that F is new worse 

than used (NWU), that is, 

F(x + y)>F(x)F{y), forx,y>0, 

or equivalently, 

H(x + y) <H(x) + H(y), fmx,y>0, 

where H{x) = — logF(x) denotes the cumulative hazard of F. 
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THEOREM 6.3 Let X\,... ,Xn be independent random variables with Xi having sur­

vival function F '(x), i = I,... ,n. Let Y\,... ,Yn be a random sample of size n from 

a distribution with survival function F (x), where A = (n^LiAi)1/™. If F is NWU, 

then Xn:n — X\:n >st Yn:n — Y\-.n-

P R O O F : 

The distribution function of the sample range Xn:n — X^.n (see David, 1981, p. 

26) is 

n /.-foe) n 

FRx{x) = E / \h(t)e-XiH^Y[(e-^H^-e-x'^t+xAdt 
*=iJo j& 

r+oo it> r + 0 0 7 t 

< E / hh{t)e'^H^ n ( e - A ' "« - e-*^We-*iH(»)) 

(since F is NWU ) 
n r+oo n 

= E ^ I K 1 - 6 " ^ ' ) / h(t)Y[e-^H^dt 
= g A . n ( l - e - ^ H W ) f+0° h(t)e-H^U^ 

Now, replacing x with #(2;) in the proof of Theorem 6.2, it is easy to see that 

F^(x)<Fgr(x). m 
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Parametrics to Nonparametrics: 

Extending Regression Models 

Abhinanda Sarkar 

IBM India Research Lab 

1 Introduction 

Central to modern statistics, both in theory and application, lies the notion of 

a model. While there has been some debate as to what the strict definition of 

a model should be, the practicing statistician has typically taken the view "I 

know a model when I use it". This chapter is about statistical models, what 

they represent and how advances in mathematics and computing have enabled 

the expansion of what permissible models are and what they can be used for. To 

fix ideas, we shall restrict ourselves to the case of regression with one predictor 

variable. This class of models is rich enough and the applications interesting 

enough to illustrate much. 

We shall make a formal distinction between two classes of models, namely 

parametric and nonparametric. One of the objectives of this chapter is to make 
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the observation that the distinction is not as much as it appears at first sight 

and that a unified perspective on statistical models is possible and, arguably, 

desirable. The choice of topics reflects personal preferences. Nonetheless we 

hope that this view of models in regression serves to cast some light on the 

unity in the apparent diversity in the area. 

1.1 Regression: the basic model 

Consider a sample of independent observations denoted by Y\, Yi,..., Y„. For 

example, Y% can be the selling price the ith car in an auction of n cars. These 

observations are subject to uncertainty and they can be considered to be in­

dependent random variables. As random variables, they have expected val­

ues (averages) denoted by -E(Yi). The regression problem arises when there is 

reason to believe that these expected values are related to other observables. 

Suppose that there are observations xi,X2,... ,xn and a function / such that 

E{Yi) = f(xi). In our example, Xi can be the price at which the auction starts 

for the ith car. Note that (in regression) we are not interested in the uncertainty 

in the Xj. Indeed, they need not be considered random at all and it suffices to 

think of the Xj as fixed or given apriori. For these given values, the random Y$ 

are observed. The conditions 

(i) Yi are independent and 

(ii) E(Yi) = f(xi) 

will be common to all the models we will consider for this scenario. The func­

tion / is generally called the regression function and modelling and making 
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inferences for it is the subject matter of regression analysis. 

2 Parametric regression 

In the most common form of classical regression analysis, the bare bones model 

of Section 1 is fleshed out by making further assumptions. The material in this 

section is by now considered traditional and is discussed in standard texts such 

as [4] and [23]. They can be consulted for the mathematical derivations we omit. 

We present this material as review as well as to set the stage for more recent 

methods discussed in later sections. 

2.1 Polynomial regression 

Recall that the Gaussian (or normal) distribution with expectation [i and vari-

ance a2, denoted by N(fi, a2), has the symmetric density function —±=e ^ . 

A simple model for Yi, Y2,..., Yn stipulates that Yt has N(fj,i, a2) distribu­

tion where m = /?o + Pi^i + fii^l + • • • + /3p_ix?_1. Thus, in addition to the 

basic assumptions in Section 1, we further assume that 

(i) Yi have Gaussian distribution, 

(ii) the regression function / is a polynomial in xi and 

(iii) Yi have the same variance. 

This complete specification is called the polynomial regression model. If p is 2, 

then the ever-popular linear regression emerges. The case of Yi being indepen­

dent and identically distributed (iid) Gaussian random variables is captured by 

setting p to be 1. 
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Observe that if the values of /3o,/3i,• • • ,Pp-i and a1 are known, then the 

distribution of Yi ,F 2 , . . . ,F n is completely known. Thus p+\ constants, or pa­

rameters, can be used to identify the exact distribution of the observed sample. 

This identification with a finite number of parameters is what allows us to call 

this model a parametric model. 

The ability to identify parameters also allows routine inference. For the 

polynomial regression model, the maximum likelihood (ML) method can be used 

for estimation. The estimates 0o, /? i , . . . , /?p-i , £2) are those that maximize the 

likelihood of observing the sample, namely, 

n j 

It is easy to see that this amounts to minimizing Y^7=i(^i ~ Po — P\Xi — • • • — 

Pp-ix
p~1)2 in order to obtain ft = (/30,/?i,- • • ,PP-i)- This is the celebrated 

least squares (LS) method of estimation which is thus shown to be equivalent to 

ML estimation if we assume a Gaussian model. See [21] for a historical account 

of the central role that LS estimation played in statistics and data analysis. 

A principal analytical tool in regression is the collection of fitted values. 

In our general model of Section 1, the estimate of the regression function / is 

denoted by / and the fitted values are Yi = f(xi). For the polynomial regression 

model, Yi = p0 + ftij + . . . + Pp-ix^'1. 

To ease notation, let Y = (Yi , . . . , Yn), Y = (Yi , . . . , Yn), and 0 = (J30, Pi,..., j8„_i). 

For the polynomial regression model, define a n x p covariate matrix X with 

( r < - A , - J 8 i g < - . . . - f l , - i a » - 1 ) 2 

2<72 
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(i,j)th element x*~ . Then the LS estimators are 

h = &rgmm0(Y - XP)T(Y - Xp) = (X'X^X'Y 

and the predicted values are given by Y = X/3 = HY where H is a function 

of (non-random) x = (x\,..., xn) but not of (random) Y. For obvious reasons, 

H is called a hat matrix and can be shown to be of rank p. Thus Y is a linear 

function of Y and such a fitting procedure is said to be a linear smoother. For 

now, smoothing refers to the reduced dimensionality of the fitted values Y; they 

lie on a p-dimensional subspace of the n-dimensional Euclidean space containing 

Y. Note that the dimension of this subspace (and the rank of the smoothing 

matrix H) is the same as the number of parameters used to specify the regression 

function. It is also true that H is a projection and H2 = H. From this it follows 

that the trace of H is also p, which is the number of regression parameters. 

Of course, mere point estimation of the regression parameters is inadequate 

for most applications. We need a measure of uncertainty for our estimates. 

The standard deviations of the estimates, usually called standard errors, serve 

as such as a measure. For the Gaussian models above, it can be shown that 

se(/3j) = <JJ(X'X)JJ . If estimates of the standard errors are required, we can 
i 

replace a by, for example, the ML estimate a = ^(Y - XJ3)T(Y - X[j) . 

2.2 M o d e l se lect ion 

While a reasonably complete description of model and inference has been given 

for polynomial regression, a crucial model-related issue remains to be settled. 

This is the choice of p or, equivalently, the choice of the degree of the polynomial 
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to be fitted. 

It is instructive to think of why the choice of p is important. Too small a p 

may fail to capture the complexity in the regression function. For example, the 

rate of a chemical reaction may increase with the concentration of a reagent, but 

may stabilize beyond a certain concentration. If we restrict ourselves to linear 

regression (p = 2), then the increase can be captured, but not the stabilization. 

The model has too few parameters to capture the features of interest. 

On the other hand, playing safe and stipulating a large value of p leads to 

another kind of shortcoming. If there are too many parameters, each parameter 

is estimated poorly, i.e. with large standard error. The entire model is thus 

poorly estimated and is unlikely to be very useful when applied to another data 

set. In the computer science literature, such models are said to "generalize" 

badly. An extreme situation arises when we attempt to fit n regression param­

eters (p = n) with n points. The LS fit is then an interpolation with the fitted 

values being the data points themselves. The model has adapted perfectly to 

this particular data and is very unlikely to have this high a fidelity to another 

realization from the same natural source. We will have more to say on this in 

later sections. 

There are various criteria that are used in determining p that balance the 

above two sources of model misspecification. One of the most useful and pop­

ular is the Akaike Information Criteria (AIC) proposed in [1]. Let Lp denote 

the likelihood that has been maximized over p parameters. Then we can define 

the AIC, a function of p, as AIC{p) = -21ogLp + 2p. As model complexity 
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p increases, the maximized likelihood increases. (This assumes that if p' < p, 

the model with p' parameters is a submodel of the model with p parameters.) 

In most models used in practice AIC(p) is first decreasing in p and then in­

creases as the complexity term 2p begins to dominate. The choice of p that 

minimizes AIC(p) is considered a choice of p that compromises complexity and 

generalizability adequately. 

2.3 Other parametric models: logistic regression 

While the assumption that the random variables have Gaussian distributions is 

common in regression analysis, it is often clearly unjustifiable. There are other 

models for other kinds of observables. By way of an example, we illustrate 

regression with binary responses. 

Example: Sarkar and Ananthanarayanan in [19] carried out a study of auctions 

carried out on the Internet. The data consisted of 250 cars of a specific brand 

that were available for sale on an auction website in 2000-2001. The start price 

(decided by the seller), whether the car eventually got sold or not, and the 

selling price if the car got sold were recorded. One objective of the study was 

to see how the start price affected the probability of the car finding a buyer 

and the eventual selling price. Denoting the start price of the ith car that got 

sold by Xi and the selling price by Yi} a simple linear regression of the form 

E(Yi) = a i + PiXi was considered. The parameters were estimated by LS, 

effectively making the assumption that the selling prices are Gaussian. Some 

results are presented later in this section. 
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It was also of interest to model the probability that the ith car got sold. 

Denoting this by Pj, a so-called logistic regression model can be stipulated as 

log (Y^p-j = c*2 + foxi- Let Si be a binary random variable that takes the 

value 1 if the ith car got sold and 0 otherwise. The log-likelihood corresponding 

to the data can be expressed as 

n n n 

log J J P?< (1 - Pi)1'3' = -n log(l + ea*+0*Xi) + a2 £ St + ft £ SiXi 

i= 1 i= 1 i= 1 

The ML estimates of the parameters a?, and ft can now be found by maximizing 

this log-likelihood. A general treatment of estimation in logistic regression is in 

[14]. 

We report some fitted values from both the linear and logistic regressions. 

As in the linear regression case, the fitted values for Pi are found by plugging-in 

the LS estimates. The results are as expected. Setting higher selling prices can 

lead to higher sale prices if the car gets sold, but that eventuality becomes less 

likely. 

Starting price 

Fitted selling price 

Fitted sale probability 

2000 

7855 

0.81 

3000 

7961 

0.76 

4000 

8066 

0.69 

5000 

8172 

0.62 

6000 

8278 

0.54 

7000 

8383 

0.46 

8000 

8489 

0.38 

We could, mechanically, run a polynomial regression of the binary variables 

Si on Xi, but that is scientifically flawed. Binary random variables are discrete, 

as opposed to continuous, and are moreover bounded (between 0 and 1 in this 

case). The Gaussian assumption that justifies LS is untenable here. Hence the 

need for alternative models like logistic regression. 
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It is noteworthy that the likelihood involves the data only through two statis­

tics, namely, the total number of cars sold ( ^ 5,-) and the total starting price 

of all the cars sold (Y!,Sixi)- I n statistical inference such statistics that sum­

marize the data to the extent of specifying the likelihood completely are called 

sufficient statistics. In the logistic regression model, there are two sufficient 

statistics, however many observations there are. One of the reasons for taking 

this model for binary data is the consequential availability of such low dimen­

sional sufficient statistics. 

We have seen in this section regression with Gaussian as well as binary data. 

There is a general theory which allows a large class of distributions (called 

exponential families) to be assumed for regression models. The resulting models 

are called generalized linear models and the models of this section are special 

cases. See [15] for other possibilities. 

3 Nonparametric regression 

In Section 2, we considered a model where Y", had N(f(xi), a2) distribution and 

the regression function / was completely specified by p parameters. Such a 

model is called a parametric model as it can be specified in terms of a number 

of parameters that is (a) finite and (b) independent of the sample size n. We 

now proceed to drop these restrictions and take a look at models that are not 

parametric, i.e. nonparametric models. 
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There are, of course, many ways in which conditions (a) and (b) can be 

violated. For example, we can specify / to be a polynomial, E(Yi) = f{xi), and 

Var(Yi) = a2 but only stipulate that F, has a distribution with finite variance. 

Thus / and a2 do not completely specify the distribution of Yt. In fact, the class 

of distributions with finite variance has an infinite number of members, and it 

is not possible to find a finite set of parameters that suffices for such a complete 

specification. We shall take a closer look at this type of nonparametric model 

in Section 4. 

A comment on terminology needs to be made here. The term nonparametric 

does not mean that there are no parameters, but rather that there are so many 

parameters that it is not useful to think of the model in terms of a parametric 

representation. 

3.1 Kernel smoothing 

In this section we shall take a closer look at another class of nonparametric 

models wherein Yi still has N(f(xi),a2) distribution but / belongs to an infinite 

class of functions. For example, / can be stipulated to be continuous. 

A commonly used estimator for such models are kernel estimators. A kernel 

is a function K satisfying (for our purposes here) the properties of a symmetric 

density function; namely 

(i) K{x) > 0 for all x, 

(ii) K(— x) = K(x) for all x, and 
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A nonparametric estimator (shorthand for an estimator under a nonparametric 

model) of / is then 

fM _ S?=i K(x - Xj)Yj 
n ) ~ EUK(x-Xi) • 

This is a weighted average of the Yi and is often referred to as a kernel smoother 

(and the operation is then called kernel smoothing). If the kernel is unimodal 

in the sense that K(x") < K(x') for x" > x' > 0, then these weights will be the 

most for the F, that correspond to the a;, closest to x. An example of a kernel 

together with its use will be presented later in this section and more general 

details can be found in [10]. 

It can be seen that, in the notation of Section 1, Y = SY and the estimator 

is a linear smoother. However, unlike in the parametric case, S is typically a 

full rank matrix and, generally, S2 ^ S. However, the trace of S still carries 

useful information on the number of "parameters" there are, should one care to 

think in terms of parameters. See [11] for alternatives to the trace. 

The degree of smoothness in kernel smoothers in controlled by a bandwidth 

or window-width specification that determines how sharply the weights decay in 

the weighted average. The kernel of bandwidth h is defined by Kh{x) = j^K ( f ) . 

A very small h corresponds to little smoothing with very local averages and a 

very large h corresponds to heavy smoothing towards a global average. Let 

Sh be the corresponding smoothing matrix. The intuition is confirmed by the 

observations that 

lim Sh = I and lim Sh = —11' 
h—>0 /i->oo n 
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where / is the identity matrix and 1 is the column vector or all ones. Thus, if 

we undersmooth, % is too close to Yi and the regression estimate is essentially 

an interpolation. If we oversmooth, Y,- is essentially Y = ~ X)"=i *i a n d &U 

structure is lost. Somewhere in between is a desirable fit that captures struc­

ture and is yet not wedded to the data at hand. Note the implication that 

lim/j_y0 trace(Sh,) = n (there are n "parameters" in the estimate that interpo­

lates n points) and l im^oo trace(Sh) = 1 (there is 1 "parameter" in the estimate 

that smooths to the global average). Thus for a desirable smoother trace(Sh) 

captures the number of "parameters". This does not, however, make the model 

parametric. As the number of data points n increases, the desirable choice of 

h will change and will decrease increase with n. Moreover, while we may in­

tuitively agree that this model has a complexity comparable with a parametric 

model with trace{Sh) "parameters", it is quite another matter to label and ex­

tract these "parameters" (even after an integer approximation to the trace, a 

real number). 

Example: To illustrate the delicacy of the problem of bandwidth selection, we 

take a look at an example from biometry. Reynolds in [18] looks at the body 

temperature of beavers to study activity levels of the animals over the 24-hour 

diurnal cycle. Figure 1 below shows the data for one animal with the tempera­

tures as points. There are a hundred observations of the body temperature of 

an adult beaver taken at ten minute intervals. At the start of the observation 

sequence, the animal was asleep. She then awoke and became active. For the 

purposes of this example, we ignore the time series aspects of the data. 
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Is there a "correct" smoother? 

36.5 -

361 1 1 1 1 1 1 1 1 1 
0 10 20 30 40 50 60 70 80 90 100 

time: 10 min intervals 

Figure 1: beaver data 

The original data is shown as points. We also show two kernel smoothers. 

The kernel used was a Gaussian kernel with K(x) = ( V S T T ) - ^ - * * 2 . The more 

variable smoother is one with h = 1 and faithfully reproduces most of the fluc­

tuations in body temperature. However, one of the scientific purposes of the 

study was to analyze the rise in body temperature as activity increases. If so, 

these fluctuations can be treated as noise and a smoother should not estimate 

them as part of the regression function. The other smoother plotted with h= 10 

achieves that end. Thus the choice of bandwidth depends intimately on the use 

to which the analysis is to be put. There may not be a "correct" bandwidth. 
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3.2 Cross-validation 

To clarify the dependency of the kernel regression estimate on h, we now denote 

it by fh- For a fixed point x, we can see the following expansion for the so-called 

mean square error (MSE) in estimation 

E [fh(x) - fix)]' = E [fh(x) - E(fh(x))]2 + [E(h(x)) - f(x)f 

The first term is the variance of fh(x) and can be shown (with some restric­

tions on the kernel) to be approximately ^a2 J K\(u)du. The second term is 

the square of the bias of fu(x) and the bias can be shown to be approximately 

V / " ( x ) / u2Kh(u)du. Derivations can be found in [10]. From the approxima­

tion for the bias, it follow that where / " > 0 (/" < 0), fh overestimates (under­

estimates) / . This implies, as Figure 1 also illustrates, that a kernel smoother 

underestimates peaks and overestimates troughs in the data. This smoothing 

of features is what gives smoothers their name and is the characteristic of most 

regression estimates, parametric and nonparametric. 

As the bandwidth shrinks there is less averaging, bias is reduced but variance 

increases. The opposite occurs when the bandwidth increases and there is more 

averaging. One possible way to optimize this so-called bias-variance trade-off is 

to choose h so as to minimize the MSE. This, however, requires knowledge of 

two things: the observational variance a2 and the curvature of the regression 

function / " . Apriori, before any estimation is done, both are unknown. 

Cross-validation (CV) proposes an alternative, more intuitive, solution. Con­

sider the problem of predicting the value of Y' corresponding to a new x' and the 
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error in this prediction. This error will be high if h is large as not enough local 

structure will have been captured due to under smoothing. This error will also 

be high if h is small as the function will have adapted too well to the data (that 

does not include x' and 1"). Thus minimizing prediction error is one natural 

criterion for optimal choice of h. Given the available data, average prediction 

error can be estimated by the cross-validation score defined by 

i= l 

Here fl~ is the estimate of / obtained by using the kernel K^ on all the 

data points except Xj and the corresponding Y"j. In principle, this amounts to 

running n regressions. If this is a burden, an approximation called generalized 

cross-validation (GCV) can be used: 

GCV(h) = ±± 

The strategy then is to compute fh over a reasonable grid of values for h and 

choose an h that approximately minimizes CV(h) or GCV(h). Note that there 

are two competing terms in the GCV score: the error-in-fit term 53"=1[Vj — 

fh{%i)]2 which increases in h and a model complexity term trace{Sh) which, as 

we argued in Section 3, represents the number of "parameters" and decreases in 

h. GCV (and CV) thus trades off fidelity to the particular sample at hand with 

the number of parameters or degrees of freedom. See [22] for further discussion 

on cross-validation and its variants. 

Yj - Afa) 
1 — n~1trace{Sh) 
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3.3 Other nonparametric regression estimates: splines 

Kernels are not the only way to estimate nonparametric regression models. A 

book length treatment of a variety of methods is in [7]. Among the other popular 

methods, we take a brief look at regression with splines and wavelets. 

The difficulty with fitting arbitrary functions to data is that the "best" fit 

is one that fits the data perfectly (in the case that all the Xj are distinct). This, 

as has been observed, does not generalize well to other data realizations. One 

approach to fitting functions is to restrict the curvature of the functions fitted, 

so that they cannot completely adapt to the data. Assuming that / is defined 

on an interval [a,b] that includes all the Xi, one such estimate (A > 0) is 

/A = argmin / J2[Yi-f(xi)}2 + *[\f"(x)?dx 
.i=i a 

It can be shown that the solution to this is a cubic spline, i.e. a function which 

(assuming that the x^ are labelled in increasing order) 

(i) has two continuous derivatives on [a, 6] and 

(ii) is a cubic polynomial on the intervals (a, x\), (x\, X2), • • •, (xn-i, xn), (xn, b). 

As before, the fitted values are % = f\(xi). Like kernel smoothers, smoothing 

with splines in linear and we can write Y = S\Y for a suitably defined S\. For 

details on splines and smoothing with splines, see [8]. 

As in the case of kernel smoothers, it is instructive to consider the nature 

of the spline smoother in limiting cases. In the limit A -> 0, the minimization 

reduces to minimizing the sum of squared errors and f\ approaches the inter­

polating function. Alternatively, we have lim.\_>o S\ — I where I is the identity 
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matrix. At the other extreme, A -> co implies that the integral minimization 

dominates the minimization problem. In the limit, the second derivative, / " , 

becomes arbitrarily small and f\ approaches the LS fit for linear regression. 

This can be expressed as limA_>oo S\ = H, where H is the hat matrix corre­

sponding to linear regression, i.e.p = 2 in the polynomial regression model. Like 

the bandwidth h in kernel smoothing, the parameter A controls the effective 

number of "parameters". This is easily seen from lim^-^o trace(Sx) = n and 

limx-ycx) trace(S\) — 2. 

If the true, unknown, regression function / has variable smoothness, a single 

value for h (in kernel smoothing) or A (in spline smoothing) may be too restric­

tive. One would like the flexibility of choosing h or A to be large where / is 

smooth and to be small where / shows oscillatory behaviour. This will allow 

us to, so to speak, redistribute parameters with more parameters going towards 

modelling regions where they are more useful, i.e. where the (unknown) regres­

sion is not smooth. The recent developments in the use of wavelets in regression 

attempt to do just that, optimally and automatically. This chapter cannot do 

true justice to the elegance of the ideas and methods of wavelet regression and 

the reader is encouraged to look up the already abundant literature on the sub­

ject. Donoho and Johnstone wrote a series of seminal papers (for example, [3]) 

and [17] is a simpler treatment. 
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4 Resampling 

We now take a closer look at inference in the first nonparametric model we briefly 

considered in Section 3. Here we state it in a different, but essentially equivalent, 

form. Let Yi = Po + PiXt +... + Pp-ix?~ +e,- where the e< are independent and 

identically distributed (iid) errors with expectation zero. Despite the parametric 

specification of the regression function, this model is nonparametric on account 

of the infinitely many distributions possible for the errors e» which are not 

necessarily Gaussian. 

Applied statisticians may, and indeed typically do, still use least squares 

(LS) to estimate Po, Pi, • • • ,PP-\ • But without the Gaussian assumptions these 

estimates /?o> Pi, • • •, Pp-x are no longer maximum likelihood (ML). Even worse, 

it is not clear how their sampling distributions are to be determined, given 

the nonparametric model specification. Thus standard errors and confidence 

intervals for the regression parameters are not directly available. This is the 

typical scenario for effective use of resampling methods. 

4.1 Nonparametric bootstrap 

Conceptually, perhaps the simplest resampling method is the bootstrap, pro­

posed by Efron in [5]. Before discussing the general motivation behind the 

bootstrap, we first present a bootstrap algorithm for estimating the standard 

errors of the LS estimates /?j nonparametrically. 

1. Compute the residuals T\,T2, • • • ,rn from the LS fitted model with r* = 
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Yi — Po — J3\ Xi -... - J3P~ i x\~1. Let Fn denote the empirical distribution of 

the rj, i.e. the distribution that assigns probability ^ to each of n , . . . , r n . 

2. Draw e\, &\,..., e* independently from Fn. Form the resample Y*, Y2*,..., Y* 

with y ; = p0 + fat + ... + pp-ix?-1 + ej. 

3. Compute the resampled LS estimates using the resample Y* and the orig­

inal unperturbed x. 

4. Repeat steps 2 and 3 B times to get B resamples of the LS estimates. 

Denote these by pf1 for j - 0 , 1 , . . . ,p-1 and b = 1,2,. . . , B. 

5. For j = 0,l,...,p—l, the standard error of the LS estimate Pj is estimated 

by [ ^ T £ f = 1 0 ? - # > ) 9 ] * where # > = ± £ f = 1 frf • 

The general motivation of the bootstrap is illustrated by the following picture 

adapted from [6] and further discussed in [9]. 



224 

Real World 

Unknown 
Model Observed sample 

P — - K = (r 1 , r 2 > . . . ,K n ) 

P = s(Y) 

Statistic of interest 

Bootstrap World 

Estimated 
Model Bootstrap resample 

p — * ¥ * = (¥?,¥.?,...,¥:: 

P* = a(Y") 

Bootstrap replication 

The name of the game in statistics can usually be stated as "if this scenario 

were to repeat many times, what would be same and what would be different". 

The (random) differences across such replications lead to sampling distributions 

and standard errors of estimates. The trouble is that nature gives only one sam­

ple and the scenario generally does not so replicate itself. The bootstrap uses 

the data to estimate a model which can then be used repeatedly to generate 

resamples. These resamples can then take the place of the unavailable replica­

tions and can be used to estimate standard errors and other characteristics of 

sampling distributions in the usual way. 

The bootstrap resamples of the LS estimates can be used for estimating 

much more than standard errors. For example, an estimate of the bias of /3j, 

namely E(J3j) - fa, is given by fiV - J3j. 
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4.2 Parametric bootstrap 

The bootstrap method described above is nonparametric in the sense that it is 

designed to adapt to arbitrary distributions for the errors. Even if a specific 

distribution for the errors can be assumed, bootstrap methods are often used for 

estimating standard errors, bises, etc. A typical scenario involves a nonlinear 

parametric model. 

Example: Consider the celebrated Michaelis-Menten model from chemistry (see, 

for example, [16]) where reaction rates Yj are modelled on concentrations x% as 

Y = f+%- + t̂- The positive coefficients a and /3 are to be estimated. The errors 

ej are assumed iid Gaussian and classical LS gives estimates a and /?. But this 

is nonlinear LS as the model is not linear in the parameters. As a result the 

resulting smoother is not a linear smoother and finding standard errors and 

confidence intervals is no longer an easy problem. While approximations can be 

made, the parametric bootstrap provides a computational solution. 

In order to apply the parametric bootstrap, we need a more complete model 

specification. With the Gaussian assumption on the errors, Then the LS esti­

mates based on n observations are ML estimates. It can be shown (by consid­

ering log-likelihoods) that 

r 1 n / • \2~ 
(a, /?, <x2) = argminai/ji0.2 n log a2 + - ^ ^ ( Yt - * J 

Steps 1 and 2 of the nonparametric bootstrap algorithm are now be replaced by 

the step: 

Draw e*, e\,..., e* independently from N(0, a2). Form the resample Y*, V2*,..., Y* 
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X 0+Xi % 

The remaining steps can be carried out as before with the same expressions as 

in the nonparametric case to yield estimates of standard errors. 

Note that the parametric bootstrap adheres to the general philosophy as de­

scribed in the bootstrap picture. What makes it parametric is that a parametric 

estimate of the probability model is used to generate the resample. The end ben­

efit is the same; the messy problem of analytic computation or approximation 

of sampling distributions is avoided by use of resampling. 

4.3 Other methods of resampling: the jackknife 

Historically, the bootstrap is a relatively new resampling technique made possi­

ble by the availability of fast and cheap computing. Theoretically, the method 

is related to the older idea of the jackknife, which we take a quick look at. 

The jackknife considers resamples which differ from the original data only to 

the extent of deleting single observations. Consider our problem of estimating 

standard error and bias of the j t h regression parameter fy. Let $j denote our 

estimator of choice (it need not be an LS or ML estimator) and let /?] be 

the same estimator computed for the data deleting the ith observation with 

Pj ~ n S"=i pf • The jackknife estimates of the standard error and bias of 

the original estimator are (see [6] for justifications) 

I 
2 

and bias0j) = (n - 1) (pV - (jA se(j3j) = 
n-1 n 

E(« 
t = l 

M - « • > ) ' 
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Note that, unlike the bootstrap, the jackknife is not a simulation based method. 

However, like the bootstrap, it is nonparametric and estimates characteristics 

of sampling distributions without making distributional assumptions. 

The idea of deleting observations to create resamples can be extended to 

the delete-d jackknife where d observations are systematically deleted from the 

original data. The jackknife method proposed above is the case d = 1. 

Resampling methods such as the jackknife and the bootstrap are appealing 

because of their conceptual and computational simplicity. But there are techni­

cal limitations that need to be imposed on their use and such cautionary issues 

are also discussed in [6]. 

5 Further reading 

Nonparametric statistics has roots that did not encompass regression. The 

early work of Mosteller, Wilcoxon and others was intended to provide "quick 

and dirty" methods for inference based on rank tests and order statistics. This 

classical view of nonparametrics is detailed in texts like [20] and [13]. A principal 

catalyst for the growth in applied nonparametric regression was the modern 

computer. In that spirit, [12] is a recent compendium of computational methods 

and the ideas behind them. We should also mention the special case of regression 

with survival or lifetime data which led to the development of what is now called 

semiparametric regression. The proportional hazards regression model proposed 

by Cox in [2] essentially models survival times nonparametrically, but includes 
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the effect of predictors using parameters. Semiparametric models are of much 

current interest, notably in econometrics. 

6 Exercises 

One objective of this chapter has been to emphasize the connections between 

various methods of estimating regression functions, together with allied issues 

like model selection and estimation of standard error. Here are a couple of 

exercises that emphasize the essential unity in statistical modelling - parametric 

and nonparametric. 

1. AIC and GCV. The AIC was presented as a model selection criterion for 

parametric models. We also interpreted the trace of the linear smoother 

matrix as the equivalent number of parameters for some nonparametric 

regression models. Assuming Gaussian distributions, devise an AIC for 

selecting the bandwidth parameter for kernel smoothing. Compare and 

contrast this with the generalized cross-validation strategy for selecting 

the same. 

2. Bootstrap for logistic regression. Consider the problem of estimating bias 

and standard error of regression coefficients in the logistic regression model 

for binary data. Devise a parametric bootstrap scheme to do this. Dis­

cuss the challenges in devising a corresponding nonparametric bootstrap 

scheme. 
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Sometimes the experimenter has a suspicion or prior belief that the distribution belongs 
to a particular parametric family, like the normal, exponential, Poisson etc. This could be 
because the experimental conditions point to a particular distribution as the appropriate 
one or because of past experience of similar experiments. He then wishes to either confirm 
or reject this prior belief through a 'test of goodness of fit'. There are three major ways of 
carrying out such tests : (i) the chi-squared Goodness of fit test of Karl Pearson, (ii) the 
Kolmogorov - Smimov goodness of fit test based on the empirical distribution function, 
and (iii) the Hellinger distance based methods. We shall describe these in successive 
sections. Then these will be followed by methods developed for testing goodness of fit 
of two specific popular distributions viz., the exponential and the normal. There are 
certain graphical procedures used as diagnostic indicators of the family governing the 
outcomes. These will be discussed in the last section. 

Key words : Chi-square statistic, Kolmogorov - Smirnov statistic; Hellinger dis­
tance; tests for exponentiality and normality; graphical diagnostic procedures. 

1 Chi-squared Goodness of Fit Test 

The random sample consists of n independent observations X\, • • •, Xn. The idea is 
to see whether they occur according to a given common probability distribution Fo. 
The ideal situation is when we can completely specify the suspected distribution 
function FQ(X). Often, we can only point to a particular family without being able 
to specify the values of its parameters. These two cases will be dealt with separately. 

(i) Completely specified distribtuion function Fo. 

We set up the null hypothesis 

HQ : F = F0 

for testing. Since Fo is completely known, we can find the probabilities given by it 
for any partition (—oo,ai], (01,02], • • •, (afc_2,afc_i], (afc_i,oo] in k intervals formed 
by the k — 1 numbers 

—00 = ao < Oi < • • • < Ofc_i < Ofe = 00, k > 2. 

Let these be Pi,P2,-• • ,Pk,Pi > 0,i = l,2,---,fc and J^i=iPi = !• Let Oi be 
the (observed) number of observations in the i-th interval, 5Z i=1 0» = n. The 
probability of the i-th interval is p, hence the expected number of observations in 
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it is npi. In [18] Pearson suggested that we should look at the discrepency between 
the observed and expected frequencies through the chi-squared statistics 

X npi 
2 _ y ^ (Oj - npj) 

The denominator is a normalizing factor to make the variances of the terms com­
parable. If Jo is indeed the true distribution function then the difference between 
Oi and npi is expected to be small, only due to random variations, rather than 
systematic, which will arise if the probabilities p^s are not the true probabilities. 
In fact, let us slightly modify the hypothesis testing problem to : 

HQ : pi is the probability of interval (a,_i, a,], i = 1,2, • • •, k 
vs H[ : qi (which are not all equal to Pi) are the probabilities of these intervals. 
Then the vector (Oi ,02 , - • • >Ofc) w m have a multinomial distribution given 

under H'Q by 

and under H[ 

i fy(Oi = m , • • •, O* = nfc) = k " ir^iP? 

PH[(Oi = n1 ; • • • ,Ok = nk) = -^— Tr^ t f ' . 
7ri=lni-

The likelihood ratio test for a simple vs. a composite hypothesis is based on the 
statistics 

sup t f; PH{ 
L = log - i 

FH'o 
k (ni\m 
= l \ n ) 

Hi 

= log — 

\np, 

= YV( log — -log p^ 
i = l 

since ^ are the maximum likelihood estimators of q^. 
By Taylor expansion, and neglecting terms of order 0( l /n) we get 

2L r-,- V ^ ~ n P i ^ 

Replacing 7ij by the quantity nj?j in the denominator which it estimates consistently 
we get Pearson's chi-squared statistic. Hence, asymptotically the chi-squared statis­
tic has the same distribution as the likelihood ratio statistic. The latter, by general 
principles of likelihood theory is known to have the chi-square distribution with 
k — 1 degrees of freedom ([24], Chapter 13). 
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As large deviations between O* and npi, the observed and expected frequencies, 
provide evidence against the null hypothesis, we reject it if the observed value 
of the chi-squared statistic is greater than the upper a% value of the chi-square 
distribution with k — 1 d.f., i.e. the test is to reject Ho if 

X2 > Xfc-i , i-"-

It is clear that if there is a distribution Fi, different from FQ, but specifying the 
same probabilities pi for the intervals then the test will not be effective in detecting 
this alternative. The construction of the intervals is rather arbitrary, it is possible 
that different decisions may be reached through different such constructions. The 
number of intervals should not be too small, but at the same time it should be kept 
in mind that the approximation provided by the asymptotic distribution would not 
be good if the probability under the null hypotheses for any interval is too small. A 
rule of thumb which most statisticians recommend and follow is that n and each p, 
should be large enough so that no npi is less than 5 or so and in any case should not 
be less than 1. This may be achieved by reducing the number of intervals, through 
pooling. 

(ii) Some parametes of Fo are unknown. 

We have said at the beginning of this section that we suppose that Fo is a 
completely known distribution function. The experimenter sometimes may have an 
inkling only of the family of the distribution, but not the values of the parameters 
identifying the exact distribution within the family. For example, the experimenter 
may suspect, due to the experimental conditions, that the distribution governing 
the outcomes is normal (/i, cr2), but may not be able to specify, even as a hypothesis 
to be tested, the values of the mean fj, and the variance a1. In such situations, it 
is usually suggested that the unknown scalar or vector parameter 6 be estimated 
by its minimum chi-square estimator 6. Then the estimated value be substituted 
in F0 from which the probabilities piti = 1,2, • • • ,k should be obtained for the k 
intervals. Then the statistic 

2 = Y > (Oj - nf>i)2 

x h »A 
be computed as before. The asymptotic distribution of the statistic based on pi has 
the chi-square with k — £ — 1 degrees of freedom where t is the number of parameters 
(dimensionality of 6) which are estimated from the data. This result again follows 
from the standard asymptotic theory of likelihood ratio tests. So, the critical points 
for the test should be chosen from the chi-square distribution with k — t - \ degrees 
of freedom. It is thus clear that we may at most estimate k — 2 parameters from 
the data while testing goodness of fit. 

In [18] the \ 2 t e s t °f goodness of fit of a simple (completely specified distribu­
tion ) null hypotheses is developed and the asymptotic distribution of the statistic is 
found to be xjt-i where k is the number of classes in which the sample space is par­
titioned. In [11] Fisher dealt with the case when the distribution is not completely 
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Figure 1: Seriesl : - * ? _ ! , Series2 : -x |_ i> Series3 : - x | _ p _ ! + Z2 

specified but contains p unknown parameters. He also proved that if the estimators 
obtained by the minimum x2 technique are substituted for the unknown parameters 
then the asymptotic distribution is xt-p-i- Furthermore, in [5] it is shown that if 
estimators obtained by the more efficient maximum likelihood method of estima­
tion are used then the asymptotic distribution is that of T = x\-p-\ + Z2 where 
Z2 = 5^f=i ^iX?,Xt being independent iV(0,1) random variables also independent 
of the Xfc_p_i variable and 0 < Ai < 1. Thus, the asymptotic distribution of T is 
stochastically bounded between xl-i a n d xi t - p - i random variables. In this situa­
tion using the critical points from the x\~i distribution will lead to a conservative 
test and using those from the xl-p-i distribution will lead to an anticonservative 
test, i.e., the actual level of significance will be larger than the stated one. 

In [16] it is proved that the quadratic form defined below 

has asymptotically x2 distribution with k — p — 1 degrees of freedom. 
Here 

\F(Ik)-Pk(9)J 
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F(Ij) are the probabilities given to the intervals Ij, j = 1, • • •, k by the estimator F 
of F~e whether the H0 : F~e,6_ € 0 holds or not with the property n 1 / / 2 ( F - F ) —* W, a 
continuous Gaussian process with a nonsingular correlation structure which can be 
consistently estimated; pj(6),j = l,---,k are the probabilities of the same intervals 
given by the model F under HQ where # are estimators of (9 obtained by minimizing 
€'{6)D2{6)£(0) under mild conditions of W and D. Here t+ is the Moore - Penrose 
inverse of the estimated asymptotic variance covariance matrix of £(0). 

This is a general statistic having xl-p-i degrees of freedom. If F is the empir­
ical distribution function then it reduces to the Fisher - Pearson \ 2 statistics with 
p estimated parameters. If the data is randomly censored then F may be taken as 
the Kaplan - Meier product limit estimator and the test can still be carried out. 

Example 1. The following are suspected to be 50 values generated from the Poisson 
distribution with mean 1 using a certain computer programme. 

Values 0 1 2 3 4 5 
frequency 11 17 10 9 2 1 

Thus we wish to test the hypothesis HQ : FQ is Poisson with mean 1. 

i 

0 
1 
2 
3 
4 
5 

JH = I\[X = {[ 

0.367879 
0.367879 
0.183940 
0.061313 
0.15328 

0.003066 

npi 

18.3940 
18.3940 
9.1970 
3.0657 
0.7664 
0.1533 

npi 

18.3940 
18.3940 
9.1970 
3.9654 

Oi 

11 
17 
10 
12 

(npi -Oi)2 

54.6712 
1.9432 
0.6448 

64.5548 

(npi-Oi)' 

2.9722 
0.1056 
0.0701 
16.2795 

Since the last two cell values npi of column 3 and also their sum is less than 1, 
they have been added to the previous cell value and reported in column 4. 

We then get x2 = 19.427. 
The upper 5% value of the chi-square distribution with k — 1 = 3 d.f. is 

X3..95 = 7.815. Since the calculated \ 2 > 7.815, we reject HQ. 
The p-value in this case is less than 0.001. 

Example 2. The data is taken from [12]. (Original Source : Lieblein J. and Zelen 
M. [17]). 

The number of cycles to failure of 22 ball bearings are given. The data is already 
in the ordered form. 

17.88 28.92 33.00 
45.60 48.48 51.84 
55.56 67.40 68.64 
93.12 98.64 105.12 

128.04 173.40 

The aim is to test H0 : F0(x) = 1 - e~Xx,x > 0 that is exponential with mean 
1/A, A unknown. 

41.52 
51.96 
68.88 

105.84 

52.12 
54.12 
84.12 

127.92 
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The maximum likelihood estimator of A is 

t n 1 

E?=i *i 72.3873 
0.0138. 

Partition 
(0, 40] 

(40, 80] 
(80, 120] 

(120, 160] 
(160, 200] 

Pi = e - A o i - ! _ g-Aai 

0.424540 
0.244306 
0.140588 
0.080903 
0.046556 

npi 

9.33988 
5.37473 
3.09294 
1.77987 
1.02423 

Oi 

3 
11 
5 
2 
1 

( n p i - O j ) * 
(npi) 

4.30349 
5.88748 
1.17587 
0.02723 
0.00057 

Thus x2 = 11-3946. 
Note that in this case \ 2 is stochastically bounded between \\ a n d X§- The .05 

level critical points of the respective distributions are xl,.95 = 9-488 and xi,.95 = 
7.815. 

The null hypothesis is rejected using the larger critical point, thus at a level 
somewhat less than 0.05. 

2 The Kolmogorov - Smirnov Goodness of Fit Test 

This test is based directly on the difference between the distribution function speci­
fied by the null hypothesis Fo and its estimator, the empirical distribution function 
Fn. 

Again, let the null hypothesis Ho completely specify the distribution function: 

Ho • F = Fo 

assumed to be a continuous distribution function. 
The random sample X\, X2, • • •, Xn is used to construct the empirical distribu­

tion function Fn(x) defined as Fn(x) = ^, if exactly i of the n X's are less than or 
equal to x. Calculate the Kolmogorov - Smirnov statistics 

Dn = sup \Fn{x) - F0(a;)| 
-oo<x<oo 

= max {max{\Fn(x{i)) - F0(xi)\, \Fn(x{i)-) - F0(a; ( i )-) |}}, 

% % — 1 
= max {max{| - - F0(x{i))\, | F0(x{i))\}}, 

i<i<n n n 

the maximum of 2n positive quantities, where x^ is the i-th order statistic of the 
random sample. 

We should reject #0 if Dn appears to be too large. 
The test is based on the fact that if Fo is indeed the true distribution function 

then Dn will have a sampling distribution which does not depend upon Fo, due to 
the probability integral transformation. The exact distribution for small sample size 
n is rather complicated. It has been however tabulated and exact critical points for 
use in the test are available. When n is large the asymptotic distribution of ^/nDn 
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as n —> oo, is given by Kolmogorov and well tabulated. Hence in either case (n 
small or large ) the test is 

Reject Ho if Dn > d n , i_ a 

where dn<i-a is the upper 100 a% critical point from either the exact or the asymp­
totic distribution of the statistic. 

If the distribution function under the null hypothesis is not completely known, 
but known only upto the family with values of parameters still unknown, then one 
may use values of consistent estimators of the parameters to completely specify Fo 
and compare it with F n through Dn. But neither the exact nor the asymptotic 
distributions used above would hold in this case. If we still use the upper 100a% 
critical points of these distributions to carry out the test, we would be performing 
a conservative test, i.e., the actual level of significance of the test would be smaller 
than (or at most equal to) the stated level of significance a. This is so because 
when some parameters are estimated from the data, to specify Fo, the difference 
between it and the empirical distribution function Fn, which is totally based on the 
data, would be stochastically smaller than what it would have been in case F0 were 
totally specified. 

In case the experimenter knows that the distribution from which the data has 
been realized, if not F 0 , falls entirely above Fo then it is more efficient to compute 

D+ = sup {Fn(x) - F 0 ( i )} . 
— oo<:r<oo 

In the opposite case, when the data, if not from Fo, is expected to be from a 
distribution lying entirely below Fo, one may calculate 

D~= sup {F0(x) - Fn(x)}. 
— oo<rc<oo 

The exact and asymptotic null distributions of D+ and D~ are somewhat easier to 
handle. These too are well tabulated and level a tests will reject HQ if the value of 
D+ is larger than its (1 - a) 100% percentile. The same distributions and hence the 
same critical points apply to D~ as well. 

It can be easily seen that 

Dn = m^{D+,D~}. 

The comments made above about estimation of unknown parameters apply here 
also. 

Comparison of the chi-square and Kolmogorov tests for the goodness of 
fit hypotheses. 

The distribution of the chi-squared statistics, under the null hypothesis is known 
only asymptotically so we do not have any exact critical points for small sample 
sizes. Also, the test cannot distinguish the null hypothesis from another distribution 
which gives the same probabilities for the system of intervals. However, there is 
a well defined method to deal with null hypotheses which leave values of some 
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parameters unspecified and can be applied with equal ease to continuous or discrete 
distributions. 

In case of the Kolmogorov test, exact critical points are available for small 
samples also. The test is able to distinguish any distribution which is at all different 
from the distribution under the null hypothesis. However, if certain parameters 
are unspecified and estimated from the data then we do not know much about 
the error rates of the test except that it behaves in a conservative manner. Also, 
the distribution of the test statistic when the null hypothesis specifies a discrete 
distribution cannot be provided. 

Hence in case of discrete distributions the chi-square test is recommended. 

Example 3. Data from Example 2 is used to test the hypothesis HQ : FQ(X) = 
1 — e~Xx,x > 0, A unknown. 

The maximum likelihood estimator of A is given by A = 0.0138. In the following 
Table FQ(x) = 1 - e~Xx (Mean = 1/A = 72.3873). 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

x(i) 

17.88 

28.92 
33.00 
41.52 
42.12 

45,60 

48.48 
51.84 

51.96 
54.12 
55.56 
67.80 

68.64 

68.88 
84.12 

93.12 

98.64 
105.12 

105.84 

127.92 

128.04 

173.40 

Fofai)) 
0.218864 
0.329358 
0.366112 

0.436498 
0.441149 

0.467380 
0.488155 

0.511370 

0.512180 
0.526521 

0.535487 
0.608054 

0.612576 

0.613859 
0.687167 

0.723742 

0.744025 

0.765944 

0.768260 

0.829184 

0.829467 

0.908869 

i/n 
0.04545 

0.09091 
0.13636 
0.18182 

0.22727 

0.27273 

0.31818 
0.36364 

0.40909 
0.45455 
0.50000 
0.54545 

0.59091 

0.63636 
0.68182 

0.72727 

0.77273 

0.81818 

0.86364 

0.90909 

0.95455 

1.00000 

D$ 
0.000000 

0.000000 
0.000000 
0.000000 
0.00000 

0.000000 
0.000000 

0.000000 

0.000000 
0.000000 
0.000000 
0.000000 

0.000000 

0.022505 
0.000000 

0.003531 

0.028702 

0.052238 

0.095376 

0.079907 

0.125079 

0.091131 

D-
0.218864 

0.283903 
0.275203 
0.300134 
0.259331 

0.240107 

0.215428 
0.193189 

0.148543 
0.117430 
0.081302 
0.108054 

0.067122 

0.022950 
0.050804 

0.041923 

0.016752 

0.000000 

0.000000 

0.000000 

0.000000 

0.000000 

Thus D 2 2 = 0.3001. 
From the table for critical values of the Kolmogorov - Smirnov one sample test 

statistic we get 1̂ 22,0.95 = 0.281 for the two sided test. Since D22 > 0.281 we reject 
HQ. The p - value in this case is 0.038. Note that since a parameter is estimated, 
we have actually a conservative test. 



241 

3 Testing Goodness of Fit with Censored Data 

It is known that in case of randomly censored data, when the variables lifetime and 
censoring time are independent, the Kaplan - Meier (K-M) product limit estimator 
is consistent for the true distribution function of the life time, (See [14]). A test of 
goodness of fit then can be carried out on the basis of the difference between the 
two. Again let the null hypothesis be 

Ho : F = FQ. 

The K-M product limit estimator is defined as 

{rtj<t} J 

where tj are distinct values of the lifetimes / censoring times, dj, the number of 
deaths at tj (excluding the censorings at tj) and 6j = 1 if dj > 0 and zero otherwise, 
and rij is the number of observation in the risk set just before tj. Form the statistic 

Dn<T = sup \Zn(t)\ 
0<t<T 

where T is an upper bound upto which the K-M product limit estimator provides 
a consistent estimator (i.e. a number no more than the largest uncensored observa­
tion), and 

z (t) = fn{t) 

*"W [l + an(t)}(l-F0(t)) 

Yn(t) = nl'2{F{t) - F0(t)} 

Si 
j:U<t J v 3 ' j:tj< 

The additional terms in the formula like an, 1 — F0 have become necessary because 
the observations are subject to censoring by an unknown censoring distribution. 

The asymptotic distribution of the statistic depends upon T, the point of trun­
cation and is rather complicated. The critical points are available in [15]. One may 
also use the critical points from the Kolmogorov distribution which are used for the 
statistic Dn in the uncensored data case. The test will again be a conservative one. 

A general method for testing goodness of fit of a specific family of distributions 
{F$,9 € 0 } with unknown values of parameters is to calculate. Fn(x) and F$(x), 
where Fn is the K - M product limit estimator of the distribution function based on 
the data and 9 is the maximum likelihood estimator of 9 in the above family. Then 
calculate the Kolmogorov distance 

t)n = s u p | F n ( x ) - i ^ ( : r ) | . 
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The exact (or asymptotic) null distribution of the statistic will not be free of 
the function F or the true value 9Q of 9. Hence critical values from the actual 
distribution are impractical. 

Conservative tests, usually loose power for relevant alternatives as is well demon­
strated by various Monte Carlo studies. See [8] in the context of the normal family. 
Hence for testing goodness of fit of families which are commonly used as models 
such as normal or exponential, it is suggested that more specific tests based on 
statistics sensitive to departures from certain prime features of the family, e.g. the 
values Pi = 0 and /?2 = 3 for the coefficients of skewness and kurtosis of the nor­
mal distribution or lack of memory property of the exponential distribution. These 
generally have more power for detecting departures from such features at the cost 
of generality. 

4 Goodness-of-fit Tests based on Hellinger Distance 

Goodness-of-fit tests may also be based on distances or disparities between the 
probability density functions (p.d.f.). The squared Hellinger distance HD(f,g) 
between two p.d.f.s / and g is defined as 

HD(f,g) = J(fV2(x)-g1/2(x))2dx. 

Let Xi , X2, • • •, Xn be a random sample from the p.d.f. g. The aim is to test 
the null hypothesis that g belongs to a specified parametric family T = {fe,9 6 ©} 
of p.d.f.s. Minimum Hellinger distance estimator (MHDE) 9n of 6 is the value 
that minimizes HD(fg,gn), where gn is some nonparametric density estimator of 
g. That is 

9n = argmineHD(f0,gn). 

The minimized distance HD(f^ ,gn) then provides a natural goodness-of-fit 
statistic. 

For continuous models, asymptotic properties of 9n and HD(fg ,gn) are ob­
tained in [4] by Beran when gn is a kernel density estimator. 

Let 

" (x) - * V ^ w (x-XA 
nCnSn \ CnSn J 

where hn = CnSn is called the bandwidth, {Cn} is a sequence of positive constants, 
Sn — Sn(Xx,X2, • • •, Xn) is a robust scale estimator and the kernel to(-) is a density 
function. 

Let 
Rn = max Xi — min Xi, 

l < i < n l < i < n 

Mn — T-Rn / W2(x)dx 
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and 

° " = ŝ "^" hW* w^^dx 

where 

w * w (x) = / w(x - t)w(t)dt. 

Then under certain mild assumptions 

Hn = a~l[nCnHD{fgn,gn) - /xn] 

converges in distribution to a standard normal variable N(0,1) under fg as n —> oo. 
Thus the a- level test is to reject HQ if |ifn| > z i - a , where zi_Q is the upper 

a% value of the standard normal distribution. 
We note that under these assumptions, the limiting distribution oiy/n{6n — 9) 

is normal with mean 0 and variance | [ J hg(x)ng(x)dx}~1 under fg, where hg(x) = 
(h$ (x), • • •, hg(x))T with hg(x); 1 < j < p denoting the first order partial deriva-

1/2 
tives of fg with respect to 9 and T denoting the transpose. 

Thus, for example, the goodness of fit of any location scale family {cr~1f(a~1(x— 
/x));<r > 0, —oo < ji < oo} where / is continuous can be tested. 

The most popular choice of the kernel function in density estimation is the 
Epanechnikov kernel given by 

w(x) = .75(1 -x2) for \x\ < 1, 

for which §_^ w{x)2dx = 3/5 and /_1(iu * w{x))2dx = | | | . 
The following numerical example is reproduced from [4] to illustrate the feasi­

bility of the procedure. 

Example 4. A random sample of size 40 was drawn from a standard normal 
distribution. The 40 realized sample values were: 

-0.706781 0.143266 0.123015 -0.745385 2.16105 
0.654191 1.14438 -0.118696 0.258899 -0.154302 
0.352057 -1.28269 0.885335 2.51841 -1.09603 

2.04580 0.402274 0.0431284 -0.456585 -2.07226 
-1.64175 -0.0192038 1.70932 0.929303 0.144781 

-0.885728 -0.588767 -0.169394 0.699988 -0.162130 
0.0621123 0.729453 0.655040 1.67987 -0.194017 

1.01924 -0.927988 -0.524994 0.133760 -0.412047 

The aim here is to test HQ : fg belongs to the family {iV(/i, cr2),-oo < \i < 
oo,0 < a2 < oo}. 

The MHDEs of \x and a2 were obtained by using an iterative algorithm with 
initial estimates as /r°) = median {xi} and 

<T(°) = (0.674)-1 median {I** - £ ( 0 ) |}-
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The density estimator gn(x) was based upon the Epanechnikov kernel, with the 
scale statisic Sn = &(°\ The value of Cn was taken to be 0.7 as the corresponding 
MDHEs of jj, and a were both close to the sample mean (0.158) and the sample 
standard deviation ( = 1.012). The following Table gives the MHDEs of (j,,a, the 
goodness-of-fit statistic Hn(f^ ,gn) and the asymptotic upper 0.10 critical value 
^.90 = (z.9Q(Tn + A*n)/nCn) where z.9o is the upper .10 critical value of the standard 
normal distribution, \xn = 1^(3/5)1/4, and an = .7 x Rn x 167/355 x 1/8. The 
Table reports the effects on the estimators of changing the value nearest to zero in 
the data set, namely X22 = —0.0192038, by a series of increasing positive values. 
The 0.10 upper critical values from the asymptotic distribution of HD(fgn,gn) are 
all larger than the corresponding observed values of the statistic, suggesting that 
the fitted normal distribution gives a good fit. This is as it should be, as changing 
one observation (or having one outlier) out of the 40 should not affect the bulk of 
the sample and hence the decision based on it. 

Table 

fj. X22 —> 

A 
Sample 
mean 
a 
sample 
standard 
deviation 
HD(fdn,gn) 
asymptotic 
upper .10 
critical 
value 
^.90 

original 
value 
0.143 
0.158 

1.007 
1.012 

0.0176 
0.0437 

1 

0.173 
0.184 

1.019 
1.020 

0.0134 
0.0437 

2 

0.191 
0.209 

1.044 
1.052 

0.0198 
0.0437 

3 

0.218 
0.234 

1.091 
1.106 

0.0219 
0.0473 

4 

0.194 
0.259 

1.080 
1.179 

0.0322 
0.0545 

5 

0.156 
0.284 

1.032 
1.268 

0.0401 
0.0616 

10 

0.150 
0.409 

1.020 
1.855 

0.0418 
0.0957 

15 

0.151 
0.534 

1.018 
2.555 

0.0424 
0.128 

For the discrete models, goodness-of-fit tests based on power divergence statis­
tics have been introduced in [6] and [19]. The power divergence Ix between densities 
/ and g is defined by 

I\9,f) iW '̂fC 's(z) 
A(A + 1)7 "v ' [\f(x) 

The power divergence statistics of [5] is of the form 

dx. 

raA(A + 1) rr^ { \npi I I 

where Oi are the observed frequencies and npi the expected frequencies. The Pear­
son's x2 (A = 1), log likelihood ratio statistic (A —• 0), Freeman - Tukey statistic 
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(A = — A) are all special cases of the above. The statistic for A = 2/3 is shown to 
be a good alternative to the x2 test. 

For the discrete models, goodness-of-fit tests based on the blended weight 
Hellinger distance methods have been introduced and their comparisons given in [3] 
and [22]. 

5 Tests of Exponentiality 

The two most important continuous probability distributions from the modelling 
point of view are the exponential and the normal distributions. The exponential 
distribution is the single most important distribution used for modelling lifetimes. 
It is the only continuous distribution with the memoryless property (i.e. P(X > 
x + t\X > t) = P(X > x) V x, t > 0) hence it is the proper model for the lifetimes 
of electronic and other non-ageing components. Also, it plays a central role in 
life testing as a norm, deviations from which have to be noted and studied. So 
it is extremely important to test goodness-of-fit of the exponential distribution to 
collected sets of data on lifetimes. Besides, the experimenter wishes to understand 
what other types of models may be the true models, if not the exponential. The 
omnibus tests like the Pearson chi-square or Kolmogorov goodness of fit tests do 
not provide this further information, after rejection. Hence certain tests are devised 
which reject the Ho of exponentiality if certain relevant types of alternatives hold. 

As mentioned above the exponential distribution uniquely possesses the mem­
oryless or no ageing property. But there are components which are subject to wear 
and tear or those which deteriorate with age. This phenomenon is known as positive 
ageing. One type of positive ageing is defined as 

P(X>x + t\X>t]<P[X>x], V x,t>0, 

with strict inequality for some x and t. In words we may say that a unit which has 
already been used for t units of time has smaller probability of surviving another 
x units of time than a new (unused) unit V x, t > 0. A random variable X, or its 
c.d.f. F, which possesses this property is said to possess New Better than Used 
(NBU) property. A finer positive ageing property is the Increasing Failure Rate 
(IFR) property in which the above inequality is changed to 

F(X > x + t2\X > t2] < P[X > x + h\X > i i] , V x,0 < h < t2 < oo. 

There are many other classes of distributions including the Increasing Failure 
Rate Average (IFRA) and Decreasing Mean Residual Life (DMRL) classes. 
A reference to any standard book of Reliability Theory, say [1] will give detailed 
discriptions of and interrelationships between these and such classes of distributions. 

(i) The Hollander - Proschan Test (see [13]). 
The testing problem considered here is 
Ho : F(x) = 1 - e~Xx,x > 0, A > 0, unspecified versus 
Hi : F(s + t)< ~F(s)F(t), i.e. F belongs to the NBU class. Here JF = 1 - F. 
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Let Xi,X2,--- ,Xn be a random sample from the distribution F. Then the 
Hollander - Proschan test is based on the U-statistic estimator of the parameter 

/»oo /»oo 

7 = / / F{s + t)dF(s)dF{t) 
Jo Jo 

= P[X1>X2 f X3]. 

Define a kernel function 

*(x^.xi) = {1
0;othLx

x,>X2+X3 

and let h* be its symmetrized version. Then 

1 * 
U = 7^) 2 ^ h*(Xn' Xh' X*a) 

where ^ * is the sum over all the (3) combinations of the indices (ii,«2,*3) from 
the integers (1, 2, • • •, n). 

It is seen that 
E(U) = 7 which is 1/4 under H0 and strictly greater than 1/4 under Hi. Also, 

the null asymptotic variance of i/nU is seen to be 5/432. Hence the asymptotic 
distribution of 

z = y/H(U ~ 1/4) 
^5 /432 

is iV(0,1). The test is 
Reject Ho if 

Z > ^ i _ a 

where Z\-a is the (1 — a)-th quantile of either the exact distribution of Z or its 
asymptotic (./V(0,1)) distribution. Hollander and Proschan have shown that the 
test is consistent for the entire NBU class of distributions and has good efficiency 
for several common models belonging to this class. 

(ii) The Deshpande Test (see [9]). 
The class of Increasing Failure Rate Average (IFRA) distributions is often en­

countered in reliability as it is the smallest class containing the exponential distri­
bution and closed under the formation of coherent systems. The IFRA class may 
be characterized by the property 

[F(x)]b < F(bx),' 0 < 6 < 1, 0 < x < o o 

with strict inequality for some b and x. So the testing problem is formed as 
Ho : F(x) = 1 -jTXx, x > 0, A > 0, A unknown, versus 
Hi : (F{x))b < [F(bx)}, 0 < b < 1,0 < x < 00 and F is not exponential. 
To test the null hypothesis the U-statistic estimator of the parameter 

/*oo 

M= / F(bx)dF{x) 
Jo 
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is used. 
It is easily seen that M = jb+u under Ho and strictly greater than „ * , under 

Hi. Hence the U-statistics 

1 * 
) 

where h* is the symmetric version of the kernel 

h(Xi,X2) = l, if Xi>bX2 

= 0, otherwise, 

and Y^* is the sum over all the nchoose2 combinations of (i\,i2) from the integers 
( l , 2 , - - - ,n ) . 

The asymptotic variance of ^fnJ\, is 

f _ 6 _ 1 2 ( 6 - 1 ) 26 4 \ 
* ~ \ +2 + b + 2b + 2+ 1 + 6 1 + 6 + 62 ( 6 + 1 ) 2 / ' 

Then by the U-statistics theorem we know that under HQ 

s/n{Jb ~ bh) 
Z = 

v7! 

has iV(0,1) distribution. Hence the test is to reject Ho if Z > Z\^a where Zi_a 

is again the (1 — a)-th quantile of the exact null distribution or the asymptotic 
(iV(0,1)) distribution of Z. There is the question of choosing b for denning the 
statistic. Generally 6 = 0.5 or 0.9 is recommended. Test based on Jo.5 is consistent 
against the larger NBU class and Jo.9 seems to have somewhat larger power for 
many common IFRA distributions. 

The statistics J& is simple to compute. Multiply each observation by the chosen 
value of 6. Arrange Xi, X2, • • •, Xn and 6X1,6X2, • • •, bXn together in increasing 
order of magnitude. Let Ri be the rank of X^ in the combined order and let 

5 = £^_n(n + 3) 
i = l 

Then it is seen that 
Jb = { n ( n - l ) } - 1 S . 

It may be noted that it is essentially the Wilcoxon rank sum statistic for the data 
of Xi,X2,- • • ,Xn; and bXi,bX2, • • • ,bXn. 

6 Tests for Normal i ty 

The normal distribution is the single most commonly used model for describing 
the occurrence of outcomes of random experiments and phenomena. Ever since the 
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days of Gauss and Laplace in the eighteenth and nineteenth century it has been 
recognized as a very useful model. For a considerable time it was believed that 
most of random phenomena actually give rise to normally distributed data, at least 
after appropriate transformations. Theory of errors as developed for application in 
Physics and Astronomy, basically makes the normality assumption. However, by 
and by it came to be recognized that there are many situations where other models 
are much more realistically discriptive of real data. Hence there arose the need 
for testing whether a given set of data, i.e. realizations of independent, identically 
distributed random variables is described well by the normal distribution or not. 
Probability plotting as explained later is a useful graphical tool in this respect. Here 
we describe a formal test based on the quantities involved in probability plotting. 

The Shapiro - Wilk - Francia - D'Agostino Tests 
Let Xi,X%, • • • >Xn be the random sample and -^(i), ^ ( 2 ) J •' • i-^(n) D e the cor­

responding order statistic. Then the test is based on the statistic 

w = (E"=i a»,n*ffl) 

H=i(**-*)2 

which is the ratio of the slope of the normal probability plot, or the square of the 
weighted least squares estimator of the standard deviation, to the usual estimation 
of the variance. The values of aitH for i = 1,2,- •• ,n,n = 2, • • •, 50 have been 
tabulated. If the sample size is large, say, greater than 50, the following modified 
statistic has been proposed in [21]. 

E£. i (*« -* ) 2 £?=i&?,„ 

where bi,n = $ - 1 ( ^ - j - J and $ is the standard normal distribution function. Exact 

critical values of W (for n < 50) and for W'(n < 100) are available. For even larger 
sample sizes in [7], the test statistic 

p E;U(»-J("+I))*(O 
n 2 ^ / s ( X , - X ) 2 

has been proposed and its exact critical values for values of n upto 1000 have been 
provided. 

These Shapiro - Wilk - Francia - D'Agostino tests are considered to be omnibus 
tests as they are able to detect departures from normality in all directions. 

7 Diagnostic Methods for Identifying the Family of Distribution Func­
tions 

The goodness-of-fit tests described earlier in this chapter provide the means of 
carrying out formal statistical inference, with known probability of first type of 
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error, about the respected distribution function governing the data. The methods 
described in this section are less formal. They provide indications to the true distri­
bution functions through graphical procedures. A suspected distribution is at the 
back of our mind and we compare its shape (or that of some releted functions) with 
graphs obtained from the data. 

(i) The Q-Q Plot 
The Q - Q or quantile - quantile plot compares the theoretical quantiles of 

a distribution with the corresponding sample quantiles represented by the order 
statistics. These plots have been discussed in detail in [23]. 

Suppose that the suspected distribution function F belongs to a scale-location 
family FQ (—^) where standard values of /i and cr, say 0 and 1 give a completely 
known standardized distribution FQ in this family. For example, F may represent 
the normal family with mean /x and variance a2, with /x — 0 and a2 = 1 giving the 
standard normal distribution. 

Let F* (t) be a slightly modified version of the empirical distribution function 

given by F*(t^) — *-^- rather than i/n. This has been done as generally a the­
oretical distribution may give —oo and oo as the values of F~x(z) at z = 0 and 

1. We then compare F *~J ( l~J J of F~1(z) at z = 0 and 1. We then compare 

F n _ 1 (^P) = Hi) a n d F^1 ( ~ ) by plotting the points (t{i),F»x ( ^ ) ) in 
a graph. If the true distribution F is belongs to the scale - location family based 
on FQ then we expect that this graph called the Q - Q plot will be situated on or 
near a straight line. This is because 

is a straight line with slope ^ and intercept £. A straight line is easy for the eye to 
comprehend and departures from it can be quickly recognized. While not proposing 
a formal test, the plot does give an indication whether the proposed scale - location 
family is the appropriate model or not. The slope and the intercept would provide 
very rough estimates of the parameters which could be useful as initial values in 
an iterative scheme to find, say, the maximum likelihood estimators or other more 
formal estimators. 

— 1 i--
The values of the inverse function F0 at the points —^- for i = 1,2, • • • ,n, 

are sometimes easy to obtain by direct calculations, someties they are available in 
wellknown tables (e.g. $ _ 1 , the inverse of the standard normal distribution). For 
many distributions they can be obtained by numerical integration or other com­
puter based calculations or packages. 

(ii) The log Q - Q plot 
This is a modification of the Q - Q chart. For some positive valued random vari­

ables the distributions of its logarithm belong to a scale - location family. For exam­
ple the lognormal or the Weibull distributions have this property. Therefore arguing 

as before we plot the points I l o g i ^ , F _ 1 (%-^- J >. For example, in the Weibull case 
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£ -4-

/ 

Figure 2: log Q-Q Plot 

\F(t) = 1 - e~xt\ t > 0]. Hence [F-\y) = ' °g | - ' °g( i-v)H°e\ 0 < y < 1], and 
A = v = 1 leads to the standard exponential distributions with distribution function 
F0(t) = 1 - e~*,t > 0 in this family. 

Hence if we plot the points (log t^, log(— log (1 — ^^-))) they are expected to 

lie on a straight line with slope v and intercept log A. Thus the fact that the points 
look like being on a straight line will indicate that the distribution is Weibull, with 
the slope and intercept leading to preliminary estimation of the parameters. The 
log Q - Q plot for the data of Example 2 is given in Figure 2. It can be seen that 
the intercept and the slope are approximately -10 and 2.2, respectively, leading to 
preliminarly estimates A0 = e - 1 0 and i>o = 2.2. 

(hi) The P-P Plot 
The P - P (Probability - probability) plot charts the points (Fn(t^), 

F(t(j), 6)) where F is the proposed family of distributions, possibly dependent upon 
parameter 8 (see [23]). The parameter 6 may be estimated by some method suitable 
for this family, like the method of maximum likelihood and the estimate substituted 
for the true value. As before Fn{tu\) = J~ . This plot is restricted to the square 
(0,1) x (0,1) and the points are expected to lie on the diagonal from (0,0) to (1,1) 
if the model holds. 

In Figure 3 it will be hard to say that the points do not lie on or near the di­
agonal, whereas in Figure 4 the plot seems to be concave in nature rather than the 
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straight line of the diagonal. The shape of the graph of these points when it is not 
a straight line also gives some indications regarding the true distribution vis-a-vis 
the suspected distribution. In particular, if the graph is concave as in Figure 4, it is 
indicated that the ratio hFtruc /hp0 of the failure rate of the true distribution with 
that of the suspected distribution is increasing. This in turn can be interpreted to 
mean the data comes from a distribution which is aging faster than the suspected 
distribution. These considerations helps us in selecting appropriate models from 
the point of view of survival theory. 

(iv) The T-T-T Plot 
The total time on test (T-T-T ) plot is very useful in adherence to the exponen­

tial model and also departures form it. In specific departures which are of interest 
in lifetime studies the basis is the scaled T-T-T transform of distribution function 
defined by 

Tr{u)- irnm • 0 < " < I -
Like other transforms, this is also in 1:1 correspondence with probability distribu­
tions. It is easy to see that for the exponential distribution (F(t) = e _ A t , t > 0) it is 
the straight line segment (diagonal) joining (0,0) with (1,1). Hence the technique 
is to define the sample version of the scaled T-T-T transform as the T-T-T statistic 
given by 

TFn(i/n) 
^1{*,nyn{t)dt 

J0°°Fn(t)dt 

nX 

where X is the sample mean and 0 = X^ < X^ < • • • < -^(n) a r e the or­
der statistics of the random sample. The numerator of Tpn (i/n) is the total time 
on test (or under operation) of all the n items put on test, simultaneously, upto 
the i-th failure. Hence the name of the statistic and the transform. The points 
{^,T>n(i/n)} ,i = 1,2, • • • ,n are plotted in the square (0,1) x (0,1). If they lie 
on the diagonal or near it and not systematically on one side, then the exponen­
tial distribution is indicated. If a systematic pattern, apart from the diagonal, is 
discernible then certain alternative models may be more appealing. 

The TTT-statistic was first introduced in [10] but its applications in analysis 
of failure data began with a paper by Barlow and Campo [2]. 

In the Figure 5 the exponential distribution is indicated, whereas in the Figure 
6 the jumps in the values of the sample scaled T-T-T transform seem to become 
larger and larger indicating a distribution in which failures occur progressively less 
frequently in time compared to the exponential distribution. If the graph appears 
to be convex then a DFR distribution and if it is only below the diagonal without 
being convex then some other NWU distribution is expected to fit better to the 
data. 
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U STATISTICS AND Mm ESTIMATES 

ARUP BOSE 
Indian Statistical Institute, Kolkata 

Abstract. After a quick introduction to some basic properties of U statis­
tics with examples, we discuss Mm estimators and their asymptotic properties 
under easily verifiable conditions. In particular, these estimators are approx­
imately U statistics and as a consequence, a huge collection of commonly 
used estimators are consistent and asymptotically normal. We also establish 
some higher order asymptotic properties of these estimates. The material is 
more or less self contained. 

Key Words and Phrases: U statistics, Mm estimates, strong consistency, 
asymptotic normality, almost sure representation, U quantiles, multivariate 
medians. 

1. Introduction 

This article is broadly divided into two parts. In the first part we deal 
with U statistics. We concentrate on some results which are useful from 
a statistician's point of view. As applications, we establish the asymptotic 
distribution of many common statistics which are either U statistics or simple 
functions of U statistics. This material is fairly standard but our concise 
treatment makes the article reasonably self contained. 

In the second part, we deal with Mm estimators and their asymptotic 
properties. A huge class of common and also not so common estimators fall in 
this category. The asymptotic properties of these estimates have been treated 
under different sets of conditions in the literature. The most general results 
for these estimators require very sophisticated treatment using techniques 
from the theory of empirical processes. But here we strive for a simple 
approach. The conditions we assume are few and simple but general enough 
to be applicable widely. We demonstrate how one can check the necessary 
conditions of the general theory in particular cases. 
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2. U statistics and its basic properties 

2.1 Definition and first examples. Let X\,X2, • •• ,Xn be observations, 
not necessarily real valued. We shall assume throughout that they are in­
dependent and identically distributed (iid). Suppose h(xi, • • • ,xm) is a real 
valued function which is symmetric in its arguments. 

Definition 1. The U statistics of order or degree m, with kernel h is: 

U*=(l) E h(Xh,---,Xim) (2.1) 
\ m / l<h<-<ik<n 

The systematic study of U statistics began with Hoeffding (1948). Many 
of the basic properties of U statistics are due to him. In this section we 
will cover a few basic properties of U statistics and provide a few examples. 
Further material on U statistics are provided by Lee (1990) and Koroljuk and 
Borovskich (1993). Some results on U statistics that we specifically need for 
the study of Mm estimates are given in the next section. 

Example 1. (Sample mean) Letting m = 1, h(x) = x, we obtain Un = 

Example 2. (Sample variance) Letting m = 2, h(xi,X2) = \Xl~X2> , we get 

Un =(fj1 E Fix ' ^2]V2. 
\ Z / l < i i < i 2 < n 

It is easily seen that Un = (n — l ) " 1 £"=1(-Xi - X)2, the sample variance. 

Example 3. (Sample covariance) Suppose (Xi,Yj), 1 < i < n are the 
observations, m — 2 and h((xi,yi), (x2,y2)) = \{x\ - x2){yi — y2)- Then U„ 
is the sample covariance between {Xi} and {Yi}. 
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Example 4. (Kendall's tau) Suppose (Xj,Fj), 1 < i < n are bivariate 
observations. A measure of discordance is Kendall's tau, defined by 

' n = ( o ) £ s i g n p Q - X ^ - Y , ) . (2.2) 

This is a U statistic with h((xi,x2), (2/1,3/2)) = signal — £2X2/1 — 2/2)-

Example 5. Gini's mean difference, a measure of inequality is defined as 

-1 

,2> l<i<j<n 

If the observations are N(0,a2), E(Un) = (2/7r)1^2a. Thus Un is a measure 
of dispersion. This is a £/ statistic with /&(:£!, £2) = | £1 — x2 \. 

Example 6. (Wilcoxon's one sample rank statistic) Suppose Xi, 1 < i < n 
are continuous observations. Let Ri = Rank (| Xi |), 1 < i < n. Wilcoxon 
one sample rank statistic is defined as T+ = J2?=i Ri I(Xi > 0). T+ can be 
written as a linear combination of two U statistics with kernels of size 1 and 
2. To do this, note that for i ^ j , 

I{Xi + Xj > 0} = I{Xi > 0}/{| Xj \<Xi} + I{Xj > 0}/{| Xi \< Xj} 

Hence 

Y, I{Xj + Xj>0} = £ I{Xi>0}I{\Xj\<Xi} 
l<i<j<n l<i<j<n 

l<i<j<n 

+ J2nxi>o} 

»=i j = i 

= £ / {X i >0} i? i = T+ 

i= l 
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Define two kernels, hi(xi) — I{x\ > 0}, and h2(xi,x2) — I{x\ + x2 > 0}. 
Define two U statistics as 

UM = -Y.h^Xi), and Un(h2) = (f\ £ h^X^Xj). 
71 i=l \ZJ l<i<j<n 

Then 

2.2. Some properties of U statistics 

(i) Variance of Un. Computing the variance needs computing the co-
variances between h(Xj1, • • •, Xjm) and h^X^ • • • Xim) which depends on the 
number of common indices. Let 5C = COV[/I(XJJ , • • •, Xim), h(Xj1, • • •, Xjm)] 
when the number of common indices is c. It is easy to see that 6C > 0 for all 
c. By a simple combinatorial argument 

^•(:r£(:)(:)C- ,:>-(:r£(:)(:- ,:K 
As a consequence of this, we also have 

2 p 

V(Un) = — + 0(n-2) and ^ ( n 1 / 2 ^ - 0)) -»• m 2 ^ . (2.4) 

Example 7. Suppose Un = s2 = (n - 1)_ 1 E"=j(^t - ^«) 2 - Here the kernel 

is h(xi,x2) = (X1~*2> . It can be verified directly that, if a2 = V(X{), then 

*i = ^ - g W > 4 - ^ , fc = o* and V(Un) = ^ + ^ S 2 . 

(ii) First projection of Un. Note that the leading term in the asymptotic 
variance of nx/2Un is given by m25i. It is also not hard to check that 6i 
is given by Sx = cov[h(Xl,-• • ,Xm),h(Xi,Xm+1,-• • ,X2m)} = Var(hi(Xi)) 
where hi(x\) — E h(x\,X2, • • •,Xm) is the conditional expectation of h given 
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one of the coordinates. This function hi is called the first projection of Un. 
Let hi be its centered version: 

hi(xi) = hi(xi) - 9 

so that E hi{Xx) = E[h(Xu • • -,Xm)] -9 = 0. Let 

77? n ~ 
Rn = Un-9--Y.hi{Xi). (2.5) 

n i=i 

By explicit calculations it can be easily seen that the decomposition (2.5) 
is an orthogonal decomposition in the following sense : 

cov[hi{Xi),Rn} = 0 Vt = l, • • - ,« . (2.6) 

(iii) Convergence of U statistics. From the above it immediately follows 
that if V[h(Xi,..., Xm)] < oo, then Un — 9 —> 0 as n —>• CXD. In fact a much 
stronger statement is true: If E[\h(Xi,... ,Xm)\] < oo, then Un — 9 - ^ 0. 
This can be proved by using SLLN for either reverse martingales or forward 
martingales. A rate result when higher moment exists is given in Lemma 3 
in Section 3. 

(iii) Asymptotic normality of Un. From the relations (2.5) and (2.6), we 
get V(Un) = ̂ i + V(Rn). But on the other hand, from (2.4) V(Un) = 
=£<$! + 0(n"2). This shows that ^ ( n 1 / 2 ^ ) _> 0 and hence n^2Rn -> 0 in 
probability. Now appealing to the decomposition given in (2.5), and the 
usual central limit theorem, we immediately obtain, 

Theorem 1. IfV[h(Xu . ..Xm)] < oo, then 

n1/2{Un - 0) A N(0,a2) where a2 = m2V(hi(X{)) = m2dx. 

Remark 1. By using the Cramer-Wold device, it is easy to see that the 
multivariate version of Theorem 1 holds. This is useful in applications where 
more than one U statistics is involved. 
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Example 8. Consider the U statistic s\. In Example 7, we have calculated 
5t = Mr£l7 where fx4 = E(X - (EX))4. Thus if ^ < oo, 

n ^ ( 4 - a 2 ) A i V ( 0 , ^ 4 -a 4 ) . 

Example 9. Suppose h(x\,x2) = X\x2. Let fj, = E(Xi). Then 

Si = cov(X1X2,X1X3) 

= EXXX2X% — (EXiX2)(EX\X3) 

= n2EXf-fi4 = fi
2V{X1). 

Hence if V(Xi) < oo, then 

;) ' E i^-//2)Aiv(o,4MV). 
7 l<i<j<ra / 

Example 10. Consider Kendall's tau defined in Example 4. It is used to 
test the null hypothesis that X and Y are independent. We shall derive 
the asymptotic null distribution of this statistic. Let F,F\,F2 denote the 
distributions of (X, Y), X and Y respectively, Then 

hx{x,y) = Eh((x,y),(X2,Y2)) 

= P{(x - X2)(y - Y2) > 0} - P{(x - X2)(y - Y2) < 0} 

= P{(X2 >x,Y2> y), or (X2 < x,Y2 < y)} 

-P{(X2 >x,Y2< y) or (X2 <x,Y2> y)} 

= l-2F(x,oo)-2F(oo,y) + 4F(x,y) 

= (1 - 2F1(a:))(l - 2F2(y))+ 4(F(x,y) - Fx{x)F2{y)). 

Under the null hypothesis X and Y are independent and hence for all x and y, 
F(x,y) = F1(x)F2{y). Hence in that case, hx{x,y) = (l-2F2(x))(l-2F2(y)). 
To compute its variance, note that U = 1 — 2Fi(Xi) and V = 1 — 2F2(Yi) 
are independent U(—l, 1) random variables. Hence 

VlhiX, Y)] = V(UV) = EU2EV2 = (I f1 u2du)2 = 1/9 
Li J — 1 

n 
1 / 2 
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Moreover, under independence, 6 = E[ sign (Xi — X2){Y\ — Y2)] = 0. 

Hence under independence, nll2Un —> N(0, a2) where a2 — 22/9 = 4/9. 

Example 11. Wilcoxon's statistic defined in Example 6 is used for testing 
the null hypothesis that the distribution F of X\ is symmetric about 0. Recall 
the expression for T+ in (2.3). We concentrate first on Un(hi). E Un{h\) = 
P(Xi + X2>0) = 0, say. Under the null hypothesis, 0 = 1/2. Further, 

Vtfn) = Cov [I{X1 + X2 > 0), I{Xi + X2 > 0] 

= P(XX + X2 > 0, Xi + Xz > 0) - (1/2)2. 

Now assume that F is continuous. Then under null hypothesis, by symmetry, 
P{Xl + X2, X1 + X3>0) = 1/3. Thus nll2{Un{h2) - 1/2) - A N(0, a2) 
where a2 = 22(l /3 - 1/4) = 1/3. It also follows easily that 

n~3/2(nUn{hi)) -> 0 in probability. 

Hence we have, after algebraic adjustments, 

n"3/2^/(12)(T+ - n2/4) -£> N(0,1). 

3. U statistics and Mm estimators 

M estimators and their general versions Mm estimators were introduced 
by Huber (1964) from robustness considerations. The literature on these 
estimators is very rich. There are a variety of conditions under which the 
asymptotic properties of these estimators have been studied. It is known that 
under suitable conditions these estimates are consistent and asymptotically 
normal and satisfy appropriate almost sure representations. The goal of this 
section is to offer easily verifiable conditions to derive some of the asymptotic 
properties of these estimators. A huge class of Mm estimators turn out to 
be approximate U statistics. Hence the theory of U statistics plays a crucial 
role in this approach. We give several examples to show how the general 
results can be applied to many estimators. In particular, several multivariate 
estimates of location are discussed in details. 
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3.1 Basic definitions and examples. 

Mm parameter. Let f(xi,---,xm,9) be a real valued function. The ar­
gument 9 is assumed to belong to 1Zd. Let Xi,---,Xm be i.i.d. random 
variables. Define 

Q(9) = Ef(X1,---,Xm,0). 

Let 0O be the unique minimizer of Q{9). We consider 90 to be the unknown 
parameter. It is usually called the Mm parameter. The special case when 
m — 1 is the one that is most commonly studied and in that case 90 is 
traditionally called the M parameter. 

Mm estimator. Suppose {Xi,- • • ,Xn} is a sequence of independent and 
identically distributed observations. Under the absence of any further infor­
mation on the distribution of X, a natural estimate of the Mm parameter 0Q 
is the minimiser of the sample analogue Qn of Q, 

Q»(e)=(l) £ f(Xh,--.,Xim,9). 
\mJ l<i i<i 2-<tm<n 

Definition 2. Any (measurable) value 9n which minimizes Qn(8) is called 
an Mm estimator of 90. 

Example 12. Let f(x, 9) = (x - 9f - x2. Clearly Q(9) = 92 - 2E(X)9 
which is minimized uniquely at 90 = E{X). Its M estimator is the sample 
mean. 

Example 13. (Sample median and quantiles). For 0 < p < 1, the population 
pth quantile is the point where the distribution function exceeds p for the first 
time. To see these as M parameters, let f(x, 9)= \x — 9 \ — \x\ — (2p — 1)9. 
It is easy to check that, 

fix, 9) = 9 [2Hx < 0) - 1] + 2 / \I{x < s) - I{x < 0)}ds - (2p - 1)9. 
Jo 
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Hence if Fx denotes the distribution function of X then 

Q{9) = 2 [ Fx{s)ds-2p6. 
Jo 

Q(9) is minimized at 

e0 = Fx1(p) = mi{x:Fx(x)>p}. 

Then #o is a population pth quantile. It is unique if Fx is strictly increasing 
at #o- If P = 1/2, it is called the population median. The M estimator of 60 is 
called the sample pth quantile. Unlike the previous example, this estimator 
is not necessarily unique. If p — 1/2, we get the sample median. 

Example 14. (L\ median) There are several reasonable definitions of the 
"median" when the observations are multivariate. The reader may consult 
Small (1990) for a first exposure to the various notions of median/location 
for multivariate observations. One such median is the L\ median. Suppose 
X is a d dimensional random vector = {Z\ • • • Zj). Let 

/(x,fl) = E(x i-6> i)
a]1/a-E^]1/2-

i = l i = l 

It can be shown that if Fx does not put all its mass on a hyperplane (that is, 
if P{%2i=i Ct Zi = Constant } ^ 1 for any choice of real number (C\ • • • Cd)), 
then Q(0) is minimized at a unique 6Q. This 90 is called the L\ median. The 
corresponding M estimator is called the (sample) L\ median. It is unique if 
all the sample values do not lie in a lower dimensional hyperplane. If d = 1, 
the Li median reduces to the usual median discussed in Example 13. 

We now give examples of Mm estimates where m > 1. Traditionally, M 
estimators are thought of as measures of location. However, Mm estimators 
encompass both measures of location and of scale. 

Example 15. For a function h(xi,... ,xm) which is symmetric in its argu­
ments let 

f(xi ...,xm,6) = [9- h(x1,..., xm)]2 - [h(xu ..., xm)}2. 
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Then 90 = E h(Xt,... ,Xm) and 9n is the U statistic with kernel h. So all 
U statistics are Mm estimators. In particular, the sample variance is an M2 

estimator. 

Example 16. (Oja median) A multivariate median due to Oja (1983) is de­
fined as follows. Suppose Xlt • • •, Xd are ̂ -dimensional i.i.d. random vectors. 
Let A(-Xi, • • •, Xd, 0) denote the (absolute) volume of the simplex formed by 
the (d + 1) points {Xu---, Xd, 9} in Tld. Let 

f(xir--,xd,9) = A(xu---,xd,9) -A(xi,---,xd,0). 

If E\Xi\ < oo, then Q{9) = E f(Xi,---,Xd,9) exists. It is also known 
that if the distribution of X\ does not concentrate on a hyperplane of a lower 
dimension, then 9Q is unique and is called the Oja median. The corresponding 
Mm estimate is called the (sample) Oja median. 

Example 17. (Hodges-Lehmann measure of location) Suppose Xi, • • •, Xn 

are i.i.d. observations. Instead of the usual mean as a measure of location, 
one may consider the median of { {

2
 3, 1 < i < j < n} &s the sample 

measure of location. Here m = 2 and 

f(xuX2,9) = | — 0 | - | — - — | . 

The parameter #0 is the median of G where G is the distribution of ^L~2-. 

Example 18. (Robust measure of scale/dispersion) The variance as a mea­
sure of dispersion is influenced by extreme observations. To address this prob­
lem, Bickel and Lehmann (1979) considered the distribution of | X\ — Xi \ 
and took its median to be a measure of dispersion. Here m — 2 and 

f{xi,x2,9) = | | xi -x2 | -9 | - | xi -x2 | • 

Example 19. (U quantiles) The ideas of the previous two examples can 
be extended to define U quantiles (Choudhury and Serfling (1988)). Let 
h(x\, • • •, xm) be a symmetric kernel. Define 

f(xi, •••,xm,9) = | h{xu • • •,xm) - 6 | - | h(xu • • •,xm) | . 
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Then 90, the minimizer of E[f(Xi, • • •, Xm, 9)] is called a [/-median. Other U 
quantiles can be denned in a way similar to the sample quantiles in Example 
13. Note that just like the sample quantiles in Example 13, these estimates, 
in general, are not unique. Multivariate versions of these [/-quantiles denned 
by Helmers and Huskova (1994) are also Mm estimates. 

Many researchers have studied the asymptotic properties of M estimators 
and Mm estimators. Early works on the asymptotic properties of M\ esti­
mators and M.2 estimators are Huber (1967) and Maritz et. al. (1977). Oja 
(1984) proved the consistency and asymptotic normality of Mm estimators 
under conditions similar to Huber (1967). His results apply to some of the 
estimators above. 

We emphasize that all examples of / we have considered so far have a 
common feature. They are all convex functions of 9. Statisticians prefer to 
work with convex loss functions for various reasons. We shall make this blan­
ket assumption here. This does entail some loss of generality. But convexity 
leads to a significant simplification in the study of Mm estimators while at 
the same time, still encompassing a huge class of estimators. 

As Examples 13 and 19 showed, an Mm estimator is not necessarily 
unique. However, it can be shown that by using the convexity assumption, a 
measurable minimiser can always be chosen. This can be done by Corollary 
1 in the Appendix of Niemiro (1992). The asymptotic results that we will 
discuss hold for any measurable sequence of minimizers of Qn(9). 

Several works have assumed and exploited this convexity in similar con­
texts. Perhaps the earliest use of this convexity was by Heiler and Willers(1988) 
in linear regression models. See also Hjort and Pollard(1993). For example, 
for m — 1, Habermann (1989) established the consistency and asymptotic 
normality of 9n and Niemiro (1992) established a Bahadur type representa­
tion 9n = 9Q + Sn/n + Rn where Rn is of suitable order almost surely and Sn 

is the partial sum of a sequence if iid random variables. In the next subsec­
tions, we shall exploit the convexity heavily and establish some large sample 
properties of Mm estimates. 
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Remark 2. Even though our set up covers a lot of interesting multivariate 
location and scale estimators, it does not cover several other estimators such 
as the medians of Liu (1990), Tukey (1975) and Rousseeuw (1986) etc since 
the convexity condition is not satisfied. One general approach in the absence 
of convexity is provided by Jureckova (1977)). See also de la Pena and Gine 
(1999, page 279). 

3.2 Strong consistency. The immediate consequence of convexity is the 
strong consistency of Mm estimates. Assume that: 

(I) f(x1,..., xm, 9) is convex in 0 for every (x i , . . . , xm). 
(II) Q{9) is finite for all 9. 
(III) 9Q exists and is unique. 

Remark 3. Often the parameter space is restricted. If (I) and (II) are 
satisfied for a subset of 7?.d, then all the results we give below remain valid if 
#o is an interior point of this subset. 

Theorem 2. (Strong consistency) Under Assumptions I, II and III, 

®n —* #o almost surely, as n —> oo. 

Remark 4. The above theorem, in particular implies that all the estimators 
introduced so far in our examples are strongly consistent under minimal 
assumptions, (I)—(III). 

To prove the Theorem, we need the following Lemma. Recall that convex 
functions converge if they converge on a dense set and the convergence is 
uniform over compact sets. Using this and a diagonalisation argument, the 
Lemma can be easily proved. Details can be found in Niemiro (1992). 

Lemma 1. Suppose that hn(a), a € Tld is a sequence of random convex 
functions which converge to h{a) for every fixed a either in probability or 
almost surely. Then this convergence is uniformly on any compact set of a, 
respectively in probability or almost surely. 
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Proof of Theorem 2. Note that by the strong law for U statistics, Qn(a) 
converges to Q(a) for each a almost surely. By Lemma 1, this convergence 
is uniform on any compact set almost surely. 

Let B b e a ball of arbitrary radius e around 9Q. If 6n is not consistent, 
then there is a set S in the probability space such that P(S) > 0 and for 
each sample point in S, there is a subsequence of 9n that lies outside this 
ball. We assume without loss that for each point in this set, the convergence 
of Qn to Q also holds. For a fixed sample point, we continue to denote such 
a sequence by {n}. 

Consider the point 0* which is the intersection of the line joining 0O and 9n 

with the ball B. Then for some sequence 0 < j n < 1, 9*n = ^n9Q + (1 — 7„)0£. 
By convexity of Qn and the fact that 9n is a minimiser of Qn, 

Qn(9*n) < 7nQ„(0o) + (1 - ln)Qn{9n) < lnQn%) + (1 - 7n)<2n(0O) < Qn{90)-

Note that the right side converges to Q(90). Pick a subsequence of 0* 
which converges to, say B\. Since the convergence of Qn to Q is uniform, the 
left side of the above equation converges to Q(0i). Hence, Q{9\) < Q{9Q). 

This is a contradiction to the uniqueness of 9Q. This proves the theorem. 

3.3 Asymptotic normality. We now give an in probability representation 
result for Mm estimators. This representation implies the asymptotic nor­
mality of Mm estimators. To state the result, first note that since / is convex, 
it has a subgradient g(x, 9). This subgradient has the property that for all 
a,/3,x, 

f{x, a) + (/3 - a)'g(x, a) < f(x, /3). (3.1) 

If / is differentiate, then this subgradient is simply the ordinary derivative. 
Further g is measurable in x for each a. This is possible by an appropriate 
selection theorem, such as Corollary 2 in the Appendix of Niemiro (1992), or 
see Castaing and Valadier (1977). 

It is easy to see that by using (3.1), under assumption (II), the expectation 
of g is finite. Moreover, the gradient vector VQ(0) of Q at 9 exists and 

VQ(9) = E[g(X1,...,Xm,9)]<oo. 
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Denote the matrix of second derivatives of Q at 9, whenever it exists, by 
V2Q{9). We also define 

H = V2Q(90) 

and 
un=(l) £ 9(xh---,xim,e0). 

\mJ l<«i-<im<n 

Let N be an appropriate neighbourhood of 9Q. We list the following addi­
tional assumptions to derive asymptotic normality. 

(IV) E\g(X1,...,Xm,9)\2<o0V9eN. 
(V) H = V2Q(90) exists and is positive definite. 

The following theorem is a consequence of the works of Habermann (1989) 
and Niemiro (1992) for m = 1, and Bose (1998) for general m. 

Theorem 3. Suppose Assumptions (I)-(V) hold. Then, 

(i) 9n - 0O = -H~lUn + oP(n-1/2) 

(ii) nll2(9n — 9o) —>• ./V(0, k2H~lKH~l) where K is the variance covariance 
of the first projection of the gradient vector g(Xi,..., Xm, 90). 

Remark 5. The Mm estimators given in section 3.1 all satisfy the conditions 
of Theorem 3 under suitable conditions on F. Thus Theorem 3 implies 
the asymptotic normality of a huge collection of estimators. After we give 
the proof of the theorem, we illustrate its use through a discussion of the 
appropriate conditions required in some specific cases. 

For the proof of this theorem as well for those theorems given later, 
assume without loss that 9Q = 0 and Q{9Q) = 0. Also let S denote the 
set of all m element increasingly ordered subsets of { l , . . . , n } . For any 
s = {«!, . . . , im} € S, let Ys denote the random vector (X^,... ,Xim) and 
X(s,a) = Q{Y„a). 
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Proof of Theorem 3. For any fixed a, and s E S let Xns = f(Ys, n 1 / / 2 a ) -
f{Ys,0)-n-^aTg(Ys,0). 

Note that Vn = ("j J2ses Xns is a U statistic. From the decomposition 
given in (2.5) and (2.6), using (3.1), it follows that 

V((n) EXns) < -E[(Xns-EXn >)]2 

< K-EX2
n 

.m 

n 

< K-E[a'{g(Xns, n^a) - g(Xns, 0)}]2 

Let Y be identically distributed as any Ys. Let Yn = a'{g(Y, n~ll2a) — 
g(Y, 0)}. Note that Yn > 0 and Yn is nonincreasing. Let limY^ = Y0 > 0. 
Thus E(Yn) t E(Y0). But £ F n -> 0. Hence Y0 = 0 a.s.. This implies that 
i?Y„2 -> 0. Noting that £ Xn s = Q(n~1/2a:), it follows that for each fixed 
a, 

(n) ^{Xns-EXns)= nQni-^-nQnM-nWa'Un-nQi-^^O 

in probability. By Assumption (VII), 

nQ(a/^n) -> a'Ha/2 

and due to convexity, both the above convergences are uniform on any com­
pact set by Lemma 1. Thus for every small e > 0 and every M > 0, the 
inequality 

sup \nQn(a/\/n) — nQn(0) — a'n 1/2Un - a'Ha/2\ < e (3.2a) 
\a\<M 

holds with probability at least (1 — e/2) for large n. 

Define the quadratic form Bn(a) — a!nll2Un + a'Ha/2. Its minimiser is 
an = —H~xnx^'1lJn which converges in distribution to N(0,m2H~1KH~1). 
The minimum value of the quadratic form is —nll2U'nH~xnll2U'n/2. Further, 
from the U statistics central limit theorem, nxl2Un is bounded in probability. 
So we can select an M such that 

P{ | - H^n^Unl < M - 1} > 1 - e/2. (3.26) 
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The rest of the argument is on the intersection of the two sets in (3.2a) 
and (3.2b), which has probability at least 1 — e. 

Consider the convex function An(a) = nQn(a/^/n) — nQn(0). From 
(3.2a), its value at an is bounded above by 

e - n^U'nH-W^U^. (3.2c) 

Now consider the value of An on the sphere {a : \a — an\ = Ke1/2} where 
K will be chosen. Again by using (3.2a), on the sphere, its value is at least 

Bn{a) - e. (3.2rf) 

Comparing the two bounds in (3.2c) and (3.2d), and using the condition 
that a lies on the sphere, it can be shown that the bound in (3.2d) is always 
larger than the one in (3.2c) once we choose K = 2[Xmin(H)]~1/2 where Amj„ 
denotes the minimum eigen value. 

On the other hand An has the minimiser nll29n. So using the fact that 
An is convex, it follows that its minimiser satisfies \n}/29n — an\ < 
Since this holds with probability at least (1 — e) where e is arbitrary, this 
proves the first part. The second part now follows from Theorem 1. 

Example 20. Under suitable conditions, the maximum likelihood estimator 
(mle) is consistent and asymptotic normal. See van der Vaart (1999) for sets 
of conditions under which this is true. If we are ready to assume that the 
loglikelihood function is concave in the parameter, then these claims follow 
from the above theorem. 

Example 21. (Sample quantiles) From Example 13, it follows that if the 
distribution of X has a positive density fx at the population pth. quantile 
0o, then 

H - Q"(90) = 2 f(00) > 0. 

Further, 

g(x, 6) = 1(9 >x)- I{x <&)- (2p - 1) = 21(9 > x) - 2p. 
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Since g is bounded, Assumption (IV) is trivially satisfied. Thus all the con­
ditions (I)-(V) are satisfied. Moreover 

K = V[2I(90 >X)] = 4 V[I(X < 0O)] = 4p(l - p). 

Hence if fx(@o) > 0, then the sample pth quantile 6n satisfies 

nl'2{6n - e0) A N(0, p(l -pX/2^))"1)-

Example 22. If the assumptions of Theorem 3 are not satisfied, the limiting 
distribution of the M estimate need not be normal. Smirnov (1952) had 
studied the sample quantiles in such nonregular situations in complete details, 
identifying the class of distributions possible. Jureckova (1983) considered 
general M estimates in nonregular situations. See also Bose and Chatterjee 
(2001a). 

Example 23. (U Quantiles) The arguments of Example 21 apply without 
change to U quantiles introduced in Example 19. Let X\,... ,Xn be i.i.d. 
random variables with distribution F, h be a function from lZm to 11 which 
is symmetric in its arguments. Let Hp denote the distribution function of 
h(Xi,..., Xm) and let Hp1(p) be the pth quantile of Hp. Then 9Q = Hp1(p), 
which is unique if Hp has a positive density at #o-

As in Example 21, if HF is differentiable at 90 with a positive density 
hp(do), then Assumption (V) holds with H = 2hp(90). The gradient vector 
is given by 

g(x,9) = 2I[9>h{X1,...Xm)]-2p. 

This is bounded and hence (IV) holds trivially. 

Let 

H^y)=(l) £ I(h{Xil,...,Xim)<y) 
V'V l<u<...<jm<n 

be the empirical distribution. The Mm estimate is then H~1(p), the pth 
quantile of Hn(-). 

By application of Theorem 3, 

n^{H-\p) - H~\p)) -^ N(0, (p(l-p)(hF(90))-
1). 
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Particular examples of this result are the following four estimates. 

(i) Univariate Hodges-Lehmann estimator where 

h(X1,...Xm)=m-1(X1 + ...,Xm), 

(ii) Dispersion estimator of Bickel and Lehmann (1979) where 

h(Xi,Xj) = \Xi - Xj\) 

(iii) Regression coefficient estimator introduced by Theil (see Hollander and 
Wolfe (1973, pp. 205-206) where (Xj, Fj) are bivariate i.i.d. random variables 
and 

h((Xt, Yi), (Xj, Yj)) = (Yi - Yi)l{Xi - Xj). 

(iv) A location estimate of Maritz (1977) can also be treated in this way. Let 
j3 be any fixed number between 0 and 1. Let L(9, xi, x2) = \fixi + (1 — /3)x2 — 
9\ + \/3x2 + (1 - p)Xl - 9\. The minimizer of E [L(9, XUX2) - L(0, XUX2)] 
is a measure of location of Xj (Maritz (1977)) and its estimate is the median 
of (5Xi + (1 — P)Xj, i y£ j (P = 1/2 yields the Hodges-Lehmann estimator 
of order 2). Conditions similar to above guarantee asymptotic normality for 
this estimator. 

Example 24. The L\ median was defined in Example 14. If the dimension 
d = 1, then the L\ median is the usual median whose asymptotic normality 
was discussed in Example 21. So we assume that d > 2. The gradient vector 
is 

g{a,x) = < 

a-x 
r II Q f I 

| a — x | 
0 if a = x 

Thus g is a bounded function and Assumption (IV) is satisfied. Note that g 
is differentiable (except when x = 9). Define 

file:///fixi
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Note that E\X - 6>o|_1 < oo implies E\h(Xu0)\ < oo. 

Recall that VQ(9) = E[g(Xu9)]. By simple algebra, for |x| < \0\, 

\g(x,9)-g(x,0)\<2\9\/\x\. 

Similarly, for \x\ > \9\, 

\g(x, 9) - g(x, 0) - h(x, 0)9\ < 5 ^ + j ^ . 

Using these two inequalities, and the inverse moment condition, it is easy 
to check that, the matrix H exists and can be evaluated as 

H = E[h{X,9)]. 

Example 25. (Oja median) Recall the Oja median defined in Example 
16. Let X denote the d x d random matrix whose iih column is Xi = 
(Xu,... Xdi)' 1 < i < d. Let X(i) be the d x d matrix obtained from X by 
deleting its iih row and replacing it by a row of l's at the end. Finally let 
M(9) be the (d+l) x (d+l) matrix obtained by augmenting the column vector 
0 — (0\,..., 9d)' and a (d+l) row vector of l's respectively to the first column 
and last row of X. Note that f(Xu...Xd,9) equals | |M(0)| | - | |M(O)| | where 
|| • || denotes the absolute determinant. It is easily seen that 

f(Xr, ...Xd,0) = \\M(9)\\ - \\M(0)\\ = \9'Y - Z\ - \Z\ (3.3) 

where 
Y = (Yu...Yd)' 

and 
Yi = (-l)i+1\X(i)\, Z=(-l)d\X\. 

Hence Q is well defined if E \X\\ < oo. Further, the ith element of the 
gradient vector of / is given by 

gi = Yt • s i g n ^ T -Z), i = l,...,d 
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and is similar to the gradient in Examples 21 and 23. Note that i^Xi!2 < oo 
implies E'lY'l2 < oo which in turn implies E\gi\2 < oo and thus Assumption 
(IV) is satisfied. 

To obtain condition (V), first assume that F is continuous. Note that by 
arguments similar to those in Example 13, 

Q{6)-Q{0O) = 2E[9'Y I(Z<d'Y)-d'0Y I{Z<e'0Y)} 

+2E[Z I(Z < O'Y) - Z I(Z < e'0Y)]. 

It easily follows that the ith element of the gradient vector of Q(9) is 
given by 

Qi{6) = 2E[Yt I(Z < 9'Y)]. 

If F has a density, it follows that the derivative of Qi (6) with respect to 9j 
is given by 

Qii(6) = 2E[YiYjfZ\Y(0'Y)] 

where fz\y{-) denotes the conditional density of Z given Y. Thus 

H = ((Qij(0O))). 

Clearly then (V) will be satisfied if we assume that, the density of F exists 
and the H defined above exists and is positive definite. This condition is 
satisfied by many common densities. 

The pth order Oja median for 1 < p < 2 is defined by minimizing 

Q{6) = E[A"(Xlt ...,Xd,0)- Ap(X1; ...,Xd, 0)]. 

The quantities gi and H are now given by 

gi(0) = pWY - Zl '^sign {ffY -Z),i = l,...,d, 

H = {{hi3)) = P(p - i)((£[y^xy - zr2])). 

Now it is easy to formulate conditions for the asymptotic normality of 
the pth order Oja median. 
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3.4 Finer asymptotic properties. In this section we demonstrate that if 
some of the conditions assumed so far are strengthened, then the results on 
consistency and asymptotic normality can be sharpened considerably. Below, 
N is an appropriate neighbourhood of 9Q. r > 1 and 0 < s < 1 with further 
restrictions on them in the theorems. 

We first state the assumptions to strengthen the strong consistency. 

(Via) £[exp(i |s(Xi, . . . , Xm, 9)\)] < oo V 9 G iV and some t = t(6) > 0. 
(VIb) E\g(X1,...,Xm,9)\r

 <OO\/9GN. 

Theorem 4. 

(a) Suppose (Via) holds. Then for every 6 > 0, there exists an a > 0 such 
that, 

P(sup \9k - 90\ > S) = 0(exp(-cm)). 

k>n 

(b) Suppose (VIb) holds with some r > 1. Then for every S > 0, 

P(sup \9k — 6Q\ > 5) = o(n1~r) as n -4- oo. 
k>n 

Remark 6. 

(a) Part (a) of the theorem says that the rate of convergence is exponentially 
fast. This implies that 9n —> 9Q completely: for every 8 > 0, 

oo 

Y,P{\0n-90\>8}<oo. 
7 1 = 1 

Note that if r < 2, then Assumption (VIb) is weaker than Assumption (IV) 
needed for the asymptotic normality. If r > 2, then Assumption (VIb) is 
stronger than Assumption (IV) but still implies complete convergence. 

(b) The last time that the estimator is e distance away from the parameter 
is of interest as e approaches zero. See Bose and Chatterjee (2001b) and the 
references there for information on this problem. 

To prove Theorem 4, we need two Lemmae, but first a definition. 
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Definition 3. Let A0 and B be sets in TZd. We say that B is a 5 triangulation 
of A0 if every a € Ao is a finite linear combination of points $ € B such 
that |/3j — a\ < 6 for all i. 

Lemma 2. Let 4 C Ao be convex sets in TZd such that \a — 0\ > 25 
whenever a £ A and /? ^ A0- Assume that B is a J-triangulation of A0. If 
Q is a function on A0 satisfying \Q(a) — Q(P)\ < L\a — /3\ and h is a convex 
function on A0 then 

sup|Q(/?) -h(0)\ < e implies sup \Q(a) - h(a)\ < 56L + 3e. 

Remark 7. The next lemma is on U statistics and supplements the law 
large numbers for U statistics mentioned in Section 2. Parts (ii) and (iii) will 
also be useful in the proof of Theorems 5 and 6. 

Lemma 3. Let h be a real valued function on 1Zm which is symmet­
ric in its arguments. Let Un(h) be the corresponding U statistic. Let 
li = Eh(X1,...,Xm). 

(i) If E\h{X\,...,Xm)\r < oo for some r > 1, then for every e > 0, 

p(Sap\Uk(h)-li\>e)=o(n1-r). 
\k>n ) 

(ii) If ip(s) = E{sexp[\h(Xi,... ,Xm)\]} < co for some 0 < s < so, then for 
k = [n/m], and 0 < s < sok, 

E[exp(sUn)] < [ip(s/k)]k. 

(iii) Under the same assumption as (ii), for every e > 0, there exist constants 
C and 5 < 1, such that 

P{sup |C^- /x |>€}<C<J n . 
k>n 

Proof of Lemma 3. The proofs of (ii) and (iii) can be found in Serfling 
(1980, page 200-202). Here we give a sketch of the proof of (i). 
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If m = 1, Un(h) reduces to a sample mean and a proof is given in Petrov 
(1975, Chapter 9, Theorem 2.8). 

If m > 1, use the decomposition given in section 2 on U statistics and 
write 

m " ~ 
Un(h)-0 = -Y,hi(Xi) + Rn. 

n i=i 

Since the result is already established for m = 1, it is now enough to 
prove that 

p |sup| i j fc | > e l <=o{nl'r). (3.4) 

Note that Z2„ is a U statistic. Every U statistic is a reverse martingale 
and from the well known reverse martingale inequality, it follows that 

P (sup \Rk\ > e) < CP{\Rn\ > e}. (3.5) 

Further, i?„ is a degenerate U statistic, that is, it is a U statistic whose first 
projection is zero. Hence using Theorem 2.1.3 of Koroljuk and Borovskich 
(1993, page 72), for 1 < r < 2 and Theorem 2.1.4 of Koroljuk and Borovskich 
(1993, page 73), for r > 2, it follows that 

E\Rn\=0(n2^) = o(n1-r). (3.6) 

Using this in (3.5) verifies (3.4) and proves Lemma 3 (i) completely. 

Proof of Theorem 4. We first prove part (b). Fix 8 > 0. Note that Q is 
convex and hence continuous. It is also Lipschitz (with Lipschitz constant 
L say) in a neighbourhood of 0. Hence there exists an e > 0 such that 
Q(a) > 2e for all \a\ = 5. 

Fix a. By Assumption (VIb) and Lemma 3 (i), 

F(sup |Qfc(a) - Qfc(0) - Q(a)\ > e) = oin1^) (3.7) 
k>n 
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Now choose e' and 5' both positive such that 56'L + 3e' < e. Let A = {a : 
\a\ < 6} and A0 = {a : \a\ < S + 25'}. Let B be a /miie 5' triangulation of 
A0. From (3.7), 

P(supsup \Qk(a) - Qfc(0) - Q(a)\ > e) = o{nx-r). (3.8) 
k>n aEB 

Since Qk{m) is convex, using Lemma 2 (with /i = Qfc) and (3.8), 

P(sup sup \Qk(a) - Qfc(0) - Q(a)| < 56'L + 3e' < e) = 1 - o^1-7") (3.9) 
/a>n |a|<<5 

Suppose that the event in (3.9) occurs. Using the fact that /fc(o;) = 
Qk(oi) — Qk{0) is convex, /fc(0) = 0, fk(a) > e for all \a\ = 6, we conclude 
that fk{ot) attains its minimum on the set \a\ < 5. This proves part (b) of 
the theorem. 

To prove part (a), follow the argument given in the proof of part (b) but 
use Lemma 3 (iii) to obtain the required exponential rate. The rest of the 
proof remains unchanged. We omit the details. 

Example 26. Whenever the gradient is uniformly bounded, Assumption 
(Via) is trivially satisfied. In particular, this is the case for U quantiles and 
the L\ median. 

Example 27. Recall the Oja median defined in Example 16 and discussed 
further in Example 25. Note that the rth moment of the gradient g is finite 
if the rth moment of Y is finite which in turn is true if the rth moment of 
Xi is finite. 

We now proceed to strengthen the asymptotic normality theorem by im­
posing further assumptions. As before, let N be an appropriate neighbour­
hood of 0o while r > 1 and 0 < s < 1 are numbers. Suppose that as as 9 —> 0O-

(VII) \VQ(9) - V2Q(0o)(0 - 0o)| = 0(\6 - 0o | (3+5) /2). 
(VIII) E\g(Xu ...,Xm,e)- g(Xu ...,Xm, 0O)|2 = O(\0 - 0o | (1+s)). 
(IX) E\g(Xu...,Xm,e)\r = 0(l). 
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Theorem 5. Suppose the above assumptions hold for some 0 < s < 1 and 
r > (8 + d(l + s)) /( l — s). Then almost surely as n —>• oo, 

n1/2{9n - 0O) = -H-lnl'2Un + 0(n-(1+s>/4(logn)1/2(loglogn)(1+s>/4). 

Theorem 5 holds for s = 1, with the interpretation r = oo and g is bounded. 
This is of special interest and we state this separately in the next theorem. 

Theorem 6. Assume that g is bounded and (VII) - (VIII) hold with s = 1. 
Then almost surely as n —>• oo, 

n1/2(0„ - 0O) = -H-lnll2Un + 0{n~1/2(logn)1/2(loglogn)1'2). 

Remark 7. The almost sure result obtained in Theorems 5 and 6 are by no 
means exact. We shall discuss this issue in details in Remark 8 later. 

To prove the theorems, we need two Lemmae. The first is a refinement of 
Lemma 2 on convex functions to the gradient of convex functions. A proof 
may be found in Niemiro (1992). 

Lemma 4. Let A C A0 be convex sets in lZd such that \a — (}\ > 26 whenever 
a E A and /? ^ AQ. Assume that B is a J-triangulation of AQ. Let k be an 
lZd valued function on A0, satisfying \k(a) — k(/3)\ < L\a — f}\. Let g be a 
subgradient of some convex function on AQ. Then 

sup \k(/3) - g(/3)\<e implies sup \k(a) - g(a)\ < 46L + 2e 
PeB a€A 

The second Lemma is a result on probability of deviations for U statistics. 

Lemma 5. Let {hn} be a sequence of (symmetric) kernels of order m and 
let {Xni, 1 < i < n} be i.i.d. real valued random variables for each n. Let 

Unihn) = [ I 5Z Un{hn{Xnil,...,Xnim)). 
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Further suppose that for some 6 > 0, and some vn < ns, 

E Un(hn(Xn, ...,Xnm)) — 0, 

E \hn{Xni, . . . ,Xn m) |2 < v2
n and 

E \hn(Xni, ...,Xnm)\r < b < oo for some r > 2. 

Then for all large K, 

P{nl'2\Un{hn)\> Kvn{\ognfl2) < Dn^v^ {lognf2. 

Proof of Lemma 5. Let hn- hnI(\hn\ < mn), hnX = hn - Ehn,hn2 -
hn—hni where {m„} will be chosen. Note that {hn\) and {/i„2} a r e mean zero 
kernels and have the same properties as {hn}. Further Un(hn) = Un(hni) + 
Un{hn2). Let an = K{\ogny/2/2<mdVn(t) = E[exp{tUn(hnl(Xnl,... ,Xn>m))} 
Note that *„(£) is finite for each t since hni is bounded. Letting k = [n/m], 
and using Lemma 3, part (ii), 

Ax = P{nll2Un{hnl) > vnan) = P(tn^2Un(hnl)/v 
n > t an) 

- exp(-tan) [ibn(n
1/2t/vnk)]k = exp(-tan) [Eexp(n1/2t/vnkY)]k, say. 

Using the fact that |y | <mn, EY = 0, and EY2 < t>2, we get 

provided t < n~1/2kvn/2mn. With such a choice of t, 

( t2n\ 
Ai < exp I - to„ + — I (3.10) 

Let t = A'(logn)1/2/4(2m - 1). Then for all large n, the exponent in (3.10) 
equals 

- X 2 ( l o g n ) / 8 ( 2 m - l ) + ntf2(logn)/16(2m-l)A; < - i f 2 ( logn) /16(2m-1) . 
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Thus we have shown that 

P(\n^2Un(hnl)\ > Kvn(\ogn)^2/2) < n-*2/i6(2m-i)_ ( 3 . n ) 

To tackle Un(hn2), we proceed as follows. 

P{\nll2Un{hn2)\ > anvn/2) < ^ " V ^ ^ I M * * ! , . . .,Xnm)\ 

< &v-la-n
xnll2[E\hnY)llr[P{\hn\ > mn)]

l^r 

< Sv-'a-'n^b^im-^-^b1-1^. 

Choosing m„ = nll2vn / K(logn)1/2, 

P(\n1/2Un(hn2)\ > anvn/2) < Sbv^K^n^ilognf-^2. (3.12) 

Note that the choice of mn,K and t are indeed compatible. The Lemma 
follows by using (3.11) and (3.12) and the given condition on vn. 

Proof of Theorem 5. Recall the notations S,s,Ys introduced before 

the beginning of proof of Theorem 3. Define G(a) = DQ(a), Gn(a) — 

fcr'E^a) a n d x»> = 9(Y.,%) - 9(YS,0). Note that E(Xns) = 
seS 

G(%), and ( ; ) _ 1 E ^ S = [Gn(%)-Un]. By (VIII), E\Xns\
2 = 0{{n^2ln)^) 

seS 

uniformly for \a\ < Mln = M(loglogn)1/2. 

By applying Lemma 5 with v\ = C2n_^1+S^2^+S, 

sup p ( „ V 2 | G n ( » ) _ Un _ G ( « )| > KCn-(1+^l£+sV2(logny/2) 
\a\<Mln V V " V n ' 

<Dnl~rl2Cn<1+s^lr}1+^2{\ogn)Tl2 

= Dnl-r^-s)li (log n)r'2 (log log n) - ' (^ 'V 4 . 

This is the main probability inequality required to establish the Theorem. 
The rest of the proof is similar to that of Theorem 3. The refinements needed 
now are provided by the triangulation Lemma 6 and the law of iterated 
logarithm for Un. 
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Condition (VII) implies that for each M > 0, 

sup 
\a\<Mln 

C ) ( n - ( l + S ) / 4 ( l o g l o g n ) ( 3 + S ) / 4 ) _ 

and so in the left side of above probability inequality, we can replace n1^2G(-%) 
by HO. 

Let 

Consider a 8n = n_(1+s)/4(logn)1/2 triangulation of the ball B = {a : 
\a\ < Mln + 1 } . We can select such a triangulation consisting of 0(nd(1+s^i) 
points. From the probability inequality above it follows that 

\nl'2Gn{-^) - nl'2Un - Ha\ < KCen 

holds simultaneously for all a belonging to the triangulation with proba­
bility 1 - 0(nd(1-M)/4+1-r(1-*)/4(logn)r/2). Now use Lemma 6 to extend this 
inequality to all points a in the ball. Letting Ki = KC(2\H\ + 1), we obtain 

P{ sup n^2\Gn(-^=) -Un- n-ll2Ha\ > K^} 
\a\<Mln Vn 

= O (n«*(l+')/4+l-r(l-)/4 ( l Q g ny/2 _ 

Since r > [8 + d(l + s)]/(l — s), the right side is summable and hence 
we can apply the Borel-Cantelli Lemma to conclude that almost surely, for 
large n, 

sup | n 1 / 2 G n ( - ^ ) - n1/2Un - Ha\ < Kxen. 
\a\<Mln Vn 

Using the law of iterated logarithm for U statistics which implies that 
rc1/'2£^n(loglogn)-1/'2 is bounded almost surely as n —> oo, we can choose M 
so that \nll2H~lUn\ < Mln — 1 almost surely for large n. To conclude the 
proof, we consider the convex function nQn{n~ll2a) — nQn(0) on the sphere 
S = {a: \a-H-l<n}'2Un\ = K2en} where K2 = 2#i[inf|e|=i e'tfe]"1. Clearly, 



285 

e'nll2Gn{-H~lnll2Un + Kene) > e'HeKen - Kxtn > 0, and so the radial 
directional derivatives of the function are positive. This shows that 

\nxl20n + H-W2Un\ <Ken 

with probability one for large n, proving Theorem 5. 

Proof of Theorem 6. Let vn and Xns be as in the proof of Theorem 5. Let 
Un be the U statistic with kernel Xns — EXns which is now bounded since g 
is bounded. By the arguments similar to those given in the proof of Lemma 
5 for the kernel hn\, 

P{\nl'2Un\ > vn{\ogn)V2} < exp{-ift(logn)1 / 2 + t2n/k}, 

provided t < n~1/2kvn/2mn, where k = [n/m] and m„ is bounded by Co say. 
Letting t = KoQogn)1/2, it easily follows that the right side of the above 
inequality is bounded by exp(—Cn) for some c. The rest of the proof is same 
as the proof of Theorem 5. 

Example 28. U quantiles were defined in Example 19. Chaudhury and 
Serfling (1988) proved a representation for them by using the approach of 
Bahadur (1966). Such a result now follows directly from Theorem 6. The 
gradient vector given in Example 23 is bounded. Suppose that 

(VIII)' Hp has a density hp which is continuous around 0o-

It may then be easily checked that 

E\g(0,x) -g(e0,x)\2 < 4\HF{6) - HF(d0)\ = O( |0 -0„ | ) . 

Thus (VIII) holds with s = 0. 

It is also easily checked (see Example 13) that 

VQ(0) = Eg(X,6) = 2HF{0)-2p. 

Assume that 
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(VII)' HF(9) - HF(0O) - (9 - 90)hF(0„) = O(\9-90\l) as 9 -»• 0O. 

Then Q(9) is twice differentiate at 9 = 90 with H = V2Q(6>0) = 2ftF(<?0). 

Thus, under the assumptions (VII)' and (VIII)', Theorem 5 holds for U 
quantiles. The same arguments also show that the location measure of Maritz 
et.al. (1977) also satisfies Theorem 6 under conditions similar to above. 

Example 29. (Oja median) Recall the notations of Examples 16, 25 and 27. 
The ith element of the gradient vector of / is given by Qi = Y{- sign(#'y — Z), 
i = 1 , . . . ,d. 

Condition (VIII) is satisfied if 

E\\Y\\2[I(9'Y <Z< 9'0Y) + I(9'0Y <Z< BY)] = 0(\9 - 90\
1+s) (3.13) 

If F has a density then so does the conditional distribution of Z given Y. 
By conditioning on Y it is easy to see that (VIII) holds with s — 0 if this 
conditional density is bounded uniformly in 9'Y for 9 in a neighbourhood of 
0O and i? | |y | |2 < oo. For the case d = 1, this is exactly condition (VIII)' in 
Example 28. 

To obtain condition (VII), recall that if F has a density, derivative Qij of 
Qi(9) with respect to 9j and the matrix H are given by 

Qii{0) = 2E[YiYjfz{Y(9'Y)} and H = ((%(0„))) 

where fz\y(-) denotes the conditional density of Z given Y. 

Hence (VII) will be satisfied if we assume that for each i, as 9 —» #o, 

E[\Y%{FZ\Y{9'Y) - FZ]Y(9'0Y) - fzlY(9'0Y)(9 - 90)')Y}\] = 0(\9 - 0o|(3+s)/2) 
(3.14) 

This condition is satisfied by many common densities. The other required 
condition (IX) is satisfied by direct moment conditions on 7 or I . 

By a similar approach, it is easy to formulate conditions under which 
Theorem 6 holds for pth Oja median for 1 < p < 2. 
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Example 30. (L\ median, mth order Hodges - Lehmann estimate, geo­
metric quantiles in dimension d > 2). Suppose X, Xi, X2,..., Xn are i.i.d. d 
dimensional random variables. 

(i) {L\ median). Since results for the univariate median (and quantiles) are 
very well known (see for example Bahadur (1966) Kiefer (1967)), we confine 
our attention to the case d > 2. 

Proposition 1. Suppose 0Q is unique. If for some 0 < s < 1, 

E\X - 0or ( 3 + s ) / 2 < co, 

then according as s < 1 or s — 1, the representation of Theorem 5 or 6 
holds for the L\ median with S„ = Yli=i(Xi — 0o)/\Xi — 90\ and H defined 
in Example 24 earlier. 

To establish the proposition, we verify the appropriate conditions. Con­
ditions (I) and (II) are trivially satisfied. Recall the gradient vector given 
in Example 24 which is bounded. Hence Assumptions (I)-(V) are trivially 
satisfied. Let F be the distribution of Xi. 

To verify (VIII), without loss of generality assume that 0O = 0. Noting that 
g is bounded by 1 and \g(x, 6) — <?(x,0)| < 2|0|/|x|, we have 

E\g(X,e)-g(X,0)\2 < 4|0|2 / \x\-2dF(x) + f t dF(x) 
J\x\>\e\ J\x\<m 

< 4\9\1+s [ \x\-^+s^dF(x) 
J\x\>\e\ 

+\9\1+s I \x\-(1+s^dF(x) 
J\x\<\e\ 

< 4\e\l+sE\x\-{l+s). 

The moment assumption assures that (VIII) is satisfied since (1 + s) < (3 + 
s)/2. Recall the function h(9,x) and H defined in Example 24. Note that 
under our assumptions H is positive definite. By using arguments similar to 
those given in Example 24, it is easily seen that for \x\ < \0\, 

\g(x,0) - g{x,0) - h(x,O)0\ < 4|0|/|s|. 
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Similarly, for |x| > |0|, 

\g(x,6)-g(x,0)-h(x,0)d\<6Pfi. 

\x\ 

Using these two inequalities, and taking expectation, 

| VQ(0) - VQ(0) - H0\ <h+h 

where 

h < 4|0| [ \x\-ldF{x) < 2|0|<3+s>/2 f \x\-<-3+'V2dF(x). 

J\x\<\9\ J\x\<\6\ 

and using the fact that 0 < s < 1, 

h < 6I0I2 [ \x\-2dF(x) < 6\d\(3+s)/2 I \x\-{z+s)/2dF{x). 

The moment condition assures that (VII) holds with V2Q(90) = H. Thus 
we have verified all the the conditions needed. 

Let us investigate the nature of the inverse moment condition that we 
assumed. If X has a density / bounded on every compact subset of 7ld then 
E\X - 9\~2 < oo if d > 3 and E \X - 90\-

(1+s) < oo for any 0 < s < 1 
if d — 2 and Theorem 5 is applicable. However, this boundedness or even 
the existence of a density as such is not needed if d > 2. This is in marked 
contrast with the situation for d = 1 where the existence of the density is 
required since it appears in the leading term of the representation. For most 
common distributions the representation holds with s = 1 from dimension 
d > 3 and with some s < 1 for dimension d — 2. 

The weakest representation corresponds to s = 0 and gives a remainder 
( 9 ( n - 1 / 4 ( i o g n ) i / 2 ( l o g l o g n ) i / 4 ' ) i f E\X - 0|-3/2 < oo. 

The strongest representation corresponds to s = 1 and gives a remainder 
O f r - ^ l o g r O ^ l o g l o g n ) 1 / * ) if E \X - 9\~2 < oo. 

The moment condition forces F to necessarily assign zero mass at the 
median. Curiously, if F assigns zero mass to an entire neighbourhood of the 
median, then the moment condition is automatically satisfied. 
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Now assume that the L\ median is zero and X is dominated in the neigh­
bourhood of zero by a variable Y which has a radially symmetric density 
/y(|a;|). Transforming to polar coordinates, note that the moment condition 
is satisfied if the integral of g(r) = r~( 3 + s^ 2 + d - 1 /y (r) is finite. If d = 2 and / 
is bounded in a neighbourhood of zero then the integral is finite for all s < 1. 
If fY[r) = 0(r-P), (p > 0), then the integral is finite if s < 2d - 3 - 2/3. In 
particular, if / is bounded (/? = 0), then any s < 1 is feasible for d = 2 and 
s = 1 for d = 3. 

(ii) (Hodges-Lehmann estimate) The above arguments also show that if the 
moment condition is changed to E\m~1(Xi + • • • + Xm) — 8Q\~(3+S^2 < oo, 
Proposition 1 holds for the Hodges - Lehmann estimator with 

Sn= £ g(m~\Xil + --- + Xim), 0„)). 
I<i i<i2<. . .<i m <n 

(iii) (Geometric quantiles) For any u such that \u\ < 1, the uth geometric 
quantile of Chaudhuri (1996) is defined by taking f(6, x) = \x — 9\ — \x\ — u'8. 
Note that u = 0 corresponds to the Lx median. The arguments given in the 
proof of Proposition 1 remain valid and the representation of Theorem 5 or 6 
holds for these estimates. One can also define the Hodges - Lehmann version 
of these quantiles and the representations would still hold. 

Remark 8. Obtaining the exact order is a delicate and hard problem. 

The higher order asymptotic properties of the sample median was exten­
sively studied with suitable conditions on the density by Bahadur (1966) and 
Keifer (1967) via the fluctuations of the sample distribution function which 
puts mass n _ 1 at the sample values. 

This approach has been used by several authors in other similar situations. 
For example, a representation for U quantiles was proved by Chowdhury and 
Serfling (1988) by studying the fluctuations of the distribution function which 
puts equal mass at all the (M points h{X^,... ,Xim), 1 < «i < i2 < ... < 
im < n. Chaudhuri (1992) proved a representation for the L\ median and its 
Hodges-Lehmann version in higher dimensions by the same approach. 

Results from the theory of empirical processes is a very valuable tool in 
the study of properties of estimators. For instance, Arcones (1996) derives 
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some exact almost sure rates for U quantiles under certain "local variance 
conditions" by using empirical processes. 

Generally speaking, the exact rate depends on the nature of the function 
/ . See Arcones and Mason (1997) for some refined almost sure results in 
general M estimation problems. As an example, consider the L\ median 
when d = 2. If the density of the observations exists in a neighbourhood of 
the median, is continuous at the median and E g(Xi, 9) has a second order 
expansion at the median, then the exact almost sure order of the remainder 
is 0(n -1/2(logn)1/2(loglogn)). 
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Department of Statistics, University of California, Riverside CA 92521-0138, USA 

Assume that observations have a common distribution function Fg, which belongs to a family of 

distributions indexed by 0 e G. We are interested in making inferences about the unknown 

parameter vector 0 e ©based upon generalized rank set data, i.e. J independent order statistics 

Xl:n , j = 1, 2 J with a common parent distribution Fe() . We will discuss (i) the problem of 

estimating 0_ or deriving probability bounds for 0_ in the Bayesian sense, (ii) testing composite 

hypotheses concerning 6_, and (iii) testing goodness of fit to the model Fg : 0 e 0 . 

1 Introduction 

Ranked set sampling, proposed by Mclntyre [1952] results when n 
samples, each consisting of n observations, are drawn and the n units of 
each sample are ranked, usually by visual inspection with respect to the 
magnitude of the characteristic being studied. The unit quantified as the 
smallest from the first sample is selected, the unit having the second 
smallest rank is selected from the second sample, and so on, with the unit 
with the largest rank selected from the /rth sample. The resulting n 
observations are independent order statistics with a common parent 
distribution Fg (•). The potential if observations after ordering are given in 

the following array. 

Sample Smallest Second smallest ... Largest 

2 XV2 X22 ... Xn:2 

xn, xlr2 ... xmn 
The actual observations taken under rank set sampling are given in the 

next array. 
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Sample Smallest ... Largest 
1 Xu 

X2-2 

n xnn 
n.n 

This process is repeated m times so that the total number of items 
drawn from the population is mn2 and the total number of units upon which 
observations are taken is mn. Ranked set samples are generally useful 
when the sampling units can be easily drawn from the population, the exact 
measurement of the characteristic to be studied is costly monetarily, or in 
time or effort required to obtain the measurement, and when the units 
within a sample can be readily ordered by visual inspection or by other 
rough gauging methods not requiring an assessment of actual values. For 
this to be easily accomplished, the value of n is usually small, and in order 
to have a reasonable total sample size, m is usually large. Mclntyre's 
procedure will be called balanced ranked set sampling (BRSS). 

Generalized ranked set sampling (GRSS), introduced by Kim and 
Arnold [1999], relaxes the condition that the measurements consist of a 
smallest, a second smallest, ..., and finally a largest order statistic, and that 
all order statistics are selected from independent samples of the same size 
n. In their scheme an arbitrary order statistic is selected from the first 
sample consisting of n\ observations, a second order statistic is selected 
from the second sample of n2 observations, and so on, until the last order 
statistic is selected from a sample of size nj. 

Set Measurement 

1 - *!,, 
2 ... X,..n 

iz.n2 

d ... ; 
J ••• xlm 

Hence for generalized ranked set sampling (GRSS) the data consists of 
/independent order statistics, Xk , X, ,...,X..tt . Typically, the sample 

sizes tijS will be small, but/will be large. 

We wish to make inferences about Fg based upon GRSS by 

considering the observations not taken as missing data. Several 
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approaches can be employed in this context. Let X represent the GRSS 
data, and let Z represent the missing observations. We propose to use (i.) 
the E-M algorithm approach in estimation and in some generalized 
goodness of fit tests and (ii.) a Bayesian approach whereby the missing 
observations can be generated using the conditional distribution Z\X^,Q_, 
via the Gibbs sampler. 

2 Estimation 

For parametric inference we assume that F0is absolutely continuous 

with respect to a convenient measure, and that f, the common parent 
density of the observations belongs to the parametric family of densities 
{f(x/G) : 6 e 0). We wish to estimate 0 based on our GRSS. The joint 
density corresponding to the order statistics X_ = (Xh.ni,Xh:ni,...,Xj ) 
is given by 

" • < - - w . - i 
fxie (*l G) =Y\ L [Fe (X, .„ )]'J X 
-'- lji (ij -1)! (rij -1)! - ,J"' 

i^-Fe(\nj)V
J-1 fe(\nj)-

(2.1) 

Maximum likelihood estimation may be feasible if the specific form of 
(2.1) is tractable, or if an efficient optimization program is available. 
However, this will typically not be the case. An alternative is to consider 
the GRSS as a missing data problem. In this scenario we have one 
measurement X..n from the first set of observations from which ti\ - 1 of 

the observations are missing. Similarly, Xt has n2 - 1 missing 

observations associated with it. Wi th iV=Y , n. we have J observations 

and {N - J) missing values. Let X represent the vector of measurements 
resulting from the GRSS, and let Z represent the vector of (N - J) missing 
observations. For j = 1,2,..., J, let us denote by Z{J) the vector of missing 

observations from the set of n,- observations associated with X, .„ . Thus 

Z ; consists of all of the n^ order statistics except Xjn , the one that was 

observed. Note that Z consists of all the coordinate random variables in 
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Z(1),Z(2) Z_j concatenated into a single vector. Using this notation we 
can write the joint likelihood of the observed and unobserved data as: 

2.1 The EM Algorithm 

The EM algorithm is an interative computational procedure for obtaining 
maximum likelihood estimates when the observations can be viewed as 
incomplete data. Viewing GRSS in this light, we have "incomplete data" 
whereby we have J observed measurements, X, and N - J unobserved 
measurements, Z, with the complete data vector given by (X_, Z) . The E-
M algorithm consists of two steps that are iterated until convergence to the 
MLE is obtained. Let the likelihood of the complete data be given by 

4,z|£(*id0) (2-3) 

and the conditional likelihood of (Z/x,6) by 

/w(gi^g)=/yff'e). (2.4) 
where 

4|£(*I0=/4,^**|0)^. (2.5) 
z 

Let p denote the current iteration step. If 0(o) represents the initial or 
starting value of the unknown parameter vector, then the E-step consists of 
finding 

Zm=Egm(Z\X = x). (2.6) 

The value of Z(1) is used in the maximization step whereby we find ^ 
satisfying 

0 ( 1 )=argmax/^ ( 1 ) |^,z ( 1 ) |^)-
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Therefore the EM algorithm consists of iterating these two steps, denoted 
by 

Zlp+l)=EeJP)(Z\X = x) (2.7) 

and 

6{p+l) = argmax /^ ( I ) |e (x,z{p+l) \ 9) (2.8) 

When the density in (2.1) belongs to a one parameter exponential 
family, (2.7) and (2.8) are simplified considerably. The E-step consists of 
estimating the missing values that would comprise the sufficient statistics, 
t(x, z) for a the parameter vector, 0 by solving the following equation for 

z{p+1), 

z{p+l) = E[Z\x,d{p+l)], (2.9) 
while the M-step would consist of solving the following conditional 
likelihood equation for 9_(p+l), 

E[t(x,Z)\e{p+1)] = t(x,z{p+l)) {210) 

See Dempster et al.[1977] for further details. In the Section 3 we apply 
these techniques when the sampled population is exponential or normal. 

2.2 The Gibbs Sampler 

Consider the density given in (2.3). Suppose that a convenient conjugate 
prior family for 0, say g(Q | rj) is available. Then the posterior density of 0, 

/(0 | x, z,rf) will be nice. If 0 is known it is relatively easy to simulate the 

missing data since f{z\x,9) will also be nice. This can be accomplished 
as follows. Consider the observation X, .„ = x, .„ , the iAh order statistic 

'jnj 'J"J
 J 

from sample j (J = 1, 2, ..., J). Since fx^e(x\G) and FX\e(x\0), the 
density and distribution function of the underlying random variable are 
known, so is F^1 (u). Hence to generate the {nj,-\) missing observations 
from sample j , generate (ij -1) uniform (0, ut :n ) variables and {nj - i) 
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uniform (u,. „ , 1) variables, where \ii .„ = Fg {xt .n \ 9) . These random 

uniform variates are transformed to the space of the x's using Fe~
x (u). This 

procedure continues for each sample, j = 1, 2..., /until all of the missing 
units have been simulated. An easier but less efficient approach to 
completing the samples is to simulate data from fxle{x\6) using 

Fg1 (u) where the u's are uniform (0, 1) variables, keeping (ij, -1) of those 

that are less than x,.„ and (n,-X) of those greater than x,.„ . This 

approach has the potential to generate excess data whereby, say for sample 
j , more than (/', -1) values less than x. .n may be generated before 

•* J' J 

generating the requisite number of values greater than xt .n , or visa versa, 
but it is slightly easier to program. 

Our goal is to learn about the posterior density of 0 given X_ = x, i.e. 
given the observed data. We can use a conditional Gibbs sampler (given 
X_ - x) to simulate realizations from felx (0 | x) as follows. Begin with an 

initial value of 0, say 0(o). Use this to generate the missing data, say zm 

using the procedure just described. Now treating (x,zm) as a sample of 
size N from fx^ {x \ 9) , we can readily evaluate the posterior conditional 

density fg\x,z^L\x>lt0)) (recall that we assumed a conjugate prior was 
available). From this posterior density we can simulate a realization, say 
6_m. This will then be used to generate a new set of missing data, say z(1). 
The process is continued, say K times, obtaining in this fashion 
6_w,6_(2),...,§_*. After discarding the first k of these, for burn in, the 
remaining ones can be viewed as a simulated sample of size K - k from 
fe\x (0 I *) • Of course a good initial choice for 9_{0) will accelerate the 

process and reduce the time required. Similarly, in the E-M approach, a 
good initial estimate of 0 will accelerate the estimation process. 

In many situations we are dealing with location and scale families so 
that 6_ =(fj,,cr). To implement the missing data approaches for these 
families, we can use the crude initial estimates of \x and a that were given 
by David [1981] based upon the observed order statistics but ignoring 
variance heterogeneity. The estimate of /J, is given by 

M 
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for 

bj = 

f \ 

i a (aj-a) 

"j EK-«) 7^\2 

7=1 

(2.12) 

with 

aj = E{Xij:nj), 

while the estimate of a is 

with 

c, = 
(aj-a) 

J J 

(2.13) 

(2.14) 

(2.15) 

£(«,-«) 
I=I 

3 Applications of the E-M Algorithm and the Gibbs Sampler 

3.1 The Exponential Distribution. 

Let us consider the two parameter exponential density with location fx and 
precision A given by 

^1A..A(*"|A*.̂ -) = Aexp(—A(AT—/*)) * > # , A > 0 . (3.1) 

3.1.3 The E-M Algorithm 

Y = (X Z) We consider the joint likelihood of — — ' —' given by 

L{x,z\ n,k) oc Y[&eM-Mxij:nj -n))\\XQx^{-X{ztnj -ft))} 

(3.2) 
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and the log-likelihood given by 
f , n, \ 

\nL{x,z\n,X) = NX-X + c. (3.3) 

(The crude estimators given by David [1981] can be used as the initial 
estimators of /n and X) The E-step consists of estimating the missing 
observations, given the observed vector x and the current estimate of 6T = 
(fi,X). This is accomplished by solving 

Jp+n ?" =E,P){Z\X = $. (3.4) 
e 

The M-step consists of maximizing (3.3), subject to the constraints 
Xj .„ > /J, and ztn > /n. The well-known maximum likelihood estimators 

for ,u and X are 

H(p+1) = min{£ ^P+I)} (3.5) 

and 
X{p+1) = . (3.6) 

E(^y
+i^)-^ 

M 

3.1.2 The Gibbs Sampler 

The prior and posterior distributions associated with an exponential 
distribution with unknown scale and intensity parameters, although 
tractable, are not as easy to work with, as are those associated with a Pareto 
distribution. Let us assume that the distribution of the random variable X 
is given by 

fxlfl,x(x\V,^)=Aexp(-X(x-v)), x>\i, (3.7) 

where \i e Si and X > 0. Then Y = ex has a Pareto distribution with 
shape or inequality parameter X and precision parameter T = e"M ( \ i = -
logr) w i t h / > T . Hence the distribution of Y is given by 
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Vr(/|A,T)=TA(Tv)-(A+1), 7 > 1 / T . (3.8) 

If A were known, a natural conjugate family of priors for % would be 
the gamma family, while if T were known, a natural conjugate family of 
priors for A would be the Pareto family. However, with both T and A 
unknown, we follow Arnold et al. [1998] and consider a conjugate prior 
for which TJA has a gamma distribution for each A, and A/r has a Pareto 
distribution for each T. This general class of such priors is of the form 

/"(A.T) OC exp[Mogr + ml2 logAlogr] x 
T O 1 (>J-") 

expl^A + a2 logA + /nnAlogr], 

(The first factor on the right hand side consists of hyperparameters 
whose values are unaffected by the data.) The conditional density of T / A 
is gamma with shape parameter y{z) = (1 + a\ + mulogz) and intensity 
parameter A(T) = -{ax + /nnlogr). The conditional density of A / ris Pareto 
with shape (or inequality) parameter 5(A) = -(1 + b + mnX + /n^logA) and 
precision parameter v(A) = c, hence the condition zc > 1 in (3.9). The 
classical conjugate prior family introduced by Lwin [1972] corresponds to 
setting b - m\z = 0. The independent gamma and Pareto priors suggested 
by Arnold and Press [1989] correspond to the choice of m\\ - mu = 0. 
Such independent priors have hyperparameters that may be easier to assess. 

Using initial values for A and T = eM, say Ao and To, the GRSS is 
transformed first to have a Pareto distribution using Y = e?, and then to 
have a uniform distribution using u -1- (T0J)_;I,). The missing values are 

generated for each sample, as considered in Section 2.2. These uniform 
variates are then transformed to have a Pareto distribution using the 
inverse probability transformation z = (1 - u) ** /T0 . The next step is to use 

the complete sample, (Y,Z), to update the prior distribution for (A,T). 

Table 1 gives the relationship between the prior and posterior values of 
these parameters. (See Arnold et al., 1998, p. 237.) 
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Tablel. Prior and posterior values of the parameters in (3.9) 

Parameter 
a\ 

a2 

b 
mn 

mn 

c 

Prior value 
ai 

* 
a2 b* 
mn 

* 
* 

c 

Posterior value 

az +N 
b* 
inn* - N 

mn 

m t a U ^ v ^ v ^ 

Using the full joint distribution for A and x, or either of the Lwin or 
Arnold and Press specified prior distributions, we can now simulate values 
for A and T from the posterior distributions, and repeat the process of 
simulating the missing values, and using these values plus the original data 
to update the conditional distributions of A and x. This is continued for a 
large number of times. This whole process is continued, say K times, 
generating an empirical distribution for (A,T). 

3.2 The normal distribution 

3.2.1 The E-M Algorithm 

Since the normal distribution is a member of the regular exponential 
family with jointly sufficient statistics 

j "J 

j=\ Mj 

and 

'2(5*)=£(4.,+iU,). 
the p-th iteration of the E-step consists of solving the following equations 
for z 

l = E e { p ) { Z \ X = x ) , (3.10) 

while the /7-th iteration of the M-step consists of solving the following set 
of equations for 0 
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k(X,Z)\6_(p+l) 

t2{x,Z)\e{p+1) 
= t{p)(x,z), (3.11) 

can be rewritten as 

JH^ + (N- J)n^ = £ (* + X % ) 
7=1 Mi, 

j((a"+1>)2 + Cu('+I))2)+ (Af-J)((c7("+1))2 + Cu('+1))2)= £ (< : v + £ < ) 
> i i*ij 

(3.12) 

Therefore step (p+ij has the solution 
( , \ 

V 

{<*') 
2\(/H-l) 

J "J 

> 1 * ; y 

/JV 

/A^-(/i ( p + 1 ))2 

(3.13) 

3.2.2 The Gibbs Sampler 
2 

We are interested in estimating the mean fx and the precision T=\I° by 
using informative prior distributions in the face of incomplete data. If fi 
were known, a natural conjugate prior for T would be the gamma family, 
while if T were known, a natural conjugate prior for JJL would be the normal 
family. Hence, we would like to have an appropriate prior distribution for 
\i and T whereby the distribution of \i |T is normally distributed and the 
distribution of T | /H has a gamma distribution. The class of such gamma-
normal distributions constituting an eight parameter exponential family is 
discussed in Castillo and Galambos [1987]. Arnold et al. [1998] use the 
following parameterization for the joint conditionally specified prior 
distribution for \i and T. 

/(JU,T) °C ex^(al/j, + azn
2 +/7712/ilogT + /n22Ju

2 logr)x 

expCfyr + b2 logr + mn/j,T + mn\i
lx 

(3.14) 

With this prior distribution the conditional density of fx given r is normal 
with mean 
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^ | T ) = - ( a i + / " " T + f"12 l0gT) (3.15) 
2(a2 + mux + m22 logr) 

and precision 

1/ Var(/u. | T) = -2(a2 + /n21T + mn logr). (3.16) 

The conditional density of T given ^ is gamma with shape parameter cc(p) 
and intensity parameter A(ji). The conditional mean and variance of T 
given ^ are 

E{T\n)=l + b ^ m ^ m ^ 2 , (3.17) 
- (^ + mnn + mnn ) 

M v l + 62 +m12n + m22n
2 

T\H) = ——2- * ^ - . (3.18) 

DeGroot [1970] has postulated a joint prior for fx and a2 in which the 
precision x = l/o2 has a marginal gamma distribution with shape 
parameters a and intensity parameter A, and /A/T has a normal distribution 
with mean 0 and precision ar, a scalar multiple of T. This is equivalent to 
setting 

*\ = a2 = mn = m22 = 0 (3 19) 

in (3.14). The posterior conditional mean and variance of JJL using 
DeGroot's formulation are 

(^+i(xij:nj+fjZ,nj)) 
E(H\T,X,Z)=

 J- — ^ , (3.20) 
a+N 

V(/i\T,x,z)= - . (3.21) 
a+N 

while the posterior conditional mean and variance of T are 
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E{T\H,X,Z) 

a + \l2 + NI2 
( 

X-al2 + 
^ ( 
12-

V >1 *h ) 

a + N 

v 2 j 
(3.22) 

and 

Kar(T | n,x,z) = 
(X + 1/2 + N/2 

A-a/2 + i(v,+iz^) /z- a e +t (v,+ iw 
> i 

A ' a + AT| ^ 
M + 

v 2 , 
M 

(3.23) 

Press [1982] approached this problem using an independent normal 
(0,1/5) prior for n and an independent gamma prior distribution for T 

with shape parameter a and intensity parameter A in order to more easily 
assess the values of the hyperparameters. This corresponds to initially 
setting 

mn = mn = m21 =m22=0 (3.24) 

in (3.14). Although the prior distributions are independent, the posterior 
distributions for \i and T are not. The posterior conditional mean and 
variance of ^ are given by 

E(fi\t,x,z) = 
S + Nr 

(3.25) 

and 

V{H\T,X,Z)=1/(8 + NT). (3.26) 

The posterior distribution of T given pL has a gamma distribution with 
shape parameter {a + Nl 2) and intensity parameter 
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A + 
7=1 ,W7 J ^7=1 /#/, 

/i + Nfi2/2. 

(3.27) 

The unrestricted prior and posterior values of the parameters (3.14) are 
given in Table 2. 

Table 2. The prior and posterior values of the parameters in (3.14) 

Parameter 
a\ 
az 
lh 

h 

mn 

mn 

mZ\ 

m2z 

Prior Value 
* 

a\ * 
a2 b{ 

bz* 

mn 

mn 
mz\ 

mzz 

Posterior Value 
a\ 
ai 

b\ -CZ(\.nj+ZZr.nj) 
j=\ Mj 

K * N 

b 2 + J 

j "J 

+ ^(x2iJ:nJ+Zz2™J) 
7=1 i*ij 

mn 

* N 
m2l - -

mzz 

Notice that only bl,bz,mn and /n2i are updated by the data. To use the 
Gibbs sampler, initial estimates of [i and T = 1/a2 can be obtained using the 
crude estimates given by David (1981). With uj:n =<&(r(xjn - / i ) ) , 

generate (/) -1) uniform (0, u; „ ) random variables, and (nj -1) uniform 

{ujn , 1) random variables, j = 1, 2 J. The values of Z are obtained 

using the inverse transformation z = iu + T"10"1(u). The Gibbs sampler 
proceeds by using the updated values of the hyperparameters in Table 2 to 
simulate new values of n and r which are in turn used to transform the 
values of the GRSS to uniform order statistics, and then by simulating the 
missing data as before. The inverse probability transformation is used to 
find the new values of Z The complete sample is then used in updating 
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the posterior distribution, from which new values of in and x are selected. 
This procedure is continued for a fixed, but large number of iterations. 
This whole iteration procedure is run a large number of times, say K, at 
which time the resulting empirical distributions for \i and x (given x) can 
be used to find estimates for \x and x together with measures of precision 
for the estimates. 

4 Testing of Hypotheses 

In this section we shall examine the topic of testing hypotheses from 
several different viewpoints, each involving GRSS data. We will begin by 
considering the use of goodness of fit tests in situations when an 
hypothesis completely specifies a distribution, and in situations when the 
hypothesis only specifies a parametric family of distributions. Another 
approach is to use maximum likelihood using the E-M algorithm in 
conjunction with generalized likelihood ratios. Yet another is the Bayesian 
approach of calculating posterior odds if the hypothesis is not sharp, 
perhaps using diffuse priors. 

4.1 Goodness of Fit Tests 

The classic problem of goodness of fit involves determining whether a set 
of i.i.d. observations can be reasonably supposed to have common 
distribution function F0, a completely specified distribution. It is often 

assumed, and is assumed here, that F0 is continuous. Thus, via a 
straightforward transformation, we reduce the problem to one of testing 
goodness of fit to either a uniform or an exponential distribution, 
whichever is deemed convenient. We assume that our data will consist of 
independent order statistics with common parent distribution F 
constituting a GRSS (Kim and Arnold [1999]). In both cases we will wish 
to test H: F= F0. It is natural to also consider the problem of testing a 

composite hypothesis H: F e {Fe :0e 0}using ranked set data 

configurations. In such a situation the first step will be to use the data to 
estimate 0. 

The data consist of J independent order statistics 
X^,X^,...,X{ .n from a common parent distribution, F. To test 

H: F= F0, we consider 
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y,ju,J=Fa(XlyJIJ) (4-D 

and ask whether these can be reasonably supposed to be uniform order 
statistics. A goodness of fit statistic in this case could be of the form 

J (Y.„ - / , / ( / * , + 1))2 

^/(// ,-/ ,+l)(/ J ,+l)-2(/77 . + 2)-1-

Note that 
J (Y.n -E(Y.n))

2 
T = 2 Z (v

Jf (4-3) 

where the moments of Yt : iij are computed under the hypothesis that H is 

true, i.e. that the YI:B 's are order statistics from a uniform(0,1) 

distribution. Large values of Twill be cause for rejection of H. The null 
distribution of T would be expected to be approximately x) if J is large, if 
nx,n2,...,iijdxe large and if the ratios ij/iijare not too extreme. In 

practice however, the njs will be small. If J is large a xj approximation 
may be adequate. If J is small then a more accurate evaluation of the null 
distribution of T will be needed. A balanced rank set sample (BRSS) is 
most commonly used. These consist of m independent replicates of a 
complete set of n independent order statistics XVn, X2:n,..., Xnn where n is 
small and m is generally not small. Simulation based upper 90, 95 and 
99th percentiles of the statistic Tfor such balanced ranked set samples are 
provided by Arnold et al. [2001] 

Of course, one could instead have transformed to get exponential order 
statistics instead of uniform ones using the transformation 

^ = - l o g ( l - ^ ( ^ : n / ) . (4.4) 

The test statistic in this case, say T t defined as 

J (Y. -E(Y )} 
T-T'Z (VT . («) 
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with the mean and variance of Yt :n given by 
j / - i 

E(Y",.a) = f — (4.6) 

and 

ii-l 

Var{Y:n) = f l—T. (4.7) 

Tabled values of the statistic ^can be found in Arnold et al. [2001]. 

For both T and T t the %2 approximation underestimates the simulated 
percentage points in all but a few cases studied and hence, tables of critical 
values for both of these statistics are required. 

When Fg is not completely specified, estimates of the parameters must 

be found before testing for goodness of fit. The estimation techniques 
involving missing data, specifically the E-M algorithm approach presented 
in Section 3, can be used to advantage here. This has the effect of 
simplifying the problem in that we no longer have to work with the joint 
distribution of independent order statistics, but rather with the parent 
distribution directly. Arnold et al. [2001] used the Gibbs sampler approach 
to estimate both the observations that were not recorded as well as the 
values of unknown parameters used in the simulation process. However, 
the statistic used was Stephen's [1974] modified version of the Watson 
[1961] (/ statistic based upon uniform order statistics. (See Agostino and 

Stephens [1986].) All TV = ^ ẑ . actual and simulated observations are 

transformed to uniform order statistics and the resulting reordered statistics 
are denoted by Ym, Y^,..., Y^. Thei/2 statistic is 

U2=-i- + y\^-r-Y(n -N(Y-0.5)2 (4.8) 

with the modified statistic given by 
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u i » = { f , ~ + ^ } a + ^ > . (4.9) 

For iV greater than 10, the critical values given by Stephens are: 90th 

percentile = 0.152, 95th percentile - 0.187, and 99th percentile = 0.267. 
Simulated values for these same percentiles when N < 10 differ only 
slightly from the values given here. 

Power studies at the .05 level of significance involving BRSS for 
testing the null hypothesis that F was a standard normal distribution when 
the true distribution was either: Normal (0, 4), Normal (2, 1), Logistic (0, 
1), and Logistic (0, 4) revealed that almost uniformly over the range of 
values of m and n the test based upon f was more powerful than the T 
test, which was more powerful than the U2

M0D test. This study also showed 

that all three tests had very little power in discriminating between a 
Normal (0,1) and a Logistic (0,1) distribution. 

4.2 An Alternative Goodness of Fit Test for GRSS. 

Suppose that we have a GRSS from a distribution Fand we wish to test 
whether our sample could have come from a specified distribution FQ. Let 
Ur.n = Fo(Xj,.„ ), j = 1, 2, ..., J. Estimators of the unobserved order 

statistics from each sample are found in the following simplistic way. 
Suppose we had the third order statistic U3.7 based on a sample of 7 

observations drawn from a uniform (0, 1) distribution. Estimators of the 
remaining 6 order statistics are given as: 

^ 7 = ^ 7 A £4 7 =2£/ 3 : 7 /3 , U3:7=U3.7, 

^,=^,+(1-U,7)/^ U5.7 =U3.7 + 2 ( l - t / 3 : 7 ) / 5 , (4.10) 

U,,=U,7+3(l-U3.7)/5, and UT7 = Uw + 4 ( l - l / J / 5 . 

Notice that we are providing unbiased estimators of the missing order 
statistics based on the value of the one order statistic observed. Of course, 
this is done for each of the samples in the data set. The relationships in 
(4.10) can be summarized as: 
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£/ 

•U,. 
•J-J 

l < r < / , 

U,,,, + 
r-i, 

Dj-ij+l 

(4.H) 

(1 -^W ij*r+m>j 

These estimates are now used in place of the missing data, and the test 
statistic is that given in (4.2) with the obvious modifications to allow for 
all N = YJ-I"J observations to be included in the calculations. The statistic 

in (4.2) becomes 

(u^-rlinj+l)} 
•tl ^ t f r ( f l 7 - r + l)(/2y.+l)^(^. + 2) -i (4.12) 

When the number of repetitions, m, is greater than one, Tin (4.12) is 
also summed over m. Simulation based percentiles of the distribution of T 
in (4.12) are given in Table 3 for different values of m and n, based upon 
100,000 runs for each combination. Notice that the given percentiles do 
not appear to be approximately distributed as a %z variable with ifm 
degrees of freedom as one might expect, and therefore separate tabled 
values are needed. More extensive tables are available in Arnold et al. 
[2001]. 

n 

Table 3. Simulation based percentage points of the statistic Tfor different 
values of m and n when missing data is imputed using (4.11). 

m '.90 '.95 '.99 

1 
3 
5 
10 

1 

3 
5 
10 

1 
1 
1 
1 

3 
3 
3 
3 

1.7085 
8.4715 
17.9390 

55.0919 

6.7501 

23.0126 
46.5705 
141.3330 

4.0132 
12.7374 
24.0911 
66.5028 

10.9304 
29.7781 
55.7791 
157.8699 

12.8382 
26.5639 
42.1798 
95.5670 

24.2815 
49.3253 
80.1884 
197.0167 
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n 
1 
3 
5 
10 

1 
3 
5 
10 

1 
3 
5 
10 
1 
3 
5 
10 

1 
3 
5 
10 

m 
5 
5 
5 
5 

10 
10 
10 
10 

25 
25 
25 
25 
50 
50 
50 
50 

100 
100 
100 
100 

T 
-'.90 

10.9071 
35.4255 
72.0565 

222.3327 

20.1603 
64.2386 
132.6031 
414.6961 

42.7897 
143.3099 
301.7058 
972.5086 
75.4745 

266.9689 
572.7384 
1879.2019 

136.9693 
505.1316 

1102.6717 
3663.7339 

T 
J.95 

16.2701 
43.5205 
83.1354 

242.5671 

26.9115 
74.5578 
147.2900 
441.1265 

52.0217 
157.9101 
322.0480 
1010.5220 
87.2622 

285.7319 
599.0957 
1929.6000 

151.9760 
529.6553 

1138.0480 
3733.8757 

T 
-V99 

31.5959 
65.4460 
111.9622 
288.5463 

45.8466 
100.4973 
180.8142 
497.7994 

74.6665 
191.0295 
366.6617 
1091.2590 
114.1974 
327.7236 
655.3024 

2032.3724 

184.2377 
582.0591 

1209.1400 
3868.9519 

Alternatively, the uniform order statistics can transformed to 
exponential order statistics and analyzed using the test based upon T 
defined in (4.12) using the imputation technique given in (4.11). Table 4 
gives the simulation based percentiles of the statistic T for different 
combinations of m and n based upon 100,000 runs for each combination. 

Again one might expect the empirical percentage points in Table 4 to 
approximate those of a %2 distribution with rfm degrees of freedom. As in 
Table 3, the tabled values are substantially smaller than those for a %2 with 
the appropriate degrees of freedom. 
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Table 4. Simulation based percentage points of the statistic T for different 
values of mand n when missing data is imputed using (4.11). 

n m f f f 
f90 \95 J.99 

~1 I 1.7085 4.0132 12.8382 
3 1 8.4715 12.7374 26.5639 
5 1 17.9390 24.0911 42.1798 
10 1 55.0919 66.5028 95.5670 

1 3 6.7501 10.9304 24.2815 
3 3 23.0126 29.7781 49.3253 
5 3 46.5705 55.7791 80.1884 
10 3 141.3330 157.8699 197.0167 

1 5 10.9071 16.2701 31.5959 
3 5 35.4255 43.5205 65.4460 
5 5 72.0565 83.1354 111.9622 
10 5 222.3327 242.5671 288.5463 

1 10 20.1603 26.9115 45.8466 
3 10 64.2386 74.5578 100.4973 
5 10 132.6031 147.2900 180.8142 
10 10 414.6961 441.1265 497.7994 

1 25 42.7897 52.0217 74.6665 
3 25 143.3099 157.9101 191.0295 
5 25 301.7058 322.0480 366.6617 
10 25 972.5086 1010.5220 1091.2590 

1 50 75.4745 87.2622 114.1974 
3 50 266.9689 285.7319 327.7236 
5 50 572.7384 599.0957 655.3024 
10 50 1879.2019 1929.6000 2032.3724 

1 100 136.9693 151.9760 184.2377 
3 100 505.1316 529.6553 582.0591 
5 100 1102.6717 1138.0480 1209.1400 
10 100 3663.7339 3733.8757 3868.9519 
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Earlier power studies have shown that when no imputation of the 
missing values in the order statistics is used, but rather only the observed 
BRSS values, the statistic f is more powerful than T when testing H: 
N(0,1) versus the alternatives N(0, 4), N(2, 1), and Logistic (0, 4), while 
both f and T have very little power in distinguishing a standard logistic 
from a N(0, 1). Simulation studies to determine how these two statistics, 
(using both observed and imputed values for the order statistics not 
measured) perform against these same alternatives are underway. 

4.3 Likelihood Ratio Tests 

Consider testing the hypothesis H: 0 e ©0 versus the alternative 
A: 0 G 0j when the data consists of GRSS data. A straightforward testing 
procedure in this case would be to use the general likelihood ratio 
procedure in which the E-M algorithm is used to estimate both the missing 
observations and the values of the parameters under test. In keeping with 
earlier sections, we will restrict attention to the families of distributions 
studied earlier in this report. 

4.3.1 Normal Distribution. 

We consider the case in which the GRSS resulted from sampling a normal 
population, and we wish to test a hypothesis concerning 0'= (n,<J2). 
Suppose that we wish to test H:(ILI,(T2) = {H0,(T

2), that is, that H: \i = /io 
with o2 unspecified, against the alternative A: fx^ n0. Using the initial 

estimate for o in (2.14) and (2.15) we can invoke the E-M algorithm to 
generate pseudo data in place of the missing measurements. Hence we can 
begin by transforming the observed GRSS, Xk ,Xk.nz,...,X,.n , to 

U^.U^.-'U^j using uif, =$( ''"d °)J= 1 /where O(-) 

denotes the standard normal distribution function. Next the missing 
observations are estimated by generating (/,. -1) uniform (0, u, .„ ) and (nj 

- 1) uniform (u, .„ ,1) variates j = 1 J, which are transformed to 

normal variates. This procedure continues until the estimate of a 
converges. Hence, under H the likelihood becomes 
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^Uj-DKnj-Di o ( 4 1 3 ) 

[l-OH-4 |MO-CT)] 0{-J-±I 1 A*o.CT ) 
(7 cr 

To evaluate the likelihood under A, initial estimates of both \i and a 
can be found using (2.11) through (2.15) which in turn can be used to 
begin the E-M algorithm whereby the missing data are replaced by pseudo 
data and ii and o2 are estimated using this augmented data set. This cycling 
continues until the estimates of fx and a2 converge to p. and a2, at which 
point the likelihood is evaluated as 

xj^(ij-l)l(nj-l)l a (4.14) 

With R= L{x\nQ,62)l L{x\pl,d2), the likelihood ratio statistic is 

given by - 2 In J? which has an approximate x2-distribution with one 
degree of freedom. Another case of interest may be to test H: a2 = CJ0

2 

with ii not specified. A procedure analogous to that outlined above would 
be implemented by estimating \i rather than a2 under H. 

4.3.2 Exponential Distribution. 

In the same fashion, a likelihood ratio test for location and/or scale 
parameters in an exponential distribution could be implemented using the 
E-M algorithm. For example, in testing H: A = Ao with pi unspecified, an 
initial crude estimate of fi could be taken to be 
fi = min(^:ni,Xh.ni,...,X, ) . With A0 and (x, the E-M algorithm can 

be implemented to generate the pseudo data used to re-estimate \i, cycling 
until the estimate of /x converges. In this case 

L(x\ u,A~) = \\ i [l-exp{-/L(x.„ - u)}] x 

[exp{-A0(x. -/i)}]"J_IA0exp{-/l0(A; -fi)}. 
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Using A and p,, the converged values of A and JJL under A, in place of 
Ao and jX in (4.14), the likelihood ratio statistic, -21ni?has an approximate 
^-distribution with one degree of freedom. 

4.3.3 Bayesian approach. 

When the hypotheses tested are not sharp, that is when the hypotheses 
define subsets of the parameter space 0 that are not of measure zero, 
calculation of an odds ratio, for both the prior and posterior distributions 
produces a measure that can be used to accept or reject the hypotheses 
under test. When working with the Pareto distribution via a transformation 
from an exponential distribution, the prior distribution of A and T is given 
by (3.9), while the posterior distribution is given by (3.9) with the 
hyperparameters replaced by those in Table 1. The prior odds ratio in this 
case would be calculated as the ratio TIXITIZ where 

nl - \ f{X,T)dXdr and n2 = f f{X,x)dXdt. (4.16) 

The posterior odds would be found as the ratio nx (.x) ln2 {x), where 

nl{x) - f /(A,T | xjdXdr and n2 (x) - J /(A,T | x)dXdr. (4.17) 

If the data have come from a normal distribution, then the prior 
distribution for /n and o2 is given by (3.14) while the posterior distribution 
is given by (3.14) using the updated parameters in Table 2. The prior and 
posterior odds are approximated by Gibbs sampler based calculations for 
the corresponding joint density for (A, T). 

Although the prior odds measure the analyst's beliefs with respect to 
the distribution of the parameters under investigation, the posterior odds 
have been updated with sample information and should be a more credible 
measure of the strength of the hypotheses under test. Obviously, if the 
odds ratio is larger than one, there is support for the null hypothesis, while 
values smaller than one provide support for the alternative hypothesis. In 
examining the joint prior and posterior distributions under both 
hypotheses, it is clear that (4.14) and (4.15) would need to be evaluated 
numerically. 
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5 Summary 

The analysis of GRSS data classically uses the distribution of 
independent order statistics. This distribution is not easy to work with 
even in classic cases when the data has been sampled from a normal 
distribution. The suggested analysis based upon the use of the EM 
algorithm or the Gibbs sampler to augment the data and estimate 
underlying parameters reduces the problems to ones that are easily handled 
using standard techniques. 
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FISHER INFORMATION IN THE 

FARLIE-GUMBEL-MORGENSTERN TYPE 

BIVARIATE EXPONENTIAL DISTRIBUTION 

H. N. Nagaraja * and Z. A. Abo-Eleneen 

Ohio State University, USA and Zagazig University, Egypt 

Abstract 

We obtain expressions for the elements of the Fisher information matrix 

(PIM) for the three parameters of the Gumbel Type II bivariate exponen­

tial (G2BVE) distribution. This distribution belongs to the Farlie-Gumbel-

Morgenstern family and has exponential marginals. We evaluate the FIM for 

various values of the dependence parameter and discuss implications to finite-

sample and asymptotic inference from the G2BVE parent. We also conduct 

a similar study for the Marshall-Olkin bivariate exponential distribution and 

compare the results. 

Key Words: Gumbel Type II bivariate exponential distribution; Marshall-

Olkin bivariate exponential distribution; Cramer-Rao bound; maximum likeli­

hood estimator; Asymptotic relative efficiency. 

1 Introduction 

Suppose X is a continuous random variable with cumulative distribution function 

(cdf) Fi(x;8) and probability density function (pdf) fi(x;9), where 9 is a real or a 

'Corresponding author; hnn@stat.ohio-state.edu; Department of Statistics, Ohio State Univer­

sity, Columbus OH 43210-1247, USA. 
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vector valued parameter. The Fisher information (FI) about the real parameter 9 

contained in X is defined by I{X; 9) = E ( g ' ° s W ) ) 2 = _ £ (a ' l o«*, (* ; f l )), under 

certain regularity conditions (see, for example, [13], p. 329). When 9 is a vector 

6 = (<?i, • • • , 9k) the Fisher Information Matix (FIM), I(X; 6U • • • , 9k), is a k x k 

matrix whose («, j) th element is 

T _.r(d\ogh{x-d)d\ogh{x-e) 
ij ~ { 89, 36>j 

Now suppose (X, Y) is absolutely continuous with joint cdf F(x, y; 9) and pdf 

f(x, y; 9). The FI in (X, Y) is similarly defined. The FI plays an important role in 

statistical inference through the information (Cramer-Rao) inequality and its associ­

ation with the asymptotic properties of the maximum likelihood estimators (MLE). 

For a compact introduction to FI and some historical notes, see [10] (Sec. 2.5, 2.6, 

2.8, 6.3 and 6.5). 

Beginning with the work of Gumbel in the 1950's and 60's, several bivariate ver­

sions of the univariate exponential distribution have appeared. For some of these, 

the marginal distributions are not even exponential! While a univariate exponential 

distribution is absolutely continuous and has the lack of memory property, the bi­

variate extensions with dependent marginals cannot satisfy these requirements and 

at the same time have exponential marginals ([6], Chapter 5). Quite a few of the 

bivariate exponential (BVE) distributions are motivated by either the operational 

models within a reliability set up, or the generalizations of the univariate exponen­

tial distribution based on characterizations. For a classification of BVE distributions 

based on such themes, see the review paper by Barnett [3]. Since his review, numer­

ous other new BVE's have appeared and the most recent comprehensive overview is 

provided in Chapter 47 of [9]. 

We investigate the behavior of the FIM of the Gumbel Type II bivariate ex­

ponential (G2BVE) distribution (proposed in [7]). It is a special member of the 

Farlie-Gumbel-Morgenstern (FGM) family of absolutely continuous bivariate distri­

butions (see [9], p. 51-52, 353). For the FGM family, the cdf is given by 

F(x,y) = F1(x)F2(y)[l + a ( l - F1(x))(l - F2(y))], (1.2) 

and the associated pdf is given by 

f{x, y) = fi(x)f2(y)[l + a ( l - 2 F^x))^ ~ 2 F3(y))] (1.3) 

= -E 
d9id9i 

(1.1) 
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where - 1 < a < 1, F2 is the marginal cdf of Y, and / 2 is the pdf of F2- The 

parameter a serves as the dependence parameter, and X and Y are independent 

when it is 0. The marginal distributions F\ and F2 can be arbitrary with additional 

associated parameters. For the FGM family with normal, exponential, and logistic 

marginals, the correlation coefficient is a scalar multiple of a. Hutchinson and Lai 

([8], Sec. 5.2) provide an excellent introduction to the FGM family and discuss its 

properties and applications to a variety of situations. See also [9], Chapter 44 and 

47. Recently Abo-Eleneen and Nagaraja [1] have investigated the FI content about 

a in a collection of X-order statistics and their Y concomitants from the FGM 

distribution. Smith and Moffatt [14] have investigated FI about a in FGM type 

bivariate logistic models with some special sampling schemes. 

For the G2BVE the joint cdf takes the form 

F{x,y;0) = {l - e~W} {l - e-W')} {l + 03 e - [ ( ^ ) + ( ^ 2 ) ] } ; (1.4) 

where x > 0, y > 0, 9\, 82 > 0, and — 1 < 83 < 1, where, for convenience we denote 

the dependence parameter a by 83. Here, the marginal distributions are exponential, 

the correlation coefficient is #3/4, and 0, is the mean of Ft, i = 1,2. The joint pdf 

associated with (1.4) is 

/ ( i , y- 9) = I e - ( * / * > i e - W * > {1 + 03 [ 2 e - ^ - l] [2e~^ - l ]} . (1.5) 

This pdf is the second of the two bivariate exponential distributions introduced 

by Gumbel in [7]. He notes that for this bivariate distribution, the conditional 

expectation of Y given X increases or decreases with X according as the dependence 

parameter 83 is positive or negative (and X and Y are independent when it is 0). 

Thus #3 provides a measure of relationship through the regression function. Here, 

in Section 2, we obtain explicit expressions for the elements of I(X,Y;6), and in 

Section 3.1, we evaluate it for selected values of #3, and discuss some implications 

to inference. 

Similar investigations for other bivariate distributions have been undertaken in 

the literature. Arnold [2] has obtained the FIM for the BVE distribution proposed 

by Marshall and Olkin in [11]. Other examples include the work of Oakes and 

Manatunga [12] who discuss the case of a bivariate extreme value distribution and 

the recent work of Bjarnason and Hougard [4] who have obtained the FIM for two 
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gamma frailty bivariate Weibull models. In Section 3.2 we revisit Arnold's work and 

compare the behavior of the asymptotic variances of the MLE's under the G2BVE 

and Marshall-Olkin BVE (MOBVE) models. Both these BVE's have exponential 

marginals and three parameters that identify the bivariate distributions. While the 

former is absolutely continuous, the latter has the bivariate lack of memory property. 

2 The Fisher Information Matrix 

We now obtain the FIM for the parameter 6 — (#i, Q2,63), for the pdf given by (1.5). 

The FIM is I(X, Y; 0) = (Iij)3*3, where the elements are computed using one of the 

expressions given in (1.1). In our derivations we use the transformations U = X/Oi, 

V = Y/&2 to simplify the expressions. These random variables correspond to the 

G2BVE distribution with standard exponential marginals. First we present the 

diagonal elements. 

Since 

dlogf{x,y;0) _ l / a : 1+
2h_x e x P{^fK 2 e x P { ^ } " 1) \ 

30i e1[61 9, [1 + ^ (2 e x p { = f } - l ) ( 2 e x p { ^ } - l ) ] J 

we can write 

' dlog f{x,y;6)\2 _ I f 2 4 93{u2 - u) exp{-u} (2 exp{- u } - 1) P t ^ ) - 4{(»-»> + [1 + 93 (2 exp{-u} - 1) (2 exp{-v} - 1)] 

4 g3V exp{-2u} (2 exp{-t,} - l)2) K 

[1 + 03 (2 exp{-u} - 1) (2 e x p { - 4 - l)]2 ' ' l " j 

Hence 

7 i i = E f 3 log f(X,Y; 9y2 

de1 

- I U 4-4 02 r r U' ^ p { - 3 M } ( 2 e x p { - z ; } - l ) 2 exp{-t;} 1 
" 81 \ + 3Jo Jo [l + 93(2eM-u}-l)(2exp{-v}-l)}dUdVj-

(2.2) 

The denominator of the integrand of the inside integral in (2.2) can be expanded as 

a power series given by 
00 

^2(-93y(2 exp{-v} - 1Y(2 exp{-u} - l)\ 
3=0 
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and, since \63 (2 exp{-u} - 1)J(2 exp{-u} - l)j\ < 1 for all real x and y, this 

representation is uniformly convergent. So it is permissible to integrate term by 

term. Hence we get 

oo Q2j+2 ,.00 
7 " = ff{ \ l + 4 £ | f ^ 3 X u ' exP{"3«} (2 exp{-U} - l)2' du I . (2.3) 

We obtain J22 upon replacing 0X by #2 i
n (2-3) above. Now 

/aiog/(x,r ;g)^2 

and we use (1.3) to obtain the element of the FIM corresponding to the dependence 

parameter for the general FGM distribution. Thus we begin with 

d\og f(x,y; 9) ( 1 - 2 F1{x)){l - 2 F2(x)) 
(2.4) 

7 3 3 - y 0 /„ [ H M 1 - 2 W - 2 M ^ ( 2-5 ) 

d63 [l + 03(l-2Fl{x)){l-2F2(x))Y 

to obtain 

r°° f [ ( l - 2 F i M ) ( l - 2 F 2 ( x ) ) f 
/o /o [1 + 03 ( l - 2 F 1 ( x ) ) ( l - 2 F 2 ( x ) ) ] 

As done in the derivation of In, we now observe that the denominator of the 

integrand of the inside integral on the RHS of (2.5) can be expanded as a power 

series that is uniformly convergent. Upon summation and term by term integration, 

we obtain 
0 0 /'OO /"OO 

/33 = £ ( - 0 3 ? / / [(1 - 2 F1(x))]2[(l - 2 F2(y))}2 h(x)f2(y)dx dy 
J = 0 Jo Jo 

which simplifies to 

This indicates that 733 is independent of the marginal pdfs of X and Y. The ex­

pression in (2.6) is available in [1] for the general FGM distribution, and, in [14] in 

the context of bivariate logistic distribution. 
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We compute the off-diagonal entries next where the second representation in 

(1.1) is more convenient. Note that, upon simplification, we obtain 

c>2log/(:r^;fl) = 4xy(h exp{=f } e x p { ^ } 

oe1d92 e\ei [i + e3(2 exp{=f} -1)(2 e x p { ^ } - i)p 

and consequently 

403 f°° f°° u v exp{-2u} exp{-2v} 403 r°° r 

mJo Jo IT + 93 (2 exp{-v} - 1) (2 exp{-u} - 1)] 
du dv, 

Aft °° ( r°° i 2 

= -§J2 E ( - ^ ) J [Jo «exp{-2U}(2 e x p { - U } - l ) J " duj , (2.7) 

upon expanding the integrand as a power series and performing term by term inte­

gration. Further, 

d2 logf(x,y;9) = 2x exp{^f}(2 e x p { ^ } - 1) 

de.de, e\ [i + e3(2 exp{=f} -1)(2 e x p { ^ } - 1 ) 

and consequently 

' d2 log f{x,r-ey 

12 

/13 _ — E 
d9xd93 

= TJ2vh^ uexp{-2u}(2exp{-u}-l)2j+l du, (2.8) 

upon simplification. We now note that, by symmetry, #2-̂ 23 = 9ili3 where 7 i3 

is given by (2.8). Also In and 733 are even functions of 93 while 713 is an odd 

function. Thus, one needs to know only J n , 733, 712, and 713 to determine all the 

elements of the FIM for a given 93. For the elements I that correspond to — #3, we 

now need to evaluate only the corresponding 7i2. Note that when 93 is 0, X and 

Y are independent exponentials and consequently 712 is 0, In = 0f2 = I(X;9i), 

and 722 = 92
2 = I(Y;92)- Further, in that case, from (2.6) and (2.8) we see that 

•̂ 33 = 4/9, and 7i3 = 0, respectively. 

Table 1 provides the values of the above elements that are needed to evaluate 

all the elements of I(X,Y;0) for 93 = 0,0.25,0.5,0.75,0.99, when 6X = 92 = 1. 

These were computed using IMSL routines in FORTRAN. The table indicates that 

empirically 712(#3) and — 7i2(—#3) are very close and thus the former can be used 

http://de.de
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03 

/ll(=/ 2 2) 

-<33 

1̂3 (= h3 ) 

In 

0 

1 

0.4444 

0 

0 

0 

0.25 

1.0062 

0.4548 

-0.0047 

-0.0625 

0.0629 

0.5 

1.0254 

0.4905 

-0.0100 

-0.1258 

0.1275 

0.75 

1.0595 

0.5747 

-0.0169 

-0.1915 

0.1955 

0.99 

1.1119 

0.8743 

-0.0292 

-0.2594 

0.2679 

Table 1: Essential elements of the FIM for the parameter 0 = {0i,02,03) for the 

G2BVE distribution when 0\ = O2 = 1. 

as a quick approximation to the latter. It also shows the effect of the changes in 

the value of 03 on the FI content of (X, Y) about 0\ (or 02) as well as about 03 

itself. The In values there can be used to gauge the contribution of the covariate 

Y in the increase in the FI in X about its mean 0\. This relative improvement, 

[I(X,Y;0i) - I{X;9i)]/I{X;0i), increases with |03|, but never exceeds 12%. This 

suggests that the knowledge of the covariate increases the information content of 

the univariate data only to a limited extent. 

3 Discussion 

3.1 Efficiency and Asymptot ic Variance of MLE 

Table 1 entries can be used to compute the Cramer-Rao (lower) bound for the 

variance of unbiased estimators of the parameter 9{. More importantly they can be 

used to obtain the variance of the limiting normal distribution of T„ = y/n(9i — 9i) 

(i = 1,2,3) as n —> 00 where 9, is the MLE of 0; based on a random sample of 

size n from f(x,y) given in (1.5). Table 2 provides the values of UBt = 1/Iu, and 

MBi = (I~ )a as a function of 03, for i = 1,3, assuming 0\ — 02 = 1. The inverse of 

the FIM, I - 1 , was obtained using S-PLUS. The quantity UBi represents the Cramer-

Rao bound as well as the variance of the limit distribution of T^ when the other 

parameters are known, and MBi corresponds to these quantities when the other 

parameters are unknown. When 03 is 0, X and Y are independent exponentials with 

mean 1, and thus UBi is 1. In this case UBX also represents the limiting variance 
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03 

-0.99 

-0.75 

-0.50 

-0.25 

0 

0.25 

0.50 

0.75 

0.99 

0i 

UBX 

0.8994 

0.9438 

0.9752 

0.9938 

1 

MBX 

0.9553 

0.9774 

0.9907 

0.9978 

1 

0.9980 

0.9904 

0.9760 

0.9524 

MARE! 

1.0468 

1.0231 

1.0094 

1.0022 

1.0020 

1.0097 

1.0246 

1.0500 

UMAREx 

1.0622 

1.0356 

1.0159 

1.0040 

1.0042 

1.0156 

1.0341 

1.0589 

03 

UB3 

1.1438 

1.7400 

2.0388 

2.1989 

2.25 

MB3 

1.1454 

1.7414 

2.0396 

2.1991 

2.25 

2.1990 

2.3098 

1.7420 

1.1464 

Table 2: Asymptotic variance of the MLE (Cramer-Rao lower bound on the unbiased 

estimators) of 9\ and 03 for the G2BVE distribution when 6\ = 62 = 1. 

of the MLE of 0i based on only the X sample values. Further, as the univariate 

bounds are symmetric functions of 03 the cells corresponding to its positive values 

are left blank. 

From Table 2 one can compare the limiting variances of 0i and 6>3 as 83 changes. 

One useful comparison is that of the limiting variances of the MLE's based on the 

univariate and bivariate samples. For example, the ratio UAREi — UBi(0)/UBi(03) 

would provide the Asymptotic Relative Efficiency (ARE) of the MLE of 0i based on 

the (X, Y) data when compared to the X data alone (which corresponds to 03 = 0), 

when the other parameters are known. This comparison is essentially the ratio of the 

In values discussed just above in Section 2. The ratio MAREX = M J 5 1 ( 0 ) / M B 1 ( 6 ,
3 ) 

provides such a comparison when the other parameters are unknown. These values 

are included in Table 2 and they indicate that the improvement is at most 5%. Had 

the nuisance parameters been known, as observed earlier, the improvement would 

be under 12%. 

One can also compute UMARE^ MBi(83)/UBi(83) to examine the effect of 

the knowledge of the other parameters on the limiting variance of 8, based on the 

bivariate data. From the UMAREi column in Table 2 it follows that for 0i, the 

ARE increases in a nonsymmetric manner as 03 moves away from 0, and is 1.06 
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when #3 is —0.99. This implies that while estimating di, the efficiency gained by 

the knowledge of the other parameters is at most 6%. For 93, the MARE values 

are not shown, but it is easily seen from Table 2 that they are barely above 1.00. 

This indicates that while estimating the dependence parameter, the knowledge of 

the parameters of the marginal distributions has hardly any effect in terms of the 

asymptotic variance of the MLE. We are tempted to suggest that this conclusion 

would hold for other commonly used FGM type distributions. 

Remark: Let Xr.n be the rth X-order statistic (1 < r < n) and Y{r.n] be its con­

comitant obtained from a random sample of size n from an absolutely continuous pdf 

f(x, y). (See [5] for a recent review of the area of concomitants of order statistics.) 

For the FGM density (1-3), Abo-Eleneen and Nagaraja [1] evaluate I(Xr.n,Y[T:ny,a) 

for selected n and r and discuss its properties. While the (Xr.n, Y[r.n]) are dependent, 

the FI in (Xr:n, Yjr:n]) turns out to be additive in r. For the G2BVE pdf given by 

(1.5), they evaluate I(Y[rmy,9z) and compare it with I(Yr:n;93). 

3.2 Marshall-Olkin Bivariate Exponential Distribution 

Another BVE distribution with exponential marginals is due to Marshall and Olkin 

[11]. They introduced a BVE distribution to model the component lifetimes in the 

context of a shock model. We say (X, Y) has MOBVE with parameters Ai > 0, 

A2 > 0, and A3 > 0, if 

P{X>x,Y>y) = e-Xlx-x™-X:imax<-x'y\ x,y>0. (3.1) 

Here X and Y are marginally exponential with means (Ax + A3)"1 and (A2 + A3)_1, 

respectively, and the correlation p = A3/A, where A — A1 + A2 + A3. This distribution 

has a singular component and consequently the joint pdf does not exist. In the 

context of parameter estimation for MOBVE distribution, Arnold [2] has given an 

explicit expression for the FIM for the parameter vector A = (Ai, A2, A3). He shows 

that 

I(X,y;A) = - 0 b + d b I (3.2) 



328 

where 

a = A2(AX + As)"2, b = AX(A2 + A3)-1,c = Af\d = X^\ and e = AJ1. (3.3) 

We now consider the parametric transformation 771 = Ai + A2, 772 = A2 + A3 and 

Vs = A3 so that the first two parameters correspond to the marginal distributions 

of X and Y, respectively, and the last one is related to the dependence structure. 

With 77 = (771,772,773), using (2.6.15) in [10] (p. 125), the (i,j)th element of the FIM 

for the parameter 77 can be expressed as 

Thus we obtain 

l(X,Y;r,)-. 

*">-££*•<£• 

I a + c 0 —c 
1 

1 
vi + m- V3 

0 b + d -d 

1 —c — d c + d+e 

(3-4) 

/ 

where a, • • • ,e are given in (3.3). In terms of the 77's we may write a = (772 — ri^/rjl, 

b= (771 - 773)/7?|, c = 1/(771 - 773), d - 1/(772 - 773) and e = 1/773. Using the reciprocal 

of the diagonal entries in (3.3) and the diagonal entries of I~l(X, Y; 77), we can carry 

out a discussion of the Cramer-Rao lower bound on the unbiased estimators of 77! 

and the variance of the limiting distribution of the MLE's as done above in Section 

3.1. To fix ideas, we take rji = rj2 — 1. Then, p = 773/(2 — 773), or equivalently, 

773 = p/(l + p). We compute the bounds corresponding to 77; as functions of p as it 

varies in [0,1). The bounds for selected values of p are given in Table 3 and these 

were computed using MAPLE 5.1. 

The changes in the values of UB\ and MB\ in Table 3 indicate the rapid im­

provement in the limiting variance of 771, the MLE of 771, as p increases. Thus, 

the improvement in its efficiency due to the bivariate data is substantial. The last 

column in Table 3 provides UMAREi(p) = MBi(p)/UB\(p) to facilitate the exam­

ination of the impact of the knowledge of 772 and 773 on the limiting variance of f]\. 

It is clear that the effect is substantial. 

From the above discussion we conclude that the improvement in the efficiency 

of the MLE of the mean of X due to the availability of the covariate values as well 
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p 
0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.99 

UBi 

1 

.8597 

.7377 

.6320 

.5405 

.4615 

.3933 

.3342 

.2830 

.2386 

.2036 

MB1 

1 

.9029 

.8125 

.7294 

.6532 

.5837 

.5201 

.4620 

.4086 

.3596 

.3187 

UMAREi 

1 

1.0503 

1.1014 

1.1541 

1.2085 

1.2648 

1.3224 

1.3824 

1.4438 

1.5071 

1.5649 

Table 3: Asymptotic variance of the MLE (Cramer-Rao lower bound on the unbiased 

estimators) ofrji in terms of p for the MOBVE distribution when rji = r/2 = 1. 

as the knowledge of the nuisance parameters is limited for the G2BVE distribution 

whereas, in both these circumstances, the improvement is quite substantial for the 

MOBVE distribution. 
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CLASSIFICATION INVARIANCE IN DATA ENVELOPMENT ANALYSIS 
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Invariance property in data envelopment analysis (DEA) allows negative data in 

efficiency analysis. In general, there are three cases of invariance under data 

transformation in DEA. The first case is the "classification invariance" where the 

classifications of efficiencies and inefficiencies are invariant to the data transformation. 

The second case is the "ordering invariance" of the inefficient decision making units 

(DMUs). The last case is the "solution invariance" in which the new DEA model (after 

data translation) must be equivalent to the old one. The current paper indicates that 

DMUs with negative output values may be classified as efficient when we use the 

classification invariance. Although such classification is mathematically correct, it may 

not be managerially acceptable. The method of finding well-defined facet is suggested to 

re-evaluate the performance of DMUs with negative values. The paper illustrates the 

approach with an application to textile firms where negative profit is present. 

Key words: Data Envelopment Analysis (DEA); classification invariance; efficiency. 

1. Introduction 

Since the original data envelopment analysis (DEA) model by Charnes, Cooper 

and Rhodes (CCR, [3]), many theoretical extensions and empirical studies have appeared 

in the literature [8]. One research issue which has received widespread attention in the 
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rapidly growing field of DEA is the invariance property. Ali and Seiford [1] discover the 

translation invariance property in the additive model [4] and the BCC model [2] that does 

not require positivity of any inputs or outputs. Pastor [7] find out that by the translation 

invariance property in DEA, input (output) values can be not only zero but also negative. 

However, the use of DEA models is restricted. 

This paper is concerned only with the classification invariance. (For other cases of 

invariance, see [6, 7].) Note that the key to classification invariance in DEA lies in the 

convexity constraint. Therefore, we consider only the BCC model. The term 

classification invariance here means that the BCC efficient frontier or the BCC efficiency 

classification is invariant to data transformation. 

The paper indicates that situations when DMUs with negative output values are 

classified as efficient may need a careful analysis. For example, in a performance study of 

textile firms, negative profits were found in some firms [9]. In the original study of [9], 

those firms with negative profits were deleted from the analysis. By the classification 

invariance, we can evaluate those firms with others. However, some loss firms are 

classified as efficient. Although such efficiency classification is mathematically correct, it 

may not be preferred by the management. The current paper discusses this issue and 

develop an approach to revise the efficiency results. 

2. Background 

A DEA data domain can be characterized by a data matrix 

P = Y
x = [ P „ . . . , P J 
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with s+m rows and n columns. Each column corresponds to one of the DMUs. They'th 

column 

is composed of an input vector \-l whose /th component xjf is the amount of input i used 

by DMU and an output vector y^ whose rth component yrj is the amount of output r 

produced by DMU.. 

The BCC efficiency can be obtained by calculating the following linear 

programming problem 

maxrj 

n 

n 

X A , y i - s + =iy. ( ]) 

Xj >0 j=\,...,n. 

where xo and yo represent input and output vectors of DMUn, respectively. This model 

is an output-based (or output-oriented) program. Similarly, one can have an input-based 

BCC model. On the basis of optimal solutions of r\ , A , s+ and s" , DMU„ can be 

classified as one of the four efficiency classifications [5]: class E (consists of extreme 

points, i.e., X] = 1 as well as s4* = s"* = 0 with unique solution of A*), class E' (linear 

combination of DMUs in class E), class F (77* = 1 with nonzero s4* and (or) nonzero s"*), 

- x . 
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class N (77* > 1), where the first two classes consist of efficient DMUs and the last two 

consist of inefficient DMUs. 

Next suppose the input vector is displaced by the m rowed vector u and the output 

vector is displaced by the 5 rowed vector v. That is xj = Xj + u and y-t = y. + x (/ =1 , 2, 

. . . , n ) . 

We have the following result with respect to the translation invariance in DEA 

when all input and output data are nonnegative [ 1 ]. 

Classification Invariance: DMU 0 is efficient for (1) if and only if DMU o is efficient for 

(1) under translated data; DMU o is inefficient for (1) if and 

only if DMU n is inefficient for (1) under translated data. 

We can generalize this result by relaxing the nonnegativity condition. However, 

the type of the BCC model is restricted in use with respect to the following solution 

invariance when negative input/output values are present [7]. 

Solution Invariance: The input-based BCC model is output translation invariant and the 

output-based BCC model is input translation invariant. 

3. Negative input/output values in DEA 

Although the classification invariance is discovered under the nonnegativity 

assumption, it can be applied to the situation where negative data are present, since the 

relative position of DMUs is invariant to the data changes. 

Consider the three DMUs used in [7], each with a single negative input and a 

single positive output. The input-output vector for the three DMUs are: DMU1 = (-4, 1), 

DMU2 = (-2, 3) and DMU3 = (-1,2). 
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By a translation vector of (5,0), we have the corresponding translated DMUs, (1 , 

1), (3, 3) and (4, 2). The input-based BCC model now classifies DMUs 1 and 2 as 

efficient (class E) and DMU3 as inefficient (class N). 

Thus, the input-based BCC model can be employed when negative inputs are 

present, if the negative inputs are translated into positive values. (A similar result can be 

obtained for the output-based BCC model with negative outputs. That is, the output-based 

BCC model can be used when negative outputs are present, if the negative outputs are 

translated into positive values). This gives a different result in contrast to what is found in 

[7]. This is due to the fact that [7] focuses on optimal solutions to the translated and 

untranslated BCC models, i.e., solution invariance; whereas we here focus on how to 

determine the efficient frontier, and particularly, the efficiency classifications, rather than 

the efficiency scores. 

This result is useful when compared to that of [7], since the choice of orientation 

of BCC model is a choice between exogenous and endogenous variables. For instance, if 

a DMU is able to vary the quantity of all the outputs and is not able to, in short term, act 

on the inputs, then the output-based BCC model should be selected even some outputs 

may have negative values. Thus, the choice of orientation depends on the nature of the 

problem and not the value range of a variable. By using classification invariance, either 

input-based or output-based BCC model can be employed in the presence of negative 

input or output values. Note that in this situation, the efficiency scores may not be 

independent of the selected translation vector. However, the efficiency classification is 

independent of the translation vector we select. 
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Next, we observe what will happen if we have both positive and negative outputs. 

Consider a simple case where the data domain is given by 

Y 

- X 
= 

~Y,+ Y2"" 

- X + _ 

where Y represents negative outputs. X+ and Y+ stand for positive inputs and positive 

outputs, respectively. 

Table 1: Seven sample DMUs 

DMU 

x (input) 

y (output) 

y = y + 4 

1 

2 

2 

6 

2 

3 

4 

8 

3 

4 

5 

9 

4 

2 

-1 

3 

5 

1 

-1 

3 

6 

1 

-3 

1 

7 

4 

2 

6 

Efficiency 

Untranslated 

Input-based 

Output-based 

Translated 

Input-based 

Output-based 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

N(l/2) 

N(2) 

E 

E 

F 

N(3) 

N(l/2)* 

N (5/2) 

N(l/2) 

N (3/2) 

*The number in parenthesis represents efficiency score. 

If the DMUs with negative output are not considered, then DMUs 1, 2 and 3 are 

efficient (class E) under the BCC model. Associated with an output displacement of 

v = 4, DMUs 1, 2, 3 and 5 are efficient (class E) (see Table 1). When the output stands 
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for profit, it may be unsatisfactory that DMU5 with negative output is classified as 

efficient. Thus, the efficiency of DMU5 should be reestimated. We assume that those 

DMUs, particularly the efficient ones, with positive output values outperform those 

DMUs with negative output values. Note that for any variable it may be advised to define 

a range of values considered as admissible. Here the zero is not necessarily a limit for this 

interval. Nevertheless by the classification invariance, any limit values can be 

transformed into zero. Thus, this assumption can be made to any situation of limit values. 

In order to solve this problem, the current study suggests the following: First, let 

the data domain D be partitioned into H subdomains, Dh, h = 1, ..., H. The first 

subdomain D, consists of all those DMUs with positive input and positive output values. 

For other subdomain Dh, h ^ 1, all DMUs in Dh produce the same type of negative 

outputs. For example, 

} 

V 1 
I 

X 
— 

D, 

Y,+ 

Y; 

-x; 

D 2 D3 

Y; Y; 

Y; Y6 

-x;-x; 

Second, after output data translation (i.e., force all outputs to be positive), we find all 

well-defined positive multiplier efficient facets in subdomain Z),, and all efficient DMUs 

in each subdomain Dh, h * 1. Then, we assign each efficient DMU in Dh, h ± 1 to a 

proper well-defined efficient facet in Dt which gives the highest efficiency score. After 

obtaining the re-estimated efficiency scores for all the efficient DMUs in Dh, h ^ 1, we 

assign each corresponding inefficient DMU in Dh,h^\ to the facet to which the referent 

Dh,h^\ efficient DMU is assigned. 
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The second stage, in fact, can be carried out by the following binary linear 

programming problem 

min vTX0 +u0 

s.t. uTYj - vTX j - utl + Zj = 0, j e E 

uT Y„ = 1 

Zj-bjM <0 jsE (2) 

5>,=|E|-* 
,/EE 

6 , € { 0 , 1 } , Z ; , U T V T > 0 , u0 free. 

where X and Y represent translated data, E stands for the set of extreme-efficient 

DMUs in D]. Model (2) is an output-based BCC-type model in which k determines the 

dimension of a specific reference facet for an efficient DMU a in Dh,h^\. For example, 

if set k = m + s, the number of inputs plus outputs, then (2) assigns a specific DMU0 

onto a full dimensional efficient facet. The constraint ^ 6 . =| E | -A = | E | - m- s ensures 
JEE 

that m + s extreme-efficient DMUs in D, determine the (full dimensional) reference facet. 

If there does not exist any full dimensional efficient facet in Dv then we specify the 

dimension of the reference facet by k. 

Table 2: Reestimated efficiency scores for DMUs in Table 1 

DMU 
Efficiency score under 
facet-1: y = 2x + 2 
Efficiency score under 
facet-2: y = x + 5 

4 
2 

7/3 

5 
4/3 

2 

6 
4 

6 

Consider the example in Table 1. Table 2 gives the two efficient facets composed 

by the DMUs having positive input/output values and the corresponding reestimated 

efficiency scores. In Table 1, DMU5 outperforms DMU7 whereas by model (2), the 
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opposite result is obtained. Also, the nonzero slack on the negative output of DMU6 is 

suppressed. 

In a study of Chinese textile performance, negative profit is present in some 

textile firms [9]. As a result, firms with negative profit were excluded from the DEA 

analysis. By means of the BCC classification invariance, we re-evaluate the performance 

of those textile firms by including firms with negative profits. 

We select three inputs: (i) labor which represents the number of staff and workers, 

(ii) working fund (WF) and investment (INV) which represents the total investment for 

building and purchasing of fixed assets. We use two outputs: (i) gross industrial output 

value (GIOV) which represents the general achievement of each firm, and (ii) profit & 

taxes (P & T) which measures the net contribution of each firm. (For more information on 

these inputs/outputs, please refer to [9].) Table 3 presents the 33 textile firms and their 

inputs and outputs in the annual period of 1989 where "rmb" is the Chinese monetary 

unit. Note that the last five firms had negative profit & taxes values. 

Managers of firms in China are rewarded primarily based upon their success in 

meeting physical output targets, such as, profit and gross industrial output value, set by 

the local government. Firm itself also pays more attentions to the profit and taxes, 

therefore an output-based BCC model is employed. Using an output translation vector of 

(0, 50) and model (1), we have the efficiency results shown in the last column of Table 3. 

Twelve DMUs were efficient (class E). Among them, DMU32, was a loss firm (i.e., it 

had negative profit). This result is unsatisfactory in a decision maker's view. Because a 

firm's manager should be penalized for the firm's deficit in profit and for the firm's 

inability to pay taxes. Therefore we need to modify the efficiency score of DMU32. 
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Table 3: Data and Efficiency Scores for 33 textile firms 

DMU No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

Inputs 

(person) 

Labor 

4063 

481 
4762 

1365 

1267 

1342 

1185 
534 
1083 

837 
843 
1594 

475 
558 
454 
476 
395 
453 
252 
213 
538 
706 
390 
448 
381 
983 
1426 

498 
1066 

1349 

1140 
481 
717 

(10,000rmb) 

WF 
4650.9 
638.5 

2606.6 
1083.2 

648.7 

627.1 

554.2 

238.9 
1034.6 

873.1 

356.0 

941.5 

278.9 
309.6 
223.3 

231.9 
202.6 
150.2 

76.5 

110.2 
271.3 

144.7 

229.2 

207.2 

133.2 

554.8 

477.4 

175.0 

300.6 

1015.1 

357.2 

187.9 

174.8 

INV 
6663.5 

405.4 
2154.8 

1441.9 

259.0 

573.5 

1055.2 

100.3 
1703.7 

1072.1 

487.9 
729.2 

255.9 
367.1 
33.9 
196.6 
87.3 

161.6 
52.4 

31.1 

236.2 

236.0 

161.8 

156.8 
113.4 

358.4 

516.8 
181.2 

530.9 
2003.0 

716.4 
683.4 

201.9 

Outputs 
(10,000rmb) 
GIOV 

11867.8 

1621.6 
8838.7 
4508.4 

1667.3 

1800.4 

2042.1 

307.5 
8249.3 

5804.4 

1458.4 

980.7 

936.7 
715.3 

717.5 

1024.9 
593.3 

570 
470.6 

229.5 

756.9 
1503.4 

424.5 

538.3 
295.2 

1147.9 

1070.2 

1259.0 

766.9 

2268.8 

1705.6 
1601.8 

386.4 

P&T 
1787.0 

128.7 
1107.0 

280.5 

66.3 

40.0 

133.5 
41.4 

27.0 

110.6 

142.5 
39.2 

81.0 
69.1 
70.3 
99.4 

3.2 
46.9 
15.7 

12.0 

30.3 
50.6 

73.6 

71.7 
101.8 

151.4 

64.9 

89.9 

-5.2 

-8.4 

-31.0 
-41.3 

-23.5 

Efficiency 

scores 

1.00000 

1.00000 
1.00000 
1.12476 
1.03125 

1.83539 
1.42735 

1.64481 
1.00000 

1.00000 

1.15063 
3.75105 

1.21964 
1.67461 

1.00000 
1.01990 
1.43593 

1.44838 
1.00000 

1.00000 
1.90190 
1.00000 

1.22981 
1.27760 
1.00000 

1.36252 

2.28246 

1.00000 

3.14486 

3.31258 

1.82590 
1.00000 

4.47580 

We first partition the (translated) data domain into two subdomains, Z), 

(composed of DMUs from 1 to 28) and D2 (composed of DMUs from 28 to 33), and then 
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find a proper well-defined positive multiplier efficient facet in subdomain D] to modify 

DMU32's current score. (All of the loss firms with negative profit & taxes are in class E 

under subdomain D2, i.e., DMU32 is not a referent DMU by other loss firms. Therefore 

the efficiency scores for other loss firms do not need to be reestimated.) We set k = m + s 

= 5, and find a full dimensional efficient facet composed by DMUs 9, 10, 19, 22 and 25 

which yields the highest new efficiency score of 1.44625 for DMU32. Note that with this 

reestimated score, DMU32 still outperformed other four DMUs having negative profit & 

taxes values. 

4. Conclusions 

It has been shown that, by the classification invariance in the BCC model, both input-

based BCC and output-based BCC models can be used to characterize the efficiencies and 

inefficiencies of DMUs when either negative output or input values occur. Output (input) 

values are no longer restricted to be positive and the choice of orientation of the BCC 

model is also unrestricted. This broadens the application of the DEA methodology. The 

empirical study of textile firms has shown that the technique of finding a well-defined 

envelopment facet should be used for a specific observation with negative output values 

to reestimate the efficiency score. The same technique can be applied to situations when 

negative input values are present. 
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Section 1. Introduction 

In this paper inequalities and error bounds are derived for finite state, irreducible, 

continuous time, time reversible Markov chains. To motivate the results we will illustrate 

their use in a reliability example involving a repairable system. The same example can 

arise from the viewpoint of a weighted random walk on the unit cube. Consider a system 

of 4 independent components. Component i alternates between working or up periods, 

exponentially distributed with parameter on and repair or down periods, exponentially 

distributed with parameter /%. These up and down periods are independent both within 

and between components. 

Assume that the values oti, Pi, i = 1, 2,3,4 are given by 

component 1 2 3 4 

failure rate at 1.1 1.8 1.2 .9 

repair rate # 19 21 22 18 

As the parameters vary with component, the number of down components does not 

form a birth and death process. Rather, the process of component states, 

X(t) = {(X1(t),X2(t),X3(t),Xi(t)),t> 0} 

with, 

„ , , _ J 1 if component i is up at time t 
\0 if component i is down at time t 

forms a time reversible Markov chain with state space, 

/ = n?{o,i},;. 

Assume that the system is a 2 out of 4 system, meaning that the system is up at time t if 

and only if at least 2 components are up. The set of states corresponding to system failure 

is thus, 

A = {(0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0, 0,1)}. 
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If we start at time 0 with initial distribution w on I, then the distribution of the waiting 

time until system failure is denoted by CWTA,TA being the first passage time to A. The 

steady state distribution on I, is denoted by ir, and thus C^TA is the time to system failure 

starting in steady state. 

Define Q to be the transition intensity matrix of the Markov process, QA to be the 

restriction of Q to Ac x Ac, and 71 to be the smallest eigenvalue of — QA, which in this 

case equals .02131. Employing error bounds found in Aldous and Brown [1992], and 

Brown [1999], we can well quantify that JC^TA is approximately exponential with parameter 

7! = .02131. 

More specifically, 

(1.1) .99887e-71 ' < Pn(TA > t) < .99959e-71 ' 

(mean) 46.8734 < EnTA < 46.9071 

(standard derivation) 46.92929 < SD„TA < 46.92933 

(skewness) 2 < skewwTA < 2.000004 

(kurtosis) 6.000002 < kurnTA < 6.000015. 

Thus the distribution of LJTA is well understood. Of, at least equal interest, in this 

reliability example is the distribution of the time to system failure starting in the perfect 

state, 1 = (1,1,1,1). As 1 is the best state and stochastic monotonicity is present, C\TA 

is stochastically larger than an exponential distribution with parameter 71, which is the 

time to first failure starting from the quasi-stationary distribution on / (see Section 2.2 

for a discussion of quasi-stationarity). In Section 4 (4.36), we derive an upper bound for 

PW{TA > t), for an arbitrary initial distribution w. Applying it to our reliability example 

with w(l) = 1 we obtain, 

(1.2) e- 7 1 ' < P I ( T A <t)< (1.05125)e-7lt. 
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Thus for example, the 99"1 percentile of CX{TA) falls between 216.1 and 218.5. 

For our next variation, define 2A(i) to be the waiting time starting at t, for the first 

visit to A. We anticipate that for, t, a moderate multiple of the relation time (which in 

this case equals (18.9)_1, that Cw(TA(t)) should be close to C^TA- Two error bounds are 

derived ((4.6) and (4.25)) which treat different variations of this theme. For approximation 

of the survival function, for the reliability example with w(l) = 1, 

(1.3) sup \P^A(t)>S)-P(TA>s)\ < _2 3 2 6 5 e_1 8 .9 t 

s>o P*\TA > s) 

For example for t = .5 (which is 9.45 times the relaxation time), the bound on the 

righthand side of (1.3) is smaller than 1.831 x 10~5. 

Similarly, in our reliability example, 

(1.4) sup \E^n(t)-E,T%\ ^ _0221e-i8.M 
a>0 EKT% 

The choice t = .5 yields a bound which is smaller than 1.74 x 1CP6. Thus, for t > .5, 

the difference between Ci(TA(t)) and C„(TA) is negligible. In an amount of time which is 

a small fraction of E^TA, the chain has for practical purposes "forgotten" its initial state. 

As a final illustration, start the chain in steady state and consider the conditional 

distribution of X(£) given that TA > t. Aldous (1982), reasoned that if the relaxation time 

is small compared to E^TA, then after a passage of time, t, which is small compared to 

E^TA, the chain is unlikely to have hit A, and if not, X(i) should be close in distribution to 

the quasi-stationary distribution on / , (defined and discussed in Section 2.2). Consequently 

the conditional distribution of C^TA given TA > t (and thus the unconditional distribution) 

should be well approximated by the quasi-stationary distribution, C0TA, an exponential 

distribution with parameter 71. This intuition was quantified in Aldous-Brown (1992), 

and leads to (1.1) above. To quantify the idea that X(£ ) |TA > t converges rapidly to CaTA 

when the relaxation time is small compared to E^TA (equivalently to EaTA), we derive 
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an error bound, (4.24), which when applied to the reliability example yields, 

(1.5) sup \Pn(X.(t)eB\TA > t) - a(B)\ < .01342e-18-87869 ' . 
B 

For t = .5, the bound is smaller than 10~6. The above inequalities are particular cases 

of results derived in Section 3 and 4. In potential applications, to convert the inequalities 

to specific numerical bounds we need to compute or approximate two eigenvalues. One is 

Ai, the second smallest eigenvalue of —Q (where Q is the transition intensity matrix), and 

the other is 71, the smallest eigenvalue of -QA, the restriction of — Q to Ac x Ac. For the 

Markov chain corresponding to repairable systems, we show in Section 5.1 that, 

Ai = min(aj + /?,:)• 
i 

In the running example of the 2 out of 4 system, Ai thus equals 18.9. For many Markov 

chains, Ai will be not be analytically available. For small to moderate size matrices there 

are a variety of numerical analysis methods for computing eigenvalues. For large matrices, 

several authors have studied techniques for bounding Ai. Diaconis and Stroock (1991) 

review some of this methodology, introduce a new method, and give several illustrative 

examples. The value 71 = .02131 used in the reliability example, was computed using 

Mathematica for the 11 x 11 matrix, —QA- When not readily computable the quantity 71 

is easy to upper bound, as the extremal characterization of eigenvalues represents 71 as 

an infimum. (See Aldous and Brown (1992), p8; for further comments). For many of our 

bounds, only an upper bound on 7i|Ai is needed to obtain numerical values. In practice, 

for large matrices, we would need to upper bound 7J (perhaps using the extremal charac­

terization), and lower bound Xi (for example with the Diaconis-Stroock (1991) approach). 

Approximations in reliability models has been a topic of considerable interest. Gerts-

bakh [(1984) and (1989), Chapter 3], surveys work in this area, including many contribu­

tions from authors in the former Soviet Union. Some notable works are Gnedenko, et al 

(1969) and Solovyev [(1971) and (1972)]. The model for a repairable system discussed in 
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the introduction was of major interest to nuclear engineers in the early 1970's in their use 

of fault tree analysis to help assess the safety of nuclear power plants. A conference volume, 

Barlow et al (1975), contains several articles by nuclear engineers as well as mathematical 

articles on time to first failure. 

Keilson (1975), (1979)) suggested that C^TA and C\TA could be approximated through 

the use of the spectral representation for reversible chains, and the resultant complete 

monotonicity for C^TA- He anticipated bounds and inequalities based on a parameter, p, 

which reflects departure from exponentiality based on the behavior of the first two mo­

ments of CT,TA (see example (ii), Section 4). Aldous (1982) pointed out the importance of 

the ratio of the relaxation time to E^TA (equivalently of 7i|Ai), as a quantity for bounding 

distance to exponentiality. Keilson's approach is further explored in Brown (1983), and 

the approach of Aldous in Aldous and Brown ((1992) and (1993)), Brown (1999), and the 

current paper. 

Keilson was motivated by models in reliability and queues. More recently there has 

been a great deal of interest in random walks on graphs, which are also examples of time 

reversible chains. In this context first passage times are of less interest than ergodicity, 

but there are connections between the two topics. Diaconis and Fill (1990) develop and 

explore a notion of duality in which ergodicity can be studied via first passage times. The 

current paper uses contributions to the study of distance to ergodicity by Diaconis and 

Stroock (1991), and Fill (1991), in developing inequalities for first passage times. 

A forthcoming book by Aldous and Fill (2002). presents an elegant treatment of 

random walks on graphs. 

Background material on the spectral representation, as well as various definitions 

and properties for reversible chains are found in Section 2. The isometry, which leads to 

our inequalities, is developed in Section 3. It is based on the relationship between the 

underlying chain and its companion star chain, the star chain being discussed in Section 
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2.4. Various bounds and inequalities, which follow from the isometry, and derived in 

Section 4. Section 5 obtains the eigenvalues of — Q, for the Markov chain corresponding 

to a repairable system. 

Section 2. Background and Definitions 

We review some results for time reversible chains. Keilson (1979) is an excellent 

reference. 

2.1 Spectral representation. Consider a Markov chain {X(t),t > 0} with finite state 

space I and transition rate matrix Q. The chain is assumed irreducible with stationary 

distribution IT, and time reversible (n(i)qij = n(j)qji)- For a non-empty proper subset of 

I let QA denote the restriction of Q to Ac x Ac, and have Dn denote a diagonal matrix 

with diagonal entries {n(i),i G Ac}. By reversibility D^QA = Q'A^TT- It follows that 

Dj QADK = Dn Q'ADJ , thus the matrix MA = Dj QAD„ is symmetric and 

MA and QA are similar. As MA is a real symmetric matrix it has real eigenvalues and we 

can choose a complete orthonormal system for RA°, ipi... ipn, consisting of eigenvectors of 

MA- The eigenvalues of MA (which by similarity coincide with those of QA) are denoted 

by — v\, ••-, ~v-n where 0 < v\ <v^...<vn. 

Consider the matrix Rt = eMAt = ^ £ ° fc,
A . By standard methods it follows that, 

(2.1) Rt = D^e^D-1'2 = DlJ2PtD-ll\ where 

(2-2) Pt(i,i) = PAX(t)=3,TA>t), 

where TA is waiting time to reach A, with TA = 0 if X(0) e A. The matrices Rt and 

Pt have eigenvalues {e~"jt,j = 1 , . . . , n } , and <pj is an eigenvector of Rt with eigenvalue 

e-"'- t,j = l , . . . ) n . 
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From (2.1), (2.2) and the complete orthonormality of ipi,..., tpn, 

n 

(2.3) yffij)Pt[X(t) = j , TA>t} = ^ ^ ( i ) ^ f t ( » ) % W e - ' " , . 
fc=i 

Denote by y/n the vector Dj 1; its entries are {^/n(i),i G Ac}. From (2.3), 

n 

(2.4) y/^)Pi(TA >t) = 53(V^F,^J^Wc"''*'-

Denote by 71 < 7 2 . . . < 7m the distinct values among v\... vn. Define Sr = {k : 

Vk = 7r}, and define <Sr to be the subspace generated by {ipk,k 6 Sr};Sr is thus the 

eigenmanifold corresponding to j r . Finally, delete from 7 1 . . . 7 m any eigenvalues for which 

^2Sr(V^y'Pk)2 = 0, and relabel the resulting set as 71 < 72 • • • < 7m- Then (2.4) can be 

rewritten as, 

m 

(2.5) VW)Pi{TA >t) = £ ( P s , . ( v / F ) ) ( i ) e - ^ 
7 — 1 

where Psr(\ZTr) is the projection of ^/n on <Sr. 

Define p(r) = \\Psr(\/^)\\2,r — l ,---, '«i. From the definition (of 7 1 . . • rym),p{r) > 

0, r = 1 , . . . , m, and, 

TTi m 

(2.6) £ p ( r ) = || £ P 5 „ ( V ^ ) | | 2 = Hv^ll2 = *(AC) = 1 - Tr(A). 
1 1 

Next, from (2.3), 

Tl. 

P*{X(t)=j,TA >t) = v / ^ S Z ^ w O w t W e " " 4 ' 

(2.7) A:=1 

1 = 1 

From either (2.5) or (2.7), 

m 

(2-8) P„(TA >t) = ^ p ( r ) B ^ ' . 
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Finally we reference for later use an inequality (Aldous and Brown (1992 p.12)), 

(2.9) p(l) > 1 - f . 

where Ai is the second smallest eigenvalue of —Q. This leads directly to (Aldous and 

Brown (1992 p.2)) 

(2.10) (1 - ^)e-^ < P«(TA > t) < (1 - n(A))e-^ 

Inequality (1.1) is a direct application of (2.10). 

2.2 Quasi-stationary distribution. 

Darroch and Seneta (1965) formalized the concept of a quasi-stationary distribution. 

In our context, define QA to be irreducible if for each pair x,y 6 Ac, there exists an m, 

and {zi 6 Ac, i = 1 , . . . , m} such that, 

1x,zlqZm,y X | Qz,,z, + l >0. 

i = l 

Thus, it is possible for the chain to go from state x to state y, without passing through A. 

For QA irreducible, Darroch and Seneta show that for all x, j G Ac,t > 0 

(2-11) Km Pw(X(t)=j\TA>t)=0U), and 
t—yoo 

(2.12) lim PX{TA > t + s\TA > t) = e"7 l S , 
t—J'OO 

where, 

(2-13) p{j) 

and <j>i is the unique eigenvector (up to a constant multiple) of —QA corresponding to the 

eigenvalue 7 J . 
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If QA is not irreducible (but recall that Q is irreducible), then it is still the case that, 

(2.14) lim PK(X(t) = j\TA >t) = y/Aj)PSl(V^)CJ)/P(1)> and 
t—¥oo 

(2.15) lim Pn(TA > s + t\TA > t) = e~7lS, 
t—too 

(2.14) and (2.15) following from (2.7) and (2.8). 

Since we will not require that QA be irreducible, we will refer to, 

aW*vap)JeA( 

as the quasi-stationary distribution on Qc, and £ Q ( X 0 , an exponential distribution with 

failure rate 7!, as the quasi-stationary distribution of TA • Of course when QA is irreducible, 

a and 0 coincide, and the stronger properties, (2.11) and (2.12) hold. 

2.3 Post-recovery Distribution. The post recovery distribution on Ac is defined by, 

a(i) = lim P„[X(t) = i\X(t~) 6 A,X(t) e Ac] 
t-+oo 

= 5Z n(a)^a*/ ] C 7r(Q)9«A= = K(i)qiA/ ^2 ir{k)qkA, i G Ac 

a £ A a£A keAc 

where qiA = S j e A Qij f° r * ̂  ^°- The post recovery exit time distribution of TA is defined 

by C„TA, the distribution of TA under X(0) ~ a. Now, 

T ( J ) . (2-i7) <HA = - ^2 qa = Yl y-^y^fcM^fcO'H-
i€A= jeA-,k V 7r^'' 

From (2.15), 

m 

(2.18) TTjftyi = iA(iI^(\/7r,¥'fc)Vfc(?:)'yfc = V / ^ ( 0 X ^ 7 r ( ' P ' s - ^ ) ) ^ 

it r = l 

and, 

7n 

(2.19) ^ •KiqiA = ^ 7 r p ( r ) = (7,p), so that 
ieAc r = l 
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(2.20) a(0 = \ / ^ « X > ( i ^ ( ^ ) ) W / ( 7 , p ) -

From (2.5), (2.8) and (2.20), 

771 

Pff(TA > t) = ^ ( ^ ( T A > t) = X>p(r)e-"7( 7 )p) 
l ^ 1 ) i r=l 

= U{t)/f*(o) 

where /„• is the pdf corresponding to the absolutely continuous component of C^TA (all but 

the atom at {0}). Thus, as Keilson (1979) observed, the stationary renewal distribution 

corresponding to CaTA is CV\ACTA where ir\Ac is the restriction of n to Ac((n\Ac)(j) = 

ir(j)\n(Ac)),j 6 Ac, 0 elsewhere). 

2.4 Star chain. The star chain {X*(t),t > 0} corresponding to {X(t),t > 0} and A, 

is a time reversible Markov chain with state space { 0 , 1 , . . . , m} and transition intensity 

matrix, 

(2.22) Q'(i,j) 

li,i = l-....,m, j = 0 
-7 i i i = ' ; / 0 

^ = o.^o 
(P.7) 

' • ( 1 ) 
, ! = j = 0 . 

In (2.22) the quantities 7 1 . . . 7 m , P i . • . p m are the same as those appearing in (2.8). 

It easily follows that the stationary distribution, -n*, of X* has n*(i) = p(i), i = 0 , . . . , m 

with p(0) = iv(A). Defining A* = {0} and TV as the waiting time to reach {0}, it easily 

follows that C„-TA* = C-KTA, C^'TA- = C„TA and £„*TV = C-CCTA where n*,a*,a* are 

the stationary, post-recovery and quasi-stationary distributions for the star chain. 

Note that X and X* may have an unequal number of states, and 7r and n* may be 

quite different in character. For example we may have •n uniform and 7r* assigning most 

of its mass to a single point. Furthermore QA, is diagonal, while QA in most interesting 
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examples will be irreducible. Thus, the resemblance between X and X* appears to be quite 

superficial. Nevertheless the results of section 3 show that there are interesting similarities 

of behavior. 

Section 3. Main results. 

Consider the m dimensional subspace of RA (the set of real-valued functions on Ac), 

consisting of all linear combinations of Dj Psr ( ( v ^ ) ) ) r = 1> • • • i m - Call this subspace 

>S. A typical member looks like, 

771 

(3.1) xi = y/rti)'£ix(r)[PsAV^)}(i), ieAc 

Define a mapping V from Rm to <S by, 

(3.2) ^y(0 = \A(OEi7T(p^(>/5F))W. ^&c 

where as before p(r) = | jJP^,. (N/TT) 112 • 

I / O 

Note that D-K {Vy) is chosen to have the same Fourier coefficients with respect 

to Psr(s/n)/yp(r),r = 1 , . . . ,m as Dp ' y has with respect to e r , r = l , . . . , m where 

e r ( j ) = 8{r,j),j = l , . . . , m . 

Several properties of V are found in Lemma (3.1) below. 

Theorem 3.1 The map V from Rm to S, defined above, has the following properties: 

(i) (Vy, K 4 - =£ £ * ^Wr^ = Sr "W = (*> *)P-

(ii) V is linear, one to one and onto. 

(iii) £A.(Vy)i = n * ! / ( r ) 

( iv) Ei<(^!/)i-p i(JA > t) = £™z/(r)e~7-*; Vy i s t h e unique element in S with 

this property. 
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(v) If x e RA' satisfies JT,AcXiPi(TA > t) = J^Tx(r)e-T-', then ||a;|U-i > 

HVill,,—! = | | i | | p - i , with equality if and only if x — Vx. 

(vi) If w and Vw are probability vectors (over A*c and Ac respectively) then 

£VV>TA = C-WTA' and, 

•J*(v„, ^ def V ((Vv>)j ~ *(*))* - (ST (Vv))i\ i - (ST w2(rh i 

o 

) - P ( 
p(r) EKrLf))2-xlKP)-

Proof, (i) Prom (3.2), 

\r^ 2/(r)z{r) 

(ii) V" is obviously linear. If x € S is given by (3.1) then x = Vy with y(r) = x(r)p(r), 

thus V" is onto. If Vxi = Vx2 then \\V(xi - x2)\\n-i = ||a:i - rc21|jp-i = 0 (by (i)), thus 

xi = X2 and V is one to one. 

(iii) Prom (3.2), 

E™< - E $}(^, p̂ (V5f)) = E ^ ( o = 5 » 

(iv) From (2.5) and (3.2), 

= E»( r ) e" 7 p t -
r 

Uniqueness follows since if z £ 5 , then by (ii), z = Vy' for a unique y' 6 i? m . Thus 

if Y,ZiPi{TA >t) = T,(Vy)iPi{TA > t), then £(,y(r) - y ' ( r ) ) e - ^* = 0 for all i > 0, thus 

y = y' and z = Vy. 
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(v) Prom (2.5), 

Y.XiPipA >t) = J2(D-^x,PsA^))e-^. 

Thus x(r) = (PSr(D~1/2x),Psr(V^))- By Cauchy-Schwartz, 

(3.3) x\r) < \\PSr(D-^2x)\\2 \\PSr(V^)\\2=p(r)\\PsA^1/2x)\\2 

with equality if and only if PSr(D^1/2x) = f^ |Ps, . (v^)- T l l u s . from (3-3)> 

E S * En (̂̂ -1/2-)ii2 * H^1/2*H2 = E | y 

with equality if and only if D^1 x = J2 ̂ )Ps,.(V^)^ t n u s if a n d o m y if z = Vx. 

(vi) CVWTA = C-VJTA' by (iv). The chi-square equality follows from (i). o 

We next consider product moment identities for certain conditional expectations. 

Corollary 3.2 (i) Let gi,g2 be functions satisfying f \gi{x)\e~llXdx < oo,i = 1,2. Define 

Pgj (t) = Ei(gj(TA)), i € I,j = 1, 2, and / ^ (r) = Er{gj(TA.)), r = 0,... ,m,j = 1,2. Then 

£„[ )8 9 l (*(0) ) /U*(0) ) ] = Ep[fKn(X*(0))(3;2(X*(0))) 

(ii) If, in addition, 31,52 are distribution functions of measures Hi,fi2 on [0, 00) with 

M 0 } = 0 , j = 1,2, then, 

£ i r & M * ( 0 ) ) / W * ( 0 ) ) ] = ^[( .9 i * 92)(TA)] = Ep[(9l * g2)(TA>)] 

where, 

Si * 32(*) = / 9i(t - .7;)f/p2(a:), 
Jo 

the distribution function of )i\ * \ii. 
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Proof, (i) Define Wj(r) = p(r)p*g.(r) = p(r) /0°° g^e-i^di, r = 1 , . . . , m,j = 1,2. 

Prom (2.5) and (3.2), 

m 

(r-4) r = i 

= (Vtu,-)(0. i e 4 c 

Thus by Theorem (3.1) (i) and (3.4), 

E„[(3gi(X(0))pg2(X(0))} = *(A)gi(0)g2(0) + (Vw1,Vw2),-1 

(3.5) 
= p(0)ffi(0)fl2(0) + (toi.tDa),-. = ^ ^ ( ^ ( ( ^ ( X ' f l ) ) ) ] . 

(ii) Since <?i(0) = 32(0) = 0 and g(t) is a distribution function, 

ft.(r) = Er / d9j(t) = Er / ITA.>t d9j(t) 
Jo Jo 

= / e-^dgjit) = rl>gj(yr), J = 1,2. 
Jo 

Thus, 

m m 

(3.7) K , » " 2 ) r i = ]T)p(r )^M7r)<M7r) = YsP^ai'g-.M-

(3.6) 

Next, 

K[(ffi *g*)TA] = £P[(<?i * «/2)(^.)] = **[ /&.» (**(0))] 

= 52p(r)'K*<M (by (3.6)). 
(3.8) 

The result follows from (3.5), (3.7) and (3.8). 

Corol lary 3.3. Suppose that w is a probability distribution on { l , . . . , m } , and Vw a 

probability distribution on Ac. Define CVw[X{t)\TA > t](£w([X*(t)\TA. > t}) to be the 

conditional distribution of X(t)(X*(t)) given TA > t{T%> t) under X(0) ~ Vw(X*(0)) ~ 

w). Then, 

(0 V{Cw{X*(t)\TA. > t)) = Cv,„(X(t)\TA > t) 
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(«) X\{Cvw{X(t)\TA >t),n) = xl{Cw{X*{t)\TA. >t),p) 

E M^PvwiXit) = i\TA > t)PVw(X(s) = i\TA > s) 
i€Ac 

m 

(m) = E f p W ) " 1 ^ ^ ' ! ' ) = r\T*' > 0^»(-x"W = r|iu. >«) 
r=l 

= E ^ T ^ e - ^ ( ' + s V - P v r o ( ^ > t ) /V«( rx > a) 

fri p(r) 

Proof (i) . Prom (2.3) and (3.2), 

PVw[X{t) = j , TA>t]=J2 (Vw)iPi[X(t) = j , TA > t] 

m , % 

(3.9) = V ^ E ^ S r E ̂ 0')(̂ (v̂ ),̂ ) 
r=l n ' fc£SP 

Furthermore, 

(3.10) P»[X*(t) = r,TA. >t] = w(r)e-T" t. 

The result now follows from (3.2), (3.9) and (3.10). 

(ii) Follows from (i) and Theorem (3.1), (vi). 

(iii) Follows from (i), (3.10) and Theorem (3.1), (i). 

Section 4. Examples. 

Example (i) Choose gi(t) = g2(t) = ta,a> 0. 

Then ipg(s) = f e-*tata-ldt = T(a + l ) / s " . Applying Corollary (3.2) we obtain, 

(4.1) Ev[E\n\X{Q))\ = Y\a + 1) £ >4g = r (2a + l j ^ ^ 
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Define ca = E*T%/T(a + 1), then from (4.1), 

(4.2) Y^[E(TX\X(0))]/(E^TX)2 = ̂  - 1. 
c; 

Assume 7! < Ai. Multiply all three components of (2.10) by ata~1 and integrate t 

from zero to oo, obtaining 

(4.3) (1 - ^ ) 7 l " a < ca < (1 - 7r(A)hr a . 

Prom (4.3), 

(44) c2 a 2%-{%)*-*(A) 7 1 7 l 
( 4 - 4 ) 4 ^ ( l - ^ ) 2 " 2 A i ( 1 V ' 

Thus when 71/A1 is small, so is the squared coefficient of variation of E(T%\X(0)). 

Define 2A(£) to be the waiting time starting at t to reach A. Set h(i) = Ei(T%), then 

Eih(X(t)) = E[T%(t)\X(0) = i]. Aldous and Brown (1992 p.7) derive for general h, 

1 " * ( * ) „ „ _ , , / W n U „ - A i t (4.5) \Eih{X(t)) - E„h(X(0))\ < J -^V&Tnh(X(Q)) e 

Applying (4.2) - (4.5) with h(i) = E{T% we obtain. 

a>o EVT% \i U Ax 7T(i) 

Moreover, for general w, we can replace J—ny- on the righthand side of (4.6) by 

X\(w,n). 

Inequality (1.4) is the specialization of (4.C) to the reliability example with i = 1 and, 

4 

TT(1) = [ ] [ f t k + ft] = -822367. 
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Example (ii). For X completely monotone, Keilson (1979) suggested 

p = [(EX2/2(EX)2) - 1] as a measure of departure between X and an exponential dis­

tribution with mean EX. The author (Brown (1983)) showed that small p indeed implies 

small sup norm distance between the survival function of X and that of the approximating 

exponential distribution. 

A further property of p follows from example (i). Setting a = 1 in (4.2) yields, 

(4.7) V a r ^ ( T A | X ( 0 ) ) / ( K T j 4 ) 2 = p 

Thus p is the squared coefficient of variation of E[TA\X(0)]. A small value of p 

indicates that the variance of E(TA\X(0))/E„TA is small under X(0) ~ n. For chains 

with IT uniform and p small, (4.7) can be interpreted to mean that most of the quantities 

{EiTA/E„TA,i e Ac) are close to 1. 

Some consequences of a small coefficient of variation for E(TA\X(0)) are explored in 

Aldous and Brown (1992). 

Example (iii). For s,t > 0 define p\{pi) to be a one point probability distribution 

concentrated at s{t). Then pi * /i2 is a one point probability distribution concentrated at 

s + t. From Corollary (3.2), (ii), 

(4.8) P,r(TA>S + t)=J2 nPi(TA > t)Pi(TA > s). 
i£Ac 

Equivalently, 

(4.9) J2 *i[Pi(?A >s + t)- P,(TA > .s)Pt(TA > t)} = 0. 
i£Ac 

Thus "on average" TA behaves as if it were conditionally exponential given X(0) 

although typically TA\X(0) = i will not be exponential for any i. 
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Integrate both sides of (4.8) with respect to s from 0 to oo to obtain, 

(4.10) £ ) *{i)EiTA[Gi(t) - Pi(TA >t)] = 0 

i€Ac 

where Gi(t) = ft Pi(TA > s)ds\EiTA, the stationary renewal distribution corresponding 

to £JTA- Thus once again TA behaves in an average sense as if it were conditionally 

exponential given X(0). 

David Aldous (personal communication) points out that (4.8) follows from the obser­

vation that for the stationary version of {X(t), —oo < t < oo} on the whole real line, that 

TA = M{t > 0 : X(t) G A} and fA = ~sup{t < 0 : X(t) € A} are conditionally i.i.d. 

given X(0). 

Example (iv). Recall the quasi-stationary distribution discussed in Section 2.2. For the 

star chain the quasi-stationary distribution, a*, is a one point probability distribution at 

{1}. Thus from (2.13) and (3.2), 

Va*(i) = y/^j)PSl(VZ){i)/p(l) = a(i) 

thus Va* = a and Theorem 3.1, (vi) yields, 

When 7x < Ai, the bound (2.9) combines with (4.11) to give, 

(4-12) x\{^)<-^~.. 
Ai - 7 1 

which improves slightly upon a bound given in Aldous and Brown ((1992) p.9). 

Example (v). Recall the post-recovery distribution of Section (2.3). For the star chain, 

(4.i3) g . ( r ) = p ( ; h W r = L . . . , r o . 
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From (2.16) and (4.13) we see that Va* = a. It thus follows from Theorem 3.1 that, 

(P,72) 

(p, T ) 2 

21 \ 21 * \ \P' 1 ) i 

_ MO) , 

where /CT is the pdf of C„TA-

Since ||ff|£_, = lk* | | 2- i (Theorem (3.1)) it also holds that, 
771 

(4.15) £ *,& = X>(r)7
2(r). 

Combining (2.6), (2.17) and (4.15) we have, 
771 

(4.16) 2>tfiA = E ^ ' V W ' J =0,1, 2. 

In (4.16), the identities for j — 0 and 1 are well known but j = 2 (4.15) appears to be 

Example (vi). Observe that Vp(i) = \/n(i)Y17^i(psAV^))(i) = T(») . * e ^ ° > t h u s 

n = Vp. Define 7rt(j) = P„(X(t) = j\TA > t). From Corollary (3.3), (iii), 

V *tV)*.V) _ ^ ^(r)K(r) _ ZZMr)e-lAt+s) 

(4.18) ^ ^ ^ P ( r ) P*(TA>t)P*{TA>s) 

P„(TA>s + t) 

PATA > t)p„(TA > sy 

As £ —>• oo, 7T( —> a, the quasi-stationary distribution. Now, 

(4.19) 

IK* - a l l ' - = I K - a*H2-. = (PATA > t)r2[Pw(TA > It) - 2e-^Pn(TA > t) + -P%(TA > t)] 

= {P^TA > t))~2R(t) 

where R(t) is the expression in brackets on the right side of (4.20). From (2.8), (2.10) and 

(4.19) we find, 
m in 

m = £Kr)e-
27'< +Pr1(£Kr)e~7rt)2 

(4.20) '= 2 <=2 

(l-x(A))(l-*(A)-p((l)) _272 t 

P(l) 
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Assume 2L < i ; from (2.9), (2.10), (4.19) and (4.20) we obtain, 

(4.21) IK - allj-x < (1 - ^ ) " 3 ( 1 - * ( A ) ) ( f - n{A))e-^-^K 
A\ Ai 

Using (4.21) and an argument relating total variation distance to chi-square distance 

(Diaconis and Stroock (1991 p. 42)), 

max M S ) - a(B)\ = \ £ WtU)~°U)l«V) < | lK* - «| | ,-x 
(4.22) ^A* K ' 

< ^(1 - g ) " 3 / 2 [(1 - T(A))(g- - AA))]1'2 e-tT-n*. 

Next, it follows from Aldous and Brown ((1992, p.12)) and Brown ((1994, p.13)) that 

Ai < X{ < 72 where X{ is the second smallest eigenvalue of — Q*. Thus, 

(4.23) 7 2 - 7 i > A i - 7 i -

Finally, from (4.22) and (4.23), if 71 < Ax then 

(4.24) 

niax \PAXteB\TA > t) - a(B)\ < 1(1 - ^ ) " 3 / 2 [ ( g - - *(A)) • (1 - ^ A ) ) ] 1 " ^ - " " . 

Inequality (1.5) of the introduction applies (4.24) to the reliability example, noting 

that, 
4 4 

<A) = [ I l ^ ^ P + E ^ - 4^9 x 10-*. 
1 

Example (vii) Our purpose in this example is to derive the inequality, 

(4.25) sup ' f " ^ W > ' ) ~Pf* > *)i < l X i K ? r ) ( 1 _ 21 l e - , , 
s PT(TA > s) 2 Ai 

This inequality was applied to the reliability example resulting in (1.3). 

In Section 3 we dealt with distributions on A'" or (for the star chain) on { 1 , . . . , m}. 

Now it will be convenient to allow for mass at A or (for the star chain) at {0}. The 
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modification is rather trivial. Represent a vector on {0 ,1 , . . . ,m} by w = (""i0') where 
/ w(l) \ 

w = \ : . The range of V (the analog of V) is RA'U^, where a represents the 

\w(m)J 
collapsing of A to a single point. Define V by, 

^ ( o A M o n gothat 

\ w / \VwJ 

(Vw)(a) = u>(0) and (Vw)(i) = (Vw)(i) for ieAc. The inner products are then modified 

, , io(0).?(0) ^w(r)z(r) 

_ x{a)y{a) ^ sfo)y(t) 

to 

We see that, 

(yv,,vz),-l = ̂ ^ + (v^vz). 
w(0)z(0) ,_ _. , 

= ,£, + K Z)v-1 = (W, Z)p-i, 

so that the properties of V (given in Theorem (3.1)) extend to V. 

Suppose now that PW{TA > t) = YlT=i n>*(r)e_'r' *. It follows that, 
m 

(4.26) «/*(0) = 1 - £ > ' ( r ) = Pw(rA = 0) = u/(A) = 1 - £>(*) . 
1 A ' 

Moreover from Theorem (3.1)(v), and (4.25), 

v 2 / t . „N def ^ K ( Q - P ( Q ) 2 _ K ( 0 ) - HA))2 , A K ( r ) - p ( r ) ) a 

0 P(i) n(A) V P(r) 
(4.27) 

T(^) ^ ^ *(,) " AA) + 4 - ^ = X I ( ™ , T ) . 

Next, define TK(ui*,p) to be the total variation distance between w* and p. Thus, 

-. m . TM 771 

(4.28) TV(w*,p) = ^ $ > * ( r ) - p ( r ) | = £ ( V ( r ) - p ( r ) ) + = E ^ ' W -P( r ) )~> 
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where a+ = max(0, a),a~ = max(0, - a ) . 

Now, 

m rn 

PW(TA > s) - PATA >S) = 5 > * W - P(r))e-^ < e~^s £ > * ( r ) - p(r))+ 
(4.29) 1 i 

<e-y^TV(w*,p), and 

771 

(4.30) Pn(TA >s)- PW(TA >s)< e~^s £ ( t u * ( r ) - p ( r ) ) " < e - T ' T V K . p ) . 
l 

Gathering together (4.27) - (4.30) and applying the Diaconis-Stroock argument as in 

(4.22) we obtain, 

(4.31) 

\PW{TA > S)-P„(TA > s)\ < TV(w*,p)e-^s < \X2{w* ,p)e~^s < ^Xi(w,n)e-^
s. 

Next, observe that, 

Pw(TA(t) >s) = ^ m W ^ W P y l T , > .s) = ^wt(j)Pj{TA > s) 
(4.32) i,j i 

= PWt{TA>s). 

Applying (4.31) with w replaced by wt (in view of (4.32)) we find, 

(4.33) \Pw(TA(t) >s)- P„{TA > s)\ < i X i K ^ ) e " 7 l s -

Next, we recall a result of Fill ((1991) p.72), 

(4.34) Xx{™uK)<Xi{™,K)<-~Xlt-

Finally (4.32) - (4.34) and (2.10) combine to give, 

( 4 3 5 ) | P , ( r , ( t ) > , ) - P , ( T A > f l ) | ^ i {1_ ? ) _ V A , 
*Try1 A > S) Z Ai 

Since the righthand side of (4.34) is independent, of s, (4.25) now follows. 
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Example (viii) For our last example we will derive an upper bound for PW(TA > t), 

(4.36) PW(TA >t)< \[w{A<) + (n(A<) £ I ^ ) * / V 7 1 ' . 

The coefficient of e~71 ' in (4.35) is the average of two quantities, the smaller of which 

is w(Ac). 

This inequality was applied to the reliability example, resulting in (1.2). 

To prove (4.36) note that, 

m m 

(4.37) PW(TA >t) = £ > » e - 7 " ' < e-^£(w*(r))+ 
l I 

Now, 
771 771 771 

5>*(r)+ + EK(r))- = E lw»l> and 

1 1 1 
771 771 

E ( w » ) + - Y,(w*w = w(AC)> thus 

771 - 771 

(4.38) E(W*M)+ = ^ E K M I + ™(^)] 
I 

Next, 

2L 

l 

(4.39) * 1 

^<A\{A^ p(r) J -MA)L, p{r) 1 • 

Finally from Theorem (3.1)(v), 

(4.40) E ^ f <E:'"2(l) 

The result (4.36) now follows from (4.37) - (4.40). 
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To derive a related result, denote the right side of (4.36) as we 7 l ' . It follows from 

(4.36) that, 

w*(l) = lim [e7 l tP r o(rA > t)] < lim [^ ' (we" 7 1 ' ) ] = w, 
t—*oo t-+oo 

thus, 

(4.41) 0 < «,*(1) < hw(A°) + W) £ !Sr)1 /2l-

Section 5. C o m m e n t s and Addi tons . 

Sect ion 5.1. For the repairable system of n independent components with failure rates 

a* and repair rates Pi, i = 1 , . . . , n, describe a state x by, 

(5.1) Xi = 1, ieB, Xi = 0, ieBc 

where B is a subset of {1 ,2 , . . . , n}. (We allow B to be empty). The transition intensity 

rates are given by, 

{
di,yi-0,yj= Xj,j ± i, for some ieB 
Pi, yi = 1, yj = Xj, j / i, for some ieBc 

- (£ B " i+ £*,«&)-!' = * 
0, elsewhere. 

We now show that the eigenvalues of —Q are, 

(5.2) { ] T ( a i + A ) , B c { l , 2 , . . . , n } } . 
ieB 

The matrix, —Q, has a single eigenvalue equal to zero, and has as its second smallest 

eigenvalue the quantity, 

Ai = min(a7; + ft). 

To prove (5.2) we appeal to the spectral representation, 

(5.3) Pt(x, x) = Pr(X(t) = x\X(0) = x) = n{x) + J^ i>l{x)e~Vkt 
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where TT(X) is the stationary probability of x, {v^} are the non-zero eigenvalues of — Q, and 

{ipk} are the eigenvectors corresponding to {vk}-

Expression (5.3) follows from the spectral representation of the matrix Q, by an ar­

gument very similar to that given for QA in Section 2.1. 

Furthermore, 

2_. z_/^k( x) = multiplicity of Ar 

{k:vk=\r} x 

where {Ar}, is the set of distinct values from {vk}-

It follows that A is an eigenvalue of — Q if and only if for some xel, Pt{x, x) possesses 

a term of the form ce~Xx, with c > 0. 

For the repairable system model, consider x, defined by (5.1). Note that, 

(5.5) P « ( 0 , 0 ) d=lf PriXM = 01^(0) = 0) = -^— + - J L ^ - ^ + A ) * , 

and 

(5.6) P tW(l, 1) d=lf Pr{Xi(t) = l|Jf«(0) = V A 

at + ^ a( + Pi 

Next, 

(5.7) Pt(x,x) = (n^( i )(l.l))(II ^(0,0)). 
ieB ieB'-

Define V to be the collection of non-empty subsets of {1 ,2 , . . . , n}. Then substituting 

(5.5), and (5.6) into (5.7) we find, 

DeV Di * y i D, l Hl 

where Dx = {D n Bc) U (Dc n B) and D2 = ( D n B ) U (Dc n B c) . 

As the coefficient of e" 
-(£D("-+ft»* is positive for all DeV we see that zero and every 

^2r>(ai + A) a r e eigenvalues of — Q and that there; are no other eigenvalues. The smallest 

positive eigenvalue of — Q is thus, min(a; + Pi). 
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The general principle that follows from this argument is that if X (t) = (X\ (t),..., Xn (t)) 

is a Markov chain, obtained from the product of independent, finite state, time reversible 

chains, then the distinct eigenvalues of — Q are the distinct values from among, 

n 

{Y/^,rieMi,i = l,...,n} 
i=l 

where Mi is the set of distinct eigenvalues of -Qi,i = l , . . . , n . Moreover, the smallest 

positive eigenvalue of — Q is given by mini minMin(o,oo)-^ • In the repairable system 

example, Mi = {0, a* + /%}. 

For most chains, Pt(x,x) is difficult to explicitly compute. Thus, the above proba­

bilistic approach to finding eigenvalues will not work in these cases. 

Section 5.2. Some of our results require 71 < Ai. This property holds if A is a singleton 

set. We can always "collapse" A to a single point without changing the distribution of 

C'WTA (see Aldous and Brown, (1992) p.5). The collapsing leads to a chain with transition 

matrix Q'\ 71 remains the same, and Ai is replaced by A'x > Ai, with A'x > 71. For example 

consider the Markov chain with state space {0,1, 2} and transition intensity matrix, 

/ - I V <l\ 
Q = c -c 0 

V C 0 -<:) 

with 0 < p < l , g = l— p, and 0 < c < 1. The eigenvalues of — Q are 0, c and 1 + c, thus 

Ai = c < 1. Define A = {1, 2}, then 71 = 1 > c = Ai. The collapsed chain has, 

The eigenvalues of —Q' are 0 and 1 + c thus A'j = (1 + c) > 1 = 71 > c = \\. 

The above example illustrates that for the study of questions related to TA, A'X is 

more appropriate, and leads to sharper inequalities, than Ai. However, in the reliability 

example, Ai was available without computation and lead to excellent bounds. Only a slight 

improvement would have been achieved by using Ai(Ai = 1 8 . 9 ^ = 19.0312). 

Another consideration is that Â  varies with A, while Ai does not. It is convenient to 

have a single relaxation time (AJ"1), independent of the choice of A. My recommendation, 

especially in the repairable system model is to use X\ in obtaining bounds and inequalities 

for TA- If the bounds are not satisfactorily small, then attempt to compute A'x. 
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ABSTRACT 

[In this paper, we study the applications of information-theoretic concepts to characterise 

probability distributions as maximum entropy or minimum cross-entropy probability distributions. 

We also develop an entropic measure of stochastic dependence and apply it to obtain the measure 

of dependence in some multivariate distributions and also to measure dependence in contingency 

tables. We also derive the principle of maximum likelihoodfrom both maximum entropy and minimum 

cross-entropy principles. We also compare entropic method of estimating parameters with Fishers 

and Pearson s methods. We also find probability distribution of a family which is closest to a 

mixture of distributions of some members of the same family]. 

INDEX TERMS 

CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS/ ENTROPIC MEASURE 

OF STOCHASTIC DEPENDENCE/ CONTINGENCY TABLES/ PARAMTERIC 

ESTIMATION/ MIXTURE OF DISTRIBUTIONS/ 

1. MATHEMATICAL STATISTICS. 

Mathematical statistics is concerned with using the theory of probability for drawing inferences 

about a population from a knowledge of a random sample drawn from the population. The only 

earlier knowledge about the population may be whether the variate is continuous or discrete and 

what the range of the variate is or which are the values taken by the random variate. We may also 

know the form of the density function containing one or more parameters and we may like to use the 

knowledge of a random sample from to population to estimate the value of the parameter or 

parameters. This estimation will be uncertain because we are dealing with random variates. In statistics, 

we also want to estimate the degree of uncertainty about the values of parameters. We also introduce 

axioms like the principle of maximum likelihood to go from inductive inference to deductive inference 

so that the powerful method of deductive logic used in mathematics can be applied. We can also use 

these methods in non-parametric estimation, testing of hypotheses, sequential analysis and Bayesian 

inference in order to enable us to take decisions under conditions of uncertainty. 
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2. INFORMATION THEORY. 

Information theory also deals with drawing inferences under conditions of uncertainty. It 

starts by developing measures of uncertainty. The most important measure of uncertainty of a 

probability distribution P=(p,,p7, ,pj was developed by Shannon [8] in 1948 as ~X Pil"Pt. 

Earlier Laplace had given his principle of insufficient reason which stated that if there is no information 

which makes one outcome more likely than another, then we should take/?;=p.,= =p=l/n, 

that is we should consider all outcomes as equally likely because there is no reason to choose any 

other probability distribution. The uniform distribution maximizes the measure of uncertainty given 

by Shannon. Later in 1957 Jaynes [1] modified Laplace's principle to the case when some information 

is available about the probability distribution in the form of knowledge of some moments or 

probabilities or some inequalities about moments or probailities. He stated his principle of maximum 

entropy that when we have some information about the probabilities, we should choose that probability 

distribution which satisfies all the available information, but which otherwise maximizes Shannon's 

measure of uncertainty or entropy. This principle could also be obtained by using Kullback-Leibler 
n 

[7] measure of directed divergence S Pi ' " (A ' it) or discrepancy of the probability distribution P 

from the apriori probability distribution Q=(q1,q2, qj . In the special case when Q is the uniform 

distribution U=(l/n, 1/n, 1/n, ,1/n), this measure of directed divergence (or cross-entropy) 

becomes 

(fttf) = ta»-(-|>,lnJ ( 1 ) 

so that Shannon's measure of entropy is In n -D (P:U), so that the nearnerP is to the most uncertain 

distribution namely U, the greater is its uncertainty. 

If we know the priori distribution Q which does not satisfy the constraints on probabilities, 

then Kulback's [6] principle of minimum discrimination information states, that we should choose a 

distribution which should be as near as possible to the known prior distribution, subject to the 

constraints on probabilities being satisfied. In the particular case when Q is the uniform distribution, 

this principle reduces to Jaynes principle of maximum entropy. 

For a continuous random variate varying over the interval [a,b], Shannon's and Kullback-

Leibler measures are 

- £ f(x)lnf(x)dx and I f{x)lnf(x)/g(x)dx (2) 
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3. CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS AS MAXIMUM 

ENTROPY OR MINIMUM CROSS-ENTROPY PROBABILITY DISTRIBUTIONS. 

Here we first want to find the maximum entropy probability distribution when information is 

available in the form of some moments about the distribution. Thus suppose we know that a continuous 

random variate varies from _<» to +00 and its mean and variance are known as m and a
2 , then 

maximizing the entropy, -J f(x)lnf(x)dx subject to 

j"^ f{x)dx = l.p xf{x)dx = m.fa> (x- m)2 f(x)dx = a2 (3) 

by using calculus of variations, we get 

/ N / --{x-mf/a2 

which shows that the maximum entropy distribution, when mean and variance are known for the 

random continuous variate varying from _«> t o x is given by the normal distribution with mean m 

and variance a2 In other words, the normal distribution is characterized by the two simplest moments 

viz. the mean and the variance. 

In general, most of the useful probability distributions can be characterized as maximum 

entropy probability distributions, when one or two simple moments like 

E(x),E[x2),£(/«x),E(ln(l- x))„ E(ln(l + x2)) e tc . (5) 

are specified. 

In this way go easily get the following maximum entropy distributions 

Name 

Beta 

Cauchy 

Distributions 

Density Function 

f(x) = xp-'(l -x)"~' / B(p,q);0 < x < I 

where B(p, q) = T(p)P{q) /r{p + q);p,q>0 

f(x) = (X/n)(\2 +x2y ,-oo<x<cc,X>0 

Chi-square 

f(x) = x^,2y> exp(~x(2a2))/[2"/2a"T(n/2)];x> 0 

Entropy 

(in nats) 

lnB(p.q)-(p-l)[v(p)-v(p + <l)] 

-(q-iiv{q)-v(p+<i)] 

In (4nX) 

ln[2a2T(n/ 2)] + (l-n/ 2)y(n/ 2) + nj2 

Erlang f{x) = [|3"/(« - l)l}c"~' exp(-^x); x, P > 0 (1- n)V(«) + / » [ l » / p] + n 
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Exponential f(x) = a ' exp(-X/G);X,G>0 1 + lno 

Laplace 

Logistic 

f(x) = (1/2)$-' exp(l-\x-Q\/$);-oo <x<oo,$>0 

f(x) = e-"\l + e-x\ ;-oo<r<oo 

Lognormal 

f(x) = \ axyj(2n) exp(- log x-rri) / [2a2); x > 0 

Maxwell-Boltzmann f(x) = [4iT'/2p5/2]x2exp(-px
2);x,p > 0 

Normal f(x) = \a42n\ exp[-x2)/[2o2) ,-ao<x <oo,a >0 

Generalized Normal fix)=[2^' / r(a / 2)]x"-' exP(-(,x2),- x, a,p > 

Pareto 

Rayleigh 

Uniform 

Weibull 

f(x) = ak" /x"+';x>k>0,a>0 

f(X) = {x/b2yx'/[-2b'\x,b>0 

/ (x) = ; / ( p - a ) ; o < x < P 

f(x) = (c/a)xc~V*' /a;x,c,a > 0 

l + ln(2$) 

2 

m + (l / 2)ln(2%ea2} 

(l/2)ln(n/V) + y-l/2 

(//2);«(2itea2) 

0 /n[r(a/2)/(2p;/2)]-[(a-7)/2]>t/(a/2)+a/2 

ln(k/a) + l + l/a. 

l + ln(b/41} + -i/2 

/n(p-a) 

(c-l)y/c + log(a'/c/c) + l 

4. CHARACTERIZATION OF DISCRETE UNIVARIATE AND MULTIVARIATE 

PROBABILITY DISTRIBUTIONS. 

In these cases, in addition to giving the ranges of the variate and some moments, we also 

require some apriori probability distributions. In this way the following distributions, among others 

have been characterized as minimum discrimination information distributions [3, 13]. 

Univariate distributions: binomial distribution; Poisson distribution; Riemann's zeta function 

distribution, generalized geometrical distribution, negative binomial distribution, generalized negative 

binomial distribution, binomial delta distribution, Poisson -delta distribution, generalized Poisson 

distribution, negative-binomial-negative binomial distribution, Bose - Einstein distribution, Fermi-

Dirac distribution, multinomial distribution. 

Discerete multivariate distributions: Multinomial distribution, multivariate generalized 

geometric distribution, multivariate negative binomial distribution, generalized multivariate negative 

binomial distribution, multivariate Poisson distribution, multivariate generalized negative binomial 
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distribution, multivariate binomial delta distribution, multivariate binomial Poisson distribution, 

multivariate binomial negative binomial distribution, multivariate Poisson delta distribution, 

multivariate generalized Poisson distribution, multivariate Poisson binomial distribution, multivariate 

Poisson negative binomial distribution, multivariate negative binomial delta distribution, multivariate 

negative binomial Poisson distribution, multivariate negative binomial negative binomial distribution, 

multivariate Poisson rectangular distribution, multivariate Poisson distribution. 

The following continuous multivariate probability distributions have been derived as maximum 

entropy probability distributions [13] multivariate normal distribution, multivariate lognormal 

distribution, multivariate polynomial distribution, multivariate exponential sums distribution, Dirichlet 

distribution, multivariate beta distribution of the second type, multivariate logistic distribution, 

multivariate generalized Cauchy distribution, multivariate Pareto distribution, multivariate gamma 

distribution and multivariate rectangular distribution. 

The following additional multivariate distribution have been derived as maximum entropy 

distributions [15]; multivariate gamma distribution, multivariate beta distribution, multivariate 

exponential distribution, multivariate distributions for continuous ordered random variables, discrete 

analogue of multivariate gamma distribution, translated discrete multivariate gamma distribution, 

discerete version of multivariate exponential distributions, multirectangular multivariate distributions, 

multivariate Yule distributions, multivariate generalized Yule distribution. 

5. MEASURE OF DEPENDENCE. 

In statistics, the measure of dependence used is the conelation coefficient which gives the 

linear dependence between two random variates. We also use there partial and multiple conelation 

coeffetients which also give linear dependence in multivariate cases. However many times we need 

one measure of depedence between a large number of variates. If we have m variates, we can find 

/wf/w-7/2jcorrelation coefficients, some of which will be positive while others will be negative and 

they will all lie between -1 and +1, but these coefficients do not give us an idea about how dependent 

the m variates are among themselves. 

For this purpose, I developed an entropic measure of dependence based on the fact that for 

independent variates, the entropy of the joint distribution is equal to the sum of the entropies of the 

marginal distributions. If these two entropies are different, that is if D=S1+S2+-S > 0. the m variates 

are dependent and D gives us a measure of this dependence. This is a measure of dependence of all 

m variates among themselves, but it is always non-negative and in fact a measure of dependence 

should be non-negative. 

I used this measure [8] in pattern recognition to find the m^n matrix A, so that the linear 

transformation Y=AX transforms the normally distributed random variate X = (xpcT xj to the 

random variate (yl,y2 ,yj, m«n and yry2 ym are as independent as possible. I was 

able to show that the matrix A can be obtained by using the m eigen-vectors of the correlation matrix 
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of the random variables X corresponding to the m largest eigen values of this matrix. The earlier 

criteria of minimum loss of information or of minimum loss of power of discremination had led to 

the variance covariance matrix instead of the correlation matrix. 

For the multivariate normal distribution the density function is given by 

f(x,,x .*») = -exp 
(2x)2\W 

L ( j r - ^ s - ' ( j r - n ) 

where 

X --

~xl~ 

x2 

.*». 

H = 

'm,' 

m2 

mm 

, 2 = 

Pl2ala2 

P2a2°l 

Pmlam°l Pm2ama2 

Plm^l^m 

P2m^2cm 

so that s = -j -J f{x,.x2, xm) 
--ln(2%)--ln\Y.\ 

= —ln2n +—ln\I\+-m =— In 2ize + - !n\T.\ 
2 2 2 2 2 

Also 
; i - , i 

S, = —ln2n +—lno2+—,i = l,2 m 
2 2 2 

so that D = -lna2a2. 
2 ' 2 

~2 1 , 2 2 2 
,a2.. 

1 Pa 

P21 l 

Pml Pm2 

Pin 

P2„ 

-In 

1 Pl2 

P21 1 

Pml Pm2 

Plm 

P2m 

Thus, this entropic measure of dependence depends on the m(m-l)/2 correlation coefficients 

between pairs of random variates. If all these correlation coefficients are zero, then Z)=0, and if 

D=0, then all the correlation coefficients are zero. This result has been proved for multivariate 

normal distributions and is not necessarily true for all multivariate distributions. 
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Thus for the case of Pareto multivariate distribution 

f{x,,x2,.. 
a{a+l) (a + m-1) 

" e,e, e„ 

y(a+m) 

Mr ^ - H •>*' 
it can be shown that all the correlation coefficients are zero, but the measure of dependence is not 

zero, so that the variates are dependent. Thus the vanishing of the correlation coefficients does not 

imply that the variates are independent though when the variates are all independent the correlation 

coefficients are zero. This also shows a weakness of the correlation coefficients as a measure of 

dependence. 

6. CONTINGENCY TABLES. 

Inanmxn contingency table 

N 

the measure of dependence is given by 

D=S1+S2-S 

where 5 ; , S3 are the entropies for the probability distribution (as/N,a/N, ajn) and (b/N, 

b/N, , bn/N) and S is the entropy of the j oint distribution with probabilities as a. IN. If a 's and b 's 

are kept fixed, then minimizing D is equal and to maximizing S, so that to minimize D is is maximize 

S, subject to a 's and b 's remaining constant. Using Lagrange methods this gives 

a./N=(a/N) (b/N), 

It shows the two atributes of classification are independent. In general because of random errors, 

this will be >0 and Swill not be equal to •S'7+5'2. However the value of D will give us an idea of the 

dependence in the table. It can be shown that D is a very good approximation for 

h-a>bi/Nf 
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so that this approach to dependence also leads to the chi-square distribution. 

If there are k attributes, we shall get a k dimensional contingency table and if the marginal 

totals are kept fixed, then when S is maximum, D will be equal to zero. Again D can be approximated 

by a chi-square and chi-square distribution can be used to test the significance of the dependence in 

the table. Thus chi-square distribution, maximum entropy distribution and minimum dependence 

distribution, are closely related in the case of contingency tables. 

7. FISHER'S METHOD OF MAXIMUM LIKELIHOOD. 

We derive below this principle from Kullback's principle of minimum cross-entropy[ ]. 

Let the random sample be xvx2, x^ where without loss of generality we assume that 

x<x<x<....<x. 
1 2 3 n 

Letffx) be the density for the observed distribution and \etF(x) be its cumulative density function, so 

that 

F(x)=0, x<xs 

F(x) = - , Xj<x<x2 

F(x) = - , x2 < x < x3 

F(x)=l, x—x„-

Now we appeal to Kullback's principle of minimum cross-entropy and choose e so that the 

distribution with density function g(x,Q) is as close as possible to the distribution with density function 

f(x). We now seek to choose e to minimize the cross-entropy. 

j f{x)lnj^dx = \ f(x)lnf(x)dx-j f(x)lng{x,Q)dx 

= j f{x)lnf{x)dx-\ lng{x3)dF. 

The first term on the R.H.S does not depend on e, so that we have to minimize 

-lng{xlfi)--lng{x2,Q)-- -fogfo.O)-, 

n n n 
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i.e. we have to maximize 

£ lr.g(x„.e) = lr,[g(x„Q)g(x2e) g(x„QJ\ 
i=l 

= lnL, 

where L is Fisher's likelihood function. This gives us Fisher' principle of maximum likelihood, so 

that this principle can be regarded as a special application of Kullback's Maximum Cross Entropy 

principle. It may be noted that we are using this principle in a special sense. There are no linear 

constraints to be satisfied. Instead our choice is restricted to all probability distributions with density 

functions of the form g(x,Q). We shall have an infinite number of density functions to choose from, 

since e can take an infinity of values. 

In [ 14] we have given five other information - theoretic methods for estimating the parameters 

of a probability distributions in terms of a random sample from the population. These methods are as 

reasonable as Fisher's method, but these lead to more complicated calculations and more complicated 

estimators, so that the proofs of consistency, efficiency and other properties of these estimators will 

relatively be much more difficult to prove. However these proofs are open problems which those 

interested can try. 

8. MAXIMUM ENTROPY PRINCIPLE AND FISHER'S AND PERSONS METHODS 

OF ESTIMATION. 

(a) According to Max Ent, (Maximum Entropy Principle), we maximize the entropy subject to 

all the information given to us. Suppose the information is provided by the random sample 

xrx2, xn. Now in this instance, the moment constraints are not specified as in the case of 

MaxEnt. As such, we choose the parameters 9;,62, 9m in the probability density function 

f(x;Q,,e2, ,em) of a population in such a way that the entropy that remains after the sample 

values are known is as large as possible. In other words, the entropy of the sample itself has to be a 

minimum. This entropy is given by 

- J f(x,®)lnf(x,@)dx = - \ lnf(x,@)dF, 

where 0 = (e;,e2 , e j . 

According to the knowledge given by the sample, 

F(x,@) = o when x<xt 

F{x,@) = l/n w h e n xl<x<x3 

F(x,®) = 2/n w h e n x2<x<x, 
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F(x, ®) = r/n when xr £ x_< xr+1 

F(x,&) = l when xn<x. 

This gives the entropy of the sample as 

~[b,f{xj,e)+bif{x2.e}¥ +/(*„,e)] 

= ~[Hx„x2 x.;*,$2 8.)] 

This, to minimize the entropy of the sample, we have to maximize the likelihood function 

L(x,,x2 x„;Q1,Q2 6 „ ) 

MaxEnt has thus led us to the principle of maximum likelihood although it predates the 
explicit statement of the former principle. 

(b) The classical theory of inference due to Fisher has been in existence for a long time and it is 
therefore worthwhile to make comparisons between the method and the later theory of MaxEnt. 
Fisher's theory of estimation is implemented by the following steps: 

1. Specify/^,-9,,e2 e„J on the basis of experience, intuition, or theory. We specify the 

function, but do not specify the values of 6,,82, 6m. 

2. Write the likelihood function L(xt,xy ,xn; e,,92 ,Qm). 

3. Find the values of e,,62 ,9mforwhichthelikelihoodfiinctionismaximized. Thesevalues 

will be functions of the sample values. 

4. The estimated density function is then 

f(x. e„e2 e j 

To implement the MaxEnt method of estimation, we take the following steps: 

1. Specify m characterizing functions, g/x), g2(x) >8m(x)-

2. Use the MaxEnt to find/ft), 

3. Find estimates 
°r =-[gr{Xl)+gr(X2)+~+gr{Xn)\ r = U ,M 
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4. Use it to find i0,x, im 

5. The estimated function is then 

exp [-i0-iig,(x)-X3g2(x)-....-imgm{x)^ 

(c) Pearson's method is yet another method of estimation. He suggested that in order to estimate 

, 0;,92 6m we find the first m algebraic moment of the population which will be functions of 

9,,92, ,9m and then equate the first m algebraic moments of the sample with these functions 

and solve fore,,%2 Qm . 

Fisher criticized this method because it sometimes gaves quite different results from those 

obtained by his theory of estimation, which was based on the use of the principle of maximum 

likelihood. He proved theoretically that his estimates had the nice properties of consistency, efficiency, 

and sufficiency. 

Had Pearson used the m maximum-entropy characterizing moments, instead of the first m 

algebraic moments, his results would have coincided with those of Fisher's theory, and there would 

have been no room for controversy. Unfortunately, the MaxEnt method was not known at that time. 

From the vantage point of MaxEnt, one can conclude that Fisher had unintentionally invoked this 

principle in his use of the maximum likelihood principle, and thus his success can be attributed to this 

fact. This again demonstrates the great foresight of Fisher whose proverbial insight into statistical 

problems has been a source of perennial inspiration to the classical statisticians. 

9. FISHER'S MEASURE OF INFORMATION. 

Let f(x,Q) be the density function for a probability distribution. Here 6 is a parameter. Let 

/(x,e+A9) be the density function for a neighbouring probability distribution of the same family 

with parameter 9 + A6 , then 

D(/(*.9);/(*,e + A9)H; / M ) ^ * 

= -£/(*,e)fa J + A6 
1 df (A9)2 1 d2/ 
/ 5 9 / 2 SB2' 

dx 

MlV.+MLL^f -W?(LV"3 

f ee f" 2 s V /se 
dx 

Since ff(x,Q) = i 
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'« ee Jo ae 2 

D(f(X,Q)):f{x,e + &Q) 

X j[%)'*+«»r 

Thus the discrepancy or directed divergence of f(x,Q) from f(x,Q + A9) is proportional to 

cM-o fyse /ae 
^ 

tfa 

This is known as Fisher's information measure 

For most measures of directed divergence, the directed divergence of f(x,Q) from f(x,Q + A8) 

will be found to be proportional to Fisher's information measure, so that Fisher's information is 

quite a robust measure of this discrepancy, independently of the measure of directed divergence 

used. 

If the probability density function depends on a number of parameters e,,9j,. 

get for the discrepancy as 
.9». we 

r{f{x.Q„Q2 e„):/(*,e ; •+A&1,O2+AB3+ -*e„ +Aem)] 

= - f AFATdx 

where A=(&8,,AB2- A6t) 

is a row matrix and 

' f 86,802 

f{8&2 

LIJLJJL- LJL.JL 
f{dam)d8m' fd6„8B2 

1 8f df 
/ s e , eem 

1 8f df 

f8e2wm 

'( 8f 

f{m 

(28) 

is known as Fisher's information matrix. 
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10. FINDING A DISTRIBUTION WHICH IS CLOSEST TO A MIXTURE OF 
DISTRIBUTIONS. 

A distribution with density function Z xisAx) where ^ so and 2 XJ "' will be called 

mixture of distributions with density functions g/x), g/x) <S„(X)-

A case of particular interest arises when g/x), g/x), ,gjx) belong to the same family 
and differ only in the values of the parameters used in different distributions. 

Thus these may be normal distributions with parameters (HJ.^J) or exponential distributions 
with parameters m or gamma distributions with parameters a, *., (j=l,2, m) and so on. 

There are two distributions which are closest to the mixture distributions and they have 
m 

density functions £ *-jgy(*)and 

or 

n *?w 
J=I 

i: n *,x'w* 
but these distributions need not belong to the family to which g/x), g/x), 'Sm(x) belong. In 
general we are interested in getting the probability distribution closest to the mixture, but which also 
belong to the family. We discuss some special cases below: 

Let 

Here we have to find n and a so that 

/W = 
; Ux-tf/a' 

•J2na 

gives a probability distribution closest to S XJSJ(X), so that we have to choose n and a to minimize 
1=1 

L £Mj(*)h J" • - * 
KJ=' i -k'-tf/o' 

V27to 

or to minimize 

r J > / g / W J / n + a ^ 
2 ^ 

dx 
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or ' " 0 + A l *•;• {v) + V-])-2\iY, ^jVj+V2 

Differentiating with respect to n and a, we get 

2 , xjV-j = M- — j = o 

so that the parameters of the closest normal distribution are given by 

The closest exponential, gamma, log normal and other continuous various distribution can 
be obtained in the same way. 

11. CONCLUDING REMARKS. 

We have discussed in this paper less than 50% of the applications of information theory to 
mathematical statistics. Applications to non-parametric estimation, queueing theory, mathematical 
programming, Bayesian inference, approximation of complicated distributions by simpler distributions, 
non-linear models, logistic models, analysis of variance, optimal information from design of 
experiments, pattern recognition etc. will be discussed in another paper, but what has been stated in 
the paper should convince everyone, that information theory has a significant role to play in 
mathematical statistics and all mathematical statisticians should be aware of this role. 

The references (1-18) below dicssuss some of these applications. 
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ABSTRACT 

The classical problem of providing a 'point estimator' for a survey population total 
along with an interval around it needs an appropriate estimator for its mean square 
error. 
A brief resume is provided for modern approaches to solutions for this by model-
motivated-cum-design-based methods covering multi-stage unequal probability 
sampling, small domain estimation randomized responses for sensitive issues and 
employing in particular adaptive sampling and bootstrap techniques. Relevant current 
thoughts and practices are especially accommodated. 

Keywords and phrases: Adaptive Sampling; Bootstrap; Empirical Bayes; Mean 
Square Error; Small domains. 

AMS Subject Classification: 62 D05 

1. INTRODUCTION 

In this chapter we consider estimators for the total and mean of a single real variable 

defined on a survey population with a known number of identifiable units on 

surveying a suitably chosen sample from it and estimators for the mean square errors 

of the considered estimators. 

We start with Rao's (1979) work covering a wide class of the relevant procedures 

available for single-stage unstratified sampling with unequal probabilities for 

selection of the units. Estimators for strata totals along with respective estimators of 

mean square errors (MSE), added across the strata may simply cover the case of 

stratified uni-stage sampling. We first note extensions beyond Rao's (1979) coverage. 

Discussing the details in Section 2 we review certain newly emerging procedures 

concerning multi-stage sampling in Section 3. Therein we also report model-
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"assisted, motivated and dominated" methods in addition to the classical design-based 

ones. In Section 4 we note how 'randomized responses' (RR) covering sensitive 

issues as opposed to 'direct responses' (DR) concerned with the innocuous ones may 

be dealt with in a manner paralleling that for multi-stage sampling. In Section 3 itself 

we narrate how the principle of 'small domain statistics' computation by 'borrowing 

strength' from 'outside' may be helpful in estimation. In order to produce enough 

survey data on a relatively seldom occurring phenomenon like 'maternal mortality' or 

'earning by knitting woolen garments' in a community a possible technique is to 

adopt 'Adaptive' sampling through appropriate network formations. In Section 5 we 

discuss MSE-estimation in such a context. In Section 6 we present a specific 

'bootstrap' sampling applicable to certain unequal probability sampling situations. We 

conclude with a few remarks in Section 7. 

2. LINEAR ESTIMATION IN UNI-STAGE SAMPLING 

Let U=(l,..,i,..,N) denote a survey population of N labels which identify a known 

number of N distinct individuals. Let y be a real variable of interest with y, as its value 

for i in U. We shall write ^ to denote sum over i in U, X X ' X X ' X S * a t 

i <j i *j 

over i, j in U with no restriction and with the indicated restrictions respectively. By s 

we shall denote a sample with v(s) distinct units in it as drawn from U according to a 

sampling design p with a selection probability p(s). 

Let Isi = 1 if i e s and 0 otherwise; Islj = lsilsj. nt. = ]£p(s)Is i. ntj = ]£ p(s)IsiJ 

s s 

writing ^ f° r s u m o v e r every s with /?(s) >0. 
s 

To estimate y = V y . Rao (1979) employed the 'homogeneous linear estimator' 

(HLE) f4=5>A,/„ 

with Z>Si as constants free of Y=(yi,..y,,..yN) to be suitably chosen by an investigator. 

Writing Ei, Vi as operators for expectation, variance according to p, the MSE of fy 

about Y is M(tb) = Ex (t-Y)2 = SZy^dy with djf = Ei(b„-L,-1) (b j ;L,-l) , ij e U. 

Rao (1979) imposed on tb the restriction "C" which pre-supposes the following: 
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"There exist non-zero constants w,- such that in case z, = — equals a constant C for 
w, 

every i in U, then 

^ i C * ) = E S w«wAz«z7 = c 2 E Z w . w A 
equals zero" 

Then Rao (1979) has the 

Theorem 1. Ml{tb) = - £ £ < / W ( W , ( - ^ - - ^ - ) 
i 

if "C" holds. 

This leads to a convenient form for an unbiased estimator for Mi(rfc) as 

»h(h) = - E S d . « ^ w « w y ( — " — > 2 

i <J wi WJ 

for which it is easy to check the property of being 'uniformly non-negative' (UNN) 

provided one may find constants dsy free of Y such that ~E\{dstj I,y) = dy V i,j e U. 

dv dr 

Two easy examples are (1) dsij = ——, if nv > 0 and (2) dsij =
 IJ n.tj " - fJV-2^ 

n - 2 
P(*) 

if v(s)=n V 5 with p(i)>0. 

Rao (1979), again, has the 

Theorem 2. If "C" holds then in the class of homogeneous quadratic unbiased 

estimators for Mi (tb) any one with the "UNN" property is necessarily of the form w; 

(tb) above. 

The literature on Survey Sampling is full of examples of such p, bsi, dsij 's as one may 

check, for example from Chaudhuri and Stenger's (1992) monograph, Sarndal, 

Swensson, Wretman's (SSW,1992) text and other sources. 

We give one example and discuss what one should do if "C" fails to hold. 

Recalling that a "necessary condition is ni > 0 V i e U " for the existance of an 

unbiased estimator t=t(s,Y) for Y such that t is (1) free of y>j for y'g s but (2) may 

involve y, for ie s , let us assume n. > 0 V i e U and consider for Y the Horvitz and 

Thompson's (HT, 1952) estimator HTE which is tH = Y —/„•. 
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Its variance given by HT is Vj (tH) which is 

Tt; ' *i 

If we choose wt =ni then tH satisfies "C" if "v(s) is a constant Vj,p(s)>0" (2.1) 

If (2.1) holds an alternative form of Vi(tH) is V2 = ^ ^ ( T T , ^
 _7r,y) 

7r. wy 

due to Yates and Grundy (1953) and Sen (1953). Unbiased estimators for V}, V2 

respectively are 

' l - t f ^ 
^E^^^+SS^ 

v * . y 

/ „ I' its! -n,n. 

n. i ' *y «,W, W« 

and V 2=EI^i 
ninj-nu y, yj 

ninj 
nt ni nu 

provided in both cases " n^ > 0 V z'JeU" 

If p is such that upy. > 7r9 V i j 

(2.2) 

(2.3) 

then " v2 is UNN". To test "UNN" property for vi one has to examine if vx is a 'Non-

negative definite quadratic form in y,'s, ies V 5, p(s)>0' - a hard task to accomplish. 

If (2.1) is violated, Chaudhuri (2000) has given to F i fe ) the third form 

7t i *£; i^j 

(2.4) 
i j*< 

^L '« and an unbiased estimator for Vi(tH) as v, = v, + V —i-aj —, 

provided (2.2) holds. 

For the "UNN" property v3 needs in addition to (2.3), also " a, > 0 Vi e U " (2.5) 

Chaudhuri and Pal (2001) have illustrated when (2.3) and (2.5) may hold together, 

with V3 * V2. 

For tb, in case "C" does not hold, choosing arbitrary w, &0), they gave the 

f " v yf formula M,(r t) = - ^ E d , } , v i H ' i A_Zz +£—A , with A = 5X*, 
w, ~T ; = i 



391 

and an unbiased estimator for it as 

'"i('*) = -X5Xtf/»ffw.-w; 
r 

w, w, ^'t-21 
w. 

Sarndal (1996), Brewer (1999, 2000), Deville (1999) and others feel it 

impracticable to employ MSE- and variance- estimators that for large x>(s) contain too 

many cross-product terms and especially discourage computation of 7itj 's which for 

many sampling schemes are difficult to work out accurately and their magnitudes 

vary widely over (0,Tt,) rendering MSE-estimators containing 71,/s unstable. 

Confining to schemes with v>(s) fixed at an integer n for every 5 with /?(s)>0, 

Brewer(2000) works out V\{tH) as 

VBr(tH) = ^71^1-71,) y, Y 

n. n V 
it, n I fir, n 

i 

Approximating nu by ?r *. = n^Ttj 

(i) 

C+C, 
with C, as one of 

C,=-2-J-, (ii)C, =- n - 1 

n-it, 1 v „ 2 

n 
he approximates VBA.tH) by 

-, and (iii) C, 
(n-1) 

V;r(tH) = Jjni(l-Cini) 
n, n 

» ~2ni +-JX 

(2.6) 

and calls it the "Natural variance" of tH free of 7r, 's. Brewer (2000) then 

recommends for Vi(fo) the estimator 

V 4 = E 
C. 

-it, 
Tt, n 

Deville (1999) recommends for V\(tH) the estimator 

v5= , v 27 Ya-^.i^-A 

writing a, =• 
(X-n,) 

(2.7) 

(2.8) 

-. 4=2>,f/-' Ea-*,)/„ 
Though the properties of v4, v5 are discussed in the literature one still needs to 

examine which of v, (/=1,..,5) renders tH the most accurate point estimator for Y for a 

given set of data in a sample actually chosen following a specific sampling scheme. 

Also, one may be curious about which of the 95% Confidence Intervals (CI), 
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(t„ - 1.96 fij UtH + 1 . 9 6 ^ ) , 7=1,..,5 may have the narrowest width, treating 

{tH —YyJVj , (/=1,..,5) as a "standardnormal deviate". 

Poisson's scheme of sampling, discussed by Ha' jek (1981) and others yields 

V,{tH)as VPo(tH) = %y? 
'l-n^ 

n, 

which is free of Jttj 's admitting an unbiased estimator v6 = V y] 
l-7i, 

For this scheme v(s) varies over the entire range (0, N). 

Recalling the well-known fact that v = Ej(v(s)) = ^ T T , for any sampling scheme, 

Brewer and Gregoire (2000) consider for Y an estimator, as an alternative to r# , viz. 

. _Z^yA7 * DU 

v(s) ni 

If x be a variable, well-correlated with y with known values xi (>0 V ie U) and 

X=y£/xi, then Ha'jek's (1971) ratio estimator for yis 

/ = i 

2- ' -
Then, tRH is immediately recognized as a ratio estimator for Y with xt = 7T,-, ieU . 

Y - Y 
Writing R = — and R = ~r, with Y, X as unbiased estimators with an 

X X 

identical form each for Y, X respectively, it is known that for large v(s) one may write 

the MSE of R about R as M1[R)=—YVY~R^) > u s i n S f i r s t o r d e r T a y l o r s e r i e s 

A 

expansion on neglecting higher order terms. If moreover, Y, X are linear 

respectively in Y and X = (x],..,Xi,..,xN), then, M, [R)= —jVl {Y) = ^ . 

In such a case a usual estimator for M, (R) is «,(*)= — ViOOl 
X' 

>,=y,-fe,-
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if Vj (Y) is an unbiased estimator for Vj (Y). Taking YR = XR as an estimator for Y, 

onehasm1(rR) = ^ — V , ( n 
y:=yi-Rx{ 

as an estimator for M; (YR). 

S°> "»!;(*«,) = 
f ^ 

x, 

z*/. 

i ^ „ 

, 7 = 1 . . 5 (2.9) 

may be taken as estimators for M l (tHa) . 

Also, mu(t lj\lRH 
I = - = = V 

v'(s) U ( J ) 

j = 1 •• 5 (2.10) 

may be used to estimate M, (tRH). 

Incidentally, though a ratio estimator being the ratio and hence a non-linear 

function of two random variables is still considered by many survey samplers as a 

"linear" estimator for Y because it is linear in ;y, for i in s and is of the form 

tb = ^ yibsiIsi with bsi, being a function of s is permitted to be a random variable as 

so is Isi with yt as constant. 

3. MULTI- STAGE SAMPLING 

Suppose the units i of U are treated as 'clusters' or first stage units (fsu) composed of 

Mi second stage units (ssu) with 

as the total of the M, values jy - the value of y for the/'1 ssu in the i'h fsu. If yt is not 

ascertainable for i in s but may be estimated on drawing a sample of m, ssu's out of 

the Mi ssu's in the Ith fsu then we have 'Two-Stage' sampling. Similarly we have 

'multi-stage' sampling on extending the number of stages. 

Let every i in s be 'independently' sub-sampled in subsequent stages yielding 

'independent' estimators yt for yt satisfying the following conditions: 

(1) EL(y,) = ylt (2)V t(y,) = V(or {2)'VL{%) = V„ if i e s (3) 3 v, 
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such that EL (vi) = Vt or (3)' 3 vsi such that EL {vsi ) = V * 

writing EL , Vj, as expectation , variance operators for sampling at stages 'later ' than 

the 'first'. 

Let us begin by stipulating that tb is subject to 

Ex{bJsi) = \ Vi (3.1) 

Then, El(ti) = Y and TO = 5>, ac, + ; £ 2 W „ 

where ct = E ^ l ^ - l and c^ E ^ b J ^ - l . 

Let there exist csiii csy as constants free of Y such that 

£1(csi/si) = c i and£ 1 (c s , / J , ) = c , . 

From Chaudhuri and Stenger (1992) for instance one may find examples for such 

p, bsi,cSi, csij s. Using the operators E=EiEL and V=VjEL+EiVL 

one may observe the following 

eb = Y, yfiJn = h\ y,-=y, satisfies E(eb) under (3.1) 

and V(eb) = £ tfc, + £ £ y, ) ^ + £ ><X^i*X,) 
< *; 

under (2) and = £ vfc + 1 X * ^ S + £ i ( I X ^ * > u n d e r <&• 

writing v(tb) = £ yfcjsi + X X ytyj0^1^ 

for which £ ^ ( 0 = v,(^)and u(e„) = v(tb)\ =. , under (3), (3)', 

from Raj (1968) and Rao (1975) respectively, one has 

vl(eb) = v(eb) + Y,vibJsi such that Ev1(eb) = V(eb) and 

v2(eb) = v{eb) + ]£«„(ft* -csi)Isi such that £u2(eb) = V(eb). 

Also, u 3 (^ ) = t>(e/,) + E'Ui(b^-cJJ.)/Jj under (3) satisfies 

£t>3 (e6) = V (eb) as well. 

Suppose yt is not ascertainable but estimable by y, subject to (1), (2), (3) and in 

addition E=EIEL-ELEI along with V=ViEL+EiVL=VLEi+E[yi as justified and earlier 

utilized by Chaudhuri, Adhikary, Dihidar (2000). 

Then for fb subject to (3.1) and r« with eb =tb\ =. and eH =tH\ =. , 

we have from Chaudhuri and Pal (2001) 
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y(0=-E2v«w; w, w, w, 

= E, -^Yduw<wj w, w, 
+vt(5>,) 

admitting an unbiased estimator 

,*. N\ 

and 

W, 7T, 

+£^-a,+£,£>#/,,) 
7T 

= £, 
/ - \ 

n, n # < * 
j ; 

admitting an unbiased estimator 

£,($>,.) 

W,; 7 r , nj it, n, 

Using (3.2) it follows that corresponding to v4, v5 in (2.7), (2.8) as estimators for 

V](tH) given by Brewer (2000) and Deville (1999) respectively corresponding 

estimators for V(CH) one may respectively take as 

v4(e») = £ ( n,) 

and v5(eH)-

a-S 

n, n 

yt~A-
71 i 

7 - + S^-71, 

7T; 

Again, using (3.2), corresponding to my (tna) in (2.9) and my (tun), j=l, ,5 as 

MSE- estimators for tHa and ?«// respectively the same for 

71, 

and e„„ = X*. 
t>(i) ^71, " 

may be taken as m • (cHy,) = • 

(I^/-)a 
7T; 

v; 
>i=Ji-

'siM 
2#-

-2>.-
7T, 
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andas mXeRH) = -~ v,. 

v ( j ) 

for7=7,.., 5. 

So far we considered only the classical design-based approach of 'point' and 

'interval' estimation of Y in terms of 'sampling design-based' expectations and MSE's 

of point estimators and lengths of CI's covering Y with desired coverage probabilities 

_ Y 
determined by sampling designs. The case of Y = — in uni-stage sampling is covered 

N 

= Y 
because N is known and of Y - •= , in case of multi-stage sampling is covered 

2jMi 

because M; may be taken as xt in 'ratio' estimation. 

Now we turn to the 'model-assisted' approach for which a crucial reference is 

SSW(1992). Cassel, Sarndal and Wretman (CSW, 1976) gave us the 'generalized 

regression' (greg) estimator for Y as 

with Q, as 'arbitrarily' assignable 'positive' constants, usually taken as 

1 1 1 l~ni 1 
- - . , L>— with g in [0,2]. 

x, x, ntxt nlxl x* 

Writing bQ = ^± ,BQ = ^ ,e, = y, -bax„Et = yt -Bax, 

it is well known from Sarndal (1982) that MSE (tg) has formulae 

E i 1 — 7T- T-I - n 71,, ~7t,7l, 

2 

71, 71.. 

E E 
for general designs and ^ ( ' ^ ^ ^ ( n i n j ~nyX~ ~) 

for designs with constant v(s). 

Chaudhuri and Pal (2001) give another as 

*3<'f )=XS(*,», - ^ x ^ - ^ ) 2 + X ^ 
711 71 j *•* 71, 

for general designs. 
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Three pairs of estimators for MSE(rg) follow from these as 

m. 

m 

2 ( \ J 

mu(tg) = m2k(tg) + ^ ^^ a,-±;k = l,2;au =l,a2i=g„. 
7T 7T 

Sandral (1996) recommends approximating MSE(tg) by 

and estimating it by ms (tg) = ^ (aae,. J" 
1-ff, 

v *' , 

In case yt is not ascertainable but estimated by yt through multi-stage sampling, then 

2i_ 

may be the revised greg estimator for Y. 

7£,-

Letting e; = e(L =h and using (3.2), (1), (2) and (3), one may use for MSE(es) the 

estimators corresponding to rrijt- (ts) as respectively 

mJk(eg) = mjl(tg)\e^
+jZ~Sj,J = l2,3;k = h2. 

Corresponding to Ms(ts) we have no recommendations about estimating 

Ms(eg) = Ms(tg)\yr.9,JeU 

Next follows our proposals concerning estimation of Y in multi-stage sampling with 

the following. 

'model motivated' approach with details for 'two-stage' sampling. 

Let us postulate the model to write 

ytj = Px;j+€0 with xy as the value of x for/'1 ssu of i"'fsu, j3 is an unknown constant 

and eij 's are random variables. With y, = ^ yu, x, = ^ xu 
i i 

let us further postulate the model for which y, = Qxt + t]j with 9 as an unknown 

constant and TJ.'S are random variables, ieU . These models will be seen to allow us 
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to strengthen our estimators for y,- and Y by borrowing strength from outside the 

specific clusters chosen in the sample. 

We consider the specific 'Two-stage' sampling in which n fsu's are chosen from U 

applying the Rao, Hartley and Cochran's (RHC, 1962) scheme supposing normed 

size-measures p , (o (p , ( l , ^p , =1) are available. For this, n groups of iV, clusters 

(i-l,....,n) are formed at random that are disjoint together exhaustive with U. Writing 

^ n as sum over the groups, ^ nNj = N.By Q, is meant the sum of the N, numbers 

Pi's in the i "' group. From the respective groups so formed only 1 cluster is chosen 

with a probability proportional to its pt-value. The selection process is independently 

repeated over the n groups. Writing (y,-, pt) as the value of y and normed size measure 

for the unit chosen from the i'h group, tRHC = V y. — 
Pi 

is an unbiased estimator for Y with a variance 

V(tRHc) = ^nYJnP>P\ A_2i 
Pi Pi) 

writing 2J 2-I as sum over the disjoint groups with no duplication. An unbiased 
n n 

estimator for V(tRHc) is 

v(w) = «E-X.e.fi.( y, y^ 

Here 

Pi P. 

T N2-N Y N2-N 

N(N-l) """"" N2-%nN? 

as are given by RHC themselves. 

Now supposing y, to be non-ascertainable a sample of m, ssu's out of M, ssu's in the 

i' fsu is again selected by the RHC scheme utilizing known size-measures 

Pij{0<Pij<\,YJpij=\\J ieU). 

So, yt may be unbiasedly estimated by y, = ^ m ytj — , 
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with obvious notations which, admits an unbiased variance estimator similar to 

VORHC)- But estimating 

P by b = -

r \ 
1-P> 

7 i n 2^ m, Xij*\) 

Q„ 
m±Rv=7 - , 

P.JXiJ 

( % 

writing Qy's as sums of p^'s within respective m, groups while applying RHC scheme 

in the second stage of sampling one may employ for y, the greg estimator 

Pij 

Xi ~ X m, Xij 
Q* 

Next taking 

R: •rv," 
( a J 

one may estimate 

Q.-

9 by 0 = X ^ J V ^ 

and finally for Y employ the 'two-stage' greg estimator 

Pi { Pi j 

Taking account of what preceded an estimator for the MSE(e(RHC)g) and for the 

MSE(yig) is easy to write down and work out. For simplicity we shall write 

y* for yjg and m(y*)for its estimated MSE. 

At this stage we may apply a 'model-based' method by postulating that 

yu =j3x,j+€,j with e,j as N(0,B), 'independently' leading to y* \yt~ N(y,,m(y*)) 

Letting A = V„ X X s </ ' w^ t n ^"' a s m°del-based' variance operator, we have 

A=BM, writing M = ^JMj 
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Since yt ~ Nipx^BM,) , the marginal distribution of y* is 

N{axi, BMi + m{y*)) = N(ca., ——L + m(y *)). 
M 

Letting y/i = 
AM 1 + m(yi), 

P Pi 

Pi 

and iteratively solving for A the equation 

let P, A, be the resulting estimators for /?, A; also let 

AM, t - AM, 
¥i= 7T + m{yi) = ^rL + m{yi). 

M 

Then, 

Si(EB) = 
AM 

{MV,} 
y> + 

w(y, ) 
# , . 

following Fay and Herriot (1979) may be taken as an 'Empirical Bayes' estimator 

(EBE) for y(. Then, for Y the final EBE may be proposed as Y(EB) = Y y (EB)Q-. 
Pi 

Writing 

AM.. .rf=4i>*,. 
My, « — p, 

following Prasad and Rao (1990) for %{EB) we may employ the MSE estimator 

P, 

Then following the approach discussed so far one may estimate MSE(Y(EB)) by 
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^ { Pi Pr ) ^ P, 

This may be regarded as our model-dominated approach of borrowing strength from 

outside clusters as is done in small domain computation. 

4. SENSITIVE QUERIES: RANDOMIZED RESPONSE 

Essentially the methods for Two-stage sampling may be employed to cover when y 

relates to a stigmatizing issue like drunken driving, tax evasion, practicing fraud etc. 

Here for a sampled person i, no matter how selected, it is often difficult to generate 

direct response (DR) about his/her yrvalue. Instead, a suitable 'randomized response' 

(RR) device may be employed to procure an RR, say, z, , which may be suitably 

transformed to yield a random variable r, for which the following may be held to be 

true. Writing ER , VR for expectation, variance operators for an RR scheme : 

Q)ER(rl) = yl, 

(2) VL(rt) = A,yf + Biyi + C, with A,-,B,- ,C,- as known constants; then for 

v, = (Ar2 + B,r, + C,), 
' (1 + A,) ' ' 

if l + Al*0,EL(v,) = VL(rl). 

One example of an RR device is to ask a respondent i to randomly choose from a box 

with T cards bearing numbers a,.,...ay, ...ar one say marked <27 and 'independently' 

choose from a second box with L cards numbered £>,,..£* ,...,bL one card numbered bk 

say and report the value 

Zt =ajyi+bk. 

Then, ER{z,) = yAYJaj) + {\-YJbk) = yia+b , 

z -b 
say, and /- = —'—̂ —, provided a * 0, satisfies the above requirements. 

a 

If corresponding to a contemplated estimator tb = ^ ypsiIsi one then employs 

rb — V rtbsiIsi\hsa estimation of its MSE follows immediately with the approaches 

elaborated above. Chaudhuri and Mukerjee's (1988) text is a useful source. 
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5. ADAPTIVE SAMPLING 
Sometimes y may relate to a seldom occurring phenomenon like incidence of maternal 

mortality in i'h household, number of earners through 'rope tricking' in i"' village and 

so on. Then, estimating the total count Y = ^ yt of units of U with such rare 

characteristics, with 'yt equal to 0' for many i in U, becomes really a problem of 

capturing enough relevant units in a chosen sample 5 from U. Chaudhuri (2000), 

following Thompson (1992) and Thompson and Seber (1996) has discussed how from 

an initial sample 5 chosen employing usual sampling schemes with varying or equal 

probabilities one may implement on 'Adaptive' sampling scheme with formation of 

suitable networks so as to effectively enhance the capture of relevant units with 

positive yj -values. He has also shown that estimating Y and the related variance or 

MSE- estimation for an Adaptive sample are simple matters. Briefly we may describe 

as follows. 

With every unit i of U is defined a neighbour of units; for example the villages with a 

common boundary with /"' village are together its neighbourhood. For a sample unit i 

with positive yt, in 'Adaptive sampling' one is to extend observation to all units in its 

neighbourhood. If for any in the neighbourhood positive y is encountered the 

observation is to extend to those in the latter's neighbourhood and the process is to 

continue until a unit is reached with zero-valued y in every unit in a neighbourhood. 

The 'unique ' collection of units linked with a specific unit through the system of 

neighbourhoods each with a positive y is a 'Network' for the unit. The collection of all 

the units in the union of these neighbourhoods is a cluster containing this urit. The 

units in the cluster with 'zero-y's' are the 'edge units', to be regarded as 'Singleton 

networks'. All the networks are non-overlapping and they together exhaust the 

population. Denoting by A(i), the network containing i and by N(i) its cardinality , let 

N 

It easily may be checked that T = ^ ? , equals Y = ̂ T y:.. 
1=1 
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Corresponding lov(s) for the original sample the effective size ^N(i) - A(s) of the 

'Adaptive' sample may be considerably larger. So, though t. for i e s may be used for 

estimating T=Y in suitable ways along with easily derived MSis-estimators discretion 

must be properly exercised in keeping A(s) under control by appropriate definitions of 

'networks' and 'neighbourhoods'. 

6. B O O T S T R A P S A M P L I N G 

When employing a complicated, non-linear estimator for Y a standard procedure to 

estimate its MSE is to apply linearization or delta-method based on first order Taylor 

series expansion. This was actually done above in the case of ratio estimator and the 

greg estimator. Another is replicated sampling producing independently distributed 

unbiased estimators for Y based on independently drawn samples and using their 

average to estimate Y and average of paired differences in estimating the variance. A 

variation of this is jackknifing employed originally by Quenouille (1949, 1956 ) as a 

bias- reduction technique later better utilized by Tukey (1958) in MSE estimation. We 

have no space here to elaborate on them. Another procedure is 'bootstrap' which we 

may briefly illustrate to show its alternative use in employing the greg estimator for Y. 

In the simplest case with a single auxiliary variable x on which y has a linear 

regression through the origin 

•71, n, 

a non-linear function of 4 HT estimators of 4 population totals of 4 variables namely 

y, x, yxQn and x'Qn as we already discussed. 

The principle of 'bootstrap' sampling demands that from the initial sample s for which 

the HTE's ty,tx,tyxQn and r 2 have already been calculated a large number B=1000, 

say, bootstrap samples sb,(b = 1,..,B) be 'drawn independently' in a suitable and 

identical way. Then, calculating ty(s*b),tx(sl),tyxQ^(sl) and tx, (s*b) and hence 

tg(s'b) = /(tyislXt^slU^^sl),!^ (s'b) is to be calculated. 
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- I s 

Then, t =—TAC^) is taken as a 'Bootstrap' estimator for Y initiated on the 'greg' 
Bfe 

estimator. Then, vB = — - ] £ ( t g (sl)-tg)
2 

b= 

is taken as the "Bootstrap" variance-estimator or MSis-estimator for tg. 

To cover such a function/(.,.,.,.) of HTE's Rao and Wu (1988) have given a method 

of drawing 'bootstrap' samples when the original sampling design P to draw s is 

subject to 2 restrictions, namely 

(i) Every sample s has a constant v(s) and 

(ii) nini > n^i.jii * j). 

We present here a modification of their 'bootstrap' sampling scheme covering HTE's 

only when (A) only (i) is relaxed but (ii) holds and when (B) both (i) and (ii) are 

violated. 

Case (A). Out of v(s)(v(s)-\) 'ordered' pairs of units i,j(i * j) in s let us choose a 

'Bootstrap' sample s* of pairs (/*,/) in 'm' draws 'with replacement' with 

probabilities A.... (?'* * / ) such that A.... = A... with their values to be 'assigned' as 

below. Let us choose numbers k.. = k .. in a manner to be described below. 

Constructing the bootstrap statistic 

?, = — Y T k...(— —) and writing E*,V* genetically to denote expectation, 
\' • J -fc-Si ( j 

variance operators for bootstrap sampling we have 

&(',) = £ X V* (A - —) = 0 and 

Choosing m = v(s)(v(s)-l),Xtj =— and 

K = m(cJ—L L)''2». j(j * J e J ) , we have 
2a„ 
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V.(ti) = v2=
1£Jj(7tinj-7ziJ) 

(.. .. V , 

n, n 

We need to have now a second bootstrap sample s*2 out of the 'distinct' v(s) units in 5 

'independently' of how s*is chosen . Let this be drawn by Poisson's scheme with Z,as 

the probability of 'success' associated with i in s . 

Writing i as elements of s2 , let 

• 71 I. 

then, £.(r2) = £ — * „ =tH(y) 

andy.(r2) = £ | f - l T ^ / „ 

Letting t=t\+t2 we have E*(t)=tH, v*(,r/)=v2+V*(f2) 

choosing /. = with a,- in (2.4), 
1 + a,. 

since by (2.5), a,- > 0, 0 < /,< 1 Vi, 

we have V*(?2) = vj , 

provided for the original sample drawn, V3 > 0. 

Thus, we modify Rao and Wu's (1988) 'bootstrap method' of equating the "Bootstrap" 

variance of a statistic, namely t in this case, to an estimate of V](tH), namely V3 in this 

case (A). 

Case(B). First we note that though it is impossible to have 

"Tt/Jt, < 7r,y \/i,j (tej)" in case v(s) = n 

V s with p(s) > 0, it is quite possible to hold in case v(s) varies with 5 especially 

(a) if the largest number of draws n satisfies n > 1 + E(v(s)) - nj V i, and / or 

(b) if Var(v(s)) > 'S,7ii (1 - ni), for examples. 

In this case let (1) from s a bootstrap sample si be drawn by Poisson scheme with £,* 

as the 'probability for success' for a unit i in s. 
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Again, (2) 'independently' of the draw of s\*, let a 'bootstrap' sample £2* be drawn 

from the D(.S)(D(.S)-1) 'ordered' pairs of distinct units of s again by Poisson scheme 

with Xj j as the 'probability of success' for the (i*,f) - paired unit; (iV/* Gs). 

Let us construct the bootstrap statistic 

2-i t-i. ; V'J' ^2j\<n-
y, yj 

A,, •• *j v ni n i 

Then, £.(r) = X—/,f 

y; A 1 y , y> and V,(r) = X ^ V ( f - 1 ) / , + S S ( l L - 1 ) - -
ni it j 

choosing (1) kt - ^ - a n d ( 2 ) A s 

l — n, 

1 
7i,n, 

2 - ( - ^ - ) 

this V* (t) is equated to vj, provided for the original sample drawn vi happens to turn 

out non-negative. 

A remark: If V3 < 0 or vi < 0 our proposed schemes do not work. Similarly Rao and 

Wu's (1988) method does not work if at least one of (i) and (ii) is violated. So, further 

research seems necessary to cover all possible cases. 

7. CONCLUDING REMARKS 

Statistics Canada employs a 'Generalized Estimation System' as discussed 

among others by Sarndal (1996) that predominantly involves the application of the 

greg estimation with one or more auxiliary correlated variables and its MSE-estimator 

with one or more auxiliary correlated variables and its MSE-estimation with 

simplifications avoiding 7ty's and hence the cross-product terms. In Indian National 

Sample Survey Organization (NSSO), however the first stage units within strata are 

chosen as two equal-sized "half-samples" by probability proportional to size (PPS) 

circular systematic sampling (CSS) method and the second stage units by single CSS 

method with equal probabilities. So, variance estimation is accomplished by 

computing 'one-forth of the squared difference between the 2 half-sample estimators'. 
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In other organizations like US Bureau of Census, Canadian Labour Force Surveys, 

British Population Censuses and Surveys variance or MSE estimation receive 

attention in diverse appropriate ways. The above discussions in Sections 1-6 mainly 

serve theoretical purposes but may also be put to practical uses as some of the 

procedures have been applied in certain case studies undertaken in Indian Statistical 

Institute, Calcutta with active participation by the present author. 
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Abstract A linear program (LP) Minimize c'x subject to Ax=b, x>0 (null column 
vector), where A is an mxn real matrix, c and b are n- and m-vectors, respectively .is a 
problem of great importance in numerous physical problems involving linear 
optimization such as diet problems, transport problems, industrial production problems. 
The algorithms such as simplex method, self-dual parametric algorithm, decomposition 
algorithm, primal-dual algorithm to solve an LP have been non-polynomial time. In order 
to appreciate the recent advances in this area the present chapter provides a background 
based on the simplex methods which completely ruled the scene during sixties, seventies 
and early eighties. Although the simplex methods are non-polynomial-time in the worst 
case, they did perform excellently in most real-world problems and behaved like a fast 
(polynomial-time) algorithm. The chapter then focuses on the development of several fast 
(polynomial-time) algorithms during the last two decades. It then briefly highlights 
heuristic and evolutionary approach to solve LPs including errorfree implementation. 

Key Words Basic variables, heuristic algorithm, linear programming, polynomial-time 
algorithm, projective transformation, simplex method. 

1. Introduction 

The process of getting the best result, e.g., minimum or maximum values, under given 
conditions (constraints) is 'called optimization. The optimum seeking methods belong to 
the discipline of mathematical programming '(MP) which is a branch of operations 
research (OR). OR is a branch of mathematics applied to decision-making problems and 
obtain the best solutions while linear programming is a branch of MP. The OR methods 
may be classified as follows. 

OR Methods 
* 

* t t 
Statistical Methods Stochastic Process Methods MP Methods 
•Regression Analysis •Statistical Decision Theory "Methods of Calculus 
•Cluster Analysis »Markov Processes 'Calculus of Variations 

1 The term programming as used above referred originally to the scheduling of events or activities. There is 
no immediate connection with computer programming, mathematical programming problems are solved on 
a digital computer though. 

mailto:sksen@serc.iisc.ernet.in
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•Design of Experiments "Renewal Theory »Linear Programming 
•Factor Analysis.. ^Queuing Theory •Geometric Programming 

•Reliability theory 'Dynamic Programming 
•Simulation Methods . . 'Nonlinear Programming 

•CPM and PERT . . 
We limit ourselves in the area of linear programming and recent advances. A linear 
program (LP) may be defined as Minimize (Min) c'x subject to Ax = b, x>0 (null column 
vector of appropriate order), where A =(aij) is a given mx(m+n) real matrix, c=(Cj) and 
b=(b;) are specified n- and m-column vectors respectively, and x is an (m+n)-column 
vector to be computed. An equivalent LP is Maximize(Max) -cSc subject to Ax=b, x>0. 
The cases and standard forms below may be considered from a practical point of view 
(e.g., to form an appropriate simplex tableau.. 

Case 1: a]>n+i=.. = am>n+i=l; Standard Form 1: ai,n+i=.. = am>n+i=l; bi>0 i=l(l)m. 

This case arises when the constraints are originally anXi+ . . + ajn<bi i=l(l)m. and the 
slack variables x„+i,.., xn+m are introduced to transform the inequalities into equations. 

Case 2: ai>n+i=. . = am n + 1=-l ; Standard Form 2: a1>n+i=. . = amjn+i=-l; b;>0 i=l(l)m. 

This case arises when the constraints are originally anX]+ . . + ai„>bj i=l(l)m. and the 
slack variables xn + i , . . , xn+m are introduced to transform the inequalities into equations. 

Case 3: ai,n+i=.. = am,n+i=0; Standard Form 3: ai,n+]=.. = amin+i=0; b;>0 i=l(l)m. 

This case arises when the constraints are originally in the form of equations in x i , . . , x„. 

Other form: If not all constraints belong to the same category as above then a 
combination of these cases arises. 

We present in Sec. 2 the simplex algorithm [2, 3, 4, 5, 6, 17, 18, 19, 26, 27, 28] due to 
Dantzig (1963) which is an exterior-point method and is the first milestone in solving an 
LP. An exterior-point method is one in which the n-dimensional solution point x will 
always lie on the boundary or at a corner of the convex region (polytope) defined by Ax 
= b, x>0 and not inside the convex region. Although this algorithm is not polynomial 
time, it has been generally the only method for over two decades (1960s and 1970s) to 
solve LPs, often behaves like an 0(n3) polynomial algorithm, and has been remarkably 
successful in an intelligent computer implementation based on the nature of the LP. Even 
to-day it is possibly the most widely used algorithm to solve real-world linear 
optimization problems. A clear conceptual knowledge of the simplex algorithm helps us 
to appreciate the more recent development in the interior-point methods. An interior-
point method is one in which the solution point x will move inside the polytope and 
continue to remain within it or at best touch the boundary or a corner point of the 
polytope. Some of these methods have been proved to be polynomial-time[9, 10, 20, 25]. 
The polynomial-time algorithms ,viz., the ellipsoid method [10] due to Kachiyan (1979) 
and the projective transformation method [9, 28] due to Karmatkar (1984) will be 
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presented in Sees. 3 and 4. These algorithms are interior-point methods and did perform, 
in practice, much worse than the popular simplex method for most reasonably large linear 
programs. However, since these (specifically, Karmarkar algorithm) are polynomial-time, 
it may be shown that for some sufficiently large LP, these methods would perform better 
than the non-polynomial time algorithms. In Sec. 5, we present a variation on Karmarkar 
algorithm along with the detection of the basic variables [1, 22], which provides deeper 
insight into the geometry of an LP. We talk about other algorithms - heuristic, 
evolutionary (probabilistic), and deterministic including inequality sorting and error-free 
implementation [7, 12, 14, 15,16, 21, 23] in Sec. 6. 

2. The Simplex Algorithms 

2.1 Basic solutions Consider the system of equalities Ax=b, where A is an mxk matrix 
(k>m), x is a k-vector. Select m linearly independent columns of A (such m columns 
exist if the rank of A is m). Call the mxm matrix formed by these columns B. The 
matrix B is then nonsingular. Solve BxB=b for the m-vector XB- The vector XB has the 
components x, associated to the columns i, where ie [1, k]. The matrix B having linearly 
independent columns (if they exist) is called a basis. The solution of BxB=b is called a 
basic solution of the system Ax=b with respect to the basis B. The components of x 
associated with the columns of B are called basic variables. If one or more basic 
variables in a basic solution have value zero then that solution is called a degenerate 
basic solution. A vector x that satisfies Ax=b is called a feasible solution. The collection 
of all feasible solutions is called the feasible region (necessarily convex). If a feasible 
solution of Ax=b is also basic then it is a basic feasible solution. If this basic feasible 
solution is degenerate then it is a degenerate basic feasible solution 

Let A=(A', B) and k=n+m. The slack variables or, simply, slacks xn + i , . . , xn+io, • •, xn+m 

which label the rows usually are basic variables and form XB. The columns associated 
with Xn+i,.., xn+m usually form the basis B. The variables x i , . . , XJO, . . , xn which label the 
columns are nonbasic variables. The last column [bi, . . , bio,.., bm]1 contains the values of 
the basic variables Xn+i, • •> xn+m, i.e., xn+j—bj i—l(l)m.the values of the nonbasic variables 
being zero., i.e., Xj=0 i=l(l)n. A slack variable with a negative sign (usually introduced 
in a typical inequality anxi+ . . + a ^ b ; ) is sometimes called the surplus variable. The 
simplex algorithm, to start with, needs the knowledge of the basis B and that of the 
values of the basic variables, which are usually readily available. 

Consider the LP Min f=c*x subject to Ax=b, x>0. A feasible solution of the constraints 
Ax=b, x>0 that achieves the minimum value of the objective function f is called an 
optimal feasible solution. An optimal feasible solution or, simply, an optimal solution 
(of the foregoing LP) obtained by the simplex algorithm lies at one of the corners of the 
feasible region. If this optimal feasible solution is basic then it is an optimal basic 
feasible solution. 

2.2 Fundamental theorem of linear programming Consider the LP Min f=c'x subject 
to Ax=b, x>0, where A is an mxk matrix (k>m) of rank m. (a) If there is a feasible 
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solution then there is a basic feasible solution and (b) if there is an optimal feasible 
solution then there is an optimal basic feasible solution. 

For proof of this theorem, refer Luenberger (1984) [17]. The fundamental theorem 
considers kCm possible combinations of the variables Xi, computes kCm solutions, and 
chooses that solution that gives us the optimal solution of the LP. From the fundamental 
theorem of linear programming, there are k C m = k!/(m!(k-m)!) ways of selecting m of k 
columns (of A and of x), and hence k C m solutions of the linear system Ax =b. One of 
these finite number of solutions will be the required solution of the LP provided the 
nonnegativity condition x>0 is satisfied and there is a minimum value of the objective 
function. Let the LP be Compute x=[xj X2 x3 x j ' that minimizes z = c'x =[1 -2 3 
l]x subject to Ax =b,x >0, where 

A = 1 2 3 4 
-7 1 - 2 6 

, b = 

Here m = 2, k = 4. Hence there are C2 =4!/(2!(4-2)!) = 6 ways of selecting 2 of 4 
columns of A and of x and thus 6 solutions of the linear system Ax = b. The six 
systems of linear equations are 

1 2 

-7 1_ 

X] 

x2_ 

= 1 

_o_ 

j 1 3 

-7-2_ 

X] 

-X3_ 

= 7 

0 

) 1 4 

_-7 6_ 

X] 

_X4_ 

— 1 

0 

2 3 
1 -2 

x2 

x3_ 

2 4 
1 6 

x2 
X4 

= 7 
0 

> 3 4 
1 -2 

x3 

X4 

= 7 
0 

The six solution vectors are [xi x2f=[A667 .2667]', [*; xj]'=[-.7368 2.5789]', 
*<,]'=[ 1.2353 1.4412]', [x2 x,]'=[2 \}\[x2 x,]'=[5.2500 -.8750]', [x3 JC4] '=[1.4 .7]'. 

[xi 

In the first equation, x\, x2 are the basic variables while xj, X4 are the nonbasic variables 
whose values are taken as zero in the original equation Ax =b. In the second equation, xi 
is negative; while x2, x» are the nonbasic variables whose values are taken as zero in the 
original equation Ax =b. Since this solution does not satisfy the nonnegativity condition, 
we reject this solution. In the third equation, xi, X4 are basic variables and x2, x3 are 
nonbasic variables whose values are taken as zero. Thus there are four solutions, viz., the 
first, the third, the fourth, and the sixth solutions, each of which satisfies the 
nonnegativity condition. If we compute the objective function value z - c'x for each of 
the four values of the solution vector x then we obtain the value of z as - .0667, 2.6765, 
- 1 , 4.9, respectively. The minimum value of the objective function is z = - 1 which 
corresponds to the fourth equation. Therefore, x = (xi x2 *.? X4]1 = [ 0 2 1 0] ' 

is the required solution of the LPP. This algorithm with computational complexity 
0(kCmxk3) is combinatorial (not polynomial-time) and thus is slow. We did not have a 
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polynomial-time algorithm for solving LPs till 1978. Since 1979, several polynomial-
time algorithms for solving LPs have been developed. These polynomial algorithms are 
fast while some are faster than the others. For solving small LPs, a slow algorithm may 
be more economical than the fast ones. Yet we would be interested in the fast ones and 
not in the slow ones. In fact, with the advent of high-performance computing devices 
(including the supercomputer ones), solving small problems is never a serious problem. 
The desired goal is to have a fast algorithm for truly large problems where slow 
algorithms will certainly be unacceptably expensive and thus useless. We discuss some of 
these algorithms later. 

2.3 The simplex method in 'restricted tableau' Consider the standard form 1 of the LP 
Max f=ciXi+.. +c„x„ + 0 .x n + i+ . . +0.xn+m subject to bj>0 j= l ( l )m , XJ>0 i=l( l)n+m, and 

a i ix 1 +ai 2 x 2 +. . +ai„xn+xn+i=bi 
a2 ixi+a22x2+.. +a2nxn+xn+2=b2 

amiXi+am 2x2+.. +amnx„+xn+m=bm 

The restricted simplex tableau for the foregoing LP can be written as 

Xi Xjo Xn 

xn+i an • • ayo . . ai„ bi 

Xn+iO a;oi . . ajOjO • • ajoii bjo 

Xn+m a m ] • . SmjO • • <̂ mn t>m 

- c i . . -Cj0 . . - c „ 0 

51 (Pivot selection) Let -CJO be negative. Consider then, for all positive a^o, the ratios 
bi/aijo and take a smallest. If this is obtained for iO then call p=aj0jo the pivot (marked with 
a plus in the example later). 

52 (Next-tableau Computation) Having interchanged XJO and xn+io obtain the next 
tableau as follows. 

X1 Xn+iO Xn 

xn+i -aijo/p 

XJO a im/p . . 1/p . . ai0n/p bi0/p 

-amjo/p 
+cj0/p 

The blank positions are filled in as follows. Replace i-th row (excluding the pivot row 
and the elements of the pivot column) of the tableau by i-th row - aipxpivot row. The 
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pivot row is the row containing the pivot while the pivot column is the column containing 
pivot). 

S3 (Stopping Condition) If the bottom row (i.e., -Cj-row) excluding the last element is 
nonnegative, the solution is reached - terminate. Else go to the step SI. 

Consider the problem Max f=—2xi—7x2+2x3 subject to Xj+2x2+X3<l, -4xj-2x2+3x3<2, 
xi, x2, X3>0. We write the solution in restricted tableau (Vajda 1975) as follows. 

Restricted Tableau 0 Restricted Tableau 1 
Xl X 2 X3 iO=2,jO=3 Xi X2 X5 iO=l,jO=l 

x4 1 2 1 1 x4 7/3+ 8/3 -1/3 1/3 
x5 -4 -2 3+ 2 x3 -4/3 -2/3 1/3 2/3 

2 7 - 2 0 -2/3 17/3 2/3 4/3 

Restricted Tableau 2 
x4 x2 x5 

X! 3/7 8/7 -1/7 1/7 
x3 4/7 6/7 1/7 6/7 

2/7 45/7 4/7 10/7 

Since the last row is nonnegative (here positive), the solution is reached. The solution is: 
xi=6/7, x2=0, x3=6/7, f=10/7. 

2.4 Checking Rule for a Simplex Restricted Tableau Consider as an example the 
restricted tableau 

(c3) x3 

(cs) x5 

(Cl) 
Xl 

pn 
P21 

di 

(c6) 
X6 

Pl2 
P22 
d2 

(C2) 

x2 

Pl3 

P23 

d3 

(C4) 

x4 

Pl4 

P24 
d4 

Vl 

v2 

f 

Then c3p11+c5p2i-ci=di; c3pi2+c5p22-C6=d2; c3pi3+c5p23-c2=d3; C3pi4+C5p24-C4=d4; 
C3Vi+CsV2=f.. Such a relationship holds in all tableaux. This relationship is referred to as 
the Checking Rule for a Tableau. Satisfaction of this rule is necessary for a restricted 
tableau to be correct but it is not sufficient (i.e., the rule may be satisfied even if a 
computational mistake occurs). 

2.5 Dual Simplex Method When to use Consider Case 2 (Sec. 1). Let all Cj j=l(l)n 
be nonpositive so that, in the first tableau (Tableau 0), the first n elements in the bottom 
row are nonnegative (if we maximize). We call such a tableau dual feasible. If, in 
addition, all bj i=l(l)m are nonnegative then the result is reached. Else, apply the dual 
simplex method as follows. 
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51 (Pivot selection) Let bjo be negative.Consider for all ajoj<0, |cj/aioj| and take a 
smallest. If this is obtained for jO then aiojo is the pivot. 

52 (Next tableau computation) Same as in the foregoing simplex algorithm. 

53 (Stopping condition) If the bottom row (i.e., Cj-row)excluding the last element is 
nonnegative then the solution is reached - terminate. Else, go to the step SI. 

Consider the problem [27] Max f=-X!~2x2 subject to xi-4x2>2, 2xi-2x2>7, xi+3x2>-2, 
Xi, x2>0. Introducing slacks with negative sign, we obtain Max f=-Xi-2x2 subject to 
Xi~4x2-X3=2, 2xi-2x2-X4=7, Xi+3x2-x5=-2, xi, x2, X3, X4, X5>0. Multiplying each 
equation by - 1 , we get -xi+4x2+x3=-2, -2xi+2x2+x4=-7, -xi-3x2+x5=2. Hence the 
tableaux are 

Restricted Tableau 0 
Xl 

x3 -1 
x4 -T 
X5 "I 

1 

X2 

4 -2 
2 -7 

- 3 2 
2 0 

x3 

Xl 

x5 

Restricted Tableau 1 
x4 

-1/2 
1 

-1/2 
Vi 

X2 

3 3/2 
-1 7/2 
-4 11/2 
3 -7/2 

Since the last row is nonnegative (here positive), the solution is reached. The solution is: 
x,=7/2, x2=0, f=-7/2. 

2.6 Artificial basis technique If the LP is in neither of the three standard forms (Sec. 2 
and cannot be transformed into one of them then the method is as follows (note that the 
LP is neither primal feasible nor dual feasible): 

51 Multiply both sides of those constraints by - 1 , in which bj is negative. The 
coefficients of x„+i i=l(l)m are then 1, - 1 , or 0. 
52 In the later two cases add a variable a; called the artificial variable to the left-hand 
side. 
53 Subtract Mat from the objective function f to be maximized (Add Ma* to the 
objective function f to be minimized). M is considered to be a value larger than any other 
with which it is compared during the computations. 
54 Set up the simplex tableau. Using the checking rule, obtain the last row (its elements 
are to be multiplied by M). Note that the sum of the arrows is the row of the objective 
function f = cSt + M £ai. 
55 Consider the last row to be -Cj-row for the next tableau computation. 

Why artificial variables (i) Contradictory constraints The most v mportant role of the 
artificial variables is to detect inconsistency (contradiction), if any, among the original 
constraints. If we do not use artificial variables then we might end up getting a solution 
where it does not exist in view of the contradictory (original) constraints. The original 
constraints are contradictory if it is impossible to make the artificial variables zero, (ii) 
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Redundant constraints If a constraint is redundant then an artificial variable may remain 
in the final basis with the value zero. 

Consider the LP [27] Max f=-xi+X2 subject to Xj+2x2<4, 3xj-X2>l, Xi+3x2=4, xi, 
X2>0. Rewrite the problem as Min f=xi-X2 subject to xi+2x2+X3=4, 3xi-X2-x4=l, 
xi+3x2=4, xi, X2, X3, x4>0. In the second and third equations the slacks x4 and x5 have 
coefficients -1 and 0, respectively. Adding artificial variables vi and V2 to these 
equations and subtracting Mvi and Mv2 from the objective function, we write the 
problem as Min f=Xi-x2+Mvi+Mv2 subject to X]+2x2+X3=4, 3xi~X2-X4+vi=l, 
xi+3x2+v2=4, X], x2, x3, X4, vi, \2>0. No slack variable is to be added to the third equality 
constraint. The restricted tableaux now can be written as (positive slacks and artificial 
variables only are written in the left-most column) 

Restricted Tableau 0 Restricted Tableau 1 

X3 

Vl 

v2 

(M) 

1 
Xl 

1 
3+ 

1 
-1 

4 

-1 
x2 

2 
-1 
3 
1 
2 

0 
x4 

0 
-1 
0 
0 

-1 

4 
1 

4 
0 
5 

X3 

X] 

v2 

Vl 

-1/3 
1/3 

-1/3 
1/3 

-4/3 

t 
Omit 

x2 

7/3 
-1/3 
10/3+ 

2/3 
10/3 

x4 

1/3 
-1/3 

1/3 
-1/3 

1/3 

11/3 
1/3 

11/3 
1/3 

11/3 

The Vi column is not useful. So it can be omitted. In fact, computation of Vi is not 
necessary. The next (final) tableau is 

Restricted Tableau 2 
v2 x4 

x3 -7/10 1/10 
xi 1/10 -3/10 
x2 3/10 1/10 

-1/5 -2/5 
-1 0 

t 
Omit 

The V2 column is also not of interest. So it can be omitted.. The solution is xi=7/10, 
X2=ll/10, f=-2/5. A method alternative to the artificial basis technique is the self-dual 
parametric method [27]. We will not present this method here. 

2.7 Revised Simplex method The tableau at any point in the simplex procedure can be 
determined solely by a knowledge of which variables are basic. Denote by B the 
submatrix of the original matrix A having m columns of the mxn matrix A 

11/10 
7/10 
11/10 
-2/5 

0 
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corresponding to the basic variables. These columna are linearly independent and hence 
the columns of B form a basis. Call B basis or basis matrix. Let B consist of the first m 
columns of A. Then, by partitioning A, x, and c' as A=[B, D], x=[xB, xD], c'=[c'B, C'D], 
the standard form of the LP becomes 

Max f= C'BXB+C'DXD subject to BxB+DxD=b, xB>0, XD^O (1) 

The basic solution which, we assume, is also feasible corresponding to the basis B is 
x=(xB, 0), where xB=B~ b. The basic solution results from setting xD=0. However, for any 
value of xD the necessary value of xB can be computed from (1) as 

xB= B" ,b-B"IDxD (2) 

and this general expression when substituted in the cost function yields 

f=c'B (B-'b-B-'DxD) + c W = C'BB-'IH- (C'D- C'B B" 'D)X D (3) 

which expresses cost of any solution of (1) in terms of xD. Thus 

I W D - C'B B"'D (4) 

is the relative cost vector (for nonbasic variables). It is the components of this vector that 
are used to determine which vector to bring into the basis. Having derived the vector 
expression for the relative cost, we can now write the simplex tableau in matrix form. 
The initial tableau takes the form 

|~A I 61 = r B I PI ^1 

[yjo] t̂ koi o] 
(5) 

which is not, in general, in canonical form and does not correspond to a point in simplex 
tableau. If the matrix B is used as a basis then the corresponding tableau becomes 

I B"'D B~'b ~~| (6) 

0 c'D- C'B B-1D - C'B B"'b 

which is the matrix form we desire. Note that the equation (6) is obtained by 
premultiplying the right-hand side of the equation (5) by 

L-C^B-1 Tj' 

The simplex method is expected to converge to an optimal solution in about m or 
perhaps 3m/2 pivot operations. If m « n, i.e., if the matrix A has far fewer rows than 
columns then pivots will occur in only a small fraction of the columns during the course 
of optimization. Since the other columns are not explicitly used, the work spent in 



420 

computing the elements in these columns after each pivot is an wasted effort. The revised 
simplex method avoids the unnecessary computations by ordering the computations 
(needed of the simplex method). Given B~' of a current basis and the current solution 
xe=yo=B~ b, the steps of the revised simplex method are as follows. 

51 Compute the current relative cost coefficients r'D= c'D- c'B B~'D. If r'D>0 then stop; 
the current solution is optimal. 
52 Determine which vector aq is to enter the basis by selecting a negative cost coefficient 
and computing yq=B_1aq which gives the vector a, expressed in terms of the current 
basis. 
53 If no yiq>0 then stop; the LP is unbounded. Else, compute the ratios yio/yiq for yiq>0 
to determine which vector is to leave the basis. 
54 Update B"'and the current solution B~'b. Return to the step SI. 

Updating B~ is done by the usual pivot operations applied to an array consisting of 
B~'and yq, where the pivot is the appropriate element in yq.Of course B~'b may be 
updated at the same time by adjoining it as another column. Consider the LP Max 
3xi+X2+3x3 subject to 2xi+X2+X3<2, Xi+2x2+3x3<5, 2xi+2x2+X3<6, xi, X2, X3>0. Adding 
the slacks x4, X5, X6 we convert the inequalities to equations and write the extended 
tableau Ofor reference. 

Extended Tableau 0 
Coef.Of Coeff.Of Coeff. Of Coeff. Of Coeff. Of Coeff. Of 

Xi 

2 
1 
2 

-3 
3l = 

X2 

1 
2 
2 

-1 

x3 
1 
3 
1 

-3 

x4 
1 
0 
0 
0 

x5 
0 
1 
0 
0 

2 
1 
2 

3 2 = r n 
2 
2 

a3= 1 
3 
1 

X6 

0 
0 
1 
0 

b 
2 
5 
6 

-Cj-row 

We start with an initial basic feasible solution and corresponding B ' (unit matrix here) as 

x4 

X5 

X6 

1 
0 
0 

B-
0 
1 
0 

0 
0 
1 

b=xB 

2 
5 
6 

Compute c'BB =[0 0 0]B '= [0 0 0] and then (referring extended tableau 0) 
r'D= c'D- C'B B_ID =[-3 -1 -3]-[0 0 0]D=[-3 -1 -3] , where 

D= 2 
1 
2 

1 
2 
2 

1 
3 
1 
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We decide to bring X2 into the basis. Its current representation is found by multiplying by 
B_1; thus we have 

B"1 b=xB y2=B_1a2 

x4 1 0 0 2 1+ 

x5 0 1 0 5 2 
x6 0 0 1 6 2 

After computing the ratios in the usual manner, we select the pivot indicated. The 
updated tableau becomes 

B"1 b=xB 

x2 1 0 0 2 
x5 -2 1 0 1 
x6 -2 0 1 2 

C ' B B ^ H 0 0]B_1= [-1 0 0]. 

(Refer extended tableau 0) 
Xl X3 X4 

r'D= c'D- C'B B_1D = [-3 -3 0]- [ - l 0 0]D = [-1 -2 1], where D 

We select X3 to enter the basis. We have the tableau 
B"1 b=xB y2=B_1a3 

2 1 0 0 2 1 
5 - 2 1 0 1 1+ 

6 - 2 0 1 2 -1 

Using the pivot indicated, we get 
B"1 b=xB 

2 3 - 1 0 1 
3 - 2 1 0 1 
6 - 4 1 1 3 

Now c ' eB ' ^ f - l -3 0]B"'=[3 -2 0]. 

(Refer extended tableau 0.) Xi x4 X5 
r'D= C'D- C'B B_1D=[-3 0 0]-[3 -2 0]D=[-7 -3 2], where D 

We select xi to enter the basis. We have the tableau 
B'1 b=xB y2=B_1ai 

x2 3 -1 0 1 5+ 

x3 -2 1 0 1 -3 
x6 -4 1 1 3 -5 

2 1 1 
1 3 0 
2 1 0 

2 1 0 
1 0 1 
2 0 0 
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Using the pivot indicated we obtain 
B"1 b=xB 

x, 3/5 -1/5 0 1/5 
x3 -1/5 2/5 0 8/5 
x6 -1 0 1 4 

Now C ' B B - ' K - S -3 0]B_1=[-6/5 -3/5 0]. 
r'D= c'D- C'B B_1D=[-1 0 0]-[-6/5 -3/5 0]D=[7/5 6/5 3/5], where D=|~i 1 "0 

2 0 1 
2 0 0 

Since all the elements of r'o are nonnegative, we conclude that the solution x=[l/5 0 
8/5 0 0 4]' is optimal. 

3. The Ellipsoid Algorithm 

L.G. Khachian published a polynomially bounded algorithm [10] to solve an LP. Let 

aiX<bj i=l(l)m,aieZn ,bieZ (7) 

be a system of strict linear inequalities with integral coefficients. Define 

L=[Slog2(|ay|+l)+Ilog2(|bi|+l)+log2nm]+l (8) 

where L=the space needed to state the problem=the number of bits (binary digits) 
required to represent the input of the system of inequalities. The leftmost summation runs 
over i=l(l)m and j=l(l)n while the rightmost summation runs over i=l(l)m. 

The algorithm Define a sequence xo, Xi , . . eRn and a sequence of symmetric positive 
definite matrices Ao, Ai, . . recursively as follows. xo=0, Ao=2 I where I is the unit 
matrix of order n. Assume that (Ak, xk) is defined. Check if xk is a solution of (7). If it is, 
stop. Else, pick any inequality in (7) which is violated.If ajXk>b; then set 

Xk+i=Xk-Aka
t
i/((n+l)V(aiAka

ti)), 
Ak+1=(n2/(n2-l))(Ak-(2/(n+l))(Akat

i)(Akat
i)

t/(aiAkat
i)) 

It can be shown that approximations within e~10nL preserve the validity of the following 
theorem. 

Theorem If the algorithm stops then xk is a solution of (7). If it does not stop in 6n2L 
steps then (7) is not solvable. 

To decide the solvability of a system of the form 

ajX<bi i=l(l)m,aieZn ,bi6Z (9) 
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consider instead the system 

[2L]aix<[2L] bi +1 i=l(l)m,aieZn ,bi£Z (10) 

To solve an LP max cSt subject to Ax<b, x>0, consider the system of linear inequalities 

c'x^V, Ax<b, x>0, A'y^O, y>0. (11) 

Consider the inequality Xi+x2-4x3<-l. L=log2(l+l)+log2(l+l)+log2(4+l)+log2(l+l) 
+log2(lx3)+l=7.9069. x0=[0 0 0]', A0= 2LL. x0 does not satisfy the inequality. m=l, n=3. 
xi=[-.9129 -.9129 3.6515]'. 

~~262.5 -7.5 3(T 
-7.5 262.5 30 
30 30 150 

The vector Xi satisfies the inequality. So it is a solution and we stop. However, in the 
ellipsoid algorithm, the space L needed to represent the input of the system of 
inequalities is large for a reasonably large real-world LP. As a result, 2L that occurs in Ao 
(-2 I) could be too large for the (floating point) precision of the computer. Also, the 
convergence is too slow, i.e., the number of iterations is too many for such LPs. Hence 
the method is impracticable and is not meant to be used for solving an LP although the 
method is of great academic interest and has stimulated the thought process of many 
operations researchers. This stimulation has resulted in the landmark polynomial-time 
algorithm [9] based on projective transformation due to Karmarkar in 1984 and 
subsequently several other improved algorithms. We discuss specifically the Karmarkar's 
algorithm which is an exterior-point method unlike the simplex algorithms. For the 
underlying geometrical concepts, Karmarkar's paper [9] should be referred. 

4. Karmarkar Form of Linear Program and Algorithm 

4.1 The philosophy A linear program (LP), can be defined as Minimize (Min) z = c*x 
subject to Ax < b, x > 0, where A is an m x n matrix and 0 is the n-dimensional 
column vector (n-vector) of 0s. A form of LP equivalent to the foregoing LP and an 
algorithm (for this form), both due to N. Karmarkar, are presented here precisely and 
concisely. This Karmarkar form of LP (KLP) is Min z = c*x subject to Ax = 0, e'x = 1, x 
> 0, x = e/n is feasible, minimal z-value = 0, where e is the n-vector of Is. Both the form 
and the operational aspects of the algorithm presented here are more easily followed. The 
algorithm is readily implementable/programmable on a computer. The Karmarkar 
algorithm (KA) uses a transformation from projective geometry to create a set of 
transformed variables y. This transformation / always transforms the current point into 
the centre of the feasible region in the space defined by the transformed variables. If / 
takes the point x into the point y then we write fix) = y. The KA begins in the 
transformed space in a direction that tends to improve z without violating feasibility. 
This yields a point y1, close to the boundary of the feasible region, in the transformed 
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space. The new point is x1 that satisfies/(x1) = y1. The procedure is iterated replacing x° 
by x1 until the z-value for xk is sufficiently close to 0. An intelligent implementation of 
KA, however, does need a deeper insight (into the algorithm) that avoids 
redundant/partial duplication of computation/codes and that possibly reduces the number 
of iterations. This projective transformation based polynomial-time interior-point 
iterative algorithm is claimed to be more efficient than the widely used exponential-time 
exterior-point iterative method called the simplex algorithm for large LPs. The simplex 
algorithm and its variations have been the most widely used methods in linear 
optimization for over three decades (sixties—eighties) and is still being extensively used 
certainly for small and medium LPs. The KA is increasingly finding its place in 
literature/textbooks on linear programming/operations research. It is also stimulating in 
terms of visualizing every derived mathematical step geometrically (maximum three 
dimensions can be visualized, higher dimensions are just straight-forward mathematical 
extensions and cannot be visualized) or achieving the desired geometrical 
path/destination using the appropriate mathematics. Thus, we believe that there is a scope 
for such a presentation for the readers who desire to get a quick feel about this landmark 
algorithm. A MATLAB program for the KA is appended for ready check and for a 
quick feel about its convergence. 

4.2 Notations 

We use the following convention and notations. A bold lower case letter (such as c, b, x) 
always indicates a column vector. A bold zero, viz., 0, denotes a null column vector (i.e., 
a column vector of 0s) of appropriate order (including the order 1). An upper case letter 
(such as A, P) denotes a matrix and t, when used as a superscript, indicates the 
transpose. The specific symbols used here have the following meaning. 

Symbol Meaning 

A an m x n matrix [ay] 
c an n-dimensional vector or simply n-vector [Cj] = [ci c 2 . . cn]' 
b an m-vector [bj] = [bi b2 . . bm]1 

e a vector [1 1 . . 1]'of appropriate order 
s an m-vector [SJ] = [sj s 2 . . sm]' of slack variables 
v an n-vector [VJ] = [vi v 2 . . vn]' of surplus variables 
x an n-vector [xj = [xi x2 . . xn]' 
xk or yk k-th iterate of the vector x or y 
xu

k or y„k k-th iterate of the u-th element of x or y 
diag(xk) n x n diagonal matrix whose (i,i)-th element is Xjk 

j = l(l)n j = l , 2 , . . , n 
|| || Euclidean norm 
a a real positive number < 1 
x, y, s > 0 x > 0, y > 0, s > 0 
Min (Max) Minimize (Maximize) 
X+ minimum-norm least-squares inverse (p-inverse) of the matrix X 



425 

4.3 The Scope Consider the LP 

Mmc'x subject to Ax = b, x>0. (12) 

The LP (12) is solved by the simplex method/revised simplex method/a variation of the 
simplex method (exterior-point method) designed and developed by G. Dantzig during 
early 1950s [2, 3, 4, 5, 6, 11, 17, 18, 26]. This method dominated the linear programming 
scene solving millions of optimization problems in almost all scientific and engineering 
areas. However, considerable amount of research went into this area and many special-
purpose algorithms were designed and used with a significant success. All these 
algorithms are exponential-time (nonpolynomial-time). The simplex method is 
exponential-time in the worst case. This implies that if an LP of size2 n is solved by the 
simplex method, there exists a positive number p such that for any n, an LP of size n 
can be solved in at most pT operations. The simplex mehtod may even enter into a 
cycling (infinite loop) though very rarely [2]. Efforts to develop a polynomial-time 
algorithm for LPs did not meet with any success till almost the end of 1970s. In 1979, 
L.G. Khachiyan reported the first known interior-point iterative algorithm called the 
Ellipsoid method [10] - not of great practical importance but of great academic interest -
to solve LPs discussed in the previous section. Then, in 1984, N. Karmarkar proposed 
the second polynomial-time 0(n3 5) interior-point iterative method [8, 9, 19, 28] based on 
a projective transformation, which is of academic and of practical interest. 

We provide here the conversion of any LP to the Karmarkar form of LP (KLP). We also 
present Karmarkar Algorithm (KA) precisely and concisely so that one could simply 
solve an LP just by mechanically following the steps. We omit the proof as well as much 
explanation which are available in Karmarkar's paper [9]. A MATLAB Version 5.1 
program for the KA is included for ready verification and feel about the algorithm. 

4.4. Conversion of an LP to KLP A standard LP (constraints in an equality form) or 
any LP whose constraints are in an inequality form can be converted to a KLP as 
follows. Consider the LP 

Max z = c'x subject to Ax < b, x > 0. (13) 

The dual of LP (13) is 

Min w = b'y subject to A*y > c, y > 0. (14) 

From the duality theorem, we know that if the n-vector x is feasible in (13), the m-
vector y is feasible in (14), and the z-value in (13) equals the w-value in (14) then x is 
maximal for (13). This implies that any feasible solution of the following set of 
constraints will produce the maximal solution of (13). 

2 The size of an LP could be defined as the number of symbols needed to represent the LP in binary 
notation. 
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c'x - t>V = 0, Ax< b, A'y >c, x , y > 0 (15) 

Inserting slack and surplus variables into (15) we get 

c'x - bV = 0, Ax + Ims = b, A'y - I„v = c, x, y, s, v > 0 , (16) 

where s =[ si S2 . . sm]' is the m-vector of slack variables, v = [ vi v2 . . v„]' is the n-
vector of surplus variables, Im is the unit matrix of order m, and I„ is the unit matrix of 
order n. We now append to (16) yet another constraint such that the feasible solution of 
(16) satisfies the equation 

eSi + eV + e's + e'v + di = k, (17) 

where k is to be found/supplied such that the sum of the values of all the variables < k. 
The variable dj > 0 is a dummy (slack) variable. This yields 

cSi-bV=0, Ax+Ims=b, AV-InV=c, e'x+eV+e's+eV+d^k, x, y, s, v, dj > 0, (18) 

To make nonzero right-hand sides of (18) zero, we introduce yet another dummy variable 
d2, where d2 = 1. Thus, we obtain 

c'x-bty=0, Ax+Ims-Imbd2=0, Aty-Inv-Incd2=0, e'x+ety+e's+etv+di-kd2=0, 
etx+ety+e's+etv+di+d2 = k + 1 , , x, y,s, v, di, d 2 > 0 . . (19) 

Allowing the following change of variables x=(k + l)x', y=(k + l)y', s=(k + l)s', v=(k 
+ l)v', d,=(k + l)di', d2 =(k + l)d2' we obtain 

[x y s v d, d2] = (k+l)[ x' y' s' v' d / d2']: c'x'-b'y^O, Ax'+Ims'-Imbd2'=0, 
Aty'-InV-InCd2

/=0,etx'+ety'+ets'+etv'+dr-kd2'=0,etx'+ety'+e,s'+etv'+di'+d2'=l, 
x',y',s',v',d1',d2'>0. . . (20) 

We now enforce that a solution (geometrically, a point in [2n + 2m + 2] dimensional 
polytope [16] defined by (20) ) that sets all variables equal is feasible in (20). This is 
achieved by adding the third dummy variable d3' to the last but one constraint in (20) and 
then adding a multiple of d3' to each of its preceding constraints. This multiple is chosen 
so that the sum of the coefficients of all variables in each constraint (except the last two) 
equals zero. This yields KLP (21). 

Min d/ subject to 
c'x'-bV - (e'c--e'b)d3'=0, Ax'+Ims'-Imbd2' - [Ae + lm(l-d2')e]d3'=0, 

Ay-I„v'-Incd2 '-[A ,e-In(l-d2 ')e]d3 '=0, e,x'+ey+e,s'-t*V+d1'-kd2'-(2n+2m+l-k)d3'=0, 
e'x'+eV+eV+eV+di'+dz' + d ^ l , x', y\ s', v', di', d2', d3' > 0 . . (21) 

Observe that we cannot write the expression eV+eV+e's'+e'v' as e^x'+y'+s'+v') since 
the order of e' differs from x' to y', in general. In the KLP (21) the solution (point) [x/ 
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x2 ' . • xn' y,' y2 ' . . ym' s,' s2' . . sn' v,' v2 ' . . vm' d,' d2' d3']1 =(l/(2n+2m+3))et is 
feasible. Since d3' should be zero in a feasible solution of (20), we need to minimize d3' 
in (21). If (20) is feasible then the minimum value of d3' in KLP (21) will be zero and the 
remaining 2n+2m+2 variables in a minimal solution of (21) will give a feasible solution 
to (20). The values of xi, x2, . ., x„ in the minimal solution of (21) will produce an 
optimal solution of the original LP (13). The KLP (21) is now ready for solution by the 
KA. Consider the LP Maxc'x subject to Ax<b, x>0, where 

r 1 2 1 "I ,b =r. 
L-4 -2 3 J |j 

,b =fl" c = -2 
-7 
2 J 

, x = [xi x2 X3]',m = 2, n = 3. 

From KLP (21), we have, choosing k=20 (conservatively) and setting Xj=21x/ j 
1(1 )n, yi=21y/ i = l(l)m, Si=21s/ i = l(l)m, Vj=21v/j = l(l)n, di=21di', d2=21d2', 

Min di' subject to 

- 2 - 7 2 - 1 - 2 0 0 0 0 0 00 10 
1 2 1 0 0 1 0 0 0 0 0 - 1 - 4 

- 4 - 2 3 0 0 0 1 0 0 0 0 - 2 4 
0 0 0 1 - 4 0 0 - 1 0 0 0 2 2 
0 0 0 2 - 2 0 0 0 - 1 0 0 7 -6 
0 0 0 1 3 0 0 0 0 - 1 0 - 2 - 1 
1 1 1 1 1 1 1 1 1 1 1 -20 9 
1 1 1 1 1 1 1 1 1 1 1 1 1 

Xl 

x2 ' 
x/ 
yi' 

S l ' 

s2' 
V l ' 

v2' 
v3' 
d,' 
d2' 
d3' 

All variables >0. 

The foregoing LP is the required KLP for the KA. Thus, without any confusion or loss of 
generality, the general form of KLP can be written as 

Min z=c'x subject to Ax=0, e'x = 1, x>0, x = e/n is feasible, minimal z-value = 0, (22) 

where the matrix A is m x n. We will be using this general form for the KA. 

4.5. The Karmarkar Algorithm (KA) Consider the KLP (22). Assume that a feasible 
solution having a minimal z-value < e (e is a small positive value compared to the 
average element of A, b, c) is acceptable. The KA is then as follows. 

Step 1 Input A, b, c, m, n. Set n-vector e = [1 1 . . 1]'. 
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Step 2 Set the feasible point (solution) x° = e/n, the iterate k = 0. 
Step 3 If c'xk < e then stop else go to Step 4. 
Step 4 Compute the new point (an n-vector) yk+1 in the transformed n-dimensional unit 
simplex S ( S is the set of points y satisfying e*y = 1, x > 0) given by 

yk+, = x0-acp/[V(n(n-l))||cp||], 
where 

Cp = (In-P
t(PPt)+P)[diag(xk)]c, P= fA[diag(xk)] 

e' 
, 0<a<l. 

a = 0.25 is known to ensure convergence. P is the (m + 1) x n matrix whose last row e' 
is a vector of Is. (PP')+ is the p-inverse [13] of the matrix PP'. 
Step 5 Compute now a new point xk+I in the original space using the Karmarkar 
Centring transformation to determine the point corresponding to the point yk+1: 

x^q/te'q), 
where 

q = [diag(xk)]yk+1. 

Increase k by 1 and return to Step 3. 

Remark The computation of xk+1 in Step 5 may equivalently be written as Xjk+1 = 
Xjkyjk+1/X(xt

kyt
k+1) j = l(l)n, where the summation runs from t = 1 to n. 

Example Consider the example of Sec. 4.4. If we now call the 8x13 matrix A, the left-
hand side 13- vector x, and'the right-hand side 8-vector b then the KA gives us, in the 
first iteration, 

y1 = [.0672 .0683 .0701 .0753 .0709 .0706 .0770 .0692 .0824 .0733 .0769 .0750 .0781]', 

x' = [.0068 0 .0408 .0136 .0272 0 0 0 .3061 0 .5578 .0476 0]'. 

To obtain 4 decimal places accuracy in the elements of x, we need to go up to 1247 
iterations. Thus, retaining the elements of x correct up 4 places, we have 

x1247 = [ .0068 0 .0407 .0139 .0272 .0003 .0001 .0006 .3066 .0001 .5560 .0476 0]'. 

Observe that here x = [ x\' x2' X3' y / y2' S\' s2' v / v2' V di' d2' da']'. Hence xi' = 
.0068, x / = 0, . . , d3' = 0. Thus the required (true) solution correct up to 3 places is, 
noting that k = 20, Xi = 21xi', x2 = 21x2 ' , . . , d2 = 21d2', 

[xi x2 x3 yi y2 si s2 \x v2 v3 di d2 d3']' 
= [.143 0 .855 .292 .571 .001 .003 .012 6.439 .002 11.675 1 .001]'. 
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4.6 Conclusions Need for d3' It is not readily seen a priori that the original LP is 
feasible. If it is known that the LP is feasible then we need not bring d^' in the KA at all. 
If the LP is not feasible due to inconsistency in the constraints and we do not use &?,' then 
we will end up getting incorrect solution. While the simplex algorithm needs artificial 
variables to tackle/detect inconsistency in the constraints, the KA needs da'. 

Enhanced dimension of KLP If the original LP is in an inequality form (Ax < b) then 
the corresponding KLP will have 2(n+m)+3 variables where A is m x n. Clearly there 
has been an increase of n+2m+3 variables (and hence the increase in the dimension of 
the polytope defined by Ax < b, x> 0) over the original LP. If, on the other hand, the 
original LP is in an equality form (Ax = b) then the corresponding KLP will have 
relatively small dimension. 

Non-feasibility of error-free computation The KA needs the computation of V(n(n-1)) 
which cannot be computed exactly, in general. Hence, unlike simplex and other methods 
[12, 14, 15], the KA is not amenable to error-free computation. 

Polynomial-time noniterative algorithm -an open problem The KA is polynomial-time 
iterative needing clearly too many iterations compared to the simplex algorithm. A 
mathematically noniterative (direct) polynomial algorithm for an LP is still an open 
problem. However, a heuristic direct polynomial algorithm which is significantly useful 
in solving many real world LPs does exist [Sen and Ramful 2000]. It may be seen that the 
nonnegativity condition (x>0) is the real difficulty in the way of developing direct 
algorithm. 

Parallel implementation The KA is relatively easy to be implemented/programmed on a 
parallel machine unlike the simplex method. 

General Observe that max c*x is the same as min -c*x. There has been a surge of 
interest among scientists/operations researchers to relook into the LP after the publication 
of the KA in 1984 [1, 8, 15, 16, 19, 20, 21, 22, 23. Consequently, there have been several 
inerior-point polynomial-time iterative algorithms (which are indeed excellent) reported 
in the literature. We do feel that a through conceptual knowledge of the KA, specifically 
from the geometrical point of view, is not only refreshing and enjoyable but also an 
important basis for further research in linear optimization. 

4.7 MATLAB Program for Karmarkar Algorithm (KA) A MATLAB 5.1 version 
program for the KA is presented below for the reader to readily check the algorithm for 
different kind of LPs including extreme ones (not large) and get a feel of it. No effort has 
been made to make the program more efficient so as to differ from the KA presented 
here. Observe that a MATLAB program is not meant to solve really large LPs. The inputs 
to this program are A, b, c, k (a parameter that differs from problem to problem), m, n. 

function[ ] = karmarkar(A,b,c,k,m,n); 
%Aisan mxn matrix; e=n-vector of Is needed later. 
%This is KA for the LP min z= cAtx s.t. Ax=0, x>=0, eAtx=l, x=e/n is feasible, 
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%minimal z-value=0. k = 20 here, k differs from problem to problem. 
e=ones(n,l); x0=e/n; x=x0; alp=0.25; I=eye(n); eps=0.00005; n2=sqrt(n(n-l)); 
%eps=0.00005 should be replaced by eps=0.00005*(average of the elements of A,b, & c) 
%for 4 significant digit accuracy in the solution (not the true solution) by KA. 

forj=l:3000 
if c'*x<eps 

string 'eps, iteration no., x ' 
eps,j,x' 

break 
end 

P=[A*diag(x);eT]; 
cp=(I-P'*pinv(P*P')*P)*diag(x)*c; 
y=x0-alp*cp/(n2*norm(cp)); 
q=diag(x)*y; 
x=q/(e'*q); 
string The iteration no. and solution are' 

end; 
xt=(k+l)*x; 
string The iteration no. and true solution are' 
j ,x t ' 

5. Variation on Karmarkar Algorithm: Detection of Basic Variables 

5.1 Introduction The projective transformation algorithm due to Karmarkar has brought 
about a resurgence of interest in linear programs (LPs). More recently Barnes [1] has 
developed a concise algorithm that can be applied to the standard form of an LP for 
which the minimum value of the objective function need not be known in advance. The 
Barnes algorithm is reviewed and some alternative proofs are provided. Also included is 
a sufficient condition for ,the algorithm to produce a bounded solution for an LP. The 
monotonic convergence of the solution vector and hence the detection of the basic 
variables during the execution of the algorithm are discussed [22]. 

5.2 The Algorithm Let the LP be 

Min c'x subject to Ax=b, x>0. (23) 

where A=[ay] is an mxn matrix of rank m, c, x, and b are as defined in the previous 
section. Denote the j-th column of A by ay In order to solve the LP (23), we solve the 
problem 

Min c'x subject to Ax=b, S(xj-yi)2/yi2=R2 (24) 

Iteratively, where y=[yi y2 • . yn]'>0 is a feasible solution, R is a positive constant 
defined later, and the summation is over I from 1 to n. Let x°>0 be given. In general, if 
xk is known then define 
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Dk=diag(x,k x2
k . . xn

k) (25) 

Compute xk+1>0 by the formula 

x^W-RkDkVA'XtVHDk^A'XOH (26) 

where 

Xk= (AD^AV'AD^c (27) 

and 

Rk= min ||Dk(c-AtAk)||/(xi
k(ci-ai

t^)) - cck (28) 
(Ci-ai'Ak>0 

for some ak>0 so that Rk>0. 

The fact that the algorithm converges to a solution is based on the following theorems 
and lemma (presented without proof)- For proof, refer [22]. 

Theorem 1 Let the LP (23) have a bounded solution. Then the algorithm defined by the 
equations (25)-(28) converges to a solution of (23). 

For an mx(m+l) matrix A of (23), the following theorem states that at least two of the 
variables including the nonbasic one converges monotonically. 

Theorem 2 Consider the LP (23) with n=m+l. Then the sequence {Xjk }, where i is such 
that the detection of the i-th column from A results in a nonsingular matrix, converges 
monotonically. 

The following lemma specifies a sufficient condition for a problem to have bounded 
solutions. 

Lemma 1 Let fdk=cSc - c*x + . The LP (23) has a bounded solution if the sequences 
{c'xk} and {fdk} are decreasing. 

Consider the LP Min f=X]-X2 subject to Xi+2x2^4, 3xi-X2^1, Xi+3x2=4, Xi, X2>0. 
Adding the slack X3 to the first equation, subtracting the slack X4 (called a surplus 
variable) from the second equation, and adding the artificial variables x5 and X6 to the 
second and the third equations respectively, we get the LP Min f= 
X)-X2+0X3+0X4+MX5+MX6 Subject to X]+2X2+X3=4, 3Xi-X2-X4+X5=l, Xi+3X2+X6=4, all 

variables>0. The value M is considered to be larger than any other with which it is 
compared during the computation. We take here arbitrarily M=50. Observe that artificial 
variables have to be added to '>' as well as '=' constraints but not to '<' constraints 
(assuming b;>0 for all i) for consistency (of constraints) check. The artificial variable 
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values must occur in the optimal solution with values zero if the LP is contradiction-free 
(consistent). If we do not use artificial variables for '>? and '=' constraints assuming 
b>0 then we could get a solution for the inconsistent LP where no solution exists. For 
'<* constraints no artificial variables (except slacks) are needed. 

Let the initial feasible solution be 

x°=[.01 .01 (4-.01-2x.01) .01 (1-3X.01+.01+.01) (4-.01-3x.01)]' 
= [.01 .01 3.97 .01 .99 3.96]' >0 (null column vector). 

1 2 1 0 0 0" 
1-1 0 - 1 1 0 
1 3 0 0 0 1 

, b = 4 
1 
4 

c = [l -1 0 0 50 50]'. 

Iteration 0 (k=0) 

Do=diag(x°)=the 6x6 diagonal matrix whose diagonal elements are those of x°. 
A0=[-.0025 49.9444 49.9968]'. We have chosen arbitrarily ak=.01>0 for all k. In fact, 
to get a positive Rk, we should choose an otk appropriately. D0=diag(x°)=the 6x6 diagonal 
matrix whose diagonal elements are those of x°. Substituting the values of xi, ci, and the 
vector ai=the first column of the matrix A, we obtain one value R0' and the 
corresponding one value vi=ci-ai'Ao. Similarly, we obtain R0

2 and v2= C2-a2'Ao. Thus we 
have 

[Ro'Ro2 RO3 RO4 RO5 R0
6]=[-1.1599 -2.2727 226.3848 4.5675 41.4905 189.3568], 

[vi v2 v3 v4 v5 v6]=[-198.8273 -101.0410 .0025 49.9444 .0556 .0032]. 

The minimum R0=R0
4=4.5675 for which v4=49.9444>0. Hence we take R0=4.5675. We 

are now having all the required values to compute x which is 

x'=[.0497 .0302 3.8899 0 .8810 3.8597]', f= 237.0545. 

Iteration 1 (k=l) 

Di=diag(x')=the 6x6 diagonal matrix whose diagonal elements are those of x1. 
A,=[-.0440 48.2694 49.9490]'. 
[Ri'R,2 R I 3 R,4 R,5 R,6]=[-1.0725 -3.3180 59.7917 9631.2 6.7020 52.0274], 
[v, v2 v3 v4 v5 v6]=[-193.732 -102.4898 .0440 48.2694 1.7306 .0510]. 

The minimum R,=R,5=6.7020 for which v5=1.7306>0. Hence we take Ri=6.7020. We 
are now having all the required values to compute x2 which is 

x2=[.3633 .0913 3.4540 0 .0013 3.3626]', f= 168.4688. 

http://4-.01-2x.01
http://4-.01-3x.01)%5d'
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Iteration 2 (k=2) 

D2=diag(x )=the 6x6 diagonal matrix whose diagonal elements are those of x2 

A2=[-.2680 -14.9562 49.5961]'. 
[R2'R2

2 R2
3 R2

4 R2
5 R2

6]=[-12.0557-1.0195 16.3490 -46022 177.0070 11.1385], 
[vi v2 v3 v4 v5 v6]=[-3.4596 -164.2085 .2680 -14.9562 64.9562 .4039]. 

The minimum R2=R2
6=11.1385 for which v6=.4039>0. Hence we take R2=11.1385: We 

are now having all the required values to compute x which is 

x3=[.6993 1.0992 1.1022 0 .0012 .0030]', f=-.1874. 

We continue the iteration till we get a desired accuracy, say, 4 significant digit accuracy. 
The exact solution of the LP is x=[.7 1.1 1.1 0 0 0]',f=-.4. 

5.3 Detection of Basic Variables The most difficult part in solving an LP is the lack of 
knowledge of the basic variables in the LP. If we know them a priori then the LP can be 
solved (substituting zero for the nonbasic variables) just like the way a linear system is 
solved in 0(n3) operations noniteratively (or iteratively). In fact, if there is an 0(n3) 
noniterative algorithm to detect the basic variables then it is clearly an achievement (a 
milestone) in the area of LPs. 

However, we discuss here how the foregoing iterative algorithm could be used to detect 
basic variables. The detection is made possible on the basis of the monotonic 
convergence of the variables including the nonbasic ones. We discuss the following 
cases for the detection of basic variables, the consequent optimal solution, and the 
problems involved therein. 

Case 1 If both the primal and its dual are nondegenerate then the LP has a unique 
solution having exactly m variables basic nonzero (see corollary of Property 1 later). The 
detection of basic variables and the consequent optimal solution are as follows. After a 
sufficient number of iterations, the m columns of the coefficient matrix associated with 
those m (basic) variables which have the larger values are taken and the resulting linear 
equations with the mxm nonsingular coefficient matrix are solved. The remaining n-m 
variables (nonbasic) are set to zero. 

Case 2 If the primal is degenerate and its dual is nondegenerate then the problem has a 
unique solution (see Theorem 4 later) having k<m variables nonzero. The basis here is 
not unique and may not be detectable. However, the k variables which are basic and can 
be detected give the optimal solution as the remaining n-k variables are zero. The 
optimal solution in this case is computed as follows. After a sufficient number of 
iterations, m columns including the k columns are chosen and the resulting linear 
equations with the mxm coefficient matrix are solved by choosing the values of the 
arbitrary variables, if any, and those of the remaining n-m variables as zero. 
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Case 3 If the primal is nondegenerate and its dual is degenerate then the problem has 
multiple solutions (see Property 1 later) having k>m variables nonzero. If the algorithm 
converges to a solution with exactly m variables nonzero (which, in general, does not 
happen) then these are basic. Otherwise, the detection is difficult as is highlighted in 
Lemma 2 and Theorem3 presented later. 

Case 4 If both the primal and its dual are degenerate then also the problem has multiple 
solutions (see Property 1 later) and hence the detection of basic bvariables is hard here 
too. 

The detection of basic variables in Cases 3 and 4 is discussed later in this section. The 
following lemma illustrates that the solution of the LP (23) obtained by the algorithm 
need not be an extreme point. 

Lemma 2 If the LP (23) has a bounded solution then the solution obtained by the 
algorithm need not be an extreme point. 

The proof of Lemma 2 follows from considering a counter example - the LP Min 
-2xi-X2 subject to 2xi-2x2+X3=l, 2xi-3x2+x4=l, 2xi+X2+xs=2, all variables>0. An 
artificial variable X6 is introduced to construct an initial feasible solution vector.with all 
elements l.The following theorem indicates a class of problems for which the algorithm 
may fail to give an extreme point. 

Theorem 3 If an LP has multiple solutions then the algorithm need not give an extreme 
point of the constraint set {x: Ax=b, x>0}. 

The proof follows from Lemma 2 and the foregoing discussion. The following property 
expresses the relationship between multiple solutions and degeneracy. 

Property 1 A primal has multiple solutions if and only if its dual is degenerate. 

Corollary 1 If the primal and its dual are nondegenerate then the problem has a unique 
solution which is an extreme point. 

The motive of the following theorem is to highlight the fact that the degeneracy of the 
primal does not pose any difficulty in computing the optimal solution. 

Theorem 4 If the dual of a given LP is nondegenerate then the algorithm converges to an 
extreme point. 

We have seen that if the dual is degenerate then the primal has multiple solutions (from 
Property 1) and hence the algorithm applied to the primal will not, in general, give an 
extreme point and, therefore detection of basic variables is not possible. As a remedy, the 
algorithm may be applied (i) to the dual if the primal is nondegenerate or (ii) to a problem 
which differs from the original one in the cost vector c so that the dual is nondegenerate 
and the solution of the perturbed LP is also a solution of the original LP. In the perturbed 



435 

technique, the perturbed problem is solved in the same way as in Case 1 if the original LP 
belongs to Case 3 and as in Case 2 if the original LP belongs to Case 4. 

It is not necessary to know beforehand whether the primal is degenerate or not. We halt 
at some iteration of the algorithm and seeve out the basic variables keeping in view that 
the nonbasic variables tend to zero. To halt, we choose an exit parameter which is any 
numerical zero whose choice depends on the measure of degeneracy of the dual; in our 
numerical experiments, it is chosen as 10" x ||x ||. The iteration may be continued till 
anyone of the variables including the artificial ones has a value less than the exit 
parameter or till a specified number of iterations chosen here as 2n have gone through, 
whichever is satisfied earlier. If the dual is near-degenerate, the choice of numerical zero 
may not be effective, i.e., it may not allow us to recognize the correct basis. A smaller 
exit parameter (subject, however, to the precision of the computer used) as well as alarger 
number of iterations are then called for. 

6. About Other Algorithms -Deterministic, Heuristic, and Probabilistic 

6.1 Shrinking Polytope Algorithm: Deterministic Let the LP be Max c*x subject to Ax 
= b, x>0, where A = [ay] = [a/ &2 . • am']1 is an mxn known matrix of rank r with i-
th row a/ = [ an a*2 . . ai„], Geometrically, &{X = bi is the i-th hyperplane of dimension 
n (i = 1, 2 , . . , m). That portion of the intersection of these m hyperplanes, that lies in the 
nonnegartive quadrant (i.e., the first quadrant defined by x>0 called the nonnegativity 
condition) constitutes convex region called here a polytope - the region which is of 
interest and is searched/spanned by the variables Xj of the vector x [16]. If one of the 
corners of the polytope happens to be the required point (solution) x, obviously that 
produces the maximum value of the objective function (OBJ) c'x, will have usually 
(nodegenerate case) positive values of some of the variables of x; while other values of 
the variables will be zero. Those variables Xi which have positive values are called basic 
variables while the remaining variables of x are called nonbasic variables which will 
always have zero values. There is absolutely no way to know a priori the basic variables. 
For, if the basic variables are known a priori then the LP can be readily solved 
noniteratively just like solving linear equations in 0(n ) operations. Which variables will 
become basic depend on the constraints Ax = b, the OBJ cSt, as well as on the 
nonnegativity condition x>0. Once the basic variables constituting the vector xB are 
known then the required solution is xB = AB~'b, where AB is the matrix A without those 
columns corresponding to the nonbasic variables, and there is no need to know c*x. 

While a corner point of the polytope, that gives the required maximum and that makes n 
- r variables Xj nonbasic, is most desired, a noncorner point could also maximize the 
objective function, i.e., it could give the same maximum value of the objective function 
as the former one. In the later case the number of positive variables X; will be more than 
the number of basic variables. Although the LP is certainly solved (in the later case) 
with more positive variables, such a solution is not often desired in practice. 
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The first hurdle in solving the LP is computing/obtaining a point in the polytope, i.e., 
obtaining a nonnegative solution of the constraints Ax =b while the second hurdle is to 
obtain that x which maximizes c'x and which is preferably a corner (point) of the 
polytope defined by Ax = b, x>0. To cross the first hurdle noniteratively in a polynomial 
time without increasing the dimension (columns) of A (e.g., without inserting artificial 
variables in Ax = b) is an open problem. Equally open problem is to cross the second 
hurdle noniteratively in a polynomial time. However, these problems have been solved 
iteratively in a polynomial time by, say, Karmarkar 0(n3 ) projective transformation 
algorithm [9] or noniteratively in exponential (combinatorial) time using, for example, 
the fundamental theorem of linear programming, i.e., by searching over nCm basic 
solutions. The simplex method is an improvement over the method of proof of the 
theorem. 

Once we have found a point (solution) inside the polytope we have crossed the first 
hurdle, i.e., we have obtained a nonnegative solution of Ax = b. We know the exact 
direction of search, viz., the direction of the c vector (c-direction), for a maximum but we 
do not know the point from which we proceed in that direction. If we start moving in the 
c-direction from a point which is different from the foregoing required point and which 
does not lie on the c-direction that passes through this required point then we will hit a 
side (bounding hyperplane) or a corner (an intersection of two or more hyperplanes) of 
the polytope corresponding to the OBJ value less than the maximum OBJ value. 

In the absence of the knowledge of the required point from which we start our search in 
the c-direction, a sensible/logical way is to start from a centre of the polytope or from 
somewhere in the middle region of the polytope. Unlike a multidimensional sphere, a 
polytope does not have a unique centre. Hence we consider the point of intersection of 
the minimum number of normals (directed inward the polytope) as a centre. A rigid 
weighted centre as found by P.M. Vaidya [25] is computationally more complex and 
strictly not necessary. From our centre we proceed in the c-direction and hit a hyperplane. 
A hyperplane from this point of hit and perpendicular to the c-direction encloses a much 
smaller space called here a shrunk polytope (which is within the current polytope). We 
again go to a centre of this shrunk polytope and proceed once again in the c-direction. 
This results in still smaller polytope. We continue this process till we get the required 
solution. A situation in this process that may crop up is a full rank linear system with k 
equations in k variables. This will, however, produce the required solution through 
solving these equations noniteratively - no further iteration (successive approximation) is 
needed at this stage. 

6.2 0(n3) Noniterative Algorithm: Heuristic There exists no mathematically direct 
(noniterative) algorithm to solve LPs like the ones (e.g., Gauss reduction with partial 
pivoting) to solve linear systems. Sen and Ramful (2000) [23] developed an 0(n3) 
mathematically noniterative heuristic procedure that needs no artificial variables and that 
includes an optimality test for solving LPs. Numerical experiments depicts that this 
algorithm is of considerable practical utility. An errorfree implementation of this 
algorithm is also developed [15]. 
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6.3 Probabilistic Algorithm: Evolutionary An evolution-inspired linear program (LP) 
solver [7, 24] is presented. The solver has been called "evolutionary" or "genetic" 
although the actual resemblance to natural genetics was minimal. The evolutionary 
algorithm (EA) computes a solution of the LP Maximize c'V subject to A'x' < b', k' < 
x' < k, where k' = [k'i k'2 . . k'n]' and k = [ki k2 . . k„]' (> k') are n-vectors of real 
numbers and A' =[a'y] is an mxn real matrix. The EA is inherently highly parallel and is 
readily implementable on a parallel machine and needs no slack/surplus (for conversion 
of inequalities to equations) and artificial variables (for consistency check). A sequential 
implementation of the algorithm is easy but cannot compete with the popular 
deterministic exterior/interior-point methods in terms of computing resource 
requirements and accuracy. A sequential MATLAB version of the solver is included for a 
quick feel about this evolutionary algorithm. The result here is evidently not claimed to 
produce basic variables and to be enough accurate, though, for many practical problems, 
such a result is useful. A parallel version, however, can possibly be competitive and is 
relatively easy to comprehend. The implementation of this algorithm, much unlike that 
of deterministic procedures, to solve nonlinear programs (NLPs) as well as integer NLPs 
and integer LPs is straightforward. 

6.4 MATLAB EA to Solve LP A MATLAB 5.1 version of the evolutionary algorithm is 
given below to obtain an approximate (not very accurate) solution of the given LP. The 
solution vector may have more than the number of basic variables nonzero. 

function[]=opt34a(m,n,A,b,c,size,d,s,ka,kb) ; 
string 'ORIGINAL m,n,A,b,c,size,d,s,ka,kb' 
m,n,A,b,c,size,d,s,ka,kb 
% 
%Compute solution vector x that maximizes c'x subject 
%to Ax<=b,0<=ka<=x<=kb,Matrix A is mxn. 
%size=population size (100, say); l/d=fraction for 
%perturbation (d=50, say); s=max # of seeds (10, say). 
%n-D vector ka is the lower bound of the vector x. 
%n-D vector kb is the upper bound of the vector x. 
% 
bd=b;cd=c;Ad=A;maxgen=70; 
b=b-A*ka; 
for j=l:n 

c(j)=c(j)*(kb(j)-ka(j)); A(:,j)=A( :,j)*(kb(j)-ka(j)); 
end; 
string 'CONVERTED A,b,C 
A,b,c 
% 
maxfit=0; 
for seed=l:s 

%max s different populations allowed; 
%each derived from a different but related seed. 
%From each initial population, called Generation 0, 
%the next generation (of the same size) is 
%derived from the immediate preceding generation 
%based on perturbations of each member of the population/generation. 

% 
[X,z]=population(m,n,A,b,c,size); 
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for g=l:maxgen %g denotes generation no.(Max maxgen (70) generations 
%for each seed (initial population, i.e., Generation 0) 
%has been allowed here, maxgen may be changed to any 
%other value, say 50. 
%Each successive superior generation is obtained 
%by perturbations of each member of the preceding generation. 

max f i 11=maxf it; 

for k=l:size %scanning over each member of one generation. 
xx=X; 
for j=l:n 

alp=X(j,k)/d;X(j,k)=X(j,k)+alp;x=X( : ,k) ; 
fitnessp(j)=fitnessf(A,b,c,x,m),-
X(j,k)=X(j,k)-2*alp;x=X(:,k); 
fitnessnfj)=fitnessf(A,b,c,x,m); 
X(j,k)=X(j,k)+alp;x=X(: ,k) ; 
fitness(j)=fitnessf(A,b,c,x,m); 

end 

[fitpmax,jp]=max(fitnessp); 
[fitnmax,jn]=max(fitnessn); 
[fitmax,jO]=max(fitness); 

if (fitpmax>=fitnmax) & (fitpmax>=fitmax) 
jj=jp;X(jj,k)=xx(jj,k)+xx(jj,k)/d; 
if X(j j ,k)>l,X(jj ,k)=l,-end; 

elseif (fitnmax>=fitpmax)&(fitnmax>=fitmax) 
jj=jn;X(jj,k)=xx(jj,k)-xx(jj,k)/d; 
if X(jj,k)<0,X(jj,k)=0; end; 

elseif (fitmax>=fitpmax)&(fitmax>=fitnmax) 
jj=jO;X(jj,k)=xx(jj,k); 

end 
end 
[X,z]=generation(m,n,A,b,c,X,size); 
[maxfit,kk]=max(z) ; 
string 'Generation/population #,Its best member*' 
g,kk 
string 'Fitness Value of this member, Member' 
maxfit, X(:,kk) 

if (abs(maxfit-maxfitl)/maxfit)<.0000001|g>=maxgen 
maxfitg(g)=maxfit;Xg(:,g)=X(:,kk); 
break 

end 
end 

[maxfitglobal,gmax]=max(maxfitg); 
string 'Seed #, Best fit for the seed, best member' 
seed, maxfitglobal,Xg(:,gmax) 
fitnessv(seed)=maxfitglobal;XXg(:,seed)=Xg(:,gmax); 

end 
[bestfit,bestk]=max(fitnessv); 
string 'best fitness value, best member' 
bestfit,XXg(:,bestk) 
% 
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for j=l:n 

xvalue(j)=XXg(j,bestk)*(kb(j)-ka(j)); 
end; 
xvalue=xvalue'+ka; 
objfnvalue=cd'*xvalue; 
string 'objective function value' 
obj fnvalue 
string 'solution vector' 
xvalue 
% 

count=0; 
A=Ad;b=bd; 
% 
for i=l:m 

if A(i,:)*xvalue<=b(i),count=count+l;end,• 
end; 
if count<m 

string 'Not all constraints are strictly satisfied.' 
string 'Number of constraints satisfied are' 
count 

else string 'All the constraints have been satisfied' 
break 

end; 
countl=0; 
for i=l:m 

lhs=A(i,:)*xvalue; 
if lhs<=b(i), countl=countl+l; 
else diff=abs((b(i)-lhs)/b(i))*100,-constraintno=countl + l; 

string 'Constraint no., b(constraintno)' 
constraintno, b(constraintno) 
string 'exceeds b(constraintno) by (percent of b(constraintno)' 
diff 

end; 
end 

function[points]=reward(A,b,x,m); 
rpv=0.5*ones(m,1);points=0; 
for i = l:m 

if A(i,:)*x<=b(i) 
points=points+rpv(i); 

end 
end; 

function[fitness]=fitnessf(A, b, c, x,m); 
points=reward(A,b,x,m); 
if points>=m*.5-.00001 

fitness=c'*x+points; 
else fitness=points; 
end; 

function[X,z]=population(m,n,A,b,c,size); 
^Generation 0,i.e., initial population of size, say, 100 
%n is the dimension of each member of the population 
X=rand(n,size); 
for k=l:size 

X=X(:,k); 
z(k)=fitnessf(A,b,c,x,m) ; 
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end; 

function[X,z]=generation(m,n,A,b,c,X,size) ; 
%generation produces fitness of each member of successive generations, 
%i.e., Generation 1 onwards 
%n=dimension of each member of the generation 
%size=number (constant, say, 100) of members in a generation, 
%i.e., no population increase or decrease in a generation 

for k=l:size, x=X(:,k); z(k)=fitnessf(A,b,c,x,m); end 
%Vector z gives fitness of each of the members in a generation 
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ABSTRACT 
Cell formation problems are practically important and are NP hard, which is very difficult 
to solve. Various operations research techniques, from the early use of the various 
mathematical programming techniques to the more recent neural fuzzy approaches, have 
been proposed to use to solve this problem. This chapter presents these operations 
research approaches. To save space and also to introduce the approaches in reasonably 
detail, at least one numerical example is used for each type of the technique discussed. A 
detailed list of references is also given. 

1. Introduction 

Various systems, such as just-in-time, flexible manufacturing, cellular 
manufacturing system, and etc., have been proposed to increase the efficiency in 
manufacturing. These systems yield many advantages in different ways. For example, 
just-in-time manufacturing, also known as the pull system, has been implemented in 
industry to improve the productivity by reducing in-processing inventory. Flexible 
manufacturing system, which is a compromise between the flexibility of cellular 
manufacturing and the higher production rate of the specially designed manufacturing 
system, is designed for medium volume manufacturing where computer control is used. 
In cellular manufacturing, increased productivity is achieved by forming cells or groups 
with similar properties or similar processing requirements. 

A major task in the design of cellular manufacturing system is cell formation, which 
includes the identification of part families and the formation of associated machine cells. 
The problem is how to design part families and associated machine cells such that all 
parts and machines in a cell have high similarity. This similarity can be based on various 
factors such as geometry, functioning aspects, material, processing, tools needed, and 
even the operator required. Thus, many factors can be or need to be considered in 
forming the cellular manufacturing system. Two basic approaches, namely, part coding 
analysis and production flow analysis, have been proposed. The former uses the 
information in the parts' attributes based on parts' coding and the latter uses information 
of the relationships between parts and machines. 

Please address all correspondences to E. S. Lee, email: eslee@ksu.edu 
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In part coding approach, the code, which characterizing the parts, can be represented 
by real (crisp) data, fuzzy data, or interval data. Crisp data are data that can be measured 
and defined precisely. Length of the part and type of material are examples of this type. 
Fuzzy data are data that cannot be defined precisely and is usually expressed 
linguistically. Some examples of interval data are tolerance level and the degree of 
surface finish, which are frequently represented approximately by intervals. 

In the production flow approach, part-machine matrices are used to represent the 
relationships between the parts and the machines. There are three types of part-machine 
matrices, binary part-machine matrix, weighted part-machine-part, and non-binary part-
machine matrix. A binary part-machine matrix only shows machines needed to process a 
certain part. It does not present information concerning processing sequence of a given 
part. A weighted part-machine matrix presents not only information of machines needed 
to processing a certain part but also the level of this processing, which represents the 
level of machine loading, production volume, or machining hours. Information of 
processing sequence of a certain part can be obtained from a non-binary part-machine 
matrix. 

From the operations research or mathematical algorithm standpoint, the above two 
basic approaches of cell formation can be considered approximately as the clustering 
approach and the classification approach. With clustering approach, the similarities of 
parts or machines are usually used as the indices of performance. The objective is to 
minimize the differences inside a cluster and to maximize the differences among the 
clusters. With the classification approach, the basic idea is to establish the relationship 
between the parts and the machines. As discussed above, a part-machine matrix can be 
used to represent the relation. A typical part-machine matrix is illustrated in Figure 1. A 
binary part-machine matrix is usually a one-to-one relation. Most traditional approaches 
assume the existence of a one-to-one mapping between machines and part types. 
However, in actual practice, a certain part may be most suitable to be processed by, say, 
the first type of machines; but, it can also be processed, although less desirable, by a 
second type of machines. Suppose the first type of machine is very busy while the second 
type of machine is idle; from the standpoint of better machine utilization, the second type 
of machine should be used to process this part. In other words, from the machine 
utilization standpoint, the one-to-one mapping should not be absolute. The recent 
proposed fuzzy approaches can be used to achieve this purpose. 

MACINES 
PARTS 

P2 

Mx M2 ••• Mj 

Xu Xl2 ••• XXj 

X2\ X22 ••• X2j 

xa xi2 ... xtJ 

Figure 1. Part-machine matrix 

Since cell formation is essentially an optimization or decision-making problem; 
various operations research techniques, which are summarized in the top row of Table 1, 
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have been used to solve this problem. As has been discussed before, in forming this 
decision-making problem, many different aspects of the process can be considered as the 
most important factor. Some of these factors typically considered are listed in the left 
most column of the table. Only some the recent research papers are listed to illustrate the 
approach. These approaches will be discussed in the various sections. Figure 2 gives an 
overview of the approaches and the various connections of the approaches. 

From a more basic operations research standpoint, the various techniques used can 
be classified as deterministic, stochastic and fuzzy approaches Deterministic approaches 
assume that the information concerning the process is known without uncertainty and 
fuzzy approaches assume a more practical situation where the information is only fuzzily 
represented. Historically, mathematical programming was first proposed and fuzzy 
approach was a fairly recent proposition. Because of the vagueness or fuzziness, neural 
network learning was proposed to up-date or to model the system more accurately. 

In this chapter, the various operations research techniques used to solve the cell 
formation problem will be summarized with emphasis on the recent developments. 
Mathematical programming approach is first discussed in the next section with two 
numerical examples, one of which investigates the difficult problem of dealing with 
exceptional elements. Because cell formation is basically an integer problem, integer 
programming is most suited. Although a finite integer programming problem has a finite 
number of solutions, the number of this finite number of solution can still be very large 
even for a reasonably small problem. In fact, it has been proved that most cell formation 
problem is a non-polynomial problem [Kamrani et al 1995] and is NP-complete [Garey 
and Johnson 1979]. To overcome this difficulty, various heuristic approaches have been 
proposed. These heuristic approaches, with emphasis on recent developments, are 
discussed in Section 3. The remaining sections in this chapter discuss the use of the 
recently developed neural network and fuzzy decision making approaches for cell 
formation. 
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Table 1. Operations research techniques and fectors considered in cell formation 

Approaches 

Factors 
Routing 

Throughput 

Productivity 

Capacity 

Part 
Attributes 

Mathematical 
Programming 

Caoand 
McKnew 
(1998), Selim 
etal(1998). 

Abdelmola et 
al. (1998) 

Akturkand 
Wilson (1998) 

Heuristics 

Hwang and Sun 
(1996), Joines 
etal.(1996), 
Angand 
Hegi(1997). 
Chanetal. 
(1998), 
Spiliopoulos, 
and 
Sofianopoulou 
(1998), Chang 
andLee(2000), 
Onwubolu and 
Mutingi(2001), 
Hwang and Sun 
(1996) 

Hwang and Sun 
(1996) 

Suresh et al. 
(1995), Taboun 
et al.(1998), 

Taboun et al. 
(1998) 

Neural 
Networks 

Kao and 
Moon(1991), 
, Kaparthi and 
Suresh(1992), 
Rao and 
Gu(1994), 
Kulkami and 
Kiang(1995), 
Chen and 
Cheng(1995), 
Enkes et al. 
(1998). 

Kao and 
Moon (1991), 
Kaparthi and 
Suresh(1991), 
Moon and 
Roy(1992), 
Chakraborty 
and Roy 
(1993), Liao 
and 
Chen(1993), 
Chung and 
Kusiak 
(1994), Wu 
and Jen 
(1996), 
Pilot and 

Fuzzy Set 
Theory 

Chuand 
Hayya(1991), 
Zhang and 
Wang (1992), 
Tsaiet 
al.(1994), 
Su(1995), Leem 
and 
Chen(1996), 
Wen et al. 
(1996),Szwarc 
etal.(1997), 
Sen and 
Dave(1999) 

Tsai et al. 
(1994), 
Szwarc et al. 
(1997) 
Mital et al. 
(1988), Xu and 
Wang(1989), 
Ben-Arieh and 
Triantaphyllou 
(1992), Zhang 
and Wang 
(1992),Su(1995) 
, Ben-Arieh et 
al. (1996), 
Narayanaswamy 
etal.(1996),, 
Masnata and 
Settineri(1997), 
Gengorand 
Arikan(2000), 
Ljao(2001) 

Fuzzy 
SJeural 
Networks 
Suresh and 
Kaparthi 
(1994), 
Burke and 
(Carnal 
(1995), 
Kamaland 
Burke 
(1996), 
Suresh etal. 
(1999) 

Kamaland 
Burke 
(1996) 
Kamaland 
Burke 
(1996) 

Lee and 
Fischer 
(1999), Pai 
and Lee 
(2001 a,b), 
Kuo etal. 
(2001) 
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Costs 

Number of 
Cells 

Berardi et al. 
(1999) 

Taboun et al. 
(1998), Zhou 
andAskin 
(1998), 
Abdelmosa and 
Taboun(1999), 
Moon and Gen 
(1999), 
Hwang and Sun 
(1996), Chan et 
al.(1998) 

Knosala 
(1998) 

Rao and Gu 
(1994) 

Tsai et al. 
(1994), Tsai et 
al. (1997), 
Szwarc et al. 
(1997) 

Pai and Lee 
(2001 a) 

2. Mathematical Programming in Cell Formation 

Various approaches have been proposed to form machine cells based on 
mathematical programming. Almost all mathematical programming techniques, such as 
linear programming, quadratic programming, integer programming, dynamic 
programming, mixed integer programming, goal programming and etc., have been used. 
Depending on the different emphasis of the various factors, different optimization 
problem with different objectives and constraints can be formed. For example, problems 
may be formulated to minimize the following various factors or costs: intercellular travel, 
setup time, exceptional element cost, total production cost, machine idle time, the number 
of inter-cell transfer, the number or cost of machine duplication, the number of 
exceptional elements, inventory cost, machine relocation cost, equipment and tooling 
investment, floor space, intra and inter movements of the operator, and etc.. Example 
problems to maximizing objective functions are: maximizing machine utilization, 
maximizing similarity or compatibility measure, maximizing the number of parts 
completed in a cell, maximizing capacity utilization, and etc. Some of the constraints 
proposed are: the number of parts in a cell, the number of machines in a cell, the number 
of operators per cell, the number of parts per operator, time availability, number of tool 
type available, annual operating budget, tool life, and etc. For more details, the reader can 
refer the various review papers such as the review by Selim et al [1998]. 

Several recent developments using mathematical programming are summarized 
briefly in the following. One of these developments is the application of the Lagrangian 
relaxation algorithm, which has been shown to be effective for solving large 
combinatorial problems. Cao andMcKnew [1998] used this relaxation algorithm with a 
partial early termination technique to terminate some sub-models in order to reduce the 
computational effort. Deutsch et al. [1998] applied an improved p-median approach to 
maximize the similarities between the different parts. Abdelmola et al. [1998] used a two-
stage model to handle the cellular manufacturing productivity problem. Binary integer 
programming was used in the first stage and integer programming was used to optimize 
the total productivity in the second stage. Berardi et al. [1999] employed a mixed integer 
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programming approach to evaluate the influences of exceptional parts based on 
alternative machine clusters. 

To illustrate the approach, two numerical examples will be formulated and solved in 
the following. The first example illustrates the general approach and the second deals 
with the problem of exceptional elements. Because of the integer nature of the cell 
formation problem, integer or mixed integer programming is usually the most appropriate. 
Although integer programming problem with bounded feasible region is guaranteed to 
have a finite number of solutions, the number of the finite number of solutions can be 
very large even for relatively small problems. Thus, it cannot be solved easily. To 
overcome this problem, heuristic approaches, which will be discussed in the next section, 
are frequently used. 

Example 1 [Parapat Gultom, 1996] 

To illustrate the approach, machine cells will be formed using integer programming. 
The problem considered has eight parts and five machines. The objective is to 
minimizing the total cost, which consists of processing cost and the cost of machines. The 
number of cells and the maximum number of parts in a cell are both assumed as ttiree. 
Table 2 summarizes, for each part, the operating sequence and the required processing 
time for each operation. The bottom row of Table 2 shows the yearly demand of each part. 
Table 3 shows, for each machine, the processing cost of each operation, the availability in 
hours per year, and the cost. 

Table 2 

Operation 
No. 

1 
2 
3 
4 
5 

Demand 

Part No. 

1 

1.0 

2.0 
4.0 
4.0 
400 

2 

2.0 
2.0 

4.0 
300 

3 

3.0 

1.0 

4.0 
400 

4 

2.0 
4.0 
3.0 

3.0 
400 

5 

2.0 
5.0 
3.0 

300 

6 

1.0 
2.0 
4.0 
200 

7 

2.0 
3.0 

4.0 
400 

8 

5.0 
2.0 

4.0 
2.0 
200 

Table 3 

Machine 

1 
2 
3 
4 
5 

Operation 

1 

20 
30 
25 
40 
50 

2 

15 
30 
10 
25 
25 

3 

25 
40 
30 
10 
30 

4 

40 
20 
40 
20 
25 

5 

20 
25 
20 
40 
40 

Machining Hour 
Available 

5000 
6000 
8000 
6000 
8000 

Maintenance 
Cost 

6000 
8000 
7000 
8000 
6000 
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The objective and constraints for this cell formation problem 

8 5 5 3 5 3 

Minimize X X E X ^ ' C ^ ' * * / * + X X • / > ; * 

,=1 1=1 y=l k=\ 7=1 t=l 

Subject to 

Processing time constraint: 
HiPu^j^Tj V(y) 
,=i *=i /=i 

Each part is allocated to one cell only: 
3 

X % = 1 , Vi 
*=1 

Maximum number of parts allowed in a cell: 

i*„<3, V* 
;=i 

Assignment of part i to cell k: 

2 > y t - x ; , >0, VjeS„V(i,k) 
;=i 

Each machine can only assigned to one cell: 

IX=i, vy 
k=\ 

Maximum number of machines in a cell: 

jYJk<l, Vk 
7=1 

Assignment of part: 

£ * y t < (8-1)7,,, VyeS„V* 
f=i 

Decision variables must be integers: 
Xijk > Xik ' ^jVt 

6(0,1) V(i,j,k) 
where: 
i —index of part,i = l,...,n 
j-index of machine, j =\,...,m 
k — index of group, k =l,...,g 
I - index of operation, I = 1,..., r 
C.. .processing cost of operating i on machine 

(J 
fj : annual fixed cos t rate of machine j 

n : annual production requiremen t of part i 

Pa: process time for operation of I of part 
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$. : Set of machines needed to process part i 

ft : maximum number of parts in cell k 

TJ '.maximum number of machines in cell k 

A if part i on machine j belongs to group k 

•^";* VO otherwise 

1 if part i belongs to group k 

xik = (0 otherwise 
A if machine j belongs to group k 

V =1 
- / ik *-0 otherwise 

This model was solved using the UNDO software. The optimal solution is 
summarizedin Table 4. 

Table 4 

Cell No. 
1 
2 
3 

Part No. 
P3,P7 

P1,P6,P8 
P2,P4,P5 

Machine No. 
M3 

M2,M5 
M1,M4 

Total Cost 

$646,500 

Example 2. Exceptional Elements Problem in Cell Formation [Berardi et al. 1999] 

A mix integer programming model was proposed by Berardi et al. [1999] to 
investigate the problem of exceptional elements. In cellular manufacturing, the ideal 
situation is that all operations of parts in a family should be carried out within a single 
machine cell. In other words, cells in the part-machine matrix should be totally 
independent of each other. But, in actual practice, this ideal situation can seldom be 
achieved. Parts that are processed by more than one machine cell and machines that are 
required by two or more part families are known as exceptional parts and exceptional or 
bottleneck machines, respectively. These exceptional parts and bottleneck machines are 
known collectively as exceptional elements. The problem of exceptional elements is very 
difficult to solve. In fact, this 0-1 binary clustering problem is a traveling salesman 
problem, which is NP-complete. 

Exceptional elements, which cause additional operations and additional cost, are 
undesirable and should be reduced, or, should be handled in such a way that the cost due 
to these elements can be reduced. In order to achieve these purposes, various approaches 
have been proposed to handle the problem of exceptional elements. The most frequently 
used ones are the following three approaches: the use of machine duplication, the use of 
intercellular movement, and the use of part subcontracting. If only one of these 
approaches is used, Berardi et al called the approach pure strategy. Mixed strategy 
implies the use of more than one approach. In order to compare the optimal costs, Berardi 
et al [1999] formed the following mixed integer problem with the costs of these three 
approaches as the objective function 
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/ [;sG/ teHf isGr J 

Subject to: 

Zik=Di-Xi-{CkMikIPik) VEEs, (11) 

I ^ < 5 V V*,/, (12) 

where the variables XnYkf,Zik are all integer and 

Z,. = units of part i to be subcontracted, 

Y¥ = number of machines of type A: to be purchased for cell / , 

Zlk = number of intercellular transfers required by part i because of no machine type k 
available within the part cell, 

Mik = number of machines of type k dedicated to the production of part / (utilization of 

machine type k to produce part i) 

Ak = annual total cost of a machine of type k, 

Si = incremental cost of subcontracting a unit of part i, 

/, = incremental cost for moving part / outside of a cell, 

Ck = annual capacity of machine type k, 

D, = annual demand for part i, 

Pjk = processing time of part i on a machine type k, 

Gf = set of exceptional parts in cell / , 

H f = set of bottleneck machines required by parts in cell / . 

The aim is to minimize the summation of the subcontracting cost, the machine 
duplication cost, and the intercellular transfer cost. All of which are due to the present of 
exceptional elements. Equation (11) represents a logical balance on the number of 
intercellular transfers for exceptional elements. The optimization model represented by 
Equations (10)-(12) assumes that the part-machine cells, which are represented by the 
machine-cell grouping matrix, are already in existence. The purpose is to obtain the 
optimal costs using the above model and to study the influences of the various 
approaches to handle the exceptional elements. If there is no exceptional elements, the 
cells in the desired part-machine grouping matrix is arranged in mutually exclusive 
groups along the diagonal of the matrix. With the presence of the exceptional elements, 
mutually exclusive cells cannot be obtained. With a given problem, in order to take care 
of the exceptional elements, many different machine-cell grouping matrices can be 
obtained. Thus, the above optimization model can also used to study the different 
machine-cell matrices formed due to the presence of the exceptional elements. There are 
many algorithms to obtain the desired machine-cell grouping matrices. Berardi et al, 
based on the numerical values listed in Figure 3, obtained six alternative part-machine 
grouping matrices by using the two following different clustering algorithms. The single 
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linkage clustering analysis developed by Sneath [Sokal and Sneath 1968] for use in the 
field of numerical taxonomy and the rank order clustering developed by King [1980] for 
the purpose of part-machine grouping. For problems without exceptional elements, these 
clustering algorithms essentially consist of exchanging rows and columns in the part-
machine matrix so that an entry in the matrix is contained in mutually exclusive groups 
arranged along the diagonal of the matrix. 

The data used is summarized in Figure 3. The main part of Figure 3 lists the 
processing sequence and processing time of a given part. For example, part 2 is processed 
in machines 2, 3 and 8 with corresponding processing times 5.18, 4.29, and 5.32 minutes, 
respectively. The remaining rows and columns list the various costs and capacities. The 
six alternative part-machine clusters obtained by using the numerical values listed in 
Figure 3 is summarized in Figure 4. The first four clusters (alternatives 1-4) were 
obtained by using the single linkage clustering approach and the last two were obtained 
by the order rank clustering algorithm. 

Using the model represented by Equations (10)-(12), the optimal solutions of these 
six clusters listed in Figure 4 were obtained [Berardi et at 1999] and the results are 
summarized in Table 5, where the number of cells formed and the number of exceptional 
elements obtained from Figure 4 are also listed. The numerical results were obtained by 
Berardi et al [1999] using IBM's optimization subroutine library on an RS/6000 model 
530 workstation. 

The optimal results for the mixed strategy, which was obtained by using Equation 
(10) as the objective function, are listed under the columns labeled MP. The optimal 
results using the pure strategy, or, only use one of the three costs as the objective function, 
are also listed in this table. As can be seen from the table, the mixed strategy for any of 
the alternative cost less than any one of the pure approaches. For example, for Alternative 
2, the total cost for the mixed strategy is only 483313 while the least cost for the three 
pure strategies is 590016. 

VI 
I 
2 
3 
4 
5 
6 
7 
8 
9 

s® 
D© 
I(i) 

1 

2.95 
2.76 
5.54 
2.91 

1.92 

4.2 

2 

5.18 
4.29 

5.32 

4.3 

3 

2.20 
1.89 

3.5 

4 

3.89 

1.97 
4.28 

4.4 

5 

2.59 

3.40 

5 

6 

5.14 

4.01 
4.51 

3.9 

7 

2.23 
1.16 

4.04 
4.4 

8 

2.70 

4.72 
3.75 

4.6 

9 

5.52 

3.85 

5 

10 

4.61 

2.49 

1.83 
5 

32,128 27,598 20,651 11,34018,707 17,04046,19645,384 16,409 22,000 
3.7 2.8 2.8 3.3 2.8 3.5 2.8 2.6 3.4 3.2 

A(k) 

50,784 
67,053 
43,944 
67,345 
42,414 
75,225 
52,741 
63,523 
50,632 

C(k) 

2,000 
2,000 
2,000 
2,000 
2,000 
2,000 
2,000 
2,000 
2,000 

Figure 3. Numerical data used, example 2 
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ALTERNATIVE 6 
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1 1 1 
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1 1 
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1 1 

1 1 

1 1 
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(e) 

1 2 3 4 6 10 8 5 9 7 

Figure 4. Alternative clusters 

Table 5. Numerical results, example 2 

2 

3 

1 

K/i 4 

o 

3 6 
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7 

9 

1 1 1 1 1 

1 1 

1 1 

1 1 1 

1 1 1 

1 

1 

1 

1 1 

1 1 

1 1 

1 1 1 1 

1 1 

Al No. No. MP 
t. of of cost 

cells EEs 

total MP cost components Pure strategy cost 

Machine Part 
Duplication subcon-

trading 

Intercellular 
moves 

Machine 
duplication 

Part 
subcon­
tracting 

Intercellular 
moves 

$460183.60 $185182.00 $134937.60 $140064.00 $641937.00 $782262.00 $652861.60 
$483313.60 $332102.00 $61566.40 $89645.20 $590016.00 $869172.80 $684273.20 
$462761.40 $309618.00 $61566.40 $91577.00 $567531.00 $869172.80 $754673.20 
$524710.60 $332102.00 $180237.00 $12370.80 $641020.00 $869172.80 $761547.60 
$364364.20 $235768.00 - $128596.20 $472573.00 $782262.40 $533988.00 
$317797.60 $193354.00 - $124443.60 $387745.00 $665910.40 $436926.00 

3. Heuristic Approaches in Cell Formation 

Cell formation problems are essentially discrete search problems or integer 
programming problems, which are difficult to solve even for a medium size problem. 
Thus, various heuristic approaches have been proposed to solve these problems. The 
heuristics proposed can be roughly divided into the various ad hoc approaches and the 
evolutionary approaches. Some of the important algorithms for the latter approaches are 
genetic algorithm, simulated annealing, and neural network. Neural network, combined 
with fuzzy logic, will be discussed in latter sections. 

Some of the typical ad hoc approaches are summarized briefly in the following. 
Suresh et al [1995] developed a capacitated hierarchical heuristics to deal with the cell 
formation problem. The proposed approach is capable of solving problems with large 
amount of part-machine data and with multi-objective functions. Aug and Hegi [1997] 
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presented an algorithm to deal with the improper part-components assignment problem. 
Spiliopoulos and Sofianopoulou [1998] presented a tree search heuristic for dealing with 
the cell formation problem. A procedure was proposed to reduce the size of the tree. 
Results showed that the proposed algorithm is very efficient. Taboun et al. [1998] 
proposed a two-stage model to deal with part family and machine formation. A heuristic 
was proposed for the first stage to determine the number of cell and thus reduces Ihe 
number of constraints in the second stage. Chang and Lee [2000] using the idea of nearest 
neighborhood and presented a heuristic with emphasis on the use of the decision maker's 
judgment. 

Various investigators have proposed algorithms to use the simulated annealing in 
cell formation. Simulated annealing originated from the field of metallurgy. Kirkpatrick 
et al. [1983] proposed the algorithm based on the analogy between the annealing of solids 
and the problem of solving combinatorial optimization problems. Some of the researches 
using simulated annealing are briefly summarized in the following. Zolfaghari and Liang 
[1998] proposed a simulated annealing approach by considering processing time, 
machine capacity and machine duplication. To promote faster convergence, these authors 
used an improved Hopfield network to generate reasonably good starting solutions. Zhou 
et al. [1998] employed simulated annealing heuristics to improve the greedy heuristics 
and to minimize the increment heuristics in cell formation problems. The results showed 
that when the size of the problem increases, the proposed heuristics outperforms the 
integer programming model significantly Abdelmola and Taboun [1999] proposed a 
simulated annealing approach, which outperforms the nonlinear 0-1 integer-programming 
model. Caux et al. [2000] combined the simulated annealing algorithm with branch and 
bound. The former focussed on the generation of partitions and the latter solved the 
routing assignment problem. 

Inspired by the natural evolution process, Holland [1975] proposed the genetic 
algorithm, which is a somewhat organized random search technique and which imitates 
the biological evolution process. Onwubolu and Mutingi [2001] used the genetic 
algorithm to solve the cell formation problem with the upper and lower bounds of the cell 
size determined by the designer. The results compared favorably to the results of using 
the traveling salesman heuristics. Hwang and Sun [1996] combined genetic algorithms 
with the greedy heuristic. The approach consists of two phases. The first phase identifies 
machine cells and the second phase identifies the associated part families. Moon and Gen 
[1999] presented a genetic algorithm based heuristic with the simultaneous consideration 
of processing time, production volume, the number of cells, cell size, and machine 
capacity. The problem was first formulated as binary integer programming and solved by 
the proposed heuristics. 

Another heuristic approach is the tabu search algorithm [Glover 1986], which is 
very useful for solving combinatorial optimization problems. Sun et al [1995] applied 
tabu search heuristic to handle the cell formation problem. A binary-tree data structure 
and a look-ahead scheme were employed to improve the search efficiency The results 
showed that the proposed algorithm is able to generate good cell configuration within an 
acceptable computation time. 

Heuristic approaches are generally problem dependent. A given heuristic may be 
very effective for certain problems but is very inefficient for others. In fact, even for the 
same problem, different parameter settings result in different efficiencies. Thus, it is 
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difficult to design a heuristic approach, which is effective for all the problems. However, 
for the evolutionary approaches, some general approximate conclusions can be obtained 
from the standpoint of effectiveness for cell formation. The parameters that influence this 
effectiveness are the mutation rate of genetic algorithm, the forbidden rules of tabu search, 
and the rate of temperature decrease in simulated annealing. Another way to increase 
the effectiveness is to use a combination of different heuristics. 

To illustrate the approach, a numerical example is solved in the following using 
simulated annealing. 

Example 3. Simulated Annealing 

Simulated annealing is a random search technique based on the annealing of 
metallurgical solids, where the metal solid is first heated to its melting point and then 
slowly cool down to room temperature. It is hoped that, during this cooling process, the 
energy of the metal will eventually reach an absolute minimum. If the cooling down is 
too fast, the energy of the metal may reach a local minimum, which has a much higher 
energy than the absolute minimum. However, due to thermal agitation, there exists a 
chance that the metal will eventually jump out this local minimum. Thus, as time goes on, 
the system may eventually reach the absolute minimum. Notice that the process always 
changes in the direction of decreasing energy and the probability of jumping out the local 
minimum depends on the temperature level. Thus, by varying the temperature parameter, 
the probability of jumping out the local minimum can be changed. The probability, p, of 
changing the energy state from Et to Et+i, where t represents the iteration number, obeys 
the equation: 

r l + exp(-AE/r) 

where ^E = Et -Et+i corresponds the energy change and T is the temperature or a 
parameter. Suppose we wish to maximize the total productivity (TP), then the TP can be 
expressed as a function of the energy state, TP(Et). Thus, the general procedure of this 
approach can be summarized in Figure 5 [Pham and Karaboga, 2000] and approximately 
classified into the following steps: 

Initiation. Set the various parameters such as the initial and final temperatures, the 
incremental change of temperature, the cooling rate, etc. 

Generating neighboring or new solution This corresponds to jumping out the local 
mmimum. 

Evaluation This can be accomplished based on the machine cells and exceptional 
elements costs, etc. 

Change temperature level or not? If not, go back to "generating neighboring solution" 
step. Otherwise, go to next step. 

Incremental change of temperature. Change the temperature and go to next step. 
Stop or not? This step is based on the final temperature. If the current temperature is 

equal to or less than the final temperature, go to next step. Otherwise, go to 
"generating neighboring solution" step. 
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Stop and calculate the final solution 

where the steps needed to keep the iteration counter have been omitted. 

Generate a new 
solution 

i 

No 

No 

/ Initial solution / 

• r 

Evaluate the solution 

< T Accepted? Z^> 

Yes T 

Update the current solution 

<CTchange temperature_^> 

Yes 

Decrease temperature 

<^Termrnate the search?J> 

Yes 

/ Final solution / 

No 

Figure 5. Simulated annealing algorithm [Pham and Karaboga, 2000] 

Abdelmola and Taboum [1999] solved a cell formation problem with 10 machines 
and 10 parts by the simulated annealing approach. The problem is to maximize the total 
productivity (TP) and is represented by the following nonlinear 0-1 integer-programming 
model: 

TP = 
1 ^ 1 J N M

I x/MCx£),. xYik +J,^kYdj{\-Xjk)bijYikxEMCxDi 
(14) 
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Subject to 

J^.Xj^NM V* 

I**A= 1 V 
I ^ = 1 V< 
Xyt = 0 or 1 V(y,t) 

7 r t =0 or 1 V(i,k) 

(15) 

(16) 

(17) 

(18) 

(19) 
where: 
i= 1,2,... ,pparts index 
j=l ,2,.. .,inmachine index; 
k=l ,2,... ,gcells index. 

btJ =1, if part type i require machine type j , 
= 0, otherwise; 

Z) = annual demand of part i; 
EMC= inter-cell material handing cost; 
IMC= intra-cell material handing cost; 
NMt = number of machines required by part type i ; 
St =sales price of product i 
X jk =1, if machine type j is used in cell k, 

= 0,otherwise; 

Y!k =1, if part i belongs to cell k, 
=0,otherwise 

The numerator in the objective function, Equation (14), represents the total sale price 
of the parts produced and the first and the second terms in the denominator represent the 
intra cell and inter cell material handling cost, respectively. Equations (15) and (16) state 
that each machine is assigned to only one cell and the maximum number of machines in 
each cell cannot over a given number, respectively. 

Using Equations (14)-(19), Abdelmola and Taboum [1999] solved a cell formation 
problem with numerical values listed in Table 6, where the part sequence and other 
values used are listed. For comparison purposes, these authors also solve this problem 
using the mathematical programming approach with the LINGO software. The results by 
mathematical programming are listed in Table 7. 

Since the simulated annealing approach is essentially a heiristic algorithm, several 
parameters such as the initial and final temperatures, the amount of perturbation or the 
incremental change of temperature, and the cooling rate, influence the convergence rate. 
The cooling rate controls the number of iterations in each temperature level or determines 
when to change temperature. This rate factor is connected with the actual problem being 
solved. For the current approach, the number of iterations in each temperature level is 
assumed to be proportional to the number of machines in the system, or 

(Maximum iterations at a temperature level) = k (number of machines) 
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where the proportional factor or the cooling rate factor, k, determines the cooling rate or 
the number of iterations in each temperature level. 

After some experimental analysis, the authors used the values of 0.99, 50, 0.1, and 32 
for the incremental change of temperature, the initial temperature, the final temperature, 
and the cooling rate factor, respectively. The incremental change of temperature, 0.99, is 
a multiplication factor. In other words, the temperature decreases by one percent each 
time. The results obtained by simulated annealing are listed in Table 8. The 
computational results show the simulated annealing algorithm outperforms the 
mathematical programming method in terms of obtaining a better objective function 
value and computation time. 

Table 6. The numerical values used, example 3 

Part 
Type 
PI 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 

P10 

Sales 
Price($) 

14 
14 
11 
10 
10 
14 
12 
13 
13 
11 

Demand D| 

299 
291 
239 
210 
203 
281 
248 
260 
237 
255 

Machine Number 
Ml 

1 
0 
0 
1 
0 
1 
0 
0 
0 
0 

M2 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

M3 
0 
1 
0 
0 
0 
0 
1 
0 
1 
1 

M4 
0 
1 
0 
0 
0 
0 
0 
0 
1 
1 

M5 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

M6 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 

M7 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 

M8 
0 
1 
0 
0 
0 
0 
1 
0 
1 
0 

M9 
1 
0 
0 
0 
1 
1 
1 
0 
0 
0 

M10 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

Table 7. Solution by mathematical programming 

TP=1.8698 
Cell 

1 
2 
3 
4 

Parts 
1,7,9 

2,3,4,8 
5 

6,10 

CPU time=73 sec 
Machines 

1,4,5,6 
2,7,9,10 

3 
8 

Table 8. Solution by simulated annealing 

TP=1.9927 
Cell 

1 
2 
3 
4 

Parts 
2,7,9,10 

8 
3 

1,4,5,6 

CPU time=55.42 sec 
Machines 
2,3,4,8 

10 
5,6 

1,7,9 
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4. Fuzzy Set Theory in Cell Formation 

The basic concept of the traditional cell formation approach is that each part belongs 
to exactly one family. Even assume that there exists no exceptional part in the cell 
formation problem, this basic concept is not ideal because difficulties encountered in 
practice are ignored. The first difficulty is the fact that in cell formation the information 
used for assignment of cells is frequently vague or linguistic, which is fuzzy, not well 
defined, and cannot be expressed exactly in numerical terms. For example, one important 
parameter in part coding is the length parameter, which is frequently described in 
linguistic terms such as very long, long, average length, short, very short and etc. A 
second problem is that some characteristics of the part itself cannot be described exactly. 
For example, the primary shape of a part is frequently not cylindrical or prismatic but is 
somewhere in between, which is difficult to represent exactly.. 

A third problem is machine utilization. For example, a given part may be most 
suitable to be processed in the first type of machines, but also can be processed, even 
though not as efficient, in a second type of machines. If the machines in the first type are 
very busy but the machines in the second type are idle; then, for the purpose of better 
machine utilization, this given part should be processed in the second type of machines. 
Thus, for machine utilization purpose, this given part should belong to both types of 
machines to a certain degree. 

All the above problems can be handled and have been handled by the use of the fuzzy 
set theory, which was developed by Zadeh to overcome the limitations encountered in 
two-value logic. Many investigators have proposed the use of the fuzzy concept to solve 
the cell formation problem. Mital et al. [1988] proposed the use of fuzzy numbers to 
represent part features and used membership grade to classify the parts. Based on fuzzy 
similarity, Xu and Wang [1989] developed a computer program for classifying part 
families. Several rotational parts from the industry have been classified and the results 
were proved satisfactory. The fuzzy clustering algorithm, fuzzy c-mean, was first adopted 
by Chu and Hayya [1991] to deal with cell formation problem. Ben-Arieh and 
Triantaphyllou [1992] presented a methodology for handling crisp and fuzzy part features 
in a unified manner. The proposed methodology is based on a modification of the revised 
analytical hierarchy process. Zhang and Wang [1992] proposed two fuzzy methods: fuzzy 
set based single linkage 'cluster analysis and fuzzy rank order clustering. With the 
inclusion of fuzziness in the production flow analysis, both methods were applicable to 
the machine-component grouping problem. A fuzzy integer programming approach was 
proposed by Tsai et al [1994] to deal with cell formation problems. Different membership 
functions are examined to analyze the impacts on computational performance. Fuzzy 
clustering approach was employed by Gindy et al. [1995] to obtain the optimal number of 
groups. An industrial case was used to demonstrate the performance of the proposed 
algorithm and the results showed that the presented algorithm outperformed existing 
algorithms in the literature. Su [1995] proposed a multi-criteria fuzzy approach, which 
includes both the geometric features and the production routing information. Ben-Arieh 
et al. [1996] used fuzzy numbers to represent the coding information. Fuzzy relation and 
average linkage methods were used to form part families. In this paper, the authors 
classified the part attributes into three types for coding: continuous and crisp attributes, 
fuzzy attributes, and interval attributes. Leem and Chen [1996] presented a fuzzy 
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clustering algorithm for machine-cell formation. A similarity coefficient was used for 
machine grouping. The objective of the algorithm was to minimize the intercellular 
movement. Szwarc et al. [1997] used fuzzy nonlinear mathematical models to solve the 
cell formation problem, which considers both the fuzzy demand and the machine capacity. 
The objective function was to minimize material handing and processing cost. To reduce 
computation time, alternative crisp and fuzzy nonlinear mathematical models were used. 
Several examples were solved. Since the solution strategy was heuristic, optimality 
cannot be guaranteed. However, the solutions obtained were found to be near the 
optimum. Sen and Dave [1999] applied the noise clustering technique [Dave 1991] to 
solve the cell formation problem. The identification of bottleneck was considered as the 
isolation of noise and outliers. Gungor and Arikan [2000] used a fuzzy decision model to 
solve the cell formation problem; which considers the design, manufacturing attributes, 
and operation sequences as factors. The approach emphasizes human judgment than pure 
mathematical aspects. Based on similarity measurement, Liao [2001] proposed an 
approach to deal with part family formation problem in a fuzzy environment. An example 
was used to demonstrate the feasibility of the proposed approach. 

Example 4. Fuzzy Linear Programming [Tsai et al 1994] 

To illustrate the fuzzy approach, the problem solved by Tsai et al [1994] will be 
summarized. For comparison purpose, both the crisp (non-fuzzy) and fuzzy versions 
were solved. The equations for the non-fuzzy or traditional approach are listed in the 
following: 

Minimize: 

214**+! 1 % + I E ^ (20) 
k i * UJ)zsp J (UlEsp 

Subject to: 

l X = i> Vi (21) 
/fc=l 

k=l 

m 

%Xik<NM, \/k (23) 

JjpZNP, \/k (24) 
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UiJk+Vuk<\, V(i,j)Esp, V* (26) 

Oijk + Zijk + ̂ -MIJk = DjUiJk, V(i\ j)e p, V* (27) 

X ^ , < K j t , V«, V* (28) 

I I ^iJk<Qi- X ^ < 1 - X ^ ) , V* (29) 

where ^ i , iy* , Uyk , Vyk are 0, 1 integers; and Q and Rtk are integers, and the notations 
used are: 
i machine index; i=l, ,m 
j part index; j=l, ,n 
k cell index; k=l c 
D, Annual demand for part j . 

P. Processing time of machine type i needed to produce part j . 

/ . Incremental cost for moving a unit of part j within two cells. 

Sj Incremental cost of subcontracting a unit of part j for an operation. 

A, Annual cost of acquiring a machine type i. 

C. Annual capacity of machine type i. 
NM The maximum number of machine allowed each cell. 
N P The maximum number of part allowed in each cell. 
S P Set of pairs (ij) such that a,.. =1. 

Xik l,if machine i is assigned to cell k; 0, otherwise. 

YJk l,if part j is assigned to cell k; 0 ,otherwise. 

Uijk Uf ay =1, YJt =1, and Xik =0; 0, otherwise. 

Vtjk Uf atJ =1, YJk=0, and Xik =1; 0, otherwise. 

Rik Number of machine type i to be dedicated in cell k. 

Qi Numbers of machine type i needed to process the corresponding parts. 

Oijk Units of part j to be subcontracted as a result of machine type i not being available 

within cell k. 

M ijk Numbers of machine i in cell k for producing part j . 

Zijk Numbers of intercellular transfers required by part j as a result of machine type i not 

being available within cell k. 
The objective function, Equation (20), minimizes the costs of duplicating a machine, 

intercellular transfer, and the cost of subcontracting. Equation (23) is to prevent the 
assignment of more than N.M machines and Equation (24) serves the same purpose for the 
number of parts. Equations (21) and (22) prevent the duplication of parts and machines. 
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For many complex practical problems, the objective function near the optimum is 
fairly flat. As a result, the plant supervisor frequently does not require the optimum but 
only requires the achievement of a certain goal, which is near the optimum from past 
operating experiences. Thus instead of the objective function, Equation (20), we have the 
following inequality: 

k / * U,j)£sp j (iJ)Esp 

(30) 

where Z is the minimum goal, x represents the decision variable vector and Bo the 
corresponding coefficient vector. 

The problem now becomes the system of inequalities, Equations (21)-(30). However, 
a fixed goal is not very reasonable. We would like to make the goal as near the minimum 
as possible. One way to achieve this is to use the following membership function: 

M,(*) : 

1, B0x < Z 

l-B°x~Z, Z<B0x<Z + T0 (31) 

0, B0x>Z + T0 

where To is the tolerance allowed for the minimum goal. 
Furthermore, suppose we wish to allow some tolerances concerning the maximum 

numbers of machines and parts in each cell and let the following membership functions to 
represent these tolerances: 

MW: 

1, B,X < d, 

1 - ^ A dtZBtx<d,+Tt (32) 

0, B,x>d,+T: 

where i=l,2 correspond Equations (23) and (24), respectively; x and B are the decision 
variables and the coefficients of the decision variables, respectively; d represents the right 
hand side of the equation, and 7/ and T2 represent the tolerances on the maximum number 
of machines and maximum number of parts, respectively. 

In order to satisfy all the inequalities, we must take the minimum, or the intesection, 
among all the membership functions. Thus 

A=min^,.(x) (33) 
i 

However, e is a membership function. We would like to obtain the maximum of the 
membership function and satisfies the tolerances, Tj,I=0,l,2. Thus, the problem becomes 
the maximization of e, 

Max Pi = max {min /*,(*)} (34) 
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with the original constraints, Equations (21), (22), (25)-(29), and the following new 
constraints: 

X l 4 * * +X I IjZij* + 1 l0 # t 5 y + AT0 < Z + r0 (35) 

J ^ + Ar̂ ATM + r,, v* (36) 

J ^ + ̂ ^ A T P + r ^ Vfc (37) 
7=1 

and with the original integer restrictions on the variables. The symbols, Tit 1= 0, 1, 2, 
represent the tolerances allowed. The above three equations are obtained by considering 
the maximum satisfaction of the membership functions. The approach follows that of 
Zimmerman [1987]. 

Both the original crisp problem and the fuzzy problem are linear programming 
problems. Tsai et al [1994] solved both problems. The numerical values used by these 
authors are listed in Table 9, which shows the processing time and machine sequence of 
each part, the costs involved, the part demanded and machined capacity This example 
contains nine machines and nine parts. To solve the original crisp or non- fuzzy problem, 
which is represented by Equations (20)-(29), the desired number of cells is set at three 
and the maximum number of machines as well as parts allowed in each cell are set no 
more than four. 

The numerical results obtained by Tsai et al are summarized in Table 10, where the 
symbol "TS" represents "total similarity", n(i) represents the number of machines needed 
for machine type i, and [i] denotes the duplication of machine type i. The results listed for 
Model I are for the crisp or non-fuzzy case and the results for Model II are for the fuzzy 
case. From Table 10, it can be seen that the cost for the fuzzy case is much less than those 
obtained for the non-fuzzy case. 
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Table 9. Numerical values used, Example 4 

M 1 
A 2 
C 3 
H 4 
I 5 
N 6 
E 7 
S 8 

9 

S(J) 
D(J) 
I (J) 

1 2 3 4 5 6 7 8 9 A(I) C(I) 
4.82 3.07 0 0 2.18 0 0 0 0 $17709 2000 
3.96 2.02 0 0 0 2.84 0 0 3.78 $15224 2000 
0 0 2.56 0 0 0 3.7 2.78 0 $38616 2000 
0 3.05 4.74 3.97 0 0 0 3.80 0 $20472 2000 
3.4 0 0 4.6 4.4 0 0 2.49 0 $44903 2000 
0 3.92 0 0 0 2.13 0 0 2.51 $39557 2000 
0 0 2.26 0 0 0 3.02 3.23 0 $17558 2000 
0 0 4.2 2.2 2.3 0 2.91 3.56 0 $23555 2000 
0 3.22 0 0 0 1.74 0 0 2.77 $43621 2000 

$4.73 $4.25 $3.57 $4.18 $4.32 $4.15 $4.41 $4.02 $3.65 
68172 43657 58449 54073 45955 70309 77248 75183 73901 
$3.86 $3.14 $2.8 $3.15 $2.11 $2.73 $2.69 $3.47 $3.65 

Table 10 Numerical results, Example 4 

Model 

Model I 

Model H 

Model HI 

Model IV 

EE 

6 

3 

6 

6 

TS+ 

9.65 

9.65 

9.65 

9.05 

TOTAL 
COST 

$282878 

$161930 

$282878 

$305544 

CELL 
# 

1 
2 
3 

2 

1 
2 
3 
1 
2 
3 

Clustered Results 
{machines/parts} 
{2,6,9/2,6,9} 
{3,4,7,8/3,4,7,8} 
{1,5/1,5} 
{1,2,6,9/1,2,6,9} 
{3,4,5,7,8/3,4,5,7,8 
} 
{2,6,9/2,6,9} 
{3,4,7,8/3,4,7,8} 
{1.5/1.5} 
{1,2,6,9/1,2,6,9} 
{3,4,7,8/3,4,7,8} 
{5/5} 

# of Machines needed * 

3(2);3(6);2(9) 
2(3);4(4);2(7);3(8);[5] 
2(1);3(5);[2];[8] 

2(1);4(2);3(6);2(9);[5] 
2(3);4(4);3(5);2(7);4(8);[1] 

3(2);3(6);2(9) 
2(3);4(4);2(7);3(8);[5] 
2(1);3(5);[2];[8] 
2(1);4(2);3(6);2(9);[5] 
2(3);4(4);2(7);3(8);[5] 
2(5);[1];[8] 

5. Fuzzy Neural Network in CeD Formation 

The powerful clustering ability of neural network forms an ideal approach for dealing 
with cell formation problems. However, in order to handle the vague and linguistic 
problems encountered in cell formation, the recently developed fuzzy neural network is 
even more appropriate. Neural network can be combined with fuzzy set in many different 
ways. Depending on the degree of fuzzification, Buckley and Hayashi [1994] classified 
fuzzy neural networks into the following three types: 

1. Neural networks with real number as input signals but fuzzy weights 
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2. Neural networks with fuzzy set as input signals and real number weights 
3. Neural networks with both fuzzy set as input signals and fuzzy weights. 

Gupta and Ding [1994] classified the current fuzzy-neural computations into two 
major categories. One is the fuzzy logic-based neural network, where fuzzy logic is 
combined with the parallel neural network concept. With this approach, the membership 
functions in the fuzzy logic system can be up-dated or adopted. An example of applying 
this adoptive fuzzy system to cell formation will be introduced to illustrate the approach 
The second category is the employment of the neural network to realize the fuzzy 
structures such as the membership function and the fuzzy logic operators, and and or. In 
this approach, several forms of fuzzy neurons have been proposed to approximate the 
problem with fuzzy uncertainties. The approach is known as the neural network-based 
fuzzy system. 

Fuzzy neural network has been applied to many practical areas and many 
investigators have applied this approach to solve the cell formation problems. For 
example, self-organizing feature map or self-organizing map (SOM) due to Kohonen is 
able to perform the mapping of an external signal into differert representational spaces 
without any human intervention. Kuo et al. [2001] proposed a fuzzy self organizing map 
neural network to deal with part clustering problem. The results obtained are more 
accurate than those obtained with fuzzy c-means algorithm. Pai and Lee [2001a] 
modified the classic SOM with fuzzy weights so that the network is able to deal with 
fuzzy part attributes. A new training algorithm was also proposed to train the fuzzy 
weights. By the use of fuzzy weights between the input and the output layers, more 
meaningful linguistic information for the final trained weights could be obtained. The 
fuzzy adaptive system was employed by Pai and Lee [2001b] to deal with cell formation 
problems. Fuzzy rules were used in part-machine mapping. Influences of different 
parameters for training were illustrated. 

Example 5. Fuzzy Self Organizing Map Network [Pai and Lee, 2001] 

To illustrate the approach, a cell formation problem solved by Pai and Lee [2001b] by 
the use of the fuzzy SOM is summarized in the following. The fuzzy SOM network is an 
SOM network with fuzzy weights between the input and the output layers. The network 
is able to deal with crisp, fuzzy, and interval input data. The fuzzy SOM network is 
shown in Figure 6. Due to the use of fuzzy weight and fuzzy input data, a fuzzy learning 
algorithm that is different from the conventional SOM learning procedure is proposed in 
this example. The fuzzy SOM algorithm can be summarized approximately as: 

Step 0. Extract part attributes descriptions from e xperienced operators and represent them 
as fuzzy numbers. 

Step 1. Feed the input data into the input layer, where the input data can be crisp, interval 
or fuzzy numbers. 

Sep 2: Compute the "distance" or the weight vector Wij between each Kohonen node i 
and the input vector Xj 

Step 3. Determine the winning Kohonen node. 
Step 4: Adjust the weight vector of the winning node to be closer to the input vector 
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In this example, a SOM network (see Figure § with fuzzy weights was used to 
cluster 100 parts with two fuzzy attributes, namely part shape and tolerance. The LrR 
fuzzy numbers are used to represent the fuzzy attributes. Figure 7 shows the scatter plot 
of the data, which were generated by the use of "Excel" software with uniformly 
distributed random numbers. The clustering results to be discussed later are also shown 
on the figure by the use of dotted lines. In this example, the number of output nodes is set 
at 30 and the winner-take-all algorithm is adopted. 

The initial learning rate, a , was set equal to 0.001. Two thousand epochs were 
carried out. The convergent behavior is shown in Figure 8. As can be seen from this 
figure, convergence or training is essentially completed after approximately 1200 epochs. 
After convergence, the clustered ten groups obtained are shown in Figure 7 by the use of 
dotted lines. The fuzzy weight associated with each winning node represents the 
particular characteristics of the group. After convergence, the final weights of the 
classified ten groups in the form of triangular membership functions are listed in Tables 
11 and 12 by the use of the triangular nomenclature in the form of (C, L, R), where C 
represents the most desirable value and its membership value is equal to one. The letters 
L and R represent the left and right spread of the triangle from the most desirable value, 
C, respectively. At the positions L and R, the membership values are zero. 

In the results, several groups are fairly near each other. When two groups are very 
near or sufficiently similar, they can be combined into a single group. For example, 
Groups 6 and 9 for primary shape in Table 11 can be combined into one group with new 
membership functions of (0.192,0.494,0.619). Similarly, Group 5 and 6 for tolerance can 
probably be combined with new membership functbns of (0.879,0.941,1). The criterion 
of "sufficiently similar" is fairly arbitrary and depends on the particular problem under 
consideration. 

Kohonen Layer 

XI X2 Xj 

Input Layer 

Wij: Fuzzy Weights 
Xj: Input (fuzzy, interval, or crisp data) 

Figure 6. Self-organizing map network 
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Table 11. Final obtained weights in triangular membership functions 

\^Primary Shape 

Tolerance ^ - ^ 
I C-L | = 0 
C = 0.155 
C+R= 0.168 
I C-L | = 0 
C = 0.128 
C+R =0.54 
I C-L | = 0.21 
C = 0.34 
C+R = 0.7613 
I C-L | = 0.6436 
C= 0.788 
C+R= 0.985 
I C-L | = 0.879 
C= 0.947* 
C+R=l 

|C-L| = 0 
C=0.123 
C+R=0.243 

Group #10 

Group #1 

I C-L 1=0.192 
C = 0.489* 
C+R = 0.591 

Group #6 

I C-L 1=0.215 
C= 0.499* 
C+R =0.619 

Group #9 

|C-L| = 0.218 
C= 0.513 
C+R = 0.678 

Group #3 

Table 12. Final obtained weights in triangular membership functions 

^^rimary Shape 

Tolerance ^ \ 
I C-L | = 0.141 
C = 0.298 
C+R 0.632 
I C-L 1 = 0.431 
C = 0.618 
C+R = 0.8563 
I C-L 1 = 0.532 
C = 0.679 
C+R= 0.896 

|C-L| = 0.313 
C=0.585 
C+R=0.701 

Group #2 

| C-L |=0.561 
C = 0.846 
C+R = 0.935 

Group #7 

| C-L |=0.683 
C= 0.887 
C+R=l 

Group #8 

| C-L | = 0.218 
C= 0.513 
C+R = 0.678 

Example 6. Fuzzy Neural Adaptive Network [Pai and Lee 2001] 

Fuzzy neural adaptive system is based on fuzzy rules and fuzzy logic with training 
or learning ability. To establish the fuzzy rules for this example and also to simply the 
presentation, only two important attributes, namely primary shape and tolerance will be 
considered. In actual practice, primary shape of a part is described linguistically and 
tolerance is expressed in intervals. In order to establish the fuzzy rules, linguistic 
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description will be adopted for both attributes. The linguistic variable, primary shape, can 
be represented by the following linguistic terms: cube (C), like cube (LC), like cylinder 
(LCY), cylinder (CY). These linguistic terms are represented by Gaussian fuzzy 
membership functions, which are differentiable and are illustrated in Figure 9. Similarly, 
the linguistic variable, tolerance, is represented by the four linguistic terms, very precise 
(VP), precise (P), rough (R), very rough (VR). Using Gaussian membership functions, a 
similar graph as that show in Figure 9 can be obtained. Obviously, if more accurate 
representation is needed, more linguistic terms can be added. For example, we could use, 
very precise, precise, more or less precise, not precise, average, not rough, rough, and etc. 

Based on these fuzzy terms, 16 fuzzy IF-Then rules (or 16 machine groups) can be 
formed as follows: 

If Primary Shape is C and Tolerance is VP, then use MG 1 (rule 1) 
If Primary Shape is LC and Tolerance is VP, then use MG 2 (rule 2) 
If Primary Shape is LCY and Tolerance is VR, then use MG 15 (rule 15) 
If Primary Shape is CY and Tolerance is VR, then use MG 16 (rule 16) 

where MG is the acronym for Machine Group. These fuzzy rules form a rule matrix, 
which is listed in Table 13. 

Table 13. Fuzzy rule matrix 

VP 

wwr 
10) 

VR 

role 13(MG 13) 
role 14(MG 14) 

rolel(MGl) 
rule2(MG~2) 

"rale 3(MG 3' 

rule 5 
rule 6 

rule 
rule"! 'LC 

JLA»s 1 

CY rule 
2L 
4) 

rule? 
rule 8 

rule 11 
rule 

11(MG 11) 
12(MG 12) 

rule 1 
rule 1 

Gl f 
.G It 

LC LCY CY 

0.3 0.4 0.5 0.6 0.7 

Standardized Scale of Primary Shape 

Figure 9 Membership functions of the primary shape 
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The linguistic variables, primary shape and tolerance, are the input variables for the fuzzy 
system. The output variable is the machine group (MG), which, again, is a linguistic 
variable and with the linguistic terms, MG 1, MG 2, MG 3, ... etc. These linguistic terms 
also assume the shapes of the Gaussian membership functions. 

Depending on how the fuzzy number is handled, various fuzzy logic systems have 
been proposed. If we assume the input is not fuzzy, then the crisp number must be first 
fiizzified. After manipulating through the fuzzy rules and fuzzy inference engine, the 
resulting fuzzy number must be defuzzified. Thus, to form the fuzzy logic system, we 
must consider the following four components or operations: 

1. Method for fuzzification 
2. Method for fuzzy inference, or, method used first to combine the antecedent 

and the consequent of each rule and, then, to combine the various fuzzy rules 
3. Membership function used 
4. Method for defiizzification 

There are various ways to carry out these operations. In this example, singleton 
fuzzifier, product inference rule, Gaussian membership function, and center average 
defiizzification was employed. Using the center average defiizzification and with M rules, 
we obtain the output of the fuzzy logic system as: 

J^r _bar{f£'(Yr .bar)] 

Yr^\r_bar) 

where Y_bar is the center of the output fuzzy set for the fuzzy rule r. The expression n 
c'(Yr_bar) jg the aggregation of the output membership functions. Using product 
inference, this aggregation can be expressed as: 

nt,/VUi) (39) 

where y- pr(xi) is the membership function of the premise section for rule r and for the ith 
attribute or the ith linguistic variable, i — 1,2, . . ., n. Using Gaussian function, the 
numerator of Equation (38) becomes: 

i r _ W { n t , e x p [ - ( ( X ' ~ * ' r / a r ) 2 W v4°> 

where x"_bar is the center of the input Gaussian membership function for the i-th attribute 
and rth rule, and <f. is Ihe standard deviation of this input membership function. 

Using the product inference rule and Gaussian membership function, the denominator 
of Equation (38) becomes: 
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t{WMeW[-((x'-X'-bar)2)]} (41) 

Substituting the above equations into Equation (38), finally the fuzzy logic system 
equation was obtained as following: 

^. r -Win^expK^-y^ 2 ) ]} 
F(x)= %—, (42) 

X r . m . - . e x p H ^ - ^ T ^ ) ] } 

The three parameters in Equation (42) are Y^bar, x. _bar , and , trf , which 
correspond to the center of the output membership function, the center of the input 
membership function, and the variance of the input membership function, respectively. 
These parameters are adjustable. The problem is to adjust these parameters so that certain 
given input-output pair can be represented. In the following, we shall first establish an 
adaptive fuzzy network, which represents Equation (42) and then use back propagation to 
obtain these parameters. 

Following Wang [1944], Equation (42) can be represented by the fuzzy adaptive 
network as that show in Figure 10. There are three layers in Figure 10. Equation (42) is 
functional equivalent to Figure 10. Using Figure 10, back propagation algorithm can be 
derived and the three parameters can be trained based on given data pairs. The three 
parameters are: 

1. Y_bar represents the center or the maximum value of the output membership 
function for fuzzy rule r. 

2. x\ _bar represents the center or the maximum value of input fuzzy membership 
function for ith linguistic variable and rth rule. 

3. o\ represents the standard deviation of input fuzzy membership function for ith 
attribute and for the rth rule. 

Figure 10. Network representation of fuzzy logic system [Wang 1994] 

Suppose we have a given data pair (X?, Dd), we wish to adjust these three parameters 
so that the following square of the error is minimized: 

error=0.5(F(Xd-Dd)) (43) 

Differentiation by the chain rule, the learning rules for the three parameters can be 
obtained as: 

y _bar(t + \) = Yr _bar(t)-aF^~D zr (44) 
B 
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x\_bar(t+\) = x[_bar(t)-aF(x) °(/_bar-F(x))zr 2(?C' x>-*ar(t)) (45) 
B a(ty, 

CT[(? + 1 ) = ( 7 ; ( 0 _ a Z « z £ ( / bar-F(X)X2(xi-X<r
bar(t))2 (46) 

B o\ (/) 

The influences of the learning rate and the number of rules on convergence rate were 
investigated. The number of rules used are 9, 16 and 25. The 16 rules fuzzy logic was 
discussed earlier and these rules are listed in Table 13. The cases of the 9 and 25 rules 
can be obtained in a similar manner. For each different number of rules, three hundreds 
data point were generated. Each data point has three numbers, which represent the three 
parameters. Backpropagation was carried out by using these generated data points. To 
measure the performance of the approach, the following three indices were used: 

Training Error (TRE) 
150 

TRE=YJ Dtr 
(47) 

where Yi is the actual output of the training data pair i and Dtri is the desired 
output of the training data pair i. 

Testing Error (TEE) 

^Yr-Dtrp 
TEE = YJ Dtr, 

(48) 

/ 

Total Error (TTE) 
TTE=TRE+TEE (49) 

With five different learning rates, the results are summarized in Table 14, where L 
represents the learning rate and NR represents the number of rules. The best performance 
results are indicated by the use a "*" in the table. For the cases of 9 and 16 fuzzy rules, 
learning rate of 0.00005 give the best performance and for learning rate for 25 rules, the 
best is 0.00003. The convergence rates for the three best performance sets are shown in 
Figure 11. From Table 14, we can see that the more rules we have, the less the training 
errors, but the larger the testing error 



475 

Table 14. Parameter influence 

L=0.oooor 

MXOOOOT 

L-030005 

I>0.00007 

L=0.0001 

NR=9 
TRE:0.16580 

:0.13964 

TTE030W" 
TRE:0.061iX) 

"TEE:0.00129 
TTE:0.0622T 

T1E:0.00768 
TEBOifllW 

'TTE:0.03636* 
TEE:0.00757 
TEE:0.03lOO 
"TTE:0.O3857 
TRE:0.02510~ 

"TEE:0.10470 
~TTMA2§M~ 

" T M I O W 
TEE:0.1QS64 

TTE:0.21144" 

TEE:0.17000 
TTE:O.3100O 

TIM00583 
"TEBOTO7390 

TTE:0.07973* 
TRE:0.03580 
"TO:0.07760 ' 
T T 1 G ~ H 3 3 0 ~ 
"TlEOOfTST" 
~TEE0.08166 
"TTE0.11946 

NR=2S 
TRE:0.O3514 

TEE:0.67560 

TTE0?7l07T" 

TRE:Q.0Q565 
' TEE:0.10750 
TTB:Q.11315* 
' TRE;0.I1»7 
"Tffi:0.1165r 
TTE:023648 

"TRE:0.05360 

IMo.mW 
"TTF,:0:16600 

"tRE:0.076ro" 
TEE0.11727' 
TfE:0.i93"2T 

Adaptive Fuzzy Systems 

RN=9, L=0 00005 
RN=16, L=0 00005 
RN=25, L=0 00003 

o o o o o o o o o o o o o o o 

Number of Epochs 

Figure 11. Convergent behavior 

6.Conclusions 

This chapter presents the application of operations research techniques to the cell 
formation problem. Emphasis is placed on the frontier area where recently developed 
operations research techniques are used. Mathematical programming was first applied to 
solve the cell formation problem. However, due to difficulties to solve this MP complete 
problem, heuristics the recently developed evolutionary approaches were proposed. From 
the practical standpoint, vague linguistics and human judgments are usually involved in 
cell formation problems. Fuzzy set theory possesses powerful ability for linguistic 
representation and thus the fiizzy approach was adopted to solve the cell formation 
problem. The recently developed fuzzy neural network has been shown to be a useful 
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approach to solve practically encountered cell formation problems. To save space, all the 
approaches are illustrated by actual examples. The approaches presented in this chapter 
should provide reasonably good foundations for future research in the application of 
operations research techniques to solve cell formation problems. 
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Scheduling problems form the core of the operational planning problem in typically large State Road 
Transport Corporations in India. The problems include, scheduling of trips to satisfy the traffic 
demand, allocation of trips to depots, and scheduling of buses and crews to operate the trips while 
satisfying various operational constraints and efficiency considerations. The size and the structural 
complexity of these hard problems involve solution approaches that emphasize interplay between 
modelling, algorithms, and their efficient computer implementation, requiring blending of ideas from 
Transportation Science, Operations Research and Computer Science. The solutions need to be 
complete and closer to the real-life practice for effective implementation. This paper presents our 
experiences in addressing these issues and highlights the insights gained from our efforts to 
implement the solutions in real-life. 

Keywords: Bus and Crew Scheduling, Fleet-Size Optimization, Heuristics. 

Introduction 

The paper describes some experiences in structuring and modeling the scheduling 
problems that arise in large Road Transport Corporations. We realized the importance of 
these problems in course of a consulting assignment with an Indian State Road Transport 
corporation on determining optimal size of its divisions and depots. The corporation was 
divided into divisions that were further sub-divided into depots. The size of a division or a 
depot is the number of buses attached to the division or the depot. It became soon clear to 
us that determining the optimal size of a division or a depot would involve resolving some 
scheduling problems, which were complex. We decided to probe these issues further in a 
research programme over a period of more than a decade. In this paper we are presenting 
our total experience in an integrated form for the first time, although some of the works 
were earlier published independently. 

In India, the state-owned Road Transport Corporations (SRTCs) meet the major 
demand for movement of people between cities. The first step in this process is to define 
'trips', each of which indicates that a bus should be provided for moving passengers at a 
given time from a place to reach another place at a specified time. Given a set of trips, 
the problem of concern is to devise a vehicle- schedule, which will use minimum number 
of vehicles to operate these trips. In many situations there is flexibility in choosing trip 
timings. There is also a flexibility to reassign a trip to an alternate depot if it results in 
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reduction in number of vehicles required. Buses, during its operations, require daily 
routine maintenance at its parent depots. This makes scheduling problems more complex. 
In addition the complex rules governing the services of crews make scheduling in SRTCs 
more difficult. In our view, it is essential that we look at all these problems in an 
integrated way and develop an operational model so that SRTC achieves greater 
operational efficiency. 

In this paper we present our experiences in structuring and modeling these problems 
that resulted in an operational planning model for SRTCs. We believe that the use of this 
integrated model will have significant impact on the performance of SRTCS. 

We have structured our presentation in 9 sections. In Section 2 we elaborate the 
structure of transport scheduling in SRTCs in terms of five sub-problems. The Sections 3 
through 7 elaborate on each of the sub-problems in terms of model formulation, analysis, 
algorithms and data structures, and implementation and computational experiences. The 
sub-problems are integrated to form an integrated model of transport scheduling problems 
in Section 8. Finally, the Section 9 contains our concluding remarks. 

Structure of the Transport Scheduling Problem 

The SRTCs provide the transport services as a set of trips operated by the depots with a 
set of vehicles and crew allocated to them. A trip is specified in terms of the origin, 
destination, departure and arrival times, and the depot responsible for operating the trip. 
The transport scheduling seeks to minimize the number of vehicles and crew required to 
operate a given set of trips while satisfying various constraints implied by the 
specifications of the trip and the specific operational considerations of vehicle and crew. 

The specification of the trips implies certain space, time, and depot compatibility 
constraints on the successive trips to be operated by a vehicle/crew. The space constraint 
states that the origin of the next trip must match the destination of the previous trip to be 
operated by a vehicle/crew. Unlike the case of urban transport, it is not possible to operate 
empty 'dead heading' trips between geographically widely scattered terminals in the 
SRTC context. The time constraint states that the departure time of the next trip must be 
later than the arrival time of the previous trip to be operated by a vehicle/crew. The depot 
compatibility constraint requires that the successive trips operated by a vehicle/crew must 
belong to the same depot. For a given set of trips, while the space constraint is fully 
specified in terms of the origin and destination of every trip, there is some flexibility to 
finalize the departure timings within an interval around the provisional timings indicated 
by the traffic needs. It is desirable, however, to minimize such perturbations around the 
provisional timings. 

The SRTCs operate in a decentralized manner, and are organized in terms of 
divisions with operationally autonomous depots. Accordingly, the vehicles and crew can 
operate trips belonging to only their own home depot. Transport scheduling is carried out 
at a division level. It is customary to make the provisional trip or route assignment to the 
depots on the basis of geographical considerations, though there is considerable overlap 
among the terminals reached as origins and destinations of the set of trips operated by the 
individual depots. This, however, may not be operationally efficient, in the sense that the 
sum of the minimum fleet-sizes required by the individual depots may exceed the 
minimum fleet-size required to operate the pooled set of trips of all the depots put 
together. It is possible to reassign some of the trips to other depots to ensure operational 
efficiency. It is, however, desirable to minimize the number of reassignments. 
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The vehicles used for operating the trips are required to undergo a routine 
maintenance of about 90 minutes at its home depot, preferably daily, or at least once in 
two days. It covers the cleaning and some routine check-ups to ensure road-worthiness of 
the vehicle. The maintenance may be carried out at the beginning or at the end of the 
vehicle schedule or accommodated within the idle time between the two successive trips 
operated by the vehicle. Accordingly, the routine maintenance constraint on a vehicle 
schedule requires that either the schedule begins or terminates at the home depot, or an 
adequate maintenance gap is provided during one of its idle periods at the depot, at least 
once in two days. The scheduling of routine maintenance is also constrained by the 
capacity of the maintenance bay, limited to about 3-6 vehicles per hour depending upon 
the category of the depot. 

The crew duty schedules are constrained by the duty conditions as per the agreement 
with the Trade Union. The signing-in of a crew takes place at the departure terminal of 
the first trip and the signing-off at the arrival terminal of the last trip of the schedule. The 
crew schedule should not lead to two consecutive signing-offs, called night-outs, at a 
terminal other than the home depot of the crew. The total steering duty that includes 
travel times of the trips in the schedule, signing-in and signing-off times, and the terminal 
idle times is required to be less than a pre-specified limit. There is also a constraint on the 
'spread over', the elapsed time between the signing-in and signing-off of a crew 
performing a crew schedule. In addition, the crew duty schedules should contain the 
suitable meal-breaks and rest-periods before and after the lengthy trips. It is desirable to 
maximize the overlap between vehicle and crew schedules so that the crew is not required 
to change the vehicles too frequently to operate the trips. 

Thus, the transport scheduling is a complex combinatorial optimization problem with 
multiple objectives. To make it somewhat tractable, we have decomposed the problem 
into a set of interrelated sub-problems as follows: 

• Fixed-Schedule Fleet-Size Problem: This assumes that the trip timings are fixed, 
considers only the space and time constraints, and ignores all other operational 
considerations to minimize the fleet-size. 

• Variable-Schedule Fleet-Size Problem: It extends the fixed-schedule problem by 
allowing the trip timings to vary within a specified interval around the most desirable 
timings. It also seeks to minimize the number of such perturbations, in addition to the 
primary objective of minimizing the fleet-size 

• Depot Allocation Problem: This is an extension of the single-depot fixed-schedule 
fleet-size problem. It seeks to minimize the total fleet-size collectively required by all 
the depots by reassigning the provisional depot allocations of some of the trips while 
satisfying the depot compatibility constraint and minimizing the number of 
reassignments. 

• Vehicle Scheduling Problem: This extends the fixed-schedule fleet-size problem by 
considering the operational constraint on the routine maintenance of vehicles while 
minimizing the fleet-size and maximizing the number of schedules with maintenance. 

• Crew Scheduling Problem: It extends the fixed-schedule fleet-size problem to 
minimize the crew-size required for operating the given set of trips within the 
operational constraints due to the crew duty conditions. 
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Fixed-Schedule Fleet-Size Problem (PI) 

Several researchers have explored the Fixed-Schedule Fleet-Size Problem. Bartlett[4] 
developed an algorithm for computing the minimum fleet-size required by analyzing 
chronologically ordered sequence of arrivals and departures, called the A-D sequence, 
occurring at each terminal. Saha[13] treated the problem as minimum chain 
decomposition problem in an acyclic graph. Following the results on minimal 
decomposition by Raghavachari and Mote[12], he formulated the problem as a Linear 
Programming problem. To overcome the size complexity of large-scale real-life 
problems, he formulated the problem as a bipartite network flow problem. His 
computational experience, however, with the labeling algorithm of Ford and Fulkerson to 
solve the network flow problem was not encouraging. He developed an algorithm for 
speeding the solution, which essentially involves assigning arrivals to departures in a 
first-in-first-out (FIFO) basis in the A-D sequence. Gertsbach and Gurevich[8] developed 
a simple analytical framework based on 'deficit function' defined over the A-D sequence 
as cumulative excess of departures over arrivals at a terminal. Ankolekar[2] extended the 
framework further to a more convenient 'surplus function' defined over the A-D sequence 
as minimum fleet available at the terminal after every arrival and departure event. 

Formulation 

The linkability, defined for a pair of trips that can be consecutively operated by a vehicle, 
is the key concept in the formulation of the Fixed-Schedule Fleet-Size Problem (PI) given 
in Table 1. Specifically, the linkability sets L± and Bj are defined as sets of potentially 
succeeding and preceding trips that satisfy the space and time constraints associated with 
arrival and departure of the trip respectively. Accordingly, they are intimately related to 
the A-D sequence at a terminal in a sense that Li corresponds to the departures 
succeeding the arrival of trip i and Bj corresponds to the arrivals preceding the departure 
of trip j in the A-D sequence. 

The linking constraints assert that an arriving trip i can either be linked to a 
departing trip j from set Li (i.e. XAj=l) or the trip i remain unlinked (i.e. X i0=l). 
Similarly, an arriving trip i from set Bj can either be linked to the departing trip j (i.e. 
Xij = l) or let the trip j remain unlinked (i.e. X0j = l). The fleet-size or the number of 
vehicle schedules is given by the sum of unlinked departure trips (ZjX0j) at the beginning 
of a vehicle schedule, or the sum of unlinked arrival trips (£iXi0) at the end of a 
schedule. 

Analysis 

The objective function maximizing the number of Unkings ( XiSix i j ) c a n be shown to 
be equivalent to minimizing the fleet-size (XiXi0 or £jX0j) as follows: 
Summing up the linking constraints over all the trips, 

SliXy + ljAoj^lji jeN.ieBj 

= | N | = ZiljXy + li^o ieNJGLj 
Thus, 

Linkings + Fleetsize = Number of Trips 
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Table 1. Fixed-Schedule Fleet-Size Problem (PI) 

Formulation 
Maximize: 

l i I j Xij i £N, jGLi 

Subject to: 

Linking Constraints: 
I j Xi-j+Xi0 = 1 i£N, jGLi 
l i Xij+Acj = 1 JEN, iGBj 

Xij , Aio, AQJ = 0 , 1 

Notations 
N: Set of trips 
T: Set of terminals 

OiST : Origin of trip i 
diST: Destination of trip i 
Pi: Departure time of trip i 
qi: Arrival time of trip i 

Li-. Set of departure trips linkable to the 
arrival trip i 

= ( j :o d =di AND p-j>qi, jCN} 
BJ: Set of arrival trips to which the 

departure trip j is linkable to 
= { i :0 ; j=di AND P j > q i ( i£N} 

Xij = 1 if the arrival trip i is linked 
to departure trip j 

= 0 otherwise 
Aio = 1 if the arrival trip i is not 

linked to any departure trip 
= 0 otherwise 

A0 j = 1 if no arrival trip is linked to 
the departure trip j 

= 0 otherwise 

Since the linkability sets h± and Bj primarily correspond to the terminal-specific A-
D sequences, we can express the above result at the level of a terminal. So, 

l i l iXy + IJXOJ = I j l jGNbl={k :ok=b,keN}, iGBj 

= | Nbi | Nbl: Trips departing from terminal b 
Similarly, 
liljXij + li^io = 1,1 ieNb2={k:dk=b,keN}, jGLi 

= | Nb2 | Nb2: Trips arriving at terminal b 

Obviously, | Nbl | = | Nb21 due to the law of conservation and empty 'dead heading' 
trips are not allowed between any terminals. 

To minimize the fleet-size, it is sufficient to maximize the Unkings or minimize the 
unlinked trips departing or arriving within the A-D sequence at every terminal. If we 
perform linking of every departing trip in the A-D sequence of terminal from among 
preceding arriving trips, then the departures with cumulative count exceeding that of 
arrivals must remain unlinked. Accordingly, let 
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Abt = Cumulative number of arrivals up to time t 
= | { i : d i = b , c [ i £ t , i e N } | 

Db t = Cumulative number of departures up to time t 
= | { i : O i = b , P i < t , i e N } | 

Fbt = D b t - A b t 

Fb = max{Db t-Ab c} 
t 

The F b t , known as the 'deficit function', indicates the shortfall of vehicles of at 
terminal b at time t . The Fb indicates the number of departures that must remain unlinked 
at the early part of the A-D sequence at the terminal b . A balanced set of trips, 
| Nbi | = | Nb2 | , will ensure that the terminal b will also end up with exactly Fb unlinked 
arrivals at the end part of the A-D sequence. The time intervals between the peak 'deficit 
function' values, Fb t=Fb , partition the A-D sequence in terms of 'hollow zones' defined 
by Gertsbach and Gurevich[8]. The linking restricted within the 'hollow zones' would be 
optimal, leaving not more than Fb unlinked departures and arrivals at the first and last 
'hollow zones' respectively at each of the terminals. The total minimum fleet-size is 
given by 

F = £ b F b bCT 

The concept of 'deficit function' could be extended to a more convenient 'surplus 
function' defined over the A-D sequence as, 

Sbt = Fb + Abt - Dbt 

S b t indicates a minimum surplus of fleet-size required at any time t at a terminal b 
to take care of all the trips departing at or after time t from the terminal. As the 'surplus 
function' changes only on occurrence of arrival/departure event, it is sufficient to define it 
as a discrete function over the events rather than as a step-wise continuous function over 
time. Accordingly, 

s j i = Value of the 'surplus function' upon departure of trip j 
= F b + Abt - Dbt j e N M , t = p j 

s i 2 = Value of the 'surplus function' upon arrival of trip i 
= Fb + Abt - Dbt ieNb2, t = q i 

The 'critical departure' trips, Nb. = {k: s k l= 0, k£N b l } , conveniently partition the A-
D sequence in terms of 'hollow zones' for every terminal. Unlike the terminal-specific 
peak 'deficit function' value, Fb, the 'surplus function' has the same value of 0 for every 
'critical departure' at any terminal. By definition, on linking of an arrival trip to a 
departure trip succeeding it in the A-D sequence, the 'surplus function' value of each of 
the intermediate arrival/departure events would have to reduced by 1. This indicates that 
the arrival trip could be optimally linked to a departure trip only within the 'hollow zone'. 
Else, the 'surplus function' value of 'critical departure' would become negative, requiring 
additional fleet to restore the value to 0. 
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The 'surplus function' value of an arrival trip, being the minimum surplus of fleet-
size required at the time, also indicates the optimal number of linking choices for the 
arrival trip in terms of available succeeding departure trips after optimally linking all the 
succeeding arrival trips. Accordingly, the total number of optimal solutions to the Fixed-
Schedule Fleet-Size Problem is given by, 

S = (nieNS i2)/(nbCTFb!) 

The denominator in the above expression accounts for the arrival trips that remain 
unlinked within the last 'hollow zone'. The number of optimal solutions, S, is usually a 
very large number even for a moderately sized problem. One of our real-life problems 
with 220 trips, had 6.74xl089 optimal solutions to the Fixed-Schedule Fleet-Size 
Problem! 

Table 2. Some Algorithms and Data Structures to Solve PI 

Let, 
LISTb (AD): A-D sequence at terminal b 
LISTb(k0-j): List of A0j as defined in PI 
LISTb (A i 0 ) : List of Xi0 as defined in PI 
QUEUEb(A): Queue of Arrivals for linking 
STACKb (A) : Stack of Arrivals for linking 
LISTb (A) : List of Arrivals for linking 
LISTb (X i d ) : List of Xid as defined in PI 

FIFO Algorithm: 
Initialize: LISTb{ AD) , LISTb(koi) 

LISTb (A i0) , QUEUEb (A) 
For every terminal b € T 

Scan LISTb(AD) until end 
if A then insert A in QUEUEb (A) 

else if QUEUEb(A) is not empty 
then remove A, link to D, insert 

linking in LISTb (X id) 
else insert D in LISTb (A0 j) 

At the end of scan, empty the unlinked As in 
QUEUEj, (A) into LISTj, (Ki0) 

UFO Algorithm: 
Initialize: LISTb(AD) , LISTb{koi) 

LISTb(Ki0) , STACKb(A) 
For every terminal b G T 

Scan LISTb (AD) until end 
if A then push A in STACKb (A) 

else if STACKb (A) is not empty 
then pop A, link to D, insert 

linking in LISTb (X l d) 
else insert D in LISTb (A0j) 

At the end of scan, empty the unlinked As in 
STACKb{h) into LISTb (ki0) 

General Algorithm: 
Initialize: LISTb(AD) ,LISTb{koj) 

LISTb(ki.Q) , LISTb(A) 
For every terminal b C T 

Scan LISTb (AD) until end 
if A then insert A in LISTb (A) 

else if LISTb (A) is not empty 
then pick any A, link to D, insert 

linking in LISTb (Xi:J) 
else insert D in LISTb (k0j) 

At the end of scan, empty the unlinked As in 
LISTb (A) into LISTb (A i0) 

The specific algorithms and associated data structures to optimally solve the Fixed-
Schedule Fleet-Size Problem are presented in Table 2. We use the standard 'ordered list' 
data structure to accommodate the A-D sequence, Unkings (Xys), and unlinked trips (A0;jS 
and Aios). To accommodate the candidate arriving trips for linking, we logically use 
queue, stack, and 'ordered list' data structures, to perform the linking using first-in-first-
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out (FIFO), last-in-first-out (LIFO), and 'general' linking algorithms respectively. 
Physically, all the data structures are implemented as a single 'ordered list'. 

It is to be noted that the algorithms do not explicitly require us to use surplus 
functions or identify 'hollow zones'. As we chronologically select departure trips for 
linking, the candidate arrival trips simply get accumulated in the selected data structure. If 
we arbitrarily select the departure trips for Unking, however, we must identify the 'hollow 
zones', to be able to restrict the optimal linking within. 

The algorithms are identical except for the data structures. Of particular interest is the 
General Algorithm, specifically the key statement 'pick any A, link to D, insert Unking in 
LlSTb (X i ; i)'. The statement holds the promise that if even the arbitrary choice of arrival 
trip would do for the fleet-size optimaUty, then we could potentially make a systematic 
choice for linking to satisfy any operational constraints without adversely affecting the 
fleet-size optimaUty. Consequently, the solution to the formidable vehicle and Crew 
Scheduling Problems would be a matter of elaborating the key statement in the specific 
contexts. 

Implementation and Computational Experience 

Our initial implementation of the General Algorithm to solve the Fixed-Schedule Fleet-
Size Problem was on a PDP-11/70 minicomputer using FORTRAN-IV Plus language. 
The modest computing resource, with only 64KB of addressable memory available for the 
program of which only 32KB could be used for the data, forced us to develop efficient 
implementation of the algorithm and the data structures to be able to handle real-life size 
problems of over 1000 trips. We used a set of two-column arrays to accommodate trip 
data, surplus scores, and two-way Unked 'ordered lists' for A-D sequence and the linking 
solution. 

Table 3. Computational Experience of Fixed-Schedule Fleet-Size Problem 

Trip 

105 
220 
246 
120 
92 
72 
66 
84 

Terminal 

23 
72 
43 
30 
35 
25 
27 
28 

Optimal 
Fleet-
Size 

Solutions 
1.20x10*' 
6.74x10"* 
l.SSxlO38 

7.25xl0;" 
8.50xl0ZJ 

1.30xlOl:> 

2.01X10'4 

5.02xl012 

Optimal 
Fleet-
Size 

21 
50 
31 
35 
22 
18 
23 
20 

M-
Gaps 

19 
32 
22 
32 
7 
12 
19 
16 

Schedules 
with 

maint. 

14 
26 
18 
25 
6 
11 
16 
14 

Maint. 
feasible 

(YES/NO) 

NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

CPU 
(sec.) 

0.64 
2.10 
1.74 
0.80 
0.58 
0.40 
0.44 
0.48 

The computational experience of our implementation with real-life data is given in 
Table 3. Interestingly, all of the solutions generated by the General Algorithm to 
optimally solve the Fixed-Schedule Fleet-Size Problem were maintenance-infeasible. In 
fact, our early attempt to solve the Vehicle Scheduling Problem by generating numerous 
solutions to the Fixed-Schedule Problem failed to yield any maintenance-feasible optimal 
fleet-size solution even after considering over 50000 solutions. 



493 

Variable-Schedule Fleet-Size Problem (P2) 

The Variable-Schedule Fleet-Size Problem has been tackled using mathematical 
programming and heuristic approaches in the literature. Martin-Lof[ 10] has described a 
branch-and-bound approach to solve the problem for two terminals. Levin[9] has used 
branch-and-bound method of Land-and-Doig variety to solve his integer programming 
formulation. Bokinge and Hasselstrom[7] have given a heuristic approach that seeks to 
minimize active number of vehicles on the road at any given moment. We found that the 
Bokinge and Hasselstrom algorithm consistently performed even worse than the Fixed-
Schedule Fleet-Size Problem, which is not surprising since the active number of vehicles 
forms only a lower bound on the fleet-size, whereas the fleet-size is essentially 
determined by the linkability among the trips. Ankolekar, Patel, and Saha[l] have used a 
heuristic method to identify and perturb trips to approach the lower bound on the 
variable-schedule fleet-size. 

Formulation 

In the formulation of the Variable-Schedule Fleet-Size Problem (P2) in Table 4, we 
extend the concept of linkability to include the trips that are 'potentially linkable'. The 
corresponding extended linkability sets, L iEL and BjEL, are defined over a modified A-D 
sequence where every trip is considered to be departing at its latest and arriving at its 
earliest timing. Linking of some of those trips eventually might turn out to be infeasible if 
the arrival timing is indeed later than the departure timing of the trip to which it is being 
considered for linking. The linkability set, L iLE, identifies such potentially unlinkable 
trips among L i E L . 

The linking constraints on the extended linkability sets, LiEL and B-jEL, would 
generally enable enhanced number of linkings in P2 compared to its Fixed-Schedule 
counterpart (PI), subject to the additional perturbation constraints. One set of perturbation 
constraints do not allow linking of a trip i to a trip j if the actual arrival time of trip i 
(P i+ t i ) is later than the actual departure time of trip j (pd). It is sufficient to define such 
constraints over the set of potentially unlinkable trips (LiLE). The second set of 
perturbation constraints allow the timings to be fixed within earliest and latest limits for 
each of the trips. 

In addition to the primary objective function ( Z i Z j x i j ) related to the fleet-size, the 
P2 also has a secondary objective function of maximizing the number of trips ( £ i Y i ) 
with the most desirable timings. A set of constraints defined for each trip, called 'no 
perturbation is good', count such good trips. 

Analysis 

The mathematical programming approach to solve the Variable-Schedule Fleet-Size 
Problem is computationally not attractive due to the multiple objectives and large number 
of constraints involving integer variables. We extend the analytical framework developed 
earlier for the fixed-schedule counterpart of the P2 to solve the problem heuristically. 
Accordingly, we define following related parameters with respect to earliest, latest, and 
best timings of the trips. 

AbtE = |{i:di=b,q iE<t,ieN}| 
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DbtL = | { i :O i =b ,P i L <t , i eN} | 

FbtL = DbtL - AbtE 

FbL = max{DbtL-AbtE} 

FL = Zb€T FbL 

AbtB = I {i:di=b,qiB<t>ieN} | 

DbtB = |{i:0Fb )P iB<t,ieN}| 

SJIL = FbL + AbtB - DbtB jGNbl, t=PjB 

Si2L = F b L + AbtB - Db t B i eN b 2 , t=q iB 

Table 4. Variable-Schedule Fleet-Size Problem (P2) 

Formulation 
Maximize: 

l i Z j x i j i e N , jGLiEL 
Z i Yi iGN 

Subject to: 
Linking Constraints: 

Z j Xij+Xio = i i e N , j e L i E L 

Z i Xij+Xoj = 1 jGN, iGB j E L 
Perturbation Constraints: 
P j - P i - t ^ c X i j - D M i e N , j e L i L E 

PiE ^ P i ^ PiL iGN 
No Perturbation is Good: 
P i - PiB * ( 1 - Yi)M iGN 
PiB - P i £ ( 1 - Y±)M iGN 

X i j , Y i , A i O , A0j = 0 , 1 
P i , q i > 0 

Notations 

N , X i j , A i 0 , A 0 j , O i , d i , p i , q± as in PI 

PiE< PiB# PiL^ Earliest, Best, and Latest 

departure times for trip i 

qiE/ qiB/ qiL: Earliest, Best, and Latest 

arrival times for trip i 

t i : Duration of trip i 

= q iB~PiB = q i E - P i E = q i L ~ P i L 

LiEL={J : O j = d i , P j L ^ q i E , jGN} 

BjEi = { i : O j = d i , PjL^qiE/ iGN} 

L i L E = { j : O j = d i , P j E ^ q i L , j G L i E L ) 

Y i = l if P i = p i e iGN 
=0 otherwise 

M : A large constant 

PiE / PiB / P iL / q iE / Q[iB i q iL / t i 

: Trip related constants 

Since the modified 'surplus function' is defined over the A-D sequence using lower 
bound on the peak 'deficit function' value, the critical departures and the trips around 
them would have infeasible (-ve) values for the terminals with the potential for fleet 
saving. The Perturbation Algorithm attempts to eliminate the infeasibility by advancing 
the arrivals and postponing the departures to cross over the infeasible part of the A-D 
sequence without creating additional infeasibility in the A-D sequences at the 
complementary ends of the trips being perturbed. 
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Implementation and Computational Experience 

The implementation builds on the data structures and analytical modules used for the 
Fixed-Schedule Fleet-Size Problem. The Perturbation Algorithm attempts to extract 
maximum possible perturbation of a trip. If the perturbation is obstructed by a critical 
departure at the complementary end, the obstructing departures are recursively perturbed 
until no further obstruction is encountered, and unobstructed perturbation is carried out 
during backtracking phase on the obstructed trips. We used a 'stack' data structure for 
handling the recursive perturbation. We simply stack the obstructed trips facing 
temporary suspension of the perturbation, and reactivate the perturbation at the top of the 
stack during backtracking, removing the trip from the stack on perturbation. 

The computational experience of our implementation with real-life data for a 
perturbation tolerance limit of ± 10 minutes is given in Table 5. 

Table 5. Computational Experience of Variable-Schedule Fleet-Size Problem 

Trip 

105 
220 
66 
120 
246 
92 
84 
72 

Terminal 

23 
72 
27 
30 
43 
35 
28 
25 

Fixed-
Schedule 
Fleet-Size 

21 
50 
23 
35 
31 
22 
20 
18 

Lower 
Bound 

(±10min.) 
20 
47 
22 
34 
26 
22 
20 
18 

Fleet-Size 
Achieved 

20 
47 
22 
35 
26 
22 
20 
18 

# 
Perturb. 

1 
8 
1 
0 
10 
0 
0 
0 

CPU 
(Sec.) 

1.30 
4.48 
0.64 
1.80 
3.80 
1.14 
0.90 
0.60 

Depot Allocation Problem (P3) 

The Depot Allocation Problem has not been widely addressed in the literature. Ankolekar 
and Patel[3] have given a heuristic approach to identify and reassign the provisional depot 
allocations using a tree-search algorithm. 

Formulation 

In the Depot Allocation Problem (P3), the fleet-size problem is aggregated over multiple 
depots and then subjected to the depot compatibility and assignment constraints as shown 
in Table 6. 

The depot compatibility constraints assert that the trip i can be linked to trip j if and 
only if both of them are assigned to the same depot k (Yik=Y-jk=l). The depot assignment 
constraints assert that a trip is assigned to only one of the depots. The constraints also 
ensure that for every terminal, the arrivals of trips assigned to a depot are equal to the 
departures of trips assigned to the same depot. 
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Table 6. Depot Allocation Problem (P3) 

Formulation 
Maximize: 
l i Ij x i d i e N , j e ^ 

l i Y ik ieN k 

Subject to: 
Linking Constraints: 
Id x i ; i+A i 0 = i i e N , j e ^ 
Z i xi;i+A0.j = l j eN, ieB . j 
Depot Compatibility Constraints: 
Yik-Yjk+Xij < i i e N , j e L i 
Yjk-Yik+Xij < 1 kGK 
Depot Assignment Constraints: 
ZkYik = 1 i eN ,k6K 
ZiYik =ZjY:-k i , j G N , k e K , 

Oi=d-j=aeTa 

Xij , Aio, Aoj/Yik = 0 , 1 

Notations 
N.T.Xy.^o.^oj.Oi.di.Pi.qi.Li.Bj as defined earlier 
in PI 

a,: depot to which trip i is assigned originally 
K : set of depots 
Nk : {i: a;=k, iCN} 
Yik = 1 if trip i is assigned to kGK 

= 0 otherwise 
Ta={b:Fb>0,bCT} 

Analysis 

The Depot Allocation Problem has the fleet-size related primary objective function 
(ZiZjXij ) and a secondary objective that maximizes (ZiYik) for the most desirable 
depot assignments. As the aggregation mutually enhances the potential linkability sets of 
each of the depots, the primary objective function for the aggregated set of trips ought to 
be more than the sum of linkings with the set of trips of individual depots. To prove this 
intuitive argument we extend the analytical framework developed earlier for the PI to the 
multiple depots. Accordingly, 

Abkt= |{i:dFb,qi<t,ieN,Y i k=l}| 

Dbk,= |{i:Oi=b,Pi<t,iCN,Yik=l}| 

Fbkt = Dbkt - Abkt 

Fbk = max{Dbkt-Abkt} 
t 

For the aggregated set of trips, we have 

Fb = max{Zk(Dbkt-Abkt)} and F = ZbFb bCT, kCK 
t 

It follows that ZbZk Fbk ̂  F since, 

Zk Fbk = ZkfmaxCDbkt-Abu)} > max {Zk(Dbkt-Abk,)} = Fb 

t t 
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The mathematical programming approach to solve the Depot Allocation Problem too 
is computationally unattractive due to the multiple objectives and large number of 
constraints involving integer variables. As before, we extend the analytical framework 
developed earlier for the fixed-schedule counterpart of the P3 to solve the problem 
heuristically. The solution involves construction of A-D sequences and identification of 
the 'global hollow zones' for the aggregated set of trips. To achieve the optimal fleet-size 
for the aggregated set of trips while satisfying the depot-compatibility constraint, we must 
ensure that the 'local hollow zones' corresponding to the subset of trips of the specific 
depots are fully contained within the 'global hollow zone' so that the global optimality 
conditions are not violated. The 'local hollow zones' that span across the 'global hollow 
zones' lead to 'local unbalance' in terms of excess/deficit of arrivals and departures 
within the affected 'hollow zones'. The Depot Reassignment Algorithm uses a tree search 
technique to identify chains of such unbalanced trips and reassigns them to appropriate 
depot as described in Ankolekar and Patel[3]. 

Implementation and Computational Experience 

The implementation builds on the data structures and analytical modules used for the 
Fixed-Schedule Fleet-Size Problem, and adds additional features to implement concepts 
specific to the Depot Allocation Problem, such as, 'local hollow zones', 'local 
unbalance', search-tree, and so on. The search-tree forest of potentially re-assignable 
chains was implemented as a 'queue' data structure, where the initial roots and 
subsequently branched leaves are placed at the tail of the queue, and the node for 
branching is picked up from the head of the queue. To eliminate potential cycling of the 
algorithm, repeat reassignment of a trip to a depot to which it was earlier assigned, was 
prohibited.The computational experience of our implementation with real-life data is 
given in Table 7. 

Table 7. Computational Experience of Depot Allocation Problem 

Depots 

8 
8 
6 
5 
5 
5 
5 
5 
4 
4 
4 
4 
4 
4 
3 
3 
2 
2 

Trips 

1005 
1026 
1226 
1162 
881 
867 
1044 
1072 
980 
890 
922 
1008 
950 
1040 
826 
768 
704 
499 

Initial 
Fleet-Size 

220 
213 
273 
257 
224 
200 
226 
239 
210 
192 
172 
223 
185 
203 
176 
138 
122 
83 

Lower 
Bound (F) 

217 
212 
265 
250 
220 
195 
219 
233 
205 
189 
168 
217 
181 
198 
173 
135 
120 
81 

Fleet-Size 
Achieved 
217 
212 
265 
250 
220 
195 
219 
233 
205 
189 
168 
217 
181 
198 
173 
135 
120 
81 

Trips Re­
assigned 

10 
6 
77 
62 
46 
40 
56 
47 
41 
24 
17 
34 
15 
35 
31 
15 
16 
9 

CPU 
(sec.) 
29 
27 
88 
62 
37 
29 
46 
51 
48 
32 
29 
35 
28 
33 
31 
29 
24 
16 
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Vehicle Scheduling Problem (P4) 

The Vehicle Scheduling Problem with routine maintenance constraint has not been widely 
addressed in the literature. Ankolekar, Patel, and Saha[l] have used a heuristic approach 
to solve large-scale real-life problems. 

Formulation 

Conceptually, the Vehicle Scheduling Problem (P4) is an extension of the Fixed-Schedule 
Fleet-Size Problem (PI) with the maintenance constraints on the vehicle schedules. This 
seemingly simple operational requirement adds numerous quadratic constraints to the P4 
as formulated in Table 8. 

Table 8. Vehicle Scheduling Problem (P4) 

Formulation 
Maximize: 

I , 2 j X a iCNJCLi 
I iV i iCN 

Subject to: 
Linking Constraints: 
^X i j + Xio=l iCNJCLi 
l i X y + A o j ^ jeN,iCBj 
Identify (Vehicle Schedule) Chains: 
Ra = A<M iCN 
R^IkRik-XkjijCN.keBj 
Ujj = *jo JGN 
U„ =Ik Xik.Ukj ijGN, kCLj 
Identify Chains with Maintenance: 
Vi = Xoi iCNdl 

IpIqR iq-Xqp+i:rR i r.XTo>V i iCNal, 
pCNdl, 
qeBpM,reNd2 

Wj = ^o jCNd2 

ZP L ^ W IrXor.Uti > Wj jCNaj, 
pCNdi, 
qCBpMrCNdi 

Maintenance Constraint: 
liVi+^Wj > Fa iCN^jeNU aCT-d 

Xii>>,o,A<,i,Rii,Uii,Vi)Wi=0,l 

Notations 
N,T ,X i ; i / A i 0 , A o j , O i , d i , P i , q i , L i # 

B j , F b , Hbrs as defined earlier in P3 
dGT : depot for maintenance 
g : maintenance gap 
Nai = { j : o d = a C T - d , j€N} 
Na2 = { i : d i = a e T - d , i£N} 
Ndi = { j : o j = d , J6N} 
Nd2 = { i : d i = d , i6N} 
Ri j = 1 if the trip j is contained in the 

chain beginning with the trip i 
= 0 otherwise 

Ui j = 1 if the trip i is contained in the 
chain ending with the trip j 

= 0 otherwise 
B-jM : Linking set with maintenance 

= { i : o ; i = d i = d AND P j - q i ^ g , 
i6N} 

Vi = 1 if the chain beginning with the trip i 
has maintenance gap(s) 

= 0 otherwise 
Wj = 1 if the chain ending with the trip j has 

maintenance gap(s) 
= 0 otherwise 

Unlike the PI, the P4 requires explicit identification of vehicle schedules to be able 
to express the maintenance constraints on them. A schedule can be identified by its 
starting trip i (X0i=1) and a set of non-starting trips associated with it ({j : Rid = 1}) or 
by its ending trip j (Aj0=l) and a set of non-ending trips associated with it 
({i : Ui;j=l}). A schedule with maintenance can be identified as the one that starts at the 



499 

depot, or the one starting at a terminal other than depot gets large enough linking gap at 
the depot (Vi). Similarly, a schedule with maintenance can also be identified as the one 
that ends at the depot, or the one ending at a terminal other than depot gets large enough 
linking gap at the depot (W-j). To ensure that a vehicle gets its maintenance at least once in 
two days, the number of schedules with maintenance ending at a terminal other than depot 
(Zjwj)> should be greater than or equal to the number of schedules starting from that 
terminal going without maintenance (F a -£iVi) . 

The Vehicle Scheduling Problem has a fleet-size related primary objective function 
(ZiXjXi-j) and a secondary objective that maximizes (Z i v i ) for the schedules with daily 
maintenance. 

Analysis 

Like its variable-schedule (P2) and the depot allocation (P3) counterparts, the Vehicle 
Scheduling Problem has multiple objectives. It also has a large number of quadratic 
constraints involving numerous integer variables. Consequently, it is very hard to solve 
the problem using the mathematical programming techniques. As before, we extend the 
analytical framework developed for the Fixed-Schedule Fleet-Size Problem to solve the 
Vehicle Scheduling Problem using heuristic techniques. The problem is solved in two 
phases. In phase one, a minimum fleet-size problem is solved with maximum number of 
maintenance gaps embedded among the vehicle schedules. The maintenance gaps are then 
appropriately redistributed among the chains in phase two, using a restructuring process. 

The problem of embedding maximum number of maintenance gaps among the 
vehicle schedules is formulated as an assignment problem for linking arrivals with 
departures within 'hollow zones' as shown in Table 9. 

The maintenance-gaps sub-problem is optimally solved using a Greedy Algorithm in 
which a departure selected in a chronological order simply grabs a maintenance 
opportunity within the 'hollow zone', if available. Else, it benevolently settles for linking 
with least idle gap, thereby increasing the chances of succeeding departures of grabbing 
the maintenance opportunity. The optimality also holds for the greedy procedure based on 
arrivals selected in reverse chronological order. Ankolekar, Patel, and Saha[l] have 
proved the optimality of the greedy procedure. 

Table 9. The Maintenance-Gaps Sub-problem 

Formulation 
Minimize: 

Z i Zj f ij • X i j i£Hamn2/ J6Hdmnl 
Subject to: 
Precedence Constraints: 
i i X i j = 1 1 S H d m n 2 i 3 GHdmni 

Zj^i j = 1 l£Hd m n 2 , jGHflmnl 

Xij = 0 , 1 

Notations 
x i j / Bj , BjM, d, H b r s , N a l , Na2 
as defined in Vehicle Scheduling Problem (P4) 
fid = 1 if i eB d -B j M 

= 0 if iEB-jM 
= °° otherwise 

Hdmn = Hollow zone at depot starting with arrival 
trip m and ending with departure trip n 

= { i , j : i e N d 2 , jCNd i , q ^ q ^ p - ^ P n } 
meNd2, neNdi 

Hdmni = { 3 '• 3 SNd l , 3 GHamn } 
Hdmn2 = { i : j 6 N a 2 , iSHjiron} 
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Greedy linking at the depot results in a set of partial schedules, some with embedded 
maintenance gaps or starting/ending at the depot. The linking at the terminals other than 
depot follows a similar greedy procedure, where the partial chains without any 
maintenance so far, link to ones with maintenance to widely distribute the maximum 
maintenance opportunities during the first phase. The phase two reinforces the 
distribution further by breaking the 'rich schedules' with more maintenance opportunities 
and the 'poor schedules' with no opportunities, into partial schedules and swapping them 
to redistribute the maintenance opportunities more widely among the schedules. 

Implementation and Computational Experience 

The implementation builds on the data structures and analytical modules used for the 
Fixed-Schedule Fleet-Size Problem, and adds additional features to implement concepts 
specific to the Vehicle Scheduling Problem, namely, the greedy linking and the swapping 
of the partial schedules. The computational experience of our implementation with real-
life data is given in Table 10. 

Table 10. Computational Experience of Vehicle Scheduling Problem 

Trips 

105 
220 
246 
120 
92 
72 
66 
84 

Terminals 

23 
72 
43 
30 
35 
25 
27 
28 

Optimal 
Fleet-
Size 
20 
47 
26 
35 
22 
18 
22 
20 

M-
Gaps 

27 
69 
40 
50 
24 
17 
24 
22 

Schedules 
with 

maintenance 
20 
43 
26 
35 
18 
14 
18 
20 

Maintenance 
feasibility 
(YES/NO) 

YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 

CPU 
(sec.) 

0.66 
25.4 
2.10 
1.06 
1.70 
0.86 
0.88 
0.58 

Crew Scheduling Problem (P5) 

Booler[6] formulated the crew scheduling as a linear programming problem and solved it 
using Dantzig and Wolfe decomposition principle, with suggestion of branch-and-bound 
approach to take care of integrality constraints. The formulation does not address crew 
duty conditions associated with steering duty and night-outs at terminals other than 
depots. Blais et. al.[5] have suggested a heuristic approach for crew scheduling in an 
urban transit system. The solution consists of a 'macro' stage of solving a simplified 
version as a linear programming problem, and a 'micro' stage to perform necessary 'fine 
tuning'. 

Formulation 

Conceptually, the Crew Scheduling Problem (P5) is similar to its Vehicle Scheduling 
counterpart (P4), except for different kinds of operational constraints, such as, limit on 
total steering and spread-over (elapsed time between sign-in and sign-off of the crew) 
duty, limit on consecutive night-outs at terminals other than depot, meal-breaks, and the 
rest pauses before and after long trips. For our formulation in Table 11, we ignore the 
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meal-breaks and rest pauses constraints, their treatment being analogous to the 
maintenance gaps in the Vehicle Scheduling. 

The night-out constraints simply assert that a crew must end up at the depot on 
starting after a night-out or must start at the depot if ending as a night-out. At the 
terminals with positive deficit function (Fa>0), the night-outs are inevitable. The night-
outs might also result in terminals with no deficit (Fb=0), because the number of linkings 
would be substantial smaller in Crew Scheduling Problem (P5) compared to the Vehicle 
Scheduling (P4) due to more stringent operational constraints. There may be a set of 
terminals (Tb), however, where the night-out is not allowed at all. For such terminals, the 
linking constraint does not allow any starting or ending trips in the crew schedules. 

Table 11. Crew Scheduling Problem (P5) 

Formulation 
Maximize: 

Z i Id cXid i£N, jCLi 
Subject to: 
Linking Constraints: 
£ j cXi:j + cX i 0 = 1 i e N a 2 , a e T - T b , jCLi 
Z i cX id + cXoj = 1 j e N a ^ a G T - T ^ i e B - i 
I j cXij = i i e N a 2 , a e T b / j e L i 
Z i cX id = 1 jGNa^aGTb. ieBj 
Identify (Crew Schedule) Chains: 
cRii = cXo i iGNai,aGT-Tb 
cRij =ZkCRik- cX k j jGN, kCBd 
CUdd = c \ i o jGN a 2 ,aGT-T b 
cU id = Zk cXik-cUkj iGN, kGLi 
Night-Out Constraints: 
Zd cUid ^ cAoi iGN a l , aGT a , jGN d 2 

Zi cR id ^ cX j0 jGN a 2 , aGT a , iGN d l 

Steering Duty Constraints: 
Zj t i . c R i ; i < LI i6Nai ,aGT-T b , jGN 
Spread-over Duty Constraints: 
"Rid^Ui j . (q j -P i ) < L2 iCN a l , jGN a 2 

aGT-Tb 
Xid / Xio, XQ-I / Rid, Ui-j= 0 , 1 

Notations 
N, T, X i : i, X i 0 , Xo j , R i j , Ui j , N a l , 
Na2, 
N<JI , Nd2 , Oi, d i , P i , q i , Li , Bd as 

defined earlier in P4 

Ta : Set of terminals other than depot 
where crew night-out is 
permitted 

Tb : Set of terminals where crew 
night-out is NOT permitted 

= T - Ta - d 
LI : Steering duty limit 
L2 : Spreadover duty limit 
t i : Steering time of the trip i 

cX i ; i ,
 c X i 0 , CX0 j , c Ri j , cUi;i are 

crew counterparts of corresponding 
notations Xid , Xi0 , A0d, Ri j , Uid in 
problems P1-P4 

The steering duty constraints impose the limit on the accumulated steering duties of 
trips associated with a crew schedule. Similarly, the spread-over duty constraints impose 
the limit on elapsed time between the sign-in of the first trip and sign-off after the last trip 
of a crew schedule. 

While the formulation specifies only the primary objective function, ZiZd°xij> m e 

crew scheduling involves a secondary objective of maximizing the overlap between 
vehicle and crew schedules so that the crew is not required to change the vehicles too 
frequently to operate the trips. That makes the interrelationship between the two problems 
even more intimate, necessitating an integrated view of the sub-problems. Accordingly, 
we tackle the crew scheduling using the basic vehicle scheduling framework to develop 
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multi-crew schedules with unlinked trips in the first and last 'hollow zones', and 
subsequently cut them to pieces to yield single-crew schedules. 

Implementation and Computational Experience 

The implementation builds on the data structures and analytical modules used for the 
Vehicle Scheduling Problem, and adds additional features to implement concepts specific 
to the Crew Scheduling Problem. The computational experience of our implementation 
with real-life data is given in Table 12. 

Table 12. Computational Experience of the Crew Scheduling Problem 

Trips 

105 
220 
246 
120 
72 
92 
66 
84 

Fleet-
Size 

20 
45 
26 
34 
22 
24 
19 
21 

Crew-
Size 

Lower 
Bound 

35 
86 
44 
62 
43 
47 
36 
34 

Crew-
Size 

Achieved 

39 
94 
51 
66 
46 
54 
38 
41 

Night-out 
infeasible 

Crew 
Schedules 

1 
2 
0 
2 
6 
2 
6 
0 

Real-
Life 

Crew-
Size 
39 
92 
51 
65 
46 
53 
39 
40 

Real-Life 
Night-out 
infeasible 

1 
2 
1 
1 
3 
0 
0 
1 

CPU 
(sec.) 

7.78 
33.02 
29.28 
17.08 
12.98 
10.70 
8.58 
9.54 

Integrated Transport Scheduling Problem (P6) 

The problems (P2-P5) can be merged to formulate the Integrated Transport Scheduling 
Problem (P6) as given in Table 13, where the objective functions and the constraints of 
the sub-problems are simply merged together. The linking constraints and primary 
objective functions (ZiZjXy and ZiZj'Xy) provide the necessary glue that binds the sub-
problems together. 

As mentioned earlier, the integrated problem has an additional secondary objective 
function that seeks to maximize the desirable overlap (Xi Zj°ij) between the vehicle 
schedules Xi;i and the crew schedule cXi;j. A set of constraints defined for each potential 
linking, called 'Vehicle/Crew Overlap is Good', count such overlaps. 

The Integrated Transport Scheduling Problem turns out to be a massive 
combinatorial optimization problem with six objective functions and large number of 
quadratic constraints. For example, a moderate size problem of about 1000 trips would 
involve over 5 million quadratic constraints, primarily accounted for the schedule 
identification and spread-over duty constraints of the Vehicle and Crew Scheduling sub-
problems. Our common analytical framework for the sub-problems and the common set 
of data structures enables us to integrate the heuristic solutions to the sub-problems 
together to solve the integrated problem. 
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Table 13. Formulation of the Integrated Transport Scheduling Problem (P6) 

i G N , j G L i E L 

i G N , j e L i E L 

i G N , j e L i E L 

iGN 

i e N k 

iGN 

JSL : iEL 

Maximize: 

Z i l : X i d 

l i l d °Xid 

l i l d 0 A j 

l i Yi 
I i Y i k 

Subject to: 

Linking Constraints: 

I : Xij+Aio = 1 iGN 

l i X i ; i+A o j = 1 j G N , i G B d E L 

I d c X i : + c A i 0 = 1 i C N a 2 , 
a G T - T b , j G L i E L 

l i c X i j + c A o j = 1 j G N a l , 

a G T - T b , i C B j E L 

I d
 c X i d = 1 i G N a 2 , a 6 T b , j G L i E L 

l i cXij = 1 j G N a l , a 6 T b , i G B d E L 

Perturbation Constraints: 
q i = P i + t i 

P d - Q i ^ ( X i j - l ) M i G N , j C L i L E 

P j - Q i ^ ( c X i d - l ) M i G N , j C L i L E 

PiE ^ P i ^ PiL iGN 
No Perturbation is Good: 
P i - P i e ^ ( 1 - Yi)M iGN 
PiB - P i ^ ( 1 - Yi)M iGN 
Depot Compatibility Constraints: 
Yik-Ydk+Xij < 1 i G N , j G L i E L 

Yjk-Yik+Xi-j < 1 kGK 
Yik-Ydk+cX i ; i < 1 i G N , j G L i E L 

Ydk-Yik+ cX i d < 1 kGK 
Depot Assignment Constraints: 
I k Y i k = 1 i G N , kGK 
l i Y i k = I j Y j k i , j G N , k G K , 

Oi=d-i=aGT a 

Identify (Vehicle Schedule) Chains: 
Ri i = A o i iGN 

Rid = I k R i k . X k j i , j 6 N , k 6 B d E L 

Udd = A j 0 jGN 

Uij = I k X i k . U y i , j G N , k G L i E L 

Identify Chains with Maintenance: 
Vi = A o i iGN d i 

X a , -

p e N d l , q G B p M , r G N d 2 

I p IqRiq • Xqp+IrRi r • A r 0 > Vi i G N a l , 

I p I q X q p . U P : i + I r A 0 r . U r d > Wd jGN a 2 , 
p G N d l , q 6 B p M / rGN d i 

Maintenance Constraint: 
l i V i + I j W j > F a i G N a l , j 6 N a 2 , a 6 T - d 
Identify (Crew Schedule) Chains: 
c R i i = c A o i i G N a l , a G T - T b 

cRid = I k C R i k . c X k d j G N , kGBd 
c U d j = c A d 0 j G N a 2 , a G T - T b 
CUij = I k c Xik . c U k d i G N , kGL i E L 

Night-Out Constraints: 

I-i c U i d > c A o i i G N a l , a G T a , jGN d 2 

l i cRid ^ c^do j G N a 2 , a G T a , i G N d l 

Steering Duty Constraints: 

Z j t i . c R i j ^ L I i G N a l , a e T - T b , j G N 
Spreadover Duty Constraints: 
c R i j . c U i : i . ( q j - P i ) < L2 i G N a l , j G N a 2 , 

a G T - T b 

Vehicle/Crew Overlap is Good: 
X i d - c X i d + O i : i < 1 i G N , j G L i E L 
c X i d - X i d + O i d < 1 i G N , j G L i E L 

X i d , A i 0 , A o d , R i j , U i ; i , V i , W d , Y i , Y i k , 
c X i d , c A i 0 , c A o d , c R i d , c U i d , O i d = 0 , 1 

P i , q i > 0 

Implementation and Computational Experience 

We were able to integrate our algorithms and data structures together to solve the 
Integrated Transport Scheduling Problem. At a practical level, however, given the nature 
of the sub-problems, it is sufficient to consider the integration at the level of two subsets 
of sub-problems, namely, variable-schedule (P2) and depot allocation (P3) problems, and 
vehicle scheduling (P4) and crew scheduling (P5) problems. The former subset essentially 
deals with the pre-processing of the set of trips of multiple depots in terms of perturbation 
of timings and re-assignment of the depots to minimize the fleet-size. It is then sufficient 
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to carry out the integrated vehicle and crew scheduling individually for each of the 
depots. 

The integrated variable-schedule and depot allocation seeks to achieve global 
optimization of the fleet-size by increasing the potential for perturbation, while making 
the depot allocation somewhat harder due to increased unbalance among the 'local hollow 
zones', as is apparent from the number of perturbations and reassignments in the 
computational experience of the problem given in Table 14. 

The integrated vehicle and crew scheduling seeks to achieve greater overlap between 
vehicle and crew schedules in three phases. In phase one, preliminary linking is 
performed using the Greedy Algorithm. In phase two, the Swapping Algorithm, enriched 
to handle crew duty constraints, performs restructuring of both the schedules considering 
both crew and vehicle duty constraints, but giving priority to the latter. In other words, 
restructuring based on crew scheduling considerations is performed only if it does not 
result in deterioration of vehicle scheduling considerations. In phase three, the Swapping 
Algorithm operates exclusively on crew scheduling considerations to give a crew feasible 
solution, while heuristically optimizing the crew-size requirement. We found that the 
computational experience of the integrated vehicle and crew scheduling with prior pre­
processing by the integrated variable-schedule and depot allocation algorithm was similar 
to that of the specific sub-problems except for a minor reduction in maintenance gaps and 
schedules with maintenance as expected. 

Table 14. Computational Experience of the Integrated Scheduling Problem 

Depot 

8 

8 

Trips 

1005 

1026 

Perturb 
limit 
(min.) 

0 
±5 

±10 
±15 

0 
±5 

±10 
±15 

Sum of 
Fixed-sch. 
Fleet-size 

220 
220 
220 
220 
213 
213 
213 
213 

Fleet-
size 
Lower 
bound 

217 
208 
206 
204 
212 
211 
207 
205 

Achieved 
Fleet-Size 

217 
210 
207 
206 
212 
211 
208 
205 

Trips 
perturb­
ed 

0 
20 
25 
26 
0 
1 

10 
37 

Trips 
Reassi­
gned 

10 
32 
66 
56 
6 

43 
130 
166 

CPU 
(sec.) 

29 
90 
74 
42 
27 
53 
114 
184 

Concluding Remarks 

In this paper we have presented our experiences of structuring and modeling of 
scheduling problems that arise in operations of large state road transport corporations. We 
started with a simplified version of the real problem. We looked at the complexities 
sequentially and looked at each problem independently and finally developed an 
integrated model of the real problem in large Road Transport Corporations. 

Our thrust has been to develop methods, which can solve large problems efficiently. 
The problems described in the paper are complex and combinatorial in nature with 
multiple objectives. We could not always find methods to solve the problems optimally. 
Under those circumstances, we have devised heuristic solutions, which are most often 
very close to the bound for the optimal solution. 
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Secondly, as practitioners faced the problem, our efforts have been to devise 
solutions methods, which are efficient. From the evidences that we have provided in the 
paper, we are of the view that the methods suggested by us are efficient and could be used 
in practice. 

Thirdly the solutions we arrive using our methods can be implemented in practice. 
We have seen this in the context of a few divisions and depots in two State Road 
Transport Corporations. 

We believe that formal methods, besides having many advantages, also give 
economic solutions. In dealing with the scheduling problems described in the paper and 
as faced in a few State Road Transport Corporations, we have found that savings in bus 
and crew requirements were in the region of 5% to 15%. We are convinced that the 
methodology developed has potential to make the operations in large transport 
corporations more efficient. 
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Abstract: The dynamic power management is one of the most effective technologies 

for reducing the power consumption in computer systems. Especially, the sleep function 

based on the shutdown policy is usually installed in the almost operating systems. In 

this paper, we propose a stochastic model based on the dynamic power management con­

cept to determine the optimal shutdown policy. More precisely, introducing the so-called 

power effectiveness criterion by taking account of the processing efficiency, the optimal 

shutdown policies maximizing the power effectiveness can be derived in two cases; single-

user operating system and multi-tasking operating system. In a numerical example, we 

calculate the optimal shutdown policies numerically and perform the sensitivity analysis 

of model parameters. 

Keywords: dynamic power management, shutdown policy, power effectiveness, stochas­

tic model, Markovian arrival process. 

1 Introduction 

Since ENERGY STAR was introduced by the US Environmental Protection Agency in 

1992, the management of the electrical power consumed by computer systems has received 

considerable attention all over the world. As a computer system consists of a number of 

electric components and devices, the power management to reduce energy consumption 

has been discussed at each component level such as IC chip [22], microprocessor [25], 
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CPU, disk drive, display and so on. Recently, several measurement techniques for elec­

trical power have been also developed with object to reduce energy consumption in real 

computer operation [16, 26]. In general, the power management should be carried out at 

each level of hierarchical computer design processes; circuit level, layout level, logic level, 

behavioral level, architectural level, etc. In particular, the system level power manage­

ment techniques have emerged as one of the most useful design methodologies in practice, 

because they do not assume the development of new low-power devices. For the detail on 

the system level power management techniques, see [1, 3]. 

The dynamic power management, as it is generically known, can provide a control 

scheme that dynamically reconfigures an electric system to provide the requested services 

and to guarantee the desired performance level with minimum number of active compo­

nents or minimum amount of workload on such components [1, 3]. The design method 

will be useful for operating systems and control systems of peripheral devices. Espe­

cially, since operating systems can monitor and control the application software programs 

which are executed on them, the dynamic power management plays an important role to 

achieve energy efficiency. However, it is known that typical operating systems like UNIX, 

WindowsOS and MacOS were not designed originally with energy efficiency in mind. 

The dynamic power management basically supports three energy states, busy, idle and 

inactive, defined in the following: 

• The busy state is defined as an active state. In the busy state, the system can 

process the requested tasks and therefore consumes higher electrical power. 

• In the idle state, the system waits for an arrival request. Although the system does 

not process any task in this state, the amount of electrical power consumption is 
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icle busy 

t 
sleep 

Figure 1: Configuration of the dynamic power management. 

Table 1: An example of delay time in a CPU device 

from 
busy 
idle 
idle 

sleep 

-*• 
-> 
-> 
—> 

to 
idle 
busy 
sleep 
busy 

delay time 
~ 10 (/is) 
~ 10 {fts) 
~ 90 (AJS) 

~ 160 (ms) 

assumed to be same as that in the busy state. 

• The inactive state, which is usually called the sleep state, provides the least amount 

of electrical power consumption. In general, the functions such as a sleep and a 

hibernation lead the computer system into the sleep state. 

Figure 1 illustrates the state transition in the dynamic power management. Under the 

dynamic power management, it is reported that delay time can occur at transition among 

the energy states. Table 1 presents an example of the delay time in a CPU device [2]. 

In addition to the delay time, the large amount of energy consumption will be observed 

instantaneously at transition from the sleep state to the busy state. This instantaneous 

power is generally called wake up power. The simplest way to establish the power reduc­

tion in the current operating system is to add the ability to selectively shutdown useless 

peripheral devices. That is, if the system has waited for an arrival request in the idle 

state during a constant time period, the system goes to the sleep state automatically. 

The constant time period is called the shutdown policy. The system wakes up and goes 

to the busy state if an additional request occurs in the sleep state. In fact, this method, 



510 

called a shutdown approach, is applied to the hard disk unit [23] and the VLSI circuits 

system [1, 6, 24] as an energy saving function. Typical examples for the shutdown ap­

proach can be found in mobile computers [8, 9, 10]. Since the capacity of a battery for 

the mobile computer is limited, the available electrical power should be carefully assigned 

among all of the components and the peripheral devices. For such systems, the shutdown 

approach is greatly effective and, in fact, is installed as a standard function for mobile 

computers. 

However, the system designing based on the shutdown approach to reduce energy 

consumption is difficult due to the existence of both delay time and wake up power. For 

instance, if the system is designed such that it goes to the sleep state whenever it is in the 

idle state, the total energy consumption will become larger due to the excessive wake up 

power consumption. This implies that the optimal shutdown policy depends on the usage 

environment of the system. Thus, the problem to design the suitable shutdown function 

can be motivated. Okamura et al. [21] revisited the design of shutdown function in terms of 

the stochastic behavior. They assumed that the arrival request follows the general renewal 

process and derived the approximate expected electrical power consumption in the steady 

state and the approximate optimal shutdown policy minimizing it. Furthermore, they 

derived the exact optimal shutdown policy by applying the phase-type renewal process to 

the inter-arrival process [19, 20]. 

In this paper, we consider again the optimal design problem for the shutdown function. 

Our approach is based on a stochastic modeling technique under the criterion of the energy 

saving effectiveness. The criterion of the energy reduction is usually the electrical power 

consumption in the steady state. Although this criterion may be intuitive and reasonable, 

it does not focus on the performance of processing tasks. Since the processing efficiency 
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may degrade due to the extreme energy reduction, we have to consider the trade-off. That 

is, one should be careful to the performance restrictions in terms of system usability. Thus, 

this paper introduces a criterion of optimality called the power effectiveness [17, 18] taking 

account of the processing ability. The power effectiveness indicates the possible mean time 

length of keeping the busy state per unit amount of electrical power consumption. 

2 Single-User Operating System 

2.1 Model Description 

In this section, we discuss a stochastic shutdown model for a single-user operating system. 

As shown before, the dynamic power management may control three energy states: busy, 

idle and sleep states. The shutdown function for the single-user operating system is 

modeled under the following assumption: 

Assumption A: The electrical power consumption per unit time in the idle state is same 

as that in the busy state. 

Assumption B: The system needs delay time to go to the busy state from the idle state. 

Assumption C: The wake up power occurs uniformly during the delay time period when 

the system goes to the busy state from the sleep state. 

Assumption D: When the system is in the busy state, an arrival request is refused. 

One of the most important factors in the design of shutdown policy is trade-off between 

the amount of electrical power reduced by shutdown and the amount of the wake up power 

consumption. In other words, the optimal design essentially depends on the difference 

between the normal electrical power consumption and the wake up power consumption. 

It does not depend on the difference between the electrical power consumption in the idle 
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state and the busy state. Thus, the electrical power consumption in the idle state is well 

assumed to be same as the busy state. Note that it does not affect the optimal design of 

shutdown policy. The similar dependence can be found on delay time among the three 

states. That is, the optimal policy strongly depends on the delay time from the sleep 

state to the busy state. Also, comparing the delay time from the sleep state to the busy 

state with those in the other cases, it is short enough to be ignored. Therefore, we make 

Assumptions A and B. Assumption C concerns the wake up power. The behavior of the 

wake up power is naturally sharp rather than flat. When we focus on the wake up power 

consumed per unit time, it has a property of inversely proportional to the delay time, i.e., 

(the wake up power consumed per unit time) x (the delay time) 

is a constant approximately. This fact leads to Assumption C. Since the underlying system 

is assumed to be a single-user operating system, we make the assumption that an arrival 

request is refused in the busy state, namely, it is equivalent to Assumption D. 

Furthermore, the arrival request process is assumed to follow the phase-type renewal 

process [13]. The phase-type renewal process is one of the most general class of stochastic 

process which can be tractable mathematically. It is governed by an irreducible Markov 

process. 

In our modelling, the following notation is used: 

{Nt; t > 0}: the cumulative number of arrival requests at time t, 

{Jt; t > 0}: the phase of users' circumstances at time t, 

Sk- processing time for the fc-th task, 

T (> 0): delay time at the transition from the sleep state to the busy state, 
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to: the shutdown policy (0 < t0 < oo), 

Pi (> 0): the amount of electrical power consumption per unit time in the idle state and 

the busy state, 

Pi (> Pi)'- the amount of wake up power consumption per unit time during the delay 

time period when the system goes to the busy state from the sleep state. 

Suppose that the phase process {Jt; t > 0} is an irreducible Markov process. It has 

an infinitesimal generator M (mxm matrix) and initial probability vector a (1 x m row 

vector). A (m x 1) column vector denotes the arrival rate of requests. Let {Nt; t > 0} 

denote the number of arrival requests at time t. The inter-arrival time is mutually and 

independently distributed with an identical probability distribution function, where F(t) 

is the probability distribution function of the inter-arrival time. Then the probability 

distribution F(t) is given by 

P(i) = l -aexp(2Y)e , (1) 

where T = M — diag(A) and e is a column vector whose all the elements are 1. The 

distribution represented by Equation (1) is called the phase-type distribution. 

The dynamics of the underlying system can be summarized as follows. If the system 

is in the busy state, it processes the task requested by the last arrival. The system takes 

processing time Sk to process the task requested by the fc-th arrival. The processing time 

Sk has the absolutely continuous probability distribution function G(t) with finite mean 

l//x (> 0) and variance a\ (> 0). When an arrival request occurs in the busy state, 

the request is refused. After the system completes processing the task, it goes to the 

idle state. In the idle state, if the amount of sojourn time in the idle state reaches a 
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Figure 2: Possible realization of the single-user operating system with shutdown. 

threshold to before an arrival request occurs, the system goes to the sleep state at that 

time. Otherwise, the system begins processing the task requested by the arrival. In the 

sleep state, if an arrival request occurs, the system wakes up and goes to the busy state. It 

takes delay time r for the system to go to the busy state. Of course, the requests arriving 

during the delay time period are refused. Figure 2 illustrates possible realization of the 

single-user operating system. Prom Assumptions A and C, the amount of electrical power 

consumption per unit time in both the busy and the idle states is denoted by Pi. The 

amount of the wake up power consumption per unit time is P2, which is wasted during 

the delay time period when the system goes to the busy state from the sleep state. To 

simplify the mathematical analysis, the amount of electrical power consumption in the 

sleep state is assumed to be zero. 

2.2 Formulation of Power Effectiveness 

The power effectiveness criterion is defined as the mean length of available time per unit 

amount of electrical power consumption. The formal definition of the power effectiveness 
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is given by 

E[ the total length of available time in [0, t) ] 

4-xxj E[ the total amount of electrical power consumed in [0, t) }' 

where the available state corresponds to the busy state and thus the length of available 

time means the length of sojourn time in the busy state. 

Define the time interval from a task completion point until the next point as one cycle 

and the following expected values; 

7i(to): the mean length of available time during one cycle, provided that the phase is i 

at the beginning of the cycle. 

Qi(to): the expected amount of electrical power consumption during one cycle, provided 

that the phase is i at the beginning of the cycle. 

7Tj(io): the probability that the phase is i at the beginning of one cycle in the steady 

state. 

Let 7(to), c*(*o) and Tr(t0) denote the vectors whose i-th. element is 7i(to), Ci(to) and 

7ri(i0), respectively. 

Proposit ion 2.1. The power effectiveness is given by 

w{) = MioMol (3) 
V 0J 7r(io)a(to) V ; 

The proof of Proposition 2.1 is given in Appendix. Proposition 2.1 is an extension 

of Renewal Reward Theorem [4] on the Markov renewal reward process. Proposition 

2.1 is quite similar^to the familiar renewal reward theorem. The essential difference 

between them is whether the phase at the beginning of one cycle is considered or not. 
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From Proposition 2.1, we may focus only on the expected amount of electrical power 

consumption during one cycle and mean length of available time during one cycle. 

Let T(to) denote a transition probability matrix for the phase at the beginning of one 

cycle. From the formulation of the phase-type distribution function, T(to) can be written 

in the form; 

T(t0)= [ exp(Tt)AE[aexp{Q5 fc}]di 
Jo 

/»oo 

+ / exp(Tt)XE[aexp{Q(r + Sk)}]dt 

= ( I exp(Tt)Xdta + f exp(Tt)Xdtaexp{Qr}) 
poo 

x / exp{Qt}dG{t), (4) 
Jo 

where A = — Te, Q = T + Xa and I is the identity matrix. From the well-known 

argument on the Markov chain, the stationary probability vector 7r(t0) can be derived by 

7r(t0)T(t0) = ir(to), ^o)e = L (5) 

Equation (5) is equivalent to 
/»oo 

7r(t0) =a / exp{Qt}dG(t) 
Jo 

x (i + exp{Tt0}ea(I-exp{Qr}) f exp{Qt}dG(t)j . (6) 

Also, the expected amount of electrical power consumption during one cycle is given by 

a(t0) = / {Pi(t + 1///)} exp(T£)Acfe 
Jo 

/»oo 

+ / {Fito + PIT + PJn} exp(Tt)Xdt 
Jt0 

=(P2r + Pi//i)e - {P2TI + PiT'1} [ ° exp(Tt)Xdt. (7) 
Jo 

On the other hand, since the system processes just one task in one cycle, the mean length 

of available time during one cycle is easily given by 

7(«b) = (l//u)e. (8) 
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Prom Equations (6), (7) and (8) and Proposition 2.1, we can formulate the power 

effectiveness. Then the problem is to find the optimal shutdown policy t*Q which maximizes 

the power effectiveness. 

2.3 Optimal shutdown policies 

Consider the case where requests arrive at the system according to the homogeneous 

Poisson process with rate A (> 0). The phase-type distribution on the inter-arrival time 

is reduced to the exponential distribution, i.e., 

T=-X and a = 1. (9) 

Then, the power effectiveness is explicitly given by 

7(*o) 
a{t0) 

W(t0) = 454- (10) 

where 

7(*o) = 1/M (11) 

and 

/ •So 

a{t0) = P2r + Pi/fJ. - {P2r - Pi/X) / Xexp{-Xt}dt. 
Jo 

(12) 

Theorem 2.1. Case (i): If P2/P1 < 1 / (AT) , the optimal shutdown policy is t^ = 0 and 

"W-TiFffl- <13) 

Case (ii): If P2/P\ > l / (Ar) , then t*0 ->• 00 and 

W ^ = PWT7Y (14) 

where p = X/ji. 



518 

I *5 ~ ° 1 — * o -* ° ° .. P2/P\ 

AT 

Figure 3: The optimal shutdown policy for the single-user operating system in the Poisson 
arrival case. 

Figure 3 summarizes Theorem 2.1. The optimal shutdown policy in the case of the Poisson 

arrival is zero or infinity. That is, the simple on-off switching policy is optimal. In partic­

ular, it is remarkable that l / (Ar) directly affects the optimal shutdown policy. Further, 

Pij and P\/\ indicate the respective total amounts of the electrical power consumption 

in the delay time and the sojourn time of the idle state. Theorem 2.1 means that the 

optimal policy is to compare the overhead power consumption for the sleep, P2T, with the 

useless electrical power consumption for the idle, P\/\. This may be an intuitive result 

and be valid in the physical meaning. 

Next, we investigate the condition on which the optimal shutdown policy exists in the 

general arrival case. Since the power effectiveness converges to a constant as t0 —»• 00, the 

result on the existence of the optimal shutdown policy can be obtained as follows. 

T h e o r e m 2.2. There exists a finite optimal shutdown pohcy which maximizes W(t0), if 

and only if there exists a finite t 6 [0,00) satisfying 

n(t){P2Tl + P1T~1} exp(T4)e < P1{TT(OO) - i r ^ X - T ^ e . (15) 

Coro l la ry 2 . 1 . If 

P2r < P ^ o o X - T ^ e , (16) 

there exists a finite optimal shutdown policy ij £ [0,00) maximizing W(t0). 
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Proof of Theorem 2.2 and Corollary 2.1: 

There exists a finite optimal shutdown policy, if and only if there exists a finite t 

satisfying 

W{t) > W(oo). (17) 

Inequality (17) is reduced to 

Tv(t){P2Tl + A T " 1 } exp(Ti)e < PI{TT(OO) - Tz{t)}{-T)-le. (18) 

Corollary 2.1 can be given by putting t = 0 in Equation (18). The proof is completed. • 

Corollary 2.1 is the sufficient condition on which there exists a finite optimal shutdown 

policy. Since 7r(oo)(—T)_1e means the expected inter-arrival time, it is obvious that 

Corollary 2.1 is related to Theorem 2.1. 

3 Multi-tasking Operating System 

In this section, we discuss a stochastic shutdown model for a multi-tasking operating 

system based on the dynamic power management. Since the present operating systems 

such as WindowsOS, UNIX, etc. provide the multi-tasking processing circumstance, the 

model proposed here will be useful in many practical applications. 

3.1 Model Description 

Consider a multi-tasking operating system. Unlike the single-user operating system, the 

multi-tasking operating system can receive and process all the arrival requests in the busy 

state. Thus, Assumption D in the single-user operating system has to be modified in the 

following; 
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Assumption D': When the system is in the busy state, the tasks requested by arrivals 

are stored in the buffer and then the system processes them under the first-come 

first-serve discipline. 

The same notation as the single-user operating system is used. The dynamics of the 

multi-tasking operating system is summarized as follows. The inter-arrival time distribu­

tion is the phase-type distribution with parameters a and T . All the arrival requests are 

stored in the buffer. The processing time Sk will be needed to process the A;-th task. The 

processing time has an absolutely continuous probability distribution function G(t) with 

finite mean 1/// (> 0) and variance a\ (> 0). The arrival request during the processing 

time period is also stored in the buffer. If there is no task in the buffer, that is, the system 

completes processing all the tasks stored in the buffer, the system goes to the idle state. 

In the idle state, the behavior of the system is same as that in the single-user operating 

system. If the amount of sojourn time in the idle state reaches a threshold level to before 

a request arrives, the system goes to the sleep state at that time. Otherwise, the system 

begins processing the task requested at the occurrence of the arrival request. In the sleep 

state, if an arrival request occurs, the system wakes up and goes to the busy state. The 

delay time r is needed to go to the busy state. The arrival requests during the delay time 

period are stored in the buffer. Figure 4 depicts the possible behavior of the multi-tasking 

operating system. The amount of electrical power consumption per unit time in both the 

busy and the idle states is P\. The amount of the wake up power consumption per unit 

time during the delay time period is P?. The amount of electrical power consumption in 

the sleep state is assumed to be zero for convenience. 
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Figure 4: Possible realization of the multi-tasking operating system with shutdown. 

3.2 Matrix-geometric analysis 

The matrix-geometric analysis [14, 15] is a powerful tool to analyze the M/G/l type 

queueing system. Before formulating of the power effectiveness criterion, we describe 

the matrix-geometric analysis and some results being needed to formulate the power 

effectiveness. 

Let us define a transition probability: 

P y (n, t) = Pi{Nt = n,Jt= j\N0 = 0, J0 = *} (19) 

and matrix P(n,t) whose (i, j)-element is Pij(n,t). The following Chapman-Kolmogorov 

forward equation holds 

dt 
P(n, t) = P(n, t)T + P(n - 1, t)Xa, 

P(0,0) = I, 

P ( - l , 0 = O, (20) 

where O is a zero matrix. Thus, the matrix generating function P*(z,t) is expressed in 
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the following form: 

p*(z, t) = J T P(n, t)zn = exp {(T + zAa)i} . (21) 
n=0 

Since the behavior of both the number of arrival requests Nt and the phase Jt forms 

an embedded Markov chain at the completion point of a task, its transition probability 

matrix can be given by 

BQ B\ B-i 
A0 A1 A2 

O A0 At 
O O A0 

(22) 

where An and Bn are m x m matrices with respective elements [An]ij and [£?„]„. The 

element [A„]ij is the conditional probabihty that the phase changes from i to j , provided 

that n arrival requests occur during processing time period for a task. On the other 

hand, the element [Bn]ij is the conditional probability that the phase changes from i to j , 

provided that n arrival requests occur for the period from the beginning of the idle period 

to the next completion point of a task. Thus, it is easy to obtain 

/ » 0 0 

An= / P(n,t)dG(t) 
Jo 

(23) 

and 

/•*o 

Bn= exp(Ti)AdiaA n 
Jo 

exp{Tt)\dta ^ P(k, r)An^k. 
J fc=0 

Taking z-transform of Equations (23) and (24), we have 

A*(z) = Y]Anz
n= j exp{(T + z\a)t}dG{t) 

„_n Jo 

(24) 

(25) 
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and 
oo 

B*(z-t0)=Y,B»zn 

n=0 

= ( / exp(Tt)Xdta+ / exp(Ti)Adia exp{(T + zAa) r} j A*(z). (26) 

Consider the fundamental probability matrix G. The element indicates the probability 

that the phase changes from i to j while the number of requests decreases to n from n+1. 

This time period is called the fundamental period. It is found that the fundamental period 

corresponds to the busy period in the ordinary M/G/l type queueing system without 

vacation. Further, we define an m x m matrix K(t0) which is a transition probability 

from % to j at time point when the number of requests is 0. For the fundamental matrix, 

the following equation holds (see Lucantoni, Meier-Hellstern and Neuts [11]): 

oo 

G = Y.A--Gn- (27) 
71=0 

Equation (27) can be reduced to 

/ • o o 

G = / exp{{T + XaG)t}dG{t), (28) 
Jo 

and therefore we obtain 
oo 

K ( t 0 ) = ^ B „ G " 
n=0 

= I / exp(Tt)\dta+ / exp(T£)Ad£aexp{(T + A o G ) r } ] G. (29) 

The computation algorithm for the matrix G was proposed by Lucantoni and Ramaswami [12]. 

They introduced the computation algorithm for the fundamental matrix G as follows. 

Computat ion of the fundamental matrix [12]: 

The matrix G is efficiently computed by the following recursive scheme. First, start 

with Go = O. Next, for k = 0,1,2, • • •, compute 

^ ^ [ I + r ' t T + A a G O l H ^ , n = 0 , l , 2 , - - - , (30) 
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rfc+i y^j„Hnik, (3i) 

where H0,o = I, 6 is the maximum value among the absolute values of the diagonal 

elements of T and 

7n = J°° exp{-(>t}^fdG(t). (32) 

It can be proved that the sequence Gk converges to G monotonically. 

Let ng denote the expected number of tasks being processed during the fundamental 

period. It is easily found that 

oo fc—1 

ng = e + ^2AkJ2G'ng. (33) 

We also define the probability vector g satisfying 

gG = g, ge = l. (34) 

Using the probability vector g and the relationship; 

ll-^2AkY/G
l\{I-G + eg} = I-A*(l) + (e-v)g, (35) 

t &=i ;=o J 

the expected number of tasks being processed during the fundamental period is given by 

ng = {I-G + eg] {I - A*(l) + (e - v)g}~1 e, (36) 

where v is the number of transitions of the phase, i. e. 

(37) 

3.3 Formulation of Power Effectiveness 

" - ^ • ( " 

Z-+1 

The power effectiveness can be defined as Equation (2) and is derived by Proposition 2.1. 

Thus, in the similar way to the single-user operating system, the power effectiveness is 
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formulated as the ratio of the mean length of available time during one cycle to the ex­

pected amount of electrical power consumption during one cycle. Since the (i, j)-element 

of the matrix K(to) represents the probability that the phase transfers from i to j at the 

time point when the number of requests becomes zero, the stationary probability vector 

is given by 

7r(t0) = ir{t0)K(t0), 7r(i0)e = 1. (38) 

From Equation (38), we have 

7r(t0) = aG(i + exp(Tt0)ea [I - exp{(T + AaG)r}] G) . (39) 

Denoting the expected number of tasks being processed during one cycle by nc(t0), the 

mean length of available time during one cycle is given by 

7(*o) = (l//i)ne(t0). (40) 

From the conservation law in the queueing theory [7], it follows that 

T(to)/3(to) P ' [ ' 

where p = a(—T)~le/fj, is the traffic intensity and /3(to) is the mean length of one cycle. 

The mean length of one cycle can be expressed in the following form: 

/ • to 

/3(*0) = / exp(Tt)A (t + {l/n)ang) dt 
Jo 

-oo / <x k \ 

+ / exp(Ti)A I t + r + (l/fi)a J^ P(k, r) J ] Glng dt 
J*0 \ fc=0 !=0 / 

= { ( -T ) - 1 + rl}e + (l/n)nc(to) - r f ° exp(Tt)\dt. (42) 
Jo 

Equation (41) yields 

T(to)j8(to) = yz~ {^(<o)(-T)-1e + r - r7r(i0) f ° exp(Tt)Xdt\ (43) 
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Thus, the mean length of available time during one cycle can be derived as follows. 

w(*oh(*o) = /"r(*o)/3(io) 

= j£— J7r(io)(-T)-1e + T - TTr(io) / ° exp(Ti)A^| . (44) 

Similarly, the expected amount of electrical power consumption during one cycle is given 

by 

/ • to 

a(t0) = / exp(Ti)A {Pxt + Pi(l//i)an s) dt 
Jo 

exp(T*)A Pi to + P2T + Pi(l/iJ,)a ] T P(k, r) ^ Glng 1 dt 
J V fc=o i=o / 

= P2re + P1(l/Ai)nc(t0) - {P2rJ + PjT"1} / ° exp{Tt)Xdt. (45) 

Using the traffic intensity p, Equation (45) becomes 

7r(i0)«(to) = j ^ - | {pPi + (1 - p)P2}r + /9P17r(t0)(-T)-1e 

-» ( to ) ({pA + ( l - p ) f t } r J 

+ (1 - p )P iT-^ / ° exp(Tt)Xdt I. (46) 

The power effectiveness can be obtained by Equations (44) and (46). The problem is then 

to find the optimal shutdown policy ij maximizing the power effectiveness. 

3.4 Optimal shutdown policies 

Consider the homogeneous Poisson arrival process with the rate A (> 0). Since the phase-

type distribution for the inter-arrival time has the following parameters; 

T = -A and a = 1, (47) 

the power effectiveness is given by 

" W = Zfg. (48) 
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where 

and 

y(*o) = r ^ { l / A + r e x p { - A t } } (49) 

a(tQ) = j ^ - l A / A + {pA + (1 - p)P2}r exp{-Ai0} 

- (1/A - l/ti)P1 exp{-At0} } . (50) 

Theorem 3.1. Suppose that p < 1. 

Case (i): If P2/P1 < 1 + 1 / ( A T ) , the optimal shutdown policy is £Q = 0 and 

'"'-V^wXfWK (51) 

Case (ii): If P2/Pi < 1 + l / (Ar) , then t*0 ->• 00 and 

W(oo) = | - . (52) 
n 

The proof of Theorem 3.1 is omitted. Figure 5 depicts the above result. Similar to the 

result on the single-user operating system, the optimal shutdown policy is zero or infinity. 

That is, the simple on-off switching policy for the multi-tasking operating system is also 

optimal in the Poisson arrival case. It is seen that the optimal shutdown policy for the 

multi-tasking operating system is more hkely to be zero than that for the single-user 

operating system. 

We also consider the optimal shutdown policy in the general arrival case. Since the 

power effectiveness converges to a constant as t0 —>• 00, we can derive the condition on 

which a finite optimal shutdown policy exists. 
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| *o = ° | t^-too ^ p2/p1 

Figure 5: Optimal shutdown policy for the multi-tasking operating system in the Poisson 
arrival case. 

Theorem 3.2. There exists a finite optimal shutdown policy which maximizes W(t0), if 

and only if there exits a finite t € [0, oo) satisfying 

7r(i){(P2 - P1)TI + A T - 1 } exp(Tt)e < 0. (53) 

Corollary 3 .1 . If 

(P2 - PI)T < Piivm-Ty'e, (54) 

there exists a finite optimal shutdown policy t^ € [0, oo) maximizing W(to). 

Since the proofs of Theorem 3.2 and Corollary 3.1 are quite similar to those of Theorem 

2.2 and Corollary 2.1, we omit to show them. Corollary 3.1 is the sufficient condition on 

which a finite optimal shutdown policy exists. Comparing Corollary 3.1 with Corollary 

2.1, it can be found that both results depends on the useless electrica1 power consumption 

on the idle state, that is, 

Pi x (the mean length of sojourn time in the idle state), (55) 

and the overhead power consumption on the sleep state. However, it should be noted that 

sufficient conditions to exist a finite optimal shutdown policy in both cases are different. 

From Corollary 2.1 and Corollary 3.1, since (P2 - PI)T is strictly smaller that P2T, the 

optimal shutdown policy in the multi-tasking operating system is generally shorter than 

that in the single-user operating system. 
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4 A Numerical Example 

In this section, we investigate the performance of the dynamic power management through 

a numerical example. Suppose that the inter-arrival time obeys the 2-hyperexponential 

distribution, where 

a=[p l-p], (56) 

-Ax 0 
0 -A 2 

(57) 

When the hyperexponential distribution is used to the inter-arrival distribution, the arrival 

process consists of the Poisson processes with two kinds of arrival rates. Using the above 

notation, Ai and A2 are the respective arrival rates and p is a ratio of the occurrence 

for two kinds of arrival patterns. This stochastic process can be characterized by burst 

and dormant arrivals. The processing time distribution is assumed to be the exponential 

distribution with mean 1.0, where 

Ai = 1.0,... ,5.0, A2 = 0.1, p = 0.9, 
Pi = 1.0, P2 = 5.0, T = 0 . 5 . 

Table 2 presents the optimal shutdown policies in the single-user operating system 

when Ai varies from 1.0 to 5.0. Similarly, Table 3 presents the optimal shutdown policies 

in the multi-tasking operating system with Ai = 1.0,... , 5.0. The columns in both tables 

consist of the traffic intensity (p), the coefficient variance of the inter-arrival time (CV), the 

optimal shutdown policy (optimal), the associated maximum power effectiveness (max-

pefE) and the efficiency of the optimal policy (efficiency), where the efficiency is defined 

by 

. „, . (the maximum power effectiveness) „„„ ,m. ._„. 
(efficiency) = •—— —:—*- : p r x 100 (%). (58) 

(the power effectiveness without shutdown) 
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Table 2: Dependence of the optimal shutdown schedule on the arrival stream in the 
single-user operation system. 

Ai 
1.0 
2.0 
3.0 
4.0 
5.0 

p CV 
0.53 1.42 
0.69 1.97 
0.77 2.23 
0.82 2.39 
0.85 2.49 

optimal max-peff 
2.59 0.377 
1.53 0.429 
1.07 0.432 
0.81 0.423 
0.66 0.410 

efficiency 
32.4% 
59.2% 
77.9% 
91.2% 
100.9% 

Table 3: Dependence of the optimal shutdown schedule on the arrival stream in the 
multi-tasking operation system. 

Ai 
1.0 
2.0 
3.0 
4.0 
5.0 

p CV 
0.53 1.42 
0.69 1.97 
0.77 2.23 
0.82 2.39 
0.85 2.49 

optimal max-peff 
1.05 0.691 
0.13 0.878 
0.00 0.926 
0.00 0.947 
0.00 0.958 

efficiency 
31.3% 
27.3% 
20.4% 
16.0% 
13.0% 

From Tables 2 and 3, it can be seen that the optimal shutdown policy in the single-user 

operating system is always longer than that in the multi-tasking operating system. This 

result is same as the conclusions in Corollary 2.1 and Corollary 3.1. Also, the efficiency 

by application of the shutdown function tends to be higher in the case of the single-user 

operating system. In addition, as the coefficient variance of the inter-arrival time is larger, 

the shutdown function becomes more effective. On the other hand, in the multi-tasking 

operating system, the efficiency decreases gradually as the coefficient variance is larger. 

5 Concluding Remarks 

In this paper, we have considered the stochastic shutdown model for the dynamic power 

management. The underlying stochastic process has been modeled by the arrival process 

with the phase-type distribution. In both single-user and multi-tasking operating sys­

tems, the optimal shutdown policies have been considered under the power effectiveness 

criterion. In the Poisson arrival case, it has been shown that the optimal policies are the 
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simple on-off shutdown policies. In the general arrival case, the existence of a finite opti­

mal shutdown policy has been proved. Finally, we have calculated the shutdown policies 

numerically and performed the sensitivity analysis of model parameters. 

A Appendix: Proof of Proposition 2.1 

Define the following random variables; 

T(t0): the length of one cycle, 

Ct(to)- the instantaneous amount of electrical power consumption at time t. 

Consider the following expected value concerning with the electrical power consumption; 

i ;(r;t0) = E[jr e-rtCt{t0)dt J0 = i (59) 

where Jt is the phase process at time t. Note that Equation (59) is the Laplace transform 

of E[Ct(to)\Jo = i] with respect to t. By using T(to), the expected value £i(r; t0) is reduced 

to the form; 

6(r; t0) = E I I e-TtCt(to)dt\ J0 = il 

Co) . r°° 

J0 = i 
JT(U>) 

fT(to) 

Jo e-rtCt(t0)dt + JTt e-rtCt{t0)dt 

/ e-rta(to)ctt 
Jo 

Jo = i 

+EE 
J = I 

= E 

e-'™x(Jr{t0)=j) 

E [ y ° ° e - r t Q ( t o ) ^ Mo) =3 

rT(t0) 
/ e-rtCt(t0)dt J0 = i 

Jo 

Jo = i 

+ J ] E [e-rT{to)x(JT(to) = j)\ Jo = i] e,-(r;*o), (60) 
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where Ct*(£o) = Ct+T(t0){to) and x(^) is the indicator function for an event A, which is 

defined by 

xM 
f 0 w <£ A, 

~~ \ 1 w € A 
(61) 

From the Markov property, it is easily found that the stochastic processes Ct* and Ct have 

the same distribution, so that 

/ e-rtCt{t0)dt J0 = i = E / e-TtC*t{t{ 
Jo J L Jo 

d)dt Jo (62) 

Now, define the joint density function of the length of one cycle and the phase at the end 

of one cycle, i.e. for i = 1,.. . , m and j = 1, . . . , m , 

Pijit; t0) = Pr{T(t0) £ dt, JT(to) = j\JQ = i}. (63) 

Taking Laplace transform of Pij(t;to), we have 

p£(r;to) = ne-^xiMt^Jo = »]. (64) 

Let T*(r;t0) denote a matrix whose (i, j)-element is p*-(r;<o)- F°r the electrical power 

consumption, we define gjj(z,t;£o) as the joint density function of the instantaneous elec­

trical power consumption during one cycle and the phase at the end of one cycle, i.e., 

qij(x,t;t0) = Pr{C4(t0) G x, T(t0) > t, JT{to) = j\J0 = i}. 

Also, C*(r;t0) denotes a matrix whose (z,j)-element is q*j(r;t0) which is given by 

/•r(*o) 

(65) 

«y(r;*o)=E / e-TtC{t;to)dtx{Jnta)=i) 
Jo 

Jo = i (66) 

By using the column vector £{r;to) with its i-th. element £i(r;t0), we have 

£(r; t0) = C*(r; t0)e + T*{r; t0)${r; t0). (67) 
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Here, we attempt to derive the stationary electrical power consumption from Equation 

(67). Let 7r(r;io) be the left eigenvector of T*(r;£o), with the maximum eigenvalue 

sp(T*(r;i0))- Multiplying Equation (67) by 7r(r;t0), it is seen that 

* ( r ; to)S{r; t0) = 7r(r; t0)C*{r; tQ)e + sp(T*(r; t0))ff(r; to)£(r; t0). (68) 

We therefore obtain 

{1 - sp(T*(r; to))}w(r; t0)£(r; t0) = 7r(r; tQ)C*(r; t0)e. (69) 

Taking r ^ O i n Equation (69) and using the well-known Tauberian theorem [5], it can be 

obtained that linv^o rir(r; to)£(r; to) converges to the expected electrical power consumed 

per unit time in the steady state. Since sp(T*(r; to)) converges to unity as r —¥ 0, we have 

r - ^ l - sp (T*( r ; to ) )} ^ - l i m - f sp(T*(r; i0)) . (70) 
>—>o ar 

Taking account of iz(r;to)T*{r;to) = sp(T*(r;0))7r(r;io), it can be seen that 

lim ^-sp(T*(r; t0)) = TT(0; t0) lim ^-T*(r; 0)e. (71) 
r->o ar i—>o ar 

Consequently, the expected electrical power consumed per unit time in the steady state 

V{t0) is given by 

y(io)=limr-7r(r ; i0)£(r ; to) 

r—J-0 

= 7r(0;t0)C*(0;t0)e 

-7r(0; to) l im 7 .^ 0 | :T*(r ; to)e ' 

It is obvious that the denominator and numerator in Equation (72) are the expected 

amount of electrical power consumption during one cycle and the mean length of one 

cycle in the steady state, respectively. Also, 7r(0; t0) represents the stationary probability 

vector at the beginning of one cycle in the steady state. Thus, the following result can be 
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derived; 

V(to) = 
ir(t0)a(t0) (73) 
w(*b)/30o)' 

where /3(£0) is the mean length of one cycle. 

Next, we consider the power effectiveness. From the definition of power effectiveness, 

we have 

W(t0) = lim 
t—>oo 

E[ the total length of available time in [0, t) 

t 
(74) 

E[ the total amount of electrical power consumed in [0, t)} 

Since the second term in Equation (74) is equivalent to the inverse of the stationary 

electrical power consumption, we obtain 

t->-oo E[ the total amount of electrical power consumed in [0, t) ] V(to) 

Therefore, we focus on the proof of the following equation; 

E[ the total length of available time in [0,i) ] 7r(*o)'7(*o) 

& 1 = Mtm*) • (76) 

Let At(tQ) denotes the instantaneous available rate at time t. Also, let i/>(r;to) be a 

column vector whose i-th element is 

V>i(r; t0)=E / e- r t i4t(t0)A J0 = i (77) 

and A*(r;t0) is a matrix whose (i, j)-element is 

rT(to 
7*-(r;to) = E 

/•J Vol 

/ e-rtAt(t0)dtX(JT(to) = j) 
Jo 

J0 = i (78) 

Similar to the previous discussion in this appendix, the vector ip(r; t0) can be formulated 

as 

tf (r; to) = A*{r; t0)e + T*(r; t0)4,{r; t0). (79) 
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Using the left eigenvector 7r(r; to) of T*(r; to), we have 

E[ the total length of available time in [0, t) 
lim 
t->oo t 

= \imrir(r;t0)ip(r;t0) 
r->0 

7r(0;i0)^*(0;io)e 
(80) 

-ff(0;io)limr-tf£r*(r;to)e' 

It is clear that the denominator and numerator in Equation (80) are the mean length 

of available time during one cycle and the mean length of one cycle, respectively. Also, 

7r(0; to) represents the stationary probability vector at the beginning of one cycle in the 

steady state. Thus, the proof is completed. • 
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Exercises: 

1. Let X be an inter-arrival time following the phase-type distribution with parameters 

a and T. Derive the first two moments, i.e. E[X] and Epf2]. 

2. Prove Theorem 2.1. 

3. Consider an ordinary M/G/l queueing system. Let £ denote the time length of a 

busy period. Show 

J
/»oo 

' exp{-At(l-E[exp{-SC})]}dG(t), (81) 
o 

where A and G(-) are the arrival rate and the service distribution, respectively. 
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4. Derive the expected time length of a busy period in the ordinary M/G/l queueing 

system (Hint: use the result of Exercise 3). 

5. Consider an ordinary PH/G/1 queueing system. Given the fundamental matrix G, 

derive the probability vector, n, for the phase at the end of a busy period and the 

distribution function for the length of an idle period. 
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Local Search heuristics For Combinatorial Optimization Problems 
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Abstract 

Over the years combinatorial optimization problems have become of considerable 
importance and have been studied in literature extensively. In this chapter we describe a 
unified structure for such problems and concentrate on local solutions with respect to a 
given neighborhood. Such problems can be structured as search problems on hypercubes. 

Key words : Combinatorial Optimization, Local Search , Heuristics 

1.0 Combinatorial Optimization Problems 

Optimization problems can be divided into two major categories: 

(1) Problems whose solution consist of a set of continuos variables. 

(2) Problems whose solution consist of a set of discrete variables. 

Problems in the second category are generally referred to as combinatorial optimization 

problems. Typically in these problems, we are selecting a combination of objects from 

the set of finite or possibly countable infinite objects. Examples of such set of objects are, 

integers, permutations, sequences, vertices of graphs etc. Linear Programming is a 

problem, which can be viewed both as continuos or discrete optimization problem and 

hence forms a natural bridge between two categories of problems. Generally by 

identifying a suitable set of inequalities, it is possible to structure combinatorial 

optimization problems as linear programming problem. However such transformation 

may require adding a very large number of inequalities, and may not be amenable to 

solution in a reasonable time. 
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Over the years a very large number of applications have been identified which give rise 

to combinatorial optimization problems. Some such examples are: Knapsack, 

Assignment, Travelling Salesman, Graph Coloring, Vehicle Routing, Sequencing and 

Scheduling problems. 

Definition: 

An instance of an optimization problem is a pair (S, C) where S is any set, the domain 

of feasible solutions; C is the cost function, a mapping C: S - R. 

Problem is to select a fe S s.t, C(f ) <C (y) for any ye S 

Such a solution f is called a globally optimized solution to the given instance of the 

problem. 

An optimization problem is a set of instances of optimization problem with 

common structure of (S,C). Each specific instance of such a problem can be identified by 

specifying as input, all the data needed to distinguish this instance from all others . 

However for most of the real life problems , it is not possible to list all the members 

of the set S explicitly, as there are large number of members in set S . For example in a 

travelling salesman problem (TSP) on n cities there are n! such members. Another 

representation of such problems will be through a set of object F and a constraint set G. 

In this representation a subset of F is a feasible solution (i.e. member of S), if it satisfies 

the constraints in G. For example for TSP, let F = {ai, a2,...., an}, be the list of the cities. 

G consist of constraint that only those subsets of F, which form a tour are feasible. The 

feasible tours are evaluated using an evaluation function C: f -»R for all f which are 

feasible. 
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Thus we can also consider structure (F, G , C) for defining combinatorial optimization 

problems. 

1.1 Some examples of Combinatorial Optimization Problems 

Knapsack Problem: 

Let there be a set of n objects. Let the weight of ith object be WJ and its value c,. 

Problem is to select a subset of objects of maximum value s.t. the weight of selected 

objects is less than or equal to a given weight W. For this problem , 

Let F = {ai_ a2;... a„} be a set of objects , fa subset of S 

G = { Z WJ < W } Constraint set 
a i e f 

3 i € f 

Where Wj and Cj are weight and value of the object aj 

Travelling Salesman problem: 

Given a set of n vertices (cities) ui, U2, ••• un and distance dij between city ui and u, 

problem is to identify a sequence (a cycle) of minimum distance such that each vertex 

(city) is visited exactly once. 

Here F = {ui,ii2, ••• un} 

G = { sequence is a tour} 

C(f) ={Z ay _ s.t. Ui, uj are two consecutive cities in the sequence f} 
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Set Covering Problem 

F is a set of objects. Let P be a set of subsets of F. Problem is to select a subset of F 

s.t. all subsets in P are covered and cardinality of selected subset is minimum. 

Here F= { Xi_X2, ... xn } 

G = { subset of F which covers all subset in P} 

C(f) = |f| 

Sequencing Problem: 

Let n jobs are required to be completed on a single machine, pi is the process time 

and dj the duedate of the job i. Problem is to identify a sequence which maximizes 

(minimizes) a given function of completion times of the jobs. 

Here F = {J1; J2>... Jn} 

G = {Sequence of J^ J2, ... Jn s.t. each job appears only once in the 

sequence} 

C(f) = Function of completion times of the jobs, where completion time of 

the job J; is Cj. 

Some such function are: 

C(f)= SciWi 

C(f)= I Wj max ( Ci-di,0) 

Vehicle Routing Problem 

Let F be a set of n objects (load), with weight Wj of the ith object. These objects are 

to be loaded in k vehicles, such that load in each vehicle is less than or equal to its 

capacity. Each load is to be delivered to a specified location. Problem is to assign loads 
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to the vehicles, such that the total cost of all the k tours( each vehicle will start from a 

center point and will come back to this point after delivering loads) is minimized. 

Hence F = {xi, X2,... xn} List of loads 

G = { If a collection of k subtours is such that , the weight assigned to 

each of the vehicles is less than or equal to its capacity}. 

C (f)= cost of the k tours 

There are many other problems which give rise to similar structure. These problems can 

be further classified in to three categories as follows: 

(A) Problems of subset selection : 

Consider a set of object F = iai, &2, ...an r and a function C ( evaluation function) 

which maps subset of F into R. Problem is to select the subset f of F , which satisfies a 

given set of constraints G and has the best possible value (Maximum or minimum) of 

C(f) among all such subsets. 

Examples of such problems are , Knapsack , Set Covering, Set Packing , Graph 

Coloring, etc. 

(B) Path and Cycle Problems 

Given a set .of objects, paths are defined as a sequence of objects. If a path starts 

and ends with the same object, it is called a cycle. Let G be the set of constraints which 

determines the feasibility of each such sequence for a problem and C a mapping which 

maps each feasible such sequence f into C(f) (value of the sequence).Problem is to 

select ,a feasible sequence f, which maximize(minimizes) the value of C(f). 

Examples are Travelling Salesmen , Sequencing , Vehicle Routing problems. 
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(C) Combination Problems 

Problems such as Transportation , Assignment, Max-flow, Minimum Cost-flow are 

examples of the problems which can be viewed as problems of identifying best 

( minimum or maximum value) subset of sequences (path, cycles) defined over a set F 

and satisfying constraints in G . 

This categorization is not extensive, as the problems on cycles/paths can also be 

structured as problem of selection of subset. In fact all such problems can be visualized as 

optimization problems over hypercubes of suitable dimensions. For example, n toy 

BCnapsack Problem can be visualized as optimization problem over a n-dimensional hyper 

cube. Similarly n city symmetric Travelling Salesman Problem can be visualized as 

optimization problem over n (n-l)/2 dimensional hypercube. 

1.2 A combinatorial optimization problem is three problems: 

As stated earlier we can consider (F, G, C) to define a combinatorial optimization 

problem. With this notation combinatorial optimization problems can be viewed as the 

sequence of following three problems: 

Given F, G and C, and an integer L, 

(PI) Is there a feasible solution f s.t. C (f) < L ? (Feasibility problem) 

(P2) Find the cost of the best (optimization ) solution (Evaluation Problem) 

(P3) Find f such that C (f) > C(y) for all y eF. (Optimization Problem) 

For most of the combinatorial optimization problems, it is not difficult to get an upper 

bound on C(f). In that case P2 can be solved using PI iteratively by changing value of 

L. Further P3 can be solved using answer to P2 and then solving PI with this value for L. 
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Thus one can define a sequence of these problems as PI -» P2 ->• P3; where P3 is most 

difficult to solve. 

1.3 Complexity of Problems 

Combinatorial optimization problems are generally solved by iterative procedures 

referred to as algorithm. An algorithm takes as input specific data, required to specify an 

instance of the optimization problem, operates a set of instructions and come to halt after 

a finite number of execution of such instructions , giving an output. For example the 

input for the travelling salesman problem will be number of cities , and distances between 

all pair of cities. Similarly for knapsack problem the input will be number of toys , 

weight and value for each toy. 

Generally algorithms are developed to solve a set of instances of combinatorial 

optimization problem (all instances, with similar structure of (F , G, C)). 

Let p be a specific instance of the problem under consideration, and let Ip be the 

input string required to code this instance for the algorithm A. Let m be the length of this 

input string. Then m denotes size of the problem. It may be noted that the length of input 

will depend on the method for coding. Let t (Ip) be the computational time required for 

solving this problem instance p using algorithm A. If H(m) is a function such that, 

t (Ip) < H(m) for all instances of size m for this problem, then H(m) is an upper 

bound on the computational times of all instances of the problem with input size m using 

algorithm A. If H(m) can be bounded by a polynomial function of m ,p(m) for all 

m> k ( a fixed constant), then this algorithm is considered polynomial time efficient. 
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A combinatorial optimization problem is considered polynomial time solvable if 

there exist a polynomial time algorithm to solve the problem. Only a few combinatorial 

optimization problems are known to be in this category. Examples are, Assignment, 

Matching , Chinese Postman , Shortest Path , Minimum Spanning Tree problem etc. 

However, for most of the combinatorial optimization problems, no such polynomial 

time algorithm is known to exist. In theory of complexity, problems for which a 

polynomial time algorithm exists are classified in class P. For almost all of the problems 

which are not known to belong to this class, it can be shown that the recognition version 

(feasibility problem Pl)of the problem belongs to the class NPC. This class has the 

property, that if any of the problem in the class can be solved by a polynomial time 

algorithm, then all the problems in this class can be solved in polynomial time. Generally 

any algorithm for solving the optimization version P3 of the problems in NPC can be 

shown to have worst case computational bound which grows as exponential function of 

the size of the problem. As for these problems finding global optimal solution is 

computationally time consuming (except for small size problems ) methods are 

developed which can provide a reasonably good solution in a reasonable computational 

time even for large size problems. Such methods are called Heuristics. 

2.0 Heuristics to solve Combinatorial Optimization Problem: 

A large number of problem specific heuristics have been proposed in the past for 

various problems. The literature distinguishes two broad classes of heuristic algorithms : 

Constructive and Local search algorithms. In this chapter we shall concentrate on Local 

Search heuristics. 
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2.1 Local Search Heuristics: 

To construct a local search heuristic for an optimization problem ,one superimposes 

a neighborhood structure on the solutions. That is, one specifies for each solution a set of 

neighboring solutions. The heuristics starts from an initial solution, and from then on it 

keeps on moving to a better neighbor as long as there is one. If there is no such neighbor 

it terminates at a locally optimal solution i.e. a solution which does not have a better 

neighbor. 

The local search in combinatorial optimization has been extensively used since late 

fifties and early sixties. 

2.2 Definitions 

The use of local search algorithms presupposes definitions of a problem and a 

neighborhood. In this section we shall use the definition of the optimization problem as 

structure ( S, C ) . 

The problem is to find a globally optimal (minimal) solution, i.e., an i* e S such 

that 

C( i* )< C(y) y e S 

Furthermore C = C (i ) 

denotes the optimal cost, and 

S* = { i e S C (i )= C* } 

denotes the set of optimal solutions (Aarts & Lenstra [1]). 

It is important to distinguish between a problem and an instance of a problem. 

Informally, in an instance of a problem we are given the "input data" and have enough 

information to obtain a solution; a problem is a collection of instances, which usually are 

generated in a similar a fashion. 
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Definition I Neighborhoods : 

Let (S,C) be an instance of a combinatorial optimization problem. A 

neighborhood function is a mapping 

N : S ^ 2 * 

which defines for each solution i e S a set N (i) c S of solutions that are in 

some sense close to i. The set N (i) is the neighborhood of solution i and each j e N(i) is 

a neighbor of i. It is assumed that i e N(i), for all i E S (Aarts & Lenstra [1]). 

Definition II Local Optimality : 

Let (S,C) be an instance of a combinatorial optimization problem and let N be a 

neighborhood function. A solution i e S is locally optimal (minimal) with respect to 

N, 

if C( i) < C(j) for all j e N( i ). 

We denote the set of locally optimal solutions by S (Aarts & Lenstra [1]). 

Definition III Exact Neighborhoods 

Let (S, Q be an instance of a combinatorial optimization problem and let N be a 

neighborhood function. N is exact if S cz S (Aarts & Lenstra [1]). In other words the 

neighborhood N is said to be exact if, whenever f is locally optimal with respect to N, it is 

also globally optimal. 

After defining the neighborhoods the next section discusses the various types of 

neighborhoods. 
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2.2 Neighborhoods 

Neighborhoods depend on the problem under consideration, and finding efficient 

neighborhood functions that lead to high quality local optima can be viewed as one of the 

challenges of local search. Discrete neighborhoods must be large enough to include some 

discrete variants of the current solution and small enough to be surveyed within 

reasonable computation times. A class of more intricate neighborhood functions are 

described next. 

• Unit Neighborhood : for a given solution xk , the unit neighborhood about xk is 

the one formed by complementing components of x one at a time, i.e. , 

N,(xk) = {binary x: J \ | X j - x k j | = l} . (Parker [21]). 

• t - Change Neighborhood. The t -change neighborhood generalizes the unit 

neighborhood by allowing complementation of upto t solution components. 

Specifically, 

N,(xk) = {binary x: £ | x j - x k | < t } . (Parker [21]). 

• Pair-wise interchange. Pair-wise interchange neighborhoods change two binary 

components at a time, but in a complementary fashion. 

N2p(xk) = {b inaryx :^ I * j ~ * "j I = 2, £ , ( x j - x k j ) = 0 } . (Parker [21]). 
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• t-Interchange Neighborhood. A t-Interchange neighborhood changes up to t values 

of the solutions in the same complementary manner as pair-wise interchange. 

Ntp(xk) = {b inaryx:^ | x j - x kj | < t , ^ ( X j - x k j ) = 0 } . (Parker [21]). 

In the next subsection performance measures related to optimization problems are 

discussed. 

2.3 Analysis and Complexity 

Unless a local search algorithm employs an exact neighborhood function, it is 

generally not possible to give non-trivial bounds on the amount by which the cost of a 

local optimum deviates from the optimal cost. However, in practice, many example of 

local search algorithms are known that converge quickly and find high quality solutions. 

In the performance analysis of combinatorial algorithms one usually distinguishes 

between the average case and the worst case. The performance of a heuristic can be 

quantified by its running time and its solution quality. The running time is usually given 

by the number of CPU seconds the algorithm requires to find a final solution on a 

specified computer and operating system. The solution quality is typically measured by 

the ratio of its cost value to that of an optimal solution or to some easily computed bound 

on that optimal value. 

3.0 A Model of Local Improvement Algorithm for Hypercube 

This section discusses a model as proposed by Tovey[29] for local improvement 

algorithms for hypercube. As stated earlier almost all combinatorial optimization 

problems can be visualized as optimization problems on hypercube. 

Consider the problem of maximizing a real valued function C whose domain is 

the set of vertices of the n-cube. It is assumed here for simplicity that all the values of C 

are distinct. The domain of the function can be thought of as a set of Boolean decision 
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variables. Such a function induces a unique priority ordering on the vertices of the n-

cube. 

The distance between two vertices of the n-cube is the number of components in 

which they differ. This distance is a metric and is known as the Hamming distance. If x 

and y are at a distance of zero, then x = y: is x and y are at a distance of one, they share 

an edge and are said to be adjacent or neighbors. A vertex whose function value is greater 

than any of its n neighbors is called a local maximum, if C has the property that all its 

local maximum are also global maximum we say that C is Local-Global (LG). 

A natural implementation of local improvement algorithm is the Optimal 

Adjacency (OA) algorithm, which may be stated as: 

Stepl Start with any vertex x. 

Step2 If x is locally optimal, stop with x the solution. Otherwise proceed to 3. 

Step3 Let y be the best vertex adjacent to x. Set x equal to y and go to 2. 

3.1 Optimal Adjacency Trees: 

If a particular local global function f is given, a directed tree to show how many 

iterations the optimal adjacency algorithm will require can be constructed as follows 

Stepl Each vertex of the n-cube corresponds to a node of the tree. 

Step 2 The father of a vertex is its optimal adjacent vertex: if a vertex is local 

optimum, it has no father. 

The tree is called Optimal Adjacency Tree, or OAT. Its root is the local optimal vertex. 

The OAT displays the path followed by the algorithm by moving from son to father on 

the tree. 

Figure 1 illustrates the notion of adjacency trees for the two cases. All solutions for the 

case when n = 3 as shown in part (b) belong to a single tree, so the local improvement 

will always yield a optimal solution. Starting search at x1 = (0,1,1), for example, the tree 

indicates local search would proceed to x2 = (0,1,0) and then to optimal x3 = (0,0,0). 
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Part (a) shows a case of local optima that are not global for n=2. Search for any of 

(1,0), (0,1) or (0,0) leads to (0,0) solution. But (1,1) is a separate local optimum. 

(0,0) 

(1,0) (0,1) 

Preference order 
(0,0) 

(1,1) (1,1) 
• (0,1) 

(1,0) 

Figure 1(a) Optimal Adjacency Forest 

(0,0,0) 

(1,0,0 

Preference order 
(0,0,0) 
(0,1,0) 
(0,0,1) 
(1,0,0) 
(0,1,1) 
(1,1,0) 
(1,0,1) 
(1,1,1) 

(0,0,1) 

(1,0,1) 

Figure 1(b) Optimal Adjacency Tree 
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The number of iterations required to complete the OAT of figure 1 (b) is computed next. 

If the starting vertex is chosen at random, there would be an equal probability of starting 

at each of the eight vertices. In general for each starting vertex, the path to the root in the 

OAT is by definition the path the OA algorithm will follow. Thus the height or path-

length of each vertex in the tree is the number of iterations the algorithm would need to 

reach the optimum from the vertex. The mean path length of the tree is precisely equal to 

the expected number of iterations the algorithm would need to reach the optimum from 

that vertex.. Thus for the problem having structure as in figure 1(b), the OA algorithm 

would be expected to take 

(1*1+3*2 + 3*3 +1*4 )/8 = 5/2 iterations. 

If C is not LG, the rules for producing the OAT will instead produce an OAF, or 

Optimal Adjacency forest, as shown in figure 1(a), with one tree per local optimum. 

3.2 Expected Duration 

For the Worst Case maximum number of iterations required by the Optimal 

Adjacency Algorithm in any optimal adjacency search of the vertices on the n-

hypercube is at least 

0(2" / n) as shown by (Tovey[30]) 

Instead of the worst case performance an average or expected number of search 

iteration is more useful. This requires some possible forms of probability distributions to 

be studied over the possible adjacency trees for the n-cube. This is equivalent of 

introducing probability distributions over the orderings of the vertices of the n-cube. 
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3.3 Better adjacency trees 

The OA algorithm always chooses the best neighbor to go to. If this condition is 

relaxed, and it is only required that the algorithm proceeds from a vertex to a better 

adjacent vertex then Better Adjacency Algorithm results which is described below: 

Stepl Start at random vertex x. 

Step2 Search through x's neighbors until a better one, y, is found or all neighbors have 

been tried. In the former case set x = y and iterate Step2 ; in the later case stop, with x 

optimal. 

4.0 Some Other Examples of Neighborhood Search Heuristics 

Plant layout Problem: 

Given a set of facilities {xi: X2, ... xn} and n locations, facilities are to be assigned to 

locations s.t. each facility is assigned exactly to one location. Assignment of the location 

is to be made such that the total material handling between the facilities (distance * 

weight) is minimized). This problem can be viewed as path optimization problem with 

C(f) = S (Load between Xj and xs) * distance between location of Xj and xs. 

A simple neighborhood search heuristics can be described as follows: 

(a) Start with any sequence. 

(b) Exchange a pair of adjacent facilities and calculate material handling for each such 

new sequences . 

(c) Select the sequence which has the smallest material handling movement among all 

such sequences obtained by adjacent exchange. If no such sequence is found stop, 

else repeat step (b),with the selected sequence. 
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Another variation of this heuristic can be constructed as by defining as neighbors all 

those allocation which can be obtained by pairwise interchanges, instead of adjacent 

interchanges. 

Travelling Salesman Problem 

(a) Start with an arbitrary tour 

(b) Delete two edges from this tour. This will result in two disconnected paths. Join these 

paths in such away as to form a new tour. 

(c) Compute the weight of the new tour, and if it is smaller than the current tour, then 

make it the current tour and repeat the step (b), otherwise select another pair and 

repeat step (b). If no such tour is found stop. 

A 3-opt heuristic can be constructed by selecting three edges to be removed. It will result 

in three disconnected paths and four possible tours. 

5.0 Advance Search Strategies: 

One of the major problem with the local search heuristics is that heuristics will stop 

after finding a local optimal solution. An extension of the local search heuristic is to 

repeat the heuristic with several random start point and to keep the best solution 

obtained. This approach has not resulted in any major successes. However this has lead 

to development of Meta-Heuristics, in which cost-positive i.e. inferior neighbor are also 

selected with some probability. Some such heuristics are Simulated Annealing , Genetic 

Algorithm , and Tabu Search. These heuristics have been able to solve large size 

problems in reasonable computational time. Aarts & Lenstra [1], Laporte & Osmen [8], 

Goldberg[9],Osmen & Laporte [20] and Reeves [26] are excellent references on these 

Heuristics. 
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