
Knowledge-B ased
Process Planning for
Construction and
Manufacturing
Carlos Zozaya-Gorostiza
Chris Hendrickson
Daniel R. Rehak
Department of Civil Engineering and
Engineering Design Research Center
Carnegie Mellon University
Pittsburgh, Pennsylvania

ACADEMIC PRESS, INC.
Harcourt Brace Jovanovich, Publishers
Boston San Diego New York
Berkeley London Sydney
Tokyo Toronto

Copyright © 1989 by Academic Press, Inc.
All rights reserved.
No part of this publication may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or
any information storage and retrieval system, without
permission in writing from the publisher.

ACADEMIC PRESS, INC.
1250 Sixth Avenue, San Diego, CA 92101

United Kingdom Edition published by
ACADEMIC PRESS INC. (LONDON) LTD.
24-28 Oval Road, London NW1 7DX

IBM, PC/AT, and RT PC are registered trademarks of International Business Machines.
KNOWLEDGE CRAFT is a trademark of Carnegie Group, Inc.
LOTUS and 1-2-3 are registered trademarks of Lotus Deve lopment Corporation.
MacDraw is a trademark of Claris, Inc.
SCRIBE is a registered trademark of Scribe Systems.
Sun Workstation is a registered trademark of Sun Microsystems, Inc.
EXPLORER is a trademark of Texas Instruments.

Library of Congress Cataloging-in-Publication Data

Zozaya-Gorostiza, Carlos, Date-
Knowledge-based planning for construction and manufacturing/

Carlos Zozaya-Gorostiza, Chris Hendrickson, Daniel R. Rehak.
p. cm.

Bibliography: p.
Includes index.
ISBN 0-12-781900-2
1. Industrial project management—Data processing. 2. Production

planning — Data processing. 3. PLANEX (Computer program)
I. Hendrickson, Chris. II. Rehak, Daniel R. III. Title.
TA190.Z69 1989 89-6789
658.5'03O285-dc20 CIP

Printed in the United States of America
89 90 91 92 9 8 7 6 5 4 3 2 1

Preface

Construction and manufacturing process planning is a crucial and challenging
management task. A good plan is essential to project success. Plans are the
basis for a project budget and production schedule. Despite its importance and
complexity, process planning relies on manual formulation of plans and is
usually performed in an intuitive and unstructured fashion with considerable
reliance on engineering judgment.

There are few computer-based process planning aids which address the needs
and complexities of the construction and manufacturing processes. Those aids
which do exist are primarily algorithmic analysis or graphical display tools.
Knowledge-based program development methodologies provide a new tech­
nological basis for the development of process planning tools. This approach
provides the means to represent and utilize process planning knowledge and
judgment which is lacking in current tools. This work describes a knowledge-
based system architecture used to develop process planning systems—PLANEX.

PLANEX is a domain-independent, knowledge-based process planning system
architecture. Starting from a description of the physical artifact to be con­
structed or manufactured, PLANEX generates the set of activities used to create
the artifact. These activities, with their required resources, are linked into a
process planning network which can be used in project scheduling or manage­
ment. This work presents the concepts, requirements and the resulting architec­
ture of PLANEX, and includes detailed descriptions of applications of the system
in construction and manufacturing.

This work originated as an investigation of the application of knowledge-
based systems technology in construction management. When the work was
conceived in 1984, there were no significant prototype knowledge-based sys­
tems in the construction domain; only a few small-scale exploratory applications
had been developed. The second and third authors had done extensive work in
the application of expert systems in other areas of Civil Engineering, and it was

vii

viii Preface

evident that the technology could be successfully applied to problems which
were intractable using conventional programming methodologies.

Creating a project schedule is knowledge-intensive and a prerequisite to the
application of other computer tools in project management. Due to the impor­
tance of this task, the lack of suitable aids and the promise offered by a
knowledge-based systems approach, construction project planning was selected
as an appropriate domain to explore in detail. The initial goals were two-fold:
(1) to demonstrate the applicability of the knowledge-based approach to the
problem; and (2) to investigate the problems with the technology which need to
be addressed for it to be successfully applied in this domain.

Although the general domain-independent nature of the process planning
problem was considered from the outset, the initial goal was to develop a system
limited to construction project planning. In the initial stages, a variety of
domains were considered: buildings, bridges and highways. Building construc­
tion was selected as a focus and the work commenced. Initial planning explora­
tions were made in the perspicuous blocks-world domain, and as the work
evolved, it moved from a system targeted at construction to the more general
process planning architecture presented herein.

While this work originated in the construction management domain, the ideas
and concepts presented have wider application. As presented, the emphasis is
on process planning as opposed to project planning. Many of the examples and
illustrations are derived from construction planning. This should not be inter­
preted as a bias in the concepts, but rather as a result of the authors' experience
and knowledge.

This work is directed at two audiences: (1) builders and developers of prac­
tical process planning aids; and (2) researchers of planning and scheduling sys­
tems. It is particularly relevant to those whose research is in the areas of
artificial intelligence planning systems; operations research and management
science optimization methods for planning; management information and deci­
sion support systems; and knowledge-based planning systems.

The development of process planning tools could substantially benefit from
generalization and from cross-fertilization among the different planning and
decision support approaches. Researchers familiar with only one approach
should broaden their horizons and thereby improve their own contributions.
Therefore, a major objective of this work was to foster just this sort of cross-
fertilization.

Because of the diverse backgrounds and interests of different readers, it is not
expected that the individual reader will devote the same attention to each section
of this book. For example, operations researchers might omit Section 2.2
reviewing plan scheduling methods. As another example, researchers seeking
only a conceptual understanding of knowledge-based process planning might
omit the implementation details of the construction and manufacturing applica­
tions in Sections 6.2 and 7.2.

Preface ix

Organization This monograph begins with an overview of the process plan­
ning problem and the motivation for this work, presented in Chapter 1. This
introduction includes a discussion of the knowledge-based approach, a brief
overview of PLANEX and a review of its development.

Chapter 2 is a review of background material relevant to this work. It in­
cludes a review of ΑΙ-based models for process planning and plan formulation;
models for deterministic project scheduling, including critical path, resource
allocation and resource leveling algorithms; and prior work in the practice of
construction and manufacturing planning, scheduling and monitoring. This
background material is used to develop a formal model for process planning.
The characteristics of this model are described in terms of a conceptual process
planning model, and the resulting requirements for a knowledge-based process
planning model are presented in Chapter 3. Based on these requirements, the
architecture of PLANEX is described in Chapter 4. This description includes the
overall structure, knowledge representation, control and user interface com­
ponents of the architecture.

Use of this system architecture to develop process planning models is
presented in Chapter 5. In addition to the basic features of the PLANEX architec­
ture and the process of developing a system with PLANEX, the chapter includes
an overview of four different applications (construction planning, excavation
planning, manufacturing planning, and blocks-world planning) and an evalua­
tion of the architecture. Chapter 6 provides a detailed description of
CONSTRUCTION PLANEX, a system used to plan the construction of mid-rise
concrete and steel-frame office buildings. This chapter includes a discussion of
the construction planning models used in CONSTRUCTION PLANEX, along with
details of the representation, knowledge, problem-solving and user interface
components of the system. It concludes with the presentation of an example
problem. HARNESS PLANEX, a system which plans the manufacturing operations
for automobile electrical wire harnesses, is presented in Chapter 7. The or­
ganization and structure of this chapter parallels that of Chapter 6. These two
final chapters are intended to provide sufficient detail for implementation of
knowledge-based process planning systems so that builders of new tools can use
this information as a starting point. More casual readers can skip some sections
of these chapters.

PLANEX Software PLANEX has gone through several cycles of development
and refinement. The initial implementation was in LISP. The CONSTRUCTION
PLANEX and HARNESS PLANEX prototypes described in Chapter 6 and 7 were
implemented in C O M M O N L I S P and KNOWLEDGE CRAFT™ on a TEXAS
INSTRUMENTS EXPLORER™. Associated subsystems, such as the ANIMATOR,
were developed in C on a SILICON GRAPHICS IRIS Workstation. The examples
presented herein were developed with this version of PLANEX.

χ Preface

Recently a version of PLANEX was implemented entirely in COMMON LISP,
and has been successfully ported to a number of hardware platforms including
an IBM RT PC®, an IBM PC/AT® and a Sun Workstation®. This
COMMON LISP version does not include graphical schedule displays or the
animation subsystem, but generates activity plans for input to commercial
scheduling packages.

The COMMON LISP version of PLANEX is available to researchers, educators
and institutions who wish to experiment, to refine or to extend the system.
Anyone who wishes to obtain PLANEX should contact the second author (CH) at
Carnegie Mellon.

Acknowledgments This monograph is based on the Ph.D. dissertation of the
first author [115]. The work was supervised by the second author, and was
conducted, in part, under a research grant awarded to the second and third
authors. In preparing this book, the authors have reorganized, refined and ex­
tended the material from the dissertation.

Development of PLANEX was supported in part by the National Science
Foundation, Grant MSM-8503400; by the Engineering Design Research Center
of Carnegie Mellon University, an NSF Engineering Research Center; by the
U.S. Army Construction Engineering Research Laboratory; and by the Depart­
ment of Civil Engineering of Carnegie Mellon University. Additional support to
prepare this monograph was provided by the Engineering Design Research Cen­
ter.

Computer facilities used to develop PLANEX and to prepare this book were
provided by the Engineering Design Research Center, the Department of Civil
Engineering and the Robotics Institute of Carnegie Mellon. The authors grate­
fully acknowledge the funding and financial support which made this work
possible.

A number of individuals have made contributions to the development of
PLANEX and the applications described herein. Much of the initial construction
planning knowledge came from Eduardo Baracco-Miller. Throughout much of
the project, Peter S. Lim worked as an undergraduate programmer and was
responsible for developing many of the tools and utilities incorporated in the
PLANEX architecture. The expertise and skill of these individuals was invaluable
in the development effort.

The authors would like to thank two of our colleagues, Prof. Clive L. Dym of
the University of Massachusetts and Prof. Raymond E. Levitt of Stanford
University for their critical comments in reviewing our manuscript and their
continued support and interest throughout the development of PLANEX. We
would also like to thank numerous industrial colleagues for the comments
reviewing the various prototype systems.

Preface xi

This monograph was produced electronically. Pages were laserset using the
SCRIBE® document production system and figures were produced with
MacDraw™. Copyediting was done by Heather Walls. The production editor
was Joni Hopkins of Academic Press. Sponsoring editor was Sari Kalin of
Academic Press.

Carlos Zozaya-Gorostiza
Chris Hendrickson

Daniel R. Re hak

Introduction

This study describes the development of knowledge-based computer tools that
assist an engineer in process planning (i.e., formulating a process plan) for
construction and manufacturing. The result of the investigation is a comprehen­
sive knowledge-based system architecture for process planning, called PLANEX,
which has been used to develop a number of prototype process planning systems
in construction and manufacturing domains.

The issues and problems in process planning can be illustrated through a
simple, everyday example: preparing a meal.

• Meal preparation starts with a menu of the dishes which comprise the meal.
The menu corresponds to the specification of the product to be prepared.

• Recipes provide the descriptions of how to create each dish. Depending on
the source, the recipes may provide a detailed description of the tasks or
activities used to create the dish, or they may be an abstract description of the
preparation process.

• No matter how much detail is provided in a recipe, all of the steps for all of
the activities are not specified (e.g., recipes often call for clarified butter but
do not explain how to prepare it). The cook must determine, based on ex­
perience, all of the steps needed to prepare the dish (a process denoted activity
formulation).

• Individual steps from various recipes can often be combined into larger-scale
project activities (e.g., chopping all vegetables for a dish at one time in a food
processor rather than individually). Such aggregation reduces the size of the
planning problem.

• Associated with each recipe is the normal yield and the list of ingredients.
These material resources have to be scaled to provide the desired yield. This
is a complex process as some ingredients (e.g., spices, eggs) do not scale
linearly, the quantity needed depends upon the form of the ingredient (e.g.,
fresh versus dried herbs) and complex substitutions for ingredients may be
made.

1

2 Introduction

• Steps may be performed by a variety of means (e.g., mixing dough by hand,
with a mixer, with a food processor). Given the variety of technology choices
for each step, the cook must decide what procedures and equipment to use on
the basis of skill, experience and knowledge about how the process and tech­
nology will affect the preparation and quality of the product.

• Availability of equipment resources and competing or conflicting demands
for resources (e.g., baking bread requires a hot oven, drying meringues re­
quires a cool oven) place constraints on the activities and influence how the
cook decides to perform the task.

• A number of external factors, such as availability of raw ingredients, in­
fluence many decisions made in planning meal preparation.

• The time required to prepare each dish must be estimated. The amount of
product needed, type of methods used and skill in performing the individual
tasks (i.e., productivity) impact this duration estimation.

• Recipes also specify lags between operations (e.g., dough must rest at least
20 minutes before rolling) or time or window constraints (e.g., a step may be
done up to one day ahead, but not less than 4 hours ahead).

• Individual recipes indicate some of the precedences between the steps used to
prepare each item. Precedences from the individual recipes must be com­
bined, with considerations of resource and time constraints, into the complete
activity network which describes the meal preparation process.

• Given all of the activities and precedences, scheduling the activities deter­
mines when each should be performed. The schedule must meet a set of
target deadlines to insure the meal is served on time.

All of these steps constitute the formulation of the process plan, which is un­
coupled from the actual preparation of the meal. During meal preparation, a
variety of project management issues arise, such as contingency management
(e.g., what to do if one of the steps fails, or if the estimated activity durations are
wrong). While not formally considered in this work, management issues and
problems parallel the considerations used in developing the initial process plan.

The items listed above represent the components of a generic plan. Con­
siderable effort is needed to instantiate this plan for a specific menu, cook and
batterie de cuisine. Preparing a meal is an everyday task; while many people
lack the technical skills required, the planning process is conceptually
straightforward. Planning becomes more difficult as the complexity of the
dishes increases and as the number of options, interactions and constraints
grow. Construction or manufacturing process planning involves the same issues
and requires the same type of problem solving as needed in the cooking domain.
The scope, complexity and experience required is substantially larger. Tools to
assist the engineer or manager in developing a process plan are essential.

The remainder of this chapter describes process planning and alternative
techniques for generating process plans. Then the motivations for developing an

Approaches to Process Planning 3

automated process planner and the justifications for using a knowledge-based
approach in developing process planning systems are presented. This discussion
is followed by an overview of PLANEX and a description of its development.

1.1 Approaches to Process Planning
Given a product to be manufactured or a facility to be constructed, process
planning is a fundamental step which is used to map the design of the product
onto the methods used to create it. Process planning involves:

• recognition of the elements of the product;
• definition of work tasks used to construct or manufacture each element;
• choice of manufacturing or construction technologies and resources used in

these tasks;
• estimation of durations and costs for individual tasks; and
• preparation of project schedules.

The resulting plan consists of the selected resources and technologies associated
with the tasks, and the assignment of the tasks to time slots in the schedule.

As detailed below, process planning is important, complex and requires ex­
perience. Due to its importance, several attempts have been made to develop
computer aids for process planning. While most tools do little to aid in creating
a process plan, they are still important to the overall project management
process. More comprehensive automated planning systems or planning assis­
tants would be of significant value in construction and manufacturing.

Existing automated process planners can be grouped into two major
categories on the basis of the strategy employed to form the process plan [6]:

• Generative planners synthesize new plans. Using a description of the product
and information describing the basic actions available to create the product,
the planner generates a collection of operations and associated resources
which together are used to perform parts of the manufacturing or construction
process. These individual operations are then ordered into a time sequence of
steps used to create the artifact. Each time the planner is invoked it creates a
new, unique plan.

• Retrieval-based planners select a plan from a library of standard plans. Exist­
ing plans are classified according to "key" features of the product and are
saved in a plan library. When a new, similarly classified product is defined,
the plan which is the "closest" match to the product is retrieved from the
library. Plans may be formulated by extracting complete plans from the
library or by selecting and combining components from several plans.

An alternative characterization of the planning process is based on considera­
tions of the key elements of the plan and how the planner treats these elements
while formulating the plan:

4 Introduction

• Activity-centered planners are organized around formulating construction and
manufacturing activities as the fundamental part of the plan. The activities
used to create the product are identified from the design. The technologies
and resources used to perform the activities are chosen. The set of activities
are organized into a process plan and project schedule. The plan is the set of
activities and the associated processes.

• Work-centered planners treat the assignment of activities to resources or work
centers as the major task in formulating the plan. Sets of activities and
schedules are developed for individual work centers and the overall plan is the
flow of elements through the work centers. Activities used to create the
artifact are based on the capabilities of the work centers. This approach is
particularly suited to planning the operation of flexible manufacturing
systems.

• Object-centered planners consider the artifact or aspects of it as the key to
creating the process plan. The approach is similar to the activity centered
approach, but aggregations and representations are organized around elements
and design objects instead of around the construction and manufacturing ac­
tivities associated with the objects.

Despite significant efforts to develop automated process planners by using a
variety of methodologies and formalisms, effective planning systems which ad­
dress the needs of the construction and manufacturing communities do not yet
exist.

1.2 Motivation for Automated Process Planning
The relevance of this work derives from the needs and issues (described below)
that arise in the development of process planning systems. These motivating
issues directly lead to consideration of the Artificial Intelligence (AI) based
methodology described in the following section.

Process planning is both crucial to and challenging for the successful
management of projects. It is crucial to the eventual success of a project be­
cause project control and monitoring is based on a particular project plan. Poor
estimates or schedules can easily result in cost increases or completion delays.
Similar effects may result from inappropriate or inconsistent decisions regarding
the resources and technologies selected to perform tasks.

Because the planner is concerned with the formulation of a good plan, rather
than just a feasible plan, the planning task is challenging. There are numerous
constraints that complicate the planning process, including those related to the
availability of resources, completion deadlines for tasks or limitations on project
budget. In addition, decisions such as the choice of technology and task decom­
position are usually interdependent. The planner has to identify these con­
straints and interactions and use his experience from previous projects to resolve
the resulting problems and conflicts.

Motivation for Automated Process Planning 5

Despite the importance and complexity of process planning, little attention
has been paid to analyzing the methods by which plans are or should be formed.
Planning requires experience and knowledge related to resources, tasks, tech­
nologies, budget, schedule and product design. Balancing all of the competing
issues and insuring that all aspects are considered is not trivial. Current process
planning relies upon manual formulation of plans and is usually performed in an
intuitive and unstructured fashion with considerable reliance on engineering
judgment. The mechanisms used in planning have not been published and are
not formally taught to novices, but rather must be acquired and personalized
through experience.

Another pertinent issue is the relationship between plan formulation and
planning tools. Few process planning aids exist, and the tools that do exist are
better categorized as analysis tools which require an existing plan, rather than
tools which aid in plan formation. Most existing computer tools are applicable
only to some parts of the whole process. For example, commercial scheduling
systems require a complete specification of the project network as input. Such
scheduling systems require that decisions concerning plan formulation and
refinement be made separately from project scheduling decisions. Once a
project network has been input and a schedule computed, the systems provide
little support to maintain and refine the schedule while the work is in progress.
Developing an integrated computer tool for process planning provides a unified
framework for analyzing the interdependencies among planning decisions.

Many of the problems with current process planning tools are related to the
inadequacy of the programming methodology used in developing the tools.
Commercial construction and project management aids are implemented using
algorithmic or procedural programming. This programming methodology does
not provide a convenient mechanism for representing, formalizing or using ac­
quired expertise. Nor do current methods support the development of an in­
tegrated process planning environment.

With increased reliance on computer-aided design (CAD) systems for design
and computer-aided manufacturing (CAM) systems for manufacturing and
computer-integrated construction (CIC) systems for construction, the automated
generation of process plans becomes more important in realizing the full poten­
tial of the other tools. Integrated tools and comprehensive process planners
could provide the ability to reason about construction or manufacturing methods
during design, providing better products through design for manufacturability or
design for constructability. Well-designed products and facilities should be
relatively easy to manufacture or construct. Current process planning tools and
methodologies are inadequate to achieve these goals.

The similarities of process planning in different domains can be exploited in
the development of planning aids. For example, there are many parallels be­
tween the planning tasks performed by a construction planner and those per-

6 Introduction

formed by a process planner in manufacturing. Process planners must identify
and sequence the machining operations for manufacturing specific products.
Similarly, construction planners have to identify and sequence construction ac­
tivities for building parts of facilities. Thus, while this work is targeted specifi­
cally at construction and manufacturing planning, and has its roots in the con­
struction domain, many of the contributions of this study are applicable to the
more general problem of process planning.

Thus, the motivations for developing computer tools for process planning are:

• process planning is crucial in design and project management;
• process planning is a difficult, knowledge-intensive, challenging process;
• there are virtually no integrated computer tools that assist during the complete

process planning and project management cycle; and
• there are similarities in process planning across different domains.

1.3 Knowledge-Based Methodology
Given the goals and motivations for developing a process planning system,
selecting the appropriate development methodology for building such a system
is essential. As prior approaches to solving the problem have not proven suc­
cessful, the use of a different methodology is indicated. Several AI techniques
appear to provide a promising approach for the development of a planning
assistant for construction and management.

In particular, the techniques and methodologies of knowledge-based systems1

are utilized in this investigation. The justifications for selecting this approach
are based on the characteristics of knowledge-based systems and the ap­
plicability of knowledge-based systems to the process planning problem.

The knowledge-based approach can be characterized and contrasted to tradi­
tional algorithmic programming or procedural programming development
methodologies by:

• the use of expert, domain-specific knowledge to attain a high level of perfor­
mance in a narrow domain;

• separation of data, knowledge and control;
• transparency of knowledge representation and dialog (explanation); and
• incremental growth capability.

These characteristics make knowledge-based systems a promising means of
representing and using expertise and knowledge in a program. Independent of

The terms expert system and knowledge-based system are considered interchangeable in this work.
However, this work itself is better characterized as knowledge-based as it does not rely only upon
expertise.

Knowledge-Based Methodology 7

the availability of expertise, the knowledge-based programming paradigm
provides an excellent mechanism for declarative programming, yielding
programs that are clearer and more robust.

The planning and management processes are knowledge-intensive, and
knowledge-based systems, in addition to providing a mechanism for processing
knowledge, are useful in formalizing and structuring the expertise of planners.
Since the process planning knowledge of skilled planners is private and
idiosyncratic, formalizing the knowledge is beneficial in that it facilitates its
refinement and dissemination by organizing and expounding the expertise,
making the knowledge available for critical review and analysis.

Successes in the construction industry indicate that the choice of a
knowledge-based methodology is appropriate for developing computer tools for
project planning and management. Several expert system applications in con­
struction engineering and management have been developed, or are under
development [63]. Most of these systems are experimental prototypes that have
not yet been used in practice. However, these prototypes have shown that expert
and knowledge-based systems are applicable in many areas of the construction
industry. As Levitt points out [63, p. 107]:

The extent and breadth of work already completed, under way, or in the
early conceptual stages, indicates that many researchers and practitioners
in the construction industry see expert systems as offering new and poten­
tially valuable capabilities to support decision-making in the industry.

These efforts are motivated by the desire to improve the efficiency of the con­
struction planning and monitoring processes. They provide tools to assist in
solving problems (e.g., scheduling generation, site layout, estimating) for which
no tools exist or where algorithmically-based programs are inadequate and in­
effective.

A number of prototype knowledge-based systems also have been developed
for manufacturing process planning [54, 106]. Here again the tasks are
knowledge-intensive and conventional tools have not met the needs of the
manufacturing community. In addition, work in the manufacturing domain is
motivated by the need to link computer-aided design systems with computer-
aided manufacturing systems. Preliminary results indicate that ΑΙ-based solu­
tions will succeed in producing capable and effective management and produc­
tion planning aids.

As noted, there are similarities between construction project planning and
manufacturing process planning. Developing knowledge-based systems in one
area can be beneficial to system-building efforts in the other areas as the cross-
fertilization between the domains can improve the development of process plan­
ning tools. Concepts, problems, issues, solutions, etc., from one area lead to a
new way of examining, characterizing and solving problems in the other areas.

8 Introduction

Because use of the knowledge-based methodology requires critical examination
and formulation of knowledge, concepts, solution structure, etc., the potential
for synergistic interactions between the different domains is enhanced through
the use of the knowledge-based approach.

Thus, the justifications for the application of a knowledge-based methodol­
ogy in developing process planning systems are:

• process planning is knowledge-intensive;
• knowledge-based systems provide a practical means for representing and

using process planning knowledge;
• knowledge-based approaches will yield needed tools which can improve the

practice of process planning;
• it has been shown that knowledge-based systems for process planning are

feasible; and
• developing knowledge-based tools in one process planning domain (e.g.,

construction) provides valuable experience and information which can be
used in developing expert systems in other process planning domains (e.g.,
parts manufacturing).

1.4 PLANEX: A Knowledge-Based System for
Process Planning

Given the problems with existing tools for process planning, the motivations for
developing improved tools, and the justifications for investigating a knowledge-
based approach, translating these issues and concepts into an operational system
is still difficult. Design and development issues to consider include:

• the scope of the tool (e.g., narrow and specific to one domain or general-
purpose and domain-independent);

• the role of the tool (e.g., an autonomous program, a user assistant or an
integrated problem-solving environment);

• the problem-solving approach (e.g., a generative planner or one which selects
and modifies standard plans);

• the planning strategy (e.g., work-centered planning or activity-centered
planning);

• the overall structure and architecture of the system; and
• the validation and maintenance of the system.

These general characteristics along with a myriad of more detailed features
characterize the structure and design of a process planning system.

PLANEX is but one alternative for developing a knowledge-based process
planning system. It is a generic, domain-independent knowledge-based ar­
chitecture for process planning in construction and manufacturing. It is a
generative planner, and is designed to function as a user assistant.

PLANEX: A Knowledge-Based System for Process Planning 9

The general characteristics of the PLANEX architecture can be described in
terms of the components of the system and how they are used in process plan­
ning.

• All the information relevant to the planning process is stored in the form of
objects2. Stored information includes design components, process activities
and resources. The objects are organized into representational structures, and
an object may be a part of one or more of these structures.

• Process planning knowledge is represented in sets of one or more rules in
Knowledge Sources (KSs). A knowledge source resembles a decision table
and is implemented as a context object. Rules in a knowledge source may
reference objects and values computed by other knowledge sources.
Knowledge representation is uncoupled from the operators which use the
knowledge. Knowledge sources are elements of representational structures,
permitting knowledge to be hierarchically structured with respect to impor­
tance and represented at different levels of abstraction.

• Process planning tasks such as technology choice or activity duration estima­
tion are performed by domain operators. Knowledge sources provide the
planning knowledge needed by a domain operator. Using representational
structures, domain operators can be organized into layers, creating a structure
similar to that of MOLGEN (see p. 30). Domain operators are implemented
as procedural functions and perform the following steps:

Step 1 . Identify the knowledge source to be evaluated. For domain operators
which are purely algorithmic, evaluation of a knowledge source is
not required.

Step 2. Evaluate the knowledge source using the KNOWLEDGE SOURCE
EVALUATOR (KSE). Knowledge source evaluation may be recursive,
or may require the evaluation of auxiliary procedures. Evaluation
yields a list of results.

Step 3. Store the results in the appropriate context objects.
Step 4. Store the name of the knowledge source which was evaluated.

• Declarative control information describing a domain operator is stored in a
Domain Operator Schema (DOS). This control information is expressed in
terms of the data required (preconditions) and the data produced (effects) by
the operator. Declarative control information provides modularity and per­
mits operators to be unilaterally added or changed.

• An agenda schema contains dynamic state information generated during plan­
ning. State information used in control includes: (1) the goals the system is

2 An object is often called a schema and is implemented as a frame. In this work, these terms are
interchangeable.

10 Introduction

trying to achieve; (2) the pending domain operators; (3) precedence infor­
mation used to sequence the pending operators; and (4) the changes in a
context object introduced by executing a domain operator.

• Control of the planning process is provided by four algorithmic control
operators which use the information in the domain operator schémas and the
agenda schema3. Control operators are used to: (1) execute domain operators
in an opportunistic manner; and (2) build hierarchical, strategic meta-plans
which control the planning process in a manner similar to AB STRIPS (see
p. 20). The four control operators are:

• the Forward Propagation Operator (FPO) which identifies, on the basis of
changes in context objects introduced by other domain operators, those
domain operators that may be executed;

• the Backward Search Operator (BSO) which finds sequences of domain
operators that may be used to achieve a goal;

• the Network Interpretation Operator (ΝΙΟ) which determines domain
operator precedences on the basis of their preconditions and effects; and

• the Domain Operator Executor (DOE) which executes domain operators.

• Overall control is provided through the CONTROL PANEL. The CONTROL
PANEL is a user interaction mechanism which provides capabilities to execute
a specific control operator or to change the information stored in the agenda.

PLANEX includes components used to create and update knowledge sources, and
a set of user interface utilities. As described below, the system is operational
and has been used to build several process planners.

1.5 Development and Use of PLANEX
PLANEX, like most complex knowledge-based systems, has gone through several
cycles of development and refinement. Development alternated between con­
ceptualization and implementation. The initial work was aimed at developing a
specialized system for construction project planning: the generation of work
elements, activities, precedences among activities, resource requirements and
task durations, coupled with project scheduling. As the work proceeded, it
became apparent that the evolving system architecture was applicable to a
variety of domains.

Developing a system design without experience and experimentation in
developing a knowledge-based application in the construction domain is dif­
ficult if not impossible. Thus, an initial prototype limited to excavation planning

3 Goals, object changes, operator preconditions and operator effects are expressed in terms of data
existence, not in terms of data values.

Development and Use of PLANEX 11

was developed. This first implementation was in LISP on general-purpose
workstations. The goal was to explore the necessary concepts and fundamental
characteristics of a more complete system for construction project planning.

Based on this first prototype, the system architecture of PLANEX was
developed. The first version of CONSTRUCTION PLANEX utilized the concepts
and design philosophy of this initial system architecture. This version of
CONSTRUCTION PLANEX was capable of planning the excavation and structural
erection of low- to mid-rise concrete-framed office buildings. The system was
developed in COMMON LISP and KNOWLEDGE CRAFT® on a TEXAS
INSTRUMENTS EXPLORER™. It took advantage of the frame-based programming
environment provided by KNOWLEDGE CRAFT and the user interface tools
provided by the EXPLORER development environment. At this point in the
development process, a separate PLANEX architecture did not exist, nor was it
fully evident when work on CONSTRUCTION PLANEX began that the evolving
system design was applicable to other domains, although the analogies between
construction and manufacturing process planning had been considered from the
beginning. As the work proceeded, the possibility of refining the system into a
domain-independent framework emerged.

The next step in the development process was the refinement and modifica­
tion of CONSTRUCTION PLANEX to yield the generic, domain-independent
process planning model described in Chapter 3 and the knowledge-based system
architecture of PLANEX presented in Chapter 4 . The implementation environ­
ment remained COMMON LISP and KNOWLEDGE CRAFT on a TEXAS
INSTRUMENTS EXPLORER. This first complete implementation of the domain-
independent PLANEX architecture was used to implement HARNESS PLANEX,
which plans the manufacturing of automotive electrical wire harnesses (see
Chapter 7); EXCAVATION PLANEX, which plans the excavation of building foun­
dations by robotic excavators; and to reimplement CONSTRUCTION PLANEX, ex­
tending it to handle both concrete and steel-frame buildings (see Chapter 6) .
The implementations of CONSTRUCTION PLANEX and HARNESS PLANEX have
been the most extensive tests of the PLANEX architecture to date.

This implementation of PLANEX includes the KNOWLEDGE SOURCE
ACQUISITION MODULE, used to acquire the domain-specific process planning
knowledge used by the application systems (see Section 4 . 4 . 1) . The
KNOWLEDGE SOURCE ACQUISITION M O D U L E is a stand-alone process imple­
mented in KNOWLEDGE CRAFT and COMMON LISP on an EXPLORER. It also
includes the REPORT GENERATOR that can format and output a variety of reports,
as described in Section 4 . 4 . 4 . The REPORT GENERATOR is also implemented in
COMMON LISP on an EXPLORER.

CONSTRUCTION PLANEX includes GANTT, an interactive scheduling system
described in Section 4 .4 .2 . GANTT is implemented in COMMON LISP and
KNOWLEDGE CRAFT on an EXPLORER. In addition, CONSTRUCTION PLANEX

12 Introduction

includes ANIMATOR, an animation system which is used to illustrate the results
of the project planning process (see Section 4 . 4 . 5) , and INPUT GENERATOR, a
modeling system which simplifies the process of inputting the description of the
building as required for the planning process. Both of these programs are
implemented in C on a SILICON GRAPHICS IRIS Workstation which is linked to
the EXPLORER via a local area network. Details of the design and use of these
components is included in the CONSTRUCTION PLANEX documentation [1 1 6] .
CONSTRUCTION PLANEX has also been incorporated into the INTEGRATED
BUILDING DESIGN ENVIRONMENT (IBDE) [3 2] , a vertically-integrated set of
knowledge-based systems for the design of buildings (see Section 6 . 3 . 2) .

The architecture underwent another refinement and reimplementation. The
major effort in this cycle was to refine the concept of a domain-independent
system and to translate PLANEX entirely into COMMON LISP. The resulting
implementation has been ported to a number of hardware platforms including
the IBM RT P C ® , and IBM PC/AT®, and a Sun Workstation®. CONSTRUCTION
PLANEX has been reimplemented using this COMMON LISP version of PLANEX.
To maintain device independence, this implementation is based on a glass-tty
(character-oriented) model of user interaction and thus does not include the
graphical interactive scheduling system or the animation subsystem. This ver­
sion of CONSTRUCTION PLANEX produces activity plans that are used as input to
commercial scheduling packages and has been integrated with a PC-based
scheduling system. In addition, in the P C environment, a version of the
KNOWLEDGE SOURCE ACQUISITION MODULE has been implemented using
LOTUS 1-2-3®.

Process Planning
and Scheduling

A process plan for construction or manufacturing is the result of a complex
cognitive process involving many decisions. Developments in several areas
have helped the planner deal with various parts of the process. For example,
statistical analysis may be used to estimate activity durations, shortest path
algorithms can be helpful in scheduling start times for activities, and bottleneck
assignment models may be used to determine which resources should be as­
signed to specific tasks.

In addition to the advances in mathematical modeling, there have been
developments related to the general problem of planning. The process planning
problem involves identifying a set of actions that will achieve a specific goal.
Research in the areas of problem-solving and cognitive psychology, automated
planning models, and knowledge-based expert systems has contributed to our
understanding of the planning problem, but these general methodologies must be
augmented with considerable domain-specific knowledge in order to address
practical process planning applications.

In this chapter, three approaches to process planning and scheduling are
reviewed: (1) classical AI plan formulation systems; (2) optimization models for
scheduling; and (3) knowledge-based aids to planning tasks. Although
developed in distinctly different fashions, these different approaches are not
exclusive but can be complementary and mutually supportive. Moreover, any
one approach is unlikely to be sufficient for practical construction and manufac­
turing process planning. The planning architecture PLANEX incorporates
methods and procedures originally developed for these three approaches.

The next two sections focus on the theory of process plan formulation and
task scheduling. The third section provides an overview of existing process
planning models and methods for construction and manufacturing.

13

14 Process Planning and Scheduling

2.1 Plan Formulation with AI Planners
Planning has been an active research area in AI for more than twenty years.
Early planning systems focused on the formulation of plans to be executed by
robots. Their applications dealt with problems of stacking blocks on a table or
moving objects from room to room. Most of these planning systems were
written in LISP or in other general-purpose languages. Later, more ambitious
systems incorporated developments from other areas of AI. In particular, con­
cepts from expert systems have influenced the development of many recent
ΑΙ-based planners. Some planning expert systems have been successfully ap­
plied in domains such as the generation of plans for genetic experiments and the
formulation of plans for manufacturing products [91].

One method of reviewing previous work on ΑΙ-based planners is to classify
them with respect to the different issues involved in the planning process. An
example of such a classification is the very concise categorization of AI planners
provided by Tate [102] with respect to these six dimensions:

• Search space control—How is the solution space represented and what are the
search mechanisms used to obtain a solution?

• Hierarchy and abstraction levels—How are problem-solving goals
represented at different levels of detail?

• Goal ordering and interaction detection and correction—What approaches are
used for solving several goals simultaneously?

• Planning with conditionals and iterators—How are conditionals or process-
constrained relationships relationships within a plan handled?

• Time and resource handling—How are time and resource constraints dealt
with during the plan formulation process?

• Domain representation—What are the appropriate models for the problem-
solving operators and constraints?

A deficiency of this classification scheme is that many AI planners, especially
the most recent ones, make contributions to several of these categories because
these planners use multiple search and representational strategies.

An alternative method for reviewing AI planners is to classify them as
general-purpose or domain-dependent planners. However, this classification
seems inappropriate for several reasons. First, although recent planners contain
significant knowledge of their application domain, they embody concepts that
are applicable to any domain. Second, the applications of general-purpose
planners such as NOAH [84] required a domain-dependent description of the
problem world and operators. Finally, some knowledge-intensive planners in­
corporate concepts of early general-purpose systems like NOAH.

A third alternative is to list AI planners chronologically. However, this type
of review is deficient because it does not group the systems according to their
common features.

Linear Planners 15

AI PLANNER TYPE OF PLAN ARCHITECTURE CLASSIFICATION
(this review)

STRIPS Linear Simple Linear
ABSTRIPS Linear Simple Linear
INTERPLAN Linear Simple Linear
NOAH Nonlinear Simple Nonlinear
NONLIN Nonlinear Simple Nonlinear
DEVISER Nonlinear Simple Nonlinear
MOLGEN Nonlinear Layered Meta Planner
OPM Nonlinear Blackboard Blackboard

Figure 2-1. Classification of Plan Formulation Models

The Classification of AI planners used in this review is shown in Figure 2 - 1 .
Some of the more interesting AI planning models are classified with respect to
two criteria:

• the type of plans produced by the model; and
• the overall characteristics of the system's architecture.

The first criterion is used to classify planners as linear or nonlinear. Linear
planners produce sequences of ordered actions. Nonlinear planners produce
networks of partially ordered actions. While this terminology of linear and
nonlinear plans may be confusing to mathematically inclined readers, it is
widely used in the AI planning literature. The second criterion is used to
distinguish between different architectures. Some systems are implemented
using a primitive or simple architecture while other systems use more elaborate
structures in which actions are organized into layers or into regions of a
blackboard.

2.1.1 Linear Planners

Planning systems differ in the manner in which they define the solution search
space. In some planning systems, the solution space is represented as a network
of nodes, where each node represents a complete state in the problem world.
Nodes are connected by arcs representing actions that transform one state into
another. Early AI planners conceived of planning as a heuristic search process
of this solution space [29, p. 17] which can be summarized as:

Given: An initial situation represented as an object.
A desired situation represented as an object.
A set of operators.

16 Process Planning and Scheduling

Find: A sequence of operators that will transform
the initial situation into the desired situation.

Figure 2-2 illustrates this definition of planning. Planning proceeds by search­
ing a state tree for a path that leads from the root node to a leaf node represent­
ing the desired state. The final path chosen is the plan or sequence of operators,
which when applied to the initial state will achieve the desired goal. Each link
in Figure 2-2 represents a specific operator application.

Numerous techniques exist for heuristically searching a state tree. A very
simple planning system would explore branches of the tree without knowledge
of the manner in which the operators contribute to solving the problem. The
difficulties inherent in this kind of a simple planning system are explained by
Fikes and Nilsson [33, p. 192]:

In a very simple problem-solving system, we might first apply all of the
applicable operators to the initial world model to create a set of successor
models. We would continue to apply all applicable operators to these
successors and to their descendants (say in a breadth-first fashion) until a
model was produced in which the goal formula was a theorem. However,
since we envision uses in which the number of operators applicable to any
given world model might be quite large, such a simple system would
generate an undesirably large tree of world models and this would be
impractical.

In effect, a simplistic state tree generation results in an extremely large search
tree which is computationally intractable.

During the development of GPS, the General Problem Solver, Ernst and
Newell [29] developed the general technique called means-ends analysis to
guide the search. Some of their findings can be summarized as:

• At any point in the planning process, analyzing the differences between the
desired situation (ends) and the current situation is used to select a desirable
operator (means) from those that are applicable. A desirable operator is one
which reduces some of these differences.

• Problem-solving techniques may be embodied in a set of methods that are
applied to achieve particular goals.

• Subproblems may be generated by these methods in an attempt to solve the
problem.

The development of GPS influenced the further development of AI planners.
STRIPS (STanford Research Institute Problem Solver) [33] is capable of
generating linear plans by reasoning about the differences between the desired
and the current states of the world. The search strategy of STRIPS is described
by Fikes and Nilsson [33, p. 193] as:

Linear Planners 17

Figure 2 - 2 . Planning by Searching a Tree of States

. . . we have adopted the GPS strategy of extracting "differences" between
the present world model and the goal and of identifying operators that are
"relevant" to reducing these differences [. . .] . Once a relevant operator
has been determined, we attempt to solve the subproblem of producing a
world model to which it is applicable. If such a model is found, then we
apply the relevant operator and reconsider the original goal in the resulting
model.

The search of the solution space is performed in a depth-first manner with the
possibility of backtracking. This implies that a particular sequence of operators
is pursued until the overall goal or a dead-end is reached. Backtracking is used
after reaching a dead-end situation in which no new operators can be found to
improve the state. Backtracking reorders the list of goals and explores another
branch of the state tree.

The behavior of STRIPS will be illustrated with the three-block problem of
Figure 2 -3 . In this domain, the state of the world is described in terms of two
conditions or literals:

1. Clear top X: This condition is true if there are no blocks on top of block X.
2. On X Y: This condition is true if block X is on top of block Y.

The available operators for changing the positions of the blocks are:

18 Process Planning and Scheduling

PLAN

Figure 2-3. Example of a Three-Block Problem

Precondi t ions Operator E f fec ts

(on y χ)
(cleartop y)

(clear x) (cleartop x)
-(on y χ)

(cleartop χ)
(cleartop y)

(puton χ y) (on x y)
-(cleartop y)

Figure 2-4. Description of Operators for the Blocks-World

1. Clear X: Take any block from the top of block X and put it on the table.
2. Puton X Y: Put block X on top of block Y.

The preconditions and the effects of the operators are shown in Figure 2-4.
Thus, the problem of Figure 2-3 becomes:

Given:

Find:

{(one a) (cleartop b) (cleartop c)}

A sequence of operators clear and puton that will achieve
the goals {(on a b) (on b c) (cleartop a)}

STRIPS solves this problem as shown in Figure 2-5 :

1. First, it tries to achieve goal (on ab). The only operator that produces this
effect is (puton ab). In order to apply this operator, the preconditions
(cleartop a) and (cleartop b) must be satisfied.

2. The system introduces the subgoal (cleartop a) and tries to achieve this
subgoal. The only operator that produces this effect is (clear a).
The operator is applied, leading to the state labeled "node 1". The
subgoal (cleartop a)\s removed from the list of goals.
The system analyzes the initial goals from the new state. It again tries to
achieve the goal (on a b). This may be accomplished by applying the
(puton ab) operator.
The operator is applied, resulting in the state labeled "node 2" . The system
now tries to achieve the subgoal (on b c). The only applicable operator is
(puton be). However, in order to apply this operator, its preconditions
(cleartop b) and (cleartop c) must be satisfied.

3.

5.

Linear Planners 19

Achieve
(on a b)
(on b c)

Achieve
(on a b)>

ROOT NODE

b

(puton b c)

Achieve
(cleartop a)

(on a b)
(on b c)

(clear a)

Achieve
(on a b)
(on

Achieve
(on b c)

(puton a b)

1% 0 0 0 _ N O O E
(puton b c)

0 Θ NODE 2
Achieve
on b c)

(clear b)

Achieve
(on b c) 0 0 0 NODE 3
(on a b) -

Achieve ι—ι
(cleartop b) LfJ

(on b e) [7 |

(puton a b)

Achieve
(on a b)

^ (puton b c)

Ε
B E NODE 4

(puton a b)

NODE 5
Final State
Reached

PLAN

(clear a)
(puton a b)
(clear b)
(puton b c)
(puton a b)

Figure 2-5. STRIPS' Solution to the Three-Block Problem

20 Process Planning and Scheduling

6. The system introduces the subgoal (cleartop b) and identifies that the only
operator that produces this effect is (clear b).

7. When this operator is applied, it produces the state labeled "node 3 " . The
subgoal (cleartop b)is now removed from the list of goals.

8. Again, the system analyzes the initial goals from the new state. Both final
goals are not met. However, this time STRIPS tries to achieve the first
goal (onb c). The only operator that produces this effect is (puton b c).

9. When this operator is applied, it produces the state labeled "node 4" . The
only unmet goal is (on a b). This may be satisfied by applying operator
(puton a b).

10. Finally, the application of operator (puton ab) leads to the desired situa­
tion.

STRIPS evolved into ABSTRIPS [84], a planner in which the important con­
cept of planning at different levels of abstraction was introduced. The motiva­
tion for planning hierarchically is explained by Sacerdoti [84, p. 412]:

A superior approach to planning would be to search first through an
abstraction space, a simplifying representation of the problem space in
which unimportant details are ignored. When a solution to the problem in
the abstraction space is discovered, all that remains is to account for the
details of the linkup between the steps of the solution. This can be
regarded as a sequence of subproblems in the original problem space. If
they can be solved, a solution to the overall problem will have been
achieved. If they cannot be solved, more planning in the abstraction space
is required to discover an alternative solution.

In ABSTRIPS, operators from the different levels of abstraction differ only in
the number of conditions or literals they posses. An abstract operator has fewer
preconditions and effects than a detailed operator. In order to distinguish
abstraction levels, literals are ordered using a criticality number. In higher
levels of abstraction, only the literals with high criticality numbers are con­
sidered. This allows the system to produce plans at different levels of abstrac­
tion.

ABSTRIPS was able to produce plans more efficiently than STRIPS.
However, the system required that the user order the literals by assigning them a
criticality number. A different approach to reduce the search effort of STRIPS
was developed in INTERPLAN [99, 100]. INTERPLAN analyzes the inter­
actions among the different goals before attempting to achieve any of them.
INTERPLAN goals are ordered with respect to the time interval over which they
should remain true. Interactions between goals are recorded in a matrix called
the ticklist. Ticklists provide INTERPLAN with a simple mechanism for back­
tracking when prior decisions lead to a dead-end.

Linear Planners 21

An example of the use of ticklists in INTERPLAN for the solution of the
three-block problem of Figure 2-3 is shown in Figure 2-6 (adapted from [100]).
The first steps in INTERPLAN's solution are:

1. It checks whether goal (on a b) is satisfied in state 1. The goal is not
satisfied; this is indicated with the cross 1 label on the ticklist.

2. The only operator that produces the goal is (puton ab), with preconditions
(cleartop a) and (cleartop b). A daughter ticklist is created below the
original ticklist.

3. INTERPLAN now checks if subgoal (cleartop a) is satisfied in state 1. It is
not and the system indicates this with cross 2.

4. The only operator that produces subgoal (cleartop a) is (clear a). This
operator is immediately applied.

5. When operator (clear a) is applied, the state of the world changes from
state 1 to state 2.

6. In state 2, subgoals (cleartop a) and (cleartop b) have been satisfied and
this situation is indicated with ticks 3 and 4.

7. INTERPLAN applies the operator (puton a b) in state 2 and this changes
the position of the blocks to that of state 3.

8. The system reexamines the original ticklist and uses tick 5 to indicate that
the final goal (on a b) is satisfied in state 3 and uses cross 6 to indicate that
goal (on b c) is not satisfied.

9. The only operator that produces the goal (on b c) is (puton b c), with
preconditions (cleartop b) and (cleartop c). A daughter ticklist is created
below the original ticklist, in which the satisfied goal (on ab) is considered
protected.

10. The system uses tick 7 and cross 8 to indicate the protected goal (on a b)
and the unsatisfied subgoal (cleartop b).

11. The only operator that satisfies subgoal (cleartop b) is (clear b). This
operator is immediately applied.

12. When operator (clear b) is applied, the state of the world changes from
state 3 to state 4.

13. In state 4, subgoal (cleartop b) is satisfied and this is indicated with tick 9.
However, the protected goal (on a b) is violated. This is indicated with
cross 10.

14. The system reexamines the first ticklist.

The remaining steps of the solution are not shown in Figure 2-6. To avoid the
protection violation, INTERPLAN reorders the final goals and first satisfies
goal (on b c) by applying operator (puton b c). Finally, it satisfies goal (on a b)
with the application of operator (puton a b). The resultant final plan is:
(clear a) —» (puton b c) —> (puton a b).

22 Process Planning and Scheduling

STATE (on a b) (on b c)

C 1

ΘΘ X 1

Η
ΘΘ y 5 X 6

/
(puton a b) S

i

STATE (cleartop a) (cleartop b)

i

|c J 1 X 2

i

0 0 Θ 2 y 3 y 4

i

(clear . /
Protected

i

STATE (on a b) (cleartop b) (cleartop c)

a 3

m y 7 X 8

Θ Θ Θ ' x ° y 9

A protection
violation is
found

(clear b)

Figure 2-6. INTERPLAN's Ticklists for the Three-Block Problem of Figure 2-3

Nonlinear Planners 23

2.1.2 Nonlinear Planners

The introduction of nonlinear planners in the 1970's marks an important change
in the development of AI planning models. The concept of a plan as linear
sequences of actions was modified as stated by Sacerdoti [85, p. 206]:

Although the execution of a plan is essentially linear, a plan itself may be
thought of as a partial ordering of actions with respect to time.

This is precisely the difference between linear and nonlinear planning, as noted
by Chapman [12, p. 2]:

The important idea, due to Sacerdoti, is that a plan (at least while it is
being constructed) does not have to specify fully the order of execution of
its steps. In other words, a plan is only a partial order of steps; this is what
is meant by nonlinear planning.

NOAH (Network Of Action Hierarchies) [86] uses a model called the
procedural net in planning. A procedural net is a network of nodes, each of
which represents actions at particular levels of abstraction. Similar to previous
planning models, each action (node) has an associated list of preconditions that
must be true to execute the action and a list of effects that are added to or deleted
from the world model when the action is executed. In addition to these lists,
nodes contain a body that specifies more detailed actions used to expand the
node.

In NOAH, the planning process consists of first creating a small procedural
net in terms of abstract actions and then expanding it repeatedly until the plan
has been expressed in terms of simple operations or primitives. NOAH per­
forms three tasks:

1. Expand each node of the procedural net. Each node is expanded into a set
of daughter nodes, using the information contained in the body of the parent
node. Nodes whose preconditions are already satisfied in the world model
are copied as phantom nodes, while other nodes are expanded as goal nodes.

2. Apply critics to the new detailed procedural net. The main use of the critics
is to avoid conflicts and redundancies in the new procedural net. An ex­
ample of a critic is the resolve conflicts critic that is used to reorder actions
when a precondition of a node is negated by a node in a parallel branch of
the procedural net.

3. Update the world model by adding and deleting objects. The add and delete
lists of the new nodes in the expanded procedural net are used to update the
world model.

These three tasks are repeated until the plan has been decomposed into primitive
actions and the plan is complete at the most detailed level.

24 Process Planning and Scheduling

Level 1 Achieve (on a b) (on b c)

Level 2

Achieve (on a b)

Achieve (on b c)

Level 3
(B e f o r e Cr i t ics)

Ach ieve (c leartop a)

J H
P h a n t o m (c leartop

puton a b

\

\ ^ P h a n t o m (c lear top bj)

" ^ ^ ^ P h a n t o m (c lear top ^J^^

Γ
Level 3
(A f te r C r i t i c s)

J — puton b c

Ach ieve (c leartop a)

J W

\ ^ ^ ^ ^ ^ P h a n t o m (c leartop β)) ^ * ^

^ ^ ^ P h a n t o m (c leartop c) ^ ^ ^

puton a b

puton b c

Figure 2-7. NOAH's Solution to the Three-Block Problem of Figure 2-3

An example of the application of NOAH to the three-block problem of
Figure 2-3 is shown in Figure 2-7 (adapted from [85]). The first steps of
NOAH's solution are:

1. At level 1, the procedural net consists of a single node that indicates the
conjunction of goals to be satisfied: (on a b) and (on b c).

2. At level 2, NOAH creates a network with two parallel branches with nodes
representing the goals to be satisfied. Node S and / are dummy nodes that
indicate a Split and Join of the network.

3. The system identifies operators (puton ab) and (puton b c) as possible
means to achieve the final goals. Each operator and its preconditions are
used to expand the goals of level 2 into the more detailed procedural net of

Nonlinear Planners 25

level 3. Goal (on a b) is expanded into the operator (puton ab), the
subgoal (cleartop a) and the phantom node (cleartop b). Goal (on b c) is
expanded into the operator (puton be), and the phantom nodes (cleartop b)
and (cleartop c). Conditions (cleartop b) and (cleartop c) are represented as
phantom nodes because they are true in the initial world model.

4. The system applies critics to the procedural net. NOAH identifies that
operator (puton ab) negates the phantom node (cleartop b) in the branch
corresponding to operator (puton be). It modifies the topology of the
procedural net and establishes a precedence relationship that specifies
operator (puton b c) precedes operator (puton a b). The revised procedural
net is shown at the bottom of Figure 2-7.

The last step in NO AH's solution is not illustrated in Figure 2-7. NOAH
proceeds to expand the unsatisfied goal (cleartop a) and identifies the operator
(clear a) with preconditions (on c a) and (cleartop c) as a means to achieve the
goal. Then the system recognizes that operator (puton be) negates the precon­
dition (cleartop c) and it establishes a precedence relationship that specifies
operator (clear a) precedes operator (puton be). The final plan is a network
with three precedences: (clear a) —» (puton b c), (puton b c) —» (puton a b) and
(clear a) -> (puton ab).

NONLIN [101] is another Ν ON LIN ear planner that was created as an evolu­
tion of INTERPLAN. In NONLIN, each action is described by a task schema
using a Task Formalism. Task schémas contain information about the effects of
an action, the preconditions that have to hold before the action is performed, and
the manner in which the action is expanded into lower-level actions. Conditions
are classified into the following categories:

• Unsupervised Conditions, which must exist before a task is finished but are
the responsibility of other actions;

• Supervised Conditions, which must exist before a task is finished and are the
responsibility of the action being considered; and

• Use-When Conditions, which are static in the sense that they do not depend on
any action. However, they must hold before an action is executed.

This classification of conditions enriches the declarative representation of tasks
and improves the problem-solving behavior of the planner. NONLIN uses the
ticklists of INTERPLAN more effectively and is capable of solving problems
which NOAH cannot solve.

NONLIN has been applied in several different domains. One application of
particular interest is the formulation of construction project networks. NONLIN
expands aggregate project networks into detailed networks using knowledge
stored in task schémas. The input to the system is an aggregated action such as
erect structure that NONLIN expands repeatedly. The output is a network of
activities that do not require further expansion. NONLIN does not distinguish

26 Process Planning and Scheduling

ACTSCHEMA DECOR
PATTERN «DECORATE»
EXPANSION
1 ACTION «FASTEN PLASTER AND PLASTER BOARD»
2 ACTION «POUR BASEMENT FLOOR»
3 ACTION «LAY FINISHED FLOORING»
4 ACTION «FINISH CARPENTRY»
5 ACTION «SAND AND VARNISH FLOORS »
6 ACTION « P A I N T »
ORDERINGS 1 >3 6 >5 SEQUENCE 2 TO 5
CONDITIONS

«ROUGH PLUMBING INSTALLED» AT 1
«ROUGH WIRING INSTALLED» AT 1
«AIR CONDITIONING INSTALLED» AT 1
«DRAINS INSTALLED» AT 2
«PLUMBING FINISHED» AT 6
«PLASTERING FINISHED» AT 3 FROM 1
«BASEMENT FLOOR LAYED» AT 3 FROM 2
«FLOORING FINISHED» AT 4 FROM 3
«CARPENTRY FINISHED» AT 5 FROM 4
«PAINTED» AT 5 FROM 6

UNSUPERVISED
UNSUPERVISED
UNSUPERVISED
UNSUPERVISED
UNSUPERVISED
SUPERVISED
SUPERVISED
SUPERVISED
SUPERVISED
SUPERVISED

END;

Figure 2-8 . NONLIN's Task Formalism for a Construction Activity

between a construction activity and a component of the design. Figure 2-8
(adapted from [101]) shows an example of a task schema representing the con­
struction activity ((d e c o r a t e)) . The schema contains knowledge describing
how the aggregate activity can be expanded into the network of subactivities
shown in Figure 2-9. This network is described in the expansion and orderings
fields of the task schema. The information in the conditions field indicates that
five unsupervised conditions must exist before the task is finished, and that five
supervised conditions are created when the activity is expanded. Unsupervised
conditions are not asserted by the ((d e c o r a t e)) activity. However, they must
be satisfied before executing some of the subactivities. For example, the
((d r a i n s i n s t a l l e d)) condition has to be satisfied before the ((p o u r
b a s e m e n t f l o o r)) subactivity is executed. In contrast, supervised con­
ditions are asserted within the expansion of the activity. For example, the
((p a i n t e d)) condition is asserted by the ((p a i n t)) action, and it must be true
before the ((s a n d a n d v a r n i s h f l o o r)) action is executed.

Another nonlinear planner which followed the initial development of NOAH
and NONLIN is DEVISER, a system developed by Vere [104] for use in the
planning and scheduling of an autonomous unmanned spacecraft. DEVISER
was the first system to consider time constraints in the generation of plans.
More recent versions of NONLIN have also incorporated time and resource
constraints during the planning process. In DEVISER, time constraints are used

Nonlinear Planners 27

Figure 2-9. NONLIN's Subnetwork for a Construction Activity

to specify when sets of goals should be satisfied and how long the goal con­
ditions should be preserved. The output of DEVISER is a network with bounds
for the start times of the activities. To represent these constraints, nodes of the
network are divided into two major categories:

• Activities whose realization in time is determined during the planning process.
Activities are either: (1) Actions that have to be explicitly activated and incor­
porated into the planning network; (2) Events that are triggered spontaneously
by changes in the state of the world; or (3) Inferences that are propositions
whose truth changes depending on the value of the variables considered.

• Scheduled Events whose occurrence is fixed in time regardless of the structure
of the plan. Scheduled events can be considered additional constraints on the
planning process.

Representation of activities in DEVISER is similar to that in NOAH. Each
activity is described by specifying: (1) Type (action, event or inference);

28 Process Planning and Scheduling

(2) Context, a set of literals representing the preconditions that must be true
before the activity can be executed and that are not altered by the activity;
(3) Antecedent, a set of literals representing conditions that will be deleted from
the world model when the activity is executed; and (4) Consequent, a set of
literals that will be added the world model when the activity is executed. An­
tecedent and consequent lists resemble the add and delete list of NOAH. Ac­
tivity durations may also be specified; these may be a constant or computed by
evaluating a function.

An important feature of DEVISER is that it uses different types of literals to
describe the world. Literals are either:

• Ordinary, whose truth is determined by accessing a distributed data store.
Their value may be changed by the antecedent or consequent part of an
activity.

• Procedurally Defined, whose truth is determined by calling a procedure.
They cannot appear in the antecedent or consequent list of any activity.

• Functionally Determined, specified as a list in which the rightmost term is a
function of all the other terms.

The planning process in DEVISER is very similar to that used in NOAH to
expand procedural nets. Planning consists of repeating three tasks:

1. Linking. When the assertions of a node J are satisfied by another node /, a
link from node / to node / is added to the network, and node J becomes a
phantom node. This is similar to NOAH's definition of phantom nodes.

2. Node expansion. When a goal or action cannot be achieved, it is decom­
posed into a set of daughter nodes. The goal's preconditions become goals
and side effects are added to the assertions of the expanded node.

3. Conflict detection and resolution. Conflicts between activities in parallel
branches are identified and resolved by reordering the activities. Conflicts
must be resolved each time the network is expanded.

During the planning process, DEVISER ensures that all conditions (context
and antecedent) of each activity are satisfied throughout the duration of the
activity. However, the following two cases are of interest: (1) When one of the
antecedent conditions is deleted immediately after starting the activity; and
(2) When trigger preconditions are present (they need to be present only when
an activity is started). To handle these cases, DEVISER decomposes activities
into two nodes, one representing the start of the activity with a zero duration,
and another consecutive node representing the execution of the activity.

Activity start and end times are calculated by assigning a window to each
activity. A window is a list with three time values for the activity:

Meta-Planners 29

Type Constraint Description Window Lag

1 A t t Instantaneous event (t,t,t) 0
2 Before t Starting in (0,t) (0,nil,t) t
3 After t Starting in (t,infinity) (t,nil,infinity) infinity
4 Between tl , t2 Starting in (tl,t2) (tl,nil,t2) t2- t l
5 Between tl , t2 Starting in (tl,t2)

best t3 and preferably at t3 (tl,ideal,t2) t2- t l

Figure 2-10. Time Constraints in DEVISER

1. Earliest-Start-Time (EST);
2. Ideal-Start-Time (1ST); and
3. Latest-Start-Time (LST).

Lags are computed by subtracting EST from LST. At the beginning of the
planning process all activities have a window (0,nil,infinity) representing the
constraint that the start time is positive. The user may specify additional win­
dows for goals and scheduled events. Time constraints that may be specified
using windows are illustrated in Figure 2-10. As the planning process proceeds,
activity windows and subgoal windows are computed dynamically. Changes in
window duration occur when linking activities, expanding nodes or reordering
activities. Window duration changes are propagated recursively to neighboring
nodes until the effects of a duration change have been fully propagated through­
out the network.

DEVISER uses windows to classify preconditions into packages based on
their time constraints. The set of conditions in a package must be satisfied
simultaneously by all preconditions included in the package, and must satisfy all
the time constraints (window specifications). Windows are also used to resolve
conflicts and to order goals. The ideal time of an activity is never modified; it is
used to order the activities should there be a " t ie" between alternatives.

DEVISER generates feasible plans. It is capable of backtracking when the
earliest-start-time of an activity is greater than its latest-start-time. However, it
does not contain any mechanism for relaxing constraints if all constraints cannot
be satisfied.

2.1.3 Meta-Planners
Meta-planners represent a different approach in the development of AI-based
planning models. These systems are concerned with the order in which the
different planning operations are executed, rather than with the successive ex­
pansion of plan actions. The distinction between planning operations and plan
actions was noted by Stefik [95, p. 141]:

30 Process Planning and Scheduling

The decision-making knowledge is organized in a layered control struc­
ture which separates decisions about the planning problem from decisions
about the planning process. The approach, termed meta-planning, ex­
poses and organizes a variety of decisions, which are usually made im­
plicitly and sub-optimally in the planning programs with rigid control
structures.

In meta-planners, planning operators and data structures are divided into layers.
Operators of a given layer control the execution of operators of the layer im­
mediately below it. In addition, operators of the upper layers are distinct and
more general than operators in the lower levels. Communication between the
layers is usually through a message interface.

MOLGEN (MOLecular GENerator) [94,95] is a meta-planning system
developed by Stefik to plan genetic experiments. The system generates plans by
dividing the planning problem into subproblems and analyzing the interactions
among these subproblems. This behavior is inspired by the means-ends analysis
technique of GPS. However, MOLGEN incorporates constraint objects to ex­
plicitly represent interactions among subproblems. MOLGEN handles con­
straints through a constraint posting cycle in which the following tasks are
executed:

• Constraint Formulation adds constraints to a plan as it is detailed;
• Constraint Propagation creates new constraints from old constraints in the

plan; and
• Constraint Satisfaction finds values for a group of variables that satisfy a

given set of constraints.

These tasks are continuously repeated throughout the planning process.
MOLGEN's planning architecture divides planning operators and planning

objects into the four layers shown in Figure 2-11 (adapted from [93]). The
system uses this structure to control the execution of the constraint posting
cycle. The layers are:

1. Laboratory Layer. This is the lowermost layer. The operators in this layer
do not control any other operators. Laboratory operators are activated by
messages from the design operators. Laboratory operators model modifica­
tions to physical objects such as a gene or a bacterium. Within this layer,
operators are structured in a two-level hierarchy of abstract and specific
operators. Four abstract operators exist: (1) Merge combines objects;
(2) Amplify increases the amount of something; (3) React changes properties;
and (4) Sort separates something into its components. These operators,
called the MARS operators, are further refined into specific operators. For
example, the abstract Merge operator may be refined into the specific
operators Transform and Screen.

Meta-Planners 31

INTERPRETER

Figure 2 - 1 1 . MOLGEN's Layered Structure

2. Design Layer. The operators in this layer control the execution of the
operators in the laboratory layer. Objects in this layer do not model physical
objects, but represent constraints, differences, refinements and tuples. There
are three types of operators in the design layer:

a. Comparison Operators are used to evaluate partial solutions. First,
laboratory goals are examined by comparing objects with their
prototypes in order to find unusual features. Then predictions are com­
pared with goals to check for mismatches and backtrack if necessary.

b. Temporal-Extension Operators are used to propose extensions to the
plan given the actual differences between the state of the system and the
goals. MOLGEN: (1) proposes operators to reduce the difference by
asking the MARS operators which of them is feasible; (2) proposes goals
for these operators; and (3) predicts the results by requesting a one-step
simulation in the laboratory layer.

c. Specialization Operators are used to expand operators into more detailed
ones and to propagate constraints backwards in time.

3. Strategic Layer. The strategic layer creates and executes design tasks in a
manner similar to the way the design layer controls the laboratory operators.

32 Process Planning and Scheduling

Only four general strategic operators are used: (1) Focus simulates a design
task; (2) Resume continues suspended tasks; (3) Guess uses heuristics to
select a design task; and (4) Undo backtracks when necessary. These
operators are activated by messages from the strategic-design interface. At
any point in the planning process, design tasks are either done, failed,
suspended or canceled.

4. Interpreter. This is the uppermost layer. The interpreter executes strategic
operators.

2.1.4 Blackboard Planners
Blackboard planners constitute yet a different type of AI planning system. They
plan by using mechanisms similar to those of the blackboard problem-solving
framework developed in HEARSAY-II [28]. An example of such a blackboard
planner is OPM [45], a system developed by Barbara Hayes-Roth for multi-task
planning problems. Multi-task planning involves selecting and ordering several
plan tasks from a list of desired tasks. This problem is a special case of the
general control problem [45, p. 251]:

The control problem—which of its potential actions should an AI system
perform at each point in the problem-solving process?—is fundamental to
all cognitive processes.

The architecture of OPM is shown in Figure 2-12. The blackboard is a
global data structure where all solution elements generated during the problem-
solving process are stored. These solution elements are generated by a set of
independent and cooperative processes called knowledge sources. Knowledge
sources are independent because they do not directly invoke any other
knowledge source. They may only influence the behavior of other knowledge
sources by altering the information stored on the blackboard. In addition,
knowledge sources are cooperative because they contribute to solve the same
problem. Knowledge sources have three basic components:

• Trigger Conditions used to identify those knowledge sources that may be
helpful at a particular point in the planning process;

• Preconditions used to impose restrictions on the ability to invoke one of the
knowledge sources; and

• Actions used to specify the changes that the knowledge sources make on the
blackboard.

When the trigger conditions of a knowledge source are satisfied by events on the
blackboard, a Knowledge Source Activation Record (KSAR) is created and it is
introduced into a set of pending KSARs called the To-Do-Set. A KSAR is a
unique combination of a knowledge source and the objects from the blackboard

Blackboard Planners 33

BLACKBOARD KNOWLEDGE SOURCES

Trigger

Figure 2 - 1 2 . OPM's Blackboard Architecture

used to evaluate the trigger conditions. In each problem-solving cycle, a KSAR
of the To-Do-Set is selected for execution using a special knowledge source
entitled Choose-KSAR. When a KSAR is executed, the actions of its associated
knowledge source are applied to the associated objects in the context. Different
KSARs for the same knowledge source represent applications of the same ac­
tions to different objects on the blackboard.

OPM employs two independent blackboards:

• the domain blackboard, which contains solution elements related to the
problem, such as plan tasks and task precedences; and

• the control blackboard, which contains solution elements related to the plan­
ning process, such as problem-solving goals and pending KSARs.

Each blackboard is organized with respect to plan execution time intervals and
different levels of plan abstraction. The domain blackboard is divided into four
levels of abstraction: (1) outcome contains information about which activities
are included in or excluded from the plan; (2) design stores temporal specifica­
tions for the whole plan; (3) procedure contains sequences of individual tasks;
and (4) operation contains completely specified activities.

The control blackboard is divided into six levels of abstraction: (1) problem,
with the definition of the global problem goals to be achieved; (2) strategy, with
information about the general sequential plan for solving the problem; (3) focus,
with definition of local problem goals; (4) policy, with information about the
global scheduling criteria; (5) To-Do-Set, containing a list of pending KSARs;
(6) chosen-action, specifying the KSAR chosen to be executed.

Knowledge sources are also divided into: (1) domain knowledge sources; and
(2) control knowledge sources. Examples of domain knowledge sources are

34 Process Planning and Scheduling

those responsible for refining an abstract plan into a more detailed one. Ex­
amples of control knowledge sources are those responsible for choosing which
pending KSAR to execute.

2.1.5 The Frame Problem

The previous discussion outlined the characteristics of a number of classical AI
planning systems. These systems are capable of identifying plans to achieve
predefined goals in highly restricted planning domains. Before introducing the
role of optimization methods for planning, it is worthwhile to note a general
problem that limits the capability of any automated planning, namely how to
identify the problem state changes as operators are applied. This general iden­
tification problem has been called the frame problem by Brown [9] and McCar­
thy and Hayes [68]. The problem is intimately connected to the practicality of
making truthful inferences as well as effective plans. When an operator has
been applied or an inference has been made, the new description of the world
must reflect the direct changes caused by the operation as well as the changes in
all the facts derived from the altered situation.

As a simple example of the frame problem, consider a block containing a
hole as shown in Figure 2-13 (a). If a horizontal cut is made below the hole, the
hole is removed (Figure 2-13 (b)). The description of the block should now
include the fact that both a portion of the block and the hole have been removed.
However, a different cut would not remove the hole (as in Figure 2-13 (c)).
Inferring whether or not the hole exists after a cut would be difficult in an
automated planner. For example, operators in planners such as STRIPS or
NOAH are defined by the required preconditions and post-operation facts. With
this simple scheme for defining operations, determining whether or not a hole
disappears is laborious.

As operators are applied, one mechanism for recognizing effects is to record
conditional dependencies. This approach has been generalized as a truth main­
tenance system used to record and maintain all interdependencies among con­
ditions [24, 25, 34]. For example, the existence of the hole in the block
(Figure 2-13 (a)) depends upon the existence of the block itself. If a portion of
the block disappears the precondition for the hole's existence must be
reexamined.

The explicit representation of dependencies among conditions permits
dependency-directed backtracking [92]. As a particular condition is altered, the
conditions or facts derived can be identified. Subsequent operators and searches
can focus on these alterations. However, identifying the dependencies among
conditions typically requires considerable knowledge. For example, determin­
ing whether any or all of the hole remains in a block after a cut (Figure 2-13)
requires considerable geometric analysis.

Project Scheduling with Optimization Methods 35

a b c
Block with Hole Horizontal Cut Vertical Cut

Removing Hole Leaving Hole

Figure 2-13. A Block with a Hole and Cuts

Coping with the frame problem is a major concern in the continuing develop­
ment of classical AI planners. For example, the planning system SIPE (System
for Interactive Planning and Execution Monitoring) [112] includes:
(1) "resource reasoning" to insure that operators using common resources are
ordered correctly; (2) a "truth criterion" which employs MOLGEN-type con­
straints (see p. 30) and domain knowledge to avoid at least in part the frame
problem; and (3) explicit and (presumably) comprehensive representation of
operator preconditions and effects as in STRIPS (see p. 17). Nevertheless, these
heuristic methods cannot guarantee that the resulting plans will overcome the
frame problem and produce workable plans. Coupled with the need for exten­
sive domain knowledge, this observation motivates including extensive user
interaction and review mechanisms in PLANEX.

2.2 Project Scheduling with Optimization Methods
In planning the execution of a project, it is important to identify both the ac­
tivities to be executed and the precedence restrictions among these activities.
However, formulating a network of activities is only one of the tasks performed
by planners. There are other questions that must be answered before a project is
executed. For example:

• what type of resources (labor, equipment and materials) should be assigned to
the activities?

• how much of these resources should be used by each activity?
• when should each activity start?

Usually there are many possible answers to these questions. During the schedul­
ing process, the planner has to select a set of answers that seems appropriate.
After this process is completed, the set of decisions made by the planner are
reflected in a project schedule that is used to monitor and control the execution

36 Process Planning and Scheduling

of the project. Fortunately, there are numerous algorithmic procedures to aid in
scheduling. The capabilities of these procedures motivates their inclusion in the
PLANEX architecture.

The computation of project schedules has evolved from the early scheduling
models such as the Critical Path Method (CPM) and the Project Evaluation and
Review Technique (PERT) into more sophisticated models that incorporate ad­
ditional aspects of the scheduling problem [50, 111]. Project managers have
recognized the advantages of using some of these models to assist them with the
scheduling process. Today there are several commercial packages that assist
planners in preparing and maintaining project schedules [2, p. 231]:

Microcomputer-based project management software systems have evolved
from simple packages focusing on basic capabilities, such as Gantt-charts,
to sophisticated systems offering resource management, progress report­
ing, and superior input and output interfaces. The commercially available
packages are becoming increasingly easier to use and more appealing
visually.

Models for project scheduling can be divided into two categories:

• deterministic models which assume activity durations are fixed or are ex­
pressed as a function of the cost incurred in completing the activities; and

• probabilistic models which assume activity durations are stochastic variables
with particular probability distributions.

This distinction is important for several reasons. The information obtained from
deterministic models is different from that provided by probabilistic models.
Deterministic models are usually applied to compute schedules that minimize
total completion time or total budget. Probabilistic models are used to estimate
the total completion time of a project or to simulate the execution of a project.
For the most part these models have evolved independently [111]. There are
some models that incorporate uncertainties into the CPM [13, 103]. However,
most deterministic scheduling models are descendants of the original CPM
model [57], while probabilistic models are extensions of the PERT model [66].

The remainder of this section provides a brief review of some relevant project
scheduling models. The review focuses on deterministic scheduling models.
More extensive reviews may be found in other books [26,72, 110] and
papers [41, 111].

2.2.1 Classification of Deterministic Scheduling Models
Deterministic scheduling models are used to sequence activities in time to
achieve managerial goals. In most deterministic scheduling models, the goal is
to minimize the total completion time of the project. However, some models

Classification of Deterministic Scheduling Models 37

introduce other goals related to the variability in resource requirements or the
total budget allocated to the project. Models differ not only by the intended
goals, but also by the type of constraints considered and by the assumptions
incorporated. For example, some models do not consider limits on the number
of resources consumed while others impose strict restrictions on the allocation
of resources. Similarly, some deterministic scheduling models assume that ac­
tivity durations are fixed while others assume that the duration of an activity
decreases as the cost of the resources used to perform the activity is increased.

This work classifies deterministic scheduling models according to the way
they consider the following parts of a project schedule: (1) network topology;
(2) activity durations; (3) activity costs; and (4) resource consumption profiles.
Models are classified into the following categories, as shown in Figure 2-14:

• Models with fixed activity durations. These models assume that activity dura­
tions are known. Resources are assumed to be unlimited and the network
topology is fixed.

• Models for time-cost trade-offs. In these models, activity durations are ex­
pressed as a function of activity costs. There may be constraints on the total
completion time of the project or on the total budget. However, these models
do not impose limits on the resource consumption profiles. These models do
not permit changes to the network topology.

• Models with resource considerations. These models are used to schedule
projects when resources are limited or when peak resource requirements must
be reduced. These models do not permit changes to the network topology.

• Models for combined planning and scheduling. These models combine plan­
ning and scheduling in a unified framework. The major distinction from the
other models is that the topology of the network may be changed.

Deterministic Scheduling Models

Fixed Durat ion
T ime-Cos t
T r a d e - O f f s

Resource
Considerat ions

Planning &
Schedul ing

N e t w o r k
Topology

Fixed Fixed Fixed Variable

A c t i v i t y
D u r a t i o n s

Fixed Duration and
Cost related

May vary May vary

A c t i v i t y
Costs

Not considered Duration and
Cost related

May vary May vary

Resource
P r o f i l e s

Assumed
Unlimited

Assumed
Unlimited

Upper limits
may exist

Upper limits
may exist

Figure 2-14. Classification of Deterministic Scheduling Models

38 Process Planning and Scheduling

The four types of models are not independent. Fixed duration models may be
considered to be a special case of time-cost trade-off models. Similarly, both of
these models are specializations of resource constrained models for the case of
arbitrarily large resource profiles. However, this work treats the four types of
models separately because the nature of the mathematical programs used in the
models is different. Fixed duration models can be solved with simple shortest
path algorithms4, while resource constrained models involve more elaborate
algorithms to solve integer programming problems.

2.2.2 Models with Fixed Activity Durations

Although the original CPM model allowed variable activity durations [57], com­
mon applications use a simplified version of the model in which activity dura­
tions are considered fixed. This model, called the Basic CPM model (BCPM), is
used to find the earliest project completion time, the slacks or floats associated
with the project activities, and the set of critical activities.

Common implementations of the BCPM model use an Activity-On-Branch
(AOB) diagram to represent the project. In this representation, branches5

represent activities and nodes represent events. The earliest completion time of
the project is found by computing the longest path from the node representing
the start of the project to the node representing project completion. Figure 2-15
(adapted from [110, p. 6]) shows an AOB diagram for a project composed of
five activities. The numbers above the arrows represent the durations of the
activities (in days). The earliest completion time of the project is 35 days.

Several operations research (OR) algorithms can be used to compute the
longest path in a network [61, p. 3, 14, p. 8]. In acyclic networks, a popular
algorithm, developed by Dijkstra [61, p. 71], provides the basis for the forward
and backward pass computations used to solve the BCPM [72, p. 74]. However,
there are other OR techniques that can be used for this purpose. In particular,
the model may be solved using linear programming (LP) or network flow al­
gorithms. Network flow formulations are also useful in solving time-cost trade­
off models and resource-constrained models. These applications are described
below.

Another deterministic scheduling model that assumes fixed activity durations
is the Precedence Diagramming Method (PDM) [72]. The basis for this model
was a report by Fondahl [35] in which Activity-On-Node (AON) diagrams were
used to represent project networks. In these diagrams, nodes represent activities

Scheduling requires that the longest path be computed. This involves simple modifications to
shortest path algorithms.

5 In this discussion, the terms branch, link and arc are equivalent.

Models with Fixed Activity Durations 39

Figure 2-15. Example Project Network (AOB diagram)

Figure 2-16. Example Project Network (AON diagram)

SS SF FS FF

Figure 2-17. Different Types of Precedences in the PDM

and arcs represent precedence relationships. The BCPM is easily adapted for an
AON representation. Given an AON network representation, the BCPM finds
the longest path between start and finish activities.

Figure 2-16 shows the AON diagram for the example project of Figure 2-15.
In this diagram, activity durations are indicated by the numbers above the nodes
and the critical path includes the nodes <z, c, d and e. Arrows indicate
Finish-to-Start (FS) precedences: the successor activity cannot start until the
predecessor activity has finished. The PDM incorporates other precedences in
addition to the FS relationships of the BCPM. There may be Start-to-Finish
(SF), Finish-to-Finish (FF) and Start-to-Start (SS) relationships between the
network activities, as shown in Figure 2-17.

There are several déficiences associated with the PDM. First, the inter­
pretation of floats is not as straightforward as in the BCPM model. Second,
there may be anomalies such as the delay in the completion time of the project

40 Process Planning and Scheduling

due to the reduction of an activity duration [110, p. 145]. Finally, activity
splitting, which may improve the schedule, is not a feature of the original PDM
formulation. In order to solve these problems, some algorithms that include
automatic splitting have been proposed [73]. Nevertheless, the PDM facilitates
the introduction of additional types of precedence relationships between ac­
tivities (e.g., start-to-start precedences) and obviates the need for dummy links
to maintain proper network topologies [50].

2.2.3 Models for Time-Cost Trade-Off s

The objective of the original CPM model was described as [57, p. 297]:

The mathematical model upon which the Critical-Path Method is based is
a parametric linear program that has the objective of computing the utility
of a project as a function of its duration. For each feasible project dura­
tion, a feasible project schedule is obtained that has maximum utility
among all feasible schedules of the same project duration.

To solve the model using an LP formulation, it is assumed that the time to
perform an activity decreases linearly as the cost of performing the activity
increases. Figure 2-18 shows this linear relationship between activity duration
and associated cost. The normal time is the time required to perform the activity
if no additional resources (e.g., overtime hours or additional labor) are invested.
The crash time is the minimum time required to complete the activity. This
represents the situation in which all possible additional resources have been
invested, and the activity is completed in the least possible time.

When the time-cost relationship is linear, a LP formulation can be used to
solve for time-cost trade-offs. Parametric LP may be used to obtain a plot of the
overall project cost versus the project completion time. This plot, called the
project cost curve, may also be obtained by formulating the problem as a
network-flow problem in which each activity is represented by two parallel
arcs [36]. When time-cost relations are linear, the project cost curve is
piecewise convex.

Obviously, time-cost relations need not be linear. For cases in which they are
convex, OR techniques such as the Frank-Wolfe method can be used to solve the
problem [47]. The CPM with concave time-cost relations is more difficult and
was studied by Falk and Horowitz [30]. Their algorithm is based on a
branch-ana-bound approach in which successive LPs are solved. This algo­
rithm can be used for problems in which piecewise convex time-cost relations
are combined with piecewise concave functions. For the general case in which
the time-cost function is nonmonotonic, Elmaghraby [26, p. 108] describes an
algorithm based on dynamic programming (DP) techniques.

Models with Resource Considerations 41

Crash Cost

•#—·
</)
ο
Ο

Normal Cost

Crash Time Normal Time

Time

Figure 2-18. Linear Time-Cost Relationships for an Activity

An additional aspect of the time-cost trade-off problem arises with the intro­
duction of constraints on event completion times. Elmaghraby and Pulat [27]
developed an efficient algorithm to compute optimal project duration compres­
sion with linear time-cost relations and linear penalties for tardiness.

2.2.4 Models with Resource Considerations
Several scheduling models that consider the resource requirements of project
activities have been studied [23]. There are two principal types of models for
this problem:

• resource leveling models that smooth resource consumption profiles; and
• resource allocation models that schedule activities when there are constraints

on the total amount of available resources.

Both types of models usually involve more complex mathematical formulations
than the simpler scheduling models that assume fixed activity durations or that
have known time-cost trade-offs. The approaches used to solve project schedul­
ing problems with resource considerations may be classified into:

• optimization methods that search for the best schedule; and
• heuristic methods that search for a good schedule.

Optimization methods have been applied only to small projects because of the
combinatorial nature of the problem. Heuristic methods have been successfully
applied to real problems and are included in sophisticated scheduling
packages [2].

One heuristic resource leveling algorithms, proposed by Burgess and Kil-
lebrew [10], uses the sum of the squares of daily resource requirements as a

42 Process Planning and Scheduling

measure of effectiveness of the leveling process. Activities are scheduled se­
quentially, starting from the last activity and proceeding to the first, in order to
reduce this variance. A different approach was proposed by Levy, Thompson
and Wiest [64]. In their approach, daily resource requirements are computed on
the basis of an earliest start schedule. The algorithm tries to reduce peak
resource requirements by setting trigger levels. Activities are rescheduled to
satisfy the trigger levels until a set of good schedules is obtained; then the best
of them is chosen.

Resource allocation models have interested operations researchers for more
than twenty-five years. Patterson [79] studied three different optimization
models: (1) a bounded enumeration approach [21]; (2) an implicit enumeration
method [97]; and (3) a branch-and-bound method [96]. His results, based on
110 projects, indicate that the branch-and-bound method of Stinson et al.
provides the best results. Other optimization methods have similar approaches:
the implicit enumeration algorithm of Patterson and Groth [78], the branch-and-
bound method of Willis and Hastings [113] and the dynamic programming
method of Petrovic [81].

The effectiveness of heuristic methods has been studied by Davis and Patter­
son, who examined eight different heuristic methods for 83 multi-resource con­
strained projects. They observed that [23, p. 952]:

None of the heuristic rules tested performed consistently best on all
eighty-three problems. However, the MINSLK rule [Minimum Slack
rule], which bases activity priority on activity slack, produced an optimal
schedule span most often and exhibited the lowest average increase above
optimum of the rules examined.

Kurtulus and Davis [60] studied the performance of heuristic resource-
constrained methods for several projects. Their study indicates that to be effec­
tive, resource allocation algorithms should vary the heuristic rules they use
depending on the status of the scheduling process:

. . . it is assumed that once a rule is selected it must be used throughout the
whole project. This research breaks away from this tradition by providing
a categorization process based on two powerful project summary
measures. The first measure identifies the location of the peak of total
resource requirements and the second measure identifies the rate of utiliza­
tion of each resource type.

In light of this, knowledge-based procedures may be a useful avenue to explore
for this problem.

Most resource allocation models ignore the relationship between resources
and activity durations. They assume that durations are fixed, and that the goal is
to appropriately allocate the available resources. However, some researchers

Models with Resource Considerations 43

START STOP

Read Activity
Data

Calculate Initial
Tentative Schedule

(

Search Completed ?

Search Routine
for Changing
Resource Limits Schedule Cost < Best Obtained Cost ?)

Iterate
on Days Speed Critical

Ac t iv i t i es

i i

Compute Cost of Schedule

i = i + 1

I terate
on Activitiesl

J

] = J + 1
*+^ÎeST.= \ ? \ - ^ - * / c r i t i c a l j ?Λ

^Available Resources >= Λ ^ ^ A v a i l
I Normal Crew Size . ? Maxi

Recalculate Tentative
Schedule for Remaining
Act iv i t i es

Available Resources >= ι ^
Minimum Crew Size

Postpone EST.= i+1

τ
Finish loop j ?

Add-on Unassigned Men

Available Resources >=
Maximum Crew Size . 3

Y (Available Resources
Normal Crew Size

>s >= Λ

l U
Borrow Men from
Parallel Activities

Unsuccessful Ψ Unsuccessful

Reschedule Parallel
Ac t iv i t i es

Successful,

All activities scheduled ? EX
Successful /

Schedule Activity j on Day i
and decrease available crews

Figure 2-19. Simplified Flow-Chart of the SPAR-1 Heuristic Model

have explored the solution of resource allocation models in which activity dura­
tions depend on the type and number of resources allocated to the activities.
Examples are the integer programming formulation of Elmaghraby [26, p. 173]
and the model of Talbot [98]. An important heuristic model that addresses this
problem is SPAR-1 (Scheduling Program for Allocation of Resources) [109].
The original version of SPAR-1 was capable of handling multiple alternatives
for crew sizes and resource profile limits. Figure 2-19 (adapted from [109])

44 Process Planning and Scheduling

shows a simplified flow-chart of the SPAR-1 model. A brief description of the
model follows:

• If an activity requires more than one resource, it is divided into separate
activities that are constrained to start on the same day, one for each resource.

• Associated with each activity is data describing three crew sizes correspond­
ing to the maximum, normal and minimum number of men in the crew for the
activity. If required, the model may assign any crew size within the minimum
and the maximum bounds.

• Activities to be scheduled are sorted in ascending order by their earliest-start-
time and their total slack. Slacks and earliest-start-times are recomputed
dynamically during the scheduling process.

• Activities are scheduled sequentially on a day-by-day basis, trying to shorten
critical activities.

• If there are insufficient resources to schedule a critical activity, the system
tries to borrow resources from non-critical competing activities already
scheduled.

• If the borrowing process is unsuccessful, the system tries to reschedule ac­
tivities without delaying the project. If this rescheduling process is unsuc­
cessful, the system modifies the earliest-start-time of the activity being
scheduled.

• When extra resources are available on a particular day, the system temporarily
assigns additional resources to the activities scheduled on that day in ascend­
ing order of their total slack.

• Schedules are generated for different combinations of resource profile limits.
An outer loop contains a search routine to adjust the total resource profile
limits depending on the attributes of the schedules produced.

• Schedules are evaluated using a cost function that combines due-date
penalties, resource costs, overhead costs and additional costs related to
resource level changes.

2.2.5 Models for Combined Planning and Scheduling
An early attempt at introducing planning decisions within project scheduling
methods was the Crowston and Thompson formulation of the Decision CPM
(DCPM) [16, p. 407]:

DCPM is a method for formally considering the interaction between the
scheduling and the planning phases of a project. Thus, if there are a
number of competing methods of performing some of the jobs, each
method having a different cost, a different time duration, and different
technological dependencies, these possibilities are included in the project
graph.

Models for Combined Planning and Scheduling 45

Figure 2-20. Example of a Decision Project Graph

In the DCPM model, planning decisions are represented by inserting decision
nodes into an AON project network. The result is a decision project graph that
includes activity nodes as well as decision nodes. Figure 2-20 (adapted
from [16, p. 412]) shows an example of a decision project graph containing two
decision nodes, Sj and S2- These nodes are used to indicate different strategies
for performing tasks. For example, decision node S2 indicates that activity two
can be performed in two different ways: one involving a cost of $310 and a
duration of 20 days, and one involving a cost of $100 and a duration of 47 days.
Furthermore, if the activity is performed using the $310 alternative, it must
precede the execution of activities S7 and S3. However, if it is performed using
the $100 alternative, it need only precede activity S3.

46 Process Planning and Scheduling

The original DCPM method used a heuristic, iterative procedure to solve the
problem. In this procedure, decision nodes on the critical path are revised until
no further reduction in the overall cost of the project is obtained. The main steps
of the DCPM method are:

Step 1. Topologically order the activities.
Step 2. Identify and evaluate the set of choices. The set of choices is formed by

obtaining feasible combinations of individual node choices (i.e., which
branch to follow). Each member of the set represents a particular
combination of values for the decision nodes. This produces a set of
networks, each with an associated overall cost.

Step 3. Select the lowest cost combination in the set of choices. After the
lowest cost network has been selected from the set of choices, values
(branch choice in the selected network) are assigned to the decision
nodes.

Step 4. Calculate the critical path and reorder the activities on the basis of
earliest-start-time.

Step 5. Look for improvements. The algorithm determines whether changes in
the decision nodes on the critical path can reduce the overall cost of the
project. This is done by analyzing the slack variables in all parallel
chains going from the node under consideration to the terminal node. If
no improvement can be made, the algorithm terminates.

Step 6. Modify decision nodes. The values of the decision nodes are changed
to the alternative with maximum cost reduction. This results in a new
network.

Step 7. Recalculate the critical path. The critical path in the new network is
computed. The algorithm continues from Step 5.

The original DCPM method has been modified to improve its efficiency.
Alternatives such as branch-and-bound methods and network reduction tech­
niques were explored [17]. However, the potential of the DCPM method was
extended with the development of an efficient dynamic programming algorithm
by Hindelang and Muth [52]. In discussing the advantages of this algorithm, the
authors state [52, p. 240]:

. . . the dynamic programming algorithm has proven quite powerful and,
indeed, successful in overcoming the shortcomings of the previous ap­
proaches. Namely, computer time grows only about linearly with the
number of arcs between nodes, and memory requirements are rather
modest. Hence, large practical problems can now be accurately
represented by the model and solved efficiently utilizing the new algo­
rithm.

Models for Combined Planning and Scheduling 47

Port Nodes

S e l e c t
one schedule

S u p p l y

= 1 / -

Ship Node

Figure 2 - 2 1 . Example of a Generalized Network

Another model that may be used for combined planning and scheduling is a
network formulation model, called NETFORM, proposed by Glover and
Klingman [39, 40]. The authors illustrate how the NETFORM model can be
used to solve pure and non-pure network problems using Generalized Networks
(GN). Pure network problems include shortest path (CPM/PERT), assignment,
transportation and transshipment problems. Non-pure problems include integer
and mixed integer programming problems. The model uses efficient network
algorithms to solve both types of problems.

An example of a GN is shown in Figure 2-21 (adapted from [40, p. 14]).
Arcs of a GN contain information not found in pure network models [58]. Be­
sides an associated cost and flow bound, each arc has a multiplier that indicates
changes in flow magnitude along the arc and may have an asterisk specifying
that the flow in the arc must be an integer. For example, in the GN of
Figure 2 -21 , flow in arc (Ο A) is restricted to be either 0 or 1. This GN was
used to model a problem of choosing delivery schedules for ships, as explained
by Glover, Hultz and Klingman [40, p. 14]:

The setting for the example of [Figure 2-21] is a ship scheduling problem.
In general, such a problem would involve many ships, a variety of
schedules for each, and numerous ports (each represented in several dif­
ferent time periods). Here we show the part of the model that applies to a
single ship with exactly two schedules, A and B. Schedule A requires the
ship to carry 10 tons of ore, which is distributed among the ports by
dropping 3 tons at Port 1, 5 tons at Port 2, and 2 tons at Port 4.
Schedule Β requires the ship to carry 8 tons of ore, dropping 4 tons each at
Ports 3 and 4.

48 Process Planning and Scheduling

The potential advantages of applying this type of model to solve scheduling
problems are discussed by the authors [40, p. 15]:

A recent application of the model, which schedules Air Force pilots to
advanced flight training courses [. . .] , illustrates the power of specialized
methods for such classes of NETFORM's. The standard mathematical
programming formulation of this problem is a 0-1 integer programming
(IP) problem with 460 0-1 variables and 520 constraints. An attempt by
the Air Force to solve this problem with an IP solution routine was aban­
doned due to the prohibitive amount of computer time consumed in the
solution effort. By contrast, a branch-and-bound approach specialized for
the NETFORM (solving GN subproblems) normally obtains and verifies
optimal solutions within 30 seconds on a CDC 6600.

Thus, several methods exist for combining planning and scheduling in the
framework of optimization. However, these methods assume that all activities
and possible decisions have been previously identified and formulated in net­
work models. Moreover, only a limited number of planning decisions can be
included in the models due to computational complexity. As a result, optimiza­
tion methods serve only a limited role in process planning.

2.3 Construction and Manufacturing Planning
This section reviews literature related to different elements of the construction
and manufacturing planning process. Given the broad scope of the area, this
review focuses on the material that affects the manner in which planning is
currently performed. Previous work is discussed in relation to the elements of
the construction or manufacturing planning process with which they are most
closely associated. Various domain-specific expert systems are also reviewed.

Construction and manufacturing planning can proceed at many different
levels of detail and abstraction. For manufacturing processes, typical levels of
planning might be:

• machining in which the activities and resources required to produce a single
part are planned;

• assembly in which the processes required to manipulate and join components
are planned; and

• production planning in which resource assignments and schedules are
developed for an entire manufacturing facility.

Each of these levels includes fundamental problems of plan generation and
evaluation. Descriptions of systems for process planning for particular types of
tasks appear in Chang and Wysk [11].

Construction and Manufacturing Planning 49

Figure 2-22. Elements of the Construction and Manufacturing Planning Process

Figure 2-22 shows the general elements or steps of the construction and
manufacturing planning and scheduling process:

• Recognition of Design Features and Elements involves the extraction and
classification of important elements or features in the final design;

• Definition of Work Tasks and Precedence Relationships involves defining the
activities to be performed and identifying any technological or resource
management precedences among these activities;

• Choice of Technologies, Processes and Resources involves decisions about
appropriate technology and methods for performing tasks;

• Estimation of Activity Durations and Costs is the determination of the ex­
pected durations and costs of the activities on the basis of the technology and
method selected for performing each activity; and

• Preparation, Evaluation and Maintenance of Project Schedules involves
generating project schedules that satisfy the resource, time and cost con­
straints imposed on the activities, and then analyzing these schedules with
respect to managerial goals.

50 Process Planning and Scheduling

These elements of the planning process are interdependent because executing
any one of the steps eventually affects the execution of the others. Therefore,
some of these steps should be performed in parallel or in loops with back­
tracking.

2.3.1 Recognition of Design Features and Elements

Before beginning process planning per se, a representation or model of the
design problem must be created. This model must contain a taxonomy or
nomenclature to permit subsequent analysis.

In manufacturing, considerable work has been done to devise general coding
systems to describe parts and features under the general subject of group
technology. Typically, coding systems for group technology are hierarchical,
matrix or a combination of these methods (Figure 2-23). In hierarchical struc­
tures, digits represent the appropriate descriptor at each level of the hierarchy.
Matrix or chain codes represent table look-up instructions. Hybrid systems
include both of these representations. For example, a nine digit code for a
physical component using the Opitz system [77] might use the first digit to
denote part class, a second digit for main shape, a third for rotational machining
type, a fourth for planar surface machining type and a fifth digit for additional
holes, teeth and forming indicators. Additional digits would denote dimensions,
material, original shape and required accuracy.

Recognition of design features for the purpose of manufacturing may require
considerable domain-specific knowledge [46]. Numerous design features with
seemingly different attributes can actually be produced by the same manufac­
turing processes. Moreover, aggregation of design components into sub­
assemblies may be done to improve manufacturing efficiency without specific
guidance from the design specification. Similar problems arise in construction
in aggregating design elements into work sectors.

2.3.2 Definition of Work Tasks and Precedence Relationships
Most literature related to the definition of work tasks in construction and
manufacturing emphasizes the importance of defining work tasks and
precedence relationships in the planning process and discusses the characteris­
tics of appropriate work breakdown (WB) structures. The process of obtaining
adequate WB structures for construction and manufacturing has been studied
only recently. This section presents two models that can be used to identify
project activities. Programs that generate activity networks for projects are also
described.

Halpin et al. [44] proposed a WB model intended to be consistent in the
design, procurement and construction phases of a project. Their model uses a
hierarchical decomposition of project tasks along three different perspectives:

Definition of Work Tasks and Precedence Relationships

digit 2

digit 1

digit 2

digit 4

Hierarch ica l

digit 1

Matr ix

digit 3

Hybrid

Figure 2-23. Illustration of Hierarchical, Matrix and Hybrid Codes

52 Process Planning and Scheduling

• the physical perspective describes the project in terms of major end items,
systems and components;

• the organizational perspective relates work tasks to the part of the organiza­
tion responsible for the task; and

• the resource perspective groups work tasks with respect to the type of
resources they use.

The physical perspective decomposes the project into very simple operations for
which time and cost estimates can be made accurately. The other two perspec­
tives map these detailed operations into other dimensions for managerial and
reporting purposes. Having decomposed the project using these perspectives,
work packages are defined by grouping the simple operations. The purpose of
this aggregation is to produce elements of the project that are meaningful for
scheduling and monitoring purposes. In the model, each work package is
described by a unique code that specifies its composition with respect to the
three perspectives. Work package descriptions are stored in a dictionary that is
used for cost and control purposes.

A second approach is offered by Baracco's model for integrating duration
and cost estimating [4]. The model addresses déficiences in the current methods
used by construction planners in preparing budgets and schedules for building
facilities. He identified some deficiencies in current practice and developed a
model for integrating duration and cost estimating. An overview of the model is
shown in Figure 2-24. The estimating process starts with information about the
design of a facility and the site where the facility is to be constructed. Design
information includes plans and specifications. Plans consist of drawings of
different systems or areas of the building, such as electrical systems, mechanical
layouts, structural components or functional space areas. Specifications provide
information about materials, finishes and other design data not included in the
plans. Site information contains data on the construction site that affect the
construction process, such as soil composition and climatic conditions.

Using the information in plans and specifications, the planner decomposes
the building into design elements. A design element is a unitary component of a
facility, such as a column, a beam, a column footing or a slab. Then the planner
identifies elements-of-work for each design element. An element-of-work is an
activity that is performed to construct a design element. Examples of elements-
of-work are the formwork and concrete pouring activities required to construct a
concrete column. In the model, elements-of-work are identified by a unique
code that extends the standard hierarchical MASTERFORMAT code [18] by
adding information about the type and location of the design element associated
with the element-of-work. The purpose of this code is similar to that of Hatpin's
model: to provide a unique identifier for aggregating information along various
dimensions.

Definition of Work Tasks and Precedence Relationships 53

Quantities Take-off

r
Budget

Activity Network

r
Project Schedule

Figure 2-24. An Integrated Construction Planning Model

The importance of elements-of-work in Baracco's model is that they provide
the basis for creating a project activity network and a cost estimate based on the
amount of work or quantity take-offs. Cost estimates are computed when the
planner selects an appropriate Basic Cost Unit (BCU) for each element-of-work.
Each BCU is a package of labor, material and equipment that may be used to
perform the element-of-work under certain conditions. The direct cost of an
element-of-work is obtained by dividing the amount of work by the standard
productivity of its associated BCU and multiplying by the hourly cost of the
BCU. Project activities are created by aggregating elements-of-work. Once
project activities are created, the planner determines precedences among them,
thus producing an activity network that is used for scheduling and monitoring
purposes.

Recently several researchers have studied the problem of automatically creat­
ing the project activity networks. One system, called GHOST (Generator of
Hierarchical schedules for cOnSTruction) [75], receives as input a set of ac­
tivities and finds precedences among these activities by using a set of critics.
GHOST starts with a list of unstructured activities such as build lintel or build

54 Process Planning and Scheduling

foundation and creates a network in which all activities are performed in paral­
lel. Then it applies critics to find physical precedences among the activities by
using knowledge about construction and physical relationships. Once a network
has been created at a particular level of detail, the system expands each activity
into a set of subactivities. Critics are applied to the newly created network to
find precedences at this lower level of detail. The system proceeds by succes­
sively expanding networks until an appropriate level of detail has been obtained.
The limitations of the system are:

1. GHOST generates too much redundancy during the hierarchical inheritance;
2. it does not check for circularity;
3. it does not interpret actual construction drawings;
4. GHOST cannot estimate activity durations;
5. it needs to be able to handle global pre-activities;
6. it cannot schedule the trades that will be involved in the project; and
7. it cannot redefine the dependencies among subactivities.

Despite these limitations, GHOST is an interesting application of a planning
model which functions similarly to NO AH's process of successively expanding
nonlinear plans (see p. 23). In addition, the list of initial activities input to
GHOST is similar to the list of design elements of Baracco's model for work
decomposition. Each design element (e.g., pillar A) is associated with an ag­
gregate activity representing the process of building this design element (e.g.,
build pillar A). Then these activities are expanded into subactivities that
resemble Baracco's elements-of-work (e.g., build formwork or place
reinforcement). More powerful systems of this type are appearing, such as
PIPPA [67] and OARPLAN [20].

Another system, called LIFT-2 [7], is a rule-based expert system that sup­
ports the modeling of heavy lifting operations. LIFT-2 takes the role of an
engineer in a contracting firm who is preparing a bid for offshore heavy lifting
jobs. For this task, the planner has to develop a plan for the lifting job by
analyzing the geographic characteristics of the site, the location of available
cranes and the location of platform modules. LIFT-2 produces a graphical
outline of the plan as an AON representation and provides explanations of the
reasoning process. In solving the problem, LIFT-2 combines different problem-
solving strategies. The overall reasoning strategy sequentially satisfies goals in
an attempt to effectively reduce the total search space. For example, the
goal vessel selection is satisfied before the goal site investigation. Goals are
satisfied using a generate-and-test paradigm: when trying to satisfy a goal, all
possible alternatives are generated and some of them are eliminated by using
previously formulated constraints. The justifications and assumptions for using
this paradigm in the higher levels of the problem-solving process are described
as [7, p. 32]:

Choice of Technology and Method 55

Constraint satisfaction using the generate-and-test-paradigm is successful
at the highest levels in this hierarchy because sub-goals are assumed inde­
pendent and because constraints and generators (i.e., user-prompted input)
are available. In some cases, however, where sub-goals at the highest
levels are not completely isolated this paradigm is weakened.

Other problem-solving techniques used in LIFT-2 are least-commitment and
meta-planning. Least-commitment is used in the lowest levels of the problem-
solving process. At these levels, the interactions among subgoals are important
and the system deals with them by using rules that combine possible solutions to
several goals. This strategy delays decision-making until enough information is
available to solve several subgoals simultaneously. Although the system does
not have a well-defined layered structure as in MOLGEN (see p. 30), the rules in
LIFT-2 contain both strategic and detailed knowledge.

In LIFT-3 [8], a descendent of the LIFT-2 system, the planner is not part of
the lifting firm, but works for the oil company responsible for the complete
project. The architecture of LIFT-3 uses the blackboard problem-solving
paradigm of OPM (see p. 32) and replaces the sequential reasoning process of
LIFT-2 with an opportunistic process in which independent knowledge sources
are executed. In addition, LIFT-3 reduces the search space by identifying
ranges for the values of the design variables rather than committing itself to
assigning values to these variables.

A final example of a program that generates activity networks in TIPPS
(Totally Integrated Process Planning System). TIPPS evolved from the earlier
APPAS and C ADC AM programs [11] and contains a process selection module
that defines machining activities and selects manufacturing processes simul­
taneously. Appropriate processes to achieve desired design features are selected
by evaluating decision tables. A typical process knowledge data element is:

(IF (SHAPE ! xxx =))(THEN (8 PROCESS @))

which is interpreted as: feature xxx should use process 8.

2 3.3 Choice of Technology and Method
Selecting the technology to perform tasks involves two types of decisions. First,
the planner has to identify and choose among possible packages of labor and
equipment available to perform the task. Alternate methods affect the resource
requirements. For example, Walker's estimating book [105, p. 8.117] indicates
various personnel requirements for mixing and placing concrete in foundations
that are based on the chosen construction method (see Figure 2-25).

In selecting the type of technology package or crew, the planner uses
knowledge about crews or equipment usually chosen to perform an activity. For
construction activities, this information is available in construction estimating
books [105], in books about construction methods [76] or, more generally, in

56 Process Planning and Scheduling

ω
c
ο
CÖ
ο
ο

Construction
Method

Hand Mixing (one board)
Hand Mixing (two boards)
One Sack Mixer
Two Sack Mixer
1 Cu. Yd. Mixer

Hours per Cubic Yard
Mixer Engineer Foreman

None
None
None
0.125
0.083

0.33
0.25
0.17
0.125
0.08

Figure 2-25. Example Unit Requirements for Mixing and
Placing Concrete in Foundations

2 , 4

(2 , 3 h
1,2 2 , 2

1,1 2,1 3,1

Location 3
Time Phase 4
Work Squad 2

1 2 3 4 5 6

Time Phases

Figure 2-26. Illustration of Line Balancing

manuals that list appropriate crews for construction activities, typically utilizing
the MASTERFORMAT coding system [71].

After the type of crew or technology package for an activity has been chosen,
the second type of decision made by the planner is to select the number of
machines or crews assigned to the activities. There are two alternative
methodologies that may be used in this decision process. In the first alternative,
the planner knows an approximate value for the duration of the activity and
adjusts the number of crews allocated to the activity in order to achieve this
duration. This approach is based on experience from previous projects and does
not consider the interactions between the activities.

In the second alternative, the planner simulates the manner in which the
different crews and machine types will be used to perform the activities and tries
to achieve a continuous use of the crews. In this approach, usually called
assembly line balancing, the objective is to insure that each activity proceeds at

Choice of Technology and Method 57

the same rate of speed. For example, Figure 2-26 illustrates the progression of a
component or a work task through different time phases and through different
equipment locations. In a balanced assembly line, subsequent components
would not be delayed at any stage of the manufacturing process.

Another technique that is used to aid technology selection is process
simulation. An example is CYCLONE [42] (CYCLic Operations NEtwork),
which has been successfully used to model the construction of several buildings,
including the Peachtree Center Plaza Hotel in Atlanta [43]. Figure 2-27
(adapted from [42, p. 69]) shows an operations network for modeling earthmov-
ing operations. The network contains different types of elements:

• Combination activity nodes represent activities that cannot be performed until
a combination of required resources is available. If only some of the
resources are present, the activity waits for the arrival of the remaining
resources before it commences. An example is the load truck activity that
requires an idle front-end loader, a non-empty truck queue and a soil stock
pile with enough soil before the activity can start.

• Normal activity nodes represent activities that may be executed whenever any
of the required resources are available. Resources used by the activities do
not have to wait before they are used. An example is the haul to dumping
area activity that may begin as soon as the load truck activity finishes.

• Queue nodes represent places where labor, equipment or materials wait before
being used by an activity. Examples are the truck queue and the front-end
loader idle nodes of the network.

• Arrows represent flows of resources (e.g., soil, trucks or loaders).

In addition to these elements, CYCLONE networks may include function nodes
and accumulator nodes. Accumulator nodes are used to control the simulation
process and to obtain statistics on the number of resource units flowing through
an arrow element. Function nodes are used to introduce user-defined functions
such as those that define resource availability.

The CYCLONE model and other process simulation tools are powerful aids
for evaluating alternative technologies or methods. However, these models
require the user to manually define the operations network to be analyzed.
CYCLONE has no provisions for modifying the topology of the operations
network during the simulation or after the simulation has been completed.
Therefore, CYCLONE is considered more of an analysis aid rather than a
synthesis aid for the planner.

Another model that could be used to select among alternative resource
choices is the Decision CPM model (see p. 44). In this model, decision nodes
are used to represent combinations of crew types and number of crews. For
example, an activity with two possible types of crews and three alternative crew
sizes (e.g., maximum, desirable and minimum) is represented using a decision
node with six possible outcomes.

58 Process Planning and Scheduling

Figure 2-27. CYCLONE Network for Modeling Earthmoving Operations

A final example of a technology selection aid is graphical process simulators
in which planners can view an animation of process activities and equipment on
the plant floor. Again, these models are more useful for analysis and visualiza­
tion than for process synthesis.

2.3.4 Estimation of Activity Durations and Costs
Estimation of activity durations is a fundamental task in the planning process.
However, it has received little systematic attention [90]. Project planners
usually base their estimates on average productivities found in estimating hand­
books such as Dagostino's [19] or in company records. Adjusting these produc­
tivities to reflect local conditions requires considerable expertise and thus cannot
be done successfully by novice planners.

Researchers have attempted to capture the expertise of planners by using
expert systems technology. One of these systems, MASON [48], is used to
estimate the duration of masonry construction activities. The system has ex­
planation capabilities and provides the user with recommendations for improv­
ing crew productivities. In solving the estimating problem, MASON uses a
hierarchical, rule-based estimation process in which higher levels represent at-

Estimation of Activity Durations and Costs 59

[Activity Duration j
I Estimate J

T
Overall Adjustment

T
Initial Duration
Estimation

Quantity of Work
Weather
Number of Crews

Productivity
Estimate

Down Time
Estimate

Productivity
Adjustments

Maximum
Productivity

Ξ
Down Time * (
Estimate

τ
{Ancillary Task Λ

Information J

Task, Technology
and Site Data D

CD- data

I I = procedural
steps

Figure 2-28. MASON's Estimation Hierarchy

tributes which depend upon the details of lower-level inferences and calcula­
tions. The estimation hierarchy is represented in Figure 2-28 (adapted
from [48, p. 291]). At the lowest level of the hierarchy, MASON estimates the
maximum crew productivity and identifies various modifications to account for
downtime (i.e., idle, waiting). At the next highest level, adjustments to produc­
tivities are computed by considering special characteristics of the site or of the
job. At the top level, quantity of work, productivity, crew resources and
downtime are combined to estimate the duration of the activity.

Similarly, planning manufacturing processes also involves estimating to
select equipment parameters. For example, the following rule is used to identify
the number of passes and material speed for a machining process in the
PROPLAN planning system [74]:

60 Process Planning and Scheduling

If <Operation is Turning>
<Height of REC+ is between 1.5 and 2 inches>
<Partmaterial is Cast Iron>
<Toolmaterial is Carbide Tip>
<Surface Finish Required is Regular>

Then <Speed = 250 RPM>
<Rough Passes = 5>
<Finish Passes = 2>

2.3.5 Preparation, Evaluation and Maintenance of
Project Schedules

Process planning may be divided into two major phases: (1) a preconstruction or
premanufacturing phase; and (2) a process phase. Some of the tasks performed
by the planner in the first phase, such as activity duration estimation or tech­
nology choice, have already been described. After performing these tasks, the
final step in the preconstruction and premanufacturing phase involves the
preparation of a work schedule. In obtaining this schedule, planners usually
employ one or several of the basic scheduling techniques described in
Section 2.2. Common techniques are the Basic CPM method, the Precedence
Diagramming Method, or some resource allocation model with fixed heuristics
for job shop scheduling [3]. Planners use these techniques to identify the critical
activities, compute the earliest-start-time of the activities and their correspond­
ing slacks, estimate the overall duration of the project, and perform litigation
during the bidding phase. Some contractors or manufacturers use scheduling
techniques during the construction or manufacturing phase of a project [1] .
However, existing computer tools do not incorporate the knowledge required to
solve the problems encountered in the project monitoring process. Potential
applications of knowledge-based expert systems in this area are discussed by
McGartland and Hendrickson [69]. In this section, some computer systems that
may be used to assist the planner in maintaining and evaluating project
schedules are described.

An interesting approach for incorporating construction knowledge into
project scheduling systems is illustrated by Levitt's PLATFORM [62], a
prototypical expert system for automated updating of activity schedules for
design and construction. The domain is concrete, offshore, oil drilling plat­
forms. PLATFORM represents activities by using frames with slots that contain
static information (e.g., optimistic and pessimistic durations) and procedures for
computing other activity attributes (e.g., expected duration and variance). This
representation allows detailed activities to inherit properties of parent frames
corresponding to more general activities. In addition, activity frames contain

Preparation, Evaluation and Maintenance of Project Schedules 61

information about causes or impacts that may affect the durations of the activity,
such as the designer's competence or the owner's requirements.

PLATFORM updates the initial project schedule by recording the actual
duration of completed activities and by identifying knights and villains. Knights
represent characteristics common to two or more activities whose actual dura­
tions were shorter than expected. Villains represent characteristics common to
two or more completed activities whose durations were longer than expected.
Knights and villains are used to update the estimated duration of the activities
not yet completed. Knights change the expected duration of an activity to its
optimistic duration and villains set it equal to its pessimistic duration. In the
updating process, the user may override the system's recommendations.

Although the main purpose of PLATFORM was to illustrate the use of AI
techniques for schedule maintenance, the system also permits limited changes to
network topology by explicitly storing alternative subnetworks for each major
activity. For example, depending on the soil condition (e.g., sand versus clay),
the system selects one of these subnetworks when creating the final project
network.

A major development in the creation of intelligent project management sys­
tems was CALLISTO [88]. CALLISTO was initiated as an effort to produce an
intelligent assistant for use during the design and prototype development stages
of large computer systems. The CALLISTO project has produced several
prototypical systems that illustrate the potential of integrated project manage­
ment systems. The first prototype was rule-based and focused on a single
project plan that was constantly monitored and updated. This prototype was
used to explore the types of expertise used in the scheduling process, but it
assumed that the different parts of the organization shared common goals. Later
this concept evolved into a new architecture that emphasized the need for
negotiation among different organizational units. In the new architecture, each
organizational unit is represented by a Mini-Callisto system that incorporates its
own expertise and goals. These Mini-Callistos interact and negotiate a solution
that satisfies their individual goals as well as the goals of the project.

In CALLISTO, the project management problem is decomposed into three
major activities:

• Activity Management involves the planning and scheduling of activity net­
works and the evaluation and monitoring of activity schedules;

• Resource Management involves the projection, acquisition, assignment and
maintenance of resources; and

• Configuration Management involves the management of product specifica­
tions and changes.

These three activities are very similar to those performed by contractors. Con­
tractors not only deal with activity management issues, but also perform many

62 Process Planning and Scheduling

other tasks related to the management of resources and specifications. Contrac­
tors have to purchase materials and lease or buy needed equipment. Also, they
must negotiate with the owner over work change orders.

Usually the many tasks involved in project management are performed by
different parts of an organization. Therefore, the Mini-Callisto model of
negotiations between organizational units seems to be a promising approach in
developing a complete project management system. PLANEX, however, focuses
on the planning and scheduling problems of the activity management area. The
methods employed by CALLISTO for representing activity knowledge [87]
provided insights that were used in designing the knowledge-based system ar­
chitecture of PLANEX.

2.4 Conclusions
This chapter has reviewed previous work in three main areas: plan formulation',
project scheduling', and process planning. Plan formulation systems focus on
identifying sequences or networks of activities used to meet certain goals. Most
of these systems do not involve complicated considerations of time, budget or
resource constraints. In addition, their application has dealt with toy domains
(e.g., those related to stacking blocks with a robotic hand) rather than with more
realistic problems. Conversely, project scheduling research has concentrated on
developing efficient algorithms for incorporating resource, time and budget con­
straints into project management models. However, most of the scheduling
systems do not consider changes in the topology of the activity network or in the
type of resources assigned to each activity. Therefore, they may be used only
after the planner has made many of the decisions in the planning process.
Finally, reviewing the tools specifically developed for managing projects reveals
that planners receive little help from existing models. Most of the planning
process is done by hand and important tasks such as schedule updating are not
performed regularly [62, p. 57]:

Project managers and senior estimators are typically unwilling or unable to
devote large blocks of time to maintaining schedules for real time plan­
ning and control purposes during a project. Thus, schedule updating be­
comes primarily an archival record-keeping process, rather than a replan­
ning process, and is carried out by lower-level scheduling engineers.

Some probable reasons for the minimal impact of existing models in the plan­
ning process are:

• Systems focus on analysis rather than on synthesis. Existing resource selec­
tion packages still require the planner to identify which resources may be used
to perform the activities. Research has focused on simulating the selection of
technology choices previously done manually. There is a need for tools
which can assist during the decision-making process.

Conclusions 63

• Systems do not incorporate domain-specific knowledge. Effective aids for the
planning process must incorporate and use task-specific knowledge. Com­
mercial scheduling packages require the planner provide data about the ac­
tivities (e.g., durations, costs, precedences, resources) but they do not incor­
porate knowledge about how the data was obtained. Only a few systems (e.g.,
PLATFORM) incorporate knowledge to assist during the revision of project
schedules once the project has started.

• Systems are not transparent. Most systems are black-boxes because their
internal heuristics are not known or cannot be changed by the user. Prac­
titioners are not willing to use black-boxes because they do not understand
them.

• Systems are not flexible. Planners require systems that are flexible and can be
easily adapted to fit different planning scenarios and adjusted to meet dif­
ferent managerial goals.

Several surveys [22] and comparison studies [1] seem to indicate that the
reasons listed above reflect the beliefs of practitioners. A knowledge-based
planning architecture that is designed to overcome some limitations of existing
systems is described in Chapter 4. This architecture builds upon the foundation
of AI planning systems, optimization methods and knowledge-based planners
reviewed in this chapter. Taking advantage of each of these approaches in an
appropriate fashion was a major objective in developing the PLANEX system. A
conceptual model suitable for this integration is described in the next chapter.

Modeling Process
Planning Problems

The preceding chapter presented a review of previous work on planning sys­
tems. This review showed that automated planners differ considerably with
respect to both their structural and behavioral characteristics. Recent planners
have layered or blackboard architectures which are structurally more complex
than the architectures of early planning systems. In terms of their behavior,
some systems solve planning problems using algorithmic search procedures
while others obtain plans using opportunistic or constraint propagation
mechanisms. However, the major differences among automated planners are
those related to the capabilities they provide for modeling planning problems.
For example, means-end planners such as NOAH and NONLIN do not provide a
mechanism for representing the combined effects of actions (e.g., the total usage
of a resource). Therefore, these planning systems are not appropriate for model­
ing planning problems in which resource considerations are important (e.g.,
resource allocation problems). Thus, to develop a process planning system
which incorporates all of the elements of construction and manufacturing plan­
ning, a conceptual model of planning process itself must be developed.

This chapter presents a conceptual model for process planning which may be
used as the basis for designing automated process planners. The chapter begins
by analyzing the type of information contained in process plans and the different
entities involved in process planning problems. Following this analysis, the
applicability of two AI planning models to the process planning problem is
discussed and a hybrid model for process planning is described. Finally, the last
section presents a list of architectural requirements for an automated system that
would implement the conceptual process planning model. These requirements
constitute the basis for the design of the knowledge-based process planning
architecture presented in the next chapter.

65

66 Modeling Process Planning Problems

3.1 A Conceptual Model for Process Planning
In this section a conceptual process planning model is described. This model
combines elements of two previous planning models:

• the means-end planning model used by linear and nonlinear planners; and
• the blackboard planning model used by blackboard planners.

The rationale for developing such a model is explained by analyzing the dif­
ficulties that previous planning systems have in modeling process planning
problems.

3.1.1 Characteristics of a Process Plan

Figure 3-1 shows a black-box representation of process planning. The planner
analyzes the information describing the product to be built or manufactured and,
based on previous experience, it generates a complete plan for creating the
desired product using the set of available resources.

The information in a construction or manufacturing process plan is broader in
scope than that produced by most AI planners because a process plan not only
identifies which activities are required to build or manufacture a particular
product, but also specifies other activity attributes such as durations, costs and
resource utilization. In some domains, activities are linked with each other into
a network that specifies the order in which activities must be performed (e.g.,
placing the forms for cast-in-place concrete must precede pouring the concrete).
This network may be used in computing scheduling data for the activities such
as their earliest or latest completion times.

Although the information contained in a particular process plan depends upon
the characteristics of the corresponding construction or manufacturing process, a
process plan always provides information about the relationships between three
basic types of entities:

• Product Components which are portions of the final product to be constructed
or manufactured;

• Activities which represent operations to be performed to produce the desired
product; and

• Resources which are used in performing the activities, such as machines,
labor or materials.

Typically, there are many combinations of activities and resources which may
be used to construct or manufacture the final product. Thus, the planner faces a
challenging situation because activities and resources are not independent. For
example, in an excavation project, the set of available excavators affects the
number and type of the excavation activities included in the process plan.

Means-End Model 67

Product
Description Process Planning

$
External Factors ι 1

Process Plan

Figure 3 - 1 . Black-Box Representation of Process Planning

3.1.2 Means-End Model

A first attempt at solving process planning problems would be to model them by
employing the representation used by strategic means-end planners. Using this
representation (see p. 16), the process planning problem would be formulated as:

However, this model of process planning presents two major problems:

• First, it is difficult to define the desired and initial conditions using a
homogeneous terminology. Figure 3-2 illustrates this problem. Process plan­
ners have a clear idea of the product to be built or manufactured (e.g., a part
or a building) because this information comes from the drawings and
specifications of the product. However, it is difficult to describe the initial
state (e.g., the beginning of the project) in the same terms as those used to
describe the final product. The initial state is not a mere decomposition of the
product into its primitive components (e.g., columns, beams), but more
similar to a pool of materials, labor and equipment which are combined to
obtain the final product.

• Second, it is difficult to specify the preconditions and effects of the means-
end operators in terms related to the characteristics of the final product and
available resources. For example, when NONLIN was used to plan construc­
tion projects, operators represented construction activities whose precon­
ditions and effects were related to other activities and not to building com­
ponents. An operator such as pour-concrete-columns would have a precon­
dition of finished-placing-forms-columns and an activity-related effect of
finished-pour-concrete-columns. This description does not provide mean­
ingful information for process planning because there are no explicit relation-

Given: A description of a desired product
A set of available resources
A set of possible operations
A description of the manner in which processes and
operations may be combined to obtain the desired product.

Find:

68 Modeling Process Planning Problems

Initial State: Goal State:
??? Desired Product

Figure 3 - 2 . Process Planning as a Means-End Problem

ships with the characteristics of a column (e.g., cast-in-place concrete requires
formwork). Furthermore, such a description of the operators requires
knowledge of the activity network in advance.

Despite these problems, the concepts provided by a means-end model are useful
for controlling the execution of process planning operators in the knowledge-
based architecture described in Chapter 4.

3.1.3 Blackboard Model

Modeling process planning problems could be based on the blackboard model
described in the previous chapter (see p. 32). Blackboard planners generate
plans incrementally following a procedure in which multiple agents (e.g., the
knowledge sources of OPM) contribute to developing portions of the final solu­
tion. Modeling process planning problems using the blackboard model requires:

• the identification of appropriate individual agents, which implies that the
black-box representation of Figure 3-1 is decomposed into a set of simpler
planning operations related to the different aspects of the process plan; and

• the specification of how these agents are controlled during the creation of a
process plan, which implies that criteria for scheduling the planning opera­
tions are defined.

Figure 3-3 shows the first two levels of an illustrative hierarchical
decomposition of process planning into simpler operations. In the first level,
process planning is decomposed into four macro operations related to the ele­
ments of process planning discussed in Section 2.3. Each operation is succes­
sively decomposed into simpler operations until the desired level of detail is
reached. The resulting set of low-level operations constitute the agents that are
scheduled during the execution of the planning system.

There may be other mechanisms to obtain the set of planning agents in
addition to the hierarchical decomposition procedure described above. In any
case, the manner in which planning agents are obtained is not particularly

Hybrid Model 69

Process Planning

Def in i t ion of
W o r k T a s k s and
Precedence
R e l a t i o n s h i p s

Def in i t ion of
W o r k T a s k s

D e f i n i t i o n
of P r e c e d e n c e
R e l a t i o n s h i p s

P r e p a r a t i o n
and Ma in tenance
of P ro jec t
Schedu les

Cho ice of
T e c h n o l o g i e s
a n d M e t h o d s

S e l e c t
M a c h i n e s
and Labor

E s t i m a t i o n of
Dura t ions a n d
C o s t s

E s t i m a t e D u r a t i o n s

S e l e c t
M a t e r i a l s

C r i t i c a l
Path
M e t h o d

Es t ima te C o s t s

Figure 3-3. Example of a Hierarchical Decomposition of Process Planning

relevant to the execution of a blackboard planner. What is important, though, is
to establish the manner in which these planning operators are scheduled during
the problem-solving process. In order to use the blackboard model in a process
planning system, it is not enough to specify that only one of the problem-solving
agents is executed in each problem-solving cycle. Scheduling or conflict resolu­
tion criteria are needed to evaluate both the feasibility and desirability of execut­
ing the operators at any step in the planning process. Some blackboard planners
such as OPM (see p. 32) have control agents which provide powerful control
schemes. However, defining the scheduling criteria in specific domains is not
easy because control knowledge depends on the nature of the planning operators
themselves.

3.1.4 Hybrid Model
In order to overcome the difficulties that may arise when using either a means-
end or blackboard model for process planning applications, a new planning
model was developed. This model, called the hybrid model, combines modeling
concepts from other planning models and was implemented in PLANEX.

70 Modeling Process Planning Problems

Similar to the blackboard model, the hybrid model assumes that process
planning can be decomposed into a set of simple planning operations, each
related to a particular element of a process plan. However, the control structure
of the hybrid model uses a declarative representation of operations which
resembles the descriptions of the operators of a means-end planner. These
descriptions suffice for controlling the execution of the planning operators, and
no additional scheduling knowledge needs to be represented.

The behavior of a process planner using the hybrid model alternates between
two levels of execution:

• a strategic level in which the planner behaves as a means-end planner and
creates networks of planning operators that achieve goals or propagate
changes using independent knowledge which describes each operator; and

• an operative level in which the planner executes operators one at a time,
resembling the problem-solving cycle of a blackboard planner in that
knowledge and procedures are decomposed into simple operators.

In addition, implementations of the model require an interface level to display
results of the planning process and to allow the user to modify planning deci­
sions.

Figure 3-4 shows the representation of a planning operator in the hybrid
model. The operator has three lists of associated conditions:

• preconditions that must be true before the operator is executed;
• positive effects which are conditions asserted by the operator; and
• negative effects which are conditions negated by the operator.

These lists resemble the preconditions, add and delete lists of some means-end
planners such as INTERPLAN and NONLIN (see Section 2.1). The difference,
however, is that conditions are expressed in terms of the status of the places
where information is stored or retrieved (e.g., whether or not the attribute is
defined), rather than in terms of product or process plan characteristics (e.g., the
geometric description of the desired product). For example, an operator that
determines the duration of an activity using data about its amount of work would
have a precondition indicating that the value of the amount of work attribute
must be defined before executing the operator and an effect indicating that the
duration of the activity will be defined after the operator is executed.

Precondition

Precondition

Operator

θ

Effect

Effect

Figure 3 -4 . Representation of a Planning Operator in the Hybrid Model

Two Illustrative Models for Process Planning Operators 71

Using the hybrid model, the feasibility of executing an operator is determined
by looking at whether pieces of information (e.g., the attribute X of object Y) are
available. However, the desirability of executing an operator can only be deter­
mined if goals are also expressed in terms of the places where information is
stored. Example goals would be to store or erase the value of particular at­
tributes of objects. In Section 5.3.4, the presentation of the use of the hybrid
model in blocks-world problems shows that the manner in which goals are
expressed does not necessarily impose a limitation on the types of planning
problems that may be modeled. In fact, any problem that can be modeled using
a means-end model can also be modeled with the hybrid model.

In summary, the hybrid model considers process planning as a procedure in
which:

• simple operators successively transform design information into process in­
formation; and

• dependencies among these operators are established explicitly in terms of the
data dependencies (e.g., the data required by and produced by these
operators).

As a result, the hybrid model has two major advantages in modeling process
planning problems. First, it overcomes the need for the unified description of
the solution space required by the means-end planners because there are
operators that transform one description into another. Second, it simplifies the
problem of selecting the next operator because control utilizes a declarative
representation of operators based on their individual preconditions and effects.
Of course, this model does not necessarily eliminate the frame problem of clas­
sic planners (see Section 2.1.5) because data items may have unrecorded inter­
relationships. Nevertheless, explicit recognition of operator data dependencies
simplifies this frame problem in many instances.

3.2 Two Illustrative Models for
Process Planning Operators

Modeling process planning problems using the hybrid model requires identifica­
tion of the individual planning operators which create the plan and definition of
the manner in which each operator acts. Thus, a model for each process plan­
ning operator needs to be developed. Because of the similarities among con­
struction and manufacturing processes, some of these models may be common
to several domains. For example, computing scheduling information using a
Basic CPM algorithm (see p. 38) is appropriate for any project network with
only finish-to-start precedences among the activities. However, another type of
model (e.g., the Precedence Diagramming Method) is required when different
types of precedences are present.

72 Modeling Process Planning Problems

In general, models for process planning operators can be categorized with
respect to the elements of process planning into:

• Feature Recognition Models including models used to identify or interpret
features of the design;

• Activity Formulation Models including models for the identification of work
tasks and precedence relationships;

• Technology Choice Models including models for the selection of technologies
and methods for performing construction or manufacturing activities;

• Estimation Models including models used to estimate activity durations and
costs based on the technologies and process methods selected for the ac­
tivities; and

• Scheduling Models including models that are used to prepare and maintain
activity schedules.

However, some domains may require models whose scope spans multiple
categories (e.g., models that combine technology selection and scheduling).

In Chapter 2, models for hierarchical duration estimation, technology selec­
tion and project scheduling were presented. The discussion below presents two
models which were used in some of the applications of PLANEX to generate and
schedule activity networks.

3.2.1 "Bottom-Up" Activity Formulation Model

Several planners generate activity networks using a top-down approach in which
an aggregate network is successively expanded until an appropriate level of
disaggregation is obtained. Although this approach has been successfully used
in some domains, the amount of domain knowledge needed for the expansion
process is considerable, because many abstraction levels are involved. As an
example, suppose that a planner is generating an activity network for construct­
ing a building using the top-down model. An initial network might have ag­
gregate activities such as Excavate, Structural Erection and Finishes, because
these activities are required for all buildings. However, it is difficult to generate
any other information at this aggregate level (e.g., the lag between the excava­
tion and erection activities) without having domain-specific knowledge related
to other characteristics of the design.

Figure 3-5 shows an alternate activity formulation model which proceeds in a
bottom-up fashion. A planner using this model would obtain an activity network
by following four steps:

Step 1. Product Decomposition. The final product is decomposed in terms of
primitive components called design elements.

Step 2. Identify Activities. The planner determines the activities required to
produce each design element. These tasks are denoted as the element
activities of the design element.

Unified Activity Network Model 73

PRODUCT

0
^ D e Decomposit ion

Design

Aggregat ion

Linking

Element Activities P r o j e c t A c t i v i t i e s

Figure 3-5. Bottom-Up Activity Formulation Model

Step 3. Aggregate Activities. The system aggregates element activities into
more manageable tasks called project activities.

Step 4. Link Activities. The system establishes precedence relationships among
project activities in order to create a project activity network.

There are several reasons to favor the use of the bottom-up activity formula­
tion model in process planning problems:

• the bottom-up approach has many similarities with the cost estimating and
material requirement processes used by planners;

• activity formulation knowledge is more readily available in the bottom-up
approach because cost estimating and process literature usually focus on
product or building components; and

• a top-down approach must reach a detail level corresponding to the element
activity level in order to perform quantity take-off calculations.

The use of the bottom-up model in construction and manufacturing process
planning is illustrated in later chapters.

3.2.2 Unified Activity Network Model
The unified activity network model represents each project activity by a start
node, a finish node and a connecting link. With this model, precedence relation­
ships and activity window constraints are also represented by links, and miles­
tones are modeled as nodes in the activity network. The model is an extension
of a similar representation suggested in Bell [5] for use in an automated plan­
ning system using AI techniques. The unified activity network model is
described more fully in Hendrickson and Au [50] and in Hendrickson and
Zozaya-Gorostiza [51]. The major advantage of the unified activity network

74 Modeling Process Planning Problems

model is that it permits the use of standard shortest-path algorithms (e.g., the
Basic CPM) in scheduling activities and computing milestone, earliest and latest
start and finish times.

The unified model is based on an activity network of nodes and links. Nodes
represent events (e.g., the start and finish of an activity), including project start
and completion. Links are characterized by a minimum duration and a cost.
The preceding event time plus the duration must be less than the succeeding
event time for each link.

Figure 3-6 illustrates a small unified network model with two activities: /
and j . In this model, nodes represent project milestone events (such as the
project start [PS], project finish [PF] and activity start and finish [S i ? FJ) . Links
represent activities (such as i and j in Figure 3-6), activity precedences or
window constraints. Each link k has an associated duration D k which must be
positive or zero. In particular, the eight different precedence and window con­
straint types illustrated in Figure 3-6 are:

1. The project start must precede the start of activity i by at least Όχ.
2. The project start must precede the finish of activity j by at least D 2 .
3. The start of activity / must precede the start of activity j by at least D 3 .
4. The start of activity / must precede the finish of activity j by at least E>4.
5. The finish of activity i must precede the start of activity j by at least D 5 .
6. The finish of activity / must precede the finish of activity j by at least E>6.
7. The finish of activity j must precede the project finish by at least D 7 .
8. The start of activity / must precede the project finish by at least D 8 .

8

2

Figure 3-6. Two-Activity Network with Eight Precedence and Window Constraints

Unified Activity Network Model 75

These eight links represent four types of precedence relationships and four types
of minimum or greater-than window constraints (numbers 1, 2, 7 and 8).

If negative link durations are permitted, eight additional types of constraints
can be represented. A negative link duration imposes a maximum precedence
lead. If event k must occur within a prescribed time period | D k h | time units after
event h, then a link from k to h with negative duration D k h requires that the time
of event k, E k , is less than or equal to the time of event h plus the prescribed lead
IDjJ: E k + < E h or E R < E h + \Ό^\ for < 0. As shown in the partial
network of Figure 3-7, links 9 to 16 represent the following constraints:

9. The start of activity / is within |D 9 | of the project start.
10. The finish of activity j is within | D 1 0 | of the project start.
11. The start of activity j is within |Dj {\ of the start of activity /.
12. The finish of activity j is within | D 1 2 | of the start of activity /.
13. The start of activity j is within | D 1 3 | of the finish of activity /.
14. The finish of activity j is within | D 1 4 | of the finish of activity /.
15. The project finish is within | D 1 5 | of the finish of activity j .
16. The project finish is within | D 1 6 | of the start of activity /.

J1

10

Figure 3-7. Two-Activity Network with Eight Maximum Duration Links

76 Modeling Process Planning Problems

Again, eight different precedence and window constraints exist of a maximum or
less-than type. Unfortunately, negative length cycles may be introduced in the
network by permitting negative links, and to avoid cyclic computations, the
critical path solution algorithms are more complicated.

Each link duration and event time can also be a variable and can be as­
sociated with a cost function. In this case, the network model is the familiar
time-cost trade-off model. Another variation is to allow OR nodes as in the
Decision CPM model (see p. 44).

Figure 3-8 shows an application of the basic unified model to a project with
five activities and twelve precedence relationships. In the absence of negative
precedence durations, and assuming that all activities are amenable to splitting,
the unified model can be solved by applying a node labeling algorithm such as
the Basic CPM or Dijkstra's [61].

Figure 3-9 summarizes the scheduling results for the small project network
of Figure 3-8. In this case, the critical path (illustrated in bold) includes:
PS —> SC —> FC -> SE —> PF. The following observations can be made from the
solution:

• Both the start ma finish times of activity C are critical (i.e., these activities
cannot be delayed without delaying the completion time of the project).

• Only the start of activity Ε is critical. The finish of activity Ε can be delayed
three days. Thus, activity Ε can have an overall duration between two and
five days (e.g., by splitting its execution) without affecting the completion
time of the project.

• All other activity events are non-critical.

Problems of computing and interpreting floats or slacks in project networks
with different types of precedences have been noted by several researchers [73].
In the unified model, node and link floats are computed without modifying the
basic solution algorithm. Node floats, which represent the amount of time that
an event can be delayed without affecting the total duration of the project, are
computed by subtracting the latest event time, L(i), from its corresponding ear­
liest event time, E(i). Link floats for both activities and precedence constraints
are computed on the basis of the following definitions [50]:

• Total Float is the maximum delay which can be assigned to any one activity
or constraint without delaying the entire project. The total float is calculated
as L(j) - E(i) - D a for link (ij).

• Free Float is the delay which can be assigned to any one activity or constraint
without delaying subsequent activities. The quantity E(j) - E(i) - Dy is the
free float associated with link (i,j).

• Independent Float is the delay which can be assigned to any one activity
without delaying subsequent activities or restricting the scheduling of preced­
ing activities. The independent float for link (i, j) is computed as:
Maximum(0, E(j) - L(i) - D H) .

Unified Activity Network Model 77

1,6

3,5 11.5

Figure 3-8. Example of the Basic Unified Model

1,6

Figure 3-9. Solution to the Basic Unified Model

The unified network model can be used when activity splitting is restricted.
Figure 3-10 shows the solution to a modified version of the example of
Figure 3-8 for the case in which no activities may be split (i.e., their durations
are fixed). In this example, the start time of activity D has been constrained to
be the same as the finish time of activity A. Under this assumption, the total
duration of the project is seventeen units, and critical path (shown in bold) is:
PS -> SD -» FA -> FC -> SE -> PF. The earliest-start-time of activity A has
been set to two units even though there is no window constraint imposed on this
event. This is because the finish time of activity A is critical and its duration is
fixed.

78 Modeling Process Planning Problems

1,6

Figure 3-10. Solution to the Unified Model with Maximum Durations

As noted above, allowing negative link durations permits a greater variety of
precedence relationships, but also complicates the scheduling computations.
Most importantly, a cycle with positive length may appear in the network. In
this situation, the Floyd-Warshall algorithm is applicable [61]. This algorithm
computes a matrix of shortest paths throughout a network and identifies any
positive length cycles. However, the worst-case performance of the Floyd-
Warshall algorithm is proportional to the number of nodes cubed (0(n 3)) .

The development of the unified network model was motivated by the desire
to have an activity network model which solved time constraints using simple
scheduling procedures. The model accomplishes this objective and provides a
means for computing activity floats when various types of precedence relation­
ships are present. However, there are some losses in computing efficiency
associated with the use of the model. Since the computational performance of a
shortest-path, node-labeling algorithm is proportional to the number of nodes
squared (0(n 2)) [61], solving a unified network model may take up to four times
longer than solving a corresponding conventional network model. When nega­
tive links are present, the worst-case performance may be eight times longer
since a shortest-path algorithm that checks for positive length cycles is required.
Despite these drawbacks, there are some important computational gains in using
the unified network model:

• The event, activity and constraint float times are readily available. The
activity-on-node (AON) model requires additional computations to produce
these values.

• The node-labeling calculations are simpler using the unified network model
since no identification of alternative types of links is required. With a

Requirements for a Process Planning Architecture 79

simpler, general-purpose algorithm, it should be easier to optimize the im­
plementation of a solution algorithm for the unified network model.

• The density of links decreases when using the unified model because the
average number of links per node is likely to be smaller than in the equivalent
AON model. As a result, the average performance of the solution algorithm
is better than indicated by the worst-case analysis.

3.3 Requirements for a Process
Planning Architecture

This section specifies requirements for a process planning architecture, PLANEX,
that implements the hybrid planning model described above. Specifying these
requirements provides a basis for evaluating the structure and behavior of
PLANEX, as well as other process planning architectures.

The identification of the requirements followed an iterative process involving
both specification of requirements and prototyping. Initially a list of general
requirements was developed with respect to the scope of the architecture and its
general behavior. After developing a prototype expert system for excavation
tasks [49], this initial list was refined and additional architectural requirements
were introduced. These requirements led to the development of an expert sys­
tem for construction planning, called CONSTRUCTION PLANEX, which is
described in Chapter 6. The experiences acquired in the process of developing
this second prototype led to the more refined list of system requirements
presented below. The current PLANEX architecture was implemented to meet
these requirements, and the prototypes were reimplemented using this architec­
ture.

3.3.1 General Requirements
In the summary section of Chapter 2, the following reasons for the minimal
impact of existing computer tools in solving process planning problems were
suggested: (1) tools focus on analysis rather than on synthesis; (2) they do not
incorporate domain-specific knowledge; (3) they are not transparent to the user;
and (4) they are not flexible. Therefore, an architecture designed to overcome
these limitations must be:

• generic so it may be used in different domains (e.g., planning the construction
of a building, planning the manufacturing operations for a product) without
having to modify its internal behavior or structure;

• transparent in order to facilitate the understanding of its structure and be­
havior by its users; and

80 Modeling Process Planning Problems

• extensible so that it is flexible enough to extend the scope of a particular
application of the architecture.

This section presents a list of proposed requirements for achieving generality,
transparency and extensibility. These requirements are classified with respect to
four perspectives:

• Knowledge Representation, including issues related to how the architecture
should store process planning knowledge;

• Problem-Solving Operators, involving requirements of how the architecture
should use knowledge to perform planning tasks;

• Control, concerning behavioral goals detailing how the architecture should
apply problem-solving operators to obtain a process plan; and

• User Interaction, involving issues related to facilities available to the user to
override decisions, obtain information, modify system knowledge or change
the set of problem-solving operators.

The first three perspectives refer to intrinsic characteristics of the architecture
that affect how the system manipulates knowledge to solve problems. The
fourth perspective involves exogenous elements used to modify the behavior of
the architecture or to adapt it to other process planning domains. The four
perspectives are not independent. For example, modifying the knowledge of a
system is a user interaction issue directly related to the type of knowledge
representation employed. Similarly, the characteristics of the knowledge
representation affect the problem-solving behavior of the system.

3.3 2 Knowledge Representation

A fundamental issue in a knowledge-based architecture such as PLANEX is the
form in which knowledge is represented. With respect to this issue, the follow­
ing requirements have been identified. PLANEX should:

1. Provide a process-independent knowledge representation. PLANEX should
provide a means of encoding knowledge for different process planning
domains using a uniform, domain-independent format. This would facilitate
adapting PLANEX for different application domains.

2. Provide an op er at or-independent knowledge representation. PLANEX
should provide a means for encoding knowledge about different process
planning tasks (i.e., operators) such as activity identification or duration
estimation in a uniform, operator-independent format. This would facilitate
the extensibility and transferability of expert knowledge.

3. Provide the means to structure knowledge hierarchically. PLANEX should
provide a means to structure the large body of knowledge needed in process
planning. Experiences with the prototypes for construction process planning

Problem-Solving Operators 81

suggest that a good strategy is to structure this knowledge into hierarchies.
Hierarchies may be established on the basis of the type of operators using
this knowledge (e.g., duration estimation versus equipment selection) or on
the basis of the level of detail represented in the knowledge (e.g., selecting a
general type of excavator versus selecting a type of power shovel).

4. Provide the means to check the completeness or consistency of an operator s
knowledge. For a particular planning operation, the user may want to check
whether all possible combinations of factors affecting the outcome have
been considered in formalizing the domain knowledge. In other cases, the
user may require that the knowledge associated with a particular operator
provides a unique result for any combination of factors. The knowledge
representation of PLANEX should be amenable to supporting such checking.

3.3.3 Problem-Solving Operators

All computer systems contain a set of problem-solving operators that define the
actions executed by the system when solving a problem. In some programs, the
set of operators is fixed and the program's structure is not transparent to the
user. Most commercial scheduling packages are examples of such programs.
The user's only interaction with these systems takes place during the formula­
tion of the input and the interpretation of results. In solving a problem, these
systems perform as a black-box whose structure is fixed. A more flexible
approach is desirable. The following requirements are related to the PLANEX
operators. PLANEX should:

1. Achieve operator modularity. It should be possible to decompose the set of
operators into elementary operators whose scope and purpose are easy to
identify. This characteristic would improve the flexibility of the architec­
ture.

2. Provide a set of problem-solving operators that may be used in different
process planning domains. There are several operations that are common to
any process planning domain. For example, the Basic Critical Path Method
may be used to compute the duration of a project regardless of the nature of
the activities in the project network. PLANEX should provide a set of com­
mon operators in order to facilitate the development of application programs.

3. Incorporate both synthesis and analysis operators. As previously discussed,
one of the problems with computer tools for process planning is that they
only perform analysis tasks and leave synthesis tasks to the planner. In an
integrated system, it is important to perform both of these tasks. For ex­
ample, synthesis tasks are required when generating project activities and
selecting appropriate construction and manufacturing methods. Analysis
tasks are required to determine the consequences of planning actions.
(Examples of analysis operators are those that estimate the duration and cost
of project activities.) Both types of operators should be supported.

82 Modeling Process Planning Problems

4. Provide the means to structure operators hierarchically. In some domains,
it may be useful to structure operators into hierarchies. Hierarchies may be
established on the basis of the level of generality of the operator (estimating
the cost of the project versus estimating the cost of concrete columns) or on
the basis of the purpose of the operator (estimating costs versus estimating
durations). As described in Section 5.1.2, operator hierarchies are used to
perform hierarchical planning in a similar manner to that of ABSTRIPS.
The architecture should support such hierarchical structuring of operators.

3.3.4 Control
In addition to identifying requirements with respect to operator characteristics,
another important issue to consider is that of control. Control defines the be­
havior of a system in terms of selecting and executing operators during the
planning process. In defining a control architecture (see p. 32), Hayes-Roth
proposed the following behavioral goals for an intelligent system [45, p. 252]:

(1.) Make explicit control decisions that solve the control problem.
(2.) Decide what actions to perform by reconciling independent deci­

sions about what actions are desirable and what actions are feasible.
(3.) Adopt variable grain-size control heuristics.
(4.) Adopt control heuristics that focus on whatever action attributes are

useful in the current problem-solving situation.
(5.) Adopt, retain, and discard individual control heuristics in response

to dynamic problem-solving situations.
(6.) Decide how to integrate multiple control heuristics of varying im­

portance.
(7.) Dynamically plan strategic sequences of actions.
(8.) Reason about the relative priorities of domain and control actions.

Although these are desirable behavioral goals for an intelligent planner that
decides which operators to execute during process planning, a distinction should
be made with respect to the plausibility of achieving these goals in a generic
process planning system. On the one hand, some of the goals seem easily
achievable in any process planning domain. For example, any system that does
not execute operators in a predetermined manner would make decisions about
which operators to apply at any point in the planning process. Even if these
decisions are made solely on the basis of the applicability of the operators, the
system satisfies the first behavioral goal. On the other hand, other goals would
only be satisfied if the system is provided with considerable control knowledge.
Incorporating these goals into system requirements would suggest an architec­
ture that encodes control knowledge in structures similar to the Choose-KSAR
and Refine-or-Chain? knowledge sources of OPM. For example, to dynamically

Control 83

use various control heuristics (the fifth item in Hayes-Roth's list, above) the
system needs to possess knowledge about the applicability and desirability of
alternative control heuristics at different stages of the planning process. It is an
open question whether such knowledge is dependent on the type of domain
being modeled. The fact that a general theory of process planning has not been
developed may indicate that this type of knowledge is domain-specific. If this is
the case, satisfying all of Hayes-Roth's behavioral goals in the architecture of
PLANEX would make adapting it to different domains complex. For each
domain, the user would have to provide the system not only with the domain
knowledge (e.g., possible activities, appropriate resources, productivities, costs)
but also with control knowledge (e.g., in planning building construction, choos­
ing the general construction method before defining the activities).

The following are the basic control requirements proposed for the architec­
ture. PLANEX should:

1. Make explicit control decisions that solve the problem. Planning is not a
straightforward process. There are many interactions that must be con­
sidered because one decision often affect others. A good sequence of opera­
tions for a certain project (e.g., determine the general type of excavation
equipment first) may not be the proper sequence for other projects. Because
the sequence of planning operations is not fixed, PLANEX should make con­
trol decisions regarding the order in which different operators are executed.

2. Decide what operators to execute in terms of their feasibility and
desirability. At any point in the solution process there may be several
applicable operators. However, only some of them may contribute to the
solution of the problem. The distinction between feasibility and desirability
has been incorporated into planning systems since the development of GPS
(see p. 16). PLANEX should be able to identify both feasible and desirable
operators and decide which one to execute next.

3. Dynamically plan strategic sets of operators. During the planning process,
the user or the system may establish a goal that is not directly achievable by
any feasible operator. The system should be able to elaborate a plan of
operators to accomplish the goal.

4. Incorporate different control heuristics in the planning process. Ac­
complishing the other behavioral goals requires different control heuristics
be present in the system. For example, for strategic planning of operators, a
backward search similar to the goal expansion process of NOAH (see p. 23)
may be appropriate. In other situations, a forward search may be required to
propagate the consequences of particular operations. PLANEX should
provide the mechanism to incorporate such different control heuristics.

Although these requirements do not include all of Hayes-Roth's goals, it seems
plausible to implement them in a generic knowledge-based architecture for plan-

84 Modeling Process Planning Problems

ning. This does not mean that the basic system architecture could not be ex­
tended to incorporate some of the goals that have been excluded. In particular
domains, control knowledge and operators could be added to the basic architec­
ture described in this chapter to yield a more intelligent control behavior.

3.3.5 U s er Interaction

In a knowledge-based system, it is important to "keep a human in the
loop" [107, p. 13]. This is particularly true for a generic system architecture
such as PLANEX. User interaction is required to modify the structure, knowledge
or behavior of the system in areas such as: (1) adapting and extending the
system from one domain to another; (2) debugging the knowledge for a par­
ticular application; (3) extending the scope of the problem-solving process in a
certain domain; and (4) modifying the manner in which a solution is obtained.
The proposed user interaction requirements for PLANEX are:

1. Provide the means to create, discard or update domain knowledge. In any
process planning domain, significant knowledge is needed. PLANEX should
include tools which permit easy modification of the knowledge required for
particular domains.

2. Provide the means to modify the set of operators. Different domains may
require changes to the basic set of operators used by the application system.
For example, when planning building construction, some contractors may
require that the system determine when the construction materials should be
purchased. In this case, the contractor may have to add one or more
operators to the planning system to perform this task. Capabilities to modify
the set of operators should be included in the system.

3. Provide the means to control the planning process. PLANEX is intended to
be an assistant that provides the user with several mechanisms to control the
planning process. The user should be able to execute individual operators,
establish goals or introduce changes that affect the manner in which
problem-solving operators are executed.

4. Explain results in terms of the knowledge used to obtain them. PLANEX
should provide the user with explanations that facilitate the understanding of
its problem-solving behavior. This information is needed to expand and
refine the knowledge and operators of application systems developed using
the architecture.

5. Provide the means to produce reports with flexible formats. The architecture
should provide the user with the means for designing various types of
reports. This capability improves the adaptability of the architecture to
different domains.

6. Provide graphical display of results. Graphical output is very useful for
displaying information. Bar-charts and network diagrams are commonly

Conclusions 85

used by managers to represent process plans [50, 72]. The architecture
should provide the means to incorporate these and other types of graphical
output.

3-4 Conclusions
This chapter introduced a hybrid model of process planning suitable for com­
puter implementation. Two illustrative models to perform specific tasks within
the planning process were also described. The requirements that a general
purpose, knowledge-based process planning system should fulfill were formal­
ized. These models and requirements provide a framework for the development
of the PLANEX system architecture.

4 A Knowledge-Based
Architecture for Process
Planning

This chapter describes a software architecture for process planning, PLANEX,
which is designed to satisfy the list of structural and behavioral requirements
presented in the previous chapter. PLANEX provides tools for representing and
using the knowledge required by process planning operations. These tools have
been used to develop process planning systems including CONSTRUCTION
PLANEX, a knowledge-based expert system for construction planning which is
described in Chapter 6 and HARNESS PLANEX, an expert system for electrical
wire harness process planning which is described in Chapter 7.

As noted in Section 1.5, the development of PLANEX followed an iterative
prototype building and refinement process. The requirements developed during
this process (see Section 3.3) resulted in the flexible system architecture
described in this chapter.

This chapter first presents an overview of the basic components of PLANEX
and their use and interrelationships in the solution of process planning problems.
Subsequent sections describe the PLANEX architecture in terms of three perspec­
tives:

• Knowledge Representation—Details of the tools provided by PLANEX to store
and retrieve process planning knowledge;

• Problem Solving and Control—Discussion of the tools used to implement the
behavior of the hybrid process planning model described in Section 3.1.4; and

• User Interaction—Explanation of the mechanisms provided to the planner to
change decisions, obtain information, modify system knowledge or change
the set of planning operators.

87

88 A Knowledge-Based Architecture for Process Planning

4.1 Overview of PLANEX

4.1.1 Basic Components of PLANEX

The knowledge-based system architecture for process planning contains four
major components:

1. Representational Structures. Information about solution elements, planning
decisions and input data for the planning process is stored in a global data
store called the context. The context contains hierarchical representational
structures that are composed of objects linked with each other using different
types of relations. Each object has a unique name and contains slots that
store values of the attributes of the object or pointers to other objects. An
object may belong to more than one hierarchical structure. In different
applications of PLANEX, there may be schémas for storing information about
process components, resources, activities, etc. However, the set of hierar­
chies is specific to each problem domain.

2. Operators. Solution of the process planning problem is achieved by apply­
ing problem-solving operators. Each operator is a procedural function that
modifies the context by creating, modifying or deleting objects. There are
two types of operators: domain and control. Domain operators perform
specific planning tasks such as choosing technologies, estimating activity
durations, or scheduling. Domain operators are specific to each problem
domain. However, several application systems may share common domain
operators. Control operators determine the sequence in which domain
operators are executed. The set of control operators is common to all
problem domains.

3. Knowledge Sources. Knowledge required by the operators is stored in
groups of rules called Knowledge Sources (KSs). Each KS provides infor­
mation for individual operators such as activity formulation, duration estima­
tion or precedence determination. Knowledge sources are used to return
values to the operators, to modify the context and to invoke the evaluation of
other KSs. The knowledge base of PLANEX is composed of many KSs.

4. User Interface. PLANEX is an interactive system architecture that incor­
porates a user interface used for modifying any of the three components
described above, controlling the execution of the system, changing planning
decisions or retrieving information from the context. The user interface is
composed of several editors, command menus, graphical displays (both in­
teractive and passive) and a report generator.

Relationships Among the Basic Components of PLANEX 89

4.1.2 Relationships Among the Basic Components of PLANEX
Figure 4-1 illustrates the relationships among an operator, its associated
knowledge sources and the different types of context objects related to the
operator. Each operator may be applied to different sets of objects called the
application objects of the operator. For example, if the operator that estimates
activity durations is applied to all the activities used to construct a particular
floor, these activities constitute the application objects of the operator at that
point during the solution of the process planning problem. Usually operators are
sequentially applied to their application objects. The object to which the
operator is applied is called the current object. When an operator is executed, a
set of knowledge sources may be evaluated and the results of this evaluation are
returned to the operator. With respect to each operator, the context is divided
into three different sets of objects: the input objects, the output objects and the
remaining objects (those not associated with the operator). The set of input
objects of the operator contains all the data required to evaluate the related
knowledge sources and to perform procedural calculations. The objects affected
by the application of an operator and the evaluation of its associated knowledge
sources constitute the set of output objects of the operator. The sets of input and
output objects may have some common elements. Usually the current object
belongs to both sets.

When a domain operator is executed, either in response to a user request or
by a control operator, the following steps are performed:

Step 1. Identify the application objects. The objects to which the operator is
applied are the application objects.

Step 2. Select a KS to be used by the operator. Each type of operator (e.g.,
technology choice, duration estimation) is related to a specific set of
KSs. These KS s contain all of the knowledge required to perform the
specific operation. In some cases, knowledge sources are not required
for operators performing procedural calculations.

Step 3. Select one specific object from the application objects. This object
becomes the current object used when evaluating the KS. Evaluating a
KS may or may not require information from the selected object.

Step 4. Evaluate the selected KS. The selected KS is evaluated using the
KNOWLEDGE SOURCE EVALUATOR (KSE) and the results are returned
to the domain operator. The domain operator is responsible for
processing these values, either storing them in schémas or using them to
perform other computations.

Some of these steps may be repeated depending upon the results of the KS
evaluation (e.g., another KS must be evaluated) or the range of the operator
(e.g., apply the operator to several application objects).

90 A Knowledge-Based Architecture for Process Planning

Context

Input Objects

Current Object

Application Objects

Output Objects

Other Objects

u s e d - b y

u s e d - b y

m o d i f i e s

Knowledge
Base

1
Knowledge Source

u s e d - b y

Operator

Operators

Figure 4-1. Relationships of Operators, Knowledge Sources and Context Objects

The set of context changes caused by a domain operator is known as the
effects of the operator. Effects are described as changes to slot values of par­
ticular objects. An effect is predictable if it can be described before the operator
is executed, and it is unpredictable otherwise. The information about the pre­
dictable and unpredictable effects of domain operators is stored in context ob­
jects containing declarative knowledge which describes the operators. This
knowledge is used by the control operators to determine which planning tasks
should be performed during the planning process. Operator schémas also con­
tain the names of the KSs used by the operator.

4.13 User Interaction Mechanisms
The PLANEX architecture incorporates several user interaction mechanisms:

1. an interactive environment for modifying the knowledge base of the system,
called the KNOWLEDGE SOURCE ACQUISITION MODULE (K S A M) ;

Knowledge Representation 91

2. an interactive environment for modifying control information called the
CONTROL PANEL (C P) ;

3. a menu-driven interface used to control the execution of the domain and
control operators used to request explanations of planning decisions;

4. the REPORT GENERATOR (RG) for outputting process information in tabular
forms; and

5. several graphical displays, some of which are interactive.

In addition, the user may directly modify context objects using the primitive
functions of the frame representation language used to implement PLANEX.
These functions (e.g., the function to create a new schema) are used to imple­
ment the procedural codes of the operators.

4.2 Knowledge Representation
Knowledge-based expert systems contain considerable domain knowledge that
must be represented in an organized manner. PLANEX provides means to incor­
porate and use this knowledge effectively in various application domains. In the
development of this architecture, several alternative knowledge representations
were explored. The first prototype system for excavation planning used a mixed
representation of domain knowledge: isolated rules and procedural functions.
The experiences with this prototype showed that this representation was inade­
quate for acquiring, representing or updating process planning knowledge.

In the prototype for planning the construction of buildings, a knowledge
representation scheme based on decision tables was employed. This represen­
tation proved to be very effective for acquiring and representing the KSs of
PLANEX. Domain knowledge is decomposed with respect to the different types
of planning operations associated with the knowledge. Knowledge is
represented by one or more KSs. Each KS is a decision table that groups rules
which share common antecedents or consequents. The structure of a typical
decision, the mechanism of KS implementation and interpretation and some
capabilities and limitations of the knowledge representation are discussed below.

4.2.1 Structure of a Decision Table
Research on the decision table as a symbolic mechanism to represent logical
interdependencies among events has been underway for over three decades.
Reviews of the basic theory of decision tables and their applications in software
engineering is given by Hurley [53] and by Welland [108]. Advantages include
the compactness and transparency with which knowledge is expressed and the
possibility of checking for omissions and logical inconsistencies in the decision
tables. In civil engineering, the use of decision tables to represent construction
specifications and standards was initially proposed more than twenty years

92 A Knowledge-Based Architecture for Process Planning

ago [31]. Recently some expert systems have used decision tables to represent
domain knowledge. Examples include the SPEX [38] and TRALI [114] sys­
tems. SPEX, an expert system for designing structural components of a build­
ing, uses decision tables to represent design standards. TRALI, an expert sys­
tem assistant for traffic signal setting, uses decision tables to find crossing
conflicts between pairs of traffic flows.

Figure 4-2 shows a simplified decision table used for determining the ac­
tivities required to construct a cast-in-place concrete column footing. This table
returns a list of activity names to the operator responsible for activity creation.
The table contains three regions:

• conditions represented as boolean predicates in the left part of the upper rows
of the table;

• actions represented by values or functions in the left part of the bottom rows
of the table; and

• rules represented in the columns of the right side of the table. Each column
specifies the conditions that should be True ("T") , False ("F") or Irrelevant
("I"), and those values or actions that will be eXecuted ("X") or Ignored
("I") for that rule (see p. 98 for an explanation of how irrelevant values are
handled when evaluating the decision table).

KS-Example

Condit ions Rules

d e s i g n e l e m e n t is a c a s t - i n - p l a c e c o n c r e t e c o l u m n - f o o t i n g τ τ F

soi l is a p p r o p r i a t e for backf i l l τ F I

A c t i o n s
e x c a v a t e - c o l u m n - f o o t i n g χ χ I
d i s p o s e - o f - e x c a v a t i o n - c o l u m n - f o o t i n g I χ I
p i l e - u p - e x c a v a t i o n - c o l u m n - f o o t i n g χ I I
b o r r o w - m a t e r i a l - c o l u m n - f o o t i n g I χ I
p l a c e - f o r m s - c o l u m n - f o o t i n g χ χ I
r e i n f o r c e - c o l u m n - f o o t i n g χ χ ι
p o u r - c o n c r e t e - c o l u m n - f o o t i n g χ χ ι
r e m o v e - f o r m s - c o l u m n - f o o t i n g χ χ I
K S - o t h e r - e l e m e n t s I I χ

Figure 4 - 2 . Example of a Decision Table

Implementation of a Knowledge Source 93

In this example, knowledge about construction activities is represented by three
rules:

Rule 1. If the component is a cast-in-place concrete column footing and if the
soil can be used for backfill, the required activities are: (1) excavate for
the footing; (2) pile up the excavation material, (3) place the forms;
(4) place the reinforcement; (5) pour the concrete; and (6) remove the
forms.

Rule 2. If the component is a cast-in-place concrete column footing and if the
soil cannot be used for backfill, the required activities are: (1) excavate
for the footing; (2) dispose of the excavation material; (3) borrow back­
fill material; (4) place the forms; (5) place the reinforcement; (6) pour
the concrete; and (7) remove the forms.

Rule 3. If the component is not a cast-in-place concrete column footing, a dif­
ferent decision table, called KS-other-elements, must be evaluated.
PLANEX identifies that KS-other-elements is a KS using auxiliary infor­
mation, as described below.

This example is used below to illustrate how decision tables represent
knowledge.

4.2.2 Implementation of a Knowledge Source

The knowledge base of PLANEX is composed of many KSs whose structure
resembles that of a decision table. A KS contains additional information detail­
ing where and how to retrieve the information required to evaluate the KS.
Figure 4-3 shows the KS corresponding to the decision table of Figure 4-2 .
Each condition is defined by four basic elements:

• object, which may be: (1) the name of a context object; (2) "Function";
(3) " K S " ; or (4) "None". These values indicate that the condition to be
evaluated is: (1) a slot name; (2) a function name; (3) another KS; or (4) the
name of a global variable. In the example, both conditions are evaluated
using values of context objects.

• slot, which may be the name of a slot, function, KS or global variable,
depending on the value of the object item. In the example, the second con­
dition is evaluated using the value of the slot possible-use of the object
soil-characteristics.

• op, which contains an operator such as " = " , " > " , or " i s " that expresses the
relationship between the slot's value and the value.

• value, which stores a number or a symbol.

KSs are implemented as context schémas using the syntax defined by the BNF
grammar shown in Figure 4-4. This form is used to define all knowledge source

94 A Knowledge-Based Architecture for Process Planning

Name: KS-Example Type: f i r s t

Object Slot Op Value Rules

c u r r e n t - o b j e c t type-element
c a s t - i n - p l a c e
c o n c r e t e
c o l u m n - f o o t i n g

s o i l - c h a r a c t e r i s t i c s p o s s i b l e - u s e b a c k f i l l

e x c a v a t e - c o l u m n - f o o t i n g X X ,

d i s p o s e - o f - e x c a v a t i o n - c o l u m n - f o o t i n g 1 X 1
p i l e - u p - e x c a v a t i o n - c o l u m n - f o o t i n g X 1 1
b o r r o w - m a t e r i a l - c o l u m n - f o o t i n g 1 X 1
p l a c e - f o r m s - c o l u m n - f o o t i n g X X 1
r e i n f o r c e - c o l u m n - f o o t i n g X X 1
p o u r - c o n c r e t e - c o l u m n - f o o t i n g X X 1
r e m o v e - f o r m s - c o l u m n - f o o t i n g X X 1
K S - o t h e r - e l e m e n t s 1 1 X

Figure 4 - 3 . Example of a Knowledge Source

schémas in PLANEX. The terminal symbol d e f s c h e m a is the name of the
macro used to create a knowledge source schema. Utilities to convert from the
decision table form of Figure 4 - 3 to schémas exist in the KNOWLEDGE SOURCE
ACQUISITION MODULE (see Section 4 . 4 . 1) . Knowledge sources are represented
as schémas so that they can be interpreted by the KNOWLEDGE SOURCE
EVALUATOR of PLANEX.

Figure 4 - 5 shows the schema representation of the example KS. The schema
contains the following slots:

• is-a identifies the schema as a KS;
• ks-type indicates the type of firing mechanism used when evaluating the KS;
• cond-objects indicates the source of the information required to evaluate each

condition (a context object or another source, such as a function, other KS or
global variable);

• conditions consists of a list of predicates;
• Ihs-rules stores the antecedents of the rules;
• rhs-rules stores the consequents of the rules; and
• actions consists of a list of possible results (functions or KS names).

The evaluation of a KS and how the information in the actions slot is interpreted

Implementation of a Knowledge Source 95

<decision-table> := (defschema <sep> <symbol>
(is-a <sep> KS)
(ks-type <sep> <ks-type-value>)
(cond-objects <sep> <cond-objects-list>)

<ks-type-value>
<cond-objects-list>
<conditions-list>
<lhs-rules-list>
<rhs-rules-list>
<actions-list>
<cond-objects-values>
<conditions-values>
<lhs-rules-values>
<rhs-rules-values>
<actions-values>
<object>
<condition>

<lhs-list>
<rhs-list>
<action>

<slot-fcn-ks>
<bool-operator>

<symbol-binding-value>
<tfi-values>
<xi-values>
<fcn-args>
<quoted-list>
<symbol-binding-list>

<symbol-binding>

<sep>
<number>

<separator>
<symbol>

<binding>

<sep> <conditions-list>)
<sep> <lhs-rules-list>)
<sep> <rhs-rules-list>)
<sep> <actions-list>))

(conditions
(lhs-rules
(rhs-rules
(actions

= first I all
= (<cond-objects-values>)
= (<conditions-values>)
= (<lhs-rules-values>)
= (<rhs-rules-values>)
= (<actions-values>)
= <object> I <sep> <cond-objects-values>
= <condition> | <sep> <conditions-values>
= <lhs-list> I <sep> <lhs-rules-values>
= <rhs-list> I <sep> <rhs-rules-values>
= <action> | <sep> <actions-values>
= <symbol> | KS | Function | None
= (<slot-fcn-ks> <sep>

<bool-operator> <sep>
<symbol-binding-value>)

= (<tfi-values>)
= (<xi-values>)
= <symbol-binding> | <number> |

<fcn-args> | <quoted-list>
= <symbol-binding> | <fcn-args>
= is I = I < I <= I > I >= I <> I member |

not-member
= <symbol-binding> | number
= Τ I F I I I <sep> <tfi-values>
= X I I I <sep> <xi-values>
= (<symbol-binding-list>)
= ' (<symbol-binding-list>)
= <symbol-binding> | <sep> <fcn-args> |

<sep> <quoted-list> |
<sep> <symbol-binding-list>

= <symbol> | <binding> |
<symbol> <symbol-binding> |
<binding> <symbol-binding>

= <separator> | <separator> <sep>
= any number type in COMMON LISP (e.g.,

fixed, float, rational)
= a space, line-feed, or new-line
= an identifier which may include:

+ - / $ % & _ = - .
= a symbol enclosed in < >

Figure 4-4. Knowledge Source Schema Definition Grammar

96 A Knowledge-Based Architecture for Process Planning

(defschema ks-example

This ks identifies the element activities required to build a
cast-in-place concrete column footing

(is-a
(ks-type
(cond-objects
(conditions

(lhs-rules

(rhs-rules

(actions

ks)
first)
current-object soil-characteristics)
(= type-element

cast-in-place-concrete-column-footing)
(= possible-use backfill))
(T T)
(T F)
(F I))
(X I X I X X X X I)
(Χ Χ Ι Χ Χ Χ Χ Χ Ι)
(Ι Ι Ι Ι Ι Ι Ι Ι Χ))
excavate-column-footing
dispose-of-excavation-column-footing
pile-up-excavation-column-footing
borrow-material-column-footing
piace-forms-column-footing
reinforce-column-footing
pour-concrete-column-footing
remove-fοrms-cο1umn-footing
ks-other-elements))

Figure 4-5. Schema Representation of the Knowledge Source of Figure 4-3

(e.g., whether the values are symbols, functions or other KSs) is discussed in the
next section.

4.2.3 Knowledge Source Evaluation
Knowledge sources are evaluated by a generic operator which is called the
KNOWLEDGE SOURCE EVALUATOR. When an operator requires the evaluation of
a particular KS, it invokes the KSE, supplying the name of the KS to be
evaluated and the name of the domain object to which the operator is applied.
The KSE evaluates the KS and returns a list of result values to the operator. The
operator acts upon the list (e.g., performs arithmetic operations or modifies
context objects).

The algorithm used by the KSE to evaluate a KS is detailed below. The
following lists are used in the algorithm to store values of the slots of the KS
being evaluated:

• objects-list, O, stores the values of the cond-objects slot. The elements of this
list are symbols.

Knowledge Source Evaluation 97

• conditions-list, X, whose elements are the values of the conditions slot. Each
list element is a triplet of the form (operator e2 e3). The KSE determines if e2

is a function, a symbol or the name of another KS using the value of the
corresponding element of the objects-list.

• actions-list, A, stores the values of the actions slot. Each element is either a
number, a symbol or a function. If the element is a symbol, the KSE searches
the is-a+inv pointer of the KS schema to determine if the symbol is the name
of a KS.

• Ihs-list, A, whose elements are the values of the lhs-rules slot. Each element
is a list of " T " , " F " or " I " terms. The number of terms in each list is equal
to the number of conditions in the KS.

• rhs-list, P, whose elements are the values of the rhs-rules slot. Each element
is a list of " X " or " I " terms. The number of terms in each list is equal to the
number of actions in the KS.

In addition, the algorithm uses four other lists:

• bindings-list, whose elements are of the form (binding value). The first term
of a pair is a binding6 such as (x) or (floor) and the second term is the value
associated with this binding.

• matchings-list, whose elements are lists composed of " T " , " F " or " B " terms,
where " B " stands for binding. The length of the list is equal to the number of
conditions in the KS.

• results-list stores the list of results before they are interpreted by the KSE.
• final-results-list stores the list of results after interpretation by the KSE.

These values are returned to the operator which invoked the KS evaluation.

The algorithm proceeds as follows. All conditions are evaluated and clas­
sified as being true ("T"), false ("F") or a binding condition ("B"). This
information is stored in the matchings-list. The left-hand-side of each rule is
compared to this list to determine if the rule is to be fired. Depending on the
type of firing mechanism used to evaluate the KS, rules may be fired sequen­
tially or a more elaborate scheduler may be used to select one of the rules whose
antecedent satisfies the matchings-list. In the algorithm presented below, firing
is sequential. Each time a rule is fired, the actions indicated in its consequent or
right-hand-side are executed and the resulting values or actions are stored in the
results-list for later interpretation. After all of the rules have been fired, the
values of results-list are interpreted and the final-results-list is returned to end
the evaluation process.

6 Bindings are always enclosed in angle brackets «)). The binding is the name of a symbol which
is evaluated at run-time to obtain an actual value (i.e., the binding value). This value is substituted
for all occurrences of the binding term in the KS. Bindings are used in a similar fashion in all of
the representational structures of P l a n e x .

98 A Knowledge-Based Architecture for Process Planning

The algorithm uses auxiliary procedures to substitute binding variables and to
select the rules:

• Bind Variables. This procedure searches for binding variables in the
conditions-list or actions-list and substitutes the corresponding values from
the bindings-list. For example, if the current value of the bindings-list is:

((<x> pour-concrete) (<floor> 5>))
and the value of the actions list is:

(<x>-columns-<floor>)
this procedure performs two substitutions and the new value becomes:

(pour-concrete-columns-5)
• Match Conditions with Rules. This procedure compares the complete

matchings-list with an element of the Ihs-list. In this comparison, any binding
(indicated with "B") or any Ihs-list value equal to " I " are ignored. For
example, if the matchings-list is "(Τ B F)" , evaluation of Ihs-list elements
"(T F F)" or "(Τ Τ I)" would return " T " , while evaluation of "(T F Τ)" or
"(F Τ I)" would return " F " . This treatment of irrelevant ("I") provides some
flexibility in knowledge representation. For example, when a set of con­
ditions is used to determine if a value is one element of an exclusive set,
irrelevant tests are employed instead of false tests (e.g., to test if A is " X " or
" Y", rules "((Τ I) (I T))" are used in place of "((T F) (F T))"). Also, rules of
the form "(I I . . . I)" represent an all rule which fires for any set of con­
ditions. The flexibility implies that the rules need not be consistent or com­
plete.

Algorithm for the KNOWLEDGE SOURCE EVALUATOR

Step 1. Initialize

1.1 Let KS* be the name of the KS being evaluated.

Step 2. Evaluate Conditions

2.1 Initialize Lists.
Assign ks-type the value of the ks-type slot of schema KS*.
Assign Ο the value of the cond-objects slot of schema KS*.
Assign X the value of the conditions slot of schema KS*.
Assign A the value of the actions slot of schema KS*.
Create empty lists for the matchings-list and bindings-list.

2.2 Loop through Conditions.
If X is empty: go to Step 2 .11.
Let ο and χ be the first elements of Ο and X respectively.
L e t O < - 0 \ { o } .
L e t X < - X \ {x) .

2.3 Use procedure Bind Variables to substitute binding values in condition χ.

Knowledge Source Evaluation

2.4 If ο indicates "KS" evaluation: go to Step 2.5.
If ο indicates "Function" evaluation: go to Step 2.6.
If ο is "none": go to Step 2.8.
Go to Step 2.7.

2.5 KS Evaluation of a Condition.
Let KS** be the first element of condition χ.
Evaluate KS** and replace KS** by the first value resulting from this
evaluation in condition χ.
Go to Step 2.9.

2.6 Function Evaluation of a Condition.
Let F* be first element of condition χ.
Evaluate F* and replace F* by the result of evaluating the function in
condition χ.
Go to Step 2.9.

2.7 Schema Evaluation of a Condition.
Let slot* be the value of the first element of condition χ.
Replace slot* by the value of slot slot* of schema ο in condition χ.

2.8 Binding Evaluation.
If the third element of condition χ is a binding variable: go to Step 2.9.
Let m be the result of evaluating condition χ (m is "Τ" or "F").
Go to Step 2.10.

2.9 Augment Bindings-list.
Let e2 and e3 be the second and third elements of predicate χ.
Let bindings-list 4 - bindings-list u ((e3 e2)).
Let m <— {b).

2.10 Augment Matchings-list.
Let matchings-list <— matchings-list u {m).
Go to Step 2.2.

2.11 Translate Actions.
Use procedure Bind Variables to substitute binding values in the list of
actions A.

Step 3. Select and Execute Rules

3.1 Initialize Lists.
Assign Λ the value of the lhs-rules slot of schema KS*.
Assign Ρ the value of the rhs-rules slot of schema KS*.
Create an empty list for results-list.

100 A Knowledge-Based Architecture for Process Planning

3.2 Loop through Rules.
If either Λ or Ρ is empty: go to Step 4.
Let λ and ρ be the first elements of Λ and Ρ respectively.
Let Α<- Λ\{λ} .
L e t P ^ - P \ { p } .

3.3 If λ matches matchings-list (using procedure Match Conditions with
Rules): go to Step 3.4.
Go to Step 3 .2 .

3.4 Find actions Β of A corresponding to "X" values in p.

3.5 Let results-list <- results-list u {Β).

3.6 If ks-type is "all": go to Step 3 .2 .
Go to Step 4.

Step 4. Interpret Actions

4.1 Initialize List of Results.
Create an empty list fox final-results-list.

4.2 Loop through Results.
If results-list is empty: stop and return final-results-list.
Let α be the first element of results-list.
Let results-list <— results-list \ {a}.

4.3 If a is a number or a symbol not in the is-a+inv slot of schema KS: let
final-results-list <— final-results-list u {a); go to Step 4.2.

4.4 Recursion in Actions.
If a is a symbol included in the is-a+inv slot of schema KS: let β be the result
of evaluating KS a; let final-results-list <— final-results-list u (β}; go to
Step 4.2.

4.5 Function Evaluation.
If a is a list whose first element is the name of a function: let β be the result of
evaluating a; let final-results-list <— final-results-list u {β}; go to Step 4.2.

4.6 If a is a list whose first element is not the name of a function: let β be equal to
the result of interpreting list α following Step 4.1 recursively.
Let final-results-list <— final-results-list u {β}.
Go to Step 4.2.

4.3 Problem Solving and Control
In solving a planning problem, PLANEX selects and executes various problem-
solving operators. Controlling the execution of these operators is important
because the effects of some operators usually affect the execution of other
operators. This section describes in detail the structure and performance of the

Overview of Control Behavior 101

system components responsible for selecting which feasible operators should be
executed at each step in the planning process. The relationships among these
components provide the system with the capability to solve problems in dif­
ferent domains. This versatility is illustrated in the next chapter.

During the development of PLANEX, several problem-solving mechanisms
were explored. The first prototype system for excavation tasks placed all con­
trol decisions in the procedural codes of the operators. The system was in­
flexible in adapting its problem-solving behavior when obtaining the solution of
a problem. In developing the initial architecture of CONSTRUCTION PLANEX, the
need to separate domain operators from control operators was recognized. A
message interface was proposed as a means to communicate with both types of
operators. However, it was not clear what type of messages should be included
in such an interface and how overall control would be accomplished. The first
CONSTRUCTION PLANEX prototype included a set of well-defined domain
operators for planning. In this system, control was provided through a menu-
driven interface. The final PLANEX architecture incorporates both explicit con­
trol operators and menus.

4.3.1 Overview of Control Behavior
There are numerous alternatives for controlling the problem-solving operators.
In systems that use a pure forward-chaining control strategy, problem-solving
operators are executed whenever enough information to invoke them is avail­
able. Operator dependencies are implicitly expressed as a function of the
availability of data in the context. Control is opportunistic and myopic. In
contrast, strategic plan formulation systems such as NOAH (see p. 23) use
declarative information about problem-solving actions to analyze operator inter­
actions and generate plans. Although these systems have not been applied to the
problem of controlling the execution of the problem-solving operators in an
expert system, providing such a declarative representation of these operators
seems promising.

The control mechanism of PLANEX combines opportunistic and strategic ele­
ments by using the hybrid model for process planning described in Section 3.3.
In this model, the description of the problem-solving operators includes the
input data they require (their preconditions) and the results they produce (their
effects). Control alternates between the two phases shown in Figure 4-6:

• a planning phase in which operator execution is simulated on the basis of
information about the preconditions and predictable effects of the operators;
and

• an execution phase in which operators are executed and their unpredictable
effects are recorded.

A Knowledge-Based Architecture for Process Planning

m a y - m o d i f y m a y - m o d i f y

Context
Changes

u s e d - b y

Forward Propagat
of Changes

CD
_c
"c
c 03

Network of Operators,
Preconditions and
Predictable Effects

Network Interpretation

φ
CO
CO

c
ο

Operator Precedences

(^Domain Operator Exec^t ion^)

Figure 4-6. Control Behavior of PLANEX

Overview of Control Behavior 103

The rationale for alternating between the two phases is based on the nature of
the operators themselves. If the effects of the operators could be fully deter­
mined before they are executed, the planning phase need be performed only
once. The system would know all of the operators that have to be executed and
it could determine an order for their execution. In reality, some of the effects
can only be determined after some operators are executed. For example, con­
sider the effects of an operator responsible for allocating machines to activities.
When the operator is applied to an activity, the name of the machine is stored in
the technology slot of the activity. This effect is predictable because it can be
described by identifying the locations in the context (i.e., which slot of which
object) where the operator stores data. The operator also stores the name of the
activity with the machine. However, the name of this machine (i.e., the target
storage location for the result) is known only after the operator has been ex­
ecuted. This effect is unpredictable (i.e., the slot is known but the target object
is not known until the operator has been executed) and is inserted in the agenda
schema after the operator is executed to determine if it influences the execution
of other operators. Thus, the controller must alternate between the two phases
until the planning phase is executed with complete information so that no ad­
ditional effects are produced.

The planning phase operates in two modes:

• forward, in which the system identifies those operators whose input data has
changed and which have to be executed in order to maintain the consistency
of the context; and

• backward, in which the system searches to find a series of partially ordered
operators to achieve desired effects.

The need to simulate the execution of operators in the forward mode is il­
lustrated in Figure 4-7 . Suppose that the user introduces change-1 in the con­
text and this permits the application of operators operator-1 and operator-2. In
a purely opportunistic control strategy, either of these two operators may be
executed first. Assume the scheduler chooses operator-1. This causes a new
change, change-2, to be asserted in the context. If recent assertions are con­
sidered more important, subsequent operators activated by change-2 would be
executed next. At some later point, operator-2 is executed and change-3 is
asserted. However, this change requires the execution of operator-1 and its
subsequent operators for a second time. In order to eliminate these cyclic
operator invocations, operator execution is first simulated and precedences are
identified. Then operators are executed in an order that avoids cyclic computa­
tions.

Backward search for operators is needed when the user requests information
that is available only after executing more than one operator. PLANEX has to
search for sequences of operators that provide this information. If several pieces

104 A Knowledge-Based Architecture for Process Planning

Figure 4-7. A Network of Operators and Changes

of information are requested, conflicts among different operator execution se­
quences must be considered. In the backward search for operator sequences,
PLANEX uses a generalization of a network planning algorithm originally
developed to solve problems in the blocks-world domain. As shown in the next
chapter, this algorithm can solve problems with different types of goal inter­
actions, such as the double-cross conflict problem described by Corkill [1 5] .

4.32 Architectural Components Used for Control

The architecture of PLANEX incorporates four components used to implement
the control behavior described above:

• Domain Operator Schemas (DO S s) that represent preconditions and effects of
domain operators;

• An Agenda that stores: (1) pending (operator object) pairs similar to the
KSARs in the To-Do-Set of O P M (see p. 32); (2) a list with precedences
among domain operators; and (3) lists of context changes or goals to be
achieved;

• Control Operators that: (1) determine the sequence in which domain
operators should be executed; (2) modify the agenda; and (3) execute domain
operators; and

• A Menu-Driven Interface that lets the user insert or delete context changes
and goals, or modify the order in which operators are executed.

Figure 4-8 shows the relationships among the system components that con­
trol the execution of PLANEX. Control operators determine the sequence in
which domain operators are executed by analyzing the declarative knowledge
stored in each operator's corresponding D O S . Each D O S stores information
about: (1) the location in the context which holds input data for a domain
operator; (2) the name of the K S required by the operator; and (3) the location in

Declarative Representation of Domain Operators 105

Context

Control Objects

D o m a i n Opera tor S c h e m a s

A g e n d a

(o p e r a t o r o b j e c t)

(o p e r a t o r o b j e c t)

m a y - m o d i f y

u s e d - t

K S E v a i u a t o r) Operators

m a y - i n v o k e

m a y - i n v o k e

m a y - i n v o k e

Figure 4-8. Relationships of Control Operators, Domain Operators and Control Objects

the context where the results computed by the operator will be stored. Control
information stored in the agenda is modified and retrieved by control operators.
Some control operators plan execution sequences of domain operators while
others are responsible for executing the (operator object) pairs and recording
unpredictable effects. Via the menu-driven interface, the user may also modify
the information in the agenda (e.g., by inserting goals to be satisfied or changes
to be propagated) or invoke the execution of specific domain or control
operators.

4.3.3 Declarative Representation of Domain Operators
In PLANEX, an operator retrieves input data from input objects and stores results
in the set of output objects. The attributes of the input and output objects which
are related to the execution of the operator provide the basic information needed
to control the execution of the problem-solving operators. This information is
represented in the Domain Operator Schema (DOS) of the operator. Figure 4-9
shows the DOS of an operator that estimates the crew cost of construction
activities. The slots of this schema are:

106 A Knowledge-Based Architecture for Process Planning

(defschema Get-Crew-Cost
(is-a
(domain-type
(application-object
(input-objects

(input-bindings
(input-cond-types
(output-ob j eet s
(output-slots
(output-bindings
(output-predictable
(output-effect-type

(input-slots

operator)
pro j ect-act ivity)
current-object)
current-object <crew> <crew>
current-object current-object)
technology normal-cost overtime-cost
normal-hours overtime-hours)
<crew> nil nil nil nil)
filled filled filled filled filled)
current-object current-object)
tot-cost-crew $-crew/day)
nil nil)
yes yes)
fill fill))

Figure 4-9. Schema Representation of a Domain Operator

• is-a identifies the DOS as an instance of an operator schema.
• domain-type indicates that the operator is applied to activity objects.
• application-object specifies the name of the object to which the operator is

applied (e.g., a specific project activity).
• input-objects indicate the objects that are the sources of data for the operator.

In this case, the input-objects are the current-object (i.e., the object to which
the operator is applied), and the object associated with the binding variable
(crew).

• input-slots specify which slots of the corresponding input-objects contain data
for the operator. For example, the first value indicates that the value of the
technology slot of the current-object is used by the operator.

• input-bindings specify the bindings of the corresponding input-objects. In
this example, the variable (crew) is bound to the value of the technology slot
(i.e., the name of the technology used to perform the activity) of the
current-object.

• input-cond-types specify if the input slot must be "filled" or "erased" before
the operator is executed. Empty slots are considered erased.

• output-objects specify the objects that contain the results generated by the
operator.

• output-slots specify the slots of the corresponding output-objects that store the
results of the operator. In the example, the value of the tot-cost-crew and
$-crewlday slots of the project activity to which the operator is applied are
modified by the operator.

• output-bindings specify the bindings of corresponding output-objects. No
binding variables are used as output objects in this example.

• output-predictable specifies if an effect is predictable (the corresponding out­
put object can be determined before the operator is executed). Allowable

Declarative Representation of Domain Operators 107

C o n t e x t K n o w l e d g e
S o u r c e

pour-concrete-05 Nil

is-a crew
normal-cost 280
overtime-cost 420

^ — b i n d i n g
\^ <crew>

O p e r a t o r

pour-concrete-columns-f01

is-a activity
technology pour-concrete-05
normal-hours 8 —
overtime-hours 2
tot-cost-crew 3080
$-crew/day 3080

Figure 4-10. Application of a Domain Operator to a Context Object

values of this slot are "yes" or "no" . In the example, all of the effects are
predictable.

• output-effect-type indicates if the operator fills or erases the value of the
output-slots in the corresponding output-objects. In the example, the schema
specifies that when the operator is applied, it fills the tot-cost-crew and
$-crew/day slots of the project-activity object to which it is applied.

The information in the schema is an abstract description of the operator's
input and output objects, and is interpreted by the system to determine specific
information when the operator is applied. Consider the application of the
operator get-crew-cost to the construction activity pour-concrete-columns-fOf
as shown in Figure 4-10. The input objects specified in the schema are the
current-object and the (crew). These input objects correspond to the domain
objects pour-concrete-columns-f01 and pour-concrete-05 (i.e., the value of the
technology slot of the current-object). The operator uses the data in the
normal-hours and overtime-hours slots of the activity object, and the
normal-cost and overtime-cost slots of the crew object. Executing the operator
modifies the values of the tot-cost-crew and $-crewlday slots of the specific
project-activity object.

108 A Knowledge-Based Architecture for Process Planning

4.3.4 Representation of Control Information

Control information is stored in the agenda schema. This information is
generated (i.e., posted) and used by the control operators to determine the execu­
tion order of the domain operators. Figure 4 -11 shows an example of control
information stored in the agenda schema. The slots of the agenda are:

• operator-queue contains the operators to be executed. Each element has the
form (operator object) indicating an operator which is to be applied to an
object.

• operator-precedences are used to sort operators before they are executed.
Each value is a pair ((operator-1 object-1) (operator-2 object-2)) that in­
dicates that the first operator (e.g., operator-1) has to be executed before the
second (e.g., operator-2).

• goals specify information to be computed. Goals are posted when the user
requests object attribute values that have not yet been calculated. Each value
has the form (object slot type) indicating that attribute slot of schema object is
to be computed.

• context-changes describe the object and slot where a change is asserted and
the type of change ("filled" or "erased"). Each value is a list
(object slot type). Overwriting a slot value is considered a fill operation.

• effect-operators describe the results of an operator. Each value is a list
((object slot type) (operator-1 object-1) ... (operator-n object-η)) indicating
that slot slot of object object may be "filled" or "erased" by applying one of
the operators to its associated object (e.g., operator operator-1 is applied to
object object-1).

• operator-preconditions specify the preconditions of an operator. Each value
is a list of the form ((operator object) ((object-1 slot-1 type-1) ...
(object-η slot-n type-η))). This list defines the preconditions that must be
satisfied before operator is applied to object. Preconditions are of the form
(object-i slot-i type-i) indicating that slot-i of object-i be of type-i. Type is
either "filled" or "empty".

The effect-operators and operator-preconditions slots of the agenda object are
used both for forward propagation of changes and backward expansion of goals.
In forward propagation, an effect-operators value indicates that executing the
operator will assert a change in the context. In backward propagation, an
operator-preconditions value is used to determine subgoals that must be
satisfied.

Control Operators 109

(defschema agenda
(operator-queue

((get-duration pour-concrete-columns-f01)
(get-crew-cost pour-concrete-columns-f01)))

(operator-precedences
(((get-duration pour-concrete-columns-f01)

(get-crew-cost pour-concrete-columns-f01))))
(goals

((pour-concrete-columns-f01 tot-cost-crew filled)))
(context-changes

((pour-concrete-05 normal-cost filled)
(pour-concrete-05 overtime-cost filled)))

(effect-operators
(((pour-concrete-columns-f01 tot-cost-crew filled)

(get-crew-cost pour-concrete-columns-f01))
((pour-concrete-columns-f01 $-crew/day filled)
(get-crew-cost pour-concrete-columns-f01))))

(operator-preconditions
(((get-crew-cost pour-concrete-columns-f01)

(pour-concrete-columns-f01 normal-hours filled)
(pour-concrete-columns-f01 overtime-hours filled)
(pour-concrete-05 normal-cost filled)
(pour-concrete-05 overtime-cost filled)))))

Figure 4-11. Example Agenda Schema

4.3.5 Control Operators
PLANEX includes four control operators:

• Forward Propagation Operator (F P O) identifies which operators to execute
due to changes introduced into the context;

• Backward Search Operator (B S O) finds sequences of domain operators that
may achieve particular goals;

• Network Interpretation Operator (ΝΙΟ) extracts operator precedences based
on their preconditions and effects; and

• Domain Operator Executor (D O E) executes domain operators using infor­
mation about operator precedences.

Control operators are algorithmic (i.e., they do not require a K S evaluation).
The operator algorithms and the auxiliary procedures and data structures are
discussed below.

4.3.5.1 Forward Propagation Operator Forward propagation of changes to
context objects introduced by the user or domain operators is important in main­
taining the consistency of process planning information. In PLANEX, context
consistency is maintained by invoking the Forward Propagation Operator

110 A Knowledge-Based Architecture for Process Planning

(FPO). This control operator uses an algorithm based on the structure of the
DOSs described above. The algorithm starts with a list of the changes to be
propagated and creates a network of operators whose effects can be predeter­
mined. Operator effects are used to simulate operator execution and to establish
operator precedences. The network is expanded until all operators have been
examined and no more predictable effects remain to be considered.

Before presenting the details of the algorithm for forward propagation, two
auxiliary procedures are described:

• Get Immediate Changes of an Operator. This procedure is used to identify
changes in context objects that are asserted when executing an operator.
Changes are identified by examining the output-objects slot of the DOS as­
sociated with the operator. Only the predictable effects of the operator (those
with output-predictable value "yes") are returned by this procedure. For
example, the changes caused by applying the operator get-crew-cost of
Figures 4-9 and 4-10 to the object pour-concrete-columns-fOl would be:

((pour-concrete-columns-f01 tot-cost-crew filled)
(pour-concrete-columns-f01 $-crew/day filled))

• Get Immediate Operators of a Change. This procedure is used to identify the
operators that are activated (i.e., can now be executed) as a result of asserting
a change in the context. Only those operators which contain the modified slot
in the list of their input-slots and which have all of their preconditions filled
with values may be activated by this assertion. For example, assume that the
normal-hours slot of the activity object pour-concrete-columns-fOl has been
changed. Then the list of operators returned would include (assuming all the
input-slots have values):

(get-crew-cost pour-concrete-columns-f01)
The procedure is quite complex when objects of different domain operators
have slots of the same name. In this case, the information in the input-type
slot is used to select only those objects belonging to the operator's domain.
During execution, the procedure searches for binding values until a match
with a specific object is found. For example, if the overtime-cost of a crew
object machine-1 is changed, the procedure searches for those activity objects
with a value of "machine-1 " in their technology slot.

The following data structures are used in the implementation of the FPO
algorithm:

• Queues of Operators. Each member of the queue is composed of a pair of the
form (operator object). There are two queues of operators:

• rem-queue-op is a list of the names of those operators that are ready to be
executed as a result of changes introduced in the context.

• phase-queue-op contains the list of all the operators identified while ex­
ecuting the planning phase of the FPO.

Control Operators 111

• Queues of Changes. Each element in the queue has the form
(object slot type), describing the object and slot where a change is asserted
and the type of change ("filled" or "erased"), similar to the elements in the
context-changes slot of the agenda. There are three queues of changes:

• rem-queue-chgs contains changes that have not yet been considered in
identifying the operators to be executed as a result of assertions in the
context.

• phase-queue-chgs contains the list of all changes that have been analyzed
during the execution of the FPO.

• final-queue-chgs contains the list of changes that do not cause the execu­
tion of any domain operator.

• Network of Operators and Changes. During the execution of the FPO, a
network of operators and changes is created. Two lists are used to represent
the network:

• op-prec-list contains information about the immediate operators activated
for particular context changes. The elements of this list have similar syntax
to those in the operator-preconditions slot of the agenda schema. Each
value is a list of the form ((operator object) ((object-1 slot-1 type-1) ...
(object-η slot-n type-η))). The list defines the preconditions that must be
true before operator is applied to object. Preconditions are of the form
(object-i slot-i type-i) indicating that slot-i of object-i be of the designated
type ("filled" or "empty").

• eff-op-list contains information about predictable effects for particular
operators. The elements of this list have similar syntax to the elements in
the effect-operators slot of the agenda schema. Each value is a list
((object slot type) (operator-1 object-1) . . . (operator-n object-η)). The list
indicates that the slot slot of the object is "filled" or "erased" by applying
one of the operators to its associated object (e.g., operator-i applied to
object-i).

The algorithm for the FPO is detailed below. It has three steps:
(1) initialization of information from the agenda', (2) recursive expansion of the
network of operators and changes; and (3) storage of result information in the
agenda.

112 A Knowledge-Based Architecture for Process Planning

Algorithm for the Forward Propagation Operator

Step 1. Initialize

1.1 Create empty lists for rem-queue-op, phase-queue-op, phase-queue-chgs, and
final-queue-chgs.
Retrieve values from the agenda schema: Assign:
(1) op-prec-list the value of the operator-preconditions slot;
(2) eff-op-list the value of the effect-operators slot; and
(3) rem-queue-chgs be the value of the context-changes slot.

Step 2. Expand Network of Operators and Changes

2.1 If rem-queue-chgs is empty: go to Step 3.
Let λ be the first change in rem-queue-chgs.
Let rem-queue-chgs <— rem-queue-chgs\ {λ}.

2.2 If λ e phase-queue-chgs: go to Step 2.1.
Use procedure Get Immediate Operators of a Change to find the list of
immediate operators Ο caused by change λ.
Let phase-queue-chgs <— phase-queue-chgs u (λ).

2.3 If Ο is empty: let final-queue-chgs <— final-queue-chgs u | λ); go to Step 2.1.
Let rem-queue-op <— O.

2.4 Create links from change λ to each operator in Ο and add them to the
corresponding elements of op-prec-list.

2.5 If rem-queue-op is empty: go to Step 2.1.
Let ο be the first operator in rem-queue-op.
Let rem-queue-op <— rem-queue-op \ {ο}.

2.6 If ο G phase-queue-op: go to Step 2.4.
Use procedure Get Immediate Changes of an Operator to find the list of
immediate changes Λ caused by operator o.

2.7 Create links from operator ο to changes in Λ and add them to the ejf-op-list.
Let phase-queue-op <— phase-queue-op u (ο).

2.8 Let rem-queue-chgs <— rem-queue-chgs u Λ.
Go to Step 2.5.

Step 3. Modify the Agenda

3.1 Modify the value of the following slots of the agenda: Store:
(1) op-prec-list in the operator-preconditions slot;
(2) ejf-op-list in the effect-operators slot;
(3) final-queue-chgs in the context-changes slot; and
(4) phase-queue-op in the operator-queue slot.

Control Operators 113

4.3.5.2 Backward Search Operator In solving a problem, PLANEX not only
propagates the effects of planning decisions, but also finds sequences of
operators to achieve the desired effects. These effects (goals) are expressed in
terms of object attributes that the system is to compute (e.g., find the duration
and cost of an activity). The system derives sequences of problem-solving
operators that transform the initial state (e.g., the duration and cost of the ac­
tivity are unknown) into the desired state. PLANEX determines these sequences
by invoking a Backward Search Operator (BSO) whose action is similar to
some of the plan formulation systems described in the Chapter 2. This version
has been modified to produce plans that have a minimum number of actions.

The algorithm of the BSO is a specialization of the AO* search
procedure [80, p. 63]. The algorithm expands each final goal independently.
Goal expansion yields an associated set of potential operators whose execution
may require certain conditions be satisfied. These operators will be labeled
infeasible if they are found to interfere with other operators in the same se­
quence, or executable if all their preconditions are satisfied. When an operator
is labeled executable, all its predictable assertions are considered solved and the
algorithm looks for other operators that become executable because of these
changes. The expansion process continues until all goals have been expanded
into a network of executable and infeasible operators.

Before presenting the details of the algorithm, three auxiliary procedures are
described:

• Get Possible Operators to Achieve a Goal. This procedure searches the
output-effects slot of the DOSs and returns a list of the operators that may be
executed to fill or erase the value of a specific slot in a frame. For example, if
the goal is to fill the slot tot-cost-crew of the pour-concrete-columns-fOl
object, this procedure would return:

((get-crew-cost pour-concrete-columns-f01))
• Get Goals Required to Execute an Operator. This procedure examines the

DOS associated with the operator and returns a list of the operator's precon­
ditions that are not satisfied in the current state. In this process, binding
variables are evaluated sequentially. For example, suppose that this proce­
dure is employed to find the unsatisfied preconditions of the operator
(get-crew-cost pour-concrete-columns-fOl). If the normal-hours and
overtime-hours slots of the pour-concrete-columns-fOl frame are empty, but
the normal-cost and overtime-cost slots of the pour-concrete-05 frame are
filled, this procedure would return:

((pour-concrete-columns-f01 normal-hours filled)
(pour-concrete-columns-f01 overtime-hours filled))

• Check the Feasibility of an Operator. This procedure determines if an
operator is infeasible or executable. An operator is infeasible when it negates
a necessary precondition of a successor operator in the network. The

114 A Knowledge-Based Architecture for Process Planning

feasibility criterion is similar to the necessary truth criterion of TWEAK [12].
Figure 4-12 shows the application of this criterion. In the figure, arrows
indicate the following relationships:

• a precondition is indicated with an unlabeled arrow directed from a con­
dition to an operator;

• an assertion is indicated with an arrow labeled with a plus sign (Θ)
directed from an operator to a condition; and

• a negation is indicated with an arrow labeled with a minus sign (θ)
directed from an operator to a condition.

A negation occurs when an operator yields an effect on a slot of an object that
contradicts the effect of another operator on the same object. The example
network indicates that operator-1 and operator-2 are possible operators to
achieve goal-1. In order to execute operator-1, subgoals goal-2, goal-3,
goal-5 and goal-6 have to be asserted. The procedure labels operator-5 as
"infeasible" because it negates the precondition goal-3 of operator-1 when
trying to assert a subgoal of the same operator {goal-6 needed by operator-3
to assert goal-2 of operator-1). It does not label operator-4 as "infeasible"
because it does not negate any other precondition of operator-1.

The following data structures are used in the search procedure of the BSO:

• Queues of Operators. Each member of the queue is composed of a pair of the
form (operator object). The four operator queues are:

• rem-queue-op contains the names of those operators whose immediate sub-
goals have not yet been determined.

• phase-queue-op contains the list of all operators identified by the BSO.
• inf-op-list contains the names of the operators that have been labeled

"infeasible".
• exec-op-list contains the names of the operators that have been labeled

"executable".

• Queues of Goals. Each element in the queue has the form (object slot type)
indicating that the slot of object is to be "filled" or "erased" by the system.
There are four queues of goals:

• rem-queue-goals contains goals that have not yet been analyzed to identify
which operators may be used to achieve them.

• phase-queue-goals contains the list of all goals that have been analyzed.
• phase-solved-goals contains goals that have been successfully expanded.
• phase-unsolved-goals contains goals that cannot be satisfied in the current

planning phase.

Control Operators 115

goa l -1

Figure 4-12. Operator Feasibility in Backward Search

• Network of Operators and Goals. Two lists are used to represent the links
between goals and operators:

• op-prec-list stores links between an operator and the goals associated with
its preconditions. Each value is a list of the form (operator object)
((object-1 slot-1 type-1) . . . (object-η slot-n type-η)). The list defines the
preconditions that must be true before operator is applied to object.
Preconditions are of the form (object-i slot-i type-i) indicating that slot-i of
object-i be of the designated type ("filled" or "empty").

• eff-op-list stores links between an operator and the goals that the operator
asserts. Each value is a list of the form (operator slot type)
((operator-1 object-1) . . . (operator-n object-η)). The list indicates the slot
slot of frame object is "filled" or "erased" by applying one of the
operators to its associated object (e.g., operator-i is applied to object-i).

The algorithm for the BSO is detailed below. It has five steps:
(1) initialization and agenda information retrieval; (2) goal expansion by iden-

116 A Knowledge-Based Architecture for Process Planning

tifying possible operators to achieve the goals; (3) backtracking to delete in-
feasible operators and mark goals unachievable; (4) attainment of goals; and
(5) storage of remaining goals in the agenda schema.

Algorithm for the Backward Search Operator

Step 1. Initialize

1.1 Create empty lists for op-prec-list, ejf-op-list, phase-queue-goals,
phase-solved-goals, phase-unsolved-goals, phase-queue-op, rem-queue-op,
exec-op-list and inf-op-list.
Let rem-queue-goals and phase-queue-goals be the initial list of goals to be
achieved, taken from the agenda.

Step 2. Expand a Goal

2.1 If rem-queue-goals is empty: go to Step 5.
Let λ be the first goal in rem-queue-goals.
Let rem-queue-goals <— rem-queue-goals\ {λ).
Let phase-queue-goals <— phase-queue-goals u (λ).

2.2 If λ G phase-solved-goals: go to Step 2.1.
Use procedure Get Possible Operators to Achieve a Goal to find the list of
possible operators Ο to achieve goal λ.

2.3 Use procedure Check the Feasibility of an Operator to eliminate from Ο those
operators that are infeasible.
If Ο is not empty: go to Step 2.4.
Let phase-unsolved-goals <— phase-unsolved-goals u {λ}.
Go to Step 3.

2.4 Create links from each operator in Ο to goal λ and add them to eff-op-list.
Let rem-queue-op <— O.
Let phase-queue-op <— phase-queue-op u O.

2.5 If rem-queue-op is empty: go to Step 2.1.
Let ο be the first operator in rem-queue-op.
Let rem-queue-op <— rem-queue-op \ {ο).

2.6 If o G exec-op-list: let phase-solved-goals <— phase-solved-goals u {λ}; go to
Step 4.

2.7 Use procedure Get Goals Required to Execute an Operator to find the list of
immediate preconditions Λ for operator o.
Create links from each condition in Λ to operator ο and add them to
op-prec-list.

2.8 Let rem-queue-goals <— rem-queue-goals u Λ.
Go to Step 2.1.

Control Operators

Step 3. Backtrack from a Goal

3.1 Let Aj <r- {λ}, where λ is the unsolvable goal.

3.2 If Λ j is empty: go to Step 2.1.
Let λχ be the first goal in Aj.
Let Aj « - Λ , Μ λ , } .

3.3 Let Ο be the operators in op-prec-list requiring precondition λ{.

3.4 If Ο is empty: go to Step 3.2.
Let ο be the first operator in O.
L e t O < - 0 \ { o) .

3.5 Let A2 be the goals of ejf-op-list achievable by applying operator o.
Let phase-queue-op <— phase-queue-op \ {ο).

3.6 Remove from ejf-op-list those elements associated with operator o.

3.7 If A2 is empty: go to Step 3.2.
Let λ 2 be the first goal in A2.
Let Λ2 <— Λ2 \ {λ2}.

3.8 Let X be the set of operators that achieve λ 2 that remain in ejf-op-list.

3.9 If X is non-empty: go to Step 3.7.
Let phase-unsolved-goals <— phase-unsolved-goals u (λ 2).
Let Aj <— Aj u (λ 2) .
Go to Step 3.7.

Step 4. Achieve a Goal

4.1 Let Aj <— (λ}, where λ is the solved goal.

4.2 If A j is empty: go to Step 2.1.
Let be the first goal in A r

LetAj <— Aj \ {Xj}.

4.3 Let Ο be the operators in op-prec-list requiring precondition λ{ that do not
belong to exec-op-list.

4.4 If Ο is empty: go to Step 4.2.
Let ο be the first operator in O.
L e t O < - 0 \ { o) .

4.5 Let A3 be the preconditions of operator o.
If all elements of A3 e phase-solved-goals or are true in the context: go to
Step 4.6.
Go to Step 4.2.

118 A Knowledge-Based Architecture for Process Planning

4.6 Let Λ2 be the goals in ejf-op-list achievable by applying operator o.
Let phase-solved-goals <— phase-solved-goals u Λ2.
Let Aj <— Aj u A2.
Go to Step 4.2.

Step 5. Modify the Agenda

5.1 Modify the value of the following slots of the agenda: Store:
(1) op-prec-list in the operator-preconditions slot;
(2) ejf-op-list in the effect-operators slot;
(3) phase-unsolved-goals in the goals slot; and
(4) phase-queue-op in the operator-queue slot.

4.3.5.3 Network Interpretation Operator After the planning phase is per­
formed by the FPO or the BSO, the agenda contains a network of operators,
preconditions and predictable effects in the operator-preconditions and
effect-operators slots. The operators in the operator-queue represent all those
tasks to be performed in order to maintain the consistency of the context or to
achieve the desired goals. These operators are not independent because the
effects of some operators are the preconditions of others.

The need to interpret the agenda information before executing these
operators is illustrated in the network of Figure 4-7 . Assume values for all
objects are available (including change-3) and operator-1 is executed before
operator-2. After execution of both operators, the context would be inconsistent
because operator-2 asserts a value for change-3 that was not used in the execu­
tion of operator-1. If change-3 initially was not available in the context,
operator-2 would have to be executed before operator-1 in order to provide
operator-1 with its required preconditions.

In PLANEX, the network of operators and conditions is interpreted by apply­
ing the Network Interpretation Operator (ΝΙΟ). The ΝΙΟ analyzes the relation­
ships between each operator of the network and its neighbors. Two operators
are considered neighbors when their effects or preconditions have at least one
element in common. The criteria used by the algorithm of the ΝΙΟ to identify
operator precedences is shown in Figure 4-13. The following relationships are
possible between two neighboring operators, operator-1 and operator-2:

1. A precondition of operator-2 is asserted by operator-1. Operator-2 should
be executed after operator-1 asserts the condition.

2. A condition is a precondition of both operators. No operator precedence is
required.

3. A condition is asserted by both operators. No operator precedence is re­
quired.

4. A precondition of operator-2 is negated by operator-1. Operator-2 should
be executed before operator-1 negates the condition.

Control Operators 119

Case Neighbor Operators Operator Precedence

1 9-
(^operator -

condition

·* \ *
Derator^)

(^ ^ e r a t o i M ^)

\
(^ ^ e r a t o r j T ^)

2

([^operator-

condition

/ > - - .
T^) ^ o p e r a t o r ^)

None

3 θ

([^operator-

condition
«. s e

Derator^)
None

4 4
θ

(^operator -

condition

o e r a t o r j T }

^ ^ e r a t o M ^)

\
^ o p e r a t o ^ 2 ^)

5
θ

([^operator-

condition

£ > C ° p e r a t o r ^)
None

6

I condition

^ o ^ r a t o M ^ (^ o ^ r a t o T ^)

None

Figure 4-13. Identification of Operator Precedences

120 A Knowledge-Based Architecture for Process Planning

5. A condition is negated by one operator and asserted by the other. No
operator precedence is required because the condition does not affect the
execution of either of the two operators.

6. A condition is negated by both operators. No operator precedence is re­
quired.

The algorithm of the ΝΙΟ uses the same data structures as the FPO and BSO.

• Queues of Goals. Each element in the queue has the form (object slot type)
indicating that the slot of object is to be "filled" or "erased" by the system.
There is one goal queue:

• rem-queue-goals contains goals that have not yet been analyzed to identify
which operators may be used to achieve them;

• Network of Operators and Goals. Three lists are used to represent the links
between goals and operators:

• op-prec-list stores links between an operator and the goals associated with
its preconditions. Each value is a list of the form (operator object)
((object-1 slot-1 type-1) ... (object-η slot-n type-η)). The list defines the
preconditions that must be true before operator is applied to object.
Preconditions are of the form (object-i slot-i type-i) indicating that slot-i of
object-i be of the designated type ("filled" or "empty").

• eff-op-list stores links between an operator and the goals that are asserted
by the operator. Each value is a list (operator slot type)
((operator-1 object-1)... (operator-n object-η)). The list indicates the slot
slot of frame object is "filled" or "erased" by applying one of the
operators to its associated object (e.g., operator-i is applied to object-i).

• link-op-list stores information about precedences between pairs of
operators. The list is composed of a pair of elements of the form
((operator-1 object-1) (operator-2 object-2)), indicating that operator-1
should be applied to schema object-1 before operator-2 is applied to
object-2.

The algorithm is detailed below. It has three steps: (1) agenda information
retrieval; (2) determination of operator precedences; and (3) storage of results in
the agenda.

Algorithm for the Network Interpretation Operator

Step 1. Initialize

1.1 Create an empty list for link-op-list.
Retrieve values from the agenda: Assign:
(1) op-prec-list the value of the operator-preconditions slot;
(2) eff-op-list the value of the effect-operators slot; and
(3) rem-queue-op the value of the operator-queue slot.

Control Operators 121

Step 2. Find Operator Precedences

2.1 If rem-queue-op is empty: go to Step 3.
Let ο be the first operator in rem-queue-op.
Let rem-queue-op «— rem-queue-op \ {ο}.

2.2 Let Λ be the list of preconditions of operator ο in op-prec-list.

2.3 If Λ is empty: go to Step 2.1.
Let λ be the first element of Λ.
Let Λ < - Λ \ (λ) .

2.4 Find the set of operators 0 + in eff-op-list that assert condition λ.

2.5 If 0 + is empty: go to Step 2.7.
Let o + be the first element of 0 + .
Let 0 + < - 0 + \ f o +) .

2.6 Let link-op-list <— link-op-list u {(o+ o)}.
Go to Step 2.5.

2.7 Find the set of operators 0~ in eff-op-list that negate condition λ.

2.8 If O" is empty: go to Step 2.3.
Let o" be the first element of O".
Let 0 - < - 0 _ \ { o ~ } .

2.9 Let link-op-list <- link-op-list u {(o o~)}.
Go to Step 2.8.

Step 3. Modify the Agenda

3.1 Store the value of link-op-list in the operator-precedences slot of the agenda.

4.3.5.4 Domain Operator Executor Operator precedence information is used
by the Domain Operator Executor (DOE) when invoking domain operators.
The DOE executes operators in topological order1 and stores unpredictable
effects in the context-changes slot of the agenda. The algorithm uses one
auxiliary procedure:

• Get Unpredictable Effects of an Operator. This procedure is used to identify
the set of unpredictable effects of an operator, similar to the procedure used to
get the immediate changes of an operator (see p. 110). The procedure returns
those effects that have a output-predictable value equal to " n o " in the DOS
associated with the operator.

The DOE algorithm uses some of the data structures described previously.

An operator is applied only after all its preceding operators have been executed.

122 A Knowledge-Based Architecture for Process Planning

• Queues of Changes. Each element in the queue has the form
(object slot type), describing the object and slot where a change is asserted
and the type of change ("filled" or "erased"), similar to the elements in the
context-changes slot of the agenda. There is one change queue:

• phase-queue-chgs contains the list of all changes that have been analyzed
during the execution of the FPO.

• Queues of Operators. Each member of the queue is composed of a pair of the
form (operator object). There is one operator queue:

• rem-queue-op is a list of the names of those operators that are ready for
execution as a result of changes introduced in the context.

• Network of Operators and Goals. One list is used to represent the links
between goals and operator.

• link-op-list stores information about precedences between pairs of
operators. The list is composed of a pair of elements of the form
((operator-1 object-1) (operator-2 object-2)), indicating that operator-1
should be applied to schema object-1 before operator-2 is applied to
object-2.

The algorithm follows. It has three steps: (1) initialization; (2) sorting and
execution of operators; and (3) storage of results in the agenda.

Algorithm for the Domain Operator Executor

Step 1. Initialize

1.1 Retrieve values from the agenda: Assign:
(1) link-op-list the value of the operator-precedences slot;
(2) phase-queue-chgs the value of the context-changes slot; and
(3) rem-queue-op the value of the operator-queue slot.

Step 2. Sort and Execute Operators

2.1 Topologically sort the rem-queue-op using the precedence information stored
in link-op-list.

2.2 If rem-queue-op is empty: go to Step 3.
Let ο be the first element of rem-queue-op.
Let rem-queue-op <— rem-queue-op\ {o}.

2.3 Execute domain operator o.

2.4 Use procedure Get Unpredictable Effects of an Operator to find the
unpredictable changes Λ of operator o.
Let phase-queue-chgs <— phase-queue-chgs u Λ.
Go to Step 2.2.

User Interaction 123

Step 3. Modify the Agenda

3.1 Store the value of phase-queue-chgs in the context-changes slot of the agenda.

4.4 User Interaction
PLANEX is intended to provide a framework for developing user assistants. This
requires the user be permitted to modify system components, invoke system
operations, override planning decisions and request information about planning
results. A user assistant is desirable because:

• there are process planning problems whose solution requires the direct par­
ticipation of the user;

• creative planning involves common-sense knowledge that is difficult to incor­
porate into an automated system; and

• the user is responsible for adapting the system to different application
domains.

Other reasons for not entirely eliminating human interaction and control in ex­
pert system applications are discussed by Waterman [1 0 7 , p. 1 3] .

In PLANEX, interaction is provided through several mechanisms which are
deemed fundamental for achieving the desired generality, flexibility and trans­
parency of the architecture. Examples of such interaction mechanisms are
menus for invoking task-specific operators and interactive graphical displays for
modifying the information stored in context objects.

During the development of PLANEX, support for user interaction has been
repeatly improved. In the first prototype for excavation tasks, user interaction
was very limited. The only way to modify context objects was to use a set of
primitive manipulation functions provided by the frame implementation lan­
guage, such as the function to create a slot in a frame. Initially, no mechanisms
to alter control decisions or knowledge were available. When this prototype
evolved into CONSTRUCTION PLANEX, effective mechanisms for acquiring and
updating the required domain-specific knowledge were incorporated into the
system architecture. In addition, functions for producing reports and displays of
context information were developed. Some of these mechanisms were general­
ized and restructured and now exist as components of PLANEX.

Figure 4 - 1 4 shows the different types of user interaction mechanisms avail­
able in PLANEX. There are mechanisms to:

• modify the information stored in context objects, the knowledge used by
operators, and the manner in which operators use this knowledge. The user
may modify any of the following system components:

• knowledge sources, by using the KNOWLEDGE SOURCE ACQUISITION
MODULE (KSAM) described in Section 4 . 4 . 1 ;

A Knowledge-Based Architecture for Process Planning

MODIFY

Mechanism
Knowledge

Source
Domain
Object

Control
Object

Domain
Operator

KSAM m

Interactive
Graphics

•

Questions
to User •

Control Panel •
Editor and
Language

• • • •

INVOKE

Mechanism KSE
Domain
Operator

Control
Operator

Control Panel • •
Menu • •
Editor and
Language m • •

REQUEST

Mechanism
Knowledge

Source
Domain
Object

Control
Object

KSAM •
Report
Generator •

Output
Graphics •

Explanation •
Control Panel •
Editor and
Language

• • •

Figure 4-14. Mechanisms for User Interaction

Knowledge Source Acquisition Module 125

• domain objects, by using an interactive graphical environment such as the
GANTT Interactive Scheduler of CONSTRUCTION PLANEX;

• control objects, by using the CONTROL PANEL (CP) described in
Section 4.4.3 or primitives of the frame implementation language; and

• domain operators, by editing the files which contain the procedural codes
or Domain Operator Schemas (DOSs) of the operators.

• invoke the execution of specific domain or control operators and control the
order in which these operators are applied. The user may invoke the
KNOWLEDGE SOURCE EVALUATOR (KSE), domain operators and control
operators by using the CONTROL PANEL described in Section 4.4.3, by means
of a menu-driven interface, or by invoking the operator directly using the
implementation language.

• request information about data produced by the system and the manner in
which this data was computed. The user may request information about any
of the following system components:

• knowledge sources, via the KNOWLEDGE SOURCE ACQUISITION MODULE;
• domain objects, via: (1) the REPORT GENERATOR that lets the user design

output reports that summarize context information; (2) output graphics such
as the project cost curves of CONSTRUCTION PLANEX; or (3) the explanation
facilities provided by the system; and

• control objects, via the CONTROL PANEL or primitives provided by the
implementation language.

In the following sections, several of the user interaction mechanisms of PLANEX
are described. Some of these mechanisms are generic (e.g., the mechanism for
updating domain knowledge and the CONTROL PANEL) while others are depend­
ent upon particular application domains (e.g., the G A N T T Interactive Scheduler
of CONSTRUCTION PLANEX). The following discussion explains how these
mechanisms can be utilized in knowledge-based process planning systems
developed with PLANEX. Since these are only the mechanisms from which a
complete user interface is built, the following discussion does not illustrate the
use of PLANEX. Overall control is provided through a set of menus, the
CONTROL PANEL and predefined sequences of problem-solving operators.
Chapter 6 details of an actual user interface (Section 6.2.4) and the use and
operation of a PLANEX application (Section 6.3).

4.4.1 Knowledge Source Acquisition Module
In PLANEX, knowledge is represented in knowledge sources (KSs) (see
Section 4.2). As described, each KS may be considered a generalized decision
table that groups rules sharing conditions and actions. This external view of a
KS as a tabular representation is easier to understand than its associated schema

126 A Knowledge-Based Architecture for Process Planning

implementation. The KNOWLEDGE SOURCE ACQUISITION MODULE

(KSAM) [116] is an interactive editor which uses the tabular representation of
KSs. The KSAM lets the user create, modify or delete KSs, and after changes
are made, it translates the tabular representation into the appropriate schema
representation used by the KNOWLEDGE SOURCE EVALUATOR (KSE).
Figure 4-15 illustrates this process. The KSs created or updated with the
KSAM can be saved in files for future use. Also, previously saved KSs are
updated by loading them from files and translating them into their tabular form.

The display of the KSAM contains the six windows shown in Figure 4-16.
Four main windows correspond to the four regions of a KS: conditions, actions,
left-hand-sides of rules and right-hand-sides of rules. Lines in these windows
delimit cells. The user may enter or modify cell values, scroll the windows,
select menu options or type values. The two small windows at the bottom of the
screen are the Current KS window, which displays the name of the KS being
modified and the firing mechanism used by the KSE, and the Input/Output
window that is used to edit cell values using a line editor. The KSAM provides
many desirable capabilities in an interactive editing environment. For example,
when editing a row in the Conditions window, the KSAM looks for the schema
with the name indicated in the Object column and displays the names of its slots.
This provides additional help to the user in defining domain knowledge.

4.4.2 Interactive Graphical Displays

Interactive graphical displays provide the user with a convenient mechanism for
modifying the information stored in domain objects. An example of this type of
user interaction mechanism is the GANTT Interactive Scheduler [116]. GANTT
lets the user calculate, display and modify scheduling information for a par­
ticular set of activities through an interactive Gantt-chart. The design of GANTT
is based on the work of Garman [37] on applications of computer graphics in
solving scheduling and resource allocation problems. Garman showed that
novices using an interactive scheduling program performed better than the most
efficient scheduling algorithms available. GANTT incorporates an interactive
Gantt-chart plus displays of resource profiles that are automatically updated
when activities are manually rescheduled.

The operation of GANTT is shown in Figure 4-17. The program lets the user
interactively modify a schedule via a Gantt-chart display, propagate these
changes to all of the activities of the project and store project schedules in
context schémas. Project activity networks are represented using the unified
activity network model described in Section 3.3. With this representation,
schedule changes are propagated using common shortest-path algorithms. After
scheduling, an updated project chart is displayed. Additional schedule changes
may be introduced. When the user is satisfied, this project schedule may be

Interactive Graphical Displays 127

Knowledge
Engineer
Knowledge
Engineer

edit Knowledge
Engineer

Tabular
Representation

read

t r ans l a t e

Schema
Representation

KSAM

^ load

F i l e F i l e

save

F i l e

Ope r a t o r
Module

Figure 4-15. Illustration of the Knowledge Source Acquisition Process

Object Slot Operator Value KNOWLEDGE SOURCE ACQUISITION MODULE

Contorts Left
I I
I

1
Actos tm ndS m Mm

I
I
1

$uttm
Promût? KS-BUFFER FIRST

Messages are posted here ...

Figure 4-16. Screen Display of the KSAM

stored in the context schémas associated with the project activities. Alternative
project schedules may be saved in files for later use.

A screen display of G A N T T is shown in Figure 4 - 1 8 . Schedule changes are
made by pointing at one of the bars representing the activities and clicking a
mouse button. Depending on the type of click used, an activity duration may be
shortened or lengthened or the activity may be shifted in time. Via menu
options, the user may specify milestones or modify activity precedences, time
scales and resource trigger levels.

128 A Knowledge-Based Architecture for Process Planning

Start or R e s u m e
G A N T T Task

Pause or
Quit T a s k

A p p l y
F loyd W a r s h a l l
o r
C P M A l g o r i t h m

i

1 f

Update
S c h e m a s

Ed i t A c t i v i t i e s
us ing the
I n t e r a c t i v e
C o m m a n d s

Figure 4-17. Interactive Scheduling Process

Gantt Window

Time Window

» Bottom-Left Window Resource Window'

Figure 4-18. Screen Display of GANTT

GANTT has been used as the interactive scheduling component of the
CONSTRUCTION PLANEX and EXCAVATION PLANEX systems. Its implementation

assumes that the project activity network is represented using the unified model
described in Section 3.3. GANTT can be used with any PLANEX application
which generates such a project representation.

Control Panel 129

4.4.3 Control Panel

PLANEX provides the user with an interactive mechanism to control the execu­
tion of the planning process: the CONTROL PANEL (CP). The display of the CP
contains the windows shown in Figure 4-19. The four key windows are:

• the Context Changes window displays the information from the
context-changes slot of the agenda schema. Each entry, represented in one
row, is a change that has not yet been propagated using the Forward
Propagation Operator (FPO). The row is an (object slot type) triplet which
indicates that slot slot of schema object has been "filled" or "erased".

• the Goals window displays the information from the goals slot of the agenda
schema. Each entry, represented by one row, is a goal that has not yet been
satisfied by the Backward Search Operator (BSO). The row is an
(object slot type) triplet which indicates that slot slot of schema object is to be
"filled" or "erased".

• the Operator Queue window displays the information from the
operator-queue slot of the agenda schema. Each row of this window is an
(operator object) pair which indicates that domain operator operator can be
applied to the object object.

• the Operator Precedences window displays the information from the
operator-precedences slot of the agenda schema. Each row of this window is
an ((operator-1 object-1) (operator-2 object-2)) pair which indicates that
operator-1 is applied to object-1 before operator-2 is applied to object-2.

CONTEXT CHANGES GOALS

Object Bm Type

OPERATOR QUEUE OPERATOR PRECEDENCES

PromDt? Message Window Message Window

Figure 4-19. Screen Display of the Control Panel

130 A Knowledge-Based Architecture for Process Planning

In addition, an Input/Output window used to input commands or edit cells and a
Message window used to output messages appear at the bottom of the display
screen.

The CP provides the means to display and modify the control information
stored in the agenda. The user may insert goals or changes in the agenda,
modify the order in which operators are listed, insert domain operators in the
queue, or modify operator precedences. In addition, the user may execute any of
the control operators of the system to create strategic plans of domain operators.

4.4.4 Report Generator
The REPORT GENERATOR (R G) lets the user design output reports. Each report
is described using a report-format schema that specifies the columns of the
report, the order in which these columns are printed, and any operations applied
to the values before they are printed. A report format may also specify con­
straints on the values included in the report. Individual column-format schémas
describe the columns in a report. Column formats specify the source of the data
and attributes such as column output width or number of decimal places. A
column format schema may be used by more than one report format. For
example, in CONSTRUCTION PLANEX, a single column format schema for ac­
tivity names is used in all reports related to project activities.

The use of the R G is illustrated with an example. Assume the planner wants
to produce a report of activity costs similar to that of Figure 4-20. The report
contains three columns to display different activity attributes. The values in the
first two columns ("name" and "cost") are obtained from the activity schémas.
However, the values in the third column are not stored in these frames. The
"percent" cost of an activity is computed by dividing its "cost" by the total cost
of the project. The total project cost is not stored in the context, but is computed
by adding all of the activity costs. Furthermore, the user wants the report: (1) to
be sorted in ascending order by activity name; and (2) to include only those
activities whose percent cost is greater than or equal to 10% of the total project
cost.

ACTIVITY COSTS

Name Cost Percent

Activity-1
Activity-5
Activity-8

200.00
400.00
300.00

10.0
20.0
15.0

Figure 4-20. Example of a Report

Report Generator 131

(defschema act-cost-per
(is-a
(report-title
(format-columns

(sort-order
(sort-type
(solving-order
(printing-order
(functions-columns
(functions-rows

report-format)
"ACTIVITY COSTS")
column-name column-cost
column-percent)
1)
a)
1 2 3)
1 2 3)
(<total> (add-list <cost>)))
(<percent> (/ <cost> <total>)))

(constraints-printing (>= <percent> 10)))

Figure 4-21. Report Format Schema for the Report of Figure 4-20

Figure 4-21 shows the report format schema that produces the cost report of
Figure 4-20. The slots in this schema are:

• is-a identifies the frame as a report format schema.
• report-title contains the title of the report.
• format-columns specifies the names of the column format schémas included

in the report. The example report is composed of three columns correspond­
ing to: (1) the activity name; (2) its cost; and (3) its percent cost.

• sort-order indicates how to sort the data. In the example, activities will be
sorted on the first column format only (the activity name).

• sort-type specifies if the sort is in ascending ("a") or descending ("d") order.
• solving-order indicates the sequence in which values are obtained from con­

text objects. This order is important in substituting binding variables in the
formulas of the other slots. When producing the desired report, the RG will
first obtain the name, then the cost and finally it will compute the percent
cost.

• printing-order indicates the order of the columns in the report. This order
need not correspond to the order in which column formats were listed in the
format-columns slot.

• functions-columns contains a list of ((binding-variable) function) pairs defin­
ing operations to be applied to each column of the report. Before this slot is
evaluated, the RG performs the bindings indicated in the column format
schémas. For example, before evaluating the function add-list, (cost) is
bound to a list of all the activity costs. This function is evaluated and the
result is bound to the variable (total).

• functions-rows contains a list of ((binding-variable) function) pairs defining
operations applied to each row of the report. When printing a row, the RG
updates the bindings specified in the column format schémas and evaluates
the functions sequentially. In the example, the variable (percent) is computed
as the value of the variable (cost) divided by the value of the variable (total).

132 A Knowledge-Based Architecture for Process Planning

(defschema column-format-cost
(is-a column-
(column-title "Cost")
(from-schema current
(from-slot cost)
(binding-value <cost>)
(result-type real)
(width 8)
(decimals 2))

current-ob j ect)

column-f ormat)

Figure 4-22. Example of a Column Format Schema

• constraints-printing specifies restrictions on the values of variables included
in the report. If any of these constraints is not satisfied, the row is omitted
from the final report. In the example, only those rows with a {percent) greater
than or equal to ten (10) are printed.

Figure 4-22 shows the column format schema used by the RG to display a
column of activity costs. The slots in this schema are:

• is-a identifies the frame as a column format schema.
• column-title contains the title of the column.
• from-schema indicates the object from which an attribute value will be

retrieved. In the example, the current-object refers to a particular activity.
• from-slot indicates the attribute of the object that will be used to fill the

• binding-value specifies the binding variable associated with the values in this
column.

• result-type specifies the data type printed in the column.
• width specifies the total width of the column.
• decimals defines the number of decimal places used to format numeric output.

The RG has been used to produce many different types of reports in the
CONSTRUCTION PLANEX and HARNESS PLANEX systems, such as scheduling,
cost and technology reports. In these applications, report format and column
format schémas provide all the information the RG needs to generate the desired
reports.

4.4.5 Other Interaction Mechanisms
The PLANEX architecture supports several other user interaction mechanisms.
These include:

column.

Questions to the User that let the user control the operation of the system or
modify attribute values of context objects;

Other Interaction Mechanisms 133

• Menus that invoke the execution of domain and control operators;
• Explanations that provide information about results and decisions made by

the system; and
• Passive Output Graphics that display context information in terms of pictures,

graphs and charts.

Users may influence the planning process by answering the questions dis­
played by the system. Consider the interrogative during the execution of the
CONSTRUCTION PLANEX operator that determines activity durations, shown in
Figure 4 - 2 3 (user input is underlined). When the user modifies the number of
crews, several values in the activity schema are changed. Similarly, several
values are changed when the user decides to use overtime and eliminate frac­
tional work days.

***** Duration Information for PA
EXCAVATION-FOUNDATION-P01-S00-B00-F00

Crew CREW-EXCAVATION-05
Components of Crew ((1 BACKHOE-3/4)

(1 OPERATOR-BACKHOE-3/4))
Number of Crews 1.04
Number of days 10

Would you like to change any of these settings ? [n] v_

Type of change change-crews

-> Give me the number of crews L0

***** Duration Information for PA
EXCAVATION-FOUNDATION-P01-S00-B00-F00

Crew CREW-EXCAVATION-05
Components of Crew ((1 BACKHOE-3/4)

(1 OPERATOR-BACKHOE-3/4))
Number of Crews 1.0
Number of days 10.42

Would you like to change any of these settings ? [η] η

**** The duration of PA P01-S00-B00-F00-PA-10-60 is 83.33 hours
**** or 10.42 days

Would you like to use overtime in order to eliminate
day fractions? v_

Figure 4-23. Questions to the User During the Determination of Activity Durations

134 A Knowledge-Based Architecture for Process Planning

In the current version of PLANEX, questions are embedded in the procedural
codes of the domain operators. There is no generic mechanism to provide this
type of interaction, but it might be possible to create such a mechanism.

Menus provide a means to control the execution of domain and control
operators. A complete menu-driven interface is composed of many interrelated
menus. An example of such an interface for CONSTRUCTION PLANEX is
described in Section 6.2.4.

PLANEX provides limited explanations of task-specific operations by storing
the names of the KSs used to obtain planning results. When the user requests
information describing the manner in which the system computed a particular
value, PLANEX displays the name of the KS associated with this object attribute.
Suppose the "amount-of-work" of a particular activity object is computed using
the KS KS-Amount-Example. During the execution of the domain operator,
PLANEX creates a slot called WHY-amount-of-work to store the value
4 4KS-Amount-Example" for later reference. When the user wants to know why
the activity has a particular "amount-of-work" value, "KS-Amount-Example"
is displayed. A second type of explanation occurs when the user asks how a
result may be computed. In this case, no inverse pointers exist because the
domain operator has not yet been executed. To answer these types of questions,
PLANEX finds those operators whose DOS s indicate they produce the requested
result and displays their names.

The last type of mechanism used in PLANEX is a set of passive output dis­
plays. Pictures are powerful means for displaying data and data relationships.
Depending on the application domain, a number of output programs may be
added to the system. An example of one such program is the ANIMATOR system
described in Chapter 6. ANIMATOR produces construction simulations by dis­
playing some of the project activity information produced by CONSTRUCTION
PLANEX. With the ANIMATOR, the user can view how frame buildings are
constructed. This program has proven invaluable for detecting errors in activity
precedence computations.

4.5 Conclusions
The basic contributions of the PLANEX architecture can be summarized by con­
sidering the key points of the architecture, in terms of how PLANEX operates and
the capabilities it provides. PLANEX is a system which:

• provides a domain-independent knowledge representation scheme that is inde­
pendent of the set of domain operators of a particular application;

• supports modular development because domain operators may be added or
removed from the system without having to alter the other operators;

• creates and executes strategic meta-plans of domain operators using its con­
trol operators;

Conclusions 135

• distinguishes between the feasibility and desirability of the domain operators
by using declarative knowledge;

• provides the user with tools for creating and modifying the knowledge used in
an application; and

• provides the user with an interface to control the execution of the system.

Combining these concepts into a single operational system adequate for solving
process planning problems is a contribution to the development of process plan­
ning systems. In addition, how PLANEX develops a process plan distinguishes it
from other planning systems, particularly those described in Chapter 2. These
different approaches to problem solving are also contributions of the architec­
ture:

• PLANEX generates not just sequences of actions, but complete process plans.
The plans include the activities required to construct or manufacture the ob­
ject; their precedence relationships; the technologies which will be used for
performing these activities; the estimated activity durations and costs; and
schedule information such as earliest and latest event times.

• PLANEX explicitly generates both process plans and operator plans. A
process plan indicates the manner in which the desired product will be
manufactured or constructed. The operator plan is the internal set of problem-
solving actions to be performed to produce the process plan. This plan is
generated by the control operators and is not related to the product design.
Most other systems do not distinguish between these types of plans. Means-
end planners do not generate plans about the operators required to generate
plans. Meta-planners distinguish between plan actions and meta-actions used
to generate the plan, but do not strategically plan the execution of the meta-
actions. Blackboard planners can produce both types of plans, but do not
include explicit operators for strategic planning. In contrast, PLANEX
provides a set of control operators to generate operator plans.

Developing Process
Planning Systems

The PLANEX architecture presented in the previous chapter provides tools to
represent and use domain knowledge in solving process planning problems.
This chapter describes a procedure for developing process planning systems
using the components of PLANEX, and illustrates the use of the architecture with
examples from three prototype process planning systems:

• CONSTRUCTION PLANEX generates plans for the excavation and erection of
concrete or steel-frame buildings;

• EXCAVATION PLANEX formulates plans for construction site excavation;
• HARNESS PLANEX creates plans for manufacture of automotive electrical har­

nesses.

In addition, the chapter describes a prototype system that solves blocks-world
problems using the control components of PLANEX. Blocks-world problems
involve moving and stacking blocks and represent a simplified domain for test­
ing automated planning systems. The application of this prototype to problems
similar to those presented in Section 2.1 is discussed.

The chapter begins with some simple examples that illustrate the capabilities
of PLANEX. These examples show how the architecture is used to produce
problem-solving behavior similar to that of other ΑΙ-based planning systems. A
general procedure for implementing process planning systems using the PLANEX
system architecture follows. This procedure is illustrated with examples from
the four prototype process planning systems described above. The chapter ends
with an evaluation of the PLANEX architecture with respect to the requirements
presented in Section 3.3. This evaluation is based on the prototype applications
and behavioral capabilities of PLANEX.

137

138 Developing Process Planning Systems

5.1 Capabilities of the PLANEX Architecture

5.1.1 Knowledge Representation

The combination of rules grouped into Knowledge Sources (KSs) and the
KNOWLEDGE SOURCE EVALUATOR (KSE) that processes these rules provides
PLANEX with flexible tools for representing domain knowledge. The features
include:

• knowledge abstraction that represents domain knowledge at different levels of
detail;

• knowledge hierarchies that represent domain knowledge at different levels of
importance; and

• variable firing mechanisms that permit KSs to be evaluated differently.

Each of these features is illustrated below with examples from the construction
project planning domain.

5.1.1.1 Knowledge Abstraction Consider the problem of determining the suc­
cessors of formwork construction activities such as formwork-floor-f
formwork-floor-2 and formwork-floor-3 (e.g., formwork for each floor8).
Formwork is used to support fresh concrete until it sets. Formwork construction
is followed by concrete placement. The system should apply this abstract
precedence (formwork followed by pour-concrete) to each of the specific
formwork activities in order to produce specific successors such as
pour-concrete-floor-1. A single abstract rule of the form:

IF the type of the activity is formwork
THEN the type of a successor activity is pour-concrete

is not useful for our purposes as it is not related to specific formwork locations.
On the other hand, many specific rules of the form:

IF the activity is formwork-floor-1
THEN a successor activity is pour-concrete-floor-1

would produce an unnecessarily large knowledge base.
Figure 5-1 illustrates the problem. A generic operator is to be applied to

several objects of the context that share common properties (e.g., the type of the
activity) but that differ in specific properties (e.g., the floor where the activity is
performed). A generic KS whose conditions are expressed in terms of the
common properties is used for this operator. The results returned by this KS
contain a portion that is generic for any floor (e.g., pour-concrete is a successor

Floor refers to the location of the activity, not the actual floor slab.

Knowledge Representation 139

Generic Object

Generic Property

Knowledge Source

Conditions Actions

Generic Act ion
+

Specif ic Act ion

Figure 5 -1 . Using Abstract Knowledge for Specific Operations

(defschema ks-successors-formwork

This ks finds successors for formwork activities

(is-a ks)
(ks-type all)
(cond-objects current-object current-object)
(conditions (= type-activity formwork)

(= floor <floor>))
(lhs-rules (T T))
(rhs-rules (Χ X))
(actions pour-concrete-floor-<floor>

remove-forms-floor-<floor>))

Figure 5-2. KS that Combines Knowledge at Different Levels of Abstraction

of formwork) and a part that is specific to each location (e.g., pour-concrete in
floor-l is a successor of formwork in floor-l). In this KS, specific attributes of
the object to which the operator is applied (e.g., the value of its floor attribute)
are used to produce the desired results.

Figure 5-2 shows the schema representation of a KS used to find the succes­
sors of formwork activities. This KS contains only one rule which checks that
the type of activity is formwork and binds the variable (floor) to the value of the
slot floor of the activity schema. As described in Section 4.2.3, the KSE inter­
prets everything delimited by " () " as a binding variable. The value of (floor) is
then substituted into the generic actions pour-concrete-floor-(floor) and
remove-forms-floor-(floor) to produce the specific actions for each activity (e.g.,
pour-concretefloor-l and remove-forms-floor-1).

5.1.1.2 Knowledge Hierarchies A useful strategy when structuring knowledge
bases is to group rules according to relative importance to improve the ef­
ficiency of the system. Rules at the top level of a knowledge hierarchy are
considered more important than rules in the bottom level. With this structure,
and by processing only the important rules first, the search space is reduced.

140 Developing Process Planning Systems

(defschema ks-technology-example

This ks selects appropriate equipment for an excavation
activity

(is-a
(ks-type
(cond-objects

(conditions

(lhs-rules

(rhs-rules

(actions

ks)
first)
current-object soil-characteristics
soil-characteristics)
(= type-activity excavation)
(= water-content wet)
(member type-soil ' (soil-1 soil-2)))
(Τ Τ Τ)
(T F I)
(Τ T F))
(Χ I I)
(I Χ I)
(I I Χ))
ks-dragline
ks-clamshell
ks-power-shovel))

Figure 5-3. KS Illustrating Knowledge Hierarchies

(defschema ks-duration-example

This ks returns either the expected duration of an activity or
a three point estimate

(is-a
(ks-type
(cond-ob jeet s
(conditions
(lhs-rules

(rhs-rules

(actions

ks)
first)
current-object)
(= type-activity excavation))
(T)
(T)
(T))
(X I I)
(I X I)
(I I X))
10 20 7))

Figure 5-4. KS Illustrating Variable Firing Mechanisms

In PLANEX, knowledge hierarchies are created by structuring KS schémas in
the context. Evaluating a KS may result in the evaluation of other KSs that are
linked below the first. For example, assume that a domain operator is respon­
sible for selecting appropriate excavation equipment for a certain activity. There
are several possible types of equipment (such as power shovels, clamshells or
draglines) and within each type of equipment there are many possible subtypes

Problem Solving and Control 141

(e.g., 1/4-cyd power shovel, 1/2-cyd power shovel). One possible knowledge
representation is to combine all possible equipment subtypes and all possible
factors affecting the choice into a single large KS. However, the decision
process may be decomposed into two decisions: (1) select the equipment type;
and (2) select the equipment subtype. Such a KS is shown in Figure 5-3 .
Evaluating this top-level KS leads to the successive evaluation of lower-level
KSs such as KS-dragline.

5.1.1.3 Variable Firing Mechanisms In PLANEX, rules in a KS are evaluated
sequentially (in the order written) by the KNOWLEDGE SOURCE EVALUATOR
(KSE). Each KS specifies the type of sequential firing used (i.e., if all rules are
fired or only the first applicable one). The firing order may be dynamically
changed before evaluating a KS. Consider the KS of Figure 5-4. This KS may
return one or three values for activity durations. If the ks-type is set equal to
"first", only the expected duration of the activity is computed. This could be
used in deterministic scheduling procedures such as the Basic Critical Path
Method that only require point estimates of activity durations to compute the
earliest completion time of the project. If the ks-type is set equal to "all" , then
three values are computed. These values correspond to the expected, pessimistic
and optimistic activity durations required by some probabilistic scheduling
procedures such as the PERT. The example illustrates that the same KS may be
used for different purposes by changing how it is evaluated.

5.7.2 Problem Solving and Control

The architecture of PLANEX provides the user with tools to implement different
problem-solving behaviors including:

• hierarchical planning in which problem-solving operators are represented at
different levels of abstraction;

• nonlinear planning in which operators are partially ordered by analyzing
goals in parallel;

• meta-planning in which operators are arranged into layers and operators of
one layer control the execution of operators in the layer immediately below;
and

• opportunistic planning in which operators are applied independently when­
ever their execution is relevant in solving part of the problem.

This section illustrates the capabilities of the architecture to support these
problem-solving behaviors with examples from several domains.

142 Developing Process Planning Systems

5.1.2.1 Hierarchical Planning In hierarchical planning, solutions are obtained
at different levels of abstraction. This requires representing the problem domain
at different levels of detail. Upper (abstract) levels in the hierarchy include only
those characteristics of the problem considered to be critical (i.e., an abstract
representation). Lower levels incorporate the additional characteristics ignored
in the upper levels. With this approach, the effort in searching for a solution is
reduced. The problem solver searches first for a solution in the upper-level
abstraction spaces and uses this solution as a starting point in the lower-level
abstraction spaces.

Incorporating hierarchical problem solving in planning systems appears in
ABSTRIPS (see p. 20). By classifying operator preconditions with respect to
their criticality, an operator hierarchy is created. A precondition that cannot be
changed by an action is considered more critical than others. In upper-level
abstraction spaces, preconditions with low criticality are ignored and abstract
plans are generated which satisfy only the most critical preconditions. Once a
successful plan is generated in a particular abstraction level, ABSTRIPS iden­
tifies which previously ignored preconditions are unmet in the abstract plan.
Then the system tries to satisfy these less critical preconditions by planning at a
more detailed level.

In PLANEX, operator hierarchies similar to those of ABSTRIPS may be im­
plemented by representing each problem-solving operator with different domain
operator schémas as shown in Figure 5-5 (only relevant slots are included in this
figure). In this example, conditions are slots in an auxiliary object called the
world. Operator A is described by either of the Domain Operator Schemas
(DOSs), DOS-oper-A-1 or DOS-oper-A-2. The description in schema
DOS-oper-A-1 includes the important precondition condition-1 and ignores the
less important precondition condition-2. When generating an abstract plan, the
control operators would use this schema. Schema DOS-oper-A-2 gives a more
detailed description of the operator because both preconditions are included.
(The second DOS inherits Condition-1 via the is-a link to the first DOS.)
DOS-operator-A-2 would be used when generating a detailed plan.

An example of hierarchical planning is illustrated using the operator hierar­
chy of Figure 5-6. Operators are described at three levels of abstraction using
DOSs similar to those of Figure 5-5. Suppose that PLANEX is requested to find
a plan to achieve condition-H. Application of the Backward Search Operator
(BSO) would produce the following plans:

1. At the most abstract level (level 1), the system identifies operator H as
needed to achieve condition-Η and creates a subgoal to satisfy its only
precondition condition-D (preconditions condition-G and condition-F are ig­
nored at this level of abstraction). Condition-D can be achieved by
operator A which has no preconditions. The successful plan is shown in
level 1 of Figure 5-7 and contains only the initial goal condition-Η and the
two subgoals, condition-D and condition-A.

Problem Solving and Control 143

(defschema DOS-oper-A-1
(is-a operator)

world)
condition-1)
nil)
filled))

(input-objects
(input-slots
(input-bindings
(input-cond-types

(defschema DOS-oper-A-2
(is-a DOS-oper-A-1)

world)
condition-2)
nil)
filled))

(input-ob j ect s
(input-slots
(input-bindings
(input-cond-types

Figure 5-5. Alternative Representations of a Domain Operator

2. The system details the level 1 plan at the second abstraction level (level 2)
by using the corresponding DOS. The system finds that operator H has the
unsatisfied precondition condition-G and tries to achieve it by starting with
the abstract plan as a partial solution. Previously achieved conditions
(condition-Α, condition-D and condition-Η) are considered satisfied and the
system does not expand them. The resulting plan is shown in level 2 of
Figure 5-7. Applying operator G satisfies condition-G. Its precondition,
condition-C, is satisfied by applying operator C; precondition condition-A
for operator C is already satisfied.

3. The system details the plan at the lowest abstraction level (level 3). This
process introduces the subgoal condition-F required by operator H. Achiev­
ing this subgoal can be accomplished by applying operator F, F' or F". The
system selects operator F because its only precondition (condition-D) has
been satisfied at abstraction level 2. The complete plan is shown in level 3
of Figure 5-7.

If operators had been described at the most detailed level only, the problem-
solving process would have been more complex. Proceeding in a breadth-first
manner, the BSO would have explored the possibility of satisfying condition-F
by applying operator F , F' and F" and by expanding their preconditions
(condition-I and condition-J). In the hierarchical planning process, this part of
the search space is never explored.

Using operator hierarchies requires a mechanism to identify which DOS cor­
responds to a particular operator at each level of abstraction. Auxiliary
knowledge sources (KSs) could be used to establish this correspondence.
Evaluation of these KSs would reveal which of the alternative DOSs should be
used by the control operators in the planning phase.

144 Developing Process Planning Systems

Operator
Preconditions

@ Level 1
Preconditions

@ Level 2
Preconditions

@ Level 3 Effect

A none none none condition-Α

Β condition-Α condition-Α condition-Α condition-B

C condition-Α condition-Α condition-Α condition-C

D condition-Α condition-Α condition-Α condition-D

Ε condition-B condition-B condition-B condition-E

F condition-D condition-D condition-D condition-F

F' condition-I condition-I condition-I condition-F

F" condition-J condition-J condition-J condition-F

G condition-C condition-C condition-C
condition-E

condition-G

H condition-D condition-D
condition-G

condition-D
condition-G
condition-F

condition-H

I condition-J condition-J condition-J condition-I

J condition-K condition-K condition-K condition-J

Κ none none none condition-K

Figure 5-6. Example of an Operator Hierarchy

5.1.2.2 Nonlinear Planning PLANEX can be designated as a nonlinear planner
by examining two characteristics:

• the type of operator plans produced by the system; and
• the manner in which these plans are generated.

The first characteristic is related to the plan structure and operator execution
order. In the planning phase, PLANEX creates networks of operators from which
different operator sequences may be extracted. The operators are only partially
ordered in the network because no commitment has been made to specify a
unique linear order for operator execution. Assume the system created the
network of operators shown at the left in Figure 5-8. Two alternative operator
execution sequences that do not violate the operator precedences exist as shown
at the right in Figure 5-8. In the execution phase, either of these sequences
could be selected by incorporating heuristics or asking the user to pick one of
the alternatives.

The second characteristic is related to how the system decomposes a problem
into smaller subproblems. The algorithms of the Forward Propagation and

Problem Solving and Control 145

Figure 5-8. Example of a Network of Operators and Operator Sequences

Backward Search control operators generate operator networks by analyzing
conditions (context changes or goals) individually. The system builds operator
sequences for each goal and then merges the sequences to obtain the final
operator network. The structure of this network does not depend on the order in
which individual goals are considered. In this sense, the planning strategy is
similar to that of nonlinear planning systems like NOAH which decomposes the
desired state of the world into its constituent goals and expands them in parallel.

146 Developing Process Planning Systems

5.1.2.3 Meta-Planning PLANEX has the characteristics of a meta-planner (see
p. 30) because:

• its operators are classified as either domain or control (i.e., two layers); and
• control operators determine the execution order of domain operators.

The distinction between both types of operators is not merely architectural.
PLANEX distinguishes between a process plan (e.g., the activity network for a
building) and the plan of problem-solving tasks required to generate this par­
ticular process plan. The outcome of the control planning phase is a meta-plan
composed of domain operator names.

For some domains, it may be desirable to create additional layers of
operators. This can be done by invoking operators from the right-hand-side of
the rules in the KS. Suppose that the user wants to create the two-layer operator
structure of Figure 5-9. The execution of domain operators op-Α, op-B and
op-C is controlled by meta-operator meta-op-A using the auxiliary KS
KS-meta-op-A. Such a KS is shown in Figure 5-10. Based on the information
stored in context objects object-x and object-y, this KS may invoke the follow­
ing sequences of operators:

1. op-A —» op-C: the first condition is true and the second condition is false.
2. op-B —> op-C: both conditions are false.
3. op-C: only the second condition is true.

5.1.2.4 Opportunistic Planning The fundamental problem-solving behavior of
PLANEX incorporates both strategic and opportunistic elements. Strategic plan­
ning is performed in the planning phase when the system creates a plan of
problem-solving operators to be executed that will propagate context changes or
satisfy goals. To implement purely opportunistic problem solving, this phase
could be eliminated and control KSs would select operators from the agenda for
execution. The system would repeatedly execute the following problem-solving
cycle:

Step 1. Update the agenda. Those operators with satisfied preconditions are
inserted in the agenda.

Step 2. Choose an operator in the agenda to be executed. The control KS
selects a problem-solving operator from the agenda which is likely to
contribute to the solution of the problem.

Step 3. Execute the selected operator. The selected operator is executed and
the corresponding context changes are recorded.

The second step of the problem-solving cycle chooses a feasible operator by
considering how it contributes to solving the problem. Defining a control KS to
perform this selection is not easy. Several criteria such as: (1) the type of
operator (e.g., activity creation, duration estimation); (2) the characteristics of

Problem Solving and Control 147

invokes

KS-meta-op-A
Conditions Actions

Figure 5-9. Example of a Layered Structure for Operators

(defschema ks-meta-op-A

This ks invokes the execution of the domain operators controlled
by meta operator meta-op-A

(is-a
(ks-type
(cond-objects
(conditions

(lhs-rules

(rhs-rules

(actions

ks)
all)
object-x object-y)
(= slot-x value-x)
(= slot-y value-y))
(T F)
(F F)
(I I))
(X I I)
(I X I)
(I i x))
(op-A)
(op-B)
(op-C)))

Figure 5-10. Example of a KS Used by a Meta-Operator

the object to which the operator is applied (e.g., the object represents a concrete
pouring activity); and (3) the current state of the problem-solving process (e.g.,
the cost of activities has not been determined) would have to be incorporated
into the control KS to effectively select an operator. Thus, transforming
PLANEX into a sophisticated opportunistic planner like O P M would require con­
siderable effort. However, a primitive opportunistic problem-solving strategy
could be built by considering all operator effects as unpredictable. PLANEX
would then behave in a forward-chaining manner. The problem-solving cycle

148 Developing Process Planning Systems

would begin by invoking the Forward Propagation Operator (FPO). The FPO
would identify the domain operators that are immediately executable based on
the information in context objects (Step 1). The system would choose any of
these operators (a primitive version of Step 2) and then execute it (Step 3). The
system would reinvoke the FPO in order to repeat the cycle.

5.2 Development of Process Planning
Systems Using PLANEX

This section describes a generic procedure for developing a process planning
system using the components of the PLANEX system architecture. This proce­
dure is divided into three major stages:

• Conceptualization during which models for process planning operations are
developed and types of knowledge and representational structures are iden­
tified;

• Design during which planning tasks are decomposed into simple planning
operations, knowledge sources are structured into hierarchies, and attributes
of objects are detailed;

• Implementation during which the procedural codes of the planning operators
are defined, and the required knowledge sources and schema definitions are
created.

Typically, development proceeds iteratively through the three stages until a
satisfactory prototype is obtained. Then the scope of the prototype can be
extended by adding and refining the knowledge base.

5.2.1 Conceptualization

Conceptualization requires the developer to formulate models for the major
planning operations. Examples are the models for the formulation of activities,
the selection of technologies, the estimation of activity attributes and the
preparation of process schedules. The character of and relationships among
these models will affect the types of knowledge and representational structures
required to implement a particular application.

As shown in Figure 5-11, planning models are developed by analyzing the
design information available, the planning information desired, the existing
process planning procedures and the available planning knowledge. For ex­
ample, assume that the bottom-up activity formulation model presented in
Section 3.2.1 is adopted for generating activity networks for a certain type of
product. Questions to be answered during the development process would in­
clude:

Conceptualization 149

Available Design Desired Plan Current Available
Information Information Practice Knowledge

Models for Process
Planning

Types of
Representational
Objects

r Types of
Representational
Objects

Types of Process
Planning Operations

Types of
Knowledge

Types of
Representational
Objects

Types of Process
Planning Operations

Types of
Knowledge

Figure 5-11. Conceptualization of a Process Planning System

• How are activities identified from design drawings and specifications?
• What sources of knowledge (e.g., databases of components, previous draw­

ings, estimating books) are available?
• How is the final product decomposed into design elements?
• What type of element activities are performed to produce components?
• What type of activities should be represented in a process plan?
• How are element activities aggregated into project activities?

Answers to these questions will help to identify the representational structures
required for the product and the different levels of activity aggregation in the
system.

Planning models for a process planning system may vary across different
application domains. Figure 5-12 illustrates three activity formulation and tech­
nology selection models for three different process planning systems. Model A
is for a system for excavation planning. This model indicates that the selection
of general types of excavation equipment precedes activity definition. The
model assumes that excavation equipment can be selected without knowledge of
which activities are going to use them. Model Β (for construction planning)
assumes that selection of equipment is made after activities are identified. In
this model, activity definition is not dependent upon knowing the technologies
which will be used. Model C combines the selection of technologies with the
identification of manufacturing activities for a product. This model is more
general than models A and B, but may require more knowledge to handle these
tasks simultaneously.

Developing and adopting a planning model has implications for the relation­
ships among domain operators, context objects and knowledge sources. For
example, defining domain operator schémas and building knowledge sources
may be difficult when process planning is decomposed into aggregate, large-

150 Developing Process Planning Systems

Selection of
Excavation
Equipment

Recognition
of Excavation
Sections

Definition of
Excavation
Activities

Recognition of
Building
Components

Definition of
Construction
Activities

Selection of
Construction
Equipment

Recognition
of Product
Components

Identification
of Manufacturing
Activities and
Selection of
Manufacturing
Equipment

Model A Model Β Model C

Figure 5-12. Example of Activity Formulation and Technology Choice Models

scale planning operations, whereas a fine-grained decomposition of process
planning would require simple procedural codes, small knowledge sources and
well-defined context objects. However, some applications may lack flexibility
when the planning process is decomposed into very simple operations. This
trade-off between simplicity and flexibility can only be resolved by analyzing
the characteristics of the particular application.

5.2.2 Design
Design involves detailing the structure of the knowledge sources, domain
operators and object types. Figure 5-13 illustrates the tasks needed in designing
a process planning system.

In the design stage, the types of knowledge identified in system concep­
tualization are structured to create knowledge hierarchies. For example, in
construction planning, the knowledge related to the selection of materials for
activities may be organized using the activity codes of the MASTERFORMAT
coding system [18]. This organization facilitates the identification and defini­
tion of the knowledge required for particular planning operations.

Another design task which details the information produced in the concep­
tualization stage is the creation of representational structures. Figure 5-14
shows examples of the representational structures created in the design of a
process planning system for excavation tasks. In this application, the holes to be
excavated are represented using hole objects which are linked to hole sections

Design 151

Types of
Representational
Objects

Types of Process
Planning Operations

Object
Relationships

Object
Attributes

Types of
Knowledge

Knowledge
Hierarchies

Domain Operators
Input/Output

Knowledge
Sources
Output

Figure 5-13. Design of a Process Planning System

EXCAVATE-SECTION-2

Project Act iv i ty

ea-of-pa f / pa-has-eas 1

de-has-eas
r v

ea-of-de \ \ de-has-eas / / pa-has-eas

ο o ea-of-de\

Ε

EXCAVATE-SECTION-2

Figure 5 - 1 4 . Design and Activity Objects of EXCAVATION PLANEX
using hole-has-des (hole has design elements) and de-of-hole (design element of
hole) inverse links. Sections are the basic product components (i.e., the design
elements of the bottom-up activity formulation model) from which excavation
activities are determined. These activities (i.e., the element activities) are linked
to hole sections using ea-of-de (element activity of design element) and
de-has-eas (design element has element activities) links. Finally, element ac­
tivities are aggregated into project activities using ea-of-pa (element activity of

152 Developing Process Planning Systems

project activity) and pa-has-eas (project activity has element activities) relation­
ships.

The creation of representational structures is related to the development of
knowledge hierarchies. Thus, in some applications of PLANEX, such as
CONSTRUCTION PLANEX, knowledge organization parallels the organization of
design elements and activity objects. This case is illustrated in Figure 5-15 (a).
However, there are situations in which the knowledge structure is different from
the representational structure. Figure 5-15 (b) shows an example of a single
knowledge source used for several types of activity objects.

After representational structures and knowledge hierarchies have been
created, the names of the slots for each type of context object and the output of
each type of knowledge source are specified. Knowledge sources for activity
creation in CONSTRUCTION PLANEX return lists of pairs, where the first element
of each pair is the name of the activity schema and the second is the name of the
activity itself. In contrast, the KSs that compute recommended durations return
a single value representing the duration.

The final step of the design stage consists of describing domain operators in
terms of their inputs and outputs. In this description, each domain operator is
considered to be a "black-box" which retrieves and stores information in the
context. Figure 5-16 shows the input/output (I/O) description of the operator
that computes the quantity take-offs for element activities in CONSTRUCTION
PLANEX. The I/O description also indicates which KS will be evaluated for a
particular element activity.

Activities

Act iv i ty - I -A KS-Act - l -A Act iv i ty - I -A KS-Act - l -A

A c t i v i t y - I - B

Act iv i ty - I -C

KS-Ac t - l -B KSs

KS-Act- l -C A

Activities

Act iv i ty - I -A

A c t i v i t y - I - B

Act iv i ty - I -C

KS-Activity KSs

Figure 5-15. Example of Knowledge Hierarchies and Representational Structures

Implementation 153

OPERATOR: Compute-Amount-EAS

DESCRIPTION:

INPUT:

OUTPUT:

KSs:

Computes the work quantities for a list of element activity
schémas by evaluating quantity take-off formulas.

The geometric dimensions of the design element associated
with the activity. In rectangular elements, the slots used are
xl-dimension, yl-dimension and zl-dimension.

The amount-of-work of each element activity.

KSs which return the name of the formula which will be
evaluated. These KSs are identified using the ea-code value
of the element activity schema.

Figure 5 - 1 6 . Example of Input/Output Description of a Domain Operator

Object
Attributes

Domain Operators
Input/Output

Knowledge
Sources
Output

Representational
Structures

Domain
Operator
Codes

Domain
Operator
Schemas

Figure 5 - 1 7 . Implementation of a Process Planning System

5.2.3 Implementation

Implementation transforms the description of domain operators, objects and KSs
developed during the design stage into instances of PLANEX components.
Figure 5 - 1 7 shows the four tasks required to implement a system from its design
description:

• Representational Structures are created from descriptions of object attributes
and relationships;

• Procedural Codes are written for the domain operators;
• Domain Operator Schemas are obtained from I/O descriptions of operators by

analyzing the interactions among related operators; and
• Knowledge Sources are created for objects of the application domain.

The procedural codes of domain operators are implemented as functions in
COMMON LISP. A S an example, Figure 5 - 1 8 shows the code of the
Determine-Recommended-Duration-PAS operator of the CONSTRUCTION
PLANEX system. The operator is applied to a list of project activity objects. It
performs five steps for each object in the list:

154 Developing Process Planning Systems

(defun Determine-Recommended-Duration-PAS (pas)
(dolist (pa pas t)
(let* ((pa-code (get-value pa ,pa-code :no-wing t :path nil))

(ks-name (append-atom ,KS-dura- pa-code)))
(cond

((not (schemap ks-name))
(format t "~% ** Cannot determine recommended duration")
(format t "because this KS has not been loaded > ~s" ks-name)
nil)

(t (let ((result (car (evaluate-KS ks-name pa))))
(cond ((not (numberp result))

(format t "~% ** Recommended Duration of ~s")
(format t " is nil" pa)
nil)

(t (new-value-slot pa 'recommended-durâtion result)
(new-value-slot pa 'why-duration ks-name) result))))))))

Figure 5-18. Determine-Re commended-Duration Operator of CONSTRUCTION PLANEX

Step 1. Identify the type of activity and the type of design element to which the
activity is applied by retrieving the value of the activity pa-code slot
(e.g., "20-60" for formwork in column footings).

Step 2. Create the name of the KS to evaluate by adding the prefix KS-dura- to
the project activity code (e.g., KS-dura-20-60, which is the KS of
Figure 5-20).

Step 3. If such a KS exists: store the results of its evaluation in the variable
result; otherwise print an error message and exit.

Step 4. If the value of result is not a number: print an error message and exit.
Step 5. Store the value of result in the recommended-duration slot of the

project activity object. Store the name of the KS in the why-duration
slot.

Most domain operators of the PLANEX application systems that require KS
evaluation are similar to the operator shown in Figure 5-18.

5.3 Example PLANEX Applications

5.5.7 Construction Project Planning
When a contractor decides to bid on a particular project, he has to estimate the
duration and cost of the project on the basis of the drawings and specifications.
Cost estimates can be obtained by using overall average unit costs or by ag­
gregating the cost of all the building components. For this purpose, the contrac­
tor may use a standard cost estimating package. However, estimating the dura­
tion or the net-present-value of the project requires formulating a project activity

Construction Project Planning 155

network and scheduling the project. Currently there are no commercial tools to
formulate the activity network. Project planners manually generate suitable
activity networks using their experiences with similar projects.

A prototype application of the PLANEX architecture that emphasizes the
automated generation of activity networks for construction projects is
CONSTRUCTION PLANEX (for a detailed description see Chapter 6).
CONSTRUCTION PLANEX uses the expertise of a project planner to generate
project activity networks from building design information. The system is in­
tended to perform as an assistant during the formulation of project plans or
designs rather than during the evaluation or monitoring of project schedules.
The present system plans the excavation and erection of concrete and steel-
frame buildings without considering non-structural elements such as partitions,
mechanicals or finishes. Knowledge for the system was obtained from the
literature and an experienced construction planner [4].

5.3.1.1 Construction Planning Process CONSTRUCTION PLANEX starts with a
detailed description of the structural elements of a building (columns, beams,
slabs, diagonals and footings) and produces various types of project planning
information such as Gantt-charts, project cost curves and scheduling reports.
During the planning process, CONSTRUCTION PLANEX also uses information
describing the site (e.g., typical characteristics of the soil where the building is
located), the contractor (e.g., his minimum attractive rate of return) and some
other auxiliary information (e.g., the inflation rate).

The construction planning process proceeds as follows. First, the system
analyzes the components of the building and determines the activities required
to construct each of these components. Then the system computes the quantity
take-off of these activities using the geometry of the building components. Next
CONSTRUCTION PLANEX aggregates activities with respect to their type and loca­
tion, establishes precedences among the activities, and selects technologies to
perform the activities. Finally, the system estimates activity attributes such as
duration and cost, and prepares a schedule for the project.

5.3.1.2 Representational Structures Figure 5-19 shows the three basic types
of context objects used in CONSTRUCTION PLANEX and the names of the links
that relate them:

• design elements store information about structural components;
• element activities represent construction activities required to construct a

design element; and
• project activities aggregate element activities into more manageable activities

for planning purposes.

Design elements may represent single components (e.g., a column) or groups of

156 Developing Process Planning Systems

B E A M - 2 4 - F L O O R - 1 FORMWORK-FLOOR-1

Design Element Project Act iv i ty

de-has-eas

Element Activity

F O R M W O R K - B E A M - 2 4 - F L O O R - 1

Figure 5-19. Design and Activity Objects Used in CONSTRUCTION PLANEX

components (e.g., a group of concrete columns on the first floor) having the
same attributes (e.g., dimensions, material).

5.3.1.3 Knowledge Sources The knowledge base of CONSTRUCTION PLANEX is
composed of numerous knowledge sources that provide all the knowledge re­
quired during the construction planning process. Examples of these KSs include
those storing: the knowledge describing the set of element activities required to
construct a design element; the formulas used to compute the quantity take-offs;
the manner in which element activities are aggregated; and the appropriate
crews for project activities. Each time an operator of CONSTRUCTION PLANEX
requires knowledge, one or more KSs are evaluated using the KNOWLEDGE
SOURCE EVALUATOR (KSE) and the results of the evaluation are returned to the

operator.
A KS of CONSTRUCTION PLANEX is shown in Figure 5-20. This KS contains

knowledge describing the recommended duration for placing forms for column
footings. This KS is evaluated whenever the operator responsible for computing
recommended activity durations needs this knowledge. For example, assume
that the system has already created a project activity object for formwork on
column footings and that the total area of forms to be placed is 2500 square feet.
When the system is determining the recommended duration of this activity, the
KS of Figure 5-20 is evaluated and the result of this evaluation (5 days) is
stored in a slot of the project activity object.

Construction Project Planning 157

(defschema KS-Dura-20-60

; ; This KS indicates the recommended duration for placing forms
; ; on column footings. It has three rules :
; ; - IF the amount of work is less than or equal to

2,000 sq-ft, THEN 5 days is an appropriate duration.
;; - otherwise, IF the amount of work is less than or equal to
;; 4,000 sq-ft, THEN 10 days is an appropriate duration.
;; - otherwise, IF the amount of work is greater than 4,000 sq-ft,
;; 15 days is an appropriate duration.

(I X I)
(I I X))

(actions 5 10 15))

Figure 5-20. Example of a Duration K S Used in CONSTRUCTION PLANEX

5.3.1.4 Domain Operators CONSTRUCTION PLANEX generates construction
project plans by applying three types of operators:

• design element operators act on design element objects. Examples of design
element operators are those for grouping design elements and creating ele­
ment activities.

• element activity operators act on element activity objects. Examples of ele­
ment activity operators are those for computing quantity take-offs and ag­
gregating element activities.

• project activity operators act on project activity objects. Examples of project
activity operators are those for selecting crews, establishing activity
precedences and estimating project activity durations.

An example of a project activity domain operator was shown in Figure 5-18
(Determine-Recommended-Duration-PAS).

(is-a
(ks-name
(ks-type
(cond-objects

ks)
KS-dura-20-60)
first)
current-object
current-object)
(<= amount-of-work-pa 2000)
(<= amount-of-work-pa 4000))
(T I)
(F T)
(I F))
(X I I)

(conditions

(lhs-rules

(rhs-rules

158 Developing Process Planning Systems

5.3.1.5 User Interface The user interface of CONSTRUCTION PLANEX contains
examples of all the user interaction mechanisms of PLANEX presented in
Section 4.4. The system provides an Activity-On-Node diagram of the project
network, an interactive Gantt-chart and two types of project cost curves.

5.3.2 Excavation Project Planning

EXCAVATION PLANEX is knowledge-based planning system which generates
project networks for excavation projects [65, 8 3] . The system recommends ap­
propriate excavation equipment, defines gross vehicle movements, creates a net­
work of excavation activities and estimates the duration of the project.

The EXCAVATION PLANEX system is capable of planning the excavation of
rectangular holes with vertical walls and flat bottoms. System knowledge was
obtained from books and manuals describing excavation projects.

5.3.2.1 Excavation Planning Process The planning process of EXCAVATION
PLANEX proceeds as follows. First, the system selects a general type of equip­
ment for excavation and hauling on the basis of information extracted from the
excavation drawings and available terrain information. Then the system divides
each hole into excavation sections based upon the particular capabilities of the
chosen excavation equipment (e.g., a function of its bucket size). EXCAVATION
PLANEX then determines an order for excavating the sections, identifies which
activities to execute for each section and structures the activities into a network.
Finally, the system estimates activity durations and computes a schedule.

The problem-solving operators and user interface mechanisms of
EXCAVATION PLANEX are almost identical to those of CONSTRUCTION PLANEX.
However, there are some fundamental differences between the two systems:

• In EXCAVATION PLANEX, the type of excavation and hauling equipment is
chosen before project activities are generated. In CONSTRUCTION PLANEX,
project activities are created before technologies are selected.

• EXCAVATION PLANEX generates design elements using information describing
the type of hole to be excavated and the types of machines to be used.
CONSTRUCTION PLANEX starts with the design elements as input.

5.3.2.2 Representational Structures The context objects of EXCAVATION
PLANEX are identical to those of CONSTRUCTION PLANEX. The only difference
is that EXCAVATION PLANEX decomposes design information into two levels:

• a hole level which is input directly from the excavation drawings; and
• a hole section level which is generated by the system and represents portions

of the hole.

The relationships between the schémas of both levels was shown in Figure 5-14.

Excavation Project Planning 159

Hole sections are similar to the design elements of CONSTRUCTION PLANEX
because they represent components of the final product (i.e., the excavation)
with an associated set of element activities.

In EXCAVATION PLANEX, each project activity consists of only one element
activity. Therefore, the activity network includes explicit excavation activities
for every hole section. Although this structure seems appropriate for simple
excavation projects (e.g., a single hole with few machines), it will produce
extremely large networks for more complex projects. Using an aggregation
structure similar to CONSTRUCTION PLANEX, in which a project activity includes
several element activities, is a viable solution to this problem.

5.3.2.3 Knowledge Sources The knowledge base of EXCAVATION PLANEX
consists of various KSs that resemble those of the CONSTRUCTION PLANEX
system. There are similarities with respect to the types of KSs used, the struc­
ture of these KSs and the associated domain operators. For example, both
systems have Successor KSs used by the operator responsible for establishing
precedences among project activities. There are some differences, however, in
how the systems estimate activity durations. In CONSTRUCTION PLANEX, one or
more machines may be used to perform a particular project activity. How many
machines to use is determined with heuristics for recommended duration, which
are based on the total quantity of work (see Figure 5-20). In EXCAVATION
PLANEX, each activity corresponds to a hole section and is performed by a single
machine. Therefore, the duration is a simple function of the total amount of
work, the bucket size and the cycle time of the selected machine.

5.3.2.4 Domain Operators Most of the domain operators used in EXCAVATION
PLANEX were taken directly from CONSTRUCTION PLANEX. The scheduling
operators were simplified because EXCAVATION PLANEX assumes that all ac­
tivity precedences are of the Finish-to-Start type. Several new operators were
required:

• Select-Machine chooses either a backhoe or a loader for the excavation;
• Find-Nearest-Point identifies the corner of the hole that is closest to the initial

position of the machine;
• Create-Init-Move creates an object containing information about the distance

that machines will have to move before excavation proceeds; and
• Create-Sections decomposes the initial hole into design elements representing

hole sections.

Figure 5-21 shows the code of the select-machine operator. This operator
performs five steps:

160 Developing Process Planning Systems

(defun select-machine (hole-info)
(let* ((machines (car (evaluate-KS 'KS-Select-Excavator

hole-info)))
(no-machines (length machines))
(hauler nil) ; ; setq'ed below
(excavator nil))

(cond ((eq no-machines 1) ;; machine is both hauler
(setq excavator (car machines)) ; ; and excavator
(setq hauler excavator))
((eq no-machines 2) ; ; first machine is excavator,

; ; second is hauler
(setq excavator (nth 0 machines))
(setq hauler (nth 1 machines)))
(t (format t "~%Error in fen select-machine~%")))

(new-value-slot hole-info 'excavator excavator)
(new-value-slot hole-info 'hauler hauler)
(let* ((exc-instance (get-value excavator ' instance))

(haul-instance (get-value hauler ' instance))
(KS-excavator

(append-atom-list (list 'KS-
(get-value exc-instance 'is-a)
'-bucket-factor)))

(KS-hauler
(append-atom-list (list 'KS-

(get-value haul-instance 'is-a)
'-bucket-factor)))

(exc-bucket-factor (car (evaluate-KS KS-excavator)))
(haul-bucket-factor (car (evaluate-KS KS-hauler))))

(when (equal 'ask-user exc-bucket-factor)
(format t "~% Unknown bucket factor for excavator ~a~%"

excavator)
(format t " in soil ~a. Give me the bucket factor: "

(get-value 'soil-info 'soil-type))
(setq exc-bucket-factor (read))
(format t "-%"))

(when (equal 'ask-user haul-bucket-factor)
(format t "~% Unknown bucket factor for hauler ~a~%"

hauler)
(format t " in soil ~a. Give me the bucket factor: "

(get-value 'soil-info 'soil-type))
(setq haul-bucket-factor (read))
(format t "-%"))

(new-value-slot hole-info 'exc-bucket-factor
exc-bucket-factor)

(new-value-slot hole-info 'haul-bucket-factor
haul-bucket-factor))))

Figure 5-21. Select-Machine Operator of EXCAVATION PLANEX

Manufacturing Process Planning 161

Step 1. Evaluate the KS KS-Select-Excavator. The result of this evaluation is
either: (1) a list with two machine names, one for excavation and one
for hauling; or (2) a list with only one machine to be used for both
activities.

Step 2. Store the names of the excavation and hauling machines in the hole-info
schema.

Step 3. Create the names of the KSs used to select the bucket size (the bucket
factors).

Step 4. Evaluate these KSs to compute the bucket factors.
Step 5. Store the bucket factors in the hole-info schema.

5.3.2.5 User Interface EXCAVATION PLANEX uses most of the user interface
mechanisms of PLANEX. However, the current version of the system has some
limitations:

• it does not include an interactive graphical display environment such as
GANTT;

• the only output graphics are an Activity-On-Node diagram and a simulation
of the excavation process; and

• control is provided through a tree of command menus that invokes the control
operators of PLANEX.

5.3.3 Manufacturing Process Planning

HARNESS PLANEX is a knowledge-based system that generates activity plans for
manufacturing automotive electrical harnesses (described in detail in Chapter 7).
The system identifies the manufacturing activities required to produce a par­
ticular harness, recommends appropriate equipment to perform these activities
and estimates the duration of the manufacturing process. The result of the
planning process is a process sheet report which is used by the harness manufac­
turer on the shop floor.

Currently HARNESS PLANEX is capable of planning the manufacture of in­
dividual harnesses. It cannot schedule the entire production line. Knowledge in
the system is limited to that pertaining to certain harness components and was
developed using information provided by an experienced harness manufacturer.

5.3.3.1 Manufacturing Planning Process The planning process of HARNESS
PLANEX proceeds as follows. First, the system analyzes information extracted
from drawings and builds a model of the harness as a network of context ob­
jects. The system aggregates harness wires with common connections into
subassemblies representing components which can be manufactured indepen­
dently. HARNESS PLANEX then identifies activities required to cut the wires and

162 Developing Process Planning Systems

apply terminals to wire ends. The system selects equipment for each manufac­
turing activity and resolves conflicts among cutting machines so that appropriate
machines are assigned to cut each end of the wire. Finally, the system estimates
the total time required to produce the harness and the usage level of each
machine.

5.3.3.2 Representational Structures The representational structures used in
HARNESS PLANEX are more complex than those used in the CONSTRUCTION
PLANEX or EXCAVATION PLANEX systems because they model not only in­
dividual components of the harness but also the harness topology. HARNESS
PLANEX has the following types of objects in its context:

• wire objects store the descriptions of the wires which comprise the harness;
• body objects represent the central portion of wires;
• extreme objects represent the ends of wires;
• terminal-location objects represent joints connecting wire ends;
• activity objects represent manufacturing activities for wire ends or wire

bodies; and
• machine objects represent machines used in manufacturing the harness.

The manner in which these types of objects are linked to form representational
structures is described in Chapter 7.

5.3.3.3 Knowledge Sources The knowledge base of HARNESS PLANEX is com­
posed of the following types of KSs:

• Activity KSs define the set of manufacturing activities for wire body or wire
extreme objects;

• Technology KSs provide recommendations of appropriate machines for
manufacturing activities; and

• Duration KSs estimate the expected duration of manufacturing activities.

In addition, the system uses a Peeling KS which estimates the length of insula­
tion that should be peeled from a wire end depending upon the type of terminal
that will be attached.

5.3.3.4 Domain Operators Using a planning process similar to those used for
construction and excavation planning, HARNESS PLANEX generates process
sheets by applying simple domain operators which act on context objects. There
are operators to: (1) create or delete objects containing harness design infor­
mation; (2) identify manufacturing activities; (3) select appropriate machines for
cutting, tinning or splicing activities; (4) estimate the duration of manufacturing
activities; (5) accumulate machine usages; and (6) estimate appropriate peeling
lengths of wire ends.

Blocks-World Planning 163

(defun select-technology (actv)
(let* ((act-type (get-value actv 'act-type : no-wing t))

(ks-name (append-atom 'KS-technology- act-type))
(machine (cond ((schemap ks-name)

(car (evaluate-KS ks-name actv)))
(t nil))))

(cond ((null machine)
(format t "~% --> No technology for ")
(format t "activity ~s~% " actv)))

(new-value-slot actv 'technology machine)
(add-value-slot machine 'used-by actv)))

Figure 5-22. Code of the Select-Technology Operator of HARNESS PLANEX

The procedural code of the Select-Technology operator is shown in
Figure 5-22. Other domain operators have similar codes. When applied to an
activity, the Select-Technology operator performs the following steps:

Step 1. Identify the type of activity (e.g., cut).
Step 2. Create the name of the KS to be evaluated (e.g., KS-technology-cut).
Step 3. If the KS exists: store the result of its evaluation in the variable

machine', otherwise exit.
Step 4. If no machine was selected, print an error message.
Step 5. Store the value of machine in the technology slot of the activity object.

The five steps listed above are the same as those performed by the
Determine-Recommended-Duration-PAS operator of CONSTRUCTION PLANEX
(see p. 154). In general, all of the domain operators of the construction, excava­
tion and manufacturing applications perform these five steps.

5.3.3.5 User Interface The system uses some of the user interaction
mechanisms of PLANEX described in Section 4.4, such as command menus and
questions to the user; however, the interface of HARNESS PLANEX does not
include graphical displays. Results of the planning process are presented in
various reports produced with the REPORT GENERATOR.

5.3.4 Blocks-World Planning
The previous sections described three similar applications of the PLANEX ar­
chitecture that generate process plans for creating products. This section
describes a small system, called BLOCKS PLANEX, which solves blocks-world
problems using only the control components of PLANEX (i.e., domain KSs are
not required). The problem is different from the preceding examples because
the output of the system is not a complete process plan (i.e., it does not include
durations, resources, etc.). However, this application of PLANEX is interesting
because it:

1 6 4 Developing Process Planning Systems

• illustrates how the control operators of PLANEX generate strategic plans of
domain operators;

• is the basis for a comparison of the control operators of PLANEX with the AI
planners reviewed in Section 2.1 ; and

• shows that BLOCKS PLANEX can solve problems with double-cross
conflicts [1 5] without having to order the goals or use complicated critics.

5.3.4.1 Overview of BLOCKS PLANEX BLOCKS PLANEX is implemented with
the control components of the PLANEX architecture:

• Domain Operator Schemas (DOSs) describe the preconditions and effects of
the problem-solving operators;

• the agenda stores an operator queue, operator precedences and goals; and
• control operators use and modify the information stored in the agenda to

generate operator networks.

The description of the blocks-world is stored in block schémas. Each block is
described by a schema that specifies its location with respect to the other blocks
and the table. In this representation, a slot is filled whenever a condition is
"true" and empty otherwise. This representation permits the control operators
of PLANEX to be used directly.

An example of a block schema is shown in Figure 5 - 2 3 . The schema in­
dicates that block C is above block A and that block A is on the table. The
schema has the following slots:

• An is-a slot identifies the schema as a block schema.
• A name slot indicates the name of the block described by the schema. Each

block has a particular name slot. For example, block A has a slot titled
name-α which is filled with its name, and the schema for block Β has a
name-b slot which is filled with "block-b".

• The has-above slots indicate which block is on top of the block described by
the schema (only one of these slots can be filled at any time in the planning
process).

• A cleartop slot is filled whenever nothing is on top of the block.
• An on-table slot is filled whenever the block is on the table.

(defschema block-a
(is-a block)
(name-a block-a)
(has-b-above)
(has-c-above yes)
(cleartop)
(on-table yes))

Figure 5-23. Example of a Block Schema Used in BLOCKS PLANEX

Blocks-World Planning 165

(defschema pick-a-from
(is-a
(domai η-1ype
(input-objects

operator)
block)
current-object current-object
block-a)
name-a has-a-above cleartop)
nil nil nil)
erased filled filled)
current-object current-objeet
block-a)
has-a-above cleartop on-table)
nil nil nil)

(input-slots
(input-bindings
(input-cond-types
(output-objects

(output-s1ot s
(output-bindings
(output-predictable yes yes yes)
(output-effect-types erase fill fill))

Figure 5-24. Example of a Pick Operator Schema Used in BLOCKS PLANEX

BLOCKS PLANEX has two types of domain operators to plan the movements
that will achieve the desired final positions:

• pick operators pick a block from the top of a stack and put it on the table; and
• put operators place one block on top of another.

Pick operators are similar to the clear operator and put operators to the puton
operators described in Chapter 2. Pick operators only move the top block in a
stack.

An example of a domain operator schema (DOS) for a pick operator is shown
in Figure 5-24. The schema indicates that to remove block A from block X (the
operator is applied to block X), the following conditions must to be true:

• the block to which the operator is applied (e.g., block X) must not be block A;
• the block to which the operator is applied must have block A above it; and
• block A must have nothing on top of it.

Similarly, the DOS indicates that the following effects are achieved by applying
the operator:

• block A will no longer be above the block to which the operator is applied
(e.g., block X);

• the block to which the operator is applied will have no block on top of it (e.g.,
cleartop is "true"); and

• block A will be on the table.

An example of a DOS for a put operator is shown in Figure 5-25. The
schema indicates that to place block A on top of block X (the operator is applied
to block X), the following conditions must be true:

• the block to which the operator is applied (e.g., block X) must not be block A;

166 Developing Process Planning Systems

(defschema put-a-on
(is-a
(domain-type
(application-object
(input-ob j ect s

operator)
block)
current-ob j ect)
current-object current-object
block-a block-a)
name-a cleartop on-table cleartop)
nil nil nil nil)
erased filled filled filled)
current-object current-object
block-a)
cleartop has-a-above on-table)

(input-slots
(input-bindings
(input-cond-types
(output-objects

(output-s1ot s
(output-bindings nil nil nil)
(output-predictable yes yes yes)
(output-effect-types erase fill erase))

Figure 5-25. Example of a Put Operator Schema Used in BLOCKS PLANEX

• the block to which the operator is applied must have nothing on top of it;
• block A must have nothing on top of it; and
• block A must be on the table.

The DOS also indicates the following effects of the operator:

• the block to which the operator is applied (e.g., block X) will no longer be the
top of the stack (e.g., cleartop is "false");

• the block to which the operator is applied will have block A above it;
• block A will no longer be on the table.

In BLOCKS PLANEX, domain operators are applied to a single block object.
Therefore, one operator is required for each operator type (pick or put) for each
block in the problem. Thus, in problems with Ν blocks, there are a total of
Ν pick and Ν put operators. In the prototype, these 2 χ Ν operators are
predefined. However, the schémas could be created from the problem descrip­
tion by another operator at the start of the problem-solving process.

5.3.4.2 Three-Block Example Consider the example problem of Figure 5-26.
This problem was used in Section 2.1 to illustrate the behavior of AI-based
planning systems such as STRIPS, INTERPLAN and NOAH. Figure 5-27
shows the schémas defining the initial position of the blocks and the goals. The
goals in the agenda frame represent the desired state of the world: a stack of
blocks (A, B , C) with A on top of the stack and C on the table.

Problem solution requires two steps:

Blocks-World Planning

Figure 5-26. Example of a Three-Block Problem

(defschema block-a
(is-a block)
(name-a block-a)
(has-b-above)
(has-c-above yes)
(cleartop)
(on-table yes))

(defschema block-b
(is-a block)
(name-b block-b)
(has-a-above)
(has-c-above)
(cleartop)
(on-table yes))

(defschema block-c
(is-a block)
(name-c block-c)
(has-a-above)
(has-b-above)
(cleartop yes)
(on-table))

(defschema agenda
(context-changes)
(goals (block-a cleartop filled)

(block-b has-a-above filled)
(block-c has-b-above filled))

(operator-queue)
(operator-precedences)
(operator-preconditions)
(effect-operators))

Figure 5-27. Initial Block Schemas and Agenda for the Three-Block Problem

168 Developing Process Planning Systems

EXPANSION TREE

b l o c k - b
o n - t a b l e
f i l l e d

b l o c k - c
o n - t a b l e
f i l l e d

b l o c k - a
n a m e - b
e r a s e d

P I C K - B - F R O M

* à i

θ \ 1

b l o c k - a b l o c k - b
h a s - b - a b o v e c l e a r t o p
f i l l e d f i l l e d

i

b l o c k - a
n a m e - c
e r a s e d

b l o c k - a
h a s - c - a b o v e
f i l l e d

b l o c k - c
c l e a r t o p
f i l l e d

Figure 5-28. Expansion of a Goal in the Three-Block Problem

Step I. Application of the Backward Search Operator (BSO). The system:
(1) searches for a sequence of operators that achieve each goal indepen­
dently; and (2) merges all sequences into a global network of operators
and conditions.

Step 2. Application of the Network Interpretation Operator (ΝΙΟ). The system
interprets the global network and formulates an operator network.

The application of the BSO proceeds as follows:

• Goal (block-a cleartop filled) is expanded as shown in Figure 5-28. There are
two possible operators that can achieve the goal: (pick-b-from a) and
(pick-c-from a). Operator (pick-a-from a) is not considered because it re­
quires precondition (block-a cleartop filled) which is the current goal. All of
the preconditions of operator (pick-c-from a) are true. Therefore, it is ex­
ecutable and all its effects are labeled achievable.

• Goal (block-b has-a-above filled) is expanded. All of its preconditions are
true or have been labeled achievable.

• Goal (block-c has-b-above filled) is expanded. All of its preconditions are
true.

The resulting global network of operators and conditions is shown in
Figure 5-29. The effect-operators and operator-preconditions slots of the
agenda store the network.

The application of the ΝΙΟ to the network of Figure 5-29 yields the operator
network of Figure 5-30. The only feasible sequence in this network the desired
plan: (pick-c-from a) —> (put-b-on c) —> (put-a-on b).

Blocks-World Planning 169

block-b
has-a-above
filled

θ

P U T - A - O N Β

block-b
name-a
erased

block-a
cleartop
filled

block-a
on-table
filled

block-c
on-table
filled

C P I C K - C - F R O M A

/ 1 i θ
f

block-a block-a
name-c has-c-above
erased filled

block-c
name-b
erased

block-c
has-b-above
filled

i i
θ

block-b
cleartop
filled

block-c
cleartop
filled

block-b
on-table
filled

Figure 5-29. Global Network of Operators and Conditions for the Three-Block Problem

Figure 5-30. Operator Network for the Three-Block Problem

170 Developing Process Planning Systems

5.3.4.3 Four-Block Example Another example blocks-world problem is shown
in Figure 5-31. Corkill refers to this four-block problem as an example with
double cross conflicts [15]. He describes a solution using NO AH's procedural
nets and multiple processors. In his solution, the problem requires two proces­
sors that send messages to each other to indicate when they may proceed with
the expansion process and when they should stop.

Similarly to the previous example, BLOCKS PLANEX solves the problem by
generating a global network of operators and conditions and interpreting this
network to identify operator precedences. Figure 5-32 shows the global net­
work of operators and conditions obtained by BLOCKS PLANEX. Interpreting this
network yields the operator network of Figure 5-33. There are four possible
problem-solving sequences:
(pick-c-from a) —> (pick-d-from b) —> (put-c-on b) —> (put-d-on a)
(pick-c-from a) —» (pick-d-from b) —> (put-d-on a) —> (put-c-on b)
(pick-d-from b) —> (pick-c-from a) —> (put-c-on b) —» (put-d-on a)
(pick-d-from b) —> (pick-c-from a) —» (put-d-on a) —» (put-c-on b)

5.3.4.4 Comments on the Application The examples show that the Backward
Search and Network Interpretation Operators of the PLANEX architecture are
applicable in solving blocks-world problems. The solution strategy of BLOCKS
PLANEX is different from the procedures followed by other AI planners:

• BLOCKS PLANEX considers operators, preconditions and effects as part of the
same network. In planners such as NOAH and NONLIN, preconditions and
effects are included in the bodies of the operators.

• In other AI planners, critics are used during the expansion process to solve
conflicts among actions and avoid redundancies. In BLOCKS PLANEX, critics
are not used during the planning process; the system first generates the global
network and then extracts the operator network.

• BLOCKS PLANEX expands each goal independently. In contrast, NOAH
repeatedly expands a procedural net with all goals.

5.4 Evaluation of the PLANEX Architecture
This section presents a partial evaluation of the PLANEX architecture with
respect to the list of requirements presented in Section 3.3. For some require­
ments, the analysis is supported with examples from the prototype planning
systems described in this chapter. For other requirements, however, the analysis
is based on the characteristics of the system architecture described in
Section 3.3. This distinction is needed because the prototype systems illustrate
only some of the capabilities of the knowledge representation and problem-
solving tools of PLANEX.

Evaluation of the PLANEX Architecture 171

0 _ PLAN

Figure 5-31. Example of a Four-Block Problem

C

block-a
has-d-above
fi l led

i i
Θ

PUT-D-ON A

block-a
name-d
erased

• \

block-d
cleartop
f i l led

PICK-C-FROM A >

block-c
on-table|
f i l led

block
has-c
f i l led

b
-above

block-d
on-table
f i l led

/ i

block-a
name-c block-a
erased has-c-above

f i l led

Figure 5-32. Global Network of Operators and Conditions for the Four-Block Problem

(PUT-D-'

Q PICK-D-FROM B) Q PICK-C-FROM A)

Figure 5-33. Operator Network for the Four-Block Problem

172 Developing Process Planning Systems

5.4.1 Knowledge Representation

The following requirements for representing process planning knowledge were
established. PLANEX should:

1. Provide a process-independent knowledge representation. PLANEX meets
this requirement by using knowledge represented in Knowledge Sources
(KSs) that have the generic structure described Section 4 .2 . This represen­
tation is independent of the process planning domain. In the prototype
systems for construction, excavation and manufacturing planning described
in this chapter, all process planning knowledge was represented in the KS
format. Although the KSs used in these systems differ in their content (e.g.,
the number of rules, the type of values they return), all of them are evaluated
using the KNOWLEDGE SOURCE EVALUATOR provided by the architecture.

2. Provide an operator-independent knowledge representation. This require­
ment is also satisfied as the same KS format and syntax was used in all of
the prototypes, independent of the type of knowledge represented.

3. Provide the means to structure knowledge hierarchically. This architectural
requirement is also met because KSs may be structured hierarchically. An
example of a KS illustrating knowledge hierarchies is that for the selection
of excavation equipment given in Figure 5-3. This is a hypothetical KS as it
is not a part of EXCAVATION PLANEX. Knowledge hierarchies were not
required in the prototypes as the knowledge could be divided into multiple
independent KSs. These KSs were classified with respect to the type of
knowledge they represent (e.g., recommended duration for an activity, ap­
propriate technology for a group of activities) and the type of object used for
their evaluation (e.g., a formwork activity). This classification of process
knowledge made it possible to generate the name of the KS required by the
domain operators. Such a horizontal decomposition of the knowledge base
may not be desirable or possible in other domains. Thus, it is important for
the PLANEX architecture to provide the means to hierarchically structure the
knowledge sources.

4 . Provide the means to check the completeness or consistency of an operator s
knowledge. The current version of PLANEX does not include mechanisms to
check the consistency of knowledge in a KS. Neither does it provide means
for checking the completeness of this knowledge. Therefore, this require­
ment has not been met in the PLANEX architecture. However, algorithms
used for checking the consistency and completeness of decision
tables [55, 59, 82] could be adopted to check individual KSs. Incorporating
these algorithms into the KNOWLEDGE SOURCE ACQUISITION MODULE
would satisfy this requirement at the individual KS level.

Problem-Solving Operators 173

5.4.2 Problem-Solving Operators
The following requirements for problem-solving operators were established.
PLANEX should:

1. Achieve operator modularity. The architecture achieves operator modularity
because domain operators are independent. In the prototype systems
described, a domain operator does not know about any other domain
operator. Each operator is responsible only for a specific planning task
without concern for the consequences of its execution. Operator interactions
are handled by the control operators of the architecture. Additional domain
operators can be incorporated in the system without having to modify exist­
ing operators.

2. Provide a set of problem-solving operators that may be used in different
process planning domains. Most of the operators described in the
EXCAVATION PLANEX prototype were taken directly from the
CONSTRUCTION PLANEX system. It is not likely that this will occur in other
applications of the PLANEX architecture, but it is probable that operators
from different domains will be similar. For example, the select-technology
operator of HARNESS PLANEX (shown in Figure 5-22) is similar to several
domain operators utilized in CONSTRUCTION PLANEX, including the
determine-recommended-duration operator (Figure 5-18). Most domain
operators perform the same tasks (identify a K S to evaluate, evaluate this K S
with the KNOWLEDGE SOURCE EVALUATOR, and store the results of the K S
evaluation in the context) and thus are similar. Although PLANEX does not
provide a unique set of problem-solving operators for different application
domains, the development of more generic operators seems plausible.

3 . Incorporate both synthesis and analysis operators. This requirement has
been met as demonstrated by the prototype applications of PLANEX that
incorporate both synthesis and analysis operators. Examples of synthesis
operators are those that generate activities, select technologies and determine
activity precedences. Examples of analysis operators are those that compute
quantities of work, estimate durations and compute earliest and latest event
times (e.g., the scheduling algorithms used in CONSTRUCTION PLANEX).

4. Provide the means to structure operators hierarchically. Although this
capability of the architecture was not utilized in the prototype systems, the
architecture provides the means to structure operators into layers as shown in
Figure 5-9. Operators in the upper layers (e.g., an operator to compute the
cost of the entire building) could trigger the execution of operators in the
lower layers (e.g., an operator to compute the cost of one floor) by using an
intermediate K S . This strategy might be useful in applications where there
are many domain operators.

174 Developing Process Planning Systems

5.4.3 Control

The following requirements for control of the execution of the problem-solving
operators were established. PLANEX should:

1. Make explicit control decisions that solve the problem. The control
operators of PLANEX are responsible for making explicit decisions about
how the problem-solving operators should be executed by analyzing the
information stored in the Domain Operator Schemas (DOSs). Thus, this
requirement is met through the architecture of the system.

2. Decide what operators to execute in terms of their feasibility and
desirability. This requirement is also satisfied through the capabilities
provided for control. PLANEX distinguishes between the feasibility and the
desirability of executing a domain operator by using information stored in
the DOS. An operator is feasible whenever its preconditions are satisfied
while it is desirable whenever its outcome contributes to solving a goal. The
Backward Search Operator (BSO) searches for desirable operators until all
of the initial and intermediate goals are satisfied and feasible sequence of
operators has been identified. In contrast, the Forward Propagation
Operator (FPO) deals only with feasible domain operators; all feasible
operators whose arguments have changed are executed.

3. Dynamically plan strategic sets of operators. PLANEX formulates strategic
plans of domain operators by applying the control operators as described in
Section 4.3. Whenever the user modifies a slot or requests the execution of
domain operators whose preconditions are not satisfied, PLANEX modifies
the information stored in the agenda. At any point in the planning process,
the user may execute the FPO or BSO that will plan the sequence of
operators to propagate context changes or achieve goals. Again, the control
operators provide the mechanism to satisfy this requirement of the architec­
ture.

4. Incorporate different control heuristics in the planning process. Control
decisions are based exclusively on the preconditions and effects of the
domain operators as described in the DOSs, and all reasoning is based on
data availability. Thus, the current architecture does not meet the stated
requirements, but the architecture does not preclude other control strategies.
PLANEX could incorporate more elaborate control heuristics similar to those
of OPM (see p. 32). Alternatively, control operators that use knowledge
about the status of the agenda could be added to the architecture.

User Interaction 175

5.4.4 User Interaction

The following requirements for user interaction were established. PLANEX
should:

1. Provide the means to create, discard or update domain knowledge. The
KNOWLEDGE SOURCE ACQUISITION M O D U L E of PLANEX provides an inter­

active environment to create, discard or update domain knowledge, thus
meeting the requirement. Displaying KSs in a tabular format facilitates
knowledge acquisition and provides transparent process planning
knowledge.

2. Provide the means to modify the set of operators. PLANEX does not include
an explicit mechanism for modifying the set of problem-solving operators of
a particular application. The only mechanism available is the editor
provided by the host system. Therefore, this requirement is not met in the
current version of the system.

3. Provide the means to control the planning process. The CONTROL PANEL
provides an interactive environment for controlling the planning process.
The user may insert goals and changes in the agenda, invoke one or more
domain operators and modify operator precedences. In addition, some ap­
plications provide menus which can be used to invoke problem-solving
operators. With these two tools, the user explicitly controls the planning
process.

4. Explain results in terms of the knowledge used to obtain them. The relation­
ships between problem-solving operators and KSs provide PLANEX with
limited explanation facilities. Each time an operator is executed, a pointer to
the KS used by the operator is stored with the application object of the
operator. This information is used to provide an explanation of the planning
results in terms of the knowledge used. Thus, the architecture has some
features which meet the requirement, but a comprehensive explanation
facility is lacking.

5. Provide the means to produce reports with flexible formats. The REPORT
GENERATOR has proven to be flexible enough to produce most of the reports
for the application systems. Only a few very complicated reports, such as
the Process Sheet report of HARNESS PLANEX, require a separate output
processor. Thus, the REPORT GENERATOR is a good initial model of a
general output tool.

6. Provide graphic display of results. PLANEX provides some graphical dis­
plays that are applicable in various process planning domains, including the
Activity-On-Node diagram used in the CONSTRUCTION PLANEX and
EXCAVATION PLANEX systems. The architecture provides capabilities to
implement and use specific graphical tools in individual applications.
However, it is difficult to identify a complete set of generic graphical dis­
plays for all PLANEX applications.

6 CONSTRUCTION
PLANEX: An Expert
System for Construction
Project Planning

The construction industry is characterized by separation and isolation of design
and project planning [50]. Design of the final facility and construction project
planning are typically done by different professionals and different organiza­
tions. Design is the responsibility of architects and engineers, whereas project
planning is performed by construction contractors who may or may not have
engineering training. These different professionals have quite different ter­
minology, different perspectives on the construction process, and—all too
often—a mutually antagonistic and disdainful relationship. The traditional bid­
ding process for public projects represents an extreme case of the separation
between design and project planning. In this process, architecture and engineer­
ing firms develop final facility plans which are made available to numerous
general contractors as a set of physical plans and specifications for the com­
pleted facility. Each contractor must review the plans to determine the required
quantity of work and formulate appropriate construction plans. The formulation
of the project plan is done manually, working from the physical plans. The
contract for performing the construction is typically awarded to the qualified
builder who submits the lowest bid.

Effective computer-based construction project planning systems could be
useful in a number of ways. Architecture and engineering design firms could
use such systems to improve their designs and estimates of required costs and
project durations. Contractors could use these aids to develop better plans more

177

178 CONSTRUCTION PLANEX

rapidly and at less cost. Reducing planning costs is particularly important be­
cause many plans are developed for bids that are never won. Improved and
detailed project plans would be of considerable value in expanding the role of
Computer-Integrated Construction in areas such as materials procurement and
project control. Furthermore, computer-based models of the facility and the
construction process can substantially aid communication among the various
professionals and organizations involved in the process. Computer-based
animations of the construction process are only one of many useful techniques
that can be used in this regard.

An example application of PLANEX for planning building construction is
CONSTRUCTION PLANEX, a knowledge-based expert system that generates ac­
tivity plans for the excavation and structural erection of concrete or steel-frame
buildings. The intent of system development was to explore the application of
knowledge-based systems to the automatic generation of construction project
plans. As noted in Section 1.5, the current version of the system is the result of
a multi-cycle refinement process which also resulted in the development of the
PLANEX system architecture. Knowledge for the system was obtained from both
the literature and an experienced construction planner [4] .

The previous chapter presented an overview of how the basic components of
the PLANEX architecture are used in CONSTRUCTION PLANEX. This chapter
describes the structure and behavior of CONSTRUCTION PLANEX in detail and
illustrates the use of the system with examples. The models used by the
CONSTRUCTION PLANEX system in each of the stages of the construction plan­
ning process are presented, followed by a discussion of the components of the
system and the relationships among them. Readers interested in only a concep­
tual understanding of the system can skip Section 6.2. Section 6.3 illustrates the
use of the system both as a stand-alone planning assistant and as a component of
an integrated computing environment for building design. The chapter con­
cludes with a complete example.

6.1 Models for Construction Planning
Used in the System

Several models for different elements of the construction planning process were
discussed in Chapter 2. Models were classified into the following categories:

• Definition of Work Tasks and Precedence Relationships—models for the
generation of the project activity network;

• Choice of Technologies and Construction Methods—models for the selection
of technologies and methods to perform construction activities;

• Estimation of Activity Durations and Costs—models to estimate activity dura­
tions and costs based on the selected technologies and construction methods;
and

Definition of Work Tasks and Precedence Relationships 179

• Preparation and Maintenance of Project Schedules—models to compute
project schedules that satisfy the time and resource constraints of the project.

In generating a construction plan for a building, CONSTRUCTION PLANEX uses
models from each of these four categories. This section describes these models
and discusses the applicability and limitations of each.

6.1.1 Definition of Work Tasks and Precedence Relationships

In generating a project activity network, CONSTRUCTION PLANEX uses the
"bottom-up" activity formulation model presented in Section 3 . 2 . 1 . The ac­
tivity network is built in four steps:

Step 1. Model Building. The building is described in terms of unitary com­
ponents called design elements. Example components are beams, slabs,
columns, walls, footings and diagonals (bracing).

Step 2. Identify Activities. The system determines the element activities re­
quired to construct each design element. Example element activities
are form placement for individual concrete components and excavation
of individual column footings.

Step 3. Aggregate Activities. The system aggregates element activities into
project activities. Example project activities are the excavation of all
footings elements and concrete placement on a particular floor.

Step 4. Link Activities. The system creates a project network by establishing
precedence links among project activities. For example, the system
creates a link from a form placement activity to the corresponding
concrete pouring activity for an element.

CONSTRUCTION PLANEX has some limitations regarding how the bottom-up
activity formulation model is used:

• CONSTRUCTION PLANEX generates plans using detailed design information
describing the structural elements of a building (e.g., dimensions, type of
materials). The system cannot generate plans from more abstract building
design descriptions.

• The system only generates activities associated with the construction of the
design elements. To generate other activities, artificial design elements must
be created (e.g., an object describing the geometric characteristics of the site
is needed to generate a site-clearing activity).

• CONSTRUCTION PLANEX first identifies the activities and then establishes
precedences. Alternative knowledge sources or operators could perform these
tasks simultaneously.

• Activities are divided into two levels of aggregation: (1) element activities
representing activities used to construct individual design elements; and

180 CONSTRUCTION PLANEX

(2) project activities representing groups of element activities on a particular
floor of the building. Sophisticated spatial aggregation of the construction
activities would be useful.

6.7.2 Choice of Technologies and Construction Methods

CONSTRUCTION PLANEX assigns crews to activities after formulating the project
activity network and before estimating activity durations and costs. Each crew
is a combination of both labor and equipment and is represented using a crew
schema. Crew schémas describe the crew components, standard crew produc­
tivities and average unit costs. Figure 6-1 shows the schema used to represent a
crew named "crew-excavation-foundation-05". This crew is composed of a
backhoe with a 3/4 cubic yard bucket and a single machine operator. The
standard productivity of this crew is 100 cubic yards per day, and its average
unit costs are $6.74 per cubic yard of normal time work and $10.11 per
cubic yard of overtime work.

CONSTRUCTION PLANEX models the technology selection process in two
steps:

Step 1. Select Crew Type. The system chooses a crew for each project activity
by using information about site characteristics, design elements and the
activity. In this step, CONSTRUCTION PLANEX assumes that each ac­
tivity can be performed with the most appropriate crew.

Step 2. Determine the Number of Crews to be Used. Once the crew type has
been selected, the system computes a recommended activity duration as
a function of the quantity of work. Then the system decides how many
crews are needed to perform the activity on the basis of the recom­
mended activity durations. (Selected crew allocations may be modified
by the user.) In this step, no time-cost trade-offs are analyzed.

(defschema crew-excavation-foundation-05

Crew for excavating sand and gravel soil with
3/4 cubic-yard backhoe [71, p. 37].

(is-a
(component-names

crew)
((1 backhoe-3/4)
(1 operator-backhoe-3/4)))
100.0)
cu-yd/day)
6.74)
10.11))

(std-productivity
(prod-unit
(normal-cost
(overtime-cost

Figure 6 -1 . Example of a Crew Schema

Estimation of Activity Durations and Costs 181

T e c h n o l o g y
G r o u p

s - a

G r o u p - A

C r e w T y p e : crew - 1

G r o u p - B

C r e w T y p e : crew-2

p a r e n t - t e c h n o l o g y

A c t i v i t y - X

No. C r e w s :

A c t i v i t y - Y

No. C r e w s :

Figure 6-2. Representational Structures for Storing Technology Decisions

The results of the technology selection process are stored as shown in
Figure 6-2. The values of the number of crews are stored in activity schémas
and the crew types are stored in technology-group frames. Each technology
group object is linked to all of the activities using the same crew type. This
structure lets the system identify all activities impacted by a technology change.
Assume that the system allocates the crew shown in Figure 6-1 to various
excavation activities and the user later decides to change this assignment. The
information stored in the corresponding technology group object permits
CONSTRUCTION PLANEX to identify the activities affected by this decision. The
system asks the user if the change is local to an activity or if it should be
propagated to all the activities which use the same crew (i.e., linked to the
technology group object), and makes either the corresponding local change or
propagates the effect.

Dividing the technology selection process into two steps assumes that the
selection of the crew type can be made without considering the number of crews
allocated to the activity. CONSTRUCTION PLANEX does not combine technology
selection with activity scheduling. This simplified model is appropriate for
obtaining an initial project plan and reflects contractors' common practice of
separating the decisions of crew type and number of crews [4, p. 4]. If the
system were to combine these two steps, a model similar to the Decision C P M
(see p. 44) would be needed. In this case, the two-step strategy would be used to
generate a Decision C P M network incorporating appropriate combinations of
crew types and number of crews.

6.1.3 Estimation of Activity Durations and Costs
CONSTRUCTION PLANEX estimates durations and costs of project activities using
simple models based on average productivities and unit costs [50]. The process
for computing activity durations is shown in Figure 6-3 . First, the system

182 CONSTRUCTION PLANEX

Adjusted
Duration
(days)

Overtime Hours

Normal Hours

Figure 6-3. Process for Activity Duration Estimation

computes the expected activity duration (in hours) by dividing the total quantity
of work by the number of crews allocated to the activity and the standard
productivity of each crew. Then the system divides the expected duration by the
number of normal working hours per day to obtain the estimated activity dura­
tion in days. Following this computation, CONSTRUCTION PLANEX eliminates
fractional days if overtime is permitted. (If overtime is not used, the duration is
increased one full day.) Finally, the system subtracts the number of overtime
hours from the estimated activity duration in hours to obtain the number of
normal working hours.

The activity labor cost is computed by adding its normal and overtime costs.
The normal working cost is calculated by multiplying the unit crew cost per
normal working hour by the number of normal working hours and the number of
crews. Similarly, the overtime cost is computed as the product of the unit crew
cost per overtime hour and the number of overtime hours and the number of
crews.

A desirable extension of the CONSTRUCTION PLANEX system would be to
replace the simple estimating procedure described above with a more elaborate
hierarchical estimator that uses the concepts from MASON (see p. 59). Also, it
may be desirable to compute not only the expected values of the activity dura­
tion and costs, but also some measure of their variability. This would allow the
system to use probabilistic scheduling models such as the PERT for estimating
expected project durations.

Preparation and Maintenance of Project Schedules 183

FS:

Activity I

Activi ty J

Activi ty 1

— • Activity J

b

« 4 - · Act ivi ty 1

—• Activity J

c

Figure 6 - 4 . Example Precedences Between Consecutive Project Activities

6.1.4 Preparation and Maintenance of Project Schedules
In generating project schedules, CONSTRUCTION PLANEX uses the unified ac­
tivity network model described in Section 3.2.2. This model can be used to
compute the earliest and latest event times in networks with multiple types of
precedences and windows constraints.

Figure 6-4 shows three common types of precedence relationships between
consecutive project activities. In case a, the succeeding activity J cannot start
until the preceding activity / has finished completely, a Finish-to-Start or FS
relationship. Such a link can be used to represent that pouring concrete in a
particular floor will start after all the reinforcement for that floor has been
placed. In cases b and c, the following activity can start after a portion of the
preceding activity has been completed. Case b, called Start-to-Start or SS, is
common in fast-track schedules where succeeding activities overlap. For ex­
ample, placing wallboard can start after only some of the wall studs are in place.

184 CONSTRUCTION PLANEX

Figure 6-5. Representation of Precedences in the Unified Activity Network Model

When activities overlap, additional Finish-to-Finish or FF links may be used to
ensure that following activities are performed continuously. For example, in
case c, the FF link delays the start of activity / more than the SS value in order
to finish this activity after activity / has been completed.

Figure 6-5 shows the unified activity network model representation of the
three precedence cases of Figure 6-4. One node is used to represent the start
event of the activity and another node is used to represent the finish event.
Links represent activity durations, precedence relationships and window con­
straints. For case a, the links representing the duration of activity / and the FS
precedence are critical (marked with an asterisk [*]) because increasing either
duration will increase the earliest completion time of the project. In case b, the
SS link and the duration of activity J are critical (e.g., increasing the duration of
activity J will increase the duration of the project). In case c, the duration of
activity / and the FF link are critical, which means that increasing the duration
of activity / will not affect the completion time of the project, but will require
the activity to start sooner (as long as it is not in conflict with the SS
precedence).

System Architecture 185

6.2 System Architecture
As described in Chapter 5, the CONSTRUCTION PLANEX system is implemented
using the four components of the PLANEX architecture:

1. representational structures store information about the site, the building to
be constructed, the activities involved in the project and the resources avail­
able to perform these activities;

2. problem-solving operators perform construction planning tasks such as tech­
nology choice, activity synthesis, duration estimation, etc.;

3. knowledge sources provide construction knowledge for the operators; and
4. user interface mechanisms provide the means to control the execution of the

construction planning process and allow the user to modify or obtain infor­
mation about planning decisions.

Each of these components of the system is described below.

6.2.1 Representational Structures
CONSTRUCTION PLANEX uses the three basic representational structures shown
in Figure 6-6. The figure is only illustrative since additional levels or aggrega­
tions are used as needed. The basic structures are:
• Tree of Design Elements. The building is described in terms of individual

design element schémas that represent building components such as beams or
columns. These schémas are aggregated by material (concrete or steel), ele­
ment type (e.g., columns) and location (e.g., first floor).

• Tree of Element Activities. The activities used to construct each of the design
elements are aggregated using an extension of the MASTERFORMAT [18]
coding system9 into a tree of element activities. The different levels of the
MASTERFORMAT (Division, Broadscope and Narrowscope) plus the exten­
sions are described below.

• Tree of Project Activities. Construction activities are aggregated by the type
of activity represented (e.g., formwork) and the type of design element as­
sociated with the activity (e.g., formwork for columns versus formwork for
beams).

Building components and construction activities are also aggregated with
respect to their location in the site. There are four levels of spatial aggregation:

9 The MASTERFORMAT coding system was developed by the Construction Specifications
Institute and is widely used by architects, engineers, contractors and suppliers for categorizing
information related to the construction process.

186 CONSTRUCTION PLANEX

Design Element
Type Group

p a r e n t - d e

Element Activity
Division Group

Design Element
Material Group

-*Ί>
p a r e n t - d e

p a r e n t - e a

Element Activity
Broadscope Group

p a r e n t - e a

Element Activity
Narrowscope Group

Project Activity
ΡΑ-Type Group

à

p a r e n t - p a

Project Activity
DE-type Group

p a r e n t - p a

Projecl Activity

p a r e n t - e a

Element Activity

Figure 6-6. Representational Structures of CONSTRUCTION PLANEX

• floor groups all objects of a particular story of a building;
• block groups all objects of a single building;
• sector groups all objects of a site sector; and
• project groups all objects of a particular project.

Representational structures are identified by hierarchical coding systems con­
sistent with the levels shown in Figure 6-6. Separate hierarchical codes exist for
design elements and activities. For example, an element activity might be
named F00-EA-2-220-10-1 which has the following interpretation:

• "F00" is the root node of element activities on a particular floor (in this case,
the foundation is denoted as floor 00);

• "EA" indicates that the schema is an element activity;

Representational Structures 187

• " 2 " indicates that the activity is site work;
• "220" identifies the activity is excavation;
• 4 4 10" indicates that the activity is for column footings; and
• " 1 " identifies the group of column footings (in this case group " 1 ") .

The codes "2-220-10" correspond to the division group, broadscope group and
narrowscope group of the MASTERFORMAT coding system.

Design elements are identified by floor, element type, material type and
group number. For example, the design element F00-DE-60-1-1 is interpreted
as:

• "F00" is the root node of the hierarchy specifying the foundation level of the
structure;

• 4 4 DE" indicates the schema is a design element;
• 4 4 60" indicates the element type is column footings;
• 4 41 " indicates the material type is concrete; and
• 4 41 " indicates element is the first of the group.

Project activities are coded similarly to design elements except they are iden­
tified as PA schémas rather than element activities (EA) or design elements
(DE). The code consists of the location, activity type, design element type and
group number. The codes for the element type, activity type and material type
are arbitrary, but based on similar codes used by a contractor [4]. In general, the
activity code corresponds to the MASTERFORMAT narrowscope group code.
Example project activity codes (activity and design element type) are shown in
Figure 6-7.

Codes may be more or less detailed than the examples described. For ex­
ample, if a set of related design elements are independent of material (e.g.,
earthwork), the material level may be omitted from the code. Similarly, in some
instances the lowest level group code is omitted if the item refers to all groups.
Alternatively, in many instances the element activity code includes the design
element type and material type after the MASTERFORMAT group codes and
before the group number. The structure of the various operators and knowledge
sources are such that CONSTRUCTION PLANEX can readily identify and deal with
all such cases. The remainder of this section describes a simplified set of codes
consistent with Figure 6-6.

All codes begin with the same set of one or more spatial aggregation codes.
In these examples, the code begins with a location (i.e., floor) designator (e.g.,
4 4 F00") which acts as a root node for the hierarchies of design elements and
activities. Each floor has a different root node identifier (4 4 F01" , 4 4 F02", etc.).
These floor designators are also associated with particular blocks, sectors and
projects (e.g., P01-B00-S00-F00-...). Thus, even though the example codes
themselves do not reflect these links, aggregation to larger entities is possible.
In some instances, CONSTRUCTION PLANEX will generate codes with the full
spatial location prefix.

188 CONSTRUCTION PLANEX

CODE ACTIVITY NAME

10-60 EXCAVATION-FOUNDATION
15-60 HAUL-EXCAVATION-FOUNDATION
17-60 BACKFILL-FOUNDATION
20-60 FORMWORK-FOUNDATION
30-60 REMOVE-FORMS-FOUNDATION
40-60 REINFORCING-STEEL-FOUNDATION
50-60 POUR-CONCRETE-FOUNDATION
20-65 FORMWORK-COLUMNS
30-65 REMOVE-FORMS-COLUMNS
40-65 REINFORCING-STEEL-COLUMNS
50-65 POUR-CONCRETE-COLUMNS
55-65 ERECTION-STEEL-COLUMNS-DIAGONALS
20-80 FORMWORK-SLABS
30-80 REMOVE-FORMS-SLABS
40-80 REINFORCING-STEEL-SLABS
50-80 POUR-CONCRETE-SLABS
55-81 ERECTION-STEEL-BEAMS
58-81 JOIN-STEEL

Figure 6-7. Sample Project Activities and Codes

Similar codes are used to identify knowledge sources and operators which
correspond to particular design elements or activities. For example, the
knowledge source used to generate element activities required to construct con­
crete column footings (such as F00-DE-60-1-1) is KS-Create-EA-60-1, which is
interpreted as:

• " K S " identifies the schema as a knowledge source;
• "Create-EA" identifies the knowledge source as a schema containing rules to

create element activities used by the Create-EAS operator; and
• " 6 0 - 1 " identifies the design element type and material (concrete column

footings) to which this knowledge source is applied.

6.2.1.1 Tree of Design Elements Design element schémas are used to describe
structural building components. CONSTRUCTION PLANEX can plan the excava­
tion and erection of the following types of design elements:

• concrete column footings;
• concrete or steel beams;
• concrete or steel columns;
• concrete or steel diagonals (bracing); and
• concrete floor slabs.

At the start of the planning process, CONSTRUCTION PLANEX is given a file
containing design element schémas describing the building (with some slots
empty). The system organizes these schémas into a tree structure using the

Representational Structures 189

(defschema F00-DE-60-1-1
; Relationship slots

(is-a de)
(parent-de FOO-DE-•60 -i)
(de-has-eas FOO-EA-•2-220-40-60-1 -1

F00-EA-•3-110-20-60-1 -1
F00-EA--3-310-10-60-1 -1
FOO-EA-•3-210-00-60-1 -1
F00-EA-•3-110-10-60-1 -1
FOO-EA-2-225-10-60-1 -1
F00-EA-•2-220-10-60-1 -i)

-Classification slots
(type-de 60)
(type-material 1)
(de-code 60-1)
(name-de column-•footings-1)
(number-de 1)

-Multiplier slot
(multiplier 4)

-Location slots
(project pOl)
(sector sOO)
(block bOO)
(floor fOO)
(root-code F00)
(xg-coordinate (10 15 20 25))
(yg-coordinate (10 10 10 10))
(zg-coordinate (-4 -4 -4 -4))

-Geometry slots
(xl-dimension 10)
(yl-dimension 8)
(zl-dimension -1.50)

-Specifications slots
(const-type cast-in-place)
(concrete-type normal-•weight-3000)
(psteel 4.0)

-Explanation slot
(why-eas KS-Create -EAS-60 -i))

Figure 6-8. Example of a Design Element Schema

Create-DE-Tree operator described in Section 6.2.2.1. Elements are grouped in
a bottom-up manner. For example, the F00-DE-60-1-1 schema of Figure 6-8 is
linked below the schema F00-DE-60-1 which groups all concrete column foot­
ings of various dimensions (i.e., aggregated by material type). This schema is
linked to a parent schema F00-DE-60 which groups all column footings of the
building (i.e., aggregated by design element type). Thus, the design elements
are grouped into four levels as shown in Figure 6-6: level 1 is all design ele­
ments at a given location; level 2 is all design elements of a given type at that

190 CONSTRUCTION PLANEX

location; level 3 is all design elements of a specific material type for the design
element type; and level 4 groups individual elements of a specific material, type
and location.

An example of a design element schema is shown in Figure 6-8. This
schema is titled F00-DE-60-1-1 and stores information detailing a group of four
column footings of identical dimensions and materials. The schema contains the
following types of slots:

• Relationship slots represent links among the design element schema and other
schémas of the context. The figure shows three relationship slots: (1) the is-a
slot identifies the schema as a design element schema; (2) the parent-de slot
indicates the parent schema in the tree of design elements; and (3) the
de-has-eas slot stores the names of the element activities required to construct
the column footings.

• Classification slots identify the type of design element. Four slots are used
for this purpose: (1) the type-de slot defines the type of design element ("60"
indicates column footings); (2) the type-material slot defines the type of
material used to construct the design element (" 1 " indicates concrete); (3) the
name-de slot provides a name for the design element ("column-footings-1");
and (4) the number-de slot indicates the group number (" 1 " indicates that this
is the first group of column footings). In addition, the de-code slot is the code
of the design element and contains the concatenation of the values of the
type-de and type-material slots.

• Multiplier slot stores the number of identical column footings represented in
the schema. The example schema represents a group of four identical column
footings.

• Location slots specify the project, sector, block and floor location of the
design elements. The xg-coordinate, yg-coordinate and zg-coordinate slots
specify the global x, y and ζ coordinates of a datum point on each column
footing. The root-code slot stores the spatial aggregation code used to iden­
tify schémas.

• Geometry slots describe the geometric characteristics of the design element.
For example, the xl-dimension, yl-dimension and zl-dimension slots store the
x, y and ζ dimensions of the footing.

• Specifications slots contain descriptive information about the design element
that is relevant to the planning process. For example, the const-type and the
concrete-type slots specify construction technologies. The psteel slot
specifies the percentage of reinforcing steel for the design element.

• Explanation slot stores the names of the knowledge sources used to compute
values in the schema. In the example, the why-eas slot indicates that the KS
titled KS-Create-EAS-60-1 was used to determine the names of the element
activities required to build a column footing.

Representational Structures 191

6.2.1.2 Tree of Element Activities Element activity schémas are used to
describe activities performed in the construction of the design elements of the
building. These schémas are organized using a coding system that is an exten­
sion of the standard MASTERFORMAT coding system. As noted above, the
standard MASTERFORMAT codes have been extended to incorporate infor­
mation specifying the type of design element for the activities. Element activity
codes of CONSTRUCTION PLANEX have four basic parts:

1. division number identifies the general type of activity and corresponds to the
division level of the MASTERFORMAT;

2. broadscope number identifies the subtype of activity under each division;
3. narr ovoscope number provides a third level of classification with respect to

the materials or building elements associated with the activity; and
4. design element number identifies a specific design element or group of

design elements to which the element activity is applied. This value consists
of up to three parts: (1) the design element type; (2) the material type; and
(3) the element group number. As described above, the group number is
dropped if the code pertains to all elements, or the design element type and
material type codes may be dropped if the activity is independent of the
design element.

These element activity codes are used to group element activities into a tree
with the same levels of hierarchy as those shown in Figure 6-6. For example,
groups of element activities representing the excavation of column footings are
aggregated below a narrowscope group "2-220-10" ("Excavation, Backfilling
and Compacting of Structures"), which is linked to a broadscope group "2-220"
("Excavation, Backfilling and Compacting"), which is grouped below a division
group " 2 " ("Sitework"). Together these elements form the five levels shown in
Figure 6-6: level 1 is all element activities at a given location; level 2 is all
element activities of a given division at that location; level 3 is the set of all
element activities with a specific broadscope group number within the division;
level 4 is all activities of a narrowscope code within the broadscope; and level 5
is the individual element activities of a specific narrowscope, broadscope, divi­
sion and location. The aggregation information is stored in the parent-ea slot of
the element activity schémas. The tree is built by the Create-EA-Tree operator
described in Section 6.2.2.2.

Figure 6-9 shows an example of an element activity schema. This schema is
titled F00-EA-2-220-10-1 and stores the description of the excavation activity
required for one of the column footings of group "column-footings-1 " (i.e.,
design element F00-DE-60-1-1). The schema contains the following types of
slots:

• Relationship slots represent links between the element activity schema and
other objects of the context. Four relationship slots are used: (1) the is-a slot

192 CONSTRUCTION PLANEX

(defschema F00-EA-2-220-10-1
; Relationship slots

(is-a ea)
(parent-EA F00-EA-2-220-10)
(ea-of-DE F00-DE-60-1-1)
(ea-of-PA F00-PA-10-60)

; Classification slots
(ea-code 2-220-10-1)
(ea-name excavate-column-footings-1)

; Quantity Take-Offs slots
(amount-of-work-ea 24.0)
(unit-of-measure cu-yd)

; Material slot
(material-package none)

; Duration slot
(duration-ea 0.1)

; Explanation slots
(why-amount-formula formula-02)
(why-amount-ks KS-Amount-2-220-10)
(why-project KS-PA-2-220-10))

Figure 6-9. Example of an Element Activity Schema

identifies the schema as an element activity schema; (2) the parent-ea slot
stores the name a parent schema in the tree of element activities; (3) the
ea-of-de slot stores the name of the design element schema associated with
the activity; and (4) the ea-of-pa slot stores the name of the aggregated project
activity which includes this element activity.

• Classification slots identify the type of element activity. Two slots are used
for this purpose: (1) the ea-code slot stores the activity code of the element
activity; and (2) the ea-name slot stores the name of the element activity.

• Quantity Take-Offs slots store the amount of work needed to construct the
element activity and the unit in which this amount is measured.

• Material slot indicates the name of material package used to perform this
activity. The material package is the set of all temporary and permanent
construction materials used in building the associated design element. In the
example, no materials are required to perform the activity because it is an
excavation activity.

• Duration slot stores the estimated duration of the element activity.
• Explanation slots store the names of the knowledge sources or formulas used

to fill the slots of the schema. The example shows three explanation slots:
(1) the why-amount-KS slot indicates that the KS named KS-Amount-2-220-10
was used to select the formula which computed the amount of the activity;
(2) the why-amount-formula stores the name of this formula; and (3) the
why-project slot stores the name of the KS used to create the project activities.

Representational Structures 193

6.2.1.3 Tree of Project Activities Project activity schémas represent aggrega­
tions of element activities. CONSTRUCTION PLANEX creates project activity
schémas to obtain a reasonable level of granularity in the activity network.
These schémas are grouped with respect to their project element type, design
element type and location into a tree of project activities similar to the trees of
design elements and element activities described above.

The tree structure is generated by the Create-PA-Tree operator described in
Section 6.2.2.3. Project elements are grouped into four levels (shown in
Figure 6-6): level 1 is all project activities at a given location; level 2 is all
project activities of a given project activity type at that location; level 3 is all
project elements of a specific design element type for the specific project ac­
tivity type; and level 4 is an individual project activity of a specific design
element type, project activity type and location.

An example of a project activity schema is shown in Figure 6-10. The
schema represents the activity to remove forms from the first floor of a building.
It has the following types of slots:

• Relationship slots are used to link the project activity schema to other objects
of the context. Four relationship slots are used: (1) the is-a slot identifies the
schema as a project activity schema; (2) the parent-pa slot stores the name of
a parent schema in the tree of project activities; (3) the pa-has-eas slot stores
the names of the element activity schémas which comprise this project ac­
tivity; and (4) the parent-technology slot identifies the name of the technology
group object which stores the crew type for this project activity.

• Classification slots identify the type of project activity. Two classification
slots are used: (1) the pa-code slot stores the activity code of the project
activity; and (2) the pa-name slot stores the name of the project activity.

• Quantity Take-Offs slot stores the work quantity used to perform the project
activity. This value is the sum of the amounts of work (i.e.,
amount-of-work-ea slot) of the element activities aggregated in this project
activity.

• Duration slots store information describing the duration of the project ac­
tivity. Data stored includes the recommended and computed durations, upper
and lower duration bounds, and the distribution of normal and overtime hours.

• Technology slots store the number of crews used to perform the activity and
the adjusted productivity of these crews.

• Precedence slots store the names of the successors of an activity, the types of
links to each successor and the leads or lags for each of these links. The
successors slot contains all unique activity successors while the succs slot
contains one successor for each type of precedence link. The project activity
shown in the figure has no successors.

• Cost slots store the crew and material costs associated with the project ac­
tivity. These costs are in current dollars and do not include overhead or

194 CONSTRUCTION PLANEX

(defschema F01-PA-30-65
; Relationship slots

(is-a
(parent-pa
(pa-has-eas

(parent-technology
Classification slots
(pa-code
(pa-name
•Quantity Take-Offs slot
(amount-of-work-pa
•Duration slots
(recommended-durât ion
(duration
(low-dur
(high-dur
(normal-hours
(overtime-hours
•Technology slots
(number-crews
(adj-productivity
•Precedence slots
(successors
(succs
(link
(low-lags
(high-lags
•Cost slots
(total-cost-crew
(cost-crew-per-day
(total-cost-materials
(cost-materials-per-day
(overall-total-cost
(overall-cost-per-day
Scheduling slots
(est
(eft
(1st
(1ft
Explanation slots
(why-durâtion
(why-successors

pa)
F01-PA-30)
F01-EA-3-110-20-65-1-1
F01-EA-3-110-20-65-1-2
F01-EA-3-110-20-65-1-3
F01-EA-3-110-20-65-1-4)
group-technology-4)

30-65)

remove-forms-columns-F01)

5040.0)

4)
3.0)
3.0)
3.15)
24.0)
1.2)
4.0)
400.0)

none)
none)
fs)
0)
p-inf)

619.2)
206.4)
0.0)
0.0)
619.2)
206.4)

115.22)
118.22)
210.27)
213.27)

KS-Dura-30-65)
KS-Succ-30-65))

Figure 6-10. Example of a Project Activity Schema

Problem-Solving Operators 195

profit. This category has six slots: (1) the total-crew-cost slot stores the total
labor and equipment cost for the activity; (2) the cost-crew-per-day slot stores
the daily crew cost; (3) the total-cost-material slot stores the total material
cost; (4) the cost-materials-per-day slot stores the daily material cost; (5) the
overall-total-cost slot is the sum of the total material and crew costs; and
(6) the overall-cost-per-day is the sum of the daily material and crew costs.

• Scheduling slots describe the schedule for the project activity. There are four
schedule slots: (1) the est slot is the earliest-start-time of the activity; (2) the
eft slot is the earliest-finish-time of the activity; (3) the 1st slot is the latest-
start-time of the activity; and (4) the Ift slot is the latest-finish-time of the
activity.

• Explanation slots store the names of the knowledge sources used in comput­
ing values in the schema. The example shows two explanation slots: (1) the
why-duration slot indicates that the KS called KS-Dura-30-65 was used to
determine the recommended duration; and (2) the why-successor slot stores
the name of the KS used to determine the successors.

6.2.2 Problem-Solving Operators

CONSTRUCTION PLANEX includes three basic types of problem-solving
operators:

• design element operators;
• element activity operators; and
• project activity operators.

This classification is based on the type of context objects that the operators take
as arguments. For example, the Get-Duration-PAS operator is applied to project
activity schémas. Therefore, it is a project activity operator.

The following presentation describes each class of operators in detail, includ­
ing a discussion of the procedures used by the operators, the Domain Operator
Schemas (DOSs) which describe the preconditions and effects of the operators
and the designation of which types of Knowledge Sources (KSs) are evaluated
when the operator is executed.

6.2.2.1 Design Element Operators CONSTRUCTION PLANEX has two operators
that are applied to design elements:

• Create-DE-Tree aggregates design element schémas in the bottom-up manner
described in Section 6.2.1 and produces the tree of design element schémas;
and

• Create-EAS creates element activity schémas describing the tasks used to
construct a design element.

196 CONSTRUCTION PLANEX

(defschema Create-DE-Tree
(is-a
(domain-type
(application-object
(input-objects

operator)
de)
current-object)
current-object current-object
current-object)
is-a type-de type-material)
nil nil nil)
filled filled filled)
current-object current-object)
parent-de de-code)
nil nil)

(input-slots
(input-bindings
(input-cond-types
(output-ob jeets
(output-slots
(output-bindings
(output-predictable yes yes)
(output-effect-type fill fill))

Figure 6-11. Domain Operator Schema for the Create-DE-Tree Operator

Create-DE-Tree. The Create-DE-Tree operator creates the tree of design ele­
ments described in Section 6.2.1.1. When applied to a design element schema,
this operator performs the following steps:

Step 1. Create the name of the immediate parent schema in the design element
tree by trimming the last identifier from the name of the daughter
schema. For example, design element F00-DE-80 is the parent of
schema F00-DE-80-1.

Step 2. If the parent schema does not exist: create it.
Step 3. Link the daughter design element schema to the parent schema.

The operator repeats these three steps until the root of the tree is reached. This
root corresponds to the project schema (e.g., F00).

Figure 6-11 shows the Domain Operator Schema (DOS) of the operator.
When linking a new design element into the tree of design elements, this
operator requires that the is-a slot of the new element be filled in order to check
that the schema is a design element (the value of the is-a slot is "de") . The
effect of the operator is to fill the parent-de and de-code slots of the design
element schema being linked into the tree. The de-code is created by con­
catenating the values of the type-de and the type-material slots and is used by
other domain operators. Thus, the operator requires that the type-de and
type-material slots are filled.

Create-EAS. The Create-EAS operator is responsible for synthesizing the ele­
ment activities used to construct a particular design element. Element activities
associated with a design element are generated by evaluating a KS associated
with the specific design element. When applied to a particular design element,
this operator performs the following steps:

Problem-Solving Operators 197

(defschema Create-EAS
(is-a
(domain-type
(application-object
(input-objects
(input-slots
(input-bindings
(input-cond-types
(output-objects
(output-slots
(output-bindings
(output-predictable
(output-effect-type

operator)
de)
current-object)
current-object current-object)
parent-de de-code)
nil nil)
filled filled)
current-object <eas> <eas>)
de-has-eas is-a ea-of-de)
<eas> nil nil)
yes no no)
fill fill fill))

Figure 6-12. Domain Operator Schema for the Create-EAS Operator

Step 1. Build the name of the Element Activity KS (see p. 211) to be evaluated
by concatenating the prefix KS-Create-EA- with the design element
code of the element activity (type and material, e.g., the value of the
de-code slot).

Step 2. Evaluate this KS and store the results in a temporary list. Each member
of this list is a pair (ea-schema-name ea-name) which represents one
activity used to build the design element. The pair consists of the name
of the schema describing the element activity and the name of the
activity itself.

Step 3. For each element in the list of results, create the corresponding element
activity schema, store the name of the activity in this schema and link
the activity schema to the design element object using the ea-of-de
relationship.

The DOS that describes the Create-EAS operator is shown in Figure 6-12.
The operator requires that the design element be linked in the tree of design
element schémas (the parent-de slot must be filled) and have a value in its
de-code slot. This de-code value is used by the operator to identify the name of
the element activity KS to be evaluated. Some of the effects of this operator are
unpredictable because the names of the element activity schémas are not known
until the particular KS is evaluated and generates the list of activities and ele­
ment activity schema names. Thus, the control operators cannot determine all of
the context changes that result from executing the operator.

The DOS schema of Figure 6-12 includes only those effects and precon­
ditions that are relevant for control purposes (i.e., the values in the correspond­
ing slots are used by other domain operators). Other effects, such as filling the
name of the element activity, are not represented.

198 CONSTRUCTION PLANEX

(defschema Create-EA-Tree
(is-a
(domain-type
(application-object
(input-objects
(input-slots
(input-bindings
(input-cond-types
(output-ob j ect s
(output-s1ot s
(output-bindings

operator)
ea)
current-object)
current-object)
is-a)
nil)
filled)
current-object current-object)
parent-ea ea-code)
nil nil)

(output-predictable yes yes)
(output-effect-type fill fill))

Figure 6-13. Domain Operator Schema for the Create-EA-Tree Operator

6.2.2.2 Element Activity Operators CONSTRUCTION PLANEX includes six
operators applied to element activity schémas:

• Create-EA-Tree creates the tree of element activities;
• Compute-Amount-EAS computes the quantity take-offs;
• Determine-Unit-EAS identifies the units of measure for quantity take-offs;
• Deter mine-Mater ial-EAS selects material packages for element activities;
• Create-PAS-for-EAS groups element activities into project activities; and
• Get-Duration-EAS estimates the duration of element activities.

Create-EA-Tree. The Create-EA-Tree operator links an element activity into
the tree of element activities described in Section 6.2.1.2. It is similar to the
Create-DE-Tree operator. Starting with an element activity at the bottom of the
tree, it creates parent schémas successively until the root of the tree is reached.
Thus, an element activity schema titled FOO-EA-3-l 10-10-60-1 is linked to its
immediate parent, F00-EA-3-110-10-60; this schema is then linked to schema
F00-EA-3-110-10, which is linked to F00-EA-3-110, which is linked to
F00-EA-3, which is linked to the root of all element activity schémas FOO-EA
(for a particular floor location, e.g., F00). Three steps are performed repeatedly
until the root of the tree is reached:

Step 1. Create the name of the immediate parent schema in the element activity
tree by trimming the last identifier from the name of the daughter
schema.

Step 2. If the parent schema does not exist: create it.
Step 3. Link the daughter element activity schema to the parent schema.

Figure 6-13 shows the DOS for the Create-EA-Tree operator. This schema
resembles the DOS of the Create-DE-Tree operator. However, the only precon­
dition is that the is-a slot of the element activity is filled to verify that the

Problem-Solving Operators 199

(defschema Compute-Amount-EAS

(output-bindings

(is-a
(domain-type
(application-object
(input-objects

(input-slots

(output-objects
(output-slots

(input-bindings
(input-cond-types

operator)
ea)
current-object)
current-object current-object <de>
<de> <de>)
ea-code ea-of-de xl-dimension
y1-dimension zl-dimension)
nil <de> nil nil nil)
filled filled filled filled filled)
current-object)
amount-of-work-ea)
nil)

(output-predictable yes)
(output-effect-type fill))

Figure 6-14. Domain Operator Schema for the Compute-Amount-EAS Operator

schema is an element activity (the is-a slot has a value equal to "ea") . The
operator fills the slots parent-ea and ea-code of the element activity. The
ea-code slot value is taken from the element activity schema name.

Compute-Amount-EAS. The Compute-Amount-EAS operator computes the
quantity take-off for an element activity in four steps:

Step 1. Build the name of the Amount KS (see p. 213) to be evaluated by
concatenating the prefix KS-Amount- with the element activity code
(division, broadscope and narrowscope codes, i.e., the ea-code slot
value).

Step 2. Evaluate this KS and return the name of the formula to be used in the
computation.

Step 3. Evaluate the quantity take-off formula, inheriting the dimensions of the
design element from the design element schema which corresponds to
the element activity.

Step 4. Store the amount of work in the amount-of-work-ea slot of the element
activity schema and the name of the formula and KS used in the
why-formula and why-amount slots.

The DOS of the Compute-Amount-EAS operator is shown in Figure 6-14.
This operator uses information from: (1) the ea-code and ea-of-de slots of the
element activity schema; and (2) the geometry slots of the design element
schema associated with the element activity. In the DOS, only the xl-dimension,
yl-dimension and zl-dimension slots are included. However, some quantity take­
off formulas require other data such as the percentage of reinforcing steel or the
type of concrete. For other activities, only some of the geometry slots are
needed (e.g., for steel beams, only the length and the section designation are

200 CONSTRUCTION PLANEX

relevant). A solution to this problem is multiple DOSs, one for each case (e.g.,
Compute-Amount-EAS-Steel and Compute-Amount-EAS-Concrete).

Determine-Unit-EAS. The Determine-Unit-EAS operator determines the unit of
measure for the quantity of work associated with an element activity. The
operator performs four steps:

Step 1. If the unit of measure can be inherited from a parent schema in the
element activity tree: exit.

Step 2. Build the name of the Unit KS (see p. 214) to be evaluated by con­
catenating the prefix KS-Unit-of-Measure- with the first two parts of the
element activity code (division and broadscope codes, i.e., the ea-code
slot value).

Step 3. Evaluate this KS and return the unit of measure for the activity.
Step 4. Store the unit of measure in the broadscope parent schema correspond­

ing to the element activity (e.g., the broadscope parent of the schema
F00-EA-3-310-10-60-1 is F00-EA-3-310). Store the name of the Unit
KS in the why-unit slot of the element activity.

Figure 6-15 shows the DOS that describes the Determine-Unit-EAS operator
of CONSTRUCTION PLANEX. The operator uses the element activity code
(ea-code) to identify the Unit KS to be evaluated and fills the slot amount-unit.
The DOS indicates that the result is stored in the element activity schema, but
the operator stores the result in the parent schema. For control purposes, this
distinction is immaterial. Thus, the DOS does not differentiate between storing
the unit of measure locally or in a parent schema of the element activity tree.

(defschema Determine-Unit-EAS
(is-a
(domain-type
(application-object
(input-ob j ect s
(input-slots
(input-bindings
(i nput-cond-types
(output-ob jeet s
(output-slots
(output-bindings
(output-predictable
(output-effect-type

operator)
ea)
current-object)
current-object)
ea-code)
nil)
filled)
current-object)
amount-unit)
nil)
yes)
fill))

Figure 6-15. Domain Operator Schema for the Determine-Unit-EAS Operator

Problem-Solving Operators 201

(defschema Determine-Material-EAS
(is-a operator)
(domain-type ea)
(application-object current-object)
(input-objects current-object)
(input-slots ea-code)
(input-bindings nil)
(input-cond-types filled)
(output-objects current-object)
(output-slots material-package)
(output-bindings nil)
(output-predictable yes)
(output-effeet-type fill))

Figure 6-16. Domain Operator Schema for the Determine-Material-EAS Operator

Determine-Material-EAS. Figure 6-16 presents the DOS that describes the
Determine-Material-EAS operator used to select the materials needed to perform
an element activity. In a manner similar to the other element activity operators,
the element activity code designation in the ea-code slot is used to identify the
name of the KS to be evaluated. The operator fills the material-package slot of
the element activity with the name of the materials needed for the activity.

The operator selects the material package in three steps:

Stepl. Build the name of the Material KS (see p. 214) to be evaluated by
concatenating the prefix KS-Material- with the element activity code
(division, broadscope and narrowscope codes, i.e., the ea-code slot
value).

Step 2. Evaluate this KS to obtain the name of the selected material package.
Step 3. Store the name of the material package in the material-package slot of

the element activity schema. Store the name of the Material KS in the
why-material slot.

Create-PAS-for-EAS. Figure 6-17 shows the schema that describes the
Create-PAS-for-EAS operator which is responsible for aggregating element ac­
tivities into project activities. This DOS is very similar the DOS of the
Create-EAS operator (see Figure 6-12). The operator uses the activity code
(ea-code) to identify the Project Activity KS to be evaluated and links the ele­
ment activity object to a project activity schema using the ea-of-pa slot. The
other effects of the operator are unpredictable because the name of the project
activity schema where results are stored is not known until the KS has been
evaluated.

When the operator is applied to an element activity, five steps are performed:

Step 1. Build the name of the Project Activity KS (see p. 216) to be evaluated
by concatenating the prefix KS-Create-PA- with the element activity

202 CONSTRUCTION PLANEX

(defschema Create-PAS-for-EAS
(is-a
(domain-type
(application-object
(input-ob jects
(input-slots
(input-bindings
(input-cond-types
(output-objects
(output-slots
(output-bindings

operator)
ea)
current-object)
current-object)
ea-code)
nil)
filled)
current-object <pa> <pa>)
ea-of-pa is-a pa-has-eas)
<pa> nil nil)

(output-predictable yes no no)
(output-effect-type fill fill fill))

Figure 6-17. Domain Operator Schema for the Create-PAS-for-EAS Operator

code (i.e., the ea-code slot which contains the division, broadscope
group and narrowscope group codes).

Step 2. Evaluate this KS to obtain a pair (pa-schema-name pa-name) which
specifies the project activity name and the project activity schema name
to which the element activity is linked.

Step 3. If the project activity schema does not exist: create a new project ac­
tivity schema and store the name of the project activity in this schema.

Step 4. Link the element activity to the project activity using the ea-of-pa
relationship.

Step 5. Store the name of the Project Activity KS used in the why-eas slot of
the element activity.

Get-Duration-EAS. The DOS that describes the preconditions and effects of
the Get-Duration-EAS operator is shown in Figure 6-18. This operator es­
timates the duration of element activities using inherited information from the
project activity schema to which the element activity is linked and stores the
result in the duration-ea slot. The adjusted productivity of the crew assigned to
the project activity must have been previously computed and stored in the
adj-productivity slot of the project activity object.

The Get-Duration-EAS operator is algorithmic and does not require KS
evaluation. The duration of the element activity is computed by dividing its
total amount of work by the adjusted productivity of the crew allocated to the
element activity. This productivity value is stored in the project activity schema
to which the element activity is linked.

Problem-Solving Operators 203

(defschema Get-Duration-EAS
(is-a
(domain-type
(application-object
(input-ob j ect s
(input-slots

operator)
ea)
current-object)
current-object <pa> current-object)
ea-of-pa adj-productivity
amount-of-work-ea)
<pa> nil nil)
filled filled filled)
current-object)
durâtion-ea)
nil)

(input-bindings
(input-cond-types
(output-ob jeets
(output-s1ots
(output-bindings
(output-predictable yes)
(output-effect-type fill))

Figure 6-18. Domain Operator Schema for the Get-Duration-EAS Operator

6.2.2.3 Project Activity Operators There are eight operators that manipulate
individual project activity schémas in CONSTRUCTION PLANEX:
• Create-PA-Tree builds the tree of project activities;
• Select-Technology-PAS chooses crew types for project activities;
• Compute-Amount-PAS computes the quantity take-offs for the project ac­

tivities;
• Determine-Recommended-Duration-PAS recommends an appropriate duration

for project activities;
• Get-Duration-PAS determines how many crews to allocate to the activities

and computes the normal and overtime hours of activities;
• Get-Successors-PAS establishes precedences among project activities;
• Get-Lags-PAS computes the leads and lags between consecutive project ac­

tivities; and
• Get-Cost-PAS estimates the cost of the project activities.

In addition, the system includes two operators that are applied to the set of
project activities as a whole:

• the Floyd-War shall operator computes the earliest and latest start and finish
times for the project activities; and

• the Compute-NPV operator determines the net present value of a project using
scheduling and financial information.

These two operators do not have associated DOSs; the user invokes them
directly. Both operators are complex and are applied to a complete set of project
activities and thus they are impacted by most changes to the context. Since
DOSs do not exist, these operators are not added to the agenda each time a new
assertion is made. Thus, manual control limits when they are applied, which is
particularly important for the computationally intense Floyd-War shall operator.

204 CONSTRUCTION PLANEX

(defschema Create-PA-Tree
(is-a
(domain-type
(application-object
(input-objects
(input-slots
(input-bindings
(input-cond-types
(output-ob jeet s
(output-s1ot s
(output-bindings

operator)
pa)
current-object)
current-ob ject)
is-a)
nil)
filled)
current-object current-object)
parent-pa pa-code)
nil nil)

(output-predictable yes yes)
(output-effect-type fill fill))

Figure 6-19. Domain Operator Schema for the Create-PA-Tree Operator

Create-PA-Tree. The tree of project activities (as described in Section 6.2.1.3)
is built by the Create-PA-Tree operator. The operator builds the tree bottom up,
like the Create-DE-Tree and Create-EA-Tree operators, repeatedly applying
three steps until the root of the tree is reached:

Step 1. Create the name of the immediate parent schema in the project activity
tree by trimming the last identifier from the name of the daughter
schema.

Step 2. If the parent schema does not exist: create it.
Step 3. Link the daughter project element activity schema to the parent project

element activity schema.

Figure 6-19 shows the DOS that describes the Create-PA-Tree operator. The
operator fills the slots parent-pa and pa-code of the project activities being
linked into the tree using the name of the project activity schema.

Select-Technology-PAS. Technologies used to perform project activities are
chosen by the Select-Technology-PAS operator. The DOS is shown in
Figure 6-20. The operator uses the project activity code to identify which
Technology KS to evaluate. It fills the technology slot of the project activity
schema. This value is not stored locally in the project activity schema, but in a
group technology object, as described in Section 6.1.2. Crew selection is a
four-step process:

Step 1. Build the name of the Technology KS (see p. 218) to be evaluated by
concatenating the prefix KS-Technology- with the first part of the
project activity code (i.e., the first identifier from the value of the
pa-code slot).

Step 2. Evaluate this KS and return the name of the most appropriate crew for
performing the activity.

Problem-Solving Operators 205

(defschema Select-Technology -
(is-a
(domain-type
(application-object
(input-ob jects
(input-slots
(input-bindings
(input-cond-types
(output-ob jects
(output-slots
(output-bindings
(output-predictable
(output-effect-type

PAS
operator)
pa)
current-object)
current-object)
pa-code)
nil)
filled)
current-object)
technology)
nil)
yes)
fill))

Figure 6-20. Domain Operator Schema for the Select-Technology-PAS Operator

Step 3. If this crew type has not been stored in one of the group-technology
objects of the context (their names are stored in the is-a+inv slot of the
group-technology schema): create a new group-technology object.

Step 4. Link the project activity to the group-technology object describing the
crew using the parent-technology relationship.

Compute-Amount-PAS. The Compute-Amount-PAS operator determines work
quantities for project activities. This operator is algorithmic and does not re­
quire K S evaluation. It simply adds the quantity take-offs of the element ac­
tivities which comprise a particular project activity and stores the result in the
amount-of-work-pa slot of the project activity schema.

The D O S for the Compute-Amount-PAS operator of CONSTRUCTION PLANEX
is shown in Figure 6-21 . The operator inputs are the element activity work
quantities (amount-of-work-ea). The operator has a single output, the result slot
(amount-of-workpa) .

(defschema Compute-Amount-PAS
(is-a operator)
(domain-type pa)
(application-object current-object)
(input-objects current-object <eas>)
(input-slots pa-has-eas amount-of-work-ea)
(input-bindings <eas> nil)
(input-cond-types filled filled)
(output-objects current-object)
(output-slots amount-of-work-pa)
(output-bindings nil)
(output-predictable yes)
(output-effect-type fill))

Figure 6-21. Domain Operator Schema for the Compute-Amount-P AS Operator

206 CONSTRUCTION PLANEX

(defschema Determine-Recommended-Duration-PAS
(is-a operator)
(domain-type pa)
(application-object current-object)
(input-objects current-object current-object)
(input-slots pa-code amount-of-work-pa)
(input-bindings nil nil)
(input-cond-types filled filled)
(output-objects current-object)
(output-s1ot s recommended-duration)
(output-bindings nil)
(output-predictable yes)
(output-effect-type fill))

Figure 6-22. Domain Operator Schema for the Determine-Recommended-Duration-PAS
Operator

Determine-Recommended-Duration-PAS. Computation of all the recom­
mended activity durations for project activities is provided by the operator
Determine-Recommended-Duration-PAS. The operator uses the following
procedure:

Step I. Build the name of the Duration KS (see p. 218) to be evaluated by
concatenating the prefix KS-Dura- with the project activity code
(pa-code).

Step 2. Evaluate this KS and return the recommended project activity duration.
Step 3. Store the duration in the recommend-duration slot of the project activity

schema and store the name of the Duration KS in the why-duration slot
of the project activity.

The DOS that describes the Determine-Recommended-Duration-PAS
operator is presented in Figure 6-22. This operator requires the pa-code slot as
input to identify the KS to be evaluated. The quantity of work used to determine
the duration comes from the amount-of-work-pa slot of the activity. The result
is stored in the output slot recommended-duration.

Get-Duration-PAS. The Get-Duration-PAS operator uses the process outlined
in Section 6.1.3 to estimate the duration of project activities and compute the
distribution of normal and overtime hours. The operator is purely algorithmic
and does not require the evaluation of any KS.

The DOS of this operator is shown in Figure 6-23. The operator uses as
input the recommended duration of the activity (recommended-duration), the
amount of work (amount-of-work-pa) and the standard productivity of the crew
(std-productivity). It then fills the duration (estimated activity duration),
adj-productivity (adjusted crew productivity), normal-hours (number of normal
working hours), overtime-hours (number of overtime hours) and number-crews
(number of crews allocated to the activity) slots of the project activity schema.

Problem-Solving Operators 207

(defschema Get-Durâtion-PAS
(is-a
(domain-type
(application-object
(input-ob j ect s

(input-slots

(input-bindings
(input-cond-types
(output-ob ject s

(output-s1ot s

(output-bindings
(output-predictable
(output-effect-type

operator)
pa)
current-object)
current-object <crew> current-object
current-object)
technology std-productivity
amount-of-work-pa
recommended-duration)
<crew> nil nil nil)
filled filled filled filled)
current-object current-object
current-object current-object
current-object)
normal-hours overtime-hours duration
number-crews adj-productivity)
nil nil nil nil nil)
yes yes yes yes yes)
fill fill fill fill fill))

Figure 6-23. Domain Operator Schema for the Get-Duration-PAS Operator

Get-Successors-PAS. The Get-Successors-PAS operator is used to determine
the successor activities of a project activity. The operator performs three steps:

Step 1. Build the name of the Successors KS (see p. 219) to be evaluated by
concatenating the prefix KS-Succ- with the project activity code (the
pa-code slot value).

Step 2. Evaluate this KS and return a list of successors activities.
Step 3. Add each member of the list to the successors slot of the project ac­

tivity and store the name of the evaluated KS in the why-successors
slot.

The DOS for the Get-Successors-PAS operator is shown in Figure 6-24. It
has one input and one output. The operator uses the code of the project activity
(pa-code) to identify the KS to be evaluated, and stores the results of this
evaluation in the successors slot of the project activity schema.

Get-Lags-PAS. The Get-Lags-PAS operator determines the leads and lags be­
tween consecutive project activities. This information is used to create the
unified activity network model described in Section 6.1.4. This operator per­
forms the following steps for each successor of a project activity:

Step 1. Build the name of the Lag KS (see p. 220) to be evaluated by con­
catenating the prefix KS-Lag- with the project activity code (pa-code)
of the project activity and the project activity code (pa-code) of the
successor activity.

208 CONSTRUCTION PLANEX

(defschema Get-Successors-PAS
(is-a
(domain-type
(application-object
(input-objects
(input-s lot s
(input-bindings
(input-cond-types
(output-objects
(output-slots
(output-bindings

operator)
pa)
current-ob ject)
current-object)
pa-code)
nil)
filled filled)
current-object)
successors)
nil)

(output-predictable yes)
(output-effect-type fill))

Figure 6-24. Domain Operator Schema for the Get-Successors-PAS Operator

(defschema Get-Lags-PAS

(output-predictable yes yes yes yes)
(output-effect-type fill fill fill fill))

Figure 6-25. Domain Operator Schema for the Get-Lags-PAS Operator

Step 2. Evaluate this KS to obtain a list of pairs of lead or lag type and value
(lag-type lag-value).

Step 3. Store the types of lags in the link slot of the project activity schema and
their values in the low-lags slot. Store the name of the KS used in the
why-lags slot of the project activity.

Step 4. Fill the succs slot with the name of a successor for each type of
precedence link (a successor appears twice in this slot if both activities
are linked using an SS and an FF link, but appears only once in the
successor slot).

Step 5. Fill the high-lags slot with the upper bound of the lag for each link
(assumed to be infinite when no restrictions are imposed).

The DOS that describes the Get-Lags-PAS operator is presented in
Figure 6-25. It requires as input the project activity code (pa-code) of the
activity to which the operator is applied and the project activity codes of its

(is-a
(domain-type
(application-object
(input-objects
(input-slots
(input-bindings
(input-cond-types
(output-ob jects

operator)
pa)
current-object)
current-object current-object <succs>)
pa-code successors pa-code)
nil <succs> nil)
filled filled filled)
current-object current-object
current-object current-object)
succs link low-lags high-lags)
nil nil nil nil)

(output-slots
(output-bindings

Problem-Solving Operators 209

successor activities. The result of its action is four precedence slots of the
project activity are filled.

Get-Cost-PAS. Figure 6-26 shows the DOS for the Get-Cost-PAS operator
used to compute costs for project activities. The operator requires as input the
duration of the project activity {normal-hours, overtime-hours), the hourly cost
of the crew assigned to the project activity (normal-cost, overtime-cost), and the
material cost of the material package used by the activity (mat-unit-cost). The
operator fills the cost slots of the project activity with the resultant values.

The Get-Cost-PAS operator is algorithmic and computes both crew and
material costs as follows:

Step I. Compute crew costs of the project activity by multiplying the normal
and overtime hours by the corresponding crew unit costs.

Step 2. Compute material costs of the project activity by multiplying the work
quantity by the cost of the material package.

Step 3. Sum the crew and material costs for the project activity to obtain totals
and daily totals.

(defschema Get-Cost-PAS
(is-a
(domain-type
(application-object
(input-ob j ect s

(input-slots

(input-bindings

(input-cond-types

(output-ob jeets

(output-slots

(output-bindings
(output-predictable
(output-effect-type

operator)
Pa)
current-object)
current-object current-object
current-object current-object <eas>
<crew> <crew> <material>)
has-eas normal-hours overtime-hours
technology material-package
normal-cost overtime-cost
mat-unit-cost)
<eas> nil nil <crew> <material> nil
nil nil)
filled filled filled filled filled
filled filled filled)
current-object current-object
current-object current-object
current-object current-object)
overall-total-cost
overall-cost-per-day
total-cost-crew cost-crew-per-day
total-cost-materials
cost-materials-per-day)
nil nil nil nil nil nil)
yes yes yes yes yes yes)
fill fill fill fill fill fill))

Figure 6-26. Domain Operator Schema for the Get-Cost-PAS Operator

210 CONSTRUCTION PLANEX

Compute-NPV. The Compute-NPV operator is used to compute the net present
value of the project. The discounted project costs are computed using the
contractor's minimum attractive rate of return. All costs are assumed to be
incurred at the start of the activity using an earliest start schedule. Costs are
computed on a monthly basis.

Floyd-Wars ha II. The Floyd-War shall operator is used to compute a project
schedule. It uses the unified activity network model description of the project
activities stored in the precedence and duration slots of the project activity
schema. It computes earliest and latest start and finish time for all activities
using the Floyd-Warshall scheduling algorithm. These results are stored in the
scheduling slots of the project activities.

6.2.3 Knowledge Sources

The knowledge base of CONSTRUCTION PLANEX consists of the KSs that store
the knowledge used by the domain operators to generate a construction plan for
a building. As noted previously, the knowledge in these KSs is limited to that
for the planning of the excavation and erection of concrete or steel buildings.
The current construction knowledge yields a fast-track schedule. The
knowledge comes from several sources: (1) an experienced construction
planner [4]; (2) publications on building estimating procedures [19, 105];
(3) publications on construction methods [76]; and (4) building cost data [71].
The following types of knowledge sources are present in CONSTRUCTION
PLANEX:

• Element Activity KSs describe the set of activities required to construct a
design element;

• Amount KSs specify formulas used when computing the quantity of work for
each element activity;

• Unit KSs indicate the default unit of measure of the work quantities for each
type of element activity;

• Material KSs specify the set of materials used in performing an element
activity;

• Project Activity KSs specify the name of the project activity associated with a
particular element activity;

• Technology KSs recommend appropriate crews for constructing project ac­
tivities;

• Duration KSs compute desirable durations for project activities;
• Successor KSs specify the names of the successors of particular project ac­

tivities; and
• Lag KSs are used to determine the types and values of leads and lags between

two consecutive project activities.

Each type of KS is described below and illustrated with an example.

Knowledge Sources 211

Knowledge Sources for Element Activity Creation. Determining the set of
element activities used to construct each design element is the responsibility of
the Element Activity Creation KSs. These KSs are used by the Create-EAS
operator (see p. 196) to generate element activity schémas.

Element activity creation KSs are organized according to the same coding
system used to organize design element schémas; i.e., organized by type of
design element and type of material (de-code). The name of an element activity
KS is of the form: KS-Create-EA-(type-de)-(type-material). For example, the
KS that generates the codes and names of the element activities required to erect
a steel beam (i.e., design element type " 8 1 " and material type "2") is
KS-Create-EA-81-2. Thus, the domain operator responsible for element activity
creation can readily identify which KS to evaluate for a given type of design
element.

An example of an element activity creation KS for column footings is shown
in Figure 6-27. This KS is similar to the example used in Section 4.2 to
describe the knowledge representation scheme of PLANEX. It returns the names
and codes of the element activities required to build a column footing. The
firing type of this KS is "al l": all rules are fired sequentially. The KS is applied
to a design element (current-object). The cond-objects slot indicates that the
information needed to evaluate the KS is stored in the schema of the design
element being analyzed (the current-object) and the soil-info object. The KS of
Figure 6-27 contains four conditions:

• the first condition binds the value of the root-code slot of the design element
object to the binding variable (root);

• the second condition determines if the type-de slot of the design element is a
concrete footing (i.e., has value "60") ;

• the third condition binds the value of the number-de slot (e.g., which design
element group) of the design element to the variable (number); and

• the fourth condition tests if the possible-use slot of the soil-info object has a
value "backfill".

The KS has three rules:

Rule 1. All concrete column footings require excavation, building formwork,
placing reinforcing, pouring concrete and stripping forms.

Rule 2. If the soil is appropriate for backfill, constructing the footing requires
the excavated material to be piled up for later use in backfill.

Rule 3. If the soil is not appropriate for backfill, the contractor has to dispose of
the excavated material and borrow backfill material from a different
source.

As described in Section 4.2.3, conditions 1 and 3 are binding conditions and
are always true. They are used to compute codes and names of the element

212 CONSTRUCTION PLANEX

(defschema KS-Create-EA-60-1
(is-a
(ks-name
(ks-type
(cond-objects

(conditions

(lhs-rules

(rhs-rules

(actions

ks)
KS-Create-EA-60-1)
all)
current-object current-object current-object
soil-info)
(= root-code <root>)
(= type-de 60)
(= number-de <number>)
(= possible-use backfill))
(Τ Τ Τ I)
(Τ
(Τ
(Χ
(I
(I

Τ)
F))
I Χ
I I
χ I

Χ Χ Χ)
I I I)
ι ι I))

(<root>-EA-2-220-10-60-l-<number>
excavate-column-footings-<number>)
(<root>-EA-2-225-10-60-l-<number>
dispose-excavation-column-footings-<number>)
(<root>-EA-2-225-20-60-l-<number>
pile-up-excavation-column-footings-<number>)
(<root>-EA-2-220-40-60-l-<number>
borrow-material-column-footings-<number>)
(<root>-EA-3-110-10-60-1-<number>
place-forms-column-footings-<number>)
(<root>-EA-3-210-00-60-l-<number>
reinforce-column-footings-<number>)
(<root>-EA-3-310-10-60-l-<number>
pour-concrete-column-footings-<number>)
(<root>-EA-3-110-20-60-l-<number>
remove-forms-column-footings-<number>)))

Figure 6-27. Example of a KS for Element Activity Creation

activity schémas. If the
number is " Γ \ firing the
((F00-EA-2-220-10-60-
(F00-EA-3-110-10-60
(F00-EA-3-210-00-60
(F00-EA-3-310-10-60-
(F00-EA-3-110-20-60-

which represents the set
footing. This list is used
element activity schémas

root-code of the design element is F00 and its group
first rule produces the list of actions:
1-1 excavate-column-footings-l)
1-1 place-forms-column-footings-l)
1-1 reinforce-column-footings-l)
1-1 pour-concrete-column-footings-l)
1-1 remove-forms-column-footings-l))
of activities required to construct any concrete column
by the Create-EAS operator to create the corresponding

Knowledge Sources 213

(defschema KS-Amount-2-225-10
(is-a
(ks-type
(cond-objects
(conditions

(lhs-rules

(rhs-rules

(actions

ks)
first)
current-object soil-info)
(= type-de 60)
(= stability-angle 90.0))
(Τ Τ)
(Τ F))
(Χ I)
(I Χ))
formula-04 formula-05))

Figure 6-28. Example of a KS to Compute Amounts of Work

(setq formula-04 ' (
(((xl-dimension + 4) * (yl-dimension + 4) *
((abs zg-coordinate) + (abs zl-dimension))) / 27.0)
* KS-swell-factor))

Figure 6-29. Example of a Formula to Compute Amounts of Work

Knowledge Sources for Computing Amounts of Work. Amount KSs are used to
select formulas for computing work quantities for element activities. The KS is
used by the Compute-Amount-EAS operator (see p. 199). The KS naming con­
vention uses the same coding system used for element activities and takes the
form: KS-Amount-(division)-(broadscope)-(narrowscope), where the division,
broadscope and narrowscope numbers correspond to the first three parts of the
element activity code.

Figure 6-28 shows one of the KSs that CONSTRUCTION PLANEX uses to
compute the quantity of work for an excavation element activity. The KS
returns the names of formulas which are evaluated using the geometric descrip­
tion of the corresponding design elements to yield the work quantity. The KS
returns one of two alternative formulas for computing the amount of material to
be disposed of when excavating a column footing. The KS has two rules:

Rule 7. For a column footing design element (type-de has a value equal to
"60") and soil stability angle of ninety degrees (i.e., vertical excavation
walls will not collapse), "formula-04" is used. This is the formula
presented in Figure 6-29; it expresses the excavation volume in terms
of the dimensions of the column footing.

Rule 2. For a column footing design element and soil stability angle not ninety
degrees (a slope is required), the more complex "formula-05" is used.

The formulas are procedural code elements of the knowledge base. The for­
mulas might include names of KSs that are evaluated before the final quantity is
computed. For example, the formula of Figure 6-29 includes a term called

214 CONSTRUCTION PLANEX

(defschema KS-Unit-of-Measure-3-310
(is-a
(ks-name
(ks-type
(cond-objects
(conditions
(lhs-rules
(rhs-rules
(actions

ks)
KS-Unit-of-Measure-3-310)
first)
current-object)
(= narrowscope 10))
(T))
(X))
cu-yd))

Figure 6-30. Example of a KS to Determine Units of Measure

KS-swell-factor that represents the swell factor of the soil. Any term of the
formula that has an is-a+inv slot indicating it is a KS is evaluated by the KSE
and the result of the evaluation is substituted into the formula for the cor­
responding term.

Knowledge Sources for Units of Measure. Unit KSs are utilized by the
Determine-Unit-EAS domain operator to determine the unit of measure for quan­
tity take-offs of element activities (see p. 200). These KSs are indexed at the
broadscope level of the element activity hierarchy. The KS name is of the form:
KS-Unit-of-Measure-(division)-(broadscope), where the division and broad­
scope group numbers correspond to the first two parts of the ea-code-slot slot
value. The KSs return units of measure for each of the corresponding narrow-
scope codes.

An example of a KS to determine the units for work quantities is shown in
Figure 6-30. The KS contains one rule that indicates that for the activities
whose ea-code starts with "3-310-10", the amount of work is expressed in
cubic yards.

In the current version of CONSTRUCTION PLANEX, unit conversions are not
performed. Units are simply recorded and the system assumes that all quantities
are expressed in consistent units. For example, the formula for quantity take-off
in Figure 6-29 assumes that all dimensions are expressed in feet and uses the
factor "27.0" to convert the volume to cubic yards.

Knowledge Sources for Materials Selection. Similarly to the selection of tech­
nologies (described in Section 6.1.2), materials used in the construction of an
element activity are defined in terms of material packages. Each material pack­
age is a group of individual materials such as cement, aggregates and water.
Material package selection for an element activity is performed by the
Determine-Material-EAS operator (see p. 201).

The organization of the Material KSs is identical to that used for Amount
KSs: structured according to element activity code. Names are of the form
KS-Material-(division)-(broadscope)-(narrowscope).

Knowledge Sources 215

(defschema KS-Material
(is-a
(ks-name
(ks-type
(cond-objects
(conditions

(lhs-rules

(rhs-rules

(actions

•3-110-10
ks)
KS-Material-3-110-10)
first)
current-object specif-info)
(= type-de <type>)
(= formwork-<type> special))
(T F)
(T T))
(X I)
(I X))
formwork-<type>-normal
formwork-<type>-special))

Figure 6-31. Example of a KS for Material Package Selection

(defschema formwork-81-special

; Material package for beams
; Based on 1 use. Based on 12 inch beams. Note 33 means
; This package corresponds to the case when
; formwork-beams is special in the specif-info frame

(is-a material-package)
(component-names ((1.1 5/8-plyform); sq-ft of 5/8 plyform

(2.1 lumber) ; board feet of lumber
(allow accessories))); other accessories

(material-unit sq-ft)
(mat-unit-cost 1.62))

Figure 6-32. Example of a Material Package

Figure 6-31 shows the KS that is used to select materials for element ac­
tivities grouped below the 3-110-10 narrowscope level of the element activity
tree. To evaluate this KS for a particular element activity, the system uses
information stored in the schema titled specif-info, which contains project
specification data not associated with individual design elements. The KS has
two rules:

Rule 1. If the formwork type of the design element associated with the element
activity is "special" (e.g., the formwork-(type) slot of the specif-info
has the value "special" where (type) is the design element type:
type-de), the name of the material package is "formwork-81 -special".

Rule 2. If the formwork type is not "special", the name of the material package
is "formwork-81-normal".

The material package formwork-81 -special is shown in Figure 6-32. This
schema contains information describing the individual components of the pack-

216 CONSTRUCTION PLANEX

(defschema KS-PA-3
(is-a
(ks-name
(ks-type
(cond-objects

(conditions

110-10
ks)

(lhs-rules

(rhs-rules

(actions

KS-PA-3-110-10)
first)
current-object current-object
current-object current-object
current-object)
= type-de 60) ; column footings
= type-de 65) ; columns
= type-de 80) ; slabs
= type-de 81) ; beams
= root-code <root>)) ; bind to location
T F F F Τ)
F T F F Τ)
F F T F Τ)
F F F Τ T))
X I I I)
I Χ I I)
I I Χ I)
I I I Χ))
<root>-PA-20-60 formwork-foundation-<root>)
<root>-PA-20-65 formwork-columns-<root>)
<root>-PA-20-80 formwork-slab-<root>)
<root>-PA-20-80 formwork-slab-<root>)))

Figure 6-33. Example of a KS for Project Activity Creation

age and the average cost of materials per unit of activity work (in the specified
units).

Knowledge Sources for Project Activity Creation. The Project Activity KSs are
used by the Create-PAS-for-EAS operator (see p. 201) to define which element
activities are aggregated into project activities. The KSs are organized accord­
ing to the same coding system used for element activities. The KS name is of
the form: KS-PA-{division)-{broadscope)-(narrowscope), where the division,
broadscope group and narrowscope group codes correspond to the first three
parts of the element activity code of the activity to which the operator is applied.

An example of a project activity creation KS is shown in Figure 6-33. The
ks-type of this KS is "first", indicating that only one rule should be fired. The
KS contains four rules:

Rule 1. Formwork activities of column footings are aggregated into a project
activity that groups all formwork of foundation elements.

Rule 2. Formwork activities of columns are aggregated into a project activity
that groups all formwork for the columns of a particular floor.

Rule 3. Formwork activities of slabs are aggregated into a project activity that
groups all formwork activities associated with slab and beam elements
of a particular floor.

Knowledge Sources 217

(defschema KS-Tech-20

This KS is used to determine the crew type of formwork
activities.
The function "check-elements-foundation" returns true
if all foundation elements are column footings and false
otherwise

(is-a
(ks-name
(ks-type
(cond-objects
(conditions

(lhs-rules

(rhs-rules

(actions

ks)
KS-Tech-20)
first)
current-object function none current-object)
(= pa-code 20-60)
(= (check-elements-foundation

current-object) t)
(= pa-code 20-80))
(Τ T F)
(F I F)
(FIT))
(X I)
(Χ I)
(I Χ))
crew-formwork-05
crew-formwork-06))

Figure 6-34. Example of a KS for Technology Selection

Rule 4. Formwork activities of beams are aggregated into a project activity that
groups all formwork activities associated with slab and beam elements
of a particular floor.

Knowledge Sources for Technology Selection. As described in Section 6.1.2,
CONSTRUCTION PLANEX selects construction technologies and assigns crews to
project activities. The appropriate crew type for a project activity is identified
by the Select-Technology-PAS operator (see p. 204) using a Technology KS.
These are organized by project activity code, and the KS name is based on the
first part of the project activity code. A KS titled KS-Technology-30 is used to
determine the crew type for project activities having a code starting with the
number " 3 0 " (formwork stripping for structural elements).

An example of a Technology KS is shown in Figure 6-34. This KS returns
the name of a crew used in formwork placement project activities. There are
three rules:

Rule 1. If the project activity is foundation column form placement, use crew
"crew-formwork-05".

Rule 2. If the project activity is not foundation column form placement or slab
form placement, use crew "crew-formwork-05".

218 CONSTRUCTION PLANEX

(defschema KS-Dura-30-80
(is-a
(ks-name
(ks-type
(cond-objects

(conditions

(lhs-rules

(rhs-rules

(actions

ks)
KS-Dura-30-80)
first)
current-object
current-object
current-object)
(<= amount-of-work-pa 6400)
(<= amount-of-work-pa 12800)
(<= amount-of-work-pa 19200))
(T
(F
(I
(I
(X
(I
(I
(I

I)
I)
T)
F))
I I)
I I)
X I)
I X))

5 7 10 15))

Figure 6-35. Example of a KS to Recommend Durations

Rule 3. If the project activity is slab formwork placement use, crew
" ere w-form work-06 ".

An example of a crew schema was presented in Figure 6 - 1 .

Knowledge Sources for Activity Durations. The domain operator
Determine-Recommend-Duration-PAS uses Duration KSs to compute the
recommended durations for project activities (see p. 206). CONSTRUCTION
PLANEX uses the results provided by Duration KSs to select the number of
crews to allocate to the project activities (see Section 6.1.2). Following this
computation, the estimated durations of the activities and the distribution of
normal and overtime hours are calculated using the procedure outlined in
Section 6.1.3.

The name of a Duration KS is of the form: KS-Dura-(pa-code), where
(pa-code) is the code of the project activity for which the duration is being
computed. For example, the recommended duration for the activity representing
column form placement (its project activity code is "20-65") is determined by
the KS titled KS-Dura-20-65.

An example of a Duration KS is presented in Figure 6-35. This KS returns
the recommended duration of an activity in days for various values of the work
quantity (amount-of-work-pa slot) of the project activity. The KS contains four
rules:

Knowledge Sources 219

Rule 1. If the quantity of work is less that 6400, the recommended duration is
5 days.

Rule 2. If the quantity of work is greater than or equal to 6400 but less than
12800, the recommended duration is 7 days.

Rule 3. If the quantity of work is greater than or equal to 12800 but less than
19200, the recommended duration is 10 days.

Rule 4. If the quantity of work is greater than or equal to 19200, the recom­
mended duration is 15 days.

Knowledge Sources for Successor Identification. Successor KSs are used to
generate the successor activities of a project activity. These KSs are organized
by project activity (i.e., the name of the KS is of the form KS-Succ-(pa-code)).
They are used by the Get-Successors-PAS operator (see p. 207).

Figure 6-36 shows a KS that is used to determine the successors of a con­
crete pouring activity for column footings (identified with code "50-60"). The
ks-type of this KS is "all", indicating that all applicable rules should be fired to
generate all possible successors. Conditions check for the existence of succes­
sors using the Schemap function. This function takes the name of a schema as
an argument and returns "true" if the schema exists. It is used to insure that a
successor is generated only once. The KS has two rules:

Rule 1. If it does not exist, generate a successor activity for placing column
footing forms (project activity code "20-65").

Rule 2. If it does not exist, generate a successor activity for stripping forms
from the column footings (project activity code "30-60").

(defschema KS-Succ-50-60
(is-a
(ks-name
(ks-type
(cond-objects
(conditions

(actions

(lhs-rules

(rhs-rules

ks)
KS-Succ-50-60)
all)
current-object function function)
(= root-code <root>)
(= (schemap <root>-PA-30-60) t)
(= (schemap <root>-PA-20-65) t))
(Τ Τ I)
(TIT))
(X I)
(I X))
<root>-PA-30-60
<root>-PA-20-65))

Figure 6-36. Example of a KS for Successor Identification

220 CONSTRUCTION PLANEX

(defschema KS-Lag-40-
(is-a
(ks-type
(cond-objects
(conditions

(lhs-rules
(rhs-rules
(actions

60-to-40-65
ks)
first)
current-object function function function)
(= root-code <root>)
(= (get-eas-of-pa '<root>-PA-40-60)

<list-curr>)
(= (get-eas-of-pa '<root>-PA-40-65)

<list-succ>))
(Τ Τ Τ))
(Χ Χ))
(SS (get-smallest-slot '<list-curr>

'duration-ea))
(FF (get-smallest-slot '<list-succ>

'duration-ea))))

Figure 6-37. Example of a KS to Determine Lags

Knowledge Sources for Lag Determination. The Get-Lags-PAS operator (see
p. 207) uses a Lags KS to identify the leads and lags between consecutive
project activities. These KSs are organized according to the project activity
codes for both of the activities. Thus, the form of a Lags KS name is
KS-Lag-(pa-code-l)-{pa-code-2), where pa-code-1 is the project activity code of
one activity and pa-code-2 is the code of a successor project activity.

Figure 6-37 shows one of the KSs used in CONSTRUCTION PLANEX to deter­
mine lags between two project activities. This KS is used to compute the lag
from a column footing reinforcing activity (project activity code "40-60") to a
column reinforcing activity (project activity code "40-65"). The KS has one
rule which computes both a Start-to-Start (SS) and a Finish-to-Finish (FF)
precedence. The second and third conditions retrieve the sets of element ac­
tivities which comprise the two project activities. These activity sets are used as
arguments of the function Get-Smallest-Slot to determine the shortest duration
element activity in each set. Then these durations are used to generate two lags:

1. The SS lag indicates that column reinforcing cannot start until the shortest
duration footing reinforcing activity has been completed; and

2. The FF lag indicates that column reinforcing must finish at least D days after
completing the footing reinforcing activity, where D is the duration of the
shortest of the column reinforcing activities.

6.2.4 User Interface Mechanisms
In Section 4.4, some of the user interface mechanisms of CONSTRUCTION
PLANEX were used to illustrate the interface components that may be incor­
porated in applications of the PLANEX architecture. CONSTRUCTION PLANEX
interaction mechanisms include:

User Interface Mechanisms 221

• the G A N T T Interactive Scheduler which provides an interactive graphical dis­
play of the project schedule;

• the REPORT GENERATOR which outputs a variety of tabular reports detailing
planning data;

• the CONTROL PANEL which provides mechanisms to alter the agenda and
invoke control operators;

• interrogatives such as the questions issued by the Get-Duration-PAS operator
(illustrated in Section 4.4.5);

• explanations of the problem solving process;
• passive graphical displays of results; and
• menus used to control the problem-solving process and access the

mechanisms listed above.

This section describes some of the user interface mechanisms of the
CONSTRUCTION PLANEX system such as menus, passive output graphics, output
reports and explanations.

6.2.4.1 Menus Menus provide the mechanism to control the execution of
domain and control operators. In CONSTRUCTION PLANEX, menus are used to:

• select an operator to execute;
• specify the context objects to which an operator is applied;
• set values for global variables; or
• answer a question that has a predefined, enumerated set of answers.

Figure 6 - 3 8 shows the structure of the menus used in CONSTRUCTION
PLANEX. The menus form a hierarchy from left to right. Menus at the left of the
figure are used to access menus at the right. For example, when the user
chooses the "Change Values" option of the Top menu, the Change menu is
displayed. Selecting a menu item either causes a corresponding submenu to be
displayed or invokes the associated operator.

Top Menu. The Top menu is the root menu of the menu control structure with
options to access all of the other portions of the menu interface. It is displayed
when CONSTRUCTION PLANEX starts. This menu includes the following item:

• "Perform Operations" which accesses the Operations menu;
• "Display Information or Results" which accesses the Display menu;
• "Explain Results" which accesses the Explain menu;
• "Change Values" which accesses the Change menu;
• "Print Reports" which accesses the Report menu; and
• "Exit" which terminates CONSTRUCTION PLANEX.

222 CONSTRUCTION PLANEX

Operations
Menu

Top MENU

Display-
Menu "

Change
Menu

Explain '
Menu .

Report
Menu

Interactive
Switches

Individual
Operations
Menu

Control

DE Display Menu

EA Display M e n u ι

PA Display M e n u t

DE Change Menu

EA Change Menu

PA Change Menu <

DE Explain M e n u

EA Explain M e n u ·

PA Expla in M e n u ,

Design
E lement
M e n u

S o m e
DE Menu

S ing le
DE Menu

E lement
A c t i v i t y
Menu

S o m e
EA M e n u

P r o j e c t "
A c t i v i t y
M e n u ^

S ing le
EA Menu

S o m e
PA M e n u

S ing le
PA M e n u

Figure 6-38. Menus of the CONSTRUCTION PLANEX System

Operations Menu. The Operations menu lets the user invoke a set of high-level
control procedures. It includes the following items:

• "Translate a File from the Input Generator" which translates data from the
INPUT GENERATOR [116] (see Section 4.4.2) into design element schémas;

• "Load a Building File" which inputs a file containing the design element
schémas describing a building;

• "Complete Forward Pass" which sequentially applies a predefined set of
operators to generate an initial project plan (this sequence of operators is
described in Section 6.3.2);

• "Individual Operations" which accesses the Individual Operations menu;
• "Prepare File for Animation" which creates an output file for the ANIMATOR

to display the construction sequence;
• "Interactive Control Panel" which is used to access the CONTROL PANEL

(CP) (described in Section 4.4.3);

User Interface Mechanisms 223

• "Modify Switches for Control Operators" which lets the user change the
values of control variables via the Control Switches menu; and

• "Exit" which returns to the Top menu.

Context Object Operator Menus. Three menus, Display, Change and Explain,
are used to access context objects. The user specifies the type of object re­
quested for information display, change or explanation. Each of these menus
has the following options:

• "Design Elements" which accesses information stored in design element
schémas;

• "Element Activities" which accesses information stored in element activity
schémas;

• "Project Activities" which accesses information stored in project activity
schémas; and

• "Exit" which returns to the Top menu.

Each of the first three items corresponds to a Context Object submenu which
lets the user select the object to be displayed, changed or for which an explana­
tion is to be given.

Report Menu. The Report menu displays the names of the output reports that
may be produced by CONSTRUCTION PLANEX. These reports are prepared by the
REPORT GENERATOR, as described in Section 4.4.4. The names of available
reports are stored in the is-a+inv slot of the report schema. CONSTRUCTION
PLANEX retrieves these names and dynamically generates items on the Report
menu during execution. Selecting a report name from the menu causes the
corresponding report to be generated. CONSTRUCTION PLANEX reports are
described in Section 6.2.4.3.

Control Switches Menu. The Control Switches menu provides the mechanism
to set global variables which control the overall problem-solving behavior.
Switches may be toggled on or off. The menu includes the following items:

• "Operator Preconditions" which controls whether unsatisfied operator
preconditions are recorded as goals in the goals slot of the agenda;

• "Operator Effects" which controls whether operator effects are recorded as
changes in the context-changes slot of the agenda;

• "Forward Pass" which specifies whether the number of questions presented
to the user during the automated forward pass operation (see Section 6.3.2)
should be minimized; and

• "Exit" which returns to the Operations menu.

224 CONSTRUCTION PLANEX

individual Operations Menu. The Individual Operations menu provides a
mechanism to invoke any of the CONSTRUCTION PLANEX domain operators, to
enter the GANTT interactive scheduler or to display output graphics. This menu
has the following options:

• "Create Tree of Design Elements" which executes the Create-DE-Tree
operator;

• "Create Element Activities" which executes the Create-EAS operator;
• "Create Tree of Element Activities" which executes the Create-EA-Tree

operator;
• "Determine Units of Measure" which executes the Determine-Unit-EAS

operator;
• "Compute Amounts of Work for Element Activities" which executes the

Compute-Amount-EAS operator;
• "Determine Material Packages" which, executes the Determine-Material-EAS

operator;
• "Create Project Activities" which executes the Create-PAS-for-EAS operator;
• "Create Tree of Project Activities" which executes the Create-PA-Tree

operator;
• "Select Technology for Project Activities" which executes the

Select-Technology-PAS operator;
• "Compute Amounts of Work for Project Activities" which executes the

Compute-Amount-PAS operator;
• "Determine Recommended Durations for Project Activities" which executes

the Determine-Recommended-Duration-PAS operator;
• "Compute Durations for Project Activities" which executes the

Get-Duration-PAS operator;
• "Compute Durations for Element Activities" which executes the

Get-Duration-EAS operator;
• "Determine Successors of Project Activities" which executes the

Get-Successor-PAS operator;
• "Determine Lags among Project Activities" which executes the

Get-Lags-PAS operator;
• "Estimate Cost of Project Activities" which executes the Get-Cost-PAS

operator;
• "Compute the NPV of a Project" which executes the Compute-NPV operator;
• "Activity on Node Diagram" which displays an Activity-On-Node diagram of

the project activity network;
• "Interactive Scheduling" which initiates GANTT, the interactive scheduler of

CONSTRUCTION PLANEX;
• "Display Daily Project Cost Curve" which displays an X-Y plot of ag­

gregated daily activity costs;

User Interface Mechanisms 225

• "Display Cumulative Project Cost Curve" which displays an X-Y plot of
aggregated cumulative activity costs; and

• "Exit" which returns to the Operations menu.

Context Object Menus. The Design Element, Element Activity, and Project
Activity menus allow the user to specify the object to which an operator is
applied. Whenever a Display, Change, Explain or Individual Operations menu
item is selected, the appropriate Design Element, Element Activity or Project
Activity submenu is displayed. For example, if the user invokes the
Compute-Amount-P AS operator by selecting the "Compute Amounts of Work
for Project Activities" option from the Individual Operations menu, the system
displays the Project Activity menu for selecting the activities to which the
operator will be applied. Each Context Object menu has a similar structure:

• "For all (xxxx)" specifies that the operator will be applied to all (xxxx),
where (xxxx) is either "Project Activity", "Element Activity" or "Design
Element";

• "For some (xxxx)" specifies that the operator will be applied to some (xxxx);
• "For a single (xxxx)" specifies that the operator will be applied to only one

(xxxx); and
• "Exit" returns to the previous menu.

If the "Some" option is selected, the user then chooses the objects by specifying
their location and type. If the "Single" option is selected, the list of correspond­
ing context objects is displayed and the user chooses one item from the list.

6.2.4.2 Output Graphics In addition to the interactive graphics of GANTT (see
p. 126), CONSTRUCTION PLANEX includes the following passive output displays:

• the Activity-On-Node (AON) diagram displays the project activity network
with some scheduling information;

• the Cost Curve displays an X-Y plot of total activity cash flow versus time;
• the Cumulative Cost Curve displays an X-Y plot of cumulative cash flows of

project activities versus time; and
• an animation program, called ANIMATOR, provides a graphical simulation of

the construction process.

Figure 6-39 illustrates the form of the AON representation of a project plan.
In this diagram, activities are represented as boxes. Activities on the left
precede those activities on the right. Each box displays activity schedule results:
earliest and latest start and finish times. Additional specific activity information
(e.g., the complete project activity schema) is displayed if the user points to a
project box and clicks a mouse button.

226 CONSTRUCTION PLANEX

ST EFT EST EFT EST EFT ES
F o r m w o r k R e i n f o r c i n g - S t e e l

/
P o u r - C o n c r e t e

S l a b s - F 0 1 S l a b s - F 0 1 / S l a b s - F 0 1
ST LFT LST LFT / LST LFT LS

EST EFT
P o u r - C o n c r e t e
C o l u m n s - F 0 1

LST LFT

Figure 6-39. Illustration of an Activity-On-Node Diagram Display

(8 0 , 0 ^ — -

(9 7 ^ 9 ^

(6 0 , 0 . 7 ^ ^ ^

(2 0 , 0 . 2)

(4 0 , 0 . 3) /

X - A X I S
Day

Y - A X I S
C u m - E x p e n d i t u r e
(H u n d r e d T h o u s a n d s)

Figure 6-40. Illustration of the Cumulative Cost Curve Display

Figure 6 - 4 0 illustrates the display of the cumulative cost curve of a project
plan. The Y-axis value corresponds to the accumulated project activity costs
and the X-axis value is the project time-line. This cumulative cost curve is
computed ignoring inflation and assuming that there is no time value of money
(the minimum attractive rate of return of the contractor is zero). A more
detailed cost computation can be obtained by invoking the Compute-NPV
operator.

ANIMATOR [1 1 6] simulates the manner in which a building is constructed
using 3-D output. The input to this program is a file created by CONSTRUCTION

User Interface Mechanisms 227

PLANEX with information on the starting and ending times for each construction
activity. ANIMATOR displays building components incrementally using different
colors to represent different construction activities.

6 .2 .4 .3 Output Reports CONSTRUCTION PLANEX produces a variety of reports
containing information about the planning process. The user obtains reports by
choosing the "Print Reports" option of the Top menu and by selecting one of
the available report formats displayed in the Report Menu. Nonstandard reports
may be produced by creating the appropriate report format schémas (see
Section 4.4.4).

Figures 6-41 through 6-43 illustrate some of the reports that may be ob­
tained:

• Figure 6-41 shows a schedule data report. It includes project activities whose
earliest-start-time (EST) is less than 100 days. In this report, activities are
sorted with respect to their EST.

• The report in Figure 6-42 shows the crew types for the project activities
located on the first floor of the building (floor "F01") . In this report, ac­
tivities are sorted by name. The report shows that the formwork activities for
the columns (code "20-65") use a different crew ("crew-formwork-05") than
the corresponding activities for slab elements (code "20-80", crew
" ere w-form work-06 ") .

• The report in Figure 6-43 shows how project activities contribute to the total
project cost. In this report, activities are sorted by name and only those
activities with a percent cost greater that 4% are printed.

CODE LOCATION DURATION EST EFT LST LFT

10-60 F00 35. .0 0. ,00 35. .00 0, .00 35. ,00
20-60 F00 7. .0 27. .94 35. 54 27, .94 35. 54
40-60 F00 11. .0 28. 48 39. .48 28. .48 39. 85
40-65 F00 14. 0 29. .49 43. .49 29, .49 43. 49
15-60 F00 2. .0 32. .70 35. .61 184. .26 186. ,26
50-60 F00 4. 0 43. .49 47. .49 43, .49 47. 49
20-65 F00 12. 0 44. .49 56. .49 44 .49 56. 49
30-60 F00 1. .0 46. 13 47, 56 185, .26 186. 26
50-65 F00 3. .0 56. .49 59, .49 56, .49 59. ,60
20-80 F00 42. .0 56. .55 98 .55 56 .55 98. .55
30-65 F00 3. .0 57. .49 60. .49 183, .26 186. 26
17-60 F00 27. 0 60. .49 87, .49 186 .26 213. 26
40-80 F00 26. .0 73. 64 99 .82 73, .82 99. 82
50-80 F00 2 .0 99. 82 101, .82 99 .82 101. 96

Figure 6-41. Example of a Scheduling Report

228 CONSTRUCTION PLANEX

CODE LOCATION AMOUNT CREW NO. DUR.

20-65 F01 5040. 00 CREW-FORMWORK-0 5 6. 0 8. .0
20-80 FOI 20261. .00 CREW-FORMWORK-0 6 6. 0 28. .0
50-65 FOI 130. .67 CREW-POUR-CONCRETE-0 5 1. 0 2 .0
50-80 FOI 504. .14 CREW-POUR-CONCRETE-06 3. 0 1 .0
40-65 FOI 27227. 34 CREW-RE-STEEL-05 4. 0 12 .t)
40-80 FOI 79328. .57 CREW-RE-STEEL-05 5. 0 28 .0
30-65 FOI 5040. .00 CREW-REMOVE-FORMS-0 6 4. 0 3 .0
30-80 FOI 20261. .00 CREW-REMOVE-FORMS-0 6 4. 0 12 .0

Figure 6-42. Example of a Report with Crew Type, Amount of Work and Duration

NAME COST PERCENT

BACKFILL-FOUNDATION-F00 9431. 60 4. .70
EXCAVATION-FOUNDATION-F00 28791. 14 14. .36

FORMWORK-SLAB-F00 14595. .00 7. 28
FORMWORK-SLAB-F01 9478. .70 4. .73
FORMWORK-SLAB-F02 8355. .48 4 .17

POUR-CONCRETE-FOUNDATION-F00 8960. .00 4 .47
REINFORCING-STEEL-SLAB-F00 12605. .32 6 .29
REINFORCING-STEEL-SLAB-F01 14049. 66 7, .01
REINFORCING-STEEL-SLAB-F02 12704. 85 6 .34

Figure 6-43. Example of a Relative Cost Report

6.2.4.4 Explanation CONSTRUCTION PLANEX provides the user with some
explanation of the results of the planning process using a set of explanation
functions accessed through the Explain menu. In the current version of the
system, there is no general mechanism for explanation, but a set of specific
explanation functions exists for each of the attributes of a context object. Con­
sider the explanation given for a quantity take-off computation shown in
Figure 6-44 (user input is underlined). The explanation function displays the
values of the why-formula and why-amount slots of the element activity schema.
First, the system displays the quantity: 648.27 pounds. Then the system displays
the formula used to compute this value and the KS that was used to select the
quantity take-off formula. Finally, the system indicates that data for the formula
was obtained from the schema titled F02-DE-65-1-2, which is the design ele­
ment schema linked to the particular element activity.

A second example is shown in Figure 6-45. This type of explanation is
displayed when the user requests information about the crew type selected for a
project activity. First, the type of crew assigned to the activity is displayed.
Then the explanation function displays the names of other project activity
schémas that are linked to the same technology group as the project activity
being considered. Finally, the system prints the KS that was used to select the
crew (crew-remove-forms-06).

Use of CONSTRUCTION PLANEX 229

EXPLAINING AMOUNTS OF WORK OF ELEMENT ACTIVITIES
••*•••••••

EA > F02-EA-3-210-00-65-1-2
with name REINFORCING-STEEL-COLOMN-2 has the amount 648.27 LB

This result was obtained by evaluating formula > FORMULA-09
which has the following syntax

((XL-DIMENSION * YL-DIMENSION * (ABS ZL-DIMENSION) * ΡSTEEL *
13230 * 1.05) / 27.0)

This formula was chosen after evaluating KS > KS-Amount-3-210-0

-> Do you want to see this KS ? [y] v_

{{ KS-Amount-3-210-0
IS-A: KS
KS-TYPE: FIRST
COND-OBJECTS : CURRENT-OBJECT
CONDITIONS: (MY-MEMBER NAME-CODE (60 65 80 81))
LHS-RULES: (T)
RHS-RULES : (Χ)
ACTIONS: FORMULA-09}}

-> Do you want to display schémas used to evaluate this KS ? [y] η

Data for the formula was inherited from
DE > F02-DE-65-1-2

Do you want to see this DE ? [y] η

Figure 6-44. Example of Explanation for Quantity Take-Offs

6.3 Use of CONSTRUCTION PLANEX

6.3.1 Overall Behavior
This section describes how the components of the CONSTRUCTION PLANEX sys­
tem are used to assist in the construction planning process. As shown in
Figure 6-46, user interaction with the system is classified into three levels:

• a strategic level where control operators generate networks of domain
operators to satisfy goals or propagate context changes;

• an operative level where the user executes operators or directly modifies the
information stored in context objects; and

230 CONSTRUCTION PLANEX

EXPLAINING TECHNOLOGY OF PROJECT ACTIVITIES
•••••••*•••***•••••***••***••**•*•••••*••*•

PA > F01-PA-30-65
with name REMOVE-FORMS-COLUMNS-F01 has the technology
> CREW-REMOVE-FORMS-06

This project activity is grouped below technology group
> GROUP-TECHNOLOGY-4
and has as brothers the following project activities

(F00-PA-30-65 F00-PA-30-80
F01-PA-30-65 F01-PA-30-80
F02-PA-30-65 F02-PA-30-80)

The KS used to select technology was > KS-Tech-30

Do you want to see this KS ? [y] £

{{ KS-Tech-30
IS-A: KS
KS-NAME: KS-Tech-30
KS-TYPE: FIRST
COND-OBJECTS : CURRENT-OBJECT FUNCTION NONE CURRENT-OBJECT
CONDITIONS: (= PA-CODE 30-60)

(= (CHECK-ELEMENTS-FOUNDATION CURRENT-OBJECT) T)
(MY-MEMBER PA-CODE (30-65 30-80))

LHS-RULES: (Τ T F) (FI F) (F I T)
RHS-RULES : (Χ I) (Χ I) (I Χ)

ACTIONS: CREW-REMOVE-FORMS-05 CREW-REMOVE-FORMS-06}}

Do you want to display schémas used to evaluate this KS ? [y] η

Figure 6-45. Example of Explanation for Technology Decisions
• an interface level where the results of the planning process are displayed or

explained.

These levels are identical to the three levels of the hybrid model for process
planning described in Section 3.1.4.

The strategic planning level is provided through the options of the CONTROL
PANEL (CP). The user selects the "Interactive Control Panel" option of the
Operations menu. No direct modification of context objects other than the
agenda is permitted. The Forward Propagation Operator (FPO), the Backward
Search Operator (BSO) and the Network Interpretation Operator (ΝΙΟ) may be
executed at the strategic level. Their output is stored in the agenda for use by
the Domain Operator Executor (DOE) of the operative level. The strategic
layer is used for two main purposes: to propagate context changes and to

Overall Behavior 231

Propagate
Change Mechanism

- de ea pa FPO

Achieve
Goal Mechanism

- de ea pa BSO

STRATEGIC LEVEL

In te rp re t
Object Mechanism

- agenda ΝΙΟ

Execute
Operations Mechanism
- individual operations menu
- sequences operations menu
- network DOE

OPERATIVE LEVEL

Modify
Object Mechanism
- agenda
- de ea pa

control panel
changes menu

INTERFACE LEVEL

Display
Object Mechanism

- de ea pa display menu

Explain

Object Mechanism

- de ea pa explain menu

Figure 6-46. Overall Behavior of the CONSTRUCTION PLANEX System

achieve goals. For example, suppose that the planner decides to change the type
of crew assigned to a particular project activity after an initial plan has been
generated. CONSTRUCTION PLANEX would use the FPO and ΝΙΟ to identify
which operators have to be executed as a result of this change (e.g., recompute
the number of crews allocated to the activity, recalculate its duration).

The operative planning level is accessed through the CP and the Menus.
Interactions that create and modify the elements of a project plan take place at
this level. Two types of interactions are provided:

232 CONSTRUCTION PLANEX

• execute one or more operators; or
• directly modify context objects.

In both cases, context objects are modified and these changes are reflected in the
final construction project plan. Operators may be invoked in three ways:

• Individual operators may be invoked using the Individual Operations menu of
the system.

• Predefined sequences of operators may be invoked by using functions that
execute the operators. An example of this type of interaction occurs when the
"Forward Pass" option of the Operations menu is selected (see
Section 6 . 3 . 2) .

• The Domain Operator Executor (DOE) may be used to execute operators
from the operator queue of the agenda. Operator execution order is deter­
mined from the precedences among the operators.

The interface level consists of passive interaction mechanisms that do not
modify context objects or the agenda. These mechanisms facilitate the inter­
pretation of the results of the planning process. In addition to the Display and
Explain menus, the user may access other interaction mechanisms such as output
graphical displays or the REPORT GENERATOR.

Overall control is provided via the set of menus. These let the user select one
of the interaction mechanisms from the three levels of interaction. Once a
planning step is initiated, it runs to completion. Only one task may be active at
any time.

6.3.2 Execution of the System

CONSTRUCTION PLANEX has been used in three ways:

• as an automated planner;
• interactively as an intelligent planning assistant; and
• as a component of the INTEGRATED BUILDING DESIGN ENVIRONMENT

(IBDE) [3 2] .

Fully automated execution of the system is invoked by choosing the
"Forward Pass" option of the Operations menu. The system applies domain
operators in the following predefined sequence:

Step 1. Create-DE-Tree. Build the tree of design elements from the descrip­
tion of the structure.

Step 2. Create-EAS. Generate the set of element activities used to construct
each design element.

Step 3. Create-EA-Tree. Link the element activities into a tree.

Execution of the System 233

Step 4. Compute-Amount-EAS. Compute the amount of work to be performed
for each element activity.

Step 5. Determine-Unit-EAS. Determine the unit of measure of the work
quantities for each element activity.

Step 6. Determine-Material-EAS. Select the material package used by each
element activity.

Step 7. Create-PAS-for-EAS. Synthesize project activities from element ac­
tivities.

Step 8. Create-PA-Tree. Link the project activities into a tree.
Step 9. Select-Technology-PAS. Select the technologies used to construct

each project activity.
Step 10. Compute-Amount-P AS. Compute the quantity of work to be per­

formed for each project activity.
Step 11. Determine-Recommended-Duration-PAS. Generate a recommended

activity duration for each project activity.
Step 12. Get-Duration-PAS. Determine how many crews to allocate to each

project activity.
Step 13. Get-Duration-EAS. Estimate the duration of the element activities.
Step 14. Get-Successors-PAS. Establish precedences among the project ac­

tivities.
Step 15. Get-Lags-PAS. Derive the leads and lags between consecutive project

activities.
Step 16. Get-Cost-PAS. Compute an estimated cost for project activities.
Step 17. Floyd-Warshall. Apply the Floyd-Warshall algorithm to schedule the

project.
Step 18. Compute-NPV. Compute the net present value of the project.

The only user interaction occurs at the start of the process when the user
specifies the set of design elements (e.g., a floor of the building) for which the
plan is to be generated. This selection is made via the Design Element menu.
This lets the user specify the portion of the building to which the planning
process is applied. Assumptions regarding the details of planning decisions are
used in automated planning; e.g., when determining durations for project ac­
tivities in this mode, CONSTRUCTION PLANEX assumes that the user wants to
avoid fractional working days. This reduces the number of questions the user is
asked.

In interactive execution, the user invokes distinct operators directly from the
Individual Operations menu. The user selects individual operators and the range
of objects to which the operator will be applied, one at a time. The user is
responsible for selecting operators in proper sequences to generate the project
plan.

234 CONSTRUCTION PLANEX

These individual operators may query the user to control details of the plan­
ning process. For example, in determining activity durations (as described in
Section 6 . 1 . 3) , the system estimates the recommended activity durations using
Duration KSs and then computes the required numbers of crews. During inter­
active execution, the system lets the user change the values of these variables
and asks whether fractional working days should be eliminated or not (as shown
in Figure 6 - 4 7) .

A third use of CONSTRUCTION PLANEX is as part of the INTEGRATED
BUILDING DESIGN ENVIRONMENT, a vertically integrated set of knowledge-
based tools for building design. Actual use of CONSTRUCTION PLANEX does not
vary from that described above. The only distinction is that the description of
the building is prepared directly by other components of the IBDE [3 2] .

• ARCHPLAN [8 9] produces the conceptual design of a building on the basis
on user requirements;

• STANLEY and STRYPES synthesize a preliminary structural design using
information about the three-dimensional structural grid (proposed by
ARCHPLAN) and wind and live loads;

• SPEX [3 8] produces a preliminary design of the individual components of the
structural system; and

• FOOTER produces a preliminary design of the building foundation.

Together these systems produce the design element information needed in
construction planning. To integrate CONSTRUCTION PLANEX with the other
IBDE processes, two types of operators were added to the system:

• disaggregation operators decompose the building data produced by STAN­
LEY and STRYPES into groups of design elements on each floor; and

• aggregation operators compute the cost and duration of the aggregated
groups of design elements.

With the exception of these additions, CONSTRUCTION PLANEX was used as
developed.

6.3.3 Examples Tested
CONSTRUCTION PLANEX has been used to plan the excavation and erection of
approximately fifteen different buildings. Most tests were for concrete-frame
office buildings. In one test, part of an actual building was used. Information
for this example was obtained from a local contractor. In other tests, building
descriptions were directly input using the INPUT GENERATOR [1 1 6] or were syn­
thesized by the IBDE (see above).

It is difficult to compare the results of the system with aggregate estimating
cost data because CONSTRUCTION PLANEX only plans for the excavation and

Examples Tested 235

The system assigns to activity
POUR-CONCRETE-FOUNDATION-F00 a default duration of 5 days.
Number of crews needed to satisfy this duration are 0.89 crews of
type CREW-POUR-CONCRETE-05

***** Duration Information for
PA POUR-CONCRETE-FOUNDATION-F00

Crew CREW-POUR-CONCRETE-05
Components of Crew ((6 LABORERS) (1 CEMENT-FINISHER)

(1 OPERATOR-EQUIPMENT)
(2 GAS-ENGINE-VIBRATORS)
(1 CONCRETE-PUMP))

Number of Crews 0.89
Number of days 5

Would you like to change any of these settings ? [η] η

CONSTRUCTION PLANEX does not allow to have fractional crews in
project activities. If you want fractional crews you have to split
this activity using the SPLITTING MENU.
New number of crews is > 1.0

***** Duration Information for
PA POUR-CONCRETE-FOUNDATION-F00

Crew CREW-POUR-CONCRETE-05
Components of Crew ((6 LABORERS) (1 CEMENT-FINISHER)

(1 OPERATOR-EQUIPMENT)
(2 GAS-ENGINE-VIBRATORS)
(1 CONCRETE-PUMP))

Number of Crews 1.0
Number of days 4.4

Would you like to change any of these settings ? [η] η

**** The real duration of PA F00-PA-50-60 is 35.6 hours
**** or 4.4 days

Would you like to use overtime to eliminate day fractions? η

Figure 6-47. Example of Duration Estimation in the Interactive Mode

236 CONSTRUCTION PLANEX

erection of structural building elements and its aggregate costs exclude other
elements such as finishes and mechanical systems. The next section describes a
test case for an eight-story steel-frame office building and shows the calcula­
tions to estimate the total cost of the building based on average unit costs [71].
It shows that the cost estimate produced by CONSTRUCTION PLANEX is within
the range of answers obtained using aggregated square-foot costs [70].

6.4 Example Problem
The use of the CONSTRUCTION PLANEX system will be illustrated with the ex­
ample steel-frame office building of Figure 6-48. This example was used in
Means Square Foot Costs [70, p. 216] to illustrate the square-foot cost estimat­
ing process. A summary of the building features are:

• 8 stories;
• story height is 12'-0";
• floor dimensions are 100'-0" x 60 ' -0";
• transverse framing yields 4 bays, 20 ' -0" on center;
• longitudinal framing yields 2 bays, 30 ' -0" on center;
• concrete column footings are of three sizes:

• corner footings: 10 ' -6" χ 10 ' -6" x 2 ' - l " ;
• exterior footings: 12 ' -0" χ 12 ' -0" χ 3 ' - l " ; and
• interior footings: 13 ' -6" χ 13 ' -6" χ 3 ' -5" ;

• wide-flange steel columns (W 14x120) and steel beams (W 14x120) frame the
structure;

• longitudinal bay floor framing is 6 ' -0" on centers;
• concrete floor slabs are 6" thick;
• concrete element properties are:

• 4000 psi concrete; and
• 1% reinforcing steel (by area).

A total of 35 design element schémas are used to describe the building (see
Figure 6-49). Footings are described using three design element schémas: one
for each type of footing (corner, exterior and interior). Beams are described
using two design element schémas per floor: one storing descriptions of the
forty-four (44) 25 ' -0" beams; and one storing descriptions of the ten
(10) 30 ' -0" beams (lengths are column-line to column-line dimensions).
Columns and slabs are each represented by one design element schema per
floor.

Obtaining an Initial Project Plan 237

comer footing exterior footing

ο
CD

interior footing

100'

Figure 6-48. Floor Plan of the Example Building

6.4.1 Obtaining an Initial Project Plan
CONSTRUCTION PLANEX obtains an initial construction plan for the building by
performing the following steps:

Step 1. Input Building Description. The process starts with the system input­
ting the definition of the 35 design element schémas described above.

Step 2. Group Design Elements. Design element schémas are grouped with
respect to their location and type.

Step 3. Create Element Activities. Schemas for the 93 element activities
(shown in Figure 6-50) are created on the basis of the characteristics
of the individual design elements.

Step 4. Group Element Activities. Element activities are organized into a tree
structure.

Step 5. Compute Quantity Take-Offs. The work quantities for the element
activities are computed using the geometric descriptions of the design
elements.

Step 6. Select Material Packages. Appropriate material packages are selected
for the element activities.

Step 7. Aggregate Element Activities. The 93 element activity schémas are
aggregated into the 63 project activity schémas shown in Figure 6-51 .

238 CONSTRUCTION PLANEX

Floor Type of Design Element

Different
Schemas per
Floor

Total
Schemas
Used

FOI
FOI
FOI
FOI

Column Footings
Beams
Columns
Slabs
Beams

3
2
1
1
2
1
1

3
2
1
1

14
7
7

F02 -> F08
F02 -> F08
F02 -> F08

Columns
Slabs

Total 35

Figure 6-49. Number of Design Element Schemas Used in the Example

Step 8. Select Crew Types. Appropriate construction crews for the project
activities are selected.

Step 9. Aggregate Quantity Take-Offs. The sum of the work quantities for the
element activities grouped into each project activity is stored in the
corresponding project activity schema.

Step 10. Recommend Durations. An appropriate duration for each project ac­
tivity is determined on the basis of the corresponding quantity of
work.

Step 11. Determine Crew Numbers. The number of crews allocated to each
project activity is computed using its recommended duration and the
adjusted productivity of the crew selected for the activity. The num­
ber of crews is stored in the project activity schema.

Step 12. Estimate Activity Durations. The duration of each project activity,
normal working hours and overtime hours are determined. Durations
for the element activities are computed.

Step 13. Link Activities. The 63 project activities are linked into a project
activity network.

Step 14. Get Precedences. The types of leads and lags between each project
activity and its successors (e.g., Start-to-Start) are determined.

Step 15. Prepare Schedule. A scheduling algorithm is applied to the network
to obtain the earliest and latest start times for the project activities.
The earliest completion time of the project is estimated to be
45 working days for excavation and structural erection using a fast-
track schedule.

Step 16. Compute Costs. Material and labor costs are aggregated and the es­
timated total bare cost (i.e., overhead and profit are excluded) is com­
puted. The estimated total cost for excavation and erection is
$983,393.

Obtaining an Initial Project Plan 239

Number of

Type of
Design Element

Design
Element
Schemas

Number of
Type of Element Activity
Element Activity Schemas

Column Footing 3 Excavate Column Footing 3
Dispose-Of-Excavation
Column Footing 3
Borrow Material Column Footing 3
Place Forms Column Footing 3
Reinforce Column Footing 3
Pour Concrete Column Footing 3
Remove Forms Column Footing 3

Beams 16 Erection Steel Beams 16
Join Beams with Columns 16

Columns CO
 Erection Steel Columns 8

Slabs CO Place Forms Slabs
Pour Concrete Slabs CO

Reinforce Slabs CO

Remove Forms Slabs 8

Total 35 93

Figure 6-50. Types of Element Activities Created for Each Type of Design Element

Number of Number of
Type of Element Activity Type of Project Activity
Element Activity Schemas Project Activity Schemas

Excavate Column Footing 3 Excavation Foundation 1
Dispose-Of-Excavation

Column Footing 3 Haul Excavation Foundation 1
Borrow Material

Column Footing 3 Backfill Foundation 1
Place Forms Column Footing 3 Formwork Foundation 1
Reinforce Column Footing 3 Reinforcing Steel Foundation 1
Pour Concrete Column Footing 3 Pour Concrete Foundation 1
Remove Forms Column Footing 3 Remove Forms Foundation 1
Erection Steel Beams 16 Erection Steel Beams 8
Join Beams with Columns 16 Join Steel CO

Erection Steel Columns CO Erection Steel Columns
Diagonals 8

Place Forms Slabs 8 Formwork Slabs CO

Reinforce Slabs 8 Reinforce Slabs 8
Pour Concrete Slabs 8 Pour Concrete Slabs CO

Remove Forms Slabs

I 1
CO

1

Remove Forms Slabs 8

Total 93 63

Figure 6-51. Types of Project Activities Created for Each Type of Element Activity

240 CONSTRUCTION PLANEX

Step 17. Compute Net Present Value. The Net Present Value (NPV) of the
project is computed using the scheduling and cost information from
the project activity schémas. The NPV is estimated to be $977,914/
This value is less than the total cost ($983,393) because the total cost
ignores the time value of money.

Step 18. Output Results. A set of displays and reports illustrating the results of
the planning process are produced by the GANTT, REPORT
GENERATOR, ANIMATOR and the passive output graphical processors.

The schedule results of the planning process are shown in Figure 6 - 5 2 1 0 .
The report was prepared by the REPORT GENERATOR. It contains seven
columns:

1. "CODE" is the project activity code;
2. "LOCATION" identifies the work location (floor) of a project activity;
3. "DURATION" is the estimated project activity duration;
4. "EST" is the earliest-start-time of a project activity;
5. "EFT" is the earliest-finish-time of a project activity;
6. "LST" is the latest-start-time of a project activity; and
7. "LFT" is the latest-finish-time of a project activity.

Figure 6-53 shows a part of the cost report for the example building. The
columns of this report are:

1. "NAME" identifies a project activity;
2. "COST" is the total cost of a project activity (i.e., the sum of the crew and

material costs); and
3. "PERCENT" is the percent cost of a project activity.

Figure 6-54 shows a portion of a report describing crews. It contains six
columns:

1. "CODE" is the project activity code;
2. "LOCATION" identifies the work location (floor) of a project activity;
3. "AMOUNT" is the work quantity for a project activity;
4. "CREW" designates the name of the crew used to perform a project ac­

tivity;
5. "NO." is the number of crews assigned to a project activity; and
6. "DUR." is the estimated duration (in days) of a project activity.

The report shows that the same crew type is selected for all the activities having
the same activity code. However, different crews are assigned to activities of

All of the figures illustrating output reports have been edited for publication. Typically, these
partial reports only contain information for the lower floors of the building.

Obtaining an Initial Project Plan

CODE LOCATION DURATION EST EFT LST LFT

10-60 F01 4 .4 0 .00 4 .43 0 .00 4 .43
20-60 FOI 5 .0 0 .17 5 .21 0 .17 5 .21
40-60 FOI 5 .9 0 .38 6 .30 0 .38 6 .30
15-60 FOI 2 .3 2 .43 4 .69 47 .37 49. .63
55-65 FOI 0 .2 6 .07 6 .32 6 .07 6. .32
50-60 FOI 2 .2 6 .08 8. .32 46 .95 49. .18
55-81 FOI 1 .9 6 .10 8. .05 6 .10 8. .05
20-80 FOI 5 .3 6 .14 11, .45 18 .35 23, 66
58-81 FOI 2 .0 6 .38 8. 38 22 .01 24. .01
30-60 FOI 1 .7 7 .08 8. .76 47 .95 49. 63
55-65 F02 0 .2 7 .81 8. 06 7 .81 8. 06
55-81 F02 1. .9 7. .85 9. .79 7 .85 9. .79
20-80 F02 5. .3 7. .88 13. .19 18, .35 23. 66
58-81 F02 2 .0 8 .12 10. .12 22 .01 24. .01
17-60 FOI 0. .4 8 .76 9. 15 49. .63 50. .01
40-80 FOI 2 8 8. .99 11. 80 21, .20 24. .01
55-65 F03 0. .2 9. 56 9. .81 9, .56 9. 81
55-81 F03 1. 9 9. .59 11. .53 9. .59 11. ,53
20-80 F03 5. .3 9. 62 14. .93 18. .35 23. 66
58-81 F03 2. ,0 9. .87 11. .87 22. .01 24. ,01
40-80 F02 2 8 10. 74 13. .54 21. .20 24. ,01
55-65 F04 0. 2 11. 30 11. .55 11. 30 11. ,55
55-81 F04 1. 9 11. .33 13. 28 11. .33 13. 28
20-80 F04 5. .3 11. .37 16. 68 18. .35 23. 66
58-81 F04 2. 0 11. .61 13. 61 22. ,01 24. 01
50-80 FOI 0. 5 11. .80 12. 33 24. ,01 24. 54
40-80 F03 2. 8 12. 48 15. 29 21. .20 24. 01
55-65 F05 0. 2 13. .05 13. 30 13. ,05 13. 30
55-81 F05 1. 9 13. 08 15. 02 13. ,08 15. 02
20-80 F05 5. 3 13. .11 18. 42 18. ,35 23. 66
58-81 F05 2. 0 13. 36 15. 36 22. ,01 24. 01
50-80 F02 0. 5 13. 54 14. 07 24. ,01 24. 54
40-80 F04 2. 8 14. 23 17. 03 21. 20 24. 01
50-80 F03 0. 5 15. 29 15. 81 24. 01 24. 54
40-80 F05 2. 8 15. 97 18. 77 21. 20 24. 01
50-80 F04 0. 5 17. 03 17. 56 24. 01 24. 54
50-80 F05 0. 5 18. 77 19. 30 24. 01 24. 54
30-80 FOI 5. 0 32. 80 37. 80 45. 01 50. 01
30-80 F02 5. 0 34. 54 39. 54 45. 01 50. 01
30-80 F03 5. 0 36. 29 41. 29 45. 01 50. 01
30-80 F04 5. 0 38. 03 43. 03 45. 01 50. 01
30-80 F05 5. 0 39. 77 44. 77 45. 01 50. 01

Figure 6-52. Partial Scheduling Report for the Example Building

242 CONSTRUCTION PLANEX

NAME COST PERCENT

BACKFILL-FOUNDATION --F01 799. 28 0. 08
ΕRECTION-STEEL-BEAMS--FOI 60281. 00 6. .13
ERECT ION- STEEL-BEAMS--F02 60281. 00 6. .13
ERECT I ON- STEEL -BEAMS --F03 60281. ,00 6. .13
ERECTION-STEEL-BEAMS --F04 60281. 00 6. .13
ERECTION-STEEL-BEAMS--F05 60281. 00 6. .13

ERECTION--STEEL-COLUMNS-DIAGONALS--FOI 7750. 80 0. .79
ERECTION-- STEEL-COLUMNS-DIAGONALS --F02 7750. 80 0. .79
ERECTION-- STEEL-COLUMNS-DIAGONALS --F03 7750. 80 0. .79
ERECT I ON-- STEEL-COLUMNS-DIAGONALS --F04 7750. 80 0. .79
ERECT ION -- STEEL-COLUMNS-DIAGONALS • -F05 7750. 80 0. .79

EXCAVATION-FOUNDATION--FOI 2984. 76 0, .30
FORMWORK-FOUNDATION--FOI 8303. 08 0, 84

FORMWORK-SLABS --FOI 25139. 89 2 .56
FORMWORK-SLABS --F02 25139. .89 2 .56
FORMWORK-SLABS --F03 25139. 89 2 .56
FORMWORK-SLABS --F04 25139. 89 2 .56
FORMWORK-SLABS--F05 25139. 89 2, .56

HAUL-EXCAVATION-FOUNDATION --FOI 2976. 88 0 .30
POUR-CONCRETE-FOUNDATION--FOI 16413. .21 1 .67

POUR-CONCRETE-SLABS • -FOI 7772. .23 0, .79
POUR-CONCRETE-SLABS • -F02 7772. .23 0 .79
POUR-CONCRETE-SLABS • -F03 7772, .23 0 .79
POUR-CONCRETE-SLABS • -F04 7772. .23 0 .79
POUR-CONCRETE-SLABS --F05 7772, .23 0 .79

REINFORCING-STEEL-FOUNDATION--FOI 11675, .63 1 .19
REINFORCING-STEEL-SLABS --FOI 5528 .82 0 .56
REINFORCING-STEEL-SLABS • -F02 5528 .82 0 .56
REINFORCING-STEEL-SLABS • -F03 5528 .82 0 .56
REINFORCING-STEEL-SLABS --F04 5528, .82 0 .56
REINFORCING-STEEL-SLABS --F05 5528, .82 0 .56
REMOVE-FORMS-FOUNDATION--FOI 1335 .17 0 .14

REMOVE -FORMS- SLABS--FOI 3840 .00 0 .39
REMOVE -FORMS -SLAB S --F02 3840. .00 0, .39
REMOVE-FORMS-SLABS --F03 3840. .00 0 .39
REMOVE-FORMS-SLABS --F04 3840. .00 0 .39
REMOVE-FORMS-SLABS--F05 3840, .00 0 .39

JOIN-STEEL--FOI 7047, .36 0, .72
JOIN- STEEL--F02 7047, .36 0 .72
JOIN-STEEL--F03 7047, .36 0 .72
JOIN-STEEL--F04 7047, .36 0 .72
JOIN-STEEL--F05 7047. .36 0, .72

Figure 6-53. Partial Cost Report for the Example Building

Obtaining an Initial Project Plan 243

CODE LOCATION AMOUNT CREW NO DUR

17-60 F01 229 .02 CREW-BACKFILL-FOUNDATION-05 1 .0 0 .4
55-81 FOI 1400 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 1 .9
55-81 F02 1400 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 1 .9
55-81 F03 1400 .00 CREW-ERECT-BEAM-COLUMN-0 2 1 .0 1 .9
55-81 F04 1400 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 1 .9
55-81 F05 1400 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 1 .9
55-65 FOI 180 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 0 .2
55-65 F02 180 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 0 .2
55-65 F03 180 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 0 .2
55-65 F04 180 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 0 .2
55-65 F05 180 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 0 .2
10-60 FOI 442 .84 CREW-EXCAVATION-FOUNDATION-0 5 1 .0 4 .4
20-60 FOI 2086 .20 CREW-FORMWORK-0 7 1 .0 5 .0
20-80 FOI 6000 .00 CREW-FORMWORK-0 6 2 .0 5 .3
20-80 F02 6000 .00 CREW-FORMWORK-0 6 2 .0 5, .3
20-80 F03 6000 .00 CREW-FORMWORK-0 6 2 .0 5, .3
20-80 F04 6000 .00 CREW-FORMWORK-0 6 2 .0 5, .3
20-80 F05 6000 .00 CREW-FORMWORK- 0 6 2. .0 5. .3
15-60 FOI 487 .13 CREW-HAUL-FOUNDATION-03 3, .0 2 .3
50-60 FOI 234 .64 CREW-POUR-CONCRETE-06 1, .0 2. 2
50-80 FOI 111. .11 CREW-POUR-CONCRETE-0 6 2. .0 0. .5
50-80 F02 111. .11 CREW-POUR-CONCRETE-0 6 2 .0 0. ,5
50-80 F03 111. .11 CREW-POUR-CONCRETE-06 2. .0 0. ,5
50-80 F04 111. .11 CREW-POUR-CONCRETE-0 6 2. ,0 0. 5
50-80 F05 111. .11 CREW-POUR-CONCRETE-0 6 2. ,0 0. 5
40-60 FOI 32595. ,25 CREW-RE-STEEL-05 1. ,0 5. 9
40-80 FOI 15435. ,00 CREW-RE-STEEL-05 1. 0 2. 8
40-80 F02 15435. ,00 CREW-RE-STEEL-05 1. 0 2. 8
40-80 F03 15435. ,00 CREW-RE-STEEL-0 5 1. 0 2. 8
40-80 F04 15435. 00 CREW-RE-STEEL-05 1. 0 2. 8
40-80 F05 15435. 00 CREW-RE-STEEL-05 1. 0 2. 8
30-60 FOI 2086. 20 CREW-REMOVE-FORMS-0 5 3. 0 1. 7
30-80 FOI 6000. 00 CREW-REMOVE-FORMS-0 6 3. 0 5. 0
30-80 F02 6000. 00 CREW-REMOVE-FORMS - 0 6 3. 0 5. 0
30-80 F03 6000. 00 CREW-REMOVE-FORMS-0 6 3. 0 5. 0
30-80 F04 6000. 00 CREW-REMOVE-FORMS-06 3. 0 5. 0
30-80 F05 6000. 00 CREW-REMOVE-FORMS-0 6 3. 0 5. 0
58-81 FOI 864. 00 CREW-JOIN-STEEL-01 4. 0 2. 0
58-81 F02 864. 00 CREW-JOIN-STEEL-01 4. 0 2. 0
58-81 F03 864. 00 CREW-JOIN-STEEL-01 4. 0 2. 0
58-81 F04 864. 00 CREW-JOIN-STEEL-01 4. 0 2. 0
58-81 F05 864. 00 CREW-JOIN-STEEL-01 4. 0 2. 0

Figure 6-54. Partial Crew Report for the Example Building

244 CONSTRUCTION PLANEX

the same type but associated with different design elements (e.g., foundation
formwork [code "20-80"] is performed with crew "crew-formwork-07" while
slab formwork [code "20-60"] uses crew "crew-formwork-06").

6.4.2 Analysis of the Results

The manner in which CONSTRUCTION PLANEX computes activity durations and
costs is described below, followed by a comparison of its results with aggregate
square-foot cost estimates.

The basic data used to compute activity durations and costs are stored in the
crew and material package schémas. The values of productivities and costs
were taken from Means's Building Construction Cost Data [71]. For example,
consider the crew schema displayed in Figure 6-55. This crew schema is
equivalent to Means's "Crew-E-2". The standard productivity of this crew is
720 lineal feet of steel erection per day. This rate corresponds to the
value reported [71, p. 120] for erecting W 14x120 structural members
(MASTERFORMAT code "05 1250 2500"). The normal installation cost per
lineal foot is equal to the labor and equipment cost of the crew ($39.32 per
man-hour) times the daily man-hours of the crew (7 workers in the crew χ
8 hours per day = 56 man-hours per day), divided by the standard productivity
of 720 lineal feet per day:

$39.32 x 56 / 720 = $3.058
Overtime unit costs are assumed to be 50% higher than the normal unit costs.
CONSTRUCTION PLANEX selected this crew for the erection of structural mem­
bers on a floor.

Consider the activity of erecting steel beams for the first floor. The system
computes the amount of work for this activity by adding the quantity take-offs
computed for the two steel erection element activities: one storing the amount of
work for the forty-four (44) 25 ' - 0 " beams and the other storing the amount of
work for the ten (10) 30 ' -0" beams. The total work quantity for this project
activity is sum of the lengths of the beams:

(44 x 25) + (10 x 30) = 1400'
This quantity is used to compute the duration of the structural erection activity
by dividing the quantity by the daily productivity:

1400 / 720 = 1.944 days
where 720 lineal feet per day is the standard productivity of the crew (from
Figure 6-55). The material cost of the activity is computed as quantity times
cost:

1400 x 40 = $56,000
where $40 per foot is the estimated local material cost of a W 14x120 steel beam.
Similarly, the crew cost is computed as quantity times installation cost per unit
quantity:

(1400 x $3.058) = $4,281

Modifications to the Project Plan 245

(defschema crew-erect-beam-column-02
(is-a crew)
(component-names (1 struct (1 struct-steel-foreman)

(4 struct-steel-workers)
(1 equip-oper-crane)
(1 equip-oper-oiler)
(1 crane-90-tons))
720)
ft/day)
3.058)
4.587))

(std-productivity
(prod-unit
(normal-cost
(overtime-cost

Figure 6-55. Crew for Erecting Structural Steel Members

where $3,058 is the normal crew cost per foot of beam. Finally, the total cost of
the activity is computed as the sum of the material and labor costs:

($4,281 + $56,000) = $60,281
This corresponds to the cost for "ERECTION-STEEL-BEAMS-FOl" in
Figure 6-53.

The example building was used in Means Square Foot Costs to illustrate the
square-foot cost estimating process [70, pp. 216-224]. In the example, cost of
the structural elements is 23% of the total bare cost of the project. Using the
N P V cost of the structural elements, the estimated total cost of the building is
computed as:

$979,914 / 0.23 = $4,260,496
The building floor area is:

60 x 100 x 8 = 48,000 square feet
Thus, the cost per square foot is:

4,260,496 / 48,000 = $88.76
This value is higher than the $57 per square-foot average cost for 5 - to 10-story
buildings, but falls within the cost ranges ($32-$ 105 per square foot) reported in
the literature [70, p. 164].

6.4.3 Modifications to the Project Plan
Modifying the initial plan produced by CONSTRUCTION PLANEX is illustrated
with a simple example. Suppose that the user wants to investigate the effect of
using a different crew for structural erection. This situation might arise if the
most appropriate equipment is not available. This alternate crew is designated
"crew-erect-beam-column-01 " and has a standard productivity of 500 lineal feet
per day (less than the 720 lineal feet per day used in formulating the initial plan).
Assume that the corresponding crew schema is already defined in the context.
The process of modifying the initial plan proceeds as follows:

Step 1. The user selects the Change menu from the Top menu and indicates that
he wants to change the technology of a project activity.

246 CONSTRUCTION PLANEX

Step 2. A menu with all project activities is displayed and the user selects one
of the steel erection activities (code "55") .

Step 3. The user inputs the new crew type designation for the activity. This
value is stored in the group-technology object linked to the selected
project activity. This single substitution results in the effect list
"(pa-schema technology filled)" being inserted in the context-changes
slot of agenda.

Step 4. The user executes the Forward Propagation Operator (FPO) to obtain
a network of global changes and operators. This control operator in­
serts 56 (operator object) pairs in the agenda. Figure 6-56 shows some
of these operator pairs. In order to maintain consistency in the context,
CONSTRUCTION PLANEX must recalculate the durations and costs of the
16 project activities that used the crew "crew-erect-beam-column-02"
(1 per beam and 1 per column for the 8 floors), and recompute the
durations of the 24 element activities linked to these 16 project ac­
tivities (longitudinal beams, transverse beams and columns for each
floor).

Step 5. The user executes the Network Interpretation Operator (ΝΙΟ) which
yields 40 precedences among the 56 operator pairs: 16 precedences
between the operators that compute the durations of project activities
and those that compute their associated costs; and 24 precedences be­
tween the operators that compute the duration of project activities and
those that compute the duration of element activities. Some of these
precedences are shown in Figure 6-57.

Step 6. The user executes the Domain Operator Executor (DOE) to propagate
the effects of the crew technology change.

By executing these six steps, the user has introduced the desired change and
used the control operators of PLANEX to propagate the effects of the change and
maintain the consistency in the context. The only operators that remain to be
executed are the Floyd-War shall scheduling algorithm and the Compute-NPV
operator (since they do not have Domain Operator Schemas, nothing automati­
cally triggers their execution). Results of executing these operators are shown in
Figures 6-58 and 6-59. In terms of schedule and cost, the completion time of
the project increases by five days (from 50.01 days to 55.12 days), and the NPV
of the project increases by 1.6% (from $977,914 to $993,862). These increases
in time and cost are due to the extra hours of work in steel erection.

Modifications to the Project Plan 247

; Recompute Cost of Project Activities

(GET--C0ST--PAS F05 -PA-55-65)
(GET--COST--PAS F05 -PA-•55-81)
(GET--COST--PAS F04--PA-•55-65)
(GET--COST--PAS F04 -PA-•55-81)
(GET--COST--PAS F03 -PA-•55-65)
(GET--COST--PAS F03 -PA-•55-81)
(GET--C0ST--PAS F02 -PA-•55-65)
(GET--COST--PAS F02 -PA-•55-81)
(GET--COST--PAS FOI -PA-•55-65)
(GET--COST--PAS FOI -PA-•55-81)

; Recompute Duration of Project Activities

(GET-DURATION-PAS F05 -PA-•55-65)
(GET-DURATION-PAS F05 -PA-•55-81)
(GET-DURATION-PAS F04--PA-•55-65)
(GET-DURATION-PAS F04 -PA-•55-81)
(GET-DURATION-PAS F03 -PA-•55-65)
(GET-DURATION-PAS F03 -PA-•55-81)
(GET-DURATION-PAS F02 -PA-•55-65)
(GET-DURATION-PAS F02 -PA--55-•81)
(GET-DURATION-PAS FOI -PA--55-•65)
(GET-DURATION-PAS FOI -PA--55-•81)

; Recompute Duration of Element Activities

(GET--DURATION--EAS F05 -EA-•5-120--10-65- CM -i)
(GET--DURATION--EAS F05 -EA-•5-•120· -20-81- CM -2)
(GET--DURATION--EAS F05 -EA-•5-•120--20-81 -2 -i)
(GET--DURATION--EAS F04 -EA-•5-120--10-65 -2 -i)
(GET--DURATION--EAS F04 -EA-•5-•120--20-81--2 -2)
(GET--DURATION--EAS F04 -EA-•5-•120--20-81 -2 -1)
(GET--DURATION--EAS F03 -EA-•5-•120--10-65 CM -1)
(GET--DURATION--EAS F03 -EA--5-•120--20-81 -2 -2)
(GET--DURATION--EAS F03 -EA-•5-•120--20-81 -2 -i)
(GET--DURATION--EAS F02 -EA-•5-•120--10- 65 -2 -i)
(GET--DURATION--EAS F02 -EA-•5-•120--20-•81 CM -2)
(GET--DURATION--EAS F02 -EA--5-•120 -20-•81 -2 -1)
(GET--DURATION--EAS FOI -EA-•5-•120 -10-65 -2 -i)
(GET--DURATION--EAS FOI -EA-•5-•120 -20-•81 -2 -2)
(GET--DURATION--EAS FOI -EA--5-•120 -20-•81 -2 -1)

Figure 6-56. (Operator Object) Pairs Created by the
Forward Propagation Operator

248 CONSTRUCTION PLANEX

FROM-OPERATOR

(GET--DURATION-PAS F04--PA-55- 65)
(GET--DURATION--PAS F04--PA-55- 81)
(GET--DURATION-•PAS F03--PA-55- 65)
(GET--DURATION--PAS F03--PA-55- 81)
(GET--DURATION--PAS F02--PA-55- 65)
(GET--DURATION--PAS F02--PA-•55-81)
(GET--DURATION--PAS FOI--PA-•55- 65)
(GET--DURATION--PAS FOI--PA-•55- 81)
(GET--DURATION--PAS F04--PA-•55- 65)

(GET--DURATION--PAS F04--PA-•55-•81)

(GET--DURATION--PAS F04--PA-•55-•81)

(GET--DURATION--PAS F03 -PA--55-•65)

(GET--DURATION--PAS F03 -PA--55-•81)

(GET--DURATION--PAS F03 -PA--55-•81)

(GET--DURATION--PAS F02 -PA--55--65)

(GET--DÜRATION--PAS F02 -PA--55--81)

(GET--DÜRATION--PAS F02 -PA--55-•81)

(GET--DURATION--PAS FOI -PA--55--65)

(GET--DÜRATION--PAS FOI -PA--55-•81)

(GET--DURATION--PAS FOI -PA--55--81)

TO-OPERATOR

(GET-COST-PAS F04-PA-55-65)
(GET-COST-PAS F04-PA-55-81)
(GET-COST-PAS F03-PA-55-65)
(GET-COST-PAS F03-PA-55-81)
(GET-COST-PAS F02-PA-55-65)
(GET-COST-PAS F02-PA-55-81)
(GET-COST-PAS F01-PA-55-65)
(GET-COST-PAS F01-PA-55-81)
(GET-DURATION-EAS
F04-EA-5-120-10-65-2-1)
(GET-DURATION-EAS
F04-EA-5-120-20-81-2-2)
(GET-DURATION-EAS
F04-EA-5-120-20-81-2-1)
(GET-DURATION-EAS
F03-EA-5-120-10-65-2-1)
(GET-DURATION-EAS
F03-EA-5-120-20-81-2-2)
(GET-DURATION-EAS
F03-EA-5-120-20-81-2-1)
(GET-DURATION-EAS
F02-EA-5-120-10-65-2-1)
(GET-DURATION-EAS
F02-EA-5-120-20-81-2-2)
(GET-DURATION-EAS
F02-EA-5-120-20-81-2-1)
(GET-DURATION-EAS
F01-EA-5-120-10-65-2-1)
(GET-DURATION-EAS
F01-EA-5-120-20-81-2-2)
(GET-DURATION-EAS
F01-EA-5-120-20-81-2-1)

Figure 6-57. Partial List of Precedences Created by the
Network Interpretation Operator

6.5 Conclusions
CONSTRUCTION PLANEX demonstrates the applicability of knowledge-based ex­
pert system techniques to the problem of construction project planning. An
expert system aid for this type of planning could yield substantial benefits over
traditional methods by producing more consistent and detailed plans at lower
costs. CONSTRUCTION PLANEX provides an operational prototype that could be
extended to a full system. In addition to the CONSTRUCTION PLANEX system
architecture itself, the models used in the system represent formalisms of the
planning process, including: (1) the bottom-up or disaggregate activity formula-

Conclusions 249

CODE LOCATION DURATION EST EFT LST LFT

10-60 FOI 4 .4 0 .00 4 .43 0 .00 4 .43
20-60 FOI 5 .0 0 .17 5, .21 0 .17 5 .21
40-60 FOI 5 .9 0 .38 6 .30 0 .38 6 .30
15-60 FOI 2 .3 2 .43 4 .69 52 .48 54 .73
55-65 FOI 0 .4 5 .96 6 .32 5 .96 6 .32
50-60 FOI 2 .2 5 .97 8 .21 52, .05 54 .29
55-81 FOI 2 .8 5 .99 8 .79 5, .99 8 .79
20-80 FOI 5 .3 6 .03 11, .34 23 .46 28 .77
30-60 FOI 1, .7 6 .97 8. .65 53, .05 54, .73
58-81 FOI 2 .0 7 .12 9. .12 27, .12 29, .12
55-65 F02 0. .4 8 .45 8. .81 8, .45 8. .81
55-81 F02 2 8 8, .48 11. 28 8. 48 11. .28
20-80 F02 5. .3 8, .52 13. 83 23. .46 28. .77
17-60 FOI 0. .4 8. .65 9. .04 54. .73 55. .12
40-80 FOI 2. .8 8, 88 11. 69 26. .31 29. .12
58-81 F02 2 .0 9, .61 11. .61 27. .12 29. .12
55-65 F03 0. .4 10. .94 11. .30 10. 94 11. .30
55-81 F03 2. 8 10. .97 13. .77 10. .97 13. ,77
20-80 F03 5. .3 11. .01 16. .32 23. .46 28. .77
40-80 F02 2. 8 11. .37 14. .18 26. ,31 29. ,12
50-80 FOI 0. .5 11. 69 12. 22 29. ,12 29. ,65
58-81 F03 2. .0 12. .10 14. ,10 27. ,12 29. ,12
55-65 F04 0. 4 13. 43 13. 79 13. 43 13. ,79
55-81 F04 2. 8 13. 46 16. 26 13. 46 16. ,26
20-80 F04 5. 3 13. .50 18. 81 23. 46 28. ,77
40-80 F03 2. 8 13. 86 16. 67 26. 31 29. ,12
50-80 F02 0. 5 14. 18 14. 71 29. ,12 29. ,65
58-81 F04 2. 0 14. .59 16. 59 27. ,12 29. ,12
40-80 F04 2. 8 16. 35 19. 16 26. 31 29. ,12
50-80 F03 0. 5 16. 67 17. 20 29. 12 29. 65
50-80 F04 0. 5 19. 16 19. 69 29. 12 29. 65
30-80 FOI 5. 0 32. 69 37. 69 50. 12 55. ,12
30-80 F02 5. 0 35. 18 40. 18 50. 12 55. 12
30-80 F03 5. 0 37. 67 42. 67 50. 12 55. 12
30-80 F04 5. 0 40. 16 45. 16 50. 12 55. 12

Figure 6-58. Partial Scheduling Report for the Revised Project Plan

*** Financial Results ******

With
Annual MARR > 0.10
Inflation > 0.04

NPV Costs is $993,862 (not including overhead and profit)

Figure 6-59. Output of the Compute-NPV Operator for the Revised Project Plan

250 CONSTRUCTION PLANEX

tion model; (2) algorithms for strategic nonlinear planning; and (3) the unified
activity network model. For commercial applications, the knowledge base in
CONSTRUCTION PLANEX would have to be substantially expanded; the current
version only plans excavation and structural erection. Extending the system to
handle project monitoring and control is also possible.

The most fundamental contribution of this work is CONSTRUCTION PLANEX
itself: a conceptual design of an integrated system for construction project plan­
ning and a realization of that design in a prototype system that can plan the
excavation and structural erection of concrete and steel-frame buildings. When
compared to other tools for construction project planning, CONSTRUCTION
PLANEX has several advantages:

• CONSTRUCTION PLANEX is the first system that integrates all the elements of
the construction planning process into a unified modeling and planning sys­
tem. To generate a process plan, the system formulates activity networks,
selects technologies and construction methods, estimates activity durations
and costs, and prepares project schedules. Other construction planning sys­
tems are applicable to only parts of the whole process. In particular, most
commercial systems are limited to performing scheduling computations and
require the user to formulate the project plan and provide it as input to the
program.

• While the scope of the prototype implementation is limited, development of
CONSTRUCTION PLANEX required that the types of knowledge, problem-
solving operators and representational structures be identified and formalized.
The resulting formal model and structure of the construction planning
problem are more general than those used in the prototype. This model can
be used to extend CONSTRUCTION PLANEX , or as the basis for developing
similar tools in other construction planning domains.

In terms of existing tools for construction project planning, CONSTRUCTION
PLANEX includes an important feature. It provides a framework which incor­
porates both the time value of money and value engineering in planning. Cur­
rent tools either do not provide a mechanism to consider these effects or do not
provide the flexibility of CONSTRUCTION PLANEX.

As CONSTRUCTION PLANEX is only a prototype, there are several extensions
which are desirable, related to both its depth and problem-solving capabilities:

• The knowledge in the system is limited to excavation and structural erection.
Expansion of the knowledge base to include other aspects of building con­
struction requires that additional design elements and activities be defined.

• The knowledge in the current prototype was provided by an experienced
planner. However, it has never been verified, has not been refined by incor­
porating results from previous projects, and it is idiosyncratic. Verification
and refinement of the knowledge base would improve the performance of the
system.

Conclusions 251

• CONSTRUCTION PLANEX considers the type and location of activities during
planning, but does not reason about the geometry of the elements. More
comprehensive geometric reasoning could be useful in some planning ap­
plications.

• In CONSTRUCTION PLANEX , resource leveling and resource allocation are still
done by hand (albeit with the interactive GANTT scheduler). Inclusion of
resource allocation methods and resource leveling algorithms would further
enhance the capabilities of CONSTRUCTION PLANEX.

• CONSTRUCTION PLANEX does not use a formal database management system
(DBMS) to store planning data such as unit costs. Indeed, a DBMS could be
used to store and retrieve objects such as knowledge sources.

7 HARNESS PLANEX: An
Expert System for
Electrical Wire Harness
Process Planning

An example application of PLANEX for planning the manufacture of products is
HARNESS PLANEX , an expert system that generates activity plans for manufac­
turing automotive electrical harnesses. Harnesses are used in automobiles to
transmit electrical current. A simplified example of a harness is shown in
Figure 7 - 1 . A typical harness is composed of wires, terminals, connectors,
molding, splices, tubing and tape, but may contain other electrical components
such as light bulbs or diodes. Harness manufacturers are typically subcontrac­
tors to one or more vehicle manufacturers.

When a harness manufacturer receives the drawings and specifications of a
harness, he must plan how to manufacture the product and estimate the cost of
the harness. Typically, this planning is done by experts in the engineering
department who generate a process sheet which describes how the harness will
be manufactured. The process sheet is important to the manufacturer because it
provides information about individual machine usage and material requirements.
Each year, a harness manufacturer will produce hundreds of process sheets in a
short period of time at the beginning of the new model production year. Process
sheets must be generated as quickly as possible to produce prototype harnesses
that are sent to the automobile manufacturer for final approval.

Similar to the CONSTRUCTION PLANEX system described in Chapter 6,
HARNESS PLANEX receives as input information extracted from the design draw­
ings of a particular harness and identifies the activities required for its manufac-

253

254 HARNESS PLANEX

Figure 7 -1 . Example of an Electrical Automotive Harness

ture, selects appropriate technologies for these activities and estimates their
duration and the total usage of resources. In addition, the system aggregates
harness components into subassemblies which represent parts of the harness that
may be manufactured independently before being assembled into the final har­
ness.

The intent in the development of HARNESS PLANEX was to test the ap­
plicability of PLANEX to the automated generation of process plans. Knowledge
was provided by an experienced Mexican harness manufacturer that sells har­
nesses in the United States and Latin America.

7.1 Models for the Harness Manufacturing
Planning Process

This section discusses the models used in HARNESS PLANEX in the various
stages of the planning process. Some of these models are similar to the cor­
responding models used in the CONSTRUCTION PLANEX system described in
Section 6.1. There are some important differences, however:

• At the beginning of the production year, the harness planner is more con­
cerned with what is to be done than when it will be done, while the construc­
tion planner is concerned with both activities and schedule throughout the
planning process. The output of the harness manufacturing planning process
is a set of reports identifying manufacturing activities and machine usage but
without schedules for the activities.

• The set of harness manufacturing activities is small; therefore there is no need
to explicitly identify activity precedences.

Definition of Work Tasks 255

Because of these differences, HARNESS PLANEX uses models for only three of
the four planning stages described in Section 2.3:

• Definition of Work Tasks models to identify manufacturing activities for har­
ness components;

• Choice of Technologies and Manufacturing Methods models for the allocation
of resources (machines, labor and materials) to the manufacturing activities;
and

• Estimation of Activity Durations and Costs models to estimate expected ac­
tivity durations and costs.

The modularity of the PLANEX architecture permits extensions of the system
to other planning operations. The user would have to define the procedural code
and the Domain Operator Schemas of the new operators as well as correspond­
ing knowledge sources. For example, the operators for production line schedul­
ing could use the data produced by the current version of HARNESS PLANEX as a
basis for the job shop scheduling process. Other information such as lane
layout, production volume and promised delivery dates would have to be in­
cluded in the analysis.

7.1.1 Definition of Work Tasks

Generating the set of manufacturing activities for a harness begins with
specifications of: (1) the individual components of the harness (e.g., wires,
terminals); and (2) the harness topology. This design description is the input to
a process which decomposes the harness into unitary components (see
Figure 7-2). The process takes the descriptions of the characteristics of the
wires in the harness (e.g., their length, gauge, type of insulation, location) and
stores the information in wire objects. This information is used to identify some
of the manufacturing activities (e.g., cutting each wire from the spool) but is
insufficient to generate a complete set of manufacturing activities. Some ac­
tivities such as tinning wire ends are performed on multiple wire ends simul­
taneously and are viewed as a single activity. Therefore, additional objects
representing the relationships among the individual wires must be created and
analyzed to obtain the set of work tasks.

To establish these relationships, HARNESS PLANEX decomposes each wire
into three parts: its left extreme (i.e., end), its body and its right extreme. Wires
are connected to each other by common terminals. To distinguish among ter­
minals of the same type, each terminal is associated with a specific location in
the harness. The resulting terminal-location objects represent wire connections.
The set of design elements from which element activities are synthesized are the
body and the terminal-location objects.

256 HARNESS PLANEX

Input Information

Wire
Object

Left Right
Extreme Extreme

I I .1 .
Terminal β ^ Terminal
Location Location

DESIGN
ELEMENTS

ELEMENT
ACTIVITIES Ο O O Ο Ο Ο Ο

Figure 7-2. Work Task Decomposition Model of HARNESS PLANEX

Having generated a set of design element objects describing the wires and
their relationships, HARNESS PLANEX completes the definition of the work tasks
by defining two types of activities:

• body activities associated with the manufacture of the body objects; and
• extreme activities associated with the manufacture of the terminal-location

Once generated, these activities are used to prepare the process sheet. No
activity aggregations (similar to the aggregation of element activities into a
project activity in CONSTRUCTION PLANEX) are required.

There are some limitations in the work task decomposition model used by
HARNESS PLANEX:

• the model does not generate activities for handling completed subassemblies;

• the model produces only one level of activity aggregation.

The first limitation is a consequence of the characteristics of the harness
manufacturing process. Generally the activities applied to completed sub­
assemblies are performed in the assembly portion of the production line. These
activities depend on both the characteristics of the harness and the type of tools
used (e.g., custom jigs to hold subassemblies). A detailed description of the
tools used in the assembly process is needed if the assembly activities are to be
generated. This is beyond the scope of the prototype. With respect to the
second limitation, there is no need to aggregate the manufacturing activities of a
single harness because each activity requires an individual piece of equipment.

objects.

and

Estimation of Activity Durations and Costs 257

Meaningful aggregations at a broader level would require information about the
layout of the production line and the production schedule for different harnesses.
Again, this is beyond the scope of the prototype version of HARNESS PLANEX.

7.1.2 Choice of Technologies and Manufacturing Methods

During the planning process, the only technology choice decisions made by
HARNESS PLANEX concern the type of machine selected for the activity (e.g., a
"08 -26" or a "crimper" for wire cutting). No considerations of the number of
machines required are made as only one machine is used for each activity. As a
result, the technology selection process is relatively simple. Again, an extension
to include job shop scheduling would introduce more complexities.

With respect to the extreme activities (e.g., the tinning of wire ends), tech­
nology choices are determined solely as a function of the information stored in
the associated terminal-location object. However, for a wire cutting activity
associated with a wire body, the process is more complex because some cutting
machines can cut and apply terminals to wire ends while others cannot.
HARNESS PLANEX selects the type of cutting machine using two steps:

Step 1. An appropriate cutting machine is proposed for each end of a wire on
the basis of its type of terminal.

Step 2. The two proposals are examined and a cutting machine is selected for
the wire body.

The principal limitation of the technology choice model is that it is local to
each harness. No considerations of the current machine work load, the layout of
the production line or the production volumes of harnesses are incorporated into
the analysis. The nature of the harness industry is so dynamic (e.g., the volumes
of some part numbers may change every week) that a system which considered
all factors would be very complex. Therefore, the technology selection process
used by HARNESS PLANEX mimics the process employed by the harness
manufacturer's production engineers.

7.1.3 Estimation of Activity Durations and Costs

HARNESS PLANEX estimates activity durations and costs using average produc­
tivities and unit costs provided by the industrial engineering department of the
harness manufacturer. These values are stored in the duration knowledge
sources of the knowledge base. Some of these relationships are a function of
wire characteristics (e.g., the wire length for a cutting activity) while others
involve considerations of harness topology (e.g., the number of wires linked to a
particular terminal for the tin, splice or molding activities).

258 HARNESS PLANEX

There are some limitations with respect to how HARNESS PLANEX estimates
activity durations:

• no variability measure is provided for the expected activity durations; and
• no analysis is done with respect to the factors affecting activity durations.

However, these limitations reflect the status quo of the current manual means of
generating process sheets. A richer model for activity duration computations
may provide some advantages, but it must first be developed by the manufac­
turer.

With respect to manufacturing costs, HARNESS PLANEX uses an average
minute cost provided by the manufacturer's accounting department. This unit
cost factor is determined by analyzing information related to the manufacturing
process such as inventory costs, usage of resources (labor, equipment and
materials) and other indirect costs. Modification of this estimating model would
be desirable as some of the cost elements are not directly related to the charac­
teristics of individual harnesses. Allocated cost elements often make average
costs derived from accounting information inaccurate [56].

7.2 System Architecture
The implementation of HARNESS PLANEX uses the four components of the
PLANEX architecture:

1. representational structures describe the harness and manufacturing process;
2. domain operators perform manufacturing planning tasks;
3. knowledge sources detail harness manufacturing knowledge used by the

operators; and

4. user interface mechanisms control the problem-solving process.

7.2.1 Representational Structures
Figure 7-3 shows the different objects used in HARNESS PLANEX to represent a
harness and the activities required for its manufacture. As described in the
previous section, wire objects are decomposed into two objects corresponding to
the left and right end (extreme) of the wire and a third object describing the body
of the wire. Each wire extreme is associated with a single terminal-location
object that specifies the type of terminal and its location in the harness.
Terminal-location objects are used to represent connections between wires. Ac­
tivities associated with a wire extreme, such as manual application of terminals,
splicing, tinning and molding are all linked to particular terminal-location ob­
jects. Other activities such as wire cutting are linked to body objects. On top of
the hierarchy are subassembly objects linking one or more wire objects.

Domain Operators 259

subassembly

w i r e - o f

w i r e
r i g h t - e x t r e m e - o f

l e f t - e x t r e m e - o

r i g h t l e f t
ex t reme ext reme

\ 7
o f \ / t e r m - l o c - o f

Ο ο

Figure 7 - 3 . Representational Structures Used in HARNESS PLANEX

7.2.2 Domain Operators

HARNESS PLANEX generates process sheets by applying five types of problem-
solving operators:

• Wire operators are applied to wire objects to generate objects of the harness
model. Examples of wire operators are those which create body and extreme
objects, and which aggregate wires into subassemblies.

• Body operators are applied to body objects to generate activities to manufac­
ture a wire body.

• Extreme operators are applied to terminal-location objects. Examples are the
operators that create manufacturing activities for a wire end, and those that
determine if cutting the wire and applying the terminal can be performed
simultaneously.

• Activity operators are applied to activity objects to select manufacturing tech­
nologies and estimate activity durations.

• Machine operators are applied to machine objects to compute the total usage
of a machine.

The following discussion describes the behavior of the individual operators, the
Domain Operator Schemas (DOSs) and the types of Knowledge Sources (KSs)
used by the operators.

260 HARNESS PLANEX

7.2.2.1 Wire Operators HARNESS PLANEX has six wire operators:

• Cr eate-Ψire-Body creates an object to represent the central portion of a wire;
• Create-Left-Extreme and Create-Right-Extreme create objects to represent

wire ends;
• Delete-Left-Extreme and Delete-Right-Extreme delete objects representing

wire ends; and
• Create-Subassemblies groups wires having common terminal-location pairs

into subassemblies.

Create-Ψire-Body. The Create-Wire-Body operator is used to create the body
object of a particular wire. The operator is purely algorithmic and does not
require the evaluation of a knowledge source. Figure 7-4 shows the procedural
code of this operator. The operator is applied to a wire object and performs
three steps:

Step 1. Generate the name of the body object as (wire-name)-body, where
(wire-name) is the name of the wire object to which the operator is
applied.

Step 2. If the body object does not exist: create it.
Step 3. Link the body object to the wire object.

The preconditions and effects of the Create-Ψire-Body operator are shown in
the Domain Operator Schema (DOS) of Figure 7-5. The operator requires that
the is-a slot of the wire object is filled, verifying that it is a wire object, and that
the name of the wire is defined. The operator stores the name of the body object
in the has-body slot of the wire object and fills the is-a and body-of slots in the
newly created object. The three effects are all predictable because the names of
the schémas and slots where information is stored are known before the operator
is executed.

(defun create-wire-body (wire)
(let* ((name (get-value wire 'name)) ; gets the name of the wire

(name-body (append-atom name '-body)) ; appends -body
(is-a (get-value wire 'is-a)))

(cond ((equal is-a 'wire) ; check that it is a wire object
(delete-schema name-body) ; delete previous schema
(csenema name-body ; macro for creating a schema
('is-a 'body)
('name name-body)
('body-of wire)
Chas-acts))))))

Figure 7-4. Procedural Code of the Create-Wire-Body Operator

Domain Operators 261

(defschema Create-Wire-Body
(is-a
(domain-type
(application-object
(input-ob ject s
(input-slots
(input-bindings
(input-cond-types
(output-objects

(output-slots
(output-bindings
(output-predictable
(output-effect-type

operator)
wire)
current-object)
current-object current-object)
is-a name)
nil <wire-name>)
filled filled)
current-object <wire-name>-body
<wire-name>-body)
has-body is-a body-of)
nil nil nil)
yes yes yes)
fill fill fill))

Figure 7-5. Domain Operator Schema for the Create-Wire-Body Operator

Create-Left-Extreme and Create-Right-Extreme. The Create-Left-Extreme and
Create-Right-Extreme operators are similar to the Create-Wire-Body operator
described above. Both are algorithmic and each creates an object to represent
one of the two ends of a wire. These objects are titled (wire-name)-left and
(wire-name)-right, where (wire-name) is the name of the wire. The operator
performs four steps:

Step 1. Generate the names of the extreme objects from the name of the body
object (e.g., (wire-name)-left).

Step 2. If the extreme object does not exist: create it.
Step 3. Create terminal-location objects named (term-type)-(location), where

(term-type) is the type of terminal on a wire end and (location) is its
corresponding location in the harness.

Step 4. Link all objects into the representational structures.

Figure 7-6 shows the DOS of the Create-Left-Extreme operator. The
operator uses as input the name (name), terminal type (term-left) and location
(loc-left) of the wire object to which the operator is applied. It has the explicit
requirement that the has-left-extreme slot of the wire object be "erased" before
the operator is executed. This precondition is used by the control operators
when a change to the harness design is made. The "erased" precondition will
cause HARNESS PLANEX to include delete operators in the agenda to delete old
information before new results are generated. The results are stored in the wire
object (linked to the extreme object), the created extreme object (type and
location) and the links to the terminal object.

262 HARNESS PLANEX

(defschema Create-Left-Extreme
(is-a operator)
(domain-type wire)
(application-object current-object)
(input-objects current-object current-object

current-object current-object
current-object)

(input-slots is-a name term-left loc-left
has-left-extreme)

(input-bindings nil <wire-name> <term-left> <loc-left>
nil)

(input-cond-types filled filled filled filled erased)
(output-objects current-object <wire-name>-left

<wire-name>-left
<term-left>-<loc-left> term-location)

(output-slots has-left-extreme is-a has-term-loc
is-a is-a+inv)

(output-bindings nil nil nil nil nil)
(output-predictable yes yes yes yes yes)
(output-effect-type fill fill fill fill fill))

Figure 7-6. Domain Operator Schema for the Create-Left-Extreme Operator

Delete-Left-Extreme and Delete-Right-Extreme. The Delete-Left-Extreme and
Delete-Right-Extreme operators delete wire end and terminal-location objects
associated with a given wire. They are used whenever there are changes to the
type of terminals in the harness. The operator:

Step 1. Identifies the objects to be deleted.
Step 2. Deletes the appropriate schémas.
Step 3. Changes the relational links as appropriate.

The DOS of the Delete-Left-Extreme operator is shown in Figure 7-7. Inputs
assure that wire end and terminal-location objects exist. The outputs are the
objects deleted by the operator. In contrast to the operators that create objects,
the name of the schémas to be deleted are not formed from the type of terminal
at a particular wire end but are retrieved from the has-left-extreme and
has-term-loc slots of the corresponding wire and wire end objects. HARNESS
PLANEX must delete the objects associated with the old type of terminal (still
stored in the extreme when the type has changed) which is different from the
current value stored in the term-left slot of the wire schema.

Create-Subassemblies. During the manufacturing process of a harness, shop
floor control is performed on groups of wires called subassemblies. Each sub­
assembly is composed of one or more wires having common terminal-location
pairs. In HARNESS PLANEX , aggregation of wires into subassemblies is per­
formed by the Create-Subassemblies operator. The algorithm for this operator is

Domain Operators 263

(defschema Delete-Left-Extreme
(is-a
(domain-type
(application-object
(input-ob ject s

operator)
wire)
current-object)
current-object current-object
current-object)
is-a term-left has-left-extreme)
nil nil nil)
filled filled filled)
current-object <left-ext>
<left-term-loc>)
has-left-extreme has-term-loc is-a)
<left-ext> <left-term-loc> nil)

(input-slots
(input-bindings
(input-cond-types
(output-objects

(output
(output

-slots
•bindings

(output-predictable yes yes yes)
(output-effect-type erase erase erase))

Figure 7-7. Domain Operator Schema for the Delete-Left-Extreme Operator

shown below. The operator is more complex than other operators of the system
because it must search through the representational structures for all wires ob­
jects connected through common terminal-locations.

Step I. Initialize

1.1 Let all-term-locs be the set of all terminal-location pairs in the context.

Step 2. Analyze Uncoupled Terminal-Location Objects

2.1 Let uncoupled-term-locs <— all-term-locs \ coupled-term-locs.
If uncoupled-term-locs is empty, stop.
Let ini-term-loc be the first element of uncoupled-term-locs.
Let coupling-term-iocs <— {ini-term-loc}.
Let wire-list be an empty list.

2.2 If coupling-term-iocs is empty: go to Step 3. Let term-loc be the first element
of coupling-term-iocs.
Let coupling-term-iocs <— coupling-term-locs \ {term-loc}.
Let coupled-term-locs <— coupled-term-locs u {term-loc}.
Let extreme-list be the set of wire end objects linked to term-loc that have not
yet been analyzed.

2.3 If extreme-list is empty: go to Step 2.2.
Let extreme be the first element of extreme-list.
Let extreme-list <— extreme-list\ {extreme}.

2.4 Get the new-wire object linked to extreme.
Let other-extreme and other-term-loc be the objects linked to the other end of

Let coupled-term-locs be an empty list.

new-wire.

264 HARNESS PLANEX

2.5 Let wire-list <— wire-list u (new-wire}.
Let extreme-list <— extreme-list u {other-extreme}.

2.6 Let coupling-term-loc <— coupling-term-loc u {other-term-loc \.
Go to Step 2.3.

Ste/? J. Create Subassembly

3.1 Create a subassembly object with a has-wires slot that stores the value of
vWre-//jf.
Go to Step 2.1.

The set of subassemblies produced by the Create-Subassemblies operator
depends on the topology of the complete harness. Each time a terminal-location
object is created or deleted, the Create-Subassemblies operator should be ex­
ecuted to compute the set of subassemblies.

The DOS for the operator is presented in Figure 7-8. The is-a+inv input slot
is used to insert this operator in the agenda when the terminal-location object is
changed (e.g., it is "filled" with a new value). Thus, the operator is executed
whenever a terminal object is created. As indicated by the DOS, the
Create-Subassemblies operator is not applied to a particular object. It accesses
the complete set of terminal-location objects from the terminal-location frame.
The output slots describe the new subassembly. The results are unpredictable as
the wires which comprise the subassembly are not known until the operator is
executed.

7.2.2.2 Body Operators HARNESS PLANEX has only one body operator named
Create-Activities-Body. This operator is applied to the body object created by
the Create-Ψire-Body operator and computes the set of manufacturing activities
required for the wire body using the KS-Activities-Body knowledge source (see
p. 272). In the current version of the system, there is only one type of body
activity used to cut wires. The architecture allows other activities applied to
wire bodies to be included (e.g., painting the wire insulation). The operator
performs three steps:

Step 1. Evaluate the KS-Activity-Body KS and generate the cut activity.
Step 2. Create the activity schema.
Step 3. Link the activity to the associated object.

Activity objects are linked to the wire body object using the has-acts and
act-of relationships, as indicated in the DOS shown in Figure 7-9. The schema
also indicates that the generated list of activities is not predictable because the
names of the activities are not known until the operator has evaluated the
KS-Activities-Body knowledge source.

Domain Operators 265

(defschema Create-Subassemblies
(is-a
(domain-type
(application-object
(input-ob j ect s
(input-slots
(input-bindings
(input-cond-types
(output-objects
(output-slots
(output-bindings
(output-predictable
(output-effect-type

operator)
nil)
nil)
term-location)
is-a+inv)
nil)
filled)
subassembly <subassem> <wires>)
is-a+inv has-wires wire-of)
<subassem> <wires> nil)
yes no no)
fill fill fill))

Figure 7-8. Domain Operator Schema for the Create-Subassemblies Operator

(defschema Create-Activities-
(is-a
(domain-type
(application-object
(input-ob j ect s
(input-slots
(input-bindings
(input-cond-types
(output-ob jects
(output-s1ot s
(output-bindings
(output-predictable
(output-effect-type

Body
operator)
body)
current-object)
current-object)
is-a)
nil)
filled)
current-object <acts>)
has-acts is-a)
<acts> nil)
yes no)
fill fill))

Figure 7-9. Domain Operator Schema for the Create-Activities-Body Operator

7 . 2 . 2 . 3 Extreme Operators HARNESS PLANEX includes four operators which
are applied to the terminal-location objects associated with particular wire ends:

• Get-Peeling determines the appropriate length of insulation to peel from a
wire end;

• Get-Cut-Machine recommends an appropriate cutting machine for a wire on
the basis of the type of terminal attached to one of its ends;

• Create-Activities-Extreme creates objects representing the manufacturing ac­
tivities associated with a set of wire ends; and

• Delete-Activities-Extreme deletes wire end manufacturing activity objects.

Get-Peeling. The Get-Peeling operator computes the appropriate length of
insulation to peel from the wire ends linked to a terminal-location object using
the KS-Peeling knowledge source (see p. 272). Two steps are performed:

266 HARNESS PLANEX

(defschema Get-Peeling
(is-a
(domain-type
(application-object
(input-objects
(input-slots
(input-bindings
(input-cond-types
(output-objects
(output-s1ot s
(output-bindings
(output-predictable
(output-effect-type

operator)
term-location)
current-object)
current-object)
is-a)
nil)
filled)
current-object)
peeling)
nil)
yes)
fill))

Figure 7-10. Domain Operator Schema for the Get-Peeling Operator

Step J. Evaluate the KS-Peeling KS to determine the peeling length.
Step 2. Store the results in the wire terminal-location object to which the

operator is applied.

Figure 7-10 shows the DOS that describes the operator. The Get-Peeling
operator is applied to a single terminal-location object whose is-a slot is
"filled", indicating that it exists. The operator stores the appropriate peeling
length in the peeling slot of this object.

Get-Cut-Machine. The appropriate machine for cutting wires is selected by the
Get-Cut-Machine operator. The appropriate machine is determined by consider­
ing the type of terminal attached to a terminal-location object. The operator
performs two steps:

Step 1. Evaluate the KS-Cut-Machine KS (see p. 273) to select the cutting

Step 2. Store the result in the schema of the terminal-location object to which
the operator is applied.

Figure 7-11 shows the DOS describing the Get-Cut-Machine operator. The
operator requires the is-a slot of the terminal-location object be "filled", and it
stores the recommended cutting machine in the cut-machine slot of this object.

Create-Activities-Extreme. The Create-Activities-Extreme operator generates
the activity objects required to manufacture the set of wire ends linked to a
specific terminal-location object. These activities are generated by a single
KS-Activities-Extreme knowledge source (see p. 273). Three steps are
performed:

Step 1. Evaluate the KS-Activities-Extreme KS to determine the activities
needed to manufacture the wire end.

machine.

Domain Operators 267

(defschema Get-Cut-Machine
(is-a
(domain-type
(application-object
(input-objects
(input-slots
(input-bindings
(input-cond-types
(output-objects
(output-slots
(output-bindings

operator)
term-location)
current-object)
current-object)
is-a)
nil)
filled)
current-object)
cut-machine)
nil)

(output-predictable yes)
(output-effect-type fill))

Figure 7-11. Domain Operator Schema for the Get-Cut-Machine Operator

Step 2. Create the appropriate activity schémas.
Step 3. Link the activities to the corresponding terminal-location object.

Figure 7-12 shows the DOS that describes the inputs and outputs of the
operator. The operator is applied to terminal-location objects which must exist
(the is-a slot must be "filled") and must not have any associated activities (the
has-acts slot must be "empty"). This insures that the operator will be reinvoked
whenever the harness configuration changes. The DOS indicates that the name
of the created activity objects are not known until the operator is executed.

Delete-Activities-Extreme. The Delete-Activities-Extreme operator is used to
delete the activities linked to a particular terminal-location object whenever
there are changes in the type of terminal at this terminal-location object. The
operator does not require KS evaluation. Its three steps are:

(defschema Create-Activities-Extreme
(is-a operator)
(domain-type term-location)
(application-object current-object)
(input-objects current-object current-object)
(input-slots is-a has-acts)
(input-bindings nil nil)
(input-cond-type filled erased)
(output-objects current-object <acts>)
(output-slots has-acts is-a)
(output-bindings <acts> nil)
(output-predictable yes no)
(output-effect-type fill fill))

Figure 7-12. Domain Operator Schema for the Create-Activities-Extreme Operator

268 HARNESS PLANEX

(defschema Delete-Activities-Extreme
(is-a operator)
(domain-type term-location)
(application-object current-object)
(input-objects current-object current-object

current-object)
(input-slots is-a has-acts terminal)
(input-bindings nil <acts> nil)
(input-cond-type erased filled filled)
(output-objects current-object <acts> <machine>)
(output-slots has-acts technology used-by)
(output-bindings nil <machine> nil)
(output-predictable yes yes yes)
(output-effect-type erase erase fill))

Figure 7-13. Domain Operator Schema for the Delete-Activities-Extreme Operator

Step 1. Identify the activities associated with the terminal-location object and
the machines used to perform these extreme activities.

Step 2. Delete the corresponding activity schémas.
Step 3. Remove the activity from the list of those which are performed with the

identified machine.

Figure 7-13 shows the DOS that describes the preconditions and effects of
this operator. The Delete-Activities-Extreme operator acts on a terminal-location
object whose has-acts slot is not empty and whose terminal-type slot has been
filled with a new value. When it is executed, the operator erases the has-acts
slot of the terminal-location object and changes the value of the used-by slot of
the machine objects which had been linked to the activity objects being deleted.

7.2.2.4 Activity Operators HARNESS PLANEX has three activity operators:

• Select-Technology-Body selects appropriate types of machines to perform the
manufacturing activities for the wire body (e.g., cutting);

• Select-Technology-Extreme selects machines to perform the manufacturing
activities of the wire ends; and

• Get-Duration estimates the duration of body and extreme activities.

Select-Technology-Body. An appropriate type of machine for cutting a wire is
selected by the Select-Technology-Body operator. The operator is applied to a
body activity and examines the cutting machine choices made by the
Get-Cut-Machine operator for the two terminal-location objects associated with
the wire. To select the cutting machine, the operator performs three steps:

Step 7. Build the name of the Technology KS (see p. 273) to be evaluated by
concatenating the prefix KS-Technology- with the name of the activity
used to manufacture the body (e.g., cut).

Domain Operators 269

(defschema Select-Technology-Body
(is-a operator)
(domain-type body-activity)
(application-object current-object)
(input-objects current-object current-object current-object <body>

<wire> <wire> <left-ext> <right-ext>
<term-loc-left> <term-loc-right>)
is-a act-of body-of has-left-extreme
has-right-extreme has-term-loc
has-term-loc cut-machine cut-machine)
nil <body> <wire> <left-ext>
<right-ext> <term-loc-left>
<term-loc-right> nil nil)
filled filled filled filled filled
filled filled filled filled)
current-object <machine>)
technology used-by)
<machine> nil)

(input-slots

(input-bindings

(input-cond-types

(output-ob jeets
(output-s1ot s
(output-bindings
(output-predictable yes no)
(output-effect-type fill fill))

Figure 7-14. Domain Operator Schema for the Select-Technology-Body Operator

Step 2. Evaluate this KS to determine which machine to use to manufacture the
wire body.

Step 3. Store the result in the activity schema and add the activity to the list of
activities which use the machine.

The DOS of the operator is shown in Figure 7-14. The preconditions of the
operator indicate that its output is dependent upon the values of the cut-machine
slot of the left and right terminal-location objects of the wire. The operator has
the predictable effect of storing a value in the technology slot of the activity and
the unpredictable effect of modifying the used-by slot of the machine selected by
the operator.

Select-Technology-Extreme. The Select-Technology-Extreme operator selects
appropriate machines for manufacturing activities related to wire ends. Selec­
tion is done using Technology KSs. When applied to an extreme activity, the
operator performs three steps:

Step 1. Build the name of the Technology KS (see p. 273) to be evaluated by
concatenating the prefix KS-Technology- with the name of the activity
used to manufacture the wire extreme.

Step 2. Evaluate this KS to determine which machine to use to manufacture the
wire end.

Step 3. Store the result in the activity object and add the activity to the list of
activities which use the machine.

270 HARNESS PLANEX

(defschema Select-Technology-Extreme
(is-a operator)
(domain-type extreme-activity)
(application-object current-object)
(input-objects current-object)
(input-slots is-a)
(input-bindings nil)
(input-cond-types filled)
(output-objects current-object <machine>)
(output-slots technology used-by)
(output-bindings <machine> nil)
(output-predictable yes no)
(output-effect-type fill fill))

Figure 7-15. Domain Operator Schema for the Select-Technology-Extreme Operator

The DOS is shown in Figure 7-15. The operator requires the is-a slot of the
activity object to be filled, and stores the name of the selected machine in the
corresponding technology slot. The Select-Technology-Extreme operator also
modifies the used-by slot of the machine object allocated to the activity.

Get-Duration. The Get-Duration operator estimates the duration of body and
extreme activities using Duration KSs. The operator is applied to either a wire
body manufacturing activity or an wire end manufacturing body activity. Three
steps are performed:

Step 1. Build the name of the Duration KS (see p. 275) to be evaluated by
concatenating the prefix KS-Duration- with the type of the manufac­
turing activity being considered (e.g., tinning).

Step 2. Evaluate this KS to determine the duration of the activity.
Step 3. Store the result in the activity object.

The computed duration is stored in the duration slot of the activity object, as
indicated in the DOS of Figure 7-16.

7.2.2.5 Machine Operators HARNESS PLANEX has one machine operator titled
Compute-Machine-Usage which computes the total usage of all machines. The
operator does not require KS evaluation. It is applied to all machines and sums
the duration of all the activities which utilize the machine.

Figure 7-17 shows the DOS associated with the operator. The operator
requires the used-by slot of a machine object be filled with the names of the
activities using this machine, and the duration slots of these objects must have a
value. The output of the operator is the sum of the individual activity durations
and is stored in the total-usage slot of the machine object.

Knowledge Sources 271

(defschema Get-Duration
(is-a
(domain-type
(application-ob ject
(input-objects
(input-slots
(input-bindings
(input-cond-type
(output-objects
(output-s1ot s
(output-bindings
(output-predictable
(output-effect-type

operator)
body-activity extreme-activity)
current-object)
current-object)
is-a)
nil)
filled)
current-object)
duration)
nil)
yes)
fill))

Figure 7-16. Domain Operator Schema for the Get-Duration Operator

(defschema Compute-Machine-)
(is-a
(domain-type
(application-object
(input-object s
(input-slots
(input-bindings
(input-cond-types
(output-ob jects
(output-s1ot s
(output-bindings
(output-predictable
(output-effect-type

operator)
machine)
current-object)
current-object <acts>)
used-by duration)
<acts> nil)
filled filled)
current-ob ject)
total-usage)
nil)
yes)
fill))

Figure 7-17. Domain Operator Schema for the Compute-Machine-Usage Operator

723 Knowledge Sources
The knowledge base of HARNESS PLANEX contains the following types of
knowledge sources:

• a Peeling KS estimates the length of insulation peeling (in millimeters) re­
quired for each type of terminal;

• Activity KSs generate the set of manufacturing activities required for body or
wire extreme objects;

• Technology KSs select the type of cutting, molding, tinning, terminal applica­
tion or splicing machine used to perform an activity; and

• Duration KSs estimate the expected duration of manufacturing activities.

Each type of KS is described below in detail.

272 HARNESS PLANEX

(defschema KS-Peeling
(is-a
(ks-name
(ks-type
(cond-objects

(conditions

(lhs-rules

(rhs-rules

(actions

ks)
ks-peeling)
first)
current-object current-object
current-object)
(member terminal
(member terminal

(member terminal

(6675))
(3227 3465 2678 2086 2769
2923 3242 3710 2923 2488
2486 3710 2490 2085 6245))
(3197 3401)))

(T
(I
(I
(X
(I
(I
4 6

I)
D
T))
I)
I)
X))
10))

Figure 7-18. KS to Determine Peeling Length

Knowledge Source for Determining Peeling Length. Before a terminal is ap­
plied to the end of a wire, a portion of the insulation must be removed. In
HARNESS PLANEX , the appropriate length of insulation peeling for a specific
type of terminal is determined using the Peeling KS. This KS is used by the
Get-Peeling operator (see p. 265) which is applied to a terminal-location object.

The KS is shown in Figure 7-18. The type of KS-Peeling is "first", indicat­
ing that only the first rule whose conditions are satisfied should be fired. The
KS has three rules which select a peeling length on the basis of the terminal
type. One of three possible peeling lengths (4, 6 or 10 millimeters) is returned
to the Get-Peeling operator to be stored with the terminal-location object.

Knowledge Sources for Activity Creation. HARNESS PLANEX distinguishes be­
tween two types of manufacturing activities:

• extreme activities are applied to the ends of a wire (e.g., tinning, welding or
molding); and

• body activities are applied to the wire as a whole (e.g., cutting).

In the current version of the system, each wire is manufactured with only one
body activity called cut. The KS-Activity-Body KS is used to generate a cut
activity for the Create-Activities-Body operator (see p. 264).

A particular set of extreme activities is associated with manufacturing each
wire end. These activities are determined by the Create-Activities-Extreme
operator (see p. 266) which uses the KS-Activities-Extreme KS shown in
Figure 7-19. Each rule corresponds to a particular manufacturing activity. The
conditions are based on the type of terminal attached to the end of the wire. The

Knowledge Sources 273

(defschema KS-Activities-Extreme
(is-a
(ks-name
(ks-type
(cond-objects

(conditions

(lhs-rules

(rhs-rules

(actions

ks)
ks-activities-extreme)
all)
current-object current-object current-object
current-object current-object)
(member terminal (3242 2769 2678 2486))

(3197 3401))
(2490 2086 3197 3401 2486))
(3242))
(6675)))

(member terminal
(member terminal
(member terminal
(member terminal
(T
(I
(I
(I
(I
(X
(I
(I
(I
(I

I)
I)
I)
I)
T))
I)
I)
I)
I)
X))

manual_application splice tin welding
molding))

Figure 7-19. KS to Determine Extreme Activities

KS type is "all" , indicating that all rules whose conditions are satisfied should
be fired, and thus generating all possible activities. For example, if the terminal
type of a wire end is "3242", the first and third rules fire and the results are:
"(manual_application tin)", indicating that this wire end requires the application
of the terminal (by hand) and tinning.

Knowledge Sources for Technology Selection. As described in Section 7.1.2,
the selection of machines for manufacturing activities is a function of activity
and terminal types. In the case of a cutting activity associated with each wire
body, two KSs are used: one by the Get-Cut-Machine operator (see p. 266) and
one by the Select-Technology-Body operator (see p. 268). HARNESS PLANEX
selects an appropriate machine for manufacturing a wire end using the
Get-Cut-Machine operator and the KS-Cut-Machine KS shown in Figure 7-20.
Depending on the terminal type, one of two possible machines ("cs-26" or
"crimper") is selected for each wire end. Then HARNESS PLANEX determines a
unique cutting machine for the wire using the Select-Technology-Body operator
and the KS-Technology-Cut KS of Figure 7 -21 . This KS indicates that a wire
should be cut on a "crimper" machine only if neither of its ends can be cut on a
"cs-26" machine. During the evaluation of this KS, the Get-Left-Cut-Machine
and Get-Right-Cut-Machine functions are used to retrieve the selected cutting
machine names from the wire extremes objects.

274 HARNESS PLANEX

(defschema KS-Cut-Machine
(is-a
(ks-name
(ks-type
(cond-objects
(conditions

(lhs-rules

(rhs-rules

(actions

ks)
ks-cut-machine)
first)
current-object current-object)
(member terminal (2488 2490 2923

(member terminal

(T I)
(I T))
(X I)
d X))
cs-26 crimper))

2085 6675
3710))
(3197 3401
2486)))

2678
6245 2086

3242 2769

3227
3465

Figure 7-20. KS to Determine the Appropriate Cutting Machine for Wire Extremes

(defschema KS-Technology-Cut
(is-a ks)
(ks-name k s-1echno1ogy-cut)
(ks-type first)
(cond-objects function function function function)
(conditions (equal (get-left-cut-machine

current-object) 'cs-26)
(equal (get-right-cut-machine

current-object) 'cs-26)
(equal (get-left-cut-machine

current-ob j ect) 'crimper)
(equal (get-right-cut-machine

current-object) 'crimper))
(lhs-rules (T I I I)

(I Τ I D
(F F T D
(F F I T))

(rhs-rules (X I)
(X D
(I X)
(I X))

(actions cs-26 crimper))

Figure 7-21. KS to Select Cutting Machines for Wires

For manufacturing activities associated with extreme objects, the technology
selection process is simpler. Machines are readily selected by evaluating a KS
titled KS-Technology-(act-type), where (act-type) is the type of activity whose
technology is being determined (e.g., " t in") .

Knowledge Sources 275

Knowledge Sources for Activity Durations. HARNESS PLANEX determines the
expected duration of manufacturing activities using Duration KSs. These are
used by the Get-Duration operator (see p. 270). Similar to Technology KSs,
Duration KSs are identified with the activity name. The KS name is of the form
KS-Duration-(act-type), where (act-type) is the name of the activity whose dura­
tion is being computed. Thus, a KS titled KS-Duration-Molding is used to
determine the expected duration of molding activities.

An example of a Duration KS is shown in Figure 7-22. This KS indicates
that the duration of a tinning activity is dependent upon: (1) the type of terminal
being tinned; and (2) the number of wire end objects connected to the terminal-
location object. For example, if a terminal-location object type "2490" is linked
to three wires, the expected duration of the activity is 0.01 x 3 = 0.03 minutes.
Similarly, for splicing activities, the duration is a function of the number of
wires linked to a particular terminal-location object. However, there are several
Duration KSs in which the duration is independent of harness topology and is
only a function of the individual wires (e.g., the duration of a cutting activity is
only a function of the wire length).

(defschema KS-Duration-Tin

This KS returns the typical duration of a tin activity based
on the number of wire ends applied on the same terminal.

The first rule indicates that for ends with terminals
2490, 2086 or 2486, the typical duration is 0.01 times
the number of wires applied.
The second rule indicates that for ends with terminals
3197, 3401 or 3242, the typical duration is 0.02 times
the number of wires applied.

(is-a ks)
(KS-name KS-duration-tin)
(KS-type first)
(cond-objects current-object current-object function)
(conditions (member terminal (2490 2086 2486))

(member terminal (3197 3401 3242))
(equal (length (get-values 'current-object

'term-loc-of)) <no-wires>))
(lhs-rules (T F Τ)

(F Τ Τ))
(rhs-rules (Χ I)

(I Χ))
(actions (* <no-wires> 0.01)

(* <no-wires> 0.02)))

Figure 7-22. Example of a Duration K S Used in HARNESS PLANEX

276 HARNESS PLANEX

7.2.4 Us er Interface Mechanisms

HARNESS PLANEX incorporates some of the user interaction mechanisms of
PLANEX described in Section 4 . 4 , such as command menus and questions to the
user. The KNOWLEDGE SOURCE ACQUISITION MODULE was used to build the
knowledge base. HARNESS PLANEX does not include any type of graphical
schedule display since precedences among the manufacturing activities are not
determined.

Figure 7-23 shows the command menus of the HARNESS PLANEX system.
Much of the menu structure parallels that of CONSTRUCTION PLANEX (see
Section 6 .2 .4) . With these menus, the user may control the execution of the
system in any of the three levels of execution discussed in Section 3.1.4:

• Strategic. The user may invoke the control operators of PLANEX by entering
the CONTROL PANEL (C P) from the Operations menu. With the C P , the user
may create and modify sequences of domain operators. The strategic level is
useful for propagating plan changes (e.g., a change in the design of the
harness).

• Operative. The user may execute domain operators using the Individual
Operations menu. This menu contains a list of all of the operators described
in the previous section. When the user selects an operator for execution,
HARNESS PLANEX verifies whether its preconditions are satisfied. If they are,
the operator is executed and control is returned to the user. If not, the system
asks if the unsatisfied preconditions should be inserted as goals in the agenda.

• Interface. The user may display results or ask for explanations of planning
decisions using the Display menu and the Explain menu. Output reports (e.g.,
process sheets) are produced via the Report menu.

The Change menu provides a tool for modifying plan information and insert­
ing changes in the agenda. When the user selects this menu, HARNESS PLANEX
asks the user to specify the type of object to which the change is applied (e.g.,
wire, extreme, terminal-location or activity). Then one of the submenus is
displayed (e.g., Wire, Extreme, Term-Loc or Activity menu, the lowest-level
submenus of Figure 7-23) to select which objects will be changed. Similar to
CONSTRUCTION PLANEX , these menus work in conjunction with the other menus
of the system to select objects. For example, if the user wants to estimate the
duration of manufacturing activities, the Activity menu is displayed to let the
user select those activities whose duration will be computed.

Results of the planning process are presented in three types of reports:

• process sheet reports describe the manufacturing activities required for each
wire and the wires comprising each subassembly;

• time sheet reports indicate the technology choice and expected duration of the
manufacturing activities; and

User Interface Mechanisms 277

Operations
Menu

Display
Menu

\

Control Switches
Menu

Individual
Operations
Menu

Wire Display M e n u

E x t r e m e Disp lay M e n u

T e r m - L o c D isp lay M e n u

A c t i v i t y D i s p l a y M e n u

TOP MENU ^ Wire C h a n g e M e n u

Change Ext reme C h a n g e M e n u

Menu ^ T e r m - L o c C h a n g e M e n u

Act iv i ty C h a n g e M e n u

Explain
Menu

^ Wi re Expla in M e n u

E x t r e m e Expla in M e n u

T e r m - L o c Expla in M e n u

Act iv i ty E x p l a i n M e n u

Wire
Menu

Extreme
Menu

Term-Loc
Menu

Activity
Menu

Report
Menu

Figure 7-23. Menus of the HARNESS PLANEX System

• machine usage reports indicate the total usage of each machine utilized in
manufacturing the harness.

The format of these reports is similar to those currently used by the harness
manufacturer.

An example of a process sheet report produced by HARNESS PLANEX is
shown in Figure 7-24. In this report, subassemblies are sorted by the number of
wires they contain, and wires in a subassembly are sorted by length. Each row
corresponds to a wire and its associated extreme, body and terminal-location and
describes the wire from left to right (left-terminal, body, right-terminal). For
example, wire " 9 E " has a left end linked with terminal " 3 4 0 1 " that is common
(has a " U " in column "U") to the left end of wire " 9 F " and to the right end of
wires "9A", " 9 C " and " 9 B " . On its right end, wire " 9 E " has a terminal
"2086" that may be applied when cutting the wire (indicated with an " X " in
column "M") and requires tinning (indicated with a " T " in column "T") .
Column " - " indicates that a terminal has already appeared in a previous row of
the process sheet. Column "PEL" indicates how much insulation to peel from
the wire end. Column "CABLE" specifies the wire color, gauge and insulation
type. Column "CUT" indicates the length of a wire (in millimeters).

278 HARNESS PLANEX

SUB Τ TERM--UM PEL CABLE WIRE CUT PEL TERM--UM τ
1 Τ 3 4 0 1 ϋ 1 0 9 5 1 8 1 1 9Ε 1 8 7 5 . 0 6 2 0 8 6 X τ
1 Τ 3 4 0 1 - - ϋ 10 8 0 2 0 1 1 9F 1 6 5 5 . . 0 6 6 2 4 5 X
1 3 7 1 0 Χ 6 9 5 2 0 1 1 9Α 9 5 0 . 0 1 0 3 4 0 1 - -υ τ
1 Τ 2 0 8 6 Χ 6 9 5 1 8 1 1 9C 6 4 0 . 0 10 3 4 0 1 - -ϋ τ
1 6 2 4 5 χ 6 8 0 2 0 1 1 9B 4 1 5 . . 0 1 0 3 4 0 1 - -ϋ τ
8 Τ 2 4 9 0 χ 6 9 7 1 6 0 0 1 5 0 L 1 2 1 5 . . 0 6 3 2 4 2 w
8 Τ 3 1 9 7 ϋ 1 0 9 5 1 8 0 0 1 5 0 E 5 1 0 . . 0 6 2 0 8 5 χ
8 Τ 3 1 9 7 - - ϋ 1 0 9 5 2 0 0 0 150C 3 9 0 . . 0 6 2 9 2 3 χ
8 Τ 3 1 9 7 - -υ 1 0 9 7 1 4 0 0 150A 3 9 0 . . 0 6 3 2 4 2 - w
8 Τ 3 1 9 7 - - ϋ 1 0 9 5 2 0 0 0 1 5 0 B 2 1 0 . . 0 6 2 9 2 3 χ

10 3 4 6 5 χ 6 9 7 1 6 0 0 151H 8 2 5 . . 0 6 3 2 4 2 w
1 0 Τ 3 4 0 1 ϋ 10 9 5 1 8 0 0 1 5 1 E 5 3 0 . 0 6 2 0 8 5 χ
10 Τ 3 4 0 1 - - ϋ 1 0 9 7 1 8 0 0 151A 4 2 0 . . 0 6 3 2 4 2 - w
10 Τ 3 4 0 1 - - ϋ 1 0 9 5 2 0 0 0 151C 3 9 0 . 0 6 2 9 2 3 χ
1 0 Τ 3 4 0 1 - - ϋ 1 0 9 5 2 0 0 0 1 5 1 B 2 1 0 . . 0 6 2 9 2 3 χ

5 2 6 7 8 χ 6 9 5 1 8 1 5 15A 2 0 7 5 . . 0 10 3 4 0 1 υ τ
5 Τ 3 4 0 1 - - ϋ 1 0 9 5 1 8 1 5 15B 7 5 0 . . 0 6 2 0 8 6 χ τ
5 Τ 3 4 0 1 - - ϋ 1 0 8 0 2 0 1 5 15C 5 3 0 , . 0 6 6 2 4 5 χ
6 τ 3 1 9 7 υ 1 0 9 5 1 6 0 5 29C 1 5 5 0 , . 0 6 3 4 6 5 χ
6 2 4 8 8 χ 6 9 5 1 6 0 5 29A 1 0 5 5 , . 0 1 0 3 1 9 7 - - ϋ τ
6 τ 3 1 9 7 - - ϋ 1 0 9 5 1 6 0 5 29B 6 4 0 . . 0 6 3 4 6 5 χ
4 2 6 7 8 χ 6 9 5 1 8 1 6 14A 9 1 0 , 0 1 0 3 4 0 1 ϋ τ
4 τ 3 4 0 1 - - ϋ 1 0 9 5 1 8 1 6 14C 6 8 0 . . 0 6 2 0 8 6 χ τ
4 6 2 4 5 χ 6 8 0 2 0 1 6 14B 4 5 5 , . 0 10 3 4 0 1 - - ϋ τ
3 2 7 6 9 6 9 5 1 6 0 1 12B 2 6 0 5 . . 0 6 3 2 2 7 χ
3 2 7 6 9 - 6 9 5 1 6 0 1 12Α 1 2 1 5 , . 0 6 3 2 2 7 χ
2 2 7 6 9 6 9 5 1 6 0 6 I I B 2 5 0 5 . . 0 6 3 2 2 7 χ
2 2 7 6 9 - 6 9 5 1 6 0 6 I I A 1 2 1 5 , . 0 6 3 2 2 7 χ
7 2 6 7 8 χ 6 8 0 1 8 0 4 68 2 6 0 5 . . 0 4 6 6 7 5 χ
9 τ 2 4 8 6 6 9 7 1 6 0 0 150H 8 2 5 . 0 6 3 4 6 5 χ

12 2 6 7 8 χ 6 9 5 1 6 0 2 2 2 8 7 5 0 , . 0 6 3 4 6 5 χ
1 1 2 6 7 8 χ 6 9 5 1 6 1 6 2 2 7 7 5 0 . . 0 6 3 4 6 5 χ

Figure 7-24. Example of a Process Sheet Report Produced by HARNESS PLANEX

An example of a time sheet report produced by HARNESS PLANEX is shown in
Figure 7-25. Output is ordered as in the process sheet report. Again, infor­
mation corresponds to a left-to-right description of the harness. The column
designations are as follows: " S U B " indicates subassembly number;
"MOLD-D" and "MOLD-M" indicate the duration and machine for molding
activities; "APPL-D" and "APPL-M" indicate duration and machine for con­
nector application; and "CUT-D" and "CUT-M" indicate duration and machine
for wire cutting. The example report indicates that wire "9A" will be cut on
machine "cs-26" and that this operation will take an average of 0.025 minutes.
Similarly, the activity of tinning terminal " 3 4 0 1 " at the left end of wires " 9 F "
and "9E" and right end of wires "9A", " 9 C " and " 9 B " will take 0.06 minutes
and does not require any machine (it will be done by hand using a tinning tub).

User Interface Mechanisms 279

SUB MOLD-D MOLD-M TIN/W APPL-D APPL-M CUT-D CUT-M WIRE
APPL-D APPL-M TIN/W MOLD-D MOLD-M

1 0.060 0.251 SC-3401 0.025 CS-26 9E
0.010

1 0.025 CS-26 9F

1 0.025 CS-26 9A

1 0.010 0.017 CS-26 9C

1 0.011 CS-26 9B

8 0.010 0.025 CS-26 150L
0.126 PACK-US

8 0.048 0.256 SC-3197 0.017 CS-26 150E

8 0.011 CS-26 150C

8 0.011 CRIMPER 150A

8 0.011 CS-26 150B

10 0.017 CS-26 151H
0.126 PACK-US 0.024

10 0.048 0.251 SC-3401 0.017 CS-26 151E

10 0.011 CRIMPER 151A

10 0.011 CS-26 151C

10 0.011 CS-26 151B
5 0.032 PACK-SS 0.025 CS-26 15A

0.144 SC-3401 0.036
5 0.017 CS-26 15B

0.010
5 0.017 CS-26 15C

6 0.036 0.144 SC-3197 0.025 CS-26 29C

6 0.025 CS-26 29A

6 0.017 CS-26 29B

4 0.032 PACK-SS 0.017 CS-26 14A
0.144 SC-3401 0.036

4 0.017 CS-26 14C
0.010

Figure 7-25. Example of a Time Sheet Report Produced by HARNESS PLANEX

280 HARNESS PLANEX

In this case, the complete set of activities are not specified, but must be inferred
from the harness description in the process sheet.

7.3 Example Problem
This section describes in detail the use of HARNESS PLANEX via the example
harness of Figure 7-26. This simple harness is composed of three wires named
"A" , " B " and " C " ; each has the length, color and gauge described in
Figure 7-27. The example contains two parts: (1) the system obtains an initial
process plan for harness manufacture using the set of domain operators
presented in the previous section; and (2) the user makes changes to the initial
process plan and HARNESS PLANEX propagates these changes with the control
operators of the system.

7.3.1 Obtaining an Initial Process Plan

At the start of the planning process, HARNESS PLANEX is given a file containing
the information shown in Figure 7-27 and creates three wire schémas containing
all the information needed to create the other objects that are used to represent
the design information. The system creates these other objects using the follow­
ing operators:

• Create-Wire-Body creates body objects (e.g., wire-c-body) and links these to
the corresponding wire objects using body-of and has-body relationships.

• Create-Left-Extreme creates objects representing left ends of wires (e.g.,
wire-c-left) and links these to the wire objects using left-extreme-of and
has-left-extreme relationships. This operator links the extreme objects to their
corresponding terminal-location objects (e.g., 3197-2 for wire-c-left) using
term-loc-of and has-term-loc relationships. If the terminal-location object is
not present, it is created.

• Create-Right-Extreme creates objects representing the right end of the wires
and links these to the wire objects using right-extreme-of and
has-right-extreme relationships. Similarly to the Create-Left-Extreme
operator, this operator creates and links terminal-location objects to the ex­
treme objects.

• Create-Subassemblies aggregates wires into subassemblies. For the example
harness, one subassembly (sub-1) is created.

After the objects representing the harness design information have been created,
HARNESS PLANEX generates the set of manufacturing activities required for each
harness component using two operators:

• Create-Activities-Body creates the objects representing the cutting activity for
with each wire (e.g., cut-wire-c) and links them to the body objects using the
act-of ana has-acts relationships.

Obtaining an Initial Process Plan 281

Θ ©
t e r m i n a l sp l ice
3 2 4 2 3 1 9 7

t e r m i n a l
6 6 7 5

Figure 7-26. Example of a Simple Harness

H A R N E S S D E S C R I P T I O N

Wire Gauge Color Plastic Length
Loc
Left

Loc
Right

Term
Left

Term
Right

A 0.5 brown 95 950.0 1 2 3242 3197

Β 0.8 tan 95 640.0 2 3 3197 6675

C 0.8 black 95 1730.0 2 4 3197 3242

Figure 7-27. Design Information for the Example Harness

• Create-Activities-Extreme creates the objects representing the manufacturing
activities associated with each terminal-location object. For example, this
operator creates the splice-3197-2 and tin-3197-2 activities for the 3197-2
terminal-location. Activity objects are linked to terminal-location objects
using act-of and has-acts relationships.

Figure 7-28 shows the final set of representational structures created by the
system. The harness has one subassembly, three wires and four terminal-
location objects. Harness manufacture requires nine activities:

• three cutting activities (one for each wire);
• two activities for terminal "3242" at left end of wire " A " (manual connector

application and welding);
• two activities for splice "3197" joining the right end of wire " A " to the left

ends of wires " B " and " C " (splice and tin);
• one molding activity for terminal "6675" associated with the right end of

wire " B " ; and
• two activities for terminal "3242" at the right end of wire " C " (manual

connector application and welding).

HARNESS PLANEX completes the initial plan by applying the following
operators:

282 HARNESS PLANEX

APPLICATION SPLICE
3242-1 3 1 9 7 - 2

Figure 7-28. Representational Structures for the Example Harness

• Get-Cut-Machine determines appropriate cutting machines for terminal-
location objects using the KS-Cut-Machine knowledge source. HARNESS
PLANEX recommends machine "crimper" for cutting wire " A " on the basis of
the terminal type attached to object 3242-1.

• Select-Technology-Body analyzes the results of Get-Cut-Machine and chooses
a machine to cut each of the three wires using the KS-Technology-Cut
knowledge source. The system determines that wire " C " will be cut using
machine "cs-26" as neither of its ends require an operation performed by a
different type of machine.

• Select-Technology-Extreme selects the type of machine used for each
manufacturing activity on wire ends. This information is generated by
Technology KSs. HARNESS PLANEX , using the KS-Technology-Molding
knowledge source, determines that molding for terminal "6675" located at
the right end of wire " B " will be done with machine "usm-1 ".

• Get-Duration estimates the duration of manufacturing activities. The duration
of the activity tin-3197-2 is estimated to be 0.02 χ 3 = 0.06 minutes because
three wire ends are linked to the terminal-location 3197-2. This value was
obtained using the KS-Duration-Tin knowledge source.

The results of the planning process are displayed in Figures 7-29 to 7-31 (the
organization of the reports follows that described in Section 7.2.4). Figure 7-29
shows the process sheet for the harness. The report has three rows, each

Obtaining an Initial Process Plan 283

SUB Τ TERM-UM PEL CABLE WIRE CUT PEL TERM-UM Τ

1 W 3242 6 952011
1 T 3197-U 10 951801
1 Τ 3197-U 10 951800

A 950.0 10 3197 U T
B 640.0 4 6675 X
C 1730.0 6 3242 W

Figure 7-29. Process Sheet for the Example Harness

SUB MOLD-D MOLD-M TIN/W APPL-D APPL-M CUT-D CUT-M WIRE
APPL-D APPL-M TIN/W MOLD-D MOLD-M

0.012 0.126 PACK-US 0.011 CRIMPER
0.144 SC-3197 0.06

0.037 USM-1
0.017 CS-26

0.011 CRIMPER

A

Β

C
0.126 PACK-US 0.012

Figure 7-30. Time Sheet for the Example Harness

MACHINE TIME

CRIMPER
CS-26

PACK-US
SC-3197

TIN
WELDING

USM-1

TOTAL >

0.022
0.017
0.252
0.144
0.060
0.024
0.037

0.556

Figure 7-31. Machine Report for the Example Harness

describing one of the wires of the harness. For example, the first row indicates
that wire " A " has manual terminal application and welding on its left end (a
blank and a " W " in columns " M " and "T") and splicing and tinning on the
right end (a " T " in column "T") . Figure 7-30 shows a time sheet report with
the duration and the type of machines used for each manufacturing activity. For
example, splicing at the right end of wire " A " and the left end of wires " B " and
" C " takes 0.144 minutes, and is done with machine "sc-3197". Figure 7-31
shows the total usage (in minutes) for each type of machine and the total time
required to manufacture the harness.

284 HARNESS PLANEX

7.3.2 Modifications to the Process Plan
If there is a change in the design specifications of the harness, HARNESS PLANEX
must modify the initial process plan to account for this change. The control
operators of the PLANEX architecture may be used to modify the plan. As an
example, assume that the terminal on the right end of wire " C " is changed from
type "3242" to type "6675". This new terminal type is stored in the wire-c
object by utilizing the Wire Changes menu of the interface. After the change is
introduced by the user, the context-chgs slot of the agenda includes
"(wire-c term-right filled)". The user may execute the Forward Propagation
Operator (FPO) to propagate the consequences of the change, or use the
Operations menu to manually invoke specific planning operators. Assume that
the FPO operator is invoked. The system creates the network of operators and
conditions shown in Figure 7-32 in six steps:

Step 1. The "(wire-c term-right filled)" change affects the preconditions of the
Create-Right-Extreme and Delete-Right-Extreme operators. Only the
Delete-Right-Extreme operator has all of its preconditions satisfied, and
it is added to the operator-queue slot of the agenda. The predictable
effects of this operator are added to the context-chgs slot of the agenda.

Step 2. The "(wire-c has-right-extreme erased)" change then activates the
Create-Right-Extreme operator. All of the preconditions of the operator
are satisfied, so it is added to the operator-queue and its changes are
inserted into the agenda.

Step 3. The "(3242-4 is-a erased)" change next activates the
Delete-Activities-Extreme operator and changes affecting those
machines used by the activities linked to the 3242-4 terminal-location
object are made to the agenda.

Step 4. The "(terminal-location is-a+inv filled)" change that is introduced by
Create-Right-Extreme operator activates the Create-Subassembly
operator and the FPO adds this operator to the operator-queue.

Step 5. The "(pack-us used-by filled)" change then activates the
Compute-Machine-Usage operator and it is inserted in the agenda.

Step 6. Finally, the "(6675-4 is-a filled)" change activates the
Create-Activities-Extreme operator and the predictable effect
"(6675-4 has-acts filled)" is made to the agenda.

The FPO continues analyzing the remaining changes in the context-chgs slot of
the agenda, but no new operators are activated. The result is the set of operators
and conditions shown in Figure 7-32. HARNESS PLANEX interprets this network
using the Network Interpretation Operator (ΝΙΟ). Figure 7-33 presents the
resulting network of operators. This network shows that:

Modifications to the Process Plan 285

WIRE-C-RIGHT
has- term- loc
erased

DELETE-RIGHT-EXTREME
WIRE-C

θ
f

3 2 4 2 - 4 WIRE-C
is-a has- r ight -ex t reme
erased erased

DELETE-ACTIVITIES l
EXTREME

V3242-4

APPLICATION
3242-4

technology
erase

PACK-US
used-by
filled

CREATE
SUBASSEMBLIES

TERMINAL-LOCATION
is-a+inv
filled 3E

5
SUBASSEMBLY
is-a+inv
filled

CREATE-RIGHT-EXTREME
WIRE-C D

WIRE-C-RIGHT θ WIRE-C-RIGHT
is-a

θ
has-term-loc

filled filled

6 6 7 5 - 4 6 6 7 5 - 4
is-a has-acts
filled filled I

COMPUTE-MACHINE
USAGE
PACK-US

' CREATE-ACTIVITIE^
EXTREME

. 6 6 7 5 - 4 J
Figure 7-32. First Network of Operators and Conditions for the Example Harness

DELETE-ACTIVIT IES
EXTREME
3 2 4 2 - 4 c CREATE-RIGHT-EXTREME

W I R E - C 9
C O M P U T E - M A C H I N E ^
U S A G E
P A C K - U S J ÎC R E A T E - A C T I V I T I E S ^

E X T R E M E
6 6 7 5 - 4 J

Figure 7-33. First Network of Operators for the Example Harness

286 HARNESS PLANEX

1. Operator Delete-Right-Extreme deletes the extreme and terminal-location
objects associated with the old terminal "3242" before operator
Create-Right-Extreme creates objects for the new terminal "6675" .

2. Operator Delete-Activities-Extreme propagates the effect of deleting the ob­
ject 3242-4 and deletes the associated extreme activities.

3. The Compute-Machine-Usage operator updates the usage of those machines
related to the activities being deleted.

4. Operator Create-Subassemblies updates the set of subassembly schémas
after the Create-Right-Extreme operator adds a new terminal-location object
to the context.

5. The Create-Activities-Extreme operator creates the activities associated with
the new terminal-location object 6675-4.

After the network of operators is produced by the ΝΙΟ, control passes to the
Domain Operator Executor (DOE) and the operators are executed in a sequence
that does not violate the precedences. During operator execution, the unpre­
dictable effects of the operators are determined and stored in the agenda. Only
two of the six operators have unpredictable effects:

• The Create-Subassemblies operator introduces four changes in the agenda:
"(sub-1 has-wires filled)", "(wire-a wire-of filled)", "(wire-b wire-of filled)"
and "(wire-c wire-of filled)"; and

• The Create-Activities-Extreme operator yields the single unpredictable effect
"(molding-6675-4 is-a filled)".

In both cases, these changes were not predictable until the DOE invoked the
execution of the operators. For example, HARNESS PLANEX did not know which
wires would be coupled into which subassemblies.

Figure 7-34 shows the network of operators and conditions created by the
FPO after these new changes are added to the agenda. Only the
"(molding-6675-4 is-a filled)" change invokes another operator that selects ap­
propriate manufacturing technologies and estimates the duration of the activity
objects in the network.

When the ΝΙΟ is applied to the second network, it produces an operator
network consisting of two unlinked operators. HARNESS PLANEX may execute
these operators in any order using the DOE. The system estimates the duration
of activity molding-6675-4 is 0 and determines that the appropriate machine is
"usm-1 ". In this process, "(usm-1 used-by filled)" is inserted in the agenda.

The third forward propagation phase is relatively simple (as shown in
Figure 7-35). The only change in the agenda, "(usm-1 used-by filled)",
activates the Compute-Machine-Usage operator and its single effect
"(usm-1 total-usage filled)" is inserted in the agenda. This effect does not
activate any other operators. An operator network with only one node is
produced when the ΝΙΟ is applied to this small network. The DOE executes the

Modifications to the Process Plan 287

M O L D I N G - 6 6 7 5 - 4 S U B - 1
is -a h a s - w i r e s
f i l led f i l led

c GET-DURATION
M o l d i n g - 6 6 7 5 -

Θ
1

M O L D I N G - 6 6 7 5 - 4
dura t ion
f i l led

SELECT-TECHNOLOGY-EXTREME
M o l d i n g - 6 6 7 5 - 4

. 0

M O L D I N G - 6 6 7 5 - 4
t e c h n o l o g y
f i l led

W I R E - A
w i r e - o f
f i l led

WIRE-B
w i r e - o f
f i l led

WIRE-C
w i r e - o f
f i l led

Figure 7-34. Second Network of Operators and Conditions for the Example Harness

U S M - 1
u s e d - b y
f i l led

f * —
[COMPUTE-MACHINE-USAGE
I USM-1

Θ
V

USM-1
t o t a l - u s a g e
f i l led

Figure 7-35. Third Network of Operators and Conditions for the Example Harness

operator Compute-Machine-Usage, no new unpredictable effects are produced
and the propagation of changes is completed.

The results of the planning process for the modified harness are shown in
Figures 7-36 to 7-38. Changing the terminal type on the right end of wire " C "
reduced the total usage of the machine "pack-us" but increased the usage of the
machine "usm-1" . Also, wire " C " can be cut using the "cs-26" cutting
machine because its ends do not require manual terminal application.

288 HARNESS PLANEX

SUB Τ TERM-UM PEL CABLE WIRE CUT PEL TERM-UM Τ

1 W 3242 6 952011 A
1 Τ 3197-U 10 951801 Β
1 T 3197-U 10 951800 C

950.0 10 3197 U Τ
640.0 4 6675 Χ

1730.0 6 6675 Χ

Figure 7-36. Updated Process Sheet for the Example Harness

SUB MOLD-D MOLD-M TIN/W APPL-D APPL-M CUT-D CUT-M WIRE
APPL-D APPL-M TIN/W MOLD-D MOLD-M

0.012
0.06

0.126 PACK-US 0.011 CRIMPER

0.017 CS-26

0.025 CS-26

0.144 SC-3197

0.037 USM-1

0.012 0.037 USM-1

Figure 7-37. Updated Time Sheet for the Example Harness

MACHINE TIME

A

Β

C

CRIMPER
CS-26

PACK-US
SC-3197

TIN
USM-1

TOTAL >

0.011
0.042
0.126
0.144
0.060
0.074

0.457

Figure 7-38. Updated Machine Report for the Example Harness

7.4 Conclusions
This chapter illustrated how the components of the PLANEX architecture can be
used to develop a system for planning the manufacture of automotive electrical
wire harnesses. The basic components of HARNESS PLANEX—representational
structures, knowledge sources, domain operators and user interface
mechanisms—are instances of the components of PLANEX described in
Chapter 4. The behavior of the system includes the three levels of user
interaction—strategic, operative and interface—supported by the architecture.

The example showed how the control operators of PLANEX generate and
update process plans. The initial plan was produced by executing the domain
operators in a predetermined sequence. Modifications to the plan, however,
occurred dynamically. Control operators generated strategic meta-plans of
operators to propagate the effects of changing the harness design. Such strategic

Conclusions 289

planning facilitates the operation of HARNESS PLANEX . The user need not be
aware of the direct or indirect consequences of modifying planning information
and is not responsible for reexecuting those operators whose input has changed.

References

[1] Arditi, D., "Diffusion of Network Planning in Construction," Journal of Con­
struction Engineering and Management, American Society of Civil Engineers
(ASCE), Vol. 109, No. 1, pp. 1-12, March 1983.

[2] Assad, Α. Α., and Wasil, Ε. Α., "Project Management Using a Microcomputer,"
Computers and Operations Research, Vol. 13, No. 2/3, pp. 231-260, 1986.

[3] Baker, K. R., Introduction to Sequencing and Scheduling, John Wiley & Sons,
New York, 1974.

[4] Baracco-Miller, E., Planning for Construction, unpublished Master's Thesis,
Department of Civil Engineering, Carnegie-Mellon University, Pittsburgh, PA,
May 1987.

[5] Bell, C , Use and Justification of Algorithms for Managing Temporal Knowledge
in O-Plan, Technical Report AIAI-TR-6, Artificial Intelligence Applications
Institute, University of Edinburgh, 1985.

[6] Berenji, H. R., and Khoshnevis, B., "Use of Artificial Intelligence in Automated
Process Planning," Computers in Mechanical Engineering (CIME), pp. 47-55,
September 1986.

[7] Bremdal, Β. Α., "Control Issues in a Knowledge-Based Planning System for
Ocean Engineering Tasks," Proceedings, Third International Expert Systems
Conference, London, England, June 2-4, pp. 21-36, 1987.

[8] Bremdal, Β. Α., An Investigation of Marine Installation Processes—A Knowledge-
Based Planning Approach, unpublished Ph.D. Dissertation, Department of
Marine Technology, Norwegian Institute of Technology, University of
Trondheim, Trondheim, Norway, July 1988.

[9] Brown, F. M., Ed., The Frame Problem in Artificial Intelligence, Morgan Kauf­
mann Publishers, Los Altos, CA, 1987.

291

292 References

[10] Burgess, A. R., and Killebrew, J. B., "Variation in Activity Level on a Cyclical
Arrow Diagram," Journal of Industrial Engineers, Vol. 13, No. 2, pp. 76-83,
February 1962.

[11] Chang, T. C , and Wysk, R., An Introduction to Automated Process Planning
Systems, Prentice-Hall, Englewood Cliffs, NJ, 1985.

[12] Chapman, D., Planning for Conjunctive Goals, unpublished Master's Thesis,
Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA, November 1985.

[13] Charnes, Α., Cooper, W. W., and Thompson, G. L., "Critical Path Analysis via
Chance Constrained and Stochastic Programming," Operations Research,
Vol. 12, pp. 460-470, 1964.

[14] Christofides, Ν., Graph Theory: An Algorithmic Approach, Academic Press,
London, 1975.

[15] Corkill, D., "Hierarchical Planning in a Distributed Environment," Proceedings,
Sixth International Joint Conference on Artificial Intelligence, Tokyo,
pp. 168-175, August, 1979.

[16] Crowston, W., and Thompson, G. L., "Decision CPM: A Method for Simul­
taneous Planning, Scheduling and Control of Projects," Operations Research,
Vol. 15, pp. 407-426, 1967.

[17] Crowston, W., "Decision CPM: Network Reduction and Solution," Journal of the
Operational Research Society, Vol. 21, pp. 435-452, 1970.

[18] , MASTERFORMAT-Master List of Section Titles and Numbers, The Con­
struction Specifications Institute, Alexandria, VA, 1983.

[19] Dagostino, F. R., Estimation in Building Construction, Reston Publishing Com­
pany, New York, 1978.

[20] Darwiche, Α., Levitt, R. E., and Hayes-Roth, B., "ORPLAN: Generating Project
Plans by Reasoning about Objects, Actions and Resources," Artificial Intelligence
for Engineering, Design, Analysis and Manufacturing (AI EDAM), Vol. 2, No. 3,
1988.

[21] Davis E., and Heidorn, G. Ε., "Optimal Project Scheduling under Multiple
Resource Constraints," Management Science, Vol. 17, pp. B803-B816, August
1971.

[22] Davis E., "CPM Use in Top 400 Construction Firms," Journal of the Construc­
tion Division, American Society of Civil Engineers (ASCE), Vol. 100, March
1974.

[23] Davis E., and Patterson J. Η., "A Comparison of Heuristic and Optimum Solu­
tions in Resource-Constrained Project Scheduling," Management Science,
Vol. 21, No. 8, pp. 944-955, April 1975.

References

[24] de Kleer, J., "An Assumption-Based Truth Maintenance System," Artificial
Intelligence, Vol. 28, No. 2, pp. 127-162, January 1986.

[25] Doyle, J., "A Truth Maintenance System," Artificial Intelligence, Vol. 12, No. 3,
pp. 231-272, 1979.

[26] Elmaghraby, S. E., Activity Networks: Project Planning and Control by Network
Models, John Wiley and Sons, New York, 1977.

[27] Elmaghraby S. E., and Pulat, P. S., "Optimal Project Completion With Due-Dated
Events," Naval Research Logistics Quarterly, Vol. 26, No. 2, pp. 331-348, June
1979.

[28] Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R., "The Hearsay-II
Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty,"
Computing Surveys, Association for Computing Machinery (ACM), Vol. 12,
pp. 213-253, February 1980.

[29] Ernst, G. W., and Newell, Α., GPS: A Case Study in Generality and Problem
Solving, Academic Press, New York, 1969.

[30] Falk, J. E., and Horowitz, J. L., "Critical Path Problems with Concave Cost-Time
Curves," Management Science, Vol. 19, No. 4, pp. 446-455, 1972.

[31] Fenves, S. J., "Tabular Decision Logic for Structural Design," Journal of the
Structural Division, American Society of Civil Engineers (ASCE), Vol. 92,
No. ST6, pp. 473-490, June 1966.

[32] Fenves, S. J., Flemming, U., Hendrickson, C , Maher, M. L., and Schmitt, G.,
"An Integrated Software Environment for Building Design and Construction,"
Proceedings, Fifth Conference on Computers in Civil Engineering, American
Society of Civil Engineers (ASCE), 1988.

[33] Fikes, R. E., and Nilsson, N. J., "STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving," Artificial Intelligence, Vol. 2, No. 4,
pp. 189-208, 1971.

[34] Filman, R. E., "Reasoning with Worlds and Truth Maintenance in a Knowledge-
Based System Shell," Communications of the Association for Computing
Machinery (CACM), Association for Computing Machinery (ACM), Vol. 31,
No. 4, pp. 382-401, April 1988.

[35] Fondahl, J. W., A Non-Computer Approach to the Critical Path Method for the
Construction Industry, Technical Report 9, Construction Institute, Stanford
University, Palo Alto, CA, 1962.

[36] Fulkerson, D. R., "A Network Flow Computation for Project Cost Curves,"
Management Science, Vol. 7, pp. 167-178, 1961.

294 References

[37] Garman, Μ. Β., Solving Combinatorial Decision Problems with Interactive Com­
puter Graphics, with Application to Job-Shop Scheduling, unpublished Ph.D.
Dissertation, Graduate School of Industrial Administration, Carnegie-Mellon
University, Pittsburgh, PA, May 1970.

[38] Garrett, J. H., Jr., and Fenves, S. J., SPEX: A Knowledge-Based Standard Proces­
sor for Structural Component Design, Technical Report R-86-157, Department
of Civil Engineering, Carnegie-Mellon University, Pittsburgh, PA, September
1986.

[39] Glover, F., Hultz, J., and Klingman, D., "Improved Computer-Based Planning
Techniques, Part I," Interfaces, Vol. 8, No. 4, pp. 16-24, August 1978.

[40] Glover, F., Hultz, J., and Klingman, D., "Improved Computer-Based Planning
Techniques, Part II," Interfaces, Vol. 9, No. 4, pp. 12-20, August 1979.

[41] Gupta, S. K, and Taube, L. R., "A State of the Art Survey of Research on Project
Management," in Project Management: Methods and Studies, Vol. 11, Studies in
Management Science and Systems, Elsevier Science Publishers B.V. (North-
Holland), 1985.

[42] Halpin, D. W., and Woodhead, R. W., Design of Construction and Process
Operations, John Wiley and Sons, New York, 1976.

[43] Halpin, D. W., "CYCLONE-Method for Modeling Job Site Processes," Journal
of the Construction Division, American Society of Civil Engineers (ASCE),
Vol. 103, No. C03, pp. 489-499, September 1977.

[44] Halpin, D. W., Escalona, A. L., and Szmurlo, P. M., Work Packaging for Project
Control. A Report to the Construction Industry Institute, Technical Report,
University of Maryland, August 1987.

[45] Hayes-Roth, B., "A Blackboard Architecture for Control," Artificial Intelligence,
Vol. 26, No. 3, pp. 251-321, 1985.

[46] Henderson, M. R., and Anderson, D. C , "Computer Recognition and Extraction
of Form Features: A CAD/CAM Link," Computers in Industry, Vol. 5,
pp. 329-339, June 1984.

[47] Hendrickson, C , and Janson, Β. N., "A Common Network Flow Formulation for
Several Civil Engineering Problems," Civil Engineering Systems, Vol. 1,
pp. 195-203, June 1984.

[48] Hendrickson, C. T., Martineiii, D., and Rehak, D. R., "Hierarchical Rule-Based
Activity Duration Estimation," Journal of Construction Engineering and
Management, American Society of Civil Engineers (ASCE), Vol. 113, No. 2,
pp. 288-301, June 1987.

References

[49] Hendrickson, C , Zozaya-Gorostiza, C. Α., Rehak, D. R., Baracco-Miller, E. G.,
and Lim, P. S., "An Expert System for Construction Planning," Journal of
Computing in Civil Engineering, American Society of Civil Engineers (ASCE),
Vol. 1, No. 4, pp. 253-269, October 1987.

[50] Hendrickson, C , and Au, T., Project Management for Construction: Fundamen­
tal Concepts for Owners, Engineers, Architects and Builders, Prentice-Hall,
Englewood Cliffs, NJ, 1989.

[51] Hendrickson, C , and Zozaya-Gorostiza, C. Α., "A Unified Activity Network
Model," Journal of Computing in Civil Engineering, American Society of Civil
Engineers (ASCE), Vol. 3, No. 2, April 1989.

[52] Hindelang, T. J., and Muth, J. F., "A Dynamic Programming Algorithm for
Decision CPM Networks," Operations Research, Vol.27, No. 2, pp. 225-241,
March-April 1979.

[53] Hurley, R. B., Decision Tables in Software Engineering, Van Nostrand Reinhold,
New York, 1983.

[54] Husbands, P., Mill, F., and Warrington, S., "A Knowledge Based Process Plan­
ning System," Knowledge Based Expert Systems in Engineering: Planning and
Design, Sriram, D., and Adey, R. Α., Eds., Second International Conference on
AI in Engineering, Boston, MA, Computational Mechanics Publications,
pp. 439-448, 1987.

[55] Ibramsha, M., and Rajaraman, U., "Detection of Logical Errors in Decision Table
Programs," Communications of the Association for Computing Machinery
(CACM), Association for Computing Machinery (ACM), Vol. 21, No. 12,
pp. 1016-1024, December 1978.

[56] Johnson, H., and Kaplan, R. S., Relevance Lost, The Rise and Fall of Manage­
ment Accounting, Harvard Business School Press, Boston, MA, 1987.

[57] Kelley, J. E., Jr., "Critical Path Planning and Scheduling: Mathematical Basis,"
Operations Research, Vol. 9, No. 3, pp. 296-320, 1961.

[58] Kennington, J. L., and Helgason, R. V., Algorithms for Network Programming,
John Wiley and Sons, New York, 1980.

[59] King, P. J. H., and Johnson, R. G., "The Conversion of Decision Tables to
Sequential Testing Procedures," Computer Journal, Vol. 18, pp. 298-306, 1975.

[60] Kurtulus, I., and Davis, E. W., "Multi-Project Scheduling: Categorization of
Heuristic Rules Performance," Management Science, Vol. 28, No. 2,
pp. 161-172, February 1982.

[61] Lawler, E., Combinatorial Optimization, Holt-Rinehart and Winston, New York,
1976.

296 References

[62] Levitt, R. E., and Kunz, J. C , "Using Knowledge of Construction and Project
Management for Automated Schedule Updating," Project Management Journal,
Vol. XVI, No. 5, pp. 57-76, December 1985.

[63] Levitt, R. E., "Expert Systems in Construction: State of the Art," in Expert
Systems for Civil Engineering: Technology and Applications, Maher, M. L., Ed.,
American Society of Civil Engineers (ASCE), New York, Ch. 6, pp. 85-112,
1987.

[64] Levy, F. K., Thompson, G. L., and Wiest, J. D., "Multi-Ship, Multi-Shop,
Workload Smoothing Program," Naval Research Logistics Quarterly, Vol. 9,
No. l,pp. 37-44, 1962.

[65] Lim, P. S., and Hendrickson, C , Description of the Prototype EXCAVATION PLANEX

System, Technical Report, Department of Civil Engineering, Carnegie-Mellon
University, Pittsburgh, PA, September 1987.

[66] Malcolm, D. G., Roseboom, J. H., Clark, C. E., and Fazar, W., "Applications of a
Technique for Research and Development Program Evaluation," Operations
Research, Vol. 7, No. 5, pp. 646-669, 1959.

[67] Marshall, G., Barber, T. J., and Boardman, J. T., "Methodology for Modelling a
Project Management Control Environment," IEE Proceedings, Vol. 134, No. 4,
pp. 287-300, July 1987.

[68] McCarthy, J., and Hayes, P., "Some Philosophical Problems from the Standpoint
of Artificial Intelligence," in Machine Intelligence 4, Meitzer, Β., and Michie, D.,
Eds., Edinburgh University Press, Edinburgh, UK, pp. 463-502, 1969.

[69] McGartland, M. R., and Hendrickson, C , "Expert Systems for Construction
Project Monitoring," Journal of Construction Engineering and Management,
American Society of Civil Engineers (ASCE), Vol.111, No. 3, pp. 293-307,
September 1985.

[70] Mahoney, W. D., and Thornley, Α., Eds., Means Square Foot Costs, Fifth Edi­
tion, R. S. Means Company, Inc., 1984.

[71] Mahoney, W. D., and Thornley, Α., Eds., Building Construction Cost Data, 45th
Edition, R. S. Means Company, Inc., 1987.

[72] Moder, J. J., Phillips, C. R., and Davis, E. W., Project Management with CPM,
PERT and Precedence Diagramming, Third Edition, Van Nostrand Reinhold Co.,
New York, 1983.

[73] Moder, J. J., and Crandall, K. C , "Precedence Diagramming: Time Computa­
tions, Anomalies and Remedies," in Project Management: Methods and Studies,
Vol. 11, Studies in Management Science and Systems, Elsevier Science Publishers
B.V. (North-Holland), 1985.

References

[74] Mouleeswaran, C. B., and Fischer, H. G., "A Knowledge Based Environment for
Process Planning," Applications of Artificial Intelligence in Engineering
Problems, Vol. 2, Sriram, D., and Adey, R. Α., Eds., First International Con­
ference on AI in Engineering, Southampton, England, Springer-Verlag, Berlin,
pp. 1013-1027, April, 1987.

[75] Navichandra, D., Sriram, D., and Logeher, R. D., "GHOST: Project Network
Generator," Journal of Computing in Civil Engineering, American Society of
Civil Engineers (ASCE), Vol. 2, No. 3, pp. 239-254, July 1988.

[76] Nunnally, S. W., Construction Methods and Management, Second Edition,
Prentice-Hall, Englewood Cliffs, NJ, 1987.

[77] Opitz, H., A Classification System to Describe Workpieces, Pergamon Press,
Elmsford, NY, 1970.

[78] Patterson, J. H., and Groth, R., "Scheduling a Project under Multiple Resource
Constraints: A Zero-One Programming Approach," AHE Transactions, Vol. 8,
No. 3, pp. 449-456, December 1976.

[79] Patterson J. H., "A Comparison on Exact Approaches for Solving Multiple
Constrained Resource Project Scheduling Problem," Management Science,
Vol. 30, No. 7, pp. 854-867, July 1984.

[80] Pearl, J., Heuristics: Intelligent Search Strategies for Computer Problem Solving,
Addison Wesley, Reading, MA, 1984.

[81] Petrovic, R., "Optimization of Resource Allocation in Project Planning,"
Operations Research, Vol. 16, pp. 559-567, May-June 1968.

[82] Pollack, S. L., Hicks, H. T., and Harrison, W. T., Decision Tables: Theory and
Practice, The Wiley Communigraph Series on Business Data Processing, 1971.

[83] Romero, H., Strategic Planning and Monitoring System for a Robotic Excavator,
unpublished Master's Thesis, Department of Civil Engineering, Carnegie-Mellon
University, Pittsburgh, PA, September 1988.

[84] Sacerdoti, E. D., "Planning in a Hierarchy of Abstraction Spaces," Proceedings,
Third International Joint Conference on Artificial Intelligence, Stanford, CA,
pp. 412-422, 1973.

[85] Sacerdoti, E. D., "The Nonlinear Nature of Plans," Proceedings, Fourth Inter­
national Joint Conference on Artificial Intelligence, Tbilisi, USSR, pp. 206-214,
September, 1975.

[86] Sacerdoti, E. D., A Structure for Plans and Behavior, Elsevier-Holland, New
York, 1977.

298 References

[87] Sathi, Α., and Fox, M. S., "Representation of Activity Knowledge for Project
Management," IEEE Transactions on Pattern Analysis and Machine Intelligence,
Institute for Electrical and Electronics Engineers (IEEE), Vol. PAMI-7, No. 5,
pp. 531-552, September 1985.

[88] Sathi, Α., Morton, E., and Roth, S. F., "Callisto: An Intelligent Project Manage­
ment System," AI Magazine, Vol. 7, No. 5, pp. 34-52, Winter 1986.

[89] Schmitt, G., ARCHPLAN—An Architectural Front End to Engineering Design
Expert Systems, Technical Report, Engineering Design Research Center,
Carnegie-Mellon University, Pittsburgh, PA, September 1987.

[90] Smith, L. Α., and Mandakovic, T., "Estimating: The Input into Good Project
Planning," IEEE Transactions on Engineering Management, Institute for Electri­
cal and Electronics Engineers (IEEE), Vol. EM32, No. 4, pp. 181-185, 1985.

[91] Sriram, D., and Adey, R. Α., Eds., Knowledge-Based Expert Systems in Engineer­
ing: Planning and Design, Computational Mechanics Publications, 1987.

[92] Stallman, R. M., and Sussman, G. J., "Forward Reasoning and Dependency-
Directed Backtracking in a System for Computer-Aided Circuit Analysis,"
Artificial Intelligence, Vol. 9, No. 2, pp. 135-196, October 1977.

[93] Stefik, M., Planning with Constraints, unpublished Ph.D. Dissertation, Depart­
ment of Computer Science, Stanford University, Palo Alto, CA, January 1980.

[94] Stefik, M., "Planning with Constraints (MOLGEN: Part 1)," Artificial
Intelligence, Vol. 16, No. 2, pp. 111-140, 1981.

[95] Stefik, M., "Planning and Meta-Planning (MOLGEN: Part 2)," Artificial
Intelligence, Vol. 16, No. 2, pp. 141-170, 1981.

[96] Stinson, J. P., Davis, E. W., and Khumawala, M., "Multiple-Resource
Constrained-Scheduling Using Branch and Bound," AHE Transactions, Vol. 10,
No. 3, pp. 252-259, 1978.

[97] Talbot, F. B., and Patterson, J. H., "An Efficient Integer Programming Algorithm
With Network Cuts for Solving Resource-Constrained Scheduling Problems,"
Management Science, Vol. 24, No. 12, pp. 1163-1174, 1978.

[98] Talbot, F. B., "Resource-Constrained Project Scheduling with Time-Resource
Tradeoffs: The Nonpreemptive Case," Management Science, Vol.28, No. 10,
pp. 1197-1210, 1982.

[99] Tate, Α., INTERPLAN: A Plan Generation System Which Can Deal With Inter­
actions Between Goals, Technical Report MIP-R-109, Machine Intelligence
Research Unit, University of Edinburgh, 1974.

[100] Tate, Α., Using Goal Structure to Direct Search in a Problem Solver, unpublished
Ph.D. Dissertation, Machine Intelligence Research Unit, University of Edinburgh,
1975.

References 299

[101] Tate, Α., "Generating Project Networks," Proceedings, Fifth International Joint
Conference on Artificial Intelligence, Cambridge, MA, pp. 888-893, 1977.

[102] Tate, Α., A Review of Knowledge-Based Planning Techniques, Technical Report
AIAI-TR-9, Artificial Intelligence Applications Institute, University of Edin­
burgh, 1985.

[103] Thompson, G. L., "CPM and DCPM Under Risk," Naval Research Logistics
Quarterly, Vol. 15, No. 2, pp. 233-240, June 1968.

[104] Vere, S. Α., "Planning in Time: Windows and Durations for Activities and
Goals," IEEE Transactions on Pattern Analysis and Machine Intelligence, In­
stitute for Electrical and Electronics Engineers (IEEE), Vol. PAMI-5, No. 5,
pp. 246-259, May 1983.

[105] Spradlin, W. H., Jr., Ed., Walkers Building Estimators Reference Book, 22nd
Edition, Frank R. Walker Company, 1986.

[106] Wang, H-P., "A Knowledge-Based Computer-Aided Process Planning System,"
Knowledge Based Expert Systems in Engineering: Planning and Design, Sriram,
D., and Adey, R. Α., Eds., Second International Conference on AI in Engineering,
Boston, MA, Computational Mechanics Publications, pp. 259-272, 1987.

[107] Waterman, D. Α., A Guide to Expert Systems, Addison Wesley, Reading, MA,
1986.

[108] Weiland, R., Decision Tables and Computer Programming, Heyden, London,
1981.

[109] Wiest, J. D., "A Heuristic Model for Scheduling Large Projects with Limited
Resources," Management Science, Vol. 13, No. 6, pp. B359-B377, 1967.

[110] Wiest, J. D., and Levy, F. K., A Management Guide to PERTICPM: with
GERTIPDMIDCPM and Other Networks, Second Edition, Prentice-Hall,
Englewood Cliffs, NJ, 1977.

[I l l] Wiest, J. D., "Gene-Splicing PERT and CPM: The Engineering of Project Net­
work Models," in Project Management: Methods and Studies, Vol. 11, Studies in
Management Science and Systems, Elsevier Science Publishers B.V. (North-
Holland), 1985.

[112] Wilkins, D. E., Practical Planning, Morgan Kaufmann Publishers, San Mateo,
CA, 1988.

[113] Willis, R. J., and Hastings N. A. J., "Project Scheduling with Resource Con­
straints Using Branch and Bound Methods," Journal of the Operational Research
Society, Vol. 27, No. 2, pp. 341-349, 1976.

[114] Zozaya-Gorostiza, C. Α., and Hendrickson, C , "An Expert System for Traffic
Signal Setting Assistance," Journal of Transportation Engineering, American
Society of Civil Engineers (ASCE), Vol. 13, No. 2, March 1987.

300

[115] Zozaya-Gorostiza, C. Α., Knowledge-Based Planning for Construction Projects,
unpublished Ph.D. Dissertation, Department of Civil Engineering, Carnegie-
Mellon University, Pittsburgh, PA, May 1988.

[116] Zozaya-Gorostiza, C. Α., and Lim, P. S., CONSTRUCTION PLANEX User Manual,
Department of Civil Engineering, Carnegie-Mellon University, Pittsburgh, PA,
1988.

Index

Abstraction, 20, 138, 142
ABSTRIPS, 10,20,82,142
Actions, 92, 126
Activities, 27, 66, 256, 259, 268, 272

See also Element activities, Project
activities

Activity durations. See Durations
Activity formulation, 1, 72, 148, 151, 179
Activity network, 2, 38, 45, 73, 126, 225
Activity operators, 268
Activity-centered planners, 4
Activity-on-branch diagram, 38
Activity-on-node diagram, 38, 45, 225
Agenda, 9, 104, 108, 129, 146, 164, 166,

246
AI. See Artificial Intelligence
ΑΙ-based planners, 14
Analysis, 62, 81, 173
Animation, 11, 134,227
ANIMATOR, 12, 134, 222, 227
AOB. See Activity-on-branch diagram
AON. See Activity-on-node diagram
Application object, 89
Applications, 148, 154
Architecture, 100, 104, 138, 148, 158,

164, 185, 258
ARCHPLAN, 234
Artificial intelligence, 6, 14
Automated planning, 232

Backtracking, 17, 34
Backward planning, 103
Backward Search Operator, 10, 109, 113,

118, 129, 142, 166, 174, 230
Backward Search Operator algorithm,

116
Basic CPM. See CPM
Basic Critical Path Method. See CPM
Behavior, 229,276
Binding, 97
Blackboard, 32
Blackboard model, 68
Blackboard planners, 32, 69
Blackboard planning, 32, 66, 69
BLOCKS PLANEX, 137,163
BLOCKS PLANEX architecture, 164
BLOCKS PLANEX examples, 166, 170
Blocks world, 17,24,137,163
Blocks-world planning, 163
Body operators, 264
Bottom-up activity formulation model,

72, 148, 151, 179, 248
Branch-and-bound method, 40, 46
BSO. See Backward Search Operator

CAD. See Computer-Aided Design
CALLISTO, 61
CAM. See Computer-Aided Manu­

facturing

301

302 Index

Chapman, D., 23
Chez Dan, 1
CIC. See Computer-Integrated Construc­

tion
Coding, 50,52
Computer-Aided Design, 5
Computer-Aided Manufacturing, 5
Computer-Integrated Construction, 5, 178
Conceptualization of plans, 148
Conditions, 92, 126
Constraint posting, 30
Constraints, 30
Construction methods, 180
CONSTRUCTION PLANEX, 11,155, 177
CONSTRUCTION PLANEX architecture, 185
CONSTRUCTION PLANEX behavior, 229
CONSTRUCTION PLANEX evaluation, 244
CONSTRUCTION PLANEX examples, 234,

236
CONSTRUCTION PLANEX use, 229
Construction planning, 48, 149, 154, 155,

177, 178, 237, 245
Context, 88
Contingency management, 2

See also Scheduling
Control, 70, 82, 100, 101, 104, 108, 141,

174
Control behavior, 101
Control operators, 88, 104, 109, 146, 164
CONTROL PANEL, 10, 91, 125, 129, 222,

230
Control problem, 32
Cooking, 1
Costs, 3,58, 181,209,257

See also Estimation
CP. See CONTROL PANEL
CPM, 36,38,40,60,71,74
Crews, 180

See also Technology choice
Critical Path Method. See CPM
Criticality number, 20
Critics, 23
Crowston, W., 44
Current object, 89
CYCLONE, 57

Database management system, 251
DCPM. See Decision CPM
Decision CPM, 44, 57, 76, 181
Decision table, 91,92, 125
Design, 5
Design element operators, 195
Design elements, 49, 50, 155, 179, 185,

188, 195, 196
See also Design features

Design features, 49, 50, 72
Design of planning systems, 150
Deterministic scheduling, 36
DEVISER, 26
Dijkstra, E. W., 38
DOE. See Domain Operator Executor
Domain Operator Executor, 10, 109, 121,

230, 246, 286
Domain Operator Executor algorithm,

122
Domain Operator Schema, 9, 104, 105,

110, 125, 142, 164, 174, 195,259
Domain operators, 9, 88, 105, 142, 146,

152, 157, 159, 162, 195,259
DOS. See Domain Operator Schema
Durations, 2, 3, 38, 58, 181, 202, 206,

218,257,270, 275
See also Estimation

Dynamic programming, 40

Element activities, 155, 179, 185, 191,
196, 198,211,256

Element activity operators, 198
Ernst, G. W., 16
Estimation, 49, 58, 72, 181, 257
Evaluation, 170, 244
Events, 27,38,74
Examples, 166, 170, 234, 236, 280
EXCAVATION PLANEX, 11,137,158
EXCAVATION PLANEX architecture, 158
EXCAVATION PLANEX use, 161
Excavation planning, 149,158
Execution phase, 101
Expert system, 6
Explanations, 84, 133, 175, 223, 228, 276
EXPLORER, 11

Index 303

External factors, 2
Extreme operators, 2 6 5

Fast-track schedule, 1 8 3 , 2 1 0 , 2 3 8
Fikes, R. E., 1 6
Firing mechanism, 9 7 , 1 2 6 , 1 4 1
Float, 3 8 , 7 6
Floyd-Warshall algorithm, 7 8 , 2 1 0
FOOTER, 2 3 4
Forward pass, 2 2 2 , 2 3 2
Forward planning, 1 0 3
Forward Propagation Operator, 1 0 , 1 0 9 ,

1 1 8 , 1 2 9 , 1 4 7 , 1 7 4 , 2 3 0 , 2 4 6 , 2 8 4
Forward Propagation Operator algorithm,

1 1 2
FPO. See Forward Propagation Operator
Frame, 9
Frame problem, 3 4
Frank-Wolfe algorithm, 4 0

GANTT Interactive Scheduler, 1 1 , 1 2 6 ,
2 2 1 , 2 2 5

General Problem Solver, 16 , 3 0 , 8 3
Generalized networks, 4 7
Generative planners, 3 , 8
GHOST, 5 3
Glover, F., 4 7 , 4 8
GPS. See General Problem Solver
Graphics, 8 4 , 1 7 5 , 2 2 5

HARNESS PLANEX, 1 1 , 1 3 7 , 1 6 1 , 2 5 3
HARNESS PLANEX architecture, 2 5 8
HARNESS PLANEX behavior, 2 7 6
HARNESS PLANEX examples, 2 8 0
HARNESS PLANEX use, 2 7 6
Hayes-Roth, B., 3 2 , 8 2
HEARSAY-II, 3 2
Hierarchical decomposition, 6 8
Hierarchical planning, 1 4 2
Hindelang, T. J., 4 6
Hole, 1 5 0 , 1 5 8
Hultz, J., 4 7 , 4 8
Hybrid model, 6 9 , 2 2 9 , 2 7 6

IBDE. See INTEGRATED BUILDING
DESIGN ENVIRONMENT

IG. See INPUT GENERATOR
Implementation of planning systems, 1 5 3
INPUT GENERATOR, 1 2 , 2 2 2 , 2 3 4
Input object, 8 9 , 1 0 5
INTEGRATED BUILDING DESIGN

ENVIRONMENT, 1 2 , 2 3 4 , 2 3 2
Interactive graphics, 1 2 6

See also Graphics
INTERPLAN, 2 0 , 2 5 , 7 0

Job shop scheduling, 6 0

Klingman, D., 4 7 , 4 8
Knowledge abstraction, 1 3 8
Knowledge acquisition, 9 4 , 1 2 5 , 1 2 6 ,

1 7 5 , 1 7 8 , 2 5 4 , 2 7 6
Knowledge base, 8 8 , 1 5 6 , 1 5 9 , 1 6 2 , 2 1 0 ,

2 7 1
KNOWLEDGE CRAFT, 1 1
Knowledge hierarchies, 8 1 , 1 3 9 , 1 5 2
Knowledge representation, 8 0 , 9 1 , 1 3 8 ,

1 7 2
KNOWLEDGE SOURCE ACQUISITION

MODULE, 1 1 , 9 0 , 1 2 5 , 1 7 2
Knowledge Source Activation Record,

3 2 , 1 0 4
Knowledge source evaluation, 9 6
KNOWLEDGE SOURCE EVALUATOR, 9 , 8 9 ,

9 6 , 1 2 5 , 1 3 8 , 1 5 6 , 1 7 2
KNOWLEDGE SOURCE EVALUATOR

algorithm, 9 8
Knowledge source implementation, 9 3
Knowledge Source Schema Definition,

9 4
Knowledge sources, 9 , 3 2 , 8 8 , 9 1 , 9 3 ,

1 3 8 , 1 5 6 , 1 5 9 , 1 6 2 , 1 7 2 , 1 8 5 , 2 1 0 , 2 7 1
Knowledge-based system, 6
KS. See Knowledge source
KSAM. See KNOWLEDGE SOURCE

ACQUISITION MODULE

304 Index

KSAR. See Knowledge Source Activa­
tion Record

KSE. See KNOWLEDGE SOURCE
EVALUATOR

Lag, 2,29,207,220
Lead, 75,207,220
Levitt, R. Ε., 7,60
LIFT-2, 54
LIFT-3, 55
Line balancing, 56
Linear planners, 15
Linear programming, 38, 40
LISP, 11
Literals, 17,27
Longest path, 38
LP. See Linear Programming

Machine operators, 270
Machines, 259,266,270
Manufacturing methods, 257
Manufacturing planning, 48, 149, 161,

253, 280, 284
MASON, 58, 182
MASTERFORMAT, 52, 56, 150, 185
Material package, 201, 209, 214
Materials, 201,214
Meal planning, 1
Means-ends analysis, 16,30
Means-ends model, 67
Means-ends planning, 66, 67
Menus, 104,132,221,276
Meta-operator, 146
Meta-planners, 29
Meta-planning, 29, 146
Methods, 55

See also Construction methods,
Manufacturing methods

MOLGEN, 9,30,35,55
Muth, J. F., 46

Net present value, 210
NETFORM, 47
Network Interpretation Operator, 10, 109,

118, 166, 230, 246, 284

Network Interpretation Operator
algorithm, 120

Newell, Α., 16
Nilsson, Ν. J., 16
ΝΙΟ. See Network Interpretation

Operator
NOAH, 14, 23, 26, 34, 54, 65, 83, 101,

145
NONLIN, 25,26,65,67,70
Nonlinear planners, 23
Nonlinear planning, 23,144,248
NPV. See Net present value

OARPLAN, 54
Object-centered planners, 4
Objects, 9,88,89,93
Operative planning, 70, 229, 276
Operator effects, 90
Operator feasibility, 83,114
Operator hierarchies, 82, 173
Operator network, 103, 168, 170, 284,

286
Operator precedences, 118
Operators, 9, 81, 93, 105, 157, 159, 173

See also Control operators, Domain
operators

Opitz, 50
OPM, 32,55,68, 174
Opportunistic planning, 146
Optimization, 35
Output object, 89, 105
Output reports, 84, 130, 175, 227, 240,

278, 283, 288

Passive output graphics, 133
See also Graphics

PERT, 36, 141, 182
PIPPA, 54
Plan formulation, 5,14
PLANEX, 8, 10, 137
PLANEX applications, 138, 148, 154
PLANEX architecture, 88, 100, 138, 148
PLANEX control, 101,141
PLANEX development, 10
PLANEX evaluation, 170

Index 305

PLANEX operators, 89
PLANEX problem solving, 141
PLANEX requirements, 79
PLANEX use, 10,148
Planning models, 44,149
Planning phase, 101, 103, 118
Planning tools, 5
PLATFORM, 60
Precedence diagramming, 38
Precedence relationships, 50,179
Precedences, 2, 74, 179, 183, 207, 219

See also Activity network
Primitive operators, 23
Probabilistic scheduling, 36
Problem solving, 100,141
Problem-solving operators, 81, 173, 185,

195,224, 259
See also Domain operators

Procedural net, 23
Process planning, 1, 3, 4, 13, 66, 71, 79,

88, 100, 137, 148
Process sheet, 253, 276, 278, 283, 288
Product components, 66

See also Design elements
Project activities, 1, 155, 179, 185, 193,

201,203,204,216, 256
Project activity operators, 203
Project Evaluation and Review

Technique. See PERT
Project management, 2

See also Scheduling
Project network. See Activity network
Project scheduling. See Scheduling
PROPLAN, 59

Quantity take-offs. See Work quantities
Questions, 133

Relations, 88
Report Format Schema, 131
REPORT GENERATOR, 11,91, 130, 175,

223, 227, 240
Reports. See Output reports

Representational structures, 9, 88, 152,
155, 158, 162, 185,258

Requirements, 79
Resource allocation, 41
Resource leveling, 41
Resources, 1, 3, 41, 66
Retrieval-based planners, 3
RG. See REPORT GENERATOR
Rules, 92, 126

Sacerdoti, E. D., 20, 23
Scheduling, 2, 3, 13, 35, 41, 44, 49, 60,

72, 73,74, 126, 127, 183,210
Schema, 9
Search space, 14
Shortest path, 38,47
Simulation, 57, 134
SIPE, 35
Slack, 38,76
Slots, 88,93
Solution space, 14, 15
SPAR-1, 43
SPEX, 92,234
STANLEY, 234
State tree, 16
Stefik, M., 29
Strategic planning, 70, 101, 229, 276
STRIPS, 16,34
STRYPES, 234
Subassemblies, 254, 256, 262
Successors. See Precedences
Synthesis, 62, 81, 173

Tate, Α., 14
Technology choice, 2, 3, 49, 55, 72, 180,

204,217,257, 273
Thompson, G. L., 44
Time constraints, 26
Time-cost trade-offs, 38, 40, 76, 180
TIPPS, 55
TR ALI, 92
Truth maintenance system, 34
TWEAK, 113

306 Index

Unified activity network model, 73, 183,
248

Units, 200,214
User assistant, 8,123,232
User interaction, 84, 88, 90, 123, 132,

158, 161, 163, 175
User interface, 220,276

Values, 88,93
Vere,S.A., 26

Waterman, D. Α., 84, 123
Window, 2,28
Wire bodies, 256, 259, 260, 264, 268
Wire extremes, 256, 259, 261, 262, 265,

266, 269, 267
Wire operators, 260
Wires. See Wire bodies, Wire extremes
Work breakdown, 50
Work quantities, 199,205,213,214
Work tasks, 3, 49, 50, 179, 255
Work-centered planners, 4

