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Preface

This really is the golden age of Mathematics. It has been said that half the Mathe-
matics ever created has been in the last 100 years and that half the mathematicians
who have ever lived are alive today. We have seen such achievements as the resolu-
tion of the four-colour problem and Fermat’s last theorem, with the latter being a
special manifestation of a much more general result!

It is befitting that the golden Jubilee of the Indian Institute of Technology
Kharagpur, happens to fall in the golden age of Mathematics. As a senior professor
in the Department of Mathematics, I felt encouraged to bring out a series of books
covering all the major areas of Mathematical Sciences during this period of historic
importance.

This book is an important member of the aforesaid series and consists of chapters
that deal with important topics in Biomathematics. A glance through any mod-
ern textbook or journal in the fields of ecology, genetics, physiology or biochem-
istry reveals that there has been an increasing use of mathematics which ranges
from the solution of complicated differential equation in population studies to the
use of transfer functions in the analysis of eye-tracking mechanisms. This volume
deals with Applied Mathematics in Biology and Medicine and is concerned with ap-
plied mathematical models and computer simulation in the areas of Molecular and
Cellular Biology, Biological Soft Tissues and Structures as well as Bio-engineering.

In this volume an attempt has been made to cover biological background and
mathematical techniques whenever required. The aim has been to formulate various
mathematical models on a fairly general platform, making the biological assump-
tions quite explicit and to perform the analysis in relatively rigorous terms. I hope,
the choice and treatment of the problems will enable the readers to understand and
evaluate detailed analyses of specific models and applications in the literature.

The purpose of bringing out this volume on Biomathematics dealing with in-
terdisciplinary topics has been twofold. The objectives are to promote research
in applied mathematical problems of the life sciences and to enhance cooperation
and exchanges between mathematical scientists, biologists and medical researchers.
This volume has both a synthetic and analytic effect. The different chapters of the
volume have been mostly concerned with model building and verification in different
areas of biology and the medical sciences.

I believe, people in the entire spectrum of those with an interest in ecology,
from field biologists seeking a conceptual framework for their observations to math-
ematicians seeking fruitful areas of application, will find stimulation here. It may
so happen that some readers may find some parts of this volume trivial and some
of the parts incomprehensible. Keeping this in view extensive bibliographies have
been given at the end of each chapter which do attempt to provide an entry to the
corresponding areas of study.

For over three decades I have been engaged in teaching and research at several
well-known institutions of India, Germany and North America. Publication of the
series of books has been the fruit of a long period of collaboration together with
relentless perseverance. It has been our endeavour to make these books useful to
a large section of people interested in mathematical sciences, professional as well
as amateur. The volumes have been so designed and planned that illustrative
examples and exercises as well as fairly comprehensive bibliography are included
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in the various chapters. This will help strengthen the level of understanding of
the learners. Thus the books of this series will be of interest not only to graduate
students but also to instructors, research scientists and professionals. The volumes
of the series might not exactly serve as textbooks, but will definitely be worthwhile
supplements. Our labour will be deemed amply rewarded if at least some of those
for whom the volumes are meant derive benefit from them.

I am thankful to the members of the ICRAMS committee for their kind en-
couragement in publishing the mathematical science series on the occasion of the
Golden Jubilee of our Institute. I feel highly indebted to the contributors of all
the volumes of the series who have so kindly accepted my invitation to contribute
chapters. The enormous pleasure and enthusiasm with which they have accepted
my invitation have touched me deeply, boosting my interest in the publication of
the series.

I I. T. Kharagpur J. C. Misra
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TOWARDS A NONSUBJECTIVE
BAYESIAN PARADIGM

Jayanta K. Ghosh and Tapas Samanta

Indian Statistical Institute, Calcutta, India and Purdue university, USA

and Indian Statistical Institute, Calcutta, India

Abstract

We examine the historical development of the three major paradigms in Statis-
tics and how they have influenced each other in a positive way. We then go on to
argue that it is still necessary to make a choice and that the Bayesian formulation
appears to be the most appropriate. Since elicitation of priors remains difficult
inspite of some progress, it is suggested that nonsubjective Bayesian analysis has
an important role to play. We present an overview of how nonsubjective priors are
constructed and how they are used in different problems of inference involving low
or high dimensional models. In particular, it is shown that many of the common

perceptions or criticisms of nonsubjective Bayesian analysis are not justified.

Keywords: Hierarchical Bayes; Jeffreys prior; Parametric empirical Bayes; Proba-

bility matching; Reference prior; Uniform distributions



1. Introduction

There are three major paradigms in Statistics, namely, Data Analysis,
Classical Statistics, also called Frequentist or Neyman-Pearsonian Statistics
and Bayesian Analysis. We use all three names for Classical Statistics, choos-
ing the one that best fits the context. Data Analysis may not even use any
stochastic model like pre-Gaussian least squares. We assume most readers
are familiar with Classical Statistics, where stochastic models are routinely
used for data but the models contain unknown constants or parameters which
are not treated as random variables — probabilistic calculations are applied
only to repeatable uncertain events like tossing a coin but not to questions
about non-repeatable uncertain events or statements like “this particular coin
is fair”. This restricted application of probability only in repeatable cases is
called the Frequentist view of probability. In the Bayesian paradigm all un-
certainties can be quantified into probability as in the case of gambling on
one particular occasion. In particular, in the least squares problem both the

regression coefficients § and Y in the model

Y=X3+¢€

are treated as random variables.
In addition to the three major paradigms, there are half way houses, like

Conditional Frequentist Inference or Nonsubjective Bayesian Analysis, the



subject of the present chapter. What is quite noticeable today is mutual tol-
erance and even some overlap and convergence towards a consensus. This was
not the case even a couple of decades ago when there were heated controver-
sies on foundations of Statistics. Some of these basic issues are discussed in
the next section. In the subsequent sections it is shown to some extent how
through some modification of the three major paradigms, some reconciliation
between them is possible. However, it is not one of our premises or one of our
theses, that all major differences have disappeared. That too is not the case.

We argue in this chapter that it is still important to choose a paradigm
and justify its choice. Showing the chosen Bayesian paradigm in action and
the fact that it does very well in applying Statistics to real life is part of
the argument, not an excuse for not engaging in an argument, as suggested
by the authors of two excellent books on what we regard as nonsubjective
Bayesian Data Analysis, namely, Carlin and Louis ([20]) and Gelman et al.
([31]). Indeed, even Carlin and Louis ([20]), contrary to their professed view
in their introduction, feel a need to reproduce some of the famous examples
and arguments (e.g., [20], Ch. 1, 2) but such arguments are not explored in
full, occasionally creating confusing or false expectations about nonsubjective
Bayesian Analysis. To illustrate this we consider later Example 1.2 of [20] and
the role of the likelihood principle in Section 6. A similar comment applies

to the book by Gelman et al. ([31]), which is essentially about nonsubjective



Bayesian analysis but the excellent bibliographic note provided by on pp. 24,
25 focuses on foundational issues in the context of the subjective Bayesian
paradigm. Basic references to Bayesian Analysis include [6], [16], [53] and
[57].

The purpose of this chapter is to supplement books and papers in applied
nonsubjective Bayesian Analysis by a critical re-examination of both the old
foundational issues that dominated the sixties and seventies of the last century
and specific criticisms brought against nonsubjective Bayesian methods.

We believe the Bayesian paradigm can be flexible enough to accommodate
both subjective and nonsubjective Bayesians but at least for now our methods
for eliciting subjective priors are so weak that most applications are nonsub-
jective. There can be other reasons why a future Bayesian may want to be
flexible. We discuss this at the very end of the chapter.

Section 2 provides a brief history of least squares and all that came from
it. It gives some idea of how the three paradigms developed with close inter-
actions, sometimes friendly, sometimes not. In Section 3 — Why Should We
All Be a Bayesian — we examine the three paradigms and argue in favour
of being a Bayesian. In Sections 4 and 5 we discuss what we mean by non-
subjective priors, the motivation for using them and methods of construction.
Roughly speaking, a subjective prior for a person, who may be an expert in

the subject, is a quantification of uncertainty about unknown parameters in a



model whereas a nonsubjective prior arises from a general algorithm applied
to the particular problem in hand. A nonsubjective prior may also be vali-
dated by some introspection but introspection is not essential. Usually some
Frequentist validation is sought when justifying the algorithms. Section 6 pro-
vides a critical discussion of nonsubjective priors, indicating why many of the
common perceptions or criticisms are not justified. We also discuss in this
section how far inferences based on these priors satisfy the Likelihood Prin-
ciple and the Stopping Rule Principle. In particular, Example 1.2 of [20] is
re-examined. Section 7 discusses nonsubjective Bayesian estimation and test-
ing. High dimensional problems are briefly discussed in Section 8. The last

section (Section 9) contains a discussion of some related major points.

2. How Did It All Start

Developments in geodesy and astronomy in the eighteenth century pro-
duced in each case many observations connected through a number of equa-
tions with much fewer parameters. Generally there would be n equations
involving p unknowns, p being much less than n. Throughout the eighteenth
century some of the best minds, including Laplace, Euler, Gauss and Legen-
dre, considered this problem. This culminated in the discovery of the principle
of least squares by Legendre in 1805. Credit is also given to Gauss who said he

had discovered the principle but did not publish it. The principle determines



the unknown constants in the equations so that the sum of squares of devi-
ations between observations and values assigned by the equations with these
constants is a minimum. This is a purely data analytic principle.

In 1823 Gauss provided an elegant stochastic model and proved the famous
Gauss-Markov theorem that the principle of least squares leads to best linear
unbiased estimates (BLUE). This may be regarded as the beginning of Classi-
cal Statistics but throughout eighteenth and nineteenth centuries the attitude
to unknown parameters was ambiguous. Probability statements made about
them were interpreted both as Frequentist confidence intervals and Bayesian
credibility intervals given the particular data in hand.

The ambiguity has its source in the following instructive example, central
to the development of much of Statistics.

Ezample 1. Suppose X1, Xs,..., X, are independent and identically dis-
tributed (i.i.d.) observations with normal distribution N(6,1). Suppose the
prior for 6, namely, 7(6) is the (improper) uniform distribution on the param-
eter space JR. Let X be the sample mean and Za/2 the upper a/2-point of

N(0,1), 0 < a < 1. Then the following are true.

Pr{0 € (X — zas2/Vn, X + 2as2/Vn)|0} = 1-a (1)

PrO € (X = Zapa/v/m X + zapp/VR)IX} = 1-a (2)

The first probability holds over many repetitions of samples — it is a classical



Frequentist probability. In the second equation the probability, given X is
held fixed, has a Bayesian meaning. The event considered is the same but
the conditioning leads to different interpretation. The prior 7(8) is (exactly)
probability matching in the sense of [36].

The idea of a prior distribution that interacts with the likelihood or prob-
ability of observation to produce a posterior probability first appeared in Rev-
erend Bayes’s posthumous paper ([5]). The equation that shows how the prior
and likelihood interact is called Bayes Theorem — an elementary result of
great philosophical and methodological significance. These ideas were redis-
covered and popularized by Laplace.

One of the great achievements that arose as a consequence of attention to
X is Laplace’s famous limit theorem ([50]) which says if X;’s are i.i.d. with
mean # and variance o2, then X is approximately normal with mean 6 and
variance o?/n. This implies that equation (1) can be used approximately in
a great many cases. Equation (2) was used by Laplace to prove what would
now be called posterior consistency as well as to find a credibility interval
for 8 that would be easy to interpret in a Frequentist way. It may thus be
thought of as a forerunner of the Bernstein-von Mises theorem on posterior
normality, just as Laplace’s limit theorem is an early version of the Central
Limit Theorem Whichboccupied a central role in the theory of probability for

many years. Both were rigorously proved only in the twentieth century.



Regression equations and the Least Squares principle, as we now use it,
grew from the work of Francis Galton and Karl Pearson in Biometry. They
took their final shape in the hands of G.U. Yule in early twentieth century.

The logical distinction between (1) and (2) was first pointed out by R.A.
Fisher who began a systematic development of methods of estimation, test-
ing and design of experiments using only classical Frequentist probability. By
1940, they had reached their present form in the hands of Neyman, Pearson
and Wald. A few years later the restriction to linear estimates was removed
and a new theory of minimum variance unbiased estimates was born. The ma-
jor results were the Cramer-Rao inequality, the Rao-Blackwell theorem and
the major tool was the notion of a complete sufficient statistic. These, along
with the earlier Neyman-Pearson Lemma and Basu’s Theorem on indepen-
dence of complete sufficient statistics and ancillary statistics, have been the
core of a first advanced undergraduate course in Classical Statistics.

With Wald had come decision theory and attention had shifted away from
unbiasedness to general estimates for which minimaxity was introduced by
Wald and admissibility by Lehmann. Nearly a hundred years after Gauss,
we knew that under the additional assumption of Gaussian distribution, X
is not only BLUE but UMVUE (uniformly minimum variance unbiased esti-
mate), minimax and admissible too. Also Robbins introduced the Nonpara-

metric Empirical Bayes approach and Stein proved his apparently paradoxical



result that for estimating a normal mean the sample mean X ceases to be
admissible for dimension greater than two. By the seventies it was clear that
the Stein paradox was ubiquitous whenever one estimates many parameters
having structural similarities and new insight into this was provided by the
Parametric Empirical Bayes (PEB) approach of Efron and Morris. A fully
Bayes approach, called Hierarchical Bayes, soon developed and calculation of
posterior was made feasible by the new simulation technique of MCMC in the
late eighties. This method has some advantage over PEB even in a Frequen-
tist sense. The last decade was full of successful Hierarchical Bayes modelling
of uncertainty in many, many real life high dimensional problems with cal-
culation of posterior through some form of MCMC. These applications show
that not only has the Bayesian paradigm better logical foundations than Clas-
sical Statistics but it can handle better complex practical problems as well.
This must have been a major reason for the dramatic upsurge of interest in
Bayesian Analysis.

This brief history indicates, among other things, how closely the develop-
ment of the three different paradigms have been interlinked at different points

of time.

3. Why Should We All Be a Bayesian

We have followed the growth of Least Squares and all it led to for nearly
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three centuries — eighteenth to twentieth — and how features of all three
paradigms pervade our subject. Data Analysis provides innovative new meth-
ods and quick insight. It borrows strength from Descriptive Statistics and
common sense. It does not require theoretical underpinnings or complicated
mathematical justifictions based on probability theory. However, a discipline
based only on ad hoc data analytic techniques cannot survive for long. One of
the great achievements of Classical Statistics in the twentieth century was to
provide a unified logical foundation to various inferential questions of Statis-
tics and statistical methods developed over centuries. Let us examine this
aspect in some detail.

Classical Neyman-Pearsonian Statistics emerged as a paradigm in the
fundamental papers of Neyman and Pearson on testing hypotheses. The
starting point in this paradigm is a set of random variables X, Xo,..., X,
and a stochastic model from which one can calculate their joint density
p(z1, Zg, - . ., Ty ). The model or models do not specify the density p(z1, ..., z,)
completely, it is allowed to depend in a well-defined way on a set of “unknown”
parameters, which are treated as unknown constants rather than random vari-
ables. This is a point of departure from Bayes. Secondly, they consider a test
&(z1,Za,...,%,) which is a function or an algorithm that selects a particular
hypothesis from the candidate hypotheses, e.g., Hy : § = 0vs. H; : § > 0

for N(6,1), given any data. If ¢(z1,...,2,) = 1 one chooses Hy, if ¢ = 0
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one chooses Hy. If for z1,...,2,, ¢ is between 0 and 1, one chooses H; with
probability ¢. This is a major point of departure from past practices, where
statisticians, as data analysts, only considered what is to be done with the data
in hand, not what would have happened with other possible data. Thirdly, a
test is evaluated by its performance over all possible data. The evaluation of

probability of error for a test ¢ for different values of a parameter is its risk

R(¢,0) = Ey(¢), f0=0

= 1- Ey(¢), if 6> 0.

Neyman and Pearson showed that if one looked at all ¢ with a bound on
the probability of error of first kind, namely rejecting Hy when Hy is true,
R(¢,0) < a, then there exists ¢y that minimizes R(¢, ) for all § > 0. More-
over, ¢ is easy to describe. This is their famous UMP (uniformly most pow-
erful) test. Very general minimax results of this type were proved later by
Huber and Strassen ([46], [47]). A beautiful example of this kind is the robust
version of the Neyman-Pearson lemma given in [53].

Classical Statistics introduced a new approach to decision making and
inference, and evaluation and comparison of different algorithms or procedures
based on performance over the whole sample space. It also provided many
benchmarks and lower bounds. Thus the Gauss-Markov theorem may be

treated as a precursor and the many novel developments that are described
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in the previous section could not have taken place if this pardigm change had
not taken place in the nineteen thirties.

Some of its advantages over, say, simple minded data analysis can clarify
the intellectual revolution brought about by Classical Statistics. Given any
new method, Classical Statistics can test it out on many simulated stochastic
models as well as compare with known benchmarks. In contrast, Data Analysis
will try it out on a small list of standard available examples. Of course,
if a method survives this first test, many subsequent practical applications
eventually will settle if it is any good. But Classical Statistics does it faster
and more systematically. Secondly, any new problem, difficult to solve in
Data Analysis, may not be so difficult in a well-defined logical paradigm. We
illustrate this in the next paragraph.

Often in image analysis, one would wish to merge two images. For exam-
ple, they could be two pictures of the same object, say, a tumour, taken by
tomography and ultrasonography, or they could be two pictures of the same
subject, say, an absconding criminal, at slightly different angles. This is re-
garded as a challenging new problem in data analytic image analysis. Yet, in
principle, it is no more difficult than the problem of combining two observa-
tions using linear models and Gauss’s theorem. For an application of these
ideas to image analysis see [38].

Why then does one want to move beyond Classical Statistics? There are
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several reasons. We list the more important ones.

1. Flaws in foundation. The paradigm is flawed because all its evaluations
are based on averaging over the sample space, i.e., on performance for all
possible data. While such measures are important, specially at the planning
or design stage, they are irrelevant once the data are in hand. For example,
variance of an estimate or the probability of error of a test relevant for the
particular data being analyzed are the appropriate posterior risk given data
— B{(T - 0)?|X,,...,X,} for an estimate T of § or P(Hy|Xy,...,X,)¢ +
P(Hy|Xy,...,X5)(1 — ¢) for a test ¢ — which can be calculated only in the
Bayesian paradigm. It is no wonder that clients — engineers and doctors —
coming to classical statisticians almost always misinterpret the quantities that

are presented to them. They interpret p-values etc. as a sort of posterior risk.

2. The second reason is connected with the first reason. Quite often the
variance or risk calculations are patently absurd even to classical statisticians.
Here are two examples.

Ezample 2 (Cox, [22]). You have to take samples from N (9, 1) and estimate
#. Suppose you toss a fair coin. If you get a head, you take a sample of size
n = 2. If it is a tail, you take a sample of size n = 100. Admittedly, this is an
odd sampling scheme but let us continue our analysis of this from a classical
point of view.

Given n = 2, the classical statistician estimates § by T = X, = (X, +
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X5)/2 and, similarly for n =100, by T = Xj0. He says rightly, that T is
an unbiased estimate for § with variance = % (% + 1(1)—0) = }1— (approximately).
Suppose he actually gets a tail and has a sample of size n = 100. Should he
quote this very large variance, namely, 1/4 or the more natural 1/100? Most
classical statisticians confronted with this example concede they would prefer
the second number.

Ezample 8 (Welch). You have a sample of size n = 2 from the uniform
distribution on (# — £,6 + 1). You want a 100(1 — a)% confidence interval for
0,0 < @ < 1 and usually a = 0.05 or 0.01. It is easy to see that this being
a location parameter family, you can choose A > 0 such that Py{X — h <
0 < X+h} =1-aq,ie, X +hisa solution to this problem. Suppose
now your actual data are X; = 1, Xo» = 2. The only way such data can come
as sample from the range (6 — 1/2,6 + 1/2) is to have X; =0 - 1/2, X, =
6 + 1/2 so that you know for sure X = 6. But you will say you have only
100(1 — a)% confidence that your interval X + h contains §. This is also
patently absurd that classical statisticians concede this. Incidentally, the fact
that X; = 6 —1/2, X3 = 0+ 1/2 with probability zero need not cause concern.
If X; and X, are very close to 6 & 1/2 instead of being exactly equal, you
would intuitively expect the true confidence to be very close to one rather

than (1 —a). You can verify by calculating conditional probability of covering

6, given | X, — X;|. Alternatively, one can choose a discrete version of this
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problem as in [7].

These are examples of what are called conditionality paradoxes, first
pointed out by Fisher. Fisher suggested that in each example there is a
statistic, the sample size n in Example 2 and |X; — X;| in Example 3, whose
distribution does not depend on € but whose value seems to indicate how infor-
mative is the sample. Fisher called such a statistic ancillary and suggested one
should make inference condtional on an appropriate ancillay. Such examples
are treated in detail by Basu ([4]), Brown ([19]) and Kiefer ([50]). Conditional
Inference has also received a lot of attention from Barndorff-Nielsen and Cox,
who have shown how one can make conditional asymptotic inference based on
the maximum likelihood estimate (MLE) given asymptotic ancillaries ([1] and
(2]).

3. Even though most classical statisticians accept the contidionality prin-
ciple (CP) (see Appendix), acceptance of CP and the sufficiency principle
(SP) leads to further problems, as first pointed out by Birnbaum. The suffi-
ciency principle (SP) says inference should be based on the (minimal) sufficient
statistic, which extracts all the information in the data in a well-defined math-
ematical way; P{data|minimal sufficient statistic} is free of the parameter 6
and so the data cannot contain any additional information. Birnbaum showed
that CP and SP together imply the likelihood principle (LP) which says that

two likelihood functions p(z|f) and p'(z'|#) lead to the same inference about
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6 if they are proportional to each other (as function of §) and therefore, after
z is observed, the inference should be based on the likelihood function for the
observed z. Since classical methods are based on integration over the whole
sample space rather than the data alone, most of them violate LP. It should be
mentioned that Birnbaum’s theorem is a mathematical theorem, in the spirit
of metamathematics rather than a matter of personal philosophical belief. A
proof is given in the Appendix.

We give two examples in one of which a popular classical method violates
LP.

Ezample 4. Let X;, Xs,..., X, be iid B(1,6), i.e.,
Pg{XiI 1}:0,P0{Xi:0}:1—9,0<9< 1.

The sample size n may be fixed (Case 1) or random, e.g., as in inverse sam-
pling: n = first ¢ such that X; = 1 (Case 2). A classical approximate 95%

confidence interval for 8 is

0+1.96/a

where 6 = r/n is the MLE, r = 7 X;,

R d*log L
i’ = —Wlé

and log L is the loglikelihood given by

logL =rlogf+ (n— r)log(l — 6).
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This is same in both Case (1) and Case (2) though they involve different

sample spaces. It is easy to see that the method satisfies LP.

Ezample 5. Let X1, X,,...,X, be ii.d having a Cauchy distribution with

density

1
.1+(Ii—9)2.

3|+

p(z:|0) =

As in Example 4, n is fixed (Case 1) or n is a random variable not depending
on § except possibly through X'’s.

Let I(#) be the Fisher information defined by

I(0) = —E, (W) _

In this case I(#) = I(0), a constant. Let  be the MLE of §. A popular
approximate 95% confidence interval for 6 is §41.96,/1/(nI(0)) which violates

the LP and in fact is not appropriate for Case 2. However

2logL \?
ls

6 +1.96 <_W— j

does not violate LP and is appropriate for both Case 1 and Case 2.

4. Practical and Methodological Reasons for Preferring Bayesian Analysis.
So far we have been discussing somewhat abstract foundational reasons. There
are also several impressive practical or methodological reasons.

The exact methods of Classical Statistics, for example, UMVUE or UMP

test can only be applied in very simple cases. Slight change in the problem,



18

for example even extra information, can cause difficulties.

Ezample 6. Let X, X,,..., X, be iid. N(0,1),—0c0 < § < co. It is
well-known that X is UMVUE. Suppose you have information a < 6 < b. The
UMVUE is still X and is obviously absurd because it need not lie in the given
interval [a, b]. The MLE, namely, XI(a < X <b) +al(X < a) +bI(X > b),
is inadmissible and also somewhat absurd because it suddenly becomes flat
to the left of @ and right of b. In contrast Bayes estimates are in the given
range, admissible and exhibit bgtter behaviour as X crosses a and b and moves
towards oo.

In complex real life problems all exact classical methods break down and
approximate methods based on MLE have to be used. By contrast Bayesian
methods are exact and can use all available information in sensible way. Also
Bayesian methods generally provide better inference than MLE; see [3], [11]

and [17].

5. Axiomatic Justification of Bayesian Analysis. Finally, there are nat-
ural rationality axioms on how one should make inference or decision under
uncertainty, which force one to act like a Bayesian with a prior probability.
De Finetti makes out a compelling mathematical case that unless one is co-
herent, i.e., has at least a finitely additive probability measure, one would
be a sure loser as a gambler. This result has been extended by Heath and

Sudderth ([45]) to show unless one acts as a Bayesian with a prior that is
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at least finitely additive and uses the corresponding posterior, one’s inference
procedure would be uniformly inadmissible. Other similar rationality axioms,
due to Ramsey ([61]), Savage ([63]) and others, show how a rational linearly
ordered preference pattern leads logically to the existence of a prior (subjec-
tive probability measure over the 8-space) and a utility or loss function. If one
is rational in any one of several possible senses of being rational, one is forced

to be a Bayesian. A good exposition of these ideas can be found in [64].

6. Decision Theoretic Reasons. Classical statistical decision theory has
two kinds of theorems which lend support to the remarks in the previous
paragraph. One class of theorems show unless a decision procedure, e.g., a
test or estimate, is based on a prior or a sequence of priors, it would be inad-
missible. The other kind of theorems show that a class of decision procedures
is complete, i.e., given any decision procedure outside it there is procedure

with lower risk within the class, if it is the closure of Bayes procedures.

To sum up there are many practical, methodological and theoretical rea-
sons why we should be a Bayesian. However, this does not mean a Bayesian
has nothing to learn from the other two paradigms. Bayesians believe in
Frequentist validation in the real world. One formulation of this is the pre-
quential framework of Dawid ([27], [28]). Another, even more Frequentist

formulation, is the notion of posterior consistency at a given true 6y, due to
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Laplace, von Mises, Bernstein and Freedman. This is a kind of weak valida-
tion of a Bayesian procedure against virtual, i.e., simulated reality. Diaconis
and Freedman ([29]) refers to it as a sort of “What if ”, a validation through
a thought experiment. The frequentist notions of bias and variance and an
appropriate trade off between them in model selection remain useful in un-
derstanding Bayesian model selection. Thus a complex model reduces bias
but increases variability of parameters and their estimates, often leading to
inferior prediction as compared to simpler models. Other similar applications
of frequentist ideas appear in later sections.

A Bayesian also finds it useful to use some of the common descriptive
data analytic methods to get a quick feel for data or communicate to clients.
The Bayesian answers are usually refinements of the data analytic answers
— comparison of the two can lead to insight and better understanding of the
former. An extremely important new book on high dimensional and often
nonlinear data analysis which draws on both Classical Statistics and Bayesian

ideas is {44].

4. Choice of Prior
Given a data set X = (X3,...,X,) a Bayesian has a stochastic model

p(z|0) for the joint density as in Classical Statistics. The Bayesian interprets

this as likelihood or conditional density of data given 6. To set the Bayesian
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inference engine in motion, he needs a prior 7 (6), namely, the prior probability
density of 6. This reflects his belief or knowledge, prior to seeing data. In the
light of data, his belief is quantified in the posterior density p(6|X) given by

Bayes Theorem as

m(0)p(X19)
Jom(®)p(X16)do (3)

p(0|X) =

Essentially, the prior is being moved towards those values of # which make the
observed data more likely.

In relatively simple problems of inference one needs to report the posterior
and some descriptive measures like posterior mean or median and posterior
variance or posterior quantiles.

If one has a decision problem with an action space and a loss function, one
chooses an action “a” (depending on the observed X) to minimize the average
posterior loss (see Section 7).

To drive this Bayesian engine one needs the prior 7(#). All non-Bayesians
generally agree that but for the problem of choice of the prior, the Bayesian
paradigm is indeed very attractive. So let us examine critically how a prior
can be chosen and what effect it has on inference.

Ideally, the prior should reflect the subjective belief or knowledge of the
client or the analyst or a subject matter expert. Unfortunately, eliciting a prior
from experts is not easy. Empirical studies have shown certain professions,

experience and maturity help. For example, a businessman or a doctor or a



22

lawyer will be better able to assign a probability to an uncertain event within
his domain of expertize than most other people. However, usually it is not
realistic to expect that one would be able to elicit more than a prior mean
and variance. Occasionally, one can elicit prior covariance in an indirect way.
While all Bayesians expect that this situation will improve in the future, it is
hard to believe that in all but very simple situation a full subjective prior can
be elicited. So it is customary to choose priors in a nonsubjective, conventional
way, incorporating as much of prior information as has been elicitied.

What would be the consequences of substituting a nonsubjective prior for
a subjective prior? This depends on the relative magnitude of the amount
of information in data, which for i.i.d. observations may be measured by the
sample size n or nI(f), and the amount of information in the prior, which is
discussed in the next section. If the former dominates, then there is hardly
anything lost and in most cases of low dimensional parameter space, the sit-
uation is like that. A Bayesian would refer to it as washing away of the prior
by the data. There are several mathematical theorems embodying this phe-
nomenon. One such result is posterior normality and its refinements (see, for
example, [34], [39] [562] and [64]). However, occasionally one may be very con-
fident of certain aspects of the prior and does not wish to change it even if
there is some conflict with data.

Sometimes the analyst will not have any prior information and will want
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to use a purely nonsubjective prior, also called a noninformative prior in the
past. Such a prior may also be used to report the results of an analysis
from a relatively impartial point of view. The next section describes some
standard algorithms for producing purely nonsubjective priors. While such
priors produced by different algorithms are not unique in general, they are
very similar and even for a small data set generate nearly identical posteriors.

The older terminology of noninformative priors is no longer in favour
among nonsubjective Bayesians. The older terminology leads to an expec-
tation that such a prior reflects complete lack of information, which is im-
possible to define. As Poincare observed, noninformative priors do not exist.
On the other hand the purely nonsubjective priors do have low information in
well-defined senses of Shannon’s missing entropy or non-Euclidean geometry
and lead to mostly data dependent posteriors. For somewhat similar reasons
the term objective priors used by Jeffreys can lead to somewhat wrong expec-
tations. Another popular term is default. A nosubjectiver prior is, at least
approximately, both noninformative and objective in the sense of not putting
in much prior input but the relatively neutral term nonsubjective comes closest

to what is meant.

5. Nonsubjective Priors

To construct nonsubjective prior on a given parameter space, one has to
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do one of the following things — (1) define a uniform distribution that fits
the topology of the parameter space for a suitable topology induced by the
Hellinger metric or a Riemannian metric arising from the Fisher information
matrix, or (2) maximize a suitable measure of entropy (i.e., minimize infor-
mation in this sense) or (3) choose a prior with some form of Frequentist
validation since the use of a prior with little information should lead to the
same sort of inference as what a Frequentist would do.

The simplest choice of a (purely) nonsubjective or so called noninformative
prior is the uniform, used for different reasons by both Laplace and Bayes. It
has been used in this chapter earlier in Example 1.

There are various problems with the uniform, though it still remains a
reasonable choice when the other methods are not easy to apply. The three
major problems with the uniform are as follows.

First, as pointed out by Fisher, it is not invariant under (continuously
differentiable) one-one transformations of # and it seems natural to require
some invariance of this sort. One looks for a method that produces priors
m1(0) for 6 and m2(n) for any smooth one-one function 7(6) of 4 such that one

can pass from one to the other by the usual jacobian formula

(0) = (10) 5. 0

Secondly, it does not go naturally with the Riemannian geometry induced
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by the metric which is obtained through the integration of

p(df) =33 Ii;(6)d6:d;

over all curves connecting 6 to §' and minimizing over curves. This metric was
introduced by C.R. Rao and is known to be “natural” in the sense that it is
the only Riemannian metric that transforms as expected under continuously
differentiable one-one transformations of © onto itself, vide [21] and [62].

Finally, the uniform seems to maximize the wrong entropy

H(p) = - | p(6)logp(6)dv.

Shannon used H(-) very successfully when © is a finite set, where the discrete
uniform is everybody’s choice of a noninformative prior. But H(-) depends
on the dominating measure (vide [15]), and is not invariant under continously

differentiable one-one transformations, vide [66)].

We take up the last point and define a measure of information appropriate
here. The transition from the prior to the posterior distribution is an indi-
cation of the (additonal) amount of information in data X = (Xi,...,X,),
relative to a particular prior. The last qualification is important. The change
from prior to posterior has been used by Bernardo ([15]) to measure how in-
formative is a prior. A measure of change from the prior to the posterior is

given by the expected Kullback-Leibler divergence between the posterior and
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the prior

(5)

K(pO)X),n(0) = E {log P(9|X)}

m(6)

where the expectation is with respect to the joint distribution of X and 4.
Bernardo suggests that if a prior is already Very informative, say, degenerate
at some 6y, then the posterior is the same as prior and K = 0, the data cannot
provide any additional information. Bernardo maximizes (5) asymptotically
to get his “noninformative” prior. He calls it a reference prior, in the sense
that information in other priors may be calibrated by taking Bernardo’s prior

as a reference point or origin.

We now present an algorithm for asymptotically maximizing (5). We as-
sume throughout this section that X;’s are i.i.d. Fix an increasing sequence of
compact sets C; whose union is the whole parameter space. In the following
initially we fix C; and let » — oo. Then, as indicated in [36], under suitable

regularity conditions,

KOPX),m(0) = Slogs+ [ n(6)loglaetI (0))*do
- /C (0) log w(8) df + o(1) (6)

where d is the dimension of 8, detA denotes the determinant of a matrix A

and I(0) = [I; ;(#)] is d x d Fisher information matrix given by
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which is assumed to be positive definte. Thus K (p(8|X), 7(8)) is the sum of
a constant, which does not depend on the prior, and a term which converges

to the functional

o 1/2
J(w(),G3) = [, 7(0)log {—d—t%de.

If we maximize J(r(-), C;) with respect to all priors over C;, we get the Jeffreys

prior concentrated on Cj, i.e.,

const.{det/(8)}}/2, ifd € C;
7r,(9) =

0, otherwise.
If we now let i — oo to make C; tend to the whole of © we may regard m;’s

as converging to the Jeffreys improper prior (see [34])
77(0) = {detI(6)}/2. (7)

Thus under suitable regularity conditions the Jeffreys prior is a reference prior.

When parameters can be arranged according to order of importance,
Bernardo ([15]) and Berger and Bernardo ([9]) suggest a step by step maxi-
mization. In fact, they suggest stepwise maximization in all cases, with suit-
able reparametrization. This leads to a modification of the Jeffreys prior. It
has worked very successfully in many examples ([9]). It is these latter priors
that are now called reference priors.

In case partial information is available (vide [6], Sec. 3.4), on prior mo-

ments or quantiles, one can minimize with respect to 7, the Kullback-Leibler
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functional
m(6)

0 (0) do

K(w,m) = [ w(0)1
( ’ 0) / ( ) 0og
subject to

/ GO (0)dd = Ay, i=1,... k.
(]

Here 7y is a nonsubjective prior, Jeffreys or reference or probability matching,
that one starts with and g;(6) is 6* or an indicator Ip,(#) where B; is some
interval (¢;, d;). For example, if one wants to specify the three quartiles, one
would set B; = (Qi_1, @), 1 = 1,2, 3, where Qg = —oco and Q; denotes the ith

quartile, 1 = 1,2,3, and A; = A; = A3 = 1/4. Let

k
71(#) = constant. exp (Z A\ig; (0))
1

where );’s are chosen to satisfy the given constraints. Then, subject to =

satisfying the constraints,

™ (9)
o (6)

K(m,m) = /e7r(9) log "o 2df + K (m,m) = 3 MA; + K (r, m)

is clearly minimized if 7 = 7.

Sun and Berger ([71]) derive reference priors for multiparameter cases
where prior information is available for some of the parameters. Given a
subjective conditional prior density 7*(6;|6;), where 6 = (61,6,), or a sub-
jective marginal prior density 7°(6;), they derive respectively the marginal

reference prior 77(6;) or conditional reference prior 77(6;|6;). Also, a method
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for finding marginal reference priors is proposed when 6, and 6, are known to
be independent.

We now indicate how Jeffreys prior can be obtained as a Lebesgue measure
after transformation. Consider a one-one smooth transformation (#) of 6
such that the information matrix I¥ with the new parametrization v is identity
(I} at ¥(6p). This means the local geometry in the ¢ space is Euclidean near
1¥(6p) and so the Lebesgue measure dy is a suitable uniform distribution near
¥(6p). If we lift this back to the # space making use of the jacobian and the

elementary fact

[g%} [£i5(9)] [gjﬂl =IY=1, (8)

we get Jeffreys prior in the € space, namely

dip = {det [301' ]}—lde = {det(8)}"2dg.
N
An alternative way is to put a uniform distribution on a finite set of points in
the parameter space that approximate well all parameter points and then put
a discrete uniform prior on this. If the metric used is Hellinger then it can
be shown that the discrete uniforms converge weakly as the approximation is
refined more and more and the limit is the Jeffreys distribution. The same
procedure can be applied to infinite dimensional cases also. For details see

[32]. For a more direct derivation of the Jeffreys prior from the Hellinger

metric see [43], Sec. 5.4.
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One can easily see that under the usual regularity conditions the Jeffreys
prior is also invariant in the sense of (4). Jeffreys prior for 6 is given by (7).

It is easily verified from (8) that the Jeffreys prior in the 7-space given by

_ dlogp(X1)9) Blogp(Xi10)\"?
Wz(")—{det [E0< om o )]}

satisfies (4).

The most popular nonsubjective priors are Jeffreys, reference and uniform.
Carlin and Louis ([20]) suggest some other ad hoc priors which are easier to
calculate in high dimensions. However, use of nonsubjective priors, in general,
needs more care than they seem to suggest. This is discussed in [23] and our

Section 6.

Another popular way of generating nonsubjective priors is by matching
posterior and Frequentist probabilities. This is based on the intuition that
the probability statements of a Bayesian with a nonsubjective prior can be
validated by a Frequentist interpretation also. These have been called proba-
bility matching by Ghosh and Mukerjee ([36]). For simplicity let us consider
only a two-dimensional parameter § = (6, 60y) where 6; is the parameter of
interest. Let us first assume that the nuisance parameter 6, is orthogonal to
6, in the sense of [24]. Ghosh and Mukerjee ([36]) indicate how the Bayesian
and Frequentist Bartlett corrections can be used to choose a prior 7 such that

a likelihood ratio based confidence set has the same frequentist and posterior
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probability of covering the true value up to O(n2). We choose a confidence set

A;_(X) for 8, (that depends on the prior) such that the posterior probability
P, € A_o(X)|X)=1—a+0(n™?).

Suppose we now wish to choose the prior 7, and hence A;_,, such that the

frequentist probability
Pg(gl € Al_a(X)) =1l-a+ O(Tl_2) (VO[) (9)

uniformly on compact sets of 6.
As indicated in [36] (see, e.g., [34] for details) a solution of (9) is given by

the second-order partial differential equation for 7,

8 7I'10(0) {K10.20 K12 } ] 6 Kgl
— - — )+ — { 0 } =0 10
00, [ I N I 1s m(6) 00, 111[227r( ) (10)

where mo(8) = Om(6)/061, Kij = Ey{0"7logp(X,|0)/06i063}, Iy =

— Ko, Izo = —Kyy and
Koy = Eg [{077 log p(X110)/06,0605 } {877 log p(X1]9) /065 067 }] .

Ezample 7. Let X,’s be i.i.d. N(u,0). If u is the parameter of interest,

the probability matching equation (10) turns out to be

2
aPn(o) | D

8N2 + g{fm(#,a)} =0.

This equation is satisfied, for example, by any prior proportional to 1/o.
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In case o is the parameter of interest, the probability matching differential

equation for 7(u, o) is

0 [1 ,0m(pn,0) 5 B
5 137 5 +207T(u,o) =0

which is satisfied by a prior of the form ¢(u)/o where g(p) is an arbitrary

function of u.

It is to be noted that the Jeffreys prior 7;(u, o) = 1/0? is not probability

matching in both these cases.

If we start with one-sided confidence intervals, i.e., we choose 6y 4(X),

depending on the prior 7, such that
P01 <01.(X)|X)=1—a+0(n™"),

and wish to choose the prior such that
(@) Py(01 <01 4(X))=1-a+O0(nYWa
(uniformly on compact sets of )
or
(b) (no nuisance parameter)
Pp(1 <614(X))=1-a+0nHVa
(uniformly on compact sets of 6;).
or

(c) (integrated out nuisance parameter given conditional prior 7(65]6;) )
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fPG(Bl S el,a(X))W(02|91)d02 =1l—-a+ O(n“l) Vo
(uniformly on compact sets of 6).

For one-sided intervals matching is, in general, not possible beyond O(n~!)
(see [34]).

The solution for (b), due to Welch and Peers ([73]) and Stein ([69]), is the
Jeffreys prior. It can be shown that no such result is available if the dimension
of 6, is more than one. The differential equation corresponding to (a), due to

Tibshirani ([72]) ( see also [60]), is
—O(IM)Y2 /36, = (I'')*mo(6) /7 (6),
where I'! = (I;;)~!. The solution to this is
m(60) = {11(0)}'"*q(62),

where g(62) is an arbitrary function and, as before, I;1(6) is the (per observa-
tion) Fisher information for §; when 6, is held fixed.

Condition (c) leads to the equation

15 ) e

On writing 7(6) = w(61)7(62]0:) where 7(6;|6;) is given, e.g., 7(6:]61) =

1'212/2(9), we get the solution

-1
7(61) = constant x {/W(92|91)Il—11/2(0)d92} :
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This is similar to the reference prior in this case (see, e.g., [36], Sec. 2) except

that the reference prior obtained as

m(61) = constant x exp [/W(OQIQI) lOg]111/2(0)d02

is the geometric mean of 111

1/2(9) with respect to 7(62]6;) whereas the (prob-
ability matching) prior obtained here is the harmonic mean of 1}1%(8) with
respect to m(f,]61). It is interesting to note that in the case of construction
of a nonsubjective prior by taking limits of discrete uniform, as mentioned

above in this section, we get square root of the arithmetic mean of I;;(6) with

respect to 7(62)01) = I4%(6) ([32)).

So far we have considered only the case with two orthogonal parameters
6, and 6, (or just a single parameter ;). Probability matching differential
equations for the nonorthogonal cases are obtained e.g., in [25] and [30]; see
also [57] and the references therein. We present below the result of Datta and
Ghosh ([25]).

Let X;’s be i.i.d. with a common density involving a d-dimensional param-
eter § and g(f) be a real-valued twice continuously differentiable parametric
function of interest. Consider a prior density 7(#) of # with the following

property of matching frequentist and posterior probability

Pylv/n(9(8)~9(6))/vv < 2] = PIVn(g(8)~9(8))/v/v < 2 | X]+0,(n") (11)

for all z. In (11), 8 is the posterior mode or MLE of 6 and v is the asymptotic
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variance of v/7(g(0) — g(d)) upto O,(n~1/?).

Datta and Ghosh ([25]) show that (11) holds if and only if

> 2 (00} =0 1)

where n(6) = (m1(0), ..., n4(9)) is defined as

-1

Ezample 7 (continued). X;’s arei.i.d. N(u,o). For the parametric function

g(p, o) = p/o, the probability matching equation (12) turns out to be

L | [y [ L A— ) R
op [+ 20 20 | T Go | VR +aeryie ] T

This equation is satisfied by m(u,0) < 1/0.
With the cases g(u,0) = p and g(u,0) = o, the probability matching

equations reduce to

%[mr(u, o)l =0 and %[mr(,u, o) =0

respectively. Both these equations are satisfied by 7(u,0)  1/0.

Two comments are in order. Very often the nonsubjective priors are im-
proper. They can be used in an example only if the application of Bayes the-
orem produces a proper posterior, i.e. one needs [ p(z1,...,z,|0)7(0)df < co

for almost all z,, xs,...,2,. It is an odd fact that Jeffreys prior and reference



36

priors have this property more often than the uniform or probability match-
ing priors. An example where the Jeffreys or reference prior does not lead to

proper posterior is given in [35].

It was mentioned above that a similarity exists between inference based on
nonsubjective priors and that based on Frequentist ideas, i.e., Classical Statis-
tics. Why would then one prefer nonsubjective Bayesian Analysis? Bayesian
Analysis produces posteriors and data based estimates of risk, Classical Statis-

tics lacks these.

There are several criticisms of nonsubjective Bayesian Analysis. We take

them up in the next section.

The nonsubjective priors discussed so far can be used for point and interval
estimation problems but can cause difficulties in model selection or testing
problems, as first pointed out by Jeffreys. The source of the difficulty is that
an improper prior, unlike a proper prior, is not normalized, it is defined only
up to a multiplicative constant. This does not matter in estimation because
the undetermined constant appears both in the numerator and denominator
of the posterior and so gets cancelled. We explain below very briefly how this
problem is tackled in testing.

Ezxample 8. Let Xy, Xs,...,X, be i.i.d. N(6,1). We wish to test Hy :

6 =0vs. H : 0 # 0. Suppose Hy and H; have equal probabilities (this
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is a nonsubjective choice) and, given Hy, 8 has a uniform distribution, i.e.,
m(f|H;) = ¢,—00 < < oco. Bayesian hypothesis testing is based on the
posterior probability of Hy which is given by

p(Xi, ..., Xal0 = 0)
(X1, .., X0 =0) + ¢/ p(X1, ..., Xn|0)db

To get rid of ¢, we use one of the observations, say X, to get a proper prior

and the remaining to get the likelihood.

Start with 7(6|H}) = ¢ and calculate

n(0]Hy, Xq) =

c—==exp(—1(X; — 0)? 1 1
P ) L en-Lox o)
Jegs exp(—3(X1—0)%)do  2r 2

Similarly, 7(6|Ho, X1) remains the point mass at 6 = 0. Now take w(6|H;) as
# exp(—3(X1—0)?) and use Xy, ..., X, as data and recalculate the posterior

probability of Hj.

[t is interesting to observe that the posterior 7(8|Hy, X1, . . ., X;,) with prior
n(0|H;) = c is the same as the posterior m(#|Hi, Xa,...,X,) obtained from

the prior m(8|Hy, X1) = N(Xj,1), so estimation under H; does not change.

One might ask why condition on X;? Why not on any other X;? Why
not on X;,,...,X;. 7 A new methodology which answers these questions is
available in [12], [13], [14], [40], [41] [42] and [59]. This is discussed in Section 7.
For reconciliation of posterior probability of Hy, when Hy is rejected, with

appropriate Frequentist evidence, see [10].
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6. Nonsubjective Priors Re-examined

Having argued in favour of the nonsubjective Bayesian paradigm, we now
turn to some of its criticisms. There are several of them. The most important

ones are listed below as comments or questions.

1. “Noninformative priors do not exist” (Poincare, Lindley and others) (as
mentioned earlier, “noninformative prior” is an older terminology for what we
are calling nonsubjective prior.)

2. Nonsubjective Bayesian Analysis is ad hoc and hence no better than
the ad hoc paradigms subjective Bayesian Analysis tries to replace.

3. There are too many nonsubjective priors for a problem. Which one to
use?

4. Nonsubjective priors are typically improper. One should not use im-
proper priors which do not make sense as quantification of belief (Lindley and
others).

5. If the parameter § has a uniform distribution because of lack of igno-
rance, then this should also be true for any smooth one-one function n = g(#)
(Fisher and others).

6. Why should a nonsubjective prior depend on the model of the data?
(Lindley and almost all critics).

7. What are the impact of this dependence on coherence and likelihood
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principle?

Our responses to these criticisms are as follows. First, The object of non-
subjective Bayesian Analysis is not to search for “nonexistent” noninformative
priors but to produce posteriors which are approximations to possible poste-
riors that would result if one could elicit subjective priors. As it indeed leads
to such posteriors it is not ad hoc. It tries to find posteriors which reflect the
data “as much as possible”. Definition of reference priors indicates one precise
way of doing this.

Although there may be many nonsubjective priors, the posterior (and
hence inference derived from it) based on nonsubjective priors usually does
not change much if one switches from one prior to the other. In such cases we
may hope for some sort of consensus in a “conventional prior” which is likely
to be Jeffreys or reference prior.

In some cases the posterior based on an improper prior is identical with
the posterior based on a proper but finitely additive (not countably addi-
tive) prior (see, e.g., [45]). In fact many characterizations of “coherence” are
through finitely additive priors. Moreover, we have been stressing the poste-
rior rather than the prior. A nonsubjective, improper prior is a convenient
tool for producing a proper, mostly data driven posterior. It is the posterior
which should be used to make inference, not the prior. Finally, if one feels

a need to compare prior probability of two subsets, the subsets should both
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have finite measure. Otherwise the comparison can indeed be misleading.

As for the objection raised in (5), note that one does not look for priors
which represent complete lack of information. Complete lack of information
has not been defined satisfactorily. But some invariance under transforma-
tions is desirable and most nonsubjective priors possess such properties. The
Jeffreys prior has this property for all smooth one-one function g(6). Weaker
invariance properties hold for reference and probability matching priors. Also,
the Jeffreys prior is a uniform prior for all n’s as interpreted properly in the
previous section.

We turn now to the last two points, namely, (6) and (7). We have argued
in the last section that the Shannon entropy is not appropriate for measuring
information in a prior density. Indeed the lack of any such measure in informa-
tion theory suggests that the information in a prior cannot be defined except
in the context of an experiment. Further support comes from the measure of
information in a prior used by Bernardo for constructing a reference prior. In
view of the dependence of the notion of information on an experiment, it is
but natural that nonsubjective priors should depend on the model.

As regards coherence in the sense of Heath and Sudderth there is no prob-
lem since their definition is in the context of a given model. So a (proper)

prior depending on the model does not lead to incoherence.

The impact on LP is more tricky. The LP in its strict sense is violated
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because the prior and hence the posterior depend on the experiment as well
as the likelihood function corresponding to a given data. However, for a
fixed experiment, the LP is not violated, and the posterior, decision based on
the posterior and posterior risk depend only on the likelihood function. The

consequences are further discussed below.

Inference based on nonsubjective priors violates the stopping rule princi-
ple for different stopping rules lead to different experiments. In particular,
in Example 1.2 of [20], originally suggested by Lindley and Phillips ([55]),
one would get different answers according to a binomial or negative binomial
model. The data consists of 9 heads and 3 tails in 12 independent tosses of a
coin. The Fisher information contained in all the observations is 12/(6(1 —6))
for the binomial model and 3/(6(1 — #)?) for the negative binomial where
is the probability of head in a trial. So the Jeffreys priors are similar but
slightly different. Suppose we want to test the null hypothesis Hy : § = 1/2
versus the alternative hypothesis Hy : § > 1/2. As reported in [20, p. 4], the
p-values for the binomial and negative binomial models are respectively 0.075
and 0.0325 and therefore, with the usual 5% Type I error level, the two model
assumptions lead to two different decisions. A Bayes test will be based on
a nonsubjective Bayes factor (BF) described in Section 7. We assume that
Hy and H; have equal prior probabilities (a nonsubjective choice). For the

binomial model the Jeffreys prior is proportional to #~1/2(1 — §)~*/2 which
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can be normalized to get a proper prior. For the negative binomial model the
Jeffreys prior is proportional to #~1/2(1—8)~! which is improper and so cannot
be used in testing. One way out would be to treat this as data on three i.i.d.
geometrically distributed random variables and find the intrinsic prior (see
[12]) in this case. One can then calculate the BF under the negative binomial
model also. The BF under the binomial model (with Jeffreys prior) and the
BF under the negative binomial model (with the intrinsic prior) are respec-
tively 2.073 and 2.662. They are different as were the p-values of Classical
Statistics but unlike the p-values, one of which is double the other, the BF’s
are quite close. Incidentally, Bernardo and Smith {16, p. 249] point out that
even from a subjective Bayesian point of view there is a difference between
the two cases for in the case of a binomial model, # can be one but not for a
negative binomial that stops with the rth tail. See also {9, Example 4] and
[74].

However, we argue the violation indicated in the previous paragraph is less
serious. If the stopping time is ancillary as in Cox’s example (Example 2) and
the observations are i.i.d., Jeffreys, reference and probability matching priors
will not depend on the stopping rule. Most deviations from fixed sample size
are of this kind.

We would also suggest, not by way of a defence or justification but as a

sort of apology, that the violation of the strict LP is not such a bad thing if
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we have to have some Frequentist validation. Surely, a paradigm that seeks

such validation cannot avoid depending on the model for an experiment.

7. Nonsubjective Bayesian Estimation and Testing

We have described in Section 5 how priors can be chosen in a nonsubjective
way. Having chosen the prior one uses the Bayes theorem to update it in the
light of the given data and finds the posterior, on which the inference is based.
We briefly discuss below Bayesian estimation and testing with nonsubjective

priors.

7.1 Estimation

Posterior distribution of # is obtained via Bayes’s formula given in equation
(3) of Section 4. Consider a nonsubjective prior m for which the integral in
the denominator of (3) converges. This leads to a proper posterior. Even if
the prior is improper, often with sufficient amount of data the posterior turns
out to be proper.

Consider for simplicity the case with a real parameter §. The usual point
estimates of # are summary measures of the posterior, such as its mean, median
or mode. If estimation of 8 is considered as a decision problem with a loss
L(f,a), the posterior risk in estimating 6 by “a” is given by the average
posterior loss

W(alX) = /9 L(8, )7 (8] X)db.
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(1))

Given the observed data X, a Bayesian chooses “a” to minimize ¢(a|X) and
reports this minimizing “a” as Bayes estimate of # and the corresponding
¥(a]X) as a measure of risk for the given data. For example, for squared error
loss L(f,a) = (6 — a)?, the Bayes estiamte is given by E(0|X), the poste-
rior mean and the corresponding risk is evaluated by Var(6|X), the posterior

variance.

Ezxample 9. Let X,,---, X, beiid Bin (1,8),0 < 8 < 1. Consider a Beta
(e, B) prior for 6 given by the density

Ma+p)

0 B) = Ry ()

' 1-6YF10<h<1, (13)

Depending on o and 3 this prior can take on a variety of shapes and is proper

for any o, 8 > 0.

With a = § = 1/2 we have the Jeffreys prior for this problem:
m7(0) = 7(0;1/2,1/2) o [0(1 — 0)] /2.

If we take & = 8 = 1, (13) gives the uniform prior 7, (8) = 1,0 < 0 < 1.

Another nonsubjective prior proposed in the literature is the improper prior
m(8) = [6(1 - 0)]"
which corresponds to the case o = 8 = 0.

The posterior obtained from the Beta («, ) prior via Bayes’s formula

turns out to be a Beta distribution again with parameter o/ = o + S and
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B'=8+n—S where § = kzijl X;, and hence the Bayes estimate for squared

error loss is the posterior mean
E@0X)=d/(d+ )= (a+8)/(a+8+n).

It is interesting to note that the Bayes estimate may be expressed as a weighted

average of the prior estimate a/(a+ 3) and the classical estimate (MLE) S/n:

a+f «@ n S
a+ﬁ+n)'a+ﬂ+(a+ﬂ+n)

E(01X) = (

E.
The Bayes estimates for the nonsubjective priors 7y, 71, and 7, obtained as

special cases, are respectively

p _54(1/2) P _S+1
T T YT n+2

~ S
and 02 = — (MLE) .
n
Thus the three nonsubjective priors are very similar in their answers and one
of them, namely 75, leads exactly to the classical estimate S/n. We note that

the posterior obtained from the improper prior 7, is proper if both S and

(n— S) are > 0, i.e., X;’s are not all zero or not all one.

7.2 Hypotheses Testing or Model Selection

A statistical hypothesis may be represented by a probability model for the
given data X. Bayesian approach to hypothesis testing is based on calculation
of the posterior probabilities of the models representing the hypotheses under

consideration.
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Consider two models M; and M for data X with density p;(z|6;) under
model M;, 6; being an unknown parameter of dimension d;,7 = 1,2. Given
prior specifications 7;(6;) for parameter 6; and prior probabilities P(M;) for
model M;, the posterior probabilities of the models can be obtained, via Bayes

Theorem, as

P(Mi)mi(z)

PO = BOgym(a) + POB)ma)

1=1,2

where m;(z) = [ pi(z|0;)m;:(6;)d0; is the marginal density of z under M;.

Bayesian hypothesis testing or model selection is achieved by comparing

the posterior probabilities P(M;|z), and hence may be based on the ratio

P(Mlz)  P(M>) .
P(Mi[z) ~ () o2 14

where By = By (), known as the Bayes factor (BF) of M, to M is defined as
By = my(z)/my(z). If the models are a priori judged equally likely, P(M;) =
P(M,) (a nonsubjective choice), the ratio in (14) is equal to the Bayes factor

B,,.

As already mentioned and illustrated at the end of Section 5, for improper
nonsubjective priors 7; which are defined only upto arbitrary multiplicative
constants, the Bayes factor is indeterminate. This indeterminacy, noted by
Jeffreys ([48]), has been the main motivation of new nonsubjective methods.

A number of methods have been proposed in {67], [66], [12], [13], [14], [42],
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[59] and others, including [48]. For a review of these methods we refer to [12],

[14], [40], [41] and [42]. Below we briefly discuss only some of these methods.
The Intrinsic Bayes Factor.

A solution to the problem with improper priors is to use part of the data
as a training sample. The idea is to use the training sample to obtain proper
posterior distributions for the parameters which can then be used as priors to
compute a Bayes factor with the remainder of the data. This was illustrated
earlier through Example 8 of Section 5.

Let X, X,,...,X, constitute the whole sample. For a subsample
X, Xjyy ooy Xjn(1 < j1 < ja < ... < jm < n), the posterior density of

0; given X ,..., X;  under M, is given by

fi(le"",ij|0i)7rz'(9i)
mZ(XJI,,X]m)
fi(Xjn"'an IH,)m(Hz)

ffi(le"“’ijloi)wi(gi)dai’z 1,2 ( 5)

m(ﬁille, - ,ij)

Berger and Pericchi ([12]) use training sample of minimal size, leaving most
part of the data for model comparison. Let m be the mimimum sam-
ple size such that m;(6;|X;,,...,X;,),s = 1,2, are proper or equivalently,
mi(Xj,, ..., Xj.),t = 1,2, are finite. Let X,,..., X, be such a minimal
training sample. The Bayes factor with the remainder of the data using the

above m;(6;|Xj,, ..., X;,.) in (15) as priors (conditional BF) is given by



A ma (021 X -, X ) dy

(X1, Xn01) ‘ .
f f{(lxhl,...,ij ‘})1)71'1 (01|X11’ ceey ij)dgl

_ B ml(le,...,ij)
—_— 21 .
mg(le, e ,ij)

Boi(j1,- - dm) =

(16)

It is to be noted that the arbitrary constant multiplier of Bs; is cancelled by
that of mi(Xj,, ..., Xj,.)/ma2(Xj,,...,Xj,.) so that the indeterminacy of the
Bayes factor is removed in (16). However, this conditional BF in (16) depends
on the choice of the training sample X ,..., X, . Berger and Pericchi ([12])
suggest considering all possible training samples and taking average of the (::l)
conditional BF’s By (j1, ..., jm)’s to obtain what is called the intrinsic Bayes

factor (IBF). For example, taking an arithmetic average leads to

AIBFy = By —~ ot dm 1
2= By X (X X o
while the geometric average gives
(X, X )\ )
GIBF; = By (H m:EXJ} X{mi) , (18)
Jiyc s Jm

the sum and product in (17) and (18) being taken over the (::1) possible
training samples X;,,..., X;, with1 < j; < ... < jn < n.

Berger and Pericchi ([12]) also suggest using trimmed averages or the me-
dian (complete trimming) of the conditional BF’s when taking an average of

all the conditional BFs does not seem reasonable (e.g., when the conditional
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BFs vary much). AIBF and GIBF have good properties but are affected by
outliers. If the sample size is very small, using a part of the sample as a
training sample may be impractical and Berger and Pericchi ([12]) recom-
mend using expected intrinsic Bayes factors that replace the averages in (17)
and (18) by their expectations, evaluated at the MLE. The AIBF is justified
by the possibility of its correspondence to actual Bayes factors with respect
to“intrinsic” proper priors at least asymptotically. Berger and Pericchi ([12]
and [14]) and Ghosh and Samanta ([41]) have argued that these intrinsic priors

may be considered to be natural “default” priors for the testing problems.
The Fractional Bayes Factor

O’Hagan ([59]) proposes a solution using a fractional part of the full likeli-
hood in place of using training samples and averaging over them. The resulting

“partial” Bayes factor, called the fractional Bayes factor (FBF) is given by
FBFy = ——=
21 b

where b is a fraction and

J fi(X0:)m:(6;)db;
JUf(X10:)]Pm:(6:)d8;

To make the FBF comparable with the IBF one may take b = m/n where m
is the size of a minimal training sample as defined in the case of IBF. O’Hagan

also recommends other choices of b, e.g., b = \/n/n or logn/n.
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Ezample 8 (continued). Here size of a minimal training sample is one and

the conditional BF, conditined on a single X, is
n~!/% exp|(1/2)(nX? — X7)].

The IBF’s are obtained by averaging these n conditional BF’s. The AIBF in
this case approximately equals the BF with a N(0,2) prior for 6.

The FBF, with fraction b is given by
Vbexp[n(1 — b)X?/2]
and is exactly equal to the BF with a N (0, (b~! — 1)/n) prior.

8. High Dimensional Problems, PEB and HB

The nonsubjective Bayesian methods discussed earlier do not work well
when the dimension of @ is large. However, two satisfactory nonsubjective
Bayesian methods have been developed, namely, Parametric Empirical Bayes
(PEB) and Hierarchical Bayes (HB). Basically these are methods for handling

high dimensional random effects.

Suppose we have p similar but not identical populations with densities
f(z,61),..., f(z,0,) and from the jth we have samples Xji,...,X;,,j =
1,2,...,p. The total number of observations is n = pr. These p populations
may correspond to p clinical studies at p hospitals or p villages or countries

etc.
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Often it seems natural to model 6y, .. ., 0, as exchangeable and hence given
a hyperparameter vector 1, i.i.d. For fixed 1, one may choose one of the
partially specified nonsubjective priors for 8; — e.g., conjugate priors or their

mixtures.

Thus for fixed 7, 0;’s are i.i.d. 7(6;|n) and given n and 6;’s, X;’s are
independent, X;; ~ f(z;i|6;).

We illustrate with a simple but illuminating example. The p populations
are N(0;,0?), 02 assumed known for simplicity, r = 1 so that the observations
are simply X1 = X1, Xe = Xo1,...,Xp = Xp1, and 0,’s are iid. N(n,7?)

2

where again 7° is assumed known for simplicity. Let 1 have uniform distribu-

tion on IR. The following facts are easy to verify.

(1) Given n, (integrating out 6’s) X,’s are i.i.d. N(n,0? + 72)

T2 o2 p T2
(2) 7T(91'|77,X1, .- 'aXp) = 7r(‘9j|777Xj) =N (}_{J;ing_: 1'2:02)

(3) T(n|X1,...,Xp) = N(X, 0% + 72)

(4) m(6;1 X1, ..., Xp) = [ w(6;ln, X;)N(X, 0% + 72)(dn)

The last relation in this Hierarchical Bayesian Analysis describes how the
Bayesian inference engine provides inference about 8; given the full data set.
It may seem puzzling that inference about 8; should depend not only on X;

but the full data set. This happens because the full data set is used for n via

(3) and then used in the integral apprearing in (4). The hyperparameter 5
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captures some aspect common in the p similar populations. Use of it through
(3) makes (4) superior to the posterior 7(6;|X;) depending only on X;. If we
had put a noninformative prior for §;’s our estimates would have been X for
;. The HB method produces instead an estimate that shrinks the estiamte

of 6; towards X. Note

E@0;|X1,...,Xp) = /E(9j|n,X]~)N(X',02+T2)dn = ()_(02+Xj’r2)/(02+7'2).

Parametric Empricial Bayes does not put a prior on 7 but replaces n by
an estimate 7, e.g., MLE or UMVUE of 7 based on (1), i.e., in this example 5

is replaced by X. Then (2) can be used instead of (4) with 1 replaced by X.

The point estimates for f; are almost indistinguishable in the two methods
described above but the variances of the estimate of 8; can differ substantially.

The HB uses

(5) E{(8; — 0,)%Xy,...,X,} where 8, = E(6;|X1,...,X,)

whereas (naive) PEB uses

(6) E{(6; — 6,)*|%, X;} where 6; = E(8;|, X;).

The second expression is somewhat inappropriate because it does not provide

for the variation of n around 7 either in a Bayesian or a Frequentist sense.
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In this particular example (6) tends to be an underestimate. Hence (naive)
confidence (credibility) intervals for 6; of the form éj £ 242 X \/(_65 cover
6; with probability less then 1 — «. Morris ([56]) has provided an ad hoc
approximation to (5) and suggested the use of this approximation instead of
(6) in the PEB confidence interval. He has conjectured that the PEB coverage
probability will then be > 1 — «. Subsequent developments for this example
as well as the general case are discussed with great clarity and detail in [20,
Ch. 3]. Morris’s conjecture is re-examined in [37]. See also [26]. Both these
papers make use of the techniques of higher order asymptotics and probability

matching discussed in Section 5.

In complicated problems the posteriors cannot be written down as easily
as in this example. One has to use MCMC. Good sources for methods and
discussion are [20], [31] and [64]. In such problems the estimate 7 required
by PEB is not available in explicit form. The last two books contain a good
discussion of how % can be found numerically by a judicious application of the

EM algorithm.

A few general remarks are in order. There is a lot of information on 7 for
moderately large p, as is evident from (3) and posterior normality. It is less
clear but true that there is a lot of information in the empirical distribution of

X;’s which can be used to guess the approximate form of = (6;|n, X;), provided
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mixtures are identifiable. In particular, one should be able to assess whether
the assumed normality in the likelihood and prior is valid for X;’s or only
after a suitable transformation. The methods just discussed, namely, PEB
and HB do so well compared to classical Frequentist intervals for 6; based on
X; because of these two facts. That the improvement can be very dramatic
is evident from Table 3.4 of [20, p. 101]. Average length of 95% confidence
intervals goes down from 39 to about 5 for naive PEB and about 8 for adjusted

PEB. An adjustment is needed to get the confidence coefficient right.

9. Concluding Remarks

A nonsubjective Bayesian accepts subjective input but faces the fact that
it is often not available at all and even when available specifies only parts of
the prior, so that nonsubjective priors need to be constructed and used for
posterior analysis. He also believes in a certain amount of Frequentist vali-
dation. We believe as the Bayesian paradigm becomes the central paradigm
of our subject and is applied to all kinds of old and new data, there will be
no alternative to being more flexible without losing a hard core of subjectiv-
ity, namely, that inference takes place through interaction of data and the
analyst’s knowledge and belief. Using nonsubjective priors is part of such
flexibility.

We have tried to justify a move towards a nonsubjective Bayesian
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paradigm, away from both Data Analysis and Classical Statistics. The new
paradigm has the strengths of the last two but avoids their weaknesses. We
have sketched out briefly how the approach works in low and high dimensional
problems and pointed out how one can ensure Frequentist validation as well as
data based posterior (rather than integrated) risk estimates. Cox ([23]) pro-
vides brief critical overview of some aspects of these methods from the point

of view of Classical Statistics.

For lack of space we have not discussed any of these issues in the infinite
dimensional case of Bayesian nonparametrics. Frequentist validation is con-
siderably weaker in this context and consists in checking posterior consistency
and optimum rates of its convergence (in a Frequentist sense), see, e.g., [33]
and the references therein. Hopefully, future work will also lead to Bernstein-
von Mises theorems on posterior normality for many interesting functionals.
Ghosal et al. ([32]) present a general procedure for getting a uniform distribu-
tion in infinite dimensional cases that leads to the Jeffreys prior and analogues
of reference priors in the finite dimensional parametric cases. For more details

on all these points we refer the reader to [39)].

No discussion of nonsubjective Bayesian Analysis can be complete without
some observations on Bayesian robustness, or more precisely, robustness with

respect to prior. Robustness is taken care of in different ways for different
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purposes.

The minimum that needs to be done is to do some analysis of sensitivity of
posterior with respect to prior. Most MCMC programmes can easily accomo-
date calculation of posterior quantities for different priors. Both Carlin and
Louis ([20]) and Gelman et al. ([31]) discuss this aspect in detail with quite
specific advice about how to handle outliers. They also discuss in detail model
assessment through residuals and cross validations. One leaves out a part of
the data and uses the rest to produce a predictive distribution. The predictive
distribution is then tested on the first set. One can also approach robustness
from a theoretical point of view with general nonparametric contamination
classes of priors

7. = mo(1 — €) + emg,

e belongs to some nonparametric class G. A good, comprehensive discussion

can be found in [6] and [8].

At a third level one may think of robust Bayesian Analysis as an alter-
native, nonsubjective Bayesian paradigm which rests on relaxed rationality
axioms. The preference ordering is assumed to be a partial rather than linear
order. One then gets a (subjective) family of priors rather than a single sub-
jective prior. This class leads to quantification of uncertainty via upper and

lower probability. It has striking similarities with a theory of such probabili-
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ties due to A.P. Dempster and Glenn Shafer. For details see [65] and [49]. The
method of lower and upper probabilities, once quite popular among engineers,
seems to be less used now because it is not easy to implement and can lead

to counter intuitive inference.

Appendix: Birnbaum’s Theorem on Likelihood

Principle

The object of this appendix is to rewrite the usual proof (e.g., as given in [4])
using only mathematical statements and carefully defining all symbols and

the domain of discourse.

Let 8 € © be the parameter of interest. A statistical experiment £ is
performed to generate a sample . An experiment £ is given by the triplet
(X,.A,p) where X is the sample space, A is a class of (measurable) subsets
of X and p = {p(:|9),0 € O} is a family of probability functions on (X,.A),
indexed by the parameter space ©. For simplicity, we assume both X and ©
are finite sets; A is taken to be the class of all subsets. Below we consider

experiments with a fixed parameter space ©.

A (finite) mixture of experiments &;,...,& with mixture probabilities
m,...,Tx (nonnegative numbers free of @, summing to unity), which may

k
be written as ¥ m¢&;, is defined as a two stage experiment where one first
=1

1=
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selects & with probability m; and then observe z; € A; by performing the

experiment, &;.

Consider now a class of experiments closed under the formation of (finite)
mixtures. We use equivalence relations to represent different principles. Let
E=(X,A,p) and & = (X', A, D) be two experiments and x € X, z' € X'. By
equivalence of the two points (£, z) and (€',z'), we mean one makes the same
inference on @ if one performs £ and observes z or performs £’ and observes
z', and we denote this as

(&,z) ~ (E,7).
We now consider the following principles.

The likelihood principle (LP): We say that the equivalence relation “~”

obeys the likelihood principle if (£, z) ~ (€', 2’) whenever
p(z|0) = cp'(2'|9) for all § € ©

for some constant ¢ > 0.

[43 »

The weak conditionality principle (WCP): An equivalence relation “~

satisfies WCP if for a mixture of experiments £ = Y°F_, m;&;,

(57 (i’ .’L‘,)) ~ (51', -'Ez)

forany i € {1,...,k} and z; € X,.



59

The sufficiency principle (SP): An equivalence relation “~” satisfies SP if
(€,z) ~ (€,7') whenever S(z) = S(z') for some sufficient statistic S (for 6).

@ _»

The weak sufficiency principle (WSP): An equivalence relation “~” satis-

fies WSP if (€,z) ~ (€,2') whenever p(z|0) = p(z'|0) for all 6.

If follows that SP implies WSP which can be seen by noting that

) p(z]6)
S(z) = { T @) 0 e @}
#'co

is a (minimal) sufficient statistic. We assume without loss of generality that

Y p(z|f) >0forallz € X.

gco
We now state and prove Birnbaum’s theorem on Likelihood principle ([18]).

Theorem. WCP and WSP together imply LP, i.e., if an equivalence relation

satisfies WCP and WSP then it also satisfies LP.

Proof. Suppose an equivalence relation “~” satisfies WCP and WSP. Consider
two experiments £ = (X1 A1, p1) and & = (AXa, Az, p;) with same © and

samples z; € X;, i = 1, 2, such that
p1(z1|0) = cpa(x2|6) for all 6 € © (A1)

for some ¢ > 0.

We are to show that (€1, z1) ~ (€2, 22). Consider the mixture experiment

€ of &; and &, with mixture probabilities 1/(1+ ¢) and ¢/(1 + ¢) respectively,
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ie.,

1 c
£ = £ ‘ &
14¢ 1+1+c 2

The points (1,z;) and (2,23) in the sample space of £ have probabilities
p1(z1]0)/(1 + ¢) and po(x2|0)c/(1 + ¢) respectively, which are the same by

(A1). WSP then implies that
(€, (L21)) ~ (€, (2, 22))- (42)
Also, by WCP
(&, (1,z1)) ~ (&1,21) and (£,(2,22)) ~ (&2, z2). (A3)
From (A2) and (A3) we have (&1, z1) ~ (&2, T2).

Acknowledgement. Parts of this review, specifically Sections 3 and 6, have

been presented before at Bayesian conferences at Teheran and Amravati (In-
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ON SOME PROBLEMS OF ESTIMATION FOR SOME
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

B.L.S. Prakasa Rao
Indian Statistical Institute, New Delhi

Abstract

Stochastic partial differential equations (SPDE) are used for stochastic modelling , for
instance, in the study of neuronal behaviour in neurophysiology, in modelling sea surface
temparature and sea surface height in physical oceanography , in building stochastic models
for turbulence and in modelling environmental pollution. Probabilistic theory underlying the
subject of SPDE is discussed in Ito [2] and more recently in Kallianpur and Xiong [11] among
others. The study of statistical inference for the parameters involved in SPDE is more recent.
Asymptotic theory of maximum likelihood estimators for a class of SPDE is discussed in
Huebner, Khasminskii and Rozovskii [7] and Huebner and Rozovskii {8] following the methods
in Tbragimov and Khasminskii [9]. Bayes estimation problems for such a class of SPDE are
investigated in Prakasa Rao [21,25] following the techniques developed in Borwanker et al. [2].
An analogue of the Bernstein-von Mises theorem for parabolic stochastic partial differential
equations is proved in Prakasa Rao [21]. As a consequence, the asymptotic properties of the
Bayes estimators of the parameters are investigated. Asymptotic properties of estimators
obtained by the method of minimum distance estimation are discussed in Prakasa Rao [30].
Nonparametric estimation of a linear multiplier for some classes of SPDE is studied in Prakasa
Rao [26,27] by the kernel method of density estimation following the techniques in Kutoyants
[12]. In all the papers cited above , it was assumed that a continuous observation of the
random field satisfying the SPDE is available. It is obvious that this assumption is not
tenable in practice for various reasons. The question is how to study problem of estimation
when there is only a discrete sampling on the random field. A simplified version of this
problem is investigated in Prakasa Rao [28,29,30,31]. A review of these and related results

is given.

Key words: Bernstein-von Mises theorem, Stochastic partial differential equation, Max-
imum likelihood estimation, Bayes estimation, Minimum distance estimation, Parametric

inference, Nonparametric inference, Linear multiplier, Continuous sampling, Discrete sam-

pling.
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1 Introduction

Stochastic partial differential equations(SPDE) are used for stochastic modelling, for in-
stance, in the study of neuronal behviour in neurophysiology , in modelling sea surface tem-
perature and sea surface height in physical oceanography and in building stochastic models
for the behaviour of turbulence and in modelling environmental pollution(cf. Kallianpur
and Xiong [11]). The probabilistic theory of SPDE is investigated in Ito [2], Rozovskii [33],
Kallianpur and Xiong [11] and De Prato and Zabcezyk [3] among others. Huebner et al.
[7] started the investigation of maximum likelihood estimation of parameters for a class of
SPDE and extended their results to parabolic SPDE in Huebner and Rozovskii [8] following
the approach of Ibragimov and Khasminskii [9]. Bernstein -von Mises type theorems were
developed for such SPDE in Prakasa Rao [21, 25] following the techniques in Borwanker et
al. [2] and Prakasa Rao [18]. Asymptotic properties of the Bayes estimators of parameters
for SPDE were discussed in Prakasa Rao [21,25]. Statistical inference for diffusion type pro-
cesses and semimartingales in general is studied in Prakasa Rao [22,23]. As a consequence,
the asymptotic properties of the Bayes estimators of the parameters are investigated using the
asymptotic properties of maximum likelihood estimators proved in Huebner and Rozovskii
(8]. Asymptotic properties obtained by the method of minimum distance estimation are dis-
cussed in Prakasa Rao [30]. Nonparametric estimation of a linear multiplier for some classes
of SPDE are studied in Prakasa Rao [26,27] by the kernel method of density estimation fol-
lowing the techniques in Kutoyants [12]. In all the papers cited above , it was assumed that
a continuous observation of the random field satisfying the SPDE is available. It is obvious
that this assumption is not tenable in practice for various reasons. The question is how to
study the problem of estimation when there is only a discrete sampling on the underlying
random field. A simplified version of this problem is discussed in Prakasa Rao [28,29] and in
Prakasa Rao [30,31] .

Our aim in this paper is to review some of our earlier work and to present some new

results.
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2 Stochastic modelling

Any problem of statistical inference based on data can be termed as data assimilation or sum-
marization. The problem is to develop suitable models to study the underlying phenomenon,
estimate the unknown coefficients in the model, predict the future observations based on the
model, validate the model by comparing the predicted values with actual observations and
revise the model based on the experience so obtained and continue this cycle of operations.

As Kallianpur and Xiong [11] indicate , stochastic partial differential equations arise from
attempts to introduce randomness in a meaningful way into phenomena regarded as deter-
ministic. Ef(amples of such modelling occur in chemical-reactor diffusions, neurophysiology,
physical oceanography, study of turbulence and more recently in modelling of environmental
pollution. Hodgkin and Huxley (6] studied the electrical behaviour of neuronal membranes
and the role of ionic currents. They modeled the flow of current through the surface mem-
brane of the giant axon from a Loligo Squid through partial differential equations. Kallianpur
and Xiong [11] point out that, in a realistic description of neuronal activity, one needs to
take into account synaptic inputs occuring randomly in time and at different sites on the
neurons’ surface leading to a SPDE. Another area of stochastic modeling by SPDE occurs in
physical oceanography, for instance, in the study of modeling sea surface temperature and
sea surface height (Piterbarg and Rozovskii [15]). In both these problems and in any other
problem involved in modelling by an SPDE, the problem of estimation of coefficients involved
in the SPDE from the observed data is of paramount importance.

We will now study the problems of estimation for some classes of parabolic SPDE which

are amenable for statistical inference.

3 Parametric Estimation for Stochastic PDE with linear

drift (Absolutely continuous case) (Continuous sampling)

Let (Q,F, P) be a probability space and consider the process u.(t,2),0 <2 <1,0<t<T

governed by the stochastic partial differential equation

(3. 1) dug(t,z) = (Du(t,z) + Ou.(t,z))dt + edWp(t, z)
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where A = %. Suppose that ¢ — 0 and § € @ C R. Suppose the initial and the boundary

conditions are given by

(3. 2) { ue(0,2) = f(z), f € Laf0,1]

ue(2,0) = ue(2,1) =0,0<t < T

and @ is the nuclear covariance operator for the Wiener process Wg(t, ) taking values in
L,[0,1] so that
Wo(t,z) = QYW (1,x)

and W({,z) is a cylindrical Brownian motion in L3[0,1]. Then, it is known that (cf. Rozovskii
(33))

= 1/2
(3.3) Wol(t,z) = qu- ei(z)Wi(t) as.

i=1
where {W;(1),0 <t < T'},i > 1 are independent one - dimensional standard Wiener processes

and {e;} is a complete orthonormal system in L,[0,1] consisting of eigen vectors of ¢ and

{q:} eigen values of Q.

Let us consider a special covariance operator  with ey = sinkrz,k > 1 and A; =
(rk)%,k > 1. Then {ex} is a complete orthonormal system with eigen values ¢; = (1 +
Ai)~,i > 1 for the operator Q and Q@ = ( — A)™!. Further more

dWo = QV/%dw.
We define a solution u.(t,z) of (3.1) as a formal sum
(3. 4) ue(t,z) = Zuis(t)eg(x)
i=1

(cf. Rozovskii [33]). It is known that the Fourier coefficient u,.(¢) satisfies the stochastic

differential equation

€

. du;e = (6 — \)u;(t)dt + ——= (), 0<t<T
(3. 5) wielt) = (0 = AJue(dt 4 i)
with the initjal condition
1
(3. 6) uie(0) = v, v; =/ f(z)ei(z)dz.
0

It is further known that u.(¢,z) as defined above belongs to L2([0,T] x Q; L2[0, 1]) together
with its derivative in ¢. Further more u.(¢,z) is the only solution to (3.1) under the boundary

condition (3.2). Let P(g':) be the measure generated by u. when 8 is the true parameter.
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Suppose 8 is the true parameter .It has been shown by Huebner et al. {7] that the family of
measures {Pge),f) € O} are mutually absolutely continuous and
(¢)

dP
(3. 7) log —f(ue)
P

o0y T
= A0 - 00) [ wel)dusto) = {0~ o= AP} [ k(1)

2
=1 £
Maximum Likelihood Estimation

1t can be checked that the MLE 6, of 8 based on u, satisfies the likelihood equation
(3. 8) ae = £71(6; — 60)B:

when g is the true parameter where
el T

3. 9) ae=3 A+ / wie(£)dWi(2)
=1 0

and

00 T
(3. 10) fo= (it D) [ kit

Huebner et al. [7] proved that the estimator 6. is consistent and asymptotically N(0,I(8)"1)
and asymptotically efficient in the Hajek - Le Cam sense. They proved that

(3. 11) lim sup Eq.w(e™ (62 — 6)) > Ew(€)
€=0 |9_gq|<6

where £ is N(0,1(6)"!) for any estimator 47 based on u.(t,z) for a class of loss functions

w(z) which are bounded, symmetric with w(0) = 0 and w(z) monotone for z > 0. Here

13 h+1 .
. J(9) = =S 28T 2201 — e 2(8-X)Ty.
(3. 12) () 5 E k (1-e )

Bernstein-Von Mises Theorem

Suppose that A is a prior probability measure on (@, B) where B is the o-algebra of Borel
subsets of an open set @ C R. Further suppose that A has the density A(-) with respect to the
Lebesgue measure and the density A(-) is continuous and positive in an open neighborhood
of 8, the true parameter. The posterior density of 8 given u.(¢,z),0< z < 1,0<t < T is
apie)
2 (8AO)
(3. 13) p(flue) = _EF(O‘)—_—'
Jo St (ue)A(6)df

9o
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Let 7 = ¢ (0 — .) and
(3. 14) P (rlue) = € p(fe + e7|ue).

Then p*(7|u.) is the posterior density of e~1(8 — 6, ). Let

dP(E) P(f) dP(E)
3. 15 ve(r) = —L= +"/ = feter 4,
(3. 19) ) dPY dP(s) dPy)

In view of (3.7), it follows that

2
(3. 186) logve(t) = 70— T%iﬂE — %ﬁs a.s.
2
= —%ﬂE a.s.

from the equations (3.5) and (3.8) . Let

3. 17) C. -/ (b, + er)dr.

It can be seen that

(3. 18) p*(rlue) = CT e (T)A(Be + €7).

Suppose the following conditions hold.

(C1) There exists a constant § > 0 such that 8, = Y2,(\ + 1) wr(t)ydt — 6 >
0 a.s. [Pyg]ase— 0.

(C2) The maximum likelihood estimator f. is strongly consistent, that is ,

b, — 8o as. [Pyl as € — 0;
and

(C3) K(-)is a nonnegative function such that, for some 0 < v < g,

/ K(r)e 1™ dr < oo.
—o0

We have now the following main theorem which is an analogue of the Bernstein -von Mises

theorem in Borwanker et al. [2]. For proof, see Prakasa Rao [25].
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Theorem 3.1 : Suppose the conditions (C1) to (C4) hold where A(-) is a prior density which

is continuous and positive in an open neighborhood of g, the true parameter. Then

3. 19) tim [ KO (rlu) - (40) /267 ldr = 0 as. [Py ]

As a consequence of Theorem 3.1, it is easy to see that the following result holds (cf.
Borwanker et al. [2]).

Theorem 3.2 : Suppose the following conditions hold :
(D1) . — by as. [Py)ase —0;
(D2) B — B >0as. [Pyjase —0;

(D3) A(-) is a prior density which is continuous and positive in an open neighborhood of 6y,

the true parameter ; and

(D4) [ 18]™A(6)df < oo for some integer m > 0.

Then
(3. 20) lirr(l)/ |7 ™ p*(7|ue) — (iﬂ;)l/ze—%mzldr =0 a.s. [Pg,).
&= —00

Remark: It is clear that the condition (D4) holds for m = 0. Suppose the conditions (D1)
to (D3) hold. Then it follows that

(3. 21) Jim / Ip*(rlue) — (%)We-%ﬂ*’ur = 0 a.5.[Pyy).

This is the analogue of the Bernstein - von Mises Theorem in the classical statistical inference.

As a special case of Theorem 3.2, we obtain that
(3. 22) Egle™ (8 — 80)I™ — E[Z™) as e — 0

where Z is N(0,871).
Bayes Estimation

We define a Bayes estimator 6, of §, based on the path u. and the prior density A(f), to

be a minimizer of the function
(3. 23) B.()= [ 16, op(Olu)ds, € ©

where i}(B, @) is a given loss function defined on @ x ©. Suppose there exists a Bayes estimator

6.. Further suppose that the loss function satisfies the following conditions :
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(E1) L(8,¢) = L(16 - ¢I) 2 0;
(E2) L(2) is non decreasing for t > 0;

(E3) there exist nonnegative functions R,, K(7) and G(7) such that
(a) ReL(7e) £ G(7) for all e > 0,
(b) R.L(re) — K(7) as € — 0 uniformly on bounded intervals of 7,
(c) the function [*° K(r -+ m)e"%ﬂ"zdr achieves its minimum at m = 0, and

(d) G(7) satisfies the conditions akin to (C3) and (C4) .
The following result can be proved by arguments similar to those given in Borwanker et al.
[2)).

Theorem 3.3 : Suppose the conditions, (D1) - (D3) of Theorem 3.2 hold. In addition
suppose that the loss function L(8, ¢) satisfies the conditions (E1) - (E3) stated above. Then

(3. 24) e, - 0.) > 0as. [Plase — 0
and
(3. 25) lim Re B( J) = lim ReB.(6.)

- GO [ K@t dr as. (P,

Relations (3.8) to (3.10) and the central limit theorem for stochastic integrals prove that
(3. 26) e (0, —00) 5 N(0,5 ) ase — 0

under the probability measure Pg,. As a consequence of Theorem 3.3 and the condition (D1),
it follows that

3. 270 0. — 0o a.s. [Py, as € — 0
and
(3. 28) eV (B — 60) 5 N(0,87 1) as £ — 0.

In other words, the Bayes estimator of the parameter ¢ in the SPDE given by (3.1) is
asymptotically normal and asymptotically efficient under the conditions stated in Theorem
3.3.
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Minimum Distance Estimation

We have discussed asymptotic properties of the maximum likelihood estimators (MLE)
and the Bayes estimators and it is known that these estimators are consistent, asymptotically
normal and asymptotically efficient. In spite of having such nice properties, the MLE have
some short comings. Their calculation is cumbersome and difficult as the expressions for MLE
involve stochastic integrals which need good approximants for computation. Further more
the MLE are not robust in the sense that a slight perturbation in the noise component, say,
from a Wiener process to a Gaussian process with finite variation will change the properties
of the MLE . In order to circumvent this problem, an alternate approach to estimate the
parameter § can be adapted and that is estimation by the method of minimum distance.
The theory of minimum distance estimation in a general frame work is given in Millar [14].
Observe that the parameter # in the SPDE (3.1) can be estimated from the equation (3.5).
We now apply the minimum distance approach adapted by Kutoyants and Pilibossian [13]

to estimate the parameter 6 satisfying the equation (3.5). We define the minimum L;-norm
estimate 5,-5T by the relation
- . T
Bior = A + arg inf / luie(t) — wi(t,0)] dt
€0 Jo
where u;(Z,8) is the solution of the ordinary differential equation

du;(t)
dt

= (9 - )\i)ui(t)vui(ovo) = .
It is easy to see that
u;(t,0) = 'U,'e(g_k")t.
Let
T
(6)= inf / (1,8) — wi(t, )|t
g:i(8) = inf o ), [u(t0) — wilt, 6o)

The following theorem is a consequence of Theorem 1 of Kutoyants and Plibossian [13].
Theorem 3.4 : Yor any § > 0,
P (1Bicr = B0l 2 6) < 2exp{—ki(X + 1)g(6)e ™)

where

k; = exp{—2|6p — \[T}/(2T)3.

Let .
Yi(t) = o=t / e~(o=2)s qyw(s).
0
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Note that the process Yi(t) is a gaussian process. Define

T
Gr = arginf [ [¥i(2) - utvie® 29 .
u 0

The following theorem is again a consequence of Theorems 2 and 3 of Kutoyants and
Plibossian (13].

Theorem 3.5 : For any fixed T > 0,
£

SVrEs

where g is the true parameter. Further more if §y > A;, then
CrToin/2(B0 — Xi) 5 N(0,1) as T — oo.

We now state and prove a lemma.

Y Yier — 00) B Cir as € = 0

Lemma 3.6 : Suppose that for every T > 0,

X.r LA Yr as e = 0
and further suppose that

Yr LY as T — .

Then

XETAY as € » 0 and T — oo.

Proof: Let F' be a closed set and Fs = {z : p(z, F') < 6} where p(z, F') denotes the distance
between the point z and the closed set F. Note that Fy decreases to the set F as § decreases

to zero. Then
(3. 29) P(X.r € F) < P(Yr € F5) + P(X.1 - Yr| > 6).
Hence
lim sup P(Xr€eF)y < P(YreF)+ limj(l)lp P(|Xer - Yr| > 6)
B P(Yr € Fy) E

since X7 5 Yr as ¢ — 0. Taking limit as T - oo in the above inequalities, we get that

limsuplimsup P(X.r € F) < limsup P(Yr € Fj)
0

T—o0 e— T—o0

P(Y € Fy)

A
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since the set F is closed and Y7 £Y as T — o0. Let 6§ — 0. Then we have

limsuplimsup P(X.r € F) < P(Y € F)

T—o0 e—0

for every closed set F. Hence, by the standard results from the theory of weak convergence,

it follows that

(3. 30) XET£>Y as € = 0 and T — oo.
Let
E -
.31 Xor = V(G — 00)T'v; Y
(3. 31) T = ( )\i+1) (Bier — 00)Tvir/2(00 — X)),

(3. 32) Yr = GrTvivbo — A

and Y be a standard normal random variable. Applying the Lemma 3.6, we get the following
result.

Theorem 3.7 : If 6y > A;,then

[

(3. 33) ( — 1)-1(6,-57« — 80)T'wi/2(80 ~ Ai) 5 N(0,1) as € — 0 and T — oo.

In view of Theorem 3.7, the variance of the limiting normal distribution of estimator 0~,~5T
is proportional to [v?(6p — A;)(A; 4+ 1)]~1. Note that the estimators ;c1,i > 1 are independent
estimators of the parameter 6 since the processes {W;(t),¢ > 0},7 > 1 are independent stan-
dard Wiener processes. We will now construct an optimum estimator out of the estimators

O;e7,1 <1 < N forany N > 1.

Let éeT = Ef-vzl a;0;.7 where a;,1 < i < N is a nonrandom sequence of coefficients to be

chosen. Note that N

ésTf—’»[Zai]Ho as e—0and T —

=1
by Theorem 3.7 and hence 6.1 is a consistent estimator for 6y as ¢ — 0 and as T — oo

provided 21111 a; = 1. Further more
- L N
e T (B — 80) = N(O,Za?[Qv?(% =X+ DY) as e —» 0 and T — oo.
i=1

This follows again by Theorem 3.7 and the independence of the estimators {fier, 1 <i< N}

We now obtain the optimum combination of the coeflicients {e;,1 < i £ N} by minimizing
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the asymptotic variance

N

> a[203(6o — A)(\i + D))

=1
subject to the condition ST, a; = 1. It is easy to see that ; is proportional to [(Bo—- AN+
1)] and the optimal choice of {a;,1 < i < N} leads to the "estimator”

i= 1 Ui (00 =N )(A + l)azeT
Sy 0300 — AN + 1)

(3. 34) T =
It is easy to see that
0 260y as € =0 and T — oo
and
~ L N
e (05 — 60) = N(0,[>_ 203 (6o — )M+ 1)]™!) as £ - 0 and T — oo
=1

again due to the independence of the estimators (jisT,l < 7 € N. However the random
variable % cannot be considered as an estimator of the parameter fy since it depends on

the unknown parameter 8y. In order to avoid this problem, we consider a modified estimator

Zl 1 1 (olGT _ )()‘1 + 1)éisT

3. 35 b,
( ) e 1= 1 ’01 (015T - i)(Ai + 1)

which is obtained from 8% by substituting the estimator 6,1 for the unknown parameter 8y
in the ¢-th term in the numerator and the denominator in (3.34). In view of the independence,
consistency and asymptotic normality of the estimators 9~,-5T,1 < i< N, it follows that the
estimator .7 is consistent and asymptotically normal for the parameter 6y and we have the

following result.
Theorem 3.8: Under the probability measure Py,
HAET—’QHO as e >0 and T — o0

and if 6 > N272, then

e_lT(éeT—()o) = N(0 [221) -+ as e -0 and T — o0.
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4 Parametric Estimation for Stochastic PDE with linear

drift (Singular case) ( Continuous sampling)

Let (2, F, P) be a probability space and consider the process %.(,2),0 <z <1,0<t<T

governed by the stochastic partial differential equation

(4. 1) due(t,z) = 8 Auc(t,)dt + e(1 — A)~Y2dW (1, 2)

where 6 > 0 satisfying the initial and the boundary conditions

(4. 2) u.(0,z) = f(z), 0<z <1, fe€ Lf0,1],
ue(t,0) = u(t,1)=0,0<t<T.

Here I is the identity operator, A = %’f as defined in Section 3 and the process W(t,z) is
the cylindrical Brownian motion in L3[0,1].. In analogy with (3.5), the Fourier coefficients

uic(t) satisfy the stochastic differential equations

£
. duge(t) = —0u;(D)dt + ——=dW;(t), 0 <t < T,
. 3 welt) = ~ON i)t + e dWi(0), 0
with )
(4. 4) ie(0) = vi,v; =/ f(z)ei(z)dz.
0

Let P}E) be the measure generated by u, when 6 is the true parameter. It can be shown that
the family of measures {PH(E), 6 € ©} do not form a family of equivalent probability measures.

In fact, Pe(E) is singular with respect to pe(f) whenever 6 # @' in © (cf. Huebner et al. [7]).

Let ugN)(t,:c) be the projection of u.(¢,z) onto the subspace spanned by {e1,---,enx} in
L,[0,1]. In other words
N
(4. 5) ulM(t,2) = 3" wie(t)ei(z).
i=1
Let PéE’N) be the probability measure generated by ugN) on the subspace spanned by
{e1,---,en}in Ly[0,1]. It can be shown that the measures {Pge'N),ﬁ € 0} from an equivalent
family and
(4. 6)
(e.N)
dP,
log —2—(u{™)
dpiM

N T
= —Eiz ; Ai(Ai + 1)[(8 — o) /OT wie()(duic(t) + OoAivi(t)dt) + %(0 - 00)2)\;/0 ul (t)dt].
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Maximum Likelihood Estimation

It can be checked that the MLE éE'N of 8 based on ugN) satisfies the likelihood equation

(4' 7) Qe N = —6_1(95,1\] - 00)ﬂe,N

when fg is the true parameter where

N T
(4. 8) QN = Z/\i\//\,' + l/ u;s(t)dWi(t)
i=1 0
and
N T
4. 9) Bew =D (N + 1)/\?/ u (t)dt.
im1 0
Huebner et al. [7] prove that, for any fixed N > 1, the estimator és,N is consistent and
asymptotically N (0, nx(8)~!) under Pé:’N) as ¢ — 0 where

1 2 —20\T
(4. 10) In(8) = @;/\1(/\1 + 1)1 -e ).

They further prove that, for any fixed € > 0,

(4. 11) 95,N 2, 9, under P,}:) as N - oo

and

4. 12) QR,}E(BO)(@E,N —60) 5 N(0,1) under Pg:) as N = oo
where

—-1/2

N T

(4. 13) Qne() = (Z M+ 1)E / u?E(l)dt)
=1 0

In addition, they show that, for any fixed £ and for any estimator 6 ; based on ugN)(t,a:),

(4. 14) Jim sup BN (w(QRALONON ~ )} > Fu(()
TR0 <8

where ( is N(0,1) for a class of loss functions w(z) which are bounded, symmetric with
w(0) = 0 and w(z) monotone for z > 0. Here Eé\; denotes the expectation under the
probability measure PG(E’N).

We will now investigate the asymptotic behaviour of the Bayes estimators of # as ¢ — 0
for fixed N and as N — oo for fixed £ > 0. The former case is similar to the results discussed

in Section 2.
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Bernstein - von Mises Theorem (when N is fixed as ¢ — 0)

Suppose that A is a prior probability measure on (0, B) where 8 is the o-algebra of Borel
subsets of an open set @ C R. Further suppose that A has a density A(-) with respect to the
Lebesgue measure and the density A(-) is continuous and positive in an open neighbourhood

of #p, the true parameter.

(V)

The posterior density of 8 given us ’ is

(™) A6)
(N)y dPgo'
(4. 15) POle™) = — e :
[ Sy (us ) A(0)d
Let
(4. 16) T=¢"(0-6.n)
and
(4. 17) p*(r|ul™) = € p(fen + er|ul™).

Then p*(rlugN)) is the posterior density of e7!(8 — GAE,N). Let

L W
(4. 18) ve,N(T) = PP / prc) a.s. [P,
It is easy to see that
(4. 19) logve n(T) = —;ﬂe,zv as. [Py

in view of (4.7). Suppose the following conditions hold:
T

(C1) Benw = 2N, (O + 1)A2 ({ u(t)dt —» By > 0 a.s. under {Pé:’N)} ase — 0;

(C2) the maximum likelihood estimator 0. n is strongly consistent as € — 0, that is,
(}E’N — fy a.s. under {P(,(:’N)} as e — 03

(C3) K(-) is a nonnegative function such that, for some 0 < y < fn,

/ I\"(T)e_%TQ(ﬂN_'Y)dT < 00;

— 00

and
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(C4)' for every n >0 and § >0

e / K(re ™ )Mbon + 7)d7 — 0 as.
ri>8

under {Pég'N)} as e — 0.

Under the conditions (C1) — (C4), the following theorems can be proved by arguments

analogous to those given in the proofs of Theorems 3.1 and Theorem 3.2.

Theorem 4.1 : Suppose the conditions (C1) —~ (C4)" hold where A(:) is a prior density

which is continuous and positive in an open neighbourhood of 8, the true parameter. Then

) = (21907 ar — .
e

(. 20) lim / K(r)
under {P,;(:'N)}.

Theorem 4.2 : Suppose the following conditions hold:

(D1) 6N — 6o a.s. under P()(:’N) as £ — 0;

(D2) Ben — On > 0 a.s. under {Pa(:’N)} as ¢ — 0;

(D3)" A() is a prior density which is continuous and positive in an open neighbourhood of
8o, the true parameter; and

(DaY 70 [8|™ A(8)df < oo for some integer m > 0.
_T?en

(4. 21) lin% / 7™ |p* (r]ulM)y — (%:_’-)l/ze‘%ﬂwf2 dr =0 as..

under {P;:'N)}‘

Bayes Estimation (when N is fixed and € — 0)

We define a Bayes estimator §, v of 8 based on the path ut™ and the prior density A(f)

as an estimator which minimizes

(4. 22) Ben(¢) = / L(8, ¢)p(81u{"™)do
Q@
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where L(8,$) is a loss function satisfying the properties (E1)-(E3) stated in Section 3. One

can prove the following theorem as an application of Theorem 4.2.

Theorem 4.3 : Suppose the conditions (D1) — (D3) of Theorem 4.2 hold. In addition
suppose the loss function 7,(8,¢) satisfies the conditions (E1)-(E3) stated in Section 3. Then

(4. 23) £ (B — 6.N) — 0 a.s. under {P()(S'N)} ase—0
and

li_% ReB.N(BeN) = !‘_’f}, ReB.N(8:n)
(4. 24) = (—‘;%) v 7 I((T)e_%ﬁ”rzdr a.s.

under {P,,(:'N) }.

In particular, it follows that

(4. 25) 0. n — 0o a.s. under {Pg(:’N)} as e — 0
and
(4. 26) e By — 0) 5 N(0,B5") as € — 0

giving the asymptotic properties of the Bayes estimator és_N.

Let us now consider the problem of Bayes estimation for the stochastic PDE given by

(4.1) as N — oo for any fixed € > 0.

Bernstein - von Mises theorem and Bayes estimation (when ¢ is fixed and N — )

Let

N T -1/2
(4. 27) Qo) = (Z A2(N; + 1)E5_N/u?e(t)dt)
i=1 o
and suppose that
(DO)QS\E,)(O) — 0 as N — oo for any fixed € > 0. Let

(4. 28) r=Q0)72(8 - b.v),
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(4. 29) ™y = QL (0)p(be v + QI (0)r|ulM),
and
{eN) (e,N)

(4. 30) (r) = —LetQi@r /d Per s [P

.o Ve n(T) = = £ a.s. [P .

dpiN) dpPi bo
It can be checked that
(¢) [} 2

(4. 31) log 7. n(T) = —%222—0)1-2/35'1\; a.s. [P,}:’N)]

in view of (4.7). Note that ¢ is a fixed positive constant in the present discussison. Suppose

the following conditions hold:
()
(Cry” Q—I"—-—?—w:)w"” — 1 a.s. under {P;:'N)} as N — oo;
(C2)" the maximum likelihood estimator §, v is strongly consistent as N — oo, that is

. n — 8o a.s. under {Pa(g’N)} as N — oo;
(C3)" the function K(-) is a nonnegative function such that for some 0 < vy < 1,
7 I\’(T)e_%’2(]_")dr < 00;
and -

(C4)" for every 7 > 0 and 6 > 0

=15 (00) 72 / ,\'(TQ%)—](()())))\((;E_N + 7)dr — 0 a.s. under {Po(:'N)} as N — oo.
The following analogues of Theorem 3.1 to 3.3 hold under the conditions (C1)"-(C4)". We
omit the details.

Theorem 4.4 : Suppose the conditions (C1)” - (C4)” hold where A(-) is a prior density
which is continuous and positive in an open neighbourhood of g, the true parameter. Then,

for any fixed ¢ > 0,

e 1 .
. 32) Jim / K (DI |dM) — (=) 47 |dr = 0 as. [P).

Theorem 4.5 : Suppose the following conditions hold, for a fixed € > 0, in addition to the
condition (DO) stated above:
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(D1)" ey — O as. [PS)) as N — oo;

(e)
D2 " ,Bt,NQ2 (00)2 — 1 a.s. P(s) as N — o0,
5 fo

(D3)” A(:) is a prior density which is continuous and positive in an open neighbourhood of

fo, the true parameter ; and
(D4)Y" [ 9™ M\8)d# < oo for some integer m > 0.
Then

(4. 33) nﬁ_,“(}o / 'Tlmlﬁ(Ti“gN)) - (él;)l/ze_%"z[d'r = 0 a.s. under {Po(:'N)}.

—00

Theorem 4.6 : Suppose the conditions (D1)” - (D3)" of Theorem 4.5 hold. In addition

suppose the loss function (8, ¢) satisfies the conditions (E1)-(E3) stated in Section 3. Then,
for any fixed € > 0,

(4. 34) 55)—1(00)(9;'1\, —b.n)— 0 as. [Pg(:)] as N — oo,
and
(4.35)  Jim Ry PenvBen) = Jim R g, Ben (fen)

= ()" [ K@e ¥ ar as. ()

As a consequence of Theorem 4.6 and the relations (4.11) and (4.12) it follows that, for
any fixed € > 0,

4. 36 0. N — 0 a.s. under {P MV as N - oo
f 8o

and

(4. 37) Q%97 (00) (B — 80) S N(0,1) as N — 0.

Minimum Distance Estimation

An alternate approach for the estimation of the parameter 4 is by the minimum distance
method. Observe that the parameter # can be estimated from the equation (4.3). We now
again apply the minimum distance approach adapted by Kutoyants and Pilibossian [13] as
before to estimate the parameter @ satisfying the equation (3.3). We define the minimum

Li-norm estimate 8,7 by the relation

T
. — )"t i . —
bier = —; a.rgexgg)/o |uie(t) — ui(t,0)] dt
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where u;(t,8) is the solution of the ordinary differential equation

du;(t

wi(t) _ —0)u;(t), u;(0,8) = v

dt
It is easy to see that

ui(t,0) = vie 0N,
Let
T
g:(6)= inf ] |ui(t,0) — ui(t, B)|dt.
[8—6oi>6x7" Jo

The following theorem is a consequence of Theorem 1 of Kutoyants and Pilibossian [13].
Theorem 4.7 : For any § > 0,

P (1Bier = B0] 2 8A7") < 2exp{—ki(X: + 1)gf(5)e™*)
where

ki = exp{—2|60|TX;}/(2T)*.

Let .
Vi(t) = e [ et awis)
0

Note that the process Y;() is a gaussian process. Define

T
= s [ K00 = e
0

The following theorem is again a consequence of Theorems 2 and 3 of Kutoyants and
Pilibossian [13].
Theorem 4.8 : For any fixed T > 0,

€ o
(m) l(oieT"oo)/\i_p'_niT as € —» 0

where g is the true parameter. Further more if 8y < 0, then

mrT v/ —20p; £ N(0,1) as T' — oo.

Applying the Lemma 3.6, we get the following result.
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Theorem 4.9 : Under the probability measure Py, if 6y < 0, then

£

(4. 38) (ﬁ)‘%(éw — 80)Tviv/—280x 5 N(0,1) as € = 0 and T — oo.

In view of Theorem 4.9, the variance of the limiting normal distribution of estimator Bier
is proportional to [—8pv?A3(\; + 1)]71. Note that the estimators f;,7,7 > 1 are independent
estimators of the parameter 8 since the processes {W;(t),t > 0},7 > 1 are independent Wiener
processes. We will now construct an optimum estimator out of the estimators é;ET, 1<i<N

for any N > 1.

Let 6.p = Z{\il a;f;er where a;,1 < i < N is a nonrandom sequence of coefficients to be
chosen. Note that

oy

N
ET'ﬂ[Zai]eo as € -0 and T — oo

i=1
by Theorem 4.9 and hence 5€T is a consistent estimator for 3 as ¢ — 0 and as T — o

provided Z{i, a; = 1. Further more

N
e 1T (8.7 — 8o) 5 N(O,Za?[—&f)ovfz\?()\i +1]™) as e—>0 and T — 0.
i=1
This follows again by Theorem 4.9 and the independence of the estimators {gisT, 1<i< N}
We now obtain the optimum combination of the coefficients {a;,1 <7 < N} by minimizing

the asymptotic variance

a2[—2060223()\; + 1)])7!

N

1=1

subject to the condition Y, a; = 1. It is easy to see that a; is proportional to [-8o A3 (X +1)]
and the optimal choice of {a;,1 < i < N} leads to the estimator

1023\ + Dfer

CE oI +1)

It is easy to see that
0 60 as € >0 and T — o0
and

N
e~ T8 — 8o) 5 N(O,[—Qzegv?/\?(,\; +1)™) as e =0 and T — o0
i=1

again due to the independence of the estimators éisTyl < ¢ £ N and we have the following

result.
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Theorem 4.10: Under the probability measure Py,
0 B0y as £ >0 and T — oo

and, if 85 < 0, then

N
e T (62 — 00) 5 N(0,[-23 002 A3(Ai +1)] ") as € 5 0 and T — o0

i=1

for any fixed N > 1.

5 Parametric Estimation for Parabolic SPDE (Continuous

sampling)

Let (2, F, P) be a probability space and consider a stochastic partial differential equation
(SPDEL) of the form

(5. 1) dul(t,z) = A%O(t,z)dt + dW (2, 2),0 <t < T,z € G

where A? = 0A, + Ag, A; and Ag being partial differential operators, # € ® C R and
W(t,z) is a cylindrical Brownian motion in Ly(G),G being a bounded domain in B¢ with
the boundary 8G as a C*-manifold of dimension (d— 1) and locally G is totally on one side

of 8G. Tor the definition of cylindrical Brownian motion, see, Kallianpur and Xiong [11],
p-93.

The order Ord(A) of a partial differential operator A is defined to be the order of the

highest partial derivative in A. Let mg and m; be the orders of the operators Ao and A,

respectively. We assume that the operators Ag and A; commute, m, is even and
1
(CO) > 5(0rd(A%) - d)

in the following discussion.

Suppose the solution «?(f,z) of (5.1) has to satisfy the boundary conditions
(5. 2) u’(0,2) = uo(2)

and

(5. 3) DYu(t,2)|ag = 0
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for all multiindices 4 such that |[v] = m — 1 where 2m = max{my,mg). Here

Y

!
(5. 4) D7 f(z) = 57 e (@)

with |y| = v + -+ + 74. Suppose that

(5. 5) Adzyu=—- Y, (-1)*D(a(x)Du)
for,|B1 <

where

(5. 6) a?’(z) € C2(G).

Let

(6.7 a®f(8,z) = Ba?’ﬁ(z) + agﬁ(z).

Suppose 6 is the true parameter.
We follow the notation introduced in Huebner and Rozovskii [8]. Assume that the fol-

lowing conditions hold.

(H1) The operators Ay and A; satisfy the condition

/ A;uvdz = / uA;vdz,u,v € C(G),i=0,1.
G G

(H2) There is a compact neighbourghood O of 8 so that {Ag,8 € O} is a family of
uniformly strongly elliptic operators of order 2m = maz(m,, mo).

For s > 0, denote the closure of C$°(G) in the Sobolev space W*2(G) by W2,

The operator A? with boundary conditions defined by (5.2) and (5.3) can be extended
to a closed self-adjoint operator Lg on L2(G) (Shimakura [34]). In view of the condition
(H2) , the operator Lg is lower semibounded, that is there exists a constant k(f) such that
~Lg + k(8)] > 0 and the resolvent (k()] — L)~} is compact. Let Ay = (k(8)] — Lg)3r.
Let h;(6) be an orthonormal system of eigen functions of Ay. We assume that the following

condition holds.

(H3) There exists a complete orthonormal system {h;,i > 1} independent of 8 such that

Ngh; = /\,'(B)h,',o € 0.

The elements of the basis {h;,¢ > 1} are also eigen functions for the operator L, that is

Loh; = ufh,'
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where

= —AI™(8) + k(8).
For s > 0, define JT§ to be the set of all u € Ly(G) such that

oo

Nulls.o = (30 X (O (s hy)y ()P < 0.
j=1
For s < 0, H is defined to be the closure of Ly(G) in the norm |juls¢ given above. Then
H§ is a Hilbert space with respect to the inner product (.,.)ss associated with the norm
Ills,p and the functions hf, = A7°(#)hi,i > 1 form an orthonormal basis in Hj. Condition
(H2) imples that for every s ,the spaces Hj are equivalent for all §. We identify the spaces
H}§ (denoted by H*) and the norms ||.||; ¢ for different 8 € ©.

In addition to the conditions (H1)-(H3), we assume that
(H4)uo € H~* where a> £. Note that ug € La(G),
(H5) the operator Ay is uniformly strongly elliptic of even order m and has the same system
of eigen functions {h;,7 > 1} as L.

The conditons (H1)-(H5) described above are the same as those in Huebner and Rozovskii
(1995).

Note that ug € H~*. For § € O, define

(5. 8) ud; = (o, h*)-a-
Then the random field

(5. 9) Ww0(1,2) Zu hp*(x)

is the solution of (5.1) subject to the boundary conditions (5.2) and (5.3) where u/(t) is the

unique solution of the stochastic differential equation
(5. 10) dul(t) = pluf()dt + X7 (0)dW:(1),0 <t < T,
(5. 11) u"(0) = uf).

Let 7V be the orthogonal projection operator of H~% onto the subspace spanned by
{h*,1<i< N} Let

(5. 12) WMNO(tz) = 7Nul(t,2)

N
> ul (D" ()

1=1
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where uf(t) is the solution of (5.10) subject to (5.11). Note that

(5. 13) dulV¥(t,x) = A%uNO(t, 2)dt + dWN(1,2),0<t < T,z € G
with
(5. 14) uN0(0,z) = 7V ug(x)
and
N
(5. 15) WN(t,2) =D AT Wi()h* (z).
=1

Here {W,(t),t > 0},1 > 1 are independent standard Wiener processes.
Let P} be the probability measure generated by u™ on C([0,T}; RN). Let h; denote
hi_;o,uN denote 4% and u denote ufe when 6 is the true parameter. It is known that, for

any 6 € O, the measures P(,N and Pé;’ are absolutely continuous with respect to each other

and
ary N 7 N N (6* - 63) 7 N{ a2
log g (") = (000 / (AruN(s),du(s))o - T2 0/ l4su®(s)]ds
T
(5. 16) (6 - 65) / (AruM (s), Agu™ (s))ods.
0

Maximum Likelihood Estimation

It is easy check that (cf. Huebner and Rozovskii [8])
T

J(A1uN (s),dWN (s))o
(5. 17) Oy — 8 =2

T
J v (o) s

where éN is the maximum likelihood estimator of f5. Huebner and Rozovskii (8] studied the
asymptotic properties of this estimator under the conditions (H1)-(H5). Further more the

Fisher information is given hy

T
(5. 18) IN=F / ([ Ay (s)[|2ds.

Note that Iy — 0o as N — oo from the Lemma 2.1 of Huebner and Rozovskii {8].
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Bernstein-Von Mises Theorem

Suppose that A is a prior probability measure on (@, B) where B is the o-algebra of Borel
subsets of set ® C R. We assume that the true parameter 8y € ©°, the interior of ©. Further
suppose that A has the density A(-) with respect to the Lebesgue measure and the density
A(+) is continuous and positive in an open neighbourhood of g, the true parameter.

Let

(5. 19) r =10 - 6n)
and
(5. 20) p () = I 2p(By + v Iy )

where p(8|uN) is the posterior density of § given u”. Note that

(5. 21) POy = —
[ S ()N @)

© o

and let p*(7|2V) denote the posterior density of 111\1/2(0 — éN). Let

dPY . 7dpN
N+l /2 é
(5. 22) vy(r) = dPoNN /dPﬁ
o o
N
_ dPéN+'rI;1/2
= "—m— a.S.
On

In view of (5.16), it follows that

T
1,
(5. 23) log un () = —§TZIN‘/IIA1UN(8)II3ds
0

since

f(AluN(sxduN(s) ~ Ao(s)uN(s)ds)

(5. 24) by = ;
[ [A1uN (s)|i3ds
0
Let -
(5. 25) Cy = / N (TNOy + 71 Vdr.

It can be checked that
(5. 26) pe(r]uN) = CRlun(T)IAON + TIRP).

Note that
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T
(C1) By =I5 ({ | A1uN(s)||2ds — 1 a.s. [Py,] as N — oo
from the Lemma 2.2 of Huebner and Rozovskii [8]. Then the following relations hold:

()

(i) forany 0 < v < 1,

. 1
1\}1_1’1(1)01/,\/(1') = exp(—grz) a.s. [Pg,],
1 2
log i (r) < 571 - 7)

for every 7 for sufficiently large N, and

(iii) for every 6 > 0, there exists 7' > 0 such that
1, _
sup wvn(T) < exp{—z'y'INl}
'7—[>§[llv/2

as N — oo.

Further more

(C2) the maximum likelihood estimator Oy is strongly consistent, that is
Oy — o a.s. [Pg,) as N — oo

from the Lemmas 2.1 and 2.2 in Huebner and Rozovskii [8]. Suppose that
(C3) K (+) is a nonnegative function such that, for some 0 < v < 1,

e}

/ K(r)e 3" 0-dr < co.

(C4) For every n > 0 and 6 > 0,

IR / K(rIg )My + r)dr — 0 a5 [Py,
Ir{>6
as N — oo.
We now have the following main theorem which is an analoguc of the Bernstein-von Mises
theorem (cf.Prakasa Rao [18,19]) for diffusion processes and diffusion fields. A special case

of this result for some classes of SPDIE’s was proved in Prakasa Rao [25].

Theorem 5.1: Suppose the conditions (C3) and (C4) hold in addition to the conditions

(H1)-(H5) stated earlier where A(+) is a prior density which is continuous and positive in an



98

open neighbourhood of fy, the true parameter. Then

® 1 1/2 N
(5. 27) Jim / K (rlu) - (-27) 37 |dr = 0 as. [Py).

As a consequence of Theorem 5.1, it is easy to get the following result.

Theorem 5.2: Suppose the conditions (H1)-(H5) hold. In addition suppose that:

(D1) A(-) is a prior density which is continuous and positive in an open neighbourhood of
9, the true parameter; and

(D2) [ |8|™A(8)d8 < oo for some integer m > 0.
—oo

Then

co 1
. m|, 1\2 i
(5. 28) 1&13100 / 7)™ p* (r|uN) — (2_#) e” 27 |dr = 0 a.s. [Py,

Remarks: It is obvious that the condition (D2) holds for m = 0. Suppose the condition
(D1) holds. Then it follows that

H 7 4 N 1 172 — 172
(5. 29) ]\}l_rpoo/|p (rlu™) - (.2;) e dr = 0 as. [Py,].

This is the analogue of the Bernstein-von Mises theorem in the classical statistical inference.

As a particular case of Theorem 5.2, we obtain that
(5. 30) Ego[IN*(6n = 60)™ = E[Z]™ as N — o0

where Z is N(0,1).

For proofs of Theorems 5.1 and 5.2, see Prakasa Rao [21].
Bayes estimation

We define an estimator y for 8 to be a Bayes estimator based on the path u/V corre-
sponding to the loss function i((),(p) and the prior density A(8) if it is an estimator which

minimizes the function
Bu(y) = [ L0, )p(0l")db, o € ©
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where L(#, ) is defined on ® x @. Suppose there exist a Bayes estimator n. Further suppose
that the loss function L(8,¢) satisfies the following conditions:

(E1) L(8,¢) = L(16 - ¢]) > 0;
(E2) L(t) is nondecreasing for ¢ > 0;

(E3) there exists nonnegative functions Ry, K(7) and G(7) such that
(a) RNL(TI;,UZ) < G(7)foral N > 1;
(b) RNL(T[;,lﬂ) — K (r) as N — oo uniformly on bounded intervals of 7;

(c) the function
(e o]

/ K(r+ m)e"%"2 dr
—co

achieves its minimum at m = 0, and
(d) G(7) satisfies the conditions similar to (C3) and (C4).

The following result can be proved by arguments similar to those given in Borwanker et
al. [2]. We omit the proof.

Theorem 5.3: Suppose the conditions (D1)-(D2) of Theorem 5.2 hold in addition to (H1)-

(H5) stated earlier. In addition , suppose that the loss function (8, ¢) satisfies the conditions
(E1) - (E3) stated above. Then

(5. 31) IN?(0y - ) > 0 as. [Pg,) as N > oo
and
(5. 32) Jim RyBy(n) = lim RyBy(fn)

Il

1/2 %§
(L) / K(T)e‘%Tsz.
2T
-0

Huebner and Rozovskii [8] proved that

(5. 33) On — o a.s. [Pg,) as N — o0

and

(5. 34) IN*(Bn - 60) 5 N(0,1) as N — oo
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under the conditions (H1)-(H5). As a consequence of Theorem 5.3, it follows that

(5. 35) On — 0o as [Pg,] as N — oo
and
(5. 36) IN*(n — 60) 5 N(0,1) as N — oo.

In other words the Bayes estimator Ay of the paramaeter 8 in the parabolic SPDE given
by (5.1) is strongly consistent, asymptotically normal and asymptotically efficient as N — oo
under the conditions (H1)-(H5) of Huebner and Rozovskii [8] and the conditions stated in
Theorem 5.3.

Remarks: A general approach for the study of asymptotic properties of maximum likeli-
hood estimators and Bayes estimators is by proving the local asymptotic normality of the
loglikelihood ratio process as was done in Prakasa Rao [17], Ibragimov and Khasminskii [9]
in the classical i.i.d. cases and by Huebner and Rozovskii [8] for some classes of SPDE. Qur
approach for Bayes estimation, via the comparison of the rates of convergence of the differ-
ence between the maximum likelihood estimator and the Bayes estimator, is a consequence

of the the Bernstein - Von Mises type theorem.

Minimum Distance Estimation

We now apply the minimum distance approach for the estimation of the parameter # in
the SPDE (5.1). Observe that the parameter 8 can be estimated from the equation (5.10).
We now again apply the minimum distance approach adapted by Kutoyants and Pilibossian
[13] as before to estimate the parameter § satisfying the equation (5.10). We define the

minimum L;-norm estimate 0~1'ET by the relation

T
(f.7) = i (1) —ut
pilbier) = arg nf [ l(0) - wi(e,6)
where u}(t,0) is the solution of the ordinary differential equation

Tu*(t
O O

It is easy to see that

u¥(t,0) = viet O,

Let r
h(6) =  inf / *(1,8) — ul(t, 60)|dt.
(6) @ a0y 155 Jo |ui (2, 6) ~ ui(t,80)]
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The following theorem is a consequence of Theorem 1 of Kutoyants and Pilibossian [13].
Theorem 5.4 : Tor any § > 0,

Poy (|i(Bier — pi(Bo)| > 8) < 2exp{-g:A}*(60)h3 ()%}
where

g: = exp{~2|ui(00)|T} /(2T

Let ,
Ji(t) = e‘“(e")t/ e~Hilfo)s dW;(s).
0

Note that the process J;(t) is a gaussian process. Define
T
YiT = arginf/ [Ji(t) — utvie”‘(6°)t| dt.
v Jo
The following theorem is again a consequence of Theorems 2 and 3 of Kutoyants and

Pilibossian [13].

Theorem 5.5 : For any fixed T > 0,

(A7) (wiBier) = pi(B0)) B Jir as € — 0

when fp is the true parameter. Further more if y;(65) > 0, then

J,‘TT'U,‘VQ,ui(eo) £> N(O, 1) as T — oco.

Applying the Lemma 3.6, we get the following result.

Theorem 5.6 : Under the probability measure Py, if p;(60) > 0, then

(5. 37) (A7) 0T (i Bier) — 12:(80))\/21i(B0) 5 N(0,1) as € — 0 and T — oo.

In addition to the conditions (H1)-(H5), suppose that
(H6) the functions p;(#) are differentiable with respect to # with nonzero derivatives.

Let p!(8) denote the derivative of the function y;(#) with respect to . Applying the delta
method, we obtain the following result.

Theorem 5.7 : Under the probability measure Py, if p:(6o) > 0, then

(5. 38) (A7) 0T (Bier — B0))y/20i(80) 5 N(0,[4i(60)] ™) as ¢ — 0 and T — oo.
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In view of Theorem 5.7, the variance of the limiting normal distribution of estimator ier

is proportional to
{0} 1 (60)NF*(80) (i (B0 ))*) 1
Note that the estimators ;7,7 > 1 are independent estimators of the parameter fg since the

processes {W;(t),t > 0},7 > 1 are independent Wiener processes. We will now construct an

optimum estimator out of the estimators éieT,l <i< N forany N > 1.

Let 8.7 = Zfil o;0;e7 where a@;,1 < i< N is a nonrandom sequence of coefficients to be

chosen. Note that N

G175 [Zai]()n ase—=0and T —

=1

by Theorem 5.7 and hence 55T is a consistent estimator for 6y as ¢ — 0 and as 7" — oo

provided Y/, ; = 1. Further more

N
e T (Ber — b0) S N(0,Y " a? {20} 11:(80) A2*(60)[1i(80))*} 1) as € = 0 and T — oo.

=1

This follows again by Theorem 5.7 and the independence of the estimators {f;.7,1 < 1 < N}.
We now obtain the optimum combination of the coefficients {a;,1 < 7 < N} by minimizing

the asymptotic variance

N
> o {207 i(B0)A*(B0) [i(B0))*}
i=1
subject to the condition Zf\il a; = 1. It is easy to see that «; is proportional to

{02 1:(80)A* (B0) 13 (60))* }
and the optimal choice of {a;,1 <1 < N} leads to the estimator

(5. 39) " = N, U?#i(HO)A?"(%)[HQ("O)]?@:':T_
: TN 1 v2ui(80) A2 (80)[ 1} (60)]]

It is easy to see that

8ir 50 as € » 0 and T — oo

and

N
e~IT(02r — 6o) 5 N(0, [Z{m;?u,-(00)/\3“(00)[,4(90)]2]-’) ase—0and T —

i=1
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again due to the independence of the estimators éiET,l < 1 < N. However the random
variable 8%, cannot be considered as an estimator of the parameter 8 since it depends on

the unknown parameter 8. In order to avoid this problem, we consider a modified estimator

(5. 40) i f\ilvfui(5isT)/\?“(5isT)[ﬂi(5is~T)]29_isT
’ SN 2 10i(Bier) N2 (B 12 (Bier ) ]2

<

which is obtained from 8%; by substituting the estimator 0;. for the unknown parameter g
in the i-th term in the numerator and the denominator in (5.39). In view of the independence,
consistency and asymptotic normality of the estimators éieT,l <1 < N, it follows that the

estimator .7 is consistent and asymptotically normal for the parameter 8y and we have the
following result.

Theorem 5.8 : Under the probability measure Py,
by B8y ase—0and T > o0

and, if pi(60) < 0,1 <4 < N, then
- L N

e T(fer — 60) = N(0,{2 v pi(60) A2 (60)[1i(00))*} ") as € —» 0 and T — oo
i=1

for any fixed N > 1.

6 Nonparametric Estimation for Stochastic PDE with lin-
ear multiplier ( Continuous sampling)
Example I

Let (Q, F, P) be a probability space and consider the process u.(¢,2),0 <2 <1,0<t < T

governed by the stochastic partial differential equation

(6. 1) duc(t,z) = (Aue(t, z) + 0(t)uc(t, z))dt + edWp(t, )

where A = —%27. Suppose that € — 0 and § € O where O is a class of real valued functions
6(1),0 < t < T uniformly bounded , k times continuously differentiable and suppose that the
k-th derivative 8(¥)() satisfies the Lipschitz condition of order a € (0,1], that is,

(6. 2) 0B (1) — 0B ()| < [t —s]", 8=k + a.
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Further suppose the initial and the boundary conditions are given by
(6 3) us(O,z) = f(x)vf € LZ[O’ 1]
' ue(t,0) = ue(1,1) =0,0<t < T
and @ is the nuclear covariance operator for the Wiener process Wg(t,z) taking values in
Ly[0,1] so that
Wo(t,z) = Q'/*W (t,2)
and W(t,z) is a cylindrical Brownian motion on L3[0, 1]. Then, it is known that (cf. Rozovskii
[33], Kallianpur and Xiong [11])

(6. 4) Wo(t,z) = qu}/ze,-(x)wi(t) as.

where {W;(t),0 <t < T},7 > 1 are independent one - dimensional standard Wiener processes
and {e;} is a complete orthonormal system in L3[0, 1] consisting of eigen vectors of  and
{q;} eigen values of Q.

We assume that the operator @ is a special covariance operator ) with e, = sin(knz),k >
1 and Ax = (7k)%,k > 1. Then {e;} is a complete orthonormal system with eigen values
g = (14 X)7',i> 1 for the operator Q and Q = (/ — A)~!. Note that

(6. 5) dWg = Q/%aw.
We define a solution u.(t,z) of (6.1) as a formal sum
(6. 6) ue(t,z) = Zu;s(t)e,'(m)
i=1

(cf. Rozovskii [33]). It can be checked that the Fourier coefficient u;.(t) satisfies the stochastic
differential equation

€
6.7 duie(t) = (0(t) — A)uie(t)dt + ——=—=dW;(1), 0 <t < T
with the initial condition
1
6. 8) :(0) = i, vi :/ f(@)ei(z)dz.
0

We assume that the initial function f in (6.3) is such that

v = /01 f(@)ei(z)de > 0, i> 1.
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Estimation of linear multiplier

We now consider the problem of estimation of the function 6(¢),0 < ¢t < T based on
the observation of the Fourier coefficients u;c(t),1 < i < N over [0,7] or equivalently the
projection ugN)(t,w) of the process u.(t,z) onto the subspace spanned by {ej,...,ex} in
L,{0,1].

We will at first construct an estimator of 8(.) based on the path {u;(t),0 <t < T}. Our
technique follows the methods in Kutoyants [12], p.155.

Let us suppose that

(6. 9) sup sup |8(t)] < Lo.
0€© 0<t<T ’

Consider the differential equation

(6. 10) d_u(;i_t)_ = (0(t) - )\i))ui(t),ui(o) =v,0<t<T.

It is easy to see that

t
'U,i(t) = viefo (B(s)—/\;)ds’o <t<LT

and hence

(6. 11) wt) > ve ™Mt o<t < T
where

(6' 12) M;= Lo+ \.

From the Lemma 1.13 of Kutoyants [12], it follows that

0<s<T A+ 1

€
(6. 13) sup_|uie(s) — ui(s)| € —===eM* sup |Wi(s)|
< 0<s<T
almost surely. Let
(i) — P . >_1_ =Mt
(6. 14) Al ={w: olggfgtu”(s) > 5vie }

and 4; = A,(J’:). Note that Agi) contains the set A; for 0 <t < T.
Define the process {Yi.(t),0 <t < T} by the stochastic differential equation
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62
2N+ 1)
(6. 15) +ul ()x(ANdu (1), 0 <t < T

dYee(2) uz2 () x (At

where x(F) denotes the indicator function of a set E. Let ¢, — 0 as ¢ — 0 and define

t -
Pe
where G(.) is a bounded kernel with finite support , that is , there exists constants ¢ and
b such that

. T s
(6. 16) blt) = &+ x(A)67 [ GO Vi)

b
(6. 17) / G(u)du = 1,G(u) = 0foru < aand u > b.

We suppose that @ < 0 and b > 0. Further suppose that the kernel G(.) satisfies the

additional condition

(6. 18) / Guywdu = 0,5 =1,...,k.

Note that (;is(t), 1 £ i < N are independent estimators of 6(t) since the processes W;,1 <
t < N are independent Wiener processes.

Let 7. = s_%. Suppose that Under some additional conditions , it can be shown (cf.
Prakasa Rao [24]) that the estimators §;c(t),1 < i < N are independent estimators of §(t)
such that

(6. 19) sup |E[dic(t) - 0(1)]| < Cre7hn
1<i<N

and

(6. 20) sup_E[f,(1) - 00> < Coewirt

1<i<N
where Cy and C; are constants depending on the kernel G(.), the Lipschitz constant Lg
and N. Note that the estimators éis(t),l < i £ N are the best estimators of 6(¢) as far
as the rate of mean square error are concerned by Theorem 4.6 in Kutoyants [12]. We now
combine these estimators in an optimum fashion to get an estimator using all the information

available. Define TN G + 1)ul(2)
~ _ =1 e (1 it Uu; t
6. 21) B NeS T O
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Note that the random variable (1) is not an estimator of 8(t) as the functions u;(t) depend
on the function (t). However the random variable Gy, (t) is a linear function of independent

random variables §;c(t),1 < ¢ < N. From the earlier calculations , it can be checked that

1!

E(Bne(t) - 6(1))* Var(Bne(t)) + (E(8ne(t) - 6(t))°

< 0365_;% + C455%£_1
A8
(6. 22) < 0552;“‘
Let
N @ 9
i1 G (DN + DAz (2
(6. 23) 0%.(1) = Zz-le( X 1+A2)uw( )
YA+ D (1)
where
(6' 24) ’ﬁ,‘c(t) = viefo‘(é“("’)"\-')dﬁ_

The following results can be proved. For details, see Prakasa Rao [24].
Theorem 6.1: for 0 <t < T,
(6. 25) One(t) D 8(t)ase — 0.

Since the estimators é,-e(t),l < 1 £ N are independent random variables, it follows that

the estimator 8}, (t) is asymptotically normal and we have the following theorem. For details,
see Prakasa Rao [24].

Theorem 6.2: Tor 0 < t < T,

(6. 26) Ye(Ono(t) — (1)) 5 N(0,0%(2)) as e — 0
where
(6. 27) e = e~ T
and ) -
2V = ——— 2(u)du.
(8. 28) 0 = e Lo



108

Remarks L:If £ = 0 and § = 1, that is, the function 6(.) € O where O is the class of

uniformly bounded functions which are Lipschitzian of order one, then it follows that

(6. 29) e75(0%.(t) — (1)) 5 N(0,0%(2)) as £ — 0.

Remarks 2: It is known that the probability measures generated by stochastic processes
satisfying the SPDE given by (6.1) are absolutely continuous with respect to each other
when 8(.) is a constant (cf. Huebner et al. {7]). There are classes of SPDE which generate
probability measures which are singular with respect to each other when 6(.) is a constant.

We now study the problem of nonparametric inference for a linear multiplier for such a class
of SPDE by the above methods(cf. Prakasa Rao [27]).

Example 11
Let (§2, F, P) be a probability space and consider the process ug(t,2),0 <z <1,0<t < T

governed by the stochastic partial differential equation

(6. 30) due(t,z) = 0(t)Auc(t, z)dt + edWp(t, z)

where A = %. Suppose that ¢ — 0 and 8 € O where O is a class of positive valued functions
6(1),0 <t < T uniformly bounded , k times continuously differentiable and that the k-th
derivative 8(¥)(.) satisfies the Lipschitz condition of order & € (0,1}, that is,

(6. 31) 19 (1) — 68N ()| < |t — s|*, 8 = k + a.
Further suppose the initial and the boundary conditions are given by
(6. 32) 1.(0,2) = f(z), f € L]0, 1]
ue(1,0) = ug(,1) = 0,0< t < T

and () is the nuclear covariance operator for the Wiener process Wy(¢, z) taking values in
L,[0,1] so that

Wa(t,2) = QW (t,2)
and W(t,z) is a cylindrical Brownian motion in L[0, 1]. Then, it is known that (cf. Rozovskii
[33], Kallianpur and Xiong [11])

(6. 33) Wo(t,z) = iq}lze;(m)W,’(t) as.



109

where {W;(t),0 <t < T},i > 1 are independent one - dimensional standard Wiener processes

and {e;} is a complete orthonormal system in L3[0,1] consisting of eigen vectors of € and
{q;} eigen values of Q.

We assume that the operator () is a special covariance operator Q with e;, = sin(krz),k >

1 and Ax = (7rk)2,k > 1. Then {e;} is a complete orthonormal system with eigen values
=(1+ )71, i > 1 for the operator Q and Q = (I- A)_l. Note that

(6. 34) dWgo = QY2dw.

We define a solution u.(t,z) of (6.29) as a formal sum

(6. 35) e(t,z) = Zu,s(t)e,(z)

=1

(cf. Rozovskii [33]). It can be checked that the Fourier coefficient u;.() satisfies the stochastic
differential equation

(6. 36) du; (1) = —0(1) Asuz(t)dt + \/:\1_dW (1), 0<t<T
with the initial condition
1
(6. 37) uie(0) = v, v; =/ f(z)ei(z)dz.
0

We assume that the initial function f in (6.32) is such that

= /01 f(z)es(z)dz > 0, i> 1.

Estimation

We now consider the problem of estimation of the function 6(¢),0 < t < T based on
the observation of the Fourier coefficients u(t),1 < i < N over [0,T] or equivalently the
projection ugN)(t,z) of the process u.(?,z) onto the subspace spanned by {ey,...,en} in
L,[0,1].

We will at first construct an estimator of #(.) based on the path {u;(¢),0 <t < T}. Our
technique follows the methods in Kutoyants [12], p.155 as before.

Let us suppose that

(6. 38) sup sup () < Lo.
€0 0<t<T
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Consider the differential equation

du(t

(6. 39) ”dg ) = () hu(), ui(0) = vi,0 < t < T

It is easy to see that

wi(t) = e L= o<t <1

and hence
(6. 40) wi(t) > veMt0<t<T

where
(6. 41) M; = Loh:.

From Lemma 1.13 of Kutoyants [12], it follows that
(6. 42) sup |uie(8) — ui(s)] < Mt sup |W(s)|

0<s<t i + 0<s
almost surely. Let
@ _ (0 il w(s) > Lye—Mit

(6. 43) A = {w: ngl;-t uie(8) 2 Svie }

and A; = A(qf). Note that Agi) contains the set A; for 0 <t < T.

Define the process {Yic(1),0 <t < T} by the stochastic differential equation

e’ (g
dYi.(t _—

(6. 44) +u;l(t)x<A§")du,-s(t), 0<t<T

where x(E) denotes the indicator function of a set E. Let ¢ — 0 as ¢ — 0 and define
(6. 45) b = ~(x(aez” [ G Davi)

where G(.) is a bounded kernel with finite support , that is , there exists constants a and
b such that

b
(6. 46) / G(u)du =1,G(u) =0foru < aand u > b.
a
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We suppose that a < 0 and b > 0. Further suppose that the kernel G(.) satisfies the

additional condition

(6. 47) /°° Gluyidu=0,5=1,...,k.

Note that (),-E(t),] < 1 < N are independent estimators of 6(t) since the processes W;,1 <
1 < N are independent Wiener processes.
=28, o, . . A
Let 9. = £77+T, Under some conditions, it can be shown that the estimators 6;.(¢),1 <

i < N are independent estimators of 6(¢) such that

P 28
(6. 48) sup |E[f:(t) — 6(1)]] < Cee7h41
1<i<N
and
(6. 49) sup Effia(t) — 8(1)]? < Cre?ati
1<i<N

where Cg and C7 are constants depending on the kernel G(.), the Lipschitz constant Lo and

N. Note that the estimators f;.(t),1 < i < N are the best estimators of 8(t) as far as the rate

of mean square error are concerned by Theorem 4.6 in Kutoyants [12]. We now combine these

estimators in an optimum fashion to get an estimator using all the information available.
Define ~ SN 0:c(DAZ (N + 1)u(t)

(6 50) )= FSN N0+ e

Note that the random variable fn.(t) is not an estimator of 8() as the functions u;(¢) depend

on the function #(¢). However the random variable fy.(t) is a linear function of independent

random variables éie(t), 1 <1< N. It can be checked that

(6. 51) E(é}ve(t) — 0(t))2 = Va’l‘(é]ve(t)) + (E(é}vs(t) - 0(t))2
< Cg£ﬁ;% + Cgﬁﬁ%
< Clofﬁi_‘-

As a consequence, we have the following result.

Theorem 6.3: For 0 <t < T,
(i) One(t) S 6(t) as e — 0

(i) E(éNE(t)) — B(t) as e — 0;
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(iii) lime—o E(On:(t) — 8(t))2 — ase — 0;

(iv) limsup, .o E(8ne(t) — 0(t))2 5547 < oo;
(v) €399 (ne(1) — 0(1)) 5 N(0,02(t)) as & — 0

where N(0,02(1)) denotes the normal distribution with mean zero and variance o%(t)) given
by

2 _ 1 o0 2 w)du
(6. 52) 70 = ST T oo 0
et S B (0N 4 1) (1)
* _ i=1 Yie I\ Use
(6. 53) el = =5 0 + a2
where
(6. 54) ie(1) = vge~ N Jo Belo)ds,

Theorem 6.4: For 0 <t < T,
(6. 55) O%.(t) B 8(1) as e — 0.

Note that

NG + Dak (¢

75[ _IN (2) ( A2) iy (1) _ 0(1)]
Yim A(Ai + D) (1)

ity velfie(t) — BENAF(N + 1)L (1)
YN A+ 1D)ak () '

Yelfne(t) — 0(1)]

Since
(i) 7e(Bic (1) - 0(1)) £ N(0,0%(t)) ase = 0for 1 <i< N,
(i) fie(t) 2 wi(t)ase - 0for1 <i < N,

for 0 < t < T, and since the estimators éis(t),l <+ < N are independent random variables, it
follows that the estimator 3, () is asymptotically normal and we have the following theorem.
Theorem 6.5: For 0 <t < T,

(6. 56) Ye(Be(t) — 0(2)) 5 N(0,0%(t)) as e > 0

where
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(6. 57) Ne = ¢TI
and
1 o0
6. 58 2() = / G*w)du.
659 7= S Nt 1) o O

For details, see Prakasa Rao [27).

Remarks :(1)If £ = 0 and 8 = 1,that is, the function 8(.) € © where O is the class of
uniformly bounded nonegative functions which are Lipschitzian of order one, then it follows
that,for 0 <t < T,

(6. 59) €5 (B3, (1) — 0(1)) 5 N(0,0%(t)) as € — 0.

(2) It is well known that if @;,1 < i < N are unbiased estimators of a parameter § with
variances 01-2, 1 < ¢ € N respectively, then a better estimator, in the sense of smaller variance,
can be obtained by taking a linear combination of o;,1 < i < N with the coefficient of o
inversely proportional to the variance o? and adjusting the proprtionality constant so that
the new estimator is also unbiased. Here the estimators é;e(t), 1 < i< N are asymptotically
unbiased estimators of #(¢) and the estimator 83,(t) is obtained following the above procedure

so that this estimator has smaller asymptotic variance compared to the asymptotic variances
of 0;(t),1 <i < N.

(3)It should be possible to study nonparametric estimation of the function (t) in the
examples I and II and by other methods of estimation such as the Method of Sieves or the
Method of Wavelets (cf. Prakasa Rao [22]) and recover the function 8(¢) either by keeping ¢
fixed and letting N — oo or by linking € and N such that N = N(¢) — oo.

7 Parameter Estimation for Stochastic PDE with linear drift

(Absolutely continuous case) (Discrete sampling)

In all the earlier sections, it was assumed that a continnous observation of a random field
u:(z,1) satisfying a SPDE over the region [0,1] x {0,T] is available. It is obvious that this
assumption is not tenable in practice and the problem of interest is to develop methods of

estimation of the parameters from a random field u.(x,t) observed at discrete times ¢ and at
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discrete positions = or from the Fourier coefficients u;.(t) observed at discrete time instants.
We will discuss the latter problem in this paper for two types of SPDE’s. Prakasa Rao {20]
discusses statistical inference from sampled data for stochastic processes in general and the
methods of statistical inference for the special class of diffusion type processes is investigated

extensively in Prakasa Rao [22].

Let us consider the SPDE (3.1) discussed in Section 3.

Suppose the collection of observations consists of {u;(jA),0 < j < n,1 <1< N} where
A > 0. The problem of estimation of the parameter § can be considered from three differ-
ent angles (i) discretise the likelihood equation obtained from the continuous observation
by approximating the terms a. and . in the likelihood equation by suitable approximating
sums and then solve for an approximate maximum likelihood estimator, (i1} discretise the
maximum likelihood estimator obtained from the continuous observation and (iii) compute
the likelihood function based on the discrete set of observations and the maximize the corre-
sponding likelihood. All these approaches have been studied for the estimation of parameters
for diffusion type processes (cf.Prakasa Rao [22}).

We now approach the problem following the techniques in Bibby and Sorensen [1]. The

Fourier coeflicients u;.(2) of the random field u.(t,z) satisfy the stochastic differential equa-

tion

(7. 1) due(t) = (8 — A )uie(t)dt + dWi(t), 0<t< T

£
VA +1

with the initial condition

r. 2 we®) = vy v = [ Stz

Note that the process {u;(?),0 < t < T} is the Ornstein-Uhlenbeck process and it is well

known that the conditional distribution of u;.(A) given u;c(0) is normal with mean vielf-X)a
. £2(e2(6-2:)8 _q
and variance W. It can be shown that

Ai

(7. ) Gal0) =

:; : iuz‘s((i - DAY (uie(GA) = uie((§ — 1)A)e’)
=1

is proportional to the optimal estimating function for the estimation of the parameter 8 — A;

(cf. Bibby and Sorensen [1]) and an estimator for 8 is of the form

i1 wie(JA)uie((J - 1)A)
Yiauk((G - 1)4)

(7. 4) é,’t =X+ A™? log
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This estimator is also the maximum likelihood estimator of 8 based on the discrete data
ue(jA),0 < j < n.

Since 6 < 0, it is well known that the solution of (7.1) is ergodic with the stationary
measure with density uy given by the normal distribution with mean zero and variance
B2(8) = £2{2(X; — 8)(A; + 1)}~!. Further more we have already noted that the transition

probability density 7% of u;(A) given that u;.(0) = z is the normal probability density with
(0-2)A 2(e20-2)A )

€ 202+ D) -

The following result can be proved. For details, see Prakasa Rao [28].

. £
mean T and variance

Theorem 7.1: The estimator §;; converges in probability to 8 as n — co and

n'2A(f;c - 6) 5 N(0,e72206-%) _1) as n — oo.

Remarks: Note that the estimators {éis,l < ¢ £ N} are independent, consistent and
asymptotically normal for the parameter  in the stochastic partial differential equation
(3.1). We will now discuss a method for combining these estimators to get an improved

estimator,.

Let f, = Zf\_’__l aif; where a;,1 < i < N is a nonrandom sequence of coefficients to be

chosen. Note that N

b > [Zai]O as 7 — 00

i=1

by the Theorem 7.1 and hence 6, is consistent for 8 provided Zf_’__l a; = 1. Further more
~ L N
ViA(D, — 8) 5 N(0,5” af(e7?4C=2) ~ 1)) as n ~ co.
=1

This follows from the Theorem 7.1 and the independence of the estimators {éie,l <1< N}L
We now obtain the optimum combination of the coefficients {e@;,1 < ¢ < N} by minimising
the asymptotic variance

ia?(e—m(o_,\;) ~1)

=1
subject to the condition Zﬁl «; = 1. It is easy to show that a; is proportional to (em(’\"“’) -

1)~! and the optimum choice of a;,1 <4 < N leads to the "estimator”

0.9 e - TR0y,
. € Z?’:I(ezA(/\i_e) _ 1)_1
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It is easy to see that

0:—p>0 as n — 0o

and N
VAA(: - 0) 5 N0, (3 (77N —1)7)7Y) as n = o0
i=1
again due to the independence of the estimators {éig,l <t < N}. However the random
variable ] cannot be considered as an estimator of # in the true sense since it depends
on the unknown parameter . In order to avoid this problem, we can consider a modified

estimator N ; .
(7. 6) 5, = Dim(E800) - 1) 716,
| TN (a0 1)

which is obtained from 87 by substituting the estimator 6 for the unknown parameter 8
in the i-th term in the numerator and denominator in (7.5). In view of the independence,
consistency and asymptotic normality of the estimators §;.,1 < 1 < N, it follows that the
estimator 6, is consistent and asymptotically normal for the parameter § and we have the

following result.
Theorem 7.2: Under the conditions stated above,

P
0. 58 as n— oo

and

N
n'2A(6, ~ 0) 5 N(0,(3(e722CM) — 1)) as n — oo
=1

for any fixed N > 1.

] Parametric Estimation for Stochastic PDE with linear

drift (Singular case) (Discrete sampling)
Let us consider the SPDE (4.1) in the Section 4.

Suppose the collection of observations consists of {u;.(jA),0< j < n,1 <1< N} where

A > 0. As discussed in the previous section, consider the stochastic differential equation

(8. 1) duie(t) = —OAituie(t)dt + —— dWi(1), 0< < T

IV e
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with the initial condition

(8. 2) ie(0) = v, v = /01 f(z)ei(z)dz.

Note that the process {u;(t),0 < < T is the Ornstein-Uhlenbeck process and it is well

known that the conditional distribution of u;(A) given u:(0) is normal with mean v;e=%4
2(,~207;A_
and variance ?:(ZEB_A.T(T-I-;%' It can be shown that

AN+1E

(8. 3) Hu(8) = — Z:uis((j — DAY (ie(GA) = uie(( — 1)A)e™N2)

is proportional to the optimal estimating function for the estimation of the parameter 8 (cf.

Bibby and Sorensen [1]) and an estimator for 8 is of the form

Z?:l uie(JA)uie((7 — 1)A)

Yi=1ul((F - 1DA)
This estimator is also the maximum likelihood estimator of 8 based on the discrete data
u;e(§A),0< 5 < m.

(8. 4) é,‘s = —/\i_lA_l lOg

Since 8 > 0, it is well known that the solution of (8.1) is ergodic with the stationary
measure with density vy given by the normal distribution with mean zero and variance ((8) =
€2{2X;0(X\;+1)}~. Further more we have already noted that the transition probability density
7rg of u;.(A) given that u;(0) = z is the normal probability density with mean zel=02)A

2(e2(—03)A _q

and variance %ZTYW/\—HTZ Let X be a random variable with stationary measure v and Y
be a random variable such that the conditional density of Y given X = z is given by rg.
Note that

(8. 5) E[XY] = E[XE(Y|X)]= E[XXel=02)4]
= (f(®)e e

and

(8. 6) E[X*) = ¢}(6).

It is easy to check that the Condition 3.1 in Bibby and Sorensen [1] holds in this case and
applying the Lemma 3.1 in Bibby and Sorensen [1] (cf. Florens-Zmirou [4]), we obtain that

n
1 Zuie(jA)u,-E((j —1)A) — E[XY] in probability as n — oo
n

j=1
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and

n
1 Z wl((j — 1)A) = E[X?]in probability as n — oo.
n

j=1

The above relations imply that

e e (A5 = DA)  BIXY]

Yiaul((G - DA) BX?)

The following result follows as a consequence of the above observation and the relations
(8.5) and (8.6).

in probability as n — oo.

Theorem 8.1: The estimator §;, converges in probability to 8 as n — oo.

Let 9;(8) = %2 Note that

i1 Uie(FD)uie((7 = DA)

) = S (G- DAy
Hence
. n=2 R [ (1A)uic((G = DA) - $i(8)ud(( - DA
Vn{bi(8ie) — :(8)} = > (Jn—l) ’E: u} ()(j )— 1)¢A() S )]'
Since

Bluie(jA)uie((5 — DA uie(( — 1)A)] = $i(0)u((7 - 1)A),
it follows by the Lemma 3.1 of Bibby and Sorensen [1] that

n

2 Y (A (5 = 1DA) = $i(O)ule((G — 1)D)]
=1
converges in distribution to the normal distribution with mean zero and variance equal to
7(0) = E[XY — E(XY|X))? where the random variables X and Y are as defined above. It

can be checked that
52(8—‘29/\.-A _ 1)

2(—0)\1’)()\,' + 1)
Applying the § - method , we obtain that

() = 2 (o).

n'2A(;. — 6)

converges in distribution to the normal distribution with mean zero and variance

A7 2e280%i1,(9)¢7*(9) and we have the following theorem.
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Theorem 8.2: Under the conditions stated above

n?Ab;, - 8) £ N(0,X72(e*2% — 1)) as n — o0.

Remarks: Note that the estimators {éie,l < i < N} are independent, consistent and
asymptotically normal for the parameter # in the stochastic partial differential equation
(4.1). We will now discuss a method for combining these estimators to get an improved

estimator.

Let 6, = Zfil aiéig where a;,1 < ¢ < N is a nonrandom sequence of coeflicients to be

chosen. Note that N

LA [Zai]0 as n — 0o
=1

by the Theorem 8.1 and hence 6, is consistent for # provided Y%, a; = 1. Further more
N
ViA(f, - 0) 5 N0, afA7 (4% — 1)) as n — oo.
i=1

This follows from the Theorem 8.2 and the independence of the estimators {fi,1 <i < N}.
We now obtain the optimum combination of the coefficients {a;,1 < i < N} by minimising
the asymptotic variance

N

Z Q?Ai_2(€2A9Ai _ 1)

=1
subject to the condition Y%, o; = 1. It is easy to show that a; is proportional to M3 (e2AN0 _
1)~! and the optimum choice of ¢;,1 < ¢ < N leads to the "estimator”

N i -14.

9* - Zi:l A?(62A)\ - 1) 1015

&0 S S UC R

It is easy to see that
620 as n— oo
and

NN N(O,(i 2220 _ )71 a5 n— 00
=1

again due to the independence of the estimators {0}5,1 < ¢ < N}. However the random
variable #7 cannot be considered as an estimator of # since it depends on the unknown

parameter 8. In order to avoid this problem, we can consider a modified estimator

8. 8) G, = Lima MM —1)716;,
| TN @ 1)
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which is obtained from 8> by substituting the estimator 6;c for the unknown parameter 6
in the i-th term in the numerator and denominator in (8.7). In view of the independence,
consistency and asymptotic normality of the estimators éig,l < 1 £ N, it follows that the
estimator §, is consistent and asymptotically normal for the parameter § and we have the

following result.
Theorem 8.3: Under the conditions stated above,
6. 50 as n> o0

and

N
n2A(0, — 0)) 5 N(0,(3° A2 —1)1)71) as n— o0
=1

for any fixed N > 1.

9 Parametric Estimation for Some SPDE ( Discrete sam-

pling)

We have discussed the problem of estimation of a parameter # when it is present only in
the "trend” part of an SPDE. We will now discuss the problem of estimation when the
parameter involved occurs in the "trend” part as well as in the "forcing” part of the SPDE.
Prakasa Rao [20] discusses statistical inference from sampled data for stochastic processes in
general and the methods of statistical inference for the special class of diffusion type processes
is investigated extensively in Prakasa Rao [22]. Piterbarg and Rozovskii [16] studied the
properties of maximum likelihood estimators based on discrete time sampling for parameters
invoved in parabolic stochastic partial differential equations when the ” trend” part of the
SPDE involves the parameter but not the-” forcing part of the SPDE.
Example I

Let (Q, F, P) be a probability space and consider the process u.(¢,2),0 <z <1,0<t < T

governed by the stochastic partial differential equation
9. 1) duc(t,z) = (Ault,z) + b(0)u.(t,z))dt + ea()dWy(t, )

where A\ = 6%27' Suppose that # € © C R. Assume that the function 5(6) < 0 for all § € ©.
Further suppose that the functional form of the function b(8) is known and it is differentiable

with respect to 8 with non zero derivative. In addition assume that the function o(8) > 0 is
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known but the parameter # € O is unknown. Suppose the initial and the boundary conditions

are given by
0. 2) u(0,z) = f(z), f € L3]0,1]
ue(t,0) = ue(2,1)=0,0<t < T
and @ is the nuclear covariance operator for the Wiener process Wp(t,x) taking values in
L,[0,1] so that
Wo(t,z) = QY*W(t,z)
and W(t,z) is a cylindrical Brownian motion in L3[0,1]. Then, it is known that (cf. Rozovskii
33))
(e v]
(9. 3) Wo(t,z) = Zq}nei(z)Wi(t) a.s.
=1

where {W;(t),0 <t < T},i > 1 are independent one - dimensional standard Wiener processes
and {e;} is a complete orthonormal system in Ls[0,1] consisting of the eigen vectors of @

and {¢;} the eigen values of Q.

Let us consider a special covariance operator @ with ey = sinkwz,k > 1 and X =
(rk)?,k > 1. Then {e;} is a complete orthonormal system with the eigen values ¢; = (1 +
A)7L,i > 1 for the operator @ and Q = (J — A)~L. Further more

dWgo = Q' 2aw.

We define a solution u.(t,z) of (9.1) as a formal sum
9. 1) u.(t,x) = Z uie(t)ei(z)
i=1

(cf. Rozovskii [33]). It can be checked that the Fourier coefficient u;.(t) satisfies the stochastic
differential equation

€
9. 5) duie(1) = (4(8) = MYuie () + o (O)Wi(1), 0 < < T

with the initial condition

(9 6) uis(o) =V, U= Al f(a:)e,(z)dw

Suppose the collection of observations consists of {uic(jA),0 < j < n,1 < i< N} where
A > 0. We now approach the problem following the techniques in Bibby and Sorensen [1]

using the method of estimating functions.
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Note that the process {ui(t),0 < t < T} is the Ornstein-Uhlenbeck process and it is

well known that the conditional distribution of uic(A) given u;.(0) is normal with mean

;) =22 and variance 52”;%5()5')32_(:(3)(;?:?)_”. It can be shown that

%)%22 D(O)uic((F = DANwie(§A) = wie((§ = 1)A)eHD2I)

j=1

9.7) Ga(8) =

is proportional to the optimal estimating function for the estimation of the parameter 8 (cf.

Bibby and Sorensen [1]) and an estimator for 5(8) is of the form

b = \: -1 ?:1 u1€(]A)ute((J - 1)A)
(9. 8) bie = A + A log TG~ D)

Since b(f) < 0, it is well known that the solution of (9.5) is ergodic with the stationary

measure with the density pg given by the normal distribution with mean zero and variance
B2(8) = £202(0){2(X; — b(8))(Xi + 1)} 1. Further more we have already noted that the transi-
tion probability density 74 of u;(A) given that u;(0) = z is the normal probability density
with mean ze(*®=X)2 and variance 52”;%3()6(,')32_(;(3)(;?2?)_1). Let X be a random variable with

the stationary measure pp and Y be a random variable such that the conditional density of

Y given X = z is given by 7r9A. Note that

9. 9) E[XY] = E[XE(Y|X)) = E[XXet)-2)4
- ﬂ?(e)e(b(a)—/\i)A

and

(9. 10) E[X?] = B}(6).

It is easy to check that the Condition 3.1 in Bibby and Sorensen [1] holds in this case and
applying the Lemma 3.1 in Bibby and Sorensen [1] (cf. Florens-Zmirou [4]), we obtain that

-:;Z ie(§A)uie((j — 1)A) — E[XY] in probability as n — oo
7=1

and

% Z u?((j = 1)A) — E[X?]in probability as n — oo.

j=1

The above relations imply that
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Z?:l uic(jA)uie((7 — 1)A) E[XY)]

T k(G -DA) BT

The following result follows as a consequence of the above observation and the relations
(9.9) and (9.10).

in probability as n — oo.

Theorem 9.1: The estimator b;, converges in probability to (#) as n — oo.

Since the function 5(#) has a continuous inverse function, the following result is a conse-

quence of Theorem 9.1.
Theorem 9.2: The estimator §;, = b”‘(i)is) converges in probability to # as n — oo.
Let 1;(8) = e2()=2) Note that

ay L D=1 wie(JA)uie(( — 1)A)
’(/)1(016) - ?zl U?E (] — 1)A)

Hence

A2 Tue(§A)ui (5 — 1)A) — 9:(0)u%((5 — 1)A))
n=T3r_ w2 ((G - DA) '

Va{i(Bi) - ¥i(0)} =

Since
Eluie(jA)uie((5 = DA uie((5 — DA)] = 9:(8)ul((G - 1)A)

it follows by Lemma 3.1 of Bibby and Sorensen (1995) that

V2 Y (5 ((G — DA) = wi(O)ul(( - DAY
=1
converges in distribution to the normal distribution with mean zero and variance equal to

7i(8) = E{XY — E(XY|X)}]? where the random variables X and Y are as defined above. It
can be checked that

5202(9)(62(b(0)—)\;)A _ 1) 209
2008 D D)
(1 - HO-308)58(p)

7i(8)

Il

Applying the § - method , we obtain that

n'2A(b(6;;) — b(6))
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converges in distribution to the normal distribution with mean zero and variance

e~ 28((8)-N).(9)874(8) and we have the following theorem.
Theorem 9.3: Under the conditions stated above

n2A(b(0;e) — b(8)) 5 N(0,e 22CG0)-X) _ 1) a5 n — 0.

Applying the §-method once again, we obtain that
n'2A(6;. — 6)

converges in distribution to the normal distribution with mean zero and variance
V(0)~2e=2A00)-X)~,(9)574(0) and we have the following theorem.

Theorem 9.4: Under the conditions stated above

nMA (B, — 8) 5 N(0, (b'(6))"2(e~22CO-X) _ 1)) as n — oo.

Remarks: Note that the estimators {@is,l < i £ N} are independent, consistent and
asymptotically normal for the parameter 8 in the stochastic partial differential equation
{9.1). We will now discuss a method for combining these estimators to get an improved

estimator.

Let (55 = Z{ix (J(,'é,‘s where ¢;,1 < 2 < N is a nonrandom sequence of coefficients to be

chosen. Note that

6. 5 [Za,-]@ as n— 0o

=1

N
by the Theorem 9.2 and hence . is consistent for § provided "V, a; = 1. Further more
~ L N
VA8 = 8) = N(O,(b'(0))2 Y oZ(e24¢0)-2) _ 1)) as n — co.

i=1

This follows from the Theorem 9.4 and the independence of the estimators {t‘:’is,l <i:< N}
We now obtain the optimum combination of the coefficients {e;,1 <7 < N} by minimising

the asymptotic variance

N
Za?(e-m(b(e)-m -1
=1
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subject to the condition }:f\_’__l a; = 1. It is easy to show that «; is proportional to

(ezA(A"‘b(e)) ~1)7! and the optimum choice of a;,1 < i < N leads to the "Estimator”

(9. 11) g = TN (e2806=b(0) _ 1)~14,
. € Eg\il(eﬂk(/\.‘—b(e)) _ 1)_,1
It is easy to see that

P
67 580 as n—

and
N
VRA@G: - 0) S N, (5(8)72(D_(e722GO-M) —1)"1)71) as n — oo
=1
again due to the independence of the estimators {éis,l < i £ N}. However the random
variable #7 cannot be considered as an estimator of # in the true sense since it depends
on the unknown parameter #. In order to avoid this problem, we can consider a modified

estimator N . R
©. 12) p = Zi:l(ezA(A‘_b'i) —1)7%6;
. € Zfi1(62A('\‘_b") — 1)—1

which is obtained from 6* by substituting the estimator f;. for the unknown parameter
in the i-th term in the numerator and denominator in (9.11). In view of the independence,
consistency and asymptotic normality of the estimators §i.,1 < i < N, it follows that the

estimator. f, is consistent and asymptotically normal for the parameter # and we have the

following result.
Theorem 9.5: Under the conditions stated above,

95 20 asnooo
and N
n'/2A(6. - 6)) 5 N(0,(5(8)) 23 (e 2A0O-2) _ 1)=1)71) a5 1, oo
i=1
for any fixed N > 1.

Example II

Let (Q, F, P) be a probability space and consider the process u.({,z),0 < 2 < 1,0<t < T
governed by the stochastic partial differential equation

(9. 13) dug(t,z) = b(8) Aug(t,z)dt + ea(8)(I — A)"V2dW (1, z)



126

Suppose that § € © C R. Assume that the function 5(#) > 0 for all # € ©. Further suppose
that the functional form of the function b(#) is known and it is differentiable with respect to
6 with non zero derivative. In addition assume that the function ¢(8) > 0 is known but the
parameter § € O is unknown. Suppose further the following the initial and the boundary

conditions

9. 14) u(0, ) f(z), 0<z <1, f€ Ly0,1],

ue(t,0) = u.(,1)=0,0<¢<T.

hold. Here I is the identity operator, A = ai:f and the process W(t,z) is the cylindrical

Brownian motion in L,[0,1]. The Fourier coefficients u;.(t) satisfy the stochastic differential

equations
©. 15) duze(t) = —b(0)Niuie(1)dt + 0 o)m Wilt), 0< t < T,
with
1
©. 16) wie(0) = vy, v = /0 f(@)ei(z)de.

Suppose the collection of observations consists of {u;.(jA),0 < j < n,1 <i< N} where
A>0.
Note that the process {u;(t),0 < ¢t < T} is the Ornstein-Uhlenbeck process and it is

well known that the conditional distribution of wuic(A) given u;(0) is normal with mean

_ ) . 2(g=26(0)AiA _y
v;e ™04 and variance 0%(8) =5ravr ot It can be shown that
t 1

(9. 17) Hx(6) = Q(,f(; ib’ (O)Asuie((5 = DAY (wie(A) = we((5 ~ 1)A)e™"ON2)

is proportional to the optimal estimating function for the estimation of the parameter 8 (cf.

Bibby and Sorensen [1]) and an estimator for b(8) is of the form

E =1 u,s(]A)u,e((] - 1)A)
T vk ((F-1A)

Since b(8) > 0, it is well known that the solution of (9.15) is ergodic with the stationary

(9. 18) bie = =27 'A 7 log

measure with density vg given by the normal distribution with mean zero and variance
C2(8) = e202(9){2XM:b(0)(Xi + 1)} . Further more we have already noted that the transition
probability density 74 of ui(A) given that ui(0) = z is the normal probability density
with mean ze~*(®*4 and variance o (0)%5%%? Let X be a random variable with
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stationary measure v, and Y be a random variable such that the conditional density of Y
given X = z is given by 7% . Note that

(9. 19) E[XY] = E[XE(Y|X)]= E[XXe "X
= (}()e PN

and

(9. 20) E[X?] = ¢X@).

It is easy to check that the Condition 3.1 in Bibby and Sorensen [1] holds in this case and
applying the Lemma 3.1 in Bibby and Sorensen (1] (cf. Florens-Zmirou [4]), we obtain that

n
1 > wie(jA)uie((j — 1)A) = E[XY] in probability as n — oo
n

j=1

and

n

%Z vl ((j = 1)A) - E[X?]in probability as n — oo.
=

The above relations imply that

L= tie(JA)uie((7 — 1A) _, Elxy]

Yiaui(( - 1)) LXx?)

The following result follows as a consequence of the above observation and the relations
(9.19) and (9.20).

in probability as n — oo.

Theorem 9.6: The estimator b;, converges in probability to b(8) as n — oo.

Since the function 5(#) has a continuous inverse function, the following result is a conse-
quence of Theorem 9.6.

Theorem 9.7: The estimator §;. = b"(&ie) converges in probability to # as n — oo.

Let ¢;(8) = e *®)%4 Note that

| e tieliA(( ~ DA)
| » X (FR 7y

Hence

n= 2 [ A)uie((5 — 1)A) ~ $i(0)ud (4 - 1)A)].

Va{wi(Bic) - ¥i(0)} = n=t Eia k(- 1))
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Since
Eluie(3A)uie((j = DA uie((7 — DA)] = $i(8)ule((G - 1)A),
it follows by the Lemma 3.1 of Bibby and Sorensen [1] that

n

n™2 Y (e (1A uie (7 = 1)A) = $i(8)ul (G — 1)A)]

i=1
converges in distribution to the normal distribution with mean zero and variance equal to
7i(6) = E[XY — E(XY]X)]? where the random variables X and Y are as defined above, It
can be checked that

2(o-26(0)NiA
n) = O )
2(=0(A)(A: + 1)

(1 - e7®ON8 ().

¢ (o)

Applying the § - method , we obtain that
n'2A(b(6;.) — b(9))

converges in distribution to the normal distribution with mean zero and variance
A 2628500 i, (9)¢7%(0) and we have the following theorem.

Theorem 9.8: Under the conditions stated above

n2A(b(fic) — b(8)) 5 N(0,A72(e228OX _ 1)) as n — co.

Applying the §-method once again, we obtain that
22 A (6 - 6)

converges in distribution to the normal distribution with mean zero and variance
(5"(8))72A72 (200 )7, (9)87*(8) and we have the following theorem.

Theorem 9.9: Under the conditions stated above
n2A (B — 0) 5 N(0,(6/(0)) 227 H(e225DN — 1)) as n — oo.

Remarks: Note that the estimators {955,1 < i £ N} are independent, consistent and
asymptotically normal for the parameter @ in the stochastic partial differential equation
(9.13). We will now discuss a method for combining these estimators to get an improved

estimator.
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Let 0 21 L 915 where o;,1 < ¢ < N is a nonrandom sequence of coefficients to be

chosen. Note that N

f. 5 ) ald as n— o0
=1

by the Theorem 9.7 and hence 8. is consistent for § provided TN . o; = 1. Further more
VnA(8. —8) 5 N(0, Za (v'(8))72A7 (e 28U0N _ 1)) as n — oo.

This follows from the Theorem 9.9 and the independence of the estimators {(},-e, 1<i< N}
We now obtain the optimum combination of the coefficients {a;,1 < i < N} by minimising

the asymptotic variance

N
Za?(b'(@))_2)\f2(eZAb(g)’\‘ _ 1)

subject to the condition Efvla,‘ = 1. It is easy to show that o; is proportional to

A2(e24X00) — 1)~1 and the optimum choice of a;,1 < i < N leads to the ”Estimator”

(9 21) o — zN /\2( 28X,b(0 ___1)—1()“1,5
| = @ — 1

It is easy to see that
0 %0 as n— oo
and
c N
VRA(D; - 0) 5 N(0,((6(8)72 3 AN —1)7)7) as n - o0
i=1
again due to the independence of the estimators {§;,1 < i < N}. However the random

variable 67 cannot be considered as an estimator of 8 since it depends on the unknown

parameter 8. In order to avoid this problem, we can consider a modified estimator

j_ DL (AN — 1)71G,,

9. 22 e = -
. T A 1

which is obtained from 6* by substituting the estimator §;c for the unknown parameter 8
in the ¢-th term in the numerator and denominator in (9.21). In view of the independence,
consistency and asymptotic normality of the estimators fic,1 < i < N, it follows that the

estimator §. is consistent and asymptotically normal for the parameter § and we have the

following result.
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Theorem 9.10: Under the conditions stated above,
6, 50 as n — oo

and

N
n 2D - 0)) 5 N0, (('(6)72 3 A2 (2 ON _ 1)1y 1y a5 n - oo
=1

for any fixed N > 1.

Remarks : In the two examples discussed above, we have assumed that the drift coefficient
and the diffusion coeflicient are known except for the parameter # which is to be estimated
from the data. Since the estimating functions considered above are linear martingale esti-
mating functions , the function b(#) in the diffusion coeflicient is only involved and not the
function o(f) which makes the procedure ineflicient. However we get explicit solution for the
estimator if we make use of linear martingale estimating functions. If one uses the quadratic
martingale estimating functions as described by Sorensen [35] (cf . Prakasa Rao [22]), the
estimating function involves both the functions b(8) and o(#) but the resulting equations are
too complex to solve for a user. Since the discretely observed Ornstein -Uhlenbeck processes
encountered in both the examples are autoregressive processes, the likelihood function can
be computed and the maximum likelihood estimator can be obtained which is asymptotically
efficient. The estimators b;, described in the equations (9.8) and (9.18) are the the mazimum
likelihood estimators in the natural parametrization, that is when the reparametrization by
means of the functions (@) and o(#) is done away with, and the scalar parameter @ in the
drift and the scalar parameter ¢ in the diffusion term are allowed to vary independently
keeping the o fixed eventually, as the interest centers around the parameter 4. In such a
case, the combined estimator ,, described in (9.22), of the parameter 8 in the drift term is

asymptotically efficient.

10 Nonparametric Estimation for some Special SPDE (Dis-

crete sampling)

We now discuss nonparametric estimation of a function #(t) involved in the ”forcing” term
for a class of SPDE’s. The problem of estimation of the diffusion coefficient in a SDE
from discrete observations has attracted lot of attention recently in view of the applications

in ‘mathematical finance especially for modelling interest rates. Our work here deals with a
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similar probem for a SPDE. A short review of recent results on parametric and nonparametric
inference for SPDE’s is given in Prakasa Rao [24].

Example 1
Let (Q, F, P) be a probability space and consider the process u.(t,2),0<z < 1,0<t < T

governed by the stochastic partial differential equation

(10. 1) duc(t,z) = (Au.(t, ) + u(t,z))dt + £ 8(t) dWo(t,z)

where A = ai;f. Suppose that 0(.) is a positive valued function with 8(t) € C™([0, o0)) for
some m > 1. Further suppose that 8%(.) € L?(R) and that the function #(.) has a compact
support contained in the interval {—¢, T + €] for some € > 0.

Further suppose the initial and the boundary conditions are given by

(10. 2) ue(0,2) = f(z), f € L2[0,1]
. ue(t,0) = u.(£,1) =0,0<t < T

and @ is the nuclear covariance operator for the Wiener process Wg(t,z) taking values in
I,[0,1] so that
Wo(t,z) = QYW (1,z)

and W(t,z) is a cylindrical Brownian motion in L3[0,1]. Then, it is known that (cf. Rozovskii
[33], Kallianpur and Xiong [11})

(10. 3) Wo(t,z) = quﬂ (z2)Wi(1) as.
=1

where {W;(t),0 <t < T},i > 1 are independent one - dimensional standard Wiener processes
and {e;} is a complete orthonormal system in L3[0, 1] consisting of eigen vectors of Q and
{qi} eigen values of Q.

We assume that the operator @) is a special covariance operator @ with e, = sin(knz), k >
1and Ay = (tk)*,k > 1. Then {e;} is a complete orthonormal system with the eigen values
¢ =(1+X)"",5> 1 for the operator Q and Q = (I — A)™". Note that

(10. 4) dWq = QY2dw.

We define a solution u.(t,z) of (10.1) as a formal sum

(10. 5) (1, z) = Zuw(t)e,
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(cf. Rozovskii [33]). It can be checked that the Fourier coefficient u;(t) satisfies the stochastic

differential equation

€
10. 6 duie(t) = (1 — Mg () dt + ——=0(t)dW;(1), 0 <t <
(10. 6) we(t) = (1= M1t + —=eB(OAWi(1), 0< ¢ < T
with the initial condition

1
(10. 7) uie(0) = vy, v; =/ f(z)ei(z)dz.

0
Estimation

We now consider the problem of estimation of the function 6(¢),0 < ¢t < T based on
the observation of the Fourier coefficients ui(2;),t; = 527", = 0,1,...,[2"T],1 < i < N,
or equivalently based on the observations UEN)(t]-,w),tj = 427", = 0,1,...,[2"T] of the
projection of the process u.(¢,z) onto the subspace spanned by {ey,...,ex} in L,[0,1]. Here
[z] denotes the largest integer less than or equal to z.

We will at first construct an estimator of 6(.) based on the observations {u;(t;),f; =
Jj27",5 =0,1,...,[2"T]}. Our technique follows the methods in Genon-Catalot et al. [5].

Let {V;,~00 < j < 0o} be an increasing sequence of closed subspaces of L2(R). Suppose
the family {V;, —00 < j < 0o} is an r-regular multiresolution analysis of L?(R) such that the
associated scale function ¢ and wavelet function ¢ are compactly supported and belong to
C"(R). For a short introduction to the properties of wavelets and multiresolution analysis,
see Prakasa Rao [22].

Let W; be the subspace defined by

(10. 8) Vinn=V,0o W,
and define
(10. 9) dir(z) = 24Pz k), —00 < j,k < 00

(10. 10) k()

212(27z — k), —00 < j,k < 0.

Then (i) for all ~co < j < oo, the collection of functions {¢;4,—0c0 < k < oo} is an
orthonormal basis of V; ; (ii) for all ~o0 < j < 00, the collection of functions {%;,—00 < k <
0o} is an orthonormal basis of W ; and (iii) the collection of functions {;k, —00 < j,k < o0}

is an orthonormal basis of L?(R).
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In view of the earlier assumptions made on the function 6(t), it follows that the function
6(t) belongs to the Sobolev space H™(R). Let j(n) be an increasing sequence of positive

integers tending to infinity as n — co. The space L?(R) has the following decomposition:
(10. 11) LY(R) = Vi) ® (®j32(m)Wi)-

The function 8(t) can be represented in the form

(10. 12) ()= Y pimyadimyk(t) + > vies(t)
koo 52(n),—o0<k<o0

where

(10. 13) ik = /RW(t)(bj.k(t)dt

and

(10. 14) v = [ POB DL

We will now define estimators of the coeflicients p; x based on the observations {u(t,),t, =
27", 5 =0,1,...,[2"T]}. Define
NOUE TR
(10. 15) ﬂg')c = 7“ Z ¢j,k(t'r)(uis(tT+l) - uic(tr))z
r=0
where M = [2"T].
The subspace V; is not finite dimensional. However, the functions §? and the functions
¢ are compactly supported. Hence, for each resolution j, the set of all k£ such that p;x # 0
and the set of all k such that g, # 0 is a finite set L; depending only on the constant T
and the support of ¢ and the cardinality of the set is O(27).
Define the estimator of 6%(¢) by

(10. 16) 021) = 30 Ay i ald)
k€Ly(n)

(10. 17) = ¥ A bimad):
—oo< k<o

Note that for any function f such that

T
/0 FO82(1)dt < oo,

it can be shown that

2

M-1
S F(t) ie(trg1) — mie(t))? 5

¢ /T f@®)8%(t)dt as n — oo.
r=0

Ait+1lJo
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Hence
(10. 18) A B ik as m— oo
Let h(.) be a continuous function on [0,T] with compact support contained in (0,T') and

belonging to the Sobolev space H™ (R) with m' > 3- Let h; be the projection of h on the

space V;. Further more suppose that

(10. 19) rAm+rAm >2,j5(n) = [an]
with

1
(10. 20) @rAm+rAam) 1 <a< T

Note that r is the regularity of the multiresolution analysis, m is the exponent of the Soblev
space to which 62 belongs to and m' is the exponent of the Soblev space to which h belongs

to. Applying the Proposition 3.1 of Genon-Catalot et al. [5], we obtain that the following
representation holds:

Jin

gn/2 / RO () - 62 (0))dt
M-1 trgs tri1
= 2N I 0e) W)= [T 0% ds] 4 R

r=0 tr

where R;, = 0,(1) as n — oo. Further more
C T
(10. 21) Jin —»/\/’(0,2/ R2(1)6%(1) dt) as 1 — oo
o

by Theorem 3.1 of Genon-Catalot et al. [5]. Note the estimators {éi(t),i > 1} are independent

estimators of 8(t) for any fixed t since the processes {W;,i > 1} are independent Wiener

processes.

Let v(t) be a nonegative continuous function with support contained in the interval [0, 7).
Define
T 5 2
(10. 22) Qo = B[ 2000 - 0°(1)Pat).
0

Note that Q;n is the integrated mean square error of the estimator 62(t) of the function 6?(t)

corresponding to the weight function 4(t). It can be written in the form

(10. 23) Qin = B+ Vin
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where r
(10. 24) B = [ A0 - (1) e
0
is the integrated square of the bias term with the weight function 7(t) and
(10. 25) Vi = E{ / ()(62(t) - EO(1))%dt)
is the integrated square of the variance term with the weight function (t). Let
T . .
(10. 26) Din = E{ / (02(t) — E62(1))%d1}
0

and suppose that sup{y(t) : t € [0,T]} < K. Further suppose that j(n) — 2 — —oo. Then it
follows, by Theorem 4.1 of Genon-Catalot et al. [5], that there exists a constant C; depending
on &,); and the functions ¢,v and 62 such that

(10 27) B12n < Ci(24j(n)—'2n + 2—2j(n)(m/\r) +2—n)

and r

(10. 28) Din = 20972 [ 04(1)dt + o217,
0

Further more

(10. 29) Vin < K Diy.

Let

(10. 30) 6%(t) = 202@)

1t is obvious that, for any function h satisfying the conditions stated above, and for any fixed
integer N > 1,

on/? / At — 02 (1))dt
= N‘IZJ,-,L
=1

N M- te1 tri1 N
LEDUICUDD h]-(n)(t,)[(/ 8(s) dW,-(s))2—/ 6%(s) ds]} + NS Rin

i=1

tr41 N
gni2 Z By T){N*’Z(/ 8(s) dWi(s))® — /t 6%(s) dsl} + N1 Rin.

T =1
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From the independence of the estimators 9i(t),1 < i< N, it follows from the Theorem 3.1
of Genon-Catalot et al. [5] that

T - T

(10. 31) 2"/2/ R(£)(8%(t) — 6%(2))dt £ N(O,QN'l/ RE(1)8%(t) dt} as n — oo.
0 0

We have the following theorem.

Theorem 10.1 : Under the conditions stated above , the estimator 8% (¢) of 6%(t) satisfies

the following property for any function h(t) as defined earlier:

(10. 32) 22 /OT h()(8% (1) — 62(t))dt 5 N(0,2N 1 /OT h2(1)6%(t) dt) as n — oo.

Let 4(¢) be a nonegative continuous function with support contained in the interval [0, T).
Define

T .
(10. 33) Qn = E{ / T()(B (1) - 0%(2))2dt}.

Note that @, is the integrated mean square error of the estimator 8%(t) of the function 8%(t)

corresponding to the weight function (¢). Tt can be written in the form

(10. 34) Qn=DB+V,
where
T -
(10. 35) B2 = [ v (B0 - 00

is the integrated square of the bias term with the weight function (¢) and

(10. 36) V, = E{ /0 T @) - B )R

is the integrated square of the variance term with the weight function y(z). Let
(10. 37) Dy = E{/OT(é,?\,(t) — EG2(1))2dt).

We have the following theorem from the estimates on {B;,,1 <1< N} and on {Din,1 <i <
N} given above.

n

Theorem 10.2: Suppose that j(n) — % — —o0. Then there exists a constant Cy depending
on N,¢,v,0% such that

(10. 38) Bfl <Cpn (24j(")“2" + 9—2j(n)(mAr) +27
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and .
(10. 39) D, = N7't07mg ] 6%(t)dt + o( N1 237,
0

Further more

(10. 40) V, < KD,

where K = sup{y(t):0 <t < T}.
Example 1T

Let (Q, 7, P) be a probability space and consider the process u¢(1,z),0 <z <1,0<t< T

governed by the stochastic partial differential equation

(10. 41) duc(t,z) = Auc(t,z)dt +¢ (1) (I~ A)™V? dW(t,z)

where A = 8%27' Suppose that 8(.) is a positive valued function with 8(¢) € C™([0, c0]) for
some m > 1. Further suppose that 82(.) € L2(R) and that the function #(.) has a compact
support contained in the interval [—¢,T + €] for some ¢ > 0.

Further suppose the initial and the boundary conditions are given by

(10. 42) { ue(0,z) = f(2), f € L[0,1]
ue(t,0) = ue(¢,1) =0,0< ¢t < T

We define a solution u.(¢,z) of (10.41) as a formal sum
(10. 43) ue(t,z) = ) uie(t)ei(z)
i=1

(cf. Rozovskii [33]). It can be checked that the Fourier coefficient u;(t) satisfies the stochastic
differential equation

(10. 44) duge(t) = —Nuge (1)t + —)\_ETi0(t)dWi(t), 0<t<T
with the initial condition
1
(10. 45) ue(0) = v, v = / f(z)ei(z)dz.
0

Estimation

We now consider the problem of estimation of the function 6(¢),0 < ¢t < T based on the
observation of the Fourier coefficients u;(t;),t; = j27",5 = 0,1,...,[2"T},1 <4 < N, or
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equivalently based on discrete observations us (t],a:),t] =4527",j =0,1,...,[2"T] of the
projection of the process u.(t,z) onto the subspace spanned by {ey,...,en} in Ly[0,1].

We will at first construct an estimator of 6(.) based on the observations {u;(t;),t; =
j2™",7 =0,1,...,[2"T]}. Our technique again follows the methods in Genon-Catalot et al.
[5] using the method of wavelets.

In view of the earlier assumptions made on the function 8(t), it follows that the function
6(t) belongs to the.Sobolev space H™(R). Let j(n) be an increasing sequence of positive

integers tending to infinity as n — oco. The space L?(R) has the following decomposition:
(10. 46) LH(R) = Vi) ® (®3(mW;)-

The function #?(t) can be represented in the form

(10. 47) 9%(t) = i Bi(n) £ Pi(n) £ (1) + Y Vi ki k(1)
k=—o0 §23i(n),—00<k< o0

where

(10. 48) win = [ OB

and

(10. 49) Vik =/R‘92(t)¢j,k(t)dt-

We will now define estimators of the coefficients p; ; based on the observations {u;(t,),t, =
27", =0,1,...,[2"T]}. Define

(10. 50) Al =

Gk () (tie(trs1) — uis(tr))2

where M = [2"T].

The subspace V; is not finite dimensional. However, the functions 6? and the functions
¢ are compactly supported. Hence, for each resolution j, the set of all k such that p;x # 0
and the set of all k£ such that i, # 0 is a finite set L; depending only on the constant T
and the support of ¢ and the cardinality of the set is O(27).

Define the estimator of 62(¢) by

(10. 51) Bty = Y iy i a®)
kE€L;(n)
(10. 52) = Y Ayt

—oo< k<00
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Note that for any function f such that

T
/0 F(D)82()dt < oo,

it can be shown that

M-1 52 T
S F(te) (ke (brpt) = wic(te))? / F)6*(t)dt as n — co.
=0 )\i + 1 0

Hence

(10. 53) A L iy as m— oo

Let h(.) be a continuous function on [0,7] with compact support contained in (0,T) and
belonging to the Sobolev space H™ (R) with m' > 1. Let h; be the projection of A on the
space V;. Further more suppose that

(10. 54) rAm4rAm' > 2,5(n) = [an]
with

1
(10. 55) irAm+rAam)) ! <a< T

Note that r is the regularity of the multiresolution analysis, m is the exponent of the Soblev
space to which 62 belongs to and m' is the exponent of the Soblev space to which h belongs

to. Applying the Proposition 3.1 of Genon-Catalot et al. [5], we obtain that the following

representation holds:

T R
T = 2[R0 - B (0))

M-1 trt1 trt1 _
2l 2_% ha‘(n)(tr)[(/tr 6(s) dWi(S))z“/tr 0%(s) ds]+ Rin

where R;, = 0,(1) as n — co. Further more
B T
(10. 56) Jin 5»N(0,2/ R2(1)94(1) dt) as n — oo
0

by Theorem 3.1 of Genon-Catalot et al. [5]. Note the estimators {f;(t),7 > 1} are independent

estimators of #(1) for any fixed t since the processes {W;,¢ > 1} are independent Wiener

processes.

Let 4(t) be a nonegative continuous function with support contained in the interval [0, T).
Define
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N T N
(10. 57) G = B([ 10020 - ()P ).

Note that @;, is the integrated mean square error of the estimator éf(t) of the function 6%(%)

corresponding to the weight function (). It can be writien in the form

(10 58) Qin = f??n + I~/in

where r

(10. 59) B2 = / V(OB (1) — 0%(t))2dt
0

is the integrated square of the bias term with the weight function v(t) and
~ T . ~
(10. 60) i = E{ / Y(0)(63(t) — EG2(2))%dt}
0
is the integrated square of the variance term with the weight function v(t). Let
- T . -
(10. 61) Bin = B{ [ (82(t) - BBt}
0

and suppose that sup{y(¢) : t € [0,T]} < K. Further suppose that j(n) — & — —o00. Then it

2
follows, by Theorem 4.1 of Genon-Catalot et al. [5], that there exists a constant G depending
on ¢, A; and the functions ¢,y and 82 such that

(10. 62) B?n < éi(24j(n)_2" 4+ 2—2j(n)(m/\r) + 2-11)
and r
(10. 63) Din = 23W)=n9 / 64()d1 + o211,
0

Further more
(10. 64) Vin < K Dig.
Let

N 1 X,
(10. 65) 0% (1) = N}:o" (t).

i=1

It is obvious that, for any function A satisfying the conditions stated above, and for any fixed
integer N > 1,

on/? /0 h)@ (1) - 02(1))t

N -
= N_I ZJin
=1
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N M-1 tri1 try
NS Y bl 6s) awis)? - |
=1 r=0 tr t

r

1 N ~
6%(s) ds]} + N7! E Rin

=1

M-1 N trgr tren N
on/2 D byt ){N ! Z[(/t 0(s) dWi(s))? -/t 0%(s) ds]} + N2> Rin.
- r=0 i=1 r r i=1

From the independence of the estimators 9i(t),1 < 1< N, it follows from the Theorem 3.1
of Genon-Catalot et al. [5] that

(10. 66) 2°/2 /OT h(t)(6% () — 6%(t))dt £»/\/(0,21\7“1/T RA(1)Y(t) dt) as n — oo.
0

We have the following theorem.

Theorem 10.3: Under the conditions stated above , the estimator 6%(t) of 82(t) satisfies
the following property for any function h(t) as defined earlier:

T . T
(10. 67) 2"/2/ h(t)(G,QV(t)—02(t))dtf»N(O,?N‘l/ RE(1)(t) dt) as n — oo.
0 0
Let v(t) be a nonegative continuous function with support contained in the interval [0, 7).
Define
- T ~
(10. 68) Gn = B[ 100k - #@)ds).
0

Note that @, is the integrated mean square error of the estimator 9~12V(t) of the function 62(t)

corresponding to the weight function y(¢). It can be written in the form

(10. 69) Qn.=BX4+V,

where T

(10. 70) B2 =/ V() (EG (1) — 6%(1))2dt
0

is the integrated square of the bias term with the weight function (¢) and

(10. 71) V= B[ 10@0) - B0

is the integrated square of the variance term with the weight function y(t). Let
(10. 72) D, = E{/()T(é,?\,(t) — E62(t))%dt}.

We have the following theorem from the estimates on {Ein,l <1< N} and on {D;n,l <i<
N} given above.
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Theorem 10.4: Suppose that j(n) — 3 — —oco. Then there exists a constant Cn depending
on N,¢,v,0% such that

(10. 73) B,% < CN (24j(")"2" + 9~ 2i(n)(mar) 4 27

and ,

(10. 74) Dn = N712807a [T g4(0)de 4 o(N ! 27,
0

Further more

(10. 75) V. < KD,

where K = sup{y(t): 0 <¢ < T}.

Remarks : It can be seen, from the Theorems 10.1 and 10.2 and from the Theorems 10.3
and 10.4, that the limiting behaviour of the estimator 8%(t) of #2(t) does not depend on the
”trend” terms in the SPDE’s discussed in both the examples as long as the "trend” terms
in the SDE’s satisfied by the Fourier coeflicients do not depend on the function #(t) or any
other unknown functions. This has also been pointed out by Genon-Catalot et al. [5] in their

work on the estimation of the diffusion coefficient for SDE’s.

11 Nonparametric Estimation for Parabolic SPDE (Discrete

sampling)

Let (Q,F,P) be a probability space and consider a stochastic partial differential equation
(SPDE) of the form

(11. 1) du(t,z) = Au(t,z)dt + 0(t)dW(t,2),0 <t <T,z € G

where A is a partial differential operator, #(t) is a positive valued function with 8(t) €
C™([0,00)] for some m > 1 and W(t,z) is a cylindrical Brownian motion in Ly(G), G being
a bounded domain in R? with the boundary 8G as a C*-manifold of dimension (d — 1) and
locally G is totally on one side of G. For the definition of cylindrical Brownian motion, see,
Kallianpur and Xiong [11], p.93.

Suppose the solution u(t,z) of (11.1) has to satisfy the boundary conditions

(11. 2) u(0,z) = up(z)

and
(11. 3) D’yu(t,z)lag =0



143

for all multiindices « such that |v| = %Z — 1 where £ is positive even integer. Here

I Y ol

(11. 4) flz) = m—zzf(m)

with |v| = 11 + - + 4. Suppose that

(11. 5) Axu=— 3 (1) D*(a*f(z)DFu)
laf,lB]<E

where

(11. 6) a*P(z) € C=(G).

We follow the notation introduced in Huebner and Rozovskii [8]. Assume that the fol-

lowing conditions hold.

(H1) The operator A satisfies the condition

/ Auvdz :/ wAvdz,u,v € CP(G).
G G

(H2) A is a uniformly strongly elliptic operator of order £.

For s > 0, denote the closure of C3°(G) in the Sobolev space W*2(G) by W2,

The operator A with boundary conditions defined above can be extended to a closed self-
adjoint operator £ on Ly(G) (Shimakura [34]). In view of the condition (H2) , the operator
L is lower semibounded, that is there exists a constant k such that —L + kI > 0 and the
resolvent (kI — £)~! is compact. Let A = (kI — E)% where m = Ord(A). Let h; be an
orthonormal system of eigen functions of A. We assume that the following condition holds.

(H3) There exists a complete orthonormal system {h;,¢ > 1} such that

Ah; = Ahy.

The elements of the basis {h;,1 > 1} are also eigen functions for the operator £, that is

Lh; = p;h;

where

Hi = —.\f + k.

For s > 0, define IT* to be the set of all u € Ly(G) such that
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(e o]

ulls = O A2, by, (0)2)? < 0.

For s < 0, /I* is defined to be the closure of Ly(G) in the norm ||u||s given above. Then
H?* is a Hilbert space with respect to the inner product (.,); associated with the norm ||.||s
and the functions A = A7 *h;,7 > 1 form an orthonormal basis in H°.

In addition to the conditions (H1)-(H3), we assume that

(H4)ug € H™ where a > 4. Note that uy € L3(G).

(H5) The operator A is a uniformly strongly elliptic of even order £ and has the same
system of eigen functions {h,7 > 1} as L.

The conditons (H1)-(H5) described above are similar as those in Huebner and Rozovskii

(8].
Note that ug € H~%. Define
(11. 7) ugi = (o, by *)-a-
Then the random field -
(11. 8) u(t,z) = 3 wi(t)hy *(z)
i=1

is the solution of (11.1) subject to the boundary conditions (11.2) and (11.3) where u;(¢) is

the unique solution of the stochastic differential equation
(11. 9) dui(t) = piui(t)dt + A7) dW;(1),0 <t < T,

{11. 10) 11,,'(0) = Ug;.

Let 7V be the orthogonal projection operator of H~% onto the subspace spanned by
{h7*,1<i< N} Let

(11. 11) uNt,z) = «Vu(t,z)

I
g
£
%

where u;(t) is the solution of (11.9) subject to (11.10). Note that
(11. 12) du (t,2) = AuN(t,z)dt + 0(t)dWN (1,2),0 < t < T,z € G

with
(11. 13) uN(0,2) = 7V uo(z)
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and N
(1. 14) WN(tz) = 3 AT Wi(DhT (),
=1
Here {W;(¢),t > 0},7 > 1 are independent standard Wiener processes.

We now consider the problem of estimation of the function 8(¢),0 < ¢ < T based on
the observation of the Fourier coefficients u;(t;),t; = 727,57 = 0,1,...,[2"T,1 < ¢ < N,
or equivalently based on the observations u™(¢;,z),¢; = j27",5 = 0,1,...,[2"T]. Here [z]
denotes the largest integer less than or equal to z.

We will at first construct an estimator of 8(.) based on the observations {u;(t;),t; =
727,75 =0,1,...,[2"T]}. Our technique follows the methods in Genon-Catalot et al. [5] as
before.

Let {Vj,—00 < j < 00} be an increasing sequence of closed subspaces of I*(R). Suppose
the family {V;, —0o < j < oo} is an r-regular multiresolution analysis of L?(R) such that the
associated scale function ¢ and wavelet function i are compactly supported and belong to
CT(R). For a short introduction to the properties of wavelets and multiresolution analysis,
see Prakasa Rao [22].

Let W, be the subspace defined by

(11. 15) Vier = V; © W;
and define
(11. 16) $in(z) = 2P¢(2z - k),—c0 < jik < o0

(11. 17) e

2j/21[)(2jz —k),—00 < j,k < 0.

Then (i) for all —o0 < j < oo, the collection of functions {¢;r,—0c0 < k < oo} is an
orthonormal basis of V; ; (ii) for all —oo < 7 < 00, the collection of functions {3; 4, —00 < k <
oo} is an orthonormal basis of W; ; and (iii) the collection of functions {%;, —00 < j, k < 00}
is an orthonormal basis of L2(R).

In view of the earlier assumptions made on the function 8(t), it follows that the function
6(t) belongs to the Sobolev space H™(R). Let j(n) be an increasing sequence of positive

integers tending to infinity as n — oo. The space L?(R) has the following decomposition:

(11. 18) L*(R) = Vin) ® (®;55(mW;)-
The function §2(t) can be represented in the form
(11. 19) ()= Y mimyadiemilt) + > Vi ki k(t)

k=—o0 7> i(n),—oo<k< oo
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where

(11. 20) Hik = /Rﬂz(t)@.k(t)di
and

(11. 21) Vik = /Roz(i)l/fj,k(t)dt-

We will now define estimators of the coefficients u;; based on the observations {wi(t:),tr =
27,5 =10,1,...,[2"T]}. Define

‘ M-1
(1. 22) AL = N3 6 k() (i) — (1))
=0

where M = [2"T).
The subspace Vj is not finite dimensional. However, the functions #? and the functions
¢ are compactly supported. Hence, for each resolution j, the set of all k such that g;; # 0

and the set of all k£ such that fi;; # 0 is a finite set L; depending only on the constant T
and the support of ¢ and the cardinality of the set is O(27).
Define the estimator of §%(¢) by

(11. 23) HOBEEEY ﬂﬁ-‘(’n)’m(n),k(t)
/cELJ'(,,)

(11. 24) = > ﬂ;'()n)wj(n),k(t)-
—oco< k<o

Note that for any function f such that

T
/0 F(£)8%(1)dt < oo,

it can be shown that

M-1 52 T
> () usltrsn) = w2 55 [ H00%dt s m— .
=0 /\i + 1 0

Hence

(11. 25) A 2 ik as m— oo,

Let h(.) be a continuous function on [0,T) with compact support contained in (0,T) and
belonging to the Sobolev space H""(R) with m’ > % Let h; be the projection of h on the

space Vj. Farther more suppose that

(11. 26) rAm+rAm >2,j(n) = [an]
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with
(11. 27) QrAm+rAm) " <a< %

Note that r is the regularity of the multiresolution analysis, m is the exponent of the Soblev
space to which 82 belongs to and m’ is the exponent of the Soblev space to which h belongs

to. Applying the Proposition 3.1 of Genon-Catalot et al. (5], we obtain that the following

representation holds:

Jin

i

T ~
2"/2/ R(0)(E2(t) — 6%(2))dt

M-1 o
P/ it / b(s) W) - |

tr4a
0%(s) ds)+ R,

T

where R;, = 0,(1) as n — oo. Further more
T

(11. 28) Jin iN(o,Q/ RA(1)8%(1) dt) as m — oo
0

by Theorem 3.1 of Genon-Catalot et al. [5]. Note the estimators {§;(t),7 > 1} are independent

estimators of #(t) for any fixed ¢ since the processes {W;,7 > 1} are independent Wiener

processes.

Let v(t) be a nonegative continuons function with support contained in the interval [0, T].

Define

T R
(11. 29) Qin = E{ /0 Y(@)(B2() - 62(1))2d1).

Note that Q;n is the integrated mean square error of the estimator ?(t) of the function 82(t)

corresponding to the weight function 7(¢). It can be written in the form

(11. 30) Qin = Bl + Vin

where -

(11. 31) BL = [ AE8 ) - P @)
0

is the integrated square of the bias term with the weight function () and
T N .
(11. 32) Vi = B[ 1(0)(@(0) - EGX(0)Rdt)
0
is the integrated square of the variance term with the weight function v(t). Let

T . .
(11. 33) Din = E{/O (3(t) — E63(1))*dt)
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and suppose that sup{y(t) : t € [0,T]} < K. Further suppose that j(n) — 3 — —oco. Then it

follows, by Theorem 4.1 of Genon-Catalot et al. [5], that there exists a constant C; depending
on ¢, \; and the functions ¢,v and #% such that

(11. 34) B2 < Cy(219(m)=2n | 9=2i(n)(mAr) | 9=ny
and .
(1. 35) Din = 20702 [ g(1)dt 4+ o(21)).
0
Further more
Let N
- 1 "

(11. 37) OR(1) = 5 2020

i=1

It is obvious that, for any function A satisfying the conditions stated above, and for any fixed
integer N > 1,

on/? /T h(1)(63,(t) — 62(1))dt
0

N

= ZV_l ZJin
=1
N M-t gt tre1 al

= N {2y hi(n)(tr)[(/ 0(s) dWi(s))* "/ Pe) daly 4 NTEY R
=1 r=0 tr tr =1

n/2M_1 A 1y [ cenz [T e . ,
2/ Y Byt )N Y /t 8(s) dWi(s)) /t 6%(s) ds]} + N3 Rin.

i=1

From the independence of the estimators é,-(t),l < 1 < N, it follows from the Theorem 3.1
of Genon-Catalot et al. [5] that

T . T

(11. 38) 2"/2/ R(1)(8% (1) — (1))t AN(O,QN—I/ R2(1)8%(1) di) as n — oo.
0 0

We have the following theorem.

Theorem 11.1 : Under the conditions stated above , the estimator 6%(t) of §2(t) satisfies

the following property for any function h(t) as defined earlier:

(11. 39) 2“/2/

0

T _ ‘ T
R () — 62(1))dt —»N(0,2N“1/0 R2(0)0%(2) dt) as n — oo.
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Let 4(t) be a nonegative continuous function with support contained in the interval [0,T).
Define

T -
(11. 40) Qn = B[ 1(0(@(1) - (1) de).

Note that @, is the integrated mean square error of the estimator 8% (t) of the function 82(t)

corresponding to the weight function y(t). It can be written in the form

(11, 41) Qu=B24V,
where -
(11. 42) B2 = /0 Y(O(EB (1) — 67(2))2dt

is the integrated square of the bias term with the weight function 4(¢) and
T ~ ~
(11. 43) Vo= B{[ 21(0@k(v) - BE(0)dr)
0
is the integrated square of the variance term with the weight function v(¢). Let
T -
(11. 44) D, = E{/ (83, (t) — E62(1))dt}.
0

We have the following theorem from the estimates on {B;,,1 < ¢ < N} and on {D;,,1 <1<

N} given above.

Theorem 11.2: Suppose that j(n) — 5 — —oo. Then there exists a constant Cy depending
on N,¢,v,6% such that

(11. 45) BZ < Cn (24j(n)-2n 4 2R} mAr) o 9=

and ,

(11. 46) Dy = N'12f'(")—"2/ gi(t)dt + o N~ 27(®)—m),
0

Further more

(11. 47) V. < KD,

where K = sup{vy(t):0<t<T}.
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12 Remarks

We have considered the problems of nonparametric and parametric estimation of coefficients
involved in a special class of parabolic SPDE’s which can be reduced to infinite systems of
stochastic differential equations. It is possible such a decoupling might not be possible for
several classes of SPDE’s which occur in stochastic modelling. The problem is to develop
statistical methods of inference for such SPDE’s in the case of continuous observation of
the random field u(t,z) over time and space variables. In our discussion on estimation
problems for SPDE’s based on discrete sampling, we have assumed that discrete data on the
Fourier coefficients of the random field u(¢,z) are available. This assumption is also more of
mathematical convenience and it amounts to continuous observation of the random field over
the space variable z. A more realistic problem is to estimate the coefficients of the SPDE
satisfied from observations on the random field observed at discrete times t;,1 <1 < N and
at discrete points z;,1 < j < M. As far as the author is aware, this problem has not been
studied. The problems of finding methods for simulation as well as methods for numerical

approximation of general SPDIE’s has not been studied much in the literature
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Abstract

Let Xi,..., X, be any n random variables (rv’s) and let X;., < ... < X,.., denote
the same variables arranged in nondecreasing order. Then X., is called the rth
order statistic, r = 1,...,n. When one of the X’s is dropped at random, there
results a simple relation between the order statistics in the original and the reduced
samples. This “dropping” argument will be shown to provide a unified approach
to establishing recurrence relations between moments of order statistics, whatever
the dependence structure of the observations. Also useful in studying recurrence
relations is the classical theorem on the probability of occurrence of r events out
of n.

It will also be shown that a simple general method of obtaining universal bounds
for linear functions of order statistics in terms of the sample standard deviation

can be based on Cauchy’s inequality coupled with convexity arguments.

Keywords: Recurrence relations; “dropping” argument; universal bounds; Cauchy’s

inequality; convexity.
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1 INTRODUCTION

I greatly appreciate being asked to contribute a paper to this volume. An article
on order statistics is particularly appropriate, since Indian statisticians have made
major contributions to the subject. Two massive multi-authored volumes, [1] and
[2], recently published, summarize much of the theory and applications of order
statistics. Their indexes list 70 distinct areas of application including life testing
and reliability, the treatment of outlying observations, median and order-statistics
filters in signal or image processing, the estimation of parameters and hypothesis
testing, etc. The theory of order statistics draws on a rich variety of mathemat-
ical techniques. Beyond the familiar mathematical branches, authors have used
the theories of convexity and majorization, stochastic orderings and inequalities,
functional and integral equations, the calculus of variations, linear programming,
combinatorial analysis, and no doubt other techniques.

In this paper we deal with two quite different aspects of order statistics, but
show in each case how a few techniques illuminate, unify, and provide easy proofs

of key results.

2 RECURRENCE RELATIONS
We need a few preliminaries. Let
Frun(2) = Pr(Xem < )
denote the cumulative distribution function (cdf) of X;.,, and
prm = E(Xrn)

the expectation or mean or first moment of X,.,. Continuing to the joint cdf of

X and X,n(r < 5), we define

Fr,s:n(zay) = PT‘(er _<. zva:n S y)
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and the product moments
Hr s:n = E(Xr:nXs:n)-

Finally, we say the random variables (rv’s) Xi,...,X, are ezchangeable if the
joint distribution of any subset depends only on the size of the subset and not on
which X’s are in the subset. Exchangeable variates are a first generalization of
independent, identically distributed (iid) rv’s, much used in statistics.

Many authors have studied recurrence relations between the moments of order
statistics, both for their intrinsic interest and for their usefulness in reducing the

number of independent calculations required for the evaluation of the moments.

Relation 1. Let X;,...,X, be exchangeable variates with Pr{X,., < z} =
Frn(z) and E(X;n) = fhem,m = 1,...,n. Then subject to the existence of all
terms involved,

(P = ") ptrn + Thrgin = Nfhrin-1.
Proof. We use the following “dropping” argument, [10]: Drop one of Xi,..., X,
at random and suppose this is Xin(¢ = 1,...,n). The resulting ordered variate

Xrn—1 in the sample of n — 1 exchangeable rv’s is then given by

KXimo1 = Xr+1:n fOI‘i:l,...,T (A)
= Xppfori=r+1,...,n (B)

since for (A) the rv with rank r + 1 in the sample of n has rank r in the sample of
n—1, etc. But the events A and B have respective probabilities r/n and (n—r)/n,

so that

Pr{X,mn1 <z} = Pr{A}Pr{X,n-; < z|A}

+ Pr{B}Pr{X,n < z|B}

;:’Pr{Xr+1:n S $} + — TPT{Xr:n S :E}
n
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nFrn_1(z) = rFqin(z) + (0 — r)Frn(2). 1)

Relation 1 follows.
Comments.

1. Relation 1 was first obtained in [6] for iid continuous variables.

2. The “dropping” argument generalizes easily to give the well-known relation

forl1<r<s<n

7',u'r+1,s+1:n + (S - r),”r,a+1:n + (n - s)ﬂr,s:n = nﬂr,s:n—l,
first proved in the iid continuous case in [12].

Generalization of Relation 1 to any variates X;,..., X,. In [18] it is shown
that even when the X; have an arbitrary joint distribution, a generalization of (1)

is possible, namely

rFrstn(@) + (0 = 1) Fen(e) = Zl Fi(@), 2)
where F,( ,Z_ (z) denotes the cdf of X,.n—; when X; has been dropped from Xi,...,X,(i =
L,...,n).

The “dropping” argument provides a simple proof of (2), [8]. Consider drop-
ping at random one of Xy.,..., Xpn- The resulting variates may be denoted by
Xl(;Q_l, . ,X,(i)lm_l, where J has a discrete uniform distribution over j = 1,...,n.
Then (A) and (B) will still apply if X,.n—1 is replaced by x) .. Eq (2) now fol-

lows, since by conditioning on J = i, we see that the cdf of X,(;Q_l is

LS F9 (@),
n i=1

Relation 2. In the situation of Relation 1

= (i1 imr (k)
=3 (20 ().
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Thus the moments of X,., are expressible in terms of the simpler moments of the
maxima in samples of r,r +1,...,n.

This relation can be established by repeated application of Relation 1, or al-
gebraically. We again use a probabilistic argument, [9], that lends itself to gen-
eralization. By a classical result in probability theory, the probability p,, of the
realization of at least r out of the n events A,..., A, is given by (e.g., [11, p. 99])

po= 20 (1215 0

r—1

]=T
where

Si= S Pr{A,.. Ay}

1$i1<...<l'j$‘n
If A; is the event X; < z,1 =1,...,n, then p.., = Pr{X,, <z} = F.n(z). Eq.
(3) clearly becomes

Frn(z) = i(—l)j" (i _ 1) (?) Fyj(e), (4)

j=r

which gives Relation 2 as before.

Duality Principle. If 4; in (3) is taken to be the event X; > z,i =1,...,n, then
Prn = Pr{Xn-r41:n > x}. With F(z) = 1 — F(z), eq. (3) now gives

Frriin(z) = jz:;(—l)f" (” _ i) (J) Fiy(z).

=20 () 0)

and hence obtain the “dual” of (4)

Freriinl) = -0 (V1) (7) Fust) (5)

j=r

Setting z = —-o0, we have

Clearly, to reach (5) from (4) we simply need to change F,.4(z) to Fy_gr14(z),1 <
a<b<n.
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This argument may be extended to the general case of dependent rv’s X, ..., X,.
The result is made explicit in [5], where the “duality principle” is introduced

through a different, slightly less general approach.

Interdependence of Linear Relations. It is interesting to note that eq. (1) can be
deduced by applying (4) to each term of (1). Since each of (1) and (4) can be
obtained from the other, they must be equivalent. More generally, any recurrence
relation linear in the Fj.; must be of the form

3 asFie) =3

j=1i=1 j=1l1i=

]1 bi; Fiij(2), (6)
where the a;; and b;; are constants. By (4) each side of (6) must equal the same
linear function Y7, ¢;Fj.;(z), say, since for arbitrary F'(z) there can be no linear
identity linking F1.4(z),..., Fon(z) for all z (except in the trivial case Pr{X; =
... = X,} = 1). In other words, any linear recurrence relation for arbitrary F(z)
must be deducible from (4) and therefore also from (1). If proved in the simple
case when X;,..., X, are iid and continuous, it must automatically hold also when

the X’s are exchangeable, whether continuous or not.

Generalizations to any variates X;,...,X,. By repeated application of (2),
eq. (4) is generalized in [3] to

o) = S0 (17 1) () 0o, M

where, with an extension of the “dropping” notation,

J 1<41<.<ip—j<n

j=r

It is seen that (7) also follows immediately from (3), since S; equals the RHS of
(8). Hence the dual of (7) is, in generalization of (5),

Frernals) = 20 (121 (7) Pl o)

J=r

Further extensions to the joint cdf of two order statistics are given in {9].
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3 BOUNDS FOR LINEAR FUNCTIONS OF OR-
DER STATISTICS

Let z,,...,z, be any n observations and c¢,...,¢, any n constants. With ¥
denoting summation from 1 to n, we show how Cauchy’s inequality may be used
to unify the construction of bounds for ¥¢;z;., in terms of the sample mean z and
sample standard deviation s = [(z; — Z)?/(n ~ 1)]"/2. Hélder’s inequality could
be used similarly to give more general results, but we confine ourselves to this most
important special case. Several examples illustrate the usefulness of the bounds.

Since X¢;j(Zim — &) = E(¢i — €)(Ti:n — ), we have from Cauchy’s inequality that
[Sei(zim — )| < [B(ei — S (in — 2V, )

Focusing for definiteness on finding upper bounds, we take X¢;(z;, — Z) > 0, so
that from (9)
Teizin < 28 + [(n — 1)D(e; — €)1 2s. (10)

Equality holds iff for some constant & (which must be positive)
Tin—~T=k(c;—¢) =z (say) i=1,...,n. (11)

It follows that the ¢; must be nondecreasing in 7 for (10) to give sharp bounds.

Ezample 1. For the internally studentized extreme deviate from the sample mean
dn = (Tnn — )/5

we have ¢; = ... = ¢pu1 = —1, ¢ = 1 — 1, s0 that B¢ = 0 and from (10)

dn S (TL— 1)/\/7_7,:: d;

From (11) we see that the maximizing configuration is given by zi = ... =2, _, =

k .+ _ n=1
—k gl = nzl,
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1 n-1 - n=»>5

Y 0 z,

This is the oldest result of this type, already obtained by a different method in
[14]. In fact, also obtained there is a bound d,_, for dn—1 = (Zn-1.n — Z)/s. The
authors noted that for z > dl_,

Pr(D, > z) = nPr((X, — X)/S > z),

enabling them to find exact upper percentage points of D, in the normal case
for n < 14 (5%) and n < 19 (1%) by using the relation of (X; — X)/S to the
t-distribution. They noted also that if there are two equal outliers in a sample of
n < 14, neither can be detected by this test at the 5% level, a phenomenon later
termed the “masking effect”.

See [7] for other examples where the ¢; are nondecreasing. In such cases £ =
Yz 1s a convex function. A function ¢ of n variables is convez in a region R,

if for any two points x and y in R, and 0 < a < 1.

$lox + (1 - a)y) < ad(x) + (1 — )¢(y).
Clearly, z,., is convex, since

(ex + (1 = )¥)nin < ATrin + (1 — Q) Ynin,

and so is any ¢ expressible as a maximum. In particular, $; = zpm + ... +

Tpiy1m,? = 1,...n, is convex, since S; = mazicj <..cii<n(Tj1 + ... + z;i). But
C=c1Sp+(cg—¢1)Sno1+ ...+ (e — 1)t

and such a combination of convex functions with nonnegative coefficients is itself
convex (see [13, p. 451}).
Correspondingly, £ is concave if the ¢; are nonincreasing. Finding the maximum

¢; in this case requires a special approach, as does finding the minimum when £ is
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convex (see [19] or [7] for a method due to C.L. Mallows). All other situations can
be handled as in the following examples. We first need a simple result.

Suppose ¢;41 < ¢i. Then, writing ¢} = ¢}y; = (¢ + ¢i41), we have

1
/ 7
CiTim + Cit1Ti41:n — C;Tim — ci+l$i+l:'n. == §($i+1:n - xi:n)(ci+1 - Ci) S 0.

Thus,

CiTim + Cip1Tig1in < CT(im) + Cipy Tivlin, (12)
with equality holding iff z;, = %i41..- Continuing this process until convexity of
¥ clz;.n is achieved requires averaging two or more ¢; in nonconvex subgroups. The

upper bound of X¢;z;.,, is then the attainable upper bound of Yclz;.,.

Ezample 2. d. = (2., — T)/s r=2,...,n—1. For zy,...,z, arbitrary, d,
is neither convex nor concave. To make d, convex, we simply set T, = Ty =

... = Tn:, thereby changing the ¢; to ¢! as follows:

1 .
¢ = ¢g=-—= i=1,...,7r~1
n
¢ = r—1
P on(n—r+1) PR

Hence, by (10),

1/2
d, < [%;—_1_—)(;751—1)—)] =d (say) r=2,...,n—1

which holds for r = n also. The maximizing configuration is given by z} = ... =

_,=~k/nz, =...=2a =k(r-1)/[n(n—r+1)]

n=3, r=3

B |—

! 1
T 0 x,

Ezample 3. ¢ = (Tmun + Tmp1tn — Trn — Tnpi—rm)/s 7 =1,...,m—1;m =

nf2 = 2,3,.... The numerator is 2 (median-midquasirange). To make the ¢!
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nondecreasing we must take ¢f = ... = ¢, = —1/r,¢j;; = ... = ¢, = 0,¢c, =
...=c, =1/(m+1). This gives
1 1 n+2+2r

Yel= - =
G r+m+l r(n+2)

Hence, from (10) and symmetry considerations, we have

)(n+2+2r) 1z

r(n + 2)

o] < |2

For n = 8,r = 2 the maximizing configuration is proportional to

z) 0 z!

Example 2 and other examples of this convexity creating approach were given in
[7], but inequality (12), which provides a formal justification of the procedure used,
is new here. In the meantime, Rychlik in [15], using quite different arguments, had
arrived at essentially the same results and had formalized obtaining the ¢}. See also
the related review paper [16] and the monograph [17] for further unifying results.
Acknowledgement This paper is a modified version of a presentation to the
International Conference on Order Statistics and Extreme Values, Mysore, India,

December 2000. I am indebted to T. Rychlik for drawing my attention to his 1992
paper [15].
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Abstract

In this paper we review some of the results obtained recently in the area of stochas-
tic comparisons of order statistics and sample spacings. We consider the cases when
the parent observations are identically as well as non-identically distributed. But
most of the time we shall be assuming that the observations are independent. The

case of independent exponentials with unequal scale parameters is discussed in detail.
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1 Introduction

The simplest and the most common way of comparing two random variables is through
their means and variances. It may happen that in some cases the median of X is larger
than that of Y, while the mean of X is smaller than the mean of Y. However, this
confusion will not arise if the random variables are stochastically ordered. Similarly,
the same may happen if one would like to compare the variability of X with that
of Y based only on numerical measures like standard deviation etc. Besides, these
characteristics of distributions might not exist in some cases. In most cases one
can express various forms of knowledge about the underlying distributions in terms
of their survival functions, hazard rate functions, mean residual functions, quantile
functions and other suitable functions of probability distributions. These methods
are much more informative than those based only on few numerical characteristics
of distributions. Comparisons of random variables based on such functions usually

establish partial orders among them. We call them as stochastic orders.

Stochastic models are usually sufficiently complex in various fields of statistics,
particularly in reliability theory. Obtaining bounds and approximations for their
characteristics is of practical importance. That is, the approximation of a stochastic
model either by a simpler model or by a model with simple constituent components
might lead to convenient bounds and approximations for some particular and desired
characteristics of the model. The study of changes in the properties of a model, as
the constituent components vary, is also of great interest. Accordingly, since the
stochastic components of models involve random variables, the topic of stochastic
orders among random variables plays an important role in these areas.

Order statistics and spacings are of great interest in many areas of statistics and
they have received a lot of attention from many researchers. Let Xi,..., X, be n

random variables. The ith order statistic, the ith smallest of X;’s, is denoted by
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Xim. A k-out-of-n system of n components functions if at least k of n components
function. The time of a k-out-of-n system of » components with life times X, ..., X,
corresponds to the (n — k + 1)th order statistic. Thus, the study of lifetimes of k-out-
of-n systems is equivalent to the study of the stochastic properties of order statistics.
Spacings, the differences between successive order statistics, and their functions are
also important in statistics, in general, and in particular in the context of life testing
and reliability models. Lot of work has been done in the literature on different aspects
of order statistics and spacings. For a glimpse of this, see the books by David (1981),
and Arnold, Balakrishnan and Nagaraja (1992); and two volumes of papers on this
topic by Balakrishnan and Rao (1998 a and b). But most of this work has been
confined to the case when the observations are i.i.d. In many practical situations,
like in reliability theory, the observations are not necessarily i.i.d. Because of the
complicated nature of the problem, not much work has been done for the non i.i.d.
case. Some references for this case are Sen (1970), David (1981, p.22), Shaked and
Tong (1984), Bapat and Beg (1989), Boland et al. (1996), Kochar (1996), and Nappo
and Spizzichino (1998), among others.

Some interesting partial ordering results on order statistics and spacings from
independent but non-identically random variables have been obtained by Pledger
and Proschan (1971), Proschan and Sethuraman (1976), Bapat and Kochar (1994),
Boland, El-Neweihi, and Proschan (1994 ), Kochar and Kirmani (1995), Kochar and
Korwar (1996), Kochar and Rojo (1996), Dykstra, Kochar, and Rojo (1997), Kochar
and Ma (1999), Bon and Paltanea (1999), Kochar {1999), Khaledi and Kochar (1999),
Khaledi and Kochar (2000 a,b,c), and Khaledi and Kochar (2001).

In this chapter, we discuss some newly obtained results on stochastic comparisons
of order statistics and spacings. Kochar (1998) and Boland, Shaked and Shanthiku-
mar (1998) have given comprehensive reviews on this topic upto 1998. In Section

2, we introduce the required notation and definitions. Section 3 and 4 are devoted
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to stochastic comparisons of order statistics in one-sample and two-sample problems,
respectively. In Sections 5, we discuss the stochastic ordering among spacings in
one-sample problem and two sample problem. Section 6 is devoted to stochastic
properties of sample range Throughout this chapter increasing means nondecreasing
and decreasing means nonincreasing; and we shall be assuming that all distributions

under study are absolutely continuous.

2 Definitions

Let X and Y be univariate random variables with distribution functions F' and G,
survival functions F' and G, density functions f and g; and hazard rates rp (= f/F)
and r¢ (= g/G), respectively. Let Ix (ly) and ux (uy) be the left and the right
endpoints of the support of X (V).

Stochastic orderings

Definition 2.1 X is said to be stochastically smaller than Y (denoted by X <, Y)
if F(z) < G(z) for all z.

This is equivalent to saying that . Eg(X) < Eg(Y) for any increasing function g for

which expectations exist.

Definition 2.2 X is said to be smaller than Y in hazard rate ordering (denoted by

X <4 Y) if G(z)/F(z) is increasing in z € (—00, maz(ux,uy)).
It is worth noting that X <, Y is equivalent to the inequalities
PIX—t>z|X>t|<PY-t>z|Y >t], forallz>0 andt.

In other words, the conditional distributions, given that the random variables are at

least of a certain size, are all stochastically ordered (in the standard sense) in the
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same direction. Thus, if X and Y represent the survival times of different models of
an appliance that satisfy this ordering, one model is better (in the sense of stochastic
ordering) when the appliances are new, the same appliance is better when both are one
month old, and in fact is better no matter how much time has elapsed. It is clearly
useful to know when this strong type of stochastic ordering holds since quantities
judgements are then easy to make. In case the hazard rates exist, it is easy to see
that X <, Y, if and only if, rg(z) < rp(x) for every z. The hazard rate ordering is

also known as uniform stochastic ordering in the literature.

Definition 2.3 X is said to be smaller than Y in likelithood ratio ordering (denoted

by X <;r Y) if g(x)/f(z) is increasing in z € (Ix,ux) U (ly, uy).

When the supports of X and Y have a common left end-point, we have the following

chain of implications among the above stochastic orders :
XSer=>XSth=>XSstK (21)

Definition 2.4 The random vector X = (Xi,...,X,,) is smaller than the random

¢
vector Y = (Yi,...,Y,) in the multivariate stochastic order (denoted by X Sj Y)if
h(X) < h(Y) for all increasing functions h.

It is easy to see that multivariate stochastic ordering implies component-wise usual
stochastic ordering. For more details on stochastic orderings, see Chapters 1 and 4
of Shaked and Shanthikumar (1994).

One of the basic criteria for comparing variability in probability distributions is
that of dispersive ordering. Let F~! and G~! be the right continuous inverses (quantile
functions) of F' and G, respectively. We say that X is less dispersed than Y (denoted
by X <uisp Y) if F71(3) — F a) <G }(B) ~ G 'a), forall 0 < a < B < 1. From

this one can easily obtain that

X Suisp Y = g(z) < f(F7'G(z)) Vo, (2.2)
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when the random variables X and Y admit densities. A consequence of X <y, Y
is that |X| — X,| <4 |Y; — Ya| and which in turn implies var(X) < var(Y) as well
as E[|X; — X;|] € E[|Y; — Ys|], where X, X, (Y},Y,) are two independent copies of
X (Y). For details, see Saunders and Moran (1978), Lewis and Thompson (1981),
Deshpande and Kochar (1983), Bagai and Kochar (1986), Bartoszewicz (1986, 1987);
and Section 2.B of Shaked and Shanthikumar (1994).

Notions of Majorization and related orderings

One of the basic tools in establishing various inequalities in statistics and proba-
bility is the notion of majorization.

Let {zq) < z(2) £ ... < Z(n)} denote the increasing arrangement of the compo-

nents of the vector x = (z1, 2o, ..., Z,).

Definition 2.5 The vector x is said to majorize the vector y (written x '£ y)if

Yo <Yy fori=1,...,n—1 and 0 26 = X0 yi)-

Functions that preserve the majorization ordering are called Schur-convex functions.
The vector x is said to majorize the vector y weakly (written x ; y) if Z{:I Ty <
22:1 Yy for j =1,...,n. Marshall and Olkin (1979) provides extensive and compre-
hensive details on the theory of majorization and its applications in statistics.
Recently Bon and Paltanea (1999) have considered a pre-order on IR*™", which

they call as a p-larger order.

Definition 2.6 A vector x in IR*"™ is said to be p-larger than another vector y also

. . P . ) .
in R (written x = y) if [T @) < [Beyv6p,d =1,...,m.

Let log(x) denote the vector of logarithms of the coordinates of x. It is easy to

verify that

x & y & log(x) = log(y). (2.3)
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m w
It is known that x = y = (9(z1),...,9(z,)) = (9{x1),- .-, 9(ys)) for all concave
functions g (cf. Marshal and Olkin, 1979, p. 115). From this and (2.3), it follows
that when x,y € Rt"
X g y — X é y.
The converse is, however, not true. For example, the vectors (0.2,1,5) é (1,2,3) but

majorization does not hold between these two vectors.

Notions of Aging

Let X be a random variable with distribution function F' and let X; denote a
random variable with the same distribution as that of X — £|X > t. We will use the

following notions of aging in this article.

(@) X is said to have an increasing failure rate (denoted by IFR) distribution if
X; <4t X¢, for t > t'. This is equivalent to saying that F(z+t)/F(t) decreasing
in ¢ for £ > 0. It is easy to see that in case the random variable X admits density,

F is IFR if and only if, the hazard rate rr(t) = f(t)/F(t) is increasing in ¢.

(b) X is said to have a decreasing failure rate (denoted by DFR) distribution if
X; >4t Xy, for t > t'. This is equivalent to F(z + t)/F(t) increasing in t for
z> 0. '

Next theorem due to Bagai and Kochar (1986) and Bartoszewicz (1987) establishes

a connection between dispersive ordering and hazard rate ordering.

THEOREM 2.1 Let X and Y be random variables with distribution function F and

G, respectively. Then,
(a) X <p, Y and F or G being DF R implies X <45 Y';

(b) X <aisp Y and F or G being IFR implies X <3, Y.
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3 Stochastic Comparisons of Order Statistics in

one-sample problem

Let Xi,...,X, be a set of independent random variables. It is easy to see that
Xin <st Xjm, for all i < j. Boland, El-Neweihi and Proschan (1994) extended
this result from usual stochastic order to hazard rate order. Using the definition of
likelihood ratio ordering, it is not hard to prove that X, <;, Xj., for ¢ < j. Shaked
and Shanthikumar (1994) considered the problem of comparing order statistics from
samples with possibly unequal sample sizes. They showed that if random variables
X;'’s are iid, then Xpp <ir Xp+t1:m41 and X1n 25 Ximt1- Raqab and Amin (1996)
strengthened this result and proved that X, <y Xj.m, whenever i < jand n -1 >
m — j. Using implications (2.1), we get, for s < jand n—i > m — j, Xiy <pr
X:m which in turn implies that X, <4 X;.m. Removing the identically distributed
assumption, it is interesting to investigate the above stochastic inequalities among
order statistics. Boland, El-Neweihi and Proschan (1994) showed that if random
variables are independent and X, <;, X1, k = 1,...,n, then X; 1., <pr Xins1,
1 =1,...,n4+ 1. They also proved that if X;’s are independent and X, <p, X,
k=2,...,n, then Xipn 2pr Ximy1, ¢ = 1,...,n. The reader may be wondering
whether likelihood ratio ordering among order statistics holds for the case when X;’s
are independent but not necessarily identically distributed. Assuming X, <; Xo <pr

... < X,, Bapat an Kochar (1994) proved that X;., <ir Xji, ¢ < J.

We end this section by discussing some results on dispersive ordering of order
statistics. David and Groenveld (1982) proved that if X;’s are iid random variables”
with a common DFR distribution, then var(X;,) < var(X,y), for i < j. Kochar
(1996) strengthened this result to prove that under the same conditions, Xin <aisp

Xjun, t < j. In Theorem 3.2 below, due to Khaledi and Kochar (2000 a}), this result
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has been further extended. It is proved that if X;’s are iid with DF R distribution,
then X <gisp Xjm, whenever ¢ < j and n —4 > m — j. We will find the following

result useful in proving it.

THEOREM 3.1 (Saunders (1984)). The random variable X satisfies X <ggp X +Y.
for any random variable Y independent of X if and only if X has a log-concave

density.
Using Theorem 3.1, first the result is proved for exponential distribution.

LEMMA 3.1 Let X,., be the ith order statistic of a random sample of size n from an

ezponential distribution. Then
Xin <disp Xjum fori<jandn—i>m-—j. (3.1)

PROOF : Suppose we have two independent random samples, X1,..., X, and X},..., X
of sizes n and m from an exponential distribution with failure rate A\. The ith order

statistic X;., can be written as a convolutions of the sample spacings as

Xi:n - (X'L':n - Xi—l:n) + e (X2:n - Xl:n) + Xl:n
) i
LN Bnoink (3.2)
k=1
where for £k = 1,...,4, E,_;;x is an exponential random variable with failure rate

(n—i+k)A. It is a well known fact that E,_;44’s are independent. Similarly we can

:
express X, as

J
t dist !
X S i (3.3)
k=1
where again for £ =1,...,7, E;n_j 4 1s an exponential random variable with failure

rate (m—j+k)A and E;n_]. +& 8 are independent. It is easy to verify that E, ;11 <aisp

Em——j+1

]

forn—1i>m—j.

I

T
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Since the class of distributions with log-concave densities. is closed under convo-
lutions (c¢f. Dharmadhiakri and Joag-dev (1988), p. 17), it follows from the repeated
applications of Theorem 3.1 that

i i
Y En itk <disp O Ejii- (3.4)
k=1 k=1

Again since Zi:i 1 E,'n_j +&» being the sum of independent exponential random vari-

ables has a log-concave density and since it is independent of Y5_; E;,_; , it follows

from Theorem 3.1 that the R.H.S of (3.4) is less dispersed than Ziﬂ E;n_j spfori <j
That is,

i j
dist 4 dist -’
Xin = Z En—ivk Zdisp Z Em—j+k = Xj:m'
k=1 k=1

Since X;., and X ;-:m are stochastically equivalent, (3.1) follows from this. |

The proof of the next lemma can be found in Bartoszewicz (1987).

LEMMA 3.2 Let ¢ : Ry — R, be a function such that ¢(0) = 0 and ¢(z) — = s
increasing. Then for every convex and strictly increasing function v : Ry — R, the

function Yy~ (z) — z is increasing.
In the next theorem we extend Lemma 3.1 to the case when F is a DFR distribution.

THEOREM 3.2 Let X;., be the ith order statistic of a random sample of size n from
a DFR distribution F. Then

Xi:n Sdisp Xj:m fOT’iSj GNdn—iZm—j-

PROOF : The distribution function of X.,, is Fj.m(z) = Bj.mF'(z), where B, is the
distribution function of the beta distribution with parameters (j, m — j + 1).
Let GG denote the distribution function of a unit mean exponential random variable.

Then Hjm(z) = Bj:mG(z) is the distribution function of the jth order statistic in a
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random sample of size m from a unit mean exponential distribution. We can express

Fjm 25

Fim(z) = B;jwGG 'F(z)

H; G 'F(z). (3.5)
To prove the required result, we have to show that for i < jandn—¢>m —j,

FinFin(z) —z s increasing in z

& F'GH; ) HinG'F(z) —z is increasing in z. (3.6)

By Lemma 3.1, H;, Hyn(z) — z is increasing in ¢ for i < j and n—i > m — j.
Also the function ¥(z) = F~'G(z) is strictly increasing and it is convex if F' is DFR.
The required result now follows from Lemma 3.2. [
REMARK: A consequence of Theorem 3.2 is that if we have random samples from a

DFR distribution, then

Xi:n+1 Sdisp Xim Sdisp Xi+1:n+17 for i = 1,...,n

4 Stochastic Comparisons of Order Statistics in
two-sample problem

Let X1,..., X, be a set of independent random variables and Y7, . .., Y}, be another set
of independent random variables. Ross (1983) proved that if X; <, Y;,i=1,...,n,
then (X1,...,Xn) <s (Y1,...,Y,). A consequence of this result is that X, <
Y., fori=1,...,n. Lynch, Mimmack and Proschan (1987) generalized this result

from stochastic ordering to hazard rate ordering. They showed that if X; <, Y;
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,j € {1,...,n}, then X, <pr Yim, ¢t =1,...,n. A similar result for likelihood ratio
ordering has been proved by Chan, Proshcan and Sethuraman (1991). They proved
that if X; <;,; Y}, 4,5 € {1,...,n}, then X;n <ty Yim, ¢ = 1,...,n. Lillo, Nanda and
Shaked (2000) strengthened this result to the case when the number of X;’s and ¥;’s
are possibly different.

THEOREM 4.1 Let X;,...,X, be independent random wvariables and Y,,...,Y,, be
another set of independent random variables, all having absolutely continuous dis-
tributions. Then X; <, Y; for all 4,5 implies X;n <ip Yj.m whenever i < j and

n—t2m-—j.

In the next theorem we establish dispersive ordering between order statistics when

the random samples are drawn from different distributions.

THEOREM 4.2 Let Xy,...,X, be a random sample of size n from a continuous dis-
tribution F and let Y, ...,Y,, be a random sample of size m from another continuous

distribution G. If either F or G is DF R, then
X SdispY=>Xi:n Sdisp Y}‘:m fOT"i <jJ andn—1 >m-—j. (4'1)

PRrROOF: Let F be a DFR distribution. The proof for the case when G is DFR is
similar. By Theorem 3.2, X;,, <gisp Xjm for ¢ < j and n — i > m — j. Bartoszewicz
(1986) proved that if X <gisp ¥ then X <gisp Yjm. Combining these we get the
required result. "

Since the property X <. Y together with the condition that either F' or G is
DFR implies that X <g,, Y (Theorem 2.1), we get the following result from the

above theorem.

COROLLARY 4.1 Let Xy,...,X, be a random sample of size n from a continuous

distribution F and Y ...,Y,, be a random sample of size m from another continuous
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distribution G. If either F or G is DF R, then
X <ur Y = Xi:n _<_disp },j:m-

Stochastic comparisons of order statistics from heterogeneous populations

An assumption often made in reliability models is that the n components have
lifetimes with proportional hazards. Let X; denote the lifetime of the ith component
of a reliability system with survival function F;(t), i = 1,...,n. Then they have
proportional hazard rates (PHR) if there exist constants A, ..., A, and a (cumulative
hazard) function R(t) > 0 such that F;(t) = e"%%® for i = 1,...,n.Clearly then the
hazard rate of X; is r;(f) = \;R'(t) (assuming it exists). An example of such a situa-
tion is when the components have independent exponential lifetimes with respective
hazard rates Ay, ..., A,. Many researchers have investigated the effect on the survival
function, the hazard rate function and other characteristics of the time to failure of
this system when we switch the vector (A, ..., As) to another vector say (A},...,A%).
Pledger and Proschan (1971), for the first time, studied this problem and proved the

following interesting result among many other results.

THEOREM 4.3 Let (X,,...,X,) and (X3,..., X)) be two random vectors of indepen-
dent lifetimes with proportional hazards with Ay, ..., A, and A}, ... A} as the constants
of proportionality. Suppose that
AE A
Then
Xin 20 Xip, 1=1,...,n. (4.2)
Proshcan and Sethuraman (1976) generalized this result from component wise stochas-

tic ordering to multivariate stochastic ordering. That is, under the same assumptions

of Theorem 4.3, they showed that

(Xl:ny ey Xn:n) Zat (X;;m LARE Xr::n)'



180

Boland, El-Neweihi and Proschan (1994 ) proved that for n = 2 the above result
can be extended from stochastic ordering to hazard rate ordering. They also showed
with the help of a counterexample that for n > 2, (4.2) cannot be strengthened from
stochastic ordering to hazard rate ordering.

Dykstra, Kochar and Rojo (1997) studied the problem of stochastically comparing
the largest order statistic of a set of n independent and non-identically distributed
exponential random variables with that corresponding to a set of n independent and
identically distributed exponential random variables. Let X, ..., X, be independent
exponential random variables with X; having hazard rate A;, for ¢ = 1,...,n. Let
Yi,...,Y, be arandom sample of size n from an exponential distribution with common
hazard rate A = 3%, A;/n, the arithmetic mean of the );’s. They proved that X,., is
greater than Y., according to dispersive as well as hazard rate orderings. In Theorem
4.4 below we prove that similar results hold if instead, we assume that fori =1,...,n,
the random variable Y; has exponential distribution with hazard rate A = ([J"_, A;)'/",
the geometric mean of the A;’s. To prove dispersive ordering between X, and Y.,

in Theorem 4.4 we shall need the following lemma.

LEMMA 4.1 Forz > 0, the functions g(z) = (1—e™%)/z and h(2) = (2%e¢7%)/(1—e~*)?

are both decreasing.

PRrROOF : The numerator of the derivative of ¢(z) is k(z) = (1 + 2)e™* — 1, which is
a decreasing function of z. This implies that k(2) < 0 for z > 0, since k(0) = 0.
It is easy to see after some simplifications that

_2-2e"—2z—2ze7"

2(1—e7%)

2 (1og(h(2))) (43)

Using the fact that k(z) is negative, one can verify that the numerator of (4.3} is

decreasing, from which the required result follows. ]
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THEOREM 4.4 Let X;,..., X, be independent exponential random variables with X;
having hazard rate \;, i=1,...,n. Let Y1,...,Y, be a random sample of size n from
an ezponential distribution with common hazard rate ) = (IT, \)/*. Then
(a') Xnn Zdisp Yom ;
(b) Xn:n Zhr Yn:n .
PROOF : (a) The distribution function of X,,., is
n
Fy,o(2) =[I (1-e7),
i=1
with density function as
n )\ie—/\;z n .
fxanl(z) =3 PR H (1 —e A"T) : (4.4)
i=1 i=1
Replacing ); with X in (4.4), we see that the distribution function and the density

function of Y., are

FY,,,,n (37) — (1 _ e—j‘z)" and me" (IE) — n;\e—:\z (1 _ e—/\z)"—l ,

respectively. It is easy to verify that Fy! (z) = —%log (1 — xl/"). Using these

observations, it follows that
- n n n—1
fvon (FQLFX”:"(:L')) =71\ (1 _ H(l _ e—-/\im)l/n) (H(l — e‘&m)l/n) . (4.5)
i=1 i=1
To prove that Xp.n >gisp Yo, it follows from relation (2.2) that it is sufficient to

show that
Fun(®@) < Frun (7 Fx,..(¥)) Yz >0. (4.6)

Using expressions (4.4) and (4.5) in (4.6), one can see after some simplifications
that (4.6) is equivalent to

n A n X n n n .
Il | (o= KD SPYEY | (CORAR (47)
i=1 =1

i=1 i=1
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To prove that (4.7) holds for all A; > 0,7 =1,...,n, it is sufficient to show that the
L.H.S. of (4.7) (denoted by A(z)) is increasing in z since for z > 0,

h(z) < limeosooh(@) = 3" A= n [T()M",

the right hand side of (4.7).
The derivative of h(z) is

' d /\ie_)"'x i A 1 n ,\Z?e—)\iw
h'(z) (Zl 1= e_m> (I_I 1— e-m) -2 A=)y

n )\ie—)\;z n )\2 —A\
(; 1-— e")\i$> ( n 1- e"w”) Z 1 — e 1:)

since the geometric mean of a set of numbers is always greater than or equal to its

v

harmonic mean. Now A'(z) > 0 if and only if,

n )\ e—/\;z n )\?e—,\iz noy_ e—)‘iz
TLZ e\t — (Z (1 _ 6_)“'z)2) (Z —-)\l—> . (48)

i=1 i=1

Multiplying both sides of (4.8) by z(> 0) and replacing the \;z with z; fori = 1,....n

it is enough to prove that
n -2 n 2 -2z n —2;
zie % zje 4 1—e™*
ny ——> E——__ )( ) (4.9)
i:zl 1 —e <i=1 (1-e=)? E i

The inequality in (4.9) follows immediately from Cebysev’s inequality (Theorem 1, p.

36 of Mitrinovi¢, 1970), Lemma 4.1 and by writing

zeT® [ e l—e®
l—es  \(l—e#)? 2 '

This proves that h(z) is increasing in z and hence the result.

(b) It follows from Theorem 5.8 of Barlow and Proschan (1981) that Y., is IFR.
Using this and part (a), the required result follows from Theorem 2.1. [
From the above results, we get the following convenient bounds on the hazard

rate and the variance of X,,.,.
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COROLLARY 4.2 Under the conditions of Theorem 4.4,

(a) the hazard rate rx,.. of Xn.n satisfies

nA (1 - eavp(—:\ac))n_1 exp(—\r)
1- (1 - exp(—ﬂz))n

TXnin (.Z‘; A) S

b

(4)

1 n
var (Xnm; A) 2;2 —z+1)

Dykstra, Kochar and Rojo (1997) proved a result similar to Theorem 4.4 by as-
suming that the random variables Y;’s are exponential with common hazard rate
A = Y%, A;/n and obtained bounds on the hazard rate and the variance of X,.,
in terms of A. The new bounds given in Corollary 4.2 are better because ry,., and
var(Yym) are increasing and decreasing function of ), respectively, and the fact that

the geometric mean of A;'s is smaller than their arithmetic mean.

2f r(z;2,2,2)

,,.(1.; 61/3, 61/3, 61/3)

1t r(z;1,2,3)

0.5 1 1.5 2

Figure 4.1. Graphs of hazard rates of X33
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2r r(z;2,2,2)

r(z; (1.52)1/3, (1.52)1/3, (1.52)1/3)

r(z;0.2,2,3.8)

Figure 4.2. Graphs of hazard rates of X33

In Figures 4.1. and 4.2. above, we plot the hazard rates of parallel systems of three
exponential components along with the upper bounds as given by Dykstra, Kochar
and Rojo (1997) and the one’s given by Corollary 4.2 (a). The vector of parameters
in Figure 4.1 is A; = (1,2, 3) and that in Figure 4.2 is Ay = (0.2,2,3.8). Note that
Az g Ar. It appears from these figures that the improvements in the bounds are
relatively more if A;’s are more dispersed in the sense of majorization. This is true
because the geometric mean is Schur-concave and the hazard rate of a parallel system
of i.i.d. exponential components with a common parameter X is increasing in .

Let F denote the survival function of a nonnegative random variable X with
hazard rate h. According to the PHR model, the random variables X,..., X, are
independent with X; having survival function F** (.), so that its hazard rate is A\;h(.),
1=1,...,n.

Next, we extend Theorem 4.4 from exponential to PHR models. To prove this we

need the following theorem due to Rojo and He (1991).

THEOREM 4.5 Let X and Y be two random variables such that X <, Y. Then

X <Zaisp Y implies that v(X) <gisp ¥(Y) where vy is a nondecreasing convez function.
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THEOREM 4.6 Let X;,..., X, be independent random variables with X; having sur-
vival function e (), i=1,...,n. LetYy,...,Y, be a random sample of size n from

a distribution with survival function F'\(r), where A = ([T, \i)Y™. Then
(a) Xn:n Zhr Yn:n ;and
(b) if F is DFR, then Xp.n 2disp Ynm -

PROOF : (a)

Let H(z) = —log F(z) denote the cumulative hazard of F. Let Z; = H(X,),
i=1,...,nand W; = H(Y;), i = 1,...,n. Since X;’s follow the PHR model, then
it is easy to show that Z; is exponential with hazard rate A;, ¢ = 1,...,n. Similarly,
W; is exponential with hazard rate A, i = 1,...,n. Theorem 4.4 (b) implies that
Zyn e Woin. Using this fact, (since H™, the right inverse of H, is nondecreasing)
it is easy to show that H™Y(Z,.;) >p H™'(Wy.,) from which the part (a) follows.

(b) Theorem 4.4 (a) and (b), respectively, imply that Zp.n >gisp Whin and Zn.n >4
Wam- The function H~!(z) is convex, since F is DF R, and is nondecreasing. Using
these observations, it follows from Theorem 4.5 that H'(Z,.,) >4isp H ' (Wpin)
which is equivalent to Xn.n 24isp Yo n

In Theorem 4.9 below we prove that for the largest order statistic, the conclusion
of Theorem 4.3 holds under the weaker p-larger ordering. The proof of this theorem

hinges on the following results.

THEOREM 4.7 ( Marshell and Olkin, 1979, p. 57) Let I C IR be an open interval
and let ¢ : I™ — IR be continuously differentiable. Necessary and sufficient conditions

for ¢ to be Schur-convex on I™ are ¢ is symmetric on I™ and for all i # j,
(Zi - Zj)[(ﬁ(i)(zi) - ¢(j)(2j)] >0 forallze I,

where ¢;)(2) denotes the partial derivative of ¢ with respect to its ith argument.
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THEOREM 4.8 (Marshall and Olkin, 1979, p. 59) A real-valued function ¢ on the
set A C IR" satisfies

X =y on A= $(x) > ¢(y)

if and only if ¢ is decreasing and Schur-convex on A.

LEMMA 4.2 The function v : R*™ — IR salisfies

x 2y = $(x) 2 $() (4.10)
if and only if,
(i) Y(e™,... ,e*) is Schur-convez in (ay,...,a,)
(1) ¥(e™,...,e) is decreasing in a;, fori=1,...,n,
where a; = logx;, fori=1,...,n.

PROOF : Using relation (2.3), we see that (4.10) is equivalent to
ar b= ple,...,e%") > pe”,. .. e"), (4.11)

where a; = logz; and b; = logy;, fori=1,...,n.

Taking ¢(ay,...,a,) =¥(e™,...,e*) in Theorem 4.8, we get the required result.

|

Now we are ready to prove the next theorem.
THEOREM 4.9 Let X,,..., X, be independent random variables with X; having sur-
vival function F (z), i=1,...,n. LetYy,...,Y, be another set of random variables

with Y; having survival function T4 (z),i=1,...,n. Then

A é A* = Xpn 25t Youne
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ProOOF : The survival function of X, can be written as
Fpa(z) =1=[[(1— e "6, (4.12)
i=1
where g; = log\;, i =1,...,n and H(z) = —log F(z).
Using Lemma 4.2, we find that it is enough to show that the function Fx,  given
by (4.12) is Schur-convex and decreasing in @;’s. To prove its Schur-convexity, it
follows from Theorem 4.7 that, we have to show that for ¢ # j, (a; — aj)(&mZL -

aai
%%an) > (. That is,
a4

n o, e e_eam(z) JPa—) o
H(z)(a; — a;) (H(l —e H(x))> (1 e e O L for i # j
i=1
(4.13)
since
6_F_X‘n'n

It is easy to see that the function be=#(®) /(1—e~*#(2)) is decreasing in b, for each fixed
z > 0. Replacing b with e%, it follows that the function e%e=¢*#(@) /(] — ¢=¢*H(=))
is also decreasing in a; for ¢ = 1,...,n. This proves that (4.13) holds. The partial
derivative of Fx, , with respect to a; is negative and which in turn implies that the
survival function of X, is decreasing in a; for { = 1,... n. This completes the proof.
]
The following result due to Khaledi and Kochar (2000 b) is a special case of
Theorem 4.9.

COROLLARY 4.3 Let X1,...,X, be independent exponential random variables with
X; having hazard rate A\;, i = 1,...,n. Let Yq,...,Y, be another set of independent

exponential random variables with Y; having hozard rate )7, i=1,...,n. Then

A ;_ A* = Xnim 2ot Yom-
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Boland, El-Neweihi and Proschan (1994 ) pointed out that for n > 2, (4.2) cannot
be strengthened from stochastic ordering to hazard rate ordering. Since majorization
implies p-larger ordering, it follows that, in general, Theorem 4.9 cannot be strength-
ened to hazard rate ordering.

As shown in the next example, a result similar to Theorem 4.9 may not hold for
other order statistics.

ExaMPLE 4.1 : Let X, X5, X3 be independent exponential random variables
with A = (0.1,1,7.9) and ¥}, Y3, Y3 be independent exponential random variables with
A* = (1,2,5). It is easy to see that A é A*. The X3 and Y73 have exponential

distributions with respective hazard rates 9 and 8 and which implies that Y;.3 >, Xi.5.

5 Stochastic Comparisons of Sample Spacings

Let X4,..., X, be n random variables. The random variables D;.,, = X;.,— X;_;., and
D}, = (n—1t+1)Diy, i = 1,...,n, with X, = 0, are respectively called spacings
and normalized spacings. They are of great interest in various areas of statistics,
in particular, in characterizations of distributions, goodness-of-fit tests, life testing
and reliability models. In the reliability context they correspond to times elapsed
between successive failures of components in a system. It is well known that the
normalized spacings of a random sample from an exponential distribution are i.i.d.
random variables having the same exponential distribution. Such a characterization
may not hold for other distributions and much of the reliability theory deals with
this aspect of spacings. In this section we review stochastic properties of spacings
when original random variables are i.i.d. as well as when they are independent but
not identically distributed.

Many authors have studied the stochastic properties of spacings from restricted

families of distributions. Barlow and Proschan (1966) proved that if X,,..., X, is
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a random sample from a DF R distribution, then the successive normalized spacings
are stochastically increasing. Kochar and Kirmani (1995) strengthened this result

from stochastic ordering to hazard rate ordering, that is, fori =1,...,n — 1,
D <h" Dz+1n (51)

The corresponding problem when the random variables are not identically distributed,
has also been studied by many researchers, including Pledger and Proschan (1971),
Shaked and Tong (1984}, Kochar and Korwar (1996), Kochar and Rojo (1996), Nappo
and Spizzichino (1998), among others. For a review of this topic see Kochar (1998).
Here we give some new results obtained recently by the authors.

Kochar and Korwar (1996) conjectured that a result similar to (5.1) holds in the
case when X,,..., X, are independent exponential random variables with X; having
hazard rate \;, for i = 1,...,n. Khaledi and Kochar (2001) proved this conjecture
when random variables X;’s follow a single outlier model with parameters A and A\*,
that is when Ay = ... = A,_; = A and A, = A*. To prove this we shall be using the
following results.

The joint density function of the spacings when A;’s are possibly different is given
by (cf. Kochar and Korwar, 1996),

n on n
IDtmyesDn (1, -, T0) =D —‘ﬁ II( z A(r;))exp{—a; 2_: Alr;)}, (5.2)
() 1 i =i =i
for z; > 0,1 =1,...,n, where (r) = (r1,...,7,) is a permutation of (1,...,n) and
A(2) = A;. It is a mixture of products of exponential random variables. From (5.2) it
is easy to find that the joint pdf of (Djp, Djp) for 1 <i < j < m,is

1 A
i) %n:uz )

(30 Alrm)esp{=2 3 Mrm)}(32 Arm)eapl-y 3 Mrm)}

(5.3)
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for z, ¥y > 0. Now (5.2) can be written as

& (n— 1))
Fouinobun (@120 0) = 2 e T Ty = 1 4 D

[ n
x [T((n — i)\ + A*)e =922z T (p — § 4 1)\~ (it A0 (5.4)

=1 i=0+1

which can be further expressed as
n [4 . n
IDimesDuen (B1r - Ta) = D h(O) T[] efe %™ [ oue ™™,
f=1 i=1 i=6+1
where o = (n— i+ )X, of = (n — )X+ A*, i =1,...,n and using ¢; and of, the
function h is given by

n— 1)IAP"L)*
h(a) = (9 *) n 3
1Lz of Ilices @

6=1,...,n. (5.5)

The marginal density function of D;., can be expressed as

Ipin (z) = Hicie™™® + Hiale™%®, (5.6)
where
i—1
H;=)Y h(d), i=2,...,n and H, =0. (5.7)
=1

Thus, the density function of D, is a mixture of two exponential random variables

with parameters «; and of. Now we prove the main theorem.

THEOREM 5.1 Let X,,...,X, follow the single-outlier exponential model with pa-

rameters A and A*. Then

D;+1:n Zhr D;

i) i=1,...,7’L—1.

PRrROOF : We prove the result when A* > A. The proof for the case A* < A follows

using the same kind of arguments. From (5.6) we find that the survival function of
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D:, is Fp: (z) = Hie ™ + H,;e™™*, where 7; = @T—%\% To prove the theorem we
M un

have to show that for any : € {1,...,n —1},

FD:+1:n (w)

g(m) = For (:L‘)

is increasing in z. The numerator of ¢'(x), the derivative of g(z) is

A(.'E) = [Hie_“ -+ Hie_""z][—/\HHle"’\z - ni+lﬁi+1€_yli+lm]

+[Hipre™® + Hipre "% [AH;e > + 5y Hie ™)

= ()\* — )\) {___HJ'I"'*'1 e~ m+Az
n—i+1
_Me_(ﬂi+l+)\)z - HiHi emitniti)z
n—1 (n—i+1){n—1)
> (A" — /\){< HiHi—H 3 Hz‘-}-l}.Ii) o~ (e +0)z (5.8)
n—i+1 n—1
_ HiHiyy elmitnit1)z
(n—i+1)(n—1)
- o
- (TL—'L)(”—Z+1) {{(n—-l)Hi_(n—z+1)Hi+l+HiH’i+l}
x e_(fh'+l+/\)12 _ Fiﬁi+le~(7h+ﬂi+1)m } . (59)

The inequality in (5.8) follows, since A* > X implies 7,41 > 7;.
Again A\* > ) implies A < 7; and which in turn implies e~(h+1+0)2 > e=(nitnir)z

for every z > 0. Also for A* > A |

(= OH~ (n—i+ DHm} = (n—ih(i) - Hin
> 0, (5.10)
since for A* > A, h(j) is a decreasing function of j. Using these results in (5.9) we

find that A(z) and hence ¢'(z) is nonnegative for z > 0. This proves the required

result. |
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Let Xi,...,X, be independent exponential random variables with hazard rates
ALy ..., An, respectively. Pledger and Proschan (1971) proved that fori € {1,...,n},
D;.,, is stochastically larger when the hazard rates are unequal than when they are all
equal. Kochar and Rojo (1996) strengthened this result to likelihood ratio ordering.
The natural question is to examine whether the survival function of D;., is Schur-
convex in (A, ..., A,). Pledger and Proschan (1971) came up with a counterexample
to show that this is not true in general. Kochar and Korwar (1996) proved that in
the special case of second spacing, whereas the survival function of D, is Schur-
convex in (Ay,...,A,), its hazard rate is not Schur-concave. They proved, however,
that the hazard rate of Djs is Schur-concave. We now examine this question when
Xi,..., X, follow the single-outlier exponential model with parameters A and A\*. In
the rest of this section, we assume that A* < A\. We will treat it as a part of the
model. It is easy to see that in this case, (A}, A,..., A;) ’é (A3, A2, .., Ag) if and only
if A} < A3 < Ay < Ay and AT+ (n— 1)A; = Ay + (n — 1)A;. We prove later in this
section that for the single-outlier model, for i € {1,...,n}, the hazard rate of D;,, is

Schur-concave in A’s. To prove it we need the following lemmas.

LEMMA 5.1 Let Xy,...,X, follow the single-outlier exponential model with parame-
ters A and A\*. Then

,\*<,\=>Hig’-;1,fori=1,...,n, (5.11)
n
where H; is given by (5.7). The inequality in (5.11) is reversed for \* > A.

PROOF : A* < \implies that the function h(j) in (5.5) is increasinginj, j =1,...,n.
Note that

(R(1), h(2), ..., h(n)) = (1/n,...,1/n).
The required result follows from the definition of majorization.

The proof for the case A* > A follows from the same kind of arguments. ]
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LEMMA 5.2 Let X,,..., X, follow the single-outlier exponential model with param-
eters Ay and A}. Let Y1,...,Y, be another set of random variables following the

single-outlier exponential model with parameters Ay and 3. If
(’L} A< A <A< AL, then ©1 >, O,
(’LZ) A< <AL A, then 6 < O,

where ©, and O, correspond to random variable © with probability mass function h(j)

in (5.5) for X;’s and Y;’s, respectively.

PrROOF : (i) We prove that

where h; and hy are probability mass functions of ©, and ©,, respectively. This

inequality holds if and only if

(n=6-Dh+A _ N

. 12
(n—9—1))\2+)\§_)\2 (5 2)

Since A} < A% and \p < )y, it is easy to see that (5.12) is true.

(#3)  In this case the inequality in (5.12) is reversed which in turn implies that

O; <ir ©3. This proves the result. [

THEOREM 5.2 Let X,,...,X, follow the single-outlier exponential model with pa-
rameters Ay and A} with A} < A1. Then for i € {1,...,n}, the hazard rate of D;., is

Schur-concave in {1, ..., A, AT}

PrROOF: Let Y7, ..., Y, be another set of random variables following the single-outlier
exponential model with parameters A, and A5 (Ay < Ag) such that (A}, A1,..., A1)
= (A5, g, ..., Ag). As discussed above this holds if and only if A} < A5 < Az < A; and
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Al 4+ (n — DA = A5 + (n — 1)Ag. Without loss of generality, let us assume that

AT+ (n—1)A; = 1. We have to prove that under the given conditions for; =1,...,n

?

Dt(ln) zhr D(Q)

wn?

where Dz-(:ln) (Dl(zn)) denotes the sth spacing of X;’s (¥;’s). From (5.6) the survival
functions of Dlg:l,z and D,(z,z are
F

p(z) = Pre~i® 4 P07,
un

o (x) = Que™o4 4 Qe
where P; and Q; correspond to H; in (5.6) for D,(:I,Z and D), respectively and a;, =
m—i+ DA, o =m—9DAM+ A, = n—i+1)A and o5, = (n — )Xy + A}

We have to show that .
Fpo(z)

is increasing in z. After some simplifications we find that the numerator of ¢ (z), the

derivative of ¢(z) is

g9(z) = —(0i — ) PiQie™ %% 1 (o, — 0, ) PiQe (% teh)

- (0121 - ai2)Qi—lsie_(am_oql)9c + (0 — ail)Qiﬂe_aﬁamzy (5.13)

Using the assumption A} < A3 < A2 < A; and the fact the A\f + (n — 1)A; = 1,
t=1,2, it follows, oy + ol < @1 + qio, 1 + oy > 0f) + 0y, o1 + 05, > af) + ai
and all (q;1 — ai2), (afy — o), (042 — @), are nonnegative. Using these observations

in (5.13), we see

glz) > et (0 — 0p) PQi + (o — of) PiQ;

— (i1 — &)@ P + (0 — 01)QiPi}
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e—(au +aj,)z

{Qi = b= (nQi — (i = 1)) + (nP; — (i — 1))AT}

n—1
e—(ail +ai,)z
> 1 Qi — P, —n(Qi — P)A3} (5.14)
e"(ail‘*"‘:z)z .
= “n*T(Qi - P)(1 = nX)
> 0. (5.15)

The inequality in (5.14) follows, since by Lemma 5.1 P, < % and A} < A}. From
Lemma 5.2 it follows that @); > F;, since it is known the likelihood ratio ordering
implies usual stochastic ordering. This observation along with the fact that A3 < 1/n
implies the inequality in (5.15). [
Remark : The conclusion of Theorem 5.2 holds if instead of A} < A; and A} < Ay
we assume that A7 > Ay and A3 > As.

It is known that spacings of independent exponential random variables have DFR
distributions (cf. Kochar and Korwar, 1996). Combining this observation with The-

orem 2.1, we have proved the following corollary.
COROLLARY 5.1 Under the assumptions of Theorem 5.2,
D{) aiep D

A consequence of Corollary 5.1 is that var(D{%)) > var(D{?),i=1,...,n.

6 Stochastic ordering for sample range

Sample range is one of the criteria for comparing variabilities among distributions and
hence it is important to study its stochastic properties. First we study the stochastic
properties of the range of a random sample from a continuous distribution. Let
Xi,..., X, be arandom sample from F and let Y7,...,Y;, be an independent random

sample from another distribution G. It follows from Lemma 3(c) of Bartoszewic
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(1986) that X >uisp Y = Xpn — X1 2t Yo — Yin. This observation along with

Theorem 2.1 (a) leads to the following theorem.
THEOREM 6.1 Let X >, Y and let either F' or G be DFR. Then
Xn:n - Xl:n Zst Yn:n - }/l:n- (61)

Next we consider the case when the parent observations are independent expo-
nentials but with unequal parameters. Let X;,..., X, be independent exponential
random variables with X; having hazard rate A;, ¢t = 1,...,n. Let Y1,...,Y, be a
random sample of size n from an exponential distribution with common hazard rate A,
the arithmetic mean of the A;’s. Finally, let Rx = X,.n — X1in and Ry = Yy — Y
denote the sample ranges of X;’s and Y;’s, respectively. Kochar and Rojo (1996)
proved that Ry >, Ry. Khaledi and Kochar (2000 ¢) proved the following result

which is in terms of A, the geometric mean of the \;’s.

THEOREM 6.2 Let Xi,...,X, be independent exponential random variables with X;
having hazard rate X;, fori=1,...,n. LetYy,...,Y, be a random sample of size n

from an ezponential distribution with common hazard rate A . Then,
Rx 25t Ry.

Proo¥ : The distribution function of Rx (see David, 1981, p. 26) is

1 “ Ai ki

Fry(z) = = 1 — e M%), (6.2
R ( ) i:l/\iizzll—e_)\izil;ll( ) )
and that of Ry is
b n—1
Gry (@)= (1—e)" . (6.3)

Using (6.2) and (6.3), we have to show that

n /\i n n . n_t

> T A e <3N (1—e)" (6.4)

i=1 i=1 i=1
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Multiplying both sides of (6.4) by z(> 0), it is sufficient to prove that
n M n N n Coowael i
Ettallo-one (S - e
i=1 i=1 i=1

Dykstra, Kochar and Rojo (1997) proved that

Zn:l_e = S <Zyz>l]'[1 (1—e %)=,

i=1

where y; > 0 for ¢ = 1,...,n. Making use of this inequality on the L.H.S. of (6.5),
we get
d AT

3 o] H(l — ™) < (Z i :c) I1(1-e>) " (6.6)

i=1 i i=1
A consequence of Theorem 4.4 (b) is that X,., >4 Yy, which is equivalent to [T, (1—
e AR I e=e, Using this result, we find that the expression on the R.H.S. of
(6.6) is less than or equal to that on the R.H.S. of (6.5) and from which the required

result follows. a
As a consequence of this result we get the following upper bound on the distribu-

tion function of Rx in terms A
COROLLARY 6.1 Under the conditions of Theorem 6.2, for z > 0,
n—1
PlXpp — Xip <2 < [1 -] (6.7)

This bound is better than the one obtained in Kochar and Rojo (1996) in terms of
2, since the expression on the R.H.S. of (6.7) is increasing in A and A < A.
Now we extend Theorem 6.1 to the PHR model. We assume that F' is new worse

than used (NWU), that is,
F(z+y) 2 F()F(y), forz,y>0,

or equivalently,

H(zx+y) < H(z) + H(y), forz,y >0,

where H(z) = — log F'(z) denotes the cumulative hazard of F.
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THEOREM 6.3 Let X,,..., X, be independent random variables with X; having sur-
vival function 2 (z), i=1,...,n. LetYy,...,Y, be a random sample of size n from
a distribution with survival function Fx(x), where X = (IT, \)Y". If F is NWU,
then Xn.n — X1 25t Yoin — Yim.

ProoFr :

The distribution function of the sample range X,., — X1., (see David, 1981, p.
26) is

n rtoo n
Fpx(z) = Z / Ah(t)e O T (e—,\jH(t) _ e—A,-H(t+z)) dt

J#

Z / h(t)eMH® H( —NH(E) _ N H) e-,\jH(z)) dt

J#i

IA

(s1nce Fis NWU )

= Z A I - e M6 / —A]H(ndt

=1 j#i
= YA - ehT@) / h(t)e-H“)ELm
=1 A 0

1 i A L
= C I = e @), 2>,
PRI ¥ ?:21 1 — e H(=) i=1

Now, replacing z with H(z) in the proof of Theorem 6.2, it is easy to see that

Fpx(z) < Fry(z). n
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Parametrics to Nonparametrics:

Extending Regression Models

Abhinanda Sarkar

IBM India Research Lab

1 Introduction

Central to modern statistics, both in theory and application, lies the notion of
a model. While there has been some debate as to what the strict definition of
a model should be, the practicing statistician has typically taken the view “I
know a model when I use it”. This chapter is about statistical models, what
they represent and how advances in mathematics and computing have enabled
the expansion of what permissible models are and what they can be used for. To
fix ideas, we shall restrict ourselves to the case of regression with one predictor
variable. This class of models is rich enough and the applications interesting
enough to illustrate much.

We shall make a formal distinction between two classes of models, namely

parametric and nonparametric. One of the objectives of this chapter is to make
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the observation that the distinction is not as much as it appears at first sight
and that a unified perspective on statistical models is possible and, arguably,
desirable. The choice of topics reflects personal preferences. Nonetheless we
hope that this view of models in regression serves to cast some light on the

unity in the apparent diversity in the area.

1.1 Regression: the basic model

Consider a sample of independent observations denoted by Y1,Y>,...,Y,. For
example, Y; can be the selling price the ** car in an auction of n cars. These
observations are subject to uncertainty and they can be considered to be in-
dependent random variables. As random variables, they have expected val-
ues (averages) denoted by E(Y;). The regression problem arises when there is
reason to believe that these expected values are related to other observables.
Suppose that there are observations x;,z2,...,%, and a function f such that
E(Y;) = f(x;). In our example, x; can be the price at which the auction starts
for the 5t* car. Note that (in regression) we are not interested in the uncertainty
in the z;. Indeed, they need not be considered random at all and it suffices to
think of the z; as fixed or given apriori. For these given values, the random Y;
are observed. The conditions

(i) Y; are independent and

(i) E(Y:) = f(z:)

will be common to all the models we will consider for this scenario. The func-

tion f is generally called the regression function and modelling and making
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inferences for it is the subject matter of regression analysis.

2 Parametric regression

In the most common form of classical regression analysis, the bare bones model
of Section 1 is fleshed out by making further assumptions. The material in this
section is by now considered traditional and is discussed in standard texts such
as [4] and [23]. They can be consulted for the mathematical derivations we omit.
We present this material as review as well as to set the stage for more recent

methods discussed in later sections.

2.1 Polynomial regression

Recall that the Gaussian (or normal) distribution with expectation p and vari-

)2
ance o2, denoted by N(u, 0?), has the symmetric density function 0'\}2_7re— =

A simple model for V3,Ys,...,Y, stipulates that Y; has N{(u;, 0%) distribu-

tion where u; = fBo + f12; + Box? + ... + Bp—12?”". Thus, in addition to the
basic assumptions in Section 1, we further assume that

(1) ¥; have Gaussian distribution,

(ii) the regression function f is a polynomial in z; and

(iil) Y; have the same variance.

This complete specification is called the polynomial regression model. If p is 2,
then the ever-popular linear regression emerges. The case of ¥; being indepen-
dent and identically distributed (iid) Gaussian random variables is captured by

setting p to be 1.
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Observe that if the values of 8o, B1,...,8p—1 and o2 are known, then the
distribution of Y3,Y3,...,Y, is completely known. Thus p+1 constants, or pa-
rameters, can be used to identify the exact distribution of the observed sample.
This identification with a finite number of parameters is what allows us to call
this model a parametric model.

The ability to identify parametérs also allows routine inference. For the
polynomial regression model, the maximum likelihood (ML) method can be used
for estimation. The estimates (Bo, ,5'1, ey Bp_l ,62) are those that maximize the

likelihood of observing the sample, namely,

T —— e (i Bo—froi— ...~ fpral ")
o/2n 202 '

i=1

It is easy to see that this amounts to minimizing Y. (Y; — o — fizi — ... —
Bp—12P~1)? in order to obtain B = (ﬁo,Bl,...,ﬁp_l). This is the celebrated
least squares (LS) method of estimation which is thus shown to be equivalent to
ML estimation if we assume a Gaussian model. See [21] for a historical account
of the central role that LS estimation played in statistics and data analysis.

A principal analytical tool in regression is the collection of fitted values.
In our general model of Section 1, the estimate of the regression function f is
denoted by f and the fitted values are ¥; = f(z;). For the polynomial regression
model, ¥; = o + frzi + ... + Bp_lxp_l.

To ease notation, let Y = (¥1,...,Y,), V= (Yl, .. .,)A’n), and B = (Bo, b1, ., Bp—1)-

For the polynomial regression model, define a n X p covariate matrix X with
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(i,5)*" element 27 ~'. Then the LS estimators are
B = argming (¥ — XB)T(Y - XB) = (X'X)"'X'Y

and the predicted values are given by v =X ﬁ = HY where H is a function
of (non-random) & = (x1,...,2y) but not of (random) Y. For obvious reasons,
H is called a hat matrix and can be shown to be of rank p. Thus Y is a linear
function of ¥ and such a fitting procedure is said to be a linear smoother. For
now, smoothing refers to the reduced dimensionality of the fitted values f’; they
lie on a p-dimensional subspace of the n-dimensional Euclidean space containing
Y. Note that the dimension of this subspace (and the rank of the smoothing
matrix H) is the same as the number of parameters used to specify the regression
function. It is also true that H is a projection and H? = H. From this it follows
that the trace of H is also p, which is the number of regression parameters.

Of course, mere point estimation of the regression parameters is inadequate
for most applications. We need a measure of uncertainty for our estimates.
The standard deviations of the estimates, usually called standard errors, serve
as such as a measure. For the Gaussian models above, it can be shown that
se(ﬁj) =0,/(X'X )J_J1 If estimates of the standard errors are required, we can

1
replace o by, for example, the ML estimate 6§ = [%(Y - XB)T(Y — Xﬁ)] ‘)

2.2 Model selection

While a reasonably complete description of model and inference has been given
for polynomial regression, a crucial model-related issue remains to be settled.

This is the choice of p or, equivalently, the choice of the degree of the polynomial
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to be fitted.

It is instructive to think of why the choice of p is important. Too small a p
may fail to capture the compiexity in the regression function. For example, the
rate of a chemical reaction may increase with the concentration of a reagent, but
may stabilize beyond a certain concentration. If we restrict ourselves to linear
regression (p=2), then the increase can be captured, but not the stabilization.
The model has too few parameters to capture the features of interest.

On the other hand, playing safe and stipulating a large value of p leads to
another kind of shortcoming. If there are too many parameters, each parameter
is estimated poorly, i.e. with large standard error. The entire model is thus
poorly estimated and is unlikely to be very useful when applied to another data
set. In the computer science literature, such models are said to “generalize”
badly. An extreme situation arises when we attempt to fit n regression param-
eters (p=n) with n points. The LS fit is then an interpolation with the fitted
values being the data points themselves. The model has adapted perfectly to
this particular data and is very unlikely to have this high a fidelity to another
realization from the same natural source. We will have more to say on this in
later sections.

There are various criteria that are used in determining p that balance the
above two sources of model misspecification. One of the most useful and pop-
ular is the Akaike Information Criteria (AIC) proposed in [1]. Let L, denote
the likelihood that has been maximized over p parameters. Then we can define

the AIC, a function of p, as AIC(p) = —2logf/p + 2p. As model complexity
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p increases, the maximized likelihood increases. (This assumes that if p’ < p,
the model with p' parameters is a submodel of the model with p parameters.)
In most models used in practice AIC(p) is first decreasing in p and then in-
creases as the complexity term 2p begins to dominate. The choice of p that
minimizes AIC(p) is considered a choice of p that compromises complexity and

generalizability adequately.

2.3 Other parametric models: logistic regression

While the assumption that the random variables have Gaussian distributions is
common in regression analysis, it is often clearly unjustifiable. There are other
models for other kinds of observables. By way of an example, we illustrate

regression with binary responses.

Ezample: Sarkar and Ananthanarayanan in [19] carried out a study of auctions
carried out on the Internet. The data consisted of 250 cars of a specific brand
that were available for sale on an auction website in 2000-2001. The start price
(decided by the seller), whether the car eventually got sold or not, and the
selling price if the car got sold were recorded. One objective of the study was
to see how the start price affected the probability of the car finding a buyer
and the eventual selling price. Denoting the start price of the i** car that got
sold by z; and the selling price by Y;, a simple linear regression of the form
E(Y;) = o1 + Piz; was considered. The parameters were estimated by LS,
effectively making the assumption that the selling prices are Gaussian. Some

results are presented later in this section.
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It was also of interest to model the probability that the i*" car got sold.
Denoting this by P;, a so-called logistic regression model can be stipulated as
log (l—f‘P—) = ay + f2x;. Let S; be a binary random variable that takes the
value 1 if the 7** car got sold and 0 otherwise. The log-likelihood corresponding

to the data can be expressed as

n n n
1ogH P51 - B)'™5% = —nlog(l + e**F2%i) 4 Z Si+ B Z Six;

i=1 =1 =1

The ML estimates of the parameters as and 2 can now be found by maximizing
this log-likelihood. A general treatment of estimation in logistic regression is in
[14).

We report some fitted values from both the linear and logistic regressions.
As in the linear regression case, the fitted values for P; are found by plugging-in
the LS estimates. The results are as expected. Setting higher selling prices can
lead to higher sale prices if the car gets sold, but that eventuality becomes less

likely.

Starting price 2000 | 3000 | 4000 | 5000 | 6000 [ 7000 | 8000

Fitted selling price 7855 | 7961 | 8066 | 8172 | 8278 | 8383 | 8489

Fitted sale probability | 0.81 | 0.76 | 0.69 | 0.62 | 0.54 | 0.46 | 0.38

We could, mechanically, run a polynomial regression of the binary variables
S; on z;, but that is scientifically flawed. Binary random variables are discrete,
as opposed to continuous, and are moreover bounded (between 0 and 1 in this
case). The Gaussian assumption that justifies LS is untenable here. Hence the

need for alternative models like logistic regression.
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It is noteworthy that the likelihood involves the data only through two statis-
tics, namely, the total number of cars sold (3 S;) and the total starting price
of all the cars sold (3 S;z;). In statistical inference such statistics that sum-
marize the data to the extent of specifying the likelihood completely are called
sufficient statistics. In the logistic regression model, there are two sufficient
statistics, however many observations there are. One of the reasons for taking
this model for binary data is the consequential availability of such low dimen-
sional sufficient statistics.

We have seen in this section regression with Gaussian as well as binary data.
There is a general theory which allows a large class of distributions (called
exponential families) to be assumed for regression models. The resulting models
are called generalized linear models and the models of this section are special

cases. See [15] for other possibilities.

3 Nonparametric regression

In Section 2, we considered a model where Y; had N(f(z;),0?) distribution and
the regression function f was completely specified by p parameters. Such a
model is called a parametric model as it can be specified in terms of a number
of parameters that is (a) finite and (b) independent of the sample size n. We
now proceed to drop these restrictions and take a look at models that are not

parametric, i.e. nonparametric models.
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There are, of course, many ways in which conditions (a) and (b) can be
violated. For example, we can specify f to be a polynomial, E(Y;) = f(z;), and
Var(Y;) = o2 but only stipulate that Y; has a distribution with finite variance.
Thus f and o2 do not completely specify the distribution of ¥;. In fact, the class
of distributions with finite variance has an infinite number of members, and it
is not possible to find a finite set of parameters that suffices for such a complete
specification. We shall take a closer look at this type of nonparametric model
in Section 4.

A comment on terminology needs to be made here. The term nonparametric
does not mean that there are no parameters, but rather that there are so many
parameters that it is not useful to think of the model in terms of a parametric

representation.

3.1 Kernel smoothing

In this section we shall take a closer look at another class of nonparametric
models wherein Y; still has N(f(z;),0?) distribution but f belongs to an infinite
class of functions. For example, f can be stipulated to be continuous.

A commonly used estimator for such models are kernel estimators. A kernel
is a function K satisfying (for our purposes here) the properties of a symmetric
density function; namely
(1) K(z) > 0 for all z,

(ii) K(—=z) = K(z) for all z, and

(iii) [%, K(u)du = 1.
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A nonparametric estimator (shorthand for an estimator under a nonparametric

model) of f is then

N Z?zl K(z —=,)Y;
f(ZIJ) - E?:] K(.’L’-Iti) .

This is a weighted average of the Y; and is often referred to as a kernel smoother

(and the operation is then called kernel smoothing). If the kernel is unimodal
in the sense that K(z”) < K(z') for z” > x’ > 0, then these weights will be the
most for the ¥; that correspond to the x; closest to £. An example of a kernel
together with its use will be presented later in this section and more general
details can be found in {10].

It can be seen that, in the notation of Section 1, ¥ = SY and the estimator
is a linear smoother. However, unlike in the parametric case, S is typically a
full rank matrix and, generally, S? # S. However, the trace of S still carries
useful information on the number of “parameters” there are, should one care to
think in terms of parameters. See [11] for alternatives to the trace.

The degree of smoothness in kernel smoothers in controlled by a bandwidth
or window-width specification that determines how sharply the weights decay in
the weighted average. The kernel of bandwidth & is defined by Kx(z) = + K (£).
A very small h corresponds to little smoothing with very local averages and a
very large h corresponds to heavy smoothing towards a global average. Let
S5, be the corresponding smoothing matrix. The intuition is confirmed by the

observations that

1
limS, =1 and lim S, =—11
h—0 h—oo n
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where I is the identity matrix and 1 is the column vector or all ones. Thus, if
we undersmooth, }A’z is too close to Y; and the regression estimate is essentially
an interpolation. If we oversmooth, Y; is essentially ¥ = Ly w1 Y and all
structure is lost. Somewhere in between is a desirable fit that captures struc-
ture and is yet not wedded to the data at hand. Note the implication that
limy, o trace(Sy) = n (there are n “parameters” in the estimate that interpo-
lates n points) and limp— e trace(Sy) =1 (there is 1 “parameter” in the estimate
that smooths to the global average). Thus for a desirable smoother trace(Sy)
captures the number of “parameters”. This does not, however, make the model
parametric. As the number of data points n increases, the desirable choice of
h will change and will decrease increase with n. Moreover, while we may in-
tuitively agree that this model has a complexity comparable with a parametric
model with trace(Sy) “parameters”, it is quite another matter to label and ex-
tract these “parameters” (even after an integer approximation to the trace, a

real number).

Ezample: To illustrate the delicacy of the problem of bandwidth selection, we
take a look at an example from biometry. Reynolds in [18] looks at the body
temperature of beavers to study activity levels of the animals over the 24-hour
diurnal cycle. Figure 1 below shows the data for one animal with the tempera-
tures as points. There are a hundred observations of the body temperature of
an adult beaver taken at ten minute intervals. At the start of the observation
sequence, the animal was asleep. She then awoke and became active. For the

purposes of this example, we ignore the time series aspects of the data.
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Is there a “correct” smoother?

385 T T L— T T T T —7 —

beaver body temperature

36 1 1 i 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 20 100

time: 10 min intervals

Figure 1: beaver data

The original data is shown as points. We also show two kernel smoothers.
The kernel used was a Gaussian kernel with K(z) = (v2r)~'e=3%". The more
variable smoother is one with h=1 and faithfully reproduces most of the fluc-
tuations in body temperature. However, one of the scientific purposes of the
study was to analyze the rise in body temperature as activity increases. If so,
these fluctuations can be treated as noise and a smoother should not estimate
them as part of the regression function. The other smoother plotted with h=10
achieves that end. Thus the choice of bandwidth depends intimately on the use

to which the analysis is to be put. There may not be a “correct” bandwidth.
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3.2 Cross-validation

To clarify the dependency of the kernel regression estimate on h, we now denote
it by fs. For a fixed point z, we can see the following expansion for the so-called

mean square error (MSE) in estimation
E[fu@) - 1) = B[fu(e) - BGa@)] + [Ela(@) - £(@)]

The first term is the variance of fh(x) and can be shown (with some restric-
tions on the kernel) to be approximately —=o® [ K} (u)du. The second term is
the square of the bias of fh(z) and the bias can be shown to be approximately
’;—2 f"(z) [ u?>Kp(u)du. Derivations can be found in [10]. From the approxima-
tion for the bias, it follow that where f” >0 (f <0), f, overestimates (under-
estimates) f. This implies, as Figure 1 also illustrates, that a kernel smoother
underestimates peaks and overestimates troughs in the data. This smoothing
of features is what gives smoothers their name and is the characteristic of most
regression estimates, parametric and nonparametric.

As the bandwidth shrinks there is less averaging, bias is reduced but variance
increases. The opposite occurs when the bandwidth increases and there is more
averaging. One possible way to optimize this so-called bias-variance trade-off is
to choose h so as to minimize the MSE. This, however, requires knowledge of
two things: the observational variance ¢? and the curvature of the regression
function f". Apriori, before any estimation is done, both are unknown.

Cross-validation (CV) proposes an alternative, more intuitive, solution. Con-

sider the problem of predicting the value of Y’ corresponding to a new &' and the
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error in this prediction. This error will be high if h is large as not enough local
structure will have been captured due to undersmoothing. This error will also
be high if h is small as the function will have adapted too well to the data (that
does not include &’ and ¥’). Thus minimizing prediction error is one natural
criterion for optimal choice of h. Given the available data, average prediction

error can be estimated by the cross-validation score defined by
1< g
CV(h) =~ ST - A7 @
i=1

Here f,(;i) is the estimate of f obtained by using the kernel Kj on all the
data points except x; and the corresponding Y;. In principle, this amounts to
running n regressions. If this is a burden, an approximation called generalized

cross-validation (GCV) can be used:

1 —n~1trace(Sy)

n - 2
GCV(Mz%Z[ X — fn(z;) }

i=1
The strategy then is to compute F» over a reasonable grid of values for h and
choose an h that approximately minimizes CV (h) or GCV (h). Note that there
are two competing terms in the GCV score: the error-in-fit term >  [V; —
fh(ar,-)]2 which increases in k and a model complexity term trace(Sy) which, as
we argued in Section 3, represents the number of “parameters” and decreases in
h. GCV (and CV) thus trades off fidelity to the particular sample at hand with
the number of parameters or degrees of freedom. See [22] for further discussion

on cross-validation and its variants.
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3.3 Other nonparametric regression estimates: splines

Kernels are not the only way to estimate nonparametric regression models. A
book length treatment of a variety of methods isin [7]. Among the other popular
methods, we take a brief look at regression with splines and wavelets.

The difficulty with fitting arbitrary functions to data is that the “best” fit
is one that fits the data perfectly (in the case that all the x; are distinct). This,
as has been observed, does not generalize well to other data realizations. One
approach to fitting functions is to restrict the curvature of the functions fitted,
so that they cannot completely adapt to the data. Assuming that f is defined

on an interval [a,b] that includes all the z;, one such estimate (A > 0) is

n

2 b 2
S0 £+ [ 1) dx] |

i=1

f,\ = argming

It can be shown that the solution to this is a cubic spline, i.e. a function which
(assuming that the z; are labelled in increasing order)
(i) has two continuous derivatives on [a,b] and
(ii) is a cubic polynomial on the intervals (a, z1), (21, %2), - .., (Tn-1,%n), (Tn,b).
As before, the fitted values are ¥; = fy (z;). Like kernel smoothers, smoothing
with splines in linear and we can write Y =8,Y for a suitably defined S). For
details on splines and smoothing with splines, see [8].

As in the case of kernel smoothers, it is instructive to consider the nature
of the spline smoother in limiting cases. In the limit A — 0, the minimization
reduces to minimizing the sum of squared errors and f,\ approaches the inter-

polating function. Alternatively, we have limy_,o Sy = I where [ is the identity
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matrix. At the other extreme, A — oo implies that the integral minimization
dominates the minimization problem. In the limit, the second derivative, f”,
becomes arbitrarily small and fy approaches the LS fit for linear regression.
This can be expressed as limy_,o Sy = H, where H is the hat matrix corre-
sponding to linear regression, i.e.p =2 in the polynomial regression model. Like
the bandwidth A in kernel smoothing, the parameter A controls the effective
number of “parameters”. This is easily seen from limy_,¢ trace(Sy) = n and
limy_y o trace(Sy) = 2.

If the true, unknown, regression function f has variable smoothness, a single
value for h (in kernel smoothing) or A (in spline smoothing) may be too restric-
tive. One would like the flexibility of choosing h or A to be large where f is
smooth and to be small where f shows oscillatory behaviour. This will allow
us to, so to speak, redistribute parameters with more parameters going towards
modelling regions where they are more useful, i.e. where the (unknown) regres-
sion is not smooth. The recent developments in the use of wavelets in regression
attempt to do just that, optimally and automatically. This chapter cannot do
true justice to the elegance of the ideas and methods of wavelet regression and
the reader is encouraged to look up the already abundant literature on the sub-
ject. Donoho and Johnstone wrote a series of seminal papers (for example, [3])

and [17] is a simpler treatment.
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4 Resampling

We now take a closer look at inference in the first nonparametric model we briefly
considered in Section 3. Here we state it in a different, but essentially equivalent,
form. Let Y; = Bo+ B1xi+. ..+ Bp12} ~1 +¢; where the ¢; are independent and
identically distributed (iid) errors with expectation zero. Despite the parametric
specification of the regression function, this model is nonparametric on account
of the infinitely many distributions possible for the errors ¢; which are not
necessarily Gaussian.

Applied statisticians may, and indeed typically do, still use least squares

(LS) to estimate Bo, 1, -- ., Bp—1. But without the Gaussian assumptions these
estimates ﬁo, Bl, ey Bp_1 are no longer maximum likelihood (ML). Even worse,

it is not clear how their sampling distributions are to be determined, given
the nonparametric model specification. Thus standard errors and confidence
intervals for the regression parameters are not directly available. This is the

typical scenario for effective use of resampling methods.

4.1 Nonparametric bootstrap

Conceptually, perhaps the simplest resampling method is the bootstrap, pro-
posed by Efron in [5]. Before discussing the general motivation behind the
bootstrap, we first present a bootstrap algorithm for estimating the standard

errors of the LS estimates B]- nonparametrically.

1. Compute the residuals r1,7s,...,m, from the LS fitted model with r; =
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Y;— Bo — ﬁlzi - = 3,,_1:1:? =1, Let F, denote the empirical distribution of

the r;, i.e. the distribution that assigns probability % toeachof ry,...,7n.

2. Draw e}, €3, ..., ey independently from F,. Form the resample Y7*,Y5",...,Y;

with Yi* = ,Bo +Bl-’17i + ...+ Bp_m}f_l + €.

3. Compute the resampled LS estimates using the resample Y™ and the orig-

inal unperturbed z.

4. Repeat steps 2 and 3 B times to get B resamples of the LS estimates.

Denote these by ﬁj(.b) for =0,1,...,p—land b=1,2,...,B.

5. For j =0,1,...,p—1, the standard error of the LS estimate Bj is estimated

1

B A() A()weld e B A(
by [ 5 DL (B - 8] where B = § 2, 57

The general motivation of the bootstrap is illustrated by the following picture

adapted from [6] and further discussed in [9)].
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The name of the game in statistics can usually be stated as “if this scenario
were to repeat many times, what would be same and what would be different”.
The (random) differences across such replications lead to sampling distributions
and standard errors of estimates. The trouble is that nature gives only one sam-
ple and the scenario generally does not so replicate itself. The bootstrap uses
the data to estimate a model which can then be used repeatedly to generate
resamples. These resamples can then take the place of the unavailable replica-

tions and can be used to estimate standard errors and other characteristics of

sampling distributions in the usual way.

The bootstrap resamples of the LS estimates can be used for estimating

Bootstrap World w

Estimated
Model Bootstrap resample

P V* = (Y, Vs,...,Y2)

~

Bootstrap replication

- J

much more than standard errors. For example, an estimate of the bias of 31-,

namely E(ﬁ]) — B;, is given by B]() - ﬁj.
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4.2 Parametric bootstrap

The bootstrap method described above is nonparametric in the sense that it is
designed to adapt to arbitrary distributions for the errors. Even if a specific
distribution for the errors can be assumed, bootstrap methods are often used for
estimating standard errors, bises, etc. A typical scenario involves a nonlinear

parametric model.

Ezample: Consider the celebrated Michaelis-Menten model from chemistry (see,
for example, [16]) where reaction rates Y; are modelled on concentrations z; as
Y; = ﬁ%*’”w— +¢;. The positive coeflicients o and 3 are to be estimated. The errors
€; are assumed iid Gaussian and classical LS gives estimates & and 3. But this
is nonlinear LS as the model is not linear in the parameters. As a result the
resulting smoother is not a linear smoother and finding standard errors and
confidence intervals is no longer an easy problem. While approximations can be
made, the parametric bootstrap provides a computational solution.

In order to apply the parametric bootstrap, we need a more complete model
specification. With the Gaussian assumption on the errors, Then the LS esti-

mates based on n observations are ML estimates. It can be shown (by consid-

ering log-likelihoods) that

-~ b 1 = aw 2
~ A A2y . log o2 4 —— Y, — d
0.3 =i . o+ 155 (- 22 |

Steps 1 and 2 of the nonparametric bootstrap algorithm are now be replaced by

the step:

Draw e}, e, ..., el independently from N(0, 3%). Form the resample Y;*, Yy, ..., Y
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with ¥;* = ﬁ;—: + e}.

The remaining steps can be carried out as before with the same expressions as

in the nonparametric case to yield estimates of standard errors.

Note that the parametric bootstrap adheres to the general philosophy as de-
scribed in the bootstrap picture. What makes it parametric is that a parametric
estimate of the probability model is used to generate the resample. The end ben-
efit is the same; the messy problem of analytic computation or approximation

of sampling distributions is avoided by use of resampling.

4.3 Other methods of resampling: the jackknife

Historically, the bootstrap is a relatively new resampling technique made possi-
ble by the availability of fast and cheap computing. Theoretically, the method
is related to the older idea of the jackknife, which we take a quick look at.

The jackknife considers resamples which differ from the original data only to
the extent of deleting single observations. Consider our problem of estimating
standard error and bias of the jt# regression parameter 3;. Let ,33- denote our
estimator of choice (it need not be an LS or ML estimator) and let ﬂAJ(._i) be
the same estimator computed for the data deleting the i*" observation with
B§') = % Y BJ(._i) . The jackknife estimates of the standard error and bias of

the original estimator are (see [6] for justifications)

1

(BJ(.—i) _ 3;.-))2] 2 and bias(B;) = (n — 1) (ﬂ‘j.-) - Bj)

n—1

se(B;) = [

n

n

i=1
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Note that, unlike the bootstrap, the jackknife is not a simulation based method.
However, like the bootstrap, it is nonparametric and estimates characteristics
of sampling distributions without making distributional assumptions.

The idea of deleting observations to create resamples can be extended to
the delete-d jackknife where d observations are systematically deleted from the
original data. The jackknife method proposed above is the case d=1.

Resampling methods such as the jackknife and the bootstrap are appealing
because of their conceptual and computational simplicity. But there are techni-
cal limitations that need to be imposed on their use and such cautionary issues

are also discussed in [6)].

5 Further reading

Nonparametric statistics has roots that did not encompass regression. The
early work of Mosteller, Wilcoxon and others was intended to provide “quick
and dirty” methods for inference based on rank tests and order statistics. This
classical view of nonparametrics is detailed in texts like [20] and [13]. A principal
catalyst for the growth in applied nonparametric regression was the modern
computer. In that spirit, [12] is a recent compendium of computational methods
and the ideas behind them. We should also mention the special case of regression
with survival or lifetime data which led to the development of what is now called
semiparametric regression. The proportional hazards regression model proposed

by Cox in [2] essentially models survival times nonparametrically, but includes
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the effect of predictors using parameters. Semiparametric models are of much

current interest, notably in econometrics.

6 Exercises

One objective of this chapter has been to emphasize the connections between
various methods of estimating regression functions, together with allied issues
like model selection and estimation of standard error. Here are a couple of
exercises that emphasize ‘the essential unity in statistical modelling - parametric

and nonparametric.

1. AIC and GCV. The AIC was presented as a model selection criterion for
parametric models. We also interpreted the trace of the linear smoother
matrix as the equivalent number of parameters for some nonparametric
regression models. Assuming Gaussian distributions, devise an AIC for
selecting the bandwidth parameter for kernel smoothing. Compare and
contrast this with the generalized cross-validation strategy for selecting

the same.

2. Bootstrap for logistic regression. Consider the problem of estimating bias
and standard error of regression coeflicients in the logistic regression model
for binary data. Devise a parametric bootstrap scheme to do this. Dis-
cuss the challenges in devising a corresponding nonparametric bootstrap

scheme.
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TESTING GOODNESS OF FIT OF A SPECIFIC PARAMETRIC
PROBABILITY MODEL

J. V. Deshpande, U. V. Naik-Nimbalkar
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Sometimes the experimenter has a suspicion or prior belief that the distribution belongs
to a particular parametric family, like the normal, exponential, Poisson etc. This could be
because the experimental conditions point to a particular distribution as the appropriate
one or because of past experience of similar experiments. He then wishes to either confirm
or reject this prior belief through a ‘test of goodness of fit’. There are three major ways of
carrying out such tests : (i) the chi-squared Goodness of fit test of Karl Pearson, (ii) the
Kolmogorov - Smirnov goodness of fit test based on the empirical distribution function,
and (iii) the Hellinger distance based methods. We shall describe these in successive
sections. Then these will be followed by methods developed for testing goodness of fit
of two specific popular distributions viz., the exponential and the normal. There are
certain graphical procedures used as diagnostic indicators of the family governing the
outcomes. These will be discussed in the last section.

Key words : Chi-square statistic, Kolmogorov - Smirnov statistic; Hellinger dis-
tance; tests for exponentiality and normality; graphical diagnostic procedures.

1 Chi-squared Goodness of Fit Test

The random sample consists of n independent observations X, - -+, X,,. The idea is
to see whether they occur according to a given common probability distribution Fy.
The ideal situation is when we can completely specify the suspected distribution
function Fy(x). Often, we can only point to a particular family without being able
to specify the values of its parameters. These two cases will be dealt with separately.

(i) Completely specified distribtuion function F.
We set up the null hypothesis
H() F= FO
for testing. Since Fy is completely known, we can find the probabilities given by it
for any partition (—o00,a1], (a1, a2],-- -, (ak-2, ak-1], (ak-1, 0| in k intervals formed
by the & — 1 numbers

—0=qy<a; < - <Og-1<ar =00, k>2.

Let these be p1,p2, -, pk,pi > 0,4 = 1,2,---,k and Zf=1pi = 1. Let O; be

the (observed) number of observations in the ¢-th interval, Zfﬂ O; = n. The
probability of the {-th interval is p; hence the expected number of observations in
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it is np;. In [18] Pearson suggested that we should look at the discrepency between
the observed and expected frequencies through the chi-squared statistics

k 2
2 _ (Oi - npi)
X = Z np; )

=1

The denominator is a normalizing factor to make the variances of the terms com-
parable. If Fy is indeed the true distribution function then the difference between
O; and np; is expected to be small, only due to random variations, rather than
systematic, which will arise if the probabilities p;’s are not the true probabilities.
In fact, let us slightly modify the hypothesis testing problem to :

Hj : p; is the probability of interval (a;—1,a;},i =1,2,---,k

vs H{ : ¢; (which are not all equal to p;) are the probabilities of these intervals.

Then the vector (01,05, --,0;) will have a multinomial distribution given
under H{ by

n!

k Kz
PH(;(OI =ny,--, 0 =ng) = & 1 Ti=1P;
7l'i=1’l’l,,'.
and under H]
n! n m
Py(O1=mny, -, 0 = ng) = — T44; "
ﬂ'izl’n,i.

The likelihood ratio test for a simple vs. a composite hypothesis is based on the
statistics

since 4 are the maximum likelihood estimators of g;.
By Taylor expansion, and neglecting terms of order 0(1/n) we get

L N2
QJ:zZ——("z n7p’) .

Replacing n; by the quantity np; in the denominator which it estimates consistently
we get Pearson’s chi-squared statistic. Hence, asymptotically the chi-squared statis-
tic has the same distribution as the likelihood ratio statistic. The latter, by general
principles of likelihood theory is known to have the chi-square distribution with
k — 1 degrees of freedom ([24], Chapter 13).
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As large deviations between O; and np;, the observed and expected frequencies,
provide evidence against the null hypothesis, we reject it if the observed value
of the chi-squared statistic is greater than the upper a% value of the chi-square
distribution with £ — 1 d.f., i.e. the test is to reject Hy if

2 2
X" > Xk~1,1-a-

It is clear that if there is a distribution Fy, different from Fj, but specifying the
same probabilities p; for the intervals then the test will not be effective in detecting
this alternative. The construction of the intervals is rather arbitrary, it is possible
that different decisions may be reached through different such constructions. The
number of intervals should not be too small, but at the same time it should be kept
in mind that the approximation provided by the asymptotic distribution would not
be good if the probability under the null hypotheses for any interval is too small. A
rule of thumb which most statisticians recommend and follow is that n and each p;
should be large enough so that no np; is less than 5 or so and in any case should not
be less than 1. This may be achieved by reducing the number of intervals, through
pooling.

(ii) Some parametes of Fy are unknown.

We have said at the beginning of this section that we suppose that Fp is a
completely known distribution function. The experimenter sometimes may have an
inkling only of the family of the distribution, but not the values of the parameters
identifying the exact distribution within the family. For example, the experimenter
may suspect, due to the experimental conditions, that the distribution governing
the outcomes is normal (1, 02), but may not be able to specify, even as a hypothesis
to be tested, the values of the mean p and the variance o2. In such situations, it
is usually suggested that the unknown scalar or vector parameter 8 be estimated
by its minimum chi-square estimator 6. Then the estimated value be substituted
in Fy from which the probabilities p;,7 = 1,2, -,k should be obtained for the &
intervals. Then the statistic

k
(O; — np;)?
X2 = EPe—
; np;
be computed as before. The asymptotic distribution of the statistic based on p; has
the chi-square with k —£—1 degrees of freedom where £ is the number of parameters
(dimensionality of ) which are estimated from the data. This result again follows
from the standard asymptotic theory of likelihood ratio tests. So, the critical points
for the test should be chosen from the chi-square distribution with k — £ — 1 degrees
of freedom. It is thus clear that we may at most estimate k — 2 parameters from
the data while testing goodness of fit.

In (18] the x? test of goodness of fit of a simple (completely specified distribu-
tion ) null hypotheses is developed and the asymptotic distribution of the statistic is
found to be Xi—l where k is the number of classes in which the sample space is par-
titioned. In [11] Fisher dealt with the case when the distribution is not completely
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specified but contains p unknown parameters. He also proved that if the estimators
obtained by the minimum x? technique are substituted for the unknown parameters
then the asymptotic distribution is Xf:—p—l' Furthermore, in [5] it is shown that if
estimators obtained by the more efficient maximum likelihood method of estima-
tion are used then the asymptotic distribution is that of T = xi_,_, + Z* where
Z%2=3%"_  X\X? X, being independent N(0,1) random variables also independent
of the xz_p_l variable and 0 < A; < 1. Thus, the asymptotic distribution of T is
stochastically bounded between x7_; and xi_, ; random variables. In this situa-
tion using the critical points from the x?_; distribution will lead to a conservative
test and using those from the Xﬁ_p_l distribution will lead to an anticonservative
test, i.e., the actual level of significance will be larger than the stated one.
In [16] it is proved that the quadratic form defined below

D =¢(B)L*e®)
has asymptotically x? distribution with k¥ — p — 1 degrees of freedom.

Here A .
F(Iy) - p1(8)

¢y =iz | P~ 1@

y

F(L) - pi(®



237

F(Ij) are the probabilities given to the intervals I;,j = 1,-- -, k by the estimator F
of F; whether the Hy : Fj,8 € © holds or not with the property n'/?(F - F) LW,a
continuous Gaussian process with a nonsingular correlation structure which can be
consistently estimated; pj(é), j =1,---,k are the probabilities of the same intervals
given by the model F under Hy where @ are estimators of § obtained by minimizing
£'(6)D2(8)£(H) under mild conditions of W and D. Here $* is the Moore - Penrose
inverse of the estimated asymptotic variance covariance matrix of £ (é)

This is a general statistic having x%_p_l degrees of freedom. If F' is the empir-
ical distribution function then it reduces to the Fisher - Pearson x? statistics with
p estimated parameters. If the data is randomly censored then F' may be taken as
the Kaplan - Meier product limit estimator and the test can still be carried out.

Example 1. The following are suspected to be 50 values generated from the Poisson
distribution with mean 1 using a certain computer programme.

Values 0 1 2 3 4 5
frequency 11 17 10 9 2 1

Thus we wish to test the hypothesis Hy : Fy is Poisson with mean 1.

pi = Pi[X =i np; np; | O; | (npi — 0;)? %O—)i
0.367879 | 18.3940 | 18.3940 | 11 54.6712 2.9722
0.367879 | 18.3940 | 18.3940 | 17 1.9432 0.1056
0.183940 | 9.1970 | 9.1970 | 10 0.6448 0.0701

0.061313 | 3.0657 | 3.9654 | 12 64.5548 16.2795
0.15328 | 0.7664
0.003066 | 0.1533

UL W N = Of =

Since the last two cell values np; of column 3 and also their sum is less than 1,
they have been added to the previous cell value and reported in column 4.

We then get x? = 19.427.

The upper 5% value of the chi-square distribution with k —1 = 3 d.f. is
X3, 95 = 7.815. Since the calculated x? > 7.815, we reject Ho.

The p-value in this case is less than 0.001.

Example 2. The data is taken from [12]. (Original Source : Lieblein J. and Zelen
M. [17)).

The number of cycles to failure of 22 ball bearings are given. The data is already
in the ordered form.

17.88 2892 33.00 41.52 5212

45.60 48.48 51.84 51.96 54.12

55,66 6740 68.64 68.88  84.12

93.12 98.64 105.12 105.84 127.92
128.04 173.40

The aim is to test Hy : Fo(z) = 1 — e~*%, 2 > 0 that is exponential with mean
1/A, A unknown.
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The maximum likelihood estimator of A is

A= e = = 0.0138.
Z?:l X; T72.3873

Partition | p; = e~ Mai-1 _ g=ha; np; | O; %%i
(0, 40] 0.424540 9.33988 3 4.30349
(40, 80} 0.244306 5.37473 | 11 5.88748
(80, 120] 0.140588 3.09294 5 1.17587
(120, 160] 0.080903 1.77987 2 0.02723
(160, 200] 0.046556 1.02423 1 0.00057

Thus ¥ = 11.3946.

Note that in this case x? is stochastically bounded between x3 and x3. The .05
level critical points of the respective distributions are x g5 = 9.488 and x3 o5 =
7.815.

The null hypothesis is rejected using the larger critical point, thus at a level
somewhat less than 0.05.

2 The Kolmogorov - Smirnov Goodness of Fit Test

This test is based directly on the difference between the distribution function speci-
fied by the null hypothesis Fy and its estimator, the empirical distribution function
E,.

Again, let the null hypothesis Hy completely specify the distribution function:

Hy:F=F

assumed to be a continuous distribution function.

The random sample X;, X»,-- -, X,, is used to construct the empirical distribu-
tion function F,(z) defined as F,(z) = %, if exactly i of the n X’s are less than or
equal to z. Calculate the Kolmogorov - Smirnov statistics

D, = sup |Fu(z)— Fo(x)|

—o0o<L< o0

= lfg%xn{mam{an(x(i)) — Fo(zs)|, | Fr(z@y—) — Fo(z@y )1}

i i—1
= 1??5xn{max“;; — Fo(z ), |———n — Fo(z@)|}}

the maximum of 2n positive quantities, where x;) is the i-th order statistic of the
random sample.

We should reject Hy if D,, appears to be too large.

The test is based on the fact that if Fy is indeed the true distribution function
then D, will have a sampling distribution which does not depend upon Fy, due to
the probability integral transformation. The exact distribution for small sample size
n is rather complicated. It has been however tabulated and exact critical points for
use in the test are available. When n is large the asymptotic distribution of \/nD,,
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as n — 00, is given by Kolmogorov and well tabulated. Hence in either case (n
small or large ) the test is

Reject Ho if Dy, > dyp1-0
where dy, 1o is the upper 100 a% critical point from either the exact or the asymp-
totic distribution of the statistic.

If the distribution function under the null hypothesis is not completely known,
but known only upto the family with values of parameters still unknown, then one
may use values of consistent estimators of the parameters to completely specify Fy
and compare it with F,, through D,. But neither the exact nor the asymptotic
distributions used above would hold in this case. If we still use the upper 100a%
critical points of these distributions to carry out the test, we would be performing
a conservative test, i.e., the actual level of significance of the test would be smaller
than (or at most equal to) the stated level of significance o. This is so because
when some parameters are estimated from the data, to specify Fy, the difference
between it and the empirical distribution function F),, which is totally based on the
data, would be stochastically smaller than what it would have been in case Fy were
totally specified.

In case the experimenter knows that the distribution from which the data has
been realized, if not Fy, falls entirely above Fg then it is more efficient to compute

Dy = sup {Fa(z)— Fo(z)}.
—oo<r<oo
In the opposite case, when the data, if not from Fj, is expected to be from a
distribution lying entirely below Fy, one may calculate

D; = sw {Foe) - Fala)}.
—oo<z<o0
The exact and asymptotic null distributions of D and D, are somewhat easier to
handle. These too are well tabulated and level « tests will reject Hy if the value of
Dy is larger than its (1 — a)100% percentile. The same distributions and hence the
same critical points apply to D;, as well.
It can be easily seen that

D, = max{D;},D; }.

The comments made above about estimation of unknown parameters apply here
also.

Comparison of the chi-square and Kolmogorov tests for the goodness of
fit hypotheses.

The distribution of the chi-squared statistics, under the null hypothesis is known
only asymptotically so we do not have any exact critical points for small sample
sizes. Also, the test cannot distinguish the null hypothesis from another distribution
which gives the same probabilities for the system of intervals. However, there is
a well defined method to deal with null hypotheses which leave values of some
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parameters unspecified and can be applied with equal ease to continuous or discrete
distributions.

In case of the Kolmogorov test, exact critical points are available for small
samples also. The test is able to distinguish any distribution which is at all different
from the distribution under the null hypothesis. However, if certain parameters
are unspecified and estimated from the data then we do not know much about
the error rates of the test except that it behaves in a conservative manner. Also,
the distribution of the test statistic when the null hypothesis specifies a discrete
distribution cannot be provided.

Hence in case of discrete distributions the chi-square test is recommended.

Example 3. Data from Example 2 is used to test the hypothesis Hy : Fyp(z) =
1—e ** >0, A unknown.

The maximum likelihood estimator of A is given by X = 0.0138. In the following
Table Fy(z) = 1 — e ** (Mean = 1/A = 72.3873).

10) Fo(x(,')) z/n D: D,
17.88 | 0.218864 | 0.04545 | 0.000000 | 0.218864
28.92 | 0.329358 | 0.09091 | 0.000000 | 0.283903
33.00 | 0.366112 | 0.13636 | 0.000000 | 0.275203
41.52 | 0.436498 | 0.18182 | 0.000000 | 0.300134
42.12 | 0.441149 | 0.22727 0.00000 | 0.259331
45,60 | 0.467380 | 0.27273 | 0.000000 | 0.240107
48.48 | 0.488155 | 0.31818 | 0.000000 | 0.215428
51.84 | 0.511370 | 0.36364 | 0.000000 | 0.193189

9 51.96 | 0.512180 | 0.40909 | 0.000000 | 0.148543
10 | 54.12 | 0.526521 | 0.45455 | 0.000000 | 0.117430
11 | 55.56 | 0.535487 | 0.50000 | 0.000000 { 0.081302
12 | 67.80 | 0.608054 | 0.54545 | 0.000000 | 0.108054
13 | 68.64 | 0.612576 | 0.59091 | 0.000000 | 0.067122
14 | 68.88 [ 0.613859 | 0.63636 | 0.022505 | 0.022950
15 | 84.12 | 0.687167 | 0.68182 | 0.000000 | 0.050804
16 93.12 | 0.723742 | 0.72727 | 0.003531 | 0.041923
17 ) 98.64 | 0.744025 | 0.77273 | 0.028702 | 0.016752
18 | 105.12 | 0.765944 | 0.81818 | 0.052238 | 0.000000
19 | 105.84 | 0.768260 | 0.86364 | 0.095376 | 0.000000
20 | 127.92 | 0.829184 | 0.90909 | 0.079907 | 0.000000
21 | 128.04 | 0.829467 | 0.95455 | 0.125079 | 0.000000
22 | 173.40 | 0.908869 | 1.00000 | 0.091131 | 0.000000

00~ O Ut b W IN e

Thus D22 = 0.3001.

From the table for critical values of the Kolmogorov - Smirnov one sample test
statistic we get d22,0.95 = 0.281 for the two sided test. Since Dj; > 0.281 we reject
Hy. The p - value in this case is 0.038. Note that since a parameter is estimated,
we have actually a conservative test.
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3 Testing Goodness of Fit with Censored Data

It is known that in case of randomly censored data, when the variables lifetime and
censoring time are independent, the Kaplan - Meier (K-M) product limit estimator
is consistent for the true distribution function of the life time, (See [14]). A test of
goodness of fit then can be carried out on the basis of the difference between the
two. Again let the null hypothesis be

Ho:F:F().

The K-M product limit estimator is defined as

Fy=1- JJ a- s,

o
{7:t;<t} J

where t; are distinct values of the lifetimes / censoring times, d;, the number of
deaths at t; (excluding the censorings at t;) and 6; = 1if d; > 0 and zero otherwise,
and n; is the number of observation in the risk set just before ¢;. Form the statistic

Dn,Tz sup |Zn(t)l
o<t<T

where T is an upper bound upto which the K-M product limit estimator provides
a consistent estimator (i.e. a number no more than the largest uncensored observa-
tion), and

~

Ya(t)
[1 +an(®)](1 - Fo(1))

Yo (t) = n'/2{E(t) — Fy(t)}
d;
nj(n; +1)

Zn (t) =

an(t) =n
Jit;<t

The additional terms in the formula like a,,,1 — F;, have become necessary because
the observations are subject to censoring by an unknown censoring distribution.

The asymptotic distribution of the statistic depends upon T, the point of trun-
cation and is rather complicated. The critical points are available in [15]. One may
also use the critical points from the Kolmogorov distribution which are used for the
statistic D, in the uncensored data case. The test will again be a conservative one.

A general method for testing goodness of fit of a specific family of distributions
{Fp,0 € ©} with unknown values of parameters is to calculate. F,(z) and Fj(z),
where F}, is the K - M product limit estimator of the distribution function based on
the data and 0 is the maximum likelihood estimator of @ in the above family. Then
calculate the Kolmogorov distance

D, = sup |Fn(z) — F(z)|-
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The exact (or asymptotic) null distribution of the statistic will not be free of
the function F or the true value 6y of 8. Hence critical values from the actual
distribution are impractical.

Conservative tests, usually loose power for relevant alternatives as is well demon-
strated by various Monte Carlo studies. See [8] in the context of the normal family.
Hence for testing goodness of fit of families which are commonly used as models
such as normal or exponential, it is suggested that more specific tests based on
statistics sensitive to departures from certain prime features of the family, e.g. the
values 51 = 0 and B2 = 3 for the coefficients of skewness and kurtosis of the nor-
mal distribution or lack of memory property of the exponential distribution. These
generally have more power for detecting departures from such features at the cost
of generality.

4 Goodness-of-fit Tests based on Hellinger Distance

Goodness-of-fit tests may also be based on distances or disparities between the
probability density functions (p.d.f.). The squared Hellinger distance HD(f,g)
between two p.d.f.s f and g is defined as

D(f,g) = / (FY2(z) — g/%(z))2das

Let X1,Xs,---,X, be a random sample from the p.d.f. g. The aim is to test
the null hypothesis that g belongs to a specified parametric family F = {fy,0 € 0}
of p.d.fs. Minimum Hellinger distance estimator (MHDE) 8, of 6 is the value
that minimizes H D(fy, §n), where §, is some nonparametric density estimator of
g. That is

~

b0rn = argming HD(fo, n).

The minimized distance HD( fo.s Jn) then provides a natural goodness-of-fit
statistic.

For continuous models, asymptotic properties of 6, and H D( T4, Jn) are ob-
tained in [4] by Beran when §, is a kernel density estimator.

Let n
n 1 x — Xi
@ =125, ;“’ ( CrSn )

where h, = C, S, is called the bandwidth, {C,} is a sequence of positive constants,
Sp = Sp(X1, X2, -+, Xyp) is a robust scale estimator and the kernel w(-) is a density
function.

Let

R, = max X; — min X,
1<i<n 1<i<n

1
fn = ZRn/w2(x)dx
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and )
— ZCnRn [(ws w(@)de
where
w*w(z) = /w(x — tw(t)dt.
Then under certain mild assumptions
H, =o' [nCnHD(fén’gn) = ]

converges in distribution to a standard normal variable N (0, 1) under fs asn — oo.
Thus the a- level test is to reject Hy if |H,| > 21—, Where 21—, is the upper
a% value of the standard normal distribution. X
We note that under these assumptlons, the limiting distribution ofy/n(6, — )
is normal with mean 0 and variance 3[f ho(z)hZ (z)dz]~! under fj, where heo(z) =

(hél)( )y, h((,p ) (z))T with hé’ ) (x);1 < j < p denoting the first order partial deriva-

tives of f; / 2 with respect to 8 and T' denoting the transpose.

Thus, for example, the goodness of fit of any location scale family {o~! (¢~} (z—
u));o > 0,—00 < u < oo} where f is continuocus can be tested.

The most popular choice of the kernel function in density estimation is the
Epanechnikov kernel given by

w(z) = .75(1 — z?) for |z| <1,

for which f x)2dz = 3/5 and f w * w(z))?dr = ;gg

The followmg numerlcal example is reproduced from [4] to illustrate the feasi-
bility of the procedure.

Example 4. A random sample of size 40 was drawn from a standard normal
distribution. The 40 realized sample values were:

—0.706781  0.143266 0.123015 —0.745385  2.16105
0.654191 1.14438 —0.118696 0.258899 —0.154302
0.352057 —1.28269 0.885335  2.51841 —1.09603

2.04580  0.402274 0.0431284 —0.456585 —2.07226
—1.64175 —0.0192038  1.70932 0.929303 0.144781
—0.885728 —0.588767 —0.169394 0.699988 —0.162130
0.0621123  0.729453 0.655040  1.67987 —0.194017
1.01924 —0.927988 —0.524994 0.133760 —0.412047

The aim here is to test Hy : fg belongs to the family {N(u,02%),~00 < p <
00,0 < 02 < oo}

The MHDEs of 1 and 02 were obtained by using an iterative algorithm with
initial estimates as /1(®) = median {z;} and

6© = (0.674)"! median {|z; — 3@}
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The density estimator §,(z) was based upon the Epanechnikov kernel, with the
scale statisic S, = 6{9. The value of C,, was taken to be 0.7 as the corresponding
MDHEs of 1 and o were both close to the sample mean (0.158) and the sample
standard deviation ( = 1.012). The following Table gives the MHDEs of u, o, the
goodness-of-fit statistic Hy,(fs ,dn) and the asymptotic upper 0.10 critical value
h.go = (2.900n + pn)/nCh, where zg¢ is the upper .10 critical value of the standard
normal distribution, g, = R,(3/5)1/4, and 0, = .7 x R, x 167/355 x 1/8. The
Table reports the effects on the estimators of changing the value nearest to zero in
the data set, namely z92 = —0.0192038, by a series of increasing positive values.
The 0.10 upper critical values from the asymptotic distribution of HD( fgn, gn) are
all larger than the corresponding observed values of the statistic, suggesting that
the fitted normal distribution gives a good fit. This is as it should be, as changing
one observation (or having one outlier) out of the 40 should not affect the bulk of
the sample and hence the decision based on it.

Table
0 Top — original 1 2 3 4 5 10 15
value

b 0.143 0.173 0.191 0.218 0.194 0.156 0.150 0.151
Sample 0.158 0.184 0.209 0.234 0.259 0.284 0.409 0.534
mean

o 1.007 1.019 1.044 1.091 1.080 1.032 1.020 1.018
sample 1.012 1.020 1.052 1.106 1.179 1.268 1.855 2.555
standard

deviation

HD(fén,ﬁn) 0.0176 | 0.0134 | 0.0198 | 0.0219 | 0.0322 | 0.0401 | 0.0418 | 0.0424
asymptotic 0.0437 | 0.0437 | 0.0437 | 0.0473 | 0.0545 | 0.0616 | 0.0957 0.128
upper .10
critical
value
h.9o

For the discrete models, goodness-of-fit tests based on power divergence statis-
tics have been introduced in [6] and [19]. The power divergence I* between densities
f and g is defined by

g, f) = )\(Tl_*_—l—)/g(w) [(%)A - 1] dz.

The power divergence statistics of [5] is of the form

1 k O, A
A _ E: A L T
I"—n)\(/\+1) izloz{(npi) 1}’)\GR

where O; are the observed frequencies and np; the expected frequencies. The Pear-
son’s x2 (A = 1), log likelihood ratio statistic (\ — 0), Freeman - Tukey statistic
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(A = —1) are all special cases of the above. The statistic for A = 2/3 is shown to
be a good alternative to the x? test.

For the discrete models, goodness-of-fit tests based on the blended weight
Hellinger distance methods have been introduced and their comparisons given in [3]
and [22].

5 Tests of Exponentiality

The two most important continuous probability distributions from the modelling
point of view are the exponential and the normal distributions. The exponential
distribution is the single most important distribution used for modelling lifetimes.
It is the only continuous distribution with the memoryless property (i.e. P(X >
z+t|X >t)=P(X >z) V z,t > 0) hence it is the proper model for the lifetimes
of electronic and other non-ageing components. Also, it plays a central role in
life testing as a norm, deviations from which have to be noted and studied. So
it is extremely important to test goodness-of-fit of the exponential distribution to
collected sets of data on lifetimes. Besides, the experimenter wishes to understand
what other types of models may be the true models, if not the exponential. The
omnibus tests like the Pearson chi-square or Kolmogorov goodness of fit tests do
not provide this further information, after rejection. Hence certain tests are devised
which reject the Hy of exponentiality if certain relevant types of alternatives hold.

As mentioned above the exponential distribution uniquely possesses the mem-
oryless or no ageing property. But there are components which are subject to wear
and tear or those which deteriorate with age. This phenomenon is known as positive
ageing. One type of positive ageing is defined as

P(X>z+tX>t|<PX >z V z,t 20,

with strict inequality for some x and ¢. In words we may say that a unit which has
already been used for ¢ units of time has smaller probability of surviving another
x units of time than a new (unused) unit V z,t > 0. A random variable X, or its
c.d.f. F, which possesses this property is said to possess New Better than Used
(NBU) property. A finer positive ageing property is the Increasing Failure Rate
(IFR) property in which the above inequality is changed to

F(X>$+t2iX>t2]SP[X>.’II+t1|X>t1], V 2,0 <t <tz < o0.

There are many other classes of distributions including the Increasing Failure
Rate Average (IFRA) and Decreasing Mean Residual Life (DMRL) classes.
A reference to any standard book of Reliability Theory, say [1] will give detailed
discriptions of and interrelationships between these and such classes of distributions.

(i) The Hollander - Proschan Test (see [13]).
The testing problem considered here is
Hy: F(z) =1-e?%,2 >0, > 0, unspecified versus
Hy:F(s+t) < F(s)F(t), i.e. F belongs to the NBU class. Here F =1 — F'.
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Let X;,X5,---,X,, be a random sample from the distribution F. Then the
Hollander - Proschan test is based on the U-statistic estimator of the parameter

lo o] oQ
¥ =/ / F(s+t)dF(s)dF(t)
o Jo
= P[Xl > X +—X3].
Define a kernel function

1, if X1 > Xo+ X3

(X1, Xz, X3) = { 0, otherwise

and let h* be its symmetrized version. Then

1 &
U= 7 > R (Xi, Xy, Xiy)
(5)
where 3" is the sum over all the (3) combinations of the indices (i1, 12,i3) from
the integers (1,2,---,n).
It is seen that

E(U) = v which is 1/4 under Hy and strictly greater than 1/4 under H,. Also,
the null asymptotic variance of «/nU is seen to be 5/432. Hence the asymptotic

distribution of
7 - Vva(U —1/4)

/5/432
is N(0,1). The test is
Reject Hy if
Z>7Z1_q

where Z;_, is the (1 — a)-th quantile of either the exact distribution of Z or its
asymptotic (N(0,1)}) distribution. Hollander and Proschan have shown that the
test is consistent for the entire NBU class of distributions and has good efficiency
for several common models belonging to this class.

(ii) The Deshpande Test (see [9]).

The class of Increasing Failure Rate Average (IFRA) distributions is often en-
countered in reliability as it is the smallest class containing the exponential distri-
bution and closed under the formation of coherent systems. The IFRA class may
be characterized by the property

[Fx)]P <F(bz),* 0<b<1, 0<z<o00

with strict inequality for some b and z. So the testing problem is formed as
Hy:F(z) =1—-e*%,2>0,\ >0, unknown, versus
Hy: (F(x))® < [F(bz)], 0<b<1,0<z <ooandF is not exponential.
To test the null hypothesis the U-statistic estimator of the parameter

M= / " Fbn)dF (z)
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is used.
It is easily seen that M =
H;. Hence the U-statistics

under Hy and strictly greater than under

(b+1) (b+1)

1 *
o = ny Zh*(thXiz)
()
where h* is the symmetric version of the kernel

h(Xy,X) =1, if X; > bX>
=0, otherwise,
and )" is the sum over all the nchoose2 combinations of (i1,42) from the integers
(1,2,---,n).
The asymptotic variance of \/nJj is

e-l14 b 1 +2(b—1)_ 2 4
- 24+b 2064+2  14b  L4+b+b2 (b+1)2[°

Then by the U-statistics theorem we know that under Hy

Vi(Js — 75)

1
7= b

Ve

has N(0,1) distribution. Hence the test is to reject Hy if Z > Z;_, where Z;_,
is again the (1 — a)-th quantile of the exact null distribution or the asymptotic
(N(0,1)) distribution of Z. There is the question of choosing b for defining the
statistic. Generally b = 0.5 or 0.9 is recommended. Test based on Jy 5 is consistent
against the larger NBU class and Jp.9 seems to have somewhat larger power for
many common IFRA distributions.

The statistics Jp is simple to compute. Multiply each observation by the chosen
value of b. Arrange X1, Xs, - -, X, and bX1,bX5,---,bX,, together in increasing
order of magnitude. Let R; be the rank of X; in the combined order and let

=3 g, mnt),

Then it is seen that
= {n(n—1)}718.
It may be noted that it is essentially the Wilcoxon rank sum statistic for the data
of X1,Xs,---,X,; and bX,,bX,,---,bX,,.

6  Tests for Normality

The normal distribution is the single most commonly used model for describing
the occurrence of outcomes of random experiments and phenomena. Ever since the
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days of Gauss and Laplace in the eighteenth and nineteenth century it has been
recognized as a very useful model. For a considerable time it was believed that
most of random phenomena actually give rise to normally distributed data, at least
after appropriate transformations. Theory of errors as developed for application in
Physics and Astronomy, basically makes the normality assumption. However, by
and by it came to be recognized that there are many situations where other models
are much more realistically discriptive of real data. Hence there arose the need
for testing whether a given set of data, i.e. realizations of independent, identically
distributed random variables is described well by the normal distribution or not.
Probability plotting as explained later is a useful graphical tool in this respect. Here
we describe a formal test based on the quantities involved in probability plotting.

The Shapiro - Wilk - Francia - D’Agostino Tests
Let X1, X2,---, X, be the random sample and X1y, X(2),- -, X(n) be the cor-
responding order statistic. Then the test is based on the statistic

(Z”,L'lr-l ai,nX-(i))z
Y (X — X)?

which is the ratio of the slope of the normal probability plot, or the square of the
weighted least squares estimator of the standard deviation, to the usual estimation
of the variance. The values of a;, for i = 1,2,---,n,n = 2,.--,50 have been
tabulated. If the sample size is large, say, greater than 50, the following modified
statistic has been proposed in [21].

W =

(8 binX ()

WI = n Y n
Ei=1(xi - X)2 Zi:l bzz,n

where b; , = @1 ( n-l+—1) and @ is the standard normal distribution function. Exact

critical values of W (for n < 50) and for W/(n < 100) are available. For even larger
sample sizes in [7], the test statistic

p_ Ziali- 3+ D)Xy

n2 E(Xz - -X)Z

has been proposed and its exact critical values for values of n upto 1000 have been
provided.

These Shapiro - Wilk - Francia - D’ Agostino tests are considered to be omnibus
tests as they are able to detect departures from normality in all directions.

7 Diagnostic Methods for Identifying the Family of Distribution Func-
tions

The goodness-of-fit tests described earlier in this chapter provide the means of
carrying out formal statistical inference, with known probability of first type of
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error, about the respected distribution function governing the data. The methods
described in this section are less formal. They provide indications to the true distri-
bution functions through graphical procedures. A suspected distribution is at the
back of our mind and we compare its shape (or that of some releted functions) with
graphs obtained from the data.

(i) The Q-Q Plot

The Q - Q or quantile - quantile plot compares the theoretical quantiles of
a distribution with the corresponding sample quantiles represented by the order
statistics. These plots have been discussed in detail in [23].

Suppose that the suspected distribution function F' belongs to a scale-location
family Fy (t—;’i) where standard values of u and o, say 0 and 1 give a completely
known standardized distribution Fy in this family. For example, F' may represent
the normal family with mean u and variance o2, with p = 0 and 02 = 1 giving the
standard normal distribution.

Let F}(t) be a shghtly modified version of the empirical distribution function

given by F;(t) = —l rather than i/n. This has been done as generally a the-
oretical distribution may give —oo and oo as the values of F~1(z) at z = 0 and

1. We then compare F x? 3%/2) of F~1(2) at 2 = 0 and 1. We then compare

n
a graph. If the true distribution F is belongs to the scale - location family based
on Iy then we expect that this graph called the Q - Q plot will be situated on or
near a straight line. This is because

_ _ t— t—
FyF(t) = Fy ' Fy (T’f) =k

Fr! ( n/ ) =t(;) and F" (511/—2) by plotting the points (t(i),Fo—l (i—1/2) in

g

is a straight line with slope % and intercept £. A straight line is easy for the eye to
comprehend and departures from it can be quickly recognized. While not proposing
a formal test, the plot does give an indication whether the proposed scale - location
family is the appropriate model or not. The slope and the intercept would provide
very rough estimates of the parameters which could be useful as initial values in
an iterative scheme to find, say, the maximum likelihood estimators or other more
formal estimators. o

The values of the inverse function Fy 1 at the points 2;”5— fori =1,2,---,n,
are sometimes easy to obtain by direct calculations, someties they are available in
wellknown tables (e.g. ®~!, the inverse of the standard normal distribution). For
many distributions they can be obtained by numerical integration or other com-
puter based calculations or packages.

(ii) The log Q - Q plot

This is a modification of the Q - Q chart. For some positive valued random vari-
ables the distributions of its logarithm belong to a scale - location family. For exam-
ple the lognormal or the Weibull distributions have this property. Therefore arguing

as before we plot the points {log tay, F~ 1 ( ) } For example, in the Weibull case
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Figure 2: log Q-Q Plot

[F(t) =1—e ™, ¢ > 0]. Hence [F~1(y) = X8l log(l —w=lgX < 4 < 1], and
A = v = 1 leads to the standard exponential dlstrlbutlons with dlstrlbutlon function
Fo(t) =1—e7* t > 0 in this family.

Hence if we plot the points (logt;),log(—log (1 S ))) they are expected to

lie on a straight line with slope v and intercept log . Thus the fact that the points
look like being on a straight line will indicate that the distribution is Weibull, with
the slope and intercept leading to preliminary estimation of the parameters. The
log Q - Q plot for the data of Example 2 is given in Figure 2. It can be seen that
the intercept and the slope are approxxmately -10 and 2.2, respectively, leading to
preliminarly estimates Xo =€ 1% and 9y = 2.2.

(iii) The P-P Plot

The P - P (Probability - probability) plot charts the points (Fn(t(;)),
F(t, 6)) where F is the proposed family of distributions, possibly dependent upon
parameter 8 (see [23]). The parameter § may be estimated by some method suitable
for this family, like the method of maximum likelihood and the estimate substituted
for the true value. As before Fy,(t(;)) = 1/ . This plot is restricted to the square
(0,1) x (0,1) and the points are expected to he on the diagonal from (0,0) to (1,1)
if the model holds.

In Figure 3 it will be hard to say that the points do not lie on or near the di-
agonal, whereas in Figure 4 the plot seems to be concave in nature rather than the
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straight line of the diagonal. The shape of the graph of these points when it is not
a straight line also gives some indications regarding the true distribution vis-a-vis
the suspected distribution. In particular, if the graph is concave as in Figure 4, it is
indicated that the ratio hp, ., /hr, of the failure rate of the true distribution with
that of the suspected distribution is increasing. This in turn can be interpreted to
mean the data comes from a distribution which is aging faster than the suspected
distribution. These considerations helps us in selecting appropriate models from
the point of view of survival theory.

(iv) The T-T-T Plot
The total time on test (T-T-T ) plot is very useful in adherence to the exponen-
tial model and also departures form it. In specific departures which are of interest

in lifetime studies the basis is the scaled T-T-T transform of distribution function
defined by

ST F(yde

I F@ydt

Tp(u)= O<u<l.

Like other transforms, this is also in 1:1 correspondence with probability distribu-
tions. It is easy to see that for the exponential distribution (F(t) = e~ t > 0) it is
the straight line segment (diagonal) joining (0,0) with (1,1). Hence the technique
is to define the sample version of the scaled T-T-T transform as the T-T-T statistic
given by

foFT:l (i/n) Fn(t)dt

IS Fa(t)dt

L o=+ D)X — Xoyy)
nX

Tk, (i/n) =

where X is the sample mean and 0 = Xy £ Xg) < - £ X(n) are the or-
der statistics of the random sample. The numerator of T, (i/n) is the total time
on test (or under operation) of all the n items put on test, simultaneously, upto
the i-th failure. Hence the name of the statistic and the transform. The points
{%,TF,(i/n)},i = 1,2,---,n are plotted in the square (0,1) x (0,1). If they lie
on the diagonal or near it and not systematically on one side, then the exponen-
tial distribution is indicated. If a systematic pattern, apart from the diagonal, is
discernible then certain alternative models may be more appealing.

The TTT-statistic was first introduced in [10] but its applications in analysis
of failure data began with a paper by Barlow and Campo [2].

In the Figure 5 the exponential distribution is indicated, whereas in the Figure
6 the jumps in the values of the sample scaled T-T-T transform seem to become
larger and larger indicating a distribution in which failures occur progressively less
frequently in time compared to the exponential distribution. If the graph appears
to be convex then a DFR distribution and if it is only below the diagonal without
being convex then some other NWU distribution is expected to fit better to the
data.
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U STATISTICS AND M,, ESTIMATES

ARUP BOSE
Indian Statistical Institute, Kolkata,

Abstract. After a quick introduction to some basic properties of U statis-
tics with examples, we discuss M,, estimators and their asymptotic properties
under easily verifiable conditions. In particular, these estimators are approx-
imately U statistics and as a consequence, a huge collection of commonly
used estimators are consistent and asymptotically normal. We also establish
some higher order asymptotic properties of these estimates. The material is
more or less self contained.

Key Words and Phrases: U statistics, M,, estimates, strong consistency,
asymptotic normality, almost sure representation, U quantiles, multivariate
medians.

1. Introduction

This article is broadly divided into two parts. In the first part we deal
with U statistics. We concentrate on some results which are useful from
a statistician’s point of view. As applications, we establish the asymptotic
distribution of many common statistics which are either U statistics or simple
functions of U statistics. This material is fairly standard but our concise
treatment makes the article reasonably self contained.

In the second part, we deal with M,, estimators and their asymptotic
properties. A huge class of common and also not so common estimators fall in
this category. The asymptotic properties of these estimates have been treated
under different sets of conditions in the literature. The most general results
for these estimators require very sophisticated treatment using techniques
from the theory of empirical processes. But here we strive for a simple
approach. The conditions we assume are few and simple but general enough
to be applicable widely. We demonstrate how one can check the necessary
conditions of the general theory in particular cases.



258

2. U statistics and its basic properties

2.1 Definition and first examples. Let X;, X5, -, X, be observations,
not necessarily real valued. We shall assume throughout that they are in-
dependent and identically distributed (iid). Suppose h(zi,: -, Zm) is a real
valued function which is symmetric in its arguments.

Definition 1. The U statistics of order or degree m, with kernel h is:

Un=(">—1 Y h(Xa,, X)) 2.1)

m 1<i) < <ig<n

The systematic study of U statistics began with Hoeffding (1948). Many
of the basic properties of U statistics are due to him. In this section we
will cover a few basic properties of U statistics and provide a few examples.
Further material on U statistics are provided by Lee (1990) and Koroljuk and
Borovskich (1993). Some results on U statistics that we specifically need for
the study of M,, estimates are given in the next section.

Example 1. (Sample mean) Letting m = 1, h(z) = z, we obtain U, =
n‘l :-;1 X,L

Example 2. (Sample variance) Letting m = 2, h(z,z2) = L“—;x—"’lz, we get

-1

n

U, = <2> Y X - X2
1< <iz<n

It is easily seen that U, = (n — 1)"! ¥, (X; — X)?, the sample variance.

Example 3. (Sample covariance) Suppose (X;,Y;), 1 < i < n are the
observations, m = 2 and h((z1,11), (%2, ¥2)) = 2(z1 — £2)(y1 — y2). Then U,
is the sample covariance between {X;} and {Y;}.
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Example 4. (Kendall’s tau) Suppose (X;,Y;), 1 < ¢ < n are bivariate
observations. A measure of discordance is Kendall’s tau, defined by

ty = (Z)‘l 19;9 sign(X; — X;)(Y; - Y;). (2.2)

This is a U statistic with h((z1, z2), (y1,¥2)) = sign(zy — z2)(y1 — v2)-

Example 5. Gini’s mean difference, a measure of inequality is defined as

-1
n
U"=(2> Z |Xi_X.7'|'

1<i<j<n

If the observations are N(0,0?), E(U,) = (2/7)"/%0. Thus U, is a measure
of dispersion. This is a U statistic with h(z1,z2) =| 21 ~ 22 |.

Example 6. (Wilcoxon’s one sample rank statistic) Suppose X;, 1 <i<n
are continuous observations. Let R; = Rank (| X;|), 1 <14 < n. Wilcoxon
one sample rank statistic is defined as T+ = 3% | R; I(X; > 0). T can be
written as a linear combination of two U statistics with kernels of size 1 and
2. To do this, note that for i # j,

I{Xi+Xj > 0} =I{Xi > O}I{l Xj |< Xi}-l-I{Xj > O}I{l X; |< XJ}

Hence
Z I{X]+XJ>O} = Z I{X,>0}I{|X]|< X,}
1<i<j<n 1<i<j<n
+ Z I{X]>0}I{|Xz|< XJ}
1<i<j<n

n
+ ZI{Xi > 0}
i=1

= ZZI{Xi > 0} {| X; |< X}
= ZH:I{X,- >0}R; =T+

i=1
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Define two kernels, hy(z;) = I{z1 > 0}, and ho(z:,22) = I{z; + z2 > 0}
Define two U statistics as

n -1
Un(hl) = ;]:L-Zhl(Xz), and Un(hg) = <Z) Z hg(Xz,X])
Then
T+ = (Z) Un(h2) + nUs (h). (2.3)

2.2. Some properties of U statistics

(i) Variance of U,. Computing the variance needs computing the co-
variances between h(Xj,---,X;.) and h(Xj, --- X;,) which depends on the
number of common indices. Let &, = cov[h(X;,, -, X;,.), h(Xj,, -+, X;,)]
when the number of common indices is c. It is easy to see that 4. > 0 for all
c. By a simple combinatorial argument

-2 m -1 m
n n\{m\{n—m n m\ (n—m
vwa=(n) Z)E)G)E- () ZE6T)-
As a consequence of this, we also have

2
V(Un) = mn(51 +0(n"?) and V(n*(U, - 8)) — m?4,. (2.4)

Example 7. Suppose U, = s% = (n — 1)7' £ (X; — X,,)%. Here the kernel
is h(z1,22) = gﬂ';—?ﬁ It can be verified directly that, if 62 = V(X}), then
§ = BX=EQOI=0" 5, — 6% and V(U,) = L& 4 _ 26,

n n(n—1)

(ii)) First projection of U,. Note that the leading term in the asymptotic
variance of n'/2U, is given by m?§,. It is also not hard to check that d;
is given by & = cov[h(Xy, -, Xm), (X1, Xm+1, -+, Xom)] = Var(hi(X1))
where hy(z1) = E h(z1, Xo, -+, X;) is the conditional ezpectation of h given
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one of the coordinates. This function h; is called the first projection of Uy,.
Let h; be its centered version:

hl(xl) = hl(.’El) -0

so that E hy (X)) = E[R(X1, -+, Xm)] — 0 = 0. Let

Rn:Un_e—%iﬁl(Xi)' (2.5)

i=1

By explicit calculations it can be easily seen that the decomposition (2.5)
is an orthogonal decomposition in the following sense :

cov[hi(X;),Rp] =0 Vi=1,---,n. (2.6)

(iii) Convergence of U statistics. From the above it immediately follows
that if V[h(Xy,...,Xn)] < oo, then U, — 8 %4 0asn — oco. In fact a much
stronger statement is true: If E[|h(Xy,...,Xn)|] < co, then U, — 8 25 0,
This can be proved by using SLLN for either reverse martingales or forward
martingales. A rate result when higher moment exists is given in Lemma 3
in Section 3.

(iii) Asymptotic normality of U,. From the relations (2.5) and (2.6), we
get V(U,) = ™6, + V(R,). But on the other hand, from (2.4) V(U,) =
25, + 0(n~2). This shows that V(n'/2R,) — 0 and hence n}/?R, — 0 in
probability. Now appealing to the decomposition given in (2.5), and the
usual central limit theorem, we immediately obtain,

Theorem 1. If V[h(X1,... X;,)] < oo, then

n'’?(U, - 8) 2 N(0,02) where o =m?V(hi(X1)) = m?6,.

Remark 1. By using the Cramer-Wold device, it is easy to see that the
multivariate version of Theorem 1 holds. This is useful in applications where
more than one U statistics is involved.
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Example 8. Consider the U statistic s2. In Example 7, we have calculated

5 = IM_Z"_“, where py = E(X — (EX))*. Thus if u4 < oo,

n'/%(s? — ¢?) 25 N0, pa — o).

Example 9. Suppose h(z;,x2) = 2172 Let p = E(X;). Then

51 = COV(XlXQ,XlX;;)
= EX12X2X3 - (EXle)(EX1X3)
= WPEX? -t = pfV(Xy).

Hence if V(X;) < oo, then

-1
nt/? <<g) > XX, - /12) 25 N(0,4 p?0?).

1<i<j<n

Example 10. Consider Kendall’s tau defined in Example 4. It is used to
test the null hypothesis that X and Y are independent. We shall derive
the asymptotic null distribution of this statistic. Let F, Fi, F5 denote the
distributions of (X,Y’), X and Y respectively, Then

hi(z,y) = E h((z,9), (X2, Y2))
= P{-Xa)(y—Ya) > 0}~ P{(z - X;)(y— ¥3) < 0}
P{(X;>z,Yoa>y), or (X2 <z,Ys <y)}
—P{(X; >z, Ya<y)or (Xy<zY:>y)}
= 1-2F(z,00) — 2F(00,y) + 4 F(z,vy)
= (1-2~”(2))(1 - 2F2(y)) + 4(F(z,y) - Fi(z)F2(y))-

Under the null hypothesis X and Y are independent and hence for all z and y,
F(z,y) = Fi(z)F5(y). Hence in that case, hi(z,y) = (1-2F(z))(1-2F(y)).
To compute its variance, note that U = 1 — 2F;(X;) and V =1 — 2F(Y))
are independent U(—1, 1) random variables. Hence

VIM(X,Y)]=V({UV)=EU*EV? = (% / 1 w?du)? =1/9
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Moreover, under independence, § = E[ sign (X; — X5)(Y; — Y2)] = 0.

Hence under independence, n'/2U, —2» N(0,0?) where 02 = 22/9 = 4/9.

Example 11. Wilcoxon’s statistic defined in Example 6 is used for testing
the null hypothesis that the distribution F' of X; is symmetric about 0. Recall
the expression for 7+ in (2.3). We concentrate first on Uy, (h1). E Uy(h1) =
P(X; + X3 > 0) = 0, say. Under the null hypothesis, § = 1/2. Further,

V(hl) = Cov [I(X1+X2>0), I(X1+X2>0]
= P(X1+X2>0, X1+X3>0)—(1/2)2.

Now assume that F’ is continuous. Then under null hypothesis, by symmetry,
P(X1+ Xa, X1+ X3 >0)=1/3. Thus n'/2(U,(hy) — 1/2) = N(0,02)
where 02 = 22(1/3 — 1/4) = 1/3. Tt also follows easily that

n~%2(nU,(h1)) — 0 in probability.

Hence we have, after algebraic adjustments,

n~¥2,/(12)(T* - n?/4) 25 N(0,1).
3. U statistics and M,, estimators

M estimators and their general versions M, estimators were introduced
by Huber (1964) from robustness considerations. The literature on these
estimators is very rich. There are a variety of conditions under which the
asymptotic properties of these estimators have been studied. It is known that
under suitable conditions these estimates are consistent and asymptotically
normal and satisfy appropriate almost sure representations. The goal of this
section is to offer easily verifiable conditions to derive some of the asymptotic
properties of these estimators. A huge class of M,, estimators turn out to
be approximate U statistics. Hence the theory of U statistics plays a crucial
role in this approach. We give several examples to show how the general
results can be applied to many estimators. In particular, several multivariate
estimates of location are discussed in details.



264

3.1 Basic definitions and examples.

M,, parameter. Let f(zy,---,Zm,0) be a real valued function. The ar-
gument @ is assumed to belong to R?. Let Xi,---,X,, be i.id. random
variables. Define

Q) =E f(X1, +, Xm, ).

Let 6, be the unique minimizer of Q(6). We consider 8y to be the unknown
parameter. It is usually called the M, parameter. The special case when
m = 1 is the one that is most commonly studied and in that case 6 is
traditionally called the M parameter.

M,, estimator. Suppose {X,---,X,} is a sequence of independent and
identically distributed observations. Under the absence of any further infor-
mation on the distribution of X, a natural estimate of the M,, parameter 6
is the minimiser of the sample analogue @, of @,

Qn(e>=(">_l S X X 0).

1<91 <22 <im<n

Definition 2. Any (measurable) value 6, which minimizes Q,(6) is called
an M,, estimator of 0.

Example 12. Let f(z,0) = (z — 6)® — 22. Clearly Q(9) = 6*> — 2E(X)9
which is minimized uniquely at 6y = E(X). Its M estimator is the sample
mean.

Example 13. (Sample median and quantiles). For 0 < p < 1, the population
pth quantile is the point where the distribution function exceeds p for the first
time. To see these as M parameters, let f(z,0)- |z —0 | — |z | —(2p—1)6.
It is easy to check that,

f(z,6) =0[2I(m§0)—1]+2/00[I(x§s)—l(x§0)]ds— (2p — 1)8.
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Hence if Fix denotes the distribution function of X then
0
Qo) = 2 /0 Fx(s)ds — 2p.
Q() is minimized at

8 = Fx'(p) = inf{z : Fx(z) > p}.

Then 6, is a population pth quantile. It is unique if Fx is strictly increasing
at 6y. If p = 1/2, it is called the population median. The M estimator of , is
called the sample pth quantile. Unlike the previous example, this estimator
is not necessarily unique. If p = 1/2, we get the sample median.

Example 14. (L; median) There are several reasonable definitions of the
“median” when the observations are multivariate. The reader may consult
Small (1990) for a first exposure to the various notions of median/location
for multivariate observations. One such median is the L; median. Suppose
X is a d dimensional random vector = (Z; - - - Z;). Let

d

f(z,0) =D (z;—0; 2]1/2 25'32]1/2

=1

It can be shown that if Fx does not put all its mass on a hyperplane (that is,
if P{>%, C; Z, = Constant } # 1 for any choice of real number (C; - - - Cy)),
then Q(#) is minimized at a unique 6. This 6 is called the L; median. The
corresponding M estimator is called the (sample) L; median. It is unique if
all the sample values do not lie in a lower dimensional hyperplane. If d =1,
the L; median reduces to the usual median discussed in Example 13.

We now give examples of M, estimates where m > 1. Traditionally, M
estimators are thought of as measures of location. However, M, estimators
encompass both measures of location and of scale.

Example 15. For a function h(zy, ..., ;) which is symmetric in its argu-
ments let

fzy...,2m,0) =0 —h(z1,...,%m)]* = [A(z1, .., Zm)]%
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Then 6y = E h(Xy,...,Xn) and 6, is the U statistic with kernel h. So all
U statistics are M,, estimators. In particular, the sample variance is an M,
estimator.

Example 16. (Oja median) A multivariate median due to Oja (1983) is de-
fined as follows. Suppose X, - -+, X4 are d-dimensional i.i.d. random vectors.
Let A(Xj,- -, Xy, 0) denote the (absolute) volume of the simplex formed by
the (d + 1) points {Xi,---, Xq4,0} in RY. Let

f(xh'"axdaa) =A($1,“‘,.'L'd,9)—A(.'I?l,"',.’lfd,O).

If E|Xi| < oo, then Q(0) = E f(X1,--+,Xq4,0) exists. It is also known
that if the distribution of X; does not concentrate on a hyperplane of a lower
dimension, then @ is unique and is called the Oja median. The corresponding
M, estimate is called the (sample) Oja median.

Example 17. (Hodges-Lehmann measure of location) Suppose X1, -+, X,
are i.i.d. observations. Instead of the usual mean as a measure of location,
one may consider the median of {X’—;XL, 1 €% < j < n} as the sample

measure of location. Here m = 2 and
I + I I + To

2 -

f(z1,22,0) =| ~0] -]

The parameter 6y is the median of G where G is the distribution of &%&

Example 18. (Robust measure of scale/dispersion) The variance as a mea-
sure of dispersion is influenced by extreme observations. To address this prob-
lem, Bickel and Lehmann (1979) considered the distribution of | X; — X5 |
and took its median to be a measure of dispersion. Here m = 2 and

[, 20,0) =|| 2y — 22 | =0 | — | 21 — 72 | .

Example 19. (U quantiles) The ideas of the previous two examples can
be extended to define U quantiles (Choudhury and Serfling (1988)). Let
h(zq,---,Zm) be a symmetric kernel. Define

f@1, 2m, 0) =A@, Tm) =0 | — | A(Z1, -+, Zm) | -
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Then 6, the minimizer of E[f(Xy,- -+, Xy, 0)] is called a U-median. Other U
quantiles can be defined in a way similar to the sample quantiles in Example
13. Note that just like the sample quantiles in Example 13, these estimates,
in general, are not unique. Multivariate versions of these U-quantiles defined
by Helmers and Huskova (1994) are also M,, estimates. '

Many researchers have studied the asymptotic properties of M estimators
and M,, estimators. Early works on the asymptotic properties of M; esti-
mators and M, estimators are Huber (1967) and Maritz et. al. (1977). Oja
(1984) proved the consistency and asymptotic normality of M, estimators
under conditions similar to Huber (1967). His results apply to some of the
estimators above.

We emphasize that all examples of f we have considered so far have a
common feature. They are all convez functions of 8. Statisticians prefer to
work with convex loss functions for various reasons. We shall make this blan-
ket assumption here. This does entail some loss of generality. But convexity
leads to a significant simplification in the study of M,, estimators while at
the same time, still encompassing a huge class of estimators.

As Examples 13 and 19 showed, an M, estimator is not necessarily
unique. However, it can be shown that by using the convexity assumption, a
measurable minimiser can always be chosen. This can be done by Corollary
1 in the Appendix of Niemiro (1992). The asymptotic results that we will
discuss hold for any measurable sequence of minimizers of @,,(6).

Several works have assumed and exploited this convexity in similar con-
texts. Perhaps the earliest use of this convexity was by Heiler and Willers(1988)
in linear regression models. See also Hjort and Pollard(1993). For example,
for m = 1, Habermann (1989) established the consistency and asymptotic
normality of 6, and Niemiro (1992) established a Bahadur type representa-
tion 6, = 6y + Sp/n + R, where R, is of suitable order almost surely and S,
is the partial sum of a sequence if iid random variables. In the next subsec-
tions, we shall exploit the convexity heavily and establish some large sample
properties of M,, estimates.
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Remark 2. Even though our set up covers a lot of interesting multivariate
location and scale estimators, it does not cover several other estimators such
as the medians of Liu (1990), Tukey (1975) and Rousseeuw (1986) etc since
the convexity condition is not satisfied. One general approach in the absence
of convexity is provided by Jureckova (1977)). See also de la Pena and Gine
(1999, page 279).

3.2 Strong consistency. The immediate consequence of convexity is the
strong consistency of M,, estimates. Assume that:

(I)  f(z1,...,%m,0) is convex in 6 for every (z1,...,Zn).
(II)  Q(8) is finite for all 6.
(IIT) @ exists and is unique.

Remark 3. Often the parameter space is restricted. If (I) and (II) are
satisfied for a subset of R¢, then all the results we give below remain valid if
f is an interior point of this subset.

Theorem 2. (Strong consistency) Under Assumptions I, IT and III,

0, — 6y almost surely, as n — oc.

Remark 4. The above theorem, in particular implies that all the estimators
introduced so far in our examples are strongly consistent under minimal
assumptions, (I)—(III).

To prove the Theorem, we need the following Lemma. Recall that convex
functions converge if they converge on a dense set and the convergence is
uniform over compact sets. Using this and a diagonalisation argument, the
Lemma can be easily proved. Details can be found in Niemiro (1992).

Lemma 1. Suppose that h,(@), a € R¢ is a sequence of random convex
functions which converge to h(a) for every fixed « either in probability or
almost surely. Then this convergence is uniformly on any compact set of «,
respectively in probability or almost surely.
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Proof of Theorem 2. Note that by the strong law for U statistics, Qn ()
converges to @(a) for each o almost surely. By Lemma 1, this convergence
is uniform on any compact set almost surely.

Let B be a ball of arbitrary radius ¢ around 6. If 8, is not consistent,
then there is a set S in the probability space such that P(S) > 0 and for
each sample point in S, there is a subsequence of 6, that lies outside this
ball. We assume without loss that for each point in this set, the convergence
of ), to @ also holds. For a fixed sample point, we continue to denote such
a sequence by {n}.

Consider the point 8 which is the intersection of the line joining 6y and 6,
with the ball B. Then for some sequence 0 < v, < 1, 6% = 7,60 + (1 — v,,)6%.
By convexity of ), and the fact that 6,, is a minimiser of @Q,,

Qn(e:;) S 7nQn(00) + (1 - ’Yn)Qn(on) S 7nQn(00) +‘(1 - ’Yn)Qn(OO) S Qn(GO)

Note that the right side converges to Q(6). Pick a subsequence of 6},
which converges to, say ;. Since the convergence of (), to ¢ is uniform, the
left side of the above equation converges to Q(f;). Hence, Q(6:) < Q(6o).
This is a contradiction to the uniqueness of fy. This proves the theorem.

3.3 Asymptotic normality. We now give an in probability representation
result for M,, estimators. This representation implies the asymptotic nor-
mality of M,,, estimators. To state the result, first note that since f is convex,
it has a subgradient g(z, #). This subgradient has the property that for all
«, B, z,

f(z,0) + (B~ a)g(z,0) < f(z,B). (3.1)

If f is differentiable, then this subgradient is simply the ordinary derivative.
Further g is measurable in z for each . This is possible by an appropriate
selection theorem, such as Corollary 2 in the Appendix of Niemiro (1992), or
see Castaing and Valadier (1977).

It is easy to see that by using (3.1), under assumption (II), the expectation
of g is finite. Moreover, the gradient vector VQ(0) of Q at 8 exists and

VQ(8) = Elg(X1, ..., Xm,0)] < co.
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Denote the matrix of second derivatives of () at 8, whenever it exists, by
V2Q(6). We also define
H = V2Q(6o)
and .
n
Un:< ) Z g(Xil"',Xim;HO)-
m 1<i1 - <im <0

Let N be an appropriate neighbourhood of 8;. We list the following addi-
tional assumptions to derive asymptotic normality.

(IV) Elg(X1,...,Xm,8)> <co VO e N.
(V) H =V?Q(6) exists and is positive definite.

The following theorem is a consequence of the works of Habermann (1989)
and Niemiro (1992) for m = 1, and Bose (1998) for general m.

Theorem 3. Suppose Assumptions (I)-(V) hold. Then,
(i) 0, — 0y = —H U, + 0p(n‘1/2)

(ii) nY/2(6,—0) = N(0, k2H LK H-!) where K is the variance covariance
of the first projection of the gradient vector g(Xy, ..., Xm,6).

Remark 5. The M, estimators given in section 3.1 all satisfy the conditions
of Theorem 3 under suitable conditions on F. Thus Theorem 3 implies
the asymptotic normality of a huge collection of estimators. After we give
the proof of the theorem, we illustrate its use through a discussion of the
appropriate conditions required in some specific cases.

For the proof of this theorem as well for those theorems given later,
assume without loss that 6y = 0 and Q) = 0. Also let S denote the
set of all m element increasingly ordered subsets of {1,...,n}. For any
s ={i1,...,im} € S, let Y, denote the random vector (X;,,...,X; ) and
X(s,a) = Q(Y;, ).
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Proof of Theorem 3. For any fixed o, and s € Slet X,,, = f(Y,,n *%a)-
f(¥5,0) —n~2aTg (Y, 0).

-1
Note that V;,, = (::L) Yses Xns is a U statistic. From the decomposition
given in (2.5) and (2.6), using (3.1), it follows that

(o) '

IN

m
m EE[(X"S ~ EXp,))?

IA

k" EX?,
n
m
< K—Ela/{g(Xns, n™"%a) — g(Xns, 0)}1?

Let Y be identically distributed as any Y;. Let ¥, = o/{g(Y,n"?a) —
g(Y,0)}. Note that Y, > 0 and Y,, is nonincreasing. Let limY, = Y; > 0.
Thus E(Y,) 1 E(Yp). But EY,, — 0. Hence ¥y = 0 a.s.. This implies that
EY? — 0. Noting that E X,, = Q(n2q), it follows that for each fixed
a7

Q.

-1
n(" - =n -n —n2e'U, —n
() 8520 w501

m

(87

\/ﬁ)—>0

in probability. By Assumption (VII),
nQ(a/v/n) = o’Ha/2
and due to convexity, both the above convergences are uniform on any com-
pact set by Lemma 1. Thus for every small ¢ > 0 and every M > 0, the
inequality
sup [nQn(a/vn) — nQ.(0) — a/n'/?U, — /Ha/2| < € (3.2a)

o <M
holds with probability at least (1 — ¢/2) for large n.

Define the quadratic form B,(a) = o/'n*/?U, 4+ o/ Ha/2. Its minimiser is
an, = —H~'n'2U, which converges in distribution to N(0,m*H-'KH™!).
The minimum value of the quadratic form is —n'/2U! H~'n'/2U" /2. Further,
from the U statistics central limit theorem, n!/2U, is bounded in probability.
So we can select an M such that

P{-H 20U, | <M -1} >1—¢/2. (3.2b)
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The rest of the argument is on the intersection of the two sets in (3.2a)
and (3.2b), which has probability at least 1 — e.

Consider the convex function A,(a) = nQu(a/y/n) — nQ,(0). From
(3.2a), its value at oy, is bounded above by

e — n'2U H 02U /2. (3.2¢)

Now consider the value of A, on the sphere {a : | — a,| = Ke/?} where
K will be chosen. Again by using (3.2a), on the sphere, its value is at least

By(a) —e. (3.2d)

Comparing the two bounds in (3.2¢) and (3.2d), and using the condition
that o lies on the sphere, it can be shown that the bound in (3.2d) is always
larger than the one in (3.2¢) once we choose K = 2[Ayin (H)]~Y/2 where Apin
denotes the minimum eigen value.

On the other hand A, has the minimiser n'/26,. So using the fact that
A, is convex, it follows that its minimiser satisfies |n/26, — a,| < Ke'/2.
Since this holds with probability at least (1 — €) where € is arbitrary, this
proves the first part. The second part now follows from Theorem 1.

Example 20. Under suitable conditions, the maximum likelihood estimator
(mle) is consistent and asymptotic normal. See van der Vaart (1999) for sets
of conditions under which this is true. If we are ready to assume that the
loglikelihood function is concave in the parameter, then these claims follow
from the above theorem.

Example 21. (Sample quantiles) From Example 13, it follows that if the
distribution of X has a positive density fx at the population pth quantile
6o, then

H = Q”(GQ) =2 f(00) > 0.

Further,

9(z,0)=10>z)—-I(z<0)—(2p—1)=2I(0 > z) — 2p.
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Since g is bounded, Assumption (IV) is trivially satisfied. Thus all the con-
ditions (I)—(V) are satisfied. Moreover

Hence if fx(6p) > 0, then the sample pth quantile 8, satisfies

n'2(8, — 60) =2 N(0, p(1 - p)(72(600))™).

Example 22. If the assumptions of Theorem 3 are not satisfied, the limiting
distribution of the M estimate need not be normal. Smirnov (1952) had
studied the sample quantiles in such nonregular situations in complete details,
identifying the class of distributions possible. Jureckova (1983) considered
general M estimates in nonregular situations. See also Bose and Chatterjee

(2001a).

Example 23. (U Quantiles) The arguments of Example 21 apply without
change to U quantiles introduced in Example 19. Let Xi,...,X, be ii.d.
random variables with distribution F, h be a function from R™ to R which
is symmetric in its arguments. Let Hp denote the distribution function of
h(Xi,...,Xn,) and let Hz*(p) be the pth quantile of Hr. Then 6y = Hz'(p),
which is unique if Hr has a positive density at 6.

As in Example 21, if Hp is differentiable at 8, with a positive density
hr(6o), then Assumption (V) holds with H = 2hr(6p). The gradient vector
is given by

g(z,0) = 2I[0 > h(X1,... Xn)] — 2p.

This is bounded and hence (IV) holds trivially.
Let

Ha(y) = (") S I X) <)

1<i1 <. <im<n

be the empirical distribution. The M, estimate is then H_!(p), the pth
quantile of H,(-).

By application of Theorem 3,

n'/2(H;'(p) — H™'(p)) 2> N(0, (p(1 - p)(hr(60)) 7).
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Particular examples of this result are the following four estimates.

(i) Univariate Hodges-Lehmann estimator where

h(Xl, .. Xm) = m_l(Xl + .. .,Xm),

(ii) Dispersion estimator of Bickel and Lehmann (1979) where

h(X;, X;) = | Xi — Xj])

(iii) Regression coefficient estimator introduced by Theil (see Hollander and
Wolfe (1973, pp. 205-206) where (X;, Y;) are bivariate i.i.d. random variables
and

(X, Y), (X;,Y5)) = (¥ = Y))/(Xi - X).

(iv) A location estimate of Maritz (1977) can also be treated in this way. Let
B be any fixed number between 0 and 1. Let L(8, z1,23) = |8z + (1~ B)z2—
8| +|Bz2+ (1 — B)zy — 6|. The minimizer of E [L(6, X1, X5) — L(0, X1, X5)]
is a measure of location of X; (Maritz (1977)) and its estimate is the median
of X;+ (1 - B)Xj, i # j (8 = 1/2 yields the Hodges-Lehmann estimator
of order 2). Conditions similar to above guarantee asymptotic normality for
this estimator.

Example 24. The L; median was defined in Example 14. If the dimension
d =1, then the L; median is the usual median whose asymptotic normality
was discussed in Example 21. So we assume that d > 2. The gradient vector

is
Q-7 if a#z
gla,z) =4 |a—z|

Thus g is a bounded function and Assumption (IV) is satisfied. Note that g
is differentiable (except when z = 6). Define

et) = = (I - _\oxz(ilz m)) S
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Note that E|X — 6y|~! < co implies E|h(Xy,8)] < oo.
Recall that VQ(#) = E[g(X1,0)]. By simple algebra, for |z| < |6],

l9(z,6) — g(=,0)| < 2/0|/l|.

Similarly, for |z| > |6],

lg(z,0) — g(z,0) — h(z,0)8] < 5m + |_‘_9_E
’ ’ T el s
Using these two inequalities, and the inverse moment condition, it is easy
to check that, the matrix H exists and can be evaluated as

H = E[n(X,6)].

Example 25. (Oja median) Recall the Oja median defined in Example
16. Let X denote the d x d random matrix whose ith column is X; =
(X1i,..-Xs) 1 <i<d. Let X(i) be the d x d matrix obtained from X by
deleting its ith row and replacing it by a row of 1’s at the end. Finally let
M () be the (d+1)x(d+1) matrix obtained by augmenting the column vector
6 = (61,-..,6,) and a (d+1) row vector of 1’s respectively to the first column
and last row of X. Note that f(X,...Xq,60) equals || M(6)||—||M (0)]] where
[| - || denotes the absolute determinant. It is easily seen that

f(Xa,.. - Xa,6) = IMO)|| - [|1M©O)| = 10Y - 2| - 12|  (3.3)

where

1

Y =(Y,...Y)

and .
Y = (-1)"X ()], Z=(-1)%X].

Hence @ is well defined if £ |X;] < oo. Further, the ith element of the
gradient vector of f is given by

g =Y;-sign@'Y - Z), i=1,...,d
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and is similar to the gradient in Examples 21 and 23. Note that E|X;]? < co
implies F|Y|? < oo which in turn implies F|g;|> < co and thus Assumption
(IV) is satisfied.

To obtain condition (V), first assume that F' is continuous. Note that by
arguments similar to those in Example 13,

Q) — Qb)) = 2E[Y I(Z<OY)—6,Y I(Z<86,Y)]
2E[Z I(Z<0Y)— Z I(Z < 6,Y)].
It easily follows that the ith element of the gradient vector of Q(6) is

given by
Qi(0) = 2E[Y; I(Z < 6Y)].

If F has a density, it follows that the derivative of Q;(#) with respect to 6;
is given by
Qi(0) = 2E[Y:Y;fzy (6 Y)]
where fzy(-) denotes the conditional density of Z given Y. Thus
H = ((Qi5(60)))-

Clearly then (V) will be satisfied if we assume that, the density of F' exists
and the H defined above exists and is positive definite. This condition is
satisfied by many common densities.

The pth order Oja median for 1 < p < 2 is defined by minimizing
Q(0) = E[AP(Xy, ..., X4, 0) — AP(Xy,..., X4, 0)].

The quantities g; and H are now given by
g:i(0) = pY;|0'Y — Z|P~Lsign (Y - Z), i=1,...,d,

H = ((hy)) = p(p - D((EVY;10Y — ZP~7])).

Now it is easy to formulate conditions for the asymptotic normality of
the pth order Oja median.
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3.4 Finer asymptotic properties. In this section we demonstrate that if
some of the conditions assumed so far are strengthened, then the results on
consistency and asymptotic normality can be sharpened considerably. Below,
N is an appropriate neighbourhood of 8;. r > 1 and 0 < s < 1 with further
restrictions on them in the theorems.

We first state the assumptions to strengthen the strong consistency.

(VIa) Elexp(t|g(X1,-.., Xm,0)])] < ooV 8 € N and some t = ¢(6) > 0.
(VIb) E|g(X1,...,Xm 8) < ooV 0 € N.

Theorem 4.

(a) Suppose (VIa) holds. Then for every § > 0, there exists an « > 0 such
that,

P(sup |6y — 6p| > 6) = O(exp(—an)).
k>n

(b) Suppose (VIb) holds with some 7 > 1. Then for every é§ > 0,

P(sup |6 — 8| > 6) = o(n'™") as n — oo.
k>n

Remark 6.

(a) Part (a) of the theorem says that the rate of convergence is exponentially
fast. This implies that 8, — 6y completely: for every § > 0,

i P{|6, — 66| > 0} < o0.

n=1

Note that if r < 2, then Assumption (VIb) is weaker than Assumption (IV)
needed for the asymptotic normality. If 7 > 2, then Assumption (VIb) is
stronger than Assumption (IV) but still implies complete convergence.

(b) The last time that the estimator is € distance away from the parameter
is of interest as € approaches zero. See Bose and Chatterjee (2001b) and the
references there for information on this problem.

To prove Theorem 4, we need two Lemmae, but first a definition.
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Definition 3. Let Ay and B be sets in R%. We say that B is a ¢ triangulation
of Ay if every a € Ay is a finite linear combination of points 8; € B such
that |3; — af < 4 for all i.

Lemma 2. Let A C A, be convex sets in R% such that |a — 8| > 2§
whenever o € A and S ¢ Ay. Assume that B is a d-triangulation of A,. If
Q is a function on Ay satisfying |Q(a) — Q(8)| < L|a — 8| and h is a convex
function on A, then

sup |Q(B) — h(B)| < € implies sup|Q(a) — h(a)| < 5L + 3e.
BeB a€A

Remark 7. The next lemma is on U statistics and supplements the law
large numbers for U statistics mentioned in Section 2. Parts (ii) and (iii) will
also be useful in the proof of Theorems 5 and 6.

Lemma 3. Let h be a real valued function on R™ which is symmet-
ric in its arguments. Let U,(h) be the corresponding U statistic. Let
p=FEh(Xy,...,Xm).

(i) If E|h(X1,...,Xm)|" < oo for some r > 1, then for every ¢ > 0,

P (i‘;‘i Ui (h) — 1 > e) = o(n}~").

(ii) If ¥ (s) = E{sexp{|h(X1,..., Xm)|]} < oo for some 0 < s < sp, then for
k = [n/m], and 0 < s < spk,

Elexp(sUy)] < [v(s/k)]".

(iii) Under the same assumption as (ii), for every ¢ > 0, there exist constants
C and ¢ < 1, such that

P{sup |Uy — p| > €} < Cs™.
k>n

Proof of Lemma 3. The proofs of (ii) and (iii) can be found in Serfling
(1980, page 200-202). Here we give a sketch of the proof of (i).
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If m = 1, U,(h) reduces to a sample mean and a proof is given in Petrov
(1975, Chapter 9, Theorem 2.8).

If m > 1, use the decomposition given in section 2 on U statistics and
write

Un(h) = 6= 73" (X)) + R,
=1

Since the result is already established for m = 1, it is now enough to
prove that

P{supl 2 <= otn'), (3.4)

Note that R, is a U statistic. Every U statistic is a reverse martingale
and from the well known reverse martingale inequality, it follows that

P (swplmi > o) < oP(R) 2 o (35

Further, R, is a degenerate U statistic, that is, it is a U statistic whose first
projection is zero. Hence using Theorem 2.1.3 of Koroljuk and Borovskich
(1993, page 72), for 1 < r < 2 and Theorem 2.1.4 of Koroljuk and Borovskich
(1993, page 73), for r > 2, it follows that

B|Ra| = O(n?~") = o(n*~"). (3.6)

Using this in (3.5) verifies (3.4) and proves Lemma 3 (1) completely.

Proof of Theorem 4. We first prove part (b). Fix § > 0. Note that Q is
convex and hence continuous. It is also Lipschitz (with Lipschitz constant

L say) in a neighbourhood of 0. Hence there exists an ¢ > 0 such that
Q(a) > 2¢ for all |a] = 4.

Fix a. By Assumption (VIb) and Lemma 3 (i),

P(sup [Q4() ~ Qu(0) ~ Q(@)| > = o(n'™") (5.7
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Now choose ¢’ and ¢’ both positive such that 56'L + 3¢’ < €. Let A = {a:
la} <6} and Ag = {a : |a| < §+28'}. Let B be a finite &' triangulation of
Ay. From (3.7),

P(supsup |Qi(cr) — Qx(0) — Q)] > €) = o(n'™"). (3.8)

k>n acB

Since Q(-) is convex, using Lemma 2 (with h = Q) and (3.8),

P(sup sup |Qr(a) — Qx(0) — Q(a)| < 50'L +3€' <€) =1-—o(n'™") (3.9)

k>n |a|<8

Suppose that the event in (3.9) occurs. Using the fact that fy(a) =
Qx(a) — Qk(0) is convex, fi(0) = 0, fr(a) > € for all |a] = J, we conclude
that fx(c) attains its minimum on the set || < §. This proves part (b) of
the theorem.

To prove part (a), follow the argument given in the proof of part (b) but
use Lemma 3 (iii) to obtain the required exponential rate. The rest of the
proof remains unchanged. We omit the details.

Example 26. Whenever the gradient is uniformly bounded, Assumption
(Vla) is trivially satisfied. In particular, this is the case for U quantiles and
the L; median.

Example 27. Recall the Oja median defined in Example 16 and discussed
further in Example 25. Note that the rth moment of the gradient g is finite
if the rth moment of Y is finite which in turn is true if the rth moment of
X, is finite.

We now proceed to strengthen the asymptotic normality theorem by im-
posing further assumptions. As before, let N be an appropriate neighbour-
hood of §y whiler > 1and 0 < s < 1 are numbers. Suppose that as as § — 6.

(VID)  [VQ(8) - VZQ(80)(6 — 60)] = O(18 — 6o[+)12)
(VII)  E|g(Xy,. ., X, 0) — (X1, -+, Xy 00))? = O(|0 — 6,|0+2)).
(IX) EIg(Xl,,Xm,0)|’=0(1)
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Theorem 5. Suppose the above assumptions hold for some 0 < s < 1 and
r > (8+4d(1+s))/(1 —s). Then almost surely as n — oo,

n'’?(8, — 6y) = —H 'n'2U, + O(n~ /% (log n)'/*(loglog n) *+9)/4),

Theorem 5 holds for s = 1, with the interpretation r = oo and g is bounded.
This is of special interest and we state this separately in the next theorem.

Theorem 6. Assume that g is bounded and (VII) - (VIII) hold with s = 1.
Then almost surely as n — oo,

n'/2(8, — 6y) = —H n'/2U, + O(n"%(log n)'/?(loglog n)'/?).

Remark 7. The almost sure result obtained in Theorems 5 and 6 are by no
means exact. We shall discuss this issue in details in Remark 8 later.

To prove the theorems, we need two Lemmae. The first is a refinement of
Lemma 2 on convex functions to the gradient of convex functions. A proof
may be found in Niemiro (1992).

Lemma 4. Let A C Ay be convex sets in R? such that |a— 3| > 2§ whenever
o € A and § ¢ Ap. Assume that B is a d-triangulation of Ag. Let k be an
R¢ valued function on Ay, satisfying |k(a) — k(8)| < L] — B|. Let g be a
subgradient of some convex function on Ay. Then

sup |k(B) — g(B)| < e implies sup |k(a) — g(a)| < 46L + 2¢
BeB acA

The second Lemma is a result on probability of deviations for U statistics.

Lemma 5. Let {h,} be a sequence of (symmetric) kernels of order m and
let {Xni,1 <i < n} beiid. real valued random variables for each n. Let

Un(hn)z(")—1 Y Unha(XKaisy - Xoi))-

1<i1<..<im<n
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Further suppose that for some § > 0, and some v,, < n?,
E U,(hn(Xn, ..., Xom)) = 0,
FE |hn(Xm, ---aXnm)|2 < ’U,IQL and
E |hp(Xaniy ooy Xnm)|” < b < 0o for some r > 2.
Then for all large K,

P(n}?|Up(hn)| > Kv, (logn)Y/?) < Dn*~"/2y77 (logn)™/2.
Proof of Lemma 5. Let hp= hpI(|hn| < Mn), hni = hn — Ehn,hno =
hn—hy1 where {m,,} will be chosen. Note that {h,;} and {h,2} are mean zero
kernels and have the same properties as {h,}. Further U,(h,) = U,(hn1) +
Un(hn2). Let a, = K (logn)¥?/2and ¥, (t) = Elexp{tUp(hn1(Xn1,- -+, Xam))}

Note that ¥, (¢) is finite for each ¢ since h,; is bounded. Letting k = [n/m),
and using Lemma 3, part (ii),

A = P0MUp(hn1) > vaan) = PEnY2U,(hp1)/vn > t an)
= exp(~tan) [Un(n'/?t/vk)F = exp(—tan) [E exp(n'/?t/v,kY)}F, say.

Using the fact that |Y| < m,, EY =0, and EY? <2, we get

A

1/2 ) 124\
Eexp(r;c tY) < 1+EYY? (n_t) mi=2 /5!

Up = kv,
< 1+ Qanﬁl(EY%g) ("}::tmn>J /i <1+ i—g
provided ¢ < n~2kv, /ym,,. With such a choice of ,
A <exp (—tan + %) (3.10)

Let t = K(logn)'/2/4(2m — 1). Then for all large n, the exponent in (3.10)
equals

—K?%(logn)/8(2m —1) +nK?*(logn)/16(2m — 1)k < —K*(logn)/16(2m — 1).
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Thus we have shown that
P(In?Un(hm1)| > Kuvp(logn)'/2/2) < n~K*/162m-1) (3.11)
To tackle U, (hn2), we proceed as follows.

P(|nY2U,(hp2)| > anva/2) < 4v7'a; n1/2E|hn2( Xots oo os Xom)l
< 8v7lay n 2 [E a1 [P(Jhn| > ma)] YT
<

8’0;1(1;171,1/2{)1/7(m;r)l_l/rbl_l/r.
Choosing m,, = n'/%v, | K(logn)'/?,
P(In'2Up (hn2)| = anvn/2) < 8bv " K™~ 2n} "2 (logn) 172, (3.12)

Note that the choice of m,, K and t are indeed compatible. The Lemma
follows by using (3.11) and (3.12) and the given condition on v,.

Proof of Theorem 5. Recall the notations S, s,Y, introduced before
the beginning of proof of Theorem 3. Define G(a) = DQ(a), Gnp(a) =

n\"1 a
(m) ng(Ys,a) and X,; = g(Y, %) — g(Y;,0). Note that F(X,) =

G and (7)™ Xne = [Ga(5)~Unl- By (VIID), B[ X, 2 = O((n™20,)1+)
seS
uniformly for |a| < M1, = M(loglogn)'/2.

By applying Lemma 5 with v2 = C?n~(1+3)/2]1+s

su P( 1/2 G, U, -G > KC’n_(lJrs)/‘ll(lJ”s)/2 logn 1/2)
MSEM | (f) (\/—)l (logn)

< Dnl—r/2cnr(1+s)/4l;(1+s)/2 (IOg n)r/Z
— Dnl—r(l—s)/4 (log n)r/? (log log n)—r(1+s)/4.

This is the main probability inequality required to establish the Theorem.
The rest of the proof is similar to that of Theorem 3. The refinements needed
now are provided by the triangulation Lemma 6 and the law of iterated
logarithm for U,,.
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Condition (VII) implies that for each M > 0,

sup \Ha — "1/2G(i) = O(n~ 1+ (loglog n) B+)/4),
e <Ml NG

and so in the left side of above probability inequality, we can replace n'/2@ (%)
by HE.
Let

€n = n—(1+s)/4l’$"1+s)/2 (lOg ’I’l)l/2.

Consider a 8, = n~(+9)/4(logn)'/? triangulation of the ball B = {a :
la| < Ml,+1}. We can select such a triangulation consisting of O(n%(1+2)/4)
points. From the probability inequality above it follows that

|n1/2Gn(%) — 20, — Ha| < KCe,

holds simultaneously for all a belonging to the triangulation with proba-
bility 1 — O(nd(1+8)/4+1-11=8)/4(]og )/2). Now use Lemma 6 to extend this
inequality to all points « in the ball. Letting K; = KC(2|H|+ 1), we obtain

P{ sup n!'/? G,,i
{Ialslgln | (\/ﬁ

— O(nd(1+s)/4+1—r(1-—s)/4 (log n)r/2'

) = U, —n"Y2Ha| > Kye,}

Since 7 > [8 + d(1 + s)]/(1 — s), the right side is summable and hence
we can apply the Borel-Cantelli Lemma to conclude that almost surely, for
large n,

1/2 @ 1/2
sup [n7°Gp(—=) — n'"“U, — Ha| < Kje,,.
IaISI\I/;lnI n(\/,,—l) n ' = £31€Cn

Using the law of iterated logarithm for U statistics which implies that
n*/2U, (loglogn)~/2 is bounded almost surely as n — oo, we can choose M
so that |n}/2H-'U,| < Ml, — 1 almost surely for large n. To conclude the
proof, we consider the convex function n@Q,(n"'/?a) — n@,(0) on the sphere
S ={a:|a—Hn'?U,| = Kje,} where K, = 2K [infj-; e'He]™!. Clearly,
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en'2G,(—H 'n'?U, + Ke,e) > e HeKe, — Kie, > 0, and so the radial
directional derivatives of the function are positive. This shows that

|n'/20, + H 'n'/2U,| < Ke,

with probability one for large n, proving Theorem 5.

Proof of Theorem 6. Let v, and X,,; be as in the proof of Theorem 5. Let
U, be the U statistic with kernel X,,; — F X, which is now bounded since g
is bounded. By the arguments similar to those given in the proof of Lemma
5 for the kernel h,;,

P{|n'/*U,| > vn(logn)'/?} < exp{—Kt(logn)"/* + t*n/k},
provided t < n~'/2kv, /2m,,, where k = [n/m] and m,, is bounded by Cj say.
Letting t = Ky(logn)'/?, it easily follows that the right side of the above

inequality is bounded by exp(—Cn) for some c. The rest of the proof is same
as the proof of Theorem 5.

Example 28. U quantiles were defined in Example 19. Chaudhury and
Serfling (1988) proved a representation for them by using the approach of
Bahadur (1966). Such a result now follows directly from Theorem 6. The
gradient vector given in Example 23 is bounded. Suppose that

(VIII) Hp has a density hr which is continuous around 6.

It may then be easily checked that
E|g(8, z) — g(60,2)* < 4|Hr(8) — Hr(80)| = O(16 — b5)).
Thus (VITI) holds with s = 0.
It is also easily checked (see Example 13) that
VQ(0) = Eg(X,0) = 2Hp(6) — 2p.

Assume that
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(VILY Hg(8) — Hp(8) — (0 — 6o)hr(6) = O(|8 — 6o|7) as 6 — 6.

Then Q(0) is twice differentiable at 6 = 6y with H = V2Q(6) = 2hr(6y).

Thus, under the assumptions (VII)" and (VIII)’, Theorem 5 holds for U
quantiles. The same arguments also show that the location measure of Maritz
et.al. (1977) also satisfies Theorem 6 under conditions similar to above.

Example 29. (Oja median) Recall the notations of Examples 16, 25 and 27.
The ith element of the gradient vector of f is given by g¢; = Y;-sign(8'Y — Z2),
i=1,...,d.

Condition (VIII) is satisfied if

B|Y|PI(Y < Z < Y) +1(6Y < Z < 9Y)] = O(|0 — 6o]'™*)  (3.13)

If F' has a density then so does the conditional distribution of Z given Y.
By conditioning on Y it is easy to see that (VIII) holds with s = 0 if this
conditional density is bounded uniformly in #'Y for # in a neighbourhood of
6y and E||Y|]* < co. For the case d = 1, this is exactly condition (VIII)' in
Example 28.

To obtain condition (VII), recall that if F' has a density, derivative (;; of
Q:(0) with respect to 6; and the matrix H are given by
Qi(0) = 2B[Y.Y;fzjy(0'Y)] and H = ((Qi;(60)))
where fzy(-) denotes the conditional density of Z given Y.
Hence (VII) will be satisfied if we assume that for each i, as 6 — 0y,
E(lYi{Fzy (0'Y) — Fzy (0Y) — fziy (0,Y)(8 — 65) )Y H] = O(10 — 65|®+)/2)
(3.14)

This condition is satisfied by many common densities. The other required
condition (IX) is satisfied by direct moment conditions on Y or X.

By a similar approach, it is easy to formulate conditions under which
Theorem 6 holds for pth Oja median for 1 < p < 2.
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Example 30. (L; median, mth order Hodges - Lehmann estimate, geo-
metric quantiles in dimension d > 2). Suppose X, X1, X, ..., X, are i.i.d. d
dimensional random variables.

(i) (Ly median). Since results for the univariate median (and quantiles) are
very well known (see for example Bahadur (1966) Kiefer (1967)), we confine
our attention to the case d > 2.

Proposition 1. Suppose 6 is unique. If for some 0 < s < 1,
E|X — 6,792 < o0,

then according as s < 1 or s = 1, the representation of Theorem 5 or 6
holds for the L; median with S, = 3%, (X; — 65)/|Xi — 6| and H defined
in Example 24 earlier.

To establish the proposition, we verify the appropriate conditions. Con-
ditions (I) and (II) are trivially satisfied. Recall the gradient vector given
in Example 24 which is bounded. Hence Assumptions (I)—(V) are trivially
satisfied. Let F' be the distribution of X;.

To verify (VIII), without loss of generality assume that 6, = 0. Noting that
g is bounded by 1 and |g(z,8) — g(z,0)| < 2|6|/|z|, we have

Elg(X,60) - g(X,0)> < 48]’ | 2dF (z) + /|m|<|0|dF($)

>8]
< 4l9l1+s/ |x|_(1+s)dF(a:)
2> 6]
o+ [ ol 0+dF (z)
|=|<16]
< 4I0I1+3E|X|—(1+s)_

The moment assumption assures that (VIII) is satisfied since (1 +s) < (3 +
s)/2. Recall the function h(#,z) and H defined in Example 24. Note that
under our assumptions H is positive definite. By using arguments similar to
those given in Example 24, it is easily seen that for |z| < |4,

l9(z,0) — g(=,0) — h(z,0)0] < 4{6}/|z].



288
Similarly, for |z| > |6|,

l9(z,0) — g(z,0) — h(z,0)0] < 6%_

Using these two inequalities, and taking expectation,
IVQ(0) - VQ(0) — HO| < I + I
where

I, < 46| / lz|"LdF (z) < 2|9|G+9/2 / |z}~ B+24 P (z).
jzl<I6 j2l<I6]

and using the fact that 0 < s <1,

I, < 6|6 lz|2dF (z) < 6]6|®+)/? / lz| =G24 F (z).
|z[>16] |z|>(6]

The moment condition assures that (VII) holds with V?Q(6,) = H. Thus

we have verified all the the conditions needed.

Let us investigate the nature of the inverse moment condition that we
assumed. If X has a density f bounded on every compact subset of R¢ then
E|X -0 <0 ifd>3and E |X — 6|70+ < oo for any 0 < s < 1
if d = 2 and Theorem b5 is applicable. However, this boundedness or even
the existence of a density as such is not needed if d > 2. This is in marked
contrast with the situation for d = 1 where the existence of the density is
required since it appears in the leading term of the representation. For most
common distributions the representation holds with s = 1 from dimension
d > 3 and with some s < 1 for dimension d = 2.

The weakest representation corresponds to s = 0 and gives a remainder
O(n~Y*(log n)/%(loglogn)'/%) if E|X — 0|7%/? < co.
The strongest representation corresponds to s = 1 and gives a remainder

O(n~?(logn)/*(loglogn)'/?) if E | X — 0]~% < cc.

The moment condition forces F' to necessarily assign zero mass at the
median. Curiously, if F' assigns zero mass to an entire neighbourhood of the
median, then the moment condition is automatically satisfied.
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Now assume that the L, median is zero and X is dominated in the neigh-
bourhood of zero by a variable Y which has a radially symmetric density
fy(|z|). Transforming to polar coordinates, note that the moment condition
is satisfied if the integral of g(r) = r~(3+$)/2+d=1 £, (v) is finite. If d = 2 and f
is bounded in a neighbourhood of zero then the integral is finite for all s < 1.
If fy(r) = O(r=#), (8 > 0), then the integral is finite if s < 2d — 3 — 28. In
particular, if f is bounded (8 = 0), then any s < 1 is feasible for d = 2 and
s=1ford=3.

(ii) (Hodges-Lehmann estimate) The above arguments also show that if the
moment condition is changed to E|m=(X; + - -+ + Xpn) — 60| ®+9/2 < oo,
Proposition 1 holds for the Hodges - Lehmann estimator with

Sp = > gm™ Xy + -+ X)), 60)).

1<i1 <2< <im <n

(iii) (Geometric quantiles) For any u such that |u| < 1, the uth geometric
quantile of Chaudhuri (1996) is defined by taking f(0, z) = |z —6| — |z| —v'6.
Note that u = 0 corresponds to the L; median. The arguments given in the
proof of Proposition 1 remain valid and the representation of Theorem 5 or 6
holds for these estimates. One can also define the Hodges - Lehmann version
of these quantiles and the representations would still hold.

Remark 8. Obtaining the exact order is a delicate and hard problem.

The higher order asymptotic properties of the sample median was exten-
sively studied with suitable conditions on the density by Bahadur (1966) and
Keifer (1967) via the fluctuations of the sample distribution function which
puts mass n~! at the sample values.

This approach has been used by several authors in other similar situations.
For example, a representation for U quantiles was proved by Chowdhury and
Serfling (1988) by studying the fluctuations of the distribution function which
puts equal mass at all the (;‘1) points h(X;,,...,X;.), 1 <43 <ix < ... <
im < m. Chaudhuri (1992) proved a representation for the L; median and its
Hodges-Lehmann version in higher dimensions by the same approach.

Results from the theory of empirical processes is a very valuable tool in
the study of properties of estimators. For instance, Arcones (1996) derives
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some exact almost sure rates for U quantiles under certain ”local variance
conditions” by using empirical processes.

Generally speaking, the exact rate depends on the nature of the function
f. See Arcones and Mason (1997) for some refined almost sure results in
general M estimation problems. As an example, consider the L; median
when d = 2. If the density of the observations exists in a neighbourhood of
the median, is continuous at the median and E g(X, ¢) has a second order

expansion at the median, then the ezact almost sure order of the remainder
is O(n~'/%(logn)'/?(loglogn)).
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PARAMETRIC INFERENCE WITH GENERALIZED RANKED
SET DATA

BARRY C. ARNOLD

ROBERT J. BEAVER

Department of Statistics, University of California, Riverside CA 92521-0138, USA

Assume that observations have a common distribution function Fj, which belongs to a family of
distributions indexed by 6 ®. We are interested in making inferences about the unknown
parameter vector g€ © based upon generalized rank set data, i.e. J independent order statistics

estimating 6 or deriving probability bounds for 6 in the Bayesian sense, (ii) testing composite

j=1,2, ...} with a common parent distribution F, (). We will discuss (i) the problem of

hypotheses concerning @ , and (iii) testing goodness of fit to the model F, :0€©.

1 Introduction

Ranked set sampling, proposed by Mclntyre [1952] results when n
samples, each consisting of 1 observations, are drawn and the n units of
each sample are ranked, usually by visual inspection with respect to the
magnitude of the characteristic being studied. The unit quantified as the
smallest from the first sample is selected, the unit having the second
smallest rank is selected from the second sample, and so on, with the unit
with the largest rank selected from the nth sample. The resulting n
observations are independent order statistics with a common parent
distribution F, () . The potential r observations after ordering are given in

the following array.

Sample Smallest Second smallest . Largest
1 XI:I X2:1 ne Xn:l
2 XI:Z XZ:Z Xn:Z
H. Xn:l Xn:Z Xn:n

The actual observations taken under rank set sampling are given in the
next array.
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Sample Smallest ... Largest
1 Xl:l

2 XZ:Z

n X

mn

This process is repeated m times so that the total number of items
drawn from the population is mr’ and the total number of units upon which
observations are taken is mn. Ranked set samples are generally useful
when the sampling units can be easily drawn from the population, the exact
measurement of the characteristic to be studied is costly monetarily, or in
time or effort required to obtain the measurement, and when the units
within a sample can be readily ordered by visual inspection or by other
rough gauging methods not requiring an assessment of actual values. For
this to be easily accomplished, the value of nis usually small, and in order
to have a reasonable total sample size, m is usually large. McIntyre’s
procedure will be called balanced ranked set sampling (BRSS).

Generalized ranked set sampling (GRSS), introduced by Kim and
Arnold [1999], relaxes the condition that the measurements consist of a
smallest, a second smallest, ..., and finally a largest order statistic, and that
all order statistics are selected from independent samples of the same size
n. In their scheme an arbitrary order statistic is selected from the first
sample consisting of m observations, a second order statistic is selected
from the second sample of n, observations, and so on, until the last order
statistic is selected from a sample of size nj.

Set Measurement
1 .
iim
2 Ip:m,
d
] ipn
J5T

Hence for generalized ranked set sampling (GRSS) the data consists of
Jindependent order statistics, X, , X, , X, ., Typically, the sample

i ? 1%
sizes n;'s will be small, but Jwill be large.
We wish to make inferences about Fjbased upon GRSS by

considering the observations not taken as missing data.  Several
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approaches can be employed in this context. Let X represent the GRSS
data, and let Zrepresent the missing observations. We propose to use (i.)
the E-M algorithm approach in estimation and in some generalized
goodness of fit tests and (ii.) a Bayesian approach whereby the missing
observations can be generated using the conditional distribution Z| X,6,

via the Gibbs sampler.

2 Estimation

For parametric inference we assume that Fjis absolutely continuous

with respect to a convenient measure, and that £ the common parent
density of the observations belongs to the parametric family of densities
{f(x/6) - 8 € ©®}. We wish to estimate 6 based on our GRSS. The joint

density corresponding to the order statistics X = (X AP, CHRID. $390
is given by
J n)! i1
£y 010 =T T )1 % o
(1= B (177 £ (X, )-

Maximum likelihood estimation may be feasible if the specific form of
(2.1) is tractable, or if an efficient optimization program is available.
However, this will typically not be the case. An alternative is to consider
the GRSS as a missing data problem. In this scenario we have one
measurement X, from the first set of observations from which m - 1 of
the observations are missing. Similarly, X,, has n, - 1 missing

observations associated with it. With N = E; n, we have J observations

and (N - J) missing values. Let X represent the vector of measurements
resulting from the GRSS, and let Z represent the vector of (V- J) missing
observations. For j=12,..., ], let us denote by Z , the vector of missing

observations from the set of n; observations associated with X ijm, - Thus
Z ;consists of all of the n; order statistics except X in, the one that was

observed. Note that Z consists of all the coordinate random variables in
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Zy.Z 3. Z; concatenated into a single vector. Using this notation we
can write the joint likelihood of the observed and unobserved data as:

J
fL(,_Z_[Q (_’X’ZI Q) = H f ]9( ipny IO)H 20X 9 (.Z | 1 iy ? 0) (22)
J=1

2.1 The E-M Algorithm

The E-M algorithm is an interative computational procedure for obtaining
maximum likelihood estimates when the observations can be viewed as
incomplete data. Viewing GRSS in this light, we have “incomplete data”
whereby we have J observed measurements, X, and N - J unobserved
measurements, Z, with the complete data vector given by (X,Z). The E-
M algorithm consists of two steps that are iterated until convergence to the
MLE is obtained. Let the likelihood of the complete data be given by

fg{_,gg (x.2|9) (2.3)

and the conditional likelihood of (Z/x, 6 )by

gg o (X,2]|6)
frx0(2| X0) = W, (2.4)
where
fgg (l{I Q) ZJ. fl,gg (L"rgl Q)dg- (2.5)

Let p denote the current iteration step. If 8% represents the initial or
starting value of the unknown parameter vector, then the E-step consists of
finding

Z"=E.(Z|X=2. (2.6)

The value of Z” is used in the maximization step whereby we find 6
satisfying

Q( Z(l) IG

o _
Q - arg;nax X, Z(l)lg
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Therefore the E-M algorithm consists of iterating these two steps, denoted
by

Z(p+1) — Eg(p) (_Z_IX. — /_\’) (27)
and

(p+) _ f (p+1) 2.8
0" =argmax £, ., (x.27 [0) 28

When the density in (2.1) belongs to a one parameter exponential
family, (2.7) and (2.8) are simplified considerably. The E-step consists of
estimating the missing values that would comprise the sufficient statistics,
t(x, z) for a the parameter vector,f by solving the following equation for
Z(p+1)

b

Z(Pﬂ) — E[_Z_II_YvQ(pH)] , (2.9)
while the M-step would consist of solving the following conditional
likelihood equation for 6 """,

HtX. 210" =t(x2"") (2.10)

See Dempster et al.[1977] for further details. In the Section 3 we apply
these techniques when the sampled population is exponential or normal.

2.2 The Gibbs Sampler

Consider the density given in (2.3). Suppose that a convenient conjugate
prior family for 6, say g(6 | n) is available. Then the posterior density of 0,

f(@] x,z,m) will be nice. If 0is known it is relatively easy to simulate the
missing data since f(z| x,0) will also be nice. This can be accomplished
as follows. Consider the observation X iyn, = Xin) the i-th order statistic
from sample j (j = 1, 2, ..., J). Since fy,(x|€) and Fy,(x|0), the
density and distribution function of the underlying random variable are
known, so is Ei“ (u) . Hence to generate the (11, ~1) missing observations

from sample j, generate (i, —1) uniform (0, u,.j:,,j) variables and (n; - i)
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uniform (”i,:n,’ 1) variables, where u;., = F, (X,.jmj |8). These random
uniform variates are transformed to the space of the x’s using l*“_e_‘l (u) . This

procedure continues for each sample, j = 1, 2..., Juntil all of the missing
units have been simulated. An easier but less efficient approach to
completing the samples is to simulate data from fy,(x|6) using
E; (u) where the u's are uniform (0, 1) variables, keeping (i, —1) of those
that are less than x,  and (n;-1) of those greater than x,, . This

approach has the potential to generate excess data whereby, say for sample
J. more than (i, 1) values less than X, ., may be generated before

generating the requisite number of values greater than X, .n,» OF Visa versa,
but it is slightly easier to program.

Our goal is to learn about the posterior density of 0 given X =x, i.e.
given the observed data. We can use a conditional Gibbs sampler (given
X = x) to simulate realizations from £, (6 | ¥) as follows. Begin with an

initial value of 9, say 8. Use this to generate the missing data, say z"

using the procedure just described. Now treating (x,z) as a sample of
size N from leQ (x|8), we can readily evaluate the posterior conditional

density fy, (0] x, 2z”) (recall that we assumed a conjugate prior was
available). From this posterior density we can simulate a realization, say
6" . This will then be used to generate a new set of missing data, say .
The process is continued, say K times, obtaining in this fashion
0".,0?,...,0%. After discarding the first k of these, for burn in, the
remaining ones can be viewed as a simulated sample of size K - & from
fyx @20 . Of course a good initial choice for & @ will accelerate the
process and reduce the time required. Similarly, in the E-M approach, a
good initial estimate of 8 will accelerate the estimation process.

In many situations we are dealing with location and scale families so
that @ = (u,0). To implement the missing data approaches for these
families, we can use the crude initial estimates of y and o that were given
by David [1981] based upon the observed order statistics but ignoring
variance heterogeneity. The estimate of u is given by

a=bX, ., (2.11)

Jj=
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for
i dla;-a)
bj - 7 (2.12)
Z (a,-a)*
i=1
with
a; = = E(X, ,,j), (2.13)
while the estimate of o is
J
6=),6X., . (2.14)
=
with
c; = T(OQ_—OQ—. (2.15)
Z (061. —&)

3 Applications of the E-M Algorithm and the Gibbs Sampler

3.1 The Exponential Distribution.

Let us consider the two parameter exponential density with location u and
precision A given by

Fypr (x| g, A) = Aexp(-A(x~u)) x>u, A >0. (3.1

3.1.3 The E-M Algorithm
X.2)

We consider the joint likelihood of ¥ = ( given by

Lzl u2) < [ [Ghexp(A(x,, ~ i TAexplAlz, -m))

Jj=1 i#i;

(3.2)
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and the log-likelihood given by

j n
InL(x,z| p,A) = NA-2 ¥ (x, . +2 Z;n) — NM}L c. (3.3)

J=1 iz,

(The crude estimators given by David [1981] can be used as the initial
estimators of u and A.) The E-step consists of estimating the missing
observations, given the observed vector x and the current estimate of 6’ =
(u.A). This is accomplished by solving

Z(IHI) = Ee(p) ZlX=2. (3.4)

The M-step consists of maximizing (3.3), subject to the constraints
X, >M and z,, >u. The well-known maximum likelihood estimators

‘j'nj

for y and A are
u®* = min{x, Z#*"} (3.5)
and
AP = il : (3.6)
j n
2 (Xij:nj + 2 Zi:nj) - N:u
J=1 i:tij

3.1.2 The Gibbs Sampler

The prior and posterior distributions associated with an exponential
distribution with unknown scale and intensity parameters, although
tractable, are not as easy to work with, as are those associated with a Pareto
distribution. Let us assume that the distribution of the random variable X
is given by

fypn (x|, A) =Aexp(-A(x-u)), x>pu, (3.7

where ue R and A > 0. Then Y=e* has a Pareto distribution with

shape or inequality parameter A and precision parameter 7 = ¢* (u = -
log7) with y > 7. Hence the distribution of Yis given by
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£, (| A,7) =TA(y) *?, y>1/T. (3.8)
YA, Y

If A were known, a natural conjugate family of priors for T would be
the gamma family, while if 7 were known, a natural conjugate family of
priors for A would be the Pareto family. However, with both 7 and A
unknown, we follow Arnold et al. [1998] and consider a conjugate prior
for which 74 has a gamma distribution for each A, and A/r has a Pareto
distribution for each 7. This general class of such priors is of the form

f(A,7) =< exp[blog7 + m,, logAlog7]x

7c>1 (3.9)
expla,A + a, logA + mAlogt],

(The first factor on the right hand side consists of hyperparameters
whose values are unaffected by the data.) The conditional density of 7 /A
is gamma with shape parameter ¥(7) = (1 + a1 + myzlog7) and intensity
parameter A(7) = -(a; + my1log?). The conditional density of A / Tis Pareto
with shape (or inequality) parameter §(1) = -(1 + b + myA + myplogA) and
precision parameter v(A) = c, hence the condition 7c¢ > 1 in (3.9). The
classical conjugate prior family introduced by Lwin [1972] corresponds to
setting b = my, = 0. The independent gamma and Pareto priors suggested
by Arnold and Press [1989] correspond to the choice of my; = myz = 0.
Such independent priors have hyperparameters that may be easier to assess.

Using initial values for A and 7 = €*, say Ay and 7y, the GRSS is
transformed first to have a Pareto distribution using ¥ = €*, and then to
have a uniform distribution using u=1- (r,y) ™. The missing values are
generated for each sample, as considered in Section 2.2. These uniform
variates are then transformed to have a Pareto distribution using the
inverse probability transformation z= (1—u)” /z,. The next step is to use

the complete sample, (Y,Z2), to update the prior distribution for (A,7).

Table 1 gives the relationship between the prior and posterior values of
these parameters. (See Arnold et al., 1998, p. 237.)
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Tablel. Prior and posterior values of the parameters in (3.9)

Parameter Prior value Posterior value
E3
a a 2( g Z 1";
I¢lj
a a a + N
E3 E3
b b b
* E3
1y my my; -N
* *
m3 my, my2
x *
c c min(x; ., ,Z;, ,C)

Using the full joint distribution for A and 7, or either of the Lwin or
Arnold and Press specified prior distributions, we can now simulate values
for A and 7 from the posterior distributions, and repeat the process of
simulating the missing values, and using these values plus the original data
to update the conditional distributions of A and 7. This is continued for a
large number of times. This whole process is continued, say K times,

generating an empirical distribution for (A,7).

3.2 The normal distribution

3.2.1 The E-M Algorithm

Since the normal distribution is a member of the regular exponential
family with jointly sufficient statistics

L5 = 2( 3 2,)

I¢Ij

and

L (x2) = sz 2

I#lj
the p-th 1terat10n of the E-step consists of solving the following equations
for z

6(11) (Zl ’_Y) ’ (310)

while the p-th iteration of the M-step consists of solving the following set
of equations for 8
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(X210 1w
{f(__@l@“’”’} =2 D

can be rewritten as

""”+(N f)ﬂ pﬂ)_z("’l,n,“"zzln
o (3.12)
T ™+ 2 ) W= DE*) + W) )= 20K, $7)
J=l

dysy
i#ly

Therefore step (p+1) has the solution

plr = {2(){ izmj)]/N

1¢lj

(0'2)(p+1) :(2 (ijmj +2212"1)]/N—(,Lt(p+1))2

= i#i

(3.13)

3.2.2 The Gibbs Sampler

We are interested in estimating the mean u and the precision 7 = 1/ o’ by
using informative prior distributions in the face of incomplete data. If u
were known, a natural conjugate prior for 7 would be the gamma family,
while if T were known, a natural conjugate prior for 4 would be the normal
family. Hence, we would like to have an appropriate prior distribution for
u and 7 whereby the distribution of u |7 is normally distributed and the
distribution of 7| u has a gamma distribution. The class of such gamma-
normal distributions constituting an eight parameter exponential family is
discussed in Castillo and Galambos [1987]. Arnold et al. [1998] use the
following parameterization for the joint conditionally specified prior
distribution for y and .

f(u,7) o< exp(au+ a,u’® + m,ulogt + my,u logT)x (3.14)
exp(bt + b, logT + m ut + m, u’t '

With this prior distribution the conditional density of u given 7 is normal
with mean
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—(a, + m;;7 + my, log7)

E(ul7) = (3.15)
2(a, + m, ;T + m,, logT)

and precision

1/ Var(u|7) = -2(a, + m, 7 + m,, logt). (3.16)

The conditional density of 7 given u is gamma with shape parameter or(u)
and intensity parameter A(u). The conditional mean and variance of 7
given u are

)= 1+ b, + mp,p + my, p*

Elr ,
( K — (b +m“,u+m21y2)

(3.17)

1+ b, + m,u + my,pu*

. (3.18)
(by + myp + mz1.u2)2

Var(r | u)=

DeGroot [1970] has postulated a joint prior for 4 and ¢® in which the
precision 7 = 1/0* has a marginal gamma distribution with shape
parameters o and intensity parameter A, and p/r has a normal distribution
with mean 0 and precision ar, a scalar multiple of . This is equivalent to
setting

a=a,=m,=nm,=0 (3.19)

in (3.14). The posterior conditional mean and variance of u using
DeGroot’s formulation are

S (5, + 3
(a0 + Z} (X,.j:"j + 2 z,.:”j))
Eulr,x2 = = -, (3.20)
a+ N
1
Viu|z,x 2 =——. (3.21)
a+N

while the posterior conditional mean and variance of 7 are



305

E@|px2)=
a+1/2+N/2

J 1, n
A-al2 +[E(XIM + Ez,:,,j)]/z —(ae +é(x,/:,,j + 2%,)}# +( a;NJ'uZ
J=1 i#i

Jol el

(3.22)
and.

Var(t | u, x,2) =
a+1/2+N/2

5
J n J n

[l_ a/2+(2(,\’lj:ﬂj + ZjZl:”l)]/z—[ae +2(le:”j + Z/Zl:nl)}u +( a';N}LLZ]
= i

x4, 11,

(3.23)

Press [1982] approached this problem using an independent normal
(0,1/8) prior for u and an independent gamma prior distribution for =

with shape parameter « and intensity parameter A in order to more easily

assess the values of the hyperparameters. This corresponds to initially
setting

my =My, =My = My, =0 (3.24)

in (3.14). Although the prior distributions are independent, the posterior

distributions for ¢ and 7 are not. The posterior conditional mean and
variance of # are given by

(66 + (2 (X, + i z;, )7

E X — J=1 i¢ij 3-25
(ulz.x2 g (3.25)
and

V(u|r,x,2 =1/(8 + Nr). (3.26)

The posterior distribution of 7 given u has a gamma distribution with
shape parameter (¢ + N/2) and intensity parameter



306

J=l izl s il

ﬂ+(i (Xzij:nj +izz’3”1)]/2_(i("’ifﬂ, +”22j:"1)]‘u+ N‘uz /2.
(3.27)

The unrestricted prior and posterior values of the parameters (3.14) are
given in Table 2.

Table 2. The prior and posterior values of the parameters in (3.14)

Parameter Prior Value Posterior Value
a a a
d a a
b b N ”

bl - (2 (Xij:nj + 2 Zi:nj)

J=l =iy

b by « N

by +—

2

m; my m

] n

2
+ Z (Xzij:nj + 2 VA i:nj)
J= i#i)

my; 1 my2
1 1y * N

my; —-—

2
E3 E3

J117Y) 1y, mz;

Notice that only b, b,, m,, and m,; are updated by the data. To use the

Gibbs sampler, initial estimates of 1 and 7= 1/6* can be obtained using the
crude estimates given by David (1981). With o, =®(z(x,, —u)),

iyny
generate (J; - 1) uniform (0, u,.j:,,j) random variables, and (n; - 1) uniform

(u

iya,» 1) Tandom variables, j =1, 2, ..., J. The values of Z are obtained
using the inverse transformation z=u+7"'®"'(u). The Gibbs sampler
proceeds by using the updated values of the hyperparameters in Table 2 to
simulate new values of x and 7z which are in turn used to transform the
values of the GRSS to uniform order statistics, and then by simulating the
missing data as before. The inverse probability transformation is used to
find the new values of Z. The complete sample is then used in updating
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the posterior distribution, from which new values of u and 7 are selected.
This procedure is continued for a fixed, but large number of iterations.
This whole iteration procedure is run a large number of times, say K, at
which time the resulting empirical distributions for x4 and 7 (given x) can

be used to find estimates for u and 7 together with measures of precision
for the estimates.

4 Testing of Hypotheses

In this section we shall examine the topic of testing hypotheses from
several different viewpoints, each involving GRSS data. We will begin by
considering the use of goodness of fit tests in situations when an
hypothesis completely specifies a distribution, and in situations when the
hypothesis only specifies a parametric family of distributions. Another
approach is to use maximum likelihood using the E-M algorithm in
conjunction with generalized likelihood ratios. Yet another is the Bayesian
approach of calculating posterior odds if the hypothesis is not sharp,
perhaps using diffuse priors.

4.1 Goodness of Fit Tests

The classic problem of goodness of fit involves determining whether a set
of ii.d. observations can be reasonably supposed to have common
distribution function F;, a completely specified distribution. It is often

assumed, and is assumed here, that K, is continuous. Thus, via a

straightforward transformation, we reduce the problem to one of testing
goodness of fit to either a uniform or an exponential distribution,
whichever is deemed convenient. We assume that our data will consist of
independent order statistics with common parent distribution F
constituting a GRSS (Kim and Arnold [1999]). In both cases we will wish
to test H: F=F,. Itis natural to also consider the problem of testing a

composite hypothesis H:Fe{F,:0c @}using ranked set data

configurations. In such a situation the first step will be to use the data to
estimate 6.

The data consist of J independent order statistics
Xin» Xipmy»--» X, from a common parent distribution, F. To test

H: F = F,, we consider
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Y, =F(X,,) 4.1)

lj.nj

and ask whether these can be reasonably supposed to be uniform order
statistics. A goodness of fit statistic in this case could be of the form

- J (ljnj —1i,/(n, +1))Z . 4.2)

Si(n—i,+)(n,+) (0, +2)7

Note that
7 (Y Y. ))?
T= 2( iy E i ) 4.3)
= Var(Y. )
J ipny

where the moments of Y, :n; are computed under the hypothesis that H is

true, i.e. that the Y,j,, s are order statistics from a uniform(0,1)

distribution. Large values of T will be cause for rejection of A. The null
distribution of Twould be expected to be approximately x* if Jis large, if

m,n,,....nyare large and if the ratios i,/n are not too extreme. In

practice however, the n/s will be small. If Jis large a ¥ approximation

may be adequate. If Jis small then a more accurate evaluation of the null
distribution of T will be needed. A balanced rank set sample (BRSS) is
most commonly used. These consist of m independent replicates of a
complete set of n independent order statistics X, X’ X, where nis

Ln* “*2tprec»
small and m is generally not small. Simulation based upper 90, 95 and
99th percentiles of the statistic T for such balanced ranked set samples are
provided by Arnold et al. [2001]

Of course, one could instead have transformed to get exponential order
statistics instead of uniform ones using the transformation

Y, =-logl-F(X,,). @
The test statistic in this case, say T, defined as

N <'J"/ Y’/" ))Z

T=2 Var(Y,,)

J=1

(4.5)
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with the mean and variance of Y ., given by

i,-1

4.6
l’"j ko(nj k) 46
and
. i,-1 1
Var(lﬂjmj): —. 4.7)

=0 (Uj — k)

Tabled values of the statistic 7 can be found in Arnold et al. [2001].

For both T and T, the * approximation underestimates the simulated
percentage points in all but a few cases studied and hence, tables of critical
values for both of these statistics are required.

When F; is not completely specified, estimates of the parameters must

be found before testing for goodness of fit. The estimation techniques
involving missing data, specifically the E-M algorithm approach presented
in Section 3, can be used to advantage here. This has the effect of
simplifying the problem in that we no longer have to work with the joint
distribution of independent order statistics, but rather with the parent
distribution directly. Arnold et al. [2001] used the Gibbs sampler approach
to estimate both the observations that were not recorded as well as the
values of unknown parameters used in the simulation process. However,
the statistic used was Stephen’s [1974] modified version of the Watson
[1961] U7 statistic based upon uniform order statistics. (See Agostino and

Stephens [1986].) All N= ijl n; actual and simulated observations are

transformed to uniform order statistics and the resulting reordered statistics
are denoted by Y, Y, .....¥,,. The L7 statistic is

2=LN }N:(z’ I m} _N(F-05)° 4.8)

with the modified statistic given by
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0.1

0.8
- NZ}{I bl (4.9)

Usop ={U* -

For N greater than 10 the critical values given by Stephens are: 90"
percentile = 0.152, 95" percentile = 0.187, and 99" percentile = 0.267.
Simulated values for these same percentiles when N < 10 differ only
slightly from the values given here.

Power studies at the .05 level of significance involving BRSS for
testing the null hypothesis that F' was a standard normal distribution when
the true distribution was either: Normal (0, 4), Normal (2, 1), Logistic (0,
1), and Logistic (0, 4) revealed that almost uniformly over the range of

values of m and n the test based upon T was more powerful than the T
test, which was more powerful than the U7, test. This study also showed

that all three tests had very little power in discriminating between a
Normal (0,1) and a Logistic (0, 1) distribution.

4.2 An Alternative Goodness of Fit Test for GRSS.

Suppose that we have a GRSS from a distribution F'and we wish to test
whether our sample could have come from a specified distribution F;. Let
U, =F(X ,.j:”/) . Jj=1,2, .., J Estimators of the unobserved order

lj-nj
statistics from each sample are found in the following simplistic way.
Suppose we had the third order statistic U,, based on a sample of 7

observations drawn from a uniform (0, 1) distribution. Estimators of the
remaining 6 order statistics are given as:

U1;7 = U3:7 /3, U2:7 = 2U:5:7 /3, U

A

U4;7 = U3:7 + (1 - U3:7)/5’ U5:7 = U3;7 + 2(1 - U3;7)/5’ (4.10)
06:7 = U3:7 +3 (1 - U3:7)/5’ and U7:7 = U3:7 + 4(1 - U3:7) / 5.

Notice that we are providing unbiased estimators of the missing order
statistics based on the value of the one order statistic observed. Of course,
this is done for each of the samples in the data set. The relationships in
(4.10) can be summarized as:
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—U,. 1<r<i,
X I ijny J
0., = pay : (4.11)
w t| ——L—0-U,,) i <r+l<n,
o ny - +1 it /

These estimates are now used in place of the missing data, and the test
statistic is that given in (4.2) with the obvious modifications to allow for

all N= ijl n, observations to be included in the calculations. The statistic
in (4.2) becomes

T=ji <Umj —r/(nj+1)) | w12)

Sar(n,—r+1)(n,+1)7* (n,+2)"

When the number of repetitions, m, is greater than one, T in (4.12) is
also summed over m. Simulation based percentiles of the distribution of T
in (4.12) are given in Table 3 for different values of m and n, based upon
100,000 runs for each combination. Notice that the given percentiles do
not appear to be approximately distributed as a x* variable with n’m
degrees of freedom as one might expect, and therefore separate tabled
values are needed. More extensive tables are available in Arnold et al.
[2001].

Table 3. Simulation based percentage points of the statistic T for different
values of mand n when missing data is imputed using (4.11).

n m TQO TQS ‘TQQ
1 1 1.7085 4.0132 12.8382
3 1 8.4715 12.7374 26.5639
5 1 17.9390 24.0911 42.1798
10 1 55.0919 66.5028 95.5670
1 3 6.7501 10.9304 24.2815
3 3 23.0126 29.7781 49.3253
5 3 46.5705 55.7791 80.1884
10 3 141.3330 157.8699 197.0167
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n m TQO T95 TQQ
1 5 10.9071 16.2701 31.5959
3 5 35.4255 43.5205 65.4460
5 5 72.0565 83.1354 111.9622
10 5 222.3327 242.5671 288.5463
1 10 20.1603 26.9115 45.8466
3 10 64.2386 74.5578 100.4973
5 10 132.6031 147.2900 180.8142
10 10 414.6961 441.1265 497.7994
1 23 42.7897 52.0217 74.6665
3 25 143.3099 157.9101 191.0295
5 25 301.7058 322.0480 366.6617
10 25 972.5086 1010.5220 1091.2590
1 50 75.4745 87.2622 114.1974
3 50 266.9689 285.7319 327.7236
5 50 572.7384 599.0957 655.3024
10 50 1879.2019 1929.6000 2032.3724
1 100 136.9693 151.9760 184.2377
3 100 505.1316 529.6553 582.0591
B 100 1102.6717 1138.0480 1209.1400
10 100 3663.7339 3733.8757 3868.9519

Alternatively, the uniform order statistics can transformed to
exponential order statistics and analyzed using the test based upon T
defined in (4.12) using the imputation technique given in (4.11). Table 4
gives the simulation based percentiles of the statistic 7 for different
combinations of m and n based upon 100,000 runs for each combination.

Again one might expect the empirical percentage points in Table 4 to
approximate those of a % distribution with r“m degrees of freedom. As in
Table 3, the tabled values are substantially smaller than those for a x* with
the appropriate degrees of freedom.



Table 4. Simulation based percentage points of the statistic T for different

values of m and 7 when missing data is imputed using (4.11).

1 m Ty Tos Ty
1 1 1.7085 4.0132 12.8382
3 1 8.4715 12.7374 26.5639
5 1 17.9390 24.0911 42.1798
10 1 55.0919 66.5028 95.5670
1 3 6.7501 10.9304 24.2815
3 3 23.0126 29.7781 49.3253
5 3 46.5705 55.7791 80.1884
10 3 141.3330 157.8699 197.0167
1 5 10.9071 16.2701 31.5959
3 5 35.4255 43.5205 65.4460
5 5 72.0565 83.1354 111.9622
10 5 222.3327 242.5671 288.5463
1 10 20.1603 26.9115 45.8466
3 10 64.2386 74.5578 100.4973
5 10 132.6031 147.2900 180.8142
10 10 414.6961 441.1265 497.7994
1 25 42.7897 52.0217 74.6665
3 25 143.3099 157.9101 191.0295
5 25 301.7058 322.0480 366.6617
10 25 972.5086 1010.5220 1091.2590
1 50 75.4745 87.2622 114.1974
3 50 266.9689 285.7319 327.7236
5 50 572.7384 599.0957 655.3024
10 50 1879.2019 1929.6000 2032.3724
1 100 136.9693 151.9760 184.2377
3 100 505.1316 529.6553 582.0591
5 100 1102.6717 1138.0480 1209.1400
10 100 3663.7339 3733.8757 3868.9519
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Earlier power studies have shown that when no imputation of the
missing values in the order statistics is used, but rather only the observed
BRSS values, the statistic T is more powerful than T when testing H:
N(0,1) versus the alternatives N(0, 4), N(2, 1), and Logistic (0, 4), while
both T and T have very little power in distinguishing a standard logistic
from a N(0, 1). Simulation studies to determine how these two statistics,
(using both observed and imputed values for the order statistics not
measured) perform against these same alternatives are underway.

4.3 Likelihood Ratio Tests

Consider testing the hypothesis H:0€ ©, versus the alternative

A:6 € O, when the data consists of GRSS data. A straightforward testing
procedure in this case would be to use the general likelihood ratio
procedure in which the E-M algorithm is used to estimate both the missing
observations and the values of the parameters under test. In keeping with
earlier sections, we will restrict attention to the families of distributions
studied earlier in this report.

4.3.1 Normal Distribution.

We consider the case in which the GRSS resulted from sampling a normal
population, and we wish to test a hypothesis concerning 8'= (u,07%).

Suppose that we wish to test H: (u,0%) = (u,,0°) , that is, that H: u = uo
with o” unspecified, against the alternative A:p # p,. Using the initial

estimate for o in (2.14) and (2.15) we can invoke the E-M algorithm to
generate pseudo data in place of the missing measurements. Hence we can
begin by transforming the observed GRSS, X, .X, , ....X, ., to

i’ iy:ny
Jjn MO

U, U Uiy, using u;, =®(

i ™ iy ipny

). j=1,..., J, where ®()

denotes the standard normal distribution function. Next the missing
observations are estimated by generating (i, —1) uniform (0,u, , ) and (;

’zn

- 1) uniform (u,  ,1) variates j = 1. ..., J, which are transformed to

ipng?
normal variates. This procedure continues until the estimate of o
converges. Hence, under H the likelihood becomes
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J Xin, ~ Mo 521471
I ,AZ q) /e , 214
(x| u4y,6°) = Ij:!( —1)'(11/—1)' ( o | eI ) (413)

. X, n "
u—<1><i%—°luo,am"f"¢(iféi| 19,67)

To evaluate the likelihood under 4, initial estimates of both u and o
can be found using (2.11) through (2.15) which in turn can be used to
begin the E-M algorithm whereby the missing data are replaced by pseudo
data and p and o are estimated using this augmented data set. This cycling
continues until the estimates of y and o* converge to @ and &°, at which

point the likelihood is evaluated as

Y ' X n _ﬁ - _
Lxl 167 =] —1)'( e 1A
i & 3 (4.14)
-t peypriedinh p e,
o [e)

With R= L(x|u,,6%)/L(x|&,6%), the likelihood ratio statistic is

given by —2InR which has an approximate y’-distribution with one
degree of freedom. Another case of interest may be to test H: o = o,°
with u not specified. A procedure analogous to that outlined above would
be implemented by estimating u rather than o % under H.

4.3.2 Exponential Distribution.

In the same fashion, a likelihood ratio test for location and/or scale
parameters in an exponential distribution could be implemented using the
E-M algorithm. For example, in testing [ A = Ap with u unspecified, an
initial crude estimate of u could be taken to be
a=min(X,,, X, »X,;..). With 4, and f1, the E-M algorithm can

i

dem iy 0t

be implemented to generate the pseudo data used to re-estimate u, cycling
until the estimate of 1 converges. In this case

nl
L( Y=l
x| Ay 111(1_1),( !

[exp{_l‘) (X’/‘"; - 'a)}]”l_l/lo exp{—}o (Xl/:n, - ﬂ)}

-1

l i,n
[1—exp{-2, (x,., ~ S x @15
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Using A and fi, the converged values of A and u under 4, in place of
Ao and [ in (4.14), the likelihood ratio statistic, —2InK has an approximate
x-distribution with one degree of freedom.

4.3.3 Bayesian approach.

When the hypotheses tested are not sharp, that is when the hypotheses
define subsets of the parameter space O that are not of measure zero,
calculation of an odds ratio, for both the prior and posterior distributions
produces a measure that can be used to accept or reject the hypotheses
under test. When working with the Pareto distribution via a transformation
from an exponential distribution, the prior distribution of A and 7 is given
by (3.9), while the posterior distribution is given by (3.9) with the
hyperparameters replaced by those in Table 1. The prior odds ratio in this
case would be calculated as the ratio 7;/7; where

n, = [ f(A,7)dAdr and 7, = [ (A, 7)dAdr. (4.16)
Oy 04

The posterior odds would be found as the ratio 7, (x) /7, (x), where

(X = f f(A,7| x)dAdr and 7, (x) = J. f(A,7| x)dAdr. (4.17)
Oy 6,

If the data have come from a normal distribution, then the prior
distribution for u and o is given by (3.14) while the posterior distribution
is given by (3.14) using the updated parameters in Table 2. The prior and
posterior odds are approximated by Gibbs sampler based calculations for
the corresponding joint density for (4, 7).

Although the prior odds measure the analyst’s beliefs with respect to
the distribution of the parameters under investigation, the posterior odds
have been updated with sample information and should be a more credible
measure of the strength of the hypotheses under test. Obviously, if the
odds ratio is larger than one, there is support for the null hypothesis, while
values smaller than one provide support for the alternative hypothesis. In
examining the joint prior and posterior distributions under both
hypotheses, it is clear that (4.14) and (4.15) would need to be evaluated
numerically.
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3 Summary

The analysis of GRSS data classically uses the distribution of

independent order statistics. This distribution is not easy to work with
even in classic cases when the data has been sampled from a normal
distribution. The suggested analysis based upon the use of the E-M
algorithm or the Gibbs sampler to augment the data and estimate
underlying parameters reduces the problems to ones that are easily handled
using standard techniques.
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FISHER INFORMATION IN THE
FARLIE-GUMBEL-MORGENSTERN TYPE
BIVARIATE EXPONENTIAL DISTRIBUTION

H. N. Nagaraja * and Z. A. Abo-Eleneen
Ohio State University, USA and Zagazig Unwversity, Eqypt

Abstract

We obtain expressions for the elements of the Fisher information matrix
(FIM) for the three parameters of the Gumbel Type II bivariate exponen-
tial (GeBVE) distribution. This distribution belongs to the Farlie-Gumbel-
Morgenstern family and has exponential marginals. We evaluate the FIM for
various values of the dependence parameter and discuss implications to finite-
sample and asymptotic inference from the GoBVE parent. We also conduct
a similar study for the Marshall-Olkin bivariate exponential distribution and

compare the results.

Key Words: Gumbel Type II bivariate exponential distribution; Marshall-
Olkin bivariate exponential distribution; Cramér-Rao bound; mazimum likeli-

hood estimator; Asymptotic relative efficiency.

1 Introduction

Suppose X is a continuous random variable with cumulative distribution function

(cdf) Fi(z;8) and probability density function (pdf) fi(x;6), where 8 is a real or a
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vector valued parameter. The Fisher information (FI) about the real parameter 8
contained in X is defined by I(X;0) = F (Ql"ig‘oﬁwy = —F (&(%JX@) under
certain regularity conditions (see, for example, [13], p. 329). When 6 is a vector
0 = (61, ,0;) the Fisher Information Matix (FIM), I(X;01,--- ,6c),is a k x k
matrix whose (¢, j)th element is
dlog fi(X;0)dlog fL1(X;0 8 log f1(X; 0

Iz-sz( gglo(,- ) ggla(j )) =-E (——age{g(aj )>. (L1)
Now suppose (X,Y) is absolutely continuous with joint cdf F(z,y;6) and pdf
f(z,y;0). The Flin (X,Y) is similarly defined. The FI plays an important role in

statistical inference through the information (Cramér-Rao) inequality and its associ-
ation with the asymptotic properties of the maximum likelihood estimators (MLE).
For a compact introduction to FI and some historical notes, see [10] (Sec. 2.5, 2.6,
2.8, 6.3 and 6.5).

Beginning with the work of Gumbel in the 1950’s and 60’s, several bivariate ver-
sions of the univariate exponential distribution have appeared. For some of these,
the marginal distributions are not even exponential! While a univariate exponential
distribution is absolutely continuous and has the lack of memory property, the bi-
variate extensions with dependent marginals cannot satisfy these requirements and
at the same time have exponential marginals ([6], Chapter 5). Quite a few of the
bivariate exponential (BVE) distributions are motivated by either the operational
models within a reliability set up, or the generalizations of the univariate exponen-
tial distribution based on characterizations. For a classification of BVE distributions
based on such themes, see the review paper by Barnett [3]. Since his review, numer-
ous other new BVE’s have appeared and the most recent comprehensive overview is
provided in Chapter 47 of [9].

We investigate the behavior of the FIM of the Gumbel Type II bivariate ex-
ponential (G:BVE) distribution (proposed in [7]). It is a special member of the
Farlie-Gumbel-Morgenstern (FGM) family of absolutely continuous bivariate distri-
butions (see [9], p. 51-52, 353). For the FGM family, the cdf is given by

F(z,y) = Fi(z) )1 + o(l - Fi(2))(1 - F2(y))], (1.2)

and the associated pdf is given by

f@,y) = fil@) @)L +a(l -2 F(2)(1 -2 Fy))] (1.3)
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where —1 < a < 1, Fy is the marginal cdf of Y, and f; is the pdf of F5. The
parameter « serves as the dependence parameter, and X and Y are independent
when it is 0. The marginal distributions F} and F; can be arbitrary with additional
associated parameters. For the FGM family with normal, exponential, and logistic
marginals, the correlation coefficient is a scalar multiple of . Hutchinson and Lai
([8), Sec. 5.2) provide an excellent introduction to the FGM family and discuss its
properties and applications to a variety of situations. See also [9], Chapter 44 and
47. Recently Abo-Eleneen and Nagaraja [1] have investigated the FI content about
a in a collection of X-order statistics and their Y concomitants from the FGM
distribution. Smith and Moffatt [14] have investigated FI about o in FGM type
bivariate logistic models with some special sampling schemes.
For the G3BVE the joint cdf takes the form

Plai6) = {1~ e (1= ) {1y IO, 1

where z > 0, y > 0, 6,8, >0, and —1 < 03 < 1, where, for convenience we denote
the dependence parameter « by 8;. Here, the marginal distributions are exponential,
the correlation coefficient is 65/4, and 6; is the mean of F;, ¢ = 1,2. The joint pdf
assoclated with (1.4) is

flz,y;0) = %6_(1/91)%6‘(1’/92) {1+ 05 [2e=C/00) 1] [2¢7W/%) — 1]} (1.5)

This pdf is the second of the two bivariate exponential distributions introduced
by Gumbel in [7]. He notes that for this bivariate distribution, the conditional
expectation of Y given X increases or decreases with X according as the dependence
parameter 83 is positive or negative (and X and Y are independent when it is 0).
Thus 63 provides a measure of relationship through the regression function. Here,
in Section 2, we obtain explicit expressions for the elements of I(X,Y;8), and in
Section 3.1, we evaluate it for selected values of f3, and discuss some implications
to inference.

Similar investigations for other bivariate distributions have been undertaken in
the literature. Arnold [2] has obtained the FIM for the BVE distribution proposed
by Marshall and Olkin in [11]. Other examples include the work of Oakes and
Manatunga [12] who discuss the case of a bivariate extreme value distribution and

the recent work of Bjarnason and Hougard [4] who have obtained the FIM for two
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gamma frailty bivariate Weibull models. In Section 3.2 we revisit Arnold’s work and
compare the behavior of the asymptotic variances of the MLE’s under the GoBVE
and Marshall-Olkin BVE (MOBVE) models. Both these BVE’s have exponential
marginals and three parameters that identify the bivariate distributions. While the

former is absolutely continuous, the latter has the bivariate lack of memory property.

2 The Fisher Information Matrix

We now obtain the FIM for the parameter 8 = (6y, 85, 85), for the pdf given by (1.5).
The FIM is I(X, Y; 8) = (I;;)3x3, where the elements are computed using one of the
expressions given in (1.1). In our derivations we use the transformations U = X/8,,
V = Y/, to simplify the expressions. These random variables correspond to the
G2BVE distribution with standard exponential marginals. First we present the

diagonal elements.

Since
dlog f(z,y;60) _ 1 Jz 1+ 205 exp{37H2 exp{7Z} — 1)
801 - 91 01 91 [1 + 93(2 (-3)(}){%1E - 1)(2 exp{%f} — 1)] '

we can write

dlog f(z,1;0)\* 1 o 463(u?—u) exp{—u} (2 exp{—u}—1)
< oty ) 02 {(u -0 [146;5(2 exp{—u} —1)(2 exp{—v} —1)]

4 02u? exp{—2u} (2 exp{-v} —1)?)
* 1+ 65(2 exp{—u} —1) (2 exp{—v} — 1)]2} : (2.1)
Hence
Olog f(X,Y;0) 2
o= B (Y

2 u? exp{—3u} (2 exp{—v} —1)® exp{—v}
02{1+49/ / (1465 (2 exp{—u} —1) (2 exp{—v} —1)] dudv}

(2.2)

The denominator of the integrand of the inside integral in (2.2) can be expanded as

a power series given by

i 3(2 exp{—v} — 1)7(2 exp{-u} — 1)7,



323

and, since |03 (2 exp{—v} — 1)7(2 exp{—u} —1)| < 1 for all real z and y, this
representation is uniformly convergent. So it is permissible to integrate term by

term. Hence we get

2]+2

I = —{ 1+4 Z 5573 /oo u? exp{—3u} (2 exp{—u} - 1)% du}. (2.3)

We obtain Iy upon replacing 6, by 6, in (2.3) above. Now

_ dlog f(X,Y;0)\°
I3S—E<T )

and we use (1.3) to obtain the element of the FIM corresponding to the dependence
parameter for the general FGM distribution. Thus we begin with

dlog f(z,y;0) _ (1-2 Fi(2))(1 — 2 Fy(x))
00 [1+6s (1-2Fi(2)(l-2 Fyx))]

to obtain

(1 -2 F(z))(1 -2 BG&))? fi(z) ()
= [ / 4602 R@0_2RE) <% @9

As done in the derivation of I;;, we now observe that the denominator of the
integrand of the inside integral on the RHS of (2.5) can be expanded as a power
series that is uniformly convergent. Upon summation and term by term integration,

we obtain
Iis = (=6:)’ /000 /Ow[(l =2 R@)P(1 =2 BE) fi()fa(y)ds dy

which simplifies to

2 46Y
I33 = —_ 2.6
This indicates that Is3 is independent of the marginal pdfs of X and Y. The ex-
pression in (2.6) is available in [1] for the general FGM distribution, and, in [14] in
the context of bivariate logistic distribution.
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We compute the off-diagonal entries next where the second representation in

(1.1) is more convenient. Note that, upon simplification, we obtain

O log f(x,y;0) _  4aybs exp{ 7=} exp{ 7}
00,00, 0202 1+65(2 exp{32} — 1)(2 exp{3L} — 1)]2

and consequently

[o0] oo __2 _
I, — 46, / / u v exp{—2u} exp{—2v} du do,
o Jo [1+0s

616, (2 exp{-v} —1) (2 exp{—u} - 1)]

Il
|
=la
|
S,
1]
D
)

(—8s)’ {/000 uwexp{—2u} (2 exp{—u} — 1) du}2, (2.7)

upon expanding the integrand as a power series and performing term by term inte-

gration. Further,

Plog f(z,1;0) _ 2z exp{ 5712 exp{3Z} - 1)
T 008, T B4 expl3E) — D2 explzh) — P

and consequently

Iy = —E ((9210gf(X,Y; 0)>

00,004

% 2+
2 0

o]
= 2j+1
R :4:62”3/0 wexp{-2u} (2 exp{—u} — 17" du,  (2.8)

upon simplification. We now note that, by symmetry, 0,1,3 = 0,13 where I3
is given by (2.8). Also I;; and I33 are even functions of #; while I3 is an odd
function. Thus, one needs to know only Iy, Is3, 12, and I;3 to determine all the
elements of the FIM for a given 83. For the elements I that correspond to —63, we
now need to evaluate only the corresponding I;2. Note that when 3 is 0, X and
Y are independent exponentials and consequently Ij5 is 0, I;; = 672 = I(X;6,),
and Iy = 632 = I(Y;6,). Further, in that case, from (2.6) and (2.8) we see that
Iys = 4/9, and I;3 = 0, respectively.

Table 1 provides the values of the above elements that are needed to evaluate
all the elements of I(X,Y;8) for §; = 0,0.25,0.5,0.75,0.99, when 0, = 6, = 1.
These were computed using IMSL routines in FORTRAN. The table indicates that

empirically I;2(63) and —I,5(—63) are very close and thus the former can be used


http://de.de

325

03 0 0.25 0.5 0.75 | 0.99
$y(= I) 1 1.0062 | 1.0254 | 1.0595 | 1.1119
I 0.4444 | 0.4548 | 0.4905 | 0.5747 | 0.8743
Ia(=1Ig) | 0 |-0.0047 | -0.0100 | -0.0169 | -0.0292
I 0 |-0.0625 |-0.1258 | -0.1915 | -0.2594
I15(—03) 0 | 0.0629 | 0.1275 | 0.1955 | 0.2679

Table 1: Essential elements of the FIM for the parameter 8 = (0y,05,03) for the
G, BVE distribution when §; =60, = 1.

as a quick approximation to the latter. It also shows the effect of the changes in
the value of ;3 on the FI content of (X,Y) about 6; {or 8) as well as about 63
itself. The I;; values there can be used to gauge the contribution of the covariate
Y in the increase in the FI in X about its mean ;. This relative improvement,
I(X,Y;6,) — I(X;61)]/I(X;6,), increases with |fs|, but never exceeds 12%. This
suggests that the knowledge of the covariate increases the information content of

the univariate data only to a limited extent.

3 Discussion

3.1 Efficiency and Asymptotic Variance of MLE

Table 1 entries can be used to compute the Cramér-Rao (lower) bound for the
variance of unbiased estimators of the parameter §;. More importantly they can be
used to obtain the variance of the limiting normal distribution of T? = \/n(6; — 6;)
(it =1,2,3) as n = oo where g; is the MLE of 6; based on a random sample of
size n from f(z,y) given in (1.5). Table 2 provides the values of UB; = 1/I;;, and
MB; = (I_l)ii as a function of 8, for ¢ = 1, 3, assuming #; = 6, = 1. The inverse of
the FIM, I, was obtained using S-PLUS. The quantity U B; represents the Cramér-
Rao bound as well as the variance of the limit distribution of 7% when the other
parameters are known, and M B; corresponds to these quantities when the other
parameters are unknown. When 6; is 0, X and Y are independent exponentials with

mean 1, and thus UB; is 1. In this case UB,; also represents the limiting variance
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2 0,

05 UB, | MB, | MARE, |UMARE, | UB; | MB;
-0.99 | 0.8994 | 0.9553 | 1.0468 1.0622 1.1438 | 1.1454
-0.75 1 0.9438 | 0.9774 | 1.0231 1.0356 1.7400 | 1.7414
-0.50 | 0.9752 | 0.9907 | 1.0094 1.0159 2.0388 | 2.0396
-0.25 | 0.9938 | 0.9978 | 1.0022 1.0040 2.1989 | 2.1991

0 1 1 2.25 2.25
0.25 0.9980 | 1.0020 1.0042 2.1990
0.50 0.9904 | 1.0097 1.0156 2.3098
0.75 0.9760 | 1.0246 1.0341 1.7420
0.99 0.9524 { 1.0500 1.0589 1.1464

Table 2: Asymptotic variance of the MLE (Cramér-Rao lower bound on the unbiased
estimators) of 01 and 63 for the GoBVE distribution when 0; = 0y = 1.

of the MLE of 6; based on only the X sample values. Further, as the univariate
bounds are symmetric functions of 85 the cells corresponding to its positive values
are left blank.

From Table 2 one can compare the limiting variances of 6, and 6 as 05 changes.
One useful comparison is that of the limiting variances of the MLE’s based on the
univariate and bivariate samples. For example, the ratio UARE, = UB;(0)/UB,(#3)
would provide the Asymptotic Relative Efficiency (ARE) of the MLE of 6; based on
the (X,Y’) data when compared to the X data alone (which corresponds to 8; = 0),
when the other parameters are known. This comparison is essentially the ratio of the
I, values discussed just above in Section 2. The ratio MARE, = M B;(0)/M B {(8;)
provides such a comparison when the other parameters are unknown. These values
are included in Table 2 and they indicate that the improvement is at most 5%. Had
the nuisance parameters been known, as observed earlier, the improvement would
be under 12%.

One can also compute UM ARE;= M B;(05)/UB;(63) to examine the effect of
the knowledge of the other parameters on the limiting variance of 6; based on the
bivariate data. From the UM ARE, column in Table 2 it follows that for 01, the

ARE increases in a nonsymmetric manner as f3 moves away from 0, and is 1.06
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when 83 is —0.99. This implies that while estimating 6,, the efficiency gained by
the knowledge of the other parameters is at most 6%. For 05, the MARE values
are not shown, but it is easily seen from Table 2 that they are barely above 1.00.
This indicates that while estimating the dependence parameter, the knowledge of
the parameters of the marginal distributions has hardly any effect in terms of the
asymptotic variance of the MLE. We are tempted to suggest that this conclusion
would hold for other commonly used FGM type distributions.

Remark: Let X, be the rth X-order statistic (1 < r < n) and Y., be its con-
comitant obtained from a random sample of size n from an absolutely continuous pdf
f(z,y). (See [5] for a recent review of the area of concomitants of order statistics.)
For the FGM density (1.3), Abo-Eleneen and Nagaraja [1] evaluate I(X.n, Yjrm); @)
for selected n and r and discuss its properties. While the (X.,, Yj..n)) are dependent,
the FI in (X;.y, Y7s)) turns out to be additive in r. For the Go,BVE pdf given by
(1.5), they evaluate I(Y}.m); 03) and compare it with I(Y.,; 65).

3.2 Marshall-Olkin Bivariate Exponential Distribution

Another BVE distribution with exponential marginals is due to Marshall and Olkin
[11]. They introduced a BVE distribution to model the component lifetimes in the
context of a shock model. We say (X,Y) has MOBVE with parameters A; > 0,
A2 >0, and A3 > 0, if

P(X > z,Y >y) = e M2y damax(@y) 0 s ), (3.1)

Here X and Y are marginally exponential with means (A; + A3)~! and (A + A3) 7L,
respectively, and the correlation p = A3/A, where A = Ay + A+ A3. This distribution
has a singular component and consequently the joint pdf does not exist. In the
context of parameter estimation for MOBVE distribution, Arnold [2] has given an
explicit expression for the FIM for the parameter vector A = (A1, A2, A3). He shows
that

1 a+tc 0 a
I(X,Y;0) = X 0 b+d b (3.2)
a b a+b+e
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where
a = )\2(/\1 + )\3)_2, b= /\1()\2 + )\3)_1,0 = )\l_l,d = /\2_1, and e = /\:;1 (33)

We now consider the parametric transformation 7, = Ay + Ay, 12 = Ay + A3 and
73 = A3 so that the first two parameters correspond to the marginal distributions
of X and Y, respectively, and the last one is related to the dependence structure.
With n = (1, 72, 73), using (2.6.15) in [10] (p. 125), the (¢, j)th element of the FIM

for the parameter 17 can be expressed as

k=1 I=1 8771 877]
Thus we obtain
. a+c 0 —c
(X,vin)=————| 0 b+d —d , 34
( " m+n2—"ns (34)
-¢ —d c+d+e
where a,- -+ , € are given in (3.3). In terms of the 7’s we may write a = (1, — 73) /7%,

b= (m—ms)/n3, ¢=1/(m —ns), d=1/(nz —13) and e = 1/73. Using the reciprocal
of the diagonal entries in (3.3) and the diagonal entries of I7}(X,Y; 1), we can carry
out a discussion of the Cramér-Rao lower bound on the unbiased estimators of 7,
and the variance of the limiting distribution of the MLLE’s as done above in Section
3.1. To fix ideas, we take my; = mp = 1. Then, p = 13/(2 — n3), or equivalently,
n3 = p/(1 + p). We compute the bounds corresponding to 7; as functions of p as it
varies in [0,1). The bounds for selected values of p are given in Table 3 and these
were computed using MAPLE 5.1.

The changes in the values of UB; and M B; in Table 3 indicate the rapid im-
provement in the limiting variance of 7;, the MLE of 7, as p increases. Thus,
the improvement in its efficiency due to the bivariate data is substantial. The last
column in Table 3 provides UM ARE; (p) = M B;(p)/UB(p) to facilitate the exam-
ination of the impact of the knowledge of 7; and 73 on the limiting variance of #;.
It is clear that the effect is substantial.

From the above discussion we conclude that the improvement in the efficiency

of the MLE of the mean of X due to the availability of the covariate values as well



o | UB, | MB, | UMARE,
0 1 1 1

0.1 | .8597 | .9029 1.0503
0.2 |.7377 | .8125 1.1014
0.3 | .6320 | .7294 1.1541
0.4 | .5405 | .6532 1.2085
0.5 | 4615 | 5837 | 1.2648
0.6 |.3933 | .5201 1.3224
0.7 | .3342 | .4620 1.3824
0.8 | .2830 | .4086 1.4438
0.9 | .2386 | .3596 1.5071
0.99 | .2036 | .3187 1.5649
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Table 3: Asymptotic variance of the MLE (Cramér-Rao lower bound on the unbiased

estimators) of m in terms of p for the MOBVE distribution when m = 1, = 1.

as the knowledge of the nuisance parameters is limited for the GoBVE distribution

whereas, in both these circumstances, the improvement is quite substantial for the

MOBVE distribution.
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CLASSIFICATION INVARIANCE IN DATA ENVELOPMENT ANALYSIS
Lawrence M. Seiford and Joe Zhu
Department of Industrial and Operations Engineering, University of Michigan, Ann
Arbor, M1 48109-2117 USA
Department of Management, Worcester Polytechnic Institute, 100 Institute Road,
Worcester, MA 01609 USA
Invariance property in data envelopment analysis (DEA) allows negative data in
efficiency analysis. In general, there are three cases of invariance under data
transformation in DEA. The first case is the ‘“classification invariance” where the
classifications of efficiencies and inefficiencies are invariant to the data transformation.
The second case is the “ordering invariance” of the inefficient decision making uvnits
(DMUs). The last case is the “solution invariance” in which the new DEA model (after
data translation) must be equivalent to the old one. The current paper indicates that
DMUs with negati\/e output values may be classified as efficient when we use the
classification invariance. Although such classification is mathematically correct, it may
not be managerially acceptable. The method of finding well-defined facet is suggested to
re-evaluate the performance of DMUs with negative values. The paper illustrates the
approach with an application to textile firms where negative profit is present.
Key words: Data Envelopment Analysis (DEA); classification invariance; efficiency.
1. Introduction

Since the onginal data envelopment analysis (DEA) model by Charnes, Cooper

and Rhodes (CCR, [3]), many theoretical extensions and empirical studies have appeared

in the literature [8]. One research issue which has received widespread attention in the
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rapidly growing field of DEA is the invariance property. Ali and Seiford [1] discover the
translation invariance property in the additive model [4] and the BCC model [2] that does
not require positivity of any inputs or outputs. Pastor [7] find out that by the translation
invariance property in DEA| input (output) values can be not only zero but also negative.
However, the use of DEA models is restricted.

This paper is concerned only with the classification invariance. (For other cases of
invariance, see [6, 7].) Note that the key to classification invariance in DEA lies in the
convexity constraint. Therefore, we consider only the BCC model. The term
classification invariance here means that the BCC efficient frontier or the BCC efficiency
classification is invariant to data transformation.

The paper indicates that situations when DMUSs with negative output values are
classified as efficient may need a careful analysis. For example, in a performance study of
textile firms, negative profits were found in some firms [9]. In the original study of [9],
those firms with negative profits were deleted from the analysis. By the classification
invariance, we can evaluate those firms with others. However, some loss firms are
classified as efficient. Although such efficiency classification is mathematically correct, it
may not be preferred by the management. The current paper discusses this issue and
develop an approach to revise the efficiency results.

2. Background

A DEA data domain can be characterized by a data matrix

Y
P=i  [F1PoesPil
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with s+m rows and » columns. Each column corresponds to one of the DMUs. The jth

column

is composed of an input vector x; whose ith component x; is the amount of input i used
by DMU , and an output vector y; whose rth component y,, is the amount of output r
produced by DMU .

The BCC efficiency can be obtained by calculating the following linear

programming problem
max 1]

"
s.t. lexj +8 =x
j=1

DAy -s =ny, ()
=1
Y4, =1
J=1
A, =20 j=lL..n

where x, and y  represent input and output vectors of DMU , respectively. This model

1s an output-based (or output-oriented) program. Similarly, one can have an input-based
BCC model. On the basis of optimal solutions of 1, /1;., s and 57, DMU, can be

classified as one of the four efficiency classifications [5]: class E (consists of extreme

points, i.e, n° =1 aswell as s = s” = 0 with unique solution of 1’), class E’ (linear

combination of DMUs in class E), class F (n° = 1 with nonzero s* and (or) nonzero s™ ),
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class N (1" > 1), where the first two classes consist of efficient DMUs and the last two

consist of inefficient DMUs.

Next suppose the input vector is displaced by the m rowed vector u and the output
vector is displaced by the s rowed vector v. Thatis X; = x;+uw and y; = y,;+v (j=1,2,

) X

We have the following result with respect to the translation mvariance in DEA
when all input and output data are nonnegative [1].

Classification Invariance: DMU | is efficient for (1) if and only if DMU , is efficient for
(1) under translated data; DMU | is inefficient for (1) if and
only if DMU | 1s inefficient for (1) under translated data.

We can generalize this result by relaxing the nonnegativity condition. However,
the type of the BCC model is restricted in use with respect to the following solution
invariance when negative input/output values are present [7].

Solution Invariance: The input-based BCC model is output translation invariant and the

output-based BCC model is input translation invariant.
3. Negative input/output values in DEA

Although the classification invariance is discovered under the nonnegativity
assumption, it can be applied to the situation where negative data are present, since the
relative position of DMUs is invarniant to the data changes.

Consider the three DMUs used in {7], each with a single negative input and a
single positive output. The input-output vector for the three DMUSs are: DMU1 = (-4, 1),

DMU2 = (-2, 3) and DMU3 = (-1, 2).
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By a translation vector of (5,0), we have the corresponding translated DMUs, (1,
1), (3, 3) and (4, 2). The input-based BCC model now classifies DMUs 1 and 2 as
efficient (class E) and DMU3 as inefficient (class N).

Thus, the input-based BCC model can be employed when negative inputs are
present, if the negative inputs are translated into positive values. (A similar result can be
obtained for the output-based BCC model with negative outputs. That is, the output-based
BCC model can be used when negative outputs are present, if the negative outputs are
translated into positive values). This gives a different result in contrast to what is found in
[7]. This is due to the fact that [7] focuses on optimal solutions to the translated and
untranslated BCC models, i.e., solution invariance; whereas we here focus on how to
determine the efficient frontier, and particularly, the efficiency classifications, rather than
the efficiency scores.

This result is useful when compared to that of [7], since the choice of orientation
of BCC model is a choice between exogenous and endogenous variables. For instance, if
a DMU is able to vary the quantity of all the outputs and is not able to, in short term, act
on the inputs, then the output-based BCC model should be selected even some outputs
may have negative values. Thus, the choice of orientation depends on the nature of the
problem and not the value range of a variable. By using classification invariance, either
input-based or output-based BCC model can be employed in the presence of negative
input or output values. Note that in this situation, the efficiency scores may not be
independent of the selected translation vector. However, the efficiency classification is

independent of the translation vector we select.
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Next, we observe what will happen if we have both positive and negative outputs.

Consider a simple case where the data domain is given by

S

where Y~ represents negative outputs. X" and Y"* stand for positive inputs and positive
outputs, respectively.

Table 1: Seven sample DMUs

DMU 1 2 3 4 5 6 7

X (input) 2 3 4 2 1 1 4

y (output) 2 4 5 -1 -1 -3 2

y=y+4 6 8 9 3 3 1 6
Efficiency

Untranslated

Input-based E E E N (1/2)*

Output-based | E E E N (5/2)

Translated

Input-based E E E N({/2) |E F N (1/2)

Output-based | E E E N{2) E N@3) | N@3/2)

*The number in parenthesis represents efficiency score.

If the DMUs with negative output are not considered, then DMUs 1, 2 and 3 are
efficient (class E) under the BCC model. Associated with an output displacement of

v=4,DMUs 1, 2, 3 and 5 are efficient (class E) (see Table 1). When the output stands



337

for profit, it may be unsatisfactory that DMUS with negative output is classified as
efficient. Thus, the efficiency of DMUS should be reestimated. We assume that those
DMUs, particularly the efficient ones, with positive output values outperform those
DMUs with negative output values. Note that for any variable it may be advised to define
a range of values considered as admissible. Here the zero is not necessarily a limit for this
interval. Nevertheless by the classification invariance, any limit values can be
transformed into zero. Thus, this assumption can be made to any situation of limit values.

In order to solve this problem, the current study suggests the following: First, let

the data domain D be partitioned into H subdomains, D,, & = 1, ..., H. The first

subdomain D, consists of all those DMUs with positive input and positive output values.

For other subdomain D, , & # 1, all DMUs in D, produce the same type of negative

outputs. For example,

D D, D, D,
v Y,i Y{ Y,
I LI AR A

-X7-X;-X;

Second, after output data translation (i.e., force all outputs to be positive), we find all

well-defined positive multiplier efficient facets in subdomain D,, and all efficient DMUs
in each subdomain D, , & # 1. Then, we assign each efficient DMU in D, ,h# 1 toa

proper well-defined efficient facet in D, which gives the highest efficiency score. After

obtaining the re-estimated efficiency scores for all the efficient DMUs in D, , A # 1, we
assign each corresponding inefficient DMU in D, , & # 1 to the facet to which tne referent

D, , h# 1 efficient DMU is assigned.
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The second stage, in fact, can be carried out by the following binary linear

programming problem

minv'X, +u,
s.t. uTYj - VTij —u,+z,=0, je E
W'Y, -1
z,-bM<0 jeE 2)

Sh, =F |4

j€E

T, T
b,e{Ol},z,,u'v 20, u, free.
where X and Y represent translated data, E stands for the set of extreme-efficient

DMUs in D,. Model (2) is an output-based BCC-type model in which & determines the

dimension of a specific reference facet for an efficient DMU_ in D, , h # 1. For example,
if set K = m + s, the number of inputs plus outputs, then (2) assigns a specific DMU,

onto a full dimensional efficient facet. The constraint ij =|E|~k = |E| - m- s ensures
JjeE

that m + s extreme-efficient DMUs in D, determine the (full dimensional) reference facet.
If there does not exist any full dimensional efficient facet in D,, then we specify the

dimension of the reference facet by k.

Table 2: Reestimated efficiency scores for DMUs in Table 1

DMU 4 5 6
Efficiency score under 2 4/3 4
facet-1: y=2x +2

Efficiency score under 7/3 2 6
facet-2: y=x+5

Consider the example in Table 1. Table 2 gives the two efficient facets composed
by the DMUs having positive input/output values and the corresponding reestimated

efficiency scores. In Table 1, DMUS5 outperforms DMU7 whereas by model (2), the
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opposite result is obtained. Also, the nonzero slack on the negative output of DMUG is
suppressed.

In a study of Chinese textile performance, negative profit is present in some
textile firms [9]. As a result, firms with negative profit were excluded from the DEA
analysis. By means of the BCC classification invariance, we re-evaluate the performance
of those textile firms by including firms with negative profits.

We select three inputs: (i) labor which represents the number of staff and workers,
(i1) working fund (WF) and investment (INV) which represents the total investment for
building and purchasing of fixed assets. We use two outputs: (i) gross industrial output
value (GIOV) which represents the general achievement of each firm, and (ii) profit &
taxes (P & T) which measures the net contribution of each firm. (For more information on
these inputs/outputs, please refer to [9].) Table 3 presents the 33 textile firms and their
inputs and outputs in the annual period of 1989 where “rmb” is the Chinese monetary
unit. Note that the last five firms had negative profit & taxes values.

Managers of firms in China are rewarded primarily based upon their success in
meeting physical output targets, such as, profit and gross industrial output value, set by
the local government. Firm itself also pays more attentions to the profit and taxes,
therefore an output-based BCC model is employed. Using an output transtation vector of
(0, 50) and model (1), we have the efficiency results shown in the last column of Table 3.
Twelve DMUs were efficient (class E). Among them, DMU32, was a loss firm (i.e., it
had negative profit). This result is unsatisfactory in a decision maker's view. Because a
firm's manager should be penalized for the firm's deficit in profit and for the firm's

inability to pay taxes. Therefore we need to modify the efficiency score of DMU32.
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Table 3: Data and Efficiency Scores for 33 textile firms

Inputs Outputs Efficiency
(person) (10,000rmb) (10,000rmb) SCOres

DMU No. | Labor WF INV GIOV P&T
1 4063 4650.9 6663.5 11867.8 1787.0 1.00000
2 481 638.5 405.4 1621.6 128.7 1.00000
3 4762 2606.6 21548 8838.7 1107.0 1.00000
4 1365 1083.2 1441.9 4508.4 280.5 1.12476
5 1267 648.7 259.0 1667.3 66.3 1.03125
6 1342 627.1 573.5 1800.4 40.0 1.83539
7 1185 554.2 1055.2 2042.1 133.5 1.42735
8 534 238.9 100.3 307.5 414 1.64481
9 1083 1034.6 1703.7 8249.3 27.0 1.00000
10 837 873.1 1072.1 5804.4 110.6 1.00000
11 843 356.0 487.9 1458.4 142.5 1.15063
12 1594 941.5 729.2 980.7 39.2 3.75105
13 475 278.9 255.9 936.7 81.0 1.21964
14 558 309.6 367.1 715.3 69.1 1.67461
15 454 2233 33.9 717.5 703 1.00000
16 476 231.9 196.6 1024.9 99.4 1.01990
17 395 202.6 87.3 593.3 32 1.43593
18 453 150.2 161.6 570 46.9 1.44838
19 252 76.5 52.4 470.6 15.7 1.00000
20 213 110.2 31.1 229.5 12.0 1.00000
21 538 271.3 236.2 756.9 303 1.90190
22 706 144.7 236.0 1503.4 50.6 1.00000
23 390 229.2 161.8 424.5 73.6 1.22981
24 448 207.2 156.8 538.3 71.7 1.27760
25 381 133.2 113.4 295.2 101.8 1.00000
26 983 554.8 3584 1147.9 151.4 1.36252
27 1426 471.4 516.8 1070.2 64.9 2.28246
28 498 175.0 181.2 1259.0 89.9 1.00000
29 1066 300.6 530.9 766.9 -5.2 3.14486
30 1349 1015.1 2003.0 2268.8 -8.4 3.31258
31 1140 357.2 716.4 1705.6 -31.0 1.82590
32 481 187.9 683.4 1601.8 -41.3 1.00000
33 717 174.8 201.9 386.4 -23.5 4.47580

We first partition the (translated) data domain into two subdomains, D

(composed of DMUs from 1 to 28) and D, (composed of DMUs from 28 to 33), and then
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find a proper well-defined positive multiplier efficient facet in subdomain D, to modify
DMU32's current score. (All of the loss firms with negative profit & taxes are in class E
under subdomain D, , i.e., DMU32 is not a referent DMU by other loss firms. Therefore

the efficiency scores for other loss firms do not need to be reestimated.) We setk=m + s
= 5, and find a full dimensional efficient facet composed by DMUs 9, 10, 19, 22 and 25
which vields the highest new efficiency score of 1.44625 for DMU32. Note that with this
reestimated score, DMU32 still outperformed other four DMUs having negative profit &
taxes values.

4. Conclusions
It has been shown that, by the classification invariance in the BCC model, both input-
based BCC and output-based BCC models can be used to characterize the efficiencies and
inefficiencies of DMUs when either negative output or input values occur. Output (input)
values are no longer restricted to be positive and the choice of orientation of the BCC
model is also unrestricted. This broadens the application of the DEA methodology. The
empirical study of textile firms has shown that the technique of finding a well-defined
envelopment facet should be used for a specific observation with negative output values
to reestimate the efficiency score. The same technique can be applied to situations when
negative input values are present.
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Inequalities and error bounds are derived for finite state, irreducible, time reversible
Markov chains in continuous time. The results are illustrated in a reliability example
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Section 1. Introduction

In this paper inequalities and error bounds are derived for finite state, irreducible,
continuous time, time reversible Markov chains. To motivate the results we will illustrate
their use in a reliability example involving a repairable system. The same example can
arise from the viewpoint of a weighted random walk on the unit cube. Consider a system
of 4 independent components. Component ¢ alternates between working or up periods,
exponentially distributed with parameter «; and repair or down periods, exponentially
distributed with parameter 8;. These up and down periods are independent both within

and between components.

Assume that the values «;, 8;,¢t = 1,2, 3,4 are given by
component 1 2 3 4
failure rate «o; 1.1 1.8 1.2 .9
repairrate G; 19 21 22 18

As the parameters vary with component, the number of down components does not

form a birth and death process. Rather, the process of component states,
X(t) = {(X1(t), X2(t), X5(t), Xa(t)), t > 0}

with,
Xi(t) = 1 if component ¢ is up at time ¢
710 if component ¢ is down at time ¢

forms a time reversible Markov chain with state space,

Assume that the system is a 2 out of 4 system, meaning that the system is up at time ¢ if
and only if at least 2 components are up. The set of states corresponding to system failure
is thus,

A= {(0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}.
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If we start at time 0 with initial distribution w on I, then the distribution of the waiting
time until system failure is denoted by L, T4, T4 being the first passage time to A. The
steady state distribution on I, is denoted by =, and thus £,T4 is the time to system failure

starting in steady state.

Define @ to be the transition intensity matrix of the Markov process, Q4 to be the
restriction of () to A° x A® and 7; to be the smallest eigenvalue of —Q 4, which in this
case equals .02131. Employing error bounds found in Aldous and Brown [1992], and
Brown [1999], we can well quantify that £,T4 is approximately exponential with parameter

1 = .02131.

More specifically,
1.1) .99887e¢ "1t < Pp(Ty > #) < .99959¢ ™71t

(mean) 46.8734 < E,T4 < 46.9071
(standard derivation) 46.92929 < SD,T4 < 46.92933
(skewness) 2 < skew,T4 < 2.000004

(kurtosis) 6.000002 < kur,T4 < 6.000015.

Thus the distribution of £,T,4 is well understood. Of, at least equal interest, in this
reliability example is the distribution of the time to system failure starting in the perfect
state, 1 = (1,1,1,1). As 1 is the best state and stochastic monotonicity is present, £1T4
is stochastically larger than an exponential distribution with parameter v;, which is the
time to first failure starting from the quasi-stationary distribution on I (see Section 2.2
for a discussion of quasi-stationarity). In Section 4 (4.36), we derive an upper bound for
P, (T4 > t), for an arbitrary initial distribution w. Applying it to our reliability example

with w(1) = 1 we obtain,

(1.2) et < P (Ta < t) < (1.05125)e™ "t
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Thus for example, the 99 percentile of £3(T) falls between 216.1 and 218.5.

For our next variation, define T4(t) to be the waiting time starting at £, for the first
visit to A. We anticipate that for, £, a moderate multiple of the relation time (which in
this case equals (18.9)~, that £,,(Ta(t)) should be close to £,T4. Two error bounds are
derived ((4.6) and (4.25)) which treat different variations of this theme. For approximation
of the survival function, for the reliability example with w(1) =1,

sup |Pi(Ta(t) > ) — Pr(Ta > s)|

< .23265¢718:9¢,
520 P, (TA > S) -

(1.3)

For example for ¢ = .5 (which is 9.45 times the relaxation time), the bound on the

righthand side of (1.3) is smaller than 1.831 x 1073,

Similarly, in our reliability example,

|[E1Tg(t) — E-Tg| ~18.9¢
1.4 su < .0221e™ 57,
(L.4) sup E,T3 <

The choice t = .5 yields a bound which is smaller than 1.74 x 10~¢. Thus, for ¢ > .5,
the difference between £1(Ta(t)) and L£,(T4) is negligible. In an amount of time which is

a small fraction of E;T4, the chain has for practical purposes “forgotten” its initial state.

As a final illustration, start the chain in steady state and consider the conditional
distribution of X(¢) given that T4 > t. Aldous (1982), reasoned that if the relaxation time
is small compared to E,Ty4, then after a passage of time, ¢, which is small compared to
E;T,, the chain is unlikely to have hit A, and if not, X(¢) should be close in distribution to
the quasi-stationary distribution on I, (defined and discussed in Section 2.2). Consequently
the conditional distribution of £, T4 given T4 > t (and thus the unconditional distribution)
should be well approximated by the quasi-stationary distribution, £,74, an exponential
distribution with parameter ;. This intuition was quantified in Aldous-Brown (1992),
and leads to (1.1) above. To quantify the idea that X (¢)|T4 > ¢ converges rapidly to L,Ts

when the relaxation time is small compared to E,T4 (equivalently to E,T4), we derive
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an error bound, (4.24), which when applied to the reliability example yields,

(1.5) sup | P (X(t)eB|T4 > t) — o B)| < .01342¢ 1887869
B

For t = .5, the bound is smaller than 1078, The above inequalities are particular cases
of results derived in Section 3 and 4. In potential applications, to convert the inequalities
to specific numerical bounds we need to compute or approximate two eigenvalues. One is
A1, the second smallest eigenvalue of —Q (where Q is the transition intensity matrix), and
the other is 71, the smallest eigenvalue of —@Q 4, the restriction of —@Q to A x A€. For the

Markov chain corresponding to repairable systems, we show in Section 5.1 that,
A1 = min(e; + ;).
T

In the running example of the 2 out of 4 system, A; thus equals 18.9. For many Markov
chains, A; will be not be analytically available. For small to moderate size matrices there
are a variety of numerical analysis methods for computing eigenvalues. For large matrices,
several authors have studied techniques for bounding A;. Diaconis and Stroock (1991)
review some of this methodology, introduce a new method, and give several illustrative
examples. The value v; = .02131 used in the reliability example, was computed using
Mathematica for the 11 x 11 matrix, —Q 4. When not readily computable the quantity v,
is easy to upper bound, as the extremal characterization of eigenvalues represents v; as
an infimum. (See Aldous and Brown (1992), p8; for further comments). For many of our
bounds, only an upper bound on v;]A; is needed to obtain numerical values. In practice,
for large matrices, we would need to upper bound -y; (perhaps using the extremal charac-

terization), and lower bound A; (for example with the Diaconis-Stroock (1991) approach).

Approximations in reliability models has been a topic of considerable interest. Gerts-
bakh [(1984) and (1989), Chapter 3], surveys work in this area, including many contribu-
tions from authors in the former Soviet Union. Somc notable works are Gnedenko, et al

(1969) and Solovyev [(1971) and (1972)]. The model for a repairable system discussed in
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the introduction was of major interest to nuclear engineers in the early 1970’s in their use
of fault tree analysis to help assess the safety of nuclear power plants. A conference volume,
Barlow et al (1975), contains several articles by nuclear engineers as well as mathematical

articles on time to first failure.

Keilson (1975), (1979)) suggested that £,T4 and £1T'4 could be approximated through
the use of the spectral representation for reversible chains, and the resultant complete
monotonicity for £,T4. He anticipated bounds and inequalities based on a parameter, p,
which reflects departure from exponentiality based on the behavior of the first two mo-
ments of £L,T4 (see example (ii), Section 4). Aldous (1982) pointed out the importance of
the ratio of the relaxation time to E,T4 (equivalently of v1|A1), as a quantity for bounding
distance to exponentiality. Keilson’s approach is further explored in Brown (1983), and
the approach of Aldous in Aldous and Brown ((1992) and (1993)), Brown (1999), and the

current paper.

Keilson was motivated by models in reliability and queues. More recently there has
been a great deal of interest in random walks on graphs, which are also examples of time
reversible chains. In this context first passage times are of less interest than ergodicity,
but there are connections between the two topics. Diaconis and Fill (1990) develop and
explore a notion of duality in which ergodicity can he studied via first passage times. The
current paper uses contributions to the study of distance to ergodicity by Diaconis and

Stroock (1991), and Fill (1991), in developing inequalities for first passage times.

A forthcoming book by Aldous and Fill (2002). presents an elegant treatment of

random walks on graphs.

Background material on the spectral representation, as well as various definitions
and properties for reversible chains are found in Section 2. The isometry, which leads to
our inequalities, is developed in Section 3. It is based on the relationship between the

underlying chain and its companion star chain, the star chain being discussed in Section
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2.4. Various bounds and inequalities, which follow from the isometry, and derived in
Section 4. Section 5 obtains the eigenvalues of —@Q, for the Markov chain corresponding

to a repairable system.

Section 2. Background and Definitions

We review some results for time reversible chains. Keilson (1979) is an excellent

reference.

2.1 Spectral representation. Consider a Markov chain {X(t),t > 0} with finite state
space I and transition rate matrix Q. The chain is assumed irreducible with stationary
distribution 7, and time reversible (r(é)q;; = 7(j)g;i). For a non-empty proper subset of
I let Q4 denote the restriction of Q to A° x A¢, and have D, denote a diagonal matrix
with diagonal entries {n(¢),i € A®}. By reversibility D,Qa = Q4 D,. It follows that
D},/ZQAD;‘/Z = D;l/ngD}/z, thus the matrix My def D,lr/ZQAD;l/2 is symmetric and
M4 and Q4 are similar. As M4 is a real symmetric matrix it has real eigenvalues and we

can choose a complete orthonormal system for R4°, ¢ ... @y, consisting of eigenvectors of
g

M,. The eigenvalues of M4 (which by similarity coincide with those of Q1) are denoted

by —vi,...,—v, where 0 <1y <wvy... <y,

Consider the matrix R, = eMat = 8° tkgjﬁ. By standard methods it follows that,
(2.1) R, = DM2eQatp-1/2 — pY/2p p-1/2) where
(2.2) Py(i,5) = BX(t) = j,Ta > t),

where T4 is waiting time to reach A, with T4 = 0 if X(0) € A. The matrices R; and
P, have eigenvalues {e7%t,j = 1,...,n}, and y; is an eigenvector of R; with eigenvalue

e it j=1,...,n.
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From (2.1), (2.2) and the complete orthonormality of @1, ..., @n,

(2.3) VIDPRIX(®) = 5,Ta > 1) = V7D 3 ween(i)e ™
k=1
Denote by /7 the vector D¥?1; its entries are {/n(1),1 € A°}. From (2.3),
(2.4) Vr@P(Ta > t) = (V7 0k)pr(i)e™".
k=1

Denote by 1 < 72... < <ym the distinct values among vy ...v,. Define S, = {k :
Vg = Y}, and define S, to be the subspace generated by {@g, & € S;}; Sy is thus the
eigenmanifold corresponding to «,. Finally, delete from vy . . .7y any eigenvalues for which
> (VT 01)? = 0, and relabel the resulting set as 1 < ¥2... < ¥m. Then (2.4) can be

rewritten as,

m

(2.5) V()P (Ta > t) Z )} (E)e~

where Pg_(1/7) is the projection of /7 on &,.

Define p(r) = ||Ps,(v/7)||%,7 = 1,...,m. From the definition (of 71 ...7vm),p(r) >

0,7=1,...,m, and,
(2.6) Yop) =11 Ps.(Va)lI* = ||ValP = w(A°) = 1 — =(4).

Next, from (2.3),
Po(X(t) = j,Ta > 1) = V/7(3) Z(ﬁ, pR)o(f)e

= Jr Z PS NGe™ Tt

2.7)

From either (2.5) or (2.7),

m

(2.8) P (Ty>t)= Zp('r')(:_”t.
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Finally we reference for later use an inequality (Aldous and Brown (1992 p.12)),

71
(2.9) P02 1=+

where A; is the second smallest eigenvalue of —(). This leads directly to (Aldous and
Brown (1992 p.2))

(2.10) 1- %)e—"lt < Pp(Ty > 1) < (1—m(A))e
1

Inequality (1.1) is a direct application of (2.10).

2.2 Quasi-stationary distribution.

Darroch and Seneta (1965) formalized the concept of a quasi-stationary distribution.
In our context, define Q4 to be irreducible if for each pair xz,y € A°, there exists an m,
and {z; € A%, i=1,...,m} such that,

m—1

Qz,2192m,y H Gz 20y > 0.

i=1

Thus, it is possible for the chain to go from state x to state y, without passing through A.

For Q4 irreducible, Darroch and Seneta show that for all z,5 € A%, ¢t >0

(2.11) Jim Po(X(t) = j|Ta > 1) = A(5), and
(2.12) tl_i»m Py (Ty > t+ 5Ty >t) =e M5
where,

n VT

and ¢, is the unique eigenvector (up to a constant multiple) of —Q 4 corresponding to the

eigenvalue ;.
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If Q4 is not irreducible (but recall that @ is irreducible), then it is still the case that,

QL) fim PX) = 51Ta > ) = VAG)Ps (/R)G)/p(D), and
(2.15) tl_lglo P (Ty>s+tTqg>1t)=e M

(2.14) and (2.15) following from (2.7) and (2.8).

Since we will not require that @4 be irreducible, we will refer to,

€] P [
()& ¥ ?1) »JEA

as the quasi-stationary distribution on Q°¢, and £,(7.4), an exponential distribution with

«

failure rate -v,, as the quasi-stationary distribution of T4. Of course when @ 4 is irreducible,

a and B coincide, and the stronger properties, (2.11) and (2.12) hold.

2.3 Post-recovery Distribution. The post recovery distribution on A€ is defined by,
o(i) = lim Pr[X(t) =4 X(t7) € 4, X(t) € A%]
t—o00

=Y m(0)qai/ Y, T()qase = m()gia/ Y w(K)gka, i € A°

acA acA keAe

(2.16)

where ¢;4 = E]. e 0ij for 2 € A°. The post recovery exit time distribution of T4 is defined

by L;T4, the distribution of T4 under X(0) ~ 0. Now,

(2.17) Ga=— ) Gi= ) { (D) ex(5)ve

jEAC JEA“ K

From (2.15),

(2.18) migia = v/7( Z (VT o) i (i) = /7(3) Zvr Ps, (Vm))(3)

and,

(2.19) Z I Z%p(v (v, p), so that

t€EAS
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(2.20) a(i) = Vr (@) Y w(Ps.(vm)(@)/ (v, p).

r=1

From (2.5), (2.8) and (2.20),
(2.21) Po(Ta>8) =Y o(@)P(Ta>t) =) vwp(r)e”*/(1,p)
: % r=1
= fx(t)/ f=(0)
where f, is the pdf corresponding to the absolutely continuous component of £,T4 (all but
the atom at {0}). Thus, as Keilson (1979) observed, the stationary renewal distribution
corresponding to L,T4 is Lry4Ta where m|A° is the restriction of m to A°((w|A°)(j) =

7(§)|w(A%)),j € A°, 0 elsewhere).

2.4 Star chain. The star chain {X*(¢), > 0} corresponding to {X(¢),t > 0} and A,
is a time reversible Markov chain with state space {0,1,...,m} and transition intensity
matrix,

Yi, 0 =1,...,m, 7=0

—Yi,j =i # 0
(2.22) CEN= mi=0z0
~i=i=0

In (2.22) the quantities 1 ...¥m,P1---Pm are the same as those appearing in (2.8).
It easily follows that the stationary distribution. 7*, of X* has n*() = p(i), ¢ =0,...,m
with p(0) = n(A). Defining A* = {0} and T4- as the waiting time to reach {0}, it easily
follows that L£,Tas = LT, Lo+Tar = LoTyg and Lo-Ta = LTy where 7%, 0%, a* are

the stationary, post-recovery and quasi-stationary distributions for the star chain.

Note that X and X* may have an unequal munber of states, and = and 7* may be
quite different in character. For example we may have 7 uniform and 7* assigning most

of its mass to a single point. Furthermore (0%. is diagonal, while Q4 in most interesting
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examples will be irreducible. Thus, the resemblance between X and X* appears to be quite
superficial. Nevertheless the results of section 3 show that there are interesting similarities

of behavior.

Section 3. Main results.

Consider the m dimensional subspace of R4 (the set of real-valued functions on A°),
consisting of all linear combinations of DY 2P;;,_((\/?r)),v" =1,...,m. Call this subspace

S. A typical member locks like,

(3.1) zi = /m(6) Y &(r)[Ps, (VT)(i), i€ A°
r=1
Define a mapping V from R™ to S by,

(3.2) Vy(i) = /7(0) Zy(' (Ps.(vVT)(@), i€ A°

r—l

where as before p(r) = ||Ps_(v/7)||%

Note that Dy /2 (Vy) is chosen to have the same Fourier coefficients with respect
to Ps (v7)/\/p(r),r = 1,...,m as D;l/zy has with respect to e,,7 = 1,...,m where

e(j)=9(r,5),7=1,...,m

Several properties of V are found in Lemma (3.1) below.

Theorem 3.1 The map V from R™ to 8, defined above, has the following properties:

. def \’2 m y(r)z(r df
(1) (Vy,VZ)W—l i ZAC (Vy-l)r((t) 2 1 1(])21§ L= (y’z)P_l

(it) V is linear, one to one and onto.
(iii) 2 a-(Vy) 21
(iv) Yo ac(Vy)iPi(Ta > t) = 3" y(r}e™ 7" Vy is the unique element in § with

this property.
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(v) If £ € R4 satisfies 4. z:Pi(Ta > t) = L7 &(r)e” "%, then ||z||,-1 >

[(VE|[x-1 = ||£[|p-1, with equality if and only if z = V%.

(vi) If w and Vw are probability vectors (over A*® and A€ respectively) then

LyywTa = L,Ty+ and,

o & RO (2 O 1= () -

I Ac

)

Proof. (i) From (3.2),

Vo V2)em = (L 2 pe (), X 2 ()

—Zy Z(T (v, 2)por.

(ii) V is obviously linear. If z € S is given by (3.1) then z = Vy with y(r) = Z(r)p(r),
thus V is onto. If Vz; = Vz, then ||V(zy — x2)|lr-2 = l|z1 — z2|[p-2 = 0 (by (i)), thus

z1 = z2 and V is one to one.

(iii) From (3.2),
Z(Vy)i Z y(r; (v, Ps.( Z zg:)P(T Zy(r)
(iv) From (2.5) and (3.2),

SV > 1) = (32 s (/9,3 P (vme ™)

p(r)

= Z y(r)e 7t
r

Uniqueness follows since if z € S, then by (ii), z = V¢ for a unique ¥’ € R™. Thus
if 32 P(Ta>t) =3 (Vy)iPi(Ta > t), then Y (y(r) — y'(r))e~"t =0 for all t > 0, thus

y=19y" and z = Vy.
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(v) From (2.5),
Y wP(Ta>t) =Y (D7"z, Ps,(Vm))e "
Thus (r) = (Ps,(Dy /*z), Ps.(y/7)). By Cauchy-Schwartz,
(3.3) #(r) < ||Ps. (D7 22)|1? || Ps, (VO)II® = p(r)||Ps, (D5 /?x)|f?

with equality if and only if Ps, (Dy/%z) = ;g; _(v/7). Thus, from (3.3),

3 B < S 05 o) < 107 = 2

p(T
with equality if and only if Dy Y2g = b %PSP(\/;’)’ thus if and only if z = Vz.
(vi) LywTa = L4,Ta~ by (iv). The chi-square equality follows from (i). ©

We next consider product moment identities for certain conditional expectations.

Corollary 3.2 (i) Let g1, g2 be functions satistying [ |g:(z)|e™"%dz < 00,7 = 1, 2. Define

By; () = Ei(9;(Ta)),i € I,j = 1,2, and B; (v) = Ev(gj(Ta-)),r =0,...,m,j=1,2. Then

B (B9, (X (0))Bg, (X (0))] = Ep[35, (X7(0)) g, (X(0)))

(it) If, in addition, g1, g» are distribution functions of measures u1, u2 on [0, 00) with

:u'_']{o} =0,5 =1,2, then,

BB, (X(0))8g,(X(0))] = Exl(91 * 92)(T4)] = Ep(g1 * 92)(Ta+))

where,
Y

g1 #*92(t) = / g1(t — a:)dga(z),

S0

the distribution function of pq * ua.
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Proof. (i) Define w;(r) = p(r)8;,(r) = p(r) [y° g;(t) v, tdt,r =1,...,m,j =1,2.
From (2.5) and (3.2),

7(8)Bg; (1) = V(i) Y (Ps, (VM) ()55, (r)

= (Vw;)(i), i€ A°

(3.4)

Thus by Theorem (3.1) (i) and (3.4),
En By, (X(0))B4, (X (0))] = w(A)g1(0)92(0) + (Vwy, Vawz) 1

= p(0)91(0)g2(0) + (w1, wa)p—1 = Ep[Bg, (X™(0)) 85, (X™(0))].

(3.5)

(i) Since g1(0) = g2(0) = 0 and g(t) is a distribution function,

Tas 00
8,0 =r [ dgs) = B, [ Irpese das)
0 40

(3.6) -
= [ g0 E w00, 5= 12
Thus,
3.7 (w1, wa)p-r = Zp(")"/}m (y)bg, () = ZP(T)"/’m*gz (vr)-
r=1 r=1
Next,

Ex[(g1 % 92)Ta] = Ep(g1 * 92)(T'a-)] = Ep[5, g, (X" (0))]

(3.8)

= Zp(r)"/)m*yz (1) (by (3'6))'

The result follows from (3.5), (3.7) and (3.8).

Corollary 3.3. Suppose that w is a probability distribution on {1,...,m}, and Vw a
probability distribution on A¢. Define Ly.,[X (#)|Ta > t](Lyu([X*(t)|Ta+ > t]) to be the
conditional distribution of X (¢)(X™*(¢)) given T4 > ¢ (T} > t) under X (0) ~ Vw(X*(0)) ~
w). Then,

(@) V(Lw(X*(0)|Ta- > 1)) = Lvu(X(D)ITa > 1)
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(4) X3 (Lvw (X (B)Ta > ), 7) = X3(Lw(X*(t)|Ta- > t),p)
Z (7rl PVw(X(t = 7’|TA > t)PVw(X(s) - 2|TA > S)

i€A°

(p(r)) " Py (X*(t) = r|Tar > £)Py(X*(s) = r|Ta > 5)

Ms

(445)
r=1

(u;((:))y =1 (+9) [Py (T4 > §) Pya(Ta > 5)

M5 il

||
A

r

Proof (i). From (2.3) and (3.2),

Pyo[X () =5, Ta>t]= Y (Vw);P[X(t) = j,Ta > 1]
1€AC

(3.9) =v7 Zeﬂ 2 r) Z ok (7)(Ps, (V), ®k)

kEeS,

= V/( Z ’Ps(f))()-“.

’I

Furthermore,

(3.10) PuiX*(t) = v, T4 > t] = wir)e ™"

The result now follows from (3.2), (3.9) and (3.10).
(ii) Follows from (i) and Theorem (3.1), (vi).

(iii) Follows from (i), (3.10) and Theorem (3.1), (i).

Section 4. Examples.
Example (i) Choose ¢1(t) = g2(t) =t*,a > 0.
Then ¢y(s) = [ e *at*1dt = ['(a + 1)/5*. Applying Corollary (3.2) we obtain,

T a+1)
20 T T (2a+ 1)

B (T3")

(@.1) EA[B(T§1X(0))] = I*(a+ 1>Zp
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Define ¢, = E,T$/T(a + 1), then from (4.1),

(4.2) Var, [B(TEIX (0))/ (B T§)? = 5 — 1.

Assume v; < A;. Multiply all three components of (2.10) by «t*~! and integrate ¢

from zero to oo, obtaining

(43) (= Y7 S o € (1= (A
From (4.3),
“EP oA o mye
(4.4) E—lg (l_h) 52/\_1(1_3‘;) 2

Thus when 1/} is small, so is the squared coefficient of variation of E(T'|X (0)).

Define T'4(t) to be the waiting time starting at ¢ to reach A. Set h(s) = E;(T§), then

E;h(X(t)) = E[T$(t)| X (0) = 1]. Aldous and Brown (1992 p.7) derive for general h,

(45) IBR(X(8)) - Eh(X(0)] < \f ;(’;)('”Var,,h(x<o>)

Applying (4.2) - (4.5) with h(z) = E;T§ we obtain.

o) a
o |EiT](t) — E<T%] <ag-2
a>0 EWTX

(4.6) 1=n(@) et

Moreover, for general w, we can replace 1;;:()') on the righthand side of (4.6) by
z1(w, ).
Inequality (1.4) is the specialization of (4.6) to the reliability example with ¢ = 1 and,
4

7(1) = [[1Biles -+ 6:] = -822367.

1
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Example (ii). For X completely monotone, Keilson (1979) suggested
p = [(EX?%/2(EX)?) — 1] as a measure of departure between X and an exponential dis-
tribution with mean EX. The author (Brown (1983)) showed that small p indeed implies
small sup norm distance between the survival function of X and that of the approximating

exponential distribution.

A further property of p follows from example (i). Setting o = 1 in (4.2) yields,

(4.7) Var, E(Ta|X (0))/(ExTa)* = p

Thus p is the squared coefficient of variation of E[T4]|X(0)]. A small value of p
indicates that the variance of E(T4|X(0))/E,T4 is small under X (0) ~ w. For chains
with 7 uniform and p small, (4.7) can be interpreted to mean that most of the quantities

{E;Ta/E.Ta,i € A%} are close to 1.

Some consequences of a small coefficient of variation for F(T4|X (0)) are explored in

Aldous and Brown (1992).

Example (iii). For s,t > 0 define p;(p2) to be a one point probability distribution
concentrated at s(¢). Then p; * pg is a one point probability distribution concentrated at

s +t. From Corollary (3.2), (ii),

(4.8) Pr(Ta>s+1t)= Y mPi(Ta > t)Fi(Ta > 5).
i€ Ac
Equivalently,
(4.9) > mlP(Ta > s+1) ~ Pi(Ta > s)Pi(Ta > t)] = 0.
i€EAC

Thus ”on average” T4 behaves as if it were conditionally exponential given X (0)

although typically T4|X (0) = ¢ will not be exponential for any .
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Integrate both sides of (4.8) with respect to s from 0 to oo to obtain,
(4.10) > w(@)EiTa[Gi(t) — Pi(Ta > 1)) =0
icAc
where G;(t) = ft°° P;(T4 > s)ds|E;T4, the stationary renewal distribution corresponding
to L£;T4. Thus once again T4 behaves in an average sense as if it were conditionally
exponential given X (0).

David Aldous (personal communication) points out that (4.8) follows from the obser-
vation that for the stationary version of {X(t), —00 < t < oo} on the whole real line, that
Ta = inf{t > 0: X(t) € A} and T4 = —sup{t < 0 : X(t) € A} are conditionally i.i.d.
given X (0).

Example (iv). Recall the quasi-stationary distribution discussed in Section 2.2. For the
star chain the quasi-stationary distribution, o*, is a one point probability distribution at

{1}. Thus from (2.13) and (3.2),
Va* (i) = vr(@)Ps,(vr)(i)/p(1) = a(i)

thus Vo* = ¢ and Theorem 3.1, (vi) yields,

a? . 1
(4.11) Blam) =) = -1=x"p=—-1
icac b

When vy < Ap, the bound (2.9) combines with (4.11) to give,

71
4.12 2, ) < .
( ) xi( ) -

which improves slightly upon a bound given in Aldous and Brown ((1992) p.9).

Example (v). Recall the post-recovery distribution of Section (2.3). For the star chain,

(r)y(r)

x(y P =
(4.13) o*(r) = ) 1....,m.
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From (2.16) and (4.13) we see that Vo* = ¢. It thus follows from Theorem 3.1 that,

2
X (o, ™) =x5(c%,p) = g: 1)3 -1
_L00)
f=(0)

where f, is the pdf of £L,T'4.

Since |jo]{2_, = ||e*||2_, (Theorem (3.1)) it also holds that,
n I3

m
(4.15) ' > o mgia =Y p(r)P(r).
icAe 1
Combining (2.6), (2.17) and (4.15) we have,
m
(4.16) > mgly =Y p(r)yi(r), 1=0,1,2
i€Ac r=1

In (4.16), the identities for j = 0 and 1 are well known but j = 2 (4.15) appears to be

new.

Example (vi). Observe that Vp(i) = v/7(3) Yo, (Ps.(v7))(5) = n(i), i € A®, thus
7m = Vp. Define m(j) = Pr(X(t) = j|Ta > t). From Corollary (3.3), (iii),

me()ms(j) o= mp(r)wi(r) S p(r)e 1 +e)
(418) jEZAc F(]) - Z p(T) B Pn(TA > t)P,r(TA > 5)
Pr(Ty > s+1)

T Pa(Ta > )P (T > 5)

r=1

As t = o0, my — «, the quasi-stationary distribution. Now,
(4.19)
llme = all-s = Iy — @*|2-2 = (Pe(Ta > )72 [Pa(Ta > 2) — 2671 Pp (T > ) + p%Pf(TA > t)]
= (P(T4 > 1))"2R()
where R(t) is the expression in brackets on the right side of (4.20). From (2.8), (2.10) and
(4.19) we find,

m

R(t) = Zp(r)e—zwi + 1,1—1(Zp(r)e~~yrt)2

< A=m(A)A - 7(4) = p((A)) 2y
- p(1) '

(4.20)
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Assume {1 < 1; from (2.9), (2.10), (4.19) and (4.20) we obtain,

(4.21) flme — aHZ—x <(1- )\1) 3(1 (A ))(— - W(A))e—z(“/z—’h)t_

Using (4.21) and an argument relating total variation distance to chi-square distance

(Diaconis and Stroock (1991 p. 42)),
s
g () = a(B) = 5 > =200 () < L, -
(4.22) ? i
< 0= 2752 (1= () (2 — (a2 e,
2 /\1 /\1

Next, it follows from Aldous and Brown ((1992, p.12)) and Brown ({1994, p.13)) that

A1 € A} < 9 where A is the second smallest eigenvalue of —Q*. Thus,

(4.23) Y2 — 1 > AL —

Finally, from (4.22) and (4.23), if y1 < A; then
(4.24)
Dax |Pr(X:eB|T4 > t) — a(B)| < (1 ) 3/2[( —7(A)) - (1 — m(A))]V2%e~Pr—mt,
1

Inequality (1.5) of the introduction applies (4.24) to the reliability example, noting

that,

1 [1, -
w(A) = [JT =2+ 3 2 ~ 4.089 x 104,
o+ B 2

Example (vii) Our purpose in this example is to derive the inequality,

up [PulTa(®) > 5) = Po(Ty > 3) Tyt
s P(TA>S) ’

(4.25) < )a w,m)(1 —

Ag

This inequality was applied to the reliability exanple resulting in (1.3).

In Section 3 we dealt with distributions on A¢ or (for the star chain) on {1,...,m}.

Now it will be convenient to allow for mass at 4 or (for the star chain) at {0}. The
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modification is rather trivial. Represent a vector on {0,1,...,m} by w = ("’1(‘.10)) where
w(l)

W = : . The range of V (the analog of V) is RA"{2}, where a represents the
w(m)

collapsing of A to a single point. Define V by,

o) = (20, e

(Vw)(a) = w(0) and (Vw)() = (Vi)(4) for ieA°. The inner products are then modified

to,
= PO 200
_ z(a)y(a) z(i)y(d)
@ =) 2
We see that,
(Vw, Vz) w%go) Vi, V3)
w(0)2(0)

so that the properties of V (given in Theorem (3.1)) extend to V.

Suppose now that Py, (Ta > t) = > v, w*{r)e~7*. It follows that,

(4.26) w*(0) =1—= > w*(r) = Py(Ta = 0) = w(A) = 1= w(i)
1 Ac

Moreover from Theorem (3.1)(v), and (4.25),

+
(4.27) 0 '
(w*(0) — 7(A))? (w(i) — vr(z))z 4 20
< ﬂ'(A) + E ) X1( )-

) 4 57 L0 _ (010 rA)?  § (0() ptr)?

Next, define TV (w*,p) to be the total variation distance between w* and p. Thus,

T

(4.28) TV(w = %; (n)= Z(u; Z('w (r) —p(r))~,

0
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where ¢t = max(0, a),a” = max(0, —a).

Now,

Pu(T4 > 8) — Pe(Ta > s) Z(w —p(r))e” s < e™N? Z(w —p(r))"*

Se"""sTV(w ,p), and

(4.29)

(430)  Pr(Ta>s)— Pu(Ta>s) < e ? i(w*(r) —p(r))” < e TV (w*, p).
1
Gathering together (4.27) - (4.30) and applying the Diaconis-Stroock argument as in
(4.22) we obtain,
(4.31)
[Py(Ta > s) — Pe(Ta > s)| < TV(w*,p)e™ ™ <

[N

x2(w*,p)e™ " < —xq1(w, m)e” M2,

N

Next, observe that,

Py(Tat) > s) = > w(i)Py(t)P;(Ta > s) = > _ wi()P;(Ta > s)
(4.32) i,j j
= Pwt(TA > S).
Applying (4.31) with w replaced by w; (in view of (4.32)) we find,

(4.33) [Pu(Ta(®) > 5) ~ Po(Ta > )l < oxa(we, me ™.

Next, we recall a result of Fill ((1991) p.72),
(4.34) x1(we, m) < xp(w, m)e M

Finally (4.32) - (4.34) and (2.10) combine to give,

IP'w(TA(t) > S) — P‘n’(TA > 5)'

(4.35) T

Since the righthand side of (4.34) is independent of s, (4.25) now follows.
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Example (viii) For our last example we will derive an upper bound for P, (T4 > t),

(4.36) P,(Ts >1t) < %[w(Ac) + (m(A%) Z )1/2 it

The coefficient of e~7t in (4.35) is the average of two quantities, the smaller of which

is w(A°).
This inequality was applied to the reliability example, resulting in (1.2).

To prove (4.36) note that,
m m
(4.37) Py(Ta>t) =Y w*(r)e™t <e > (w*(r))*
1 1

Now,
m

S () + 3w ) = Y ()], and
2

Z(w*(r))+— (w*(r))” = w(A®), thus
(438) S () = 213 o ()] + w(49)
Next,
w*(rY| = w(A° - ()] p(r
. le| (r)] = (4 >[7T(AC) 213( PO
' (AC 1 & (w*(r)) 1/2 c - (w*(r))? 1/2
<l &y T 0 2

(4.40) i (w*(r)))2 oy w?(i)
Ac

The result (4.36) now follows from (4.37) - (4.40).
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To derive a related result, denote the right side of (4.36) as we™"*. It follows from
(4.36) that,
* T T1t : Tt he— T\ — o5
w*(1l) = tlgglo[e Py(Ta>1)] < tl_lglo[e (we™ ") = w,
thus,

(@41 0<w'(1) < Hw(a) + (r(49 Y Ly,
2 o (i)

Section 5. Comments and Additons.

Section 5.1. For the repairable system of n independent components with failure rates

«; and repair rates f;,7 = 1,...,n, describe a state = by,
(5.1) z; = 1,ieB,x; = 0,%B¢

where B is a subset of {1,2,...,n}. (We allow B to be empty). The transition intensity
rates are given by,

o, Y =0,y = 35,7 £ 1, for some e B
Bi,yi = Ly; = z;,5 # 4, for some ie¢B°

R R A S AEE

0,elsewhere.

We now show that the eigenvalues of —Q are,

(5.2) {3 (@i+8).Bc{1,2,...,n}}.
ieB
The matrix, —Q, has a single eigenvalue equal to zero, and has as its second smallest

eigenvalue the quantity,

A1 = min(e; + 8i).
3
To prove (5.2) we appeal to the spectral representation,

(5.3) Py(z,z) = Pr(X(t) = 2| X(0) = z) = n(z) + Y $p}(z)e "
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where 7(x) is the stationary probability of z, {v;} are the non-zero eigenvalues of —@, and

{¢x} are the eigenvectors corresponding to {vx}.

Expression (5.3) follows from the spectral representation of the matrix @, by an ar-

gument very similar to that given for Q4 in Section 2.1.

Furthermore,

Y Y 4i(z) = multiplicity of A,

{k:ve=X,} =

where {),}, is the set of distinct values from {vj}.

It follows that A is an eigenvalue of —@Q if and only if for some zel, P;(z, z) possesses

a term of the form ce=**, with ¢ > 0.

For the repairable system model, consider z, defined by (5.1). Note that,

o def oy B e (o ﬁ;)t
(5.5) P(0,0) € Pr(X;(t) = 0 X:(0) = O)_(Vi+,3i+———a,+,81 +

and

. % ;
5.6 PO,1) % pr(x(t) = 1X:(0) = 1) = —Di 4 Y ~(att,
6:6) PO E Pri() = 1x:0) = 1) = S e

Next,

(5.7) (z,2) = (T PO . )] PP (0,0)).

ieB €3

Define D to be the collection of non-empty subsets of {1,2,...,n}. Then substituting

(5.5), and (5.6) into (5.7) we find,

(5.8) Py(z, +Z(H ,+/5 H(”C_j—iﬁi)e—(zl)(ai+ﬂi))t.

DeD D,

where Dy = (DN B)U (DN B) and Dy = (DN B)U (DN B¢).

As the coefficient of e_(ZD(ai+ﬂ"))t is positive for all DeD we see that zero and every
> plasi + B;) are eigenvalues of —@ and that therc are no other eigenvalues. The smallest

positive eigenvalue of —@Q is thus, min(a; + ;).



369

The general principle that follows from this argument is that if X(¢) = (X1(t), ..., Xa(t))
is a Markov chain, obtained from the product of independent, finite state, time reversible

chains, then the distinct eigenvalues of —Q are the distinct values from among,

n

{Z /\SZ;),TiEMi,i =1,...,n}

i=1
where M; is the set of distinct eigenvalues of —Q;,% = 1,...,n. Moreover, the smallest
positive eigenvalue of —Q is given by min; minas,no,c0) /\g.i). In the repairable system

example, M; = {0, ; + Bi}.

For most chains, P;(z,=) is difficult to explicitly compute. Thus, the above proba-
bilistic approach to finding eigenvalues will not work in these cases.
Section 5.2. Some of our results require y; < A;. This property holds if A is a singleton
set. We can always “collapse” A to a single point without changing the distribution of
L, T4 (see Aldous and Brown, (1992) p.5). The collapsing leads to a chain with transition
matrix Q'; 71 remains the same, and A; is replaced by A} > A, with A} > 1. For example

consider the Markov chain with state space {0, 1,2} and transition intensity matrix,
Q= ¢ —c¢ 0

with 0 <p <1l,¢g=1-p, and 0 < ¢ < 1. The eigenvalues of —Q) are 0,c and 1 + ¢, thus
A1 =c¢ < 1. Define A = {1,2}, then 71 =1 > ¢ = A1. The collapsed chain has,

, (-1 1
Q _< ¢ —c/)
The eigenvalues of —Q' are 0 and 1+ cthus M = (1+¢) > 1=y >c= A

The above example illustrates that for the study of questions related to T'a, A} is
more appropriate, and leads to sharper inequalities, than A;. However, in the reliability
example, A\; was available without computation and lead to excellent bounds. Only a slight
improvement would have been achieved by using Aj(A; = 18.9, ] = 19.0312).

Another consideration is that X] varies with A, while A\; does not. It is convenient to
have a single relaxation time (A;!), independent of the choice of A. My recommendation,
especially in the repairable system model is to use A; in obtaining bounds and inequalities

for T4. If the bounds are not satisfactorily small, then attempt to compute Aj.
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ABSTRACT

[ In this paper, we study the applications of information-theoretic concepts to characterise
probability distributions as maximum entropy or minimum cross-entropy probability distributions.
We also develop an entropic measure of stochastic dependence and apply it to obtain the measure
of dependence in some multivariate distributions and also to measure dependence in contingency
tables. We also derive the principle of maximum likelihood from both maximum entropy and minimum
cross-entropy principles. We also compare entropic method of estimating parameters with Fishers
and Pearson’s methods. We also find probability distribution of a family which is closest to a
mixture of distributions of some members of the same family].

INDEX TERMS

CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS/ ENTROPIC MEASURE
OF STOCHASTIC DEPENDENCE/ CONTINGENCY TABLES/ PARAMTERIC
ESTIMATION/ MIXTURE OF DISTRIBUTIONS/

1. MATHEMATICAL STATISTICS.

Mathematical statistics is concerned with using the theory of probability for drawing inferences
about a population from a knowledge of a random sample drawn from the population. The only
earlier knowledge about the population may be whether the variate is continuous or discrete and
what the range of the variate is or which are the values taken by the random variate. We may also
know the form of the density function containing one or more parameters and we may like to use the
knowledge of a random sample from to population to estimate the value of the parameter or
parameters. This estimation will be uncertain because we are dealing with random variates. In statistics,
we also want to estimate the degree of uncertainty about the values of parameters. We also introduce
axioms like the principle of maximum likelihood to go from inductive inference to deductive inference
so that the powerful method of deductive logic used in mathematics can be applied. We can also use
these methods in non-parametric estimation, testing of hypotheses, sequential analysis and Bayesian
inference in order to enable us to take decisions under conditions of uncertainty.
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2. INFORMATION THEORY.

Information theory also deals with drawing inferences under conditions of uncertainty. It
starts by developing measures of uncertainty. The most important measure of uncertainty of a
probability distribution P=@,,p,,......... ,p,) was developed by Shannon [8] in 1948 as "; piinp;
Earlier Laplace had given his principle of insufficient reason which stated that if there is no information
which makes one outcome more likely than another, then we should take p,=p,=.......... =p =1/n,
that is we should consider all outcomes as equally likely because there is no reason to choose any
other probability distribution. The uniform distribution maximizes the measure of uncertainty given
by Shannon. Later in 1957 Jaynes [ 1] modified Laplace’s principle to the case when some information
is available about the probability distribution in the form of knowledge of some moments or
probabilities or some inequalities about moments or probailities. He stated his principle of maximum
entropy that when we have some information about the probabilities, we should choose that probability
distribution which satisfies all the available information, but which otherwise maximizes Shannon’s
measure of uncertainty or entropy. This principle could also be obtained by using Kullback-Leibler

[7] measure of directed divergence 2. 2 (pi/4;) or discrepancy of the probability distribution P
i=1

from the apriori probability distribution 0=(q,,q,,......,q ) . In the special case when 0 is the uniform

distribution U=(1/n, i/n, im,.............. ,1/n), this measure of directed divergence (or cross-entropy)
becomes
(D:U)=lnn—[—2pih1pi] 6}
i=l

so that Shannon’s measure of entropy is In 1 -D (P: U), so that the nearner P is to the most uncertain
distribution namely U, the greater is its uncertainty.

If we know the priori distribution O which does not satisfy the constraints on probabilities,
then Kulback’s [6] principle of minimum discrimination information states, that we should choose a
distribution which should be as near as possible to the known prior distribution, subject to the
constraints on probabilities being satisfied. In the particular case when Q is the uniform distribution,
this principle reduces to Jaynes principle of maximum entropy.

For a continuous random variate varying over the interval [a,b], Shannon’s and Kullback-
Leibler measures are

[P r@)ins (<) and [ £(x)inf(x)/ glehie @)
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3. CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS AS MAXIMUM
ENTROPY OR MINIMUM CROSS-ENTROPY PROBABILITY DISTRIBUTIONS.

Here we first want to find the maximum entropy probability distribution when information is
available in the form of some moments about the distribution. Thus suppose we know that a continuous
random variate varies from _o t04e and its mean and variance are known as m and <2 , then
maximizing the entropy, —J: S{x)in f(x)dx subject to

J: f(x)dx: 1,_[1 xf(x)dx:m, J.j:o (x—.m)zf(x)dx: 62 (3)

by using calculus of variations, we get

Sx)=—=e? 4)

2nc
which shows that the maximum entropy distribution, when mean and variance are known for the
random continuous variate varying from -« t0e is given by the normal distribution with mean m
and variance 2. In other words, the normal distribution is characterized by the two simplest moments

viz. the mean and the variance.

In general, most of the useful probability distributions can be characterized as maximum
entropy probability distributions, when one or two simple moments like

E(x),E(x*), E(tnx), E(in(1 - x)), E(in{1+x)) etc. &)

are specified.

In this way go easily get the following maximum entropy distributions

Name Distributions Entropy
Density Function (in nats)
Beta f(x):x”'l(l—x)q‘I/B(p,q);Ostl In B(p,q)—(p—])[\v(p)—\y(p+q)]
where B(p.q)=T(p)pla)/T(p+q) p.q>0 ~(g- 1) wlg)-w(p+4)]
Cauchy  f(x)=(1/m)¥ +x7) "0 <x <0,k >0 In (470
Chi-square
flx) = A2 exp(—x(Zcz )) / [2"/26"1"(n / 2)}; x>0 ln[2621"(n / 2)] +(1-n/2(n/2)+nf2

Erlang f(x)= [B"/(n -1 !]x"“) exp(—Px);x.B >0 (I=-n)w(n)+ In[l"(n) / B] +n
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Exponential f(x)=c" exp(-x/c);x,6>0 I+inc

Laplace  f(x)=(1/2)6™" exp(1-|x—0)/$);—0 <x < 00,0 > 0 1+1n(26)

Logistic  f(x)=e* (1 + e"‘)q;—oo <x <o 2
Lognormal
f(x)= [cx‘/@I] exp(—log x - m)2 / (20’2 ),' x>0 m+(1/2) ln(27|:eo'2)

Maxwell-Boltzmann f(x)= [41:"1/2[33/2 ]x2 exp(—Bx2 )x B>0 (1/2)in(x/B)+y-1/2

Normal  f(x)= [c\/ﬁ]il exp(—xz)/ (202 ),—oo <x<0,6>0 (1/2)1"(21[60‘2)

Generalized Normal 7(x)= [2(5“/’ /T(a/ z)]x"“ exp(~pr)xap>0 ln[r(a/z)/ (272 )] ~fla=1)/ 2plas 2)+ars2

Pareto  f(x)=ak®/x*;x2k>0a>0 In(k/a)+1+1/0

Rayleigh  f(x) =(x/b2)e"‘z/(2”z),-x,b >0 L+infb/2)+y/ 2

Uniform f(x)=1/(p-a)a<x<B n(p-o)

Weibull  f(x)=(c/o)x* e /o xc,0>0 (e 1)y /c+log(a® /c)+1

4, CHARACTERIZATION OF DISCRETE UNIVARIATE AND MULTIVARIATE

PROBABILITY DISTRIBUTIONS.

In these cases, in addition to giving the ranges of the variate and some moments, we also
require some apriori probability distributions. In this way the following distributions, among others
have been characterized as minimum discrimination information distributions [3, 13].

Univariate distributions; binomial distribution; Poisson distribution; Riemann’s zeta function
distribution, generalized geometrical distribution, negative binomial distribution, generalized negative
binomial distribution, binomial delta distribution, Poisson -delta distribution, generalized Poisson
distribution, negative-binomial-negative binomial distribution, Bose - Einstein distribution, Fermi-

Dirac distribution, multinomial distribution,

Discerete multivarjate distributions: Multinomial distribution, multivariate generalized
geometric distribution, multivariate negative binomial distribution, generalized multivariate negative

binomial distribution, multivariate Poisson distribution, multivariate generalized negative binomial
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distribution, multivariate binomial delta distribution, multivariate binomial Poisson distribution,
multivariate binomial negative binomial distribution, multivariate Poisson delta distribution,
multivariate generalized Poisson distribution, multivariate Poisson binomial distribution, muitivariate
Poisson negative binomial distribution, multivariate negative binomial delta distribution, multivariate
negative binomial Poisson distribution, multivariate negative binomial negative binomial distribution,
multivariate Poisson rectangular distribution, multivariate Poisson distribution.

The following continuous multivariate probability distributions have been derived as maximum
entropy probability distributions [13] multivariate normal distribution, multivariate lognormal
distribution, multivariate polynomial distribution, multivariate exponential sums distribution, Dirichlet
distribution, multivariate beta distribution of the second type, multivariate logistic distribution,
multivariate generalized Cauchy distribution, multivariate Pareto distribution, multivariate gamma
distribution and multivariate rectangular distribution.

The following additional multivariate distribution have been derived as maximum entropy
distributions [15]; multivariate gamma distribution, multivariate beta distribution, multivariate
exponential distribution, multivariate distributions for continuous ordered random variables, discrete
analogue of multivariate gamma distribution, translated discrete multivariate gamma distribution,
discerete version of multivariate exponential distributions, multirectangular multivariate distributions,
multivariate Yule distributions, multivariate generalized Yule distribution.

5. MEASURE OF DEPENDENCE.

In statistics, the measure of dependence used is the correlation coefficient which gives the
linear dependence between two random variates. We also use there partial and multiple correlation
coeffetients which also give linear dependence in multivariate cases. However many times we need
one measure of depedence between a large number of variates. If we have m variates, we can find
m(m-1/2)correlation coefficients, some of which will be positive while others will be negative and
they will all lie between -1 and +1, but these coefficients do not give us an idea about how dependent
the m variates are among themselves.

For this purpose, I developed an entropic measure of dependence based on the fact that for
independent variates, the entropy of the joint distribution is equal to the sum of the entropies of the
marginal distributions. If these two entropies are different, that is if D=S,+5,+-§ > 0. the m variates
are dependent and D gives us a measure of this dependence. This is a measure of dependence of all
m variates among themselves, but it is always non-negative and in fact a measure of dependence
should be non-negative.

I used this measure [8] in pattern recognition to find the mx#» matrix A4, so that the linear
transformation Y=AX transforms the normally distributed random variate X = (x x.,......... x,) to the
random variate (¥, -veeon.... V) m<<nandy,y,.... ,y,, are as independent as possible. I was

able to show that the matrix A can be obtained by using the m eigen-vectors of the correlation matrix
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of the random variables X corresponding to the m largest eigen values of this matrix. The earlier
criteria of minimum loss of information or of minimum loss of power of discremination had led to
the variance covariance matrix instead of the correlation matrix.

For the multivariate normal distribution the density function is given by

1 1 -
S i) =gl =30 =) (X =]
(2n)2122
where
X i o7 P1201%2 - PiCI1Cm
X = X3 p= M| 5| P2%2%: o3  P2mO2Cm
Xm My PmiCmC1 Pm2CmC2 - cfn
—%ln(Zn)—-—é—ln\E}
so that S==[ ] flrixzixy) ; dx dy.......dx,
T
- - T (X )
P non s Lz L =P in2ne+Liny
2 2 2 2 2
1 I
S ==In2n+=Inc +—,i=12,....... .m
Also 2 2" 2
I Pz o Pim
D—Il 252 2 1, 2, 2\P2i 1 Pom
so that =3 NG i65....... O —Elnc,cz ....... Om| - . .
Pmi  Pm2 1
I piz o Pim
..—ilnp” I . Pom
Pt Pmz -

Thus, this entropic measure of dependence depends on the m(m-1)/2 correlation coefficients
between pairs of random variates. If all these correlation coefficients are zero, then D=0, and if
D=0, then all the correlation coefficients are zero. This result has been proved for multivariate
normal distributions and is not necessarily true for all multivariate distributions.
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Thus for the case of Pareto multivariate distribution

ala+D....nn. at+m-1
i) == e)e (e )
1Yt m
x x —(ov+m)
L2 +2m (-]
(91 8, 0, (m )) x; 20;,

it can be shown that all the correlation coefficients are zero, but the measure of dependence is not
zero, so that the variates are dependent. Thus the vanishing of the correlation coefficients does not
imply that the variates are independent though when the variates are all independent the correlation
coefficients are zero. This also shows a weakness of the correlation coefficients as a measure of
dependence.

6. CONTINGENCY TABLES.

In an mxn contingency table

S An |9
Ay Ay ... a,, |a;
Ami Ay oo Aun Jn
b, b, b, N

the measure of dependence is given by
D=8+8-S

where S, , S, are the entropies for the probability distribution (@, /N,a /¥, ............ ,a/nj and (b /N,
b/N........,b/N) and S is the entropy of the joint distribution with probabilities asa,/ N. If g sand b
are kept fixed, then minimizing D is equal and to maximizing S, so that to minimize D is is maximize
S, subject to a,’s and b, s remaining constant. Using Lagrange methods this gives

al.]/N =(a/N) (bjﬂ\/),

1t shows the two atributes of classification are independent. In general because of random errors,
this will be >0 and Swill not be equal to §,+S,. However the value of D will give us an idea of the
dependence in the table. It can be shown that D is a very good approximation for

(a,.j —a,.bj / N)2
ab; /N

x2



378

so that this approach to dependence also leads to the chi-square distribution.

If there are k attributes, we shall get a £ dimensional contingency table and if the marginal
totals are kept fixed, then when S is maximum, D will be equal to zero. Again D can be approximated
by a chi-square and chi-square distribution can be used to test the significance of the dependence in
the table. Thus chi-square distribution, maximum entropy distribution and minimum dependence
distribution, are closely related in the case of contingency tables.

7. FISHER’S METHOD OF MAXIMUM LIKELIHOOD.
We derive below this principle from Kullback’s principle of minimum cross-entropy[ ].
Let the random sample be x ,x,,......,x , where without loss of generality we assume that
PAS AS ASRS X

Let f{x) be the density for the observed distribution and let F(x) be its cumulative density function, so
that -

F(x)=0, x<x,
1

F(x)=;, X, Lx<X,
2

F(x)==, X; SX<X3
n

Fx)=1, x>x

Now we appeal to Kullback’s principle of minimum cross-entropy and choose ¢ so that the
distribution with density function g(x.6) is as close as possible to the distribution with density function
J(x). We now seek to choose ¢ to minimize the cross-entropy.

J S(x)in

T~ ] sl sakie-] o)l

=] J()inf(x)de—] ing(x.0)dF.
The first term on the R H.S does not depend on @, so that we have to minimize

1 1 1
—Ing(x,.e); —ing(x; ,6);—,....—In g(x,,,G);,
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i.e. we have to maximize

j] Ing(x,,.0)= In[g(xl,e)g(xzye) ........ g(x,,,e)]

=inl,

where L is Fisher’s likelihood function. This gives us Fisher’ principle of maximum likelihood, so
that this principle can be regarded as a special application of Kullback’s Maximum Cross Entropy
principle. It may be noted that we are using this principle in a special sense. There are no linear
constraints to be satisfied. Instead our choice is restricted to all probability distributions with density
functions of the form g(x,6). We shall have an infinite number of density functions to choose from,
since ¢ can take an infinity of values.

In[14] we have given five other information - theoretic methods for estimating the parameters
of a probability distributions in terms of a random sample from the population. These methods are as
reasonable as Fisher’s method, but these lead to more complicated calculations and more complicated
estimators, so that the proofs of consistency, efficiency and other properties of these estimators will
relatively be much more difficult to prove. However these proofs are open problems which those
interested can try.

8. MAXIMUM ENTROPY PRINCIPLE AND FISHER’S AND PERSONS METHODS
OF ESTIMATION.

(a)  According to Max Ent, (Maximum Entropy Principle), we maximize the entropy subject to
all the information given to us. Suppose the information is provided by the random sample

b 25 ST %, Now in this instance, the moment constraints are not specified as in the case of
MaxEnt. As such, we choose the parameters 6,,0,,..........., 8,, in the probability density function
J(x8,,05 e .0,,) of a population in such a way that the entropy that remains after the sample

values are known is as large as possible. In other words, the entropy of the sample itself has to be a
minimum. This entropy is given by

=] f(x.©)in f(x.0)dx = —j Inf(x,0)dF,

According to the knowledge given by the sample,
F(x,©)=0 when x<x,
F(x,0)=1/n When X, <x<ux,

F(x,®)=2/n when X, S X <X,
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F(x,®)=r/n when x <x<x_,
F(x.®)=1 when x <x.

This gives the entropy of the sample as

MaxEnt has thus led us to the principle of maximum likelihood although it predates the
explicit statement of the former principle.

(b)  The classical theory of inference due to Fisher has been in existence for a long time and it is
therefore worthwhile to make comparisons between the method and the later theory of MaxEnt.
Fisher’s theory of estimation is implemented by the following steps:

1. Specify f(x,6,,6,.,........ .0,,) on the basis of experience, intuition, or theory. We specify the
function, but do not specify the values of 6,,6,,........, 9, .

2. Write the likelihood function L(x ,x,........... X 01,05, 6,,).

3. Find the valuesof §,.6,,........, 8,, for which the likelihood function is maximized. These values

will be functions of the sample values.

4, The estimated density function is then

To implement the MaxEnt method of estimation, we take the following steps:
1. Specify m characterizing functions, g,(x), g,(x),......... .g,(%).
2. Use the MaxEnt to find f{x),
3. Find estimates

1
4, = ;[g,(x,)+g,(x2)+ ..... +g,(xn)], r=12,....., m
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4. Useittofind 3,.%,,.....4,,
5. The estimated function is then
exp [ Ao =112 (x)~ R 225X} ()]

(¢)  Pearson’s method is yet another method of estimation. He suggested that in order to estimate

2 01,85, .9,, we find the first m algebraic moment of the population which will be functions of
8,85, 0,, and then equate the first m algebraic moments of the sample with these functions
and solve for§,,8,,........, b,

Fisher criticized this method because it sometimes gaves quite different results from those
obtained by his theory of estimation, which was based on the use of the principle of maximum
likelihood. He proved theoretically that his estimates bad the nice properties of consistency, efficiency,
and sufficiency.

Had Pearson used the m maximum-entropy characterizing moments, instead of the first m
algebraic moments, his results would have coincided with those of Fisher’s theory, and there would
have been no room for controversy. Unfortunately, the MaxEnt method was not known at that time.
From the vantage point of MaxEnt, one can conclude that Fisher had unintentionally invoked this
principle in his use of the maximum likelihood principle, and thus his success can be attributed to this
fact. This again demonstrates the great foresight of Fisher whose proverbial insight into statistical
problems has been a source of perennial inspiration to the classical statisticians.

9. FISHER’S MEASURE OF INFORMATION.

Let f(x.6) be the density function for a probability distribution. Here ¢ is a parameter. Let
S(x.6+46) be the density function for a neighbouring probability distribution of the same family
with parameter ¢+ A0, then

/(%)
f(x,6+46)

=—J f(xe)lnl1+A9%2f; (—Aiiazf ..... :ldx

D(f(x.0) /(6 +40))= [ 1(x.8)In

o ol (Ae) 18f (AG) 10f
=-f f(x,e)[ rE MY I (fae ...... dx

Since [ f(x.6)=1
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2
L &0 [ Gre=o

D(f (x.0)): f(x.0+A46)

(Ae)J’ ( )dx o(a0)’

Thus the discrepancy or directed divergence of f(x,0) from f(x.6 +A8) is proportional to

2
) L) f
£ 45 L A
This is known as Fisher’s information measure

For most measures of directed divergence, the directed divergence of f(x,0) from f(x.6 +A8)
will be found to be proportional to Fisher’s information measure, so that Fisher’s information is
quite a robust measure of this discrepancy, independently of the measure of directed divergence

used.

If the probability density function depends on a number of parameters 6,,0,........... ,0,,, WE

get for the discrepancy as

b2 X TN Py— 0,): F(x.0; +48,,0, +A0,+.......... +0,,+A8,)]
=ij AFATdx
2
where A4=(46,,40,,......... ,40,)

is a row matrix and

L[ljz 1Yy 1y o |

1y g A 19y

. L( o Iaf) 1(1]2 1YY

(e Yy) ) L
SN A TN S %2 % 28)
1o o 1oF of 1{ o
_T[KTMme 75’;%2 gesenensirsateneee ) 'f—[a]

is known as Fisher’s information matrix.
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10. FINDING A DISTRIBUTION WHICH IS CLOSEST TO A MIXTURE OF
DISTRIBUTIONS.

A distribution with density function 721 *8,(x) where *;20 and Ji; ;=1 will be called
mixture of distributions with density functions g,(x), g,(%), ........... &, (%)

A case of particular interest arises when g,(%), g,(%), ........... g (%) belong to the same family
and differ only in the values of the parameters used in different distributions.

Thus these may be normal distributions with parameters (1;,5;) or exponential distributions
with parameters m, or gamma distributions with parameters @, %, (j=1,2,......., m) and so on.

There are two distributions which are closest to the mixture distributions and they have
density functions 2 *,g;(x)and
Jj=1

IT £ ()
Jj=1
or 5 15
[ IT &5 (e
j=1
but these distributions need not belong to the family to which g,(x), g,(%), ........... .g,(%) belong. In

general we are interested in getting the probability distribution closest to the mixture, but which also
belong to the family. We discuss some special cases below:

L Vo2
o 3w) o (j=12......,m)

1
Let g,(x)= ono
i

Here we have to find pand o so that

m
gives a probability distribution closest to 2. *;€;(¥), so that we have to choose 1 and o to minimize
i=1

o (m i ;"jgj(x)
Lm [ 1 ngj(x)}ln JFI

1 2, 2
= -5lx-n) /o
I e 2

2nc

or to minimize

J:) (i }"J‘gj(x)Iln+o_;. (x ;5)2 ]dx
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1 m m
o mo+=L$ 3 [(o7 )25 2 |

s=1

Differentiating with respect to p and o, we get

S 113 2, 2\_ 2
PIEFET ;;—3[2 nj(oF +ui)-w?|=0
=1 o L=t
so that the parameters of the closest normal distribution are given by

=Y A, 02+p.2=i (G§+u§)
j=1 j=1

The closest exponential, gamma, log normal and other continuous various distribution can
be obtained in the same way.

11. CONCLUDING REMARKS.

We have discussed in this paper less than 50% of the applications of information theory to
mathematical statistics. Applications to non-parametric estimation, queueing theory, mathematical
programming, Bayesian inference, approximation of complicated distributions by simpler distributions,
non-linear models, logistic models, analysis of variance, optimal information from design of
experiments, pattern recognition etc. will be discussed in another paper, but what has been stated in
the paper should convince everyone, that information theory has a significant role to play in
mathematical statistics and all mathematical statisticians should be aware of this role.

The references (1-18) below dicssuss some of these applications.
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Mean Square Error Estimation in Survey Sampling

Arijit Chaudhuri®

ABSTRACT

The classical problem of providing a ‘point estimator’ for a survey population total
along with an interval around it needs an appropriate estimator for its mean square
error.

A brief resume is provided for modern approaches to solutions for this by model-
motivated-cum-design-based methods covering multi-stage unequal probability
sampling, small domain estimation randomized responses for senmsitive issues and
employing in particular adaptive sampling and bootstrap techniques. Relevant current
thoughts and practices are especially accommodated.

Keywords and phrases: Adaptive Sampling; Bootstrap; Empirical Bayes; Mean
Square Error; Small domains.

AMS Subject Classification: 62 D05

1. INTRODUCTION

In this chapter we consider estimators for the total and mean of a single real variable
defined on a survey population with a known number of identifiable units on
surveying a suitably chosen sample from it and estimators for the mean square errors

of the considered estimators.

We start with Rao’s (1979) work covering a wide class of the relevant procedures
available for single-stage unstratified sampling with unequal probabilities for
selection of the units. Estimators for strata totals along with respective estimators of
mean square errors (MSE), added across the strata may simply cover the case of
stratified uni-stage sampling. We first note extensions beyond Rao’s (1979) coverage.
Discussing the details in Section 2 we review certain newly emerging procedures

concerning multi-stage sampling in Section 3. Therein we also report model-
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“assisted, motivated and dominated” methods in addition to the classical design-based
ones. In Section 4 we note how ‘randomized responses’ (RR) covering sensitive
issues as opposed to ‘direct responses’ (DR) concerned with the innocuous ones may
be dealt with in a manner paralleling that for multi-stage sampling. In Section 3 itself
we narrate how the principle of ‘small domain statistics’ computation by ‘borrowing
strength’ from ‘outside’ may be helpful in estimation. In order to produce enough
survey data on a relatively seldom occurring phenomenon like ‘maternal mortality’ or
‘earning by knitting woolen garments’ in a community a possible technique is to
adopt ‘Adaptive’ sampling through appropriate network formations. In Section 5 we
discuss MSE-estimation in such a context. In Section 6 we present a specific
‘bootstrap’ sampling applicable to certain unequal probability sampling situations. We

conclude with a few remarks in Section 7.

2. LINEAR ESTIMATION IN UNI-STAGE SAMPLING

Let U=(1,..,i,..,N) denote a survey population of N labels which identify a known

number of N distinct individuals. Let y be a real variable of interest with y; as its value

for i in U. We shall write 2 to denote sum over i in U, 22,22,22 that
i <J i #j

over i, j in U with no restriction and with the indicated restrictions respectively. By s
we shall denote a sample with v(s) distinct units in it as drawn from U according to a

sampling design p with a selection probability p(s).

Let Ii=1 if i € s and O otherwise; Iszj= Isilsj; T, = Zp(s)ln_ , ”ij = ZP(s)Isi]_
writing 2 for sum over every s with p(s) >0.

To estimate Y = 2 y, Rao (1979) employed the ‘homogeneous linear estimator’
(I-H‘E) tb = 2 yibxilsi

with by as constants free of Y=(y,..y;,..yn) to be suitably chosen by an investigator.
Writing E,;, V; as operators for expectation, variance according to p, the MSE of 1,

about Y is M(z,) = E; (t—Y)2 = XZy;y;dy with djj= Ei(b 1 -1) (byl;-1),ij € U.

Rao (1979) imposed on ¢, the restriction “C” which pre-supposes the following:
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“There exist non-zero constants w; such that in case z;, = X equals a constant C for
w,

1

every i in U, then

Mi@t,) =), Y ww,d,zz, =c’ Y, Y wwd,

equals zero”

Then Rao (1979) has the

Theorem 1. M,(t,) = —szljw‘_wi (ﬂ-ﬁ

i <j w,' W_,'

)2
if “C” holds.
This leads to a convenient form for an unbiased estimator for M;(z;) as
Y
m6) = =% S d gl gwow, (222

io<j i j

for which it is easy to check the property of being ‘uniformly non-negative’ (UNN)

provided one may find constants d; free of Y such that E1(dy; Ly ) = dj; Vv ijeU.

d. )
Two easy examples are (1) d; =—-,if 7,>0 and(2) d,; = Téj—
7, -
s
( ne? ]p( )
if v(s)=n V s with p(s)>0.

Rao (1979), again, has the

Theorem 2. If “C” holds then in the class of homogeneous quadratic unbiased
estimators for M, (#») any one with the “UNN" property is necessarily of the form m;
(tp) above.

The literature on Survey Sampling is full of examples of such p, by; , d;; ‘s as one may
check, for example from Chaudhuri and Stenger’s (1992) monograph, Sérndal,

Swensson, Wretman’s (SSW,1992) text and other sources.

We give one example and discuss what one should do if “C” fails to hold.

Recalling that a “necessary condition is 7z, >0 V i€ U™ for the existance of an
unbiased estimator 1=1(s,Y) for Y such that ¢ is (1) free of y; for j& s but (2) may
involve y; for i€ s, let us assume %, >0 V i€ U and consider for Y the Horvitz and

Thompson’s (HT, 1952) estimator HTE which is 7, = ¥ 241 .
ﬂi
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Its variance given by HT is V,(t,) which is

V= Eyzl ’+22m,[ M]

i #j
If we choose w, =7, then t,, satisfies “C” if “v(s) is a constant V s, p(s)>0" (2.1)

2
If (2.1) holds an alternative form of Vi(ty)is V, = ZZ(ﬂ,ﬂj -7, )(l"— ——}-}’—}
ﬂi

T,

i <j J

due to Yates and Grundy (1953) and Sen (1953). Unbiased estimators for Vi, V,

respectively are

v1=2}’,( ) "+22yy( nnj]zﬂ,j

i #j J T,

i
2
X i ls
and Z;y’ ( mT, In n,] T,

i J y

provided in both cases “7; >0 V i,jeU” 2.2)

If pissuchthat zw, 27w, V ij (2.3)

then “ v, is UNN”. To test “UNN” property for v; one has to examine if v; is a ‘Non-
negative definite quadratic form in y;’s ies V s, p(s)>0’ — a hard task to accomplish.
If (2.1) is violated, Chaudhuri (2000) has given to V;(tg) the third form

v, =V, +Z——a,,a —1+——2n,j—27z (2.4)

1 ]*l

Py

and an unbiased estimator for Vi(ty) as v, =v, + EL-a
provided (2.2) holds.

For the “UNN” property v3 needs in addition to (2.3), also “«;, 20 VieU” (2.5)
Chaudhuri and Pal (2001) have illustrated when (2.3) and (2.5) may hold together,

with v3# vy

For 15, in case “C” does not hold, choosing arbitrary w; (0), they gave the

2
) 2 N
formula M, (¢,) =—E E d,w, ,{ ——3;! ) +2—‘ij B. ., with B, =2dijwf
( i J=1

i <j j
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and an unbiased estimator for it as

ml(z)=—22dwlww,w{ —‘—'] Zy' e

i <j

Sarndal (1996), Brewer (1999, 2000), Deville (1999) and others feel it
impracticable to employ MSE- and variance- estimators that for large v(s) contain too
many cross-product terms and especially discourage computation of 7 ‘s which for
many sampling schemes are difficult to work out accurately and their magnitudes
vary widely over (0,7;) rendering MSE-estimators containing 7;;’s unstable.

Confining to schemes with v(s) fixed at an integer n for every s with p(s)>0,

Brewer(2000) works out Vi(ty) as

. YYy, Y
(t ) 2” (1 ”{ _—"} +Z;(ntj ”rnj)(:;_‘—;In__—;]

J

Approximating 7, by 7, =77 ( ) with C,as one of

i ¢ =2" Gic= '; , and (iii) C, = (n ';) ,
n—7m, 2 2
i n—— ; -2, +— ) I,
X n-2m +— 3o,
he approximates Vg (ty) by
Y 2
Vi ()= 37,0~ C,.n,.)[% —;) (2.6)

and calls it the “Natural variance” of ty free of 7,;’s. Brewer (2000) then
recommends for V,(zy ) the estimator

2
(L (Y
m—Z(C ”I”' n]zﬂ @7

i !

Deville (1999) recommends for Vi(ty ) the estimator

T (l 2 12151)2(1 n)[ﬂ: ]ISi (28)

1-
writing = a-m) A Ea y’I

2(1 )

Though the properties of vy, vs are discussed in the literature one still needs to
examine which of v; (j=1,..,5) renders ¢y the most accurate point estimator for Y for a
given set of data in a sample actually chosen following a specific sampling scheme.

Also, one may be curious about which of the 95% Confidence Intervals (Cl),
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(ty - 1.96%),(&1 + 1.96\/v—j_), j=1,..,5 may have the narrowest width, treating

@, —Y)/ E , =1,..,5) as a “standard normal deviate”.

Poisson’s scheme of sampling, discussed by Ha' jek (1981) and others yields

VI(tH)aS Vpo(tﬁ)=2yi2(1;ni]

Ly . , . . . 1-7n. \1,
which is free of 7 ’s admitting an unbiased estimator v¢ = 2 yf( : ]JL
ya

For this scheme v(s) varies over the entire range (0, N).

Recalling the well-known fact that v = E,(v(s)) = 275,. for any sampling scheme,
Brewer and Gregoire (2000) consider for Y an estimator, as an alternative to ty , viz.
2” Yi g

06 Z

If x be a variable, well-correlated with y with known values x; (>0 V i€ U) and

X=2xi , then Ha' jek’s (1971) ratio estimator for Y is

XZ%Q
tHa =———'—'
xi
Z;I:i

Then, tgy is immediately recognized as a ratio estimator for Y withx; = m;, ie U .
. Y D S _ : .
Writing R= X and R= 32— , with Y, X as unbiased estimators with an
identical form each for ¥, X respectively, it is known that for large v(s) one may write
A N 1 N A .
the MSE of R about R as M, (R)z —TV(Y -RX ) , using first order Taylor series
X

expansion on neglecting higher order terms. If moreover, Y,X are linear

respectively in Y and X = (x;,..,%;,..,xn), then, M, (Ilé)= glz—Vl (); )

Yi=Yi —k‘i

>

~

In such a case a usual estimator for M, ( ) is ml(A) —:17 (Y)
X

yi=yi~Rx;
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if 171(}; ) is an unbiased estimator for V; (}9' ). Taking ?R = XR as an estimator for Y,
N X2 4 4
one has m, (Y;) = ?Vl (Y)Iy.-=y.—ﬁx.-
as an estimator for M, (¥,).

X2
So, mlj(tHa) =

may be taken as estimators for M, (¢,,) .

2
) , y=yi{2%l’i]”" j=1.5 (2.10)

Also, my;(tpy) =

v : (S) ! v(s)

may be used to estimate M, (¢, ).

Incidentally, though a ratio estimator being the ratio and hence a non-linear
function of two random variables is still considered by many survey samplers as a
“linear” estimator for Y because it is linear in y; for i in s and is of the form
t, = 2 y:b, 1, with by; , being a function of s is permitted to be a random variable as

so is I; with y; as constant.

3. MULTI- STAGE SAMPLING

Suppose the units i of U are treated as 'clusters’ or first stage units (fsu) composed of

M; second stage units (ssu) with

M;
EDI
=1

as the total of the M; values y; - the value of y for the j* ssu in the i fsu. If y; is not
ascertainable for i in s but may be estimated on drawing a sample of m; ssu's out of
the M; ssu's in the /" fsu then we have "Two-Stage' sampling. Similarly we have
'multi-stage’ sampling on extending the number of stages.

Let every i in s be 'independently' sub-sampled in subsequent stages yielding

‘independent’ estimators ¥, for y; satisfying the following conditions:

O EQ@G)=y, @QV.G)=Vior @V.(3)=V, if ies (33T,
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such that E, (u,)=V,or (3)' 3 v, such that E,(v,)=V;
writing E;  V, as expectation , variance operators for sampling at stages 'later ' than
the ‘first’.
Let us begin by stipulating that #, is subject to
E (b, 1 ,)=1 Vi (3.1)

Then, E(t,) =Y and V,(t,)= Y, y'c,+ Y, . V¥ ¢,

Iy
where ¢, = E (b31;)—1 and ¢; = E, (bs,.bsjl;j) -1.
Let there exist ¢, ¢y as constants free of ¥ such that
E(c,l,)=c; and E/(c I ;)=c;.
From Chaudhuri and Stenger (1992) for instance one may find examples for such
D, by, ¢, Cyy s, Using the operators E=E;E; and V=V,E;+E,;V}
one may observe the following
€, =Y Pibyl, =1,|,.; satisfies E(es) under (3.1)

and V(e,) =D yic,+ Y, > vy,c; + E Q. Vi)

i #j

under (2) and = Y yle, + Y. > ¥,3,¢, + E,(},V,b21,,) under (2).

i #J

Writing v(?,) = E yie d, + 22 Yi¥iculy

for which Eu(t,) =v,(t,)and v(:z,,) =0(t,)] ,_, - under (3), (3),
from Raj (1968) and Rao (1975) respectively, one has

v, (e,) =v(e, )+ Zvibﬂlﬂ such that Ev,(e,) =V(e,) and

v,(e,) =v(e,)+ 3,0, (b} —c, ), such that Ep,(e,) =V (e,).
Also, v,(¢,) =v{e,) + Zvi(bf,. —~c,; )1 ; under (3) satisfies

Ev,(e,) =V(e,) as well.

Suppose y; is not ascertainable but estimable by J, subject to (1), (2), (3) and in
addition E=EE;=EF; along with V=V E;+E,;V =V, E/+EV; as justified and earlier
utilized by Chaudhuri, Adhikary, Dihidar (2000).

Then for 7, subject to (3.1) and 1 with ¢, =2,| _ and e, =1, |
we have from Chaudhuri and Pal (2001)
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i<

=E, EEdww[y' __,_} E(y) B |+v.Qv)

i <j

Vie,)=-3 3 d,w, ]{ y’] ﬁ +E[Sveir,]
w; w

admitting an unbiased estimator

2
Ai 5} (y) sr
v(e,) ==Y Y d 1 ww, 3;———‘;—] 2 +2vl L

sij©sij i
i< j

and

V(eH) 22(”1”1 7Ty _i__J—\J 2 +E (EVb:; si
A 5 A N2
=EL 22(7["”1‘ —7'[‘})[—7%-—-7);—’] +Z%‘ai +E1(2vi)

J

admitting an unbiased estimator

v(eH) 22(”” -7, )71'“] (71' _;[-) (}7]; “ +2 i“si xz‘

Using (3.2) it follows that corresponding to v, vs in (2.7), (2.8) as estimators for
Vi(ty) given by Brewer (2000) and Deville (1999) respectively corresponding

estimators for V(ey) one may respectively take as

v4(eH)=Z(Ci—ni [%_e ] I, +2-——I
I
and v(e, ) = i 2 s )2(1 7'[)( 5| yi=, ]Isi+zv,-”—“

Again, using (3.2), corresponding t0 my; (ty,) in (2.9) and my; (tru), j=1,

MSE- estimators for ty, and tgy respectively the same for

XZ&I.H'
e =— % and ey = %(71’) [2 i g )
s

xi
Z;Isi

i

X’
—_ St
may be takenas  m;(c,,) = . v, { 5, + E 12 e
E S i
yi=Ji
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(Zﬂ,») , ZV.Q

; + .
vZ(s) J 2)’:1 n,i
=3

v(.\') i)

andas m;(eg)=

forj=1, .., 5.

So far we considered only the classical design-based approach of ‘point’ and
interval' estimation of Y in terms of 'sampling design-based’ expectations and MSE's

of point estimators and lengths of CI's covering Y with desired coverage probabilities

determined by sampling designs. The case of ¥ = 1—};- in uni-stage sampling is covered

. S Y . . .
because N is known and of Y =< , in case of multi-stage sampling is covered

S,

because M; may be taken as x; in 'ratio’ estimation.

Now we turn to the ‘'model-assisted' approach for which a crucial reference is
SSW(1992). Cassel, Sarmndal and Wretman (CSW, 1976) gave us the 'generalized

regression’ (greg) estimator for Y as

t, —zl L, g, =1+(X~ 2 e/

-" 2 Qlst

with Q; as 'arbitrarily' assignable 'positive' constants, usually taken as
—,—,—,——"—,—g- with g in [0,2].

X x0T,
Writing b, = Ey' Ol Zy' Q7 ~byx,,E, =y, - B,x

Yol ' Yaxionm, e

it is well known from Sarndal (1982) that MSE (1,) has formulae
-7,
M,(,)=YE, +ZZ -

- E.
for general designs and M, (z,) = Z 2 (nm,~m, )(ﬂ -—1)?
T, 7w

j

7T

for designs with constant v(s).

Chaudhuri and Pal (2001) give another as
E, E, E?
My@)=Y Y @a, - )(—-—L)+ ) e,
T, T, 7,

for general designs.
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Three pairs of estimators for MSE(z,) follow from these as

-, 1
my () =Y age; ') L, +22ak,akjee (—————’)—’,k=1,2
7[,.7Zj 77:ij

a a,..e. "

ki ARV er

"——) L k=12
V3

T; iy

My (t,) =Y, 3 (.7, -7, (Lt

my (1) = mzk(t )+Z(a’uel) “ k=120, =lay =g,

l l

Sé&ndral (1996) recommends approximating MSE(t;) by
1-m,
M,)= X E )

i

of -7, 11,
and estimating it by m_(z,) = E (ak,.ei) ( '}i,
T, |7,

In case y;is not ascertainable but estimated by , through multi-stage sampling, then

€ =tgly,-=9,- = Z%gsilsi

may be the revised greg estimator for Y.

Letting &, = ei| ,=5, and using (3.2), (1), (2) and (3), one may use for MSE(e,) the

estimators corresponding to my (t,) as respectively

v, i
e En—'_ g1, j=123k=12.

m,(e,)=m,
Corresponding to My(z,) we have no recommendations about estimating
M, (e,)=M,(t,)),u i€U
Next follows our proposals concerning estimation of Y in multi-stage sampling with
the following.
'model motivated' approach with details for 'two-stage' sampling.
Let us postulate the model to write

" fsu, B is an unknown constant

= fix; +€, with x; as the value of x for j” ssu of i
M; M;

and € 's are random variables. With  y, = 2 Vi X = Ex,.j
1 1

let us further postulate the model for which y, =@ +n, with 6 as an unknown

constant and 7,"s are random variables, i€ U . These models will be seen to allow us
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to strengthen our estimators for y; and Y by borrowing strength from outside the

specific clusters chosen in the sample.

We consider the specific "Two-stage' sampling in which n fsu's are chosen from U

applying the Rao, Hartley and Cochran's (RHC, 1962) scheme supposing normed

size-measures p; (o pi(l,Zpi =1) are available. For this, n groups of N; clusters

(i=1,....,n) are formed at random that are disjoint together exhaustive with U. Writing

2 . as sum over the groups, 2 «.N; = N.By Q,; is meant the sum of the N; numbers

pi's in the i "

group. From the respective groups so formed only 1 cluster is chosen
with a probability proportional to its p;-value. The selection process is independently

repeated over the n groups. Writing (y;, p;) as the value of y and normed size measure

for the unit chosen from the i* group, 1, = 2 . yi%

is an unbiased estimator for ¥ with a variance

V(tgye) = Az n 2 npip;[L "y_‘.]

pl pi

writing 2 2 as sum over the disjoint groups with no duplication. An unbiased
n n

estimator for V(tgpc) is

V(tguc) = BZ nE 0.0, '[l" _y_'.]

pl pi

Here

2—
-————Z"N‘ N and B = 2 Ni-N

2
N(N-1) N =Y N}

as are given by RHC themselves.

Now supposing y; to be non-ascertainable a sample of m; ssu's out of M;ssu's in the

i'hfsu is again selected by the RHC scheme utilizing known size-measures

M;
p,(0<p, <Y p, =1V iel).
=1

J

So, y; may be unbiasedly estimated by y, = 2 m Vi &,

i
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with obvious notations which, admits an unbiased variance estimator similar to

V(truc). But estimating

p_ 2 nZ m V¥ Ry
Ean,xi?Rv

B by

P
0,

PyXy ,
Q;

writing Q;j's as sums of py;'s within respective m; groups while applying RHC scheme

1_
with R; =

in the second stage of sampling one may employ for y; the greg estimator
R g, g,

Yig =2,,,,y,»j—p—’+b X=X Xy |

i i

Next taking

one may estimate

0 by é‘: ZnyigxiRi

2 xR,

and finally for Y employ the 'two-stage' greg estimator

o . 0,
€ruCYe = 2 Y 0 X ‘2 n X
D, D,
Taking account of what preceded an estimator for the MSE(ernc),) and for the
MSE(y,,) is easy to write down and work out. For simplicity we shall write

y; for §,, and m(y;)for its estimated MSE.

At this stage we may apply a 'model-based’ method by postulating that

y; = Px;+€, with €, as N(0,B), 'independently' leading to y; \'y, ~ N(y,,m(y;)) .
Letting A = VM(ZZGU ) with V,, as 'model-based’ variance operator, we have
i

A=BM, writing M =Y M, .
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Since y, ~ N(Bx,,BM,) , the marginal distribution of y; is

N(ax,,BM, +m(y)) = N(ax,.,%—‘-+ m(y;)).

Letting v, =-%+m(y:),
2 n——LMi

P
- E n % y:'xi /Wl
pe—tt—
Z =iy y,
p;
and iteratively solving for A the equation

O « & . 0,
n—'(i_ x)/ i= n_l_l’
> P Bx) 1y, =3 »

t i

let B, A, be the resulting estimators for 8, A ; also let

A A

~

AM, « AM. «
v, ="——’—+m()’,«)=7+m()’,~)-

! Q
=M.
znpi l

Then,

. AM,) . (m(y))4
V(EB)=| —|y; + Ay ﬁxi ’
My, v,

following Fay and Herriot (1979) may be taken as an Empirical Bayes' estimator

(EBE) for y;. Then, for Y the final EBE may be proposed as Y (EB)= 2 I (EB)%.
p.

i

Writing

q,

AM, 2 -
== Al ’d=_22ngwi ’

MW,‘ n pi
following Prasad and Rao (1990) for ,(EB) we may employ the MSE estimator

2.2 2 *

A-a)x  pym i)

2 n_i‘xi2 /l[’i‘ Wi
p,

i

m(3,(EB)) = am(y;)+

Then following the approach discussed so far one may estimate MSE (Y(EB)) by
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$.(EB) _$,(EB) 0

] +2nm(5)i(EB))?.

i

m(Y(EB))=BY. Y, ,.Q,-Q,{

This may be regarded as our model-dominated approach of borrowing strength from

outside clusters as is done in small domain computation.

4. SENSITIVE QUERIES: RANDOMIZED RESPONSE

Essentially the methods for Two-stage sampling may be employed to cover when y
relates to a stigmatizing issue like drunken driving, tax evasion, practicing fraud etc.
Here for a sampled person i, no matter how selected, it is often difficult to generate
direct response (DR) about his/her y;-value. Instead, a suitable 'randomized response’
(RR) device may be employed to procure an RR, say, z; , which may be suitably
transformed to yield a random variable 1; for which the following may be held to be

true. Writing Ey , Vi for expectation, variance operators for an RR scheme :
(1) Ex(r)=y;,
(2) V,(r,)= Ay} +B,y, + C,with A;,B; ,C; as known constants; then for

1
V., =
T 1+A)

(Ar’+Br,+C),

if1+A #0,E,(v,)=V,(r).
One example of an RR device is to ask a respondent i to randomly choose from a box
with T cards bearing numbers a; ...a; ...ar one say marked @; and ‘independently’
choose from a second box with L cards numbered b;,..by ,...,br one card numbered by
say and report the value

Z =ayi+bi

1 T 1 T _ —_
Then, E,(z,) = y,.(FZa,.)+(szk)= ya+b,
1 1

z.—-b . _ g .
say, and r, = ——, provided a # 0, satisfies the above requirements.

— >

If corresponding to a contemplated estimator ¢, = 2 yb,I,one then employs
r =Zr,.bsi1“.then estimation of its MSE follows immediately with the approaches

elaborated above. Chaudhuri and Mukerjee's (1988) text is a useful source.
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5. ADAPTIVE SAMPLING

Sometimes y may relate to a seldom occurring phenomenon like incidence of maternal

th

mortality in i” household, number of earners through 'rope tricking’ in i village and

so on. Then, estimating the total count ¥ =2y,. of units of U with such rare

characteristics, with ‘y; equal to 0" for many i in U, becomes really a problem of
capturing enough relevant units in a chosen sample s from U. Chaudhuri (2000),
following Thompson (1992) and Thompson and Seber (1996) has discussed how from
an initial sample s chosen employing usual sampling schemes with varying or equal
probabilities one may implement on 'Adaptive’ sampling scheme with formation of
suitable networks so as to effectively enhance the capture of relevant units with
positive y; -values. He has also shown that estimating Y and the related variance or
MSE- estimation for an Adaptive sample are simple matters. Briefly we may describe
as follows.

With every unit i of U is defined a neighbour of units; for example the villages with a

common boundary with i

village are together its neighbourhood. For a sample unit i
with positive y; , in 'Adaptive sampling' one is to extend observation to all units in its
neighbourhood. If for any in the neighbourhood positive y is encountered the
observation is to extend to those in the latter's neighbourhood and the process is to
continue until a unit is reached with zero-valued y in every unit in a neighbourhood.
The 'unique ' collection of units linked with a specific unit through the system of
neighbourhoods each with a positive y is a Network' for the unit. The collection of all
the units in the union of these neighbourhoods is a cluster containing this urit. The
units in the cluster with 'zero-y's’ are the 'edge units', to be regarded as 'Singleton

networks'. All the networks are non-overlapping and they together exhaust the

population. Denoting by A(i), the network containing i and by N(i) its cardinality , let

€ A(l)

1
TN }_Zy,

N
It easily may be checked that T = ZI,. equals ¥ = Z ;-
i=1
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Corresponding tov(s) for the original sample the effective size ZN ()= A(s) of the

i€s
'Adaptive’ sample may be considerably larger. So, though 7, for i€ s may be used for
estimating 7=Y in suitable ways along with easily derived MSE-estimators discretion
must be properly exercised in keeping A(s) under control by appropriate definitions of

‘networks' and ‘neighbourhoods'.

6. BOOTSTRAP SAMPLING

When employing a complicated, non-linear estimator for Y a standard procedure to
estimate its MSE is to apply linearization or delta-method based on first order Taylor
series expansion. This was actually done above in the case of ratio estimator and the
greg estimator. Another is replicated sampling producing independently distributed
unbiased estimators for ¥ based on independently drawn samples and using their
average to estimate Y and average of paired differences in estimating the variance. A
variation of this is jackknifing employed originally by Quenouille (1949, 1956 ) as a
bias- reduction technique later better utilized by Tukey (1958) in MSE estimation. We
have no space here to elaborate on them. Another procedure is 'bootstrap' which we
may briefly illustrate to show its alternative use in employing the greg estimator for Y.
In the simplest case with a single auxiliary variable x on which y has a linear

regression through the origin

T,

2 Isi
[in or, ;"]

a non-linear function of 4 HT estimators of 4 population totals of 4 variables namely

’Qi >0= f(ty ’tx’t)’xQ” ’tx:Qn)

S Ox0m)
7, = 2%1“. +[X - Z%Iﬂ]

!

y,x,yxQn and x’Q7n as we already discussed.
The principle of 'bootstrap' sampling demands that from the initial sample s for which
the HTE's t wololvon and ta on have already been calculated a large number B=1000,

say, bootstrap samples s,,(b =1,.,B) be 'drawn independently’ in a suitable and

identical way. Then, calculating t}.(S;),t,.(s;),tny,,(s;) and ! ion (s,) and hence

1,(s,) = fr,(5,):2,(5, )58 0, (5, Wt 2o (s,) is to be calculated.
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7 1 2 *N v v : soargs ' '
Then, ¢, = E;tg (s,) is taken as a 'Bootstrap’ estimator for Y initiated on the 'greg
B

estimator. Then,v, = — 2 1,(s,)—
b:

8

is taken as the "Bootstrap" variance-estimator or MSE-estimator for 7, .

To cover such a function f (.,.,.,.) of HTE's Rao and Wu (1988) have given a method
of drawing 'bootstrap' samples when the original sampling design P to draw s is
subject to 2 restrictions, namely

@) Every sample s has a constant v(s) and

(ii) nr, 2n Vi ji# j).

We present here a modification of their 'bootstrap' sampling scheme covering HTE's
only when (A) only (i) is relaxed but (ii) holds and when (B) both (i) and (ii) are

violated.

Case (A). Out of v(s)(v(s)—1) 'ordered’ pairs of units 7, j(i # j) in s let us choose a
'Bootstrap' sample s, of pairs (i',j) in ‘m’ draws 'with replacement' with
probabilities )',-‘j'.(i* # j )such that Ay = /1j.i. with their values to be 'assigned' as
below. Let us choose numbers k‘.j. =kj.,,. in a manner to be described below.

Constructing the bootstrap statistic

Yy . .
—2 2 —)  and writing Ex V.« generically to denote expectation,
.
M@ Fres j

variance operators for bootstrap sampling we have

E(,)= 22“( -21)=0 and

i#j es j
V.n)== 22/1 % (y' -2y’
iz jes J

Choosing m =v(s)(v(s) - 1),10_ = 1 and
m

k —_ ninj ij 1|2
U-m(T) [, j(i# j€s), we have

i
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i T T,

2
V.t) =0, =3 (n.7 —n,j)(!i—ﬁ] ii
i< j T
We need to have now a second bootstrap sample s, out of the 'distinct’ v(s) units in s
'independently’ of how s, is chosen . Let this be drawn by Poisson's scheme with /,as
the probability of 'success' associated with i in s .

Writing i" as elements of sz let

o
P

ies; i

then, Er(tz) = Z%In‘ =t11' (y)

and V.(t,) = 2(%—11%] 1,

i i

Letting r=t;+1; we have Ex(t)=tg, v«(1)=vo+ V(L)

choosing [, = ~1— with o; in (2.4),
1+¢,

since by (2.5), o; 20,0 ;<1 Vi,

we have Vi(2;) = vs,

provided for the original sample drawn, v3 = 0.

Thus, we modify Rao and Wu's (1988) 'bootstrap method' of equating the "Bootstrap”
variance of a statistic, namely ¢ in this case, to an estimate of vjty), namely v in this

case (A).

Case(B). First we note that though it is impossible to have

" < My Vij (i#)" in case v(s)=n

V s with p(s) > 0, it is quite possible to hold in case v(s) varies with s especially

(a) if the largest number of draws n satisfies n > 1+ E(v(s))—7n, Vi, and/or

(b) if Var(v(s))= Y 7, (1~x,), for examples.

In this case let (1) from s a bootstrap sample s;” be drawn by Poisson scheme with k;«

as the 'probability for success' for a unit " in s.
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Again, (2) 'independently’ of the draw of s;", let a ‘bootstrap’ sample sy be drawn
from the v(s)(V(s)—1) 'ordered' pairs of distinct units of s again by Poisson scheme
with A;" j* as the 'probability of success' for the G j*) - paired unit; (i"# j* € 5).
Let us construct the bootstrap statistic

y Y

/4

i 1 T v, Y
t=(27t—;xk—:xlﬁ.'_.]+ 2 Z.T,—-IS;,_.]_. —22 ;l—tlw

i#j i o#j

Then, E.(1)= 321,
T,

1

| 1 oy
nd V.0 = £ 2501, + BT (- -p 22
i i i Jj

io#j i

1
dQ)A, =—m——
2-7 and (2) 4, T

i 2_(_"_/)

choosing (1) &, =

this V« (¢) is equated to v;, provided for the original sample drawn v; happens to turn
out non-negative.

A remark: If v3 < 0 or v; < 0 our proposed schemes do not work. Similarly Rao and
Wu's (1988) method does not work if at least one of (i) and (ii) is violated. So, further

research seems necessary to cover all possible cases.

7. CONCLUDING REMARKS

Statistics Canada employs a 'Generalized Estimation System' as discussed
among others by Sérndal (1996) that predominantly involves the application of the
greg estimation with one or more auxiliary correlated variables and its MSE-estimator
with one or more auxiliary correlated variables and its MSE-estimation with
simplifications avoiding 7;'s and hence the cross-product terms. In Indian National
Sample Survey Organization (NSSO), however the first stage units within strata are
chosen as two equal-sized “half-samples” by probability proportional to size (PPS)
circular systematic sampling (CSS) method and the second stage units by single CSS
method with equal probabilities. So, variance estimation is accomplished by

computing 'one-forth of the squared difference between the 2 half-sample estimators'.
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In other organizations like US Bureau of Census, Canadian Labour Force Surveys,
British Population Censuses and Surveys variance or MSE estimation receive
attention in diverse appropriate ways. The above discussions in Sections 1-6 mainly
serve theoretical purposes but may also be put to practical uses as some of the
procedures have been applied in certain case studies undertaken in Indian Statistical

Institute, Calcutta with active participation by the present author.
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Abstract A linear program (LP) Minimize c'x subject to Ax=b, x20 (null column
vector), where A is an mxn real matrix, ¢ and b are n- and m-vectors, respectively .is a
problem of great importance in numerous physical problems involving linear
optimization such as diet problems, transport problems, industrial production problems.
The algorithms such as simplex method, self-dual parametric algorithm, decomposition
algorithm, primal-dual algorithm to solve an LP have been non-polynomial time. In order
to appreciate the recent advances in this area the present chapter provides a background
based on the simplex methods which completely ruled the scene during sixties, seventies
and early eighties. Although the simplex methods are non-polynomial-time in the worst
case, they did perform excellently in most real-world problems and behaved like a fast
(polynomial-time) algorithm. The chapter then focuses on the development of several fast
(polynomial-time) algorithms during the last two decades. It then briefly highlights
heuristic and evolutionary approach to solve LPs including errorfree implementation.

Key Words Basic variables, heuristic algorithm, linear programming, polynomial-time
algorithm, projective transformation, simplex method.

1. Introduction

The process of getting the best result, e.g., minimum or maximum values, under given
conditions (constraints) is ‘called optimization. The optimum seeking methods belong to
the discipline of mathematical programming '(MP) which is a branch of operations
research (OR). OR is a branch of mathematics applied to decision-making problems and
obtain the best solutions while linear programming is a branch of MP. The OR methods
may be classified as follows.

OR Methods
v
R 4 ) v v
Statistical Methods Stochastic Process Methods MP Methods
sRegression Analysis oStatistical Decision Theory eMethods of Calculus
oCluster Analysis eMarkov Processes oCalculus of Variations

! The term programming as used above referred originally to the scheduling of events or activities. There is
no immediate connection with computer programming, mathematical programming problems are solved on
a digital computer though.
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eDesign of Experiments eRenewal Theory eLinear Programming

eFactor Analysis . . oQueuing Theory #Geometric Programming
sReliability theory sDynamic Programming
eSimulation Methods .. eNonlinear Programming

oCPM and PERT ..

We limit ourselves in the area of linear programming and recent advances. A linear
program (LP) may be defined as Minimize (Min) ¢'x subject to Ax = b, x>0 (null column
vector of appropriate order), where A =(a;) is a given mx(m+n) real matrix, c=(¢;) and
b=(b;) are specified n- and m-column vectors respectively, and x is an (m+n)-column
vector to be computed. An equivalent LP is Maximize(Max) —c¢'x subject to Ax=b, x>0.
The cases and standard forms below may be considered from a practical point of view
(e.g., to form an appropriate simplex tableau..

Case 1: ajzy1=. .= amn.=1; Standard Form 1: ajp1=. . = ag,1=1; b20 i=1(1)m.

This case arises when the constraints are originally a;;x3+ . . + aix<b; i=1(1)m. and the
slack variables Xq.+1, « «» Xp+m are introduced to transform the inequalities into equations.

Case 2. ajpi1=. . = amp1= —1; Standard Form 2: a; 3,1=. . = agnpn=—1; b0 i=1(1)m.

This case arises when the constraints are originally a;X;+ . . + a;p=b; i=1(1)m. and the
slack variables Xp41, « +» Xn+m are introduced to transform the inequalities into equations.

Case 3: ajn1=. . = ampn1=0; Standard Form 3: aj5.1=. . = 4y 341=0; bi20 i=1(1)m.
This case arises when the constraints are originally in the form of equations in x4, . -, X,.

Other form: If not all constraints belong to the same category as above then a
combination of these cases arises.

We present in Sec. 2 the simplex algorithm [2, 3, 4, 5, 6, 17, 18, 19, 26, 27, 28] due to
Dantzig (1963) which is an exterior-point method and is the first milestone in solving an
LP. An exterior-point method is one in which the n-dimensional solution point x will
always lie on the boundary or at a corner of the convex region (polytope) defined by Ax
= b, x>0 and not inside the convex region. Although this algorithm is not polynomial
time, it has been generally the only method for over two decades (1960s and 1970s) to
solve LPs, often behaves like an O(n®) polynomial algorithm, and has been remarkably
successful in an intelligent computer implementation based on the nature of the LP. Even
to-day it is possibly the most widely used algorithm to solve real-world linear
optimization problems. A clear conceptual knowledge of the simplex algorithm helps us
to appreciate the more recent development in the interior-point methods. An interior-
point method is one in which the solution point x will move inside the polytope and
continue to remain within it or at best touch the boundary or a comner point of the
polytope. Some of these methods have been proved to be polynomial-time[9, 10, 20, 25].
The polynomial-time algorithms ,viz., the ellipsoid method [10] due to Kachiyan (1979)
and the projective transformation method [9, 28] due to Karmatkar (1984) will be
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presented in Secs. 3 and 4. These algorithms are interior-point methods and did perform,
in practice, much worse than the popular simplex method for most reasonably large linear
programs. However, since these (specifically, Karmarkar algorithm) are polynomial-time,
it may be shown that for some sufficiently large LP, these methods would perform better
than the non-polynomial time algorithms. In Sec. 5, we present a variation on Karmarkar
algorithm along with the detection of the basic variables [1, 22], which provides deeper
insight into the geometry of an LP. We talk about other algorithms — heuristic,
evolutionary (probabilistic), and deterministic including inequality sorting and error-free
implementation [7, 12, 14, 15, 16, 21, 23] in Sec. 6.

2. The Simplex Algorithms

2.1 Basic solutions Consider the system of equalities Ax=b, where A is an mxk matrix
(k=m), x is a k-vector. Select m linearly independent columns of A (such m columns
exist if the rank of A is m). Call the mxm matrix formed by these columns B. The
matrix B is then nonsingular. Solve Bxg=b for the m-vector xg. The vector xg has the
components X; associated to the columns i, where i€ [1, k]. The matrix B having linearly
independent columns (if they exist) is called a basis. The solution of Bxg=b is called a
basic solution of the system Ax=b with respect to the basis B. The components of x
associated with the columns of B are called basic variables. If one or more basic
variables in a basic solution have value zero then that solution is called a degenerate
basic solution. A vector X that satisfies Ax=b is called a feasible solution. The collection
of all feasible solutions is called the feasible region (necessarily convex). If a feasible
solution of Ax=b is also basic then it is a basic feasible solution. If this basic feasible
solution is degenerate then it is a degenerate basic feasible solution

Let A=(A’, B) and k=n+m. The slack variables or, simply, slacks Xo41, « «, Xn4i0, + +» Xnam
which label the rows usually are basic variables and form xp. The columns associated
With Xqs1, « +» Xnsm usually form the basis B. The variables xy, . ., Xjo, » -, Xa Which label the
columns are nonbasic variables. The last column [by, . ., big, « ., bm] contains the values of
the basic variables Xp41, « «, Xn+m, 1.€., X4i=bj i=1(1)m.the values of the nonbasic variables
being zero., i.e., x;=0 i=1(1)n. A slack variable with a negative sign (usually introduced
in a typical inequality a;;X;+ . . + ai=b; ) is sometimes called the surplus variable. The
simplex algorithm, to start with, needs the knowledge of the basis B and that of the
values of the basic variables, which are usually readily available.

Consider the LP Min f=c'x subject to Ax=b, x>0. A feasible solution of the constraints
Ax=b, x>0 that achieves the minimum value of the objective function f is called an
optimal feasible solution. An optimal feasible solution or, simply, an optimal solution
(of the foregoing LP) obtained by the simplex algorithm lies at one of the corners of the
feasible region. If this optimal feasible solution is basic then it is an opfimal basic
feasible solution.

2.2 Fundamental theorem of linear programming Consider the LP Min f=c'x subject
to Ax=b, x>0, where A is an mxk matrix (k>m) of rank m. (a) If there is a feasible
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solution then there is a basic feasible solution and (b) if there is an optimal feasible
solution then there is an optimal basic feasible solution.

For proof of this theorem, refer Luenberger (1984) [17]. The fundamental theorem
considers ka possible combinations of the variables x;, computes kCm solutions, and
chooses that solution that gives us the optimal solution of the LP. From the fundamental
theorem of linear programming, there are *Cm = k!/(m!(k-m)!) ways of selecting m of k
columns (of A and of x), and hence ka solutions of the linear system Ax =b. One of
these finite number of solutions will be the required solution of the LP provided the
nonnegativity condition x>0 is satisfied and there is a minimum value of the objective
function. Let the LP be Compute x=[x; x; x3 x4]" that minimizes 7 = ¢'x =[1 2 3
1]x subject to Ax = b, x =20, where

A=11 2 3 4| ,b=|T].
-7 1-2 6 0

Here m =2, k = 4. Hence there are *C, =41/(2!(4-2)!) = 6 ways of selecting 2 of 4
columns of A and of x and thus 6 solutions of the linear system Ax = b. The six
systems of linear equations are

12—)(?1 =7_, 13-—)61—:7, 1 4 —XI =7,
=7 1] x| 01 =7-21Lx3d O =7 6] Lxs ] 0

- |
23—x2—=7,22x=7],34{:x3=r7.
1—2_ )C3__J 0 1 é xi O 1—2_ )C4__ LQJ

The six solution vectors are [x; x2]'=[.4667 26671, [x; x3]'=[-.7368 2.57891", [x;
x4]'=[1.2353 1.4412]", [x2 x3]'=[2 11', [x2 x4]'=[5.2500 —.87501", [x3 x4'=[1.4 .7]"

L]

In the first equation, x;, x; are the basic variables while x3, x4 are the nonbasic variables
whose values are taken as zero in the original equation Ax =b. In the second equation, x;
is negative; while x,, x4 are the nonbasic variables whose values are taken as zero in the
original equation Ax =b. Since this solution does not satisfy the nonnegativity condition,
we reject this solution. In the third equation, x;, x4 are basic variables and x;, x3 are
nonbasic variables whose values are taken as zero. Thus there are four solutions, viz., the
first, the third, the fourth, and the sixth solutions, each of which satisfies the
nonnegativity condition. If we compute the objective function value z = ¢'x for each of
the four values of the solution vector x then we obtain the value of z as —.0667, 2.6765,
-1, 4.9, respectively. The minimum value of the objective function is z = —1 which
corresponds to the fourth equation. Therefore, x = [x; x; x3 x¢J'=[0 2 1 0]

is the required solution of the LPP. This algorithm with computational complexity
O(*Cxk?) is combinatorial (not polynomial-time) and thus is slow. We did not have a
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polynomial-time algorithm for solving LPs till 1978. Since 1979, several polynomial-
time algorithms for solving LPs have been developed. These polynomial algorithms are
fast while some are faster than the others. For solving small LPs, a slow algorithm may
be more economical than the fast ones. Yet we would be interested in the fast ones and
not in the slow ones. In fact, with the advent of high-performance computing devices
(including the supercomputer ones), solving small problems is never a serious problem.
The desired goal is to have a fast algorithm for truly large problems where slow
algorithms will certainly be unacceptably expensive and thus useless. We discuss some of
these algorithms later.

2.3 The simplex method in ’restricted tableau’ Consider the standard form 1 of the LP
Max f=cix)+. . +CoXn + 0.Xps1+ . - +0.Xpsm subject to bj20 j=1(1)m, x;20 i=1(1)n+m, and

Xy +apxot .. +alan+Xn+1=b1
a1X1+a2X2+ .+« +a2 X +HXps2=by

amiX1+amoXo+ « « FapnXot+Xnem=bm
The restricted simplex tableau for the foregoing LP can be written as

X1 Xjo Xn
Xptl  Q1e. @10 -+ AIn b;

Xn+0  Ai01 -+ Qi0j0 -+  2jon bio

Xp+m  3ml -+  @mj0 .. mn bm
—Cl . —€jo .+ —Ca 0

S1 (Pivot selection) Let —cjp be negative. Consider then, for all positive aj, the ratios
bi/aijo and take a smallest. If this is obtained for i0 then call p=ajg) the pivot (marked with
a plus in the example later).

S2 (Next-tableau Computation) Having interchanged xjo and Xn.o obtain the next
tableau as follows.

X1 Xn+i0 Xn
Xn+l —a1j0/p
Xjo aim/p .o l/p . aio,,/p bl()/p
Xn+m —aij/P
+cjo/p

The blank positions are filled in as follows. Replace i-th row (excluding the pivot row
and the elements of the pivot column) of the tableau by i-th row — ajoxpivot row. The
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pivot row is the row containing the pivot while the pivot column is the column containing
pivot).

S3 (Stopping Condition) If the bottom row (i.e., —cj-row) excluding the last element is
nonnegative, the solution is reached — terminate. Else go to the step S1.

Consider the problem Max f=—2x,—7x2+2x3 subject to x1+2x,+X3=1, —4x;—-2x,+3x3<2,
X1, X2, X320. We write the solution in restricted tableau (Vajda 1975) as follows.

Restricted Tableau 0 Restricted Tableau 1

X1 X2 X3 i0=2, j0=3 X1 X2 X5 i0=1, j0=1
X4 1 2 1 1 x4 73" 83 -1/3 1/3
X5 —4 -2 3* 2 Xs —4/3 -2/3 1/3 2/3

2 7 -2 0 -2/3  17/3 2/3  4/3

Restricted Tableau 2
X4 X2 Xs
X1 3/7 8/7 -1/7 1/7
X3 4/7 6/7 1/7 6/7
2/7 45/7 4/7  10/7

Since the last row is nonnegative (here positive), the solution is reached. The solution is:
X1=6/7, X2=0, X3=6/7, f‘—‘10/7

2.4 Checking Rule for a Simplex Restricted Tableau Consider as an example the
restricted tableau

(c) (ce) (c2) (ca)

X1 Xe X2 Xq
(c3) X3 P11 P12 P13 P Vi
(cs) x5 p21 P22 P23 P4 V2
d dy ds ds f

Then capisCspai—ci1=d;  C3pratCspar—Ces=dy;  C3pi3+Cspas—Ca=ds;  C3pia+Cspas—Ca=da;
c3vitcsvo=f.. Such a relationship holds in all tableaux. This relationship is referred to as
the Checking Rule for a Tableau. Satisfaction of this rule is necessary for a restricted
tableau to be correct but it is not sufficient (i.e., the rule may be satisfied even if a
computational mistake occurs).

2.5 Dual Simplex Method When to use Consider Case 2 (Sec. 1). Let all ¢; j=1(1)n

be nonpositive so that, in the first tableau (Tableau 0), the first n elements in the bottom
row are nonnegative (if we maximize). We call such a tableau dual feasible. If, in
addition, all b; i=1(1)m are nonnegative then the result is reached. Else, apply the dual
simplex method as follows.
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S1 (Pivot selection) Let by, be negative.Consider for all aj<0, |ci/aij] and take a
smallest. If this is obtained for jO then ajgjp is the pivot.

S2 (Next tableau computation) Same as in the foregoing simplex algorithm.

S3 (Stopping condition) If the bottom row (i.e., ci-row)excluding the last element is
nonnegative then the solution is reached — terminate. Else, go to the step S1.

Consider the problem [27] Max f=—x,—2x; subject to x1—4x222, 2x;-2X227, X1+3%,>-2,
X1, X220. Introducing slacks with negative sign, we obtain Max f=—x,-2x» subject to
X1—4X-X3=2, 2X1-2X3-X4=7, X1+3X2—X5=—2, X1, X2, X3, X4, X5=0. Mulitiplying each
equation by —1, we get —xX;+4Xp+x3=~2, —2X1+2X2+x4=—7, —X1—3X+X5=2. Hence the
tableaux are

Restricted Tableau 0 Restricted Tableau 1
X1 X2 X4 X2
X3 -1 4 -2 X3 -1/2 3 3/2
x4 —2¢ 2 =7 X1 1 ~1 712
xs -1 -3 2 X5 -1/2 -4 1172
1 2 0 Yo 3 ~7/2

Since the last row is nonnegative (here positive), the solution is reached. The solution is:
x1=7/2, x,=0, f=-7/2.

2.6 Artificial basis technique If the LP is in neither of the three standard forms (Sec. 2
and cannot be transformed into one of them then the method is as follows (note that the
LP is neither primal feasible nor dual feasible):

S1 Multiply both sides of those constraints by —1, in which b; is negative. The
coefficients of X,4; i=1(1)m are then 1, ~1, or 0.

S2 In the later two cases add a variable a; called the artificial variable to the left-hand
side.

S3 Subtract Ma; from the objective function f to be maximized (Add Ma; to the
objective function f to be minimized). M is considered to be a value larger than any other
with which it is compared during the computations.

S4 Set up the simplex tableau. Using the checking rule, obtain the last row (its elements
are to be multiplied by M). Note that the sum of the a;-rows is the row of the objective
function f=c¢'x +M Xa;.

S5 Consider the last row to be —¢j-row for the next tableau computation.

Why artificial variables (i) Contradictory constraints The most * mportant role of the
artificial variables is to detect inconsistency (contradiction), if any, among the original
constraints. If we do not use artificial variables then we might end up getting a solution
where it does not exist in view of the contradictory (original) constraints. The original
constraints are contradictory if it is impossible to make the artificial variables zero. (ii)



418

Redundant constraints If a constraint is redundant then an artificial variable may remain
in the final basis with the value zero.

Consider the LP {27] Max f=—x1+Xx subject to x)+2Xx,54, 3x1—X221, X14+3x5=4, Xy,
x,20. Rewrite the problem as Min f=x,—x, subject to X +2x2+X3=4, 3x;—X7—x4=1,
X1+3%x=4, Xj, X3, X3, X420. In the second and third equations the slacks x4 and xs have
coefficients —1 and O, respectively. Adding artificial variables v; and v, to these
equations and subtracting Myv; and Mv; from the objective function, we writé the
problem as Min f=x;—X+Mv,;+Mv,  subject to X +2X+X3=4, 3X;—-X—Xg4+V =1,
X14+3x2+vo=4, Xi, X3, X3, X4, Vi, V220. No slack variable is to be added to the third equality
constraint. The restricted tableaux now can be written as (positive slacks and artificial
variables only are written in the left-most column)

Restricted Tableau 0 Restricted Tableau 1
1 -1 0
X1 X2 X4 Vi X2 X4

0 x; 1 2 4 X3 -1/3 773 1/3 11/3
M v, 3* -1 -1 1 X 173 -1/3 -1/3 173
M v, 1 3 0 4 \'23 -1/3 10/3* 13 113
-1 1 0 0 173 213 -1/3 1/3
™M) 4 2 -1 5 —4/3 10/3 1/3 1173

T

Omit
The vy column is not useful. So it can be omitted. In fact, computation of v, is not
necessary. The next (final) tableau is

Restricted Tableau 2

V2 X4
X3 =710 1/10 11/10
X1 /10 -3/10 7/10

X2 3/10 1710 11/10
-1/5 =2/5 =2/5
~1 0 0

T

Omit

The v, column is also not of interest. So it can be omitted.. The solution is x,=7/10,
x2=11/10, f=-2/5. A method alternative to the artificial basis technique is the self-dual
parametric method {27]. We will not present this method here.

2.7 Revised Simplex method The tableau at any point in the simplex procedure can be
determined solely by a knowledge of which variables are basic. Denote by B the
submatrix of the original matrix A having m columns of the mxn matrix A
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corresponding to the basic variables. These columna are linearly independent and hence
the columns of B form a basis. Call B basis or basis matrix. Let B consist of the first m
columns of A. Then, by partitioning A, x, and ¢' as A=[B, D], x=[x, xp], ¢'=[c's, ¢'p],
the standard form of the LP becomes

Max f= c'gxp+c'pxp subject to Bxg+Dxp=b, xp>0, xp>0 (1)

The basic solution which, we assume, is also feasible corresponding to the basis ‘B is
x=(xg, 0), where xB=B‘lb. The basic solution results from setting xp=0. However, for any
value of xp the necessary value of xg can be computed from (1) as

xg= B"'b-B'Dxp 2
and this general expression when substituted in the cost function yields
f=c'g (B”'b~B'Dxp) + c'pxp= ¢3B'b+ (c'p— ¢'s B'D)xp (3)
which expresses cost of any solution of (1) in terms of xp. Thus
r'p=cp-cB'D  (4)

is the relative cost vector (for nonbasic variables). It is the components of this vector that
are used to determine which vector to bring into the basis. Having derived the vector
expression for the relative cost, we can now write the simplex tableau in matrix form.
The initial tableau takes the form

A = D (5)
[c‘ ’(lﬂ ‘c’BIc‘DI §|

which is not, in general, in canonical form and does not correspond to a point in simplex
tableau. If the matrix B is ysed as a basis then the corresponding tableau becomes

T=|{1 B'D B'b (6)
0 cp-csBD -c3B'b

which is the matrix form we desire. Note that the equation (6) is obtained by
premultiplying the right-hand side of the equation (5) by

B! 07].
~-csB 1
The simplex method is expected to converge to an optimal solution in about m or
perhaps 3m/2 pivot operations. If m << n, i.e., if the matrix A has far fewer rows than

columns then pivots will occur in only a small fraction of the columns during the course
of optimization. Since the other columns are not explicitly used, the work spent in
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computing the elements in these columns after each pivot is an wasted effort. The revised
simplex method avoids the unnecessary computations by ordering the computations
(needed of the simplex method). Given B™' of a current basis and the current solution
xB=y0=B'1b, the steps of the revised simplex method are as follows.

S1 Compute the current relative cost coefficients r'o=cp— ¢ BD. If r'p>0 then stop;
the current solution is optimal.

S2 Determine which vector agq is to enter the basis by selecting a negative cost coefficient
and computing y;=B'a, which gives the vector a, expressed in terms of the current
basis.

S3 If no yi>0 then stop; the LP is unbounded. Else, compute the ratios yio/yiq for yig>0
to determine which vector is to leave the basis.

S4 Update B™'and the current solution B™'b. Return to the step S1.

Updating B™' is done by the usual pivot operations applied to an array consisting of
B 'and Yq. Where the pivot is the appropriate element in y,.Of course B™'b may be
updated at the same time by adjoining it as another column. Consider the LP Max
3x14x2+3X3 subject to 2X1+X2+X352, X1+2X2+3X3S5, 2X1+2X2+X3<6, X1, X2, X320. Adding
the slacks x4, X5, X¢ we convert the inequalities to equations and write the extended
tableau 0 for reference.

Extended Tableau 0
Coef. Of Coeff. Of Coeff. Of Coeff. Of Coeff. Of Coeff. Of
Xi X2 X3 X4 X5 X6 b
2 1 1 1 0 0 2
1 2 3 0 1 0 5
2 2 1 0 0 1 6
3 -3 0 0 0 0‘_—cj-row

- -1
a;= ay az=
1 2 3
2 2 1

We start with an initial basic feasible solution and corresponding B™' (unit matrix here) as

B_] b=XB
x¢ 1 0 0 2
xs 0 1 0 5
x¢ 0 0 1 6

Compute ¢'sB7'=[0 0 0]B™!'=[0 0 0] and then (referring extended tableau 0)
r'p= ¢~ ¢ B'D=[-3 —1 -3]-[0 0 0]D=[-3 -1 ~3], where

D=

N2 == D
N DD
— )
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We decide to bring x, into the basis. Its current representation is found by multiplying by
B™'; thus we have

B_1 b=XB y2=B_1a2
X4 1 0 0 2 1+
xs 0 1 0 5 2
x¢ 0 0 1 6 2

After computing the ratios in the usual manner, we select the pivot indicated. The
updated tableau becomes

B_l b=XB
x2 1 0 0 2
xs =2 1 0 1
x¢ =2 0 1 2

¢sB!=[-1 0 0]B'=[-1 0 0].

(Refer extended tableau 0)
X1 X3 X4
rp=cp-c¢sB'D=[-3 -3 0]-[-1 0 O]ID=[-1 -2 1], where D=

We select x3 to enter the basis. We have the tableau
B—1 b=xg y2=B_1a3
2 1 0 0 2 1
5 -2 1 0 1 1*
6 2 0 1 2 -1

Using the pivot indicated, we get

B—1 b=XB
2 3 -1 01
3 -2 1 0 1
6 4 1 1 3

Now ¢y B'=[-1 -3 0]B7!=[3 -2 0].

(Refer extended tableau 0.) X1 X4 Xs
r'p=c'p—c's B'1D=[—3 0 0)-[3 -2 0]ID=[-7 -3 2],whereD= (2 1 O

01
00

[\

We select X to enter the basis. We have the tableau
B! b=xz y,=B7'a
X2 3 -1 0 1 5*
X3 -2 1 0 1 “3
x¢ -4 1 1 3 -5
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Using the pivot indicated we obtain
B_l b=XB
x1 35 =15 0 15
x3 =15 2/5 0 85
x¢ —1 01 4

Now c¢'g B™'=[-3 =3 0]B7'=[-6/5 -3/5 0].

r'p=c'p- ¢'g B'D=[-1 0 0]-[-6/5 —3/5 0]D=[7/5 6/5 3/5}, whereD=[1 10
2 01
2 00

Since all the elements of r'p are nonnegative, we conclude that the solution x=[1/5 0
8/5 0 0 4]'is optimal.

3. The Ellipsoid Algorithm
L.G. Khachian published a polynomially bounded algorithm [10] to solve an LP. Let
aix<b; i=l(1)m, a; EZD, biEZ (7)
be a system of strict linear inequalities with integral coefficients. Define
L=[Ylog,(laj+1)+2loga(jbil+1)+lognm]+1  (8)
where L=the space needed to state the problem=the number of bits (binary digits)
required to represent the input of the system of inequalities. The leftmost summation runs
over i=1(1)m and j=1(1)n while the rightmost summation runs over i=1(1)m.
The algorithm Define a sequence X, X1, .. €R" and a sequence of symmetric positive
definite matrices Ay, Aj, . . recursively as follows. x¢=0, A0=2LI where I is the unit
matrix of order n. Assume that (A, Xy) is defined. Check if xy is a solution of (7). If it is,

stop. Else, pick any inequality in (7) which is violated.If a;x,=b; then set

X =X A ((n+ 1)V (aiAah)),
A=/’ 1))(Ax—Q2/(n+1))(Axa)(AxaY)' /(aiAcaY))

It can be shown that approximations within ™' preserve the validity of the following
theorem.

Theorem If the algorithm stops then xy is a solution of (7). If it does not stop in 6n’°L
steps then (7) is not solvable.

To decide the solvability of a system of the form

aix<b; i=1(1)m, a;€Z", bieZ 9
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consider instead the system
2Max<[2"] b, +1 i=1(1)m, a, €Z", beZ (10)
To solve an LP max ¢'x subject to Ax<b, x>0, consider the system of linear inequalities
c'x=b'y, Ax<b, x>0, A'y>0, y>0. an

Consider the inequality x;+Xx;—4x3<—1. L=logy(1+1)+logz(1+1)+log,(4+1)+loga(1+1)
+Hog,(1x3)+1=7.9069. x,=[0 0 01", Ag= 2M.. x, does not satisfy the inequality. m=1, n=3.
x1=[-.9129 -9129 3.6515}"

Ai=|2625 ~715 30
-1.5 2625 30
30 30 150

The vector x, satisfies the inequality. So it is a solution and we stop. However, in the
ellipsoid algorithm, the space L needed to represent the input of the system of
ine%ualities is large for a reasonably large real-world LP. As a result , 2~ that occurs in Ag
(=2"D) could be too large for the (floating point) precision of the computer. Also, the
convergence is too slow, i.e., the number of iterations is too many for such LPs. Hence
the method is impracticable and is not meant to be used for solving an LP although the
method is of great academic interest and has stimulated the thought process of many
operations researchers. This stimulation has resulted in the landmark polynomial-time
algorithm [9] based on projective transformation due to Karmarkar in 1984 and
subsequently several other improved algorithms. We discuss specifically the Karmarkar’s
algorithm which is an exterior-point method unlike the simplex algorithms. For the
underlying geometrical concepts, Karmarkar’s paper [9] should be referred.

4. Karmarkar Form of Linear Program and Algorithm

4.1 The philosophy A linear program (LP), can be defined as Minimize (Min) z = ¢'x
subject to AX < b, x>0, where A is an m X n matrix and 0 is the n-dimensional
column vector (n-vector) of Os. A form of LP equivalent to the foregoing LP and an
algorithm (for this form), both due to N. Karmarkar, are presented here precisely and
concisely. This Karmarkar form of LP (KLP) is Min z = ¢'x subjectto Ax=0,e'x=1,x
20, x = e/n is feasible, minimal z-value = 0, where e is the n-vector of 1s. Both the form
and the operational aspects of the algorithm presented here are more easily followed. The
algorithm is readily implementable/programmable on a computer. The Karmarkar
algorithm (KA) uses a transformation from projective geometry to create a set of
transformed variables y. This transformation f always transforms the current point into
the centre of the feasible region in the space defined by the transformed variables. If f
takes the point x into the point y then we write fix) = y. The KA begins in the
transformed space in a direction that tends to improve z without violating feasibility.
This yields a point y', close to the boundary of the feasible region, in the transformed



424

space. The new point is x' that satisfies Ax") =y". The procedure is iterated replacing x°
by x' until the z-value for x* is sufficiently close to 0. An intelligent implementation of
KA, however, does need a deeper insight (into the algorithm) that avoids
redundant/partial duplication of computation/codes and that possibly reduces the number
of iterations. This projective transformation based polynomial-time interior-point
iterative algorithm is claimed to be more efficient than the widely used exponential-time
exterior-point iterative method called the simplex algorithm for large LPs. The simplex
algorithm and its variations have been the most widely used methods in linear
optimization for over three decades (sixties—eighties) and is still being extensively used
certainly for small and medium LPs. The KA is increasingly finding its place in
literature/textbooks on linear programming/operations research. It is also stimulating in
terms of visualizing every derived mathematical step geometrically (maximum three
dimensions can be visualized, higher dimensions are just straight-forward mathematical
extensions and cannot be visualized) or achieving the desired geometrical
path/destination using the appropriate mathematics. Thus, we believe that there is a scope
for such a presentation for the readers who desire to get a quick feel about this landmark
algorithm. A MATLAB program for the KA is appended for ready check and for a
quick feel about its convergence.

4.2 Notations

We use the following convention and notations. A bold lower case letter (such as ¢, b, x)
always indicates a column vector. A bold zero, viz., 0, denotes a null column vector (i.e.,
a column vector of 0s) of appropriate order (including the order 1). An upper case letter
(such as A, P) denotes a matrix and t, when used as a superscript, indicates the
transpose. The specific symbols used here have the following meaning.

Symbol Meaning
A an m X nmatrx [ag]
c an n-dimensional vector or simply n-vector [ci]=[c; c2..cCa)'
b an m-vector [bj]=[b; by..bm)
e avector [1 1 .. 1] of appropriate order
s an m-vector [sj] = [s; s2.. sm]' of slack variables
v an n-vector [v;] =[vi V.. vy] of surplus variables
X an n-vector [Xi] = [X; X2 .. Xa]'
x* or yk k-th iterate of the vector x or y

xuk or yuk k-th iterate of the u-th element of x or y

diag(x*)  n x n diagonal matrix whose (i,i)-th element is x;*

j=1)n j=1,2,..,n

Il Euclidean norm

o a real positive number < 1

X,y,s20 x2>0,y2>20,s>0

Min (Max) Minimize (Maximize)

X minimum-norm least-squares inverse (p-inverse) of the matrix X
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4.3 The Scope Consider the LP
Min ¢'x subjectto Ax=b, x>0. (12)

The LP (12) is solved by the simplex method/revised simplex method/a variation of the
simplex method (exterior-point method) designed and developed by G. Dantzig during
early 1950s {2, 3,4, 5, 6, 11, 17, 18, 26]. This method dominated the linear programming
scene solving millions of optimization problems in almost all scientific and engineering
areas. However, considerable amount of research went into this area and many special-
purpose algorithms were designed and used with a significant success. All these
algorithms are exponential-time (nonpolynomial-time). The simplex method is
exponential-time in the worst case. This implies that if an LP of size? n is solved by the
simplex method, there exists a positive number p such that for any n, an LP of size n
can be solved in at most p2" operations. The simplex mehtod may even enter into a
cycling (infinite loop) though very rarely [2]. Efforts to develop a polynomial-time
algorithm for LPs did not meet with any success till almost the end of 1970s. In 1979,
L.G. Khachiyan reported the first known interior-point iterative algorithm called the
Ellipsoid method [10] — not of great practical importance but of great academic interest —
to solve LPs discussed in the previous section. Then, in 1984, N. Karmarkar proposed
the second polynomial-time omn*?) interior-point iterative method [8, 9, 19, 28] based on
a projective transformation, which is of academic and of practical interest.

We provide here the conversion of any LP to the Karmarkar form of LP (KLP). We also
present Karmarkar Algorithm (KA) precisely and concisely so that one could simply
solve an LP just by mechanically following the steps. We omit the proof as well as much
explanation which are available in Karmarkar’s paper [9]. A MATLAB Version 5.1
program for the KA is included for ready verification and feel about the algorithm.

4.4. Conversion of an LP to KLP A standard LP (constraints in an equality form) or
any LP whose constraints are in an inequality form can be converted to a KLP as
follows. Consider the LP

Max z = ¢'x subjectto Ax<b,x>0. (13)
The dual of LP (13) is

Min w=b'y subjectto Aly2¢c,y=0. (14)
From the duality theorem, we know that if the n-vector x is feasible in (13), the m-
vector y is feasible in (14), and the z-value in (13) equals the w-value in (14) then x is

maximal for (13). This implies that any feasible solution of the following set of
constraints will produce the maximal solution of (13).

% The size of an LP could be defined as the number of symbols needed to represent the LP in binary
notation.
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c¢x—bly=0,Ax<h, Aly>c, x,y20 (15)
Inserting slack and surplus variables into (15) we get
cx-by=0,Ax+Is=b,Ay-Lv=¢, Xx,y,5,v>0, (16)

where s=[s; s2 ..sm] is the m-vector of slack variables, v=[v; v, .. vol' is the n-
vector of surplus variables, I, is the unit matrix of order m, and I, is the unit matrix of
order n. We now append to (16) yet another constraint such that the feasible solution of
(16) satisfies the equation

ex+ey+es+ev+d =k, amn

where k is to be found/supplied such that the sum of the values of all the variables < k.
The variable d; > 0 is 2 dummy (slack) variable. This yields

c'x-b'y=0, Ax+I s=b, Aly-Lv=¢, e'x+e'y+e's+e'v+d=k, x,y,s,v,d; >0, (18)

To make nonzero right-hand sides of (18) zero, we introduce yet another dummy variable
d,, where d; = 1. Thus, we obtain

¢'x-b'y=0, Ax+I;s-Izbdy=0, A'y-I,v-I,cdy=0, e'x+e'y+e's+e'v+d;—kd,=0,
ex+e'y+res+evrdi+dy =k +1,, X,y,8,v,d;,d, >0 .. (19)

Allowing the following change of variables x=(k + 1)x’, y=(k + 1)y’, s=(k + 1)s’, v=(k
+ 1)V, di=(k + 1)dy’, d;=(k + 1)d;” we obtain

Xy svd b=kt X ¥ & V d d]: ¢'X-by=0, AX'+I,8'-I.bdy'=0,
Ay -1,V -Tcdy=0,e'x'+e'y' +€'s'+e'v'+d, ~kd,'=0,e'X +e'y’ +e's'+e'v'+d;, +dy'=1,
X,)yl’s’yv,’dllvdz,zo- . . (20)

We now enforce that a solution (geometrically, a point in {2n + 2m + 2] dimensional
polytope [16] defined by (20) ) that sets all variables equal is feasible in (20). This is
achieved by adding the third dummy variable d;’ to the last but one constraint in (20) and
then adding a multiple of ds;” to each of its preceding constraints. This multiple is chosen
so that the sum of the coefficients of all variables in each constraint (except the last two)
equals zero. This yields KLP (21).

Min d3” subject to
c'X'~b'y’ — (e'c—e'b)ds'=0, Ax'+Is~Ibdy’ — [Ae + I(1-dy")e]ds'=0,
Ay -Lv-T,cdy/~[A'e-I,(1-d;)e]d;=0, e'x'+e'y’+e's'+e'v'+d;’—kd;’—(2n+2m+1-k)d;"=0,
ex+ey+e's+eV+d +dy +di’=1, X,y,s,V,d/’,d’,d'>0 .. 2D

Observe that we cannot write the expression ex’+e'y+e's’+e'v’ as e'(x'+y’+s'+v’) since
the order of ' differs from X’ to y’, in general. In the KLP (21) the solution (point) [x,’
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XX VY Ye s s s vl v vy A dY dy') =(1/(2n+2m+3))et is
feasible. Since d3” should be zero in a feasible solution of (20), we need to minimize ds’
in (21). If (20) is feasible then the minimum vatue of d;” in KLP (21) will be zero and the
remaining 2n+2m+2 variables in a minimal solution of (21) will give a feasible solution
to (20). The values of xi, X3, . ., Xn in the minimal solution of (21) will produce an
optimal solution of the original LP (13). The KLP (21) is now ready for solution by the
KA. Consider the LP Max ¢'x subjectto Ax <b, x>0, where

A=l:1 2 1] b=["17, ¢ 27, x= [x; x2 x3]' m=2, n=3.
4 -2 3 2} -7
2

From KLP (21), we have, choosing k=20 (conservatively) and setting x=2Ix;" j =
I(I)n, yi=21y;" i = I(I)m, s;=21s;" i = I(1)m, v;=21v;" j = I{1)n, d;=21d,’, d,=21d;’,

Min d;” subject to

=2 -7 2 =1 2 0 0 0 0 0 0 0 I0jix7| =10
1 21 0 010000 0-~1 —4f|xf 0
-4 -2 3 0 001 000 0-2 4]|ixy 0
0 0 0 1 400-100 02 2|]|y 0
0 0 0 2 -2000-10 07 -6}y 0
0 0061 3000 0-10-2 -1{}s 0
1 1 1 1 1111 11 1-20 9f]|sf 0
1 1 1 1 1111 111 1 1}]v 1
-1y, |

L vs

d

dy’

dy’

-

All variables = 0.

The foregoing LP is the required KLP for the KA. Thus, without any confusion or loss of
generality, the general form of KLP can be written as

Min z=c'x subject to Ax=0, e'x = I, x>0, x = e/n is feasible, minimal z-value = 0, (22)
where the matrix A is m X n. We will be using this general form for the KA.

4.5. The Karmarkar Algorithm (KA) Consider the KLP (22). Assume that a feasible
solution having a minimal z-value < € (¢ is a small positive value compared to the

average element of A, b, ¢) is acceptable. The KA is then as follows.

Step 1 Input A, b, c, m, n. Set n-vector e=[1 1..1]"
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Step 2 Set the feasible point (solution) x° = e/n, the iterate k = 0.

Step 3 If c'x* <& then stop else go to Step 4.

Step 4 Compute the new point (an n-vector) y**! in the transformed n-dimensional unit
simplex S (S is the set of points y satisfying e'y = 1, x > 0) given by

yk+1 =x0— acp/[\/(n(n—l))"cp"],

where

¢, = (I~P'(PP)'P)[diag(x")]e, P= E\[diagka)]:l, 0<o<l.
e

o= 0.25 is known to ensure convergence. P is the (m + 1) X n matrix whose last row e'

is a vector of 1s. (PP')" is the p-inverse [13] of the matrix PP".
Step 5 Compute now a new point x*! in the original space using the Karmarkar
Centring transformation to determine the point corresponding to the point y**:

x*! = q/(e'g),
where

q = [diag(x)]ly**".

Increase k by 1 and return to Step 3.

Remark The computation of x**' in Step 5 may equivalently be written as xjk“ =

xjkyjk“/Z(x.kytk“) j = 1(1)n, where the summation runs from t=1 to n.

Example Consider the example of Sec. 4.4. If we now call the 8 x 13 matrix A, the left-
hand side 13- vector x, and the right-hand side 8-vector b then the KA gives us, in the
[first iteration,

y' = [.0672 0683 .0701 .0753 .0709 .0706 .0770 .0692 .0824 .0733 .0769 .0750 .0781T,
x'=[.0068 0 .0408 .0136 .0272 0 0 0 .3061 O .5578 .0476 O]'.

To obtain 4 decimal places accuracy in the elements of x, we need to go up to 1247
iterations. Thus, retaining the elements of x correct up 4 places, we have

x"?7 = [.0068 0 .0407 .0139 .0272 .0003 .0001 .0006 .3066 .0001 .5560 .0476 OJ'.

Observe that here X =[x{" X2’ X3’ y/’ 2 s’ 82’ vi’ v’ v’ di’ dy’ d3’]'. Hence x," =
0068, x2’ =0, .., d;s” = 0. Thus the required (true) solution correct up to 3 places is,
noting that k = 20, x; = 21x}", x=21x7’, .., d; = 21dy,

[X1 X2 X3 ¥1 Y2 81 S2 Vi V2 v3 dy dp dy']'
= [.143 0 .855 .292 .571 .001 .003 .012 6.439 .002 11.675 1 .OOI]'.
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4.6 Conclusions Need for d;' It is not readily seen a priori that the original LP is
feasible. If it is known that the LP is feasible then we need not bring dj’ in the KA at all.
If the LP is not feasible due to inconsistency in the constraints and we do not use d;’ then
we will end up getting incorrect solution. While the simplex algorithm needs artificial
variables to tackle/detect inconsistency in the constraints, the KA needs d’.

Enhanced dimension of KLP If the original LP is in an inequality form (Ax < b) then
the corresponding KLP will have 2(n+m)+3 variables where A is m X n. Clearly there
has been an increase of n+2m+3 variables (and hence the increase in the dimension of
the polytope defined by Ax < b, x> 0) over the original LP. If, on the other hand, the
original LP is in an equality form (Ax = b) then the corresponding KLP will have
relatively small dimension.

Non-feasibility of error-free computation The KA needs the computation of V(n(n-1))
which cannot be computed exactly, in general. Hence, unlike simplex and other methods
{12, 14, 15], the KA is not amenable to error-free computation.

Polynomial-time noniterative algorithm —an open problem The KA is polynomial-time
iterative needing clearly too many iterations compared to the simplex algorithm. A
mathematically noniterative (direct) polynomial algorithm for an LP is still an open
problem. However, a heuristic direct polynomial algorithm which is significantly useful
in solving many real world LPs does exist [Sen and Ramful 2000]. It may be seen that the
nonnegativity condition (x=0) is the real difficulty in the way of developing direct
algorithm.

Parallel implementation The KA is relatively easy to be implemented/programmed on a
parallel machine unlike the simplex method.

General Observe that max ¢x is the same as min —¢'x. There has been a surge of
interest among scientists/operations researchers to relook into the LP after the publication
of the KA in 1984 [1, 8, 15, 16, 19, 20, 21, 22, 23. Consequently, there have been several
inerior-point polynomial-time iterative algorithms (which are indeed excellent) reported
in the literature. We do feel that a through conceptual knowledge of the KA, specifically
from the geometrical point of view, is not only refreshing and enjoyable but also an
important basis for further research in linear optimization.

4.7 MATLAB Program for Karmarkar Algorithm (KA) A MATLAB 5.1 version
program for the KA is presented below for the reader to readily check the algorithm for
different kind of LPs including extreme ones (not large) and get a feel of it. No effort has
been made to make the program more efficient so as to differ from the KA presented
here. Observe that a MATLAB program is not meant to solve really large LPs. The inputs
to this program are A, b, c, k (a parameter that differs from problem to problem), m, n.

function[ ] = karmarkar(A,b,c,k,m,n);
%A is an mxn matrix; e=n-vector of 1s needed later.
%This is KA for the LP min z= cMx s.t. Ax=0, x>=0, e*tx=1, x=¢e/n is feasible,
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%minimal z-value=0. k =20 here. k differs from problem to problem.

=ones(n,1); x0=e/n; x=x0; alp=0.25; I=eye(n); eps=0.00005; n2=sqrt(n(n-1));
%eps=0.00005 should be replaced by eps=0.00005*(average of the elements of A b, & ¢)
%for 4 significant digit accuracy in the solution (not the true solution) by KA.

for j=1:3000
if c*x<eps
string ’eps, iteration no., x ’
eps, j, X’
break
end
P=[Ax*diag(x);e’];
cp=(I-P*pinv(P*P")*P)*diag(x)*c;
y=x0-alp*cp/(n2*norm(cp));
q=diag(x)*y;
x=q/(e’**q);
string "The iteration no. and solution are’
»X
end;
xt=(k+1)*x;
string "The iteration no. and true solution are’
J, xt

5. Variation on Karmarkar Algorithm: Detection of Basic Variables

5.1 Introduction The projective transformation algorithm due to Karmarkar has brought
about a resurgence of interest in linear programs (LPs). More recently Barnes [1] has
developed a concise algorithm that can be applied to the standard form of an LP for
which the minimum value of the objective function need not be known in advance. The
Barnes algorithm is reviewed and some alternative proofs are provided. Also included is
a sufficient condition for the algorithm to produce a bounded solution for an LP. The
monotonic convergence of the solution vector and hence the detection of the basic
variables during the execution of the algorithm are discussed [22].

5.2 The Algorithm Let the LP be
Min c'x subject to Ax=b, x20. (23)

where A=[a;] is an mxn matrix of rank m, ¢, X, and b are as defined in the previous
section. Denote the j-th column of A by a;. In order to solve the LP (23), we solve the
problem

Min ¢x subject to Ax=b, Y(xi~y)*/yi’=R’ (24)

Iteratively, where y=[y; y2.. ya]>0 is a feasible solution, R is a positive constant
defined later, and the summation is over Ifrom 1 to n. Let x">0 be given. In general, if
x* is known then define
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Di=diag(x;* x;* .. x,%) (25)

k+1

Compute x>0 by the formula

X=X -RiD A (e- AN Di(e-AN)|| (26)
where
M= (ADZAY TAD e 27N
and

Ri= min  [Due-ARMJHCcrah) o (28)
(ci~a;A>0

for some oy>0 so that R >0.

The fact that the algorithm converges to a solution is based on the following theorems
and lemma (presented without proof). For proof, refer [22].

Theorem 1 Let the LP (23) have a bounded solution. Then the algorithm defined by the
equations (25)-(28) converges to a solution of (23).

For an mx(m+1) matrix A of (23), the following theorem states that at least two of the
variables including the nonbasic one converges monotonically.

Theorem 2 Consider the LP (23) with n=m+1. Then the sequence {xik }. where i is such
that the detection of the i-th column from A results in a nonsingular matrix, converges
monotonically.

The following lemma specifies a sufficient condition for a problem to have bounded
solutions.

Lemma 1 Let fdi=c'x*~ ¢x**!. The LP (23) has a bounded solution if the sequences
{c‘xk} and {fdy} are decreasing.

Consider the LP Min f=x1—X, subject to x;+2X,54, 3x1—x%x221, x1+3x2=4, X1, X5=0.
Adding the slack x; to the first equation, subtracting the slack x4 (called a surplus
variable) from the second equation, and adding the artificial variables x5 and X to the
second and the third equations respectively, we get the LP Min f=
X1—x2+0x3+0x4+Mxs+Mxg subject to x1+2X2+X3=4, 3X1—Xz—X4+X5=1, X(+3X2+Xs=4, all
variables>0. The value M is considered to be larger than any other with which it is
compared during the computation. We take here arbitrarily M=50. Observe that artificial
variables have to be added to ‘>’ as well as ‘=" constraints but not to ‘S’ constraints
(assuming b;20 for all i) for consistency (of constraints) check. The artificial variable
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values must occur in the optimal solution with values zero if the LP is contradiction-free
(consistent). If we do not use artificial variables for ‘>’ and ‘=’ constraints assuming
b>0 then we could get a solution for the inconsistent LP where no solution exists. For
‘<’ constraints no artificial variables (except slacks) are needed.

Let the initial feasible solution be

x’=[.01 .01 (4-.01-2x.01) .01 (1-3x.01+.01+.01) (4-.01-3x.01)]'
=[01 .01 3.97 .01 .99 3.96]' 20 (null column vector).

A= 2 , e=[1-1 00 50 50]
1

Iteration 0 (k=0)

D0=diag(x°)=the 6x6 diagonal matrix whose diagonal elements are those of x°.
Ao=[-.0025 49.9444 49.9968]". We have chosen arbitrarily 0,=.01>0 for all k. In fact,
to get a positive Ry, we should choose an 0y appropriately. D0=diag(x°)=the 66 diagonal
matrix whose diagonal elements are those of x°. Substituting the values of xy, ¢y, and the
vector aj=the first column of the matrix A, we obtain one value Ry' and the
corresponding one value vi=c1—a;Ag. Similarly, we obtain R02 and v,= c,—ax'Ag. Thus we
have

[Ro' Ro® Re® Ro* Ry® RoJ=[ —1.1599 —2.2727 226.3848 4.5675 41.4905 189.3568],
[Vi va Vi3 vs Vs vgl=[-198.8273 —101.0410 .0025 49.9444 0556 .0032].

The minimum Ry=R¢*=4.5675 for which v4=49.9444>0. Hence we take Ro=4.5675. We
are now having all the required values to compute x! which is

x'=[.0497 .0302 3.8899 0 .8810 3.8597], f=237.0545.
Iteration 1 (k=1)

D1=diag(x1)=the 6x6 diagonal matrix whose diagonal elements are those of x'.
M=[-.0440 48.2694 49.9490]".

[R:'R2 R R* R R1=[-1.0725 -3.3180 59.7917 9631.2 6.7020 52.0274],
Vi va vs va Vs vel=[-193.732 —102.4898 .0440 48.2694 1.7306 .0510].

The minimum R,=R,’=6.7020 for which vs=1.7306>0. Hence we take R;=6.7020. We
are now having all the required values to compute x* which is

x’=[.3633 .0913 3.4540 0 .0013 3.3626]', f= 168.4688.
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Iteration 2 (k=2)

D2=diag(x2)=the 6x6 diagonal matrix whose diagonal elements are those of x*
A=[-.2680 —14.9562 49.5961]".

[Ry' R R R R RAI=[-12.0557 —1.0195 16.3490 —46022 177.0070 11.1385],
[vi V2 Vi Vs Vs vgl=[-3.4596 -164.2085 2680 -14.9562 64.9562 .4039].

The minimum R2=R26=11.1385 for which v¢=.4039>0. Hence we take R;=11.1385. We
are now having all the required values to compute x® which is

xX’=[.6993 1.0992 1.1022 0 .0012 .0030), f=-.1874.

We continue the iteration till we get a desired accuracy, say, 4 significant digit accuracy.
The exact solution of the LPis x=[.7 1.1 1.1 0 0 O f=4.

5.3 Detection of Basic Variables The most difficult part in solving an LP is the lack of
knowledge of the basic variables in the LP. If we know them a priori then the LP can be
solved (substituting zero for the nonbasic variables) just like the way a linear system is
solved in O(n’) operations noniteratively (or iteratively). In fact, if there is an o)
noniterative algorithm to detect the basic variables then it is clearly an achievement (a
milestone) in the area of LPs.

However, we discuss here how the foregoing iterative algorithm could be used to detect
basic variables. The detection is made possible on the basis of the monotonic
convergence of the variables including the nonbasic ones. We discuss the following
cases for the detection of basic variables, the consequent optimal solution, and the
problems involved therein.

Case 1 If both the primal and its dual are nondegenerate then the P has a unique
solution having exactly m variables basic nonzero (see corollary of Property 1 later). The
detection of basic variables and the consequent optimal solution are as follows. After a
sufficient number of iterations, the m columns of the coefficient matrix associated with
those m (basic) variables which have the larger values are taken and the resulting linear
equations with the mxm nonsingular coefficient matrix are solved. The remaining n—m
variables (nonbasic) are set to zero.

Case 2 1If the primal is degenerate and its dual is nondegenerate then the problem has a
unique solution (see Theorem 4 later) having k<m variables nonzero. The basis here is
not unique and may not be detectable. However, the k variables which are basic and can
be detected give the optimal solution as the remaining n—k variables are zero. The
optimal solution in this case is computed as follows. After a sufficient number of
iterations, m columns including the k columns are chosen and the resulting linear
equations with the mxm coefficient matrix are solved by choosing the values of the
arbitrary variables, if any, and those of the remaining n—m variables as zero.
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Case 3 If the primal is nondegenerate and its dual is degenerate then the problem has
multiple solutions (see Property 1 later) having k>m variables nonzero. If the algorithm
converges to a solution with exactly m variables nonzero (which, in general, does not
happen) then these are basic. Otherwise, the detection is difficult as is highlighted in
Lemma 2 and Theorem3 presented later.

Case 4 If both the primal and its dual are degenerate then also the problem has multiple
solutions (see Property 1 later) and hence the detection of basic bvariables is hard here
too.

The detection of basic variables in Cases 3 and 4 is discussed later in this section. The
following lemma illustrates that the solution of the LP (23) obtained by the algorithm
need not be an extreme point.

Lemma 2 If the LP (23) has a bounded solution then the solution obtained by the
algorithm need not be an extreme point.

The proof of Lemma 2 follows from considering a counter example - the LP Min
—2X1—X2 subject to 2X1—2Xy+X3=1, 2X1-3x2+x4=1, 2X;+X+X5=2, all variables>0. An
artificial variable X¢ is introduced to construct an initial feasible solution vector.with all
elements 1.The following theorem indicates a class of problems for which the algorithm
may fail to give an extreme point.

Theorem 3 If an LP has multiple solutions then the algorithm need not give an extreme
point of the constraint set {x: Ax=b, x>0}.

The proof follows from Lemma 2 and the foregoing discussion. The following property
expresses the relationship between multiple solutions and degeneracy.

Praperty 1 A primal has multiple solutions if and only if its dual is degenerate.

Corollary 1 If the primal and its dual are nondegenerate then the problem has a unique
solution which is an extreme point.

The motive of the following theorem is to highlight the fact that the degeneracy of the
primal does not pose any difficulty in computing the optimal solution.

Theorem 4 If the dual of a given LP is nondegenerate then the algorithm converges to an
extreme point.

We have seen that if the dual is degenerate then the primal has multiple solutions (from
Property 1) and hence the algorithm applied to the primal will not, in general, give an
extreme point and, therefore detection of basic variables is not possible. As a remedy, the
algorithm may be applied (i) to the dual if the primal is nondegenerate or (ii) to a problem
which differs from the original one in the cost vector ¢ so that the dual is nondegenerate
and the solution of the perturbed LP is also a solution of the original LP. In the perturbed
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technique, the perturbed problem is solved in the same way as in Case 1 if the original LP
belongs to Case 3 and as in Case 2 if the original LP belongs to Case 4.

It is not necessary to know beforehand whether the primal is degenerate or not. We halt
at some iteration of the algorithm and seeve out the basic variables keeping in view that
the nonbasic variables tend to zero. To halt, we choose an exit parameter which is any
numerical zero whose choice depends on the measure of degeneracy of the dual; in our
numerical experiments, it is chosen as 107" |x||. The iteration may be continued till
anyone of the variables including the artificial ones has a value less than the exit
parameter or till a specified number of iterations chosen here as 2n have gone through,
whichever is satisfied earlier. If the dual is near-degenerate, the choice of numerical zero
may not be effective, i.e., it may not allow us to recognize the correct basis. A smaller
exit parameter (subject, however, to the precision of the computer used) as well as alarger
number of iterations are then called for.

6. About Other Algorithms —Deterministic, Heuristic, and Probabilistic

6.1 Shrinking Polytope Algorithm: Deterministic Let the LP be Max ¢'x subject to Ax
=b, x>0, where A =[aj]=[a' @' .. ay]' isan mxn known matrix of rank r with i-
throw a'=[a; ag ..anl Geometrically, a;,'x = by is the i-th hyperplane of dimension
n(i=1,2,.., m). That portion of the intersection of these m hyperplanes, that lies in the
nonnegartive quadrant (i.e., the first quadrant defined by x=0 called the nonnegativity
condition) constitutes convex region called here a polytope — the region which is of
interest and is searched/spanned by the variables x; of the vector x [16]. If one of the
comers of the polytope happens to be the required point (solution) x, obviously that
produces the maximum value of the objective function (OBJ) ¢'x, will have usually
(nodegenerate case) positive values of some of the variables of x; while other values of
the variables will be zero. Those variables x; which have positive values are called basic
variables while the remaining variables of x are called nonbasic variables which will
always have zero values. There is absolutely no way to know a priori the basic variables.
For, if the basic variables are known a priori then the LP can be readily solved
noniteratively just like solving linear equations in o’ operations. Which variables will
become basic depend on the constraints Ax = b, the OBJ ¢k, as well as on the
nonnegativity condition x>0. Once the basic variables constituting the vector xg are
known then the required solution is Xg = Ap'b, where Ag is the matrix A without those
columns corresponding to the nonbasic variables, and there is no need to know c¢'x.

While a corner point of the polytope, that gives the required maximum and that makes n
—r variables x; nonbasic, is most desired, a noncorner point could also maximize the
objective function, i.e., it could give the same maximum value of the objective function
as the former one. In the later case the number of positive variables x; will be more than
the number of basic variables. Although the LP is certainly solved (in the later case)
with more positive variables, such a solution is not often desired in practice.
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The first hurdle in solving the LP is computing/obtaining a point in the polytope, i.e.,
obtaining a nonnegative solution of the constraints Ax = b while the second hurdle is to
obtain that x which maximizes ¢'x and which is preferably a corner (point) of the
polytope defined by Ax = b, x20. To cross the first hurdle noniteratively in a polynomial
time without increasing the dimension (columns) of A (e.g., without inserting artificial
variables in Ax = b) is an open problem. Equally open problem is to cross the second
hurdle noniteratively in a polynomial time. However, these !;roblems have been solved
iteratively in a polynomial time by, say, Karmarkar O(n’”) projective transformation
algorithm [9] or noniteratively in exponential (combinatorial) time using, for example,
the fundamental theorem of linear programming, i.e., by searching over "C, basic
solutions. The simplex method is an improvement over the method of proof of the
theorem.

Once we have found a point (solution) inside the polytope we have crossed the first
hurdle, i.e., we have obtained a nonnegative solution of Ax = b. We know the exact
direction of search, viz., the direction of the ¢ vector (c-direction), for a maximum but we
do not know the point from which we proceed in that direction. If we start moving in the
c-direction from a point which is different from the foregoing required point and which
does not lie on the e-direction that passes through this required point then we will hit a
side (bounding hyperplane) or a corner (an intersection of two or more hyperplanes) of
the polytope corresponding to the OBJ value less than the maximum OBJ value.

In the absence of the knowledge of the required point from which we start our search in
the c-direction, a sensible/logical way is to start from a centre of the polytope or from
somewhere in the middle region of the polytope. Unlike a multidimensional sphere, a
polytope does not have a unique centre. Hence we consider the point of intersection of
the minimum number of normals (directed inward the polytope) as a centre. A rigid
weighted centre as found by P.M. Vaidya [25] is computationally more complex and
strictly not necessary. From our centre we proceed in the c-direction and hit a hyperplane.
A hyperplane from this point of hit and perpendicular to the c-direction encloses a much
smaller space called here a shrunk polytope (which is within the current polytope). We
again go to a centre of this shrunk polytope and proceed once again in the c-direction.
This results in still smaller polytope. We continue this process till we get the required
solution. A situation in this process that may crop up is a full rank linear system with k
equations in k variables. This will, however, produce the required solution through
solving these equations noniteratively — no further iteration (successive approximation) is
needed at this stage.

6.2 O(n’) Noniterative Algorithm: Heuristic There exists no mathematically direct
(noniterative) algorithm to solve LPs like the ones (e.g., Gauss reduction with partial
pivoting) to solve linear systems. Sen and Ramful (2000) [23] developed an O(?)
mathematically noniterative heuristic procedure that needs no artificial variables and that
includes an optimality test for solving LPs. Numerical experiments depicts that this
algorithm is of considerable practical utility. An errorfree implementation of this
algorithm is also developed [15].
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6.3 Probabilistic Algorithm: Evolutionary An evolution-inspired linear program (LP)
solver {7, 24] is presented. The solver has been called “evolutionary” or “genetic”
although the actual resemblance to natural genetics was minimal. The evolutionary
algorithm (EA) computes a solution of the LP Maximize ¢''x’ subjectto A’X' <V, k' <
x' <k, where K = [k} kK2..Kal'and k=[k; k; ..ki' & K') are n-vectors of real
numbers and A’ =[a’;j] is an mXn real matrix. The EA is inherently highly parallel and is
readily implementable on a parallel machine and needs no slack/surplus (for conversion
of inequalities to equations) and artificial variables (for consistency check). A sequential
implementation of the algorithm is easy but cannot compete with the popular
deterministic exterior/interior-point methods in terms of computing resource
requirements and accuracy. A sequential MATLAB version of the solver is included for a
quick feel about this evolutionary algorithm. The result here is evidently not claimed to
produce basic variables and to be enough accurate, though, for many practical problems,
such a result is useful. A parallel version, however, can possibly be competitive and is
relatively easy to comprehend. The implementation of this algorithm, much unlike that
of deterministic procedures, to solve nonlinear programs (NLPs) as well as integer NLPs
and integer LPs is straightforward.

6.4 MATLAB EA to Solve LP A MATLAB 5.1 version of the evolutionary algorithm is
given below to obtain an approximate (not very accurate) solution of the given LP. The
solution vector may have more than the number of basic variables nonzero.

function([]=opt34a{m,n,A,b,c,size,d, s, ka,kb);
string ‘ORIGINAL m,n,A,b,c,size,d,s,ka, kb’
m,n,A,b,c,size,d,s,ka, kb
%
%Compute solution vector x that maximizes c¢’x subject
$to Ax<=b, O<s=ka<=x<=kb,Matrix A is mxn.
$size=population size (100, say); 1l/d=fraction for
$perturbation (d=50, say); s=max # of seeds (10, say).
%n-D vector ka is the lower bound of the vector x.
%n-D vector kb is the upper bound of the wvector x.
%
bd=b;cd=c;Ad=A;maxgen=70;
b=b-A*ka;
for j=1:n
c(j)=c(j)*(kb{(j)-ka(j)); A(:,J)=A(:,3)*(kb(]j)-ka(]j));
end;
string ‘CONVERTED A,b,c’
A,b,c
%
maxfit=0;
for seed=1l:s
fmax s different populations allowed;
%each derived from a different but related seed.
$From each initial population, called Generation O,
%the next generation (of the same size) is
%derived from the immediate preceding generation
$based on perturbations of each member of the population/generation.

[X,z]=population{(m,n,A,b,c,size);
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for g=1:maxgen %g denotes generation no. (Max maxgen (70) generations
$for each seed {(initial population, i.e., Generation 0)
%has been allowed here. maxgen may be changed to any
%other value, say 50.
%$Each successive superior generation is obtained
%by perturbations of each member of the preceding generation.

maxfitl=maxfit;

for k=1l:size %$scanning over each member of one generation.

xx=X;

for j=1:n
alp=X(3,k)/4;X(j, k)=X(J,k)+alp;x=X(:,k);
fitnessp(j)=fitnessf(A,b,c,x,m};
X(j,k)=X(j,k)-2*alp;x=X(:,k);
fitnessn(j)=fitnessf(A,b,c,x,m);
X (3, k)=X{j,k)+alp;x=X(:,k);
fitness(j)=fitnessf(A,b,c,x,m);

end

[fitpmax, jpl=max{fitnessp);
[fitnmax, jn]=max(fitnessn);
[fitmax,j0]=max(fitness);

if (fitpmax>=fitnmax) & (fitpmax>=fitmax)
J3=3p:X(3F. k) =xx (33, k) +xx(3j. k) /d;
if X(33.,k)>1,X(3j.k)=1;end;
elseif (fitnmax>=fitpmax)é&(fitnmax>=fitmax)
3i=in;X (33, k) =xx{(3j k) -xx (33, k) /4;
if X(jj,k)<0,X(jj.k)=0; end;
elseif (fitmax>=fitpmax)é&(fitmax>=fitnmax)
33=30;X(33.k)=xx{(3j.k);
end
end
[X,z)=generation{m,n,A,b,c,X,size);
[maxfit,kk]=max{z);
string ’‘Generation/population #,Its best member#’
g, kk
string ‘'Fitness Value of this member, Member’
maxfit, X(:,kkY

if (abs(maxfit-maxfitl)/maxfit)<.0000001|g>=maxgen
maxfitg(g)=maxfit;Xg(:,g)=X(:,kk);
break
end
end

[maxfitglobal, gmax]=max (maxfitg);
string ‘Seed #, Best fit for the seed, best member’
seed, maxfitglobal,Xg(:, gmax)
fitnessv(seed)=maxfitglobal;XXg(:, seed)=Xg{:,gmax);
end
[bestfit,bestk]=max(fitnessv);
string ‘best fitness value, best member’
bestfit,XXg(:,bestk)
%
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for j=1:n
xvalue(j)=XXg(J,bestk)*(kb(j)-ka(j));
end;
xvalue=xvalue’+ka;
objfnvalue=cd’ *xvalue;
string ‘objective function value’
objfnvalue
string ‘solution vector’
xvalue
%
count=0;
A=Ad; b=bd;
%
for i=1:m
if A{i,:)*xvalue<=b(i),count=count+l;end;
end;
if count<m
string ‘Not all constraints are strictly satisfied.’
string 'Number of constraints satisfied are’
count
else string ‘All the constraints have been satisfied’
break
end;
countl=0;
for i=1:m
lhs=A(1i, :)*xvalue;
if 1lhs<=b(i}, countl=countl+l;
else diff=abs((b(i)-1hs)/b(i))*100;constraintno=countl+1;
string ‘Constraint no., b{constraintno)’
constraintno, b{constraintno)
string ’‘exceeds b(constraintno) by (percent of b{constraintno)’
diff
end;
end

function[points]=reward(A,b,x,m);
rpv=0.5*ones (m, 1) ;points=0;
for i=1:m
if A(i,:) *x<=b(i)
points=points+rpv(i);
end
end;

function[fitness]=fitnessf(A,b,c,x,m);

points=reward(A,b,x,m);

if points>=m*.5-.00001
fitness=c’*x+points;

else fitness=points;

end;

function(X, z]=population(m,n,A,b,c,size);
%Generation 0,i.e., initial population of size, say, 100
%n is the dimension of each member of the population
X=rand(n,size);
for k=1l:size

x=X(:,k);

z{k)=fitnessf(A,b,c,x,m);
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end;

function[X, z]=generation(m,n,A,b,c,X,size);

%generation produces fitness of each member of successive generations,
%$i.e., Generation 1 onwards

$n=dimension of each member of the generation

%$size=number (constant, say, 100) of members in a generation,

%i.e., no population increase or decrease in a generation

for k=l:size, x=X(:,k); z(k)=fitnessf(A,b,c,x,m); end
$Vector z gives fitness of each of the members in a generation
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ABSTRACT
Cell formation problems are practically important and are NP hard, which is very difficult
to solve. Various operations research techniques, from the early use of the various
mathematical programming techniques to the more recent neural fuzzy approaches, have
been proposed to use to solve this problem. This chapter presents these operations
research approaches. To save space and also to introduce the approaches in reasonably

detail, at least one numerical example is used for each type of the technique discussed. A
detailed list of references is also given.

1. Introduction

Various systems, such as justin-time, flexible manufacturing, cellular
manufacturing system, and etc., have been proposed to increase the efficiency in
manufacturing. These systems yield many advantages in different ways. For example,
just-in-time manufacturing, also known as the pull system, has been implemented in
industry to improve the productivity by reducing in-processing inventory. Flexible
manufacturing system, which is a compromise between the flexibility of cellular
manufacturing and the higher production rate of the specially designed manufacturing
system, is designed for medium volume manufacturing where computer control is used.
In cellular manufacturing, increased productivity is achieved by forming cells or groups
with similar properties or similar processing requirements.

A major task in the design of cellular manufacturing system is cell formation, which
includes the identification of part families and the formation of associated machine cells.
The problem is how to design part families and associated machine cells such that all
parts and machines in a cell have high similarity. This similarity can be based on various
factors such as geometry, functioning aspects, material, processing, tools needed, and
even the operator required. Thus, many factors can be or need to be considered in
forming the cellular manufacturing system. Two basic approaches, namely, part coding
analysis and production flow analysis, have been proposed. The former uses the
information in the parts’ attributes based on parts’ coding and the latter uses information
of the relationships between parts and machines.
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In part coding approach, the code, which characterizing the parts, can be represented
by real (crisp) data, fuzzy data, or interval data. Crisp data are data that can be measured
and defined precisely. Length of the part and type of material are examples of this type.
Fuzzy data arc data that cannot be defined precisely and is usually expressed
linguistically. Some examples of interval data are tolerance level and the degree of
surface finish, which are frequently represented approximately by intervals.

In the production flow approach, part-machine matrices are used to represent the
relationships between the parts and the machines. There are three types of part-machine
matrices, binary part-machine matrix, weighted partmachine-part, and nonbinary part-
machine matrix. A binary part-machine matrix only shows machines needed to process a
certain part. It does not present information concerning processing sequence of a given
part. A weighted part-machine matrix presents not only information of machines needed
to processing a certain part but also the level of this processing, which represents the
level of machine loading, production volume, or machining hours. Information of
processing sequence of a certain part can be obtained from a nonbinary part-machine
matrix.

From the operations research or mathematical algorithm standpoint, the above two
basic approaches of cell formation can be considered approximately as the clustering
approach and the classification approach. Withclustering approach, the similarities of
parts or machines are usually used as the indices of performance. The objective is to
minimize the differences inside a cluster and to maximize the differences among the
clusters. Withthe classification approach, the basic idea is to establish the relationship
between the parts and the machines. As discussed above, a part-machine matrix can be
used to represent the relation. A typical part-machine matrix is illustrated in Figure 1. A
binary part-machine matrix is usually a one-to-one relation. Most traditional approaches
assume the existence of a one-to-one mapping between machines and part types.
However, in actual practice, a certain part may be most suitable to be processed by, say,
the first type of machines; but, it can also be processed, although less desirable, by a
second type of machines. Suppose the first type of machine is very busy while the second
type of machine is idle; from the standpoint of better machine utilization, the second type
of machine should be used to process this part. In other words, from the machine
utilization standpoint, the one-to-one mapping should not be absolute. The recent
proposed fuzzy approaches can be used to achieve this purpose.

MACINES| pm, M, - M,
PARTS

Pl Xu 1z le

Pz le Xzz ij

Pi Xil Xi2 Xij

Figure 1. Part-machine matrix

Since cell formation is essentially an optimization or decisionmaking problem;
various operations research techniques, which are summarized in the top row of Table 1,
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have been used to solve this problem. As has been discussed before, in forming this
decisionr making problem, many different aspects of the process can be considered as the
most important factor. Some of these factors typically considered are listed in the left
most column of the table. Only some the recent research papers are listed to illustrate the
approach. These approaches will be discussed in the various sections. Figure 2 gives an
overview of the approaches and the various connections of the approaches.

From a more basic operations research standpoint, the various techniques used can
be classified as deterministic, stochastic and fuzzy approaches. Deterministic approaches
assume that the information concerning the process is known without uncertainty and
fuzzy approaches assume a more practical situation where the information is only fuzzily
represented. Historically, mathematical programming was first proposed and fuzzy
approach was a fairly recent proposition. Because of the vagueness or fuzziness, neural
network learning was proposed to up-date or to model the system more accurately.

In this chapter, the various operations research techniques used to solve the cell
formation problem will be summarized with emphasis on the recent developments.
Mathematical programming approach is first discussed in the next section with two
numerical examples, one of which investigates the difficult problem of dealing with
exceptional elements. Because cell formation is basically an integer problem, integer
programming is most suited. Although a finite integer programming problem has a finite
number of solutions, the number of this finite number of solution can still be very large
even for a reasonably small problem. In fact, it has been proved that most cell formation
problem is a non-polynomial problem [Kamrani et al 1995] and is NP-complete [Garey
and Johnson 1979]. To overcome this difficulty, various heuristic approaches have been
proposed. These heuristic approaches, with emphasis on recent developments, are
discussed in Section 3. The remaining sections in this chapter discuss the use of the
recently developed neural network and fuzzy decision making approaches for cell
formation.
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Figure2. Operations research approaches in cell formation
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Table 1. Operations research techniques and factors considered in cell formation

Approaches [Mathematical |Heuristics Neural Fuzzy Set Fuzzy
Programming Networks Theory Neural
Factors Networks
Routing Cao and Hwang and Sun |Kao and Chuand Suresh and
McKnew (1996), Joines |{Moon(1991), |Hayya(1991), |Kaparthi
(1998), Sclim  |et al.(1996), , Kaparthi and |Zhang and (1994),
et al (1998). and Suresh(1992), |Wang (1992),  |Burke and
Hegi(1997), Rao and Tsai et Kamal
Chanet al. Gu(1994), al(1994), (1995),
(1998), [Kulkami and  |Su(1995), Leem [Kamal and
Spiliopoulos,  |Kiang (1995), jand Burke
and Chen and Chen(1996), (1996),
Sofianopoulou  [Cheng(1995), (Wen et al. Suresh et al.
(1998), Chang |Enkesetal.  (1996), Szwarc [(1999)
and Lee(2000), [(1998) . et al. (1997),
Onwubolu and Senand
Mutingi (2001), Dave(1999)
Hwang and Sun Kamal and
Throughput (1996) |Burke
(1996)
Abdelmola et |Hwang and Sun Kamal and
Productivity [al. (1998) (1996) Burke
(1996)
Akturk and Suresh et al. Tsai et al.
. Wilson (1998) |(1995), Taboun 1994),
Capacity | 129\ al.(% 598), (Szwar)c etal
(1997
Tabounetal. [Kao and Mital et al. Lee and
(1998) Moon (1991), |(1988), Xuand |Fischer
Kaparthi and [Wang(1989),  |(1999), Pai
{Suresh(1991), (Ben-Arich and (and Lee
Moon and Triantaphyllou  {(2001 a,b),
Roy(1992), [(1992), Zhang |Kuo et al.
Chakraborty [and Wang (2001)
Part and Roy (1992),8u(1995)
Attributes (1993), Liao |, Ben-Ariehet
and al. (1996),
Chen(1993), [Narayanaswamy
jChung and et al.(1996),,
Kusiak Masnata and
(1994), Wu  [Settineri (1997),
and Jen |Gengor and
(1996), Arikan(2000),
Pilot and Liao(2001)




(Knosala
(1998)

Berardietal. [Taboun etal Raoand Gu  (Tsaietal.
(1999) (1998), Zhou  [(1994) (1994), Tsai et
and Askin al. (1997),
(199_8'5,_' Szwarc et al.
| Abdelmosa and (1997)
Taboun(1999),
Moon and Gen
(1999),
Hwang and Sun Pai and Lee
Ige‘“n’;‘ber of (1996), Chan et (2001 a)
al.(1998)

Costs

2. Mathematical Programming in Cell Formation

Various approaches have been proposed to form machine cells based on
mathematical programming. Almost all mathematical programming techniques, such as
linear programming, quadratic programming, integer programming, dynamic
programming, mixed integer programming, goal programming and etc., have been used.
Depending on the different emphasis of the various factors, different optimization
problem with different objectives and constraints can be formed. For example, problems
may be formulated to minimize the following various factors or costs: intercellular travel,
setup time, exceptional element cost, total production cost, machine idle time, the number
of inter-cell transfer, the number or cost of machine duplication, the number of
exceptional elements, inventory cost, machine relocation cost, equipment and tooling
investment, floor space, intra and inter movements of the operator, and etc.. Example
problems to maximizing objective functions are: maximizing machine utilization,
maximizing similarity or compatibility measure, maximizing the number of parts
completed in a cell, maximizing capacity utilization, and etc. Some of the constraints
proposed are: the number of parts in a cell, the number of machines in a cell, the number
of operators per cell, the number of parts per operator, time availability, number of tool
type available, annual operating budget, tool life, and etc. For more details, the reader can
refer the various review papers such as the review by Selim et al [1998].

Several recent developments using mathematical programming are summarized
briefly in the following. One of these developments is the application of the Lagrangian
relaxation algorithm, which has been shown to be effective for solving large
combinatorial problems. Cao and McKnew [1998] used this relaxation algorithm with a
partial early termination technique to terminate some sub-models in order to reduce the
computatioml effort. Deutsch et al. [1998] applied an improved p-median approach to
maximize the similarities between the different parts. Abdelmola et al. [1998] used a two-
stage model to handle the cellular manufacturing productivity problem. Binary integer
programming was used in the first stage and integer programming was used to optimize
the total productivity in the second stage. Berardi et al. [1999] employed a mixed integer
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programming approach to evaluate the influences of exceptional parts based on
alternative machine clusters.

To illustrate the approach, two numerical examples will be formulated and solved in
the following. The first example illustrates the general approach and the second deals
with the problem of exceptional elements. Because of the integer nature of the cell
formation problem, integer or mixed integer programming is usually the most appropriate.
Although integer programming problem with bounded feasible region is guaranteed to
have a finite number of solutions, the number of the finite number of solutions can be
very large even for relatively small problems. Thus, it cannot be solved easily. To
overcome this problem, heuristic approaches, which will be discussed in the next section,
are frequently used.

Example 1 [Parapat Gultom, 1996}

To illustrate the approach, machine cells will be formed using integer programming.
The problem considered has eight parts and five machines. The objective is to
minimizing the total cost, which consists of processing cost and the cost of machines. The
number of cells and the maximum number of parts in a cell are both assumed as three.
Table 2 summarizes, for each part, the operating sequence and the required processing
time for each operation. The bottom row of Table 2 shows the yearly demand of each part.
Table 3 shows, for each machine, the processing cost of each operation, the availability in
hours per year, and the cost.

Table 2
Operation | Part No.
No. 1 ) 3 3 5 6 7 8
1 1.0 3.0 2.0 5.0
2 2.0 4.0 2.0 2.0 2.0
3 2.0 2.0 1.0 3.0 5.0 1.0 3.0
4 4.0 3.0 2.0 4.0
5 4.0 4.0 4.0 3.0 4.0 4.0 2.0
Demand 400 300 400 400 300 200 400 200
Table 3
Machine {Operation Machining Hour  [Maintenance
T T2 T3 17435 Available Cost
1 201 151 25(40 [ 20 5000 6000
2 30| 30{ 40 | 20| 25 6000 8000
3 25110130 {40 (20 8000 7000
4 401251 10] 201} 40 6000 8000
5 50 25130}25] 40 8000 6000
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The objective and constraints for this cell formation problem are:

Minimize iiiiE,Cj,qixijk +iiijjk 4]
i=l i=1 j=l k=1 791 k=1
Subject to
Processing time constraint:
Y33 Pax ST, VO) ®
I:I:cf:;):r]t is allocated to one cell only:
i x, =1 Vi 3)
ﬁ;xnnmn number of parts allowed in a cell:
i x, <3, Vk @
:ssignment of part i to cell k:
iqu -x, 20, Vje S,,V(i,k) &)
]é:ch machine can only assigned to one cell:
Sr.=L Y ©)
l@xximmn number of machines in a cell:
iyjk <3, Vk M
lesignment of part:
ix,jk <@-DY,, VjeSs,Vk ®)
=l

Decision variables must be integers:
Xyps Xger ¥y € (O1) Vi, j,k) 9)
where:
i—index of part,i=1,...,n
j—index of machine j=1,....m
k—index of group,k=1,...,g
I —index of operationl=1,...,r
Clj 1processin g cost of operating { on machine j

f,rannual  fixed cost rate of machine j
q’:annual production requirvemen t of part i

P, process time for operation of | of part
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S, :Set of machines needed to process part i
B, :maximum number of parts in cell k

U, maximum number of machines in cell k

| if part i on machine j belongs to group k
ka {0 otherwise
1 if part i belongs to group k

xik {0 otherwise
1 i machine j belongs to group k

yik - {0 otherwise

This model was solved using the LINDO software. The optimal solution is
summarized in Table 4.

Table 4
Cell No. Part No. Machine No. | Total Cost
1 P3,P7 M3
2 P1,P6,Pg M2 M5 $646,500
3 P2,P4,P5 MI1,M4

Example 2. Exceptional Elements Problem in Cell Formation [Berardi et al. 1999]

A mix integer programming model was proposed by Berardi et al. [1999] to
investigate the problem of exceptional elements. In cellular manufacturing, the ideal
situation is that all operations of parts in a family should be carried out within a single
machine cell. In other words, cells in the part-machine matrix should be totally
independent of each other. But, in actual practice, this ideal situation can seldom be
achieved. Parts that are processed by more than one machine cell and machines that are
required by two or more part families are known as exceptional parts and exceptional or
bottleneck machines, respectively. These exceptional parts and bottleneck machines are
known collectively as exceptional elements. The problem of exceptional elements is very
difficult to solve. In fact, this 0-1 binary clustering problem is a traveling salesman
problem, which is NP-complete.

Exceptional elements, which cause additional operations and additional cost, are
undesirable and should be reduced, or, should be handled in such a way that the cost due
to these elements can be reduced. In order to achieve these purposes, various approaches
have been proposed to handle the problem of exceptional elements. The most frequently
used ones are the following three approaches: the use of machine duplication, the use of
intercellular movement, and the use of part subcontracting. If only one of these
approaches is used, Berardi et al called the approach pure strategy. Mixed strategy
implies the use of more than one approach. In order to compare the optimal costs, Berardi
et al [1999] formed the following mixed integer problem with the costs of these three
approaches as the objective function
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Miny {ZX,.S,. + D Y A+ ZZikI,} (10)
S

ieG, ke H, ieG,
Subject to:
Z,=D-X, - (CkMik /Pik) VEEs, 1
Y M, <Y, Vif, (12)
ieG,

where the variables X, Y, ., Z,, are all integer and

X, = units of part ¢ to be subcontracted,
Y,, =number of machines of type & to be purchased for cell f,

Z, =number of intercellular transfers required by part i because of no machine type &
available within the part cell,

M, = number of machines of type & dedicated to the production of part i (utilization of
machine type k to produce part i )

A, =annual total cost of a machine of type £,

S, =incremental cost of subcontracting a unit of part i,

I, = incremental cost for moving part i outside of a cell,

C, =annual capacity of machine type &,

D, = annual demand for part 7,

P, =rprocessing time of part i on a machine type &,

G, = set of exceptional partsin cell £,

H , = set of bottleneck machines required by parts incell f .

The aim is to minimize the summation of the subcontracting cost, the machine
duplication cost, and the intercellular transfer cost. All of which are due to the present of
exceptional elements. Equation (11) represents a logical balance on the number of
intercellular transfers for exceptional elements. The optimization model represented by
Equations (10)-(12) assumes that the part-machine cells, which are represented by the
machine-cell grouping matrix, are already in existence. The purpose is to obtain the
optimal costs using the above model and to study the influences of the various
approaches to handle the exceptional elements. If there is no exceptional elements, the
cells in the desired part-machine grouping matrix is arranged in mutually exclusive
groups along the diagonal of the matrix. With the presence of the exceptional elements,
mutually exclusive cells cannot be obtained. With a given problem, in order to take care
of the exceptional elements, many different machine-cell grouping matrices can be
obtained. Thus, the above optimization model can also used to study the different
machine-cell matrices formed due to the presence of the exceptional elements. There are
many algorithms to obtain the desired machine-cell grouping matrices. Berardi et al,
based on the numerical values listed in Figure 3, obtained six altemative part-machine
grouping matrices by using the two following different clustering algorithms. The single
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linkage clustering analysis developed by Sneath [Sokal and Sneath 1968] for use in the
field of numerical taxonomy and the rank order clustering developed by King [1980] for
the purpose of part-machine grouping. For problems without exceptional elements, these
clustering algorithms essentially consist of exchanging rows and columns in the part-
machine matrix so that an entry in the matrix is contained in mutually exclusive groups
arranged along the diagonal of the matrix.

The data used is summarized in Figure 3. The main part of Figure 3 lists the
processing sequence and processing time of a given part. For example, part 2 is processed
in machines 2, 3 and 8 with corresponding processing times 5.18, 4.29, and 5.32 minutes,
respectively. The remaining rows and columns list the various costs and capacities. The
six alternative part-machine clusters obtained by using the numerical values listed in
Figure 3 is summarized in Figure 4. The first four clusters (alternatives 1-4) were
obtained by using the single linkage clustering approach and the last two were obtained
by the order rank clustering algorithm.,

Using the model represented by Equations (10)-(12), the optimal solutions of these
six clusters listed in Figure 4 were obtained [Berardi et at 1999] and the results are
summarized in Table 5, where the number of cells formed and the number of exceptional
elements obtained from Figure 4 are also listed. The numerical results were obtained by
Berardi et al [1999] using IBM’s optimization subroutine library on an RS/6000 model
530 workstation.

The optimal results for the mixed strategy, which was obtained by using Equation
(10) as the objective function, are listed under the columns labeled MP. The optimal
results using the pure strategy, or, only use one of the three costs as the objective function,
are also listed in this table. As can be seen from the table, the mixed strategy for any of
the alternative cost less than any one of the pure approaches. For example, for Alternative
2, the total cost for the mixed strategy is only 483313 while the least cost for the three
pure strategies is 590016.

P|1 2 3 4 5 6 7 8 9 10 AR CK
T 295 220 461 ]50,784]2,000
2 276 518 189 3.89 5.14 67,053|2,000
3 554 429 43,9442,000
4 |291 197 259 401 270 67,345(2,000
5 428 451 42,414]2,000
6 |1.92 223 5.52 75,225(2,000
7 3.40 116 472 249  [52,741|2,000
8 532 375 385 63,523]2,000
9 4.04 183 |50,632]2,000
SO 142 43 35 44 35 39 44 46 3 5

D) [32,128 27,598 20,651 11,340 18,707 17,040 46,196 45,384 16,400 22,000

0 37 28 28 33 28 35 28 26 34 32

Figure 3. Numerical data used, example 2
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ALTERNATIVE 5 ALTERNATIVE 6
PARTS PARTS
1 2346 108 5 97 12346 10859
21 1111 21 1111
311 3911
noin 1 1 1]1 1 1
% 4 11 11 11 41 11 11
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9 1 1 9 1 1
© ®
Figure 4. Altemative clusters
Table 5. Numerical results, example 2
Al No. No. MP  total MP cost components Pure strategy cost
t of of cost Machine  Part Intercellular Machine  Part Intercellular
cells EEs Duplication  subcon moves duplication  subcon- moves
tracting tracting

$460183.60 $185182.00 $134937.60 $140064.00 $641937.00 $782262.00 $652861.60
$483313.60 $332102.00 $61566.40 $89645.20 $590016.00 $869172.80 $684273.20
$462761.40 $309618.00 $61566.40 $91577.00 $567531.00 $869172.80 $754673.20
$524710.60 $332102.00 $180237.00 $12370.80 $641020.00 $869172.80 $761547.60
$364364.20 $235768.00 - $128596.20 $472573.00 $782262.40 $533988.00
$317797.60 $193354.00 - $124443.60 $387745.00 $665910.40 $436926.00

N B W RN =
NN W L L W
th ~] 00 0O ~J o9

3. Heuristic Approaches in Cell Formation

Cell formation problems are essentially discrete search problems or integer
programming problems, which are difficult to solve even for a medium size problem.
Thus, various heuristic approaches have been proposed to solve these problems. The
heuristics proposed can be roughly divided into the various ad hoc approaches and the
evolutionary approaches. Some of the important algorithms for the latter approaches are
genetic algorithm, simulated annealing, and neural network. Neural network, combined
with fizzy logic, will be discussed in latter sections.

Some of the typical ad hoc approaches are summarized briefly in the following.
Suresh et al [1995] developed a capacitated hierarchical heuristics to deal with the cell
formation problem. The proposed approach is capable of solving problems with large
amount of part-machine data and with multiobjective functions. Ang and Hegi [1997]
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presented an algorithm to deal with the improper part-components assignment problem.
Spiliopoulos and Sofianopoulou [1998] presented a tree search heuristic for dealing with
the cell formation problem. A procedure was proposed to reduce the size of the tree.
Results showed that the proposed algorithm is very efficient. Taboun et al. [1998]
proposed a two-stage model to deal with part family and machine formation. A heuristic
was proposed for the first stage to determine the number of cell and thus reduces the
number of constraints in the second stage. Chang and Lee [2000] using the idea of nearest
neighborhood and presented a heuristic with emphasis on the use of the decision maker’s
judgment.

Various investigators have proposed algorithms to use the simulated annealing in
cell formation. Simulated annealing originated from the field of metallurgy. Kirkpatrick
et al. [1983] proposed the algorithm based on the analogy between the annealing of solids
and the problem of solving combinatorial optimization problems. Some of the researches
using simulated annealing are briefly summarized in the following. Zolfaghari and Liang
[1998] proposed a simulated anmnealing approach by considering processing time,
machine capacity and machine duplication. To promote faster convergence, these authors
used an improved Hopfield network to generate reasonably good starting solutions. Zhou
et al. [1998] employed simulated annealing heuristics to improve the greedy heuristics
and to minimize the increment heuristics in cell frmation problems. The results showed
that when the size of the problem increases, the proposed heuristics outperforms the
integer programming model significantly Abdelmola and Taboun [1999] proposed a
simulated annealing approach, which outperforms the ronlinear 0-1 integer-programming
model. Caux et al. [2000] combined the simulated annealing algorithm with branch and
bound. The former focussed on the generation of partitions and the latter solved the
routing assignment problem.

Inspired by the natural evolution process, Holland [1975] proposed the genetic
algorithm, which is a somewhat organized random search technique and which imitates
the biological evolution process. Onwubolu and Mutingi [2001] used the genetic
algorithm to solve the cell formation problem with the upper and lower bounds of the cell
size determined by the designer. The results compared favorably to the results of using
the traveling salesman heuristics. Hwang and Sun [1996] combined genetic algorithms
with the greedy heuristic. The approach consists of two phases. The first phase identifies
machine cells and the second phase identifies the associated part families. Moon and Gen
[1999] presented a genetic algorithm based heuristic with the simultaneous consideration
of processing time, production volume, the number of cells, cell size, and machine
capacity. The problem was first formulated as binary integer programming and solved by
the proposed heuristics.

Another heuristic approach is the tabu search algorithm [Glover 1986], which is
very useful for solving combinatorial optimization problems. Sun et al [1995] applied
tabu search heuristic to handle the cell formation problem. A binary-tree data structure
and a look-ahead scheme were employed to improve the search efficiency. The results
showed that the proposed algorithm is able to generate good cell configuration within an
acceptable computation time.

Heuristic approaches are generally problem dependent. A given heuristic may be
very effective for certain problems but is very inefficient for others. In fact, even for the
same problem, different parameter settings result in different efficiencies. Thus, it is



457

difficult to design a heuristic approach, which is effective for all the problems. However,
for the evolutionary approaches, some general approximate conclusions can be obtained
from the standpoint of effectiveness for cell formation. The parameters that influence this
effectiveness are the mutation rate of genetic algorithm, the forbidden rules of tabu search,

and the rate of temperature decrease in simulated annealing. Another way to increase
the effectiveness is to use a combination of different heuristics.

To illustrate the approach, a numerical example is solved in the following using
simulated annealing.

Example 3. Simulated Annealing

Simulated annealing is a random search technique based on the annealing of
metallurgical solids, where the metal solid is first heated to its melting point and then
slowly cool down to room temperature. It is hoped that, during this cooling process, the
energy of the metal will eventually reach an absolute minimum. If the cooling down is
too fast, the energy of the metal may reach a local minimum, which has a much higher
energy than the absolute minimum. However, due to thermal agitation, there exists a
chance that the metal will eventually jump out this local minimum. Thus, as time goes on,
the system may eventually reach the absolute minimum. Notice that the process always
changes in the direction of decreasing energy and the probability of jumping out the local
minimum depends on the temperature level. Thus, by varying the temperature parameter,
the probability of jumping out the local minimum can be changed. The probability, p, of
changing the energy state from F, to E;;, where ¢ represents the iteration number, obeys
the equation:

1

T onAETT) ()

P

where AL = E,; -E;+; corresponds the energy change and T is the temperature or a
parameter. Suppose we wish to maximize the total productivity (TP), then the TP can be
expressed as a function of the energy state, TP(E,). Thus, the general procedure of this

approach can be summarized in Figure 5 [Pham and Karaboga, 2000] and approximately
classified into the following steps:

Initiation. Set the various parameters such as the initial and final temperatures, the
incremental change of temperature, the cooling rate, etc.

Generating_neighboring or new_solution This corresponds to jumping out the local
i

Evaluation This can be accomplished based on the machine cells and exceptional
elements costs, etc.

Change temperature level or not? If not, go back to “generating neighboring solution”
step. Otherwise, go to next step.

Incremental change of temperature. Change the temperature and go to next step.

Stop_or not? This step is based on the final temperature. If the current temperature is
equal to or less than the final temperature, go to next step. Otherwise, go to
“generating neighboring solution” step.
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Stop and calculate the final solution

where the steps needed to keep the iteration counter have been omitted.

L Initial solution /

y

Evaluate the solution

Yes

Update the current solution

Change temperature
Yes

Decrease temperature

Generate a new

solution
b

No

Terminate the search?

Final solution

Figure 5. Simulated annealing algorithm [Pham and Karaboga, 2000]

Abdelmola and Taboum [1999] solved a cell formation problem with 10 machines
and 10 parts by the simulated annealing approach. The problem is to maximize the total
productivity (TP) and is represented by the following nonlinear 0-1 integer-programming
model:

T EZDSIII(

22 2, NM XIMCX D, XY, + 3, 3, 3 (1- X )b, Y, x EMCxX D,

(14)
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Subject to
zjxjk <NM  Vk (15)
X =1 vj (16)
> Y=l Vi 17
X,=0 or 1 V(jk) (18)
Y,=0 or 1 V(@k) 19
where:

i=1,2,... pparts index
j=1,2,...,mmachine index;
k=1,2,...,ccells ndex.
b, =1, if part type i require machine type j,
=0, otherwise ;
D,= annual demand of part i;
EMC= inter-cell material handing cost;
IMC= intra-cell material handing cost;
NM = number of machines required by part type i ;
S, =sales price of product i
X ;,=1, if machine type j is used in cell k,
= (,otherwise;
Y, =1, if part i belongs to celi k,
=(),otherwise

The numerator in the objective function, Equation (14), represents the total sale price
of the parts produced and the first and the second terms in the denominator represent the
intra cell and inter cell material handling cost, respectively. Equations (15) and (16) state
that each machine is assigned to only one cell and the maximum number of machines in
each cell cannot over a given number, respectively.

Using Equations (14)-(19), Abdelmola and Taboum [1999] solved a cell formation
problem with numerical values listed in Table 6, where the part sequence and other
values used are listed. For comparison purposes, these authors also solve this problem
using the mathematical programming approach with the LINGO software. The results by
mathematical programming are listed in Table 7.

Since the simulated annealing approach is essentially a heuristic algorithm, several

parameters such as the initial and final temperatures, the amount of perturbation or the
incremental change of temperature, and the cooling rate, influence the convergence rate.
The cooling rate controls the number of iterations in each temperature level or determines
when to change temperature. This rate factor is connected with the actual problem being
solved. For the current approach, the number of iterations in each temperature level is
assumed to be proportional to the number of machines in the system, or

(Maximum iterations at a temperature level) = k (number of machines)
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where the proportional factor or the cooling rate factor, k, determines the cooling rate or
the number of iterations in each temperature level.

After some experimental analysis, the authors used the values of 0.99, 50, 0.1, and 32
for the incremental change of temperature, the initial temperature, the final temperature,
and the cooling rate factor, respectively. The incremental change of temperature, 0.99, is
a multiplication factor. In other words, the temperature decreases by one percent each
time. The results obtained by simulated annealing are listed in Table 8.  The
computational results show the simulated annealing algorithm outperforms the
mathematical programming method in terms of obtaining a better objective function
value and computation time.

Table 6. The numerical values used, example 3

Part | Sales Demand D Machine Number

Type | Price($) M1 | M2 M3| M4 | MS5|M6;M7| M8| M9 [MIO
Pl 14 299 1 0 ololtofloloO 0 1 0
P2 14 291 0] 0 1 1 ojJ]o}]oO 1 [
P3 11 239 0] 0 010 1 1 0] O 0] 0
P4 10 210 1 0 00 0] 0 0] O 0[] O
P5 10 203 0 0 0] 0 0] 0 1 0 1 0
P6 14 281 1 0 0] 0 010 1 0 1 0
P7 12 248 0 0 1 0 010 1 1 1 0
P8 13 260 0 0 0[O 0 1 0 0 0 1
P9 13 237 0 1 1 1 olof O 1 0f 0

P10 11 255 0f 1 1 1 0]0] O 0 0} 0

Table 7. Solution by mathematical programming

TP=1.8698 CPU time=73 sec
Cell Parts Machines

1 1,7.9 1456

) 23,438 2,7.9,10

3 3 3

7 6,10 8

Table 8. Solution by simulated annealing

TP=1.9927 CPU tume=55.42 sec
Cell Parts Machines
1 2,7,9,10 2,3,4,8
2 8 10
3 3 5,6
4 1,4,5,6 1,7,9
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4. Fuzzy Set Theory in Cell Formation

The basic concept of the traditional cell formation approach is that each part belongs
to exactly one family. Even assume that there exists no exceptional part in the cell
formation problem, this basic concept is not ideal because difficulties encountered in
practice are ignored. The first difficulty is the fact that in cell formation the information
used for assignment of cells is frequently vague or linguistic, which is fuzzy, not well
defined, and cannot be expressed exactly in numerical terms. For example, one important
parameter in part coding is the length parameter, which is frequently described in
linguistic terms such as very long, long, average length, short, very short and etc. A
second problem is that some characteristics of the part itself cannot be described exactly.
For example, the primary shape of a part is frequently not cylindrical or prismatic but is
somewhere in between, which is difficult to represent exactly..

A third problem is machine utilization. For example, a given part may be most
suitable to be processed in the first type of machines, but also can be processed, even
though not as efficient, in a second type of machines. If the machines in the first type are
very busy but the machines in the second type are idle; then, for the purpose of better
machine utilization, this given part should be processed in the second type of machines.
Thus, for machine utilization purpose, this given part should belong to both types of
machines to a certain degree.

All the above problems can be handled and have been handled by the use of the fuzzy
set theory, which was developed by Zadeh to overcome the limitations encountered in
two-value logic. Many investigators have proposed the use of the fuzzy concept to solve
the cell formation problem. Mital et al. [1988] proposed the use of fuzzy numbers to
represent part features and used membership grade to classify the parts. Based on fuzzy
similarity, Xu and Wang [1989] developed a computer program for classifying part
families. Several rotational parts from the industry have been classified and the results
were proved satisfactory. The fuzzy clustering algorithm, fuzzy c-mean, was first adopted
by Chu and Hayya [1991] to deal with cell formation problem. BenArich and
Triantaphyllou [1992] presented a methodology for handling crisp and fuzzy part features
in a unified manner. The proposed methodology is based on a modification of the revised
analytical hierarchy process. Zhang and Wang [1992] proposed two fuzzy methods: fuzzy
set based single linkage 'cluster analysis and fuzzy rank order clustering. With the
inclusion of fuzziness in the production flow analysis, both methods were applicable to
the machine-component grouping problem. A fuzzy integer programming approach was
proposed by Tsai et al [1994] to deal with cell formation problems. Different membership
functions are examined to analyze the impacts on computational performance. Fuzzy
clustering approach was employed by Gindy et al. [1995] to obtain the optimal number of
groups. An industrial case was used to demonstrate the performance of the proposed
algorithm and the results showed that the presented algorithm outperformed existing
algorithms in the literature. Su [1995] proposed a multi-criteria fuzzy approach, which
includes both the geometric features and the production routing information. Ben- Arieh
et al. [1996) used fuzzy numbers to represent the coding information. Fuzzy relation and
average linkage methods were used to form part families. In this paper, the authors
classified the part attributes into three types for coding: continuous and crisp attributes,
fuzzy attributes, and interval attributes. Leem and Chen [1996] presented a fuzzy
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clustering algorithm for machine-cell formation. A similarity coefficient was used for
machine grouping. The objective of the algorithm was to minimize the intercellular
movement. Szwarc et al. [1997] used fuzzy nonlinear mathematical models to solve the
cell formation problem, which considers both the fuzzy demand and the machine capacity.
The objective function was to minimize material handing and processing cost. To reduce
computation time, alternative crisp and fuzzy nonlinear mathematical models were used.
Several examples were solved. Since the solution strategy was heuristic, optimality
cannot be guaranteed. However, the solutions obtained were found to be near the
optimum. Sen and Dave [1999] applied the noise clustering technique [Dave 1991] to
solve the cell formation problem. The identification of bottleneck was considered as the
isolation of noise and outliers. Gungor and Arikan [2000] used a fuzzy decision model to
solve the cell formation problem, which considers the design, manufacturing attributes,
and operation sequences as factors. The approach emphasizes human judgment than pure
mathematical aspects. Based on similarity measurement, Liao [2001] proposed an
approach to deal with part family formation problem in a fuzzy environment. An example
was used to demonstrate the feasibility of the proposed approach.

Example 4. Fuzzy Linear Programming [Tsai et al 1994]

To illustrate the fuzzy approach, the problem solved by Tsai et al [1994] will be
summarized. For comparison purpose, both the crisp (non-fuzzy) and fuzzy versions
were solved. The equations for the non-fuzzy or traditional approach are listed in the
following;

Minimize:
DXARADY, D 12,4, Y 0,8, (20)
ko k (i,jESp Jj Giksp

Subject to:

iX,.k=1, Vi (21)
k=1
2 Y=l (22)
k=1
¥ X, <NM, Vk )
i=1

Sv, <NP, Vk 24)

=



U.+V

ijk

<1, V(,j)esp, Vk

ijk

0y

/)

C
k+thk+P k_D Uuk’ V(l _])G P, Vk

i

> M, <R,, Vi, Vk

(26)
(27)

(28)
(29)

(i.))sp
z Z UZuk—Q z #(l 2 uk) Vk
k (.)esp : G, pesp i
where X , Vi , Ui , Vipr are 0, 1 integers; and O and Ry are integers, and the notations
used are:
i machine index; &1,.....,m
j partindex; j=1,....... R}

k cell index; k=1...... c
D, Annual demand for part j.

Processing time of machine type i needed to produce part j.

Ead

; Incremental cost for moving a unit of part j within two cells.

1
S, Incremental cost of subcontracting a unit of part j for an operation.
A

. Annual cost of acquiring a machine type i.
C,; Annual capacity of machine type i.

NM The maximum number of machine allowed each cell.
N P The maximum number of part allowed in each cell.

S P Set of pairs (i,j) such that a;=l

X, 1,if machine i is assigned to cell k; 0, otherwise.

Y, Lifpart] isassigned to cell k; O ,otherwise.

U, Lifa,=1,Y,=1,and X, =0; 0, otherwise.

Vi Lif a, =L, 7Y, =0,and X, =1; 0, otherwise.

R,, Number of machine type i to be dedicated in cell k.

Q. Numbers of machine type 1 needed to process the corresponding parts.

0, Units of part j to be subcontracted as a result of machine type i not being available

within cell k.
Numbers of machine i in cell k for producing part j.

yk

ljk

being available within cell k.

Numbers of intercellular transfers required by part j as a result of machine type i not

The objective function, Equation (20), minimizes the costs of duplicating a machine,
intercellular transfer, and the cost of subcontracting. Equation (23) is to prevent the
assignment of more than NM machines and Equation (24) serves the same purpose for the
number of parts. Equations (21) and (22) prevent the duplication of parts and machines.
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For many complex practical problems, the objective function near the optimum is
fairly flat. As a result, the plant supervisor frequently does not require the optimum but
only requires the achievement of a certain goal, which is near the optimum from past
operating experiences. Thus instead of the objective function, Equation (20), we have the

following inequality:

;ZAiRik+z Y 1,Zu+), 20,8 =Bxs<Z (30)

k (.)esp j (i.jkEsp

where Z is the minimum goal, x represents the decision variable vector and Bp the
corresponding coeflicient vector.

The problem now becomes the system of inequalities, Equations (21)-(30). However,
a fixed goal is not very reasonable. We would like to make the goal as near the minimum
as possible. One way to achieve this is to use the following membership function:

1, Bx<Z
u, (x) = 1—B°x"Z, Z<Bx<Z+T, (31)
0
0, Byx2Z+T,

where 75 is the tolerance allowed for the minimum goal.

Furthermore, suppose we wish to allow some tolerances concerning the maximum
numbers of machines and parts in each cell and let the following membership functions to
represent these tolerances:

1, Bx<d,
1= 1—B'LT"1L, d, <Bx<d +T, (32)
0, Bx>d +T

where i=1,2 correspond Equations (23) and (24), respectively; x and B are the decision
variables and the coefficients of the decision variables, respectively; 4 represents the right
hand side of the equation, and 7 and 7 '; represent the tolerances on the maximum number
of machines and maximum number of parts, respectively.

In order to satisfy all the inequalities, we must take the minimum, or the intesection,
among all the membership functions. Thus

A=min p1,(x) (33)

However, é is a membership function. We would like to obtain the maximum of the
membership function and satisfies the tolerances, 7;,/=0,1,2. Thus, the problem becomes
the maximization of &,

Max A = max {mxin H,(x)} 34
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with the original constraints, Equations (21), (22), (25)-(29), and the following new
constraints:

;ZA,R“Z N 1,2,+Y 30,8 +AT,<Z+T, (35)

k (i,jESp J (Ljesp
3 X, +AT, < NM+T, Vk (36)
i=1
S Y, +AT, < NP+T,, Vk 37
= '

and with the original integer restrictions on the variables. The symbols, T}, I= 0, 1, 2,
represent the tolerances allowed. The above three equations are obtained by considering
the maximum satisfaction of the membership functions. The approach follows that of
Zimmerman [1987].

Both the original crisp problem and the fuzzy problem are linear programming
problems. Tsai et al [1994] solved both problems. The numerical values used by these
authors are listed in Table 9, which shows the processing time and machine sequence of
each part, the costs involved, the part demanded and machined capacity. This example
contains nine machines and nine parts. To solve the original crisp or non fuzzy problem,
which is represented by Equations (20)-(29), the desired number of cells is set at three
and the maximum number of machines as well as parts allowed in each cell are set no
more than four.

The numerical results obtained by Tsai et al are summarized in Table 10, where the
symbol “TS” represents “total similarity”, n(i) represents the number of machines needed
for machine type i, and [i] denotes the duplication of machine type i. The results listed for
Model I are for the crisp or non-fuzzy case and the results for Model II are for the fuzzy

case. From Table 10, it can be seen that the cost for the fuzzy case is much less than those
obtained for the non-fuzzy case.
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Table 9. Numerical values used, Example 4

1 2 3 4 5 6 7 8 9 A Cc@)
M 1 (4823070 0 218 0 0 0 0 $17709 2000
A 2 13962020 0 0 2840 0 3.78 $15224 2000
C 3 10 0 250 O 0 37 2780 $38616 2000
H 4 |0 3054743970 O 0 380 0 $20472 2000
I 5 34 0 0 46 44 0 0 2490 $44903 2000
N 6 |0 3920 0 O 2130 0 251 $39557 2000
E 7 |0 0 2260 0 O 302 323 0 $17558 2000
S 8 |0 0 42 22 23 0 291 356 0 $23555 2000
9 |0 3220 0 0 1.74 0 0 277 $43621 2000
ST [$4.73 $4.25 $3.57 $4.18 $4.32 $4.15 $4.41 $4.02 $3.65
D(J) 68172 43657 58449 54073 45955 70309 77248 75183 73901
I(J) 1$3.86 $3.14 $2.8 $3.15 $2.11 $2.73 $2.69 $3.47 $3.65
Table 10 Numerical results, Example 4
Model EE [TS+ ’éggq‘.l“ (#:ELL {Crlrl::;irsg S/p:;:}sults#of Machines needed *
1 [{2,6,9/2,6,9} 3(2);3(6);2(9)
Modell |6 [9.65 |$282878( 2 [{34,7,8/3,4,7.8} 12(3);4(4);2(7);3(8);[5]
3 {1,515} 2(1):3(5);[21:{8]
{1,2,6,9/1,2,6,9} .
1 2(1);4(2);3(6);2(9);[5]
Model I |3 [9.65 |$161930) 5 §3,4,5,7,8/3,4,5,7,8 2034352 TAB)1]
1 [{2,6,9/2,6,9} 3(2):3(6);2(9)
Model Il |6 [9.65 |$282878 2 [{3,4,7,8/3,4,7,8} |2(3);4(4);2(7);3(8);[5]
3 |{1.5/1.5} 2(1);3(5);(21;[8]
1 [{1,2,6,9/1,2,6,9} [2(1);4(2);3(6);2(9);[5]
Model IV {6 [9.05 [$305544 2 1{3,4,7,8/3,4,7,8} |2(3);4(4);2(7);3(8);[5]
3_{{55} 205);[11;81

The powerful clustering ability of neural network forms an ideal approach for dealing
with cell formation problems. However, in order to handle the vague and linguistic
problems encountered in cell formation, the recently developed fuzzy neural network
even more appropriate. Neural network can be combined with fuzzy set in many different
ways. Depending on the degree of fuzzification, Buckley and Hayashi [1994] classified

5. Fuzzy Neural Network in Cell Formation

fuzzy neural networks into the following three types:

1. Neural networks with real number as input signals but fuzzy weights
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2. Neural networks with fuzzy set as input signals and real number weights
3. Neural networks with both fuzzy set as input signals and fuzzy weights.

Gupta and Ding [1994] classified the current fuzzy-neural computations into two
major categories. One is the fuzzy logic-based neural network, where fuzzy logic is
combined with the parallel neural network concept. With this approach, the membership
functions in the fuzzy logic system can be up-dated or adopted. An example of applying
this adoptive fuzzy system to cell formation will be introduced to illustrate the approach
The second category is the employment of the neural network to realize the fuzzy
structures such as the membership functionand the fuzzy logic operators, and and or. In
this approach, several forms of fuzzy neurons have been proposed to approximate the
problem with fuzzy uncertainties. The approach is known as the neural network-based
fuzzy system.

Fuzzy neural network has been applied to many practical areas and many
investigators have applied this approach to solve the cell formation problems. For
example, self-organizing feature map or self-organizing map (SOM) due to Kohonen is
able to perform the mapping of an external signal into differert representational spaces
without any human intervention. Kuo et al. [2001] proposed a fuzzy self organizing map
neural network to deal with part clustering problem. The results obtained are more
accurate than those obtained with fuzzy c-means algorithm. Pai and Lee [2001a]
modified the classic SOM with fuzzy weights so that the network is able to deal with
fuzzy part attributes. A new training algorithm was also proposed to train the fuzzy
weights. By the use of fuzzy weights between the input and the output layers, more
meaningful linguistic information for the final trained weights could be obtained. The
fuzzy adaptive system was employed by Pai and Lee [2001b] to deal with cell formation
problems. Fuzzy rules were used in part-machine mapping. Influences of different
parameters for training were illustrated.

Example S. Fuzzy Self Organizing Map Network [Pai and Lee, 2001]

To illustrate the approach, a cell formation problem solved by Pai and Lee [2001b] by
the use of the fuzzy SOM is summarized in the following. The fuzzy SOM network is an
SOM network with fuzzy weights between the input and the output layers. The network
is able to deal with crisp, fuzzy, and interval input data. The fuzzy SOM network is
shown in Figure 6. Due to the use of fuzzy weight and fuzzy input data, a fuzzy learning
algorithm that is different from the conventional SOM leaming procedure is proposed in
this example. The fuzzy SOM algorithm can be summarized approximately as:

Step 0. Extract part attributes descriptions from e xperienced operators and represent them
as fuzzy numbers.

Step 1. Feed the input data into the input layer, where the input data can be crisp, interval
or fuzzy numbers.

Sep 2: Compute the "distance” or the weight vector Wij between each Kohonen node i
and the input vector Xj

Step 3. Determine the winning Kohonen node.

Step 4: Adjust the weight vector of the winning node to be closer to the input vector
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In this example, a SOM network (see Figure § with fuzzy weights was used to
cluster 100 parts with two fuzzy attributes, namely part shape and tolerance. The I-R
fuzzy numbers are used to represent the fuzzy attributes. Figure 7 shows the scatter plot
of the data, which were generated by the use of "Excel” software with uniformly
distributed random numbers. The clustering results to be discussed later are also shown
on the figure by the use of dotted lines. In this example, the number of output nodes is set
at 30 and the winner-take-all algorithm is adopted.

The initial learning rate, o, was set equal to 0.001. Two thousand epochs were
carried out. The convergent behavior is shown in Figure & As can be seen from this
figure, convergence or training is essentially completed after approximately 1200 epochs.
After convergence, the clustered ten groups obtained are shown in Figure 7 by the use of
dotted lines. The fuzzy weight associated with each winning node represents the
particular characteristics of the group. After convergence, the final weights of the
classified ten groups in the form of triangular membership functions are listed in Tables
11 and 12 by the use of the triangular nomenclature in the form of (C, L, R), where C
represents the most desirable value and its membership value is equal to one. The letters
L and R represent the left and right spread of the triangle from the most desirable value,
C, respectively. At the positions L and R, the membership values are zero.

In the results, several groups are fairly near each other. When two groups are very
near or sufficiently similar, they can be combined into a single group. For example,
Groups 6 and 9 for primary shape in Table 11 can be combined into one group with new
membership functions of (0.192,0.494,0.619). Similarly, Group 5 and 6 for tolerance can
probably be combined with new membership functons of (0.879,0.941,1). The criterion
of "sufficiently similar" is fairly arbitrary and depends on the particular problem under
consideration.

Kohonen Layer

Input Layer
Wij : Fuzzy Weights
X; : Input (fuzzy, interval, or crisp data)

Figure 6. Self-organizing map network
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Table 11. Final obtained weights in triangular membership functions

Primary Shape

Tolerance

[C-LI=0
C=0.123
C+R=0.243

[C-L|=0.192
C =0.489*
C+R=0.591

| C-L[=0.215
C=0.499*
C+R =0.619

|C-L{=0.218
C=0513
C+R=10.678

[C-LI=0
C=0.155
C+R=0.168

Group #9

IC-L[=0
C=0.128
C+R=0.54

Group #10

IC-L[=0.21
C=034
C+R=0.7613

Group #3

[C-LI=06436
C=0.788
C+R=0.985

Group #1

[CLI=0879
C=0.947*
C+R=1

Group #6

Table 12. Final obtained weights in triangular membership functions

rimary Shape

Tolerance

[CL[=0313
C=0.585
C+R=0.701

|C-L]=0.561
C=0.846
C+R =0.935

| C-L[=0.683
C= 0.887
C+R =1

[C-L]=0218
C=0.513
C+R = 0.678

[C-L1=0.141
C=0.298
C+R 0.632

Group #8

|C-L|=0.431
C=0.618
C+R =0.8563

Group #2

[c-L]=0.532
C=0.679
C+R=0.896

Group #7

Example 6. Fuzzy Neural Adaptive Network [Pai and Lee 2001]

Fuzzy neural adaptive system is based on fuzzy rules and fuzzy logic with training
or learning ability. To establish the fuzzy rules for this example and also to simply the
presentation, only two important attributes, namely primary shape and tolerance will be
considered. In actual practice, primary shape of a part is described linguistically and
tolerance is expressed in intervals. In order to establish the fuzzy rules, linguistic
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description will be adopted for both attributes. The linguistic variable, primary shape, can
be represented by the following linguistic terms: cube (C), like cube (LC), like cylinder
(LCY), cylinder (CY). These linguistic terms are represented by Gaussian fuzzy
membership functions, which are differentiable and are illustrated in Figure 9. Similarly,
the linguistic variable, tolerance, is represented by the four linguistic terms, very precise
(VP), precise (P), rough (R), very rough (VR). Using Gaussian membership functions, 2
similar graph as that show in Figure 9 can be obtained. Obviously, if more accurate
representation is needed, more linguistic terms can be added. For example, we could use,
very precise, precise, more or less precise, not precise, average, not rough, rough, and etc.

Based on these fuzzy terms, 16 fuzzy IF-Then rules (or 16 machine groups) can be
formed as follows:

If Primary Shape is C and Tolerance is VP, then use MG 1 (rule 1)

¥ Primary Shape is LC and Tolerance is VP, then use MG 2 (rule 2)

Hf Primary Shape is LCY and Tolerance is VR, then use MG 15 (rule 15)
If Primary Shape is CY and Tolerance is VR, then use MG 16 (rule 16)

where MG is the acronym for Machine Group. These fuzzy rules form a rule matrix,
which is listed in Table 13.

Table 13. Fuzzy rule matrix

Membership

T

VP P R VR

T e MG T T wile 5 (MG 3) | rule 9(MG 9) | rule 13(MG 13)

IC Tle I(MG ) T Tule 6 (MG 6) | rale TO(MG 10) | rule 14(MG 14)

)¢ Tile MG 3) | rule 7 (MG 7) | rule 11(MG 11) | rale 15(MG 15)

cY Tole AMG 3) | rile 8 (MG B) | rule TZ(MG 12) | rule 16(MG 16)
LC LCY CcY

T

0.1 0.2

Figure 9 Membership fimctions of the primary shape

0.3 0.4 0.5

0.6 0.7

Standardized Scale of Primary Shape

0.8 0.2 1
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The linguistic variables, primary shape and tolerance, are the input variables for the fuzzy
system. The output variable is the machine group (MG), which, again, is a linguistic
variable and with the linguistic terms, MG 1, MG 2, MG 3, ... etc. These linguistic terms
also assume the shapes of the Gaussian membership finctions.

Depending on how the fuzzy number is handled, various fuzzy logic systems have
been proposed. If we assume the input is not fuzzy, then the crisp number must be first
fuzzified. After manipulating through the fuzzy rules and fuzzy inference engine, the

resulting fuzzy number must be defuzzified. Thus, to form the fuzzy logic system, we
must consider the following four components or operations:

1. Method for fuzzification
2. Method for fuzzy inference, or, method used first to combine the antecedent

and the consequent of each rule and, then, to combine the various fuzzy rules
3. Membership function used

4. Method for defuzzification

There are various ways to carry out these operations. In this example, singleton
fuzzifier, product inference rule, Gaussian membership function, and center average

defuzzification was employed. Using the center average defuzzification and with M rules,
we obtain the output of the fuzzy logic system as:

M r ’ r
oV _bar{ (Y _bar)]
Zf; Le'(Y" _bar)

where Y'_bar is the center of the output fuzzy set for the fuzzy rule r. The expression p

c’(Y'_bar) is the aggregation of the output membership functions. Using product
inference, this aggregation can be expressed as:

(3%

[ iy (39)

where W g'(xiy is the membership function of the premise section for rule r and for the ith

attribute or the ith linguistic variable, i = 1,2, . . ., n. Using Gaussian function, the
numerator of Equation (38) becomes:

M

2 Y _bar{Il}, exp[ —(

(x; —x/ = bar)? i
r=1 Gi

(40)

where X_bar is the center of the input Gaussian membership function for the ith attribute
and rth rule, and o is the standard deviation of this input membership finction.

Using the product inference rule and Gaussian membership function, the denominator
of Equation (38) becomes:
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M r a 2
3 (T expl <(—’;‘—t”i)]} @)

i

Substituting the above equations into Equation (38), finally the fuzzy logic system
equation was obtained as following:

Mo, . x,—x, _bar)?
Y _bar{IlL, exp[—((—o—_rz——)—

x —x/ _bar)*

3 (T2, expl—(% oy

i

)}

F(x)= 42)

The three parameters in Equation (42) are Y'_bar, x/ _bar, and , o] ", which
correspond to the center of the output membership function, the center of the input
membership function, and the variance of the input membership function, respectively.
These parameters are adjustable. The problem is to adjust these parameters so that certain
given input-output pair can be represented. In the following, we shall first establish an
adaptive fuzzy network, which represents Equation (42) and then use back propagation to
obtain these parameters.

Following Wang [1944], Equation (42) can be represented by the fuzzy adaptive
network as that show in Figure 10. There are three layers in Figure 10. Equation (42) is
functional equivalent to Figure 10. Using Figure 10, back propagation algorithm can be
derived and the three parameters can be trained based on given data pairs. The three
parameters are:

1. Y _bar represents the center or the maximum value of the output membership

function for fuzzy rule r.
2. x] _bar represents the center or the maximum value of input fuzzy membership
function for ith linguistic variable and rth rule.

3. o] ’ represents the standard deviation of input fuzzy membership fimction for ith
attribute and for the rth rule.

Figure 10. Network representation of fuzzy logic system [Wang 1994]

Suppose we have a given data panr (X“l D%, we wish to adjust these three parameters
so that the following square of the error is mmlmlzed

error=0.5(F(X%-DY) (43)

Differentiation by the chain rule, the learning rules for the three parameters can be
obtained as:

F(x)y-D ,
—
B

Y _bar(t+)=Y" _bar(t)—« (44)
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(y" _bar-F(x))z’ 2(xf —x] _bar(r))

: 45)
o();

x; _bar(t+1)=x] _bar(t)—a

F(x)-D
B

p_r 2
F(xl)g— D (v _bar-F(x)z" 2(x] —x; _bar(t)) (46)

o/t+)=0/(t)- ;
o] (1)

The influences of the learning rate and the number of rules on convergence rate were
investigated. The number of rules used are 9, 16 and 25. The 16 rules fuzzy logic was
discussed earlier and these rules are listed in Tble 13. The cases of the 9 and 25 rules
can be obtained in a similar manner. For each different number of rules, three hundreds
data point were generated. Each data point has three numbers, which represent the three
parameters. Backpropagation was carried out by using these generated data points. To
measure the performance of the approach, the following three indices were used:

Training Error (TRE)
_ 150 |Y, _Dtril
TRE = z(_Dtr,» “@7

i=1

where Yi is the actual output of the training data pair i and Dtri is the desired
output of the training data pair i.

Testing Error (TEE)
150 IY, _ Dt’;l
TEE = (48)
i=l Drr;
Total Error (TTE)
TTE=TRE+TEE (49)

With five different learning rates, the results are summarized in Table 14, where L
represents the learning rate and NR represents the number of rules. The best performance
results are indicated by the use a "™ in the table. For the cases of 9 and 16 fuzzy rules,
learning rate of 0.00005 give the best performance and for learning rate for 25 rules, the
best is 0.00003. The convergence rates for the three best performance sets are shown in

Figure 11. From Table 14, we can see that the more rules we have, the less the training
erors, but the larger the testing error
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Table 14. Parameter influence

NR=Y NE=16 MNR=25

1=0.00001 TRE:0.16580 TRE:(.10280 TRE:0.03514
TEED.13964 TEE:0.10864 TEE0.67560

TTE:(.30544 TTE(.21144 TTEQ. 71074

1=0.00003 TRE:0.06100 TRE:0.14000 TRE:0.00565
TEE0.00120 TEE0.17000 TEE0.10750

TTE0.06229 TTE:031000 TTE011315"

1=0.00005 TRE:0.00768 TRE:0.00583 TREQ.11997
TEE0.02868 TEE:0.07390 TEE:0.11651

TTE:0.03636% TTED.07973% TTE:0.23648

L=0.00007 TRE:0.00757 TRE:0.03580 TRE:0.05360
TEE0.03100 TEE:0.07760 TEE:0.11240

TTEQ.03857 TTE:0.11340 TTE:0.16600

1~0.0001 TRE:0.02510 TRE:0.03780 TRE:0.07600
TEE:0.10470 TEE:0.08166 TEE0.11727

TTE-0.12080 TTEQ.11946 TIE:0.19327

Adaptive Fuzzy Systems

A RN=16, L=0.00005

Average Error

Ll e i A
[ o P R e
L ST/ R S <

101
201
301
1001
1101

1201
1301
1401
1501

Number of Epochs

Figure 11. Convergent behavior
6.Conclusions

This chapter presents the application of operations research techniques fo the cell
formation problem. Emphasis is placed on the frontier area where recently developed
operations research techniques are used. Mathematical programming was first applied to
solve the cell formation problem. However, due to difficulties to solve this NP complete
problem, heuristics the recently developed evolutionary approaches were proposed. From
the practical standpoint, vague linguistics and human judgments are usually involved in
cell formation problems. Fuzzy set theory possesses powerful ability for linguistic
representation and thus the fuzzy approach was adopted to solve the cell formation
problem. The recently developed fuzzy neural network has been shown to be a useful
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approach to solve practically encountered cell formation problems. To save space, all the
approaches are illustrated by actual examples. The approaches presented in this chapter
should provide reasonably good foundations for future research in the application of
operations research techniques to solve cell formation problems.
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Scheduling problems form the core of the operational planning problem in typically large State Road
Transport Corporations in India. The problems include, scheduling of trips to satisfy the traffic
demand, allocation of trips to depots, and scheduling of buses and crews to operate the trips while
satisfying various operational constraints and efficiency considerations. The size and the structural
complexity of these hard problems involve solution approaches that emphasize interplay between
modelling, algorithms, and their efficient computer implementation, requiring blending of ideas from
Transportation Science, Operations Research and Computer Science. The solutions need to be
complete and closer to the real-life practice for effective implementation. This paper presents our
experiences in addressing these issues and highlights the insights gained from our efforts to
implement the solutions in real-life.

Keywords: Bus and Crew Scheduling, Fleet-Size Optimization, Heuristics.

Introduction

The paper describes some experiences in structuring and modeling the scheduling
problems that arise in large Road Transport Corporations. We realized the importance of
these problems in course of a consulting assignment with an Indian State Road Transport
corporation on determining optimal size of its divisions and depots. The corporation was
divided into divisions that were further sub-divided into depots. The size of a division or a
depot is the number of buses attached to the division or the depot. It became soon clear to
us that determining the optimal size of a division or a depot would involve resolving some
scheduling problems, which were complex. We decided to probe these issues further in a
research programme over a period of more than a decade. In this paper we are presenting
our total experience in an integrated form for the first time, although some of the works
were earlier published independently.

In India, the state-owned Road Transport Corporations (SRTCs) meet the major
demand for movement of people between cities. The first step in this process is to define
‘trips’, each of which indicates that a bus should be provided for moving passengers at a
given time from a place to reach another place at a specified time. Given a set of trips,
the problem of concern is to devise a vehicle- schedule, which will use minimum number
of vehicles to operate these trips. In many situations there is flexibility in choosing trip
timings. There is also a flexibility to reassign a trip to an alternate depot if it results in
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reduction in number of vehicles required. Buses, during its operations, require daily
routine maintenance at its parent depots. This makes scheduling problems more complex.
In addition the complex rules governing the services of crews make scheduling in SRTCs
more difficult. In our view, it is essential that we look at all these problems in an
integrated way and develop an operational model so that SRTC achieves greater
operational efficiency.

In this paper we present our experiences in structuring and modeling these problems
that resulted in an operational planning model for SRTCs. We believe that the use of this
integrated model will have significant impact on the performance of SRTCS.

We have structured our presentation in 9 sections. In Section 2 we elaborate the
structure of transport scheduling in SRTCs in terms of five sub-problems. The Sections 3
through 7 elaborate on each of the sub-problems in terms of model formulation, analysis,
algorithms and data structures, and implementation and computational experiences. The
sub-problems are integrated to form an integrated model of transport scheduling problems
in Section 8. Finally, the Section 9 contains our concluding remarks.

Structure of the Transport Scheduling Problem

The SRTCs provide the transport services as a set of trips operated by the depots with a
set of vehicles and crew allocated to them. A trip is specified in terms of the origin,
destination, departure and arrival times, and the depot responsible for operating the trip.
The transport scheduling seeks to minimize the number of vehicles and crew required to
operate a given set of trips while satisfying various constraints implied by the
specifications of the trip and the specific operational considerations of vehicle and crew.

The specification of the trips implies certain space, time, and depot compatibility
constraints on the successive trips to be operated by a vehicle/crew. The space constraint
states that the origin of the next trip must match the destination of the previous trip to be
operated by a vehicle/crew. Unlike the case of urban transport, it is not possible to operate
empty ‘dead heading’ trips between geographically widely scattered terminals in the
SRTC context. The time constraint states that the departure time of the next trip must be
later than the arrival time of the previous trip to be operated by a vehicle/crew. The depot
compatibility constraint requires that the successive trips operated by a vehicle/crew must
belong to the same depot. For a given set of trips, while the space constraint is fully
specified in terms of the origin and destination of every trip, there is some flexibility to
finalize the departure timings within an interval around the provisional timings indicated
by the traffic needs. It is desirable, however, to minimize such perturbations around the
provisional timings.

The SRTCs operate in a decentralized manner, and are organized in terms of
divisions with operationally autonomous depots. Accordingly, the vehicles and crew can
operate trips belonging to only their own home depot. Transport scheduling is carried out
at a division level. It is customary to make the provisional trip or route assignment to the
depots on the basis of geographical considerations, though there is considerable overlap
among the terminals reached as origins and destinations of the set of trips operated by the
individual depots. This, however, may not be operationally efficient, in the sense that the
sum of the minimum fleet-sizes required by the individual depots may exceed the
minimum fleet-size required to operate the pooled set of trips of all the depots put
together. It is possible to reassign some of the trips to other depots to ensure operational
efficiency. It is, however, desirable to minimize the number of reassignments.
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The vehicles used for operating the trips are required to undergo a routine
maintenance of about 90 minutes at its home depot, preferably daily, or at least once in
two days. It covers the cleaning and some routine check-ups to ensure road-worthiness of
the vehicle. The maintenance may be carried out at the beginning or at the end of the
vehicle schedule or accommodated within the idle time between the two successive trips
operated by the vehicle. Accordingly, the routine maintenance constraint on a vehicle
schedule requires that either the schedule begins or terminates at the home depot, or an
adequate maintenance gap is provided during one of its idle periods at the depot, at least
once in two days. The scheduling of routine maintenance is also constrained by the
capacity of the maintenance bay, limited to about 3-6 vehicles per hour depending upon
the category of the depot.

The crew duty schedules are constrained by the duty conditions as per the agreement
with the Trade Union. The signing-in of a crew takes place at the departure terminal of
the first trip and the signing-off at the arrival terminal of the last trip of the schedule. The
crew schedule should not lead to two consecutive signing-offs, called night-outs, at a
terminal other than the home depot of the crew. The total steering duty that includes
travel times of the trips in the schedule, signing-in and signing-off times, and the terminal
idle times is required to be less than a pre-specified limit. There is also a constraint on the
‘spread over’, the elapsed time between the signing-in and signing-off of a crew
performing a crew schedule. In addition, the crew duty schedules should contain the
suitable meal-breaks and rest-periods before and after the lengthy trips. It is desirable to
maximize the overlap between vehicle and crew schedules so that the crew is not required
to change the vehicles too frequently to operate the trips.

Thus, the transport scheduling is a complex combinatorial optimization problem with
multiple objectives. To make it somewhat tractable, we have decomposed the problem
into a set of interrelated sub-problems as follows:

¢  Fixed-Schedule Fleet-Size Problem: This assumes that the trip timings are fixed,
considers only the space and time constraints, and ignores all other operational
considerations to minimize the fleet-size.

e  Variable-Schedule Fleet-Size Problem: It extends the fixed-schedule problem by
allowing the trip timings to vary within a specified interval around the most desirable
timings. It also seeks to minimize the number of such perturbations, in addition to the
primary objective of minimizing the fleet-size

e  Depot Allocation Problem: This is an extension of the single-depot fixed-schedule
fleet-size problem. It seeks to minimize the total fleet-size collectively required by all
the depots by reassigning the provisional depot allocations of some of the trips while
satisfying the depot compatibility constraint and minimizing the number of
reassignments.

e  Vehicle Scheduling Problem: This extends the fixed-schedule fleet-size problem by
considering the operational constraint on the routine maintenance of vehicles while
minimizing the fleet-size and maximizing the number of schedules with maintenance.

e  Crew Scheduling Problem: It extends the fixed-schedule fleet-size problem to
minimize the crew-size required for operating the given set of trips within the
operational constraints due to the crew duty conditions.
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Fixed-Schedule Fleet-Size Problem (P1)

Several researchers have explored the Fixed-Schedule Fleet-Size Problem. Bartlett{4]
developed an algorithm for computing the minimum fleet-size required by analyzing
chronologically ordered sequence of arrivals and departures, called the A-D sequence,
occurring at each terminal. Saha[l13] treated the problem as minimum chain
decomposition problem in an acyclic graph. Following the results on minimal
decomposition by Raghavachari and Mote[12], he formulated the problem as a Linear
Programming problem. To overcome the size complexity of large-scale real-life
problems, he formulated the problem as a bipartite network flow problem. His
computational experience, however, with the labeling algorithm of Ford and Fulkerson to
solve the network flow problem was not encouraging. He developed an algorithm for
speeding the solution, which essentially involves assigning arrivals to departures in a
first-in-first-out (FIFO) basis in the A-D sequence. Gertsbach and Gurevich[8] developed
a simple analytical framework based on ‘deficit function’ defined over the A-D sequence
as cumulative excess of departures over arrivals at a terminal. Ankolekar{2] extended the
framework further to a more convenient ‘surplus function’ defined over the A-D sequence
as minimum fleet available at the terminal after every arrival and departure event.

Formulation

The linkability, defined for a pair of trips that can be consecutively operated by a vehicle,
is the key concept in the formulation of the Fixed-Schedule Fleet-Size Problem (P1) given
in Table 1. Specifically, the linkability sets 1.; and B; are defined as sets of potentially
succeeding and preceding trips that satisfy the space and time constraints associated with
arrival and departure of the trip respectively. Accordingly, they are intimately related to
the A-D sequence at a terminal in a sense that L; corresponds to the departures
succeeding the arrival of trip i and B; corresponds to the arrivals preceding the departure
of trip j in the A-D sequence.

The linking constraints assert that an arriving trip 1 can either be linked to a
departing trip j from set L; (i.e. X;4=1) or the trip 1 remain unlinked (i.e. Aio=1).
Similarly, an arriving trip i from set B; can either be linked to the departing trip j (i.e.
X;5=1) or let the trip j remain unlinked (i.e. Agj=1). The fleet-size or the number of
vehicle schedules is given by the sum of unlinked departure trips (3_;A¢;) at the beginning
of a vehicle schedule, or the sum of unlinked arrival trips (3’;);,) at the end of a
schedule.

Analysis

The objective function maximizing the number of linkings ( 3.;Y ;X;; ) can be shown to
be equivalent to minimizing the fleet-size ( Y ;Xi0 0r Y 3)p;) as follows:
Summing up the linking constraints over all the trips,

2i2iXi + 2ihgj = 251 JEN, i€B;
= |N| = Z¥X; + Tiko €N, JEL;

Thus,
Linkings + Fleetsize = Number of Trips
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Table 1. Fixed-Schedule Fleet-Size Problem (P1)

Formulation Notations

Maximize: N: Set of trips

T: Set of terminals
Zi ZJ' Xij i€N, JjEL;
0;ET: Origin of trip i

Subject to: d;ET: Destination of trip i
s . pi: Departure time of trip i
Linking Constraints: qy: Arrival time of trip i
Zj Xij+)\i0 =1 i€N, jeLi
Zi Xijthoy = 1 JEN, i€B; L;: Set of departure trips linkable to the
arrival trip 1

Xijr Aior Aoy = 0, 1 = {j:05=d; AND p;2q;, 3FEN)
B;: Set of arrival trips to which the
departure trip 3 is linkable to

= {i:0j=d; AND p;2q;, i€EN}

X;; = 1 if the arrival trip i is linked
to departure trip j
= 0 otherwise
Ajo = 1 if the arrival trip 1 is not

linked to any departure trip
= 0 otherwise
Aoj = 1ifnoarrival uip is linked to
the departure trip j
= 0 otherwise

Since the linkability sets L; and B primarily correspond to the terminal-specific A-
D sequences, we can express the above result at the level of a terminal. So,

ZiZiXij + Zj)‘()j = Zjl j€Nb1={k:0k=b,k€N}, 1€B_l

| Nb1 | Ny;: Trips departing from terminal b
Similarly,

22Xy + Zidio

il i€Np={k:d=bkEN}, j€L;

l Ny2 | Ny2: Trips arriving at terminal b

Obviously, |Ny; |=|Np;| due to the law of conservation and empty ‘dead heading’
trips are not allowed between any terminals.

To minimize the fleet-size, it is sufficient to maximize the linkings or minimize the
unlinked trips departing or arriving within the A-D sequence at every terminal. If we
perform linking of every departing trip in the A-D sequence of terminal from among
preceding arriving trips, then the departures with cumulative count exceeding that of
arrivals must remain unlinked. Accordingly, let
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Ay, = Cumulative number of arrivals up to time t
= |{i:d;=b, q;<t, i€N) |

Dy = Cumulative number of departures up to time t
=|{i:0;=b, P;<t, i€N} |

Foe = Dpe = Ant

Fy = max{Dbt-—Abt}
t

The Fy., known as the ‘deficit function’, indicates the shortfall of vehicles of at
terminal b at time t. The Fy, indicates the number of departures that must remain unlinked
at the carly part of the A-D sequence at the terminal b. A balanced set of trips,
|Nb1 | = Isz | , will ensure that the terminal b will also end up with exactly Fy, unlinked
arrivals at the end part of the A-D sequence. The time intervals between the peak ‘deficit
function’ values, Fy.=Fy, partition the A-D sequence in terms of ‘hollow zones’ defined
by Gertsbach and Gurevich[8]. The linking restricted within the ‘hollow zones’ would be
optimal, leaving not more than Fj unlinked departures and arrivals at the first and last
‘hollow zones’ respectively at each of the terminals. The total minimum fleet-size is
given by

F=3,F, bET

The concept of ‘deficit function’ could be extended to a more convenient ‘surplus
function’ defined over the A-D sequence as,

Spe = Fy + Ay - Dy

Syt indicates a minimum surplus of fleet-size required at any time t at a terminal b
to take care of all the trips departing at or after time t from the terminal. As the ‘surplus
function’ changes only on occurrence of arrival/departure event, it is sufficient to define it
as a discrete function over the events rather than as a step-wise continuous function over
time. Accordingly,

sj1 = Value of the ‘surplus function’ upon departure of trip j

= Fyp + Apt = Dne JENp1, t=p;
si; = Value of the ‘surplus function’ upon arrival of trip i
= Fp + Apt — Dnt i€Np2, t=qi

The ‘critical departure’ trips, Np»={k: Sx1=0, KENp; }, conveniently partition the A-
D sequence in terms of ‘hollow zones’ for every terminal. Unlike the terminal-specific
peak ‘deficit function’ value, Fy, the ‘surplus function’ has the same value of 0 for every
‘critical departure’ at any terminal. By definition, on linking of an arrival trip to a
departure trip succeeding it in the A-D sequence, the ‘surplus function’ value of each of
the intermediate arrival/departure events would have to reduced by 1. This indicates that
the arrival trip could be optimally linked to a departure trip only within the ‘hollow zone’.
Else, the ‘surplus function’ value of ‘critical departure’ would become negative, requiring
additional fleet to restore the value to 0.
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The ‘surplus function’ value of an arrival trip, being the minimum surplus of fleet-
size required at the time, also indicates the optimal number of linking choices for the
arrival trip in terms of available succeeding departure trips after optimally linking all the
succeeding arrival trips. Accordingly, the total number of optimal solutions to the Fixed-
Schedule Fleet-Size Problem is given by,

S = (JTiensi2)/ ([ Toer Fo!)

The denominator in the above expression accounts for the arrival trips that remain
unlinked within the last ‘hollow zone’. The number of optimal solutions, S, is usually a
very large number even for a moderately sized problem. One of our real-life problems
with 220 trips, had 6.74x10% optimal solutions to the Fixed-Schedule Fleet-Size
Problem!

Table 2. Some Algorithms and Data Structures to Solve P1

Let,

LISTy,(AD): A-D sequence at terminal b
LISTy(Aoy): List of Ay; as defined in P1
LISTy,(Aio): List of A;q as defined in P1
QUEUE, (A) : Queue of Arrivals for linking
STACKy (A) : Stack of Arrivals for linking
LIST,(A) :Listof Arrivals for linking
LIST,(X;;): List of X;; as defined in P1

LIFO Algorithm:
Initialize: LIST,(AD),LISTs(Agj)
LISTy{Ase), STACKy(RA)
For every terminal b € T
Scan LTST, (AD) until end
if A then push A in STACK;,(A)
else if STACK,, (A)1is not empty
then pop A, link to D, insert
linking in LIST,(X,4)
else insert D in LI STy (Ao5)
At the end of scan, empty the unlinked As in
STACKL(A) into LISTy, (Aip)

FIFO Algorithm:

Initialize: LIST,(AD), LISTh(Ap3)
LISTL(Ajg), QUEUEL(A)

For every terminal b € T

Scan LIST, (AD) until end
if A then insert A in QUEUEy, (A)
else if QUEUE, (A) is not empty
then remove A, link to D, insert
llnking in LISTb (xij )
else insert D in LISTy (Aoj)
At the end of scan, empty the unlinked As in
QUEUE, (A)into LISTy (Aj0)

General Algorithm:
Initialize: LIST,(AD), LISTy(Ao3)
LISTy (X)), LIST(A)
For every terminal b€ T
Scan L TST, {AD) until end
if A then insert A in LIST, (A)
else if LTST, (A) is not empty
then pick gny A, link to D, insert
linking in LIST: (xij )
else insert Din LISTy (Aoj)
At the end of scan, empty the unlinked As in
LISTy(A)into LISTy(Aig)

The specific algorithms and associated data structures to optimally solve the Fixed-

Schedule Fleet-Size Problem are presented in Table 2. We use the standard ‘ordered list’
data structure to accommodate the A-D sequence, linkings (Xs), and unlinked trips (248
and A;8). To accommodate the candidate arriving trips for linking, we logically use
queue, stack, and ‘ordered list’ data structures, to perform the linking using first-in-first-
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out (FIFO), last-in-first-out (LIFO), and ‘general’ linking algorithms respectively.
Physically, all the data structures are implemented as a single ‘ordered list’.

It is to be noted that the algorithms do not explicitly require us to use surplus
functions or identify ‘hollow zones’. As we chronologically select departure trips for
linking, the candidate arrival trips simply get accumulated in the selected data structure. If
we arbitrarily select the departure trips for linking, however, we must identify the ‘hollow
zones’, to be able to restrict the optimal linking within.

The algorithms are identical except for the data structures. Of particular interest is the
General Algorithm, specifically the key statement ‘pick any A, link to D, insert linking in
LISTp(Xi5)’. The statement holds the promise that if even the arbitrary choice of arrival
trip would do for the fleet-size optimality, then we could potentially make a systematic
choice for linking to satisfy any operational constraints without adversely affecting the
fleet-size optimality. Consequently, the solution to the formidable vehicle and Crew
Scheduling Problems would be a matter of elaborating the key statement in the specific
contexts.

Implementation and Computational Experience

Our initial implementation of the General Algorithm to solve the Fixed-Schedule Fleet-
Size Problem was on a PDP-11/70 minicomputer using FORTRAN-IV Plus language.
The modest computing resource, with only 64KB of addressable memory available for the
program of which only 32KB could be used for the data, forced us to develop efficient
implementation of the algorithm and the data structures to be able to handle real-life size
problems of over 1000 trips. We used a set of two-column arrays to accommodate trip
data, surplus scores, and two-way linked ‘ordered lists’ for A-D sequence and the linking
solution.

Table 3. Computational Experience of Fixed-Schedule Fleet-Size Problem

Trip | Terminal | Optimal | Optimal M- | Schedules Maint. CPU
Fleet- Fleet- Gaps with feasible | (sec.)

Size Size maint. (YES/NO)

Solutions

105 23 1.20x10% 21 19 14 NO 0.64
220 72 6.74x10% 50 32 26 NO 2.10
246 43 1.83x10°° 31 22 18 NO 1.74
120 30 7.25x10°° 35 32 25 NO 0.80
92 35 8.50x10” 22 7 6 NO 0.58
72 25 1.30x10" 18 12 11 NO 0.40
66 27 2.01x10™ 23 19 16 NO 0.44
84 28 5.02x10" 20 16 14 NO 0.48

The computational experience of our implementation with real-life data is given in
Table 3. Interestingly, all of the solutions generated by the General Algorithm to
optimally solve the Fixed-Schedule Fleet-Size Problem were maintenance-infeasible. In
fact, our early attempt to solve the Vehicle Scheduling Problem by generating numerous
solutions to the Fixed-Schedule Problem failed to yield any maintenance-feasible optimal
fleet-size solution even after considering over 50000 solutions.
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Variable-Schedule Fleet-Size Problem (P2)

The Variable-Schedule Fleet-Size Problem has been tackled using mathematical
programming and heuristic approaches in the literature. Martin-Lof[10] has described a
branch-and-bound approach to solve the problem for two terminals. Levin{9] has used
branch-and-bound method of Land-and-Doig variety to solve his integer programming
formulation. Bokinge and Hasselstrom[7] have given a heuristic approach that seeks to
minimize active number of vehicles on the road at any given moment. We found that the
Bokinge and Hasselstrom algorithm consistently performed even worse than the Fixed-
Schedule Fleet-Size Problem, which is not surprising since the active number of vehicles
forms only a lower bound on the fleet-size, whereas the fleet-size is essentially
determined by the linkabiliry among the trips. Ankolekar, Patel, and Saha[1] have used a
heuristic method to identify and perturb trips to approach the lower bound on the
variable-schedule fleet-size.

Formulation

In the formulation of the Variable-Schedule Fleet-Size Problem (P2) in Table 4, we
extend the concept of linkability to include the trips that are ‘potentially linkable’. The
corresponding extended linkability sets, L;g;, and B;g;, are defined over a modified A-D
sequence where every trip is considered to be departing at its latest and arriving at its
earliest timing. Linking of some of those trips eventually might turn out to be infeasible if
the arrival timing is indeed later than the departure timing of the trip to which it is being
considered for linking. The linkability set, L;g, identifies such potentially unlinkable
trips among L gy, .

The linking constraints on the extended linkability sets, Ljg, and Bjg,, would
generally enable enhanced number of linkings in P2 compared to its Fixed-Schedule
counterpart (P1), subject to the additional perturbation constraints. One set of perturbation
constraints do not allow linking of a trip i to a trip j if the actual arrival time of trip i
(p;+t;) is later than the actual departure time of trip j (p;). It is sufficient to define such
constraints over the set of potentially unlinkable trips (L;;z). The second set of
perturbation constraints allow the timings to be fixed within earliest and latest limits for
each of the trips.

In addition to the primary objective function ( };3 ;X;; ) related to the fleet-size, the
P2 also has a secondary objective function of maximizing the number of trips ( };¥; )
with the most desirable timings. A set of constraints defined for each trip, called ‘no
perturbation is good’, count such good trips.

Analysis

The mathematical programming approach to solve the Variable-Schedule Fleet-Size
Problem is computationally not attractive due to the multiple objectives and large number
of constraints involving integer variables. We extend the analytical framework developed
earlier for the fixed-schedule counterpart of the P2 to solve the problem heuristicaily.
Accordingly, we define following related parameters with respect to earliest, latest, and
best timings of the trips.

Aui = | {i:di=b,qe<t,i€N} |
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Dy = | {i:0=b,Py<t,iEN} |

Fo = Do - Ape

Fy. = max{Dyq-Aye)

F.=Yher Foo

App = | {i:di=b,qiz<t,iEN} |

Dy = | {i:0=b,Pp<t.iEN} |

8jiL = By + A - Dig JENb1, 1=pjp

SioL = Fyr + Aps - Dypg i€Nya, t=qip

Table 4. Variable-Schedule Fleet-Size Problem (P2)

Zj Xij+}\i0 = 1 i€N, j€Lis

2 Xij+hoj = 1 JEN, i€Byg
Perturbation Constraints:

pj"pi'ti2 (Xi5-1)M i€N, j€L;e
Pie S Pi < DPiv i€N

No Perturbation is Good:
Pi - pPis (1 - Y;)M
Piz - Pi S(1 ~- ¥;)M

i€EN
i€EN
Xij, Yi,Aio, )\Oj =0, 1
pi, @ 2 0

Formulation Notations
Maximize: N, Xi35, M0, 005,01,d:,P:,9; asin Pl
Yi i Xij i€N, Jj€Lig
Yi v i€EN Die, Pis, Div: Earliest, Best, and Latest
Subject to: departure times for trip 1
Linking Constraints: Qie, Qis, 91 Earliest, Best, and Latest

arrival times for trip i

ti : Duration of trip i
=dip~Pip =Aie~Pie =diL~PiL
Lig={] 10j=di, ij2QiE, JEN}
Bjm={1i:05=di, Dj.2dis, 1EN}
Lipe={] :Oj—_‘diz ijSQiL/ J€LsgL}
Y;=1 if p; = pis 1EN
=0 otherwise

M : A large constant

Die, Pis,Pin, die, Dins Dirs L1
: Trip related constants

Since the modified ‘surplus function’ is defined over the A-D sequence using lower
bound on the peak ‘deficit function’ value, the critical departures and the trips around
them would have infeasible (-ve) values for the terminals with the potential for fleet
saving. The Perturbation Algorithm attempts to eliminate the infeasibility by advancing
the arrivals and postponing the departures to cross over the infeasible part of the A-D
sequence without creating additional infeasibility in the A-D sequences at the
complementary ends of the trips being perturbed.
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Implementation and Computational Experience

The implementation builds on the data structures and analytical modules used for the
Fixed-Schedule Fleet-Size Problem. The Perturbation Algorithm attempts to extract
maximum possible perturbation of a trip. If the perturbation is obstructed by a critical
departure at the complementary end, the obstructing departures are recursively perturbed
until no further obstruction is encountered, and unobstructed perturbation is carried out
during backtracking phase on the obstructed trips. We used a ‘stack’ data structure for
handling the recursive perturbation. We simply stack the obstructed trips facing
temporary suspension of the perturbation, and reactivate the perturbation at the top of the
stack during backtracking, removing the trip from the stack on perturbation.

The computational experience of our implementation with real-life data for a
perturbation tolerance limit of + 10 minutes is given in Table 5.

Table 5. Computational Experience of Variable-Schedule Fleet-Size Problem

Trip Terminal Fixed- Lower Fleet-Size # CPU
Schedule Bound Achieved | Perturb. | (Sec.)
Fleet-Size | (x10min.)
105 23 21 20 20 1 1.30
220 72 50 47 47 8 4.48
66 27 23 22 22 1 0.64
120 30 35 34 35 0 1.80
246 43 31 26 26 10 3.80
92 35 22 22 22 0 1.14
84 28 20 20 20 0 0.90
72 25 18 18 18 0 0.60

Depot Allocation Problem (P3)

The Depot Allocation Problem has not been widely addressed in the literature. Ankolekar
and Patel[3] have given a heuristic approach to identify and reassign the provisional depot
allocations using a tree-search algorithm.

Formulation

In the Depot Allocation Problem (P3), the fleet-size problem is aggregated over multiple
depots and then subjected to the depot compatibility and assignment constraints as shown
in Table 6.

The depot compatibility constraints assert that the trip i can be linked to trip j if and
only if both of them are assigned to the same depot k (¥Y;,=Y;x=1). The depot assignment
constraints assert that a trip is assigned to only one of the depots. The constraints also
ensure that for every terminal, the arrivals of trips assigned to a depot are equal to the
departures of trips assigned to the same depot.
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Table 6. Depot Allocation Problem (P3)

Formulation

Notations

Maximize:
Yi X Xij i€N, jE€L;
24 Yix 1€N

Subject to:

Linking Constraints:

Zj Xij+)\i0 =1 i€N,j€Li

> Xij+do; = 1 JEN, iij

Depot Compatibility Constraints:

Yik—Yix+Xij £ 1 1€N, jEL;

yjk—yik+Xij < 1 keK

Depot Assignment Constraints:

ZkYik =1 i€N, k€K

ZiYik =ZJ'Y.'J'k i, jEN, k€K,
oi=dj=a€Ta

Xij, )\io, }\OjlYik = 0, 1

N, T, Xjj,Aio»haj,0i,di, Pirgi, Li, Bj as defined earlier
in P1

a; : depot to which trip i is assigned originally
K : set of depots
Ny : {i: a;=k, iEN}
Yy = 1if trip i is assigned to k€K
= 0 otherwise
T, = {b:F,>0,b€T}

Analysis

The Depot Allocation Problem has the fleet-size related primary objective function
(0liY5Xi5 ) and a secondary objective that maximizes (3;Y;y) for the most desirable
depot assignments. As the aggregation mutually enhances the potential linkability sets of
each of the depots, the primary objective function for the aggregated set of trips ought to
be more than the sum of linkings with the set of trips of individual depots. To prove this
intuitive argument we extend the analytical framework developed earlier for the P1 to the

multiple depots. Accordingly,

Apa = | {i:d=b,q<ti€EN, Yy=1} |

Dy = | {i:0=b,P<t,i€N, Yy=1} |

Foke = Dkt - Apie

Fyx = max{Dyy-Api }
t

For the aggregated set of trips, we have

Fb = max{zk(Dbk,-Abk,)} and F= Zb Fb b€T, k€K

t

It follows that Y > x Fox > F since,

2k Fok = 2i{max(Dy- Apk) } = max {3 x(Dpir-Api) } = Fy

t
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The mathematical programming approach to solve the Depot Allocation Problem too
is computationally unattractive due to the multiple objectives and large number of
constraints involving integer variables. As before, we extend the analytical framework
developed earlier for the fixed-schedule counterpart of the P3 to solve the problem
heuristically. The solution involves construction of A-D sequences and identification of
the ‘global hollow zones’ for the aggregated set of trips. To achieve the optimal fleet-size
for the aggregated set of trips while satisfying the depot-compatibility constraint, we must
ensure that the ‘local hollow zones’ corresponding to the subset of trips of the specific
depots are fully contained within the ‘global hollow zone’ so that the global optimality
conditions are not violated. The ‘local hollow zones’ that span across the ‘global hollow
zones’ lead to ‘local unbalance’ in terms of excess/deficit of arrivals and departures
within the affected ‘hollow zones’. The Depot Reassignment Algorithm uses a tree search
technique to identify chains of such unbalanced trips and reassigns them to appropriate
depot as described in Ankolekar and Patel[3].

Implementation and Computational Experience

The implementation builds on the data structures and analytical modules used for the
Fixed-Schedule Fleet-Size Problem, and adds additional features to implement concepts
specific to the Depot Allocation Problem, such as, ‘local hollow zones’, ‘local
unbalance’, search-tree, and so on. The search-tree forest of potentially re-assignable
chains was implemented as a ‘queue’ data structure, where the initial roots and
subsequently branched leaves are placed at the tail of the queue, and the node for
branching is picked up from the head of the queue. To eliminate potential cycling of the
algorithm, repeat reassignment of a trip to a depot to which it was earlier assigned, was
prohibited.The computational experience of our implementation with real-life data is
given in Table 7.

Table 7. Computational Experience of Depot Allocation Problem

Depots | Trips Initial Lower Fleet-Size Trips Re- CPU
Fleet-Size | Bound (F) Achieved assigned (sec.)
8 1005 220 217 217 10 29
8 1026 213 212 212 6 27
6 1226 273 265 265 77 88
5 1162 257 250 250 62 62
5 881 224 220 220 46 37
5 867 200 195 195 40 29
5 1044 226 219 219 56 46
5 1072 239 233 233 47 51
4 980 210 205 205 41 48
4 890 192 189 189 24 32
4 922 172 168 168 17 29
4 1008 223 217 217 34 35
4 950 185 181 181 15 28
4 1040 203 198 198 35 33
3 826 176 173 173 31 31
3 768 138 135 135 15 29
2 704 122 120 120 16 24
2 499 33 81 81 9 16
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Vehicle Scheduling Problem (P4)

The Vehicle Scheduling Problem with routine maintenance constraint has not been widely
addressed in the literature. Ankolekar, Patel, and Saha{1] have used a heuristic approach
to solve large-scale real-life problems.

Formulation

Conceptually, the Vehicle Scheduling Problem (P4) is an extension of the Fixed-Schedule
Fleet-Size Problem (P1) with the maintenance constraints on the vehicle schedules. This
seemingly simple operational requirement adds numerous quadratic constraints to the P4
as formulated in Table 8.

Table 8. Vehicle Scheduling Problem (P4)

Formulation Notations

Maximize: N, T, X5, NigsN05,0:,G5,Pi, di, Ly,
22 Xy i€N, JEL; B;,Fy, Hyrs as defined earlier in P3

2i Vi i€EN deT : depot for maintenance
Subject to: g : maintenance gap
Linking Constraints: Na; ={j:0;=a€T-d, JEN}
2i Xijthio = 1 1€N,JEL; Na; ={i:d;=a€T-d, i€N}
2iXij+hoj =1 JEN,IEB; Nai ={j:o03=d, JEN}
Identify (Vehicle Schedule) Chains: Ng, ={i:d;=d, 1i€N}
Rji=2g i€EN Rij = 1 if the trip j is contained in the
Ry Rilf-ij iL,jEN, kEB; chain beginning with the trip i
Uj=Mo JEN = 0 otherwise

Usj =2k Xix- Uy LJEN, K€Ly Ui; = 1 if the trip 1 is contained in the
Identify Chains with Maintenance: J . L e
Vi=kg i€Ng chain ending with the trip j
. = 0 otherwise
Rig-Xpt+ YrRir-Ao >V, IEN
Zo ZaRig Xapt LRk pl€Nd1 al Bjx : Linking set with maintenance
querCNdz ={i:04=dj=d AND pj—q%Zg,
Wi=%o JEN& . oo AEN}
2o ZaXap Upit Zehor Uy 2 W; jEN Vi = 1 if the chain beginning with the trip i
poATRTR pEJIN il ' has maintenance gap(s)
q€B,Mr€Ny; = 0 otherwise
Maintenance Constraint: W5 = 1 if the chain ending with the trip j has
2iVit Wiz F, I€N,1,JENy, a€T-d maintenance gap(s)

= 0 otherwise

| Xii»Aio,MaiRii Ui, Vi, Wi=0,1

Unlike the P1, the P4 requires explicit identification of vehicle schedules to be able
to express the maintenance constraints on them. A schedule can be identified by its
starting trip 1 (Ap3=1) and a set of non-starting trips associated with it ({j:R;;=1}) or
by its ending trip j (Aj0=1) and a set of non-ending trips associated with it
({1:U35=1}). A schedule with maintenance can be identified as the one that starts at the
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depot, or the one starting at a terminal other than depot gets large enough linking gap at
the depot (V). Similarly, a schedule with maintenance can also be identified as the one
that ends at the depot, or the one ending at a terminal other than depot gets large enough
linking gap at the depot (W;). To ensure that a vehicle gets its maintenance at least once in
two days, the number of schedules with maintenance ending at a terminal other than depot
(25W;), should be greater than or equal to the number of schedules starting from that
terminal going without maintenance (F,-Y ;V;).

The Vehicle Scheduling Problem has a fleet-size related primary objective function
(3’iY5X:4) and a secondary objective that maximizes (3 ;V;) for the schedules with daily
maintenance.

Analysis

Like its variable-schedule (P2) and the depot allocation (P3) counterparts, the Vehicle
Scheduling Problem has multiple objectives. It also has a large number of quadratic
constraints involving numerous integer variables. Consequently, it is very hard to solve
the problem using the mathematical programming techniques. As before, we extend the
analytical framework developed for the Fixed-Schedule Fleet-Size Problem to solve the
Vehicle Scheduling Problem using heuristic techniques. The problem is solved in two
phases. In phase one, a minimum fleet-size problem is solved with maximum number of
maintenance gaps embedded among the vehicle schedules. The maintenance gaps are then
appropriately redistributed among the chains in phase two, using a restructuring process.

The problem of embedding maximum number of maintenance gaps among the
vehicle schedules is formulated as an assignment problem for linking arrivals with
departures within ‘hollow zones’ as shown in Table 9.

The maintenance-gaps sub-problem is optimally solved using a Greedy Algorithm in
which a departure selected in a chronological order simply grabs a maintenance
opportunity within the ‘hollow zone’, if available. Else, it benevolently settles for linking
with least idle gap, thereby increasing the chances of succeeding departures of grabbing
the maintenance opportunity. The optimality also holds for the greedy procedure based on
arrivals selected in reverse chronological order. Ankolekar, Patel, and Saha[l] have
proved the optimality of the greedy procedure.

Table 9. The Maintenance-Gaps Sub-problem

Formulation Notations
Minimize: Xij, B3, Biu, 4, Hors, Na1, Naz
Y5 Ei5.Xiy 1€Hamn2, J€Hamm | @s defined in Vehicle Scheduling Problem (P4)
Subject to: f;5 = 1 if i€Bj-Byy
Precedence Constraints: = 0 if i€Bjy
2iXi5 = 1 1€Hamaz, J€Hamn = « otherwise
YiXis = 1 i€Hgwo. J€Hamm Hamn = Hollow zone at depot starting with arrival
trip m and ending with departure trip n
X = 0,1 ={1i,J:1€Ngz, 3ENa1, GSGi<P;5Pn)
meNdz ' n€Ndl
Hamn1 ={3J:3€Na1, J€Hamn}
Hdng = { l H jeNdz ’ ieHdm}
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Greedy linking at the depot results in a set of partial schedules, some with embedded
maintenance gaps or starting/ending at the depot. The linking at the terminals other than
depot follows a similar greedy procedure, where the partial chains without any
maintenance so far, link to ones with maintenance to widely distribute the maximum
maintenance opportunities during the first phase. The phase two reinforces the
distribution further by breaking the ‘rich schedules’ with more maintenance opportunities
and the ‘poor schedules’ with no opportunities, into partial schedules and swapping them
to redistribute the maintenance opportunities more widely among the schedules.

Implementation and Computational Experience

The implementation builds on the data structures and analytical modules used for the
Fixed-Schedule Fleet-Size Problem, and adds additional features to implement concepts
specific to the Vehicle Scheduling Problem, namely, the greedy linking and the swapping
of the partial schedules. The computational experience of our implementation with real-
life data is given in Table 10.

Table 10. Computational Experience of Vehicle Scheduling Problem

Trips | Terminals | Optimal M- Schedules Maintenance CPU
Fleet- Gaps with feasibility (sec.)

Size maintenance (YES/NO)
105 23 20 27 20 YES 0.66
220 72 47 69 43 YES 254
246 43 26 40 26 YES 2.10
120 30 35 50 35 YES 1.06
92 35 22 24 18 YES 1.70
72 25 18 17 14 YES 0.86
66 27 22 24 18 YES 0.88
84 28 20 22 20 YES 0.58

Crew Scheduling Problem (P5)

Booler[6] formulated the crew scheduling as a linear programming problem and solved it
using Dantzig and Wolfe decomposition principle, with suggestion of branch-and-bound
approach to take care of integrality constraints. The formulation does not address crew
duty conditions associated with steering duty and night-outs at terminals other than
depots. Blais et. al.[5] have suggested a heuristic approach for crew scheduling in an
urban transit system. The solution consists of a ‘macro’ stage of solving a simplified
version as a linear programming problem, and a ‘micro’ stage to perform necessary ‘fine
tuning’.

Formulation

Conceptually, the Crew Scheduling Problem (P5) is similar to its Vehicle Scheduling
counterpart (P4), except for different kinds of operational constraints, such as, limit on
total steering and spread-over (elapsed time between sign-in and sign-off of the crew)
duty, limit on consecutive night-outs at terminals other than depot, meal-breaks, and the
rest pauses before and after long trips. For our formulation in Table 11, we ignore the
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meal-breaks and rest pauses constraints, their treatment being analogous to the
maintenance gaps in the Vehicle Scheduling.

The night-out constraints simply assert that a crew must end up at the depot on
starting after a night-out or must start at the depot if ending as a night-out. At the
terminals with positive deficit function (F,>0), the night-outs are inevitable. The night-
outs might also result in terminals with no deficit (F,=0), because the number of linkings
would be substantial smaller in Crew Scheduling Problem (P5) compared to the Vehicle
Scheduling (P4) due to more stringent operational constraints. There may be a set of
terminals (Ty), however, where the night-out is not allowed at all. For such terminals, the
linking constraint does not allow any starting or ending trips in the crew schedules.

Table 11. Crew Scheduling Problem (P5)

Formulation Notations
Maximize: N, Tlxijl}\iOI)\Oleij rUij'Nalr
Xi X5 “Xis i€N, jeL; Nag,
Subject to: Na1,Ngz,0:,6;,P:,q;, L, Bj as
Linking Constraints: defined earlier in P4
Zj CXij + c)\io =1 i€Naz, acT-Ty, jeLi
Yi “Xi5 + “Agj = 1 jEN,,a€T-Ty, i€B; | Ta: Setof terminals other than depot
23 “Xi5 = 1 1€N,,, a€Ty, JELy where crew night-out is
Yi “Xij5 = 1 J€EN,;,a€Ty, 1€B; permitted
Identify (Crew Schedule) Chains: Ty : Set of terminals where crew
“Rii = hoi i€EN,;, a€T-Ty night-out is NOT permitted
CRij = Zk cRik . cxkj jeN, kij =T - T, - d
Uj5 = “Ajo €N, , a€T-Ty L1 : Steering duty limit
“Uj; = Y “Xix-SUy; 1€N, kEL; L2 : Spreadover duty limit
Night-Out Constraints: t; : Steering time of the trip i
Y3 Uiy 2 Aoy 1€EN.;, a€T., J€Na
i “Riy 2 “Aj0  FENay, a€T,, 1€ENg “Xi3+Aj0, “Noj, “R1J, “Us; are
Steering Duty Constraints: crew counterparts of corresponding
Y5 ti.°Rj5 £ L1  1i€N,;, a€T-Ty, JEN notations X; j, Ajo, Aoj, R1J, Us; in
Spread-over Duty Constraints: problems P1-P4
“Ry;.Uis. (g3-p3) € L2 1€N,;, JEN,

acT-Ty

cxij ' c)\io ’ c)\.oj ’ cRi-i ’ CUij= 0 ’ 1

The steering duty constraints impose the limit on the accumulated steering duties of
trips associated with a crew schedule. Similarly, the spread-over duty constraints impose
the limit on elapsed time between the sign-in of the first trip and sign-off after the last trip
of a crew schedule.

While the formulation specifies only the primary objective function, ;) ;°X;;, the
crew scheduling involves a secondary objective of maximizing the overlap between
vehicle and crew schedules so that the crew is not required to change the vehicles too
frequently to operate the trips. That makes the interrelationship between the two problems
even more intimate, necessitating an integrated view of the sub-problems. Accordingly,
we tackle the crew scheduling using the basic vehicle scheduling framework to develop
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multi-crew schedules with unlinked trips in the first and last ‘hollow zones’, and
subsequently cut them to pieces to yield single-crew schedules.

Implementation and Computational Experience

The implementation builds on the data structures and analytical modules used for the
Vehicle Scheduling Problem, and adds additional features to implement concepts specific
to the Crew Scheduling Problem. The computational experience of our implementation
with real-life data is given in Table 12.

Table 12. Computational Experience of the Crew Scheduling Problem

Trips | Fleet- | Crew- Crew- Night-out | Real- | Real-Life CPU
Size Size Size infeasible Life Night-out | (sec.)
Lower | Achieved Crew Crew- | infeasible
Bound Schedules Size
105 20 35 39 1 39 1 7.78
220 45 86 94 2 92 2 33.02
246 26 44 51 0 51 1 29.28
120 34 62 66 2 65 1 17.08
72 22 43 46 6 46 3 12.98
92 24 47 54 2 53 0 10.70
66 19 36 38 6 39 0 8.58
84 21 34 41 0 40 1 9.54

Integrated Transport Scheduling Problem (P6)

The problems (P2-P5) can be merged to formulate the Integrated Transport Scheduling
Problem (P6) as given in Table 13, where the objective functions and the constraints of
the sub-problems are simply merged together. The linking constraints and primary
objective functions (3;Y;Xy and Y;;°X;; ) provide the necessary glue that binds the sub-
problems together.

As mentioned earlier, the integrated problem has an additional secondary objective
function that seeks to maximize the desirable overlap (3; Y ;0;;) between the vehicle
schedules X; ; and the crew schedule °X; ;. A set of constraints defined for each potential
linking, called ‘Vehicle/Crew Overlap is Good’, count such overlaps.

The Integrated Transport Scheduling Problem turns out to be a massive
combinatorial optimization problem with six objective functions and large number of
quadratic constraints. For example, a moderate size problem of about 1000 trips would
involve over 5 million quadratic constraints, primarily accounted for the schedule
identification and spread-over duty constraints of the Vehicle and Crew Scheduling sub-
problems. Our common analytical framework for the sub-problems and the common set
of data structures enables us to integrate the heuristic solutions to the sub-problems
together to solve the integrated problem.
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Table 13. Formulation of the Integrated Transport Scheduling Problem (P6)

Maximize:
ZiZj Xij i€N, J€Lyg
ZiZj cXij i€N, jeLiEL
YiY; Oiy  1€EN, J€Lyg
2i vy ien
2i Yix 1€Ny
Zi Vi 1EN
Subject to:
Linking Constraints:
Zj Xij+)\i0 =1 1€N, jeLiEL
Zi Xij+)\0j =1 jeN, iijEL

ZJ' °X1j+°}\.io =1 ieNaz,
a€T-Ty, J€L;eL
Zi “Kij+A93 = 1 JENu,
a€T—Tb, i€BJEL
Zj cXij =1 i€Naz,a€Tb,j€LiEL
Zi cXij = 1 Jj€ENu,a€Ty, 1€BjeL
Perturbation Constraints:
Qi = P + t
pi-qi 2(Xi5-1)M
Pi—q 2(°%5-1)M

i€N, J€Lie
1€EN, j€L;j1E

Pie £ Pi £ PiL i€N

No Perturbation is Good:

pi - pig £ (1 - ¥;)M i€N
Pie - Pi £ (1 - Y;)M i€EN

Depot Compatibility Constraints:

Yik-Yie+t¥Xiy £ 1 i€N, j€Lig,

Yie-YiktXs; £ 1 k€K

Yik~Yixt+tXi3 £ 1 1€EN, JELjg

Yie-Vixt“X; £ 1 k€K

Depot Assignment Constraints:

Zk Yik =1 l€N,k€K

Zi Yik :Zj Yk i, jEN, kEK,
oi=dj=a€'1‘a

Identify (Vehicle Schedule) Chains:

Rii = Aoy i€EN
Rij = Zk Rik. K5 i,Jj€EN, kijEL
Uj; = Ajo JEN

Ujj = 2x Xix.Uxj 1,3JEN, KE€Lig

Identify Chains with Maintenance:

Vi = )\Qi i€Nd1

ZD ZqRiq . qu+ZrRir . )\ro 2 Vi i€Na1,

PENg; , A€Bgy, YENg2

Wy = )\:jO JENg2

2o ZaXap - Upj+Xrdor-Urs 2 Wy JEN,,
p€Nd1 ’ qule r€Ndl

Maintenance Constraint:

Zivi+Zjo 2 Fa i€Nal . jeNaz ,a€T-ad

Identify (Crew Schedule) Chains:

“Ris = Ao i€N,,, a€T-Ty
“Rij = 2k “Rix.“Xxj JEN, kEB;
chj = C)\jo ; JEN,z, aET-Ty

Uiy = 2k “Kix. Uy 1EN, k€Lyg

Night-Out Constraints:

25 “Us; 2 “Agy  1€ENa;, a€T,, jENg
2i “Rij 2 “Ajo JENaz, a€T., i€Ng
Steering Duty Constraints:

Ysti.“Riy £ L1 1i€N,;,a€T-Ty, JEN

Spreadover Duty Constraints:

cRij.cUij. (qj—pi) < L2 i€Nal,j€Na2,
acT-Ty

Vehicle/Crew Overlap is Good:

Xiy - °Xij + 0;; £ 1 1€N, j€Ljg

Xj; — Xi; + 055 £ 1 1€N, j€Lim

XijrAiorNoj,R1J, Ui, Vi, Wy Y5, Vi,
“Xij, “Nios “Noj. Ry, Us5,045=0,1
pi,q 20

Implementation and Computational Experience

We were able to integrate our algorithms and data structures together to solve the
Integrated Transport Scheduling Problem. At a practical level, however, given the nature
of the sub-problems, it is sufficient to consider the integration at the level of two subsets
of sub-problems, namely, variable-schedule (P2) and depot allocation (P3) problems, and
vehicle scheduling (P4) and crew scheduling (P5) problems. The former subset essentially
deals with the pre-processing of the set of trips of multiple depots in terms of perturbation
of timings and re-assignment of the depots to minimize the fleet-size. It is then sufficient
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to carry out the integrated vehicle and crew scheduling individually for each of the
depots.

The integrated variable-schedule and depot allocation seeks to achieve global
optimization of the fleet-size by increasing the potential for perturbation, while making
the depot allocation somewhat harder due to increased unbalance among the ‘local hollow
zones’, as is apparent from the number of perturbations and reassignments in the
computational experience of the problem given in Table 14.

The integrated vehicle and crew scheduling seeks to achieve greater overlap between
vehicle and crew schedules in three phases. In phase one, preliminary linking is
performed using the Greedy Algorithm. In phase two, the Swapping Algorithm, enriched
to handle crew duty constraints, performs restructuring of both the schedules considering
both crew and vehicle duty constraints, but giving priority to the latter. In other words,
restructuring based on crew scheduling considerations is performed only if it does not
result in deterioration of vehicle scheduling considerations. In phase three, the Swapping
Algorithm operates exclusively on crew scheduling considerations to give a crew feasible
solution, while heuristically optimizing the crew-size requirement. We found that the
computational experience of the integrated vehicle and crew scheduling with prior pre-
processing by the integrated variable-schedule and depot allocation algorithm was similar
to that of the specific sub-problems except for a minor reduction in maintenance gaps and
schedules with maintenance as expected.

Table 14. Computational Experience of the Integrated Scheduling Problem

Depot [Trips |Perturb |[Sumof |Fleet- |Achieved [Trips Trips |CPU
Limit Fixed-sch. {size Fleet-Size |perturb- |Reassi- |(sec.)

(min.) |Fleet-size (Lower ed gned

bound

8 1005 0 220 217 217 0 10 29
+5 220 208 210 20 32 90
+10 220 206 207 25 66 74
+15 220 204 206 26 56 42
8 1026 0 213 212 212 0 6 27
+5 213 211 211 1 43 53
+10 213 207 208 10 130 114
=15 213 205 205 37 166 184

Concluding Remarks

In this paper we have presented our experiences of structuring and modeling of
scheduling problems that arise in operations of large state road transport corporations. We
started with a simplified version of the real problem. We looked at the complexities
sequentially and looked at each problem independently and finally developed an
integrated model of the real problem in large Road Transport Corporations.

Our thrust has been to develop methods, which can solve large problems efficiently.
The problems described in the paper are complex and combinatorial in nature with
multiple objectives. We could not always find methods to solve the problems optimally.
Under those circumstances, we have devised heuristic solutions, which are most often
very close to the bound for the optimal solution.
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Secondly, as practitioners faced the problem, our efforts have been to devise
solutions methods, which are efficient. From the evidences that we have provided in the
paper, we are of the view that the methods suggested by us are efficient and could be used
in practice.

Thirdly the solutions we arrive using our methods can be implemented in practice.
We have seen this in the context of a few divisions and depots in two State Road
Transport Corporations.

We believe that formal methods, besides having many advantages, also give
economic solutions. In dealing with the scheduling problems described in the paper and
as faced in a few State Road Transport Corporations, we have found that savings in bus
and crew requirements were in the region of 5% to 15%. We are convinced that the
methodology developed has potential to make the operations in large transport
corporations more efficient.
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Abstract: The dynamic power management is one of the most effective technologies
for reducing the power consumption in computer systems. Especially, the sleep function
based on the shutdown policy is usually installed in the almost operating systems. In
this paper, we propose a stochastic model based on the dynamic power management con-
cept to determine the optimal shutdown policy. More precisely, introducing the so-called
power effectiveness criterion by taking account of the processing efficiency, the optimal
shutdown policies maximizing the power effectiveness can be derived in two cases; single-
user operating system and multi-tasking operating system. In a numerical example, we
calculate the optimal shutdown policies numerically and perform the sensitivity analysis
of model parameters.

Keywords: dynamic power management, shutdown policy, power effectiveness, stochas-

tic model, Markovian arrival process.
1 Introduction

Since ENERGY STAR was introduced by the US Environmental Protection Agency in
1992, the management of the electrical power consumed by computer systems has received
considerable attention all over the world. As a computer system consists of a number of
electric components and devices, the power management to reduce energy consumption

has been discussed at each component level such as IC chip [22], microprocessor [25],
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CPU, disk drive, display and so on. Recently, several measurement techniques for elec-
trical power have been also developed with object to reduce energy consumption in real
computer operation [16, 26]. In general, the power management should be carried out at
each level of hierarchical computer design processes; circuit level, layout level, logic level,
behavioral level, architectural level, etc. In particular, the system level power manage-
ment techniques have emerged as one of the most useful design methodologies in practice,
because they do not assume the development of new low-power devices. For the detail on
the system level power management techniques, see 1, 3.

The dynamic power management, as it is generically known, can provide a control
scheme that dynamically reconfigures an electric system to provide the requested services
and to guarantee the desired performance level with minimum number of active compo-
nents or minimum amount of workload on such components [1, 3]. The design method
will be useful for operating systems and control systems of peripheral devices. Espe-
cially, since operating systems can monitor and control the application software programs
which are executed on them, the dynamic power management plays an important role to
achieve energy efficiency. However, it is known that typical operating systems like UNIX,
WindowsOS and MacOS were not designed originally with energy efficiency in mind.

The dynamic power management basically supports three energy states, busy, idle and

inactive, defined in the following:

e The busy state is defined as an active state. In the busy state, the system can

process the requested tasks and therefore consumes higher electrical power.

e In the idle state, the system waits for an arrival request. Although the system does

not process any task in this state, the amount of electrical power consumption is



idle < ’ busy
[ sleep

Figure 1: Configuration of the dynamic power management.

Table 1: An example of delay time in a CPU device

from to delay time
busy — idle | ~ 10 (us)
idle — busy | ~ 10 (us)
idle - sleep| ~ 90 (us)
sleep — busy | ~ 160 (ms)

assumed to be same as that in the busy state.

e The inactive state, which is usually called the sleep state, provides the least amount
of electrical power consumption. In general, the functions such as a sleep and a

hibernation lead the computer system into the sleep state.

Figure 1 illustrates the state transition in the dynamic power management. Under the
dynamic power management, it is reported that delay time can occur at transition among
the energy states. Table 1 presents an example of the delay time in a CPU device [2].
In addition to the delay time, the large amount of energy consumption will be observed
instantaneously at transition from the sleep state to the busy state. This instantaneous
power is generally called wake up power. The simplest way to establish the power reduc-
tion in the current operating system is to add the ability to selectively shutdown useless
peripheral devices. That is, if the system has waited for an arrival request in the idle
state during a constant time period, the system goes to the sleep state automatically.
The constant time period is called the shutdown policy. The system wakes up and goes

to the busy state if an additional request occurs in the sleep state. In fact, this method,
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called a shutdown approach, is applied to the hard disk unit [23] and the VLSI circuits
system [1, 6, 24] as an energy saving function. Typical examples for the shutdown ap-
proach can be found in mobile computers [8, 9, 10]. Since the capacity of a battery for
the mobile computer is limited, the available electrical power should be carefully assigned
among all of the components and the peripheral devices. For such systems, the shutdown
approach is greatly effective and, in fact, is installed as a standard function for mobile
computers.

However, the system designing based on the shutdown approach to reduce energy
consumption is difficult due to the existence of both delay time and wake up power. For
instance, if the system is designed such that it goes to the sleep state whenever it is in the
idle state, the total energy consumption will become larger due to the excessive wake up
power consumption. This implies that the optimal shutdown policy depends on the usage
environment of the system. Thus, the problem to design the suitable shutdown function
can be motivated. Okamura et al. [21] revisited the design of shutdown function in terms of
the stochastic behavior. They assumed that the arrival request follows the general renewal
process and derived the approximate expected electrical power consumption in the steady
state and the approximate optimal shutdown policy minimizing it. Furthermore, they
derived the exact optimal shutdown policy by applying the phase-type renewal process to
the inter-arrival process [19, 20].

In this paper, we consider again the optimal design problem for the shutdown function.
Our approach is based on a stochastic modeling technique under the criterion of the energy
saving effectiveness. The criterion of the energy reduction is usually the electrical power
consumption in the steady state. Although this criterion may be intuitive and reasonable,

it does not focus on the performance of processing tasks. Since the processing efficiency
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may degrade due to the extreme energy reduction, we have to consider the trade-off. That
is, one should be careful to the performance restrictions in terms of system usability. Thus,
this paper introduces a criterion of optimality called the power effectiveness {17, 18] taking
account of the processing ability. The power effectiveness indicates the possible mean time

length of keeping the busy state per unit amount of electrical power consumption.

2 Single-User Operating System

2.1 Model Description

In this section, we discuss a stochastic shutdown model for a single-user operating system.
As shown before, the dynamic power management may control three energy states: busy,
idle and sleep states. The shutdown function for the single-user operating system is

modeled under the following assumption:

Assumption A: The electrical power consumption per unit time in the idle state is same

as that in the busy state.
Assumption B: The system needs delay time to go to the busy state from the idle state.

Assumption C: The wake up power occurs uniformly during the delay time period when

the system goes to the busy state from the sleep state.
Assumption D: When the system is in the busy state, an arrival request is refused.

One of the most important factors in the design of shutdown policy is trade-off between
the amount of electrical power reduced by shutdown and the amount, of the wake up power
consumption. In other words, the optimal design essentially depends on the difference
between the normal electrical power consumption and the wake up power consumption.

It does not depend on the difference between the electrical power consumption in the idle
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state and the busy state. Thus, the electrical power consumption in the idle state is well
- assumed to be same as the busy state. Note that it does not affect the optimal design of
shutdown policy. The similar dependence can be found on delay time among the three
states. That is, the optimal policy strongly depends on the delay time from the sleep
state to the busy state. Also, comparing the delay time from the sleep state to the busy
state with those in the other cases, it is short enough to be ignored. Therefore, we make
Assumptions A and B. Assumption C concerns the wake up power. The behavior of the
wake up power is naturally sharp rather than flat. When we focus on the wake up power

consumed per unit time, it has a property of inversely proportional to the delay time, i.e.,
(the wake up power consumed per unit time) x (the delay time)

is a constant approximately. This fact leads to Assumption C. Since the underlying system
is assumed to be a single-user operating system, we make the assumption that an arrival
request is refused in the busy state, namely, it is equivalent to Assumption D.

Furthermore, the arrival request process is assumed to follow the phase-type renewal
process {13]. The phase-type renewal process is one of the most general class of stochastic
process which can be tractable mathematically. It is governed by an irreducible Markov
process.

In our modelling, the following notation is used:
{N;; t > 0}: the cumulative number of arrival requests at time ¢,
{Ji; t > 0}: the phase of users’ circumstances at time t,
Sk: processing time for the k-th task,

7 (> 0): delay time at the transition from the sleep state to the busy state,



513

to: the shutdown policy (0 <ty < o0),

P, (> 0): the amount of electrical power consumption per unit time in the idle state and

the busy state,

P, (> P;): the amount of wake up power consumption per unit time during the delay

time period when the system goes to the busy state from the sleep state.

Suppose that the phase process {J;; ¢ > 0} is an irreducible Markov process. It has
an infinitesimal generator M (m x m matrix) and initial probability vector a (1 x m row
vector). A (m x 1) column vector denotes the arrival rate of requests. Let {N;; t > 0}
denote the number of arrival requests at time ¢. The inter-arrival time is mutually and
independently distributed with an identical probability distribution function, where F(t)
is the probability distribution function of the inter-arrival time. Then the probability

distribution F(t) is given by

F(t) =1- aexp(Tt)e, (1)

where T = M — diag(\) and e is a column vector whose all the elements are 1. The
distribution represented by Equation (1) is called the phase-type distribution.

The dynamics of the underlying system can be summarized as follows. If the system
is in the busy state, it processes the task requested by the last arrival. The system takes
processing time Sj to process the task requested by the k-th arrival. The processing time
Sk has the absolutely continuous probability distribution function G(t) with finite mean
1/p (> 0) and variance o? (> 0). When an arrival request occurs in the busy state,
the request is refused. After the system completes processing the task, it goes to the

idle state. In the idle state, if the amount of sojourn time in the idle state reaches a
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Figure 2: Possible realization of the single-user operating system with shutdown.

threshold t; before an arrival request occurs, the system goes to the sleep state at that
time. Otherwise, the system begins processing the task requested by the arrival. In the
sleep state, if an arrival request occurs, the system wakes up and goes to the busy state. It
takes delay time 7 for the system to go to the busy state. Of course, the requests arriving
during the delay time period are refused. Figure 2 illustrates possible realization of the
single-user operating system. From Assumptions A and C, the amount of electrical power
consumption per unit time in both the busy and the idle states is denoted by P;. The
amount of the wake up power consumption per unit time is P,, which is wasted during
the delay time period when the system goes to the busy state ‘rom the sleep state. To
simplify the mathematical analysis, the amount of electrical power consumption in the

sleep state is assumed to be zero.

2.2 Formulation of Power Effectiveness

The power effectiveness criterion is defined as the mean length of available time per unit

amount of electrical power consumption. The formal definition of the power effectiveness
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is given by

, E[ the total length of available time in [0,1) ]
W (tp) = lim - - ,
t~o0 B[ the total amount of electrical power consumed in [0,¢) ]

(2)

where the available state corresponds to the busy state and thus the length of available
time means the length of sojourn time in the busy state.
Define the time interval from a task completion point until the next point as one cycle

and the following expected values;

~(to): the mean length of available time during one cycle, provided that the phase is ¢

at the beginning of the cycle.

a;(to): the expected amount of electrical power consumption during one cycle, provided

that the phase is i at the beginning of the cycle.

m;(to): the probability that the phase is ¢ at the beginning of one cycle in the steady

state.

Let ~(to), a(to) and =(ty) denote the vectors whose i-th element is v;(to), c:(tp) and

m;(to), respectively.
Proposition 2.1. The power effectiveness is given by

W)= S @

The proof of Proposition 2.1 is given in Appendix. Proposition 2.1 is an extension
of Renewal Reward Theorem [4] on the Markov renewal reward process. Proposition
2.1 is quite similar~to the familiar renewal reward theorem. The essential difference

between them is whether the phase at the beginning of one cycle is considered or not.
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From Proposition 2.1, we may focus only on the expected amount of electrical power
consumption during one cycle and mean length of available time during one cycle.

Let T'(to) denote a transition probability matrix for the phase at the beginning of one
cycle. From the formulation of the phase-type distribution function, T'(ty) can be written
in the form;

T(t,) = /0 " exp(Tt) AE[a exp{ QS }dt

4 / " exp(Tt)ABlaexp{Q(r + S0)}dt

0

to o0
=< / exp(T't)Adta + / exp(Tt)Adta exp{QT})
0 to
x / exp{Qt}G(2), (4)

0
where A = —Te, Q@ = T + Aa and I is the identity matrix. From the well-known

argument on the Markov chain, the stationary probability vector 7 (¢p) can be derived by
7 (to)T (tg) = 7(ty), w(to)e =1 (5)
Equation (5) is equivalent to
(i) =a /000 exp{Qt}dG(t)
y (I + exp{Tto}ea(l — exp{Qr}) /O ” exp{Qt}dG(t)) R
Also, the expected amount of electrical power consumption during one cycle is given by
afty) = /Oto{Pl(t +1/p)} exp(Tt)Ndt
+ /t oo{Plto + Pyt + Pi/p} exp(Tt)Adt
0
=(Pym+ Pi/p)e — {PyrI + P, T} /Oto exp(Tt)\dt. (M
On the other hand, since the system processes just one task in one cycle, the mean length

of available time during one cycle is easily given by

¥(to) = (1/u)e. (8)
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From Equations (6), (7) and (8) and Proposition 2.1, we can formulate the power
effectiveness. Then the problem is to find the optimal shutdown policy ¢ which maximizes

the power effectiveness.

2.3 Optimal shutdown policies

Consider the case where requests arrive at the system according to the homogeneous
Poisson process with rate A (> 0). The phase-type distribution on the inter-arrival time

is reduced to the exponential distribution, i.e.,
T=-X and a=1 (9)

Then, the power effectiveness is explicitly given by

W) = 268, (10)
where
Y(to) =1/p (11)
and
alte) = Pyr+ Pi/pi — (Pyr — P/ A) /0 * Nexp{_A}dt. (12)

Theorem 2.1. Case (i): If P»/P; < 1/{A7), the optimal shutdown policy is ¢§ = 0 and

1
O = —_— ].
W( ) P2/14T + Pl ( 3)
Case (ii): If P,/P, > 1/(A7), then t§ — oo and
W(o0) = b, (14)
Pi(1+p)

where p = A/ p.
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Figure 3: The optimal shutdown policy for the single-user operating system in the Poisson
arrival case.
Figure 3 summarizes Theorem 2.1. The optimal shutdown policy in the case of the Poisson
arrival is zero or infinity. That is, the simple on-off switching policy is optimal. In partic-
ular, it is remarkable that 1/(A7) directly affects the optimal shutdown policy. Further,
Pyr and P;/) indicate the respective total amounts of the electrical power consumption
in the delay time and the sojourn time of the idle state. Theorem 2.1 means that the
optimal policy is to compare the overhead power consumption for the sleep, Py, with the
useless electrical power consumption for the idle, P;/A. This may be an intuitive result
and be valid in the physical meaning.

Next, we investigate the condition on which the optimal shutdown policy exists in the

general arrival case. Since the power effectiveness converges to a constant as tg — o0, the

result on the existence of the optimal shutdown policy can be obtained as follows.

Theorem 2.2. There exists a finite optimal shutdown policy which maximizes W (zy), if

and only if there exists a finite ¢ € [0, 0o) satisfying
w(t){PorI + P, T }exp(Tt)e < Pi{mw(c0) — w(t)}(-T) e. (15)
Corollary 2.1. If
Py < Piw(o0)(—=T) e, (16)

there exists a finite optimal shutdown policy tj € [0, 00) maximizing W (%).
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Proof of Theorem 2.2 and Corollary 2.1:
There exists a finite optimal shutdown policy, if and only if there exists a finite ¢

satisfying
W(t) > W(oo). (17)
Inequality (17) is reduced to
w(t){PyrI + PT '} exp(Tt)e < Py{mw(c0) — w(t)}(—-T)'e. (18)
Corollary 2.1 can be given by putting ¢ = 0 in Equation (18). The proof is completed. O

Corollary 2.1 is the sufficient condition on which there exists a finite optimal shutdown
policy. Since m(c0)(—T) e means the expected inter-arrival time, it is obvious that

Corollary 2.1 is related to Theorem 2.1.
3 Multi-tasking Operating System

In this section, we discuss a stochastic shutdown model for a multi-tasking operating
system based on the dynamic power management. Since the present operating systems
such as WindowsOS, UNIX, etc. provide the multi-tasking processing circumstance, the

model proposed here will be useful in many practical applications.

3.1 Model Description

Consider a multi-tasking operating system. Unlike the single-user operating system, the
multi-tasking operating system can receive and process all the arrival requests in the busy
state. Thus, Assumption D in the single-user operating system has to be modified in the

following;
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Assumption D’: When the system is in the busy state, the tasks requested by arrivals
are stored in the buffer and then the system processes them under the first-come

first-serve discipline.

The same notation as the single-user operating system is used. The dynamics of the
multi-tasking operating system is summarized as follows. The inter-arrival time distribu-
tion is the phase-type distribution with parameters ex and T'. All the arrival requests are
stored in the buffer. The processing time Sy will be needed to process the k-th task. The
processing time has an absolutely continuous probability distribution function G(¢) with
finite mean 1/ (> 0) and variance o2 (> 0). The arrival request during the processing
time period is also stored in the buffer. If there is no task in the buffer, that is, the system
completes processing all the tasks stored in the buffer, the system goes to the idle state.
In the idle state, the behavior of the system is same as that in the single-user operating
system. If the amount of sojourn time in the idle state reaches a threshold level ¢y before
a request arrives, the system goes to the sleep state at that time. Otherwise, the system
begins processing the task requested at the occurrence of the arrival request. In the sleep
state, if an arrival request occurs, the system wakes up and goes to the busy state. The
delay time 7 is needed to go to the busy state. The arrival requests during the delay time
period are stored in the buffer. Figure 4 depicts the possible behavior of the multi-tasking
operating system. The amount of electrical power consumption per unit time in both the
busy and the idle states is P;. The amount of the wake up power consumption per unit
time during the delay time period is P,. The amount of electrical power consumption in

the sleep state is assumed to be zero for convenience.
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Figure 4: Possible realization of the multi-tasking operating system with shutdown.

3.2 DMatrix-geometric analysis

The matrix-geometric analysis [14, 15] is a powerful tool to analyze the M/G/! type
queueing system. Before formulating of the power effectiveness criterion, we describe
the matrix-geometric analysis and some results being needed to formulate the power
effectiveness.

Let us define a transition probability:
Rj(n, t) = PI‘{Nt =n, Jt = ]|N0 = 0, J() = 7,} (19)

and matrix P(n,t) whose (i, j)-element is P,;(n,t). The following Chapman-Kolmogorov

forward equation holds

%P(n, £) = P(n, )T + P(n — 1,t)Aa,
P(0,0) =1,

P(-1,t) =0, (20)

where O is a zero matrix. Thus, the matrix generating function P*(z,t) is expressed in
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the following form:
P*(z,t) = Z P(n,t)z" = exp {(T + zAa)t}. (21)
n=0
Since the behavior of both the number of arrival requests N; and the phase .J; forms
an embedded Markov chain at the completion point of a task, its transition probability

matrix can be given by

By B, B,
Ao A1 A2

0O A, A (22)

where A, and B, are m X m matrices with respective elements [A4,];; and [B,);;. The
element [A,);; is the conditional probability that the phase changes from ¢ to 7, provided
that n arrival requests occur during processing time period for a task. On the other
hand, the element {B,);; is the conditional probability that the phase changes from i to j,
provided that n arrival requests occur for the period from the beginning of the idle period

to the next completion point of a task. Thus, it is easy to obtain

o0
4, = / P(n,)dG(t) (23)
0
and
to
B, = / exp(Tt)Adta A,
0

+ /oo exp(Tt)Adta Zn: Pk, 7)An_y. (24)

o k=0

Taking z-transform of Equations (23) and (24), we have

A'(z) = Z A" = /000 exp{(T + zAa)t}dG(t) (25)
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and

n=0

= (/to exp(Tt)Adta + /°° exp(Tt)Adta exp{(T + Z)\G)T}) A'(z). (26)
o t

0

Consider the fundamental probability matrix G. The element indicates the probability
that the phase changes from 7 to j while the number of requests decreases to n from n+1.
This time period is called the fundamental period. 1t is found that the fundamental period
corresponds to the busy period in the ordinary M/G/1 type queueing system without
vacation. Further, we define an m x m matrix K () which is a transition probability
from 7 to j at time point when the number of requests is 0. For the fundamental matrix,

the following equation holds (see Lucantoni, Meier-Hellstern and Neuts [11]):

G=) A.G" (27)
n=0
Equation (27) can be reduced to
G= / exp{(T + AaG)t}dG(t), (28)
0

and therefore we obtain

K(ty) = i B,G"

n=0

_ < / * exp(Tt)Adta + / " exp(Tt)Adtaexp{(T + ,\aG)T}> G (29

to

The computation algorithm for the matrix G was proposed by Lucantoni and Ramaswami [12].

They introduced the computation algorithm for the fundamental matrix G as follows.

Computation of the fundamental matrix [12]:
The matrix G is efficiently computed by the following recursive scheme. First, start

with Gy = O. Next, for k =0,1,2,---, compute

Hopip =T +07 (T +XaG)|H,,, n=0,1,2-, (30)
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Glc+1 = Z7an,k7 (31)
n=0

where Hgo = I, 0 is the maximum value among the absolute values of the diagonal

elements of T and

Yo = /°° exp{—Ht}@dG(t). (32)
0

n!

It can be proved that the sequence G converges to G monotonically.

Let ny denote the expected number of tasks being processed during the fundamental

period. It is easily found that

=} k-1
n,=e-+ Z A Z G'n,. (33)
k=1 =0

We also define the probability vector g satisfying

gG =g, ge = 1. (34)

Using the probability vector g and the relationship;

{I‘iAkiGl}{I“G+eg}ZI—A*(I)—f—(e—V)g, (35)
k=1 =0

the expected number of tasks being processed during the fundamental period is given by
ny={I-G+egt{I-A'(1)+(e~v)g} e, (36)
where v is the number of transitions of the phase, 7.e.

d *
v= EA (z)] e (37)

z~>1

3.3 Formulation of Power Effectiveness

The power effectiveness can be defined as Equation (2) and is derived by Proposition 2.1.

Thus, in the similar way to the single-user operating system, the power effectiveness is
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formulated as the ratio of the mean length of available time during one cycle to the ex-
pected amount of electrical power consumption during one cycle. Since the (i, j)-element
of the matrix K (f) represents the probability that the phase transfers from ¢ to j at the
time point when the number of requests becormes zero, the stationary probability vector

is given by
w(te) = w(to)K(t)),  m(to)e = 1. (39)

From Equation (38), we have
w(to) = 6G(I + exp(Tto)ea I - exp{(T + XaG)}] G) - (39)

Denoting the expected number of tasks being processed during one cycle by n.{(t), the

mean length of available time during one cycle is given by

¥(to) = (1/ p)nc(to). (40)
From the conservation law in the queueing theory [7], it follows that

(U ) (to)melte)
w(G0)Blo) P (41

where p = a(—T)'e/p is the traffic intensity and B(¢p) is the mean length of one cycle.

The mean length of one cycle can be expressed in the following form:

i) = [ ep(TOA 1+ (1/w)amy)d
+ /°° exp(Tt)x (t +74+(1/p)a i Pk, 1) Z Glng> dt
Lo k=0 =0
~ {(~T) + e + (1/wnalte) — 7 /0 * exp(TH)Adt. (42)

Equation (41) yields

(o) B(tg) = 1—1; {w(to)(—T)—le + 7 — 77(to) /Ot0 exp(Tt)/\dt} . (43)
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Thus, the mean length of available time during one cycle can be derived as follows.

m(to)Y(to) = pm(to)B(to)

=_r - le+r—1m 0 toex .
- l_p{ﬂ(to)( T) e + (to) /0 p(Tt),\dt} (44)

Similarly, the expected amount of electrical power consumption during one cycle is given
by
to
afto) :/ exp(Tt)X (Pt + Pi(1/p)an,) dt
0
oo oo k
+ / exp(Tt)A <P1to + P+ Pi(l/pad_ Pk,T)Y Glng) dt
to k=0

=0

to
= Pyre + Pi(1/p)n.(to) — {PZTI + PlT_l} / exp(Tt)Adt. (45)
0
Using the traffic intensity p, Equation (45) becomes

m(to)ox(te) = ﬁ{ {PP, + (1 = p)Po}7 + pPye(to) (—T) e
—m(to) ({oP: + (1= p) Po}rT

+(1—p) PlT—1> /0 ° exp(Tt)Adt}. (46)

The power effectiveness can be obtained by Equations (44) and (46). The problem is then

to find the optimal shutdown policy ¢} maximizing the power effectiveness.
3.4 Optimal shutdown policies

Consider the homogeneous Poisson arrival process with the rate A (> 0). Since the phase-

type distribution for the inter-arrival time has the following parameters;
T=-X and a=1, (47

the power effectiveness is given by

W(to) = (48)



where

(tg) = i—i—p{l/)\ + Texp{—/\t}}

and

alty) = 1—1‘;{5/)\ + {pP1 + (1 — p) P}7 exp{—Xto}

—(/A-1/u)h eXP{—Ato}}«
Theorem 3.1. Suppose that p < 1.

Case (i): If P,/P; <1+ 1/(A7), the optimal shutdown policy is t§ = 0 and

1/u+ pr

VO = B R - By

Case (ii): If P,/P. <1+ 1/(A7), then t§ — oo and

£

W (o) = P
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(49)

(50)

(51)

(52)

The proof of Theorem 3.1 is omitted. Figure 5 depicts the above result. Similar to the

result on the single-user operating system, the optimal shutdown policy is zero or infinity.

That is, the simple on-off switching policy for the multi-tasking operating system is also

optimal in the Poisson arrival case. It is seen that the optimal shutdown policy for the

multi-tasking operating system is more likely to be zero than that for the single-user

operating system.

We also consider the optimal shutdown policy in the general arrival case. Since the

power effectiveness converges to a constant as t; — oo, we can derive the condition on

which a finite optimal shutdown policy exists.
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Figure 5: Optimal shutdown policy for the multi-tasking operating system in the Poisson
arrival case.

Theorem 3.2. There exists a finite optimal shutdown policy which maximizes W (¢5), if

and only if there exits a finite ¢ € [0, c0) satisfying
w(t){(P — P\)7I + P,T '} exp(Tt)e < 0. (53)
Corollary 3.1. If
(P, — P < Pw(0)(-T)7 e, (54)
there exists a finite optimal shutdown policy t§ € [0, o) maximizing W (tp).

Since the proofs of Theorem 3.2 and Corollary 3.1 are quite similar to those of Theorem
2.2 and Corollary 2.1, we omit to show them. Corollary 3.1 is the sufficient condition on
which a finite optimal shutdown policy exists. Comparing Corollary 3.1 with Corollary
2.1, it can be found that both results depends on the useless electrica! power consumption

on the idle state, that is,
P, x (the mean length of sojourn time in the idle state), (55)

and the overhead power consumption on the sleep state. However, it should be noted that
sufficient conditions to exist a finite optimal shutdown policy in both cases are different.
From Corollary 2.1 and Corollary 3.1, since (P, — P,)7 is strictly smaller that Py7, the
optimal shutdown policy in the multi-tasking operating system is generally shorter than

that in the single-user operating system.
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4 A Numerical Example

In this section, we investigate the performance of the dynamic power management through
a numerical example. Suppose that the inter-arrival time obeys the 2-hyperexponential

distribution, where

a=[p 1-p], (56)
T = [ ‘OAI _‘3\2 J (57)

When the hyperexponential distribution is used to the inter-arrival distribution, the arrival
process consists of the Poisson processes with two kinds of arrival rates. Using the above
notation, A; and )\, are the respective arrival rates and p is a ratio of the occurrence
for two kinds of arrival patterns. This stochastic process can be characterized by burst
and dormant arrivals. The processing time distribution is assumed to be the exponential

distribution with mean 1.0, where

. A =10,...,50, A;=0.1, p=0.9,
P, =10, P,=50, 7=05.

Table 2 presents the optimal shutdown policies in the single-user operating system
when A; varies from 1.0 to 5.0. Similarly, Table 3 presents the optimal shutdown policies
in the multi-tasking operating system with A; = 1.0,...,5.0. The columns in both tables
consist of the traffic intensity (p), the coefficient variance of the inter-arrival time (CV), the
optimal shutdown policy (optimal), the associated maximum power effectiveness (max-
peff) and the efficiency of the optimal policy (efficiency), where the efficiency is defined
by

(the maximum power effectiveness)
(the power effectiveness without shutdown)

(efficiency) = x 100 (%). (58)
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Table 2: Dependence of the optimal shutdown schedule on the arrival stream in the
single-user operation system.

A1 p CV | optimal max-peff | efficiency

1.0 {053 142| 2.59 0.377 32.4%

20(069 197 153 0.429 59.2%

30077 223} 107 0.432 77.9%

4.0)0.82 239| 0.1 0.423 91.2%

507085 249 | 0.66 0.410 100.9%

Table 3: Dependence of the optimal shutdown schedule on the arrival stream in the
multi-tasking operation system.

A1 | p  CV |optimal max-peff | efficiency

1.0 053 142 1.05 0.691 31.3%

2.0 (069 1.97 0.13 0.878 27.3%

3.01077 223{ 0.00 0.926 20.4%

4.0]0.82 239 0.00 0.947 16.0%

5.0/ 085 249 0.00 0.958 13.0%

From Tables 2 and 3, it can be seen that the optimal shutdown policy in the single-user
operating system is always longer than that in the multi-tasking operating system. This
result is same as the conclusions in Corollary 2.1 and Corollary 3.1. Also, the efficiency
by application of the shutdown function tends to be higher in the case of the single-user
operating system. In addition, as the coefficient variance of the inter-arrival time is larger,
the shutdown function becomes more effective. On the other hand, in the multi-tasking

operating system, the efficiency decreases gradually as the coefficient variance is larger.
5 Concluding Remarks

In this paper, we have considered the stochastic shutdown model for the dynamic power
management. The underlying stochastic process has been modeled by the arrival process
with the phase-type distribution. In both single-user and multi-tasking operating sys-
tems, the optimal shutdown policies have been considered under the power effectiveness

criterion. In the Poisson arrival case, it has been shown that the optimal policies are the
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simple on-off shutdown policies. In the general arrival case, the existence of a finite opti-
mal shutdown policy has been proved. Finally, we have calculated the shutdown policies

numerically and performed the sensitivity analysis of model parameters.

A Appendix: Proof of Proposition 2.1

Define the following random variables;

T(tp): the length of one cycle,

Ci(to): the instantaneous amount of electrical power consumption at time .

Comnsider the following expected value concerning with the electrical power consumption;

€i(r; tO) =E [/(:m e—rtct(to)dt

Jo= z} , (59)

where J; is the phase process at time ¢. Note that Equation (59) is the Laplace transform

of E[Cy(tg)|Jo = t] with respect to t. By using T'(to), the expected value &(r;to) is reduced

J0=’L}

T(to) —rt * -rt
/0 e Ct(to)dt"r ./T(to) e Ct(to)dt
Jo= }
e—rT(to) (JT(t )= ])
1
l: -—rtC‘(to)dt JT(to) = ]] 'Jo :l

E
T(to)
=g / e_rtCt(to)dt Jo =1
0

+ Y B [e Ty (o) = 5)| Jo = i] &(r;to), (60)

j=1

to the form;

&i(r;to) =

r

/ et C(to) dt
0

=E

—

5=

T(to)

E e—rtct(to)dt

MSN

E

+

j

X
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where Cf (to) = Ciyrto)(to) and x(A) is the indicator function for an event A, which is
defined by

w={9 524 o

From the Markov property, it is easily found that the stochastic processes C; and C; have

the same distribution, so that

E I:/ e_”Ct(tO)dt
0

Now, define the joint density function of the length of one cycle and the phase at the end

JO = 'L] =K {/ e‘"C{(to)dt
0

Jo = z} . (62)

of one cycle, i.e. fori=1,... , mandj=1,... ,m,
pii(t;to) = Pr{T(to) € dt, Jrqo) = jlJo = i} (63)
Taking Laplace transform of p;;(¢;to), we have
pi;(r;to) = Ele™ ) x(Jr()=)|Jo = i]. (64)

Let T"(r;to) denote a matrix whose (4, j)-element is p;(r;to). For the electrical power
consumption, we define ¢;;(z,%;t0) as the joint density function of the instantaneous elec-

trical power consumption during one cycle and the phase at the end of one cycle, i.e.,
q,'j((l,‘,t; to) = PI‘{Ct(to) cx, T(to) > t, JT(to) = leg = ’L} (65)
Also, C*(r; tp) denotes a matrix whose (i, j)-element is ¢j;(r; to) which is given by

T(to)
g(rito) = E / €~"C (t; to)dX(r(eo)=5)
0

Jo = z] . (66)
By using the column vector £(r;ty) with its i-th element &;(r;¢,), we have

£(r;to) = C*(r;to)e + T (r; t0)&(r; to). (67)
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Here, we attempt to derive the stationary electrical power consumption from Equation
(67). Let m(r;to) be the left eigenvector of T"(r;t), with the maximum eigenvalue

sp(T™(r; to)). Multiplying Equation (67) by m(r;%y), it is seen that
w(r;0)€(r;to) = w(r;20)C” (v to)e + sp(T™(r; to)) 7 (r; to)&(r; to)- (68)
We therefore obtain
{1 = sp(T"(r; to)) }re(r; 20)€(rs to) = (r;10)C* (73 t0)e. (69)

Taking r — 0 in Equation (69) and using the well-known Tauberian theorem [5], it can be
obtained that lim, ,o 77 (r; £0)&(7; to) converges to the expected electrical power consumed

per unit time in the steady state. Since sp(T™(r;tp)) converges to unity as r — 0, we have
-1 =3 . d %
r~ {1 —sp(T*(r;%))} — — 11_1)1(1) Jsp(T (r;t0)). (70)
Taking account of 7 (r; t)T™(r;t) = sp(T™(r;0))w(r; to), it can be seen that
lim -Lsp(T* (1 £0)) = 7(0; o) lim - T*(r 0) 7
Tl_I)I%ESp ritg)) =7 ,orl_rf(l)E r;0)e. (71)

Consequently, the expected electrical power consumed per unit time in the steady state
V(to) is given by

Vito) = 11_% r(r;t0)€(r; to)
_ 7(0;t9)C*(0; tp)e
— —m(0; o) im,_yo ZT*(r; )€’

(72)

It is obvious that the denominator and numerator in Equation (72) are the expected
amount of electrical power consumption during one cycle and the mean length of one
cycle in the steady state, respectively. Also, 7w (0;%,) represents the stationary probability

vector at the beginning of one cycle in the steady state. Thus, the following result can be
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derived;

‘I'I'(to)a(to)

V) = Bl

(73)

where 3(to) is the mean length of one cycle.
Next, we consider the power effectiveness. From the definition of power effectiveness,

we have

E[ the total length of available time in [0, ¢) |
t

Wito) = iz,
t

. 74
x E[ the total amount of electrical power consumed in [0,¢) | (74)

Since the second term in Equation (74) is equivalent to the inverse of the stationary

electrical power consumption, we obtain

t 1
li = . 5
o0 E[ the total amount of electrical power consumed in [0,2) | V() (75)

Therefore, we focus on the proof of the following equation;

I E[ the total length of available time in {0,2) |  w(¢0)v(to)
m = .
t—o0 t W(to),@(to)

(76)

Let A;(to) denotes the instantaneous available rate at time ¢. Also, let 9(r;ty) be a

column vector whose i-th element is

wi(’l‘;to) =E [/ e_rtAt(to)dt Jo = Z} (77)
0
and A*(r;t) is a matrix whose (i, j)-element is

T(to)
Y(rito) = E / e~ Ay(to)dtx(JTieo) = 7)
0

Jo = z:' . (78)

Similar to the previous discussion in this appendix, the vector ¥(r;#,) can be formulated

as

Y(rito) = A%(r;to)e + T™(r; to)h(r; o). (79)
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Using the left eigenvector w(r;tg) of T*(r; 1), we have

i E[ the total length of available time in [0,1) ]

{—ro0 t

= limr#(r;to)(r; to)
=0

7(0;t0) A™(0; to)e
—7(0; to) lim, o 21" (r; to)e’

(80)

It is clear that the denominator and numerator in Equation (80} are the mean length
of available time during one cycle and the mean length of one cycle, respectively. Also,
7(0;to) represents the stationary probability vector at the beginning of one cycle in the

steady state. Thus, the proof is completed. ]
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Exercises:

1. Let X be an inter-arrival time following the phase-type distribution with parameters

a and T'. Derive the first two moments, i.e. E[X] and E{X?).
2. Prove Theorem 2.1.

3. Cousider an ordinary M/G/1 queueing system. Let ¢ denote the time length of a

busy period. Show

Elexp{-s¢)) = | " exp {~M(1 ~ Elexp{—sC))]} dG(2), (81)

where A and G(-) are the arrival rate and the service distribution, respectively.
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4. Derive the expected time length of a busy period in the ordinary M/G/1 queueing

system (Hint: use the result of Exercise 3).

5. Consider an ordinary PH/G/1 queueing system. Given the fundamental matrix G,
derive the probability vector, =, for the phase at the end of a busy period and the

distribution function for the length of an idle period.
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Local Search heuristics For Combinatorial Optimization Problems
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Abstract
Over the years combinatorial optimization problems have become of considerable
importance and have been studied in literature extensively. In this chapter we describe a
unified structure for such problems and concentrate on local solutions with respect to a

given neighborhood. Such problems can be structured as search problems on hypercubes.

Key words : Combinatorial Optimization, Local Search , Heuristics

1.0 Combinatorial Optimization Problems

Optimization problems can be divided into two major categories:

(1) Problems whose solution consist of a set of continuos variables.

(2) Problems whose solution consist of a set of discrete variables.

Problems in the second category are generally referred to as combinatorial optimization
problems. Typically in these problems, we are selecting a combination of objects from
the set of finite or possibly countable infinite objects. Examples of such set of objects are,
integers, permutations, sequences, vertices of graphs etc. Linear Programming is a
problem, which can be viewed both as continuos or discrete optimization problem and
hence forms a natural bridge between two categories of problems. Generally by
identifying a suitable set of inequalities, it is possible to structure combinatorial
optimization problems as linear programming problem. However such transformation
may require adding a very large number of inequalities, and may not be amenable to

solution in a reasonable time.
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Over the years a very large number of applications have been identified which give rise
to combinatorial optimization problems. Some such examples are: Knapsack,
Assignment, Travelling Salesman, Graph Coloring, Vehicle Routing, Sequencing and
Scheduling problems.
Definition:

An instance of an optimization problem is a pair (S, C) where S is any set, the domain
of feasible solutions; C is the cost function, a mapping C: S — R.
Problem is to select a fe S s.t, C(f) <C (y) forany ye S
Such a solution f is called a globally optimized solution to the given instance of the
problem.

An optimization problem is a set of instances of optimization problem with

common structure of (S,C). Each specific instance of such a problem can be identified by

specifying as input , all the data needed to distinguish this instance from all others .

However for most of the real life problems , it is not possible to list all the members
of the set S explicitly, as there are large number of members in set S . For example in a
travelling salesman problem (TSP) on n cities there are n! such members. Another
representation of such problems will be through a set of object F and a constraint set G.
In this representation a subset of F is a feasible solution (i.e. member of 8), if it satisfies
the constraints in G. For example for TSP, let F = {a,, a,,...., a,}, be the list of the cities.
G consist of constraint that only those subsets of F, which form a tour are feasible. The
feasible tours are evaluated using an evaluation function C: f =R for all f which are

feasible.
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Thus we can also consider structure (F, G, C) for defining combinatorial optimization

problems.

1.1 Some examples of Combinatorial Optimization Problems
Knapsack Problem:

Let there be a set of n objects. Let the weight of ith object be w; and its value c¢;.
Problem is to select a subset of objects of maximum value s.t. the weight of selected
objects is less than or equal to a given weight W. For this problem ,

Let F={aja,...a,} beasetofobjects,fasubsetofS
G={ 2wi<W } Constraint set
ef

CZZCi
lief

Where w; and ¢; are weight and value of the object a;
Travelling Salesman problem:

Given a set of n vertices (cities) u; uy, ... u, and distance dij between city ui and u;
problem is to identify a sequence (a cycle) of minimum distance such that each vertex
(city) is visited exactly once.

Here F={ujuy ... uy}
G = { sequence is a tour}

C(D) ={X ajj, st. u; uyj are two consecutive cities in the sequence f}
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Set Covering Problem

F is a set of objects. Let P be a set of subsets of F. Problem is to select a subset of F
s.t. all subsets in P are covered and cardinality of selected subset is minimum.
Here F={ x; X2, ... Xn }
G = { subset of F which covers all subset in P}
CH =If]
Sequencing Problem:

Let n jobs are required to be completed on a single machine, p; is the process time
and d; the duedate of the job i. Problem is to identify a sequence which maximizes
(minimizes) a given function of completion times of the jobs.

Here F={J; J, ... Ju}
G = {Sequence of J; Ja, ... J, s.t. each job appears only once in the
sequence}

C(f) = Function of completion times of the jobs, where completion time of

thejob J; is¢;.
Some such function are:
CH=Xew
C (= 2 w; max ( ¢i-d;,0)

Vehicle Routing Problem

Let F be a set of n objects (load), with weight w; of the ith object . These objects are

to be loaded in k vehicles, such that load in each vehicle is less than or equal to its

capacity. Each load is to be delivered to a specified location. Problem is to assign loads
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to the vehicles, such that the total cost of all the k tours( each vehicle will start from a
center point and will come back to this point after delivering loads ) is minimized.
Hence F = {x,, X, ... X} List of loads

G = { If a collection of k subtours is such that , the weight assigned to

each of the vehicles is less than or equal to its capacity}.

C (f)= cost of the k tours
There are many other problems which give rise to similar structure. These problems can
be further classified in to three categories as follows:
(A) Problems of subset selection :

Consider a set of object F = {al, a, ...an f and a function C ( evaluation function)
which maps subset of F into R. Problem is to select the subset f of F, which satisfies a
given set of constraints G and has the best possible value (Maximum or minimum) of
C(f) among all such subsets.

Examples of such problems are , Knapsack , Set Covering, Set Packing , Graph
Coloring, etc.

(B) Path and Cycle Problems

Given a set .of objects, paths are defined as a sequence of objects. If a path starts
and ends with the same object, it is called a cycle. Let G be the set of constraints which
determines the feasibility of each such sequence for a problem and C a mapping which
maps each feasible such 'sequence f into C(f) (value of the sequence).Problem is to
select ,a feasible sequence f, which maximize(minimizes) the value of C(f).

Examples are Travelling Salesmen , Sequencing , Vehicle Routing problems.
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(C) Combination Problems

Problems such as Transportation , Assignment , Max-flow, Minimum Cost-flow are
examples of the problems which can be viewed as problems of identifying best
( minimum or maximum value) subset of sequences (path, cycles) defined over a set F
and satisfying constraints in G .

This categorization is not extensive, as the problems on cycles/paths can also be
structured as problem of selection of subset. In fact all such problems can be visualized as
optimization problems over hypercubes of suitable dimensions. For example, n toy
Knapsack Problem can be visualized as optimization problem over a n-dimensional hyper
cube. Similarly n city symmetric Travelling Salesman Problem can be visualized as

optimization problem over n (n-1)/2 dimensional hypercube.

1.2 A combinatorial optimization problem is three problems:

As stated earlier we can consider (F, G, C) to define a combinatorial optimization
problem. With this notation ,combinatorial optimization problems can be viewed as the
sequence of following three problems:

Given F, G and C, and an integer L,

(P1) Is there a feasible solution fs.t. C(f) <L ? (Feasibility problem)

(P2) Find the cost of the best (optimization ) solution (Evaluation Problem)

(P3) Find f such that C (f) > C(y) for all y €F. (Optimization Problem)

For most of the combinatorial optimization problems, it is not difficult to get an upper
bound on C(f). In that case P2 can be solved using P1 iteratively by changing value of

L. Further P3 can be solved using answer to P2 and then solving P1 with this value for L.
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Thus one can define a sequence of these problems as P1 — P2 — P3; where P3 is most

difficult to solve.

1.3 Complexity of Problems

Combinatorial optimization problems are generally solved by iterative procedures
referred to as algorithm. An algorithm takes as input specific data, required to specify an
instance of the optimization problem, operates a set of instructions and come to hait after
a finite number of execution of such instructions , giving an output. For example the
input for the travelling salesman problem will be number of cities , and distances between
all pair of cities. Similarly for knapsack problem the input will be number of toys ,
weight and value for each toy.

Generally algorithms are developed to solve a set of instances of combinatorial
optimization problem (all instances, with similar structure of ( F, G, C)).

Let p be a specific instance of the problem under consideration, and let Ip be the
input string required to code this instance for the algorithm A. Let m be the length of this
input string. Then m denotes size of the problem. It may be noted that the length of input
will depend on the method for coding. Let t (I,) be the computational time required for
solving this problem instance p using algorithm A. If H(m) is a function such that ,

t (Ip) < H(m) for all instances of size m for this problem, then H(m) is an upper
bound on the computational times of all instances of the problem with input size m using
algorithm A. If H(m) can be bounded by a polynomial function of m ,p(m) for all

m>k ( afixed constant ), then this algorithm is considered polynomial time efficient.



A combinatorial optimization problem is considered polynomial time solvable if
there exist a polynomial time algorithm to solve the problem. Only a few combinatorial
optimization problems are known to be in this category. Examples are, Assignment,
Matching , Chinese Postman , Shortest Path , Minimum Spanning Tree problem etc.
However, for most of the combinatorial optimization problems, no such polynomial
time algorithm is known to exist. In theory of complexity, problems for which a
polynomial time algorithm exists are classified in class P. For almost all of the problems
which are not known to belong to this class, it can be shown that the recognition version
(feasibility problem P1)of the problem belongs to the class NPC. This class has the
property, that if any of the problem in the class can be solved by a polynomial time
algorithm, then all the problems in this class can be solved in polynomial time. Generally
any algorithm for solving the optimization version P3 of the problems in NPC can be
shown to have worst case computational bound which grows as exponential function of
the size of the prdblem. As for these problems finding global optimal solution is
computationally time consuming (except for small size problems ) methods are
developed which can provide a reasonably good solution in a reasonable computational

time even for large size problems. Such methods are called Heuristics.

2.0 Heuristics to solve Combinatorial Optimization Problem:

A large number of problem specific heuristics have been proposed in the past for
various problems. The literature distinguishes two broad classes of heuristic algorithms :
Constructive and Local search algorithms. In this chapter we shall concentrate on Local

Search heuristics.
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2.1 Local Search Heuristics:

To construct a local search heuristic for an optimization problem ,one superimposes
a neighborhood structure on the solutions. That is, one specifies for each solution a set of
neighboring solutions. The heuristics starts from an initial solution, and from then on it
keeps on moving to a better neighbor as long as there is one. If there is no such neighbor
it terminates at a locally optimal solution i.e. a solution which does not have a better
neighbor.

The local search in combinatorial optimization has been extensively used since late

fifties and early sixties.
2.2 Definitions

The use of local search algorithms presupposes definitions of a problem and a
neighborhood. In this section we shall use the definition of the optimization problem as

structure (S, C ).

The problem is to find a globally optimal (minimal) solution, i.e., an i* € § such
that
C(i")< C(y) yeSs
Furthermore C'=C@i")

denotes the optimal cost, and
§'={ieS C(i)=C"}
denotes the set of optimal solutions (Aarts & Lenstra [1]).

It is important to distinguish between a problem and an instance of a problem.
Informally, in an instance of a problem we are given the “input data” and have enough
information to obtain a solution; a problem is a collection of instances, which usually are

generated in a similar a fashion.
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Definition I Neighborhoods :

Let (S,C) be an instance of a combinatorial optimization problem. A
neighborhood function is a mapping
N:§ »2°
which defines for each solutioni € § a set N (i) < § of solutions that are in
some sense close to i. The set N (i) is the neighborhood of solution i and each j € N(i) is

aneighbor of i. It is assumed thati € N(i), foralli € § (Aarts & Lenstra [1]).
Definition II Local Optimality :

Let (S,C) be an instance of a combinatorial optimization problem and let N be a
neighborhood function. A solution i eSis locally optimal (minimal) with respect to
N,

if C(i)<C() forallje N(i).

We denote the set of locally optimal solutions by S (Aarts & Lenstra [1]).
Definition III Exact Neighborhoods

Let (§,C) be an instance of a combinatorial optimization problem and let N be a

neighborhood function. N is exact if S c s (Aarts & Lenstra [1]). In other words the
neighborhood N is said to be exact if, whenever f is locally optimal with respect to N, it is
also globally optimal.

After defining the neighborhoods the next section discusses the various types of

neighborhoods.
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2.2 Neighborhoods

Neighborhoods depend on the problem under consideration, and finding efficient
neighborhood functions that lead to high quality local optima can be viewed as one of the
challenges of local search. Discrete neighborhoods must be large enough to include some
discrete variants of the current solution and small enough to be surveyed within
reasonable computation times. A class of more intricate neighborhood functions are

described next.

e Unit Neighborhood : for a given solution x*, the unit neighborhood about x* is

the one formed by complementing components of x* one at a time, i.e. ,

Ni(x) = fbinaryx: 3 [xj-x"|=1}. (Parker [21]).

¢ t — Change Neighborhood. The t —change neighborhood generalizes the unit
neighborhood by allowing complementation of upto t solution components.

Specifically,

Ne(x*) = fbinaryx: 3’ |x;—x| <t} (Parker[21]).

e Pair-wise interchange. Pair-wise interchange neighborhoods change two binary

components at a time, but in a complementary fashion.

Nyp(x*) = {binaryx: >, |x;—x%|=2, >, (xj-x%)=0} (Parker[21]).
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e t-Interchange Neighborhood. A t-Interchange neighborhood changes up to t values

of the solutions in the same complementary manner as pair-wise interchange.
Np(x) = fbinaryx: 3 [x;=x"|<t, 3 (x;-x%)=0}. (Parker[21]).

In the next subsection performance measures related to optimization problems are
discussed.

2.3 Analysis and Complexity

Unless a local search algorithm employs an exact neighborhood function, it is
generally not possible to give non-trivial bounds on the amount by which the cost of a
local optimum deviates from the optimal cost. However, in practice, many example of

local search algorithms are known that converge quickly and find high quality solutions.

In the performance analysis of combinatorial algorithms one usually distinguishes
betweén the average case and the worst case. The performance of a heuristic can be
quantified by its running time and its solution quality. The running time is usually given
by the number of CPU seconds the algorithm requires to find a final solution on a
specified computer and operating system. The solution quality is typically measured by
the ratio of its cost value to that of an optimal solution or to some easily computed bound

on that optimal value.

3.0 A Model of Local Improvement Algorithm for Hypercube

This section discusses a model as proposed by Tovey([29] for local improvement
algorithms for hypercube. As stated earlier almost all combinatorial optimization
problems can be visualized as optimization problems on hypercube.

Consider the problem of maximizing a real valued function C whose domain is
the set of vertices of the n-cube. It is assumed here for simplicity that all the values of C

are distinct. The domain of the function can be thought of as a set of Boolean decision
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variables. Such a function induces a unique priority ordering on the vertices of the n-
cube.

The distance between two vertices of the n-cube is the number of components in
which they differ. This distance is a metric and is known as the Hamming distance. If x
and y are at a distance of zero, then x = y: is x and y are at a distance of one, they share
an edge and are said to be adjacent or neighbors. A vertex whose function value is greater
than any of its n neighbors is called a local maximum, if C has the property that all its
local maximum are also global maximum we say that C is Local-Global (LG).

A npatural implementation of local improvement algorithm is the Optimal
Adjacency (OA) algorithm, which may be stated as:

Stepl Start with any vertex x.

Step2 If x is locally optimal, stop with x the solution. Otherwise proceed to 3.

Step3 Let y be the best vertex adjacent to x. Set x equal to y and go to 2.

3.1 Optimal Adjacency Trees:

If a particular local global function fis given, a directed tree to show how many

iterations the optimal adjacency algorithm will require can be constructed as follows
Stepl Each vertex of the n-cube corresponds to a node of the tree.

Step 2 The father of a vertex is its optimal adjacent vertex: if a vertex is local

optimum, it has no father.

The tree is called Optimal Adjacency Tree, or OAT. Its root is the local optimal vertex.
The OAT displays the path followed by the algorithm by moving from son to father on
the tree.

Figure 1 illustrates the notion of adjacency trees for the two cases. All solutions for the
case when n = 3 as shown in part (b) belong to a single tree, so the local improvement
will always yield a optimal solution. Starting search at x'=(0,1,1), for example, the tree

indicates local search would proceed to x* = (0,1,0) and then to optimal x> =(0,0,0).
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Part (a) shows a case of local optima that are not global for n=2. Search for any of

(1,0), (0,1) or (0,0) leads to (0,0) solution. But (1,1) is a separate local optimum.

0,0)

(1,0) ©.,1)

Figure 1(a)

(0,0,0)

(1,00

(1,1,0)

Figure 1(b)

Preference order
(0,0)
(L,
0,1)
(1,0)

(1,1
]

Optimal Adjacency Forest

Preference order
(0,0,0)
0,1,0)
(0,0,1)
(1,0,0)
0,1,1)
(1,1,0)
(1,0,1)
(1,1,1)

(0,0,1)

(0,1,0)
0,1,1)

(1,0,1)

(1,1,1)

Optimal Adjacency Tree
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The number of iterations required to complete the OAT of figure 1 (b) is computed next.
If the starting vertex is chosen at random, there would be an equal probability of starting
at each of the eight vertices. In general for each starting vertex, the path to the root in the
OAT is by definition the path the OA algorithm will follow. Thus the height or path-
length of each vertex in the tree is the number of iterations the algorithm would need to
reach the optimum from the vertex. The mean path length of the tree is precisely equal to
the expected number of iterations the algorithm would need to reach the optimum from
that vertex.. Thus for the problem having structure as in figure 1(b), the OA algorithm

would be expected to take

(1*1 +3*2+3*%3 +1*4)/8 =5/2  iterations.

If C is not LG, the rules for producing the OAT will instead produce an OAF, or

Optimal Adjacency forest, as shown in figure 1(a), with one tree per local optimum.

3.2 Expected Duration

For the Worst Case maximum number of iterations required by the Optimal
Adjacency Algorithm  in any optimal adjacency search of the vertices on the n-
hypercube is at least

O(2"/n) as shown by (Tovey[30])

Instead of the worst case performance an average or expected number of search
iteration is more useful. This requires some possible forms of probability distributions to
be studied over the possible adjacency trees for the n-cube. This is equivalent of

introducing probability distributions over the orderings of the vertices of the n-cube.
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3.3 Better adjacency trees

The OA algorithm always chooses the best neighbor to go to. If this condition is
relaxed, and it is only required that the algorithm proceeds from a vertex to a better

adjacent vertex then Better Adjacency Algorithm results which is described below:

Stepl Start at random vertex X.
Step2 Search through x’s neighbors until a better one, y, is found or all neighbors have
been tried. In the former case set x =y and iterate Step2 ; in the later case stop, with x

optimal.

4.0 Some Other Examples of Neighborhood Search Heuristics

Plant layout Problem:

Given a set of facilities {X; X2, ... Xp} and n location-s, facilities are to be assigned to
locations s.t. each facility is assigned exactly to one location. Assignment of the location
is to be made such that the total material handling between the facilities (distance *
weight) is minimized). This problem can be viewed as path optimization problem with
C(f) = 2 (Load between x; and x,) * distance between location of x;and x,.
A simple neighborhood search heuristics can be described as follows:

(a) Start with any sequence.

(b) Exchange a pair of adjacent facilities and calculate material handling for each such
new sequences .

(c) Select the sequence which has the smallest material handling movement among all
such sequences obtained by adjacent exchange. If no such sequence is found stop,

else repeat step (b),with the selected sequence.



557

Another variation of this heuristic can be constructed as by defining as neighbors all
those allocation which can be obtained by pairwise interchanges, instead of adjacent
interchanges.

Travelling Salesman Problem

(a) Start with an arbitrary tour

(b) Delete two edges from this tour. This will result in two disconnected paths. Join these
paths in such away as to form a new tour.

(¢) Compute the weight of the new tour, and if it is smaller than the current tour, then
make it the current tour and repeat the step (b), otherwise select another pair and
repeat step (b). If no such tour is found stop.

A 3-opt heuristic can be constructed by selecting three edges to be removed. It will result

in three disconnected paths and four possible tours.

5.0 Advance Search Strategies:

One of the major problem with the local search heuristics is that heuristics will stop
after finding a local optimal solution. An extension of the local search heuristic is to
repeat the heuristic with several random start point and to keep the best solution
obtained. This approach has not resulted in any major successes. However this has lead
to development of Meta-Heuristics, in which cost-positive i.e. inferior neighbor are also
selected with some probability. Some such heuristics are Simulated Annealing , Genetic
Algorithm , and Tabu Search. These heuristics have been able to solve large size
problems in reasonable computational time. Aarts & Lenstra [1], Laporte & Osmen [8],
Goldberg[9],0smen & Laporte [20] and Reeves [26] are excellent references on these

Heuristics.
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