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Preface 

Construction and manufacturing process planning is a crucial and challenging 
management task. A good plan is essential to project success. Plans are the 
basis for a project budget and production schedule. Despite its importance and 
complexity, process planning relies on manual formulation of plans and is 
usually performed in an intuitive and unstructured fashion with considerable 
reliance on engineering judgment. 

There are few computer-based process planning aids which address the needs 
and complexities of the construction and manufacturing processes. Those aids 
which do exist are primarily algorithmic analysis or graphical display tools. 
Knowledge-based program development methodologies provide a new tech­
nological basis for the development of process planning tools. This approach 
provides the means to represent and utilize process planning knowledge and 
judgment which is lacking in current tools. This work describes a knowledge-
based system architecture used to develop process planning systems—PLANEX. 

PLANEX is a domain-independent, knowledge-based process planning system 
architecture. Starting from a description of the physical artifact to be con­
structed or manufactured, PLANEX generates the set of activities used to create 
the artifact. These activities, with their required resources, are linked into a 
process planning network which can be used in project scheduling or manage­
ment. This work presents the concepts, requirements and the resulting architec­
ture of PLANEX, and includes detailed descriptions of applications of the system 
in construction and manufacturing. 

This work originated as an investigation of the application of knowledge-
based systems technology in construction management. When the work was 
conceived in 1984, there were no significant prototype knowledge-based sys­
tems in the construction domain; only a few small-scale exploratory applications 
had been developed. The second and third authors had done extensive work in 
the application of expert systems in other areas of Civil Engineering, and it was 
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evident that the technology could be successfully applied to problems which 
were intractable using conventional programming methodologies. 

Creating a project schedule is knowledge-intensive and a prerequisite to the 
application of other computer tools in project management. Due to the impor­
tance of this task, the lack of suitable aids and the promise offered by a 
knowledge-based systems approach, construction project planning was selected 
as an appropriate domain to explore in detail. The initial goals were two-fold: 
(1) to demonstrate the applicability of the knowledge-based approach to the 
problem; and (2) to investigate the problems with the technology which need to 
be addressed for it to be successfully applied in this domain. 

Although the general domain-independent nature of the process planning 
problem was considered from the outset, the initial goal was to develop a system 
limited to construction project planning. In the initial stages, a variety of 
domains were considered: buildings, bridges and highways. Building construc­
tion was selected as a focus and the work commenced. Initial planning explora­
tions were made in the perspicuous blocks-world domain, and as the work 
evolved, it moved from a system targeted at construction to the more general 
process planning architecture presented herein. 

While this work originated in the construction management domain, the ideas 
and concepts presented have wider application. As presented, the emphasis is 
on process planning as opposed to project planning. Many of the examples and 
illustrations are derived from construction planning. This should not be inter­
preted as a bias in the concepts, but rather as a result of the authors' experience 
and knowledge. 

This work is directed at two audiences: (1) builders and developers of prac­
tical process planning aids; and (2) researchers of planning and scheduling sys­
tems. It is particularly relevant to those whose research is in the areas of 
artificial intelligence planning systems; operations research and management 
science optimization methods for planning; management information and deci­
sion support systems; and knowledge-based planning systems. 

The development of process planning tools could substantially benefit from 
generalization and from cross-fertilization among the different planning and 
decision support approaches. Researchers familiar with only one approach 
should broaden their horizons and thereby improve their own contributions. 
Therefore, a major objective of this work was to foster just this sort of cross-
fertilization. 

Because of the diverse backgrounds and interests of different readers, it is not 
expected that the individual reader will devote the same attention to each section 
of this book. For example, operations researchers might omit Section 2.2 
reviewing plan scheduling methods. As another example, researchers seeking 
only a conceptual understanding of knowledge-based process planning might 
omit the implementation details of the construction and manufacturing applica­
tions in Sections 6.2 and 7.2. 
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Organization This monograph begins with an overview of the process plan­
ning problem and the motivation for this work, presented in Chapter 1. This 
introduction includes a discussion of the knowledge-based approach, a brief 
overview of PLANEX and a review of its development. 

Chapter 2 is a review of background material relevant to this work. It in­
cludes a review of ΑΙ-based models for process planning and plan formulation; 
models for deterministic project scheduling, including critical path, resource 
allocation and resource leveling algorithms; and prior work in the practice of 
construction and manufacturing planning, scheduling and monitoring. This 
background material is used to develop a formal model for process planning. 
The characteristics of this model are described in terms of a conceptual process 
planning model, and the resulting requirements for a knowledge-based process 
planning model are presented in Chapter 3. Based on these requirements, the 
architecture of PLANEX is described in Chapter 4. This description includes the 
overall structure, knowledge representation, control and user interface com­
ponents of the architecture. 

Use of this system architecture to develop process planning models is 
presented in Chapter 5. In addition to the basic features of the PLANEX architec­
ture and the process of developing a system with PLANEX, the chapter includes 
an overview of four different applications (construction planning, excavation 
planning, manufacturing planning, and blocks-world planning) and an evalua­
tion of the architecture. Chapter 6 provides a detailed description of 
CONSTRUCTION PLANEX, a system used to plan the construction of mid-rise 
concrete and steel-frame office buildings. This chapter includes a discussion of 
the construction planning models used in CONSTRUCTION PLANEX, along with 
details of the representation, knowledge, problem-solving and user interface 
components of the system. It concludes with the presentation of an example 
problem. HARNESS PLANEX, a system which plans the manufacturing operations 
for automobile electrical wire harnesses, is presented in Chapter 7. The or­
ganization and structure of this chapter parallels that of Chapter 6. These two 
final chapters are intended to provide sufficient detail for implementation of 
knowledge-based process planning systems so that builders of new tools can use 
this information as a starting point. More casual readers can skip some sections 
of these chapters. 

PLANEX Software PLANEX has gone through several cycles of development 
and refinement. The initial implementation was in LISP. The CONSTRUCTION 
PLANEX and HARNESS PLANEX prototypes described in Chapter 6 and 7 were 
implemented in C O M M O N L I S P and KNOWLEDGE CRAFT™ on a TEXAS 
INSTRUMENTS EXPLORER™. Associated subsystems, such as the ANIMATOR, 
were developed in C on a SILICON GRAPHICS IRIS Workstation. The examples 
presented herein were developed with this version of PLANEX. 
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Recently a version of PLANEX was implemented entirely in COMMON LISP, 
and has been successfully ported to a number of hardware platforms including 
an IBM RT PC®, an IBM PC/AT® and a Sun Workstation®. This 
COMMON LISP version does not include graphical schedule displays or the 
animation subsystem, but generates activity plans for input to commercial 
scheduling packages. 

The COMMON LISP version of PLANEX is available to researchers, educators 
and institutions who wish to experiment, to refine or to extend the system. 
Anyone who wishes to obtain PLANEX should contact the second author (CH) at 
Carnegie Mellon. 
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Introduction 

This study describes the development of knowledge-based computer tools that 
assist an engineer in process planning (i.e., formulating a process plan) for 
construction and manufacturing. The result of the investigation is a comprehen­
sive knowledge-based system architecture for process planning, called PLANEX, 
which has been used to develop a number of prototype process planning systems 
in construction and manufacturing domains. 

The issues and problems in process planning can be illustrated through a 
simple, everyday example: preparing a meal. 

• Meal preparation starts with a menu of the dishes which comprise the meal. 
The menu corresponds to the specification of the product to be prepared. 

• Recipes provide the descriptions of how to create each dish. Depending on 
the source, the recipes may provide a detailed description of the tasks or 
activities used to create the dish, or they may be an abstract description of the 
preparation process. 

• No matter how much detail is provided in a recipe, all of the steps for all of 
the activities are not specified (e.g., recipes often call for clarified butter but 
do not explain how to prepare it). The cook must determine, based on ex­
perience, all of the steps needed to prepare the dish (a process denoted activity 
formulation). 

• Individual steps from various recipes can often be combined into larger-scale 
project activities (e.g., chopping all vegetables for a dish at one time in a food 
processor rather than individually). Such aggregation reduces the size of the 
planning problem. 

• Associated with each recipe is the normal yield and the list of ingredients. 
These material resources have to be scaled to provide the desired yield. This 
is a complex process as some ingredients (e.g., spices, eggs) do not scale 
linearly, the quantity needed depends upon the form of the ingredient (e.g., 
fresh versus dried herbs) and complex substitutions for ingredients may be 
made. 

1 
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• Steps may be performed by a variety of means (e.g., mixing dough by hand, 
with a mixer, with a food processor). Given the variety of technology choices 
for each step, the cook must decide what procedures and equipment to use on 
the basis of skill, experience and knowledge about how the process and tech­
nology will affect the preparation and quality of the product. 

• Availability of equipment resources and competing or conflicting demands 
for resources (e.g., baking bread requires a hot oven, drying meringues re­
quires a cool oven) place constraints on the activities and influence how the 
cook decides to perform the task. 

• A number of external factors, such as availability of raw ingredients, in­
fluence many decisions made in planning meal preparation. 

• The time required to prepare each dish must be estimated. The amount of 
product needed, type of methods used and skill in performing the individual 
tasks (i.e., productivity) impact this duration estimation. 

• Recipes also specify lags between operations (e.g., dough must rest at least 
20 minutes before rolling) or time or window constraints (e.g., a step may be 
done up to one day ahead, but not less than 4 hours ahead). 

• Individual recipes indicate some of the precedences between the steps used to 
prepare each item. Precedences from the individual recipes must be com­
bined, with considerations of resource and time constraints, into the complete 
activity network which describes the meal preparation process. 

• Given all of the activities and precedences, scheduling the activities deter­
mines when each should be performed. The schedule must meet a set of 
target deadlines to insure the meal is served on time. 

All of these steps constitute the formulation of the process plan, which is un­
coupled from the actual preparation of the meal. During meal preparation, a 
variety of project management issues arise, such as contingency management 
(e.g., what to do if one of the steps fails, or if the estimated activity durations are 
wrong). While not formally considered in this work, management issues and 
problems parallel the considerations used in developing the initial process plan. 

The items listed above represent the components of a generic plan. Con­
siderable effort is needed to instantiate this plan for a specific menu, cook and 
batterie de cuisine. Preparing a meal is an everyday task; while many people 
lack the technical skills required, the planning process is conceptually 
straightforward. Planning becomes more difficult as the complexity of the 
dishes increases and as the number of options, interactions and constraints 
grow. Construction or manufacturing process planning involves the same issues 
and requires the same type of problem solving as needed in the cooking domain. 
The scope, complexity and experience required is substantially larger. Tools to 
assist the engineer or manager in developing a process plan are essential. 

The remainder of this chapter describes process planning and alternative 
techniques for generating process plans. Then the motivations for developing an 



Approaches to Process Planning 3 

automated process planner and the justifications for using a knowledge-based 
approach in developing process planning systems are presented. This discussion 
is followed by an overview of PLANEX and a description of its development. 

1.1 Approaches to Process Planning 
Given a product to be manufactured or a facility to be constructed, process 
planning is a fundamental step which is used to map the design of the product 
onto the methods used to create it. Process planning involves: 

• recognition of the elements of the product; 
• definition of work tasks used to construct or manufacture each element; 
• choice of manufacturing or construction technologies and resources used in 

these tasks; 
• estimation of durations and costs for individual tasks; and 
• preparation of project schedules. 

The resulting plan consists of the selected resources and technologies associated 
with the tasks, and the assignment of the tasks to time slots in the schedule. 

As detailed below, process planning is important, complex and requires ex­
perience. Due to its importance, several attempts have been made to develop 
computer aids for process planning. While most tools do little to aid in creating 
a process plan, they are still important to the overall project management 
process. More comprehensive automated planning systems or planning assis­
tants would be of significant value in construction and manufacturing. 

Existing automated process planners can be grouped into two major 
categories on the basis of the strategy employed to form the process plan [6]: 

• Generative planners synthesize new plans. Using a description of the product 
and information describing the basic actions available to create the product, 
the planner generates a collection of operations and associated resources 
which together are used to perform parts of the manufacturing or construction 
process. These individual operations are then ordered into a time sequence of 
steps used to create the artifact. Each time the planner is invoked it creates a 
new, unique plan. 

• Retrieval-based planners select a plan from a library of standard plans. Exist­
ing plans are classified according to "key" features of the product and are 
saved in a plan library. When a new, similarly classified product is defined, 
the plan which is the "closest" match to the product is retrieved from the 
library. Plans may be formulated by extracting complete plans from the 
library or by selecting and combining components from several plans. 

An alternative characterization of the planning process is based on considera­
tions of the key elements of the plan and how the planner treats these elements 
while formulating the plan: 
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• Activity-centered planners are organized around formulating construction and 
manufacturing activities as the fundamental part of the plan. The activities 
used to create the product are identified from the design. The technologies 
and resources used to perform the activities are chosen. The set of activities 
are organized into a process plan and project schedule. The plan is the set of 
activities and the associated processes. 

• Work-centered planners treat the assignment of activities to resources or work 
centers as the major task in formulating the plan. Sets of activities and 
schedules are developed for individual work centers and the overall plan is the 
flow of elements through the work centers. Activities used to create the 
artifact are based on the capabilities of the work centers. This approach is 
particularly suited to planning the operation of flexible manufacturing 
systems. 

• Object-centered planners consider the artifact or aspects of it as the key to 
creating the process plan. The approach is similar to the activity centered 
approach, but aggregations and representations are organized around elements 
and design objects instead of around the construction and manufacturing ac­
tivities associated with the objects. 

Despite significant efforts to develop automated process planners by using a 
variety of methodologies and formalisms, effective planning systems which ad­
dress the needs of the construction and manufacturing communities do not yet 
exist. 

1.2 Motivation for Automated Process Planning 
The relevance of this work derives from the needs and issues (described below) 
that arise in the development of process planning systems. These motivating 
issues directly lead to consideration of the Artificial Intelligence (AI) based 
methodology described in the following section. 

Process planning is both crucial to and challenging for the successful 
management of projects. It is crucial to the eventual success of a project be­
cause project control and monitoring is based on a particular project plan. Poor 
estimates or schedules can easily result in cost increases or completion delays. 
Similar effects may result from inappropriate or inconsistent decisions regarding 
the resources and technologies selected to perform tasks. 

Because the planner is concerned with the formulation of a good plan, rather 
than just a feasible plan, the planning task is challenging. There are numerous 
constraints that complicate the planning process, including those related to the 
availability of resources, completion deadlines for tasks or limitations on project 
budget. In addition, decisions such as the choice of technology and task decom­
position are usually interdependent. The planner has to identify these con­
straints and interactions and use his experience from previous projects to resolve 
the resulting problems and conflicts. 



Motivation for Automated Process Planning 5 

Despite the importance and complexity of process planning, little attention 
has been paid to analyzing the methods by which plans are or should be formed. 
Planning requires experience and knowledge related to resources, tasks, tech­
nologies, budget, schedule and product design. Balancing all of the competing 
issues and insuring that all aspects are considered is not trivial. Current process 
planning relies upon manual formulation of plans and is usually performed in an 
intuitive and unstructured fashion with considerable reliance on engineering 
judgment. The mechanisms used in planning have not been published and are 
not formally taught to novices, but rather must be acquired and personalized 
through experience. 

Another pertinent issue is the relationship between plan formulation and 
planning tools. Few process planning aids exist, and the tools that do exist are 
better categorized as analysis tools which require an existing plan, rather than 
tools which aid in plan formation. Most existing computer tools are applicable 
only to some parts of the whole process. For example, commercial scheduling 
systems require a complete specification of the project network as input. Such 
scheduling systems require that decisions concerning plan formulation and 
refinement be made separately from project scheduling decisions. Once a 
project network has been input and a schedule computed, the systems provide 
little support to maintain and refine the schedule while the work is in progress. 
Developing an integrated computer tool for process planning provides a unified 
framework for analyzing the interdependencies among planning decisions. 

Many of the problems with current process planning tools are related to the 
inadequacy of the programming methodology used in developing the tools. 
Commercial construction and project management aids are implemented using 
algorithmic or procedural programming. This programming methodology does 
not provide a convenient mechanism for representing, formalizing or using ac­
quired expertise. Nor do current methods support the development of an in­
tegrated process planning environment. 

With increased reliance on computer-aided design (CAD) systems for design 
and computer-aided manufacturing (CAM) systems for manufacturing and 
computer-integrated construction (CIC) systems for construction, the automated 
generation of process plans becomes more important in realizing the full poten­
tial of the other tools. Integrated tools and comprehensive process planners 
could provide the ability to reason about construction or manufacturing methods 
during design, providing better products through design for manufacturability or 
design for constructability. Well-designed products and facilities should be 
relatively easy to manufacture or construct. Current process planning tools and 
methodologies are inadequate to achieve these goals. 

The similarities of process planning in different domains can be exploited in 
the development of planning aids. For example, there are many parallels be­
tween the planning tasks performed by a construction planner and those per-
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formed by a process planner in manufacturing. Process planners must identify 
and sequence the machining operations for manufacturing specific products. 
Similarly, construction planners have to identify and sequence construction ac­
tivities for building parts of facilities. Thus, while this work is targeted specifi­
cally at construction and manufacturing planning, and has its roots in the con­
struction domain, many of the contributions of this study are applicable to the 
more general problem of process planning. 

Thus, the motivations for developing computer tools for process planning are: 

• process planning is crucial in design and project management; 
• process planning is a difficult, knowledge-intensive, challenging process; 
• there are virtually no integrated computer tools that assist during the complete 

process planning and project management cycle; and 
• there are similarities in process planning across different domains. 

1.3 Knowledge-Based Methodology 
Given the goals and motivations for developing a process planning system, 
selecting the appropriate development methodology for building such a system 
is essential. As prior approaches to solving the problem have not proven suc­
cessful, the use of a different methodology is indicated. Several AI techniques 
appear to provide a promising approach for the development of a planning 
assistant for construction and management. 

In particular, the techniques and methodologies of knowledge-based systems1 

are utilized in this investigation. The justifications for selecting this approach 
are based on the characteristics of knowledge-based systems and the ap­
plicability of knowledge-based systems to the process planning problem. 

The knowledge-based approach can be characterized and contrasted to tradi­
tional algorithmic programming or procedural programming development 
methodologies by: 

• the use of expert, domain-specific knowledge to attain a high level of perfor­
mance in a narrow domain; 

• separation of data, knowledge and control; 
• transparency of knowledge representation and dialog (explanation); and 
• incremental growth capability. 

These characteristics make knowledge-based systems a promising means of 
representing and using expertise and knowledge in a program. Independent of 

The terms expert system and knowledge-based system are considered interchangeable in this work. 
However, this work itself is better characterized as knowledge-based as it does not rely only upon 
expertise. 
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the availability of expertise, the knowledge-based programming paradigm 
provides an excellent mechanism for declarative programming, yielding 
programs that are clearer and more robust. 

The planning and management processes are knowledge-intensive, and 
knowledge-based systems, in addition to providing a mechanism for processing 
knowledge, are useful in formalizing and structuring the expertise of planners. 
Since the process planning knowledge of skilled planners is private and 
idiosyncratic, formalizing the knowledge is beneficial in that it facilitates its 
refinement and dissemination by organizing and expounding the expertise, 
making the knowledge available for critical review and analysis. 

Successes in the construction industry indicate that the choice of a 
knowledge-based methodology is appropriate for developing computer tools for 
project planning and management. Several expert system applications in con­
struction engineering and management have been developed, or are under 
development [63]. Most of these systems are experimental prototypes that have 
not yet been used in practice. However, these prototypes have shown that expert 
and knowledge-based systems are applicable in many areas of the construction 
industry. As Levitt points out [63, p. 107]: 

The extent and breadth of work already completed, under way, or in the 
early conceptual stages, indicates that many researchers and practitioners 
in the construction industry see expert systems as offering new and poten­
tially valuable capabilities to support decision-making in the industry. 

These efforts are motivated by the desire to improve the efficiency of the con­
struction planning and monitoring processes. They provide tools to assist in 
solving problems (e.g., scheduling generation, site layout, estimating) for which 
no tools exist or where algorithmically-based programs are inadequate and in­
effective. 

A number of prototype knowledge-based systems also have been developed 
for manufacturing process planning [54, 106]. Here again the tasks are 
knowledge-intensive and conventional tools have not met the needs of the 
manufacturing community. In addition, work in the manufacturing domain is 
motivated by the need to link computer-aided design systems with computer-
aided manufacturing systems. Preliminary results indicate that ΑΙ-based solu­
tions will succeed in producing capable and effective management and produc­
tion planning aids. 

As noted, there are similarities between construction project planning and 
manufacturing process planning. Developing knowledge-based systems in one 
area can be beneficial to system-building efforts in the other areas as the cross-
fertilization between the domains can improve the development of process plan­
ning tools. Concepts, problems, issues, solutions, etc., from one area lead to a 
new way of examining, characterizing and solving problems in the other areas. 
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Because use of the knowledge-based methodology requires critical examination 
and formulation of knowledge, concepts, solution structure, etc., the potential 
for synergistic interactions between the different domains is enhanced through 
the use of the knowledge-based approach. 

Thus, the justifications for the application of a knowledge-based methodol­
ogy in developing process planning systems are: 

• process planning is knowledge-intensive; 
• knowledge-based systems provide a practical means for representing and 

using process planning knowledge; 
• knowledge-based approaches will yield needed tools which can improve the 

practice of process planning; 
• it has been shown that knowledge-based systems for process planning are 

feasible; and 
• developing knowledge-based tools in one process planning domain (e.g., 

construction) provides valuable experience and information which can be 
used in developing expert systems in other process planning domains (e.g., 
parts manufacturing). 

1.4 PLANEX: A Knowledge-Based System for 
Process Planning 

Given the problems with existing tools for process planning, the motivations for 
developing improved tools, and the justifications for investigating a knowledge-
based approach, translating these issues and concepts into an operational system 
is still difficult. Design and development issues to consider include: 

• the scope of the tool (e.g., narrow and specific to one domain or general-
purpose and domain-independent); 

• the role of the tool (e.g., an autonomous program, a user assistant or an 
integrated problem-solving environment); 

• the problem-solving approach (e.g., a generative planner or one which selects 
and modifies standard plans); 

• the planning strategy (e.g., work-centered planning or activity-centered 
planning); 

• the overall structure and architecture of the system; and 
• the validation and maintenance of the system. 

These general characteristics along with a myriad of more detailed features 
characterize the structure and design of a process planning system. 

PLANEX is but one alternative for developing a knowledge-based process 
planning system. It is a generic, domain-independent knowledge-based ar­
chitecture for process planning in construction and manufacturing. It is a 
generative planner, and is designed to function as a user assistant. 
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The general characteristics of the PLANEX architecture can be described in 
terms of the components of the system and how they are used in process plan­
ning. 

• All the information relevant to the planning process is stored in the form of 
objects2. Stored information includes design components, process activities 
and resources. The objects are organized into representational structures, and 
an object may be a part of one or more of these structures. 

• Process planning knowledge is represented in sets of one or more rules in 
Knowledge Sources (KSs). A knowledge source resembles a decision table 
and is implemented as a context object. Rules in a knowledge source may 
reference objects and values computed by other knowledge sources. 
Knowledge representation is uncoupled from the operators which use the 
knowledge. Knowledge sources are elements of representational structures, 
permitting knowledge to be hierarchically structured with respect to impor­
tance and represented at different levels of abstraction. 

• Process planning tasks such as technology choice or activity duration estima­
tion are performed by domain operators. Knowledge sources provide the 
planning knowledge needed by a domain operator. Using representational 
structures, domain operators can be organized into layers, creating a structure 
similar to that of MOLGEN (see p. 30). Domain operators are implemented 
as procedural functions and perform the following steps: 

Step 1 . Identify the knowledge source to be evaluated. For domain operators 
which are purely algorithmic, evaluation of a knowledge source is 
not required. 

Step 2. Evaluate the knowledge source using the KNOWLEDGE SOURCE 
EVALUATOR (KSE). Knowledge source evaluation may be recursive, 
or may require the evaluation of auxiliary procedures. Evaluation 
yields a list of results. 

Step 3. Store the results in the appropriate context objects. 
Step 4. Store the name of the knowledge source which was evaluated. 

• Declarative control information describing a domain operator is stored in a 
Domain Operator Schema (DOS). This control information is expressed in 
terms of the data required (preconditions) and the data produced (effects) by 
the operator. Declarative control information provides modularity and per­
mits operators to be unilaterally added or changed. 

• An agenda schema contains dynamic state information generated during plan­
ning. State information used in control includes: (1) the goals the system is 

2 An object is often called a schema and is implemented as a frame. In this work, these terms are 
interchangeable. 
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trying to achieve; (2) the pending domain operators; (3) precedence infor­
mation used to sequence the pending operators; and (4) the changes in a 
context object introduced by executing a domain operator. 

• Control of the planning process is provided by four algorithmic control 
operators which use the information in the domain operator schémas and the 
agenda schema3. Control operators are used to: (1) execute domain operators 
in an opportunistic manner; and (2) build hierarchical, strategic meta-plans 
which control the planning process in a manner similar to AB STRIPS (see 
p. 20). The four control operators are: 

• the Forward Propagation Operator (FPO) which identifies, on the basis of 
changes in context objects introduced by other domain operators, those 
domain operators that may be executed; 

• the Backward Search Operator (BSO) which finds sequences of domain 
operators that may be used to achieve a goal; 

• the Network Interpretation Operator (ΝΙΟ) which determines domain 
operator precedences on the basis of their preconditions and effects; and 

• the Domain Operator Executor (DOE) which executes domain operators. 

• Overall control is provided through the CONTROL PANEL. The CONTROL 
PANEL is a user interaction mechanism which provides capabilities to execute 
a specific control operator or to change the information stored in the agenda. 

PLANEX includes components used to create and update knowledge sources, and 
a set of user interface utilities. As described below, the system is operational 
and has been used to build several process planners. 

1.5 Development and Use of PLANEX 
PLANEX, like most complex knowledge-based systems, has gone through several 
cycles of development and refinement. Development alternated between con­
ceptualization and implementation. The initial work was aimed at developing a 
specialized system for construction project planning: the generation of work 
elements, activities, precedences among activities, resource requirements and 
task durations, coupled with project scheduling. As the work proceeded, it 
became apparent that the evolving system architecture was applicable to a 
variety of domains. 

Developing a system design without experience and experimentation in 
developing a knowledge-based application in the construction domain is dif­
ficult if not impossible. Thus, an initial prototype limited to excavation planning 

3 Goals, object changes, operator preconditions and operator effects are expressed in terms of data 
existence, not in terms of data values. 
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was developed. This first implementation was in LISP on general-purpose 
workstations. The goal was to explore the necessary concepts and fundamental 
characteristics of a more complete system for construction project planning. 

Based on this first prototype, the system architecture of PLANEX was 
developed. The first version of CONSTRUCTION PLANEX utilized the concepts 
and design philosophy of this initial system architecture. This version of 
CONSTRUCTION PLANEX was capable of planning the excavation and structural 
erection of low- to mid-rise concrete-framed office buildings. The system was 
developed in COMMON LISP and KNOWLEDGE CRAFT® on a TEXAS 
INSTRUMENTS EXPLORER™. It took advantage of the frame-based programming 
environment provided by KNOWLEDGE CRAFT and the user interface tools 
provided by the EXPLORER development environment. At this point in the 
development process, a separate PLANEX architecture did not exist, nor was it 
fully evident when work on CONSTRUCTION PLANEX began that the evolving 
system design was applicable to other domains, although the analogies between 
construction and manufacturing process planning had been considered from the 
beginning. As the work proceeded, the possibility of refining the system into a 
domain-independent framework emerged. 

The next step in the development process was the refinement and modifica­
tion of CONSTRUCTION PLANEX to yield the generic, domain-independent 
process planning model described in Chapter 3 and the knowledge-based system 
architecture of PLANEX presented in Chapter 4 . The implementation environ­
ment remained COMMON LISP and KNOWLEDGE CRAFT on a TEXAS 
INSTRUMENTS EXPLORER. This first complete implementation of the domain-
independent PLANEX architecture was used to implement HARNESS PLANEX, 
which plans the manufacturing of automotive electrical wire harnesses (see 
Chapter 7); EXCAVATION PLANEX, which plans the excavation of building foun­
dations by robotic excavators; and to reimplement CONSTRUCTION PLANEX, ex­
tending it to handle both concrete and steel-frame buildings (see Chapter 6 ) . 
The implementations of CONSTRUCTION PLANEX and HARNESS PLANEX have 
been the most extensive tests of the PLANEX architecture to date. 

This implementation of PLANEX includes the KNOWLEDGE SOURCE 
ACQUISITION MODULE, used to acquire the domain-specific process planning 
knowledge used by the application systems (see Section 4 . 4 . 1 ) . The 
KNOWLEDGE SOURCE ACQUISITION M O D U L E is a stand-alone process imple­
mented in KNOWLEDGE CRAFT and COMMON LISP on an EXPLORER. It also 
includes the REPORT GENERATOR that can format and output a variety of reports, 
as described in Section 4 . 4 . 4 . The REPORT GENERATOR is also implemented in 
COMMON LISP on an EXPLORER. 

CONSTRUCTION PLANEX includes GANTT, an interactive scheduling system 
described in Section 4 .4 .2 . GANTT is implemented in COMMON LISP and 
KNOWLEDGE CRAFT on an EXPLORER. In addition, CONSTRUCTION PLANEX 
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includes ANIMATOR, an animation system which is used to illustrate the results 
of the project planning process (see Section 4 . 4 . 5 ) , and INPUT GENERATOR, a 
modeling system which simplifies the process of inputting the description of the 
building as required for the planning process. Both of these programs are 
implemented in C on a SILICON GRAPHICS IRIS Workstation which is linked to 
the EXPLORER via a local area network. Details of the design and use of these 
components is included in the CONSTRUCTION PLANEX documentation [ 1 1 6 ] . 
CONSTRUCTION PLANEX has also been incorporated into the INTEGRATED 
BUILDING DESIGN ENVIRONMENT (IBDE) [ 3 2 ] , a vertically-integrated set of 
knowledge-based systems for the design of buildings (see Section 6 . 3 . 2 ) . 

The architecture underwent another refinement and reimplementation. The 
major effort in this cycle was to refine the concept of a domain-independent 
system and to translate PLANEX entirely into COMMON LISP. The resulting 
implementation has been ported to a number of hardware platforms including 
the IBM RT P C ® , and IBM PC/AT®, and a Sun Workstation®. CONSTRUCTION 
PLANEX has been reimplemented using this COMMON LISP version of PLANEX. 
To maintain device independence, this implementation is based on a glass-tty 
(character-oriented) model of user interaction and thus does not include the 
graphical interactive scheduling system or the animation subsystem. This ver­
sion of CONSTRUCTION PLANEX produces activity plans that are used as input to 
commercial scheduling packages and has been integrated with a PC-based 
scheduling system. In addition, in the P C environment, a version of the 
KNOWLEDGE SOURCE ACQUISITION MODULE has been implemented using 
LOTUS 1-2-3®. 



Process Planning 
and Scheduling 

A process plan for construction or manufacturing is the result of a complex 
cognitive process involving many decisions. Developments in several areas 
have helped the planner deal with various parts of the process. For example, 
statistical analysis may be used to estimate activity durations, shortest path 
algorithms can be helpful in scheduling start times for activities, and bottleneck 
assignment models may be used to determine which resources should be as­
signed to specific tasks. 

In addition to the advances in mathematical modeling, there have been 
developments related to the general problem of planning. The process planning 
problem involves identifying a set of actions that will achieve a specific goal. 
Research in the areas of problem-solving and cognitive psychology, automated 
planning models, and knowledge-based expert systems has contributed to our 
understanding of the planning problem, but these general methodologies must be 
augmented with considerable domain-specific knowledge in order to address 
practical process planning applications. 

In this chapter, three approaches to process planning and scheduling are 
reviewed: (1) classical AI plan formulation systems; (2) optimization models for 
scheduling; and (3) knowledge-based aids to planning tasks. Although 
developed in distinctly different fashions, these different approaches are not 
exclusive but can be complementary and mutually supportive. Moreover, any 
one approach is unlikely to be sufficient for practical construction and manufac­
turing process planning. The planning architecture PLANEX incorporates 
methods and procedures originally developed for these three approaches. 

The next two sections focus on the theory of process plan formulation and 
task scheduling. The third section provides an overview of existing process 
planning models and methods for construction and manufacturing. 

13 
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2.1 Plan Formulation with AI Planners 
Planning has been an active research area in AI for more than twenty years. 
Early planning systems focused on the formulation of plans to be executed by 
robots. Their applications dealt with problems of stacking blocks on a table or 
moving objects from room to room. Most of these planning systems were 
written in LISP or in other general-purpose languages. Later, more ambitious 
systems incorporated developments from other areas of AI. In particular, con­
cepts from expert systems have influenced the development of many recent 
ΑΙ-based planners. Some planning expert systems have been successfully ap­
plied in domains such as the generation of plans for genetic experiments and the 
formulation of plans for manufacturing products [91]. 

One method of reviewing previous work on ΑΙ-based planners is to classify 
them with respect to the different issues involved in the planning process. An 
example of such a classification is the very concise categorization of AI planners 
provided by Tate [102] with respect to these six dimensions: 

• Search space control—How is the solution space represented and what are the 
search mechanisms used to obtain a solution? 

• Hierarchy and abstraction levels—How are problem-solving goals 
represented at different levels of detail? 

• Goal ordering and interaction detection and correction—What approaches are 
used for solving several goals simultaneously? 

• Planning with conditionals and iterators—How are conditionals or process-
constrained relationships relationships within a plan handled? 

• Time and resource handling—How are time and resource constraints dealt 
with during the plan formulation process? 

• Domain representation—What are the appropriate models for the problem-
solving operators and constraints? 

A deficiency of this classification scheme is that many AI planners, especially 
the most recent ones, make contributions to several of these categories because 
these planners use multiple search and representational strategies. 

An alternative method for reviewing AI planners is to classify them as 
general-purpose or domain-dependent planners. However, this classification 
seems inappropriate for several reasons. First, although recent planners contain 
significant knowledge of their application domain, they embody concepts that 
are applicable to any domain. Second, the applications of general-purpose 
planners such as NOAH [84] required a domain-dependent description of the 
problem world and operators. Finally, some knowledge-intensive planners in­
corporate concepts of early general-purpose systems like NOAH. 

A third alternative is to list AI planners chronologically. However, this type 
of review is deficient because it does not group the systems according to their 
common features. 
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AI PLANNER TYPE OF PLAN ARCHITECTURE CLASSIFICATION 
(this review) 

STRIPS Linear Simple Linear 
ABSTRIPS Linear Simple Linear 
INTERPLAN Linear Simple Linear 
NOAH Nonlinear Simple Nonlinear 
NONLIN Nonlinear Simple Nonlinear 
DEVISER Nonlinear Simple Nonlinear 
MOLGEN Nonlinear Layered Meta Planner 
OPM Nonlinear Blackboard Blackboard 

Figure 2-1. Classification of Plan Formulation Models 

The Classification of AI planners used in this review is shown in Figure 2 - 1 . 
Some of the more interesting AI planning models are classified with respect to 
two criteria: 

• the type of plans produced by the model; and 
• the overall characteristics of the system's architecture. 

The first criterion is used to classify planners as linear or nonlinear. Linear 
planners produce sequences of ordered actions. Nonlinear planners produce 
networks of partially ordered actions. While this terminology of linear and 
nonlinear plans may be confusing to mathematically inclined readers, it is 
widely used in the AI planning literature. The second criterion is used to 
distinguish between different architectures. Some systems are implemented 
using a primitive or simple architecture while other systems use more elaborate 
structures in which actions are organized into layers or into regions of a 
blackboard. 

2.1.1 Linear Planners 

Planning systems differ in the manner in which they define the solution search 
space. In some planning systems, the solution space is represented as a network 
of nodes, where each node represents a complete state in the problem world. 
Nodes are connected by arcs representing actions that transform one state into 
another. Early AI planners conceived of planning as a heuristic search process 
of this solution space [29, p. 17] which can be summarized as: 

Given: An initial situation represented as an object. 
A desired situation represented as an object. 
A set of operators. 
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Find: A sequence of operators that will transform 
the initial situation into the desired situation. 

Figure 2-2 illustrates this definition of planning. Planning proceeds by search­
ing a state tree for a path that leads from the root node to a leaf node represent­
ing the desired state. The final path chosen is the plan or sequence of operators, 
which when applied to the initial state will achieve the desired goal. Each link 
in Figure 2-2 represents a specific operator application. 

Numerous techniques exist for heuristically searching a state tree. A very 
simple planning system would explore branches of the tree without knowledge 
of the manner in which the operators contribute to solving the problem. The 
difficulties inherent in this kind of a simple planning system are explained by 
Fikes and Nilsson [33, p. 192]: 

In a very simple problem-solving system, we might first apply all of the 
applicable operators to the initial world model to create a set of successor 
models. We would continue to apply all applicable operators to these 
successors and to their descendants (say in a breadth-first fashion) until a 
model was produced in which the goal formula was a theorem. However, 
since we envision uses in which the number of operators applicable to any 
given world model might be quite large, such a simple system would 
generate an undesirably large tree of world models and this would be 
impractical. 

In effect, a simplistic state tree generation results in an extremely large search 
tree which is computationally intractable. 

During the development of GPS, the General Problem Solver, Ernst and 
Newell [29] developed the general technique called means-ends analysis to 
guide the search. Some of their findings can be summarized as: 

• At any point in the planning process, analyzing the differences between the 
desired situation (ends) and the current situation is used to select a desirable 
operator (means) from those that are applicable. A desirable operator is one 
which reduces some of these differences. 

• Problem-solving techniques may be embodied in a set of methods that are 
applied to achieve particular goals. 

• Subproblems may be generated by these methods in an attempt to solve the 
problem. 

The development of GPS influenced the further development of AI planners. 
STRIPS (STanford Research Institute Problem Solver) [33] is capable of 
generating linear plans by reasoning about the differences between the desired 
and the current states of the world. The search strategy of STRIPS is described 
by Fikes and Nilsson [33, p. 193] as: 
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Figure 2 - 2 . Planning by Searching a Tree of States 

. . . we have adopted the GPS strategy of extracting "differences" between 
the present world model and the goal and of identifying operators that are 
"relevant" to reducing these differences [ . . . ] . Once a relevant operator 
has been determined, we attempt to solve the subproblem of producing a 
world model to which it is applicable. If such a model is found, then we 
apply the relevant operator and reconsider the original goal in the resulting 
model. 

The search of the solution space is performed in a depth-first manner with the 
possibility of backtracking. This implies that a particular sequence of operators 
is pursued until the overall goal or a dead-end is reached. Backtracking is used 
after reaching a dead-end situation in which no new operators can be found to 
improve the state. Backtracking reorders the list of goals and explores another 
branch of the state tree. 

The behavior of STRIPS will be illustrated with the three-block problem of 
Figure 2 -3 . In this domain, the state of the world is described in terms of two 
conditions or literals: 

1. Clear top X: This condition is true if there are no blocks on top of block X. 
2. On X Y: This condition is true if block X is on top of block Y. 

The available operators for changing the positions of the blocks are: 
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PLAN 

Figure 2-3. Example of a Three-Block Problem 

Precondi t ions Operator E f fec ts 

(on y χ) 
(cleartop y) 

(clear x) (cleartop x) 
-(on y χ) 

(cleartop χ) 
(cleartop y) 

(puton χ y) (on x y) 
-(cleartop y) 

Figure 2-4. Description of Operators for the Blocks-World 

1. Clear X: Take any block from the top of block X and put it on the table. 
2. Puton X Y: Put block X on top of block Y. 

The preconditions and the effects of the operators are shown in Figure 2-4. 
Thus, the problem of Figure 2-3 becomes: 

Given: 

Find: 

{(one a) (cleartop b) (cleartop c)} 

A sequence of operators clear and puton that will achieve 
the goals {(on a b) (on b c) (cleartop a)} 

STRIPS solves this problem as shown in Figure 2-5 : 

1. First, it tries to achieve goal (on ab). The only operator that produces this 
effect is (puton ab). In order to apply this operator, the preconditions 
(cleartop a) and (cleartop b) must be satisfied. 

2. The system introduces the subgoal (cleartop a) and tries to achieve this 
subgoal. The only operator that produces this effect is (clear a). 
The operator is applied, leading to the state labeled "node 1". The 
subgoal (cleartop a)\s removed from the list of goals. 
The system analyzes the initial goals from the new state. It again tries to 
achieve the goal (on a b). This may be accomplished by applying the 
(puton ab) operator. 
The operator is applied, resulting in the state labeled "node 2" . The system 
now tries to achieve the subgoal (on b c). The only applicable operator is 
(puton be). However, in order to apply this operator, its preconditions 
(cleartop b) and (cleartop c) must be satisfied. 

3. 

5. 
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Achieve 
(on a b) 
(on b c) 

Achieve 
(on a b)> 

ROOT NODE 

_b_ 

(puton b c) 

Achieve 
(cleartop a) 

(on a b) 
(on b c) 

(clear a) 

Achieve 
(on a b) 
(on 

Achieve 
(on b c) 

(puton a b) 

1% 0 0 0 _ N O O E 
(puton b c) 

0 Θ NODE 2 
Achieve 
on b c) 

(clear b) 

Achieve 
(on b c) 0 0 0 NODE 3 
(on a b) -

Achieve ι—ι 
(cleartop b) LfJ 

(on b e ) [7 | 

(puton a b) 

Achieve 
(on a b) 

^ (puton b c) 

Ε 
B E NODE 4 

(puton a b) 

NODE 5 
Final State 
Reached 

PLAN 

(clear a) 
(puton a b) 
(clear b) 
(puton b c) 
(puton a b) 

Figure 2-5. STRIPS' Solution to the Three-Block Problem 
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6. The system introduces the subgoal (cleartop b) and identifies that the only 
operator that produces this effect is (clear b). 

7. When this operator is applied, it produces the state labeled "node 3 " . The 
subgoal (cleartop b)is now removed from the list of goals. 

8. Again, the system analyzes the initial goals from the new state. Both final 
goals are not met. However, this time STRIPS tries to achieve the first 
goal (onb c). The only operator that produces this effect is (puton b c). 

9. When this operator is applied, it produces the state labeled "node 4" . The 
only unmet goal is (on a b). This may be satisfied by applying operator 
(puton a b). 

10. Finally, the application of operator (puton ab) leads to the desired situa­
tion. 

STRIPS evolved into ABSTRIPS [84], a planner in which the important con­
cept of planning at different levels of abstraction was introduced. The motiva­
tion for planning hierarchically is explained by Sacerdoti [84, p. 412]: 

A superior approach to planning would be to search first through an 
abstraction space, a simplifying representation of the problem space in 
which unimportant details are ignored. When a solution to the problem in 
the abstraction space is discovered, all that remains is to account for the 
details of the linkup between the steps of the solution. This can be 
regarded as a sequence of subproblems in the original problem space. If 
they can be solved, a solution to the overall problem will have been 
achieved. If they cannot be solved, more planning in the abstraction space 
is required to discover an alternative solution. 

In ABSTRIPS, operators from the different levels of abstraction differ only in 
the number of conditions or literals they posses. An abstract operator has fewer 
preconditions and effects than a detailed operator. In order to distinguish 
abstraction levels, literals are ordered using a criticality number. In higher 
levels of abstraction, only the literals with high criticality numbers are con­
sidered. This allows the system to produce plans at different levels of abstrac­
tion. 

ABSTRIPS was able to produce plans more efficiently than STRIPS. 
However, the system required that the user order the literals by assigning them a 
criticality number. A different approach to reduce the search effort of STRIPS 
was developed in INTERPLAN [99, 100]. INTERPLAN analyzes the inter­
actions among the different goals before attempting to achieve any of them. 
INTERPLAN goals are ordered with respect to the time interval over which they 
should remain true. Interactions between goals are recorded in a matrix called 
the ticklist. Ticklists provide INTERPLAN with a simple mechanism for back­
tracking when prior decisions lead to a dead-end. 
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An example of the use of ticklists in INTERPLAN for the solution of the 
three-block problem of Figure 2-3 is shown in Figure 2-6 (adapted from [100]). 
The first steps in INTERPLAN's solution are: 

1. It checks whether goal (on a b) is satisfied in state 1. The goal is not 
satisfied; this is indicated with the cross 1 label on the ticklist. 

2. The only operator that produces the goal is (puton ab), with preconditions 
(cleartop a) and (cleartop b). A daughter ticklist is created below the 
original ticklist. 

3. INTERPLAN now checks if subgoal (cleartop a) is satisfied in state 1. It is 
not and the system indicates this with cross 2. 

4. The only operator that produces subgoal (cleartop a) is (clear a). This 
operator is immediately applied. 

5. When operator (clear a) is applied, the state of the world changes from 
state 1 to state 2. 

6. In state 2, subgoals (cleartop a) and (cleartop b) have been satisfied and 
this situation is indicated with ticks 3 and 4. 

7. INTERPLAN applies the operator (puton a b) in state 2 and this changes 
the position of the blocks to that of state 3. 

8. The system reexamines the original ticklist and uses tick 5 to indicate that 
the final goal (on a b) is satisfied in state 3 and uses cross 6 to indicate that 
goal (on b c) is not satisfied. 

9. The only operator that produces the goal (on b c) is (puton b c), with 
preconditions (cleartop b) and (cleartop c). A daughter ticklist is created 
below the original ticklist, in which the satisfied goal (on ab) is considered 
protected. 

10. The system uses tick 7 and cross 8 to indicate the protected goal (on a b) 
and the unsatisfied subgoal (cleartop b). 

11. The only operator that satisfies subgoal (cleartop b) is (clear b). This 
operator is immediately applied. 

12. When operator (clear b) is applied, the state of the world changes from 
state 3 to state 4. 

13. In state 4, subgoal (cleartop b) is satisfied and this is indicated with tick 9. 
However, the protected goal (on a b) is violated. This is indicated with 
cross 10. 

14. The system reexamines the first ticklist. 

The remaining steps of the solution are not shown in Figure 2-6. To avoid the 
protection violation, INTERPLAN reorders the final goals and first satisfies 
goal (on b c) by applying operator (puton b c). Finally, it satisfies goal (on a b) 
with the application of operator (puton a b). The resultant final plan is: 
(clear a) —» (puton b c) —> (puton a b). 
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STATE (on a b) (on b c) 
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ΘΘ X 1 

Η 
ΘΘ y 5 X 6 
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(puton a b) S 
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Figure 2-6. INTERPLAN's Ticklists for the Three-Block Problem of Figure 2-3 
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2.1.2 Nonlinear Planners 

The introduction of nonlinear planners in the 1970's marks an important change 
in the development of AI planning models. The concept of a plan as linear 
sequences of actions was modified as stated by Sacerdoti [85, p. 206]: 

Although the execution of a plan is essentially linear, a plan itself may be 
thought of as a partial ordering of actions with respect to time. 

This is precisely the difference between linear and nonlinear planning, as noted 
by Chapman [12, p. 2]: 

The important idea, due to Sacerdoti, is that a plan (at least while it is 
being constructed) does not have to specify fully the order of execution of 
its steps. In other words, a plan is only a partial order of steps; this is what 
is meant by nonlinear planning. 

NOAH (Network Of Action Hierarchies) [86] uses a model called the 
procedural net in planning. A procedural net is a network of nodes, each of 
which represents actions at particular levels of abstraction. Similar to previous 
planning models, each action (node) has an associated list of preconditions that 
must be true to execute the action and a list of effects that are added to or deleted 
from the world model when the action is executed. In addition to these lists, 
nodes contain a body that specifies more detailed actions used to expand the 
node. 

In NOAH, the planning process consists of first creating a small procedural 
net in terms of abstract actions and then expanding it repeatedly until the plan 
has been expressed in terms of simple operations or primitives. NOAH per­
forms three tasks: 

1. Expand each node of the procedural net. Each node is expanded into a set 
of daughter nodes, using the information contained in the body of the parent 
node. Nodes whose preconditions are already satisfied in the world model 
are copied as phantom nodes, while other nodes are expanded as goal nodes. 

2. Apply critics to the new detailed procedural net. The main use of the critics 
is to avoid conflicts and redundancies in the new procedural net. An ex­
ample of a critic is the resolve conflicts critic that is used to reorder actions 
when a precondition of a node is negated by a node in a parallel branch of 
the procedural net. 

3. Update the world model by adding and deleting objects. The add and delete 
lists of the new nodes in the expanded procedural net are used to update the 
world model. 

These three tasks are repeated until the plan has been decomposed into primitive 
actions and the plan is complete at the most detailed level. 



24 Process Planning and Scheduling 

Level 1 Achieve (on a b) (on b c) 

Level 2 

Achieve (on a b) 

Achieve (on b c) 

Level 3 
( B e f o r e Cr i t ics ) 

Ach ieve (c leartop a) 

J H 
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Figure 2-7. NOAH's Solution to the Three-Block Problem of Figure 2-3 

An example of the application of NOAH to the three-block problem of 
Figure 2-3 is shown in Figure 2-7 (adapted from [85]). The first steps of 
NOAH's solution are: 

1. At level 1, the procedural net consists of a single node that indicates the 
conjunction of goals to be satisfied: (on a b) and (on b c). 

2. At level 2, NOAH creates a network with two parallel branches with nodes 
representing the goals to be satisfied. Node S and / are dummy nodes that 
indicate a Split and Join of the network. 

3. The system identifies operators (puton ab) and (puton b c) as possible 
means to achieve the final goals. Each operator and its preconditions are 
used to expand the goals of level 2 into the more detailed procedural net of 
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level 3. Goal (on a b) is expanded into the operator (puton ab), the 
subgoal (cleartop a) and the phantom node (cleartop b). Goal (on b c) is 
expanded into the operator (puton be), and the phantom nodes (cleartop b) 
and (cleartop c). Conditions (cleartop b) and (cleartop c) are represented as 
phantom nodes because they are true in the initial world model. 

4. The system applies critics to the procedural net. NOAH identifies that 
operator (puton ab) negates the phantom node (cleartop b) in the branch 
corresponding to operator (puton be). It modifies the topology of the 
procedural net and establishes a precedence relationship that specifies 
operator (puton b c) precedes operator (puton a b). The revised procedural 
net is shown at the bottom of Figure 2-7. 

The last step in NO AH's solution is not illustrated in Figure 2-7. NOAH 
proceeds to expand the unsatisfied goal (cleartop a) and identifies the operator 
(clear a) with preconditions (on c a) and (cleartop c) as a means to achieve the 
goal. Then the system recognizes that operator (puton be) negates the precon­
dition (cleartop c) and it establishes a precedence relationship that specifies 
operator (clear a) precedes operator (puton be). The final plan is a network 
with three precedences: (clear a) —» (puton b c), (puton b c) —» (puton a b) and 
(clear a) -> (puton ab). 

NONLIN [101] is another Ν ON LIN ear planner that was created as an evolu­
tion of INTERPLAN. In NONLIN, each action is described by a task schema 
using a Task Formalism. Task schémas contain information about the effects of 
an action, the preconditions that have to hold before the action is performed, and 
the manner in which the action is expanded into lower-level actions. Conditions 
are classified into the following categories: 

• Unsupervised Conditions, which must exist before a task is finished but are 
the responsibility of other actions; 

• Supervised Conditions, which must exist before a task is finished and are the 
responsibility of the action being considered; and 

• Use-When Conditions, which are static in the sense that they do not depend on 
any action. However, they must hold before an action is executed. 

This classification of conditions enriches the declarative representation of tasks 
and improves the problem-solving behavior of the planner. NONLIN uses the 
ticklists of INTERPLAN more effectively and is capable of solving problems 
which NOAH cannot solve. 

NONLIN has been applied in several different domains. One application of 
particular interest is the formulation of construction project networks. NONLIN 
expands aggregate project networks into detailed networks using knowledge 
stored in task schémas. The input to the system is an aggregated action such as 
erect structure that NONLIN expands repeatedly. The output is a network of 
activities that do not require further expansion. NONLIN does not distinguish 
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ACTSCHEMA DECOR 
PATTERN «DECORATE» 
EXPANSION 
1 ACTION «FASTEN PLASTER AND PLASTER BOARD» 
2 ACTION «POUR BASEMENT FLOOR» 
3 ACTION «LAY FINISHED FLOORING» 
4 ACTION «FINISH CARPENTRY» 
5 ACTION «SAND AND VARNISH FLOORS » 
6 ACTION « P A I N T » 
ORDERINGS 1 >3 6 >5 SEQUENCE 2 TO 5 
CONDITIONS 

«ROUGH PLUMBING INSTALLED» AT 1 
«ROUGH WIRING INSTALLED» AT 1 
«AIR CONDITIONING INSTALLED» AT 1 
«DRAINS INSTALLED» AT 2 
«PLUMBING FINISHED» AT 6 
«PLASTERING FINISHED» AT 3 FROM 1 
«BASEMENT FLOOR LAYED» AT 3 FROM 2 
«FLOORING FINISHED» AT 4 FROM 3 
«CARPENTRY FINISHED» AT 5 FROM 4 
«PAINTED» AT 5 FROM 6 

UNSUPERVISED 
UNSUPERVISED 
UNSUPERVISED 
UNSUPERVISED 
UNSUPERVISED 
SUPERVISED 
SUPERVISED 
SUPERVISED 
SUPERVISED 
SUPERVISED 

END; 

Figure 2-8 . NONLIN's Task Formalism for a Construction Activity 

between a construction activity and a component of the design. Figure 2-8 
(adapted from [101]) shows an example of a task schema representing the con­
struction activity ( ( d e c o r a t e ) ) . The schema contains knowledge describing 
how the aggregate activity can be expanded into the network of subactivities 
shown in Figure 2-9. This network is described in the expansion and orderings 
fields of the task schema. The information in the conditions field indicates that 
five unsupervised conditions must exist before the task is finished, and that five 
supervised conditions are created when the activity is expanded. Unsupervised 
conditions are not asserted by the ( ( d e c o r a t e ) ) activity. However, they must 
be satisfied before executing some of the subactivities. For example, the 
( ( d r a i n s i n s t a l l e d ) ) condition has to be satisfied before the ( ( p o u r 
b a s e m e n t f l o o r ) ) subactivity is executed. In contrast, supervised con­
ditions are asserted within the expansion of the activity. For example, the 
( ( p a i n t e d ) ) condition is asserted by the ( ( p a i n t ) ) action, and it must be true 
before the ( ( s a n d a n d v a r n i s h f l o o r ) ) action is executed. 

Another nonlinear planner which followed the initial development of NOAH 
and NONLIN is DEVISER, a system developed by Vere [104] for use in the 
planning and scheduling of an autonomous unmanned spacecraft. DEVISER 
was the first system to consider time constraints in the generation of plans. 
More recent versions of NONLIN have also incorporated time and resource 
constraints during the planning process. In DEVISER, time constraints are used 
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Figure 2-9. NONLIN's Subnetwork for a Construction Activity 

to specify when sets of goals should be satisfied and how long the goal con­
ditions should be preserved. The output of DEVISER is a network with bounds 
for the start times of the activities. To represent these constraints, nodes of the 
network are divided into two major categories: 

• Activities whose realization in time is determined during the planning process. 
Activities are either: (1) Actions that have to be explicitly activated and incor­
porated into the planning network; (2) Events that are triggered spontaneously 
by changes in the state of the world; or (3) Inferences that are propositions 
whose truth changes depending on the value of the variables considered. 

• Scheduled Events whose occurrence is fixed in time regardless of the structure 
of the plan. Scheduled events can be considered additional constraints on the 
planning process. 

Representation of activities in DEVISER is similar to that in NOAH. Each 
activity is described by specifying: (1) Type (action, event or inference); 
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(2) Context, a set of literals representing the preconditions that must be true 
before the activity can be executed and that are not altered by the activity; 
(3) Antecedent, a set of literals representing conditions that will be deleted from 
the world model when the activity is executed; and (4) Consequent, a set of 
literals that will be added the world model when the activity is executed. An­
tecedent and consequent lists resemble the add and delete list of NOAH. Ac­
tivity durations may also be specified; these may be a constant or computed by 
evaluating a function. 

An important feature of DEVISER is that it uses different types of literals to 
describe the world. Literals are either: 

• Ordinary, whose truth is determined by accessing a distributed data store. 
Their value may be changed by the antecedent or consequent part of an 
activity. 

• Procedurally Defined, whose truth is determined by calling a procedure. 
They cannot appear in the antecedent or consequent list of any activity. 

• Functionally Determined, specified as a list in which the rightmost term is a 
function of all the other terms. 

The planning process in DEVISER is very similar to that used in NOAH to 
expand procedural nets. Planning consists of repeating three tasks: 

1. Linking. When the assertions of a node J are satisfied by another node /, a 
link from node / to node / is added to the network, and node J becomes a 
phantom node. This is similar to NOAH's definition of phantom nodes. 

2. Node expansion. When a goal or action cannot be achieved, it is decom­
posed into a set of daughter nodes. The goal's preconditions become goals 
and side effects are added to the assertions of the expanded node. 

3. Conflict detection and resolution. Conflicts between activities in parallel 
branches are identified and resolved by reordering the activities. Conflicts 
must be resolved each time the network is expanded. 

During the planning process, DEVISER ensures that all conditions (context 
and antecedent) of each activity are satisfied throughout the duration of the 
activity. However, the following two cases are of interest: (1) When one of the 
antecedent conditions is deleted immediately after starting the activity; and 
(2) When trigger preconditions are present (they need to be present only when 
an activity is started). To handle these cases, DEVISER decomposes activities 
into two nodes, one representing the start of the activity with a zero duration, 
and another consecutive node representing the execution of the activity. 

Activity start and end times are calculated by assigning a window to each 
activity. A window is a list with three time values for the activity: 
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Type Constraint Description Window Lag 

1 A t t Instantaneous event (t,t,t) 0 
2 Before t Starting in (0,t) (0,nil,t) t 
3 After t Starting in (t,infinity) (t,nil,infinity) infinity 
4 Between tl , t2 Starting in (tl,t2) (tl,nil,t2) t2- t l 
5 Between tl , t2 Starting in (tl,t2) 

best t3 and preferably at t3 (tl,ideal,t2) t2- t l 

Figure 2-10. Time Constraints in DEVISER 

1. Earliest-Start-Time (EST); 
2. Ideal-Start-Time (1ST); and 
3. Latest-Start-Time (LST). 

Lags are computed by subtracting EST from LST. At the beginning of the 
planning process all activities have a window (0,nil,infinity) representing the 
constraint that the start time is positive. The user may specify additional win­
dows for goals and scheduled events. Time constraints that may be specified 
using windows are illustrated in Figure 2-10. As the planning process proceeds, 
activity windows and subgoal windows are computed dynamically. Changes in 
window duration occur when linking activities, expanding nodes or reordering 
activities. Window duration changes are propagated recursively to neighboring 
nodes until the effects of a duration change have been fully propagated through­
out the network. 

DEVISER uses windows to classify preconditions into packages based on 
their time constraints. The set of conditions in a package must be satisfied 
simultaneously by all preconditions included in the package, and must satisfy all 
the time constraints (window specifications). Windows are also used to resolve 
conflicts and to order goals. The ideal time of an activity is never modified; it is 
used to order the activities should there be a " t ie" between alternatives. 

DEVISER generates feasible plans. It is capable of backtracking when the 
earliest-start-time of an activity is greater than its latest-start-time. However, it 
does not contain any mechanism for relaxing constraints if all constraints cannot 
be satisfied. 

2.1.3 Meta-Planners 
Meta-planners represent a different approach in the development of AI-based 
planning models. These systems are concerned with the order in which the 
different planning operations are executed, rather than with the successive ex­
pansion of plan actions. The distinction between planning operations and plan 
actions was noted by Stefik [95, p. 141]: 
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The decision-making knowledge is organized in a layered control struc­
ture which separates decisions about the planning problem from decisions 
about the planning process. The approach, termed meta-planning, ex­
poses and organizes a variety of decisions, which are usually made im­
plicitly and sub-optimally in the planning programs with rigid control 
structures. 

In meta-planners, planning operators and data structures are divided into layers. 
Operators of a given layer control the execution of operators of the layer im­
mediately below it. In addition, operators of the upper layers are distinct and 
more general than operators in the lower levels. Communication between the 
layers is usually through a message interface. 

MOLGEN (MOLecular GENerator) [94,95] is a meta-planning system 
developed by Stefik to plan genetic experiments. The system generates plans by 
dividing the planning problem into subproblems and analyzing the interactions 
among these subproblems. This behavior is inspired by the means-ends analysis 
technique of GPS. However, MOLGEN incorporates constraint objects to ex­
plicitly represent interactions among subproblems. MOLGEN handles con­
straints through a constraint posting cycle in which the following tasks are 
executed: 

• Constraint Formulation adds constraints to a plan as it is detailed; 
• Constraint Propagation creates new constraints from old constraints in the 

plan; and 
• Constraint Satisfaction finds values for a group of variables that satisfy a 

given set of constraints. 

These tasks are continuously repeated throughout the planning process. 
MOLGEN's planning architecture divides planning operators and planning 

objects into the four layers shown in Figure 2-11 (adapted from [93]). The 
system uses this structure to control the execution of the constraint posting 
cycle. The layers are: 

1. Laboratory Layer. This is the lowermost layer. The operators in this layer 
do not control any other operators. Laboratory operators are activated by 
messages from the design operators. Laboratory operators model modifica­
tions to physical objects such as a gene or a bacterium. Within this layer, 
operators are structured in a two-level hierarchy of abstract and specific 
operators. Four abstract operators exist: (1) Merge combines objects; 
(2) Amplify increases the amount of something; (3) React changes properties; 
and (4) Sort separates something into its components. These operators, 
called the MARS operators, are further refined into specific operators. For 
example, the abstract Merge operator may be refined into the specific 
operators Transform and Screen. 
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INTERPRETER 

Figure 2 - 1 1 . MOLGEN's Layered Structure 

2. Design Layer. The operators in this layer control the execution of the 
operators in the laboratory layer. Objects in this layer do not model physical 
objects, but represent constraints, differences, refinements and tuples. There 
are three types of operators in the design layer: 

a. Comparison Operators are used to evaluate partial solutions. First, 
laboratory goals are examined by comparing objects with their 
prototypes in order to find unusual features. Then predictions are com­
pared with goals to check for mismatches and backtrack if necessary. 

b. Temporal-Extension Operators are used to propose extensions to the 
plan given the actual differences between the state of the system and the 
goals. MOLGEN: (1) proposes operators to reduce the difference by 
asking the MARS operators which of them is feasible; (2) proposes goals 
for these operators; and (3) predicts the results by requesting a one-step 
simulation in the laboratory layer. 

c. Specialization Operators are used to expand operators into more detailed 
ones and to propagate constraints backwards in time. 

3. Strategic Layer. The strategic layer creates and executes design tasks in a 
manner similar to the way the design layer controls the laboratory operators. 
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Only four general strategic operators are used: (1) Focus simulates a design 
task; (2) Resume continues suspended tasks; (3) Guess uses heuristics to 
select a design task; and (4) Undo backtracks when necessary. These 
operators are activated by messages from the strategic-design interface. At 
any point in the planning process, design tasks are either done, failed, 
suspended or canceled. 

4. Interpreter. This is the uppermost layer. The interpreter executes strategic 
operators. 

2.1.4 Blackboard Planners 
Blackboard planners constitute yet a different type of AI planning system. They 
plan by using mechanisms similar to those of the blackboard problem-solving 
framework developed in HEARSAY-II [28]. An example of such a blackboard 
planner is OPM [45], a system developed by Barbara Hayes-Roth for multi-task 
planning problems. Multi-task planning involves selecting and ordering several 
plan tasks from a list of desired tasks. This problem is a special case of the 
general control problem [45, p. 251]: 

The control problem—which of its potential actions should an AI system 
perform at each point in the problem-solving process?—is fundamental to 
all cognitive processes. 

The architecture of OPM is shown in Figure 2-12. The blackboard is a 
global data structure where all solution elements generated during the problem-
solving process are stored. These solution elements are generated by a set of 
independent and cooperative processes called knowledge sources. Knowledge 
sources are independent because they do not directly invoke any other 
knowledge source. They may only influence the behavior of other knowledge 
sources by altering the information stored on the blackboard. In addition, 
knowledge sources are cooperative because they contribute to solve the same 
problem. Knowledge sources have three basic components: 

• Trigger Conditions used to identify those knowledge sources that may be 
helpful at a particular point in the planning process; 

• Preconditions used to impose restrictions on the ability to invoke one of the 
knowledge sources; and 

• Actions used to specify the changes that the knowledge sources make on the 
blackboard. 

When the trigger conditions of a knowledge source are satisfied by events on the 
blackboard, a Knowledge Source Activation Record (KSAR) is created and it is 
introduced into a set of pending KSARs called the To-Do-Set. A KSAR is a 
unique combination of a knowledge source and the objects from the blackboard 
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BLACKBOARD KNOWLEDGE SOURCES 

Trigger 

Figure 2 - 1 2 . OPM's Blackboard Architecture 

used to evaluate the trigger conditions. In each problem-solving cycle, a KSAR 
of the To-Do-Set is selected for execution using a special knowledge source 
entitled Choose-KSAR. When a KSAR is executed, the actions of its associated 
knowledge source are applied to the associated objects in the context. Different 
KSARs for the same knowledge source represent applications of the same ac­
tions to different objects on the blackboard. 

OPM employs two independent blackboards: 

• the domain blackboard, which contains solution elements related to the 
problem, such as plan tasks and task precedences; and 

• the control blackboard, which contains solution elements related to the plan­
ning process, such as problem-solving goals and pending KSARs. 

Each blackboard is organized with respect to plan execution time intervals and 
different levels of plan abstraction. The domain blackboard is divided into four 
levels of abstraction: (1) outcome contains information about which activities 
are included in or excluded from the plan; (2) design stores temporal specifica­
tions for the whole plan; (3) procedure contains sequences of individual tasks; 
and (4) operation contains completely specified activities. 

The control blackboard is divided into six levels of abstraction: (1) problem, 
with the definition of the global problem goals to be achieved; (2) strategy, with 
information about the general sequential plan for solving the problem; (3) focus, 
with definition of local problem goals; (4) policy, with information about the 
global scheduling criteria; (5) To-Do-Set, containing a list of pending KSARs; 
(6) chosen-action, specifying the KSAR chosen to be executed. 

Knowledge sources are also divided into: (1) domain knowledge sources; and 
(2) control knowledge sources. Examples of domain knowledge sources are 
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those responsible for refining an abstract plan into a more detailed one. Ex­
amples of control knowledge sources are those responsible for choosing which 
pending KSAR to execute. 

2.1.5 The Frame Problem 

The previous discussion outlined the characteristics of a number of classical AI 
planning systems. These systems are capable of identifying plans to achieve 
predefined goals in highly restricted planning domains. Before introducing the 
role of optimization methods for planning, it is worthwhile to note a general 
problem that limits the capability of any automated planning, namely how to 
identify the problem state changes as operators are applied. This general iden­
tification problem has been called the frame problem by Brown [9] and McCar­
thy and Hayes [68]. The problem is intimately connected to the practicality of 
making truthful inferences as well as effective plans. When an operator has 
been applied or an inference has been made, the new description of the world 
must reflect the direct changes caused by the operation as well as the changes in 
all the facts derived from the altered situation. 

As a simple example of the frame problem, consider a block containing a 
hole as shown in Figure 2-13 (a). If a horizontal cut is made below the hole, the 
hole is removed (Figure 2-13 (b)). The description of the block should now 
include the fact that both a portion of the block and the hole have been removed. 
However, a different cut would not remove the hole (as in Figure 2-13 (c)). 
Inferring whether or not the hole exists after a cut would be difficult in an 
automated planner. For example, operators in planners such as STRIPS or 
NOAH are defined by the required preconditions and post-operation facts. With 
this simple scheme for defining operations, determining whether or not a hole 
disappears is laborious. 

As operators are applied, one mechanism for recognizing effects is to record 
conditional dependencies. This approach has been generalized as a truth main­
tenance system used to record and maintain all interdependencies among con­
ditions [24, 25, 34]. For example, the existence of the hole in the block 
(Figure 2-13 (a)) depends upon the existence of the block itself. If a portion of 
the block disappears the precondition for the hole's existence must be 
reexamined. 

The explicit representation of dependencies among conditions permits 
dependency-directed backtracking [92]. As a particular condition is altered, the 
conditions or facts derived can be identified. Subsequent operators and searches 
can focus on these alterations. However, identifying the dependencies among 
conditions typically requires considerable knowledge. For example, determin­
ing whether any or all of the hole remains in a block after a cut (Figure 2-13) 
requires considerable geometric analysis. 
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a b c 
Block with Hole Horizontal Cut Vertical Cut 

Removing Hole Leaving Hole 

Figure 2-13. A Block with a Hole and Cuts 

Coping with the frame problem is a major concern in the continuing develop­
ment of classical AI planners. For example, the planning system SIPE (System 
for Interactive Planning and Execution Monitoring) [112] includes: 
(1) "resource reasoning" to insure that operators using common resources are 
ordered correctly; (2) a "truth criterion" which employs MOLGEN-type con­
straints (see p. 30) and domain knowledge to avoid at least in part the frame 
problem; and (3) explicit and (presumably) comprehensive representation of 
operator preconditions and effects as in STRIPS (see p. 17). Nevertheless, these 
heuristic methods cannot guarantee that the resulting plans will overcome the 
frame problem and produce workable plans. Coupled with the need for exten­
sive domain knowledge, this observation motivates including extensive user 
interaction and review mechanisms in PLANEX. 

2.2 Project Scheduling with Optimization Methods 
In planning the execution of a project, it is important to identify both the ac­
tivities to be executed and the precedence restrictions among these activities. 
However, formulating a network of activities is only one of the tasks performed 
by planners. There are other questions that must be answered before a project is 
executed. For example: 

• what type of resources (labor, equipment and materials) should be assigned to 
the activities? 

• how much of these resources should be used by each activity? 
• when should each activity start? 

Usually there are many possible answers to these questions. During the schedul­
ing process, the planner has to select a set of answers that seems appropriate. 
After this process is completed, the set of decisions made by the planner are 
reflected in a project schedule that is used to monitor and control the execution 
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of the project. Fortunately, there are numerous algorithmic procedures to aid in 
scheduling. The capabilities of these procedures motivates their inclusion in the 
PLANEX architecture. 

The computation of project schedules has evolved from the early scheduling 
models such as the Critical Path Method (CPM) and the Project Evaluation and 
Review Technique (PERT) into more sophisticated models that incorporate ad­
ditional aspects of the scheduling problem [50, 111]. Project managers have 
recognized the advantages of using some of these models to assist them with the 
scheduling process. Today there are several commercial packages that assist 
planners in preparing and maintaining project schedules [2, p. 231]: 

Microcomputer-based project management software systems have evolved 
from simple packages focusing on basic capabilities, such as Gantt-charts, 
to sophisticated systems offering resource management, progress report­
ing, and superior input and output interfaces. The commercially available 
packages are becoming increasingly easier to use and more appealing 
visually. 

Models for project scheduling can be divided into two categories: 

• deterministic models which assume activity durations are fixed or are ex­
pressed as a function of the cost incurred in completing the activities; and 

• probabilistic models which assume activity durations are stochastic variables 
with particular probability distributions. 

This distinction is important for several reasons. The information obtained from 
deterministic models is different from that provided by probabilistic models. 
Deterministic models are usually applied to compute schedules that minimize 
total completion time or total budget. Probabilistic models are used to estimate 
the total completion time of a project or to simulate the execution of a project. 
For the most part these models have evolved independently [111]. There are 
some models that incorporate uncertainties into the CPM [13, 103]. However, 
most deterministic scheduling models are descendants of the original CPM 
model [57], while probabilistic models are extensions of the PERT model [66]. 

The remainder of this section provides a brief review of some relevant project 
scheduling models. The review focuses on deterministic scheduling models. 
More extensive reviews may be found in other books [26,72, 110] and 
papers [41, 111]. 

2.2.1 Classification of Deterministic Scheduling Models 
Deterministic scheduling models are used to sequence activities in time to 
achieve managerial goals. In most deterministic scheduling models, the goal is 
to minimize the total completion time of the project. However, some models 
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introduce other goals related to the variability in resource requirements or the 
total budget allocated to the project. Models differ not only by the intended 
goals, but also by the type of constraints considered and by the assumptions 
incorporated. For example, some models do not consider limits on the number 
of resources consumed while others impose strict restrictions on the allocation 
of resources. Similarly, some deterministic scheduling models assume that ac­
tivity durations are fixed while others assume that the duration of an activity 
decreases as the cost of the resources used to perform the activity is increased. 

This work classifies deterministic scheduling models according to the way 
they consider the following parts of a project schedule: (1) network topology; 
(2) activity durations; (3) activity costs; and (4) resource consumption profiles. 
Models are classified into the following categories, as shown in Figure 2-14: 

• Models with fixed activity durations. These models assume that activity dura­
tions are known. Resources are assumed to be unlimited and the network 
topology is fixed. 

• Models for time-cost trade-offs. In these models, activity durations are ex­
pressed as a function of activity costs. There may be constraints on the total 
completion time of the project or on the total budget. However, these models 
do not impose limits on the resource consumption profiles. These models do 
not permit changes to the network topology. 

• Models with resource considerations. These models are used to schedule 
projects when resources are limited or when peak resource requirements must 
be reduced. These models do not permit changes to the network topology. 

• Models for combined planning and scheduling. These models combine plan­
ning and scheduling in a unified framework. The major distinction from the 
other models is that the topology of the network may be changed. 

Deterministic Scheduling Models 

Fixed Durat ion 
T ime-Cos t 
T r a d e - O f f s 

Resource 
Considerat ions 

Planning & 
Schedul ing 

N e t w o r k 
Topology 

Fixed Fixed Fixed Variable 

A c t i v i t y 
D u r a t i o n s 

Fixed Duration and 
Cost related 

May vary May vary 

A c t i v i t y 
Costs 

Not considered Duration and 
Cost related 

May vary May vary 

Resource 
P r o f i l e s 

Assumed 
Unlimited 

Assumed 
Unlimited 

Upper limits 
may exist 

Upper limits 
may exist 

Figure 2-14. Classification of Deterministic Scheduling Models 
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The four types of models are not independent. Fixed duration models may be 
considered to be a special case of time-cost trade-off models. Similarly, both of 
these models are specializations of resource constrained models for the case of 
arbitrarily large resource profiles. However, this work treats the four types of 
models separately because the nature of the mathematical programs used in the 
models is different. Fixed duration models can be solved with simple shortest 
path algorithms4, while resource constrained models involve more elaborate 
algorithms to solve integer programming problems. 

2.2.2 Models with Fixed Activity Durations 

Although the original CPM model allowed variable activity durations [57], com­
mon applications use a simplified version of the model in which activity dura­
tions are considered fixed. This model, called the Basic CPM model (BCPM), is 
used to find the earliest project completion time, the slacks or floats associated 
with the project activities, and the set of critical activities. 

Common implementations of the BCPM model use an Activity-On-Branch 
(AOB) diagram to represent the project. In this representation, branches5 

represent activities and nodes represent events. The earliest completion time of 
the project is found by computing the longest path from the node representing 
the start of the project to the node representing project completion. Figure 2-15 
(adapted from [110, p. 6]) shows an AOB diagram for a project composed of 
five activities. The numbers above the arrows represent the durations of the 
activities (in days). The earliest completion time of the project is 35 days. 

Several operations research (OR) algorithms can be used to compute the 
longest path in a network [61, p. 3, 14, p. 8]. In acyclic networks, a popular 
algorithm, developed by Dijkstra [61, p. 71], provides the basis for the forward 
and backward pass computations used to solve the BCPM [72, p. 74]. However, 
there are other OR techniques that can be used for this purpose. In particular, 
the model may be solved using linear programming (LP) or network flow al­
gorithms. Network flow formulations are also useful in solving time-cost trade­
off models and resource-constrained models. These applications are described 
below. 

Another deterministic scheduling model that assumes fixed activity durations 
is the Precedence Diagramming Method (PDM) [72]. The basis for this model 
was a report by Fondahl [35] in which Activity-On-Node (AON) diagrams were 
used to represent project networks. In these diagrams, nodes represent activities 

Scheduling requires that the longest path be computed. This involves simple modifications to 
shortest path algorithms. 

5 In this discussion, the terms branch, link and arc are equivalent. 



Models with Fixed Activity Durations 39 

Figure 2-15. Example Project Network (AOB diagram) 

Figure 2-16. Example Project Network (AON diagram) 

SS SF FS FF 

Figure 2-17. Different Types of Precedences in the PDM 

and arcs represent precedence relationships. The BCPM is easily adapted for an 
AON representation. Given an AON network representation, the BCPM finds 
the longest path between start and finish activities. 

Figure 2-16 shows the AON diagram for the example project of Figure 2-15. 
In this diagram, activity durations are indicated by the numbers above the nodes 
and the critical path includes the nodes <z, c, d and e. Arrows indicate 
Finish-to-Start (FS) precedences: the successor activity cannot start until the 
predecessor activity has finished. The PDM incorporates other precedences in 
addition to the FS relationships of the BCPM. There may be Start-to-Finish 
(SF), Finish-to-Finish (FF) and Start-to-Start (SS) relationships between the 
network activities, as shown in Figure 2-17. 

There are several déficiences associated with the PDM. First, the inter­
pretation of floats is not as straightforward as in the BCPM model. Second, 
there may be anomalies such as the delay in the completion time of the project 
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due to the reduction of an activity duration [110, p. 145]. Finally, activity 
splitting, which may improve the schedule, is not a feature of the original PDM 
formulation. In order to solve these problems, some algorithms that include 
automatic splitting have been proposed [73]. Nevertheless, the PDM facilitates 
the introduction of additional types of precedence relationships between ac­
tivities (e.g., start-to-start precedences) and obviates the need for dummy links 
to maintain proper network topologies [50]. 

2.2.3 Models for Time-Cost Trade-Off s 

The objective of the original CPM model was described as [57, p. 297]: 

The mathematical model upon which the Critical-Path Method is based is 
a parametric linear program that has the objective of computing the utility 
of a project as a function of its duration. For each feasible project dura­
tion, a feasible project schedule is obtained that has maximum utility 
among all feasible schedules of the same project duration. 

To solve the model using an LP formulation, it is assumed that the time to 
perform an activity decreases linearly as the cost of performing the activity 
increases. Figure 2-18 shows this linear relationship between activity duration 
and associated cost. The normal time is the time required to perform the activity 
if no additional resources (e.g., overtime hours or additional labor) are invested. 
The crash time is the minimum time required to complete the activity. This 
represents the situation in which all possible additional resources have been 
invested, and the activity is completed in the least possible time. 

When the time-cost relationship is linear, a LP formulation can be used to 
solve for time-cost trade-offs. Parametric LP may be used to obtain a plot of the 
overall project cost versus the project completion time. This plot, called the 
project cost curve, may also be obtained by formulating the problem as a 
network-flow problem in which each activity is represented by two parallel 
arcs [36]. When time-cost relations are linear, the project cost curve is 
piecewise convex. 

Obviously, time-cost relations need not be linear. For cases in which they are 
convex, OR techniques such as the Frank-Wolfe method can be used to solve the 
problem [47]. The CPM with concave time-cost relations is more difficult and 
was studied by Falk and Horowitz [30]. Their algorithm is based on a 
branch-ana-bound approach in which successive LPs are solved. This algo­
rithm can be used for problems in which piecewise convex time-cost relations 
are combined with piecewise concave functions. For the general case in which 
the time-cost function is nonmonotonic, Elmaghraby [26, p. 108] describes an 
algorithm based on dynamic programming (DP) techniques. 
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Figure 2-18. Linear Time-Cost Relationships for an Activity 

An additional aspect of the time-cost trade-off problem arises with the intro­
duction of constraints on event completion times. Elmaghraby and Pulat [27] 
developed an efficient algorithm to compute optimal project duration compres­
sion with linear time-cost relations and linear penalties for tardiness. 

2.2.4 Models with Resource Considerations 
Several scheduling models that consider the resource requirements of project 
activities have been studied [23]. There are two principal types of models for 
this problem: 

• resource leveling models that smooth resource consumption profiles; and 
• resource allocation models that schedule activities when there are constraints 

on the total amount of available resources. 

Both types of models usually involve more complex mathematical formulations 
than the simpler scheduling models that assume fixed activity durations or that 
have known time-cost trade-offs. The approaches used to solve project schedul­
ing problems with resource considerations may be classified into: 

• optimization methods that search for the best schedule; and 
• heuristic methods that search for a good schedule. 

Optimization methods have been applied only to small projects because of the 
combinatorial nature of the problem. Heuristic methods have been successfully 
applied to real problems and are included in sophisticated scheduling 
packages [2]. 

One heuristic resource leveling algorithms, proposed by Burgess and Kil-
lebrew [10], uses the sum of the squares of daily resource requirements as a 
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measure of effectiveness of the leveling process. Activities are scheduled se­
quentially, starting from the last activity and proceeding to the first, in order to 
reduce this variance. A different approach was proposed by Levy, Thompson 
and Wiest [64]. In their approach, daily resource requirements are computed on 
the basis of an earliest start schedule. The algorithm tries to reduce peak 
resource requirements by setting trigger levels. Activities are rescheduled to 
satisfy the trigger levels until a set of good schedules is obtained; then the best 
of them is chosen. 

Resource allocation models have interested operations researchers for more 
than twenty-five years. Patterson [79] studied three different optimization 
models: (1) a bounded enumeration approach [21]; (2) an implicit enumeration 
method [97]; and (3) a branch-and-bound method [96]. His results, based on 
110 projects, indicate that the branch-and-bound method of Stinson et al. 
provides the best results. Other optimization methods have similar approaches: 
the implicit enumeration algorithm of Patterson and Groth [78], the branch-and-
bound method of Willis and Hastings [113] and the dynamic programming 
method of Petrovic [81]. 

The effectiveness of heuristic methods has been studied by Davis and Patter­
son, who examined eight different heuristic methods for 83 multi-resource con­
strained projects. They observed that [23, p. 952]: 

None of the heuristic rules tested performed consistently best on all 
eighty-three problems. However, the MINSLK rule [Minimum Slack 
rule], which bases activity priority on activity slack, produced an optimal 
schedule span most often and exhibited the lowest average increase above 
optimum of the rules examined. 

Kurtulus and Davis [60] studied the performance of heuristic resource-
constrained methods for several projects. Their study indicates that to be effec­
tive, resource allocation algorithms should vary the heuristic rules they use 
depending on the status of the scheduling process: 

. . . it is assumed that once a rule is selected it must be used throughout the 
whole project. This research breaks away from this tradition by providing 
a categorization process based on two powerful project summary 
measures. The first measure identifies the location of the peak of total 
resource requirements and the second measure identifies the rate of utiliza­
tion of each resource type. 

In light of this, knowledge-based procedures may be a useful avenue to explore 
for this problem. 

Most resource allocation models ignore the relationship between resources 
and activity durations. They assume that durations are fixed, and that the goal is 
to appropriately allocate the available resources. However, some researchers 
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Figure 2-19. Simplified Flow-Chart of the SPAR-1 Heuristic Model 

have explored the solution of resource allocation models in which activity dura­
tions depend on the type and number of resources allocated to the activities. 
Examples are the integer programming formulation of Elmaghraby [26, p. 173] 
and the model of Talbot [98]. An important heuristic model that addresses this 
problem is SPAR-1 (Scheduling Program for Allocation of Resources) [109]. 
The original version of SPAR-1 was capable of handling multiple alternatives 
for crew sizes and resource profile limits. Figure 2-19 (adapted from [109]) 
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shows a simplified flow-chart of the SPAR-1 model. A brief description of the 
model follows: 

• If an activity requires more than one resource, it is divided into separate 
activities that are constrained to start on the same day, one for each resource. 

• Associated with each activity is data describing three crew sizes correspond­
ing to the maximum, normal and minimum number of men in the crew for the 
activity. If required, the model may assign any crew size within the minimum 
and the maximum bounds. 

• Activities to be scheduled are sorted in ascending order by their earliest-start-
time and their total slack. Slacks and earliest-start-times are recomputed 
dynamically during the scheduling process. 

• Activities are scheduled sequentially on a day-by-day basis, trying to shorten 
critical activities. 

• If there are insufficient resources to schedule a critical activity, the system 
tries to borrow resources from non-critical competing activities already 
scheduled. 

• If the borrowing process is unsuccessful, the system tries to reschedule ac­
tivities without delaying the project. If this rescheduling process is unsuc­
cessful, the system modifies the earliest-start-time of the activity being 
scheduled. 

• When extra resources are available on a particular day, the system temporarily 
assigns additional resources to the activities scheduled on that day in ascend­
ing order of their total slack. 

• Schedules are generated for different combinations of resource profile limits. 
An outer loop contains a search routine to adjust the total resource profile 
limits depending on the attributes of the schedules produced. 

• Schedules are evaluated using a cost function that combines due-date 
penalties, resource costs, overhead costs and additional costs related to 
resource level changes. 

2.2.5 Models for Combined Planning and Scheduling 
An early attempt at introducing planning decisions within project scheduling 
methods was the Crowston and Thompson formulation of the Decision CPM 
(DCPM) [16, p. 407]: 

DCPM is a method for formally considering the interaction between the 
scheduling and the planning phases of a project. Thus, if there are a 
number of competing methods of performing some of the jobs, each 
method having a different cost, a different time duration, and different 
technological dependencies, these possibilities are included in the project 
graph. 
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Figure 2-20. Example of a Decision Project Graph 

In the DCPM model, planning decisions are represented by inserting decision 
nodes into an AON project network. The result is a decision project graph that 
includes activity nodes as well as decision nodes. Figure 2-20 (adapted 
from [16, p. 412]) shows an example of a decision project graph containing two 
decision nodes, Sj and S2- These nodes are used to indicate different strategies 
for performing tasks. For example, decision node S2 indicates that activity two 
can be performed in two different ways: one involving a cost of $310 and a 
duration of 20 days, and one involving a cost of $100 and a duration of 47 days. 
Furthermore, if the activity is performed using the $310 alternative, it must 
precede the execution of activities S7 and S3. However, if it is performed using 
the $100 alternative, it need only precede activity S3. 
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The original DCPM method used a heuristic, iterative procedure to solve the 
problem. In this procedure, decision nodes on the critical path are revised until 
no further reduction in the overall cost of the project is obtained. The main steps 
of the DCPM method are: 

Step 1. Topologically order the activities. 
Step 2. Identify and evaluate the set of choices. The set of choices is formed by 

obtaining feasible combinations of individual node choices (i.e., which 
branch to follow). Each member of the set represents a particular 
combination of values for the decision nodes. This produces a set of 
networks, each with an associated overall cost. 

Step 3. Select the lowest cost combination in the set of choices. After the 
lowest cost network has been selected from the set of choices, values 
(branch choice in the selected network) are assigned to the decision 
nodes. 

Step 4. Calculate the critical path and reorder the activities on the basis of 
earliest-start-time. 

Step 5. Look for improvements. The algorithm determines whether changes in 
the decision nodes on the critical path can reduce the overall cost of the 
project. This is done by analyzing the slack variables in all parallel 
chains going from the node under consideration to the terminal node. If 
no improvement can be made, the algorithm terminates. 

Step 6. Modify decision nodes. The values of the decision nodes are changed 
to the alternative with maximum cost reduction. This results in a new 
network. 

Step 7. Recalculate the critical path. The critical path in the new network is 
computed. The algorithm continues from Step 5. 

The original DCPM method has been modified to improve its efficiency. 
Alternatives such as branch-and-bound methods and network reduction tech­
niques were explored [17]. However, the potential of the DCPM method was 
extended with the development of an efficient dynamic programming algorithm 
by Hindelang and Muth [52]. In discussing the advantages of this algorithm, the 
authors state [52, p. 240]: 

. . . the dynamic programming algorithm has proven quite powerful and, 
indeed, successful in overcoming the shortcomings of the previous ap­
proaches. Namely, computer time grows only about linearly with the 
number of arcs between nodes, and memory requirements are rather 
modest. Hence, large practical problems can now be accurately 
represented by the model and solved efficiently utilizing the new algo­
rithm. 
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Another model that may be used for combined planning and scheduling is a 
network formulation model, called NETFORM, proposed by Glover and 
Klingman [39, 40]. The authors illustrate how the NETFORM model can be 
used to solve pure and non-pure network problems using Generalized Networks 
(GN). Pure network problems include shortest path (CPM/PERT), assignment, 
transportation and transshipment problems. Non-pure problems include integer 
and mixed integer programming problems. The model uses efficient network 
algorithms to solve both types of problems. 

An example of a GN is shown in Figure 2-21 (adapted from [40, p. 14]). 
Arcs of a GN contain information not found in pure network models [58]. Be­
sides an associated cost and flow bound, each arc has a multiplier that indicates 
changes in flow magnitude along the arc and may have an asterisk specifying 
that the flow in the arc must be an integer. For example, in the GN of 
Figure 2 -21 , flow in arc (Ο A) is restricted to be either 0 or 1. This GN was 
used to model a problem of choosing delivery schedules for ships, as explained 
by Glover, Hultz and Klingman [40, p. 14]: 

The setting for the example of [Figure 2-21] is a ship scheduling problem. 
In general, such a problem would involve many ships, a variety of 
schedules for each, and numerous ports (each represented in several dif­
ferent time periods). Here we show the part of the model that applies to a 
single ship with exactly two schedules, A and B. Schedule A requires the 
ship to carry 10 tons of ore, which is distributed among the ports by 
dropping 3 tons at Port 1, 5 tons at Port 2, and 2 tons at Port 4. 
Schedule Β requires the ship to carry 8 tons of ore, dropping 4 tons each at 
Ports 3 and 4. 
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The potential advantages of applying this type of model to solve scheduling 
problems are discussed by the authors [40, p. 15]: 

A recent application of the model, which schedules Air Force pilots to 
advanced flight training courses [ . . . ] , illustrates the power of specialized 
methods for such classes of NETFORM's. The standard mathematical 
programming formulation of this problem is a 0-1 integer programming 
(IP) problem with 460 0-1 variables and 520 constraints. An attempt by 
the Air Force to solve this problem with an IP solution routine was aban­
doned due to the prohibitive amount of computer time consumed in the 
solution effort. By contrast, a branch-and-bound approach specialized for 
the NETFORM (solving GN subproblems) normally obtains and verifies 
optimal solutions within 30 seconds on a CDC 6600. 

Thus, several methods exist for combining planning and scheduling in the 
framework of optimization. However, these methods assume that all activities 
and possible decisions have been previously identified and formulated in net­
work models. Moreover, only a limited number of planning decisions can be 
included in the models due to computational complexity. As a result, optimiza­
tion methods serve only a limited role in process planning. 

2.3 Construction and Manufacturing Planning 
This section reviews literature related to different elements of the construction 
and manufacturing planning process. Given the broad scope of the area, this 
review focuses on the material that affects the manner in which planning is 
currently performed. Previous work is discussed in relation to the elements of 
the construction or manufacturing planning process with which they are most 
closely associated. Various domain-specific expert systems are also reviewed. 

Construction and manufacturing planning can proceed at many different 
levels of detail and abstraction. For manufacturing processes, typical levels of 
planning might be: 

• machining in which the activities and resources required to produce a single 
part are planned; 

• assembly in which the processes required to manipulate and join components 
are planned; and 

• production planning in which resource assignments and schedules are 
developed for an entire manufacturing facility. 

Each of these levels includes fundamental problems of plan generation and 
evaluation. Descriptions of systems for process planning for particular types of 
tasks appear in Chang and Wysk [11]. 
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Figure 2-22. Elements of the Construction and Manufacturing Planning Process 

Figure 2-22 shows the general elements or steps of the construction and 
manufacturing planning and scheduling process: 

• Recognition of Design Features and Elements involves the extraction and 
classification of important elements or features in the final design; 

• Definition of Work Tasks and Precedence Relationships involves defining the 
activities to be performed and identifying any technological or resource 
management precedences among these activities; 

• Choice of Technologies, Processes and Resources involves decisions about 
appropriate technology and methods for performing tasks; 

• Estimation of Activity Durations and Costs is the determination of the ex­
pected durations and costs of the activities on the basis of the technology and 
method selected for performing each activity; and 

• Preparation, Evaluation and Maintenance of Project Schedules involves 
generating project schedules that satisfy the resource, time and cost con­
straints imposed on the activities, and then analyzing these schedules with 
respect to managerial goals. 
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These elements of the planning process are interdependent because executing 
any one of the steps eventually affects the execution of the others. Therefore, 
some of these steps should be performed in parallel or in loops with back­
tracking. 

2.3.1 Recognition of Design Features and Elements 

Before beginning process planning per se, a representation or model of the 
design problem must be created. This model must contain a taxonomy or 
nomenclature to permit subsequent analysis. 

In manufacturing, considerable work has been done to devise general coding 
systems to describe parts and features under the general subject of group 
technology. Typically, coding systems for group technology are hierarchical, 
matrix or a combination of these methods (Figure 2-23). In hierarchical struc­
tures, digits represent the appropriate descriptor at each level of the hierarchy. 
Matrix or chain codes represent table look-up instructions. Hybrid systems 
include both of these representations. For example, a nine digit code for a 
physical component using the Opitz system [77] might use the first digit to 
denote part class, a second digit for main shape, a third for rotational machining 
type, a fourth for planar surface machining type and a fifth digit for additional 
holes, teeth and forming indicators. Additional digits would denote dimensions, 
material, original shape and required accuracy. 

Recognition of design features for the purpose of manufacturing may require 
considerable domain-specific knowledge [46]. Numerous design features with 
seemingly different attributes can actually be produced by the same manufac­
turing processes. Moreover, aggregation of design components into sub­
assemblies may be done to improve manufacturing efficiency without specific 
guidance from the design specification. Similar problems arise in construction 
in aggregating design elements into work sectors. 

2.3.2 Definition of Work Tasks and Precedence Relationships 
Most literature related to the definition of work tasks in construction and 
manufacturing emphasizes the importance of defining work tasks and 
precedence relationships in the planning process and discusses the characteris­
tics of appropriate work breakdown (WB) structures. The process of obtaining 
adequate WB structures for construction and manufacturing has been studied 
only recently. This section presents two models that can be used to identify 
project activities. Programs that generate activity networks for projects are also 
described. 

Halpin et al. [44] proposed a WB model intended to be consistent in the 
design, procurement and construction phases of a project. Their model uses a 
hierarchical decomposition of project tasks along three different perspectives: 
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• the physical perspective describes the project in terms of major end items, 
systems and components; 

• the organizational perspective relates work tasks to the part of the organiza­
tion responsible for the task; and 

• the resource perspective groups work tasks with respect to the type of 
resources they use. 

The physical perspective decomposes the project into very simple operations for 
which time and cost estimates can be made accurately. The other two perspec­
tives map these detailed operations into other dimensions for managerial and 
reporting purposes. Having decomposed the project using these perspectives, 
work packages are defined by grouping the simple operations. The purpose of 
this aggregation is to produce elements of the project that are meaningful for 
scheduling and monitoring purposes. In the model, each work package is 
described by a unique code that specifies its composition with respect to the 
three perspectives. Work package descriptions are stored in a dictionary that is 
used for cost and control purposes. 

A second approach is offered by Baracco's model for integrating duration 
and cost estimating [4]. The model addresses déficiences in the current methods 
used by construction planners in preparing budgets and schedules for building 
facilities. He identified some deficiencies in current practice and developed a 
model for integrating duration and cost estimating. An overview of the model is 
shown in Figure 2-24. The estimating process starts with information about the 
design of a facility and the site where the facility is to be constructed. Design 
information includes plans and specifications. Plans consist of drawings of 
different systems or areas of the building, such as electrical systems, mechanical 
layouts, structural components or functional space areas. Specifications provide 
information about materials, finishes and other design data not included in the 
plans. Site information contains data on the construction site that affect the 
construction process, such as soil composition and climatic conditions. 

Using the information in plans and specifications, the planner decomposes 
the building into design elements. A design element is a unitary component of a 
facility, such as a column, a beam, a column footing or a slab. Then the planner 
identifies elements-of-work for each design element. An element-of-work is an 
activity that is performed to construct a design element. Examples of elements-
of-work are the formwork and concrete pouring activities required to construct a 
concrete column. In the model, elements-of-work are identified by a unique 
code that extends the standard hierarchical MASTERFORMAT code [18] by 
adding information about the type and location of the design element associated 
with the element-of-work. The purpose of this code is similar to that of Hatpin's 
model: to provide a unique identifier for aggregating information along various 
dimensions. 
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The importance of elements-of-work in Baracco's model is that they provide 
the basis for creating a project activity network and a cost estimate based on the 
amount of work or quantity take-offs. Cost estimates are computed when the 
planner selects an appropriate Basic Cost Unit (BCU) for each element-of-work. 
Each BCU is a package of labor, material and equipment that may be used to 
perform the element-of-work under certain conditions. The direct cost of an 
element-of-work is obtained by dividing the amount of work by the standard 
productivity of its associated BCU and multiplying by the hourly cost of the 
BCU. Project activities are created by aggregating elements-of-work. Once 
project activities are created, the planner determines precedences among them, 
thus producing an activity network that is used for scheduling and monitoring 
purposes. 

Recently several researchers have studied the problem of automatically creat­
ing the project activity networks. One system, called GHOST (Generator of 
Hierarchical schedules for cOnSTruction) [75], receives as input a set of ac­
tivities and finds precedences among these activities by using a set of critics. 
GHOST starts with a list of unstructured activities such as build lintel or build 
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foundation and creates a network in which all activities are performed in paral­
lel. Then it applies critics to find physical precedences among the activities by 
using knowledge about construction and physical relationships. Once a network 
has been created at a particular level of detail, the system expands each activity 
into a set of subactivities. Critics are applied to the newly created network to 
find precedences at this lower level of detail. The system proceeds by succes­
sively expanding networks until an appropriate level of detail has been obtained. 
The limitations of the system are: 

1. GHOST generates too much redundancy during the hierarchical inheritance; 
2. it does not check for circularity; 
3. it does not interpret actual construction drawings; 
4. GHOST cannot estimate activity durations; 
5. it needs to be able to handle global pre-activities; 
6. it cannot schedule the trades that will be involved in the project; and 
7. it cannot redefine the dependencies among subactivities. 

Despite these limitations, GHOST is an interesting application of a planning 
model which functions similarly to NO AH's process of successively expanding 
nonlinear plans (see p. 23). In addition, the list of initial activities input to 
GHOST is similar to the list of design elements of Baracco's model for work 
decomposition. Each design element (e.g., pillar A) is associated with an ag­
gregate activity representing the process of building this design element (e.g., 
build pillar A). Then these activities are expanded into subactivities that 
resemble Baracco's elements-of-work (e.g., build formwork or place 
reinforcement). More powerful systems of this type are appearing, such as 
PIPPA [67] and OARPLAN [20]. 

Another system, called LIFT-2 [7], is a rule-based expert system that sup­
ports the modeling of heavy lifting operations. LIFT-2 takes the role of an 
engineer in a contracting firm who is preparing a bid for offshore heavy lifting 
jobs. For this task, the planner has to develop a plan for the lifting job by 
analyzing the geographic characteristics of the site, the location of available 
cranes and the location of platform modules. LIFT-2 produces a graphical 
outline of the plan as an AON representation and provides explanations of the 
reasoning process. In solving the problem, LIFT-2 combines different problem-
solving strategies. The overall reasoning strategy sequentially satisfies goals in 
an attempt to effectively reduce the total search space. For example, the 
goal vessel selection is satisfied before the goal site investigation. Goals are 
satisfied using a generate-and-test paradigm: when trying to satisfy a goal, all 
possible alternatives are generated and some of them are eliminated by using 
previously formulated constraints. The justifications and assumptions for using 
this paradigm in the higher levels of the problem-solving process are described 
as [7, p. 32]: 
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Constraint satisfaction using the generate-and-test-paradigm is successful 
at the highest levels in this hierarchy because sub-goals are assumed inde­
pendent and because constraints and generators (i.e., user-prompted input) 
are available. In some cases, however, where sub-goals at the highest 
levels are not completely isolated this paradigm is weakened. 

Other problem-solving techniques used in LIFT-2 are least-commitment and 
meta-planning. Least-commitment is used in the lowest levels of the problem-
solving process. At these levels, the interactions among subgoals are important 
and the system deals with them by using rules that combine possible solutions to 
several goals. This strategy delays decision-making until enough information is 
available to solve several subgoals simultaneously. Although the system does 
not have a well-defined layered structure as in MOLGEN (see p. 30), the rules in 
LIFT-2 contain both strategic and detailed knowledge. 

In LIFT-3 [8], a descendent of the LIFT-2 system, the planner is not part of 
the lifting firm, but works for the oil company responsible for the complete 
project. The architecture of LIFT-3 uses the blackboard problem-solving 
paradigm of OPM (see p. 32) and replaces the sequential reasoning process of 
LIFT-2 with an opportunistic process in which independent knowledge sources 
are executed. In addition, LIFT-3 reduces the search space by identifying 
ranges for the values of the design variables rather than committing itself to 
assigning values to these variables. 

A final example of a program that generates activity networks in TIPPS 
(Totally Integrated Process Planning System). TIPPS evolved from the earlier 
APPAS and C ADC AM programs [11] and contains a process selection module 
that defines machining activities and selects manufacturing processes simul­
taneously. Appropriate processes to achieve desired design features are selected 
by evaluating decision tables. A typical process knowledge data element is: 

(IF (SHAPE ! xxx =))(THEN (8 PROCESS @ )) 

which is interpreted as: feature xxx should use process 8. 

2 3.3 Choice of Technology and Method 
Selecting the technology to perform tasks involves two types of decisions. First, 
the planner has to identify and choose among possible packages of labor and 
equipment available to perform the task. Alternate methods affect the resource 
requirements. For example, Walker's estimating book [105, p. 8.117] indicates 
various personnel requirements for mixing and placing concrete in foundations 
that are based on the chosen construction method (see Figure 2-25). 

In selecting the type of technology package or crew, the planner uses 
knowledge about crews or equipment usually chosen to perform an activity. For 
construction activities, this information is available in construction estimating 
books [105], in books about construction methods [76] or, more generally, in 
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Figure 2-26. Illustration of Line Balancing 

manuals that list appropriate crews for construction activities, typically utilizing 
the MASTERFORMAT coding system [71]. 

After the type of crew or technology package for an activity has been chosen, 
the second type of decision made by the planner is to select the number of 
machines or crews assigned to the activities. There are two alternative 
methodologies that may be used in this decision process. In the first alternative, 
the planner knows an approximate value for the duration of the activity and 
adjusts the number of crews allocated to the activity in order to achieve this 
duration. This approach is based on experience from previous projects and does 
not consider the interactions between the activities. 

In the second alternative, the planner simulates the manner in which the 
different crews and machine types will be used to perform the activities and tries 
to achieve a continuous use of the crews. In this approach, usually called 
assembly line balancing, the objective is to insure that each activity proceeds at 



Choice of Technology and Method 57 

the same rate of speed. For example, Figure 2-26 illustrates the progression of a 
component or a work task through different time phases and through different 
equipment locations. In a balanced assembly line, subsequent components 
would not be delayed at any stage of the manufacturing process. 

Another technique that is used to aid technology selection is process 
simulation. An example is CYCLONE [42] (CYCLic Operations NEtwork), 
which has been successfully used to model the construction of several buildings, 
including the Peachtree Center Plaza Hotel in Atlanta [43]. Figure 2-27 
(adapted from [42, p. 69]) shows an operations network for modeling earthmov-
ing operations. The network contains different types of elements: 

• Combination activity nodes represent activities that cannot be performed until 
a combination of required resources is available. If only some of the 
resources are present, the activity waits for the arrival of the remaining 
resources before it commences. An example is the load truck activity that 
requires an idle front-end loader, a non-empty truck queue and a soil stock 
pile with enough soil before the activity can start. 

• Normal activity nodes represent activities that may be executed whenever any 
of the required resources are available. Resources used by the activities do 
not have to wait before they are used. An example is the haul to dumping 
area activity that may begin as soon as the load truck activity finishes. 

• Queue nodes represent places where labor, equipment or materials wait before 
being used by an activity. Examples are the truck queue and the front-end 
loader idle nodes of the network. 

• Arrows represent flows of resources (e.g., soil, trucks or loaders). 

In addition to these elements, CYCLONE networks may include function nodes 
and accumulator nodes. Accumulator nodes are used to control the simulation 
process and to obtain statistics on the number of resource units flowing through 
an arrow element. Function nodes are used to introduce user-defined functions 
such as those that define resource availability. 

The CYCLONE model and other process simulation tools are powerful aids 
for evaluating alternative technologies or methods. However, these models 
require the user to manually define the operations network to be analyzed. 
CYCLONE has no provisions for modifying the topology of the operations 
network during the simulation or after the simulation has been completed. 
Therefore, CYCLONE is considered more of an analysis aid rather than a 
synthesis aid for the planner. 

Another model that could be used to select among alternative resource 
choices is the Decision CPM model (see p. 44). In this model, decision nodes 
are used to represent combinations of crew types and number of crews. For 
example, an activity with two possible types of crews and three alternative crew 
sizes (e.g., maximum, desirable and minimum) is represented using a decision 
node with six possible outcomes. 
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Figure 2-27. CYCLONE Network for Modeling Earthmoving Operations 

A final example of a technology selection aid is graphical process simulators 
in which planners can view an animation of process activities and equipment on 
the plant floor. Again, these models are more useful for analysis and visualiza­
tion than for process synthesis. 

2.3.4 Estimation of Activity Durations and Costs 
Estimation of activity durations is a fundamental task in the planning process. 
However, it has received little systematic attention [90]. Project planners 
usually base their estimates on average productivities found in estimating hand­
books such as Dagostino's [19] or in company records. Adjusting these produc­
tivities to reflect local conditions requires considerable expertise and thus cannot 
be done successfully by novice planners. 

Researchers have attempted to capture the expertise of planners by using 
expert systems technology. One of these systems, MASON [48], is used to 
estimate the duration of masonry construction activities. The system has ex­
planation capabilities and provides the user with recommendations for improv­
ing crew productivities. In solving the estimating problem, MASON uses a 
hierarchical, rule-based estimation process in which higher levels represent at-
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Figure 2-28. MASON's Estimation Hierarchy 

tributes which depend upon the details of lower-level inferences and calcula­
tions. The estimation hierarchy is represented in Figure 2-28 (adapted 
from [48, p. 291]). At the lowest level of the hierarchy, MASON estimates the 
maximum crew productivity and identifies various modifications to account for 
downtime (i.e., idle, waiting). At the next highest level, adjustments to produc­
tivities are computed by considering special characteristics of the site or of the 
job. At the top level, quantity of work, productivity, crew resources and 
downtime are combined to estimate the duration of the activity. 

Similarly, planning manufacturing processes also involves estimating to 
select equipment parameters. For example, the following rule is used to identify 
the number of passes and material speed for a machining process in the 
PROPLAN planning system [74]: 
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If <Operation is Turning> 
<Height of REC+ is between 1.5 and 2 inches> 
<Partmaterial is Cast Iron> 
<Toolmaterial is Carbide Tip> 
<Surface Finish Required is Regular> 

Then <Speed = 250 RPM> 
<Rough Passes = 5> 
<Finish Passes = 2> 

2.3.5 Preparation, Evaluation and Maintenance of 
Project Schedules 

Process planning may be divided into two major phases: ( 1 ) a preconstruction or 
premanufacturing phase; and (2) a process phase. Some of the tasks performed 
by the planner in the first phase, such as activity duration estimation or tech­
nology choice, have already been described. After performing these tasks, the 
final step in the preconstruction and premanufacturing phase involves the 
preparation of a work schedule. In obtaining this schedule, planners usually 
employ one or several of the basic scheduling techniques described in 
Section 2.2. Common techniques are the Basic CPM method, the Precedence 
Diagramming Method, or some resource allocation model with fixed heuristics 
for job shop scheduling [3]. Planners use these techniques to identify the critical 
activities, compute the earliest-start-time of the activities and their correspond­
ing slacks, estimate the overall duration of the project, and perform litigation 
during the bidding phase. Some contractors or manufacturers use scheduling 
techniques during the construction or manufacturing phase of a project [ 1 ] . 
However, existing computer tools do not incorporate the knowledge required to 
solve the problems encountered in the project monitoring process. Potential 
applications of knowledge-based expert systems in this area are discussed by 
McGartland and Hendrickson [69]. In this section, some computer systems that 
may be used to assist the planner in maintaining and evaluating project 
schedules are described. 

An interesting approach for incorporating construction knowledge into 
project scheduling systems is illustrated by Levitt's PLATFORM [62], a 
prototypical expert system for automated updating of activity schedules for 
design and construction. The domain is concrete, offshore, oil drilling plat­
forms. PLATFORM represents activities by using frames with slots that contain 
static information (e.g., optimistic and pessimistic durations) and procedures for 
computing other activity attributes (e.g., expected duration and variance). This 
representation allows detailed activities to inherit properties of parent frames 
corresponding to more general activities. In addition, activity frames contain 
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information about causes or impacts that may affect the durations of the activity, 
such as the designer's competence or the owner's requirements. 

PLATFORM updates the initial project schedule by recording the actual 
duration of completed activities and by identifying knights and villains. Knights 
represent characteristics common to two or more activities whose actual dura­
tions were shorter than expected. Villains represent characteristics common to 
two or more completed activities whose durations were longer than expected. 
Knights and villains are used to update the estimated duration of the activities 
not yet completed. Knights change the expected duration of an activity to its 
optimistic duration and villains set it equal to its pessimistic duration. In the 
updating process, the user may override the system's recommendations. 

Although the main purpose of PLATFORM was to illustrate the use of AI 
techniques for schedule maintenance, the system also permits limited changes to 
network topology by explicitly storing alternative subnetworks for each major 
activity. For example, depending on the soil condition (e.g., sand versus clay), 
the system selects one of these subnetworks when creating the final project 
network. 

A major development in the creation of intelligent project management sys­
tems was CALLISTO [88]. CALLISTO was initiated as an effort to produce an 
intelligent assistant for use during the design and prototype development stages 
of large computer systems. The CALLISTO project has produced several 
prototypical systems that illustrate the potential of integrated project manage­
ment systems. The first prototype was rule-based and focused on a single 
project plan that was constantly monitored and updated. This prototype was 
used to explore the types of expertise used in the scheduling process, but it 
assumed that the different parts of the organization shared common goals. Later 
this concept evolved into a new architecture that emphasized the need for 
negotiation among different organizational units. In the new architecture, each 
organizational unit is represented by a Mini-Callisto system that incorporates its 
own expertise and goals. These Mini-Callistos interact and negotiate a solution 
that satisfies their individual goals as well as the goals of the project. 

In CALLISTO, the project management problem is decomposed into three 
major activities: 

• Activity Management involves the planning and scheduling of activity net­
works and the evaluation and monitoring of activity schedules; 

• Resource Management involves the projection, acquisition, assignment and 
maintenance of resources; and 

• Configuration Management involves the management of product specifica­
tions and changes. 

These three activities are very similar to those performed by contractors. Con­
tractors not only deal with activity management issues, but also perform many 
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other tasks related to the management of resources and specifications. Contrac­
tors have to purchase materials and lease or buy needed equipment. Also, they 
must negotiate with the owner over work change orders. 

Usually the many tasks involved in project management are performed by 
different parts of an organization. Therefore, the Mini-Callisto model of 
negotiations between organizational units seems to be a promising approach in 
developing a complete project management system. PLANEX, however, focuses 
on the planning and scheduling problems of the activity management area. The 
methods employed by CALLISTO for representing activity knowledge [87] 
provided insights that were used in designing the knowledge-based system ar­
chitecture of PLANEX. 

2.4 Conclusions 
This chapter has reviewed previous work in three main areas: plan formulation', 
project scheduling', and process planning. Plan formulation systems focus on 
identifying sequences or networks of activities used to meet certain goals. Most 
of these systems do not involve complicated considerations of time, budget or 
resource constraints. In addition, their application has dealt with toy domains 
(e.g., those related to stacking blocks with a robotic hand) rather than with more 
realistic problems. Conversely, project scheduling research has concentrated on 
developing efficient algorithms for incorporating resource, time and budget con­
straints into project management models. However, most of the scheduling 
systems do not consider changes in the topology of the activity network or in the 
type of resources assigned to each activity. Therefore, they may be used only 
after the planner has made many of the decisions in the planning process. 
Finally, reviewing the tools specifically developed for managing projects reveals 
that planners receive little help from existing models. Most of the planning 
process is done by hand and important tasks such as schedule updating are not 
performed regularly [62, p. 57]: 

Project managers and senior estimators are typically unwilling or unable to 
devote large blocks of time to maintaining schedules for real time plan­
ning and control purposes during a project. Thus, schedule updating be­
comes primarily an archival record-keeping process, rather than a replan­
ning process, and is carried out by lower-level scheduling engineers. 

Some probable reasons for the minimal impact of existing models in the plan­
ning process are: 

• Systems focus on analysis rather than on synthesis. Existing resource selec­
tion packages still require the planner to identify which resources may be used 
to perform the activities. Research has focused on simulating the selection of 
technology choices previously done manually. There is a need for tools 
which can assist during the decision-making process. 
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• Systems do not incorporate domain-specific knowledge. Effective aids for the 
planning process must incorporate and use task-specific knowledge. Com­
mercial scheduling packages require the planner provide data about the ac­
tivities (e.g., durations, costs, precedences, resources) but they do not incor­
porate knowledge about how the data was obtained. Only a few systems (e.g., 
PLATFORM) incorporate knowledge to assist during the revision of project 
schedules once the project has started. 

• Systems are not transparent. Most systems are black-boxes because their 
internal heuristics are not known or cannot be changed by the user. Prac­
titioners are not willing to use black-boxes because they do not understand 
them. 

• Systems are not flexible. Planners require systems that are flexible and can be 
easily adapted to fit different planning scenarios and adjusted to meet dif­
ferent managerial goals. 

Several surveys [22] and comparison studies [1] seem to indicate that the 
reasons listed above reflect the beliefs of practitioners. A knowledge-based 
planning architecture that is designed to overcome some limitations of existing 
systems is described in Chapter 4. This architecture builds upon the foundation 
of AI planning systems, optimization methods and knowledge-based planners 
reviewed in this chapter. Taking advantage of each of these approaches in an 
appropriate fashion was a major objective in developing the PLANEX system. A 
conceptual model suitable for this integration is described in the next chapter. 



Modeling Process 
Planning Problems 

The preceding chapter presented a review of previous work on planning sys­
tems. This review showed that automated planners differ considerably with 
respect to both their structural and behavioral characteristics. Recent planners 
have layered or blackboard architectures which are structurally more complex 
than the architectures of early planning systems. In terms of their behavior, 
some systems solve planning problems using algorithmic search procedures 
while others obtain plans using opportunistic or constraint propagation 
mechanisms. However, the major differences among automated planners are 
those related to the capabilities they provide for modeling planning problems. 
For example, means-end planners such as NOAH and NONLIN do not provide a 
mechanism for representing the combined effects of actions (e.g., the total usage 
of a resource). Therefore, these planning systems are not appropriate for model­
ing planning problems in which resource considerations are important (e.g., 
resource allocation problems). Thus, to develop a process planning system 
which incorporates all of the elements of construction and manufacturing plan­
ning, a conceptual model of planning process itself must be developed. 

This chapter presents a conceptual model for process planning which may be 
used as the basis for designing automated process planners. The chapter begins 
by analyzing the type of information contained in process plans and the different 
entities involved in process planning problems. Following this analysis, the 
applicability of two AI planning models to the process planning problem is 
discussed and a hybrid model for process planning is described. Finally, the last 
section presents a list of architectural requirements for an automated system that 
would implement the conceptual process planning model. These requirements 
constitute the basis for the design of the knowledge-based process planning 
architecture presented in the next chapter. 

65 
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3.1 A Conceptual Model for Process Planning 
In this section a conceptual process planning model is described. This model 
combines elements of two previous planning models: 

• the means-end planning model used by linear and nonlinear planners; and 
• the blackboard planning model used by blackboard planners. 

The rationale for developing such a model is explained by analyzing the dif­
ficulties that previous planning systems have in modeling process planning 
problems. 

3.1.1 Characteristics of a Process Plan 

Figure 3-1 shows a black-box representation of process planning. The planner 
analyzes the information describing the product to be built or manufactured and, 
based on previous experience, it generates a complete plan for creating the 
desired product using the set of available resources. 

The information in a construction or manufacturing process plan is broader in 
scope than that produced by most AI planners because a process plan not only 
identifies which activities are required to build or manufacture a particular 
product, but also specifies other activity attributes such as durations, costs and 
resource utilization. In some domains, activities are linked with each other into 
a network that specifies the order in which activities must be performed (e.g., 
placing the forms for cast-in-place concrete must precede pouring the concrete). 
This network may be used in computing scheduling data for the activities such 
as their earliest or latest completion times. 

Although the information contained in a particular process plan depends upon 
the characteristics of the corresponding construction or manufacturing process, a 
process plan always provides information about the relationships between three 
basic types of entities: 

• Product Components which are portions of the final product to be constructed 
or manufactured; 

• Activities which represent operations to be performed to produce the desired 
product; and 

• Resources which are used in performing the activities, such as machines, 
labor or materials. 

Typically, there are many combinations of activities and resources which may 
be used to construct or manufacture the final product. Thus, the planner faces a 
challenging situation because activities and resources are not independent. For 
example, in an excavation project, the set of available excavators affects the 
number and type of the excavation activities included in the process plan. 
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Figure 3 - 1 . Black-Box Representation of Process Planning 

3.1.2 Means-End Model 

A first attempt at solving process planning problems would be to model them by 
employing the representation used by strategic means-end planners. Using this 
representation (see p. 16), the process planning problem would be formulated as: 

However, this model of process planning presents two major problems: 

• First, it is difficult to define the desired and initial conditions using a 
homogeneous terminology. Figure 3-2 illustrates this problem. Process plan­
ners have a clear idea of the product to be built or manufactured (e.g., a part 
or a building) because this information comes from the drawings and 
specifications of the product. However, it is difficult to describe the initial 
state (e.g., the beginning of the project) in the same terms as those used to 
describe the final product. The initial state is not a mere decomposition of the 
product into its primitive components (e.g., columns, beams), but more 
similar to a pool of materials, labor and equipment which are combined to 
obtain the final product. 

• Second, it is difficult to specify the preconditions and effects of the means-
end operators in terms related to the characteristics of the final product and 
available resources. For example, when NONLIN was used to plan construc­
tion projects, operators represented construction activities whose precon­
ditions and effects were related to other activities and not to building com­
ponents. An operator such as pour-concrete-columns would have a precon­
dition of finished-placing-forms-columns and an activity-related effect of 
finished-pour-concrete-columns. This description does not provide mean­
ingful information for process planning because there are no explicit relation-

Given: A description of a desired product 
A set of available resources 
A set of possible operations 
A description of the manner in which processes and 
operations may be combined to obtain the desired product. 

Find: 
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Initial State: Goal State: 
??? Desired Product 

Figure 3 - 2 . Process Planning as a Means-End Problem 

ships with the characteristics of a column (e.g., cast-in-place concrete requires 
formwork). Furthermore, such a description of the operators requires 
knowledge of the activity network in advance. 

Despite these problems, the concepts provided by a means-end model are useful 
for controlling the execution of process planning operators in the knowledge-
based architecture described in Chapter 4. 

3.1.3 Blackboard Model 

Modeling process planning problems could be based on the blackboard model 
described in the previous chapter (see p. 32). Blackboard planners generate 
plans incrementally following a procedure in which multiple agents (e.g., the 
knowledge sources of OPM) contribute to developing portions of the final solu­
tion. Modeling process planning problems using the blackboard model requires: 

• the identification of appropriate individual agents, which implies that the 
black-box representation of Figure 3-1 is decomposed into a set of simpler 
planning operations related to the different aspects of the process plan; and 

• the specification of how these agents are controlled during the creation of a 
process plan, which implies that criteria for scheduling the planning opera­
tions are defined. 

Figure 3-3 shows the first two levels of an illustrative hierarchical 
decomposition of process planning into simpler operations. In the first level, 
process planning is decomposed into four macro operations related to the ele­
ments of process planning discussed in Section 2.3. Each operation is succes­
sively decomposed into simpler operations until the desired level of detail is 
reached. The resulting set of low-level operations constitute the agents that are 
scheduled during the execution of the planning system. 

There may be other mechanisms to obtain the set of planning agents in 
addition to the hierarchical decomposition procedure described above. In any 
case, the manner in which planning agents are obtained is not particularly 
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Figure 3-3. Example of a Hierarchical Decomposition of Process Planning 

relevant to the execution of a blackboard planner. What is important, though, is 
to establish the manner in which these planning operators are scheduled during 
the problem-solving process. In order to use the blackboard model in a process 
planning system, it is not enough to specify that only one of the problem-solving 
agents is executed in each problem-solving cycle. Scheduling or conflict resolu­
tion criteria are needed to evaluate both the feasibility and desirability of execut­
ing the operators at any step in the planning process. Some blackboard planners 
such as OPM (see p. 32) have control agents which provide powerful control 
schemes. However, defining the scheduling criteria in specific domains is not 
easy because control knowledge depends on the nature of the planning operators 
themselves. 

3.1.4 Hybrid Model 
In order to overcome the difficulties that may arise when using either a means-
end or blackboard model for process planning applications, a new planning 
model was developed. This model, called the hybrid model, combines modeling 
concepts from other planning models and was implemented in PLANEX. 
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Similar to the blackboard model, the hybrid model assumes that process 
planning can be decomposed into a set of simple planning operations, each 
related to a particular element of a process plan. However, the control structure 
of the hybrid model uses a declarative representation of operations which 
resembles the descriptions of the operators of a means-end planner. These 
descriptions suffice for controlling the execution of the planning operators, and 
no additional scheduling knowledge needs to be represented. 

The behavior of a process planner using the hybrid model alternates between 
two levels of execution: 

• a strategic level in which the planner behaves as a means-end planner and 
creates networks of planning operators that achieve goals or propagate 
changes using independent knowledge which describes each operator; and 

• an operative level in which the planner executes operators one at a time, 
resembling the problem-solving cycle of a blackboard planner in that 
knowledge and procedures are decomposed into simple operators. 

In addition, implementations of the model require an interface level to display 
results of the planning process and to allow the user to modify planning deci­
sions. 

Figure 3-4 shows the representation of a planning operator in the hybrid 
model. The operator has three lists of associated conditions: 

• preconditions that must be true before the operator is executed; 
• positive effects which are conditions asserted by the operator; and 
• negative effects which are conditions negated by the operator. 

These lists resemble the preconditions, add and delete lists of some means-end 
planners such as INTERPLAN and NONLIN (see Section 2.1). The difference, 
however, is that conditions are expressed in terms of the status of the places 
where information is stored or retrieved (e.g., whether or not the attribute is 
defined), rather than in terms of product or process plan characteristics (e.g., the 
geometric description of the desired product). For example, an operator that 
determines the duration of an activity using data about its amount of work would 
have a precondition indicating that the value of the amount of work attribute 
must be defined before executing the operator and an effect indicating that the 
duration of the activity will be defined after the operator is executed. 

Precondition 

Precondition 

Operator 

θ 

Effect 

Effect 

Figure 3 -4 . Representation of a Planning Operator in the Hybrid Model 
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Using the hybrid model, the feasibility of executing an operator is determined 
by looking at whether pieces of information (e.g., the attribute X of object Y) are 
available. However, the desirability of executing an operator can only be deter­
mined if goals are also expressed in terms of the places where information is 
stored. Example goals would be to store or erase the value of particular at­
tributes of objects. In Section 5.3.4, the presentation of the use of the hybrid 
model in blocks-world problems shows that the manner in which goals are 
expressed does not necessarily impose a limitation on the types of planning 
problems that may be modeled. In fact, any problem that can be modeled using 
a means-end model can also be modeled with the hybrid model. 

In summary, the hybrid model considers process planning as a procedure in 
which: 

• simple operators successively transform design information into process in­
formation; and 

• dependencies among these operators are established explicitly in terms of the 
data dependencies (e.g., the data required by and produced by these 
operators). 

As a result, the hybrid model has two major advantages in modeling process 
planning problems. First, it overcomes the need for the unified description of 
the solution space required by the means-end planners because there are 
operators that transform one description into another. Second, it simplifies the 
problem of selecting the next operator because control utilizes a declarative 
representation of operators based on their individual preconditions and effects. 
Of course, this model does not necessarily eliminate the frame problem of clas­
sic planners (see Section 2.1.5) because data items may have unrecorded inter­
relationships. Nevertheless, explicit recognition of operator data dependencies 
simplifies this frame problem in many instances. 

3.2 Two Illustrative Models for 
Process Planning Operators 

Modeling process planning problems using the hybrid model requires identifica­
tion of the individual planning operators which create the plan and definition of 
the manner in which each operator acts. Thus, a model for each process plan­
ning operator needs to be developed. Because of the similarities among con­
struction and manufacturing processes, some of these models may be common 
to several domains. For example, computing scheduling information using a 
Basic CPM algorithm (see p. 38) is appropriate for any project network with 
only finish-to-start precedences among the activities. However, another type of 
model (e.g., the Precedence Diagramming Method) is required when different 
types of precedences are present. 
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In general, models for process planning operators can be categorized with 
respect to the elements of process planning into: 

• Feature Recognition Models including models used to identify or interpret 
features of the design; 

• Activity Formulation Models including models for the identification of work 
tasks and precedence relationships; 

• Technology Choice Models including models for the selection of technologies 
and methods for performing construction or manufacturing activities; 

• Estimation Models including models used to estimate activity durations and 
costs based on the technologies and process methods selected for the ac­
tivities; and 

• Scheduling Models including models that are used to prepare and maintain 
activity schedules. 

However, some domains may require models whose scope spans multiple 
categories (e.g., models that combine technology selection and scheduling). 

In Chapter 2, models for hierarchical duration estimation, technology selec­
tion and project scheduling were presented. The discussion below presents two 
models which were used in some of the applications of PLANEX to generate and 
schedule activity networks. 

3.2.1 "Bottom-Up" Activity Formulation Model 

Several planners generate activity networks using a top-down approach in which 
an aggregate network is successively expanded until an appropriate level of 
disaggregation is obtained. Although this approach has been successfully used 
in some domains, the amount of domain knowledge needed for the expansion 
process is considerable, because many abstraction levels are involved. As an 
example, suppose that a planner is generating an activity network for construct­
ing a building using the top-down model. An initial network might have ag­
gregate activities such as Excavate, Structural Erection and Finishes, because 
these activities are required for all buildings. However, it is difficult to generate 
any other information at this aggregate level (e.g., the lag between the excava­
tion and erection activities) without having domain-specific knowledge related 
to other characteristics of the design. 

Figure 3-5 shows an alternate activity formulation model which proceeds in a 
bottom-up fashion. A planner using this model would obtain an activity network 
by following four steps: 

Step 1. Product Decomposition. The final product is decomposed in terms of 
primitive components called design elements. 

Step 2. Identify Activities. The planner determines the activities required to 
produce each design element. These tasks are denoted as the element 
activities of the design element. 
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Figure 3-5. Bottom-Up Activity Formulation Model 

Step 3. Aggregate Activities. The system aggregates element activities into 
more manageable tasks called project activities. 

Step 4. Link Activities. The system establishes precedence relationships among 
project activities in order to create a project activity network. 

There are several reasons to favor the use of the bottom-up activity formula­
tion model in process planning problems: 

• the bottom-up approach has many similarities with the cost estimating and 
material requirement processes used by planners; 

• activity formulation knowledge is more readily available in the bottom-up 
approach because cost estimating and process literature usually focus on 
product or building components; and 

• a top-down approach must reach a detail level corresponding to the element 
activity level in order to perform quantity take-off calculations. 

The use of the bottom-up model in construction and manufacturing process 
planning is illustrated in later chapters. 

3.2.2 Unified Activity Network Model 
The unified activity network model represents each project activity by a start 
node, a finish node and a connecting link. With this model, precedence relation­
ships and activity window constraints are also represented by links, and miles­
tones are modeled as nodes in the activity network. The model is an extension 
of a similar representation suggested in Bell [5] for use in an automated plan­
ning system using AI techniques. The unified activity network model is 
described more fully in Hendrickson and Au [50] and in Hendrickson and 
Zozaya-Gorostiza [51]. The major advantage of the unified activity network 
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model is that it permits the use of standard shortest-path algorithms (e.g., the 
Basic CPM) in scheduling activities and computing milestone, earliest and latest 
start and finish times. 

The unified model is based on an activity network of nodes and links. Nodes 
represent events (e.g., the start and finish of an activity), including project start 
and completion. Links are characterized by a minimum duration and a cost. 
The preceding event time plus the duration must be less than the succeeding 
event time for each link. 

Figure 3-6 illustrates a small unified network model with two activities: / 
and j . In this model, nodes represent project milestone events (such as the 
project start [PS], project finish [PF] and activity start and finish [S i ? FJ) . Links 
represent activities (such as i and j in Figure 3-6), activity precedences or 
window constraints. Each link k has an associated duration D k which must be 
positive or zero. In particular, the eight different precedence and window con­
straint types illustrated in Figure 3-6 are: 

1. The project start must precede the start of activity i by at least Όχ. 
2. The project start must precede the finish of activity j by at least D 2 . 
3. The start of activity / must precede the start of activity j by at least D 3 . 
4. The start of activity / must precede the finish of activity j by at least E>4. 
5. The finish of activity i must precede the start of activity j by at least D 5 . 
6. The finish of activity / must precede the finish of activity j by at least E>6. 
7. The finish of activity j must precede the project finish by at least D 7 . 
8. The start of activity / must precede the project finish by at least D 8 . 

8 

2 

Figure 3-6. Two-Activity Network with Eight Precedence and Window Constraints 
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These eight links represent four types of precedence relationships and four types 
of minimum or greater-than window constraints (numbers 1, 2, 7 and 8). 

If negative link durations are permitted, eight additional types of constraints 
can be represented. A negative link duration imposes a maximum precedence 
lead. If event k must occur within a prescribed time period | D k h | time units after 
event h, then a link from k to h with negative duration D k h requires that the time 
of event k, E k , is less than or equal to the time of event h plus the prescribed lead 
IDjJ: E k + < E h or E R < E h + \Ό^\ for < 0. As shown in the partial 
network of Figure 3-7, links 9 to 16 represent the following constraints: 

9. The start of activity / is within |D 9 | of the project start. 
10. The finish of activity j is within | D 1 0 | of the project start. 
11. The start of activity j is within |Dj {\ of the start of activity /. 
12. The finish of activity j is within | D 1 2 | of the start of activity /. 
13. The start of activity j is within | D 1 3 | of the finish of activity /. 
14. The finish of activity j is within | D 1 4 | of the finish of activity /. 
15. The project finish is within | D 1 5 | of the finish of activity j . 
16. The project finish is within | D 1 6 | of the start of activity /. 

J1 

10 

Figure 3-7. Two-Activity Network with Eight Maximum Duration Links 
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Again, eight different precedence and window constraints exist of a maximum or 
less-than type. Unfortunately, negative length cycles may be introduced in the 
network by permitting negative links, and to avoid cyclic computations, the 
critical path solution algorithms are more complicated. 

Each link duration and event time can also be a variable and can be as­
sociated with a cost function. In this case, the network model is the familiar 
time-cost trade-off model. Another variation is to allow OR nodes as in the 
Decision CPM model (see p. 44). 

Figure 3-8 shows an application of the basic unified model to a project with 
five activities and twelve precedence relationships. In the absence of negative 
precedence durations, and assuming that all activities are amenable to splitting, 
the unified model can be solved by applying a node labeling algorithm such as 
the Basic CPM or Dijkstra's [61]. 

Figure 3-9 summarizes the scheduling results for the small project network 
of Figure 3-8. In this case, the critical path (illustrated in bold) includes: 
PS —> SC —> FC -> SE —> PF. The following observations can be made from the 
solution: 

• Both the start ma finish times of activity C are critical (i.e., these activities 
cannot be delayed without delaying the completion time of the project). 

• Only the start of activity Ε is critical. The finish of activity Ε can be delayed 
three days. Thus, activity Ε can have an overall duration between two and 
five days (e.g., by splitting its execution) without affecting the completion 
time of the project. 

• All other activity events are non-critical. 

Problems of computing and interpreting floats or slacks in project networks 
with different types of precedences have been noted by several researchers [73]. 
In the unified model, node and link floats are computed without modifying the 
basic solution algorithm. Node floats, which represent the amount of time that 
an event can be delayed without affecting the total duration of the project, are 
computed by subtracting the latest event time, L(i), from its corresponding ear­
liest event time, E(i). Link floats for both activities and precedence constraints 
are computed on the basis of the following definitions [50]: 

• Total Float is the maximum delay which can be assigned to any one activity 
or constraint without delaying the entire project. The total float is calculated 
as L(j) - E(i) - D a for link (ij). 

• Free Float is the delay which can be assigned to any one activity or constraint 
without delaying subsequent activities. The quantity E(j) - E(i) - Dy is the 
free float associated with link (i,j). 

• Independent Float is the delay which can be assigned to any one activity 
without delaying subsequent activities or restricting the scheduling of preced­
ing activities. The independent float for link (i, j) is computed as: 
Maximum(0, E(j) - L(i) - D H ) . 
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Figure 3-8. Example of the Basic Unified Model 
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Figure 3-9. Solution to the Basic Unified Model 

The unified network model can be used when activity splitting is restricted. 
Figure 3-10 shows the solution to a modified version of the example of 
Figure 3-8 for the case in which no activities may be split (i.e., their durations 
are fixed). In this example, the start time of activity D has been constrained to 
be the same as the finish time of activity A. Under this assumption, the total 
duration of the project is seventeen units, and critical path (shown in bold) is: 
PS -> SD -» FA -> FC -> SE -> PF. The earliest-start-time of activity A has 
been set to two units even though there is no window constraint imposed on this 
event. This is because the finish time of activity A is critical and its duration is 
fixed. 
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1,6 

Figure 3-10. Solution to the Unified Model with Maximum Durations 

As noted above, allowing negative link durations permits a greater variety of 
precedence relationships, but also complicates the scheduling computations. 
Most importantly, a cycle with positive length may appear in the network. In 
this situation, the Floyd-Warshall algorithm is applicable [61]. This algorithm 
computes a matrix of shortest paths throughout a network and identifies any 
positive length cycles. However, the worst-case performance of the Floyd-
Warshall algorithm is proportional to the number of nodes cubed (0(n 3 ) ) . 

The development of the unified network model was motivated by the desire 
to have an activity network model which solved time constraints using simple 
scheduling procedures. The model accomplishes this objective and provides a 
means for computing activity floats when various types of precedence relation­
ships are present. However, there are some losses in computing efficiency 
associated with the use of the model. Since the computational performance of a 
shortest-path, node-labeling algorithm is proportional to the number of nodes 
squared (0(n 2 ) ) [61], solving a unified network model may take up to four times 
longer than solving a corresponding conventional network model. When nega­
tive links are present, the worst-case performance may be eight times longer 
since a shortest-path algorithm that checks for positive length cycles is required. 
Despite these drawbacks, there are some important computational gains in using 
the unified network model: 

• The event, activity and constraint float times are readily available. The 
activity-on-node (AON) model requires additional computations to produce 
these values. 

• The node-labeling calculations are simpler using the unified network model 
since no identification of alternative types of links is required. With a 
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simpler, general-purpose algorithm, it should be easier to optimize the im­
plementation of a solution algorithm for the unified network model. 

• The density of links decreases when using the unified model because the 
average number of links per node is likely to be smaller than in the equivalent 
AON model. As a result, the average performance of the solution algorithm 
is better than indicated by the worst-case analysis. 

3.3 Requirements for a Process 
Planning Architecture 

This section specifies requirements for a process planning architecture, PLANEX, 
that implements the hybrid planning model described above. Specifying these 
requirements provides a basis for evaluating the structure and behavior of 
PLANEX, as well as other process planning architectures. 

The identification of the requirements followed an iterative process involving 
both specification of requirements and prototyping. Initially a list of general 
requirements was developed with respect to the scope of the architecture and its 
general behavior. After developing a prototype expert system for excavation 
tasks [49], this initial list was refined and additional architectural requirements 
were introduced. These requirements led to the development of an expert sys­
tem for construction planning, called CONSTRUCTION PLANEX, which is 
described in Chapter 6. The experiences acquired in the process of developing 
this second prototype led to the more refined list of system requirements 
presented below. The current PLANEX architecture was implemented to meet 
these requirements, and the prototypes were reimplemented using this architec­
ture. 

3.3.1 General Requirements 
In the summary section of Chapter 2, the following reasons for the minimal 
impact of existing computer tools in solving process planning problems were 
suggested: (1) tools focus on analysis rather than on synthesis; (2) they do not 
incorporate domain-specific knowledge; (3) they are not transparent to the user; 
and (4) they are not flexible. Therefore, an architecture designed to overcome 
these limitations must be: 

• generic so it may be used in different domains (e.g., planning the construction 
of a building, planning the manufacturing operations for a product) without 
having to modify its internal behavior or structure; 

• transparent in order to facilitate the understanding of its structure and be­
havior by its users; and 
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• extensible so that it is flexible enough to extend the scope of a particular 
application of the architecture. 

This section presents a list of proposed requirements for achieving generality, 
transparency and extensibility. These requirements are classified with respect to 
four perspectives: 

• Knowledge Representation, including issues related to how the architecture 
should store process planning knowledge; 

• Problem-Solving Operators, involving requirements of how the architecture 
should use knowledge to perform planning tasks; 

• Control, concerning behavioral goals detailing how the architecture should 
apply problem-solving operators to obtain a process plan; and 

• User Interaction, involving issues related to facilities available to the user to 
override decisions, obtain information, modify system knowledge or change 
the set of problem-solving operators. 

The first three perspectives refer to intrinsic characteristics of the architecture 
that affect how the system manipulates knowledge to solve problems. The 
fourth perspective involves exogenous elements used to modify the behavior of 
the architecture or to adapt it to other process planning domains. The four 
perspectives are not independent. For example, modifying the knowledge of a 
system is a user interaction issue directly related to the type of knowledge 
representation employed. Similarly, the characteristics of the knowledge 
representation affect the problem-solving behavior of the system. 

3.3 2 Knowledge Representation 

A fundamental issue in a knowledge-based architecture such as PLANEX is the 
form in which knowledge is represented. With respect to this issue, the follow­
ing requirements have been identified. PLANEX should: 

1. Provide a process-independent knowledge representation. PLANEX should 
provide a means of encoding knowledge for different process planning 
domains using a uniform, domain-independent format. This would facilitate 
adapting PLANEX for different application domains. 

2. Provide an op er at or-independent knowledge representation. PLANEX 
should provide a means for encoding knowledge about different process 
planning tasks (i.e., operators) such as activity identification or duration 
estimation in a uniform, operator-independent format. This would facilitate 
the extensibility and transferability of expert knowledge. 

3. Provide the means to structure knowledge hierarchically. PLANEX should 
provide a means to structure the large body of knowledge needed in process 
planning. Experiences with the prototypes for construction process planning 
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suggest that a good strategy is to structure this knowledge into hierarchies. 
Hierarchies may be established on the basis of the type of operators using 
this knowledge (e.g., duration estimation versus equipment selection) or on 
the basis of the level of detail represented in the knowledge (e.g., selecting a 
general type of excavator versus selecting a type of power shovel). 

4. Provide the means to check the completeness or consistency of an operator s 
knowledge. For a particular planning operation, the user may want to check 
whether all possible combinations of factors affecting the outcome have 
been considered in formalizing the domain knowledge. In other cases, the 
user may require that the knowledge associated with a particular operator 
provides a unique result for any combination of factors. The knowledge 
representation of PLANEX should be amenable to supporting such checking. 

3.3.3 Problem-Solving Operators 

All computer systems contain a set of problem-solving operators that define the 
actions executed by the system when solving a problem. In some programs, the 
set of operators is fixed and the program's structure is not transparent to the 
user. Most commercial scheduling packages are examples of such programs. 
The user's only interaction with these systems takes place during the formula­
tion of the input and the interpretation of results. In solving a problem, these 
systems perform as a black-box whose structure is fixed. A more flexible 
approach is desirable. The following requirements are related to the PLANEX 
operators. PLANEX should: 

1. Achieve operator modularity. It should be possible to decompose the set of 
operators into elementary operators whose scope and purpose are easy to 
identify. This characteristic would improve the flexibility of the architec­
ture. 

2. Provide a set of problem-solving operators that may be used in different 
process planning domains. There are several operations that are common to 
any process planning domain. For example, the Basic Critical Path Method 
may be used to compute the duration of a project regardless of the nature of 
the activities in the project network. PLANEX should provide a set of com­
mon operators in order to facilitate the development of application programs. 

3. Incorporate both synthesis and analysis operators. As previously discussed, 
one of the problems with computer tools for process planning is that they 
only perform analysis tasks and leave synthesis tasks to the planner. In an 
integrated system, it is important to perform both of these tasks. For ex­
ample, synthesis tasks are required when generating project activities and 
selecting appropriate construction and manufacturing methods. Analysis 
tasks are required to determine the consequences of planning actions. 
(Examples of analysis operators are those that estimate the duration and cost 
of project activities.) Both types of operators should be supported. 
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4. Provide the means to structure operators hierarchically. In some domains, 
it may be useful to structure operators into hierarchies. Hierarchies may be 
established on the basis of the level of generality of the operator (estimating 
the cost of the project versus estimating the cost of concrete columns) or on 
the basis of the purpose of the operator (estimating costs versus estimating 
durations). As described in Section 5.1.2, operator hierarchies are used to 
perform hierarchical planning in a similar manner to that of ABSTRIPS. 
The architecture should support such hierarchical structuring of operators. 

3.3.4 Control 
In addition to identifying requirements with respect to operator characteristics, 
another important issue to consider is that of control. Control defines the be­
havior of a system in terms of selecting and executing operators during the 
planning process. In defining a control architecture (see p. 32), Hayes-Roth 
proposed the following behavioral goals for an intelligent system [45, p. 252]: 

( 1.) Make explicit control decisions that solve the control problem. 
(2.) Decide what actions to perform by reconciling independent deci­

sions about what actions are desirable and what actions are feasible. 
(3.) Adopt variable grain-size control heuristics. 
(4.) Adopt control heuristics that focus on whatever action attributes are 

useful in the current problem-solving situation. 
(5.) Adopt, retain, and discard individual control heuristics in response 

to dynamic problem-solving situations. 
(6.) Decide how to integrate multiple control heuristics of varying im­

portance. 
(7.) Dynamically plan strategic sequences of actions. 
(8.) Reason about the relative priorities of domain and control actions. 

Although these are desirable behavioral goals for an intelligent planner that 
decides which operators to execute during process planning, a distinction should 
be made with respect to the plausibility of achieving these goals in a generic 
process planning system. On the one hand, some of the goals seem easily 
achievable in any process planning domain. For example, any system that does 
not execute operators in a predetermined manner would make decisions about 
which operators to apply at any point in the planning process. Even if these 
decisions are made solely on the basis of the applicability of the operators, the 
system satisfies the first behavioral goal. On the other hand, other goals would 
only be satisfied if the system is provided with considerable control knowledge. 
Incorporating these goals into system requirements would suggest an architec­
ture that encodes control knowledge in structures similar to the Choose-KSAR 
and Refine-or-Chain? knowledge sources of OPM. For example, to dynamically 
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use various control heuristics (the fifth item in Hayes-Roth's list, above) the 
system needs to possess knowledge about the applicability and desirability of 
alternative control heuristics at different stages of the planning process. It is an 
open question whether such knowledge is dependent on the type of domain 
being modeled. The fact that a general theory of process planning has not been 
developed may indicate that this type of knowledge is domain-specific. If this is 
the case, satisfying all of Hayes-Roth's behavioral goals in the architecture of 
PLANEX would make adapting it to different domains complex. For each 
domain, the user would have to provide the system not only with the domain 
knowledge (e.g., possible activities, appropriate resources, productivities, costs) 
but also with control knowledge (e.g., in planning building construction, choos­
ing the general construction method before defining the activities). 

The following are the basic control requirements proposed for the architec­
ture. PLANEX should: 

1. Make explicit control decisions that solve the problem. Planning is not a 
straightforward process. There are many interactions that must be con­
sidered because one decision often affect others. A good sequence of opera­
tions for a certain project (e.g., determine the general type of excavation 
equipment first) may not be the proper sequence for other projects. Because 
the sequence of planning operations is not fixed, PLANEX should make con­
trol decisions regarding the order in which different operators are executed. 

2. Decide what operators to execute in terms of their feasibility and 
desirability. At any point in the solution process there may be several 
applicable operators. However, only some of them may contribute to the 
solution of the problem. The distinction between feasibility and desirability 
has been incorporated into planning systems since the development of GPS 
(see p. 16). PLANEX should be able to identify both feasible and desirable 
operators and decide which one to execute next. 

3. Dynamically plan strategic sets of operators. During the planning process, 
the user or the system may establish a goal that is not directly achievable by 
any feasible operator. The system should be able to elaborate a plan of 
operators to accomplish the goal. 

4. Incorporate different control heuristics in the planning process. Ac­
complishing the other behavioral goals requires different control heuristics 
be present in the system. For example, for strategic planning of operators, a 
backward search similar to the goal expansion process of NOAH (see p. 23) 
may be appropriate. In other situations, a forward search may be required to 
propagate the consequences of particular operations. PLANEX should 
provide the mechanism to incorporate such different control heuristics. 

Although these requirements do not include all of Hayes-Roth's goals, it seems 
plausible to implement them in a generic knowledge-based architecture for plan-
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ning. This does not mean that the basic system architecture could not be ex­
tended to incorporate some of the goals that have been excluded. In particular 
domains, control knowledge and operators could be added to the basic architec­
ture described in this chapter to yield a more intelligent control behavior. 

3.3.5 U s er Interaction 

In a knowledge-based system, it is important to "keep a human in the 
loop" [107, p. 13]. This is particularly true for a generic system architecture 
such as PLANEX. User interaction is required to modify the structure, knowledge 
or behavior of the system in areas such as: (1) adapting and extending the 
system from one domain to another; (2) debugging the knowledge for a par­
ticular application; (3) extending the scope of the problem-solving process in a 
certain domain; and (4) modifying the manner in which a solution is obtained. 
The proposed user interaction requirements for PLANEX are: 

1. Provide the means to create, discard or update domain knowledge. In any 
process planning domain, significant knowledge is needed. PLANEX should 
include tools which permit easy modification of the knowledge required for 
particular domains. 

2. Provide the means to modify the set of operators. Different domains may 
require changes to the basic set of operators used by the application system. 
For example, when planning building construction, some contractors may 
require that the system determine when the construction materials should be 
purchased. In this case, the contractor may have to add one or more 
operators to the planning system to perform this task. Capabilities to modify 
the set of operators should be included in the system. 

3. Provide the means to control the planning process. PLANEX is intended to 
be an assistant that provides the user with several mechanisms to control the 
planning process. The user should be able to execute individual operators, 
establish goals or introduce changes that affect the manner in which 
problem-solving operators are executed. 

4. Explain results in terms of the knowledge used to obtain them. PLANEX 
should provide the user with explanations that facilitate the understanding of 
its problem-solving behavior. This information is needed to expand and 
refine the knowledge and operators of application systems developed using 
the architecture. 

5. Provide the means to produce reports with flexible formats. The architecture 
should provide the user with the means for designing various types of 
reports. This capability improves the adaptability of the architecture to 
different domains. 

6. Provide graphical display of results. Graphical output is very useful for 
displaying information. Bar-charts and network diagrams are commonly 
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used by managers to represent process plans [50, 72]. The architecture 
should provide the means to incorporate these and other types of graphical 
output. 

3-4 Conclusions 
This chapter introduced a hybrid model of process planning suitable for com­
puter implementation. Two illustrative models to perform specific tasks within 
the planning process were also described. The requirements that a general 
purpose, knowledge-based process planning system should fulfill were formal­
ized. These models and requirements provide a framework for the development 
of the PLANEX system architecture. 



4 A Knowledge-Based 
Architecture for Process 
Planning 

This chapter describes a software architecture for process planning, PLANEX, 
which is designed to satisfy the list of structural and behavioral requirements 
presented in the previous chapter. PLANEX provides tools for representing and 
using the knowledge required by process planning operations. These tools have 
been used to develop process planning systems including CONSTRUCTION 
PLANEX, a knowledge-based expert system for construction planning which is 
described in Chapter 6 and HARNESS PLANEX, an expert system for electrical 
wire harness process planning which is described in Chapter 7. 

As noted in Section 1.5, the development of PLANEX followed an iterative 
prototype building and refinement process. The requirements developed during 
this process (see Section 3.3) resulted in the flexible system architecture 
described in this chapter. 

This chapter first presents an overview of the basic components of PLANEX 
and their use and interrelationships in the solution of process planning problems. 
Subsequent sections describe the PLANEX architecture in terms of three perspec­
tives: 

• Knowledge Representation—Details of the tools provided by PLANEX to store 
and retrieve process planning knowledge; 

• Problem Solving and Control—Discussion of the tools used to implement the 
behavior of the hybrid process planning model described in Section 3.1.4; and 

• User Interaction—Explanation of the mechanisms provided to the planner to 
change decisions, obtain information, modify system knowledge or change 
the set of planning operators. 

87 
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4.1 Overview of PLANEX 

4.1.1 Basic Components of PLANEX 

The knowledge-based system architecture for process planning contains four 
major components: 

1. Representational Structures. Information about solution elements, planning 
decisions and input data for the planning process is stored in a global data 
store called the context. The context contains hierarchical representational 
structures that are composed of objects linked with each other using different 
types of relations. Each object has a unique name and contains slots that 
store values of the attributes of the object or pointers to other objects. An 
object may belong to more than one hierarchical structure. In different 
applications of PLANEX, there may be schémas for storing information about 
process components, resources, activities, etc. However, the set of hierar­
chies is specific to each problem domain. 

2. Operators. Solution of the process planning problem is achieved by apply­
ing problem-solving operators. Each operator is a procedural function that 
modifies the context by creating, modifying or deleting objects. There are 
two types of operators: domain and control. Domain operators perform 
specific planning tasks such as choosing technologies, estimating activity 
durations, or scheduling. Domain operators are specific to each problem 
domain. However, several application systems may share common domain 
operators. Control operators determine the sequence in which domain 
operators are executed. The set of control operators is common to all 
problem domains. 

3. Knowledge Sources. Knowledge required by the operators is stored in 
groups of rules called Knowledge Sources (KSs). Each KS provides infor­
mation for individual operators such as activity formulation, duration estima­
tion or precedence determination. Knowledge sources are used to return 
values to the operators, to modify the context and to invoke the evaluation of 
other KSs. The knowledge base of PLANEX is composed of many KSs. 

4. User Interface. PLANEX is an interactive system architecture that incor­
porates a user interface used for modifying any of the three components 
described above, controlling the execution of the system, changing planning 
decisions or retrieving information from the context. The user interface is 
composed of several editors, command menus, graphical displays (both in­
teractive and passive) and a report generator. 
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4.1.2 Relationships Among the Basic Components of PLANEX 
Figure 4-1 illustrates the relationships among an operator, its associated 
knowledge sources and the different types of context objects related to the 
operator. Each operator may be applied to different sets of objects called the 
application objects of the operator. For example, if the operator that estimates 
activity durations is applied to all the activities used to construct a particular 
floor, these activities constitute the application objects of the operator at that 
point during the solution of the process planning problem. Usually operators are 
sequentially applied to their application objects. The object to which the 
operator is applied is called the current object. When an operator is executed, a 
set of knowledge sources may be evaluated and the results of this evaluation are 
returned to the operator. With respect to each operator, the context is divided 
into three different sets of objects: the input objects, the output objects and the 
remaining objects (those not associated with the operator). The set of input 
objects of the operator contains all the data required to evaluate the related 
knowledge sources and to perform procedural calculations. The objects affected 
by the application of an operator and the evaluation of its associated knowledge 
sources constitute the set of output objects of the operator. The sets of input and 
output objects may have some common elements. Usually the current object 
belongs to both sets. 

When a domain operator is executed, either in response to a user request or 
by a control operator, the following steps are performed: 

Step 1. Identify the application objects. The objects to which the operator is 
applied are the application objects. 

Step 2. Select a KS to be used by the operator. Each type of operator (e.g., 
technology choice, duration estimation) is related to a specific set of 
KSs. These KS s contain all of the knowledge required to perform the 
specific operation. In some cases, knowledge sources are not required 
for operators performing procedural calculations. 

Step 3. Select one specific object from the application objects. This object 
becomes the current object used when evaluating the KS. Evaluating a 
KS may or may not require information from the selected object. 

Step 4. Evaluate the selected KS. The selected KS is evaluated using the 
KNOWLEDGE SOURCE EVALUATOR (KSE) and the results are returned 
to the domain operator. The domain operator is responsible for 
processing these values, either storing them in schémas or using them to 
perform other computations. 

Some of these steps may be repeated depending upon the results of the KS 
evaluation (e.g., another KS must be evaluated) or the range of the operator 
(e.g., apply the operator to several application objects). 
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Figure 4-1. Relationships of Operators, Knowledge Sources and Context Objects 

The set of context changes caused by a domain operator is known as the 
effects of the operator. Effects are described as changes to slot values of par­
ticular objects. An effect is predictable if it can be described before the operator 
is executed, and it is unpredictable otherwise. The information about the pre­
dictable and unpredictable effects of domain operators is stored in context ob­
jects containing declarative knowledge which describes the operators. This 
knowledge is used by the control operators to determine which planning tasks 
should be performed during the planning process. Operator schémas also con­
tain the names of the KSs used by the operator. 

4.13 User Interaction Mechanisms 
The PLANEX architecture incorporates several user interaction mechanisms: 

1. an interactive environment for modifying the knowledge base of the system, 
called the KNOWLEDGE SOURCE ACQUISITION MODULE ( K S A M ) ; 
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2. an interactive environment for modifying control information called the 
CONTROL PANEL ( C P ) ; 

3. a menu-driven interface used to control the execution of the domain and 
control operators used to request explanations of planning decisions; 

4. the REPORT GENERATOR (RG) for outputting process information in tabular 
forms; and 

5. several graphical displays, some of which are interactive. 

In addition, the user may directly modify context objects using the primitive 
functions of the frame representation language used to implement PLANEX. 
These functions (e.g., the function to create a new schema) are used to imple­
ment the procedural codes of the operators. 

4.2 Knowledge Representation 
Knowledge-based expert systems contain considerable domain knowledge that 
must be represented in an organized manner. PLANEX provides means to incor­
porate and use this knowledge effectively in various application domains. In the 
development of this architecture, several alternative knowledge representations 
were explored. The first prototype system for excavation planning used a mixed 
representation of domain knowledge: isolated rules and procedural functions. 
The experiences with this prototype showed that this representation was inade­
quate for acquiring, representing or updating process planning knowledge. 

In the prototype for planning the construction of buildings, a knowledge 
representation scheme based on decision tables was employed. This represen­
tation proved to be very effective for acquiring and representing the KSs of 
PLANEX. Domain knowledge is decomposed with respect to the different types 
of planning operations associated with the knowledge. Knowledge is 
represented by one or more KSs. Each KS is a decision table that groups rules 
which share common antecedents or consequents. The structure of a typical 
decision, the mechanism of KS implementation and interpretation and some 
capabilities and limitations of the knowledge representation are discussed below. 

4.2.1 Structure of a Decision Table 
Research on the decision table as a symbolic mechanism to represent logical 
interdependencies among events has been underway for over three decades. 
Reviews of the basic theory of decision tables and their applications in software 
engineering is given by Hurley [53] and by Welland [108]. Advantages include 
the compactness and transparency with which knowledge is expressed and the 
possibility of checking for omissions and logical inconsistencies in the decision 
tables. In civil engineering, the use of decision tables to represent construction 
specifications and standards was initially proposed more than twenty years 
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ago [31]. Recently some expert systems have used decision tables to represent 
domain knowledge. Examples include the SPEX [38] and TRALI [114] sys­
tems. SPEX, an expert system for designing structural components of a build­
ing, uses decision tables to represent design standards. TRALI, an expert sys­
tem assistant for traffic signal setting, uses decision tables to find crossing 
conflicts between pairs of traffic flows. 

Figure 4-2 shows a simplified decision table used for determining the ac­
tivities required to construct a cast-in-place concrete column footing. This table 
returns a list of activity names to the operator responsible for activity creation. 
The table contains three regions: 

• conditions represented as boolean predicates in the left part of the upper rows 
of the table; 

• actions represented by values or functions in the left part of the bottom rows 
of the table; and 

• rules represented in the columns of the right side of the table. Each column 
specifies the conditions that should be True ("T") , False ("F") or Irrelevant 
("I"), and those values or actions that will be eXecuted ("X") or Ignored 
("I") for that rule (see p. 98 for an explanation of how irrelevant values are 
handled when evaluating the decision table). 

KS-Example 

Condit ions Rules 

d e s i g n e l e m e n t is a c a s t - i n - p l a c e c o n c r e t e c o l u m n - f o o t i n g τ τ F 

soi l is a p p r o p r i a t e for backf i l l τ F I 

A c t i o n s 
e x c a v a t e - c o l u m n - f o o t i n g χ χ I 
d i s p o s e - o f - e x c a v a t i o n - c o l u m n - f o o t i n g I χ I 
p i l e - u p - e x c a v a t i o n - c o l u m n - f o o t i n g χ I I 
b o r r o w - m a t e r i a l - c o l u m n - f o o t i n g I χ I 
p l a c e - f o r m s - c o l u m n - f o o t i n g χ χ I 
r e i n f o r c e - c o l u m n - f o o t i n g χ χ ι 
p o u r - c o n c r e t e - c o l u m n - f o o t i n g χ χ ι 
r e m o v e - f o r m s - c o l u m n - f o o t i n g χ χ I 
K S - o t h e r - e l e m e n t s I I χ 

Figure 4 - 2 . Example of a Decision Table 
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In this example, knowledge about construction activities is represented by three 
rules: 

Rule 1. If the component is a cast-in-place concrete column footing and if the 
soil can be used for backfill, the required activities are: (1) excavate for 
the footing; (2) pile up the excavation material, (3) place the forms; 
(4) place the reinforcement; (5) pour the concrete; and (6) remove the 
forms. 

Rule 2. If the component is a cast-in-place concrete column footing and if the 
soil cannot be used for backfill, the required activities are: (1) excavate 
for the footing; (2) dispose of the excavation material; (3) borrow back­
fill material; (4) place the forms; (5) place the reinforcement; (6) pour 
the concrete; and (7) remove the forms. 

Rule 3. If the component is not a cast-in-place concrete column footing, a dif­
ferent decision table, called KS-other-elements, must be evaluated. 
PLANEX identifies that KS-other-elements is a KS using auxiliary infor­
mation, as described below. 

This example is used below to illustrate how decision tables represent 
knowledge. 

4.2.2 Implementation of a Knowledge Source 

The knowledge base of PLANEX is composed of many KSs whose structure 
resembles that of a decision table. A KS contains additional information detail­
ing where and how to retrieve the information required to evaluate the KS. 
Figure 4-3 shows the KS corresponding to the decision table of Figure 4-2 . 
Each condition is defined by four basic elements: 

• object, which may be: (1) the name of a context object; (2) "Function"; 
(3) " K S " ; or (4) "None". These values indicate that the condition to be 
evaluated is: (1) a slot name; (2) a function name; (3) another KS; or (4) the 
name of a global variable. In the example, both conditions are evaluated 
using values of context objects. 

• slot, which may be the name of a slot, function, KS or global variable, 
depending on the value of the object item. In the example, the second con­
dition is evaluated using the value of the slot possible-use of the object 
soil-characteristics. 

• op, which contains an operator such as " = " , " > " , or " i s " that expresses the 
relationship between the slot's value and the value. 

• value, which stores a number or a symbol. 

KSs are implemented as context schémas using the syntax defined by the BNF 
grammar shown in Figure 4-4. This form is used to define all knowledge source 
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Name: KS-Example Type: f i r s t 

Object Slot Op Value Rules 

c u r r e n t - o b j e c t type-element 
c a s t - i n - p l a c e 
c o n c r e t e 
c o l u m n - f o o t i n g 

s o i l - c h a r a c t e r i s t i c s p o s s i b l e - u s e b a c k f i l l 

e x c a v a t e - c o l u m n - f o o t i n g X X , 

d i s p o s e - o f - e x c a v a t i o n - c o l u m n - f o o t i n g 1 X 1 
p i l e - u p - e x c a v a t i o n - c o l u m n - f o o t i n g X 1 1 
b o r r o w - m a t e r i a l - c o l u m n - f o o t i n g 1 X 1 
p l a c e - f o r m s - c o l u m n - f o o t i n g X X 1 
r e i n f o r c e - c o l u m n - f o o t i n g X X 1 
p o u r - c o n c r e t e - c o l u m n - f o o t i n g X X 1 
r e m o v e - f o r m s - c o l u m n - f o o t i n g X X 1 
K S - o t h e r - e l e m e n t s 1 1 X 

Figure 4 - 3 . Example of a Knowledge Source 

schémas in PLANEX. The terminal symbol d e f s c h e m a is the name of the 
macro used to create a knowledge source schema. Utilities to convert from the 
decision table form of Figure 4 - 3 to schémas exist in the KNOWLEDGE SOURCE 
ACQUISITION MODULE (see Section 4 . 4 . 1 ) . Knowledge sources are represented 
as schémas so that they can be interpreted by the KNOWLEDGE SOURCE 
EVALUATOR of PLANEX. 

Figure 4 - 5 shows the schema representation of the example KS. The schema 
contains the following slots: 

• is-a identifies the schema as a KS; 
• ks-type indicates the type of firing mechanism used when evaluating the KS; 
• cond-objects indicates the source of the information required to evaluate each 

condition (a context object or another source, such as a function, other KS or 
global variable); 

• conditions consists of a list of predicates; 
• Ihs-rules stores the antecedents of the rules; 
• rhs-rules stores the consequents of the rules; and 
• actions consists of a list of possible results (functions or KS names). 

The evaluation of a KS and how the information in the actions slot is interpreted 
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<decision-table> := (defschema <sep> <symbol> 
(is-a <sep> KS) 
(ks-type <sep> <ks-type-value>) 
(cond-objects <sep> <cond-objects-list>) 

<ks-type-value> 
<cond-objects-list> 
<conditions-list> 
<lhs-rules-list> 
<rhs-rules-list> 
<actions-list> 
<cond-objects-values> 
<conditions-values> 
<lhs-rules-values> 
<rhs-rules-values> 
<actions-values> 
<object> 
<condition> 

<lhs-list> 
<rhs-list> 
<action> 

<slot-fcn-ks> 
<bool-operator> 

<symbol-binding-value> 
<tfi-values> 
<xi-values> 
<fcn-args> 
<quoted-list> 
<symbol-binding-list> 

<symbol-binding> 

<sep> 
<number> 

<separator> 
<symbol> 

<binding> 

<sep> <conditions-list>) 
<sep> <lhs-rules-list>) 
<sep> <rhs-rules-list>) 
<sep> <actions-list>)) 

(conditions 
(lhs-rules 
(rhs-rules 
(actions 

= first I all 
= ( <cond-objects-values> ) 
= ( <conditions-values> ) 
= ( <lhs-rules-values> ) 
= ( <rhs-rules-values> ) 
= ( <actions-values> ) 
= <object> I <sep> <cond-objects-values> 
= <condition> | <sep> <conditions-values> 
= <lhs-list> I <sep> <lhs-rules-values> 
= <rhs-list> I <sep> <rhs-rules-values> 
= <action> | <sep> <actions-values> 
= <symbol> | KS | Function | None 
= ( <slot-fcn-ks> <sep> 

<bool-operator> <sep> 
<symbol-binding-value> ) 

= ( <tfi-values> ) 
= ( <xi-values> ) 
= <symbol-binding> | <number> | 

<fcn-args> | <quoted-list> 
= <symbol-binding> | <fcn-args> 
= is I = I < I <= I > I >= I <> I member | 

not-member 
= <symbol-binding> | number 
= Τ I F I I I <sep> <tfi-values> 
= X I I I <sep> <xi-values> 
= ( <symbol-binding-list> ) 
= ' ( <symbol-binding-list> ) 
= <symbol-binding> | <sep> <fcn-args> | 

<sep> <quoted-list> | 
<sep> <symbol-binding-list> 

= <symbol> | <binding> | 
<symbol> <symbol-binding> | 
<binding> <symbol-binding> 

= <separator> | <separator> <sep> 
= any number type in COMMON LISP (e.g., 

fixed, float, rational) 
= a space, line-feed, or new-line 
= an identifier which may include: 

+ - / $ % & _ = - . 
= a symbol enclosed in < > 

Figure 4-4. Knowledge Source Schema Definition Grammar 
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(defschema ks-example 

This ks identifies the element activities required to build a 
cast-in-place concrete column footing 

(is-a 
(ks-type 
(cond-objects 
(conditions 

(lhs-rules 

(rhs-rules 

(actions 

ks) 
first) 
current-object soil-characteristics) 
(= type-element 

cast-in-place-concrete-column-footing) 
(= possible-use backfill)) 
(T T) 
(T F) 
(F I)) 
( X I X I X X X X I ) 
( Χ Χ Ι Χ Χ Χ Χ Χ Ι ) 
( Ι Ι Ι Ι Ι Ι Ι Ι Χ ) ) 
excavate-column-footing 
dispose-of-excavation-column-footing 
pile-up-excavation-column-footing 
borrow-material-column-footing 
piace-forms-column-footing 
reinforce-column-footing 
pour-concrete-column-footing 
remove-fοrms-cο1umn-footing 
ks-other-elements)) 

Figure 4-5. Schema Representation of the Knowledge Source of Figure 4-3 

(e.g., whether the values are symbols, functions or other KSs) is discussed in the 
next section. 

4.2.3 Knowledge Source Evaluation 
Knowledge sources are evaluated by a generic operator which is called the 
KNOWLEDGE SOURCE EVALUATOR. When an operator requires the evaluation of 
a particular KS, it invokes the KSE, supplying the name of the KS to be 
evaluated and the name of the domain object to which the operator is applied. 
The KSE evaluates the KS and returns a list of result values to the operator. The 
operator acts upon the list (e.g., performs arithmetic operations or modifies 
context objects). 

The algorithm used by the KSE to evaluate a KS is detailed below. The 
following lists are used in the algorithm to store values of the slots of the KS 
being evaluated: 

• objects-list, O, stores the values of the cond-objects slot. The elements of this 
list are symbols. 
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• conditions-list, X, whose elements are the values of the conditions slot. Each 
list element is a triplet of the form (operator e2 e3). The KSE determines if e2 

is a function, a symbol or the name of another KS using the value of the 
corresponding element of the objects-list. 

• actions-list, A, stores the values of the actions slot. Each element is either a 
number, a symbol or a function. If the element is a symbol, the KSE searches 
the is-a+inv pointer of the KS schema to determine if the symbol is the name 
of a KS. 

• Ihs-list, A, whose elements are the values of the lhs-rules slot. Each element 
is a list of " T " , " F " or " I " terms. The number of terms in each list is equal 
to the number of conditions in the KS. 

• rhs-list, P, whose elements are the values of the rhs-rules slot. Each element 
is a list of " X " or " I " terms. The number of terms in each list is equal to the 
number of actions in the KS. 

In addition, the algorithm uses four other lists: 

• bindings-list, whose elements are of the form (binding value). The first term 
of a pair is a binding6 such as (x) or (floor) and the second term is the value 
associated with this binding. 

• matchings-list, whose elements are lists composed of " T " , " F " or " B " terms, 
where " B " stands for binding. The length of the list is equal to the number of 
conditions in the KS. 

• results-list stores the list of results before they are interpreted by the KSE. 
• final-results-list stores the list of results after interpretation by the KSE. 

These values are returned to the operator which invoked the KS evaluation. 

The algorithm proceeds as follows. All conditions are evaluated and clas­
sified as being true ("T"), false ("F") or a binding condition ("B"). This 
information is stored in the matchings-list. The left-hand-side of each rule is 
compared to this list to determine if the rule is to be fired. Depending on the 
type of firing mechanism used to evaluate the KS, rules may be fired sequen­
tially or a more elaborate scheduler may be used to select one of the rules whose 
antecedent satisfies the matchings-list. In the algorithm presented below, firing 
is sequential. Each time a rule is fired, the actions indicated in its consequent or 
right-hand-side are executed and the resulting values or actions are stored in the 
results-list for later interpretation. After all of the rules have been fired, the 
values of results-list are interpreted and the final-results-list is returned to end 
the evaluation process. 

6 Bindings are always enclosed in angle brackets « )). The binding is the name of a symbol which 
is evaluated at run-time to obtain an actual value (i.e., the binding value). This value is substituted 
for all occurrences of the binding term in the KS. Bindings are used in a similar fashion in all of 
the representational structures of P l a n e x . 
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The algorithm uses auxiliary procedures to substitute binding variables and to 
select the rules: 

• Bind Variables. This procedure searches for binding variables in the 
conditions-list or actions-list and substitutes the corresponding values from 
the bindings-list. For example, if the current value of the bindings-list is: 

((<x> pour-concrete) (<floor> 5>)) 
and the value of the actions list is: 

(<x>-columns-<floor>) 
this procedure performs two substitutions and the new value becomes: 

(pour-concrete-columns-5) 
• Match Conditions with Rules. This procedure compares the complete 

matchings-list with an element of the Ihs-list. In this comparison, any binding 
(indicated with "B") or any Ihs-list value equal to " I " are ignored. For 
example, if the matchings-list is "(Τ B F)" , evaluation of Ihs-list elements 
"(T F F)" or "(Τ Τ I)" would return " T " , while evaluation of "(T F Τ)" or 
"(F Τ I)" would return " F " . This treatment of irrelevant ("I") provides some 
flexibility in knowledge representation. For example, when a set of con­
ditions is used to determine if a value is one element of an exclusive set, 
irrelevant tests are employed instead of false tests (e.g., to test if A is " X " or 
" Y", rules "((Τ I) (I T))" are used in place of "((T F) (F T))"). Also, rules of 
the form "(I I . . . I )" represent an all rule which fires for any set of con­
ditions. The flexibility implies that the rules need not be consistent or com­
plete. 

Algorithm for the KNOWLEDGE SOURCE EVALUATOR 

Step 1. Initialize 

1.1 Let KS* be the name of the KS being evaluated. 

Step 2. Evaluate Conditions 

2.1 Initialize Lists. 
Assign ks-type the value of the ks-type slot of schema KS*. 
Assign Ο the value of the cond-objects slot of schema KS*. 
Assign X the value of the conditions slot of schema KS*. 
Assign A the value of the actions slot of schema KS*. 
Create empty lists for the matchings-list and bindings-list. 

2.2 Loop through Conditions. 
If X is empty: go to Step 2 .11. 
Let ο and χ be the first elements of Ο and X respectively. 
L e t O < - 0 \ { o } . 
L e t X < - X \ {x ) . 

2.3 Use procedure Bind Variables to substitute binding values in condition χ. 
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2.4 If ο indicates "KS" evaluation: go to Step 2.5. 
If ο indicates "Function" evaluation: go to Step 2.6. 
If ο is "none": go to Step 2.8. 
Go to Step 2.7. 

2.5 KS Evaluation of a Condition. 
Let KS** be the first element of condition χ. 
Evaluate KS** and replace KS** by the first value resulting from this 
evaluation in condition χ. 
Go to Step 2.9. 

2.6 Function Evaluation of a Condition. 
Let F* be first element of condition χ. 
Evaluate F* and replace F* by the result of evaluating the function in 
condition χ. 
Go to Step 2.9. 

2.7 Schema Evaluation of a Condition. 
Let slot* be the value of the first element of condition χ. 
Replace slot* by the value of slot slot* of schema ο in condition χ. 

2.8 Binding Evaluation. 
If the third element of condition χ is a binding variable: go to Step 2.9. 
Let m be the result of evaluating condition χ (m is "Τ" or "F"). 
Go to Step 2.10. 

2.9 Augment Bindings-list. 
Let e2 and e3 be the second and third elements of predicate χ. 
Let bindings-list 4 - bindings-list u ( (e3 e2) ). 
Let m <— {b ). 

2.10 Augment Matchings-list. 
Let matchings-list <— matchings-list u {m). 
Go to Step 2.2. 

2.11 Translate Actions. 
Use procedure Bind Variables to substitute binding values in the list of 
actions A. 

Step 3. Select and Execute Rules 

3.1 Initialize Lists. 
Assign Λ the value of the lhs-rules slot of schema KS*. 
Assign Ρ the value of the rhs-rules slot of schema KS*. 
Create an empty list for results-list. 
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3.2 Loop through Rules. 
If either Λ or Ρ is empty: go to Step 4. 
Let λ and ρ be the first elements of Λ and Ρ respectively. 
Let Α<- Λ\{λ} . 
L e t P ^ - P \ { p } . 

3.3 If λ matches matchings-list (using procedure Match Conditions with 
Rules): go to Step 3.4. 
Go to Step 3 .2 . 

3.4 Find actions Β of A corresponding to "X" values in p. 

3.5 Let results-list <- results-list u {Β ). 

3.6 If ks-type is "all": go to Step 3 .2 . 
Go to Step 4. 

Step 4. Interpret Actions 

4.1 Initialize List of Results. 
Create an empty list fox final-results-list. 

4.2 Loop through Results. 
If results-list is empty: stop and return final-results-list. 
Let α be the first element of results-list. 
Let results-list <— results-list \ {a}. 

4.3 If a is a number or a symbol not in the is-a+inv slot of schema KS: let 
final-results-list <— final-results-list u {a); go to Step 4.2. 

4.4 Recursion in Actions. 
If a is a symbol included in the is-a+inv slot of schema KS: let β be the result 
of evaluating KS a; let final-results-list <— final-results-list u ( β}; go to 
Step 4.2. 

4.5 Function Evaluation. 
If a is a list whose first element is the name of a function: let β be the result of 
evaluating a; let final-results-list <— final-results-list u {β}; go to Step 4.2. 

4.6 If a is a list whose first element is not the name of a function: let β be equal to 
the result of interpreting list α following Step 4.1 recursively. 
Let final-results-list <— final-results-list u {β}. 
Go to Step 4.2. 

4.3 Problem Solving and Control 
In solving a planning problem, PLANEX selects and executes various problem-
solving operators. Controlling the execution of these operators is important 
because the effects of some operators usually affect the execution of other 
operators. This section describes in detail the structure and performance of the 
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system components responsible for selecting which feasible operators should be 
executed at each step in the planning process. The relationships among these 
components provide the system with the capability to solve problems in dif­
ferent domains. This versatility is illustrated in the next chapter. 

During the development of PLANEX, several problem-solving mechanisms 
were explored. The first prototype system for excavation tasks placed all con­
trol decisions in the procedural codes of the operators. The system was in­
flexible in adapting its problem-solving behavior when obtaining the solution of 
a problem. In developing the initial architecture of CONSTRUCTION PLANEX, the 
need to separate domain operators from control operators was recognized. A 
message interface was proposed as a means to communicate with both types of 
operators. However, it was not clear what type of messages should be included 
in such an interface and how overall control would be accomplished. The first 
CONSTRUCTION PLANEX prototype included a set of well-defined domain 
operators for planning. In this system, control was provided through a menu-
driven interface. The final PLANEX architecture incorporates both explicit con­
trol operators and menus. 

4.3.1 Overview of Control Behavior 
There are numerous alternatives for controlling the problem-solving operators. 
In systems that use a pure forward-chaining control strategy, problem-solving 
operators are executed whenever enough information to invoke them is avail­
able. Operator dependencies are implicitly expressed as a function of the 
availability of data in the context. Control is opportunistic and myopic. In 
contrast, strategic plan formulation systems such as NOAH (see p. 23) use 
declarative information about problem-solving actions to analyze operator inter­
actions and generate plans. Although these systems have not been applied to the 
problem of controlling the execution of the problem-solving operators in an 
expert system, providing such a declarative representation of these operators 
seems promising. 

The control mechanism of PLANEX combines opportunistic and strategic ele­
ments by using the hybrid model for process planning described in Section 3.3. 
In this model, the description of the problem-solving operators includes the 
input data they require (their preconditions) and the results they produce (their 
effects). Control alternates between the two phases shown in Figure 4-6: 

• a planning phase in which operator execution is simulated on the basis of 
information about the preconditions and predictable effects of the operators; 
and 

• an execution phase in which operators are executed and their unpredictable 
effects are recorded. 
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Figure 4-6. Control Behavior of PLANEX 
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The rationale for alternating between the two phases is based on the nature of 
the operators themselves. If the effects of the operators could be fully deter­
mined before they are executed, the planning phase need be performed only 
once. The system would know all of the operators that have to be executed and 
it could determine an order for their execution. In reality, some of the effects 
can only be determined after some operators are executed. For example, con­
sider the effects of an operator responsible for allocating machines to activities. 
When the operator is applied to an activity, the name of the machine is stored in 
the technology slot of the activity. This effect is predictable because it can be 
described by identifying the locations in the context (i.e., which slot of which 
object) where the operator stores data. The operator also stores the name of the 
activity with the machine. However, the name of this machine (i.e., the target 
storage location for the result) is known only after the operator has been ex­
ecuted. This effect is unpredictable (i.e., the slot is known but the target object 
is not known until the operator has been executed) and is inserted in the agenda 
schema after the operator is executed to determine if it influences the execution 
of other operators. Thus, the controller must alternate between the two phases 
until the planning phase is executed with complete information so that no ad­
ditional effects are produced. 

The planning phase operates in two modes: 

• forward, in which the system identifies those operators whose input data has 
changed and which have to be executed in order to maintain the consistency 
of the context; and 

• backward, in which the system searches to find a series of partially ordered 
operators to achieve desired effects. 

The need to simulate the execution of operators in the forward mode is il­
lustrated in Figure 4-7 . Suppose that the user introduces change-1 in the con­
text and this permits the application of operators operator-1 and operator-2. In 
a purely opportunistic control strategy, either of these two operators may be 
executed first. Assume the scheduler chooses operator-1. This causes a new 
change, change-2, to be asserted in the context. If recent assertions are con­
sidered more important, subsequent operators activated by change-2 would be 
executed next. At some later point, operator-2 is executed and change-3 is 
asserted. However, this change requires the execution of operator-1 and its 
subsequent operators for a second time. In order to eliminate these cyclic 
operator invocations, operator execution is first simulated and precedences are 
identified. Then operators are executed in an order that avoids cyclic computa­
tions. 

Backward search for operators is needed when the user requests information 
that is available only after executing more than one operator. PLANEX has to 
search for sequences of operators that provide this information. If several pieces 
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Figure 4-7. A Network of Operators and Changes 

of information are requested, conflicts among different operator execution se­
quences must be considered. In the backward search for operator sequences, 
PLANEX uses a generalization of a network planning algorithm originally 
developed to solve problems in the blocks-world domain. As shown in the next 
chapter, this algorithm can solve problems with different types of goal inter­
actions, such as the double-cross conflict problem described by Corkill [ 1 5 ] . 

4.32 Architectural Components Used for Control 

The architecture of PLANEX incorporates four components used to implement 
the control behavior described above: 

• Domain Operator Schemas (DO S s) that represent preconditions and effects of 
domain operators; 

• An Agenda that stores: ( 1 ) pending (operator object) pairs similar to the 
KSARs in the To-Do-Set of O P M (see p. 32); (2) a list with precedences 
among domain operators; and (3) lists of context changes or goals to be 
achieved; 

• Control Operators that: ( 1 ) determine the sequence in which domain 
operators should be executed; (2) modify the agenda; and (3) execute domain 
operators; and 

• A Menu-Driven Interface that lets the user insert or delete context changes 
and goals, or modify the order in which operators are executed. 

Figure 4-8 shows the relationships among the system components that con­
trol the execution of PLANEX. Control operators determine the sequence in 
which domain operators are executed by analyzing the declarative knowledge 
stored in each operator's corresponding D O S . Each D O S stores information 
about: ( 1 ) the location in the context which holds input data for a domain 
operator; (2) the name of the K S required by the operator; and (3) the location in 



Declarative Representation of Domain Operators 105 

Context 

Control Objects 

D o m a i n Opera tor S c h e m a s 

A g e n d a 

( o p e r a t o r o b j e c t ) 

( o p e r a t o r o b j e c t ) 

m a y - m o d i f y 

u s e d - t 

K S E v a i u a t o r ) Operators 

m a y - i n v o k e 

m a y - i n v o k e 

m a y - i n v o k e 

Figure 4-8. Relationships of Control Operators, Domain Operators and Control Objects 

the context where the results computed by the operator will be stored. Control 
information stored in the agenda is modified and retrieved by control operators. 
Some control operators plan execution sequences of domain operators while 
others are responsible for executing the (operator object) pairs and recording 
unpredictable effects. Via the menu-driven interface, the user may also modify 
the information in the agenda (e.g., by inserting goals to be satisfied or changes 
to be propagated) or invoke the execution of specific domain or control 
operators. 

4.3.3 Declarative Representation of Domain Operators 
In PLANEX, an operator retrieves input data from input objects and stores results 
in the set of output objects. The attributes of the input and output objects which 
are related to the execution of the operator provide the basic information needed 
to control the execution of the problem-solving operators. This information is 
represented in the Domain Operator Schema (DOS) of the operator. Figure 4-9 
shows the DOS of an operator that estimates the crew cost of construction 
activities. The slots of this schema are: 
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(defschema Get-Crew-Cost 
(is-a 
(domain-type 
(application-object 
(input-objects 

( input-bindings 
( input-cond-types 
( output-ob j eet s 
(output-slots 
( output-bindings 
(output-predictable 
( output-effect-type 

(input-slots 

operator) 
pro j ect-act ivity) 
current-object) 
current-object <crew> <crew> 
current-object current-object) 
technology normal-cost overtime-cost 
normal-hours overtime-hours) 
<crew> nil nil nil nil) 
filled filled filled filled filled) 
current-object current-object) 
tot-cost-crew $-crew/day) 
nil nil) 
yes yes) 
fill fill)) 

Figure 4-9. Schema Representation of a Domain Operator 

• is-a identifies the DOS as an instance of an operator schema. 
• domain-type indicates that the operator is applied to activity objects. 
• application-object specifies the name of the object to which the operator is 

applied (e.g., a specific project activity). 
• input-objects indicate the objects that are the sources of data for the operator. 

In this case, the input-objects are the current-object (i.e., the object to which 
the operator is applied), and the object associated with the binding variable 
(crew). 

• input-slots specify which slots of the corresponding input-objects contain data 
for the operator. For example, the first value indicates that the value of the 
technology slot of the current-object is used by the operator. 

• input-bindings specify the bindings of the corresponding input-objects. In 
this example, the variable (crew) is bound to the value of the technology slot 
(i.e., the name of the technology used to perform the activity) of the 
current-object. 

• input-cond-types specify if the input slot must be "filled" or "erased" before 
the operator is executed. Empty slots are considered erased. 

• output-objects specify the objects that contain the results generated by the 
operator. 

• output-slots specify the slots of the corresponding output-objects that store the 
results of the operator. In the example, the value of the tot-cost-crew and 
$-crewlday slots of the project activity to which the operator is applied are 
modified by the operator. 

• output-bindings specify the bindings of corresponding output-objects. No 
binding variables are used as output objects in this example. 

• output-predictable specifies if an effect is predictable (the corresponding out­
put object can be determined before the operator is executed). Allowable 
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C o n t e x t K n o w l e d g e 
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normal-cost 280 
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^ — b i n d i n g 
\^ <crew> 

O p e r a t o r 
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technology pour-concrete-05 
normal-hours 8 — 
overtime-hours 2 
tot-cost-crew 3080 
$-crew/day 3080 

Figure 4-10. Application of a Domain Operator to a Context Object 

values of this slot are "yes" or "no" . In the example, all of the effects are 
predictable. 

• output-effect-type indicates if the operator fills or erases the value of the 
output-slots in the corresponding output-objects. In the example, the schema 
specifies that when the operator is applied, it fills the tot-cost-crew and 
$-crew/day slots of the project-activity object to which it is applied. 

The information in the schema is an abstract description of the operator's 
input and output objects, and is interpreted by the system to determine specific 
information when the operator is applied. Consider the application of the 
operator get-crew-cost to the construction activity pour-concrete-columns-fOf 
as shown in Figure 4-10. The input objects specified in the schema are the 
current-object and the (crew). These input objects correspond to the domain 
objects pour-concrete-columns-f01 and pour-concrete-05 (i.e., the value of the 
technology slot of the current-object). The operator uses the data in the 
normal-hours and overtime-hours slots of the activity object, and the 
normal-cost and overtime-cost slots of the crew object. Executing the operator 
modifies the values of the tot-cost-crew and $-crewlday slots of the specific 
project-activity object. 
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4.3.4 Representation of Control Information 

Control information is stored in the agenda schema. This information is 
generated (i.e., posted) and used by the control operators to determine the execu­
tion order of the domain operators. Figure 4 -11 shows an example of control 
information stored in the agenda schema. The slots of the agenda are: 

• operator-queue contains the operators to be executed. Each element has the 
form (operator object) indicating an operator which is to be applied to an 
object. 

• operator-precedences are used to sort operators before they are executed. 
Each value is a pair ((operator-1 object-1) (operator-2 object-2)) that in­
dicates that the first operator (e.g., operator-1) has to be executed before the 
second (e.g., operator-2). 

• goals specify information to be computed. Goals are posted when the user 
requests object attribute values that have not yet been calculated. Each value 
has the form (object slot type) indicating that attribute slot of schema object is 
to be computed. 

• context-changes describe the object and slot where a change is asserted and 
the type of change ("filled" or "erased"). Each value is a list 
(object slot type). Overwriting a slot value is considered a fill operation. 

• effect-operators describe the results of an operator. Each value is a list 
((object slot type) (operator-1 object-1 ) ... (operator-n object-η)) indicating 
that slot slot of object object may be "filled" or "erased" by applying one of 
the operators to its associated object (e.g., operator operator-1 is applied to 
object object-1). 

• operator-preconditions specify the preconditions of an operator. Each value 
is a list of the form ((operator object) ((object-1 slot-1 type-1) ... 
(object-η slot-n type-η))). This list defines the preconditions that must be 
satisfied before operator is applied to object. Preconditions are of the form 
(object-i slot-i type-i) indicating that slot-i of object-i be of type-i. Type is 
either "filled" or "empty". 

The effect-operators and operator-preconditions slots of the agenda object are 
used both for forward propagation of changes and backward expansion of goals. 
In forward propagation, an effect-operators value indicates that executing the 
operator will assert a change in the context. In backward propagation, an 
operator-preconditions value is used to determine subgoals that must be 
satisfied. 
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(defschema agenda 
(operator-queue 

((get-duration pour-concrete-columns-f01) 
(get-crew-cost pour-concrete-columns-f01))) 

(operator-precedences 
(((get-duration pour-concrete-columns-f01) 

(get-crew-cost pour-concrete-columns-f01)))) 
(goals 

((pour-concrete-columns-f01 tot-cost-crew filled))) 
(context-changes 

((pour-concrete-05 normal-cost filled) 
(pour-concrete-05 overtime-cost filled))) 

(effect-operators 
(((pour-concrete-columns-f01 tot-cost-crew filled) 

(get-crew-cost pour-concrete-columns-f01)) 
((pour-concrete-columns-f01 $-crew/day filled) 
(get-crew-cost pour-concrete-columns-f01)))) 

(operator-preconditions 
(((get-crew-cost pour-concrete-columns-f01) 

(pour-concrete-columns-f01 normal-hours filled) 
(pour-concrete-columns-f01 overtime-hours filled) 
(pour-concrete-05 normal-cost filled) 
(pour-concrete-05 overtime-cost filled))))) 

Figure 4-11. Example Agenda Schema 

4.3.5 Control Operators 
PLANEX includes four control operators: 

• Forward Propagation Operator ( F P O ) identifies which operators to execute 
due to changes introduced into the context; 

• Backward Search Operator ( B S O ) finds sequences of domain operators that 
may achieve particular goals; 

• Network Interpretation Operator (ΝΙΟ) extracts operator precedences based 
on their preconditions and effects; and 

• Domain Operator Executor ( D O E ) executes domain operators using infor­
mation about operator precedences. 

Control operators are algorithmic (i.e., they do not require a K S evaluation). 
The operator algorithms and the auxiliary procedures and data structures are 
discussed below. 

4.3.5.1 Forward Propagation Operator Forward propagation of changes to 
context objects introduced by the user or domain operators is important in main­
taining the consistency of process planning information. In PLANEX, context 
consistency is maintained by invoking the Forward Propagation Operator 
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(FPO). This control operator uses an algorithm based on the structure of the 
DOSs described above. The algorithm starts with a list of the changes to be 
propagated and creates a network of operators whose effects can be predeter­
mined. Operator effects are used to simulate operator execution and to establish 
operator precedences. The network is expanded until all operators have been 
examined and no more predictable effects remain to be considered. 

Before presenting the details of the algorithm for forward propagation, two 
auxiliary procedures are described: 

• Get Immediate Changes of an Operator. This procedure is used to identify 
changes in context objects that are asserted when executing an operator. 
Changes are identified by examining the output-objects slot of the DOS as­
sociated with the operator. Only the predictable effects of the operator (those 
with output-predictable value "yes") are returned by this procedure. For 
example, the changes caused by applying the operator get-crew-cost of 
Figures 4-9 and 4-10 to the object pour-concrete-columns-fOl would be: 

((pour-concrete-columns-f01 tot-cost-crew filled) 
(pour-concrete-columns-f01 $-crew/day filled)) 

• Get Immediate Operators of a Change. This procedure is used to identify the 
operators that are activated (i.e., can now be executed) as a result of asserting 
a change in the context. Only those operators which contain the modified slot 
in the list of their input-slots and which have all of their preconditions filled 
with values may be activated by this assertion. For example, assume that the 
normal-hours slot of the activity object pour-concrete-columns-fOl has been 
changed. Then the list of operators returned would include (assuming all the 
input-slots have values): 

(get-crew-cost pour-concrete-columns-f01) 
The procedure is quite complex when objects of different domain operators 
have slots of the same name. In this case, the information in the input-type 
slot is used to select only those objects belonging to the operator's domain. 
During execution, the procedure searches for binding values until a match 
with a specific object is found. For example, if the overtime-cost of a crew 
object machine-1 is changed, the procedure searches for those activity objects 
with a value of "machine-1 " in their technology slot. 

The following data structures are used in the implementation of the FPO 
algorithm: 

• Queues of Operators. Each member of the queue is composed of a pair of the 
form (operator object). There are two queues of operators: 

• rem-queue-op is a list of the names of those operators that are ready to be 
executed as a result of changes introduced in the context. 

• phase-queue-op contains the list of all the operators identified while ex­
ecuting the planning phase of the FPO. 
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• Queues of Changes. Each element in the queue has the form 
(object slot type), describing the object and slot where a change is asserted 
and the type of change ("filled" or "erased"), similar to the elements in the 
context-changes slot of the agenda. There are three queues of changes: 

• rem-queue-chgs contains changes that have not yet been considered in 
identifying the operators to be executed as a result of assertions in the 
context. 

• phase-queue-chgs contains the list of all changes that have been analyzed 
during the execution of the FPO. 

• final-queue-chgs contains the list of changes that do not cause the execu­
tion of any domain operator. 

• Network of Operators and Changes. During the execution of the FPO, a 
network of operators and changes is created. Two lists are used to represent 
the network: 

• op-prec-list contains information about the immediate operators activated 
for particular context changes. The elements of this list have similar syntax 
to those in the operator-preconditions slot of the agenda schema. Each 
value is a list of the form ((operator object) ((object-1 slot-1 type-1) ... 
(object-η slot-n type-η))). The list defines the preconditions that must be 
true before operator is applied to object. Preconditions are of the form 
(object-i slot-i type-i) indicating that slot-i of object-i be of the designated 
type ("filled" or "empty"). 

• eff-op-list contains information about predictable effects for particular 
operators. The elements of this list have similar syntax to the elements in 
the effect-operators slot of the agenda schema. Each value is a list 
((object slot type) (operator-1 object-1) . . . (operator-n object-η)). The list 
indicates that the slot slot of the object is "filled" or "erased" by applying 
one of the operators to its associated object (e.g., operator-i applied to 
object-i). 

The algorithm for the FPO is detailed below. It has three steps: 
(1) initialization of information from the agenda', (2) recursive expansion of the 
network of operators and changes; and (3) storage of result information in the 
agenda. 
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Algorithm for the Forward Propagation Operator 

Step 1. Initialize 

1.1 Create empty lists for rem-queue-op, phase-queue-op, phase-queue-chgs, and 
final-queue-chgs. 
Retrieve values from the agenda schema: Assign: 
(1) op-prec-list the value of the operator-preconditions slot; 
(2) eff-op-list the value of the effect-operators slot; and 
(3) rem-queue-chgs be the value of the context-changes slot. 

Step 2. Expand Network of Operators and Changes 

2.1 If rem-queue-chgs is empty: go to Step 3. 
Let λ be the first change in rem-queue-chgs. 
Let rem-queue-chgs <— rem-queue-chgs\ {λ}. 

2.2 If λ e phase-queue-chgs: go to Step 2.1. 
Use procedure Get Immediate Operators of a Change to find the list of 
immediate operators Ο caused by change λ. 
Let phase-queue-chgs <— phase-queue-chgs u (λ). 

2.3 If Ο is empty: let final-queue-chgs <— final-queue-chgs u | λ); go to Step 2.1. 
Let rem-queue-op <— O. 

2.4 Create links from change λ to each operator in Ο and add them to the 
corresponding elements of op-prec-list. 

2.5 If rem-queue-op is empty: go to Step 2.1. 
Let ο be the first operator in rem-queue-op. 
Let rem-queue-op <— rem-queue-op \ {ο}. 

2.6 If ο G phase-queue-op: go to Step 2.4. 
Use procedure Get Immediate Changes of an Operator to find the list of 
immediate changes Λ caused by operator o. 

2.7 Create links from operator ο to changes in Λ and add them to the ejf-op-list. 
Let phase-queue-op <— phase-queue-op u ( ο ). 

2.8 Let rem-queue-chgs <— rem-queue-chgs u Λ. 
Go to Step 2.5. 

Step 3. Modify the Agenda 

3.1 Modify the value of the following slots of the agenda: Store: 
(1) op-prec-list in the operator-preconditions slot; 
(2) ejf-op-list in the effect-operators slot; 
(3) final-queue-chgs in the context-changes slot; and 
(4) phase-queue-op in the operator-queue slot. 
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4.3.5.2 Backward Search Operator In solving a problem, PLANEX not only 
propagates the effects of planning decisions, but also finds sequences of 
operators to achieve the desired effects. These effects (goals) are expressed in 
terms of object attributes that the system is to compute (e.g., find the duration 
and cost of an activity). The system derives sequences of problem-solving 
operators that transform the initial state (e.g., the duration and cost of the ac­
tivity are unknown) into the desired state. PLANEX determines these sequences 
by invoking a Backward Search Operator (BSO) whose action is similar to 
some of the plan formulation systems described in the Chapter 2. This version 
has been modified to produce plans that have a minimum number of actions. 

The algorithm of the BSO is a specialization of the AO* search 
procedure [80, p. 63]. The algorithm expands each final goal independently. 
Goal expansion yields an associated set of potential operators whose execution 
may require certain conditions be satisfied. These operators will be labeled 
infeasible if they are found to interfere with other operators in the same se­
quence, or executable if all their preconditions are satisfied. When an operator 
is labeled executable, all its predictable assertions are considered solved and the 
algorithm looks for other operators that become executable because of these 
changes. The expansion process continues until all goals have been expanded 
into a network of executable and infeasible operators. 

Before presenting the details of the algorithm, three auxiliary procedures are 
described: 

• Get Possible Operators to Achieve a Goal. This procedure searches the 
output-effects slot of the DOSs and returns a list of the operators that may be 
executed to fill or erase the value of a specific slot in a frame. For example, if 
the goal is to fill the slot tot-cost-crew of the pour-concrete-columns-fOl 
object, this procedure would return: 

((get-crew-cost pour-concrete-columns-f01)) 
• Get Goals Required to Execute an Operator. This procedure examines the 

DOS associated with the operator and returns a list of the operator's precon­
ditions that are not satisfied in the current state. In this process, binding 
variables are evaluated sequentially. For example, suppose that this proce­
dure is employed to find the unsatisfied preconditions of the operator 
(get-crew-cost pour-concrete-columns-fOl). If the normal-hours and 
overtime-hours slots of the pour-concrete-columns-fOl frame are empty, but 
the normal-cost and overtime-cost slots of the pour-concrete-05 frame are 
filled, this procedure would return: 

((pour-concrete-columns-f01 normal-hours filled) 
(pour-concrete-columns-f01 overtime-hours filled)) 

• Check the Feasibility of an Operator. This procedure determines if an 
operator is infeasible or executable. An operator is infeasible when it negates 
a necessary precondition of a successor operator in the network. The 
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feasibility criterion is similar to the necessary truth criterion of TWEAK [12]. 
Figure 4-12 shows the application of this criterion. In the figure, arrows 
indicate the following relationships: 

• a precondition is indicated with an unlabeled arrow directed from a con­
dition to an operator; 

• an assertion is indicated with an arrow labeled with a plus sign (Θ) 
directed from an operator to a condition; and 

• a negation is indicated with an arrow labeled with a minus sign ( θ ) 
directed from an operator to a condition. 

A negation occurs when an operator yields an effect on a slot of an object that 
contradicts the effect of another operator on the same object. The example 
network indicates that operator-1 and operator-2 are possible operators to 
achieve goal-1. In order to execute operator-1, subgoals goal-2, goal-3, 
goal-5 and goal-6 have to be asserted. The procedure labels operator-5 as 
"infeasible" because it negates the precondition goal-3 of operator-1 when 
trying to assert a subgoal of the same operator {goal-6 needed by operator-3 
to assert goal-2 of operator-1). It does not label operator-4 as "infeasible" 
because it does not negate any other precondition of operator-1. 

The following data structures are used in the search procedure of the BSO: 

• Queues of Operators. Each member of the queue is composed of a pair of the 
form (operator object). The four operator queues are: 

• rem-queue-op contains the names of those operators whose immediate sub-
goals have not yet been determined. 

• phase-queue-op contains the list of all operators identified by the BSO. 
• inf-op-list contains the names of the operators that have been labeled 

"infeasible". 
• exec-op-list contains the names of the operators that have been labeled 

"executable". 

• Queues of Goals. Each element in the queue has the form (object slot type) 
indicating that the slot of object is to be "filled" or "erased" by the system. 
There are four queues of goals: 

• rem-queue-goals contains goals that have not yet been analyzed to identify 
which operators may be used to achieve them. 

• phase-queue-goals contains the list of all goals that have been analyzed. 
• phase-solved-goals contains goals that have been successfully expanded. 
• phase-unsolved-goals contains goals that cannot be satisfied in the current 

planning phase. 
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goa l -1 

Figure 4-12. Operator Feasibility in Backward Search 

• Network of Operators and Goals. Two lists are used to represent the links 
between goals and operators: 

• op-prec-list stores links between an operator and the goals associated with 
its preconditions. Each value is a list of the form (operator object) 
((object-1 slot-1 type-1) . . . (object-η slot-n type-η)). The list defines the 
preconditions that must be true before operator is applied to object. 
Preconditions are of the form (object-i slot-i type-i) indicating that slot-i of 
object-i be of the designated type ("filled" or "empty"). 

• eff-op-list stores links between an operator and the goals that the operator 
asserts. Each value is a list of the form (operator slot type) 
((operator-1 object-1 ) . . . (operator-n object-η)). The list indicates the slot 
slot of frame object is "filled" or "erased" by applying one of the 
operators to its associated object (e.g., operator-i is applied to object-i). 

The algorithm for the BSO is detailed below. It has five steps: 
(1) initialization and agenda information retrieval; (2) goal expansion by iden-
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tifying possible operators to achieve the goals; (3) backtracking to delete in-
feasible operators and mark goals unachievable; (4) attainment of goals; and 
(5) storage of remaining goals in the agenda schema. 

Algorithm for the Backward Search Operator 

Step 1. Initialize 

1.1 Create empty lists for op-prec-list, ejf-op-list, phase-queue-goals, 
phase-solved-goals, phase-unsolved-goals, phase-queue-op, rem-queue-op, 
exec-op-list and inf-op-list. 
Let rem-queue-goals and phase-queue-goals be the initial list of goals to be 
achieved, taken from the agenda. 

Step 2. Expand a Goal 

2.1 If rem-queue-goals is empty: go to Step 5. 
Let λ be the first goal in rem-queue-goals. 
Let rem-queue-goals <— rem-queue-goals\ {λ). 
Let phase-queue-goals <— phase-queue-goals u (λ). 

2.2 If λ G phase-solved-goals: go to Step 2.1. 
Use procedure Get Possible Operators to Achieve a Goal to find the list of 
possible operators Ο to achieve goal λ. 

2.3 Use procedure Check the Feasibility of an Operator to eliminate from Ο those 
operators that are infeasible. 
If Ο is not empty: go to Step 2.4. 
Let phase-unsolved-goals <— phase-unsolved-goals u {λ}. 
Go to Step 3. 

2.4 Create links from each operator in Ο to goal λ and add them to eff-op-list. 
Let rem-queue-op <— O. 
Let phase-queue-op <— phase-queue-op u O. 

2.5 If rem-queue-op is empty: go to Step 2.1. 
Let ο be the first operator in rem-queue-op. 
Let rem-queue-op <— rem-queue-op \ {ο ). 

2.6 If o G exec-op-list: let phase-solved-goals <— phase-solved-goals u {λ}; go to 
Step 4. 

2.7 Use procedure Get Goals Required to Execute an Operator to find the list of 
immediate preconditions Λ for operator o. 
Create links from each condition in Λ to operator ο and add them to 
op-prec-list. 

2.8 Let rem-queue-goals <— rem-queue-goals u Λ. 
Go to Step 2.1. 
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Step 3. Backtrack from a Goal 

3.1 Let Aj <r- {λ}, where λ is the unsolvable goal. 

3.2 If Λ j is empty: go to Step 2.1. 
Let λχ be the first goal in Aj. 
Let Aj « - Λ , Μ λ , } . 

3.3 Let Ο be the operators in op-prec-list requiring precondition λ{. 

3.4 If Ο is empty: go to Step 3.2. 
Let ο be the first operator in O. 
L e t O < - 0 \ { o ) . 

3.5 Let A2 be the goals of ejf-op-list achievable by applying operator o. 
Let phase-queue-op <— phase-queue-op \ {ο ). 

3.6 Remove from ejf-op-list those elements associated with operator o. 

3.7 If A2 is empty: go to Step 3.2. 
Let λ 2 be the first goal in A2. 
Let Λ2 <— Λ2 \ {λ2}. 

3.8 Let X be the set of operators that achieve λ 2 that remain in ejf-op-list. 

3.9 If X is non-empty: go to Step 3.7. 
Let phase-unsolved-goals <— phase-unsolved-goals u ( λ 2 ). 
Let Aj <— Aj u (λ 2 ) . 
Go to Step 3.7. 

Step 4. Achieve a Goal 

4.1 Let Aj <— (λ}, where λ is the solved goal. 

4.2 If A j is empty: go to Step 2.1. 
Let be the first goal in A r 

LetAj <— Aj \ {Xj}. 

4.3 Let Ο be the operators in op-prec-list requiring precondition λ{ that do not 
belong to exec-op-list. 

4.4 If Ο is empty: go to Step 4.2. 
Let ο be the first operator in O. 
L e t O < - 0 \ { o ) . 

4.5 Let A3 be the preconditions of operator o. 
If all elements of A3 e phase-solved-goals or are true in the context: go to 
Step 4.6. 
Go to Step 4.2. 
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4.6 Let Λ2 be the goals in ejf-op-list achievable by applying operator o. 
Let phase-solved-goals <— phase-solved-goals u Λ2. 
Let Aj <— Aj u A2. 
Go to Step 4.2. 

Step 5. Modify the Agenda 

5.1 Modify the value of the following slots of the agenda: Store: 
( 1 ) op-prec-list in the operator-preconditions slot; 
(2) ejf-op-list in the effect-operators slot; 
(3) phase-unsolved-goals in the goals slot; and 
(4) phase-queue-op in the operator-queue slot. 

4.3.5.3 Network Interpretation Operator After the planning phase is per­
formed by the FPO or the BSO, the agenda contains a network of operators, 
preconditions and predictable effects in the operator-preconditions and 
effect-operators slots. The operators in the operator-queue represent all those 
tasks to be performed in order to maintain the consistency of the context or to 
achieve the desired goals. These operators are not independent because the 
effects of some operators are the preconditions of others. 

The need to interpret the agenda information before executing these 
operators is illustrated in the network of Figure 4-7 . Assume values for all 
objects are available (including change-3) and operator-1 is executed before 
operator-2. After execution of both operators, the context would be inconsistent 
because operator-2 asserts a value for change-3 that was not used in the execu­
tion of operator-1. If change-3 initially was not available in the context, 
operator-2 would have to be executed before operator-1 in order to provide 
operator-1 with its required preconditions. 

In PLANEX, the network of operators and conditions is interpreted by apply­
ing the Network Interpretation Operator (ΝΙΟ). The ΝΙΟ analyzes the relation­
ships between each operator of the network and its neighbors. Two operators 
are considered neighbors when their effects or preconditions have at least one 
element in common. The criteria used by the algorithm of the ΝΙΟ to identify 
operator precedences is shown in Figure 4-13. The following relationships are 
possible between two neighboring operators, operator-1 and operator-2: 

1. A precondition of operator-2 is asserted by operator-1. Operator-2 should 
be executed after operator-1 asserts the condition. 

2. A condition is a precondition of both operators. No operator precedence is 
required. 

3. A condition is asserted by both operators. No operator precedence is re­
quired. 

4. A precondition of operator-2 is negated by operator-1. Operator-2 should 
be executed before operator-1 negates the condition. 
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Figure 4-13. Identification of Operator Precedences 
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5. A condition is negated by one operator and asserted by the other. No 
operator precedence is required because the condition does not affect the 
execution of either of the two operators. 

6. A condition is negated by both operators. No operator precedence is re­
quired. 

The algorithm of the ΝΙΟ uses the same data structures as the FPO and BSO. 

• Queues of Goals. Each element in the queue has the form (object slot type) 
indicating that the slot of object is to be "filled" or "erased" by the system. 
There is one goal queue: 

• rem-queue-goals contains goals that have not yet been analyzed to identify 
which operators may be used to achieve them; 

• Network of Operators and Goals. Three lists are used to represent the links 
between goals and operators: 

• op-prec-list stores links between an operator and the goals associated with 
its preconditions. Each value is a list of the form (operator object) 
((object-1 slot-1 type-1) ... (object-η slot-n type-η)). The list defines the 
preconditions that must be true before operator is applied to object. 
Preconditions are of the form (object-i slot-i type-i) indicating that slot-i of 
object-i be of the designated type ("filled" or "empty"). 

• eff-op-list stores links between an operator and the goals that are asserted 
by the operator. Each value is a list (operator slot type) 
((operator-1 object-1)... (operator-n object-η)). The list indicates the slot 
slot of frame object is "filled" or "erased" by applying one of the 
operators to its associated object (e.g., operator-i is applied to object-i). 

• link-op-list stores information about precedences between pairs of 
operators. The list is composed of a pair of elements of the form 
((operator-1 object-1) (operator-2 object-2)), indicating that operator-1 
should be applied to schema object-1 before operator-2 is applied to 
object-2. 

The algorithm is detailed below. It has three steps: ( 1 ) agenda information 
retrieval; (2) determination of operator precedences; and (3) storage of results in 
the agenda. 

Algorithm for the Network Interpretation Operator 

Step 1. Initialize 

1.1 Create an empty list for link-op-list. 
Retrieve values from the agenda: Assign: 
(1) op-prec-list the value of the operator-preconditions slot; 
(2) eff-op-list the value of the effect-operators slot; and 
(3) rem-queue-op the value of the operator-queue slot. 
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Step 2. Find Operator Precedences 

2.1 If rem-queue-op is empty: go to Step 3. 
Let ο be the first operator in rem-queue-op. 
Let rem-queue-op «— rem-queue-op \ {ο}. 

2.2 Let Λ be the list of preconditions of operator ο in op-prec-list. 

2.3 If Λ is empty: go to Step 2.1. 
Let λ be the first element of Λ. 
Let Λ < - Λ \ ( λ ) . 

2.4 Find the set of operators 0 + in eff-op-list that assert condition λ. 

2.5 If 0 + is empty: go to Step 2.7. 
Let o + be the first element of 0 + . 
Let 0 + < - 0 + \ f o + ) . 

2.6 Let link-op-list <— link-op-list u {(o+ o)}. 
Go to Step 2.5. 

2.7 Find the set of operators 0~ in eff-op-list that negate condition λ. 

2.8 If O" is empty: go to Step 2.3. 
Let o" be the first element of O". 
Let 0 - < - 0 _ \ { o ~ } . 

2.9 Let link-op-list <- link-op-list u {(o o~)}. 
Go to Step 2.8. 

Step 3. Modify the Agenda 

3.1 Store the value of link-op-list in the operator-precedences slot of the agenda. 

4.3.5.4 Domain Operator Executor Operator precedence information is used 
by the Domain Operator Executor (DOE) when invoking domain operators. 
The DOE executes operators in topological order1 and stores unpredictable 
effects in the context-changes slot of the agenda. The algorithm uses one 
auxiliary procedure: 

• Get Unpredictable Effects of an Operator. This procedure is used to identify 
the set of unpredictable effects of an operator, similar to the procedure used to 
get the immediate changes of an operator (see p. 110). The procedure returns 
those effects that have a output-predictable value equal to " n o " in the DOS 
associated with the operator. 

The DOE algorithm uses some of the data structures described previously. 

An operator is applied only after all its preceding operators have been executed. 
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• Queues of Changes. Each element in the queue has the form 
(object slot type), describing the object and slot where a change is asserted 
and the type of change ("filled" or "erased"), similar to the elements in the 
context-changes slot of the agenda. There is one change queue: 

• phase-queue-chgs contains the list of all changes that have been analyzed 
during the execution of the FPO. 

• Queues of Operators. Each member of the queue is composed of a pair of the 
form (operator object). There is one operator queue: 

• rem-queue-op is a list of the names of those operators that are ready for 
execution as a result of changes introduced in the context. 

• Network of Operators and Goals. One list is used to represent the links 
between goals and operator. 

• link-op-list stores information about precedences between pairs of 
operators. The list is composed of a pair of elements of the form 
((operator-1 object-1) (operator-2 object-2)), indicating that operator-1 
should be applied to schema object-1 before operator-2 is applied to 
object-2. 

The algorithm follows. It has three steps: (1) initialization; (2) sorting and 
execution of operators; and (3) storage of results in the agenda. 

Algorithm for the Domain Operator Executor 

Step 1. Initialize 

1.1 Retrieve values from the agenda: Assign: 
(1) link-op-list the value of the operator-precedences slot; 
(2) phase-queue-chgs the value of the context-changes slot; and 
(3) rem-queue-op the value of the operator-queue slot. 

Step 2. Sort and Execute Operators 

2.1 Topologically sort the rem-queue-op using the precedence information stored 
in link-op-list. 

2.2 If rem-queue-op is empty: go to Step 3. 
Let ο be the first element of rem-queue-op. 
Let rem-queue-op <— rem-queue-op\ {o}. 

2.3 Execute domain operator o. 

2.4 Use procedure Get Unpredictable Effects of an Operator to find the 
unpredictable changes Λ of operator o. 
Let phase-queue-chgs <— phase-queue-chgs u Λ. 
Go to Step 2.2. 
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Step 3. Modify the Agenda 

3.1 Store the value of phase-queue-chgs in the context-changes slot of the agenda. 

4.4 User Interaction 
PLANEX is intended to provide a framework for developing user assistants. This 
requires the user be permitted to modify system components, invoke system 
operations, override planning decisions and request information about planning 
results. A user assistant is desirable because: 

• there are process planning problems whose solution requires the direct par­
ticipation of the user; 

• creative planning involves common-sense knowledge that is difficult to incor­
porate into an automated system; and 

• the user is responsible for adapting the system to different application 
domains. 

Other reasons for not entirely eliminating human interaction and control in ex­
pert system applications are discussed by Waterman [ 1 0 7 , p. 1 3 ] . 

In PLANEX, interaction is provided through several mechanisms which are 
deemed fundamental for achieving the desired generality, flexibility and trans­
parency of the architecture. Examples of such interaction mechanisms are 
menus for invoking task-specific operators and interactive graphical displays for 
modifying the information stored in context objects. 

During the development of PLANEX, support for user interaction has been 
repeatly improved. In the first prototype for excavation tasks, user interaction 
was very limited. The only way to modify context objects was to use a set of 
primitive manipulation functions provided by the frame implementation lan­
guage, such as the function to create a slot in a frame. Initially, no mechanisms 
to alter control decisions or knowledge were available. When this prototype 
evolved into CONSTRUCTION PLANEX, effective mechanisms for acquiring and 
updating the required domain-specific knowledge were incorporated into the 
system architecture. In addition, functions for producing reports and displays of 
context information were developed. Some of these mechanisms were general­
ized and restructured and now exist as components of PLANEX. 

Figure 4 - 1 4 shows the different types of user interaction mechanisms avail­
able in PLANEX. There are mechanisms to: 

• modify the information stored in context objects, the knowledge used by 
operators, and the manner in which operators use this knowledge. The user 
may modify any of the following system components: 

• knowledge sources, by using the KNOWLEDGE SOURCE ACQUISITION 
MODULE (KSAM) described in Section 4 . 4 . 1 ; 
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• domain objects, by using an interactive graphical environment such as the 
GANTT Interactive Scheduler of CONSTRUCTION PLANEX; 

• control objects, by using the CONTROL PANEL (CP) described in 
Section 4.4.3 or primitives of the frame implementation language; and 

• domain operators, by editing the files which contain the procedural codes 
or Domain Operator Schemas (DOSs) of the operators. 

• invoke the execution of specific domain or control operators and control the 
order in which these operators are applied. The user may invoke the 
KNOWLEDGE SOURCE EVALUATOR (KSE), domain operators and control 
operators by using the CONTROL PANEL described in Section 4.4.3, by means 
of a menu-driven interface, or by invoking the operator directly using the 
implementation language. 

• request information about data produced by the system and the manner in 
which this data was computed. The user may request information about any 
of the following system components: 

• knowledge sources, via the KNOWLEDGE SOURCE ACQUISITION MODULE; 
• domain objects, via: (1) the REPORT GENERATOR that lets the user design 

output reports that summarize context information; (2) output graphics such 
as the project cost curves of CONSTRUCTION PLANEX; or (3) the explanation 
facilities provided by the system; and 

• control objects, via the CONTROL PANEL or primitives provided by the 
implementation language. 

In the following sections, several of the user interaction mechanisms of PLANEX 
are described. Some of these mechanisms are generic (e.g., the mechanism for 
updating domain knowledge and the CONTROL PANEL) while others are depend­
ent upon particular application domains (e.g., the G A N T T Interactive Scheduler 
of CONSTRUCTION PLANEX). The following discussion explains how these 
mechanisms can be utilized in knowledge-based process planning systems 
developed with PLANEX. Since these are only the mechanisms from which a 
complete user interface is built, the following discussion does not illustrate the 
use of PLANEX. Overall control is provided through a set of menus, the 
CONTROL PANEL and predefined sequences of problem-solving operators. 
Chapter 6 details of an actual user interface (Section 6.2.4) and the use and 
operation of a PLANEX application (Section 6.3). 

4.4.1 Knowledge Source Acquisition Module 
In PLANEX, knowledge is represented in knowledge sources (KSs) (see 
Section 4.2). As described, each KS may be considered a generalized decision 
table that groups rules sharing conditions and actions. This external view of a 
KS as a tabular representation is easier to understand than its associated schema 
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implementation. The KNOWLEDGE SOURCE ACQUISITION MODULE 

(KSAM) [116] is an interactive editor which uses the tabular representation of 
KSs. The KSAM lets the user create, modify or delete KSs, and after changes 
are made, it translates the tabular representation into the appropriate schema 
representation used by the KNOWLEDGE SOURCE EVALUATOR (KSE). 
Figure 4-15 illustrates this process. The KSs created or updated with the 
KSAM can be saved in files for future use. Also, previously saved KSs are 
updated by loading them from files and translating them into their tabular form. 

The display of the KSAM contains the six windows shown in Figure 4-16. 
Four main windows correspond to the four regions of a KS: conditions, actions, 
left-hand-sides of rules and right-hand-sides of rules. Lines in these windows 
delimit cells. The user may enter or modify cell values, scroll the windows, 
select menu options or type values. The two small windows at the bottom of the 
screen are the Current KS window, which displays the name of the KS being 
modified and the firing mechanism used by the KSE, and the Input/Output 
window that is used to edit cell values using a line editor. The KSAM provides 
many desirable capabilities in an interactive editing environment. For example, 
when editing a row in the Conditions window, the KSAM looks for the schema 
with the name indicated in the Object column and displays the names of its slots. 
This provides additional help to the user in defining domain knowledge. 

4.4.2 Interactive Graphical Displays 

Interactive graphical displays provide the user with a convenient mechanism for 
modifying the information stored in domain objects. An example of this type of 
user interaction mechanism is the GANTT Interactive Scheduler [116]. GANTT 
lets the user calculate, display and modify scheduling information for a par­
ticular set of activities through an interactive Gantt-chart. The design of GANTT 
is based on the work of Garman [37] on applications of computer graphics in 
solving scheduling and resource allocation problems. Garman showed that 
novices using an interactive scheduling program performed better than the most 
efficient scheduling algorithms available. GANTT incorporates an interactive 
Gantt-chart plus displays of resource profiles that are automatically updated 
when activities are manually rescheduled. 

The operation of GANTT is shown in Figure 4-17. The program lets the user 
interactively modify a schedule via a Gantt-chart display, propagate these 
changes to all of the activities of the project and store project schedules in 
context schémas. Project activity networks are represented using the unified 
activity network model described in Section 3.3. With this representation, 
schedule changes are propagated using common shortest-path algorithms. After 
scheduling, an updated project chart is displayed. Additional schedule changes 
may be introduced. When the user is satisfied, this project schedule may be 
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stored in the context schémas associated with the project activities. Alternative 
project schedules may be saved in files for later use. 

A screen display of G A N T T is shown in Figure 4 - 1 8 . Schedule changes are 
made by pointing at one of the bars representing the activities and clicking a 
mouse button. Depending on the type of click used, an activity duration may be 
shortened or lengthened or the activity may be shifted in time. Via menu 
options, the user may specify milestones or modify activity precedences, time 
scales and resource trigger levels. 
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Figure 4-18. Screen Display of GANTT 

GANTT has been used as the interactive scheduling component of the 
CONSTRUCTION PLANEX and EXCAVATION PLANEX systems. Its implementation 

assumes that the project activity network is represented using the unified model 
described in Section 3.3. GANTT can be used with any PLANEX application 
which generates such a project representation. 
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4.4.3 Control Panel 

PLANEX provides the user with an interactive mechanism to control the execu­
tion of the planning process: the CONTROL PANEL (CP). The display of the CP 
contains the windows shown in Figure 4-19. The four key windows are: 

• the Context Changes window displays the information from the 
context-changes slot of the agenda schema. Each entry, represented in one 
row, is a change that has not yet been propagated using the Forward 
Propagation Operator (FPO). The row is an (object slot type) triplet which 
indicates that slot slot of schema object has been "filled" or "erased". 

• the Goals window displays the information from the goals slot of the agenda 
schema. Each entry, represented by one row, is a goal that has not yet been 
satisfied by the Backward Search Operator (BSO). The row is an 
(object slot type) triplet which indicates that slot slot of schema object is to be 
"filled" or "erased". 

• the Operator Queue window displays the information from the 
operator-queue slot of the agenda schema. Each row of this window is an 
(operator object) pair which indicates that domain operator operator can be 
applied to the object object. 

• the Operator Precedences window displays the information from the 
operator-precedences slot of the agenda schema. Each row of this window is 
an ((operator-1 object-1) (operator-2 object-2)) pair which indicates that 
operator-1 is applied to object-1 before operator-2 is applied to object-2. 

CONTEXT CHANGES GOALS 

Object Bm Type 

OPERATOR QUEUE OPERATOR PRECEDENCES 

PromDt? Message Window Message Window 

Figure 4-19. Screen Display of the Control Panel 
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In addition, an Input/Output window used to input commands or edit cells and a 
Message window used to output messages appear at the bottom of the display 
screen. 

The CP provides the means to display and modify the control information 
stored in the agenda. The user may insert goals or changes in the agenda, 
modify the order in which operators are listed, insert domain operators in the 
queue, or modify operator precedences. In addition, the user may execute any of 
the control operators of the system to create strategic plans of domain operators. 

4.4.4 Report Generator 
The REPORT GENERATOR ( R G ) lets the user design output reports. Each report 
is described using a report-format schema that specifies the columns of the 
report, the order in which these columns are printed, and any operations applied 
to the values before they are printed. A report format may also specify con­
straints on the values included in the report. Individual column-format schémas 
describe the columns in a report. Column formats specify the source of the data 
and attributes such as column output width or number of decimal places. A 
column format schema may be used by more than one report format. For 
example, in CONSTRUCTION PLANEX, a single column format schema for ac­
tivity names is used in all reports related to project activities. 

The use of the R G is illustrated with an example. Assume the planner wants 
to produce a report of activity costs similar to that of Figure 4-20. The report 
contains three columns to display different activity attributes. The values in the 
first two columns ("name" and "cost") are obtained from the activity schémas. 
However, the values in the third column are not stored in these frames. The 
"percent" cost of an activity is computed by dividing its "cost" by the total cost 
of the project. The total project cost is not stored in the context, but is computed 
by adding all of the activity costs. Furthermore, the user wants the report: (1) to 
be sorted in ascending order by activity name; and (2) to include only those 
activities whose percent cost is greater than or equal to 10% of the total project 
cost. 

ACTIVITY COSTS 

Name Cost Percent 

Activity-1 
Activity-5 
Activity-8 

200.00 
400.00 
300.00 

10.0 
20.0 
15.0 

Figure 4-20. Example of a Report 
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(defschema act-cost-per 
(is-a 
(report-title 
(format-columns 

(sort-order 
(sort-type 
(solving-order 
(printing-order 
(functions-columns 
(functions-rows 

report-format) 
"ACTIVITY COSTS") 
column-name column-cost 
column-percent) 
1) 
a) 
1 2 3) 
1 2 3) 
(<total> (add-list <cost>))) 
(<percent> (/ <cost> <total>))) 

(constraints-printing (>= <percent> 10))) 

Figure 4-21. Report Format Schema for the Report of Figure 4-20 

Figure 4-21 shows the report format schema that produces the cost report of 
Figure 4-20. The slots in this schema are: 

• is-a identifies the frame as a report format schema. 
• report-title contains the title of the report. 
• format-columns specifies the names of the column format schémas included 

in the report. The example report is composed of three columns correspond­
ing to: (1) the activity name; (2) its cost; and (3) its percent cost. 

• sort-order indicates how to sort the data. In the example, activities will be 
sorted on the first column format only (the activity name). 

• sort-type specifies if the sort is in ascending ("a") or descending ("d") order. 
• solving-order indicates the sequence in which values are obtained from con­

text objects. This order is important in substituting binding variables in the 
formulas of the other slots. When producing the desired report, the RG will 
first obtain the name, then the cost and finally it will compute the percent 
cost. 

• printing-order indicates the order of the columns in the report. This order 
need not correspond to the order in which column formats were listed in the 
format-columns slot. 

• functions-columns contains a list of ((binding-variable) function) pairs defin­
ing operations to be applied to each column of the report. Before this slot is 
evaluated, the RG performs the bindings indicated in the column format 
schémas. For example, before evaluating the function add-list, (cost) is 
bound to a list of all the activity costs. This function is evaluated and the 
result is bound to the variable (total). 

• functions-rows contains a list of ((binding-variable) function) pairs defining 
operations applied to each row of the report. When printing a row, the RG 
updates the bindings specified in the column format schémas and evaluates 
the functions sequentially. In the example, the variable (percent) is computed 
as the value of the variable (cost) divided by the value of the variable (total). 
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(defschema column-format-cost 
(is-a column-
(column-title "Cost") 
(from-schema current 
(from-slot cost) 
(binding-value <cost>) 
(result-type real) 
(width 8) 
(decimals 2)) 

current-ob j ect) 

column-f ormat) 

Figure 4-22. Example of a Column Format Schema 

• constraints-printing specifies restrictions on the values of variables included 
in the report. If any of these constraints is not satisfied, the row is omitted 
from the final report. In the example, only those rows with a {percent) greater 
than or equal to ten (10) are printed. 

Figure 4-22 shows the column format schema used by the RG to display a 
column of activity costs. The slots in this schema are: 

• is-a identifies the frame as a column format schema. 
• column-title contains the title of the column. 
• from-schema indicates the object from which an attribute value will be 

retrieved. In the example, the current-object refers to a particular activity. 
• from-slot indicates the attribute of the object that will be used to fill the 

• binding-value specifies the binding variable associated with the values in this 
column. 

• result-type specifies the data type printed in the column. 
• width specifies the total width of the column. 
• decimals defines the number of decimal places used to format numeric output. 

The RG has been used to produce many different types of reports in the 
CONSTRUCTION PLANEX and HARNESS PLANEX systems, such as scheduling, 
cost and technology reports. In these applications, report format and column 
format schémas provide all the information the RG needs to generate the desired 
reports. 

4.4.5 Other Interaction Mechanisms 
The PLANEX architecture supports several other user interaction mechanisms. 
These include: 

column. 

Questions to the User that let the user control the operation of the system or 
modify attribute values of context objects; 
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• Menus that invoke the execution of domain and control operators; 
• Explanations that provide information about results and decisions made by 

the system; and 
• Passive Output Graphics that display context information in terms of pictures, 

graphs and charts. 

Users may influence the planning process by answering the questions dis­
played by the system. Consider the interrogative during the execution of the 
CONSTRUCTION PLANEX operator that determines activity durations, shown in 
Figure 4 - 2 3 (user input is underlined). When the user modifies the number of 
crews, several values in the activity schema are changed. Similarly, several 
values are changed when the user decides to use overtime and eliminate frac­
tional work days. 

***** Duration Information for PA 
EXCAVATION-FOUNDATION-P01-S00-B00-F00 

Crew CREW-EXCAVATION-05 
Components of Crew ((1 BACKHOE-3/4) 

(1 OPERATOR-BACKHOE-3/4)) 
Number of Crews 1.04 
Number of days 10 

Would you like to change any of these settings ? [n] v_ 

Type of change change-crews 

-> Give me the number of crews L0 

***** Duration Information for PA 
EXCAVATION-FOUNDATION-P01-S00-B00-F00 

Crew CREW-EXCAVATION-05 
Components of Crew ((1 BACKHOE-3/4) 

(1 OPERATOR-BACKHOE-3/4)) 
Number of Crews 1.0 
Number of days 10.42 

Would you like to change any of these settings ? [η] η 

**** The duration of PA P01-S00-B00-F00-PA-10-60 is 83.33 hours 
**** or 10.42 days 

Would you like to use overtime in order to eliminate 
day fractions? v_ 

Figure 4-23. Questions to the User During the Determination of Activity Durations 
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In the current version of PLANEX, questions are embedded in the procedural 
codes of the domain operators. There is no generic mechanism to provide this 
type of interaction, but it might be possible to create such a mechanism. 

Menus provide a means to control the execution of domain and control 
operators. A complete menu-driven interface is composed of many interrelated 
menus. An example of such an interface for CONSTRUCTION PLANEX is 
described in Section 6.2.4. 

PLANEX provides limited explanations of task-specific operations by storing 
the names of the KSs used to obtain planning results. When the user requests 
information describing the manner in which the system computed a particular 
value, PLANEX displays the name of the KS associated with this object attribute. 
Suppose the "amount-of-work" of a particular activity object is computed using 
the KS KS-Amount-Example. During the execution of the domain operator, 
PLANEX creates a slot called WHY-amount-of-work to store the value 
4 4KS-Amount-Example" for later reference. When the user wants to know why 
the activity has a particular "amount-of-work" value, "KS-Amount-Example" 
is displayed. A second type of explanation occurs when the user asks how a 
result may be computed. In this case, no inverse pointers exist because the 
domain operator has not yet been executed. To answer these types of questions, 
PLANEX finds those operators whose DOS s indicate they produce the requested 
result and displays their names. 

The last type of mechanism used in PLANEX is a set of passive output dis­
plays. Pictures are powerful means for displaying data and data relationships. 
Depending on the application domain, a number of output programs may be 
added to the system. An example of one such program is the ANIMATOR system 
described in Chapter 6. ANIMATOR produces construction simulations by dis­
playing some of the project activity information produced by CONSTRUCTION 
PLANEX. With the ANIMATOR, the user can view how frame buildings are 
constructed. This program has proven invaluable for detecting errors in activity 
precedence computations. 

4.5 Conclusions 
The basic contributions of the PLANEX architecture can be summarized by con­
sidering the key points of the architecture, in terms of how PLANEX operates and 
the capabilities it provides. PLANEX is a system which: 

• provides a domain-independent knowledge representation scheme that is inde­
pendent of the set of domain operators of a particular application; 

• supports modular development because domain operators may be added or 
removed from the system without having to alter the other operators; 

• creates and executes strategic meta-plans of domain operators using its con­
trol operators; 
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• distinguishes between the feasibility and desirability of the domain operators 
by using declarative knowledge; 

• provides the user with tools for creating and modifying the knowledge used in 
an application; and 

• provides the user with an interface to control the execution of the system. 

Combining these concepts into a single operational system adequate for solving 
process planning problems is a contribution to the development of process plan­
ning systems. In addition, how PLANEX develops a process plan distinguishes it 
from other planning systems, particularly those described in Chapter 2. These 
different approaches to problem solving are also contributions of the architec­
ture: 

• PLANEX generates not just sequences of actions, but complete process plans. 
The plans include the activities required to construct or manufacture the ob­
ject; their precedence relationships; the technologies which will be used for 
performing these activities; the estimated activity durations and costs; and 
schedule information such as earliest and latest event times. 

• PLANEX explicitly generates both process plans and operator plans. A 
process plan indicates the manner in which the desired product will be 
manufactured or constructed. The operator plan is the internal set of problem-
solving actions to be performed to produce the process plan. This plan is 
generated by the control operators and is not related to the product design. 
Most other systems do not distinguish between these types of plans. Means-
end planners do not generate plans about the operators required to generate 
plans. Meta-planners distinguish between plan actions and meta-actions used 
to generate the plan, but do not strategically plan the execution of the meta-
actions. Blackboard planners can produce both types of plans, but do not 
include explicit operators for strategic planning. In contrast, PLANEX 
provides a set of control operators to generate operator plans. 



Developing Process 
Planning Systems 

The PLANEX architecture presented in the previous chapter provides tools to 
represent and use domain knowledge in solving process planning problems. 
This chapter describes a procedure for developing process planning systems 
using the components of PLANEX, and illustrates the use of the architecture with 
examples from three prototype process planning systems: 

• CONSTRUCTION PLANEX generates plans for the excavation and erection of 
concrete or steel-frame buildings; 

• EXCAVATION PLANEX formulates plans for construction site excavation; 
• HARNESS PLANEX creates plans for manufacture of automotive electrical har­

nesses. 

In addition, the chapter describes a prototype system that solves blocks-world 
problems using the control components of PLANEX. Blocks-world problems 
involve moving and stacking blocks and represent a simplified domain for test­
ing automated planning systems. The application of this prototype to problems 
similar to those presented in Section 2.1 is discussed. 

The chapter begins with some simple examples that illustrate the capabilities 
of PLANEX. These examples show how the architecture is used to produce 
problem-solving behavior similar to that of other ΑΙ-based planning systems. A 
general procedure for implementing process planning systems using the PLANEX 
system architecture follows. This procedure is illustrated with examples from 
the four prototype process planning systems described above. The chapter ends 
with an evaluation of the PLANEX architecture with respect to the requirements 
presented in Section 3.3. This evaluation is based on the prototype applications 
and behavioral capabilities of PLANEX. 

137 
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5.1 Capabilities of the PLANEX Architecture 

5.1.1 Knowledge Representation 

The combination of rules grouped into Knowledge Sources (KSs) and the 
KNOWLEDGE SOURCE EVALUATOR (KSE) that processes these rules provides 
PLANEX with flexible tools for representing domain knowledge. The features 
include: 

• knowledge abstraction that represents domain knowledge at different levels of 
detail; 

• knowledge hierarchies that represent domain knowledge at different levels of 
importance; and 

• variable firing mechanisms that permit KSs to be evaluated differently. 

Each of these features is illustrated below with examples from the construction 
project planning domain. 

5.1.1.1 Knowledge Abstraction Consider the problem of determining the suc­
cessors of formwork construction activities such as formwork-floor-f 
formwork-floor-2 and formwork-floor-3 (e.g., formwork for each floor8). 
Formwork is used to support fresh concrete until it sets. Formwork construction 
is followed by concrete placement. The system should apply this abstract 
precedence (formwork followed by pour-concrete) to each of the specific 
formwork activities in order to produce specific successors such as 
pour-concrete-floor-1. A single abstract rule of the form: 

IF the type of the activity is formwork 
THEN the type of a successor activity is pour-concrete 

is not useful for our purposes as it is not related to specific formwork locations. 
On the other hand, many specific rules of the form: 

IF the activity is formwork-floor-1 
THEN a successor activity is pour-concrete-floor-1 

would produce an unnecessarily large knowledge base. 
Figure 5-1 illustrates the problem. A generic operator is to be applied to 

several objects of the context that share common properties (e.g., the type of the 
activity) but that differ in specific properties (e.g., the floor where the activity is 
performed). A generic KS whose conditions are expressed in terms of the 
common properties is used for this operator. The results returned by this KS 
contain a portion that is generic for any floor (e.g., pour-concrete is a successor 

Floor refers to the location of the activity, not the actual floor slab. 
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Generic Object 

Generic Property 

Knowledge Source 

Conditions Actions 

Generic Act ion 
+ 

Specif ic Act ion 

Figure 5 -1 . Using Abstract Knowledge for Specific Operations 

(defschema ks-successors-formwork 

This ks finds successors for formwork activities 

(is-a ks) 
(ks-type all) 
(cond-objects current-object current-object) 
(conditions (= type-activity formwork) 

(= floor <floor>)) 
(lhs-rules (T T)) 
(rhs-rules (Χ X)) 
(actions pour-concrete-floor-<floor> 

remove-forms-floor-<floor>)) 

Figure 5-2. KS that Combines Knowledge at Different Levels of Abstraction 

of formwork) and a part that is specific to each location (e.g., pour-concrete in 
floor-l is a successor of formwork in floor-l). In this KS, specific attributes of 
the object to which the operator is applied (e.g., the value of its floor attribute) 
are used to produce the desired results. 

Figure 5-2 shows the schema representation of a KS used to find the succes­
sors of formwork activities. This KS contains only one rule which checks that 
the type of activity is formwork and binds the variable (floor) to the value of the 
slot floor of the activity schema. As described in Section 4.2.3, the KSE inter­
prets everything delimited by " ( ) " as a binding variable. The value of (floor) is 
then substituted into the generic actions pour-concrete-floor-(floor) and 
remove-forms-floor-(floor) to produce the specific actions for each activity (e.g., 
pour-concretefloor-l and remove-forms-floor-1). 

5.1.1.2 Knowledge Hierarchies A useful strategy when structuring knowledge 
bases is to group rules according to relative importance to improve the ef­
ficiency of the system. Rules at the top level of a knowledge hierarchy are 
considered more important than rules in the bottom level. With this structure, 
and by processing only the important rules first, the search space is reduced. 
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(defschema ks-technology-example 

This ks selects appropriate equipment for an excavation 
activity 

(is-a 
(ks-type 
(cond-objects 

(conditions 

(lhs-rules 

(rhs-rules 

(actions 

ks) 
first) 
current-object soil-characteristics 
soil-characteristics) 
(= type-activity excavation) 
(= water-content wet) 
(member type-soil ' (soil-1 soil-2))) 
(Τ Τ Τ) 
(T F I) 
(Τ T F) ) 
(Χ I I) 
(I Χ I) 
(I I Χ)) 
ks-dragline 
ks-clamshell 
ks-power-shovel)) 

Figure 5-3. KS Illustrating Knowledge Hierarchies 

(defschema ks-duration-example 

This ks returns either the expected duration of an activity or 
a three point estimate 

(is-a 
(ks-type 
(cond-ob jeet s 
(conditions 
(lhs-rules 

(rhs-rules 

(actions 

ks) 
first) 
current-object) 
(= type-activity excavation)) 
(T) 
(T) 
(T)) 
(X I I) 
(I X I) 
(I I X)) 
10 20 7)) 

Figure 5-4. KS Illustrating Variable Firing Mechanisms 

In PLANEX, knowledge hierarchies are created by structuring KS schémas in 
the context. Evaluating a KS may result in the evaluation of other KSs that are 
linked below the first. For example, assume that a domain operator is respon­
sible for selecting appropriate excavation equipment for a certain activity. There 
are several possible types of equipment (such as power shovels, clamshells or 
draglines) and within each type of equipment there are many possible subtypes 
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(e.g., 1/4-cyd power shovel, 1/2-cyd power shovel). One possible knowledge 
representation is to combine all possible equipment subtypes and all possible 
factors affecting the choice into a single large KS. However, the decision 
process may be decomposed into two decisions: (1) select the equipment type; 
and (2) select the equipment subtype. Such a KS is shown in Figure 5-3 . 
Evaluating this top-level KS leads to the successive evaluation of lower-level 
KSs such as KS-dragline. 

5.1.1.3 Variable Firing Mechanisms In PLANEX, rules in a KS are evaluated 
sequentially (in the order written) by the KNOWLEDGE SOURCE EVALUATOR 
(KSE). Each KS specifies the type of sequential firing used (i.e., if all rules are 
fired or only the first applicable one). The firing order may be dynamically 
changed before evaluating a KS. Consider the KS of Figure 5-4. This KS may 
return one or three values for activity durations. If the ks-type is set equal to 
"first", only the expected duration of the activity is computed. This could be 
used in deterministic scheduling procedures such as the Basic Critical Path 
Method that only require point estimates of activity durations to compute the 
earliest completion time of the project. If the ks-type is set equal to "all" , then 
three values are computed. These values correspond to the expected, pessimistic 
and optimistic activity durations required by some probabilistic scheduling 
procedures such as the PERT. The example illustrates that the same KS may be 
used for different purposes by changing how it is evaluated. 

5.7.2 Problem Solving and Control 

The architecture of PLANEX provides the user with tools to implement different 
problem-solving behaviors including: 

• hierarchical planning in which problem-solving operators are represented at 
different levels of abstraction; 

• nonlinear planning in which operators are partially ordered by analyzing 
goals in parallel; 

• meta-planning in which operators are arranged into layers and operators of 
one layer control the execution of operators in the layer immediately below; 
and 

• opportunistic planning in which operators are applied independently when­
ever their execution is relevant in solving part of the problem. 

This section illustrates the capabilities of the architecture to support these 
problem-solving behaviors with examples from several domains. 
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5.1.2.1 Hierarchical Planning In hierarchical planning, solutions are obtained 
at different levels of abstraction. This requires representing the problem domain 
at different levels of detail. Upper (abstract) levels in the hierarchy include only 
those characteristics of the problem considered to be critical (i.e., an abstract 
representation). Lower levels incorporate the additional characteristics ignored 
in the upper levels. With this approach, the effort in searching for a solution is 
reduced. The problem solver searches first for a solution in the upper-level 
abstraction spaces and uses this solution as a starting point in the lower-level 
abstraction spaces. 

Incorporating hierarchical problem solving in planning systems appears in 
ABSTRIPS (see p. 20). By classifying operator preconditions with respect to 
their criticality, an operator hierarchy is created. A precondition that cannot be 
changed by an action is considered more critical than others. In upper-level 
abstraction spaces, preconditions with low criticality are ignored and abstract 
plans are generated which satisfy only the most critical preconditions. Once a 
successful plan is generated in a particular abstraction level, ABSTRIPS iden­
tifies which previously ignored preconditions are unmet in the abstract plan. 
Then the system tries to satisfy these less critical preconditions by planning at a 
more detailed level. 

In PLANEX, operator hierarchies similar to those of ABSTRIPS may be im­
plemented by representing each problem-solving operator with different domain 
operator schémas as shown in Figure 5-5 (only relevant slots are included in this 
figure). In this example, conditions are slots in an auxiliary object called the 
world. Operator A is described by either of the Domain Operator Schemas 
(DOSs), DOS-oper-A-1 or DOS-oper-A-2. The description in schema 
DOS-oper-A-1 includes the important precondition condition-1 and ignores the 
less important precondition condition-2. When generating an abstract plan, the 
control operators would use this schema. Schema DOS-oper-A-2 gives a more 
detailed description of the operator because both preconditions are included. 
(The second DOS inherits Condition-1 via the is-a link to the first DOS.) 
DOS-operator-A-2 would be used when generating a detailed plan. 

An example of hierarchical planning is illustrated using the operator hierar­
chy of Figure 5-6. Operators are described at three levels of abstraction using 
DOSs similar to those of Figure 5-5. Suppose that PLANEX is requested to find 
a plan to achieve condition-H. Application of the Backward Search Operator 
(BSO) would produce the following plans: 

1. At the most abstract level (level 1), the system identifies operator H as 
needed to achieve condition-Η and creates a subgoal to satisfy its only 
precondition condition-D (preconditions condition-G and condition-F are ig­
nored at this level of abstraction). Condition-D can be achieved by 
operator A which has no preconditions. The successful plan is shown in 
level 1 of Figure 5-7 and contains only the initial goal condition-Η and the 
two subgoals, condition-D and condition-A. 
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(defschema DOS-oper-A-1 
(is-a operator) 

world) 
condition-1) 
nil) 
filled)) 

(input-objects 
(input-slots 
( input-bindings 
( input-cond-types 

(defschema DOS-oper-A-2 
(is-a DOS-oper-A-1) 

world) 
condition-2) 
nil) 
filled)) 

( input-ob j ect s 
(input-slots 
( input-bindings 
( input-cond-types 

Figure 5-5. Alternative Representations of a Domain Operator 

2. The system details the level 1 plan at the second abstraction level (level 2) 
by using the corresponding DOS. The system finds that operator H has the 
unsatisfied precondition condition-G and tries to achieve it by starting with 
the abstract plan as a partial solution. Previously achieved conditions 
(condition-Α, condition-D and condition-Η) are considered satisfied and the 
system does not expand them. The resulting plan is shown in level 2 of 
Figure 5-7. Applying operator G satisfies condition-G. Its precondition, 
condition-C, is satisfied by applying operator C; precondition condition-A 
for operator C is already satisfied. 

3. The system details the plan at the lowest abstraction level (level 3). This 
process introduces the subgoal condition-F required by operator H. Achiev­
ing this subgoal can be accomplished by applying operator F, F' or F". The 
system selects operator F because its only precondition (condition-D) has 
been satisfied at abstraction level 2. The complete plan is shown in level 3 
of Figure 5-7. 

If operators had been described at the most detailed level only, the problem-
solving process would have been more complex. Proceeding in a breadth-first 
manner, the BSO would have explored the possibility of satisfying condition-F 
by applying operator F , F' and F" and by expanding their preconditions 
(condition-I and condition-J). In the hierarchical planning process, this part of 
the search space is never explored. 

Using operator hierarchies requires a mechanism to identify which DOS cor­
responds to a particular operator at each level of abstraction. Auxiliary 
knowledge sources (KSs) could be used to establish this correspondence. 
Evaluation of these KSs would reveal which of the alternative DOSs should be 
used by the control operators in the planning phase. 
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Operator 
Preconditions 

@ Level 1 
Preconditions 

@ Level 2 
Preconditions 

@ Level 3 Effect 

A none none none condition-Α 

Β condition-Α condition-Α condition-Α condition-B 

C condition-Α condition-Α condition-Α condition-C 

D condition-Α condition-Α condition-Α condition-D 

Ε condition-B condition-B condition-B condition-E 

F condition-D condition-D condition-D condition-F 

F' condition-I condition-I condition-I condition-F 

F" condition-J condition-J condition-J condition-F 

G condition-C condition-C condition-C 
condition-E 

condition-G 

H condition-D condition-D 
condition-G 

condition-D 
condition-G 
condition-F 

condition-H 

I condition-J condition-J condition-J condition-I 

J condition-K condition-K condition-K condition-J 

Κ none none none condition-K 

Figure 5-6. Example of an Operator Hierarchy 

5.1.2.2 Nonlinear Planning PLANEX can be designated as a nonlinear planner 
by examining two characteristics: 

• the type of operator plans produced by the system; and 
• the manner in which these plans are generated. 

The first characteristic is related to the plan structure and operator execution 
order. In the planning phase, PLANEX creates networks of operators from which 
different operator sequences may be extracted. The operators are only partially 
ordered in the network because no commitment has been made to specify a 
unique linear order for operator execution. Assume the system created the 
network of operators shown at the left in Figure 5-8. Two alternative operator 
execution sequences that do not violate the operator precedences exist as shown 
at the right in Figure 5-8. In the execution phase, either of these sequences 
could be selected by incorporating heuristics or asking the user to pick one of 
the alternatives. 

The second characteristic is related to how the system decomposes a problem 
into smaller subproblems. The algorithms of the Forward Propagation and 
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Figure 5-8. Example of a Network of Operators and Operator Sequences 

Backward Search control operators generate operator networks by analyzing 
conditions (context changes or goals) individually. The system builds operator 
sequences for each goal and then merges the sequences to obtain the final 
operator network. The structure of this network does not depend on the order in 
which individual goals are considered. In this sense, the planning strategy is 
similar to that of nonlinear planning systems like NOAH which decomposes the 
desired state of the world into its constituent goals and expands them in parallel. 
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5.1.2.3 Meta-Planning PLANEX has the characteristics of a meta-planner (see 
p. 30) because: 

• its operators are classified as either domain or control (i.e., two layers); and 
• control operators determine the execution order of domain operators. 

The distinction between both types of operators is not merely architectural. 
PLANEX distinguishes between a process plan (e.g., the activity network for a 
building) and the plan of problem-solving tasks required to generate this par­
ticular process plan. The outcome of the control planning phase is a meta-plan 
composed of domain operator names. 

For some domains, it may be desirable to create additional layers of 
operators. This can be done by invoking operators from the right-hand-side of 
the rules in the KS. Suppose that the user wants to create the two-layer operator 
structure of Figure 5-9. The execution of domain operators op-Α, op-B and 
op-C is controlled by meta-operator meta-op-A using the auxiliary KS 
KS-meta-op-A. Such a KS is shown in Figure 5-10. Based on the information 
stored in context objects object-x and object-y, this KS may invoke the follow­
ing sequences of operators: 

1. op-A —» op-C: the first condition is true and the second condition is false. 
2. op-B —> op-C: both conditions are false. 
3. op-C: only the second condition is true. 

5.1.2.4 Opportunistic Planning The fundamental problem-solving behavior of 
PLANEX incorporates both strategic and opportunistic elements. Strategic plan­
ning is performed in the planning phase when the system creates a plan of 
problem-solving operators to be executed that will propagate context changes or 
satisfy goals. To implement purely opportunistic problem solving, this phase 
could be eliminated and control KSs would select operators from the agenda for 
execution. The system would repeatedly execute the following problem-solving 
cycle: 

Step 1. Update the agenda. Those operators with satisfied preconditions are 
inserted in the agenda. 

Step 2. Choose an operator in the agenda to be executed. The control KS 
selects a problem-solving operator from the agenda which is likely to 
contribute to the solution of the problem. 

Step 3. Execute the selected operator. The selected operator is executed and 
the corresponding context changes are recorded. 

The second step of the problem-solving cycle chooses a feasible operator by 
considering how it contributes to solving the problem. Defining a control KS to 
perform this selection is not easy. Several criteria such as: (1) the type of 
operator (e.g., activity creation, duration estimation); (2) the characteristics of 
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invokes 

KS-meta-op-A 
Conditions Actions 

Figure 5-9. Example of a Layered Structure for Operators 

(defschema ks-meta-op-A 

This ks invokes the execution of the domain operators controlled 
by meta operator meta-op-A 

(is-a 
(ks-type 
(cond-objects 
(conditions 

(lhs-rules 

(rhs-rules 

(actions 

ks) 
all) 
object-x object-y) 
(= slot-x value-x) 
(= slot-y value-y)) 
(T F) 
(F F) 
(I I) ) 
(X I I ) 
( I X I ) 
( I i x ) ) 
(op-A) 
(op-B) 
(op-C))) 

Figure 5-10. Example of a KS Used by a Meta-Operator 

the object to which the operator is applied (e.g., the object represents a concrete 
pouring activity); and (3) the current state of the problem-solving process (e.g., 
the cost of activities has not been determined) would have to be incorporated 
into the control KS to effectively select an operator. Thus, transforming 
PLANEX into a sophisticated opportunistic planner like O P M would require con­
siderable effort. However, a primitive opportunistic problem-solving strategy 
could be built by considering all operator effects as unpredictable. PLANEX 
would then behave in a forward-chaining manner. The problem-solving cycle 
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would begin by invoking the Forward Propagation Operator (FPO). The FPO 
would identify the domain operators that are immediately executable based on 
the information in context objects (Step 1). The system would choose any of 
these operators (a primitive version of Step 2) and then execute it (Step 3). The 
system would reinvoke the FPO in order to repeat the cycle. 

5.2 Development of Process Planning 
Systems Using PLANEX 

This section describes a generic procedure for developing a process planning 
system using the components of the PLANEX system architecture. This proce­
dure is divided into three major stages: 

• Conceptualization during which models for process planning operations are 
developed and types of knowledge and representational structures are iden­
tified; 

• Design during which planning tasks are decomposed into simple planning 
operations, knowledge sources are structured into hierarchies, and attributes 
of objects are detailed; 

• Implementation during which the procedural codes of the planning operators 
are defined, and the required knowledge sources and schema definitions are 
created. 

Typically, development proceeds iteratively through the three stages until a 
satisfactory prototype is obtained. Then the scope of the prototype can be 
extended by adding and refining the knowledge base. 

5.2.1 Conceptualization 

Conceptualization requires the developer to formulate models for the major 
planning operations. Examples are the models for the formulation of activities, 
the selection of technologies, the estimation of activity attributes and the 
preparation of process schedules. The character of and relationships among 
these models will affect the types of knowledge and representational structures 
required to implement a particular application. 

As shown in Figure 5-11, planning models are developed by analyzing the 
design information available, the planning information desired, the existing 
process planning procedures and the available planning knowledge. For ex­
ample, assume that the bottom-up activity formulation model presented in 
Section 3.2.1 is adopted for generating activity networks for a certain type of 
product. Questions to be answered during the development process would in­
clude: 
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Available Design Desired Plan Current Available 
Information Information Practice Knowledge 

Models for Process 
Planning 

Types of 
Representational 
Objects 

r Types of 
Representational 
Objects 

Types of Process 
Planning Operations 

Types of 
Knowledge 

Types of 
Representational 
Objects 

Types of Process 
Planning Operations 

Types of 
Knowledge 

Figure 5-11. Conceptualization of a Process Planning System 

• How are activities identified from design drawings and specifications? 
• What sources of knowledge (e.g., databases of components, previous draw­

ings, estimating books) are available? 
• How is the final product decomposed into design elements? 
• What type of element activities are performed to produce components? 
• What type of activities should be represented in a process plan? 
• How are element activities aggregated into project activities? 

Answers to these questions will help to identify the representational structures 
required for the product and the different levels of activity aggregation in the 
system. 

Planning models for a process planning system may vary across different 
application domains. Figure 5-12 illustrates three activity formulation and tech­
nology selection models for three different process planning systems. Model A 
is for a system for excavation planning. This model indicates that the selection 
of general types of excavation equipment precedes activity definition. The 
model assumes that excavation equipment can be selected without knowledge of 
which activities are going to use them. Model Β (for construction planning) 
assumes that selection of equipment is made after activities are identified. In 
this model, activity definition is not dependent upon knowing the technologies 
which will be used. Model C combines the selection of technologies with the 
identification of manufacturing activities for a product. This model is more 
general than models A and B, but may require more knowledge to handle these 
tasks simultaneously. 

Developing and adopting a planning model has implications for the relation­
ships among domain operators, context objects and knowledge sources. For 
example, defining domain operator schémas and building knowledge sources 
may be difficult when process planning is decomposed into aggregate, large-
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Figure 5-12. Example of Activity Formulation and Technology Choice Models 

scale planning operations, whereas a fine-grained decomposition of process 
planning would require simple procedural codes, small knowledge sources and 
well-defined context objects. However, some applications may lack flexibility 
when the planning process is decomposed into very simple operations. This 
trade-off between simplicity and flexibility can only be resolved by analyzing 
the characteristics of the particular application. 

5.2.2 Design 
Design involves detailing the structure of the knowledge sources, domain 
operators and object types. Figure 5-13 illustrates the tasks needed in designing 
a process planning system. 

In the design stage, the types of knowledge identified in system concep­
tualization are structured to create knowledge hierarchies. For example, in 
construction planning, the knowledge related to the selection of materials for 
activities may be organized using the activity codes of the MASTERFORMAT 
coding system [18]. This organization facilitates the identification and defini­
tion of the knowledge required for particular planning operations. 

Another design task which details the information produced in the concep­
tualization stage is the creation of representational structures. Figure 5-14 
shows examples of the representational structures created in the design of a 
process planning system for excavation tasks. In this application, the holes to be 
excavated are represented using hole objects which are linked to hole sections 
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Figure 5 - 1 4 . Design and Activity Objects of EXCAVATION PLANEX 
using hole-has-des (hole has design elements) and de-of-hole (design element of 
hole) inverse links. Sections are the basic product components (i.e., the design 
elements of the bottom-up activity formulation model) from which excavation 
activities are determined. These activities (i.e., the element activities) are linked 
to hole sections using ea-of-de (element activity of design element) and 
de-has-eas (design element has element activities) links. Finally, element ac­
tivities are aggregated into project activities using ea-of-pa (element activity of 
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project activity) and pa-has-eas (project activity has element activities) relation­
ships. 

The creation of representational structures is related to the development of 
knowledge hierarchies. Thus, in some applications of PLANEX, such as 
CONSTRUCTION PLANEX, knowledge organization parallels the organization of 
design elements and activity objects. This case is illustrated in Figure 5-15 (a). 
However, there are situations in which the knowledge structure is different from 
the representational structure. Figure 5-15 (b) shows an example of a single 
knowledge source used for several types of activity objects. 

After representational structures and knowledge hierarchies have been 
created, the names of the slots for each type of context object and the output of 
each type of knowledge source are specified. Knowledge sources for activity 
creation in CONSTRUCTION PLANEX return lists of pairs, where the first element 
of each pair is the name of the activity schema and the second is the name of the 
activity itself. In contrast, the KSs that compute recommended durations return 
a single value representing the duration. 

The final step of the design stage consists of describing domain operators in 
terms of their inputs and outputs. In this description, each domain operator is 
considered to be a "black-box" which retrieves and stores information in the 
context. Figure 5-16 shows the input/output (I/O) description of the operator 
that computes the quantity take-offs for element activities in CONSTRUCTION 
PLANEX. The I/O description also indicates which KS will be evaluated for a 
particular element activity. 

Activities 

Act iv i ty - I -A KS-Act - l -A Act iv i ty - I -A KS-Act - l -A 

A c t i v i t y - I - B 

Act iv i ty - I -C 

KS-Ac t - l -B KSs 

KS-Act- l -C A 

Activities 

Act iv i ty - I -A 

A c t i v i t y - I - B 

Act iv i ty - I -C 

KS-Activity KSs 

Figure 5-15. Example of Knowledge Hierarchies and Representational Structures 
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OPERATOR: Compute-Amount-EAS 

DESCRIPTION: 

INPUT: 

OUTPUT: 

KSs: 

Computes the work quantities for a list of element activity 
schémas by evaluating quantity take-off formulas. 

The geometric dimensions of the design element associated 
with the activity. In rectangular elements, the slots used are 
xl-dimension, yl-dimension and zl-dimension. 

The amount-of-work of each element activity. 

KSs which return the name of the formula which will be 
evaluated. These KSs are identified using the ea-code value 
of the element activity schema. 

Figure 5 - 1 6 . Example of Input/Output Description of a Domain Operator 

Object 
Attributes 

Domain Operators 
Input/Output 

Knowledge 
Sources 
Output 

Representational 
Structures 

Domain 
Operator 
Codes 

Domain 
Operator 
Schemas 

Figure 5 - 1 7 . Implementation of a Process Planning System 

5.2.3 Implementation 

Implementation transforms the description of domain operators, objects and KSs 
developed during the design stage into instances of PLANEX components. 
Figure 5 - 1 7 shows the four tasks required to implement a system from its design 
description: 

• Representational Structures are created from descriptions of object attributes 
and relationships; 

• Procedural Codes are written for the domain operators; 
• Domain Operator Schemas are obtained from I/O descriptions of operators by 

analyzing the interactions among related operators; and 
• Knowledge Sources are created for objects of the application domain. 

The procedural codes of domain operators are implemented as functions in 
COMMON LISP. A S an example, Figure 5 - 1 8 shows the code of the 
Determine-Recommended-Duration-PAS operator of the CONSTRUCTION 
PLANEX system. The operator is applied to a list of project activity objects. It 
performs five steps for each object in the list: 
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(defun Determine-Recommended-Duration-PAS (pas) 
(dolist (pa pas t) 
(let* ((pa-code (get-value pa ,pa-code :no-wing t :path nil)) 

(ks-name (append-atom ,KS-dura- pa-code))) 
(cond 

((not (schemap ks-name)) 
(format t "~% ** Cannot determine recommended duration") 
(format t "because this KS has not been loaded > ~s" ks-name) 
nil) 

(t (let ((result (car (evaluate-KS ks-name pa)))) 
(cond ((not (numberp result)) 

(format t "~% ** Recommended Duration of ~s") 
(format t " is nil" pa) 
nil) 

(t (new-value-slot pa 'recommended-durâtion result) 
(new-value-slot pa 'why-duration ks-name) result)))))))) 

Figure 5-18. Determine-Re commended-Duration Operator of CONSTRUCTION PLANEX 

Step 1. Identify the type of activity and the type of design element to which the 
activity is applied by retrieving the value of the activity pa-code slot 
(e.g., "20-60" for formwork in column footings). 

Step 2. Create the name of the KS to evaluate by adding the prefix KS-dura- to 
the project activity code (e.g., KS-dura-20-60, which is the KS of 
Figure 5-20). 

Step 3. If such a KS exists: store the results of its evaluation in the variable 
result; otherwise print an error message and exit. 

Step 4. If the value of result is not a number: print an error message and exit. 
Step 5. Store the value of result in the recommended-duration slot of the 

project activity object. Store the name of the KS in the why-duration 
slot. 

Most domain operators of the PLANEX application systems that require KS 
evaluation are similar to the operator shown in Figure 5-18. 

5.3 Example PLANEX Applications 

5.5.7 Construction Project Planning 
When a contractor decides to bid on a particular project, he has to estimate the 
duration and cost of the project on the basis of the drawings and specifications. 
Cost estimates can be obtained by using overall average unit costs or by ag­
gregating the cost of all the building components. For this purpose, the contrac­
tor may use a standard cost estimating package. However, estimating the dura­
tion or the net-present-value of the project requires formulating a project activity 
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network and scheduling the project. Currently there are no commercial tools to 
formulate the activity network. Project planners manually generate suitable 
activity networks using their experiences with similar projects. 

A prototype application of the PLANEX architecture that emphasizes the 
automated generation of activity networks for construction projects is 
CONSTRUCTION PLANEX (for a detailed description see Chapter 6). 
CONSTRUCTION PLANEX uses the expertise of a project planner to generate 
project activity networks from building design information. The system is in­
tended to perform as an assistant during the formulation of project plans or 
designs rather than during the evaluation or monitoring of project schedules. 
The present system plans the excavation and erection of concrete and steel-
frame buildings without considering non-structural elements such as partitions, 
mechanicals or finishes. Knowledge for the system was obtained from the 
literature and an experienced construction planner [4]. 

5.3.1.1 Construction Planning Process CONSTRUCTION PLANEX starts with a 
detailed description of the structural elements of a building (columns, beams, 
slabs, diagonals and footings) and produces various types of project planning 
information such as Gantt-charts, project cost curves and scheduling reports. 
During the planning process, CONSTRUCTION PLANEX also uses information 
describing the site (e.g., typical characteristics of the soil where the building is 
located), the contractor (e.g., his minimum attractive rate of return) and some 
other auxiliary information (e.g., the inflation rate). 

The construction planning process proceeds as follows. First, the system 
analyzes the components of the building and determines the activities required 
to construct each of these components. Then the system computes the quantity 
take-off of these activities using the geometry of the building components. Next 
CONSTRUCTION PLANEX aggregates activities with respect to their type and loca­
tion, establishes precedences among the activities, and selects technologies to 
perform the activities. Finally, the system estimates activity attributes such as 
duration and cost, and prepares a schedule for the project. 

5.3.1.2 Representational Structures Figure 5-19 shows the three basic types 
of context objects used in CONSTRUCTION PLANEX and the names of the links 
that relate them: 

• design elements store information about structural components; 
• element activities represent construction activities required to construct a 

design element; and 
• project activities aggregate element activities into more manageable activities 

for planning purposes. 

Design elements may represent single components (e.g., a column) or groups of 
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Figure 5-19. Design and Activity Objects Used in CONSTRUCTION PLANEX 

components (e.g., a group of concrete columns on the first floor) having the 
same attributes (e.g., dimensions, material). 

5.3.1.3 Knowledge Sources The knowledge base of CONSTRUCTION PLANEX is 
composed of numerous knowledge sources that provide all the knowledge re­
quired during the construction planning process. Examples of these KSs include 
those storing: the knowledge describing the set of element activities required to 
construct a design element; the formulas used to compute the quantity take-offs; 
the manner in which element activities are aggregated; and the appropriate 
crews for project activities. Each time an operator of CONSTRUCTION PLANEX 
requires knowledge, one or more KSs are evaluated using the KNOWLEDGE 
SOURCE EVALUATOR (KSE) and the results of the evaluation are returned to the 

operator. 
A KS of CONSTRUCTION PLANEX is shown in Figure 5-20. This KS contains 

knowledge describing the recommended duration for placing forms for column 
footings. This KS is evaluated whenever the operator responsible for computing 
recommended activity durations needs this knowledge. For example, assume 
that the system has already created a project activity object for formwork on 
column footings and that the total area of forms to be placed is 2500 square feet. 
When the system is determining the recommended duration of this activity, the 
KS of Figure 5-20 is evaluated and the result of this evaluation (5 days) is 
stored in a slot of the project activity object. 
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(defschema KS-Dura-20-60 

; ; This KS indicates the recommended duration for placing forms 
; ; on column footings. It has three rules : 
; ; - IF the amount of work is less than or equal to 

2,000 sq-ft, THEN 5 days is an appropriate duration. 
;; - otherwise, IF the amount of work is less than or equal to 
;; 4,000 sq-ft, THEN 10 days is an appropriate duration. 
;; - otherwise, IF the amount of work is greater than 4,000 sq-ft, 
;; 15 days is an appropriate duration. 

(I X I) 
(I I X)) 

(actions 5 10 15)) 

Figure 5-20. Example of a Duration K S Used in CONSTRUCTION PLANEX 

5.3.1.4 Domain Operators CONSTRUCTION PLANEX generates construction 
project plans by applying three types of operators: 

• design element operators act on design element objects. Examples of design 
element operators are those for grouping design elements and creating ele­
ment activities. 

• element activity operators act on element activity objects. Examples of ele­
ment activity operators are those for computing quantity take-offs and ag­
gregating element activities. 

• project activity operators act on project activity objects. Examples of project 
activity operators are those for selecting crews, establishing activity 
precedences and estimating project activity durations. 

An example of a project activity domain operator was shown in Figure 5-18 
(Determine-Recommended-Duration-PAS). 

(is-a 
(ks-name 
(ks-type 
(cond-objects 

ks) 
KS-dura-20-60) 
first) 
current-object 
current-object) 
(<= amount-of-work-pa 2000) 
(<= amount-of-work-pa 4000)) 
(T I) 
(F T) 
(I F)) 
(X I I) 

(conditions 

(lhs-rules 

(rhs-rules 
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5.3.1.5 User Interface The user interface of CONSTRUCTION PLANEX contains 
examples of all the user interaction mechanisms of PLANEX presented in 
Section 4.4. The system provides an Activity-On-Node diagram of the project 
network, an interactive Gantt-chart and two types of project cost curves. 

5.3.2 Excavation Project Planning 

EXCAVATION PLANEX is knowledge-based planning system which generates 
project networks for excavation projects [65, 8 3 ] . The system recommends ap­
propriate excavation equipment, defines gross vehicle movements, creates a net­
work of excavation activities and estimates the duration of the project. 

The EXCAVATION PLANEX system is capable of planning the excavation of 
rectangular holes with vertical walls and flat bottoms. System knowledge was 
obtained from books and manuals describing excavation projects. 

5.3.2.1 Excavation Planning Process The planning process of EXCAVATION 
PLANEX proceeds as follows. First, the system selects a general type of equip­
ment for excavation and hauling on the basis of information extracted from the 
excavation drawings and available terrain information. Then the system divides 
each hole into excavation sections based upon the particular capabilities of the 
chosen excavation equipment (e.g., a function of its bucket size). EXCAVATION 
PLANEX then determines an order for excavating the sections, identifies which 
activities to execute for each section and structures the activities into a network. 
Finally, the system estimates activity durations and computes a schedule. 

The problem-solving operators and user interface mechanisms of 
EXCAVATION PLANEX are almost identical to those of CONSTRUCTION PLANEX. 
However, there are some fundamental differences between the two systems: 

• In EXCAVATION PLANEX, the type of excavation and hauling equipment is 
chosen before project activities are generated. In CONSTRUCTION PLANEX, 
project activities are created before technologies are selected. 

• EXCAVATION PLANEX generates design elements using information describing 
the type of hole to be excavated and the types of machines to be used. 
CONSTRUCTION PLANEX starts with the design elements as input. 

5.3.2.2 Representational Structures The context objects of EXCAVATION 
PLANEX are identical to those of CONSTRUCTION PLANEX. The only difference 
is that EXCAVATION PLANEX decomposes design information into two levels: 

• a hole level which is input directly from the excavation drawings; and 
• a hole section level which is generated by the system and represents portions 

of the hole. 

The relationships between the schémas of both levels was shown in Figure 5-14. 
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Hole sections are similar to the design elements of CONSTRUCTION PLANEX 
because they represent components of the final product (i.e., the excavation) 
with an associated set of element activities. 

In EXCAVATION PLANEX, each project activity consists of only one element 
activity. Therefore, the activity network includes explicit excavation activities 
for every hole section. Although this structure seems appropriate for simple 
excavation projects (e.g., a single hole with few machines), it will produce 
extremely large networks for more complex projects. Using an aggregation 
structure similar to CONSTRUCTION PLANEX, in which a project activity includes 
several element activities, is a viable solution to this problem. 

5.3.2.3 Knowledge Sources The knowledge base of EXCAVATION PLANEX 
consists of various KSs that resemble those of the CONSTRUCTION PLANEX 
system. There are similarities with respect to the types of KSs used, the struc­
ture of these KSs and the associated domain operators. For example, both 
systems have Successor KSs used by the operator responsible for establishing 
precedences among project activities. There are some differences, however, in 
how the systems estimate activity durations. In CONSTRUCTION PLANEX, one or 
more machines may be used to perform a particular project activity. How many 
machines to use is determined with heuristics for recommended duration, which 
are based on the total quantity of work (see Figure 5-20). In EXCAVATION 
PLANEX, each activity corresponds to a hole section and is performed by a single 
machine. Therefore, the duration is a simple function of the total amount of 
work, the bucket size and the cycle time of the selected machine. 

5.3.2.4 Domain Operators Most of the domain operators used in EXCAVATION 
PLANEX were taken directly from CONSTRUCTION PLANEX. The scheduling 
operators were simplified because EXCAVATION PLANEX assumes that all ac­
tivity precedences are of the Finish-to-Start type. Several new operators were 
required: 

• Select-Machine chooses either a backhoe or a loader for the excavation; 
• Find-Nearest-Point identifies the corner of the hole that is closest to the initial 

position of the machine; 
• Create-Init-Move creates an object containing information about the distance 

that machines will have to move before excavation proceeds; and 
• Create-Sections decomposes the initial hole into design elements representing 

hole sections. 

Figure 5-21 shows the code of the select-machine operator. This operator 
performs five steps: 
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(defun select-machine (hole-info) 
(let* ((machines (car (evaluate-KS 'KS-Select-Excavator 

hole-info))) 
(no-machines (length machines)) 
(hauler nil) ; ; setq'ed below 
(excavator nil)) 

(cond ((eq no-machines 1) ;; machine is both hauler 
(setq excavator (car machines)) ; ; and excavator 
(setq hauler excavator)) 
((eq no-machines 2) ; ; first machine is excavator, 

; ; second is hauler 
(setq excavator (nth 0 machines)) 
(setq hauler (nth 1 machines))) 
(t (format t "~%Error in fen select-machine~%"))) 

(new-value-slot hole-info 'excavator excavator) 
(new-value-slot hole-info 'hauler hauler) 
(let* ((exc-instance (get-value excavator ' instance)) 

(haul-instance (get-value hauler ' instance)) 
(KS-excavator 

(append-atom-list (list 'KS-
(get-value exc-instance 'is-a) 
'-bucket-factor))) 

(KS-hauler 
(append-atom-list (list 'KS-

(get-value haul-instance 'is-a) 
'-bucket-factor))) 

(exc-bucket-factor (car (evaluate-KS KS-excavator))) 
(haul-bucket-factor (car (evaluate-KS KS-hauler)))) 

(when (equal 'ask-user exc-bucket-factor) 
(format t "~% Unknown bucket factor for excavator ~a~%" 

excavator) 
(format t " in soil ~a. Give me the bucket factor: " 

(get-value 'soil-info 'soil-type)) 
(setq exc-bucket-factor (read)) 
(format t "-%")) 

(when (equal 'ask-user haul-bucket-factor) 
(format t "~% Unknown bucket factor for hauler ~a~%" 

hauler) 
(format t " in soil ~a. Give me the bucket factor: " 

(get-value 'soil-info 'soil-type)) 
(setq haul-bucket-factor (read)) 
(format t "-%")) 

(new-value-slot hole-info 'exc-bucket-factor 
exc-bucket-factor) 

(new-value-slot hole-info 'haul-bucket-factor 
haul-bucket-factor)))) 

Figure 5-21. Select-Machine Operator of EXCAVATION PLANEX 



Manufacturing Process Planning 161 

Step 1. Evaluate the KS KS-Select-Excavator. The result of this evaluation is 
either: (1) a list with two machine names, one for excavation and one 
for hauling; or (2) a list with only one machine to be used for both 
activities. 

Step 2. Store the names of the excavation and hauling machines in the hole-info 
schema. 

Step 3. Create the names of the KSs used to select the bucket size (the bucket 
factors). 

Step 4. Evaluate these KSs to compute the bucket factors. 
Step 5. Store the bucket factors in the hole-info schema. 

5.3.2.5 User Interface EXCAVATION PLANEX uses most of the user interface 
mechanisms of PLANEX. However, the current version of the system has some 
limitations: 

• it does not include an interactive graphical display environment such as 
GANTT; 

• the only output graphics are an Activity-On-Node diagram and a simulation 
of the excavation process; and 

• control is provided through a tree of command menus that invokes the control 
operators of PLANEX. 

5.3.3 Manufacturing Process Planning 

HARNESS PLANEX is a knowledge-based system that generates activity plans for 
manufacturing automotive electrical harnesses (described in detail in Chapter 7). 
The system identifies the manufacturing activities required to produce a par­
ticular harness, recommends appropriate equipment to perform these activities 
and estimates the duration of the manufacturing process. The result of the 
planning process is a process sheet report which is used by the harness manufac­
turer on the shop floor. 

Currently HARNESS PLANEX is capable of planning the manufacture of in­
dividual harnesses. It cannot schedule the entire production line. Knowledge in 
the system is limited to that pertaining to certain harness components and was 
developed using information provided by an experienced harness manufacturer. 

5.3.3.1 Manufacturing Planning Process The planning process of HARNESS 
PLANEX proceeds as follows. First, the system analyzes information extracted 
from drawings and builds a model of the harness as a network of context ob­
jects. The system aggregates harness wires with common connections into 
subassemblies representing components which can be manufactured indepen­
dently. HARNESS PLANEX then identifies activities required to cut the wires and 
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apply terminals to wire ends. The system selects equipment for each manufac­
turing activity and resolves conflicts among cutting machines so that appropriate 
machines are assigned to cut each end of the wire. Finally, the system estimates 
the total time required to produce the harness and the usage level of each 
machine. 

5.3.3.2 Representational Structures The representational structures used in 
HARNESS PLANEX are more complex than those used in the CONSTRUCTION 
PLANEX or EXCAVATION PLANEX systems because they model not only in­
dividual components of the harness but also the harness topology. HARNESS 
PLANEX has the following types of objects in its context: 

• wire objects store the descriptions of the wires which comprise the harness; 
• body objects represent the central portion of wires; 
• extreme objects represent the ends of wires; 
• terminal-location objects represent joints connecting wire ends; 
• activity objects represent manufacturing activities for wire ends or wire 

bodies; and 
• machine objects represent machines used in manufacturing the harness. 

The manner in which these types of objects are linked to form representational 
structures is described in Chapter 7. 

5.3.3.3 Knowledge Sources The knowledge base of HARNESS PLANEX is com­
posed of the following types of KSs: 

• Activity KSs define the set of manufacturing activities for wire body or wire 
extreme objects; 

• Technology KSs provide recommendations of appropriate machines for 
manufacturing activities; and 

• Duration KSs estimate the expected duration of manufacturing activities. 

In addition, the system uses a Peeling KS which estimates the length of insula­
tion that should be peeled from a wire end depending upon the type of terminal 
that will be attached. 

5.3.3.4 Domain Operators Using a planning process similar to those used for 
construction and excavation planning, HARNESS PLANEX generates process 
sheets by applying simple domain operators which act on context objects. There 
are operators to: (1) create or delete objects containing harness design infor­
mation; (2) identify manufacturing activities; (3) select appropriate machines for 
cutting, tinning or splicing activities; (4) estimate the duration of manufacturing 
activities; (5) accumulate machine usages; and (6) estimate appropriate peeling 
lengths of wire ends. 



Blocks-World Planning 163 

(defun select-technology (actv) 
(let* ((act-type (get-value actv 'act-type : no-wing t)) 

(ks-name (append-atom 'KS-technology- act-type)) 
(machine (cond ((schemap ks-name) 

(car (evaluate-KS ks-name actv))) 
(t nil)))) 

(cond ((null machine) 
(format t "~% --> No technology for ") 
(format t "activity ~s~% " actv))) 

(new-value-slot actv 'technology machine) 
(add-value-slot machine 'used-by actv))) 

Figure 5-22. Code of the Select-Technology Operator of HARNESS PLANEX 

The procedural code of the Select-Technology operator is shown in 
Figure 5-22. Other domain operators have similar codes. When applied to an 
activity, the Select-Technology operator performs the following steps: 

Step 1. Identify the type of activity (e.g., cut). 
Step 2. Create the name of the KS to be evaluated (e.g., KS-technology-cut). 
Step 3. If the KS exists: store the result of its evaluation in the variable 

machine', otherwise exit. 
Step 4. If no machine was selected, print an error message. 
Step 5. Store the value of machine in the technology slot of the activity object. 

The five steps listed above are the same as those performed by the 
Determine-Recommended-Duration-PAS operator of CONSTRUCTION PLANEX 
(see p. 154). In general, all of the domain operators of the construction, excava­
tion and manufacturing applications perform these five steps. 

5.3.3.5 User Interface The system uses some of the user interaction 
mechanisms of PLANEX described in Section 4.4, such as command menus and 
questions to the user; however, the interface of HARNESS PLANEX does not 
include graphical displays. Results of the planning process are presented in 
various reports produced with the REPORT GENERATOR. 

5.3.4 Blocks-World Planning 
The previous sections described three similar applications of the PLANEX ar­
chitecture that generate process plans for creating products. This section 
describes a small system, called BLOCKS PLANEX, which solves blocks-world 
problems using only the control components of PLANEX (i.e., domain KSs are 
not required). The problem is different from the preceding examples because 
the output of the system is not a complete process plan (i.e., it does not include 
durations, resources, etc.). However, this application of PLANEX is interesting 
because it: 
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• illustrates how the control operators of PLANEX generate strategic plans of 
domain operators; 

• is the basis for a comparison of the control operators of PLANEX with the AI 
planners reviewed in Section 2.1 ; and 

• shows that BLOCKS PLANEX can solve problems with double-cross 
conflicts [ 1 5 ] without having to order the goals or use complicated critics. 

5.3.4.1 Overview of BLOCKS PLANEX BLOCKS PLANEX is implemented with 
the control components of the PLANEX architecture: 

• Domain Operator Schemas (DOSs) describe the preconditions and effects of 
the problem-solving operators; 

• the agenda stores an operator queue, operator precedences and goals; and 
• control operators use and modify the information stored in the agenda to 

generate operator networks. 

The description of the blocks-world is stored in block schémas. Each block is 
described by a schema that specifies its location with respect to the other blocks 
and the table. In this representation, a slot is filled whenever a condition is 
"true" and empty otherwise. This representation permits the control operators 
of PLANEX to be used directly. 

An example of a block schema is shown in Figure 5 - 2 3 . The schema in­
dicates that block C is above block A and that block A is on the table. The 
schema has the following slots: 

• An is-a slot identifies the schema as a block schema. 
• A name slot indicates the name of the block described by the schema. Each 

block has a particular name slot. For example, block A has a slot titled 
name-α which is filled with its name, and the schema for block Β has a 
name-b slot which is filled with "block-b". 

• The has-above slots indicate which block is on top of the block described by 
the schema (only one of these slots can be filled at any time in the planning 
process). 

• A cleartop slot is filled whenever nothing is on top of the block. 
• An on-table slot is filled whenever the block is on the table. 

(defschema block-a 
(is-a block) 
(name-a block-a) 
(has-b-above) 
(has-c-above yes) 
(cleartop) 
(on-table yes)) 

Figure 5-23. Example of a Block Schema Used in BLOCKS PLANEX 
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(defschema pick-a-from 
(is-a 
( domai η-1ype 
(input-objects 

operator) 
block) 
current-object current-object 
block-a) 
name-a has-a-above cleartop) 
nil nil nil) 
erased filled filled) 
current-object current-objeet 
block-a) 
has-a-above cleartop on-table) 
nil nil nil) 

(input-slots 
( input-bindings 
( input-cond-types 
(output-objects 

( output-s1ot s 
( output-bindings 
(output-predictable yes yes yes) 
(output-effect-types erase fill fill)) 

Figure 5-24. Example of a Pick Operator Schema Used in BLOCKS PLANEX 

BLOCKS PLANEX has two types of domain operators to plan the movements 
that will achieve the desired final positions: 

• pick operators pick a block from the top of a stack and put it on the table; and 
• put operators place one block on top of another. 

Pick operators are similar to the clear operator and put operators to the puton 
operators described in Chapter 2. Pick operators only move the top block in a 
stack. 

An example of a domain operator schema (DOS) for a pick operator is shown 
in Figure 5-24. The schema indicates that to remove block A from block X (the 
operator is applied to block X), the following conditions must to be true: 

• the block to which the operator is applied (e.g., block X) must not be block A; 
• the block to which the operator is applied must have block A above it; and 
• block A must have nothing on top of it. 

Similarly, the DOS indicates that the following effects are achieved by applying 
the operator: 

• block A will no longer be above the block to which the operator is applied 
(e.g., block X); 

• the block to which the operator is applied will have no block on top of it (e.g., 
cleartop is "true"); and 

• block A will be on the table. 

An example of a DOS for a put operator is shown in Figure 5-25. The 
schema indicates that to place block A on top of block X (the operator is applied 
to block X), the following conditions must be true: 

• the block to which the operator is applied (e.g., block X) must not be block A; 
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(defschema put-a-on 
(is-a 
(domain-type 
( application-object 
( input-ob j ect s 

operator) 
block) 
current-ob j ect) 
current-object current-object 
block-a block-a) 
name-a cleartop on-table cleartop) 
nil nil nil nil) 
erased filled filled filled) 
current-object current-object 
block-a) 
cleartop has-a-above on-table) 

(input-slots 
( input-bindings 
( input-cond-types 
(output-objects 

( output-s1ot s 
(output-bindings nil nil nil) 
(output-predictable yes yes yes) 
(output-effect-types erase fill erase)) 

Figure 5-25. Example of a Put Operator Schema Used in BLOCKS PLANEX 

• the block to which the operator is applied must have nothing on top of it; 
• block A must have nothing on top of it; and 
• block A must be on the table. 

The DOS also indicates the following effects of the operator: 

• the block to which the operator is applied (e.g., block X) will no longer be the 
top of the stack (e.g., cleartop is "false"); 

• the block to which the operator is applied will have block A above it; 
• block A will no longer be on the table. 

In BLOCKS PLANEX, domain operators are applied to a single block object. 
Therefore, one operator is required for each operator type (pick or put) for each 
block in the problem. Thus, in problems with Ν blocks, there are a total of 
Ν pick and Ν put operators. In the prototype, these 2 χ Ν operators are 
predefined. However, the schémas could be created from the problem descrip­
tion by another operator at the start of the problem-solving process. 

5.3.4.2 Three-Block Example Consider the example problem of Figure 5-26. 
This problem was used in Section 2.1 to illustrate the behavior of AI-based 
planning systems such as STRIPS, INTERPLAN and NOAH. Figure 5-27 
shows the schémas defining the initial position of the blocks and the goals. The 
goals in the agenda frame represent the desired state of the world: a stack of 
blocks (A, B , C) with A on top of the stack and C on the table. 

Problem solution requires two steps: 
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Figure 5-26. Example of a Three-Block Problem 

(defschema block-a 
(is-a block) 
(name-a block-a) 
(has-b-above) 
(has-c-above yes) 
(cleartop) 
(on-table yes)) 

(defschema block-b 
(is-a block) 
(name-b block-b) 
(has-a-above) 
(has-c-above) 
(cleartop) 
(on-table yes)) 

(defschema block-c 
(is-a block) 
(name-c block-c) 
(has-a-above) 
(has-b-above) 
(cleartop yes) 
(on-table)) 

(defschema agenda 
(context-changes) 
(goals (block-a cleartop filled) 

(block-b has-a-above filled) 
(block-c has-b-above filled)) 

(operator-queue) 
(operator-precedences) 
(operator-preconditions) 
(effect-operators)) 

Figure 5-27. Initial Block Schemas and Agenda for the Three-Block Problem 
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Figure 5-28. Expansion of a Goal in the Three-Block Problem 

Step I. Application of the Backward Search Operator (BSO). The system: 
( 1 ) searches for a sequence of operators that achieve each goal indepen­
dently; and (2) merges all sequences into a global network of operators 
and conditions. 

Step 2. Application of the Network Interpretation Operator (ΝΙΟ). The system 
interprets the global network and formulates an operator network. 

The application of the BSO proceeds as follows: 

• Goal (block-a cleartop filled) is expanded as shown in Figure 5-28. There are 
two possible operators that can achieve the goal: (pick-b-from a) and 
(pick-c-from a). Operator (pick-a-from a) is not considered because it re­
quires precondition (block-a cleartop filled) which is the current goal. All of 
the preconditions of operator (pick-c-from a) are true. Therefore, it is ex­
ecutable and all its effects are labeled achievable. 

• Goal (block-b has-a-above filled) is expanded. All of its preconditions are 
true or have been labeled achievable. 

• Goal (block-c has-b-above filled) is expanded. All of its preconditions are 
true. 

The resulting global network of operators and conditions is shown in 
Figure 5-29. The effect-operators and operator-preconditions slots of the 
agenda store the network. 

The application of the ΝΙΟ to the network of Figure 5-29 yields the operator 
network of Figure 5-30. The only feasible sequence in this network the desired 
plan: (pick-c-from a) —> (put-b-on c) —> (put-a-on b). 
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Figure 5-29. Global Network of Operators and Conditions for the Three-Block Problem 

Figure 5-30. Operator Network for the Three-Block Problem 
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5.3.4.3 Four-Block Example Another example blocks-world problem is shown 
in Figure 5-31. Corkill refers to this four-block problem as an example with 
double cross conflicts [15]. He describes a solution using NO AH's procedural 
nets and multiple processors. In his solution, the problem requires two proces­
sors that send messages to each other to indicate when they may proceed with 
the expansion process and when they should stop. 

Similarly to the previous example, BLOCKS PLANEX solves the problem by 
generating a global network of operators and conditions and interpreting this 
network to identify operator precedences. Figure 5-32 shows the global net­
work of operators and conditions obtained by BLOCKS PLANEX. Interpreting this 
network yields the operator network of Figure 5-33. There are four possible 
problem-solving sequences: 
(pick-c-from a) —> (pick-d-from b) —> (put-c-on b) —> (put-d-on a) 
(pick-c-from a) —» (pick-d-from b) —> (put-d-on a) —> (put-c-on b) 
(pick-d-from b) —> (pick-c-from a) —> (put-c-on b) —» (put-d-on a) 
(pick-d-from b) —> (pick-c-from a) —» (put-d-on a) —» (put-c-on b) 

5.3.4.4 Comments on the Application The examples show that the Backward 
Search and Network Interpretation Operators of the PLANEX architecture are 
applicable in solving blocks-world problems. The solution strategy of BLOCKS 
PLANEX is different from the procedures followed by other AI planners: 

• BLOCKS PLANEX considers operators, preconditions and effects as part of the 
same network. In planners such as NOAH and NONLIN, preconditions and 
effects are included in the bodies of the operators. 

• In other AI planners, critics are used during the expansion process to solve 
conflicts among actions and avoid redundancies. In BLOCKS PLANEX, critics 
are not used during the planning process; the system first generates the global 
network and then extracts the operator network. 

• BLOCKS PLANEX expands each goal independently. In contrast, NOAH 
repeatedly expands a procedural net with all goals. 

5.4 Evaluation of the PLANEX Architecture 
This section presents a partial evaluation of the PLANEX architecture with 
respect to the list of requirements presented in Section 3.3. For some require­
ments, the analysis is supported with examples from the prototype planning 
systems described in this chapter. For other requirements, however, the analysis 
is based on the characteristics of the system architecture described in 
Section 3.3. This distinction is needed because the prototype systems illustrate 
only some of the capabilities of the knowledge representation and problem-
solving tools of PLANEX. 
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Figure 5-32. Global Network of Operators and Conditions for the Four-Block Problem 
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Figure 5-33. Operator Network for the Four-Block Problem 
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5.4.1 Knowledge Representation 

The following requirements for representing process planning knowledge were 
established. PLANEX should: 

1. Provide a process-independent knowledge representation. PLANEX meets 
this requirement by using knowledge represented in Knowledge Sources 
(KSs) that have the generic structure described Section 4 .2 . This represen­
tation is independent of the process planning domain. In the prototype 
systems for construction, excavation and manufacturing planning described 
in this chapter, all process planning knowledge was represented in the KS 
format. Although the KSs used in these systems differ in their content (e.g., 
the number of rules, the type of values they return), all of them are evaluated 
using the KNOWLEDGE SOURCE EVALUATOR provided by the architecture. 

2. Provide an operator-independent knowledge representation. This require­
ment is also satisfied as the same KS format and syntax was used in all of 
the prototypes, independent of the type of knowledge represented. 

3. Provide the means to structure knowledge hierarchically. This architectural 
requirement is also met because KSs may be structured hierarchically. An 
example of a KS illustrating knowledge hierarchies is that for the selection 
of excavation equipment given in Figure 5-3. This is a hypothetical KS as it 
is not a part of EXCAVATION PLANEX. Knowledge hierarchies were not 
required in the prototypes as the knowledge could be divided into multiple 
independent KSs. These KSs were classified with respect to the type of 
knowledge they represent (e.g., recommended duration for an activity, ap­
propriate technology for a group of activities) and the type of object used for 
their evaluation (e.g., a formwork activity). This classification of process 
knowledge made it possible to generate the name of the KS required by the 
domain operators. Such a horizontal decomposition of the knowledge base 
may not be desirable or possible in other domains. Thus, it is important for 
the PLANEX architecture to provide the means to hierarchically structure the 
knowledge sources. 

4 . Provide the means to check the completeness or consistency of an operator s 
knowledge. The current version of PLANEX does not include mechanisms to 
check the consistency of knowledge in a KS. Neither does it provide means 
for checking the completeness of this knowledge. Therefore, this require­
ment has not been met in the PLANEX architecture. However, algorithms 
used for checking the consistency and completeness of decision 
tables [55, 59, 82] could be adopted to check individual KSs. Incorporating 
these algorithms into the KNOWLEDGE SOURCE ACQUISITION MODULE 
would satisfy this requirement at the individual KS level. 
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5.4.2 Problem-Solving Operators 
The following requirements for problem-solving operators were established. 
PLANEX should: 

1. Achieve operator modularity. The architecture achieves operator modularity 
because domain operators are independent. In the prototype systems 
described, a domain operator does not know about any other domain 
operator. Each operator is responsible only for a specific planning task 
without concern for the consequences of its execution. Operator interactions 
are handled by the control operators of the architecture. Additional domain 
operators can be incorporated in the system without having to modify exist­
ing operators. 

2. Provide a set of problem-solving operators that may be used in different 
process planning domains. Most of the operators described in the 
EXCAVATION PLANEX prototype were taken directly from the 
CONSTRUCTION PLANEX system. It is not likely that this will occur in other 
applications of the PLANEX architecture, but it is probable that operators 
from different domains will be similar. For example, the select-technology 
operator of HARNESS PLANEX (shown in Figure 5-22) is similar to several 
domain operators utilized in CONSTRUCTION PLANEX, including the 
determine-recommended-duration operator (Figure 5-18). Most domain 
operators perform the same tasks (identify a K S to evaluate, evaluate this K S 
with the KNOWLEDGE SOURCE EVALUATOR, and store the results of the K S 
evaluation in the context) and thus are similar. Although PLANEX does not 
provide a unique set of problem-solving operators for different application 
domains, the development of more generic operators seems plausible. 

3 . Incorporate both synthesis and analysis operators. This requirement has 
been met as demonstrated by the prototype applications of PLANEX that 
incorporate both synthesis and analysis operators. Examples of synthesis 
operators are those that generate activities, select technologies and determine 
activity precedences. Examples of analysis operators are those that compute 
quantities of work, estimate durations and compute earliest and latest event 
times (e.g., the scheduling algorithms used in CONSTRUCTION PLANEX). 

4. Provide the means to structure operators hierarchically. Although this 
capability of the architecture was not utilized in the prototype systems, the 
architecture provides the means to structure operators into layers as shown in 
Figure 5-9. Operators in the upper layers (e.g., an operator to compute the 
cost of the entire building) could trigger the execution of operators in the 
lower layers (e.g., an operator to compute the cost of one floor) by using an 
intermediate K S . This strategy might be useful in applications where there 
are many domain operators. 
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5.4.3 Control 

The following requirements for control of the execution of the problem-solving 
operators were established. PLANEX should: 

1. Make explicit control decisions that solve the problem. The control 
operators of PLANEX are responsible for making explicit decisions about 
how the problem-solving operators should be executed by analyzing the 
information stored in the Domain Operator Schemas (DOSs). Thus, this 
requirement is met through the architecture of the system. 

2. Decide what operators to execute in terms of their feasibility and 
desirability. This requirement is also satisfied through the capabilities 
provided for control. PLANEX distinguishes between the feasibility and the 
desirability of executing a domain operator by using information stored in 
the DOS. An operator is feasible whenever its preconditions are satisfied 
while it is desirable whenever its outcome contributes to solving a goal. The 
Backward Search Operator (BSO) searches for desirable operators until all 
of the initial and intermediate goals are satisfied and feasible sequence of 
operators has been identified. In contrast, the Forward Propagation 
Operator (FPO) deals only with feasible domain operators; all feasible 
operators whose arguments have changed are executed. 

3. Dynamically plan strategic sets of operators. PLANEX formulates strategic 
plans of domain operators by applying the control operators as described in 
Section 4.3. Whenever the user modifies a slot or requests the execution of 
domain operators whose preconditions are not satisfied, PLANEX modifies 
the information stored in the agenda. At any point in the planning process, 
the user may execute the FPO or BSO that will plan the sequence of 
operators to propagate context changes or achieve goals. Again, the control 
operators provide the mechanism to satisfy this requirement of the architec­
ture. 

4. Incorporate different control heuristics in the planning process. Control 
decisions are based exclusively on the preconditions and effects of the 
domain operators as described in the DOSs, and all reasoning is based on 
data availability. Thus, the current architecture does not meet the stated 
requirements, but the architecture does not preclude other control strategies. 
PLANEX could incorporate more elaborate control heuristics similar to those 
of OPM (see p. 32). Alternatively, control operators that use knowledge 
about the status of the agenda could be added to the architecture. 
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5.4.4 User Interaction 

The following requirements for user interaction were established. PLANEX 
should: 

1. Provide the means to create, discard or update domain knowledge. The 
KNOWLEDGE SOURCE ACQUISITION M O D U L E of PLANEX provides an inter­

active environment to create, discard or update domain knowledge, thus 
meeting the requirement. Displaying KSs in a tabular format facilitates 
knowledge acquisition and provides transparent process planning 
knowledge. 

2. Provide the means to modify the set of operators. PLANEX does not include 
an explicit mechanism for modifying the set of problem-solving operators of 
a particular application. The only mechanism available is the editor 
provided by the host system. Therefore, this requirement is not met in the 
current version of the system. 

3. Provide the means to control the planning process. The CONTROL PANEL 
provides an interactive environment for controlling the planning process. 
The user may insert goals and changes in the agenda, invoke one or more 
domain operators and modify operator precedences. In addition, some ap­
plications provide menus which can be used to invoke problem-solving 
operators. With these two tools, the user explicitly controls the planning 
process. 

4. Explain results in terms of the knowledge used to obtain them. The relation­
ships between problem-solving operators and KSs provide PLANEX with 
limited explanation facilities. Each time an operator is executed, a pointer to 
the KS used by the operator is stored with the application object of the 
operator. This information is used to provide an explanation of the planning 
results in terms of the knowledge used. Thus, the architecture has some 
features which meet the requirement, but a comprehensive explanation 
facility is lacking. 

5. Provide the means to produce reports with flexible formats. The REPORT 
GENERATOR has proven to be flexible enough to produce most of the reports 
for the application systems. Only a few very complicated reports, such as 
the Process Sheet report of HARNESS PLANEX, require a separate output 
processor. Thus, the REPORT GENERATOR is a good initial model of a 
general output tool. 

6. Provide graphic display of results. PLANEX provides some graphical dis­
plays that are applicable in various process planning domains, including the 
Activity-On-Node diagram used in the CONSTRUCTION PLANEX and 
EXCAVATION PLANEX systems. The architecture provides capabilities to 
implement and use specific graphical tools in individual applications. 
However, it is difficult to identify a complete set of generic graphical dis­
plays for all PLANEX applications. 



6 CONSTRUCTION 
PLANEX: An Expert 
System for Construction 
Project Planning 

The construction industry is characterized by separation and isolation of design 
and project planning [50]. Design of the final facility and construction project 
planning are typically done by different professionals and different organiza­
tions. Design is the responsibility of architects and engineers, whereas project 
planning is performed by construction contractors who may or may not have 
engineering training. These different professionals have quite different ter­
minology, different perspectives on the construction process, and—all too 
often—a mutually antagonistic and disdainful relationship. The traditional bid­
ding process for public projects represents an extreme case of the separation 
between design and project planning. In this process, architecture and engineer­
ing firms develop final facility plans which are made available to numerous 
general contractors as a set of physical plans and specifications for the com­
pleted facility. Each contractor must review the plans to determine the required 
quantity of work and formulate appropriate construction plans. The formulation 
of the project plan is done manually, working from the physical plans. The 
contract for performing the construction is typically awarded to the qualified 
builder who submits the lowest bid. 

Effective computer-based construction project planning systems could be 
useful in a number of ways. Architecture and engineering design firms could 
use such systems to improve their designs and estimates of required costs and 
project durations. Contractors could use these aids to develop better plans more 
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rapidly and at less cost. Reducing planning costs is particularly important be­
cause many plans are developed for bids that are never won. Improved and 
detailed project plans would be of considerable value in expanding the role of 
Computer-Integrated Construction in areas such as materials procurement and 
project control. Furthermore, computer-based models of the facility and the 
construction process can substantially aid communication among the various 
professionals and organizations involved in the process. Computer-based 
animations of the construction process are only one of many useful techniques 
that can be used in this regard. 

An example application of PLANEX for planning building construction is 
CONSTRUCTION PLANEX, a knowledge-based expert system that generates ac­
tivity plans for the excavation and structural erection of concrete or steel-frame 
buildings. The intent of system development was to explore the application of 
knowledge-based systems to the automatic generation of construction project 
plans. As noted in Section 1.5, the current version of the system is the result of 
a multi-cycle refinement process which also resulted in the development of the 
PLANEX system architecture. Knowledge for the system was obtained from both 
the literature and an experienced construction planner [ 4 ] . 

The previous chapter presented an overview of how the basic components of 
the PLANEX architecture are used in CONSTRUCTION PLANEX. This chapter 
describes the structure and behavior of CONSTRUCTION PLANEX in detail and 
illustrates the use of the system with examples. The models used by the 
CONSTRUCTION PLANEX system in each of the stages of the construction plan­
ning process are presented, followed by a discussion of the components of the 
system and the relationships among them. Readers interested in only a concep­
tual understanding of the system can skip Section 6.2. Section 6.3 illustrates the 
use of the system both as a stand-alone planning assistant and as a component of 
an integrated computing environment for building design. The chapter con­
cludes with a complete example. 

6.1 Models for Construction Planning 
Used in the System 

Several models for different elements of the construction planning process were 
discussed in Chapter 2. Models were classified into the following categories: 

• Definition of Work Tasks and Precedence Relationships—models for the 
generation of the project activity network; 

• Choice of Technologies and Construction Methods—models for the selection 
of technologies and methods to perform construction activities; 

• Estimation of Activity Durations and Costs—models to estimate activity dura­
tions and costs based on the selected technologies and construction methods; 
and 
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• Preparation and Maintenance of Project Schedules—models to compute 
project schedules that satisfy the time and resource constraints of the project. 

In generating a construction plan for a building, CONSTRUCTION PLANEX uses 
models from each of these four categories. This section describes these models 
and discusses the applicability and limitations of each. 

6.1.1 Definition of Work Tasks and Precedence Relationships 

In generating a project activity network, CONSTRUCTION PLANEX uses the 
"bottom-up" activity formulation model presented in Section 3 . 2 . 1 . The ac­
tivity network is built in four steps: 

Step 1. Model Building. The building is described in terms of unitary com­
ponents called design elements. Example components are beams, slabs, 
columns, walls, footings and diagonals (bracing). 

Step 2. Identify Activities. The system determines the element activities re­
quired to construct each design element. Example element activities 
are form placement for individual concrete components and excavation 
of individual column footings. 

Step 3. Aggregate Activities. The system aggregates element activities into 
project activities. Example project activities are the excavation of all 
footings elements and concrete placement on a particular floor. 

Step 4. Link Activities. The system creates a project network by establishing 
precedence links among project activities. For example, the system 
creates a link from a form placement activity to the corresponding 
concrete pouring activity for an element. 

CONSTRUCTION PLANEX has some limitations regarding how the bottom-up 
activity formulation model is used: 

• CONSTRUCTION PLANEX generates plans using detailed design information 
describing the structural elements of a building (e.g., dimensions, type of 
materials). The system cannot generate plans from more abstract building 
design descriptions. 

• The system only generates activities associated with the construction of the 
design elements. To generate other activities, artificial design elements must 
be created (e.g., an object describing the geometric characteristics of the site 
is needed to generate a site-clearing activity). 

• CONSTRUCTION PLANEX first identifies the activities and then establishes 
precedences. Alternative knowledge sources or operators could perform these 
tasks simultaneously. 

• Activities are divided into two levels of aggregation: (1) element activities 
representing activities used to construct individual design elements; and 
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(2) project activities representing groups of element activities on a particular 
floor of the building. Sophisticated spatial aggregation of the construction 
activities would be useful. 

6.7.2 Choice of Technologies and Construction Methods 

CONSTRUCTION PLANEX assigns crews to activities after formulating the project 
activity network and before estimating activity durations and costs. Each crew 
is a combination of both labor and equipment and is represented using a crew 
schema. Crew schémas describe the crew components, standard crew produc­
tivities and average unit costs. Figure 6-1 shows the schema used to represent a 
crew named "crew-excavation-foundation-05". This crew is composed of a 
backhoe with a 3/4 cubic yard bucket and a single machine operator. The 
standard productivity of this crew is 100 cubic yards per day, and its average 
unit costs are $6.74 per cubic yard of normal time work and $10.11 per 
cubic yard of overtime work. 

CONSTRUCTION PLANEX models the technology selection process in two 
steps: 

Step 1. Select Crew Type. The system chooses a crew for each project activity 
by using information about site characteristics, design elements and the 
activity. In this step, CONSTRUCTION PLANEX assumes that each ac­
tivity can be performed with the most appropriate crew. 

Step 2. Determine the Number of Crews to be Used. Once the crew type has 
been selected, the system computes a recommended activity duration as 
a function of the quantity of work. Then the system decides how many 
crews are needed to perform the activity on the basis of the recom­
mended activity durations. (Selected crew allocations may be modified 
by the user.) In this step, no time-cost trade-offs are analyzed. 

(defschema crew-excavation-foundation-05 

Crew for excavating sand and gravel soil with 
3/4 cubic-yard backhoe [71, p. 37]. 

(is-a 
( component-names 

crew) 
((1 backhoe-3/4) 
(1 operator-backhoe-3/4))) 
100.0) 
cu-yd/day) 
6.74) 
10.11)) 

( std-productivity 
(prod-unit 
(normal-cost 
(overtime-cost 

Figure 6 -1 . Example of a Crew Schema 
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T e c h n o l o g y 
G r o u p 

s - a 

G r o u p - A 

C r e w T y p e : crew - 1 

G r o u p - B 

C r e w T y p e : crew-2 

p a r e n t - t e c h n o l o g y 

A c t i v i t y - X 

No. C r e w s : 

A c t i v i t y - Y 

No. C r e w s : 

Figure 6-2. Representational Structures for Storing Technology Decisions 

The results of the technology selection process are stored as shown in 
Figure 6-2. The values of the number of crews are stored in activity schémas 
and the crew types are stored in technology-group frames. Each technology 
group object is linked to all of the activities using the same crew type. This 
structure lets the system identify all activities impacted by a technology change. 
Assume that the system allocates the crew shown in Figure 6-1 to various 
excavation activities and the user later decides to change this assignment. The 
information stored in the corresponding technology group object permits 
CONSTRUCTION PLANEX to identify the activities affected by this decision. The 
system asks the user if the change is local to an activity or if it should be 
propagated to all the activities which use the same crew (i.e., linked to the 
technology group object), and makes either the corresponding local change or 
propagates the effect. 

Dividing the technology selection process into two steps assumes that the 
selection of the crew type can be made without considering the number of crews 
allocated to the activity. CONSTRUCTION PLANEX does not combine technology 
selection with activity scheduling. This simplified model is appropriate for 
obtaining an initial project plan and reflects contractors' common practice of 
separating the decisions of crew type and number of crews [4, p. 4]. If the 
system were to combine these two steps, a model similar to the Decision C P M 
(see p. 44) would be needed. In this case, the two-step strategy would be used to 
generate a Decision C P M network incorporating appropriate combinations of 
crew types and number of crews. 

6.1.3 Estimation of Activity Durations and Costs 
CONSTRUCTION PLANEX estimates durations and costs of project activities using 
simple models based on average productivities and unit costs [50]. The process 
for computing activity durations is shown in Figure 6-3 . First, the system 
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Adjusted 
Duration 
(days) 

Overtime Hours 

Normal Hours 

Figure 6-3. Process for Activity Duration Estimation 

computes the expected activity duration (in hours) by dividing the total quantity 
of work by the number of crews allocated to the activity and the standard 
productivity of each crew. Then the system divides the expected duration by the 
number of normal working hours per day to obtain the estimated activity dura­
tion in days. Following this computation, CONSTRUCTION PLANEX eliminates 
fractional days if overtime is permitted. (If overtime is not used, the duration is 
increased one full day.) Finally, the system subtracts the number of overtime 
hours from the estimated activity duration in hours to obtain the number of 
normal working hours. 

The activity labor cost is computed by adding its normal and overtime costs. 
The normal working cost is calculated by multiplying the unit crew cost per 
normal working hour by the number of normal working hours and the number of 
crews. Similarly, the overtime cost is computed as the product of the unit crew 
cost per overtime hour and the number of overtime hours and the number of 
crews. 

A desirable extension of the CONSTRUCTION PLANEX system would be to 
replace the simple estimating procedure described above with a more elaborate 
hierarchical estimator that uses the concepts from MASON (see p. 59). Also, it 
may be desirable to compute not only the expected values of the activity dura­
tion and costs, but also some measure of their variability. This would allow the 
system to use probabilistic scheduling models such as the PERT for estimating 
expected project durations. 
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FS: 

Activity I 

Activi ty J 

Activi ty 1 

— • Activity J 

b 

« 4 - · Act ivi ty 1 

—• Activity J 

c 

Figure 6 - 4 . Example Precedences Between Consecutive Project Activities 

6.1.4 Preparation and Maintenance of Project Schedules 
In generating project schedules, CONSTRUCTION PLANEX uses the unified ac­
tivity network model described in Section 3.2.2. This model can be used to 
compute the earliest and latest event times in networks with multiple types of 
precedences and windows constraints. 

Figure 6-4 shows three common types of precedence relationships between 
consecutive project activities. In case a, the succeeding activity J cannot start 
until the preceding activity / has finished completely, a Finish-to-Start or FS 
relationship. Such a link can be used to represent that pouring concrete in a 
particular floor will start after all the reinforcement for that floor has been 
placed. In cases b and c, the following activity can start after a portion of the 
preceding activity has been completed. Case b, called Start-to-Start or SS, is 
common in fast-track schedules where succeeding activities overlap. For ex­
ample, placing wallboard can start after only some of the wall studs are in place. 
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Figure 6-5. Representation of Precedences in the Unified Activity Network Model 

When activities overlap, additional Finish-to-Finish or FF links may be used to 
ensure that following activities are performed continuously. For example, in 
case c, the FF link delays the start of activity / more than the SS value in order 
to finish this activity after activity / has been completed. 

Figure 6-5 shows the unified activity network model representation of the 
three precedence cases of Figure 6-4. One node is used to represent the start 
event of the activity and another node is used to represent the finish event. 
Links represent activity durations, precedence relationships and window con­
straints. For case a, the links representing the duration of activity / and the FS 
precedence are critical (marked with an asterisk [*]) because increasing either 
duration will increase the earliest completion time of the project. In case b, the 
SS link and the duration of activity J are critical (e.g., increasing the duration of 
activity J will increase the duration of the project). In case c, the duration of 
activity / and the FF link are critical, which means that increasing the duration 
of activity / will not affect the completion time of the project, but will require 
the activity to start sooner (as long as it is not in conflict with the SS 
precedence). 
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6.2 System Architecture 
As described in Chapter 5, the CONSTRUCTION PLANEX system is implemented 
using the four components of the PLANEX architecture: 

1. representational structures store information about the site, the building to 
be constructed, the activities involved in the project and the resources avail­
able to perform these activities; 

2. problem-solving operators perform construction planning tasks such as tech­
nology choice, activity synthesis, duration estimation, etc.; 

3. knowledge sources provide construction knowledge for the operators; and 
4. user interface mechanisms provide the means to control the execution of the 

construction planning process and allow the user to modify or obtain infor­
mation about planning decisions. 

Each of these components of the system is described below. 

6.2.1 Representational Structures 
CONSTRUCTION PLANEX uses the three basic representational structures shown 
in Figure 6-6. The figure is only illustrative since additional levels or aggrega­
tions are used as needed. The basic structures are: 
• Tree of Design Elements. The building is described in terms of individual 

design element schémas that represent building components such as beams or 
columns. These schémas are aggregated by material (concrete or steel), ele­
ment type (e.g., columns) and location (e.g., first floor). 

• Tree of Element Activities. The activities used to construct each of the design 
elements are aggregated using an extension of the MASTERFORMAT [18] 
coding system9 into a tree of element activities. The different levels of the 
MASTERFORMAT (Division, Broadscope and Narrowscope) plus the exten­
sions are described below. 

• Tree of Project Activities. Construction activities are aggregated by the type 
of activity represented (e.g., formwork) and the type of design element as­
sociated with the activity (e.g., formwork for columns versus formwork for 
beams). 

Building components and construction activities are also aggregated with 
respect to their location in the site. There are four levels of spatial aggregation: 

9 The MASTERFORMAT coding system was developed by the Construction Specifications 
Institute and is widely used by architects, engineers, contractors and suppliers for categorizing 
information related to the construction process. 
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Design Element 
Type Group 

p a r e n t - d e 

Element Activity 
Division Group 

Design Element 
Material Group 

-*Ί> 
p a r e n t - d e 

p a r e n t - e a 

Element Activity 
Broadscope Group 

p a r e n t - e a 

Element Activity 
Narrowscope Group 

Project Activity 
ΡΑ-Type Group 

à 

p a r e n t - p a 

Project Activity 
DE-type Group 

p a r e n t - p a 

Projecl Activity 

p a r e n t - e a 

Element Activity 

Figure 6-6. Representational Structures of CONSTRUCTION PLANEX 

• floor groups all objects of a particular story of a building; 
• block groups all objects of a single building; 
• sector groups all objects of a site sector; and 
• project groups all objects of a particular project. 

Representational structures are identified by hierarchical coding systems con­
sistent with the levels shown in Figure 6-6. Separate hierarchical codes exist for 
design elements and activities. For example, an element activity might be 
named F00-EA-2-220-10-1 which has the following interpretation: 

• "F00" is the root node of element activities on a particular floor (in this case, 
the foundation is denoted as floor 00); 

• "EA" indicates that the schema is an element activity; 
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• " 2 " indicates that the activity is site work; 
• "220" identifies the activity is excavation; 
• 4 4 10" indicates that the activity is for column footings; and 
• " 1 " identifies the group of column footings (in this case group " 1 " ) . 

The codes "2-220-10" correspond to the division group, broadscope group and 
narrowscope group of the MASTERFORMAT coding system. 

Design elements are identified by floor, element type, material type and 
group number. For example, the design element F00-DE-60-1-1 is interpreted 
as: 

• "F00" is the root node of the hierarchy specifying the foundation level of the 
structure; 

• 4 4 DE" indicates the schema is a design element; 
• 4 4 60" indicates the element type is column footings; 
• 4 41 " indicates the material type is concrete; and 
• 4 41 " indicates element is the first of the group. 

Project activities are coded similarly to design elements except they are iden­
tified as PA schémas rather than element activities (EA) or design elements 
(DE). The code consists of the location, activity type, design element type and 
group number. The codes for the element type, activity type and material type 
are arbitrary, but based on similar codes used by a contractor [4]. In general, the 
activity code corresponds to the MASTERFORMAT narrowscope group code. 
Example project activity codes (activity and design element type) are shown in 
Figure 6-7. 

Codes may be more or less detailed than the examples described. For ex­
ample, if a set of related design elements are independent of material (e.g., 
earthwork), the material level may be omitted from the code. Similarly, in some 
instances the lowest level group code is omitted if the item refers to all groups. 
Alternatively, in many instances the element activity code includes the design 
element type and material type after the MASTERFORMAT group codes and 
before the group number. The structure of the various operators and knowledge 
sources are such that CONSTRUCTION PLANEX can readily identify and deal with 
all such cases. The remainder of this section describes a simplified set of codes 
consistent with Figure 6-6. 

All codes begin with the same set of one or more spatial aggregation codes. 
In these examples, the code begins with a location (i.e., floor) designator (e.g., 
4 4 F00") which acts as a root node for the hierarchies of design elements and 
activities. Each floor has a different root node identifier ( 4 4 F01" , 4 4 F02", etc.). 
These floor designators are also associated with particular blocks, sectors and 
projects (e.g., P01-B00-S00-F00-...). Thus, even though the example codes 
themselves do not reflect these links, aggregation to larger entities is possible. 
In some instances, CONSTRUCTION PLANEX will generate codes with the full 
spatial location prefix. 
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CODE ACTIVITY NAME 

10-60 EXCAVATION-FOUNDATION 
15-60 HAUL-EXCAVATION-FOUNDATION 
17-60 BACKFILL-FOUNDATION 
20-60 FORMWORK-FOUNDATION 
30-60 REMOVE-FORMS-FOUNDATION 
40-60 REINFORCING-STEEL-FOUNDATION 
50-60 POUR-CONCRETE-FOUNDATION 
20-65 FORMWORK-COLUMNS 
30-65 REMOVE-FORMS-COLUMNS 
40-65 REINFORCING-STEEL-COLUMNS 
50-65 POUR-CONCRETE-COLUMNS 
55-65 ERECTION-STEEL-COLUMNS-DIAGONALS 
20-80 FORMWORK-SLABS 
30-80 REMOVE-FORMS-SLABS 
40-80 REINFORCING-STEEL-SLABS 
50-80 POUR-CONCRETE-SLABS 
55-81 ERECTION-STEEL-BEAMS 
58-81 JOIN-STEEL 

Figure 6-7. Sample Project Activities and Codes 

Similar codes are used to identify knowledge sources and operators which 
correspond to particular design elements or activities. For example, the 
knowledge source used to generate element activities required to construct con­
crete column footings (such as F00-DE-60-1-1) is KS-Create-EA-60-1, which is 
interpreted as: 

• " K S " identifies the schema as a knowledge source; 
• "Create-EA" identifies the knowledge source as a schema containing rules to 

create element activities used by the Create-EAS operator; and 
• " 6 0 - 1 " identifies the design element type and material (concrete column 

footings) to which this knowledge source is applied. 

6.2.1.1 Tree of Design Elements Design element schémas are used to describe 
structural building components. CONSTRUCTION PLANEX can plan the excava­
tion and erection of the following types of design elements: 

• concrete column footings; 
• concrete or steel beams; 
• concrete or steel columns; 
• concrete or steel diagonals (bracing); and 
• concrete floor slabs. 

At the start of the planning process, CONSTRUCTION PLANEX is given a file 
containing design element schémas describing the building (with some slots 
empty). The system organizes these schémas into a tree structure using the 
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(defschema F00-DE-60-1-1 
; Relationship slots 

(is-a de) 
(parent-de FOO-DE-•60 -i) 
(de-has-eas FOO-EA-•2-220-40-60-1 -1 

F00-EA-•3-110-20-60-1 -1 
F00-EA--3-310-10-60-1 -1 
FOO-EA-•3-210-00-60-1 -1 
F00-EA-•3-110-10-60-1 -1 
FOO-EA-2-225-10-60-1 -1 
F00-EA-•2-220-10-60-1 -i) 

-Classification slots 
(type-de 60) 
(type-material 1) 
(de-code 60-1) 
(name-de column-•footings-1) 
(number-de 1) 

-Multiplier slot 
(multiplier 4) 

-Location slots 
(project pOl) 
(sector sOO) 
(block bOO) 
(floor fOO) 
(root-code F00) 
(xg-coordinate (10 15 20 25)) 
(yg-coordinate (10 10 10 10)) 
(zg-coordinate (-4 -4 -4 -4)) 

-Geometry slots 
(xl-dimension 10) 
(yl-dimension 8) 
(zl-dimension -1.50) 

-Specifications slots 
(const-type cast-in-place) 
(concrete-type normal-•weight-3000) 
(psteel 4.0) 

-Explanation slot 
(why-eas KS-Create -EAS-60 -i) ) 

Figure 6-8. Example of a Design Element Schema 

Create-DE-Tree operator described in Section 6.2.2.1. Elements are grouped in 
a bottom-up manner. For example, the F00-DE-60-1-1 schema of Figure 6-8 is 
linked below the schema F00-DE-60-1 which groups all concrete column foot­
ings of various dimensions (i.e., aggregated by material type). This schema is 
linked to a parent schema F00-DE-60 which groups all column footings of the 
building (i.e., aggregated by design element type). Thus, the design elements 
are grouped into four levels as shown in Figure 6-6: level 1 is all design ele­
ments at a given location; level 2 is all design elements of a given type at that 
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location; level 3 is all design elements of a specific material type for the design 
element type; and level 4 groups individual elements of a specific material, type 
and location. 

An example of a design element schema is shown in Figure 6-8. This 
schema is titled F00-DE-60-1-1 and stores information detailing a group of four 
column footings of identical dimensions and materials. The schema contains the 
following types of slots: 

• Relationship slots represent links among the design element schema and other 
schémas of the context. The figure shows three relationship slots: (1) the is-a 
slot identifies the schema as a design element schema; (2) the parent-de slot 
indicates the parent schema in the tree of design elements; and (3) the 
de-has-eas slot stores the names of the element activities required to construct 
the column footings. 

• Classification slots identify the type of design element. Four slots are used 
for this purpose: (1) the type-de slot defines the type of design element ("60" 
indicates column footings); (2) the type-material slot defines the type of 
material used to construct the design element (" 1 " indicates concrete); (3) the 
name-de slot provides a name for the design element ("column-footings-1"); 
and (4) the number-de slot indicates the group number (" 1 " indicates that this 
is the first group of column footings). In addition, the de-code slot is the code 
of the design element and contains the concatenation of the values of the 
type-de and type-material slots. 

• Multiplier slot stores the number of identical column footings represented in 
the schema. The example schema represents a group of four identical column 
footings. 

• Location slots specify the project, sector, block and floor location of the 
design elements. The xg-coordinate, yg-coordinate and zg-coordinate slots 
specify the global x, y and ζ coordinates of a datum point on each column 
footing. The root-code slot stores the spatial aggregation code used to iden­
tify schémas. 

• Geometry slots describe the geometric characteristics of the design element. 
For example, the xl-dimension, yl-dimension and zl-dimension slots store the 
x, y and ζ dimensions of the footing. 

• Specifications slots contain descriptive information about the design element 
that is relevant to the planning process. For example, the const-type and the 
concrete-type slots specify construction technologies. The psteel slot 
specifies the percentage of reinforcing steel for the design element. 

• Explanation slot stores the names of the knowledge sources used to compute 
values in the schema. In the example, the why-eas slot indicates that the KS 
titled KS-Create-EAS-60-1 was used to determine the names of the element 
activities required to build a column footing. 
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6.2.1.2 Tree of Element Activities Element activity schémas are used to 
describe activities performed in the construction of the design elements of the 
building. These schémas are organized using a coding system that is an exten­
sion of the standard MASTERFORMAT coding system. As noted above, the 
standard MASTERFORMAT codes have been extended to incorporate infor­
mation specifying the type of design element for the activities. Element activity 
codes of CONSTRUCTION PLANEX have four basic parts: 

1. division number identifies the general type of activity and corresponds to the 
division level of the MASTERFORMAT; 

2. broadscope number identifies the subtype of activity under each division; 
3. narr ovoscope number provides a third level of classification with respect to 

the materials or building elements associated with the activity; and 
4. design element number identifies a specific design element or group of 

design elements to which the element activity is applied. This value consists 
of up to three parts: (1) the design element type; (2) the material type; and 
(3) the element group number. As described above, the group number is 
dropped if the code pertains to all elements, or the design element type and 
material type codes may be dropped if the activity is independent of the 
design element. 

These element activity codes are used to group element activities into a tree 
with the same levels of hierarchy as those shown in Figure 6-6. For example, 
groups of element activities representing the excavation of column footings are 
aggregated below a narrowscope group "2-220-10" ("Excavation, Backfilling 
and Compacting of Structures"), which is linked to a broadscope group "2-220" 
("Excavation, Backfilling and Compacting"), which is grouped below a division 
group " 2 " ("Sitework"). Together these elements form the five levels shown in 
Figure 6-6: level 1 is all element activities at a given location; level 2 is all 
element activities of a given division at that location; level 3 is the set of all 
element activities with a specific broadscope group number within the division; 
level 4 is all activities of a narrowscope code within the broadscope; and level 5 
is the individual element activities of a specific narrowscope, broadscope, divi­
sion and location. The aggregation information is stored in the parent-ea slot of 
the element activity schémas. The tree is built by the Create-EA-Tree operator 
described in Section 6.2.2.2. 

Figure 6-9 shows an example of an element activity schema. This schema is 
titled F00-EA-2-220-10-1 and stores the description of the excavation activity 
required for one of the column footings of group "column-footings-1 " (i.e., 
design element F00-DE-60-1-1). The schema contains the following types of 
slots: 

• Relationship slots represent links between the element activity schema and 
other objects of the context. Four relationship slots are used: (1) the is-a slot 
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(defschema F00-EA-2-220-10-1 
; Relationship slots 

(is-a ea) 
(parent-EA F00-EA-2-220-10) 
(ea-of-DE F00-DE-60-1-1) 
(ea-of-PA F00-PA-10-60) 

; Classification slots 
(ea-code 2-220-10-1) 
(ea-name excavate-column-footings-1) 

; Quantity Take-Offs slots 
(amount-of-work-ea 24.0) 
(unit-of-measure cu-yd) 

; Material slot 
(material-package none) 

; Duration slot 
(duration-ea 0.1) 

; Explanation slots 
(why-amount-formula formula-02) 
(why-amount-ks KS-Amount-2-220-10) 
(why-project KS-PA-2-220-10)) 

Figure 6-9. Example of an Element Activity Schema 

identifies the schema as an element activity schema; (2) the parent-ea slot 
stores the name a parent schema in the tree of element activities; (3) the 
ea-of-de slot stores the name of the design element schema associated with 
the activity; and (4) the ea-of-pa slot stores the name of the aggregated project 
activity which includes this element activity. 

• Classification slots identify the type of element activity. Two slots are used 
for this purpose: (1) the ea-code slot stores the activity code of the element 
activity; and (2) the ea-name slot stores the name of the element activity. 

• Quantity Take-Offs slots store the amount of work needed to construct the 
element activity and the unit in which this amount is measured. 

• Material slot indicates the name of material package used to perform this 
activity. The material package is the set of all temporary and permanent 
construction materials used in building the associated design element. In the 
example, no materials are required to perform the activity because it is an 
excavation activity. 

• Duration slot stores the estimated duration of the element activity. 
• Explanation slots store the names of the knowledge sources or formulas used 

to fill the slots of the schema. The example shows three explanation slots: 
(1) the why-amount-KS slot indicates that the KS named KS-Amount-2-220-10 
was used to select the formula which computed the amount of the activity; 
(2) the why-amount-formula stores the name of this formula; and (3) the 
why-project slot stores the name of the KS used to create the project activities. 
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6.2.1.3 Tree of Project Activities Project activity schémas represent aggrega­
tions of element activities. CONSTRUCTION PLANEX creates project activity 
schémas to obtain a reasonable level of granularity in the activity network. 
These schémas are grouped with respect to their project element type, design 
element type and location into a tree of project activities similar to the trees of 
design elements and element activities described above. 

The tree structure is generated by the Create-PA-Tree operator described in 
Section 6.2.2.3. Project elements are grouped into four levels (shown in 
Figure 6-6): level 1 is all project activities at a given location; level 2 is all 
project activities of a given project activity type at that location; level 3 is all 
project elements of a specific design element type for the specific project ac­
tivity type; and level 4 is an individual project activity of a specific design 
element type, project activity type and location. 

An example of a project activity schema is shown in Figure 6-10. The 
schema represents the activity to remove forms from the first floor of a building. 
It has the following types of slots: 

• Relationship slots are used to link the project activity schema to other objects 
of the context. Four relationship slots are used: (1) the is-a slot identifies the 
schema as a project activity schema; (2) the parent-pa slot stores the name of 
a parent schema in the tree of project activities; (3) the pa-has-eas slot stores 
the names of the element activity schémas which comprise this project ac­
tivity; and (4) the parent-technology slot identifies the name of the technology 
group object which stores the crew type for this project activity. 

• Classification slots identify the type of project activity. Two classification 
slots are used: (1) the pa-code slot stores the activity code of the project 
activity; and (2) the pa-name slot stores the name of the project activity. 

• Quantity Take-Offs slot stores the work quantity used to perform the project 
activity. This value is the sum of the amounts of work (i.e., 
amount-of-work-ea slot) of the element activities aggregated in this project 
activity. 

• Duration slots store information describing the duration of the project ac­
tivity. Data stored includes the recommended and computed durations, upper 
and lower duration bounds, and the distribution of normal and overtime hours. 

• Technology slots store the number of crews used to perform the activity and 
the adjusted productivity of these crews. 

• Precedence slots store the names of the successors of an activity, the types of 
links to each successor and the leads or lags for each of these links. The 
successors slot contains all unique activity successors while the succs slot 
contains one successor for each type of precedence link. The project activity 
shown in the figure has no successors. 

• Cost slots store the crew and material costs associated with the project ac­
tivity. These costs are in current dollars and do not include overhead or 
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(defschema F01-PA-30-65 
; Relationship slots 

(is-a 
(parent-pa 
(pa-has-eas 

(parent-technology 
Classification slots 
(pa-code 
(pa-name 
•Quantity Take-Offs slot 
(amount-of-work-pa 
•Duration slots 
(recommended-durât ion 
(duration 
(low-dur 
(high-dur 
(normal-hours 
(overtime-hours 
•Technology slots 
(number-crews 
(adj-productivity 
•Precedence slots 
(successors 
(succs 
(link 
(low-lags 
(high-lags 
•Cost slots 
(total-cost-crew 
(cost-crew-per-day 
(total-cost-materials 
(cost-materials-per-day 
(overall-total-cost 
(overall-cost-per-day 
Scheduling slots 
(est 
(eft 
(1st 
(1ft 
Explanation slots 
(why-durâtion 
(why-successors 

pa) 
F01-PA-30) 
F01-EA-3-110-20-65-1-1 
F01-EA-3-110-20-65-1-2 
F01-EA-3-110-20-65-1-3 
F01-EA-3-110-20-65-1-4) 
group-technology-4) 

30-65) 

remove-forms-columns-F01) 

5040.0) 

4) 
3.0) 
3.0) 
3.15) 
24.0) 
1.2) 
4.0) 
400.0) 

none) 
none) 
fs) 
0) 
*p-inf*) 

619.2) 
206.4) 
0.0) 
0.0) 
619.2) 
206.4) 

115.22) 
118.22) 
210.27) 
213.27) 

KS-Dura-30-65) 
KS-Succ-30-65)) 

Figure 6-10. Example of a Project Activity Schema 
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profit. This category has six slots: (1) the total-crew-cost slot stores the total 
labor and equipment cost for the activity; (2) the cost-crew-per-day slot stores 
the daily crew cost; (3) the total-cost-material slot stores the total material 
cost; (4) the cost-materials-per-day slot stores the daily material cost; (5) the 
overall-total-cost slot is the sum of the total material and crew costs; and 
(6) the overall-cost-per-day is the sum of the daily material and crew costs. 

• Scheduling slots describe the schedule for the project activity. There are four 
schedule slots: (1) the est slot is the earliest-start-time of the activity; (2) the 
eft slot is the earliest-finish-time of the activity; (3) the 1st slot is the latest-
start-time of the activity; and (4) the Ift slot is the latest-finish-time of the 
activity. 

• Explanation slots store the names of the knowledge sources used in comput­
ing values in the schema. The example shows two explanation slots: (1) the 
why-duration slot indicates that the KS called KS-Dura-30-65 was used to 
determine the recommended duration; and (2) the why-successor slot stores 
the name of the KS used to determine the successors. 

6.2.2 Problem-Solving Operators 

CONSTRUCTION PLANEX includes three basic types of problem-solving 
operators: 

• design element operators; 
• element activity operators; and 
• project activity operators. 

This classification is based on the type of context objects that the operators take 
as arguments. For example, the Get-Duration-PAS operator is applied to project 
activity schémas. Therefore, it is a project activity operator. 

The following presentation describes each class of operators in detail, includ­
ing a discussion of the procedures used by the operators, the Domain Operator 
Schemas (DOSs) which describe the preconditions and effects of the operators 
and the designation of which types of Knowledge Sources (KSs) are evaluated 
when the operator is executed. 

6.2.2.1 Design Element Operators CONSTRUCTION PLANEX has two operators 
that are applied to design elements: 

• Create-DE-Tree aggregates design element schémas in the bottom-up manner 
described in Section 6.2.1 and produces the tree of design element schémas; 
and 

• Create-EAS creates element activity schémas describing the tasks used to 
construct a design element. 
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(defschema Create-DE-Tree 
(is-a 
(domain-type 
(application-object 
(input-objects 

operator) 
de) 
current-object) 
current-object current-object 
current-object) 
is-a type-de type-material) 
nil nil nil) 
filled filled filled) 
current-object current-object) 
parent-de de-code) 
nil nil) 

(input-slots 
( input-bindings 
(input-cond-types 
( output-ob jeets 
(output-slots 
( output-bindings 
(output-predictable yes yes) 
(output-effect-type fill fill)) 

Figure 6-11. Domain Operator Schema for the Create-DE-Tree Operator 

Create-DE-Tree. The Create-DE-Tree operator creates the tree of design ele­
ments described in Section 6.2.1.1. When applied to a design element schema, 
this operator performs the following steps: 

Step 1. Create the name of the immediate parent schema in the design element 
tree by trimming the last identifier from the name of the daughter 
schema. For example, design element F00-DE-80 is the parent of 
schema F00-DE-80-1. 

Step 2. If the parent schema does not exist: create it. 
Step 3. Link the daughter design element schema to the parent schema. 

The operator repeats these three steps until the root of the tree is reached. This 
root corresponds to the project schema (e.g., F00). 

Figure 6-11 shows the Domain Operator Schema (DOS) of the operator. 
When linking a new design element into the tree of design elements, this 
operator requires that the is-a slot of the new element be filled in order to check 
that the schema is a design element (the value of the is-a slot is "de") . The 
effect of the operator is to fill the parent-de and de-code slots of the design 
element schema being linked into the tree. The de-code is created by con­
catenating the values of the type-de and the type-material slots and is used by 
other domain operators. Thus, the operator requires that the type-de and 
type-material slots are filled. 

Create-EAS. The Create-EAS operator is responsible for synthesizing the ele­
ment activities used to construct a particular design element. Element activities 
associated with a design element are generated by evaluating a KS associated 
with the specific design element. When applied to a particular design element, 
this operator performs the following steps: 
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(defschema Create-EAS 
(is-a 
(domain-type 
(application-object 
(input-objects 
(input-slots 
( input-bindings 
( input-cond-types 
(output-objects 
(output-slots 
( output-bindings 
( output-predictable 
(output-effect-type 

operator) 
de) 
current-object) 
current-object current-object) 
parent-de de-code) 
nil nil) 
filled filled) 
current-object <eas> <eas>) 
de-has-eas is-a ea-of-de) 
<eas> nil nil) 
yes no no) 
fill fill fill)) 

Figure 6-12. Domain Operator Schema for the Create-EAS Operator 

Step 1. Build the name of the Element Activity KS (see p. 211) to be evaluated 
by concatenating the prefix KS-Create-EA- with the design element 
code of the element activity (type and material, e.g., the value of the 
de-code slot). 

Step 2. Evaluate this KS and store the results in a temporary list. Each member 
of this list is a pair (ea-schema-name ea-name) which represents one 
activity used to build the design element. The pair consists of the name 
of the schema describing the element activity and the name of the 
activity itself. 

Step 3. For each element in the list of results, create the corresponding element 
activity schema, store the name of the activity in this schema and link 
the activity schema to the design element object using the ea-of-de 
relationship. 

The DOS that describes the Create-EAS operator is shown in Figure 6-12. 
The operator requires that the design element be linked in the tree of design 
element schémas (the parent-de slot must be filled) and have a value in its 
de-code slot. This de-code value is used by the operator to identify the name of 
the element activity KS to be evaluated. Some of the effects of this operator are 
unpredictable because the names of the element activity schémas are not known 
until the particular KS is evaluated and generates the list of activities and ele­
ment activity schema names. Thus, the control operators cannot determine all of 
the context changes that result from executing the operator. 

The DOS schema of Figure 6-12 includes only those effects and precon­
ditions that are relevant for control purposes (i.e., the values in the correspond­
ing slots are used by other domain operators). Other effects, such as filling the 
name of the element activity, are not represented. 
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(defschema Create-EA-Tree 
(is-a 
(domain-type 
(application-object 
( input-objects 
(input-slots 
( input-bindings 
( input-cond-types 
( output-ob j ect s 
( output-s1ot s 
( output-bindings 

operator) 
ea) 
current-object) 
current-object) 
is-a) 
nil) 
filled) 
current-object current-object) 
parent-ea ea-code) 
nil nil) 

(output-predictable yes yes) 
(output-effect-type fill fill)) 

Figure 6-13. Domain Operator Schema for the Create-EA-Tree Operator 

6.2.2.2 Element Activity Operators CONSTRUCTION PLANEX includes six 
operators applied to element activity schémas: 

• Create-EA-Tree creates the tree of element activities; 
• Compute-Amount-EAS computes the quantity take-offs; 
• Determine-Unit-EAS identifies the units of measure for quantity take-offs; 
• Deter mine-Mater ial-EAS selects material packages for element activities; 
• Create-PAS-for-EAS groups element activities into project activities; and 
• Get-Duration-EAS estimates the duration of element activities. 

Create-EA-Tree. The Create-EA-Tree operator links an element activity into 
the tree of element activities described in Section 6.2.1.2. It is similar to the 
Create-DE-Tree operator. Starting with an element activity at the bottom of the 
tree, it creates parent schémas successively until the root of the tree is reached. 
Thus, an element activity schema titled FOO-EA-3-l 10-10-60-1 is linked to its 
immediate parent, F00-EA-3-110-10-60; this schema is then linked to schema 
F00-EA-3-110-10, which is linked to F00-EA-3-110, which is linked to 
F00-EA-3, which is linked to the root of all element activity schémas FOO-EA 
(for a particular floor location, e.g., F00). Three steps are performed repeatedly 
until the root of the tree is reached: 

Step 1. Create the name of the immediate parent schema in the element activity 
tree by trimming the last identifier from the name of the daughter 
schema. 

Step 2. If the parent schema does not exist: create it. 
Step 3. Link the daughter element activity schema to the parent schema. 

Figure 6-13 shows the DOS for the Create-EA-Tree operator. This schema 
resembles the DOS of the Create-DE-Tree operator. However, the only precon­
dition is that the is-a slot of the element activity is filled to verify that the 
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(defschema Compute-Amount-EAS 

( output-bindings 

(is-a 
(domain-type 
( application-object 
(input-objects 

(input-slots 

(output-objects 
(output-slots 

( input-bindings 
(input-cond-types 

operator) 
ea) 
current-object) 
current-object current-object <de> 
<de> <de>) 
ea-code ea-of-de xl-dimension 
y1-dimension zl-dimension) 
nil <de> nil nil nil) 
filled filled filled filled filled) 
current-object) 
amount-of-work-ea) 
nil) 

(output-predictable yes) 
(output-effect-type fill)) 

Figure 6-14. Domain Operator Schema for the Compute-Amount-EAS Operator 

schema is an element activity (the is-a slot has a value equal to "ea") . The 
operator fills the slots parent-ea and ea-code of the element activity. The 
ea-code slot value is taken from the element activity schema name. 

Compute-Amount-EAS. The Compute-Amount-EAS operator computes the 
quantity take-off for an element activity in four steps: 

Step 1. Build the name of the Amount KS (see p. 213) to be evaluated by 
concatenating the prefix KS-Amount- with the element activity code 
(division, broadscope and narrowscope codes, i.e., the ea-code slot 
value). 

Step 2. Evaluate this KS and return the name of the formula to be used in the 
computation. 

Step 3. Evaluate the quantity take-off formula, inheriting the dimensions of the 
design element from the design element schema which corresponds to 
the element activity. 

Step 4. Store the amount of work in the amount-of-work-ea slot of the element 
activity schema and the name of the formula and KS used in the 
why-formula and why-amount slots. 

The DOS of the Compute-Amount-EAS operator is shown in Figure 6-14. 
This operator uses information from: (1) the ea-code and ea-of-de slots of the 
element activity schema; and (2) the geometry slots of the design element 
schema associated with the element activity. In the DOS, only the xl-dimension, 
yl-dimension and zl-dimension slots are included. However, some quantity take­
off formulas require other data such as the percentage of reinforcing steel or the 
type of concrete. For other activities, only some of the geometry slots are 
needed (e.g., for steel beams, only the length and the section designation are 
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relevant). A solution to this problem is multiple DOSs, one for each case (e.g., 
Compute-Amount-EAS-Steel and Compute-Amount-EAS-Concrete). 

Determine-Unit-EAS. The Determine-Unit-EAS operator determines the unit of 
measure for the quantity of work associated with an element activity. The 
operator performs four steps: 

Step 1. If the unit of measure can be inherited from a parent schema in the 
element activity tree: exit. 

Step 2. Build the name of the Unit KS (see p. 214) to be evaluated by con­
catenating the prefix KS-Unit-of-Measure- with the first two parts of the 
element activity code (division and broadscope codes, i.e., the ea-code 
slot value). 

Step 3. Evaluate this KS and return the unit of measure for the activity. 
Step 4. Store the unit of measure in the broadscope parent schema correspond­

ing to the element activity (e.g., the broadscope parent of the schema 
F00-EA-3-310-10-60-1 is F00-EA-3-310). Store the name of the Unit 
KS in the why-unit slot of the element activity. 

Figure 6-15 shows the DOS that describes the Determine-Unit-EAS operator 
of CONSTRUCTION PLANEX. The operator uses the element activity code 
(ea-code) to identify the Unit KS to be evaluated and fills the slot amount-unit. 
The DOS indicates that the result is stored in the element activity schema, but 
the operator stores the result in the parent schema. For control purposes, this 
distinction is immaterial. Thus, the DOS does not differentiate between storing 
the unit of measure locally or in a parent schema of the element activity tree. 

(defschema Determine-Unit-EAS 
(is-a 
(domain-type 
(application-object 
( input-ob j ect s 
(input-slots 
( input-bindings 
( i nput-cond-types 
( output-ob jeet s 
(output-slots 
( output-bindings 
( output-predictable 
( output-effect-type 

operator) 
ea) 
current-object) 
current-object) 
ea-code) 
nil) 
filled) 
current-object) 
amount-unit) 
nil) 
yes) 
fill)) 

Figure 6-15. Domain Operator Schema for the Determine-Unit-EAS Operator 
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(defschema Determine-Material-EAS 
(is-a operator) 
(domain-type ea) 
(application-object current-object) 
(input-objects current-object) 
(input-slots ea-code) 
(input-bindings nil) 
(input-cond-types filled) 
(output-objects current-object) 
(output-slots material-package) 
(output-bindings nil) 
(output-predictable yes) 
(output-effeet-type fill)) 

Figure 6-16. Domain Operator Schema for the Determine-Material-EAS Operator 

Determine-Material-EAS. Figure 6-16 presents the DOS that describes the 
Determine-Material-EAS operator used to select the materials needed to perform 
an element activity. In a manner similar to the other element activity operators, 
the element activity code designation in the ea-code slot is used to identify the 
name of the KS to be evaluated. The operator fills the material-package slot of 
the element activity with the name of the materials needed for the activity. 

The operator selects the material package in three steps: 

Stepl. Build the name of the Material KS (see p. 214) to be evaluated by 
concatenating the prefix KS-Material- with the element activity code 
(division, broadscope and narrowscope codes, i.e., the ea-code slot 
value). 

Step 2. Evaluate this KS to obtain the name of the selected material package. 
Step 3. Store the name of the material package in the material-package slot of 

the element activity schema. Store the name of the Material KS in the 
why-material slot. 

Create-PAS-for-EAS. Figure 6-17 shows the schema that describes the 
Create-PAS-for-EAS operator which is responsible for aggregating element ac­
tivities into project activities. This DOS is very similar the DOS of the 
Create-EAS operator (see Figure 6-12). The operator uses the activity code 
(ea-code) to identify the Project Activity KS to be evaluated and links the ele­
ment activity object to a project activity schema using the ea-of-pa slot. The 
other effects of the operator are unpredictable because the name of the project 
activity schema where results are stored is not known until the KS has been 
evaluated. 

When the operator is applied to an element activity, five steps are performed: 

Step 1. Build the name of the Project Activity KS (see p. 216) to be evaluated 
by concatenating the prefix KS-Create-PA- with the element activity 
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(defschema Create-PAS-for-EAS 
(is-a 
(domain-type 
(application-object 
( input-ob jects 
(input-slots 
( input-bindings 
( input-cond-types 
(output-objects 
(output-slots 
( output-bindings 

operator) 
ea) 
current-object) 
current-object) 
ea-code) 
nil) 
filled) 
current-object <pa> <pa>) 
ea-of-pa is-a pa-has-eas) 
<pa> nil nil) 

(output-predictable yes no no) 
(output-effect-type fill fill fill)) 

Figure 6-17. Domain Operator Schema for the Create-PAS-for-EAS Operator 

code (i.e., the ea-code slot which contains the division, broadscope 
group and narrowscope group codes). 

Step 2. Evaluate this KS to obtain a pair (pa-schema-name pa-name) which 
specifies the project activity name and the project activity schema name 
to which the element activity is linked. 

Step 3. If the project activity schema does not exist: create a new project ac­
tivity schema and store the name of the project activity in this schema. 

Step 4. Link the element activity to the project activity using the ea-of-pa 
relationship. 

Step 5. Store the name of the Project Activity KS used in the why-eas slot of 
the element activity. 

Get-Duration-EAS. The DOS that describes the preconditions and effects of 
the Get-Duration-EAS operator is shown in Figure 6-18. This operator es­
timates the duration of element activities using inherited information from the 
project activity schema to which the element activity is linked and stores the 
result in the duration-ea slot. The adjusted productivity of the crew assigned to 
the project activity must have been previously computed and stored in the 
adj-productivity slot of the project activity object. 

The Get-Duration-EAS operator is algorithmic and does not require KS 
evaluation. The duration of the element activity is computed by dividing its 
total amount of work by the adjusted productivity of the crew allocated to the 
element activity. This productivity value is stored in the project activity schema 
to which the element activity is linked. 
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(defschema Get-Duration-EAS 
(is-a 
(domain-type 
(application-object 
( input-ob j ect s 
(input-slots 

operator) 
ea) 
current-object) 
current-object <pa> current-object) 
ea-of-pa adj-productivity 
amount-of-work-ea) 
<pa> nil nil) 
filled filled filled) 
current-object) 
durâtion-ea) 
nil) 

( input-bindings 
(input-cond-types 
( output-ob jeets 
( output-s1ots 
( output-bindings 
(output-predictable yes) 
(output-effect-type fill)) 

Figure 6-18. Domain Operator Schema for the Get-Duration-EAS Operator 

6.2.2.3 Project Activity Operators There are eight operators that manipulate 
individual project activity schémas in CONSTRUCTION PLANEX: 
• Create-PA-Tree builds the tree of project activities; 
• Select-Technology-PAS chooses crew types for project activities; 
• Compute-Amount-PAS computes the quantity take-offs for the project ac­

tivities; 
• Determine-Recommended-Duration-PAS recommends an appropriate duration 

for project activities; 
• Get-Duration-PAS determines how many crews to allocate to the activities 

and computes the normal and overtime hours of activities; 
• Get-Successors-PAS establishes precedences among project activities; 
• Get-Lags-PAS computes the leads and lags between consecutive project ac­

tivities; and 
• Get-Cost-PAS estimates the cost of the project activities. 

In addition, the system includes two operators that are applied to the set of 
project activities as a whole: 

• the Floyd-War shall operator computes the earliest and latest start and finish 
times for the project activities; and 

• the Compute-NPV operator determines the net present value of a project using 
scheduling and financial information. 

These two operators do not have associated DOSs; the user invokes them 
directly. Both operators are complex and are applied to a complete set of project 
activities and thus they are impacted by most changes to the context. Since 
DOSs do not exist, these operators are not added to the agenda each time a new 
assertion is made. Thus, manual control limits when they are applied, which is 
particularly important for the computationally intense Floyd-War shall operator. 
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(defschema Create-PA-Tree 
(is-a 
(domain-type 
(application-object 
(input-objects 
(input-slots 
( input-bindings 
(input-cond-types 
( output-ob jeet s 
( output-s1ot s 
( output-bindings 

operator) 
pa) 
current-object) 
current-ob ject) 
is-a) 
nil) 
filled) 
current-object current-object) 
parent-pa pa-code) 
nil nil) 

(output-predictable yes yes) 
(output-effect-type fill fill)) 

Figure 6-19. Domain Operator Schema for the Create-PA-Tree Operator 

Create-PA-Tree. The tree of project activities (as described in Section 6.2.1.3) 
is built by the Create-PA-Tree operator. The operator builds the tree bottom up, 
like the Create-DE-Tree and Create-EA-Tree operators, repeatedly applying 
three steps until the root of the tree is reached: 

Step 1. Create the name of the immediate parent schema in the project activity 
tree by trimming the last identifier from the name of the daughter 
schema. 

Step 2. If the parent schema does not exist: create it. 
Step 3. Link the daughter project element activity schema to the parent project 

element activity schema. 

Figure 6-19 shows the DOS that describes the Create-PA-Tree operator. The 
operator fills the slots parent-pa and pa-code of the project activities being 
linked into the tree using the name of the project activity schema. 

Select-Technology-PAS. Technologies used to perform project activities are 
chosen by the Select-Technology-PAS operator. The DOS is shown in 
Figure 6-20. The operator uses the project activity code to identify which 
Technology KS to evaluate. It fills the technology slot of the project activity 
schema. This value is not stored locally in the project activity schema, but in a 
group technology object, as described in Section 6.1.2. Crew selection is a 
four-step process: 

Step 1. Build the name of the Technology KS (see p. 218) to be evaluated by 
concatenating the prefix KS-Technology- with the first part of the 
project activity code (i.e., the first identifier from the value of the 
pa-code slot). 

Step 2. Evaluate this KS and return the name of the most appropriate crew for 
performing the activity. 
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(defschema Select-Technology -
(is-a 
(domain-type 
(application-object 
(input-ob jects 
(input-slots 
(input-bindings 
(input-cond-types 
(output-ob jects 
(output-slots 
(output-bindings 
(output-predictable 
(output-effect-type 

PAS 
operator) 
pa) 
current-object) 
current-object) 
pa-code) 
nil) 
filled) 
current-object) 
technology) 
nil) 
yes) 
fill)) 

Figure 6-20. Domain Operator Schema for the Select-Technology-PAS Operator 

Step 3. If this crew type has not been stored in one of the group-technology 
objects of the context (their names are stored in the is-a+inv slot of the 
group-technology schema): create a new group-technology object. 

Step 4. Link the project activity to the group-technology object describing the 
crew using the parent-technology relationship. 

Compute-Amount-PAS. The Compute-Amount-PAS operator determines work 
quantities for project activities. This operator is algorithmic and does not re­
quire K S evaluation. It simply adds the quantity take-offs of the element ac­
tivities which comprise a particular project activity and stores the result in the 
amount-of-work-pa slot of the project activity schema. 

The D O S for the Compute-Amount-PAS operator of CONSTRUCTION PLANEX 
is shown in Figure 6-21 . The operator inputs are the element activity work 
quantities (amount-of-work-ea). The operator has a single output, the result slot 
(amount-of-workpa ) . 

(defschema Compute-Amount-PAS 
(is-a operator) 
(domain-type pa) 
(application-object current-object) 
(input-objects current-object <eas>) 
(input-slots pa-has-eas amount-of-work-ea) 
(input-bindings <eas> nil) 
(input-cond-types filled filled) 
(output-objects current-object) 
(output-slots amount-of-work-pa) 
(output-bindings nil) 
(output-predictable yes) 
(output-effect-type fill)) 

Figure 6-21. Domain Operator Schema for the Compute-Amount-P AS Operator 
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(defschema Determine-Recommended-Duration-PAS 
(is-a operator) 
(domain-type pa) 
(application-object current-object) 
(input-objects current-object current-object) 
(input-slots pa-code amount-of-work-pa) 
(input-bindings nil nil) 
(input-cond-types filled filled) 
(output-objects current-object) 
(output-s1ot s recommended-duration) 
(output-bindings nil) 
(output-predictable yes) 
(output-effect-type fill)) 

Figure 6-22. Domain Operator Schema for the Determine-Recommended-Duration-PAS 
Operator 

Determine-Recommended-Duration-PAS. Computation of all the recom­
mended activity durations for project activities is provided by the operator 
Determine-Recommended-Duration-PAS. The operator uses the following 
procedure: 

Step I. Build the name of the Duration KS (see p. 218) to be evaluated by 
concatenating the prefix KS-Dura- with the project activity code 
(pa-code). 

Step 2. Evaluate this KS and return the recommended project activity duration. 
Step 3. Store the duration in the recommend-duration slot of the project activity 

schema and store the name of the Duration KS in the why-duration slot 
of the project activity. 

The DOS that describes the Determine-Recommended-Duration-PAS 
operator is presented in Figure 6-22. This operator requires the pa-code slot as 
input to identify the KS to be evaluated. The quantity of work used to determine 
the duration comes from the amount-of-work-pa slot of the activity. The result 
is stored in the output slot recommended-duration. 

Get-Duration-PAS. The Get-Duration-PAS operator uses the process outlined 
in Section 6.1.3 to estimate the duration of project activities and compute the 
distribution of normal and overtime hours. The operator is purely algorithmic 
and does not require the evaluation of any KS. 

The DOS of this operator is shown in Figure 6-23. The operator uses as 
input the recommended duration of the activity (recommended-duration), the 
amount of work (amount-of-work-pa) and the standard productivity of the crew 
(std-productivity). It then fills the duration (estimated activity duration), 
adj-productivity (adjusted crew productivity), normal-hours (number of normal 
working hours), overtime-hours (number of overtime hours) and number-crews 
(number of crews allocated to the activity) slots of the project activity schema. 



Problem-Solving Operators 207 

(defschema Get-Durâtion-PAS 
(is-a 
(domain-type 
(application-object 
(input-ob j ect s 

(input-slots 

(input-bindings 
(input-cond-types 
(output-ob ject s 

(output-s1ot s 

(output-bindings 
(output-predictable 
(output-effect-type 

operator) 
pa) 
current-object) 
current-object <crew> current-object 
current-object) 
technology std-productivity 
amount-of-work-pa 
recommended-duration) 
<crew> nil nil nil) 
filled filled filled filled) 
current-object current-object 
current-object current-object 
current-object) 
normal-hours overtime-hours duration 
number-crews adj-productivity) 
nil nil nil nil nil) 
yes yes yes yes yes) 
fill fill fill fill fill)) 

Figure 6-23. Domain Operator Schema for the Get-Duration-PAS Operator 

Get-Successors-PAS. The Get-Successors-PAS operator is used to determine 
the successor activities of a project activity. The operator performs three steps: 

Step 1. Build the name of the Successors KS (see p. 219) to be evaluated by 
concatenating the prefix KS-Succ- with the project activity code (the 
pa-code slot value). 

Step 2. Evaluate this KS and return a list of successors activities. 
Step 3. Add each member of the list to the successors slot of the project ac­

tivity and store the name of the evaluated KS in the why-successors 
slot. 

The DOS for the Get-Successors-PAS operator is shown in Figure 6-24. It 
has one input and one output. The operator uses the code of the project activity 
(pa-code) to identify the KS to be evaluated, and stores the results of this 
evaluation in the successors slot of the project activity schema. 

Get-Lags-PAS. The Get-Lags-PAS operator determines the leads and lags be­
tween consecutive project activities. This information is used to create the 
unified activity network model described in Section 6.1.4. This operator per­
forms the following steps for each successor of a project activity: 

Step 1. Build the name of the Lag KS (see p. 220) to be evaluated by con­
catenating the prefix KS-Lag- with the project activity code (pa-code) 
of the project activity and the project activity code (pa-code) of the 
successor activity. 
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(defschema Get-Successors-PAS 
(is-a 
(domain-type 
(application-object 
(input-objects 
(input-s lot s 
( input-bindings 
( input-cond-types 
(output-objects 
(output-slots 
( output-bindings 

operator) 
pa) 
current-ob ject) 
current-object) 
pa-code) 
nil) 
filled filled) 
current-object) 
successors) 
nil) 

(output-predictable yes) 
(output-effect-type fill)) 

Figure 6-24. Domain Operator Schema for the Get-Successors-PAS Operator 

(defschema Get-Lags-PAS 

(output-predictable yes yes yes yes) 
(output-effect-type fill fill fill fill)) 

Figure 6-25. Domain Operator Schema for the Get-Lags-PAS Operator 

Step 2. Evaluate this KS to obtain a list of pairs of lead or lag type and value 
(lag-type lag-value). 

Step 3. Store the types of lags in the link slot of the project activity schema and 
their values in the low-lags slot. Store the name of the KS used in the 
why-lags slot of the project activity. 

Step 4. Fill the succs slot with the name of a successor for each type of 
precedence link (a successor appears twice in this slot if both activities 
are linked using an SS and an FF link, but appears only once in the 
successor slot). 

Step 5. Fill the high-lags slot with the upper bound of the lag for each link 
(assumed to be infinite when no restrictions are imposed). 

The DOS that describes the Get-Lags-PAS operator is presented in 
Figure 6-25. It requires as input the project activity code (pa-code) of the 
activity to which the operator is applied and the project activity codes of its 

(is-a 
(domain-type 
(application-object 
(input-objects 
(input-slots 
( input-bindings 
(input-cond-types 
( output-ob jects 

operator) 
pa) 
current-object) 
current-object current-object <succs>) 
pa-code successors pa-code) 
nil <succs> nil) 
filled filled filled) 
current-object current-object 
current-object current-object) 
succs link low-lags high-lags) 
nil nil nil nil) 

(output-slots 
( output-bindings 
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successor activities. The result of its action is four precedence slots of the 
project activity are filled. 

Get-Cost-PAS. Figure 6-26 shows the DOS for the Get-Cost-PAS operator 
used to compute costs for project activities. The operator requires as input the 
duration of the project activity {normal-hours, overtime-hours), the hourly cost 
of the crew assigned to the project activity (normal-cost, overtime-cost), and the 
material cost of the material package used by the activity (mat-unit-cost). The 
operator fills the cost slots of the project activity with the resultant values. 

The Get-Cost-PAS operator is algorithmic and computes both crew and 
material costs as follows: 

Step I. Compute crew costs of the project activity by multiplying the normal 
and overtime hours by the corresponding crew unit costs. 

Step 2. Compute material costs of the project activity by multiplying the work 
quantity by the cost of the material package. 

Step 3. Sum the crew and material costs for the project activity to obtain totals 
and daily totals. 

(defschema Get-Cost-PAS 
(is-a 
(domain-type 
(application-object 
(input-ob j ect s 

(input-slots 

( input-bindings 

(input-cond-types 

(output-ob jeets 

(output-slots 

(output-bindings 
(output-predictable 
(output-effect-type 

operator) 
Pa) 
current-object) 
current-object current-object 
current-object current-object <eas> 
<crew> <crew> <material>) 
has-eas normal-hours overtime-hours 
technology material-package 
normal-cost overtime-cost 
mat-unit-cost) 
<eas> nil nil <crew> <material> nil 
nil nil) 
filled filled filled filled filled 
filled filled filled) 
current-object current-object 
current-object current-object 
current-object current-object) 
overall-total-cost 
overall-cost-per-day 
total-cost-crew cost-crew-per-day 
total-cost-materials 
cost-materials-per-day) 
nil nil nil nil nil nil) 
yes yes yes yes yes yes) 
fill fill fill fill fill fill)) 

Figure 6-26. Domain Operator Schema for the Get-Cost-PAS Operator 
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Compute-NPV. The Compute-NPV operator is used to compute the net present 
value of the project. The discounted project costs are computed using the 
contractor's minimum attractive rate of return. All costs are assumed to be 
incurred at the start of the activity using an earliest start schedule. Costs are 
computed on a monthly basis. 

Floyd-Wars ha II. The Floyd-War shall operator is used to compute a project 
schedule. It uses the unified activity network model description of the project 
activities stored in the precedence and duration slots of the project activity 
schema. It computes earliest and latest start and finish time for all activities 
using the Floyd-Warshall scheduling algorithm. These results are stored in the 
scheduling slots of the project activities. 

6.2.3 Knowledge Sources 

The knowledge base of CONSTRUCTION PLANEX consists of the KSs that store 
the knowledge used by the domain operators to generate a construction plan for 
a building. As noted previously, the knowledge in these KSs is limited to that 
for the planning of the excavation and erection of concrete or steel buildings. 
The current construction knowledge yields a fast-track schedule. The 
knowledge comes from several sources: (1) an experienced construction 
planner [4]; (2) publications on building estimating procedures [19, 105]; 
(3) publications on construction methods [76]; and (4) building cost data [71]. 
The following types of knowledge sources are present in CONSTRUCTION 
PLANEX: 

• Element Activity KSs describe the set of activities required to construct a 
design element; 

• Amount KSs specify formulas used when computing the quantity of work for 
each element activity; 

• Unit KSs indicate the default unit of measure of the work quantities for each 
type of element activity; 

• Material KSs specify the set of materials used in performing an element 
activity; 

• Project Activity KSs specify the name of the project activity associated with a 
particular element activity; 

• Technology KSs recommend appropriate crews for constructing project ac­
tivities; 

• Duration KSs compute desirable durations for project activities; 
• Successor KSs specify the names of the successors of particular project ac­

tivities; and 
• Lag KSs are used to determine the types and values of leads and lags between 

two consecutive project activities. 

Each type of KS is described below and illustrated with an example. 
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Knowledge Sources for Element Activity Creation. Determining the set of 
element activities used to construct each design element is the responsibility of 
the Element Activity Creation KSs. These KSs are used by the Create-EAS 
operator (see p. 196) to generate element activity schémas. 

Element activity creation KSs are organized according to the same coding 
system used to organize design element schémas; i.e., organized by type of 
design element and type of material (de-code). The name of an element activity 
KS is of the form: KS-Create-EA-(type-de)-(type-material). For example, the 
KS that generates the codes and names of the element activities required to erect 
a steel beam (i.e., design element type " 8 1 " and material type "2") is 
KS-Create-EA-81-2. Thus, the domain operator responsible for element activity 
creation can readily identify which KS to evaluate for a given type of design 
element. 

An example of an element activity creation KS for column footings is shown 
in Figure 6-27. This KS is similar to the example used in Section 4.2 to 
describe the knowledge representation scheme of PLANEX. It returns the names 
and codes of the element activities required to build a column footing. The 
firing type of this KS is "al l": all rules are fired sequentially. The KS is applied 
to a design element (current-object). The cond-objects slot indicates that the 
information needed to evaluate the KS is stored in the schema of the design 
element being analyzed (the current-object) and the soil-info object. The KS of 
Figure 6-27 contains four conditions: 

• the first condition binds the value of the root-code slot of the design element 
object to the binding variable (root); 

• the second condition determines if the type-de slot of the design element is a 
concrete footing (i.e., has value "60") ; 

• the third condition binds the value of the number-de slot (e.g., which design 
element group) of the design element to the variable (number); and 

• the fourth condition tests if the possible-use slot of the soil-info object has a 
value "backfill". 

The KS has three rules: 

Rule 1. All concrete column footings require excavation, building formwork, 
placing reinforcing, pouring concrete and stripping forms. 

Rule 2. If the soil is appropriate for backfill, constructing the footing requires 
the excavated material to be piled up for later use in backfill. 

Rule 3. If the soil is not appropriate for backfill, the contractor has to dispose of 
the excavated material and borrow backfill material from a different 
source. 

As described in Section 4.2.3, conditions 1 and 3 are binding conditions and 
are always true. They are used to compute codes and names of the element 
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(defschema KS-Create-EA-60-1 
(is-a 
(ks-name 
(ks-type 
(cond-objects 

(conditions 

(lhs-rules 

(rhs-rules 

(actions 

ks) 
KS-Create-EA-60-1) 
all) 
current-object current-object current-object 
soil-info) 
(= root-code <root>) 
(= type-de 60) 
(= number-de <number>) 
(= possible-use backfill)) 
(Τ Τ Τ I) 
(Τ 
(Τ 
(Χ 
(I 
(I 

Τ) 
F)) 
I Χ 
I I 
χ I 

Χ Χ Χ) 
I I I ) 
ι ι I)) 

(<root>-EA-2-220-10-60-l-<number> 
excavate-column-footings-<number>) 
(<root>-EA-2-225-10-60-l-<number> 
dispose-excavation-column-footings-<number>) 
(<root>-EA-2-225-20-60-l-<number> 
pile-up-excavation-column-footings-<number>) 
(<root>-EA-2-220-40-60-l-<number> 
borrow-material-column-footings-<number>) 
(<root>-EA-3-110-10-60-1-<number> 
place-forms-column-footings-<number>) 
(<root>-EA-3-210-00-60-l-<number> 
reinforce-column-footings-<number>) 
(<root>-EA-3-310-10-60-l-<number> 
pour-concrete-column-footings-<number>) 
(<root>-EA-3-110-20-60-l-<number> 
remove-forms-column-footings-<number>))) 

Figure 6-27. Example of a KS for Element Activity Creation 

activity schémas. If the 
number is " Γ \ firing the 
((F00-EA-2-220-10-60-
(F00-EA-3-110-10-60 
(F00-EA-3-210-00-60 
(F00-EA-3-310-10-60-
(F00-EA-3-110-20-60-

which represents the set 
footing. This list is used 
element activity schémas 

root-code of the design element is F00 and its group 
first rule produces the list of actions: 
1-1 excavate-column-footings-l) 
1-1 place-forms-column-footings-l) 
1-1 reinforce-column-footings-l) 
1-1 pour-concrete-column-footings-l) 
1-1 remove-forms-column-footings-l)) 
of activities required to construct any concrete column 
by the Create-EAS operator to create the corresponding 
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(defschema KS-Amount-2-225-10 
(is-a 
(ks-type 
(cond-objects 
(conditions 

(lhs-rules 

(rhs-rules 

(actions 

ks) 
first) 
current-object soil-info) 
(= type-de 60) 
(= stability-angle 90.0)) 
(Τ Τ) 
(Τ F) ) 
(Χ I) 
(I Χ)) 
formula-04 formula-05)) 

Figure 6-28. Example of a KS to Compute Amounts of Work 

(setq formula-04 ' ( 
(((xl-dimension + 4) * (yl-dimension + 4) * 
((abs zg-coordinate) + (abs zl-dimension))) / 27.0) 
* KS-swell-factor)) 

Figure 6-29. Example of a Formula to Compute Amounts of Work 

Knowledge Sources for Computing Amounts of Work. Amount KSs are used to 
select formulas for computing work quantities for element activities. The KS is 
used by the Compute-Amount-EAS operator (see p. 199). The KS naming con­
vention uses the same coding system used for element activities and takes the 
form: KS-Amount-(division)-(broadscope)-(narrowscope), where the division, 
broadscope and narrowscope numbers correspond to the first three parts of the 
element activity code. 

Figure 6-28 shows one of the KSs that CONSTRUCTION PLANEX uses to 
compute the quantity of work for an excavation element activity. The KS 
returns the names of formulas which are evaluated using the geometric descrip­
tion of the corresponding design elements to yield the work quantity. The KS 
returns one of two alternative formulas for computing the amount of material to 
be disposed of when excavating a column footing. The KS has two rules: 

Rule 7. For a column footing design element (type-de has a value equal to 
"60") and soil stability angle of ninety degrees (i.e., vertical excavation 
walls will not collapse), "formula-04" is used. This is the formula 
presented in Figure 6-29; it expresses the excavation volume in terms 
of the dimensions of the column footing. 

Rule 2. For a column footing design element and soil stability angle not ninety 
degrees (a slope is required), the more complex "formula-05" is used. 

The formulas are procedural code elements of the knowledge base. The for­
mulas might include names of KSs that are evaluated before the final quantity is 
computed. For example, the formula of Figure 6-29 includes a term called 
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(defschema KS-Unit-of-Measure-3-310 
(is-a 
(ks-name 
(ks-type 
(cond-objects 
(conditions 
(lhs-rules 
(rhs-rules 
(actions 

ks) 
KS-Unit-of-Measure-3-310) 
first) 
current-object) 
(= narrowscope 10)) 
(T)) 
(X)) 
cu-yd)) 

Figure 6-30. Example of a KS to Determine Units of Measure 

KS-swell-factor that represents the swell factor of the soil. Any term of the 
formula that has an is-a+inv slot indicating it is a KS is evaluated by the KSE 
and the result of the evaluation is substituted into the formula for the cor­
responding term. 

Knowledge Sources for Units of Measure. Unit KSs are utilized by the 
Determine-Unit-EAS domain operator to determine the unit of measure for quan­
tity take-offs of element activities (see p. 200). These KSs are indexed at the 
broadscope level of the element activity hierarchy. The KS name is of the form: 
KS-Unit-of-Measure-(division)-(broadscope), where the division and broad­
scope group numbers correspond to the first two parts of the ea-code-slot slot 
value. The KSs return units of measure for each of the corresponding narrow-
scope codes. 

An example of a KS to determine the units for work quantities is shown in 
Figure 6-30. The KS contains one rule that indicates that for the activities 
whose ea-code starts with "3-310-10", the amount of work is expressed in 
cubic yards. 

In the current version of CONSTRUCTION PLANEX, unit conversions are not 
performed. Units are simply recorded and the system assumes that all quantities 
are expressed in consistent units. For example, the formula for quantity take-off 
in Figure 6-29 assumes that all dimensions are expressed in feet and uses the 
factor "27.0" to convert the volume to cubic yards. 

Knowledge Sources for Materials Selection. Similarly to the selection of tech­
nologies (described in Section 6.1.2), materials used in the construction of an 
element activity are defined in terms of material packages. Each material pack­
age is a group of individual materials such as cement, aggregates and water. 
Material package selection for an element activity is performed by the 
Determine-Material-EAS operator (see p. 201). 

The organization of the Material KSs is identical to that used for Amount 
KSs: structured according to element activity code. Names are of the form 
KS-Material-(division)-(broadscope)-(narrowscope). 
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(defschema KS-Material 
(is-a 
(ks-name 
(ks-type 
(cond-objects 
(conditions 

(lhs-rules 

(rhs-rules 

(actions 

•3-110-10 
ks) 
KS-Material-3-110-10) 
first) 
current-object specif-info) 
(= type-de <type>) 
(= formwork-<type> special)) 
(T F) 
(T T)) 
(X I) 
(I X)) 
formwork-<type>-normal 
formwork-<type>-special)) 

Figure 6-31. Example of a KS for Material Package Selection 

(defschema formwork-81-special 

; Material package for beams 
; Based on 1 use. Based on 12 inch beams. Note 33 means 
; This package corresponds to the case when 
; formwork-beams is special in the specif-info frame 

(is-a material-package) 
(component-names ((1.1 5/8-plyform); sq-ft of 5/8 plyform 

(2.1 lumber) ; board feet of lumber 
(allow accessories))); other accessories 

(material-unit sq-ft) 
(mat-unit-cost 1.62)) 

Figure 6-32. Example of a Material Package 

Figure 6-31 shows the KS that is used to select materials for element ac­
tivities grouped below the 3-110-10 narrowscope level of the element activity 
tree. To evaluate this KS for a particular element activity, the system uses 
information stored in the schema titled specif-info, which contains project 
specification data not associated with individual design elements. The KS has 
two rules: 

Rule 1. If the formwork type of the design element associated with the element 
activity is "special" (e.g., the formwork-(type) slot of the specif-info 
has the value "special" where (type) is the design element type: 
type-de), the name of the material package is "formwork-81 -special". 

Rule 2. If the formwork type is not "special", the name of the material package 
is "formwork-81-normal". 

The material package formwork-81 -special is shown in Figure 6-32. This 
schema contains information describing the individual components of the pack-
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(defschema KS-PA-3 
(is-a 
(ks-name 
(ks-type 
(cond-objects 

(conditions 

110-10 
ks) 

(lhs-rules 

(rhs-rules 

(actions 

KS-PA-3-110-10) 
first) 
current-object current-object 
current-object current-object 
current-object) 
= type-de 60) ; column footings 
= type-de 65) ; columns 
= type-de 80) ; slabs 
= type-de 81) ; beams 
= root-code <root>)) ; bind to location 
T F F F Τ) 
F T F F Τ) 
F F T F Τ) 
F F F Τ T) ) 
X I I I ) 
I Χ I I) 
I I Χ I) 
I I I Χ)) 
<root>-PA-20-60 formwork-foundation-<root>) 
<root>-PA-20-65 formwork-columns-<root>) 
<root>-PA-20-80 formwork-slab-<root>) 
<root>-PA-20-80 formwork-slab-<root>))) 

Figure 6-33. Example of a KS for Project Activity Creation 

age and the average cost of materials per unit of activity work (in the specified 
units). 

Knowledge Sources for Project Activity Creation. The Project Activity KSs are 
used by the Create-PAS-for-EAS operator (see p. 201) to define which element 
activities are aggregated into project activities. The KSs are organized accord­
ing to the same coding system used for element activities. The KS name is of 
the form: KS-PA-{division)-{broadscope)-(narrowscope), where the division, 
broadscope group and narrowscope group codes correspond to the first three 
parts of the element activity code of the activity to which the operator is applied. 

An example of a project activity creation KS is shown in Figure 6-33. The 
ks-type of this KS is "first", indicating that only one rule should be fired. The 
KS contains four rules: 

Rule 1. Formwork activities of column footings are aggregated into a project 
activity that groups all formwork of foundation elements. 

Rule 2. Formwork activities of columns are aggregated into a project activity 
that groups all formwork for the columns of a particular floor. 

Rule 3. Formwork activities of slabs are aggregated into a project activity that 
groups all formwork activities associated with slab and beam elements 
of a particular floor. 



Knowledge Sources 217 

(defschema KS-Tech-20 

This KS is used to determine the crew type of formwork 
activities. 
The function "check-elements-foundation" returns true 
if all foundation elements are column footings and false 
otherwise 

(is-a 
(ks-name 
(ks-type 
(cond-objects 
(conditions 

(lhs-rules 

(rhs-rules 

(actions 

ks) 
KS-Tech-20) 
first) 
current-object function none current-object) 
(= pa-code 20-60) 
(= (check-elements-foundation 

current-object) t) 
(= pa-code 20-80)) 
(Τ T F) 
(F I F) 
(FIT)) 
(X I) 
(Χ I) 
(I Χ)) 
crew-formwork-05 
crew-formwork-06)) 

Figure 6-34. Example of a KS for Technology Selection 

Rule 4. Formwork activities of beams are aggregated into a project activity that 
groups all formwork activities associated with slab and beam elements 
of a particular floor. 

Knowledge Sources for Technology Selection. As described in Section 6.1.2, 
CONSTRUCTION PLANEX selects construction technologies and assigns crews to 
project activities. The appropriate crew type for a project activity is identified 
by the Select-Technology-PAS operator (see p. 204) using a Technology KS. 
These are organized by project activity code, and the KS name is based on the 
first part of the project activity code. A KS titled KS-Technology-30 is used to 
determine the crew type for project activities having a code starting with the 
number " 3 0 " (formwork stripping for structural elements). 

An example of a Technology KS is shown in Figure 6-34. This KS returns 
the name of a crew used in formwork placement project activities. There are 
three rules: 

Rule 1. If the project activity is foundation column form placement, use crew 
"crew-formwork-05". 

Rule 2. If the project activity is not foundation column form placement or slab 
form placement, use crew "crew-formwork-05". 
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(defschema KS-Dura-30-80 
(is-a 
(ks-name 
(ks-type 
(cond-objects 

(conditions 

(lhs-rules 

(rhs-rules 

(actions 

ks) 
KS-Dura-30-80) 
first) 
current-object 
current-object 
current-object) 
(<= amount-of-work-pa 6400) 
(<= amount-of-work-pa 12800) 
(<= amount-of-work-pa 19200)) 
(T 
(F 
(I 
(I 
(X 
(I 
(I 
(I 

I) 
I) 
T) 
F)) 
I I) 
I I) 
X I) 
I X)) 

5 7 10 15)) 

Figure 6-35. Example of a KS to Recommend Durations 

Rule 3. If the project activity is slab formwork placement use, crew 
" ere w-form work-06 ". 

An example of a crew schema was presented in Figure 6 - 1 . 

Knowledge Sources for Activity Durations. The domain operator 
Determine-Recommend-Duration-PAS uses Duration KSs to compute the 
recommended durations for project activities (see p. 206). CONSTRUCTION 
PLANEX uses the results provided by Duration KSs to select the number of 
crews to allocate to the project activities (see Section 6.1.2). Following this 
computation, the estimated durations of the activities and the distribution of 
normal and overtime hours are calculated using the procedure outlined in 
Section 6.1.3. 

The name of a Duration KS is of the form: KS-Dura-(pa-code), where 
(pa-code) is the code of the project activity for which the duration is being 
computed. For example, the recommended duration for the activity representing 
column form placement (its project activity code is "20-65") is determined by 
the KS titled KS-Dura-20-65. 

An example of a Duration KS is presented in Figure 6-35. This KS returns 
the recommended duration of an activity in days for various values of the work 
quantity (amount-of-work-pa slot) of the project activity. The KS contains four 
rules: 
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Rule 1. If the quantity of work is less that 6400, the recommended duration is 
5 days. 

Rule 2. If the quantity of work is greater than or equal to 6400 but less than 
12800, the recommended duration is 7 days. 

Rule 3. If the quantity of work is greater than or equal to 12800 but less than 
19200, the recommended duration is 10 days. 

Rule 4. If the quantity of work is greater than or equal to 19200, the recom­
mended duration is 15 days. 

Knowledge Sources for Successor Identification. Successor KSs are used to 
generate the successor activities of a project activity. These KSs are organized 
by project activity (i.e., the name of the KS is of the form KS-Succ-(pa-code)). 
They are used by the Get-Successors-PAS operator (see p. 207). 

Figure 6-36 shows a KS that is used to determine the successors of a con­
crete pouring activity for column footings (identified with code "50-60"). The 
ks-type of this KS is "all", indicating that all applicable rules should be fired to 
generate all possible successors. Conditions check for the existence of succes­
sors using the Schemap function. This function takes the name of a schema as 
an argument and returns "true" if the schema exists. It is used to insure that a 
successor is generated only once. The KS has two rules: 

Rule 1. If it does not exist, generate a successor activity for placing column 
footing forms (project activity code "20-65"). 

Rule 2. If it does not exist, generate a successor activity for stripping forms 
from the column footings (project activity code "30-60"). 

(defschema KS-Succ-50-60 
(is-a 
(ks-name 
(ks-type 
(cond-objects 
(conditions 

(actions 

(lhs-rules 

(rhs-rules 

ks) 
KS-Succ-50-60) 
all) 
current-object function function) 
(= root-code <root>) 
(= (schemap <root>-PA-30-60) t) 
(= (schemap <root>-PA-20-65) t)) 
(Τ Τ I) 
(TIT)) 
(X I) 
(I X)) 
<root>-PA-30-60 
<root>-PA-20-65)) 

Figure 6-36. Example of a KS for Successor Identification 
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(defschema KS-Lag-40-
(is-a 
(ks-type 
(cond-objects 
(conditions 

(lhs-rules 
(rhs-rules 
(actions 

60-to-40-65 
ks) 
first) 
current-object function function function) 
(= root-code <root>) 
(= (get-eas-of-pa '<root>-PA-40-60) 

<list-curr>) 
(= (get-eas-of-pa '<root>-PA-40-65) 

<list-succ>)) 
(Τ Τ Τ) ) 
(Χ Χ)) 
(SS (get-smallest-slot '<list-curr> 

'duration-ea)) 
(FF (get-smallest-slot '<list-succ> 

'duration-ea)))) 

Figure 6-37. Example of a KS to Determine Lags 

Knowledge Sources for Lag Determination. The Get-Lags-PAS operator (see 
p. 207) uses a Lags KS to identify the leads and lags between consecutive 
project activities. These KSs are organized according to the project activity 
codes for both of the activities. Thus, the form of a Lags KS name is 
KS-Lag-(pa-code-l)-{pa-code-2), where pa-code-1 is the project activity code of 
one activity and pa-code-2 is the code of a successor project activity. 

Figure 6-37 shows one of the KSs used in CONSTRUCTION PLANEX to deter­
mine lags between two project activities. This KS is used to compute the lag 
from a column footing reinforcing activity (project activity code "40-60") to a 
column reinforcing activity (project activity code "40-65"). The KS has one 
rule which computes both a Start-to-Start (SS) and a Finish-to-Finish (FF) 
precedence. The second and third conditions retrieve the sets of element ac­
tivities which comprise the two project activities. These activity sets are used as 
arguments of the function Get-Smallest-Slot to determine the shortest duration 
element activity in each set. Then these durations are used to generate two lags: 

1. The SS lag indicates that column reinforcing cannot start until the shortest 
duration footing reinforcing activity has been completed; and 

2. The FF lag indicates that column reinforcing must finish at least D days after 
completing the footing reinforcing activity, where D is the duration of the 
shortest of the column reinforcing activities. 

6.2.4 User Interface Mechanisms 
In Section 4.4, some of the user interface mechanisms of CONSTRUCTION 
PLANEX were used to illustrate the interface components that may be incor­
porated in applications of the PLANEX architecture. CONSTRUCTION PLANEX 
interaction mechanisms include: 
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• the G A N T T Interactive Scheduler which provides an interactive graphical dis­
play of the project schedule; 

• the REPORT GENERATOR which outputs a variety of tabular reports detailing 
planning data; 

• the CONTROL PANEL which provides mechanisms to alter the agenda and 
invoke control operators; 

• interrogatives such as the questions issued by the Get-Duration-PAS operator 
(illustrated in Section 4.4.5); 

• explanations of the problem solving process; 
• passive graphical displays of results; and 
• menus used to control the problem-solving process and access the 

mechanisms listed above. 

This section describes some of the user interface mechanisms of the 
CONSTRUCTION PLANEX system such as menus, passive output graphics, output 
reports and explanations. 

6.2.4.1 Menus Menus provide the mechanism to control the execution of 
domain and control operators. In CONSTRUCTION PLANEX, menus are used to: 

• select an operator to execute; 
• specify the context objects to which an operator is applied; 
• set values for global variables; or 
• answer a question that has a predefined, enumerated set of answers. 

Figure 6 - 3 8 shows the structure of the menus used in CONSTRUCTION 
PLANEX. The menus form a hierarchy from left to right. Menus at the left of the 
figure are used to access menus at the right. For example, when the user 
chooses the "Change Values" option of the Top menu, the Change menu is 
displayed. Selecting a menu item either causes a corresponding submenu to be 
displayed or invokes the associated operator. 

Top Menu. The Top menu is the root menu of the menu control structure with 
options to access all of the other portions of the menu interface. It is displayed 
when CONSTRUCTION PLANEX starts. This menu includes the following item: 

• "Perform Operations" which accesses the Operations menu; 
• "Display Information or Results" which accesses the Display menu; 
• "Explain Results" which accesses the Explain menu; 
• "Change Values" which accesses the Change menu; 
• "Print Reports" which accesses the Report menu; and 
• "Exit" which terminates CONSTRUCTION PLANEX. 
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Figure 6-38. Menus of the CONSTRUCTION PLANEX System 

Operations Menu. The Operations menu lets the user invoke a set of high-level 
control procedures. It includes the following items: 

• "Translate a File from the Input Generator" which translates data from the 
INPUT GENERATOR [116] (see Section 4.4.2) into design element schémas; 

• "Load a Building File" which inputs a file containing the design element 
schémas describing a building; 

• "Complete Forward Pass" which sequentially applies a predefined set of 
operators to generate an initial project plan (this sequence of operators is 
described in Section 6.3.2); 

• "Individual Operations" which accesses the Individual Operations menu; 
• "Prepare File for Animation" which creates an output file for the ANIMATOR 

to display the construction sequence; 
• "Interactive Control Panel" which is used to access the CONTROL PANEL 

(CP) (described in Section 4.4.3); 



User Interface Mechanisms 223 

• "Modify Switches for Control Operators" which lets the user change the 
values of control variables via the Control Switches menu; and 

• "Exit" which returns to the Top menu. 

Context Object Operator Menus. Three menus, Display, Change and Explain, 
are used to access context objects. The user specifies the type of object re­
quested for information display, change or explanation. Each of these menus 
has the following options: 

• "Design Elements" which accesses information stored in design element 
schémas; 

• "Element Activities" which accesses information stored in element activity 
schémas; 

• "Project Activities" which accesses information stored in project activity 
schémas; and 

• "Exit" which returns to the Top menu. 

Each of the first three items corresponds to a Context Object submenu which 
lets the user select the object to be displayed, changed or for which an explana­
tion is to be given. 

Report Menu. The Report menu displays the names of the output reports that 
may be produced by CONSTRUCTION PLANEX. These reports are prepared by the 
REPORT GENERATOR, as described in Section 4.4.4. The names of available 
reports are stored in the is-a+inv slot of the report schema. CONSTRUCTION 
PLANEX retrieves these names and dynamically generates items on the Report 
menu during execution. Selecting a report name from the menu causes the 
corresponding report to be generated. CONSTRUCTION PLANEX reports are 
described in Section 6.2.4.3. 

Control Switches Menu. The Control Switches menu provides the mechanism 
to set global variables which control the overall problem-solving behavior. 
Switches may be toggled on or off. The menu includes the following items: 

• "Operator Preconditions" which controls whether unsatisfied operator 
preconditions are recorded as goals in the goals slot of the agenda; 

• "Operator Effects" which controls whether operator effects are recorded as 
changes in the context-changes slot of the agenda; 

• "Forward Pass" which specifies whether the number of questions presented 
to the user during the automated forward pass operation (see Section 6.3.2) 
should be minimized; and 

• "Exit" which returns to the Operations menu. 
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individual Operations Menu. The Individual Operations menu provides a 
mechanism to invoke any of the CONSTRUCTION PLANEX domain operators, to 
enter the GANTT interactive scheduler or to display output graphics. This menu 
has the following options: 

• "Create Tree of Design Elements" which executes the Create-DE-Tree 
operator; 

• "Create Element Activities" which executes the Create-EAS operator; 
• "Create Tree of Element Activities" which executes the Create-EA-Tree 

operator; 
• "Determine Units of Measure" which executes the Determine-Unit-EAS 

operator; 
• "Compute Amounts of Work for Element Activities" which executes the 

Compute-Amount-EAS operator; 
• "Determine Material Packages" which, executes the Determine-Material-EAS 

operator; 
• "Create Project Activities" which executes the Create-PAS-for-EAS operator; 
• "Create Tree of Project Activities" which executes the Create-PA-Tree 

operator; 
• "Select Technology for Project Activities" which executes the 

Select-Technology-PAS operator; 
• "Compute Amounts of Work for Project Activities" which executes the 

Compute-Amount-PAS operator; 
• "Determine Recommended Durations for Project Activities" which executes 

the Determine-Recommended-Duration-PAS operator; 
• "Compute Durations for Project Activities" which executes the 

Get-Duration-PAS operator; 
• "Compute Durations for Element Activities" which executes the 

Get-Duration-EAS operator; 
• "Determine Successors of Project Activities" which executes the 

Get-Successor-PAS operator; 
• "Determine Lags among Project Activities" which executes the 

Get-Lags-PAS operator; 
• "Estimate Cost of Project Activities" which executes the Get-Cost-PAS 

operator; 
• "Compute the NPV of a Project" which executes the Compute-NPV operator; 
• "Activity on Node Diagram" which displays an Activity-On-Node diagram of 

the project activity network; 
• "Interactive Scheduling" which initiates GANTT, the interactive scheduler of 

CONSTRUCTION PLANEX; 
• "Display Daily Project Cost Curve" which displays an X-Y plot of ag­

gregated daily activity costs; 



User Interface Mechanisms 225 

• "Display Cumulative Project Cost Curve" which displays an X-Y plot of 
aggregated cumulative activity costs; and 

• "Exit" which returns to the Operations menu. 

Context Object Menus. The Design Element, Element Activity, and Project 
Activity menus allow the user to specify the object to which an operator is 
applied. Whenever a Display, Change, Explain or Individual Operations menu 
item is selected, the appropriate Design Element, Element Activity or Project 
Activity submenu is displayed. For example, if the user invokes the 
Compute-Amount-P AS operator by selecting the "Compute Amounts of Work 
for Project Activities" option from the Individual Operations menu, the system 
displays the Project Activity menu for selecting the activities to which the 
operator will be applied. Each Context Object menu has a similar structure: 

• "For all (xxxx)" specifies that the operator will be applied to all (xxxx), 
where (xxxx) is either "Project Activity", "Element Activity" or "Design 
Element"; 

• "For some (xxxx)" specifies that the operator will be applied to some (xxxx); 
• "For a single (xxxx)" specifies that the operator will be applied to only one 

(xxxx); and 
• "Exit" returns to the previous menu. 

If the "Some" option is selected, the user then chooses the objects by specifying 
their location and type. If the "Single" option is selected, the list of correspond­
ing context objects is displayed and the user chooses one item from the list. 

6.2.4.2 Output Graphics In addition to the interactive graphics of GANTT (see 
p. 126), CONSTRUCTION PLANEX includes the following passive output displays: 

• the Activity-On-Node (AON) diagram displays the project activity network 
with some scheduling information; 

• the Cost Curve displays an X-Y plot of total activity cash flow versus time; 
• the Cumulative Cost Curve displays an X-Y plot of cumulative cash flows of 

project activities versus time; and 
• an animation program, called ANIMATOR, provides a graphical simulation of 

the construction process. 

Figure 6-39 illustrates the form of the AON representation of a project plan. 
In this diagram, activities are represented as boxes. Activities on the left 
precede those activities on the right. Each box displays activity schedule results: 
earliest and latest start and finish times. Additional specific activity information 
(e.g., the complete project activity schema) is displayed if the user points to a 
project box and clicks a mouse button. 
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Figure 6-39. Illustration of an Activity-On-Node Diagram Display 
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Figure 6-40. Illustration of the Cumulative Cost Curve Display 

Figure 6 - 4 0 illustrates the display of the cumulative cost curve of a project 
plan. The Y-axis value corresponds to the accumulated project activity costs 
and the X-axis value is the project time-line. This cumulative cost curve is 
computed ignoring inflation and assuming that there is no time value of money 
(the minimum attractive rate of return of the contractor is zero). A more 
detailed cost computation can be obtained by invoking the Compute-NPV 
operator. 

ANIMATOR [ 1 1 6 ] simulates the manner in which a building is constructed 
using 3-D output. The input to this program is a file created by CONSTRUCTION 
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PLANEX with information on the starting and ending times for each construction 
activity. ANIMATOR displays building components incrementally using different 
colors to represent different construction activities. 

6 .2 .4 .3 Output Reports CONSTRUCTION PLANEX produces a variety of reports 
containing information about the planning process. The user obtains reports by 
choosing the "Print Reports" option of the Top menu and by selecting one of 
the available report formats displayed in the Report Menu. Nonstandard reports 
may be produced by creating the appropriate report format schémas (see 
Section 4.4.4). 

Figures 6-41 through 6-43 illustrate some of the reports that may be ob­
tained: 

• Figure 6-41 shows a schedule data report. It includes project activities whose 
earliest-start-time (EST) is less than 100 days. In this report, activities are 
sorted with respect to their EST. 

• The report in Figure 6-42 shows the crew types for the project activities 
located on the first floor of the building (floor "F01") . In this report, ac­
tivities are sorted by name. The report shows that the formwork activities for 
the columns (code "20-65") use a different crew ("crew-formwork-05") than 
the corresponding activities for slab elements (code "20-80", crew 
" ere w-form work-06 " ) . 

• The report in Figure 6-43 shows how project activities contribute to the total 
project cost. In this report, activities are sorted by name and only those 
activities with a percent cost greater that 4% are printed. 

CODE LOCATION DURATION EST EFT LST LFT 

10-60 F00 35. .0 0. ,00 35. .00 0, .00 35. ,00 
20-60 F00 7. .0 27. .94 35. 54 27, .94 35. 54 
40-60 F00 11. .0 28. 48 39. .48 28. .48 39. 85 
40-65 F00 14. 0 29. .49 43. .49 29, .49 43. 49 
15-60 F00 2. .0 32. .70 35. .61 184. .26 186. ,26 
50-60 F00 4. 0 43. .49 47. .49 43, .49 47. 49 
20-65 F00 12. 0 44. .49 56. .49 44 .49 56. 49 
30-60 F00 1. .0 46. 13 47, 56 185, .26 186. 26 
50-65 F00 3. .0 56. .49 59, .49 56, .49 59. ,60 
20-80 F00 42. .0 56. .55 98 .55 56 .55 98. .55 
30-65 F00 3. .0 57. .49 60. .49 183, .26 186. 26 
17-60 F00 27. 0 60. .49 87, .49 186 .26 213. 26 
40-80 F00 26. .0 73. 64 99 .82 73, .82 99. 82 
50-80 F00 2 .0 99. 82 101, .82 99 .82 101. 96 

Figure 6-41. Example of a Scheduling Report 
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CODE LOCATION AMOUNT CREW NO. DUR. 

20-65 F01 5040. 00 CREW-FORMWORK-0 5 6. 0 8. .0 
20-80 FOI 20261. .00 CREW-FORMWORK-0 6 6. 0 28. .0 
50-65 FOI 130. .67 CREW-POUR-CONCRETE-0 5 1. 0 2 .0 
50-80 FOI 504. .14 CREW-POUR-CONCRETE-06 3. 0 1 .0 
40-65 FOI 27227. 34 CREW-RE-STEEL-05 4. 0 12 .t) 
40-80 FOI 79328. .57 CREW-RE-STEEL-05 5. 0 28 .0 
30-65 FOI 5040. .00 CREW-REMOVE-FORMS-0 6 4. 0 3 .0 
30-80 FOI 20261. .00 CREW-REMOVE-FORMS-0 6 4. 0 12 .0 

Figure 6-42. Example of a Report with Crew Type, Amount of Work and Duration 

NAME COST PERCENT 

BACKFILL-FOUNDATION-F00 9431. 60 4. .70 
EXCAVATION-FOUNDATION-F00 28791. 14 14. .36 

FORMWORK-SLAB-F00 14595. .00 7. 28 
FORMWORK-SLAB-F01 9478. .70 4. .73 
FORMWORK-SLAB-F02 8355. .48 4 .17 

POUR-CONCRETE-FOUNDATION-F00 8960. .00 4 .47 
REINFORCING-STEEL-SLAB-F00 12605. .32 6 .29 
REINFORCING-STEEL-SLAB-F01 14049. 66 7, .01 
REINFORCING-STEEL-SLAB-F02 12704. 85 6 .34 

Figure 6-43. Example of a Relative Cost Report 

6.2.4.4 Explanation CONSTRUCTION PLANEX provides the user with some 
explanation of the results of the planning process using a set of explanation 
functions accessed through the Explain menu. In the current version of the 
system, there is no general mechanism for explanation, but a set of specific 
explanation functions exists for each of the attributes of a context object. Con­
sider the explanation given for a quantity take-off computation shown in 
Figure 6-44 (user input is underlined). The explanation function displays the 
values of the why-formula and why-amount slots of the element activity schema. 
First, the system displays the quantity: 648.27 pounds. Then the system displays 
the formula used to compute this value and the KS that was used to select the 
quantity take-off formula. Finally, the system indicates that data for the formula 
was obtained from the schema titled F02-DE-65-1-2, which is the design ele­
ment schema linked to the particular element activity. 

A second example is shown in Figure 6-45. This type of explanation is 
displayed when the user requests information about the crew type selected for a 
project activity. First, the type of crew assigned to the activity is displayed. 
Then the explanation function displays the names of other project activity 
schémas that are linked to the same technology group as the project activity 
being considered. Finally, the system prints the KS that was used to select the 
crew (crew-remove-forms-06). 
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EXPLAINING AMOUNTS OF WORK OF ELEMENT ACTIVITIES 
••••••••••••••••••••••••••••••••••••••••*••••••• 

EA > F02-EA-3-210-00-65-1-2 
with name REINFORCING-STEEL-COLOMN-2 has the amount 648.27 LB 

This result was obtained by evaluating formula > FORMULA-09 
which has the following syntax 

((XL-DIMENSION * YL-DIMENSION * (ABS ZL-DIMENSION) * ΡSTEEL * 
13230 * 1.05) / 27.0) 

This formula was chosen after evaluating KS > KS-Amount-3-210-0 

-> Do you want to see this KS ? [y] v_ 

{{ KS-Amount-3-210-0 
IS-A: KS 
KS-TYPE: FIRST 
COND-OBJECTS : CURRENT-OBJECT 
CONDITIONS: (MY-MEMBER NAME-CODE (60 65 80 81)) 
LHS-RULES: (T) 
RHS-RULES : (Χ) 
ACTIONS: FORMULA-09}} 

-> Do you want to display schémas used to evaluate this KS ? [y] η 

Data for the formula was inherited from 
DE > F02-DE-65-1-2 

Do you want to see this DE ? [y] η 

Figure 6-44. Example of Explanation for Quantity Take-Offs 

6.3 Use of CONSTRUCTION PLANEX 

6.3.1 Overall Behavior 
This section describes how the components of the CONSTRUCTION PLANEX sys­
tem are used to assist in the construction planning process. As shown in 
Figure 6-46, user interaction with the system is classified into three levels: 

• a strategic level where control operators generate networks of domain 
operators to satisfy goals or propagate context changes; 

• an operative level where the user executes operators or directly modifies the 
information stored in context objects; and 
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EXPLAINING TECHNOLOGY OF PROJECT ACTIVITIES 
•••••••*•••***•••••***••***••**•*•••••*••*• 

PA > F01-PA-30-65 
with name REMOVE-FORMS-COLUMNS-F01 has the technology 
> CREW-REMOVE-FORMS-06 

This project activity is grouped below technology group 
> GROUP-TECHNOLOGY-4 
and has as brothers the following project activities 

(F00-PA-30-65 F00-PA-30-80 
F01-PA-30-65 F01-PA-30-80 
F02-PA-30-65 F02-PA-30-80) 

The KS used to select technology was > KS-Tech-30 

Do you want to see this KS ? [y] £ 

{{ KS-Tech-30 
IS-A: KS 
KS-NAME: KS-Tech-30 
KS-TYPE: FIRST 
COND-OBJECTS : CURRENT-OBJECT FUNCTION NONE CURRENT-OBJECT 
CONDITIONS: (= PA-CODE 30-60) 

(= (CHECK-ELEMENTS-FOUNDATION CURRENT-OBJECT) T) 
(MY-MEMBER PA-CODE (30-65 30-80)) 

LHS-RULES: (Τ T F) (FI F) (F I T) 
RHS-RULES : (Χ I) (Χ I) (I Χ) 

ACTIONS: CREW-REMOVE-FORMS-05 CREW-REMOVE-FORMS-06}} 

Do you want to display schémas used to evaluate this KS ? [y] η 

Figure 6-45. Example of Explanation for Technology Decisions 
• an interface level where the results of the planning process are displayed or 

explained. 

These levels are identical to the three levels of the hybrid model for process 
planning described in Section 3.1.4. 

The strategic planning level is provided through the options of the CONTROL 
PANEL (CP). The user selects the "Interactive Control Panel" option of the 
Operations menu. No direct modification of context objects other than the 
agenda is permitted. The Forward Propagation Operator (FPO), the Backward 
Search Operator (BSO) and the Network Interpretation Operator (ΝΙΟ) may be 
executed at the strategic level. Their output is stored in the agenda for use by 
the Domain Operator Executor (DOE) of the operative level. The strategic 
layer is used for two main purposes: to propagate context changes and to 
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Figure 6-46. Overall Behavior of the CONSTRUCTION PLANEX System 

achieve goals. For example, suppose that the planner decides to change the type 
of crew assigned to a particular project activity after an initial plan has been 
generated. CONSTRUCTION PLANEX would use the FPO and ΝΙΟ to identify 
which operators have to be executed as a result of this change (e.g., recompute 
the number of crews allocated to the activity, recalculate its duration). 

The operative planning level is accessed through the CP and the Menus. 
Interactions that create and modify the elements of a project plan take place at 
this level. Two types of interactions are provided: 
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• execute one or more operators; or 
• directly modify context objects. 

In both cases, context objects are modified and these changes are reflected in the 
final construction project plan. Operators may be invoked in three ways: 

• Individual operators may be invoked using the Individual Operations menu of 
the system. 

• Predefined sequences of operators may be invoked by using functions that 
execute the operators. An example of this type of interaction occurs when the 
"Forward Pass" option of the Operations menu is selected (see 
Section 6 . 3 . 2 ) . 

• The Domain Operator Executor (DOE) may be used to execute operators 
from the operator queue of the agenda. Operator execution order is deter­
mined from the precedences among the operators. 

The interface level consists of passive interaction mechanisms that do not 
modify context objects or the agenda. These mechanisms facilitate the inter­
pretation of the results of the planning process. In addition to the Display and 
Explain menus, the user may access other interaction mechanisms such as output 
graphical displays or the REPORT GENERATOR. 

Overall control is provided via the set of menus. These let the user select one 
of the interaction mechanisms from the three levels of interaction. Once a 
planning step is initiated, it runs to completion. Only one task may be active at 
any time. 

6.3.2 Execution of the System 

CONSTRUCTION PLANEX has been used in three ways: 

• as an automated planner; 
• interactively as an intelligent planning assistant; and 
• as a component of the INTEGRATED BUILDING DESIGN ENVIRONMENT 

(IBDE) [ 3 2 ] . 

Fully automated execution of the system is invoked by choosing the 
"Forward Pass" option of the Operations menu. The system applies domain 
operators in the following predefined sequence: 

Step 1. Create-DE-Tree. Build the tree of design elements from the descrip­
tion of the structure. 

Step 2. Create-EAS. Generate the set of element activities used to construct 
each design element. 

Step 3. Create-EA-Tree. Link the element activities into a tree. 
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Step 4. Compute-Amount-EAS. Compute the amount of work to be performed 
for each element activity. 

Step 5. Determine-Unit-EAS. Determine the unit of measure of the work 
quantities for each element activity. 

Step 6. Determine-Material-EAS. Select the material package used by each 
element activity. 

Step 7. Create-PAS-for-EAS. Synthesize project activities from element ac­
tivities. 

Step 8. Create-PA-Tree. Link the project activities into a tree. 
Step 9. Select-Technology-PAS. Select the technologies used to construct 

each project activity. 
Step 10. Compute-Amount-P AS. Compute the quantity of work to be per­

formed for each project activity. 
Step 11. Determine-Recommended-Duration-PAS. Generate a recommended 

activity duration for each project activity. 
Step 12. Get-Duration-PAS. Determine how many crews to allocate to each 

project activity. 
Step 13. Get-Duration-EAS. Estimate the duration of the element activities. 
Step 14. Get-Successors-PAS. Establish precedences among the project ac­

tivities. 
Step 15. Get-Lags-PAS. Derive the leads and lags between consecutive project 

activities. 
Step 16. Get-Cost-PAS. Compute an estimated cost for project activities. 
Step 17. Floyd-Warshall. Apply the Floyd-Warshall algorithm to schedule the 

project. 
Step 18. Compute-NPV. Compute the net present value of the project. 

The only user interaction occurs at the start of the process when the user 
specifies the set of design elements (e.g., a floor of the building) for which the 
plan is to be generated. This selection is made via the Design Element menu. 
This lets the user specify the portion of the building to which the planning 
process is applied. Assumptions regarding the details of planning decisions are 
used in automated planning; e.g., when determining durations for project ac­
tivities in this mode, CONSTRUCTION PLANEX assumes that the user wants to 
avoid fractional working days. This reduces the number of questions the user is 
asked. 

In interactive execution, the user invokes distinct operators directly from the 
Individual Operations menu. The user selects individual operators and the range 
of objects to which the operator will be applied, one at a time. The user is 
responsible for selecting operators in proper sequences to generate the project 
plan. 
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These individual operators may query the user to control details of the plan­
ning process. For example, in determining activity durations (as described in 
Section 6 . 1 . 3 ) , the system estimates the recommended activity durations using 
Duration KSs and then computes the required numbers of crews. During inter­
active execution, the system lets the user change the values of these variables 
and asks whether fractional working days should be eliminated or not (as shown 
in Figure 6 - 4 7 ) . 

A third use of CONSTRUCTION PLANEX is as part of the INTEGRATED 
BUILDING DESIGN ENVIRONMENT, a vertically integrated set of knowledge-
based tools for building design. Actual use of CONSTRUCTION PLANEX does not 
vary from that described above. The only distinction is that the description of 
the building is prepared directly by other components of the IBDE [ 3 2 ] . 

• ARCHPLAN [ 8 9 ] produces the conceptual design of a building on the basis 
on user requirements; 

• STANLEY and STRYPES synthesize a preliminary structural design using 
information about the three-dimensional structural grid (proposed by 
ARCHPLAN) and wind and live loads; 

• SPEX [ 3 8 ] produces a preliminary design of the individual components of the 
structural system; and 

• FOOTER produces a preliminary design of the building foundation. 

Together these systems produce the design element information needed in 
construction planning. To integrate CONSTRUCTION PLANEX with the other 
IBDE processes, two types of operators were added to the system: 

• disaggregation operators decompose the building data produced by STAN­
LEY and STRYPES into groups of design elements on each floor; and 

• aggregation operators compute the cost and duration of the aggregated 
groups of design elements. 

With the exception of these additions, CONSTRUCTION PLANEX was used as 
developed. 

6.3.3 Examples Tested 
CONSTRUCTION PLANEX has been used to plan the excavation and erection of 
approximately fifteen different buildings. Most tests were for concrete-frame 
office buildings. In one test, part of an actual building was used. Information 
for this example was obtained from a local contractor. In other tests, building 
descriptions were directly input using the INPUT GENERATOR [ 1 1 6 ] or were syn­
thesized by the IBDE (see above). 

It is difficult to compare the results of the system with aggregate estimating 
cost data because CONSTRUCTION PLANEX only plans for the excavation and 
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The system assigns to activity 
POUR-CONCRETE-FOUNDATION-F00 a default duration of 5 days. 
Number of crews needed to satisfy this duration are 0.89 crews of 
type CREW-POUR-CONCRETE-05 

***** Duration Information for 
PA POUR-CONCRETE-FOUNDATION-F00 

Crew CREW-POUR-CONCRETE-05 
Components of Crew ((6 LABORERS) (1 CEMENT-FINISHER) 

(1 OPERATOR-EQUIPMENT) 
(2 GAS-ENGINE-VIBRATORS) 
(1 CONCRETE-PUMP)) 

Number of Crews 0.89 
Number of days 5 

Would you like to change any of these settings ? [η] η 

CONSTRUCTION PLANEX does not allow to have fractional crews in 
project activities. If you want fractional crews you have to split 
this activity using the SPLITTING MENU. 
New number of crews is > 1.0 

***** Duration Information for 
PA POUR-CONCRETE-FOUNDATION-F00 

Crew CREW-POUR-CONCRETE-05 
Components of Crew ((6 LABORERS) (1 CEMENT-FINISHER) 

(1 OPERATOR-EQUIPMENT) 
(2 GAS-ENGINE-VIBRATORS) 
(1 CONCRETE-PUMP)) 

Number of Crews 1.0 
Number of days 4.4 

Would you like to change any of these settings ? [η] η 

**** The real duration of PA F00-PA-50-60 is 35.6 hours 
**** or 4.4 days 

Would you like to use overtime to eliminate day fractions? η 

Figure 6-47. Example of Duration Estimation in the Interactive Mode 
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erection of structural building elements and its aggregate costs exclude other 
elements such as finishes and mechanical systems. The next section describes a 
test case for an eight-story steel-frame office building and shows the calcula­
tions to estimate the total cost of the building based on average unit costs [71]. 
It shows that the cost estimate produced by CONSTRUCTION PLANEX is within 
the range of answers obtained using aggregated square-foot costs [70]. 

6.4 Example Problem 
The use of the CONSTRUCTION PLANEX system will be illustrated with the ex­
ample steel-frame office building of Figure 6-48. This example was used in 
Means Square Foot Costs [70, p. 216] to illustrate the square-foot cost estimat­
ing process. A summary of the building features are: 

• 8 stories; 
• story height is 12'-0"; 
• floor dimensions are 100'-0" x 60 ' -0"; 
• transverse framing yields 4 bays, 20 ' -0" on center; 
• longitudinal framing yields 2 bays, 30 ' -0" on center; 
• concrete column footings are of three sizes: 

• corner footings: 10 ' -6" χ 10 ' -6" x 2 ' - l " ; 
• exterior footings: 12 ' -0" χ 12 ' -0" χ 3 ' - l " ; and 
• interior footings: 13 ' -6" χ 13 ' -6" χ 3 ' -5" ; 

• wide-flange steel columns (W 14x120) and steel beams (W 14x120) frame the 
structure; 

• longitudinal bay floor framing is 6 ' -0" on centers; 
• concrete floor slabs are 6" thick; 
• concrete element properties are: 

• 4000 psi concrete; and 
• 1% reinforcing steel (by area). 

A total of 35 design element schémas are used to describe the building (see 
Figure 6-49). Footings are described using three design element schémas: one 
for each type of footing (corner, exterior and interior). Beams are described 
using two design element schémas per floor: one storing descriptions of the 
forty-four (44) 25 ' -0" beams; and one storing descriptions of the ten 
(10) 30 ' -0" beams (lengths are column-line to column-line dimensions). 
Columns and slabs are each represented by one design element schema per 
floor. 
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comer footing exterior footing 

ο 
CD 

interior footing 

100' 

Figure 6-48. Floor Plan of the Example Building 

6.4.1 Obtaining an Initial Project Plan 
CONSTRUCTION PLANEX obtains an initial construction plan for the building by 
performing the following steps: 

Step 1. Input Building Description. The process starts with the system input­
ting the definition of the 35 design element schémas described above. 

Step 2. Group Design Elements. Design element schémas are grouped with 
respect to their location and type. 

Step 3. Create Element Activities. Schemas for the 93 element activities 
(shown in Figure 6-50) are created on the basis of the characteristics 
of the individual design elements. 

Step 4. Group Element Activities. Element activities are organized into a tree 
structure. 

Step 5. Compute Quantity Take-Offs. The work quantities for the element 
activities are computed using the geometric descriptions of the design 
elements. 

Step 6. Select Material Packages. Appropriate material packages are selected 
for the element activities. 

Step 7. Aggregate Element Activities. The 93 element activity schémas are 
aggregated into the 63 project activity schémas shown in Figure 6-51 . 
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Floor Type of Design Element 

Different 
Schemas per 
Floor 

Total 
Schemas 
Used 

FOI 
FOI 
FOI 
FOI 

Column Footings 
Beams 
Columns 
Slabs 
Beams 

3 
2 
1 
1 
2 
1 
1 

3 
2 
1 
1 

14 
7 
7 

F02 -> F08 
F02 -> F08 
F02 -> F08 

Columns 
Slabs 

Total 35 

Figure 6-49. Number of Design Element Schemas Used in the Example 

Step 8. Select Crew Types. Appropriate construction crews for the project 
activities are selected. 

Step 9. Aggregate Quantity Take-Offs. The sum of the work quantities for the 
element activities grouped into each project activity is stored in the 
corresponding project activity schema. 

Step 10. Recommend Durations. An appropriate duration for each project ac­
tivity is determined on the basis of the corresponding quantity of 
work. 

Step 11. Determine Crew Numbers. The number of crews allocated to each 
project activity is computed using its recommended duration and the 
adjusted productivity of the crew selected for the activity. The num­
ber of crews is stored in the project activity schema. 

Step 12. Estimate Activity Durations. The duration of each project activity, 
normal working hours and overtime hours are determined. Durations 
for the element activities are computed. 

Step 13. Link Activities. The 63 project activities are linked into a project 
activity network. 

Step 14. Get Precedences. The types of leads and lags between each project 
activity and its successors (e.g., Start-to-Start) are determined. 

Step 15. Prepare Schedule. A scheduling algorithm is applied to the network 
to obtain the earliest and latest start times for the project activities. 
The earliest completion time of the project is estimated to be 
45 working days for excavation and structural erection using a fast-
track schedule. 

Step 16. Compute Costs. Material and labor costs are aggregated and the es­
timated total bare cost (i.e., overhead and profit are excluded) is com­
puted. The estimated total cost for excavation and erection is 
$983,393. 
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Number of 

Type of 
Design Element 

Design 
Element 
Schemas 

Number of 
Type of Element Activity 
Element Activity Schemas 

Column Footing 3 Excavate Column Footing 3 
Dispose-Of-Excavation 
Column Footing 3 
Borrow Material Column Footing 3 
Place Forms Column Footing 3 
Reinforce Column Footing 3 
Pour Concrete Column Footing 3 
Remove Forms Column Footing 3 

Beams 16 Erection Steel Beams 16 
Join Beams with Columns 16 

Columns CO
 Erection Steel Columns 8 

Slabs CO Place Forms Slabs 
Pour Concrete Slabs CO 

Reinforce Slabs CO 

Remove Forms Slabs 8 

Total 35 93 

Figure 6-50. Types of Element Activities Created for Each Type of Design Element 

Number of Number of 
Type of Element Activity Type of Project Activity 
Element Activity Schemas Project Activity Schemas 

Excavate Column Footing 3 Excavation Foundation 1 
Dispose-Of-Excavation 

Column Footing 3 Haul Excavation Foundation 1 
Borrow Material 

Column Footing 3 Backfill Foundation 1 
Place Forms Column Footing 3 Formwork Foundation 1 
Reinforce Column Footing 3 Reinforcing Steel Foundation 1 
Pour Concrete Column Footing 3 Pour Concrete Foundation 1 
Remove Forms Column Footing 3 Remove Forms Foundation 1 
Erection Steel Beams 16 Erection Steel Beams 8 
Join Beams with Columns 16 Join Steel CO 

Erection Steel Columns CO Erection Steel Columns 
Diagonals 8 

Place Forms Slabs 8 Formwork Slabs CO
 

Reinforce Slabs 8 Reinforce Slabs 8 
Pour Concrete Slabs 8 Pour Concrete Slabs CO 

Remove Forms Slabs 

I 1 
CO
 

1 

Remove Forms Slabs 8 

Total 93 63 

Figure 6-51. Types of Project Activities Created for Each Type of Element Activity 
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Step 17. Compute Net Present Value. The Net Present Value (NPV) of the 
project is computed using the scheduling and cost information from 
the project activity schémas. The NPV is estimated to be $977,914/ 
This value is less than the total cost ($983,393) because the total cost 
ignores the time value of money. 

Step 18. Output Results. A set of displays and reports illustrating the results of 
the planning process are produced by the GANTT, REPORT 
GENERATOR, ANIMATOR and the passive output graphical processors. 

The schedule results of the planning process are shown in Figure 6 - 5 2 1 0 . 
The report was prepared by the REPORT GENERATOR. It contains seven 
columns: 

1. "CODE" is the project activity code; 
2. "LOCATION" identifies the work location (floor) of a project activity; 
3. "DURATION" is the estimated project activity duration; 
4. "EST" is the earliest-start-time of a project activity; 
5. "EFT" is the earliest-finish-time of a project activity; 
6. "LST" is the latest-start-time of a project activity; and 
7. "LFT" is the latest-finish-time of a project activity. 

Figure 6-53 shows a part of the cost report for the example building. The 
columns of this report are: 

1. "NAME" identifies a project activity; 
2. "COST" is the total cost of a project activity (i.e., the sum of the crew and 

material costs); and 
3. "PERCENT" is the percent cost of a project activity. 

Figure 6-54 shows a portion of a report describing crews. It contains six 
columns: 

1. "CODE" is the project activity code; 
2. "LOCATION" identifies the work location (floor) of a project activity; 
3. "AMOUNT" is the work quantity for a project activity; 
4. "CREW" designates the name of the crew used to perform a project ac­

tivity; 
5. "NO." is the number of crews assigned to a project activity; and 
6. "DUR." is the estimated duration (in days) of a project activity. 

The report shows that the same crew type is selected for all the activities having 
the same activity code. However, different crews are assigned to activities of 

All of the figures illustrating output reports have been edited for publication. Typically, these 
partial reports only contain information for the lower floors of the building. 
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CODE LOCATION DURATION EST EFT LST LFT 

10-60 F01 4 .4 0 .00 4 .43 0 .00 4 .43 
20-60 FOI 5 .0 0 .17 5 .21 0 .17 5 .21 
40-60 FOI 5 .9 0 .38 6 .30 0 .38 6 .30 
15-60 FOI 2 .3 2 .43 4 .69 47 .37 49. .63 
55-65 FOI 0 .2 6 .07 6 .32 6 .07 6. .32 
50-60 FOI 2 .2 6 .08 8. .32 46 .95 49. .18 
55-81 FOI 1 .9 6 .10 8. .05 6 .10 8. .05 
20-80 FOI 5 .3 6 .14 11, .45 18 .35 23, 66 
58-81 FOI 2 .0 6 .38 8. 38 22 .01 24. .01 
30-60 FOI 1 .7 7 .08 8. .76 47 .95 49. 63 
55-65 F02 0 .2 7 .81 8. 06 7 .81 8. 06 
55-81 F02 1. .9 7. .85 9. .79 7 .85 9. .79 
20-80 F02 5. .3 7. .88 13. .19 18, .35 23. 66 
58-81 F02 2 .0 8 .12 10. .12 22 .01 24. .01 
17-60 FOI 0. .4 8 .76 9. 15 49. .63 50. .01 
40-80 FOI 2 8 8. .99 11. 80 21, .20 24. .01 
55-65 F03 0. .2 9. 56 9. .81 9, .56 9. 81 
55-81 F03 1. 9 9. .59 11. .53 9. .59 11. ,53 
20-80 F03 5. .3 9. 62 14. .93 18. .35 23. 66 
58-81 F03 2. ,0 9. .87 11. .87 22. .01 24. ,01 
40-80 F02 2 8 10. 74 13. .54 21. .20 24. ,01 
55-65 F04 0. 2 11. 30 11. .55 11. 30 11. ,55 
55-81 F04 1. 9 11. .33 13. 28 11. .33 13. 28 
20-80 F04 5. .3 11. .37 16. 68 18. .35 23. 66 
58-81 F04 2. 0 11. .61 13. 61 22. ,01 24. 01 
50-80 FOI 0. 5 11. .80 12. 33 24. ,01 24. 54 
40-80 F03 2. 8 12. 48 15. 29 21. .20 24. 01 
55-65 F05 0. 2 13. .05 13. 30 13. ,05 13. 30 
55-81 F05 1. 9 13. 08 15. 02 13. ,08 15. 02 
20-80 F05 5. 3 13. .11 18. 42 18. ,35 23. 66 
58-81 F05 2. 0 13. 36 15. 36 22. ,01 24. 01 
50-80 F02 0. 5 13. 54 14. 07 24. ,01 24. 54 
40-80 F04 2. 8 14. 23 17. 03 21. 20 24. 01 
50-80 F03 0. 5 15. 29 15. 81 24. 01 24. 54 
40-80 F05 2. 8 15. 97 18. 77 21. 20 24. 01 
50-80 F04 0. 5 17. 03 17. 56 24. 01 24. 54 
50-80 F05 0. 5 18. 77 19. 30 24. 01 24. 54 
30-80 FOI 5. 0 32. 80 37. 80 45. 01 50. 01 
30-80 F02 5. 0 34. 54 39. 54 45. 01 50. 01 
30-80 F03 5. 0 36. 29 41. 29 45. 01 50. 01 
30-80 F04 5. 0 38. 03 43. 03 45. 01 50. 01 
30-80 F05 5. 0 39. 77 44. 77 45. 01 50. 01 

Figure 6-52. Partial Scheduling Report for the Example Building 
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NAME COST PERCENT 

BACKFILL-FOUNDATION --F01 799. 28 0. 08 
ΕRECTION-STEEL-BEAMS--FOI 60281. 00 6. .13 
ERECT ION- STEEL-BEAMS--F02 60281. 00 6. .13 
ERECT I ON- STEEL -BEAMS --F03 60281. ,00 6. .13 
ERECTION-STEEL-BEAMS --F04 60281. 00 6. .13 
ERECTION-STEEL-BEAMS--F05 60281. 00 6. .13 

ERECTION--STEEL-COLUMNS-DIAGONALS--FOI 7750. 80 0. .79 
ERECTION-- STEEL-COLUMNS-DIAGONALS --F02 7750. 80 0. .79 
ERECTION-- STEEL-COLUMNS-DIAGONALS --F03 7750. 80 0. .79 
ERECT I ON-- STEEL-COLUMNS-DIAGONALS --F04 7750. 80 0. .79 
ERECT ION -- STEEL-COLUMNS-DIAGONALS • -F05 7750. 80 0. .79 

EXCAVATION-FOUNDATION--FOI 2984. 76 0, .30 
FORMWORK-FOUNDATION--FOI 8303. 08 0, 84 

FORMWORK-SLABS --FOI 25139. 89 2 .56 
FORMWORK-SLABS --F02 25139. .89 2 .56 
FORMWORK-SLABS --F03 25139. 89 2 .56 
FORMWORK-SLABS --F04 25139. 89 2 .56 
FORMWORK-SLABS--F05 25139. 89 2, .56 

HAUL-EXCAVATION-FOUNDATION --FOI 2976. 88 0 .30 
POUR-CONCRETE-FOUNDATION--FOI 16413. .21 1 .67 

POUR-CONCRETE-SLABS • -FOI 7772. .23 0, .79 
POUR-CONCRETE-SLABS • -F02 7772. .23 0 .79 
POUR-CONCRETE-SLABS • -F03 7772, .23 0 .79 
POUR-CONCRETE-SLABS • -F04 7772. .23 0 .79 
POUR-CONCRETE-SLABS --F05 7772, .23 0 .79 

REINFORCING-STEEL-FOUNDATION--FOI 11675, .63 1 .19 
REINFORCING-STEEL-SLABS --FOI 5528 .82 0 .56 
REINFORCING-STEEL-SLABS • -F02 5528 .82 0 .56 
REINFORCING-STEEL-SLABS • -F03 5528 .82 0 .56 
REINFORCING-STEEL-SLABS --F04 5528, .82 0 .56 
REINFORCING-STEEL-SLABS --F05 5528, .82 0 .56 
REMOVE-FORMS-FOUNDATION--FOI 1335 .17 0 .14 

REMOVE -FORMS- SLABS--FOI 3840 .00 0 .39 
REMOVE -FORMS -SLAB S --F02 3840. .00 0, .39 
REMOVE-FORMS-SLABS --F03 3840. .00 0 .39 
REMOVE-FORMS-SLABS --F04 3840. .00 0 .39 
REMOVE-FORMS-SLABS--F05 3840, .00 0 .39 

JOIN-STEEL--FOI 7047, .36 0, .72 
JOIN- STEEL--F02 7047, .36 0 .72 
JOIN-STEEL--F03 7047, .36 0 .72 
JOIN-STEEL--F04 7047, .36 0 .72 
JOIN-STEEL--F05 7047. .36 0, .72 

Figure 6-53. Partial Cost Report for the Example Building 
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CODE LOCATION AMOUNT CREW NO DUR 

17-60 F01 229 .02 CREW-BACKFILL-FOUNDATION-05 1 .0 0 .4 
55-81 FOI 1400 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 1 .9 
55-81 F02 1400 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 1 .9 
55-81 F03 1400 .00 CREW-ERECT-BEAM-COLUMN-0 2 1 .0 1 .9 
55-81 F04 1400 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 1 .9 
55-81 F05 1400 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 1 .9 
55-65 FOI 180 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 0 .2 
55-65 F02 180 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 0 .2 
55-65 F03 180 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 0 .2 
55-65 F04 180 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 0 .2 
55-65 F05 180 .00 CREW-ERECT-BEAM-COLUMN-02 1 .0 0 .2 
10-60 FOI 442 .84 CREW-EXCAVATION-FOUNDATION-0 5 1 .0 4 .4 
20-60 FOI 2086 .20 CREW-FORMWORK-0 7 1 .0 5 .0 
20-80 FOI 6000 .00 CREW-FORMWORK-0 6 2 .0 5 .3 
20-80 F02 6000 .00 CREW-FORMWORK-0 6 2 .0 5, .3 
20-80 F03 6000 .00 CREW-FORMWORK-0 6 2 .0 5, .3 
20-80 F04 6000 .00 CREW-FORMWORK-0 6 2 .0 5, .3 
20-80 F05 6000 .00 CREW-FORMWORK- 0 6 2. .0 5. .3 
15-60 FOI 487 .13 CREW-HAUL-FOUNDATION-03 3, .0 2 .3 
50-60 FOI 234 .64 CREW-POUR-CONCRETE-06 1, .0 2. 2 
50-80 FOI 111. .11 CREW-POUR-CONCRETE-0 6 2. .0 0. .5 
50-80 F02 111. .11 CREW-POUR-CONCRETE-0 6 2 .0 0. ,5 
50-80 F03 111. .11 CREW-POUR-CONCRETE-06 2. .0 0. ,5 
50-80 F04 111. .11 CREW-POUR-CONCRETE-0 6 2. ,0 0. 5 
50-80 F05 111. .11 CREW-POUR-CONCRETE-0 6 2. ,0 0. 5 
40-60 FOI 32595. ,25 CREW-RE-STEEL-05 1. ,0 5. 9 
40-80 FOI 15435. ,00 CREW-RE-STEEL-05 1. 0 2. 8 
40-80 F02 15435. ,00 CREW-RE-STEEL-05 1. 0 2. 8 
40-80 F03 15435. ,00 CREW-RE-STEEL-0 5 1. 0 2. 8 
40-80 F04 15435. 00 CREW-RE-STEEL-05 1. 0 2. 8 
40-80 F05 15435. 00 CREW-RE-STEEL-05 1. 0 2. 8 
30-60 FOI 2086. 20 CREW-REMOVE-FORMS-0 5 3. 0 1. 7 
30-80 FOI 6000. 00 CREW-REMOVE-FORMS-0 6 3. 0 5. 0 
30-80 F02 6000. 00 CREW-REMOVE-FORMS - 0 6 3. 0 5. 0 
30-80 F03 6000. 00 CREW-REMOVE-FORMS-0 6 3. 0 5. 0 
30-80 F04 6000. 00 CREW-REMOVE-FORMS-06 3. 0 5. 0 
30-80 F05 6000. 00 CREW-REMOVE-FORMS-0 6 3. 0 5. 0 
58-81 FOI 864. 00 CREW-JOIN-STEEL-01 4. 0 2. 0 
58-81 F02 864. 00 CREW-JOIN-STEEL-01 4. 0 2. 0 
58-81 F03 864. 00 CREW-JOIN-STEEL-01 4. 0 2. 0 
58-81 F04 864. 00 CREW-JOIN-STEEL-01 4. 0 2. 0 
58-81 F05 864. 00 CREW-JOIN-STEEL-01 4. 0 2. 0 

Figure 6-54. Partial Crew Report for the Example Building 
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the same type but associated with different design elements (e.g., foundation 
formwork [code "20-80"] is performed with crew "crew-formwork-07" while 
slab formwork [code "20-60"] uses crew "crew-formwork-06"). 

6.4.2 Analysis of the Results 

The manner in which CONSTRUCTION PLANEX computes activity durations and 
costs is described below, followed by a comparison of its results with aggregate 
square-foot cost estimates. 

The basic data used to compute activity durations and costs are stored in the 
crew and material package schémas. The values of productivities and costs 
were taken from Means's Building Construction Cost Data [71]. For example, 
consider the crew schema displayed in Figure 6-55. This crew schema is 
equivalent to Means's "Crew-E-2". The standard productivity of this crew is 
720 lineal feet of steel erection per day. This rate corresponds to the 
value reported [71, p. 120] for erecting W 14x120 structural members 
(MASTERFORMAT code "05 1250 2500"). The normal installation cost per 
lineal foot is equal to the labor and equipment cost of the crew ($39.32 per 
man-hour) times the daily man-hours of the crew (7 workers in the crew χ 
8 hours per day = 56 man-hours per day), divided by the standard productivity 
of 720 lineal feet per day: 

$39.32 x 56 / 720 = $3.058 
Overtime unit costs are assumed to be 50% higher than the normal unit costs. 
CONSTRUCTION PLANEX selected this crew for the erection of structural mem­
bers on a floor. 

Consider the activity of erecting steel beams for the first floor. The system 
computes the amount of work for this activity by adding the quantity take-offs 
computed for the two steel erection element activities: one storing the amount of 
work for the forty-four (44) 25 ' - 0 " beams and the other storing the amount of 
work for the ten (10) 30 ' -0" beams. The total work quantity for this project 
activity is sum of the lengths of the beams: 

(44 x 25) + (10 x 30) = 1400' 
This quantity is used to compute the duration of the structural erection activity 
by dividing the quantity by the daily productivity: 

1400 / 720 = 1.944 days 
where 720 lineal feet per day is the standard productivity of the crew (from 
Figure 6-55). The material cost of the activity is computed as quantity times 
cost: 

1400 x 40 = $56,000 
where $40 per foot is the estimated local material cost of a W 14x120 steel beam. 
Similarly, the crew cost is computed as quantity times installation cost per unit 
quantity: 

(1400 x $3.058) = $4,281 
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(defschema crew-erect-beam-column-02 
(is-a crew) 
(component-names (1 struct (1 struct-steel-foreman) 

(4 struct-steel-workers) 
(1 equip-oper-crane) 
(1 equip-oper-oiler) 
(1 crane-90-tons)) 
720) 
ft/day) 
3.058) 
4.587)) 

( std-productivity 
(prod-unit 
(normal-cost 
(overtime-cost 

Figure 6-55. Crew for Erecting Structural Steel Members 

where $3,058 is the normal crew cost per foot of beam. Finally, the total cost of 
the activity is computed as the sum of the material and labor costs: 

($4,281 + $56,000) = $60,281 
This corresponds to the cost for "ERECTION-STEEL-BEAMS-FOl" in 
Figure 6-53. 

The example building was used in Means Square Foot Costs to illustrate the 
square-foot cost estimating process [70, pp. 216-224]. In the example, cost of 
the structural elements is 23% of the total bare cost of the project. Using the 
N P V cost of the structural elements, the estimated total cost of the building is 
computed as: 

$979,914 / 0.23 = $4,260,496 
The building floor area is: 

60 x 100 x 8 = 48,000 square feet 
Thus, the cost per square foot is: 

4,260,496 / 48,000 = $88.76 
This value is higher than the $57 per square-foot average cost for 5 - to 10-story 
buildings, but falls within the cost ranges ($32-$ 105 per square foot) reported in 
the literature [70, p. 164]. 

6.4.3 Modifications to the Project Plan 
Modifying the initial plan produced by CONSTRUCTION PLANEX is illustrated 
with a simple example. Suppose that the user wants to investigate the effect of 
using a different crew for structural erection. This situation might arise if the 
most appropriate equipment is not available. This alternate crew is designated 
"crew-erect-beam-column-01 " and has a standard productivity of 500 lineal feet 
per day (less than the 720 lineal feet per day used in formulating the initial plan). 
Assume that the corresponding crew schema is already defined in the context. 
The process of modifying the initial plan proceeds as follows: 

Step 1. The user selects the Change menu from the Top menu and indicates that 
he wants to change the technology of a project activity. 



246 CONSTRUCTION PLANEX 

Step 2. A menu with all project activities is displayed and the user selects one 
of the steel erection activities (code "55") . 

Step 3. The user inputs the new crew type designation for the activity. This 
value is stored in the group-technology object linked to the selected 
project activity. This single substitution results in the effect list 
"(pa-schema technology filled)" being inserted in the context-changes 
slot of agenda. 

Step 4. The user executes the Forward Propagation Operator (FPO) to obtain 
a network of global changes and operators. This control operator in­
serts 56 (operator object) pairs in the agenda. Figure 6-56 shows some 
of these operator pairs. In order to maintain consistency in the context, 
CONSTRUCTION PLANEX must recalculate the durations and costs of the 
16 project activities that used the crew "crew-erect-beam-column-02" 
(1 per beam and 1 per column for the 8 floors), and recompute the 
durations of the 24 element activities linked to these 16 project ac­
tivities (longitudinal beams, transverse beams and columns for each 
floor). 

Step 5. The user executes the Network Interpretation Operator (ΝΙΟ) which 
yields 40 precedences among the 56 operator pairs: 16 precedences 
between the operators that compute the durations of project activities 
and those that compute their associated costs; and 24 precedences be­
tween the operators that compute the duration of project activities and 
those that compute the duration of element activities. Some of these 
precedences are shown in Figure 6-57. 

Step 6. The user executes the Domain Operator Executor (DOE) to propagate 
the effects of the crew technology change. 

By executing these six steps, the user has introduced the desired change and 
used the control operators of PLANEX to propagate the effects of the change and 
maintain the consistency in the context. The only operators that remain to be 
executed are the Floyd-War shall scheduling algorithm and the Compute-NPV 
operator (since they do not have Domain Operator Schemas, nothing automati­
cally triggers their execution). Results of executing these operators are shown in 
Figures 6-58 and 6-59. In terms of schedule and cost, the completion time of 
the project increases by five days (from 50.01 days to 55.12 days), and the NPV 
of the project increases by 1.6% (from $977,914 to $993,862). These increases 
in time and cost are due to the extra hours of work in steel erection. 
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; Recompute Cost of Project Activities 

(GET--C0ST--PAS F05 -PA-55-65) 
(GET--COST--PAS F05 -PA-•55-81) 
(GET--COST--PAS F04--PA-•55-65) 
(GET--COST--PAS F04 -PA-•55-81) 
(GET--COST--PAS F03 -PA-•55-65) 
(GET--COST--PAS F03 -PA-•55-81) 
(GET--C0ST--PAS F02 -PA-•55-65) 
(GET--COST--PAS F02 -PA-•55-81) 
(GET--COST--PAS FOI -PA-•55-65) 
(GET--COST--PAS FOI -PA-•55-81) 

; Recompute Duration of Project Activities 

(GET-DURATION-PAS F05 -PA-•55-65) 
(GET-DURATION-PAS F05 -PA-•55-81) 
(GET-DURATION-PAS F04--PA-•55-65) 
(GET-DURATION-PAS F04 -PA-•55-81) 
(GET-DURATION-PAS F03 -PA-•55-65) 
(GET-DURATION-PAS F03 -PA-•55-81) 
(GET-DURATION-PAS F02 -PA-•55-65) 
(GET-DURATION-PAS F02 -PA--55-•81) 
(GET-DURATION-PAS FOI -PA--55-•65) 
(GET-DURATION-PAS FOI -PA--55-•81) 

; Recompute Duration of Element Activities 

(GET--DURATION--EAS F05 -EA-•5-120--10-65- CM -i) 
(GET--DURATION--EAS F05 -EA-•5-•120· -20-81- CM -2) 
(GET--DURATION--EAS F05 -EA-•5-•120--20-81 -2 -i) 
(GET--DURATION--EAS F04 -EA-•5-120--10-65 -2 -i) 
(GET--DURATION--EAS F04 -EA-•5-•120--20-81--2 -2) 
(GET--DURATION--EAS F04 -EA-•5-•120--20-81 -2 -1) 
(GET--DURATION--EAS F03 -EA-•5-•120--10-65 CM -1) 
(GET--DURATION--EAS F03 -EA--5-•120--20-81 -2 -2) 
(GET--DURATION--EAS F03 -EA-•5-•120--20-81 -2 -i) 
(GET--DURATION--EAS F02 -EA-•5-•120--10- 65 -2 -i) 
(GET--DURATION--EAS F02 -EA-•5-•120--20-•81 CM -2) 
(GET--DURATION--EAS F02 -EA--5-•120 -20-•81 -2 -1) 
(GET--DURATION--EAS FOI -EA-•5-•120 -10-65 -2 -i) 
(GET--DURATION--EAS FOI -EA-•5-•120 -20-•81 -2 -2) 
(GET--DURATION--EAS FOI -EA--5-•120 -20-•81 -2 -1) 

Figure 6-56. (Operator Object) Pairs Created by the 
Forward Propagation Operator 
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FROM-OPERATOR 

(GET--DURATION-PAS F04--PA-55- 65) 
(GET--DURATION--PAS F04--PA-55- 81) 
(GET--DURATION-•PAS F03--PA-55- 65) 
(GET--DURATION--PAS F03--PA-55- 81) 
(GET--DURATION--PAS F02--PA-55- 65) 
(GET--DURATION--PAS F02--PA-•55-81) 
(GET--DURATION--PAS FOI--PA-•55- 65) 
(GET--DURATION--PAS FOI--PA-•55- 81) 
(GET--DURATION--PAS F04--PA-•55- 65) 

(GET--DURATION--PAS F04--PA-•55-•81) 

(GET--DURATION--PAS F04--PA-•55-•81) 

(GET--DURATION--PAS F03 -PA--55-•65) 

(GET--DURATION--PAS F03 -PA--55-•81) 

(GET--DURATION--PAS F03 -PA--55-•81) 

(GET--DURATION--PAS F02 -PA--55--65) 

(GET--DÜRATION--PAS F02 -PA--55--81) 

(GET--DÜRATION--PAS F02 -PA--55-•81) 

(GET--DURATION--PAS FOI -PA--55--65) 

(GET--DÜRATION--PAS FOI -PA--55-•81) 

(GET--DURATION--PAS FOI -PA--55--81) 

TO-OPERATOR 

(GET-COST-PAS F04-PA-55-65) 
(GET-COST-PAS F04-PA-55-81) 
(GET-COST-PAS F03-PA-55-65) 
(GET-COST-PAS F03-PA-55-81) 
(GET-COST-PAS F02-PA-55-65) 
(GET-COST-PAS F02-PA-55-81) 
(GET-COST-PAS F01-PA-55-65) 
(GET-COST-PAS F01-PA-55-81) 
(GET-DURATION-EAS 
F04-EA-5-120-10-65-2-1) 
(GET-DURATION-EAS 
F04-EA-5-120-20-81-2-2) 
(GET-DURATION-EAS 
F04-EA-5-120-20-81-2-1) 
(GET-DURATION-EAS 
F03-EA-5-120-10-65-2-1) 
(GET-DURATION-EAS 
F03-EA-5-120-20-81-2-2) 
(GET-DURATION-EAS 
F03-EA-5-120-20-81-2-1) 
(GET-DURATION-EAS 
F02-EA-5-120-10-65-2-1) 
(GET-DURATION-EAS 
F02-EA-5-120-20-81-2-2) 
(GET-DURATION-EAS 
F02-EA-5-120-20-81-2-1) 
(GET-DURATION-EAS 
F01-EA-5-120-10-65-2-1) 
(GET-DURATION-EAS 
F01-EA-5-120-20-81-2-2) 
(GET-DURATION-EAS 
F01-EA-5-120-20-81-2-1) 

Figure 6-57. Partial List of Precedences Created by the 
Network Interpretation Operator 

6.5 Conclusions 
CONSTRUCTION PLANEX demonstrates the applicability of knowledge-based ex­
pert system techniques to the problem of construction project planning. An 
expert system aid for this type of planning could yield substantial benefits over 
traditional methods by producing more consistent and detailed plans at lower 
costs. CONSTRUCTION PLANEX provides an operational prototype that could be 
extended to a full system. In addition to the CONSTRUCTION PLANEX system 
architecture itself, the models used in the system represent formalisms of the 
planning process, including: (1) the bottom-up or disaggregate activity formula-
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CODE LOCATION DURATION EST EFT LST LFT 

10-60 FOI 4 .4 0 .00 4 .43 0 .00 4 .43 
20-60 FOI 5 .0 0 .17 5, .21 0 .17 5 .21 
40-60 FOI 5 .9 0 .38 6 .30 0 .38 6 .30 
15-60 FOI 2 .3 2 .43 4 .69 52 .48 54 .73 
55-65 FOI 0 .4 5 .96 6 .32 5 .96 6 .32 
50-60 FOI 2 .2 5 .97 8 .21 52, .05 54 .29 
55-81 FOI 2 .8 5 .99 8 .79 5, .99 8 .79 
20-80 FOI 5 .3 6 .03 11, .34 23 .46 28 .77 
30-60 FOI 1, .7 6 .97 8. .65 53, .05 54, .73 
58-81 FOI 2 .0 7 .12 9. .12 27, .12 29, .12 
55-65 F02 0. .4 8 .45 8. .81 8, .45 8. .81 
55-81 F02 2 8 8, .48 11. 28 8. 48 11. .28 
20-80 F02 5. .3 8, .52 13. 83 23. .46 28. .77 
17-60 FOI 0. .4 8. .65 9. .04 54. .73 55. .12 
40-80 FOI 2. .8 8, 88 11. 69 26. .31 29. .12 
58-81 F02 2 .0 9, .61 11. .61 27. .12 29. .12 
55-65 F03 0. .4 10. .94 11. .30 10. 94 11. .30 
55-81 F03 2. 8 10. .97 13. .77 10. .97 13. ,77 
20-80 F03 5. .3 11. .01 16. .32 23. .46 28. .77 
40-80 F02 2. 8 11. .37 14. .18 26. ,31 29. ,12 
50-80 FOI 0. .5 11. 69 12. 22 29. ,12 29. ,65 
58-81 F03 2. .0 12. .10 14. ,10 27. ,12 29. ,12 
55-65 F04 0. 4 13. 43 13. 79 13. 43 13. ,79 
55-81 F04 2. 8 13. 46 16. 26 13. 46 16. ,26 
20-80 F04 5. 3 13. .50 18. 81 23. 46 28. ,77 
40-80 F03 2. 8 13. 86 16. 67 26. 31 29. ,12 
50-80 F02 0. 5 14. 18 14. 71 29. ,12 29. ,65 
58-81 F04 2. 0 14. .59 16. 59 27. ,12 29. ,12 
40-80 F04 2. 8 16. 35 19. 16 26. 31 29. ,12 
50-80 F03 0. 5 16. 67 17. 20 29. 12 29. 65 
50-80 F04 0. 5 19. 16 19. 69 29. 12 29. 65 
30-80 FOI 5. 0 32. 69 37. 69 50. 12 55. ,12 
30-80 F02 5. 0 35. 18 40. 18 50. 12 55. 12 
30-80 F03 5. 0 37. 67 42. 67 50. 12 55. 12 
30-80 F04 5. 0 40. 16 45. 16 50. 12 55. 12 

Figure 6-58. Partial Scheduling Report for the Revised Project Plan 

*** Financial Results ****** 

With 
Annual MARR > 0.10 
Inflation > 0.04 

NPV Costs is $993,862 (not including overhead and profit) 

Figure 6-59. Output of the Compute-NPV Operator for the Revised Project Plan 
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tion model; ( 2 ) algorithms for strategic nonlinear planning; and ( 3 ) the unified 
activity network model. For commercial applications, the knowledge base in 
CONSTRUCTION PLANEX would have to be substantially expanded; the current 
version only plans excavation and structural erection. Extending the system to 
handle project monitoring and control is also possible. 

The most fundamental contribution of this work is CONSTRUCTION PLANEX 
itself: a conceptual design of an integrated system for construction project plan­
ning and a realization of that design in a prototype system that can plan the 
excavation and structural erection of concrete and steel-frame buildings. When 
compared to other tools for construction project planning, CONSTRUCTION 
PLANEX has several advantages: 

• CONSTRUCTION PLANEX is the first system that integrates all the elements of 
the construction planning process into a unified modeling and planning sys­
tem. To generate a process plan, the system formulates activity networks, 
selects technologies and construction methods, estimates activity durations 
and costs, and prepares project schedules. Other construction planning sys­
tems are applicable to only parts of the whole process. In particular, most 
commercial systems are limited to performing scheduling computations and 
require the user to formulate the project plan and provide it as input to the 
program. 

• While the scope of the prototype implementation is limited, development of 
CONSTRUCTION PLANEX required that the types of knowledge, problem-
solving operators and representational structures be identified and formalized. 
The resulting formal model and structure of the construction planning 
problem are more general than those used in the prototype. This model can 
be used to extend CONSTRUCTION PLANEX , or as the basis for developing 
similar tools in other construction planning domains. 

In terms of existing tools for construction project planning, CONSTRUCTION 
PLANEX includes an important feature. It provides a framework which incor­
porates both the time value of money and value engineering in planning. Cur­
rent tools either do not provide a mechanism to consider these effects or do not 
provide the flexibility of CONSTRUCTION PLANEX. 

As CONSTRUCTION PLANEX is only a prototype, there are several extensions 
which are desirable, related to both its depth and problem-solving capabilities: 

• The knowledge in the system is limited to excavation and structural erection. 
Expansion of the knowledge base to include other aspects of building con­
struction requires that additional design elements and activities be defined. 

• The knowledge in the current prototype was provided by an experienced 
planner. However, it has never been verified, has not been refined by incor­
porating results from previous projects, and it is idiosyncratic. Verification 
and refinement of the knowledge base would improve the performance of the 
system. 
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• CONSTRUCTION PLANEX considers the type and location of activities during 
planning, but does not reason about the geometry of the elements. More 
comprehensive geometric reasoning could be useful in some planning ap­
plications. 

• In CONSTRUCTION PLANEX , resource leveling and resource allocation are still 
done by hand (albeit with the interactive GANTT scheduler). Inclusion of 
resource allocation methods and resource leveling algorithms would further 
enhance the capabilities of CONSTRUCTION PLANEX. 

• CONSTRUCTION PLANEX does not use a formal database management system 
(DBMS) to store planning data such as unit costs. Indeed, a DBMS could be 
used to store and retrieve objects such as knowledge sources. 



7 HARNESS PLANEX: An 
Expert System for 
Electrical Wire Harness 
Process Planning 

An example application of PLANEX for planning the manufacture of products is 
HARNESS PLANEX , an expert system that generates activity plans for manufac­
turing automotive electrical harnesses. Harnesses are used in automobiles to 
transmit electrical current. A simplified example of a harness is shown in 
Figure 7 - 1 . A typical harness is composed of wires, terminals, connectors, 
molding, splices, tubing and tape, but may contain other electrical components 
such as light bulbs or diodes. Harness manufacturers are typically subcontrac­
tors to one or more vehicle manufacturers. 

When a harness manufacturer receives the drawings and specifications of a 
harness, he must plan how to manufacture the product and estimate the cost of 
the harness. Typically, this planning is done by experts in the engineering 
department who generate a process sheet which describes how the harness will 
be manufactured. The process sheet is important to the manufacturer because it 
provides information about individual machine usage and material requirements. 
Each year, a harness manufacturer will produce hundreds of process sheets in a 
short period of time at the beginning of the new model production year. Process 
sheets must be generated as quickly as possible to produce prototype harnesses 
that are sent to the automobile manufacturer for final approval. 

Similar to the CONSTRUCTION PLANEX system described in Chapter 6, 
HARNESS PLANEX receives as input information extracted from the design draw­
ings of a particular harness and identifies the activities required for its manufac-

253 



254 HARNESS PLANEX 

Figure 7 -1 . Example of an Electrical Automotive Harness 

ture, selects appropriate technologies for these activities and estimates their 
duration and the total usage of resources. In addition, the system aggregates 
harness components into subassemblies which represent parts of the harness that 
may be manufactured independently before being assembled into the final har­
ness. 

The intent in the development of HARNESS PLANEX was to test the ap­
plicability of PLANEX to the automated generation of process plans. Knowledge 
was provided by an experienced Mexican harness manufacturer that sells har­
nesses in the United States and Latin America. 

7.1 Models for the Harness Manufacturing 
Planning Process 

This section discusses the models used in HARNESS PLANEX in the various 
stages of the planning process. Some of these models are similar to the cor­
responding models used in the CONSTRUCTION PLANEX system described in 
Section 6.1. There are some important differences, however: 

• At the beginning of the production year, the harness planner is more con­
cerned with what is to be done than when it will be done, while the construc­
tion planner is concerned with both activities and schedule throughout the 
planning process. The output of the harness manufacturing planning process 
is a set of reports identifying manufacturing activities and machine usage but 
without schedules for the activities. 

• The set of harness manufacturing activities is small; therefore there is no need 
to explicitly identify activity precedences. 



Definition of Work Tasks 255 

Because of these differences, HARNESS PLANEX uses models for only three of 
the four planning stages described in Section 2.3: 

• Definition of Work Tasks models to identify manufacturing activities for har­
ness components; 

• Choice of Technologies and Manufacturing Methods models for the allocation 
of resources (machines, labor and materials) to the manufacturing activities; 
and 

• Estimation of Activity Durations and Costs models to estimate expected ac­
tivity durations and costs. 

The modularity of the PLANEX architecture permits extensions of the system 
to other planning operations. The user would have to define the procedural code 
and the Domain Operator Schemas of the new operators as well as correspond­
ing knowledge sources. For example, the operators for production line schedul­
ing could use the data produced by the current version of HARNESS PLANEX as a 
basis for the job shop scheduling process. Other information such as lane 
layout, production volume and promised delivery dates would have to be in­
cluded in the analysis. 

7.1.1 Definition of Work Tasks 

Generating the set of manufacturing activities for a harness begins with 
specifications of: (1) the individual components of the harness (e.g., wires, 
terminals); and (2) the harness topology. This design description is the input to 
a process which decomposes the harness into unitary components (see 
Figure 7-2). The process takes the descriptions of the characteristics of the 
wires in the harness (e.g., their length, gauge, type of insulation, location) and 
stores the information in wire objects. This information is used to identify some 
of the manufacturing activities (e.g., cutting each wire from the spool) but is 
insufficient to generate a complete set of manufacturing activities. Some ac­
tivities such as tinning wire ends are performed on multiple wire ends simul­
taneously and are viewed as a single activity. Therefore, additional objects 
representing the relationships among the individual wires must be created and 
analyzed to obtain the set of work tasks. 

To establish these relationships, HARNESS PLANEX decomposes each wire 
into three parts: its left extreme (i.e., end), its body and its right extreme. Wires 
are connected to each other by common terminals. To distinguish among ter­
minals of the same type, each terminal is associated with a specific location in 
the harness. The resulting terminal-location objects represent wire connections. 
The set of design elements from which element activities are synthesized are the 
body and the terminal-location objects. 
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Input Information 

Wire 
Object 

Left Right 
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Figure 7-2. Work Task Decomposition Model of HARNESS PLANEX 

Having generated a set of design element objects describing the wires and 
their relationships, HARNESS PLANEX completes the definition of the work tasks 
by defining two types of activities: 

• body activities associated with the manufacture of the body objects; and 
• extreme activities associated with the manufacture of the terminal-location 

Once generated, these activities are used to prepare the process sheet. No 
activity aggregations (similar to the aggregation of element activities into a 
project activity in CONSTRUCTION PLANEX) are required. 

There are some limitations in the work task decomposition model used by 
HARNESS PLANEX: 

• the model does not generate activities for handling completed subassemblies; 

• the model produces only one level of activity aggregation. 

The first limitation is a consequence of the characteristics of the harness 
manufacturing process. Generally the activities applied to completed sub­
assemblies are performed in the assembly portion of the production line. These 
activities depend on both the characteristics of the harness and the type of tools 
used (e.g., custom jigs to hold subassemblies). A detailed description of the 
tools used in the assembly process is needed if the assembly activities are to be 
generated. This is beyond the scope of the prototype. With respect to the 
second limitation, there is no need to aggregate the manufacturing activities of a 
single harness because each activity requires an individual piece of equipment. 

objects. 

and 
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Meaningful aggregations at a broader level would require information about the 
layout of the production line and the production schedule for different harnesses. 
Again, this is beyond the scope of the prototype version of HARNESS PLANEX. 

7.1.2 Choice of Technologies and Manufacturing Methods 

During the planning process, the only technology choice decisions made by 
HARNESS PLANEX concern the type of machine selected for the activity (e.g., a 
"08 -26" or a "crimper" for wire cutting). No considerations of the number of 
machines required are made as only one machine is used for each activity. As a 
result, the technology selection process is relatively simple. Again, an extension 
to include job shop scheduling would introduce more complexities. 

With respect to the extreme activities (e.g., the tinning of wire ends), tech­
nology choices are determined solely as a function of the information stored in 
the associated terminal-location object. However, for a wire cutting activity 
associated with a wire body, the process is more complex because some cutting 
machines can cut and apply terminals to wire ends while others cannot. 
HARNESS PLANEX selects the type of cutting machine using two steps: 

Step 1. An appropriate cutting machine is proposed for each end of a wire on 
the basis of its type of terminal. 

Step 2. The two proposals are examined and a cutting machine is selected for 
the wire body. 

The principal limitation of the technology choice model is that it is local to 
each harness. No considerations of the current machine work load, the layout of 
the production line or the production volumes of harnesses are incorporated into 
the analysis. The nature of the harness industry is so dynamic (e.g., the volumes 
of some part numbers may change every week) that a system which considered 
all factors would be very complex. Therefore, the technology selection process 
used by HARNESS PLANEX mimics the process employed by the harness 
manufacturer's production engineers. 

7.1.3 Estimation of Activity Durations and Costs 

HARNESS PLANEX estimates activity durations and costs using average produc­
tivities and unit costs provided by the industrial engineering department of the 
harness manufacturer. These values are stored in the duration knowledge 
sources of the knowledge base. Some of these relationships are a function of 
wire characteristics (e.g., the wire length for a cutting activity) while others 
involve considerations of harness topology (e.g., the number of wires linked to a 
particular terminal for the tin, splice or molding activities). 
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There are some limitations with respect to how HARNESS PLANEX estimates 
activity durations: 

• no variability measure is provided for the expected activity durations; and 
• no analysis is done with respect to the factors affecting activity durations. 

However, these limitations reflect the status quo of the current manual means of 
generating process sheets. A richer model for activity duration computations 
may provide some advantages, but it must first be developed by the manufac­
turer. 

With respect to manufacturing costs, HARNESS PLANEX uses an average 
minute cost provided by the manufacturer's accounting department. This unit 
cost factor is determined by analyzing information related to the manufacturing 
process such as inventory costs, usage of resources (labor, equipment and 
materials) and other indirect costs. Modification of this estimating model would 
be desirable as some of the cost elements are not directly related to the charac­
teristics of individual harnesses. Allocated cost elements often make average 
costs derived from accounting information inaccurate [56]. 

7.2 System Architecture 
The implementation of HARNESS PLANEX uses the four components of the 
PLANEX architecture: 

1. representational structures describe the harness and manufacturing process; 
2. domain operators perform manufacturing planning tasks; 
3. knowledge sources detail harness manufacturing knowledge used by the 

operators; and 

4. user interface mechanisms control the problem-solving process. 

7.2.1 Representational Structures 
Figure 7-3 shows the different objects used in HARNESS PLANEX to represent a 
harness and the activities required for its manufacture. As described in the 
previous section, wire objects are decomposed into two objects corresponding to 
the left and right end (extreme) of the wire and a third object describing the body 
of the wire. Each wire extreme is associated with a single terminal-location 
object that specifies the type of terminal and its location in the harness. 
Terminal-location objects are used to represent connections between wires. Ac­
tivities associated with a wire extreme, such as manual application of terminals, 
splicing, tinning and molding are all linked to particular terminal-location ob­
jects. Other activities such as wire cutting are linked to body objects. On top of 
the hierarchy are subassembly objects linking one or more wire objects. 
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Figure 7 - 3 . Representational Structures Used in HARNESS PLANEX 

7.2.2 Domain Operators 

HARNESS PLANEX generates process sheets by applying five types of problem-
solving operators: 

• Wire operators are applied to wire objects to generate objects of the harness 
model. Examples of wire operators are those which create body and extreme 
objects, and which aggregate wires into subassemblies. 

• Body operators are applied to body objects to generate activities to manufac­
ture a wire body. 

• Extreme operators are applied to terminal-location objects. Examples are the 
operators that create manufacturing activities for a wire end, and those that 
determine if cutting the wire and applying the terminal can be performed 
simultaneously. 

• Activity operators are applied to activity objects to select manufacturing tech­
nologies and estimate activity durations. 

• Machine operators are applied to machine objects to compute the total usage 
of a machine. 

The following discussion describes the behavior of the individual operators, the 
Domain Operator Schemas (DOSs) and the types of Knowledge Sources (KSs) 
used by the operators. 
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7.2.2.1 Wire Operators HARNESS PLANEX has six wire operators: 

• Cr eate-Ψire-Body creates an object to represent the central portion of a wire; 
• Create-Left-Extreme and Create-Right-Extreme create objects to represent 

wire ends; 
• Delete-Left-Extreme and Delete-Right-Extreme delete objects representing 

wire ends; and 
• Create-Subassemblies groups wires having common terminal-location pairs 

into subassemblies. 

Create-Ψire-Body. The Create-Wire-Body operator is used to create the body 
object of a particular wire. The operator is purely algorithmic and does not 
require the evaluation of a knowledge source. Figure 7-4 shows the procedural 
code of this operator. The operator is applied to a wire object and performs 
three steps: 

Step 1. Generate the name of the body object as (wire-name)-body, where 
(wire-name) is the name of the wire object to which the operator is 
applied. 

Step 2. If the body object does not exist: create it. 
Step 3. Link the body object to the wire object. 

The preconditions and effects of the Create-Ψire-Body operator are shown in 
the Domain Operator Schema (DOS) of Figure 7-5. The operator requires that 
the is-a slot of the wire object is filled, verifying that it is a wire object, and that 
the name of the wire is defined. The operator stores the name of the body object 
in the has-body slot of the wire object and fills the is-a and body-of slots in the 
newly created object. The three effects are all predictable because the names of 
the schémas and slots where information is stored are known before the operator 
is executed. 

(defun create-wire-body (wire) 
(let* ((name (get-value wire 'name)) ; gets the name of the wire 

(name-body (append-atom name '-body)) ; appends -body 
(is-a (get-value wire 'is-a))) 

(cond ((equal is-a 'wire) ; check that it is a wire object 
(delete-schema name-body) ; delete previous schema 
(csenema name-body ; macro for creating a schema 
('is-a 'body) 
('name name-body) 
('body-of wire) 
Chas-acts)))))) 

Figure 7-4. Procedural Code of the Create-Wire-Body Operator 



Domain Operators 261 

(defschema Create-Wire-Body 
(is-a 
(domain-type 
(application-object 
(input-ob ject s 
(input-slots 
(input-bindings 
(input-cond-types 
(output-objects 

(output-slots 
(output-bindings 
(output-predictable 
(output-effect-type 

operator) 
wire) 
current-object) 
current-object current-object) 
is-a name) 
nil <wire-name>) 
filled filled) 
current-object <wire-name>-body 
<wire-name>-body) 
has-body is-a body-of) 
nil nil nil) 
yes yes yes) 
fill fill fill)) 

Figure 7-5. Domain Operator Schema for the Create-Wire-Body Operator 

Create-Left-Extreme and Create-Right-Extreme. The Create-Left-Extreme and 
Create-Right-Extreme operators are similar to the Create-Wire-Body operator 
described above. Both are algorithmic and each creates an object to represent 
one of the two ends of a wire. These objects are titled (wire-name)-left and 
(wire-name)-right, where (wire-name) is the name of the wire. The operator 
performs four steps: 

Step 1. Generate the names of the extreme objects from the name of the body 
object (e.g., (wire-name)-left). 

Step 2. If the extreme object does not exist: create it. 
Step 3. Create terminal-location objects named (term-type)-(location), where 

(term-type) is the type of terminal on a wire end and (location) is its 
corresponding location in the harness. 

Step 4. Link all objects into the representational structures. 

Figure 7-6 shows the DOS of the Create-Left-Extreme operator. The 
operator uses as input the name (name), terminal type (term-left) and location 
(loc-left) of the wire object to which the operator is applied. It has the explicit 
requirement that the has-left-extreme slot of the wire object be "erased" before 
the operator is executed. This precondition is used by the control operators 
when a change to the harness design is made. The "erased" precondition will 
cause HARNESS PLANEX to include delete operators in the agenda to delete old 
information before new results are generated. The results are stored in the wire 
object (linked to the extreme object), the created extreme object (type and 
location) and the links to the terminal object. 
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(defschema Create-Left-Extreme 
(is-a operator) 
(domain-type wire) 
(application-object current-object) 
(input-objects current-object current-object 

current-object current-object 
current-object) 

(input-slots is-a name term-left loc-left 
has-left-extreme) 

(input-bindings nil <wire-name> <term-left> <loc-left> 
nil) 

(input-cond-types filled filled filled filled erased) 
(output-objects current-object <wire-name>-left 

<wire-name>-left 
<term-left>-<loc-left> term-location) 

(output-slots has-left-extreme is-a has-term-loc 
is-a is-a+inv) 

(output-bindings nil nil nil nil nil) 
(output-predictable yes yes yes yes yes) 
(output-effect-type fill fill fill fill fill)) 

Figure 7-6. Domain Operator Schema for the Create-Left-Extreme Operator 

Delete-Left-Extreme and Delete-Right-Extreme. The Delete-Left-Extreme and 
Delete-Right-Extreme operators delete wire end and terminal-location objects 
associated with a given wire. They are used whenever there are changes to the 
type of terminals in the harness. The operator: 

Step 1. Identifies the objects to be deleted. 
Step 2. Deletes the appropriate schémas. 
Step 3. Changes the relational links as appropriate. 

The DOS of the Delete-Left-Extreme operator is shown in Figure 7-7. Inputs 
assure that wire end and terminal-location objects exist. The outputs are the 
objects deleted by the operator. In contrast to the operators that create objects, 
the name of the schémas to be deleted are not formed from the type of terminal 
at a particular wire end but are retrieved from the has-left-extreme and 
has-term-loc slots of the corresponding wire and wire end objects. HARNESS 
PLANEX must delete the objects associated with the old type of terminal (still 
stored in the extreme when the type has changed) which is different from the 
current value stored in the term-left slot of the wire schema. 

Create-Subassemblies. During the manufacturing process of a harness, shop 
floor control is performed on groups of wires called subassemblies. Each sub­
assembly is composed of one or more wires having common terminal-location 
pairs. In HARNESS PLANEX , aggregation of wires into subassemblies is per­
formed by the Create-Subassemblies operator. The algorithm for this operator is 
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(defschema Delete-Left-Extreme 
(is-a 
(domain-type 
(application-object 
( input-ob ject s 

operator) 
wire) 
current-object) 
current-object current-object 
current-object) 
is-a term-left has-left-extreme) 
nil nil nil) 
filled filled filled) 
current-object <left-ext> 
<left-term-loc>) 
has-left-extreme has-term-loc is-a) 
<left-ext> <left-term-loc> nil) 

(input-slots 
( input-bindings 
( input-cond-types 
( output-objects 

(output 
(output 

-slots 
•bindings 

(output-predictable yes yes yes) 
(output-effect-type erase erase erase)) 

Figure 7-7. Domain Operator Schema for the Delete-Left-Extreme Operator 

shown below. The operator is more complex than other operators of the system 
because it must search through the representational structures for all wires ob­
jects connected through common terminal-locations. 

Step I. Initialize 

1.1 Let all-term-locs be the set of all terminal-location pairs in the context. 

Step 2. Analyze Uncoupled Terminal-Location Objects 

2.1 Let uncoupled-term-locs <— all-term-locs \ coupled-term-locs. 
If uncoupled-term-locs is empty, stop. 
Let ini-term-loc be the first element of uncoupled-term-locs. 
Let coupling-term-iocs <— {ini-term-loc}. 
Let wire-list be an empty list. 

2.2 If coupling-term-iocs is empty: go to Step 3. Let term-loc be the first element 
of coupling-term-iocs. 
Let coupling-term-iocs <— coupling-term-locs \ {term-loc}. 
Let coupled-term-locs <— coupled-term-locs u {term-loc}. 
Let extreme-list be the set of wire end objects linked to term-loc that have not 
yet been analyzed. 

2.3 If extreme-list is empty: go to Step 2.2. 
Let extreme be the first element of extreme-list. 
Let extreme-list <— extreme-list\ {extreme}. 

2.4 Get the new-wire object linked to extreme. 
Let other-extreme and other-term-loc be the objects linked to the other end of 

Let coupled-term-locs be an empty list. 

new-wire. 
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2.5 Let wire-list <— wire-list u ( new-wire}. 
Let extreme-list <— extreme-list u {other-extreme}. 

2.6 Let coupling-term-loc <— coupling-term-loc u {other-term-loc \. 
Go to Step 2.3. 

Ste/? J. Create Subassembly 

3.1 Create a subassembly object with a has-wires slot that stores the value of 
vWre-//jf. 
Go to Step 2.1. 

The set of subassemblies produced by the Create-Subassemblies operator 
depends on the topology of the complete harness. Each time a terminal-location 
object is created or deleted, the Create-Subassemblies operator should be ex­
ecuted to compute the set of subassemblies. 

The DOS for the operator is presented in Figure 7-8. The is-a+inv input slot 
is used to insert this operator in the agenda when the terminal-location object is 
changed (e.g., it is "filled" with a new value). Thus, the operator is executed 
whenever a terminal object is created. As indicated by the DOS, the 
Create-Subassemblies operator is not applied to a particular object. It accesses 
the complete set of terminal-location objects from the terminal-location frame. 
The output slots describe the new subassembly. The results are unpredictable as 
the wires which comprise the subassembly are not known until the operator is 
executed. 

7.2.2.2 Body Operators HARNESS PLANEX has only one body operator named 
Create-Activities-Body. This operator is applied to the body object created by 
the Create-Ψire-Body operator and computes the set of manufacturing activities 
required for the wire body using the KS-Activities-Body knowledge source (see 
p. 272). In the current version of the system, there is only one type of body 
activity used to cut wires. The architecture allows other activities applied to 
wire bodies to be included (e.g., painting the wire insulation). The operator 
performs three steps: 

Step 1. Evaluate the KS-Activity-Body KS and generate the cut activity. 
Step 2. Create the activity schema. 
Step 3. Link the activity to the associated object. 

Activity objects are linked to the wire body object using the has-acts and 
act-of relationships, as indicated in the DOS shown in Figure 7-9. The schema 
also indicates that the generated list of activities is not predictable because the 
names of the activities are not known until the operator has evaluated the 
KS-Activities-Body knowledge source. 



Domain Operators 265 

(defschema Create-Subassemblies 
(is-a 
(domain-type 
(application-object 
(input-ob j ect s 
(input-slots 
(input-bindings 
(input-cond-types 
(output-objects 
(output-slots 
(output-bindings 
(output-predictable 
(output-effect-type 

operator) 
nil) 
nil) 
term-location) 
is-a+inv) 
nil) 
filled) 
subassembly <subassem> <wires>) 
is-a+inv has-wires wire-of) 
<subassem> <wires> nil) 
yes no no) 
fill fill fill)) 

Figure 7-8. Domain Operator Schema for the Create-Subassemblies Operator 

(defschema Create-Activities-
(is-a 
(domain-type 
(application-object 
(input-ob j ect s 
(input-slots 
(input-bindings 
(input-cond-types 
(output-ob jects 
(output-s1ot s 
(output-bindings 
(output-predictable 
(output-effect-type 

Body 
operator) 
body) 
current-object) 
current-object) 
is-a) 
nil) 
filled) 
current-object <acts>) 
has-acts is-a) 
<acts> nil) 
yes no) 
fill fill)) 

Figure 7-9. Domain Operator Schema for the Create-Activities-Body Operator 

7 . 2 . 2 . 3 Extreme Operators HARNESS PLANEX includes four operators which 
are applied to the terminal-location objects associated with particular wire ends: 

• Get-Peeling determines the appropriate length of insulation to peel from a 
wire end; 

• Get-Cut-Machine recommends an appropriate cutting machine for a wire on 
the basis of the type of terminal attached to one of its ends; 

• Create-Activities-Extreme creates objects representing the manufacturing ac­
tivities associated with a set of wire ends; and 

• Delete-Activities-Extreme deletes wire end manufacturing activity objects. 

Get-Peeling. The Get-Peeling operator computes the appropriate length of 
insulation to peel from the wire ends linked to a terminal-location object using 
the KS-Peeling knowledge source (see p. 272). Two steps are performed: 
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(defschema Get-Peeling 
(is-a 
(domain-type 
( application-object 
(input-objects 
(input-slots 
( input-bindings 
(input-cond-types 
(output-objects 
( output-s1ot s 
( output-bindings 
( output-predictable 
( output-effect-type 

operator) 
term-location) 
current-object) 
current-object) 
is-a) 
nil) 
filled) 
current-object) 
peeling) 
nil) 
yes) 
fill)) 

Figure 7-10. Domain Operator Schema for the Get-Peeling Operator 

Step J. Evaluate the KS-Peeling KS to determine the peeling length. 
Step 2. Store the results in the wire terminal-location object to which the 

operator is applied. 

Figure 7-10 shows the DOS that describes the operator. The Get-Peeling 
operator is applied to a single terminal-location object whose is-a slot is 
"filled", indicating that it exists. The operator stores the appropriate peeling 
length in the peeling slot of this object. 

Get-Cut-Machine. The appropriate machine for cutting wires is selected by the 
Get-Cut-Machine operator. The appropriate machine is determined by consider­
ing the type of terminal attached to a terminal-location object. The operator 
performs two steps: 

Step 1. Evaluate the KS-Cut-Machine KS (see p. 273) to select the cutting 

Step 2. Store the result in the schema of the terminal-location object to which 
the operator is applied. 

Figure 7-11 shows the DOS describing the Get-Cut-Machine operator. The 
operator requires the is-a slot of the terminal-location object be "filled", and it 
stores the recommended cutting machine in the cut-machine slot of this object. 

Create-Activities-Extreme. The Create-Activities-Extreme operator generates 
the activity objects required to manufacture the set of wire ends linked to a 
specific terminal-location object. These activities are generated by a single 
KS-Activities-Extreme knowledge source (see p. 273). Three steps are 
performed: 

Step 1. Evaluate the KS-Activities-Extreme KS to determine the activities 
needed to manufacture the wire end. 

machine. 
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(defschema Get-Cut-Machine 
(is-a 
(domain-type 
(application-object 
(input-objects 
(input-slots 
( input-bindings 
( input-cond-types 
(output-objects 
(output-slots 
( output-bindings 

operator) 
term-location) 
current-object) 
current-object) 
is-a) 
nil) 
filled) 
current-object) 
cut-machine) 
nil) 

(output-predictable yes) 
(output-effect-type fill)) 

Figure 7-11. Domain Operator Schema for the Get-Cut-Machine Operator 

Step 2. Create the appropriate activity schémas. 
Step 3. Link the activities to the corresponding terminal-location object. 

Figure 7-12 shows the DOS that describes the inputs and outputs of the 
operator. The operator is applied to terminal-location objects which must exist 
(the is-a slot must be "filled") and must not have any associated activities (the 
has-acts slot must be "empty"). This insures that the operator will be reinvoked 
whenever the harness configuration changes. The DOS indicates that the name 
of the created activity objects are not known until the operator is executed. 

Delete-Activities-Extreme. The Delete-Activities-Extreme operator is used to 
delete the activities linked to a particular terminal-location object whenever 
there are changes in the type of terminal at this terminal-location object. The 
operator does not require KS evaluation. Its three steps are: 

(defschema Create-Activities-Extreme 
(is-a operator) 
(domain-type term-location) 
( application-object current-object) 
(input-objects current-object current-object) 
(input-slots is-a has-acts) 
(input-bindings nil nil) 
(input-cond-type filled erased) 
(output-objects current-object <acts>) 
(output-slots has-acts is-a) 
(output-bindings <acts> nil) 
(output-predictable yes no) 
(output-effect-type fill fill)) 

Figure 7-12. Domain Operator Schema for the Create-Activities-Extreme Operator 
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(defschema Delete-Activities-Extreme 
(is-a operator) 
(domain-type term-location) 
(application-object current-object) 
(input-objects current-object current-object 

current-object) 
(input-slots is-a has-acts terminal) 
(input-bindings nil <acts> nil) 
(input-cond-type erased filled filled) 
(output-objects current-object <acts> <machine>) 
(output-slots has-acts technology used-by) 
(output-bindings nil <machine> nil) 
(output-predictable yes yes yes) 
(output-effect-type erase erase fill)) 

Figure 7-13. Domain Operator Schema for the Delete-Activities-Extreme Operator 

Step 1. Identify the activities associated with the terminal-location object and 
the machines used to perform these extreme activities. 

Step 2. Delete the corresponding activity schémas. 
Step 3. Remove the activity from the list of those which are performed with the 

identified machine. 

Figure 7-13 shows the DOS that describes the preconditions and effects of 
this operator. The Delete-Activities-Extreme operator acts on a terminal-location 
object whose has-acts slot is not empty and whose terminal-type slot has been 
filled with a new value. When it is executed, the operator erases the has-acts 
slot of the terminal-location object and changes the value of the used-by slot of 
the machine objects which had been linked to the activity objects being deleted. 

7.2.2.4 Activity Operators HARNESS PLANEX has three activity operators: 

• Select-Technology-Body selects appropriate types of machines to perform the 
manufacturing activities for the wire body (e.g., cutting); 

• Select-Technology-Extreme selects machines to perform the manufacturing 
activities of the wire ends; and 

• Get-Duration estimates the duration of body and extreme activities. 

Select-Technology-Body. An appropriate type of machine for cutting a wire is 
selected by the Select-Technology-Body operator. The operator is applied to a 
body activity and examines the cutting machine choices made by the 
Get-Cut-Machine operator for the two terminal-location objects associated with 
the wire. To select the cutting machine, the operator performs three steps: 

Step 7. Build the name of the Technology KS (see p. 273) to be evaluated by 
concatenating the prefix KS-Technology- with the name of the activity 
used to manufacture the body (e.g., cut). 
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(defschema Select-Technology-Body 
(is-a operator) 
(domain-type body-activity) 
( application-object current-object) 
(input-objects current-object current-object current-object <body> 

<wire> <wire> <left-ext> <right-ext> 
<term-loc-left> <term-loc-right>) 
is-a act-of body-of has-left-extreme 
has-right-extreme has-term-loc 
has-term-loc cut-machine cut-machine) 
nil <body> <wire> <left-ext> 
<right-ext> <term-loc-left> 
<term-loc-right> nil nil) 
filled filled filled filled filled 
filled filled filled filled) 
current-object <machine>) 
technology used-by) 
<machine> nil) 

(input-slots 

( input-bindings 

( input-cond-types 

( output-ob jeets 
( output-s1ot s 
( output-bindings 
(output-predictable yes no) 
(output-effect-type fill fill)) 

Figure 7-14. Domain Operator Schema for the Select-Technology-Body Operator 

Step 2. Evaluate this KS to determine which machine to use to manufacture the 
wire body. 

Step 3. Store the result in the activity schema and add the activity to the list of 
activities which use the machine. 

The DOS of the operator is shown in Figure 7-14. The preconditions of the 
operator indicate that its output is dependent upon the values of the cut-machine 
slot of the left and right terminal-location objects of the wire. The operator has 
the predictable effect of storing a value in the technology slot of the activity and 
the unpredictable effect of modifying the used-by slot of the machine selected by 
the operator. 

Select-Technology-Extreme. The Select-Technology-Extreme operator selects 
appropriate machines for manufacturing activities related to wire ends. Selec­
tion is done using Technology KSs. When applied to an extreme activity, the 
operator performs three steps: 

Step 1. Build the name of the Technology KS (see p. 273) to be evaluated by 
concatenating the prefix KS-Technology- with the name of the activity 
used to manufacture the wire extreme. 

Step 2. Evaluate this KS to determine which machine to use to manufacture the 
wire end. 

Step 3. Store the result in the activity object and add the activity to the list of 
activities which use the machine. 
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(defschema Select-Technology-Extreme 
(is-a operator) 
(domain-type extreme-activity) 
(application-object current-object) 
(input-objects current-object) 
(input-slots is-a) 
(input-bindings nil) 
(input-cond-types filled) 
(output-objects current-object <machine>) 
(output-slots technology used-by) 
(output-bindings <machine> nil) 
(output-predictable yes no) 
(output-effect-type fill fill)) 

Figure 7-15. Domain Operator Schema for the Select-Technology-Extreme Operator 

The DOS is shown in Figure 7-15. The operator requires the is-a slot of the 
activity object to be filled, and stores the name of the selected machine in the 
corresponding technology slot. The Select-Technology-Extreme operator also 
modifies the used-by slot of the machine object allocated to the activity. 

Get-Duration. The Get-Duration operator estimates the duration of body and 
extreme activities using Duration KSs. The operator is applied to either a wire 
body manufacturing activity or an wire end manufacturing body activity. Three 
steps are performed: 

Step 1. Build the name of the Duration KS (see p. 275) to be evaluated by 
concatenating the prefix KS-Duration- with the type of the manufac­
turing activity being considered (e.g., tinning). 

Step 2. Evaluate this KS to determine the duration of the activity. 
Step 3. Store the result in the activity object. 

The computed duration is stored in the duration slot of the activity object, as 
indicated in the DOS of Figure 7-16. 

7.2.2.5 Machine Operators HARNESS PLANEX has one machine operator titled 
Compute-Machine-Usage which computes the total usage of all machines. The 
operator does not require KS evaluation. It is applied to all machines and sums 
the duration of all the activities which utilize the machine. 

Figure 7-17 shows the DOS associated with the operator. The operator 
requires the used-by slot of a machine object be filled with the names of the 
activities using this machine, and the duration slots of these objects must have a 
value. The output of the operator is the sum of the individual activity durations 
and is stored in the total-usage slot of the machine object. 
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(defschema Get-Duration 
(is-a 
(domain-type 
(application-ob ject 
(input-objects 
(input-slots 
(input-bindings 
(input-cond-type 
(output-objects 
(output-s1ot s 
(output-bindings 
(output-predictable 
(output-effect-type 

operator) 
body-activity extreme-activity) 
current-object) 
current-object) 
is-a) 
nil) 
filled) 
current-object) 
duration) 
nil) 
yes) 
fill)) 

Figure 7-16. Domain Operator Schema for the Get-Duration Operator 

(defschema Compute-Machine-) 
(is-a 
(domain-type 
(application-object 
(input-object s 
(input-slots 
(input-bindings 
(input-cond-types 
(output-ob jects 
(output-s1ot s 
(output-bindings 
(output-predictable 
(output-effect-type 

operator) 
machine) 
current-object) 
current-object <acts>) 
used-by duration) 
<acts> nil) 
filled filled) 
current-ob ject) 
total-usage) 
nil) 
yes) 
fill)) 

Figure 7-17. Domain Operator Schema for the Compute-Machine-Usage Operator 

723 Knowledge Sources 
The knowledge base of HARNESS PLANEX contains the following types of 
knowledge sources: 

• a Peeling KS estimates the length of insulation peeling (in millimeters) re­
quired for each type of terminal; 

• Activity KSs generate the set of manufacturing activities required for body or 
wire extreme objects; 

• Technology KSs select the type of cutting, molding, tinning, terminal applica­
tion or splicing machine used to perform an activity; and 

• Duration KSs estimate the expected duration of manufacturing activities. 

Each type of KS is described below in detail. 
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(defschema KS-Peeling 
(is-a 
(ks-name 
(ks-type 
(cond-objects 

(conditions 

(lhs-rules 

(rhs-rules 

(actions 

ks) 
ks-peeling) 
first) 
current-object current-object 
current-object) 
(member terminal 
(member terminal 

(member terminal 

(6675)) 
(3227 3465 2678 2086 2769 
2923 3242 3710 2923 2488 
2486 3710 2490 2085 6245)) 
(3197 3401))) 

(T 
(I 
(I 
(X 
(I 
(I 
4 6 

I) 
D 
T)) 
I) 
I) 
X)) 
10)) 

Figure 7-18. KS to Determine Peeling Length 

Knowledge Source for Determining Peeling Length. Before a terminal is ap­
plied to the end of a wire, a portion of the insulation must be removed. In 
HARNESS PLANEX , the appropriate length of insulation peeling for a specific 
type of terminal is determined using the Peeling KS. This KS is used by the 
Get-Peeling operator (see p. 265) which is applied to a terminal-location object. 

The KS is shown in Figure 7-18. The type of KS-Peeling is "first", indicat­
ing that only the first rule whose conditions are satisfied should be fired. The 
KS has three rules which select a peeling length on the basis of the terminal 
type. One of three possible peeling lengths (4, 6 or 10 millimeters) is returned 
to the Get-Peeling operator to be stored with the terminal-location object. 

Knowledge Sources for Activity Creation. HARNESS PLANEX distinguishes be­
tween two types of manufacturing activities: 

• extreme activities are applied to the ends of a wire (e.g., tinning, welding or 
molding); and 

• body activities are applied to the wire as a whole (e.g., cutting). 

In the current version of the system, each wire is manufactured with only one 
body activity called cut. The KS-Activity-Body KS is used to generate a cut 
activity for the Create-Activities-Body operator (see p. 264). 

A particular set of extreme activities is associated with manufacturing each 
wire end. These activities are determined by the Create-Activities-Extreme 
operator (see p. 266) which uses the KS-Activities-Extreme KS shown in 
Figure 7-19. Each rule corresponds to a particular manufacturing activity. The 
conditions are based on the type of terminal attached to the end of the wire. The 
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(defschema KS-Activities-Extreme 
(is-a 
(ks-name 
(ks-type 
(cond-objects 

(conditions 

(lhs-rules 

(rhs-rules 

(actions 

ks) 
ks-activities-extreme) 
all) 
current-object current-object current-object 
current-object current-object) 
(member terminal (3242 2769 2678 2486)) 

(3197 3401)) 
(2490 2086 3197 3401 2486)) 
(3242)) 
(6675))) 

(member terminal 
(member terminal 
(member terminal 
(member terminal 
(T 
(I 
(I 
(I 
(I 
(X 
(I 
(I 
(I 
(I 

I) 
I) 
I) 
I) 
T)) 
I) 
I) 
I) 
I) 
X)) 

manual_application splice tin welding 
molding)) 

Figure 7-19. KS to Determine Extreme Activities 

KS type is "all" , indicating that all rules whose conditions are satisfied should 
be fired, and thus generating all possible activities. For example, if the terminal 
type of a wire end is "3242", the first and third rules fire and the results are: 
"(manual_application tin)", indicating that this wire end requires the application 
of the terminal (by hand) and tinning. 

Knowledge Sources for Technology Selection. As described in Section 7.1.2, 
the selection of machines for manufacturing activities is a function of activity 
and terminal types. In the case of a cutting activity associated with each wire 
body, two KSs are used: one by the Get-Cut-Machine operator (see p. 266) and 
one by the Select-Technology-Body operator (see p. 268). HARNESS PLANEX 
selects an appropriate machine for manufacturing a wire end using the 
Get-Cut-Machine operator and the KS-Cut-Machine KS shown in Figure 7-20. 
Depending on the terminal type, one of two possible machines ("cs-26" or 
"crimper") is selected for each wire end. Then HARNESS PLANEX determines a 
unique cutting machine for the wire using the Select-Technology-Body operator 
and the KS-Technology-Cut KS of Figure 7 -21 . This KS indicates that a wire 
should be cut on a "crimper" machine only if neither of its ends can be cut on a 
"cs-26" machine. During the evaluation of this KS, the Get-Left-Cut-Machine 
and Get-Right-Cut-Machine functions are used to retrieve the selected cutting 
machine names from the wire extremes objects. 
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(defschema KS-Cut-Machine 
(is-a 
(ks-name 
(ks-type 
(cond-objects 
(conditions 

(lhs-rules 

(rhs-rules 

(actions 

ks) 
ks-cut-machine) 
first) 
current-object current-object) 
(member terminal (2488 2490 2923 

(member terminal 

(T I) 
(I T)) 
(X I) 
d X)) 
cs-26 crimper)) 

2085 6675 
3710)) 
(3197 3401 
2486))) 

2678 
6245 2086 

3242 2769 

3227 
3465 

Figure 7-20. KS to Determine the Appropriate Cutting Machine for Wire Extremes 

(defschema KS-Technology-Cut 
(is-a ks) 
(ks-name k s-1echno1ogy-cut) 
(ks-type first) 
(cond-objects function function function function) 
(conditions (equal (get-left-cut-machine 

current-object) 'cs-26) 
(equal (get-right-cut-machine 

current-object) 'cs-26) 
(equal (get-left-cut-machine 

current-ob j ect) 'crimper) 
(equal (get-right-cut-machine 

current-object) 'crimper)) 
(lhs-rules (T I I I) 

(I Τ I D 
( F F T D 
(F F I T)) 

(rhs-rules (X I) 
(X D 
(I X) 
(I X)) 

(actions cs-26 crimper)) 

Figure 7-21. KS to Select Cutting Machines for Wires 

For manufacturing activities associated with extreme objects, the technology 
selection process is simpler. Machines are readily selected by evaluating a KS 
titled KS-Technology-(act-type), where (act-type) is the type of activity whose 
technology is being determined (e.g., " t in") . 
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Knowledge Sources for Activity Durations. HARNESS PLANEX determines the 
expected duration of manufacturing activities using Duration KSs. These are 
used by the Get-Duration operator (see p. 270). Similar to Technology KSs, 
Duration KSs are identified with the activity name. The KS name is of the form 
KS-Duration-(act-type), where (act-type) is the name of the activity whose dura­
tion is being computed. Thus, a KS titled KS-Duration-Molding is used to 
determine the expected duration of molding activities. 

An example of a Duration KS is shown in Figure 7-22. This KS indicates 
that the duration of a tinning activity is dependent upon: (1) the type of terminal 
being tinned; and (2) the number of wire end objects connected to the terminal-
location object. For example, if a terminal-location object type "2490" is linked 
to three wires, the expected duration of the activity is 0.01 x 3 = 0.03 minutes. 
Similarly, for splicing activities, the duration is a function of the number of 
wires linked to a particular terminal-location object. However, there are several 
Duration KSs in which the duration is independent of harness topology and is 
only a function of the individual wires (e.g., the duration of a cutting activity is 
only a function of the wire length). 

(defschema KS-Duration-Tin 

This KS returns the typical duration of a tin activity based 
on the number of wire ends applied on the same terminal. 

The first rule indicates that for ends with terminals 
2490, 2086 or 2486, the typical duration is 0.01 times 
the number of wires applied. 
The second rule indicates that for ends with terminals 
3197, 3401 or 3242, the typical duration is 0.02 times 
the number of wires applied. 

(is-a ks) 
(KS-name KS-duration-tin) 
(KS-type first) 
(cond-objects current-object current-object function) 
(conditions (member terminal (2490 2086 2486)) 

(member terminal (3197 3401 3242)) 
(equal (length (get-values 'current-object 

'term-loc-of)) <no-wires>)) 
(lhs-rules (T F Τ) 

(F Τ Τ) ) 
(rhs-rules (Χ I) 

(I Χ)) 
(actions (* <no-wires> 0.01) 

(* <no-wires> 0.02))) 

Figure 7-22. Example of a Duration K S Used in HARNESS PLANEX 
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7.2.4 Us er Interface Mechanisms 

HARNESS PLANEX incorporates some of the user interaction mechanisms of 
PLANEX described in Section 4 . 4 , such as command menus and questions to the 
user. The KNOWLEDGE SOURCE ACQUISITION MODULE was used to build the 
knowledge base. HARNESS PLANEX does not include any type of graphical 
schedule display since precedences among the manufacturing activities are not 
determined. 

Figure 7-23 shows the command menus of the HARNESS PLANEX system. 
Much of the menu structure parallels that of CONSTRUCTION PLANEX (see 
Section 6 .2 .4) . With these menus, the user may control the execution of the 
system in any of the three levels of execution discussed in Section 3.1.4: 

• Strategic. The user may invoke the control operators of PLANEX by entering 
the CONTROL PANEL ( C P ) from the Operations menu. With the C P , the user 
may create and modify sequences of domain operators. The strategic level is 
useful for propagating plan changes (e.g., a change in the design of the 
harness). 

• Operative. The user may execute domain operators using the Individual 
Operations menu. This menu contains a list of all of the operators described 
in the previous section. When the user selects an operator for execution, 
HARNESS PLANEX verifies whether its preconditions are satisfied. If they are, 
the operator is executed and control is returned to the user. If not, the system 
asks if the unsatisfied preconditions should be inserted as goals in the agenda. 

• Interface. The user may display results or ask for explanations of planning 
decisions using the Display menu and the Explain menu. Output reports (e.g., 
process sheets) are produced via the Report menu. 

The Change menu provides a tool for modifying plan information and insert­
ing changes in the agenda. When the user selects this menu, HARNESS PLANEX 
asks the user to specify the type of object to which the change is applied (e.g., 
wire, extreme, terminal-location or activity). Then one of the submenus is 
displayed (e.g., Wire, Extreme, Term-Loc or Activity menu, the lowest-level 
submenus of Figure 7-23) to select which objects will be changed. Similar to 
CONSTRUCTION PLANEX , these menus work in conjunction with the other menus 
of the system to select objects. For example, if the user wants to estimate the 
duration of manufacturing activities, the Activity menu is displayed to let the 
user select those activities whose duration will be computed. 

Results of the planning process are presented in three types of reports: 

• process sheet reports describe the manufacturing activities required for each 
wire and the wires comprising each subassembly; 

• time sheet reports indicate the technology choice and expected duration of the 
manufacturing activities; and 



User Interface Mechanisms 277 

Operations 
Menu 

Display 
Menu 

\ 

Control Switches 
Menu 

Individual 
Operations 
Menu 

Wire Display M e n u 

E x t r e m e Disp lay M e n u 

T e r m - L o c D isp lay M e n u 

A c t i v i t y D i s p l a y M e n u 

TOP MENU ^ Wire C h a n g e M e n u 

Change Ext reme C h a n g e M e n u 

Menu ^ T e r m - L o c C h a n g e M e n u 

Act iv i ty C h a n g e M e n u 

Explain 
Menu 

^ Wi re Expla in M e n u 

E x t r e m e Expla in M e n u 

T e r m - L o c Expla in M e n u 

Act iv i ty E x p l a i n M e n u 

Wire 
Menu 

Extreme 
Menu 

Term-Loc 
Menu 

Activity 
Menu 

Report 
Menu 

Figure 7-23. Menus of the HARNESS PLANEX System 

• machine usage reports indicate the total usage of each machine utilized in 
manufacturing the harness. 

The format of these reports is similar to those currently used by the harness 
manufacturer. 

An example of a process sheet report produced by HARNESS PLANEX is 
shown in Figure 7-24. In this report, subassemblies are sorted by the number of 
wires they contain, and wires in a subassembly are sorted by length. Each row 
corresponds to a wire and its associated extreme, body and terminal-location and 
describes the wire from left to right (left-terminal, body, right-terminal). For 
example, wire " 9 E " has a left end linked with terminal " 3 4 0 1 " that is common 
(has a " U " in column "U") to the left end of wire " 9 F " and to the right end of 
wires "9A", " 9 C " and " 9 B " . On its right end, wire " 9 E " has a terminal 
"2086" that may be applied when cutting the wire (indicated with an " X " in 
column "M") and requires tinning (indicated with a " T " in column "T" ) . 
Column " - " indicates that a terminal has already appeared in a previous row of 
the process sheet. Column "PEL" indicates how much insulation to peel from 
the wire end. Column "CABLE" specifies the wire color, gauge and insulation 
type. Column "CUT" indicates the length of a wire (in millimeters). 
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SUB Τ TERM--UM PEL CABLE WIRE CUT PEL TERM--UM τ 
1 Τ 3 4 0 1 ϋ 1 0 9 5 1 8 1 1 9Ε 1 8 7 5 . 0 6 2 0 8 6 X τ 
1 Τ 3 4 0 1 - - ϋ 10 8 0 2 0 1 1 9F 1 6 5 5 . . 0 6 6 2 4 5 X 
1 3 7 1 0 Χ 6 9 5 2 0 1 1 9Α 9 5 0 . 0 1 0 3 4 0 1 - -υ τ 
1 Τ 2 0 8 6 Χ 6 9 5 1 8 1 1 9C 6 4 0 . 0 10 3 4 0 1 - -ϋ τ 
1 6 2 4 5 χ 6 8 0 2 0 1 1 9B 4 1 5 . . 0 1 0 3 4 0 1 - -ϋ τ 
8 Τ 2 4 9 0 χ 6 9 7 1 6 0 0 1 5 0 L 1 2 1 5 . . 0 6 3 2 4 2 w 
8 Τ 3 1 9 7 ϋ 1 0 9 5 1 8 0 0 1 5 0 E 5 1 0 . . 0 6 2 0 8 5 χ 
8 Τ 3 1 9 7 - - ϋ 1 0 9 5 2 0 0 0 150C 3 9 0 . . 0 6 2 9 2 3 χ 
8 Τ 3 1 9 7 - -υ 1 0 9 7 1 4 0 0 150A 3 9 0 . . 0 6 3 2 4 2 - w 
8 Τ 3 1 9 7 - - ϋ 1 0 9 5 2 0 0 0 1 5 0 B 2 1 0 . . 0 6 2 9 2 3 χ 

10 3 4 6 5 χ 6 9 7 1 6 0 0 151H 8 2 5 . . 0 6 3 2 4 2 w 
1 0 Τ 3 4 0 1 ϋ 10 9 5 1 8 0 0 1 5 1 E 5 3 0 . 0 6 2 0 8 5 χ 
10 Τ 3 4 0 1 - - ϋ 1 0 9 7 1 8 0 0 151A 4 2 0 . . 0 6 3 2 4 2 - w 
10 Τ 3 4 0 1 - - ϋ 1 0 9 5 2 0 0 0 151C 3 9 0 . 0 6 2 9 2 3 χ 
1 0 Τ 3 4 0 1 - - ϋ 1 0 9 5 2 0 0 0 1 5 1 B 2 1 0 . . 0 6 2 9 2 3 χ 

5 2 6 7 8 χ 6 9 5 1 8 1 5 15A 2 0 7 5 . . 0 10 3 4 0 1 υ τ 
5 Τ 3 4 0 1 - - ϋ 1 0 9 5 1 8 1 5 15B 7 5 0 . . 0 6 2 0 8 6 χ τ 
5 Τ 3 4 0 1 - - ϋ 1 0 8 0 2 0 1 5 15C 5 3 0 , . 0 6 6 2 4 5 χ 
6 τ 3 1 9 7 υ 1 0 9 5 1 6 0 5 29C 1 5 5 0 , . 0 6 3 4 6 5 χ 
6 2 4 8 8 χ 6 9 5 1 6 0 5 29A 1 0 5 5 , . 0 1 0 3 1 9 7 - - ϋ τ 
6 τ 3 1 9 7 - - ϋ 1 0 9 5 1 6 0 5 29B 6 4 0 . . 0 6 3 4 6 5 χ 
4 2 6 7 8 χ 6 9 5 1 8 1 6 14A 9 1 0 , 0 1 0 3 4 0 1 ϋ τ 
4 τ 3 4 0 1 - - ϋ 1 0 9 5 1 8 1 6 14C 6 8 0 . . 0 6 2 0 8 6 χ τ 
4 6 2 4 5 χ 6 8 0 2 0 1 6 14B 4 5 5 , . 0 10 3 4 0 1 - - ϋ τ 
3 2 7 6 9 6 9 5 1 6 0 1 12B 2 6 0 5 . . 0 6 3 2 2 7 χ 
3 2 7 6 9 - 6 9 5 1 6 0 1 12Α 1 2 1 5 , . 0 6 3 2 2 7 χ 
2 2 7 6 9 6 9 5 1 6 0 6 I I B 2 5 0 5 . . 0 6 3 2 2 7 χ 
2 2 7 6 9 - 6 9 5 1 6 0 6 I I A 1 2 1 5 , . 0 6 3 2 2 7 χ 
7 2 6 7 8 χ 6 8 0 1 8 0 4 68 2 6 0 5 . . 0 4 6 6 7 5 χ 
9 τ 2 4 8 6 6 9 7 1 6 0 0 150H 8 2 5 . 0 6 3 4 6 5 χ 

12 2 6 7 8 χ 6 9 5 1 6 0 2 2 2 8 7 5 0 , . 0 6 3 4 6 5 χ 
1 1 2 6 7 8 χ 6 9 5 1 6 1 6 2 2 7 7 5 0 . . 0 6 3 4 6 5 χ 

Figure 7-24. Example of a Process Sheet Report Produced by HARNESS PLANEX 

An example of a time sheet report produced by HARNESS PLANEX is shown in 
Figure 7-25. Output is ordered as in the process sheet report. Again, infor­
mation corresponds to a left-to-right description of the harness. The column 
designations are as follows: " S U B " indicates subassembly number; 
"MOLD-D" and "MOLD-M" indicate the duration and machine for molding 
activities; "APPL-D" and "APPL-M" indicate duration and machine for con­
nector application; and "CUT-D" and "CUT-M" indicate duration and machine 
for wire cutting. The example report indicates that wire "9A" will be cut on 
machine "cs-26" and that this operation will take an average of 0.025 minutes. 
Similarly, the activity of tinning terminal " 3 4 0 1 " at the left end of wires " 9 F " 
and "9E" and right end of wires "9A", " 9 C " and " 9 B " will take 0.06 minutes 
and does not require any machine (it will be done by hand using a tinning tub). 
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SUB MOLD-D MOLD-M TIN/W APPL-D APPL-M CUT-D CUT-M WIRE 
APPL-D APPL-M TIN/W MOLD-D MOLD-M 

1 0.060 0.251 SC-3401 0.025 CS-26 9E 
0.010 

1 0.025 CS-26 9F 

1 0.025 CS-26 9A 

1 0.010 0.017 CS-26 9C 

1 0.011 CS-26 9B 

8 0.010 0.025 CS-26 150L 
0.126 PACK-US 

8 0.048 0.256 SC-3197 0.017 CS-26 150E 

8 0.011 CS-26 150C 

8 0.011 CRIMPER 150A 

8 0.011 CS-26 150B 

10 0.017 CS-26 151H 
0.126 PACK-US 0.024 

10 0.048 0.251 SC-3401 0.017 CS-26 151E 

10 0.011 CRIMPER 151A 

10 0.011 CS-26 151C 

10 0.011 CS-26 151B 
5 0.032 PACK-SS 0.025 CS-26 15A 

0.144 SC-3401 0.036 
5 0.017 CS-26 15B 

0.010 
5 0.017 CS-26 15C 

6 0.036 0.144 SC-3197 0.025 CS-26 29C 

6 0.025 CS-26 29A 

6 0.017 CS-26 29B 

4 0.032 PACK-SS 0.017 CS-26 14A 
0.144 SC-3401 0.036 

4 0.017 CS-26 14C 
0.010 

Figure 7-25. Example of a Time Sheet Report Produced by HARNESS PLANEX 
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In this case, the complete set of activities are not specified, but must be inferred 
from the harness description in the process sheet. 

7.3 Example Problem 
This section describes in detail the use of HARNESS PLANEX via the example 
harness of Figure 7-26. This simple harness is composed of three wires named 
"A" , " B " and " C " ; each has the length, color and gauge described in 
Figure 7-27. The example contains two parts: (1) the system obtains an initial 
process plan for harness manufacture using the set of domain operators 
presented in the previous section; and (2) the user makes changes to the initial 
process plan and HARNESS PLANEX propagates these changes with the control 
operators of the system. 

7.3.1 Obtaining an Initial Process Plan 

At the start of the planning process, HARNESS PLANEX is given a file containing 
the information shown in Figure 7-27 and creates three wire schémas containing 
all the information needed to create the other objects that are used to represent 
the design information. The system creates these other objects using the follow­
ing operators: 

• Create-Wire-Body creates body objects (e.g., wire-c-body) and links these to 
the corresponding wire objects using body-of and has-body relationships. 

• Create-Left-Extreme creates objects representing left ends of wires (e.g., 
wire-c-left) and links these to the wire objects using left-extreme-of and 
has-left-extreme relationships. This operator links the extreme objects to their 
corresponding terminal-location objects (e.g., 3197-2 for wire-c-left) using 
term-loc-of and has-term-loc relationships. If the terminal-location object is 
not present, it is created. 

• Create-Right-Extreme creates objects representing the right end of the wires 
and links these to the wire objects using right-extreme-of and 
has-right-extreme relationships. Similarly to the Create-Left-Extreme 
operator, this operator creates and links terminal-location objects to the ex­
treme objects. 

• Create-Subassemblies aggregates wires into subassemblies. For the example 
harness, one subassembly (sub-1) is created. 

After the objects representing the harness design information have been created, 
HARNESS PLANEX generates the set of manufacturing activities required for each 
harness component using two operators: 

• Create-Activities-Body creates the objects representing the cutting activity for 
with each wire (e.g., cut-wire-c) and links them to the body objects using the 
act-of ana has-acts relationships. 
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Θ © 
t e r m i n a l sp l ice 
3 2 4 2 3 1 9 7 

t e r m i n a l 
6 6 7 5 

Figure 7-26. Example of a Simple Harness 

H A R N E S S D E S C R I P T I O N 

Wire Gauge Color Plastic Length 
Loc 
Left 

Loc 
Right 

Term 
Left 

Term 
Right 

A 0.5 brown 95 950.0 1 2 3242 3197 

Β 0.8 tan 95 640.0 2 3 3197 6675 

C 0.8 black 95 1730.0 2 4 3197 3242 

Figure 7-27. Design Information for the Example Harness 

• Create-Activities-Extreme creates the objects representing the manufacturing 
activities associated with each terminal-location object. For example, this 
operator creates the splice-3197-2 and tin-3197-2 activities for the 3197-2 
terminal-location. Activity objects are linked to terminal-location objects 
using act-of and has-acts relationships. 

Figure 7-28 shows the final set of representational structures created by the 
system. The harness has one subassembly, three wires and four terminal-
location objects. Harness manufacture requires nine activities: 

• three cutting activities (one for each wire); 
• two activities for terminal "3242" at left end of wire " A " (manual connector 

application and welding); 
• two activities for splice "3197" joining the right end of wire " A " to the left 

ends of wires " B " and " C " (splice and tin); 
• one molding activity for terminal "6675" associated with the right end of 

wire " B " ; and 
• two activities for terminal "3242" at the right end of wire " C " (manual 

connector application and welding). 

HARNESS PLANEX completes the initial plan by applying the following 
operators: 
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APPLICATION SPLICE 
3242-1 3 1 9 7 - 2 

Figure 7-28. Representational Structures for the Example Harness 

• Get-Cut-Machine determines appropriate cutting machines for terminal-
location objects using the KS-Cut-Machine knowledge source. HARNESS 
PLANEX recommends machine "crimper" for cutting wire " A " on the basis of 
the terminal type attached to object 3242-1. 

• Select-Technology-Body analyzes the results of Get-Cut-Machine and chooses 
a machine to cut each of the three wires using the KS-Technology-Cut 
knowledge source. The system determines that wire " C " will be cut using 
machine "cs-26" as neither of its ends require an operation performed by a 
different type of machine. 

• Select-Technology-Extreme selects the type of machine used for each 
manufacturing activity on wire ends. This information is generated by 
Technology KSs. HARNESS PLANEX , using the KS-Technology-Molding 
knowledge source, determines that molding for terminal "6675" located at 
the right end of wire " B " will be done with machine "usm-1 ". 

• Get-Duration estimates the duration of manufacturing activities. The duration 
of the activity tin-3197-2 is estimated to be 0.02 χ 3 = 0.06 minutes because 
three wire ends are linked to the terminal-location 3197-2. This value was 
obtained using the KS-Duration-Tin knowledge source. 

The results of the planning process are displayed in Figures 7-29 to 7-31 (the 
organization of the reports follows that described in Section 7.2.4). Figure 7-29 
shows the process sheet for the harness. The report has three rows, each 
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SUB Τ TERM-UM PEL CABLE WIRE CUT PEL TERM-UM Τ 

1 W 3242 6 952011 
1 T 3197-U 10 951801 
1 Τ 3197-U 10 951800 

A 950.0 10 3197 U T 
B 640.0 4 6675 X 
C 1730.0 6 3242 W 

Figure 7-29. Process Sheet for the Example Harness 

SUB MOLD-D MOLD-M TIN/W APPL-D APPL-M CUT-D CUT-M WIRE 
APPL-D APPL-M TIN/W MOLD-D MOLD-M 

0.012 0.126 PACK-US 0.011 CRIMPER 
0.144 SC-3197 0.06 

0.037 USM-1 
0.017 CS-26 

0.011 CRIMPER 

A 

Β 

C 
0.126 PACK-US 0.012 

Figure 7-30. Time Sheet for the Example Harness 

MACHINE TIME 

CRIMPER 
CS-26 

PACK-US 
SC-3197 

TIN 
WELDING 

USM-1 

TOTAL > 

0.022 
0.017 
0.252 
0.144 
0.060 
0.024 
0.037 

0.556 

Figure 7-31. Machine Report for the Example Harness 

describing one of the wires of the harness. For example, the first row indicates 
that wire " A " has manual terminal application and welding on its left end (a 
blank and a " W " in columns " M " and "T") and splicing and tinning on the 
right end (a " T " in column "T" ) . Figure 7-30 shows a time sheet report with 
the duration and the type of machines used for each manufacturing activity. For 
example, splicing at the right end of wire " A " and the left end of wires " B " and 
" C " takes 0.144 minutes, and is done with machine "sc-3197". Figure 7-31 
shows the total usage (in minutes) for each type of machine and the total time 
required to manufacture the harness. 
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7.3.2 Modifications to the Process Plan 
If there is a change in the design specifications of the harness, HARNESS PLANEX 
must modify the initial process plan to account for this change. The control 
operators of the PLANEX architecture may be used to modify the plan. As an 
example, assume that the terminal on the right end of wire " C " is changed from 
type "3242" to type "6675". This new terminal type is stored in the wire-c 
object by utilizing the Wire Changes menu of the interface. After the change is 
introduced by the user, the context-chgs slot of the agenda includes 
"(wire-c term-right filled)". The user may execute the Forward Propagation 
Operator (FPO) to propagate the consequences of the change, or use the 
Operations menu to manually invoke specific planning operators. Assume that 
the FPO operator is invoked. The system creates the network of operators and 
conditions shown in Figure 7-32 in six steps: 

Step 1. The "(wire-c term-right filled)" change affects the preconditions of the 
Create-Right-Extreme and Delete-Right-Extreme operators. Only the 
Delete-Right-Extreme operator has all of its preconditions satisfied, and 
it is added to the operator-queue slot of the agenda. The predictable 
effects of this operator are added to the context-chgs slot of the agenda. 

Step 2. The "(wire-c has-right-extreme erased)" change then activates the 
Create-Right-Extreme operator. All of the preconditions of the operator 
are satisfied, so it is added to the operator-queue and its changes are 
inserted into the agenda. 

Step 3. The "(3242-4 is-a erased)" change next activates the 
Delete-Activities-Extreme operator and changes affecting those 
machines used by the activities linked to the 3242-4 terminal-location 
object are made to the agenda. 

Step 4. The "(terminal-location is-a+inv filled)" change that is introduced by 
Create-Right-Extreme operator activates the Create-Subassembly 
operator and the FPO adds this operator to the operator-queue. 

Step 5. The "(pack-us used-by filled)" change then activates the 
Compute-Machine-Usage operator and it is inserted in the agenda. 

Step 6. Finally, the "(6675-4 is-a filled)" change activates the 
Create-Activities-Extreme operator and the predictable effect 
"(6675-4 has-acts filled)" is made to the agenda. 

The FPO continues analyzing the remaining changes in the context-chgs slot of 
the agenda, but no new operators are activated. The result is the set of operators 
and conditions shown in Figure 7-32. HARNESS PLANEX interprets this network 
using the Network Interpretation Operator (ΝΙΟ). Figure 7-33 presents the 
resulting network of operators. This network shows that: 
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Figure 7-32. First Network of Operators and Conditions for the Example Harness 

DELETE-ACTIVIT IES 
EXTREME 
3 2 4 2 - 4 c CREATE-RIGHT-EXTREME 

W I R E - C 9 
C O M P U T E - M A C H I N E ^ 
U S A G E 
P A C K - U S J ÎC R E A T E - A C T I V I T I E S ^ 

E X T R E M E 
6 6 7 5 - 4 J 

Figure 7-33. First Network of Operators for the Example Harness 
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1. Operator Delete-Right-Extreme deletes the extreme and terminal-location 
objects associated with the old terminal "3242" before operator 
Create-Right-Extreme creates objects for the new terminal "6675" . 

2. Operator Delete-Activities-Extreme propagates the effect of deleting the ob­
ject 3242-4 and deletes the associated extreme activities. 

3. The Compute-Machine-Usage operator updates the usage of those machines 
related to the activities being deleted. 

4. Operator Create-Subassemblies updates the set of subassembly schémas 
after the Create-Right-Extreme operator adds a new terminal-location object 
to the context. 

5. The Create-Activities-Extreme operator creates the activities associated with 
the new terminal-location object 6675-4. 

After the network of operators is produced by the ΝΙΟ, control passes to the 
Domain Operator Executor (DOE) and the operators are executed in a sequence 
that does not violate the precedences. During operator execution, the unpre­
dictable effects of the operators are determined and stored in the agenda. Only 
two of the six operators have unpredictable effects: 

• The Create-Subassemblies operator introduces four changes in the agenda: 
"(sub-1 has-wires filled)", "(wire-a wire-of filled)", "(wire-b wire-of filled)" 
and "(wire-c wire-of filled)"; and 

• The Create-Activities-Extreme operator yields the single unpredictable effect 
"(molding-6675-4 is-a filled)". 

In both cases, these changes were not predictable until the DOE invoked the 
execution of the operators. For example, HARNESS PLANEX did not know which 
wires would be coupled into which subassemblies. 

Figure 7-34 shows the network of operators and conditions created by the 
FPO after these new changes are added to the agenda. Only the 
"(molding-6675-4 is-a filled)" change invokes another operator that selects ap­
propriate manufacturing technologies and estimates the duration of the activity 
objects in the network. 

When the ΝΙΟ is applied to the second network, it produces an operator 
network consisting of two unlinked operators. HARNESS PLANEX may execute 
these operators in any order using the DOE. The system estimates the duration 
of activity molding-6675-4 is 0 and determines that the appropriate machine is 
"usm-1 ". In this process, "(usm-1 used-by filled)" is inserted in the agenda. 

The third forward propagation phase is relatively simple (as shown in 
Figure 7-35). The only change in the agenda, "(usm-1 used-by filled)", 
activates the Compute-Machine-Usage operator and its single effect 
"(usm-1 total-usage filled)" is inserted in the agenda. This effect does not 
activate any other operators. An operator network with only one node is 
produced when the ΝΙΟ is applied to this small network. The DOE executes the 
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M O L D I N G - 6 6 7 5 - 4 S U B - 1 
is -a h a s - w i r e s 
f i l led f i l led 

c GET-DURATION 
M o l d i n g - 6 6 7 5 -

Θ 
1 

M O L D I N G - 6 6 7 5 - 4 
dura t ion 
f i l led 

SELECT-TECHNOLOGY-EXTREME 
M o l d i n g - 6 6 7 5 - 4 

. 0 

M O L D I N G - 6 6 7 5 - 4 
t e c h n o l o g y 
f i l led 

W I R E - A 
w i r e - o f 
f i l led 

WIRE-B 
w i r e - o f 
f i l led 

WIRE-C 
w i r e - o f 
f i l led 

Figure 7-34. Second Network of Operators and Conditions for the Example Harness 

U S M - 1 
u s e d - b y 
f i l led 

f * — 
[ COMPUTE-MACHINE-USAGE 
I USM-1 

Θ 
V 

USM-1 
t o t a l - u s a g e 
f i l led 

Figure 7-35. Third Network of Operators and Conditions for the Example Harness 

operator Compute-Machine-Usage, no new unpredictable effects are produced 
and the propagation of changes is completed. 

The results of the planning process for the modified harness are shown in 
Figures 7-36 to 7-38. Changing the terminal type on the right end of wire " C " 
reduced the total usage of the machine "pack-us" but increased the usage of the 
machine "usm-1" . Also, wire " C " can be cut using the "cs-26" cutting 
machine because its ends do not require manual terminal application. 
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SUB Τ TERM-UM PEL CABLE WIRE CUT PEL TERM-UM Τ 

1 W 3242 6 952011 A 
1 Τ 3197-U 10 951801 Β 
1 T 3197-U 10 951800 C 

950.0 10 3197 U Τ 
640.0 4 6675 Χ 

1730.0 6 6675 Χ 

Figure 7-36. Updated Process Sheet for the Example Harness 

SUB MOLD-D MOLD-M TIN/W APPL-D APPL-M CUT-D CUT-M WIRE 
APPL-D APPL-M TIN/W MOLD-D MOLD-M 

0.012 
0.06 

0.126 PACK-US 0.011 CRIMPER 

0.017 CS-26 

0.025 CS-26 

0.144 SC-3197 

0.037 USM-1 

0.012 0.037 USM-1 

Figure 7-37. Updated Time Sheet for the Example Harness 

MACHINE TIME 

A 

Β 

C 

CRIMPER 
CS-26 

PACK-US 
SC-3197 

TIN 
USM-1 

TOTAL > 

0.011 
0.042 
0.126 
0.144 
0.060 
0.074 

0.457 

Figure 7-38. Updated Machine Report for the Example Harness 

7.4 Conclusions 
This chapter illustrated how the components of the PLANEX architecture can be 
used to develop a system for planning the manufacture of automotive electrical 
wire harnesses. The basic components of HARNESS PLANEX—representational 
structures, knowledge sources, domain operators and user interface 
mechanisms—are instances of the components of PLANEX described in 
Chapter 4. The behavior of the system includes the three levels of user 
interaction—strategic, operative and interface—supported by the architecture. 

The example showed how the control operators of PLANEX generate and 
update process plans. The initial plan was produced by executing the domain 
operators in a predetermined sequence. Modifications to the plan, however, 
occurred dynamically. Control operators generated strategic meta-plans of 
operators to propagate the effects of changing the harness design. Such strategic 
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planning facilitates the operation of HARNESS PLANEX . The user need not be 
aware of the direct or indirect consequences of modifying planning information 
and is not responsible for reexecuting those operators whose input has changed. 
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