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Preface

Kanti Mardia is celebrates his 80th birthday on 3 April 2015. Kanti has been a dynamic force
in statistics for over 50 years and shows no signs of slowing down yet. He has made major
contributions to many areas of statistics including multivariate analysis, directional data
analysis, frequentist inference, Bayesian inference, spatial and spatial-temporal modelling,
shape analysis and more specific contributions to application areas such as geophysics,
medicine, biology and more recently bioinformatics. A distinctive feature of Kanti’s activ-
ities has been the annual series of LASR (Leeds Annual Research Statistics) workshops
which he established and organized. These have helped to foster interdisciplinary advances
in these research areas and have given rise to a long-standing series of proceedings contain-
ing short state-of-the-art papers published by Leeds University Press.

A common theme that unifies much of his work is the importance of geometry in statis-
tics, hence the name of this volume, “Geometry Driven Statistics.”

The research areas in which Kanti has worked continue to evolve and attract great inter-
est and activity. It is, therefore, timely to provide a collection of papers from high-profile
researchers summarizing the state of the art, giving some new developments and providing
a vision for the future. Many of the authors have collaborated with Kanti at some stage in
his career or know him personally.

To set the context for the later chapters, the book starts with some historical information
on Kanti’s life and work, together with a list of his main publications.

The papers have been split into four main topics, though of course there is considerable
overlap and cross-fertilization between them:

e directional data analysis
e shape analysis
e spatial, image and multivariate analysis

e bioinformatics

The unifying theme throughout the book is geometry — with the first two topics specifi-
cally about statistics on manifolds. Directional data analysis involves the analysis of points
on a circle (e.g., wind directions) or points on a sphere (e.g., location on the earth’s surface),
which are particularly simple non-linear manifolds. Kanti’s 1972 book Statistics of Direc-
tional Data gave great visibility to the topic area and contained many novel developments,
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with a second edition Directional Statistics published in 2000 with Peter Jupp. Shape anal-
ysis involves the study of much more complicated manifolds, where the shape of an object
involves removing information about location, rotation and scale. The topic has numer-
ous applications including the study of organisms in biology or molecules in chemistry.
Kanti’s 1998 book Statistical Shape Analysis, jointly written with Ian Dryden, summarizes
the statistical aspects of the field.

The third topic is particularly broad, involving data collected over geographic regions,
image data or other high-dimensional multivariate data. An important classic book that
is very relevant here is Kanti’s 1979 book Multivariate Analysis, jointly written with John
Kent and John Bibby. The final topic has been a particular focus for Kanti in the past decade,
especially geometric topics such as Bayesian approaches to structural bioinformatics, where
the shapes of proteins are key for determining function. Kanti’s work in the area has been
highlighted by his 2012 edited volume Bayesian Methods in Structural Bioinformatics with
Jesper Ferkinghoff-Borg and Thomas Hamelryck. All four of the main themes are highly
connected. Indeed several of the papers could easily have been placed within a different
theme, which emphasizes an underlying unity behind the main ideas of this volume.

Ian L. Dryden and John T. Kent
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Part 1
KANTI MARDIA



A Conversation with Kanti Mardia

Nitis Mukhopadhyay
Department of Statistics, University of Connecticut, Storrs, CT, USA

This paper originally appeared in Statistical Science 2002, Vol. 17, No. 1, 113-148.

Kantilal Vardichand Mardia was born on April 3, 1935, in Sirohi, Rajasthan, India.
He earned his B.Sc. degree in mathematics from Ismail Yusuf College — University of
Bombay, in 1955, M.Sc. degrees in statistics and in pure mathematics from University of
Bombay in 1957 and University of Poona in 1961, respectively, and Ph.D. degrees in statis-
tics from the University of Rajasthan and the University of Newcastle, respectively, in 1965
and 1967. For significant contributions in statistics, he was awarded a D.Sc. degree from
the University of Newcastle in 1973. He started his career as an Assistant Lecturer in the
Institute of Science, Bombay and went to Newcastle as a Commonwealth Scholar. After
receiving the Ph.D. degree from Newcastle, he joined the University of Hull as a lecturer in
statistics in 1967, later becoming a reader in statistics in 1971. He was appointed a Chair
Professor in Applied Statistics at the University of Leeds in 1973 and was the Head of the
Department of Statistics during 1976—1993, and again from 1997 to the present. Professor
Mardia has made pioneering contributions in many areas of statistics including multivari-
ate analysis, directional data analysis, shape analysis, and spatial statistics. He has been
credited for path-breaking contributions in geostatistics, imaging, machine vision, track-
ing, and spatio-temporal modeling, to name a few. He was instrumental in the founding
of the Center of Medical Imaging Research in Leeds and he holds the position of a joint
director of this internationally eminent center. He has pushed hard in creating exchange pro-
grams between Leeds and other scholarly centers such as the University of Granada, Spain,
and the Indian Statistical Institute, Calcutta. He has written several scholarly books and
edited conference proceedings and other special volumes. But perhaps he is best known for

Geometry Driven Statistics, First Edition. Edited by Ian L. Dryden and John T. Kent.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



4 GEOMETRY DRIVEN STATISTICS

his books: Multivariate Analysis (coauthored with John Kent and John Bibby, 1979, Aca-
demic Press), Statistics of Directional Data (second edition with Peter Jupp, 1999, Wiley)
and Statistical Shape Analysis (coauthored with Ian Dryden, 1998, Wiley). The conferences
and workshops he has been organizing in Leeds for a number of years have had signifi-
cant impacts on statistics and its interface with IT (information technology). He is dynamic
and his sense of humor is unmistakable. He is a world traveler. Among other places, he
has visited Princeton University, the University of Michigan, Harvard University, the Uni-
versity of Granada, Penn State and the University of Connecticut. He has given keynote
addresses and invited lectures in international conferences on numerous occasions. He has
been on the editorial board of statistical, as well as image related, journals including the
IEEE Transactions on Pattern Analysis and Machine Intelligence, Journal of Environmen-
tal and Ecological Statistics, Journal of Statistical Planning and Inference and Journal of
Applied Statistics. He has been elected a Fellow of the American Statistical Association, a
Fellow of the Institute of Mathematical Statistics, and a Fellow of the American Dermato-
glyphic Association. He is also an elected member of the International Statistical Institute
and a Senior Member of IEEE. Professor Mardia retired on September 30, 2000 to take a
full-time post as Senior Research Professor at Leeds — a new position especially created
for him.

In April, 1999, Professor Kanti V. Mardia was invited to the University of Connecticut
as a short-term guest professor for four weeks. This conversation began on Monday, April
19, 1999 in Nitis Mukhopadhyay’s office in the Department of Statistics, University of
Connecticut, Storrs.

1.1 Family background

Mukhopadhyay: Kanti, shall we start at the origin, so to speak? Where were you born?

Mardia: I was born in Sirohi on April 3, 1935. Sirohi, was the capital of the Sirohi
State about ten thousand square miles in area, in Rajasthan, before India’s independence.
Subsequently, the Sirohi State became the Sirohi district. Sirohi is situated about four hun-
dred miles east of Bombay. One of the greatest wonders near my place of birth has been
the hill station, Mount Abu. It has one of the finest Jain temples, Delwara, with gorgeous
Indian architecture from the eleventh century. The exquisite details are all meticulously
hand-curved on marble, without parallels anywhere else in India. Those shapes and for-
mations on the ceiling and columns with intricate details influenced me even when I was
small child. Much later in my life, some of those incredible shapes made deeper and more
tangible impacts on my research career.

Mukhopadhyay: Please tell me about your parents.

Mardia: I come from a business family. My father’s and mother’s names are, respec-
tively, Vardichand and Sanghari. My father inherited the business of moneylending from
my grandfather and he had a pawnbroker’s shop in Bombay. My grandfather started with
practically nothing but through his business acumen acquired a large fortune.

But, my father had to live through some tragedies. He lost his father, two brothers and
their families in the span of one year in an epidemic. Due to the spread of some severe
unknown disease in that particular area, many in his family perished. My father, about six-
teen, was practically the lone survivor in his family.
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Figure 1.1 Kanti Mardia on his uncle’s lap, Bombay, 1940.

Mukhopadhyay: How did this episode affect your father and the family?

Mardia: It had a devastating effect. My father started taking life very philosophically
and decided to take everything easy. His whole perspective of life changed. He passed on the
family businesses to my uncles. One uncle was a compulsive gambler who piled up huge
debts. Eventually, many of the family businesses and other assets (e.g., several buildings
and movie theaters in and around Bombay) were lost as loan payments on those debts. By
the time I turned ten, our family had already slipped down from a very rich status and joined
the upper middle class.

Mukhopadhyay: What about your mother’s side of the family?

Mardia: My maternal grandfather was a lawyer and writer. He was an original thinker.
He wrote a number of novels. Any writing skills I may have, I probably inherited from him.

Mukhopadhyay: How about your brothers and sisters?
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Figure 1.2 Ceiling from Jain Temple at Mount Abu (Rajasthan), Sirohi District. Original
in white marble with tendrils circling in a fractal form, 1031 AD.

Mardia: I have four brothers and one sister. It is a large family. I am the one in the
middle, a kind of the “median,” a robust estimator. (Laughs.)

I became the first college graduate in the family. My brother Mangesh Kumarji looked
after the family-run businesses. He earned real money to support the family while I had to
study for my degrees! (Laughs.)

Mukhopadhyay: Was any of your siblings mathematically oriented?

Mardia: My younger brother Babu followed my footsteps and got a masters degree in
pure mathematics. He is an Associate professor of Mathematics in Rajasthan University,
Udaipur, India. During my childhood and school days, we lived in Sirohi as well as in
Bombay, a major city center for all the businesses. We had to shuttle between these two
places.

1.2 School days

Mukhopadhyay: Where and how did your schooling begin?

Mardia: In kindergarten, we learned numbers and even simple fractions. For example,
at the age of four or five, we learned the concept of what is one-half of ten or one-quarter of
eight! We had to memorize such multiplication tables and the teachers were very strict. We
also had to learn to speak and write in Hindi, but this had to be mastered with the Rajasthani
script and dialect, even though those styles were practically dead by then. It did feel like I
was mastering a foreign language. This was on top of learning English.

Mukhopadhyay: Did you happen to have some inspiring teachers?
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Mardia: In my time, there was only one high school in Sirohi, which I had to attend.
Neither the teachers nor the curriculum had any flexibility and I did not like most of the
subjects very much, except for mathematics. In the lower grades, we had a mathematics
teacher who hailed from Ajmer, another part of Rajasthan, and he had an interesting habit.
He used to assign challenging mathematical puzzles to the class and gave small prizes to
whoever could solve the puzzles first. I was pretty good in solving such mathematical puz-
zles and won many prizes along the way. This math teacher had a big influence on me. I
also enjoyed plane Euclidean geometry very much. I went through these constructions and
proofs of theorems based on axioms. However, I have to confess that I preferred algebraic
derivations and proofs with equations to the geometry-based arguments. (Laughs.)

Mukhopadhyay: (Laughs) Kanti, in quiet moments, sometimes you probably think
what an irony of life that was!

Mardia: (Laughs) Nitis, you are right. Later in life, “geometry” became my mantra.
What an irony indeed! I was not very interested nor considered particularly bright by others
in nonmathematical subjects. I loved mathematics and sometimes I got into trouble because
of this. Often I would come up with answers too quickly even for tricky problems. In higher
grades, I became proficient in the factorization of quadratic equations, but some teachers
did not appreciate that very much. Some teachers misjudged me, thinking that I was trying
to show off or I was probably too clever. I was just being my enthusiastic self.

When I was about fourteen, I had to choose between the science stream or the arts
stream. I did not care much about laboratory experiments and hence avoided pursuing the
science stream. Instead I wanted to learn Sanskrit in the arts stream. So, I followed the arts
stream.

Mukhopadhyay: Did you take the matriculation examinations from the same school?

Mardia: Yes, this was the only school in our area. I passed the matriculation examina-
tions in 1951 and prepared for my transition to a college. But going to a college meant that
I would have to migrate to another area and stay away from home, sweet home.

1.3 College life

Mukhopadhyay: Which college did you attend?

Mardia: The Jaswant College in Jodhpur (Rajasthan) was the closest to where we lived.
I enrolled there for the two-year interscience degree. For someone like me who never took
any science courses in school, there were not many choices of such interscience programs
available in other universities or colleges. Jaswant College was about one hundred fifty
miles from home. For the first time I stayed away from home. The hostel life was quite
interesting.

I studied physics, chemistry and mathematics. I was terrible in the lab experiments
(which we called the “practicals”). I dreaded the chemistry experiments with all those tubes
and chemicals! I hardly had any clues! However, I used to enjoy the theories of physics,
organic and inorganic chemistry, and the equations. But, when it came to lab experiments,
I froze instantly. (Laughs.)

Mukhopadhyay: I can relate to this. I was quite weak in those chemistry practicals too.
(Laughs) I assume that you fell in love with mathematics more.

Mardia: I really enjoyed learning the formative mathematics, for example, calculus,
trigonometry, algebra, combinatorics. This was the first time I encountered the beauty of
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calculus. In the final examinations, I did well and came almost at the top of the graduat-
ing class. I got the I.Sc. degree in 1953 from Jaswant College which was affiliated with
Rajasthan University.

Mukhopadhyay: What was special about those mathematics courses?

Mardia: The concepts of limits and derivatives were fascinating. 1 loved direct
approaches through first principles rather than mechanically obtaining results. The
principles and results from trigonometry were attractive. There was a book by S. Loney
on this subject and I remember painstakingly solving every exercise from that book by
myself. I really started enjoying the theoretical foundations and took studies very seriously.
I surprised myself! (Laughs.)

1.4 Ismail Yusuf College — University of Bombay

Mukhopadhyay: I am sure that this helped in building your confidence. At this point, you
were probably saying, “Look out University of Bombay, here I come!”.

F

Figure 1.3 Kanti Mardia in Jaswant College, Jodhpur, 1952.

Mardia: Nitis, you are correct. Earlier I was not qualified to attend the prestigious
University of Bombay for the interscience degree. But now the door was open for me. By
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this time, most of our family had settled in and around Bombay, State of Maharashtra (ear-
lier called the Bombay State). I was looking forward to attending the University of Bombay
for the B.Sc. degree and at the same time I would stay close to the family. It was a great
opportunity.

Mukhopadhyay: In the University of Bombay, what was your major?

Mardia: In 1953, I entered Ismail Yusuf College, a relatively small but prestigious col-
lege in a beautiful suburb, affiliated with the University of Bombay. I took mathematics
as my major and physics as the subsidiary subject. I finished the physics requirement in
the first year itself and thus in the final year I could concentrate only on mathematics. In
physics, again there were those dreaded practical lab experiments, but I took care of them
in my first year. What a relief it was for me! (Laughs.)

I found that my fellow students and others did not converse in Hindi. They all spoke
in English. It felt like I was visiting another country altogether! I was used to writing in
English, but I did not regularly speak in English. I slowly adapted, but first I had to get over
a severe cultural shock.

It was an opportune time, though. The college had just started its math degree program.
Professor Phadke, the Head of the Department of Mathematics, was an excellent teacher.
Every student was required to have two elective papers, either in astronomy or statistics. I
wanted to pursue astronomy, but the mathematics department had recently hired a young
faculty member, Mr. Mehta, who graduated from the university with statistics. So I did not
really have a choice. I ended up with both the elective papers in statistics — one paper on
probability and another on inference and data analysis. It was a blessing in disguise!

Mukhopadhyay: In your course work, were you taught mostly from standard books
or notes?

Mardia: Most advanced courses were taught by Professor Phadke. He was very smart
and an excellent teacher. He came to each class fully prepared. He wrote clearly on the
chalk board, taught interactively, and explained everything without looking at any notes or
books. He was very impressive.

I was his favorite pupil in the class. After asking questions, he used to look at me and
he fully expected me to come up with an answer. Sometimes I might not have been able
to give answers as quickly as he expected and then I could sense that he was getting a
little frustrated. One day he asked, “Where do two vertical planes intersect?” This question
confused me. I could not feel the geometry at all. I was giving him two equations in three
variables and then algebraically trying to find the common points. Naturally, this was taking
some time. But, at that point the professor became very impatient because I was not seeing
the answer that was obvious to him. He started explaining, “Look at this wall and that wall
in the classroom. Where do they intersect?”” As soon as he started drawing my attention to
these vertical walls, it dawned on me that the answer was truly obvious. He wanted to hear
some simple answer and I was throwing at him a couple of equations instead! (Laughs.)

I realize now why my teacher was getting restless. But I must tell you that Professor
Phadke never meant any harm. He was refreshing and always challenging with very high
expectations. I remain grateful to him forever.

Mukhopadhyay: Would you add anything about your other statistics professor,
Mr. Mehta?

Mardia: Mr. Mehta was starting his own teaching career. He was young and very intel-
ligent, and he focussed on doing everything right. He gave us excellent lecture notes. He did
not have much experience and so he probably shied away from challenging us. He was very
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thorough and was available for extra help and guidance. We became very friendly. When I
visit India, I make an attempt to go and see him.

1.5 University of Bombay

Mukhopadhyay: What influenced you to switch from mathematics to statistics?

Mardia: The top students normally opted for the engineering or the medical school. My
parents wanted me to pursue that line too. I actually got admission to the engineering school
of the prestigious Victoria Jubilee Technical Institute, Bombay. Someone hinted that if I
went for a masters degree in statistics, I could become a fellow of the Ismail Yosuf College, a
position which carried much honor and it also paid a stipend. In 1955, the subject of statistics
was growing and so one could be very innovative. I heard from others that this discipline
would offer a challenging future for bright people. The opportunities were plentiful as I
understood.

I asked Mr. Mehta for advice and he said that “statistics” was the way to go. Each bit and
piece of information convinced me that this route was more appealing than becoming an
engineer or a doctor. My family had to be convinced that pursuing a two-year masters degree
program in statistics would be more useful in the long run, and eventually they agreed.

The Department of Statistics at the University of Bombay was very highly regarded and
it was quite special because this department was allowed to award its own masters degrees.
Unlike in pure mathematics, there was tough competition to get admitted in statistics at the
University of Bombay. I did not understand all the ramifications of what I was getting into.
But because it was so hard to enter a program like that, I took it as a challenge and applied
for admission during the first part of 1955.

Mukhopadhyay: What did you experience when you entered the masters program in
statistics?

Mardia: Professor M. C. Chakrabarti, a great expert in the combinatorics and construc-
tions of designs, was the Head of the Department of Statistics. I recall that he taught us
probability. He was very methodical and an excellent teacher. Multivariate analysis and
statistical inference were taught, respectively, by Professors A. M. Kshirsagar and Kamal
Chanda (both of whom have been living in the United States for many years now). Professor
K. S. Rao, an economist, was also on the faculty. All the professors were excellent. I am
still in touch with Professor Kshirsagar.

There were very few textbooks and frequently we had to learn the materials directly
from the journals. We often referred to Biometrika. In addition to the class notes and jour-
nal articles, I remember studying page-by-page from H. Cramér’s Mathematical Methods
of Statistics (1946) and C. R. Rao’s Advanced Statistical Methods in Biometric Research
(1952). Because of Professor Chakrabarti’s eminence, we were taught a variety of materi-
als on design of experiments for which we essentially relied upon W. G. Cochran and G.
M. Cox’s Experimental Designs (1950) and O. Kempthorne’s The Design and Analysis of
Experiments (1952). I was young and I came here with an impression that I was very good.
But, once I landed in this department, it took me no time at all to realize that there were
other intelligent people too! (Laughter.)

On a serious note, I immediately felt the challenging aspect of the teaching and research
led to high expectations of the best and brightest students in the department. One had to be
real sharp to survive such a level of tremendous pressure.
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Mukhopadhyay: Who were some of your fellow students at the University?

Mardia: Babubhai Shah was my classmate. He was very bright. He has been at the
Research Triangle Institute in Research Triangle Park at Raleigh, North Carolina. Jon N.
K. Rao at Carleton University was one year senior to me. Jon was very sharp and popular.
When we got stuck in a problem, sometimes we would ask him for advice. I remember that
one time I was working on the distribution of the range in a random sample from some
distribution and Jon Rao instantly came up with important suggestions on possible plans
of attack. C. G. Khatri was two years ahead of me and unfortunately he is no longer alive.
Kirti Shah at the University of Waterloo was one year junior to me. G. S. Maddala was my
contemporary too. He was very clever and very good with the statistics practicals. I have
lost touch with most of these friends. I have been able to keep in touch only with Babubhai
and Jon Rao through all these years.

Mukhopadhyay: In the M.Sc. curriculum, which areas in statistics attracted you
the most?

Mardia: Multivariate analysis and matrix algebra were definitely my two favorite sub-
jects. The derivations were mostly algebraic, rather than geometric. I will say that statistical
inference was the next in line. Wishart’s (1928) original derivation of the Wishart Distribu-
tion fascinated me. At this stage, [ was not exposed to the geometric approaches in statistics.
I relied heavily upon algebraic and analytical derivations rather than the more intuitive geo-
metric validations. Even now I do not have full faith in purely geometric “proofs.”

Mukhopadhyay: Do you recall any aspect of the masters program that you did not
enjoy much?

Mardia: I did not enjoy statistical calculations with the Facit machines. One had to turn
the handle in one direction for addition/multiplication but in a opposite direction for sub-
traction/division. We depended on this machine for evaluating the square root of a number
or for inverting a 4 X 4 matrix, and for that matter in all statistical calculations. During an
exam, the whole room would be so noisy that it sounded like a factory. My usual problem
was that if I repeated the steps to check any calculations, I very rarely got the same answer
again! That was very frustrating. There was no way to be sure that the Facit machine’s han-
dle was turned in the right direction and the right number of times, particularly during an
exam! I still remember that. (Laughs.)

Mukhopadhyay: Kanti, please excuse me. I cannot resist the urge to say this. It seems
that you could not shake off the “ghosts” of the “practicals in physics and chemistry” that
easily. You thought that you did, but the “ghosts” reappeared to haunt you with the disguise
of Facit machines. (Laughs.)

Mardia: (Laughs.) You are right. I just could not get away from the so called “practi-
cals,” even in statistics! I always struggled with those Facit machines. You can only guess
the relief and mental peace I derive from the personal computers I have.

Mukhopadhyay: Would you say that in the mid- to late 1950s, the statistical research
program at the University of Bombay was in the forefront?

Mardia: Yes, the statistical research program at the University of Bombay was in the
forefront. Professor M. C. Chakrabarti was internationally known and he was the star of
the group. In 1956, there was a meeting of the International Statistical Institute in Calcutta
and many notable personalities participated. On their way to or from Calcutta, some of the
delegates came to Bombay to visit the Department of Statistics. I remember that Professor
S. N. Roy came and gave a lecture on multivariate analysis. Professor Roy was wearing a
typical Bengali attire, dhoti and punjabi. Everybody had so much regard for him that during
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his talk nobody said anything. Everyone listened intensely to whatever Professor Roy had
to say. Professor Jerzy Neyman also came and gave a lecture on maximum likelihood and
other estimators. I liked Professor Neyman'’s style of presentation very much. He raised
issues regarding consistency, efficiency and so on by asking questions and then pointing
out deep logical flaws in some of the obvious “answers.” Such interactive exchanges with
the audience continued without any notes while Professor Neyman paced up and down. His
forceful seminar was so impressive.

Mukhopadhyay: Were there something like “student seminars” too?

Mardia: I remember that “linear programming” was not included in the masters
curriculum. I started reading about linear programming and constrained optimization by
myself. Later I gave a talk on this topic in the “student seminar” series. Senior masters
students often took part in the “student seminars.” These gave students important exposure
and some good practice in talking in front of a audience and answering questions.

During this formative period I learned some important lessons: everything we read in
print was not necessarily correct and I also understood that some results printed in books or
research papers could be extended and sharpened. These realizations gave me the confidence
and hope for future creative work.

Mukhopadhyay: The University of Poona is not far away from the University of
Bombay. Did you see any interactions among the statisticians at these two sister institutions
in the mid- to late 1950s?

Mardia: I do not recall any major interactions. I thought that the University of Bombay
had the most reputable group of statisticians and they were the leaders in that geographical
area. My memory has faded about the specifics of Poona’s statistics program. The University
of Bombay used to invite some external examiners from Poona, I am sure.

1.6 A taste of the real world

Mukhopadhyay: After receiving the M.Sc. degree in statistics in 1957, what was in store
for you?

Mardia: Overall, the two years at the University of Bombay were great. I did not,
however, do too well in the examinations. Again I partly botched the “practicals.” When
I graduated from the university, the State Bank of India was hiring people after screening
through their highly competitive examinations. Many bright individuals sat in those exams
with the hope that they would be selected. Some of my classmates ranked high enough in
the examination and succeeded in getting jobs in the bank. I applied for a position too, but
I was not selected! Now I may add that fortunately 1 was not selected! (Laughs.)

At that time, I did not aim for an academic career. Incidentally, I became very close to
Professor Chakrabarti. I went to his house a number of times and he used to offer delicious
Bengali munchies and snacks. Apart from the statistical discussions and help I got from vis-
iting him at home, I admit that those delicious snacks were major attractions too. Babubhai
Shah started working with Professor Chakrabarti on a Ph.D. thesis topic. My parents were
hoping that I would take up a real job, earn a living and settle down in life. I was hesitant,
but Professor Chakrabarti was advising me to pursue a Ph.D. degree in statistics.

Mukhopadhyay: You came in contact with Professor P. Masani. How did that happen
and where did this connection lead you?

Mardia: I was not getting any job offers and I was already wondering about joining
my family-run business. Professor Chakrabarti asked me to go and see Professor Masani,
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whose office was almost next door. He was Head of the Department of Mathematics. When
I went to see him, he became excited and wrote me a letter offering a teaching position.
He wanted an immediate reply. I was not too sure about an academic career at that point.
But Professor Chakrabarti told me that if I ever wanted to pursue a Ph.D. degree or seek
opportunities overseas, then I would be better off in the future if I accepted this offer from
Masani. I decided to accept this one-year offer and started to teach.

Mukhopadhyay: This was a big break for you then. Any other recollections about
those days?

Mardia: Professor Masani was very well known for his diligence and hard work. He
would work day in and day out without letting up. He told me to get a solid foundation
in mathematics including measure theory. I started learning the material from him. Dur-
ing my childhood, I had solved many challenging puzzles. When I grew up, I became
more interested in finding what is in a “theorem” rather than proving the “theorem” itself.
Professor Masani taught me proofs of very many deep theorems in measure theory, but
I wondered about their inner meanings and beauty. The Institute of Science had connec-
tions with the prestigious Tata Institute of Fundamental Research (TIFR). Professor Pitt
came from Nottingham University to visit TIFR and gave some lectures on measure the-
ory which later shaped his book, Integration, Measure and Probability (1963). 1 attended
those lectures very seriously but there was no fire. I did not get too excited and that puzzled
Professor Masani.

In addition to my regular duties of teaching both mathematics and statistics, I also some-
times substituted in Professor Masani’s classes. Professor V. Mandrekar of East Lansing
was doing his B.Sc. degree in mathematics in this Institute. In his first year, I had him as a
student in my class.

Incidentally, you will recall that Babubhai Shah was in the other building in the uni-
versity. He was already doing research in the design of experiments and I would regularly
exchange ideas with him. For some time, I was interested in Pareto distributions and distri-
butions of a range and other related problems. I also got some partial results. But I was not
sure where my career was going.

1.7 Changes in the air

Mukhopadhyay: But you could sense that major changes were in the air, right?

Mardia: Yes, you are right. My family started getting impatient and wanted me to get
married and get settled, and so on. I had been engaged since 1955 and that meant two years
went by but I did not get married! Finally, I got married to Pavan in 1958 at the age of 23,
which was considered “old” according to our custom. My younger brother also got engaged
to be married on the same day so as to minimize his waiting time. (Laughs.)

I did not get any time to enjoy life very much. Immediately after I got married, I went
back to the Institute and immersed myself in the studies of mathematics again. Professor
Masani was planning to leave the Institute, probably in 1959, and go to the University of
Pittsburgh. I seriously started to think about making a career move for myself. I applied for
a position elsewhere. I vaguely recall that I got an opportunity to go to the University of
Towa, but for family reasons that did not materialize.

Mukhopadhyay: I guess that this was your period for job as well as soul searching.

Mardia: You are correct. I was looking for an opening to the right career path. Then
I heard that Ruia College, another prestigious college affiliated with the University of



14 GEOMETRY DRIVEN STATISTICS

Figure 1.4 Kanti and Pavan Mardia’s marriage photo, Bombay, 1958.

Bombay, was looking for someone to teach statistics courses. I applied for this position
and got the job.

Our first child, Bela, a daughter, was born in 1959. At that point it became very clear to
me that I would go overseas if and only if it would be financially feasible for my family to
accompany me for the trip. I taught in Ruia College during 1959-1961. Unfortunately I do
not recall the specifics from that period, but I do remember that the head of the department
and other colleagues were kind and helpful to me. Also, I decided to improve my back-
ground in pure mathematics by earning externally an M.Sc. degree from Poona University
in 1961, where I topped the list. I studied everything by myself for three months or so for
the examinations.

With one baby at home and another one on its way the hustle and bustle of the city
life of Bombay started to take its toll on both my wife, Pavan, and myself. We decided
to move away from Bombay for some quiet and peace. Without a Ph.D. degree it seemed
nearly impossible for a visit overseas. By this time, I had written a paper on multivariate
Pareto distributions (Mardia 1962). I was gaining confidence and then the idea of seriously
pursuing the Ph.D. degree crossed my mind.

1.8 University of Rajasthan

Mukhopadhyay: Did you make a career move then?

Mardia: In 1961, Rajasthan University in Jodhpur was starting a separate statistics
department and they were looking for qualified teachers in statistics. Its close proximity to
Jaipur, where I had spent the first part of my college life, made this opportunity very appeal-
ing. I moved to Rajasthan University to start their masters degree curriculum in statistics.
There was another appointment (Dr. B. L. Sharma) junior to mine and we both taught at the
masters level. I was more responsible for formulating the curriculum. The acting head of
the department was Professor G. C. Patni, from the mathematics department. He suggested
that I should pursue a Ph.D. degree, particularly because I already had some publications.
In 1961, our son, Hemant, was born.
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I registered under Professor G. C. Patni as a Ph.D. student and the research work that I
was doing myself was progressing well. More students were enrolling in the courses I was
teaching. Professor B. D. Tikkiwal, who was well known in sampling theory, joined the
department a year later. He wanted me to work under his supervision. But I was not about
to work in sampling, and then tension started to build. On the other hand, Professor Patni
was always more than gracious and kind to me. I had both good and bad fortune. When
I first arrived, I seriously thought that I was going to retire there. But quickly my views
changed drastically. I again went into the transition mode and started looking around for a
position abroad.

Mukhopadhyay: You were a junior faculty member and your life was miserable. How
did you come out of this tight corner?

Mardia: The Commonwealth Scholarships became available in 1964. Professor Patni
encouraged me to go abroad. The vice-chancellor of Rajasthan University was supportive
of me. Because of their support, I applied and received one of the Commonwealth Scholar-
ships. When I applied for leave without pay, I faced tremendous hurdles at the departmental
level. Unfortunately, I could not persuade Professor Tikkiwal to help me this time.

1.9 Commonwealth scholarship to England

Mukhopadhyay: There was a period when your mind was set for overseas travel, but you
had not yet left India. What was going on around that time?

Mardia: Before I left India on a Commonwealth Scholarship with my family, [ submit-
ted my first Ph.D. thesis to the Rajasthan University. At the time of my departure from India,
that Ph.D. thesis was being examined by eminent external referees. I came to know much
later that Professor Henry Daniel[s] from Birmingham University was one of the external
examiners. My first Ph.D. degree came in 1965.

Mukhopadhyay: Where overseas were you heading as a Commonwealth Scholar?

Mardia: I left India with my family on September 13, 1964, on way to the University
of Newcastle for a Ph.D. degree under the supervision of Professor Robin Plackett. He
was well known for contributions in linear models and design of experiments. He was very
knowledgeable in all aspects of statistics.

I was in a large group of Commonwealth Scholars from India in different subjects. The
group was given a high profile reception upon arrival in London. The Mayor of London
came to welcome the scholars. We went through a series of receptions and orientations
lasting nearly ten days. Hemant was three and Bela was five. We stayed in a good hotel but
there was no real facility for vegetarian meals. We were tired and waiting for the day to go
and settle in Newcastle, the final destination.

Mukhopadhyay: I gather that you reached Newcastle after spending about two weeks
in London. Did you adjust to the new surroundings and culture quickly?

Mardia: We got the culture shock of our life! We stayed temporarily with a host family
arranged by the British Council. In this host family, the husband was Indian and the wife
was English. Our children were hungry by the time we arrived at their residence. Fruits
were on the table but these were refused to the children. Apparently, there were appropriate
times to eat fruits! It was the wrong time to get hungry. I remember the incident vividly.
This period was very trying.

Soon a representative from the British Council took us to a place where we could live
more permanently as a family. Nearby, there was another Indian family, Ghura, who showed
us around. They were very helpful. We immediately moved in and became very close to the
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landlord and his family. What a relief and joy it was to eventually find a place where we
could buy Indian spices and groceries! I still remember the first homecooked meal in a
foreign land after missing it for over three weeks. We lived in this one place for as long as
we stayed in Newcastle. Subsequently, due to the children’s schooling we came in contact
with a much larger community.

1.10 University of Newcastle

Mukhopadhyay: In the University of Newcastle, which department did you join as a
student?

Mardia: I went to the Department of Mathematics, which had a section on statistics.
Professor Plackett, my assigned advisor, was Head of the Department of Mathematics. He
was probably Editor of the Journal of the Royal Statistical Society, Series B, right around
this period. He was a very busy man but he always had time for me. I became a full-time
student all over again.

Mukhopadhyay: Did you think ahead about possible topics for a Ph.D. thesis?

Mardia: Professor Plackett and I were exchanging ideas. He had just finished a paper
(Plackett 1965) where he formulated a bivariate family of contingency type distributions
and he gave me a copy to study. I quickly realized that the same family could have been
generated by quadratics having unique roots which led to interesting conclusions. This paper
of mine appeared in Biometrika (Mardia 1967d).

Another problem which interested me all along was to find the joint distribution of two
sample ranges obtained from bivariate random samples. I found simple expressions for the
means, variances, and even the correlation coefficient between the sample ranges. The for-
mula for the correlation coefficient was derived earlier by H. O. Hartley in Biometrika
(1950) but my answer did not match with his and so I was puzzled. My paper (Mardia
1967a) was published in Biometrika where I wrote that Hartley’s expression of the correla-
tion coefficient was wrong! (Laughs.) Later, H. O. Hartley published (1968) a note with W.
B. Smith, one of his students, showing that his formula was not wrong. It turned out that
my approach was just simpler. (Laughs.)

Mukhopadhyay: So I suppose that no serious harm was done.

Mardia: (Laughs.) Right, no serious harm was done. Another work of mine that has
survived all these years had to do with a nonparametric test for locations in a bivariate
distribution (Mardia 1967¢). This work was also done in the University of Newcastle.

Mukhopadhyay: Did you take any courses? How was the Ph.D. program structured?

Mardia: I did not have to go through any course work. I began exploring various
research problems right away. Students were expected to attend regular colloquia. I remem-
ber that one time George Barnard came and gave a lecture. There was a symposium once
where I presented a paper and I think that O. Barndorff-Nielsen was present.

Mukhopadhyay: You went to Newcastle with a wealth of knowledge about statistics.
How did you proceed to learn new techniques and areas?

Mardia: In the beginning, my thesis topic was quite open. I had frequent discussions
with Professor Plackett. He guided and exposed me to a broader horizon. It was the time
when I started learning more things directly from the published papers. I was attracted by
H. Chernoff’s and E. L. Lehmann’s nonparametric papers.

I kept researching by myself and I was totally independent. They had the KDF9 com-
puter which ran on the language called ALGOL. I began having some difficulty working
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Figure 1.5 Left to right, Mrs. Brook, Kanti Mardia, Robin Plackett, Pavan Mardia, and
Mrs. Plackett, at Newcastle, 1966.

with this machine. Professor Plackett was persistent that I must learn this language and
eventually I became quite efficient in programming. I used computing tools extensively for
my work in nonparametrics.

I also attended some of the Royal Statistical Society meetings. The invited papers with
discussions always fascinated me. I heard some lectures of Vic Barnett and Toby Lewis on
extremes. | commented (Mardia 1967b) on their paper, but I had to do so within five minutes
of allotted time, something very new to me. In the middle of my comments, the bell started
ringing. It was a very shaky but unique experience! (Laughs.)

Mukhopadhyay: Eventually what turned out to be your thesis topic in Newcastle?

Mardia: I already had two papers in Biometrika (Mardia 1967a; 1967d) and another
two in J. Roy. Statist. Soc. Ser. B (Mardia 1967c; 1968). I finally wrote my thesis on “Some
contributions to bivariate distributions and nonparametric methods.” This work was finished
in approximately one and one-half years, but I did not know what to do after getting the
Ph.D. degree and so I stayed on for a while. I passed my final thesis defense in January
or February, 1967. Meanwhile, the two children were growing and my wife, Pavan, was
pregnant with our third child. We had a baby girl, Neeta, in March, 1967.

For my Ph.D. thesis examination, the external examiner was Alan Stuart. This was the
first time I met the “Stuart” of the famous “Kendall and Stuart.”” He asked me pertinent
questions and then kindly suggested how I might move ahead in different directions for
further research. In the end, he remarked, “Two Ph.D. theses could have been made out of
this one thesis.” I felt honored by the fact that this praise came from someone like Alan
Stuart.

Mukhopadhyay: After finishing the Ph.D. degree, did you contemplate going back to
India?

Mardia: I was thinking about this. But then Professor Tikkiwal from India hinted that
when I returned to India after fulfilling the terms and conditions of the Commonwealth
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Figure 1.6 Kanti Mardia received the D.Sc. Degree, at Newcastle, 1973.

Scholarship, I would be transferred to teach in an undergraduate college. I felt unbelievable
pressure building upon me from so far away!

Again, I heard the call for drastic changes in our lives. Some major decisions were hang-
ing in the balance and I had to make a “statement.” A lecturer’s position became available
in Newcastle and Robin advised me to apply. I went through the process, but the official
waiver of my obligations to India arrived much too late, and hence I could not be offered a
position. Robin asked me to withdraw my application and I followed his advice.

1.11 University of Hull

Mukhopadhyay: You then applied to the University of Leeds and what happened next?

Mardia: Once I got all the clearances from the Government of India, I applied for a
position in the University of Leeds, probably in January or February, 1967. But, I was not
selected. (Laughs.)
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Meanwhile, I got an interview with the University of Hull for a lecturer’s position. Hull
is on the east coast of Britain, about sixty miles from Leeds. I liked everything in Hull.
In April, 1967, I joined the statistics section in the Department of Applied Mathematics.
They had two lecturers, Jim Thompson and Edward Evans. Jim worked with J. L. Hodges,
Jr. and came from Berkeley. Edward worked on entropy but later switched to statistics.
Subsequently, Michael Bingham, a student of K. R. Parthasarathy from Sheffield, was hired.
This was a very good group.

Mukhopadhyay: I hope that your move to Hull was smooth.

Mardia: We bought a house straight away and arranged schools for the two older chil-
dren. Our infant daughter Neeta came down with a bad strain of whooping cough and she
was quarantined. The initial period was rough. After I had been a few days in the department,
Professor Slater, the in-charge, asked me to describe the location of my house. I described
the exact location and then Professor Slater said, “Kanti, would you believe! Your house
is exactly opposite my house.” I thought to myself, “Oh God!” (Laughs.) One can surely
guess that Professor Slater did not drive and frequently I gave him rides! (Laughs.)

Mukhopadhyay: What courses were you assigned to teach?

Mardia: I taught multivariate analysis to third-year students and had a very large class
of second-year students. So I prepared my own lecture notes and adjusted the teaching
style accordingly. I remember being asked to teach some traditionally unpopular courses,
but those were extremely successful when I taught them. I also taught statistical inference
to third-year students and some of my initial Ph.D. students came from this course. I was
strengthening as well as teaching the department’s course offerings. At the same time, my
own research program started to flourish.

Mukhopadhyay: Did you then handle both the undergraduate and graduate students in
Hull?

Mardia: The two systems in the United States and England are quite different. In
England, one does not customarily go through a rigid course work in a Ph.D. program.
One may opt to enter a Ph.D. program right after finishing an undergraduate degree. A
third-year undergraduate in statistics learns through courses and substantial honors project,
many modern aspects of statistical theory and applications. A student with such preparation
and maturity is normally guided by a supervisor to explore research topics that may later
develop into a Ph.D. thesis. This process may need about three to four years to culminate
into a Ph.D. degree.

Mukhopadhyay: Kanti, I realize that you went to Hull as a lecturer with substantial
experience. Were you happy?

Mardia: Not exactly, but I had no choice. I felt bothered mentally. I started looking for
a more suitable position elsewhere in 1969. A senior position became available in Hull and
Toby Lewis joined as Professor of Statistics, with the understanding that he could immedi-
ately hire a senior lecturer. I applied for the position. Obviously there was some competition
but, in the end, I got the senior lectureship.

Mukhopadhyay: As you looked for a right position, did you ever consider moving
away from England?

Mardia: The racial overtones and related flareups now and then in England bothered me
greatly. I also wondered about the prospect of my eventually becoming a professor in Eng-
land and worried that the chance was nearly zero. I could think of only K. R. Parthasarathy
who became a professor in Sheffield.

I started looking for an opportunity to go abroad. In 1969, Madan Puri made arrange-
ments to get me an offer from Indiana University, Bloomington, to become a nontenured
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associate professor. But, having heard horror stories about nontenured positions, I started
negotiating with them and later decided that I was not about to go to Bloomington with my
family with a nontenured job. That offer fell through.

Mukhopadhyay: So you stayed in Hull, I presume. What came next?

Mardia: The position of a reader is reserved only for good scholars. Monetarily this
position is not very different but it has a lot of associated prestige. Each university in Eng-
land has a unique system outlining the process of appointing readers. I was interviewed for
the readership position in Hull with David R. Cox as the external and I became a Reader in
1971. I stayed in Hull through August 1973.

Mukhopadhyay: What were some of the research topics of your Ph.D. students in Hull?

Mardia: Barry Spurr worked on tests for multimodal axial circular distributions (Mardia
and Spurr 1973). This developed nonparametric methods that later became a part of direc-
tional data analysis. Another student, T. W. Sutton, had worked on blocking problems in
meteorology and regression analysis on a cylinder with temperature as a variable (Mardia
and Sutton 1975). This work needed methodologies for some distributions with cylindri-
cal variables and so this student developed both parametric and nonparametric methods for
cylindrical distributions (Mardia and Sutton 1978). In the University of Hull, I essentially
focused on guiding these two Ph.D. theses.

1.12 Book writing at the University of Hull

Mukhopadhyay: Kanti, you are well known for your books and edited volumes in a variety
of areas. How and where did all these begin?

Mardia: The first thing I ever published that I could call my own was a short story
written in Hindi for the college magazine in Bombay. The serious book writing started
in Hull.

Recall that Alan Stuart was the external examiner for my Ph.D. thesis in Newcastle. He
saw the great potential in my thesis area and mentioned that there was no book dedicated
solely to that subject. Alan suggested that I should write a book on bivariate families
of distributions. He said that his former student, Keith Ord, was writing the univariate
part (Ord 1972). So, I immediately started writing the book, Families of Bivariate
Distributions.

Alan was Editor of the Griffin’s Statistical Monograph series and he urged me to fin-
ish the manuscript quickly. From time to time he would call and ask about my progress.
The project was moving along very slowly. After a while, he said, “Kanti, look, there is
no perfect book. I will tell you an anecdote which you should always remember. Harold
Hotelling once had a contract with a publisher to write a book on multivariate analysis. He
started writing some chapters and some years went by. At the end of each year, when the
publisher inquired about the progress, Hotelling reported which chapters he was writing or
revising and so on. During this time, C. R. Rao’s biometric research book (1952) and T. W.
Anderson’s multivariate analysis book (1958) came out, and Hotelling felt that there was
no more urgency for another book on multivariate analysis. Kanti, don’t fall in such a trap.”
Alan said, “The moral is this: do not wait for someone else to write ‘your’ book in your
subject!” (Laughs.)

I took Alan’s advice very seriously. I moved on with this project, collected all the nec-
essary materials quickly, and I completed the book in about one and a half years. My first
book, Families of Bivariate Distributions, appeared in 1970 (Mardia 1970a). At the time
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when I wrote this book there was nothing else in the area. Then came the book of N. L.
Johnson and S. Kotz (1972). Of course, the Johnson and Kotz series of books were superior.

1.13 Directional data analysis

Mukhopadhyay: How did you come upon the area of directional data analysis?

Mardia: In Newcastle, I began developing nonparametric methods by way of
Hotelling’s T2 test. But, I was never too keen on working with ranks and asymptotics.
In the latter part of 1964, I started thinking about some simple tests. I wanted to have
a slick way of doing bivariate nonparametrics and not lose much power. I centered the
two distributions, projected them on circles and worked with the uniform scores. Then I
examined how these scores in the two populations were distributed. When I did this sort of
thing fully in my thesis, I did not know anything about Geoff Watson’s work on directional
data. I did not even know what “directional data” was. Then Robin Plackett pointed out
to me that there was a short note (Wheeler and Watson 1964) proposing a test that came
to be known as the “Wheeler-Watson test.” That paper came to my attention after I had
submitted my thesis in Newcastle and my paper (Mardia 1967¢c) was published. It turned
out that I had independently derived the Wheeler-Watson test.

Mukhopadhyay: Would you please explain briefly what this area is about?

Mardia: One may consider, for example, migrating birds and their homing directions.
In this context, one may like to investigate whether there is a preferred direction or mea-
sure the variation from the homing direction, if any. Most navigational problems and many
problems in astronomy involve measurements with directions. There were quite a few data
analytic problems involving directions. Usual statistical entities such as the sample aver-
age and sample standard deviation are not so meaningful when observations are directions.
One must take into account the geometrical structure and topology in order to arrive at
appropriate analysis of such data.

Mukhopadhyay: Who were some of the major contributors in this field?

Mardia: Of course, R. A. Fisher did some early and fundamental work on the dispersion
on a sphere (Fisher 1953). Geoff Watson was probably the next most important contributor
to this field. His students (e.g., Michael Stephens and Rudy Beran) wrote theses in this area.
Also, J. S. Rao wrote his thesis in 1969 on directional data at the Indian Statistical Institute,
Calcutta, under C. R. Rao.

Mukhopadhyay: Did your directional data book originate in Hull?

Mardia: Yes, it did. As I was writing the bivariate distributions book, I felt that I got in
me the bug of writing books. (Laughs.)

Substantial amount of material was available, but this material was all scattered. It was
time to make a synthesis of the papers and dissertations and present this in a more accessible
form. My research students and [ were collecting these materials, and I thought that I already
had enough for a book. Thus, the book on directional data was born.

Mukhopadhyay: How did you proceed?

Mardia: I wrote to Eugene Lukacs, an Editor for Academic Press for the series on prob-
ability and statistics, explaining my intent. Then, following Alan Stuart’s valuable advice
given to me before [ wrote my first book, I immediately moved forward with the project with
full steam. Toby Lewis was very supportive and he asked me how much time I needed to
finish this book. He first approved a one-term sabbatical, followed by another, which were
both immensely helpful for concentrating on book-writing. Some of the works on spheres
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Figure 1.7 From left to right: E. Lukacs, D. Basu, K. Mardia, at Beverley Minster (near
Hull), 1971.

were either incomplete or not very satisfactory, and so I started developing the needed mate-
rial as I went along. By that time, my second sabbatical was gone and Toby suggested that I
finish the book with whatever available material there was. Otherwise, the work could have
dragged on much longer.

I finished writing the book in 1971. The Statistics of Directional Data was published in
Mardia (1972) and it was an immediate hit. Geoff Watson (1973) wrote a very nice review
of that book.

Mukhopadhyay: This book included a number of valuable tables. You produced several
tables yourself. But you had to expend quite some energy to get permission to reproduce
some of the other tables. Do you want to mention that story?

Mardia: This book needed many tables and I requested permission from Michael
Stephens to reproduce some of the tables from his published works. He was hesitant
because he was also writing a book in the same area. As many of those tables were from the
journal Biometrika, I then approached its Editor, E. S. Pearson, for permission to reproduce
the tables. Pearson said that Michael Stephens could be justified in being hesitant and he
hinted that there could be a conflict of interest here because some of these tables were
going to be included in the forthcoming E. S. Pearson and H. O. Hartley (1972) volume.
He was not too sure that he should give me a “go ahead.” I was kept in suspense while I
waited with an almost finished book!

I had lot of correspondence with Pearson regarding my directional data book including
many exchanges among Michael Stephens, Pearson and me regarding the copyright issues
in reproducing some of the tables published earlier in Biometrika. Toby Lewis suggested
that I go and see Pearson personally. I may add that I met E. S. Pearson only once, probably
in 1970 or 1971, in his office in the University College, London.

When I saw Pearson, I sensed that he was not very comfortable with the whole episode
and he was not happy about how the events turned out and became so complicated. He was
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a very kind person. By that time, I had become quite proficient with computers and I was
preparing tables of the F'-distributions with fractional degrees of freedom. So I dropped
the hint that Pearson could include some of my F'-tables with fractional degrees of free-
dom in the upcoming Pearson-Hartley volume. He then suggested that I should recalculate
Stephens’s tables as much as possible, but he would permit me to reproduce the difficult
parts of his tables. My F'-table was inserted on pages 171-174 of the Pearson-Hartley (1972)
volume.
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Figure 1.8 (a) A sample of E. S. Pearson’s letter on K. Mardia’s F'-tables with fractional
degrees of freedom. (b) The last part of E. S. Pearson’s letter.
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Figure 1.8 (Continued)

Mukhopadhyay: It sounds like a very high level negotiation!

Mardia: It was understandable, but frustrating nonetheless. Again, Toby’s advice came
in so handy.

The interesting thing is that Nick I. Fisher, Toby Lewis and B. J. J. Embleton (1987)
later wrote a book that dealt with the spherical data. I am very glad that they came up with
their book, which included many details of the associated exploratory analysis. This book
beautifully supplements what was lacking in my 1972 book.
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Mukhopadhyay: What else was going on during this period?

Mardia: Meanwhile, the children were growing up. My wife, Pavan, already had a
masters degree before we came to England, but she was not getting any suitable jobs. Pavan
wanted to teach mathematics in a school. In 1969, she went through the three-year full-time
certification program for education. All of us in the family had to endure a long and busy
period. It was delightful when Pavan became a permanent school teacher in 1973, in Leeds.
To her credit, she maintained the stability in the family through the whole ordeal.

A number of interesting people lived in the same neighborhood where we lived. One
of them was Alan Plater, a very well-known playwright. The BBC often broadcast his
plays. His son and my son, Hemant, were classmates in school. Phillip Larkin, a great poet,
was the Chief Librarian at the University of Hull. Also, Sheldon, a novelist, was Larkin’s
second-in-command. These contacts with literary people were lots of fun for both my mind
and soul.

1.14 Chair Professorship of Applied Statistics, University
of Leeds

Mukhopadhyay: You were settled in at Hull. Why did you then decide to move?

Mardia: I liked Hull very much and I enjoyed doing what I did there. But, even so,
for some time I was itching to become a full professor and worrying about my chances to
hold such a position. One time Toby (Lewis) jokingly said, “Kanti, you don’t move to the
Sahara Desert simply because someone from there offers you a professorship. Take it easy
and don’t get so worked up. In time a position will come along anyway.” Toby was correct
and I did not even have to move to “Sahara.” (Laughs.)

In the United Kingdom, some universities have a system which awards “personal” Chair
positions and only exceptionally qualified individuals can be promoted to a Chair. The per-
sonal Chair Professors normally are not administrators, although there are some exceptions.
The University of Hull did not have this system of personal Chairs. It was clear that I would
have to move in order to become a full professor. In 1973, some of these positions were
openly advertised and I applied. There were positions both in Salford, which is close to
Manchester, and Leeds. I was offered a Chair Professorship at both Salford and Leeds.
When I started my career in the United Kingdom, the University of Leeds did not offer me
a junior position, and so I did not think twice! I decided to join the University of Leeds.
(Laughs.)

But seriously speaking, there were important reasons to move to Leeds. Bernard Welch
who had worked, among other things, on the Behrens-Fisher distribution of the two-sample
statistic and robustness, was the Professor and Head at Leeds. This was a good department
and I thought that I would never have to be the Head because there would always be two
Chairs in the department. The Vice-Chancellor Lord Boyle, who interviewed me, had great
sympathy and regard for Indian scholars and other minorities. He was a former Cabinet
Minister of Education and held very broad ideals. In Hull, Toby Lewis was very supportive
and he was one of my referees. My colleagues in Hull understood fully that this was a
career move for me, and they all helped and supported me throughout the ordeal, for which
I remain grateful.

The offer from Leeds came in May, 1973, and I joined in September of that same year.
The position came with a personal secretary and a statistical assistant. A Ph.D. student, Dick
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Figure 1.9 Kanti Mardia presenting a Discussion Paper at the Royal Statistical Society,
London, 1975.

Gadsden, had followed me from Hull to Leeds. He worked with me on sequential methods
for directional data. He is now a senior lecturer in Sheffield, in the same department as
Gopal Kanji.

Mukhopadhyay: What were you doing when you first arrived in Leeds?

Mardia: I started with a statistical assistant who helped me with the computer program-
ming. Peter Zemroch was my student and then he became my research assistant in Hull.
He had also moved with me from Hull to Leeds. I had a grant from the Science Research
Council to construct the tables for F'- and related distributions. I already had a contract
with Academic Press to write the multivariate analysis book. I was very busy with research
problems in directional data, as I was preparing a paper to be read at the Royal Statistical
Society meeting in 1975.

Mukhopadhyay: Why were you so involved with the F'-tables?

Mardia: [ was fitting univariate distributions using the first four moments. This exercise
needed F'-tables with fractional degrees of freedom.

In Hull, I got the idea of writing on multivariate skewness and kurtosis for testing multi-
normality. This was conceived via multivariate linear model and permutation tests. The
second moment in a permutation test depends on the multivariate kurtosis. I gave most of
the details in my Biometrika paper (Mardia 1970b). Then I got down to the F'- or beta dis-
tributions and I needed extensive sets of F'-tables for checking the goodness of the fitted
distributions. Peter Zemroch developed the computer programs in ALGOL60 language and
eventually Peter and I published a monograph, F'-Tables and Related Algorithms (Mardia
and Zemroch 1978), which has since been translated into Russian. Peter continued working
on algorithms for directional data for about three years and we published some joint papers.

Mukhopadhyay: What else was going on during those initial years in Leeds?

Mardia: After we moved to Leeds, Pavan got a job in a school right away. Our son
received scholarships to attend a prestigious private school. Our daughters were progressing
beautifully. In the family front, everything felt just right for a change.
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In the department, I was given the responsibility for the masters program. To energize
the curriculum, I introduced new courses. Apart from adding a course on directional data,
I pushed for more vocational courses. Geostatistics and statistical computing courses were
added around 1975. A set of new computers arrived in 1977 to modernize the computing
environment.

I started the statistical consulting component to foster collaborative research with sci-
entists from other disciplines. The routine consulting requests were passed on to the post-
graduate students and they learned what real statistics was all about. Substantial consulting
projects were shared by colleagues for broadening the scope of research in other fields and
also for preparing grant applications.

Bernard Welch and I overlapped for about three years while he was preparing to retire in
1976. He lost interest in the day-to-day administration of the department. He was, however,
still teaching. Outside of statistics, one of his main interests was the game of cricket. He
often said, “I recommend retirement to do other things full-time.”

I was brought to Leeds with the charge to energize the teaching, research and consulting
programs. I started doing just that with vigor and vision for the future, I hope. I got the
support I needed from my colleagues and the higher administration alike.

Mukhopadhyay: What was the administrative structure and who were some of your
colleagues in Leeds?

Mardia: The statistics department was, and still continues to be, one of the three
autonomous departments within the School of Mathematics. The school had a chairman
and these three departments had respective department heads.

Apart from Bernard Welch, we had Harry Trickett who was a senior lecturer. He did
some research in statistics, but his strength was in administration and teaching. Harold Peers
had worked on invariance. I had also other colleagues. We had people working on, for
example, distribution theory and time series analysis.

Mukhopadhyay: Between a department head and the Chairman of the School, who is
more powerful? Where did you fit in this bigger picture?

Mardia: The department heads are traditionally more powerful. The role of the Chair-
man of the School is to coordinate its total program and services. If conflicts or duplication
of programs or services arise among the departments, the school chairman then intervenes
to mediate and guide all parties to a common ground for the benefit of the school. A depart-
ment head is responsible for running the department, whereas the school chairman acts as
a liaison.

When I arrived in Leeds, I found a wonderful administrative structure. I did not have to
worry at all about the undergraduate administration. The school had a Director of Under-
graduate Teaching who looked after all courses and related matters in the three departments.
Each department was, however, responsible for formulating its own curriculum require-
ments, develop teaching modules, update future planning, and so on. I introduced tutorials
with smaller groups of students and added modern course materials; for example, we created
an exploratory data analysis course as a requirement for the third-year students.

Mukhopadhyay: In the mid-seventies, the university had to endure serious financial
hardship and I am sure that your department had to streamline its priorities. How did you
“reposition” yourself?

Mardia: There was a period in 1976 when circumstances changed and finances became
hard to come by. I had to become the department head, quite reluctantly, to lead the group
of ten statistics faculty members. Subsequently, I was allowed to hire new faculty members.
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In the meantime, I received a large Symposium Grant. With this grant, I could invite
short-term visitors from abroad to Leeds for collaborating on projects related to directional
data. During that period, C. G. Khatri came to Leeds when my joint works with him started.
Subsequently, O. Barndorff-Nielsen, Rudy Beran, Kit Bingham, Tom Downs, John Kent
and J. S. Rao came to visit Leeds. John Kent was a graduate student of David Kendall
and later he joined our department as a Lecturer. Ian Dryden also joined the department
subsequently. It turned into a wonderful period to move ahead in the areas of directional
data and non-Euclidean geometry in statistics.

Mukhopadhyay: I understand that in Hull, your multivariate analysis book was also
conceived. When you moved to Leeds, work on that book continued too. What do you
recall?

Mardia: The work on my multivariate book was continuing. When I was in Hull, Toby
Lewis pointed out that John Bibby from St. Andrews was writing a book on the same topic,
and I took John Bibby as a coauthor. But slowly I came to understand that his style was very
different. I first rewrote and verified everything he used to send. Then I took John Kent as
another coauthor to make real progress. The book Multivariate Analysis, jointly authored
with J. T. Kent and J. M. Bibby, appeared in 1979, much later than it should have (Mardia
et al. 1979).

Mukhopadhyay: At some point, you went to Canada for a semester to try out a tenured
position. Obviously you did not stay there. Would you care to comment?

Mardia: It was 1977. Racial tensions in the United Kingdom were on the rise. Many
politicians and other people were giving negative speeches. My wife, Pavan, said “Let us get
out of this country before it becomes too late for us.” We were seriously debating whether we
should permanently move away from the United Kingdom and around that time I received
an offer from the University of Windsor, Canada, for a tenured position. I thought that I
should try out this change of venue for a semester. In January, 1978, I arrived in Windsor,
Canada, by myself with a leave of absence from Leeds.

This was the coldest winter I had ever faced. Because it was the middle of the school
year, my family could not join me. In Windsor, I was given a substantial teaching load. I
was asked to teach a very elementary course with two hundred students! I had never taught
any class nearly as large as this one. The departmental environment was very good and I
liked my new colleagues. John Atkinson, who was the department head, and Dick Tracy
were both very helpful. My family joined me in Windsor when they had the Easter break
in the United Kingdom but the overall systems and cultures in the two countries were very
different. My family did not take to it and deep down I also did not. It might have been
different if my family had had more time to spend in Windsor or perhaps if I had not had
to teach this heterogeneous and huge class as soon as I arrived. In May, 1978, I returned to
Leeds. (Laughs.)

1.15 Leeds annual workshops and conferences

Mukhopadhyay: You created the tradition of annual workshops in Leeds. You should feel
genuine pride and satisfaction when you look back. Any highlights to share?

Mardia: If one wants to expose interested colleagues to a new subject, it works well
to invite an expert in that area and learn the subject from the lectures. For example, when I
was writing the multivariate analysis book, I realized that the multidimensional scaling and
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Procrustes methods will have significant impacts on the area. John Gower (1975) had just
published some work on Procrustes methods. I knew him from Hull, where I had invited him
to a symposium on multivariate analysis which I had organized in 1973. I invited John to
Leeds for detailed lectures on multidimensional scaling and Procrustes methods. A couple
of other faculty members and I went through that workshop very diligently. Such workshops
are now integral parts of the statistics department in Leeds. In subsequent workshops, I
invited other scholars, including Julian Besag and Brian Ripley, because we felt that a lot of
activity was imminent in spatial statistics and in image analysis. These gatherings are now
internationally recognized as the Leeds Annual Statistical Research (LASR) workshops.
We have an open-door policy. Anyone interested should feel free to participate at any time.

Also in 1985, Subha-Rao visited us and gave lectures on aspects of time series analysis
that had direct bearing on spatial statistics. As early as 1979, we organized a conference in
geostatistics. This was a workshop, but it was also open to several invited speakers along
the lines of a conference. We had an invited speaker from France, A. Marechal (Centre de
Geostatistique, Fountainbleau), from the G. Matheron group. This conference was quite a
success.

In 1984, I organized a workshop on image analysis. This was the first time such a work-
shop had been held in a statistics department anywhere. Researchers from all over the world
had showed a lot of interest in this workshop. One of the workshops on shape analysis was
attended by David Kendall; Fred Bookstein also participated many times in these important
workshops on shapes.

Our forthcoming workshop (the eighteenth one) will address spatio-temporal modeling
with emphasis on applications. The applications will include tracking in machine vision,
functional MRI in medical imaging and ecology. Some well-known statisticians (e.g.,
David R. Cox, Peter Diggle and Noel Cressie) have been invited. But there will also be
experts in functional MRI, epidemiology, tracking and ecology. From Oxford, Andrew
Blake (now with Microsoft, Cambridge) will participate. He is an expert on tracking. These

Figure 1.10 From left to right: D. G. Kendall, P. A. Dowd, A. Marechal, K. V. Mardia.
Geostatistics Meeting, Leeds, 1979.
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annual workshops try to build a bridge of communication and collaboration among experts
in statistics and other substantive scientific fields where fresh ideas and methodologies are
urgently needed.

Mukhopadhyay: Do you normally edit and publish the proceedings from these work-
shops and conferences? The proceedings can reach a much wider audience.

Mardia: In the beginning, we did not publish the proceedings. But, subsequently we
started publishing these Proceedings starting in 1995 to reach a wider audience than the
limited number of participants. These have been well received by the scientific community
in general.

Mukhopadhyay: In your view, what have been your two best accomplishments in
Leeds?

Mardia: I think that our department is recognized internationally. Our research program
has been in the forefront of fundamental breakthroughs in information technology (IT). The
department is undeniably on the map. I would like to think that I have helped in creating
and strengthening this visibility. This has been the most important accomplishment. It has
been such a gratifying journey for me.

Another major accomplishment, if I may say so, has been the modernization of our
course offerings, including computer-aided teaching utilizing the latest available statistical
software packages. A long time ago, in teaching our courses, we implemented our own
software, even before the well-known software, MINITAB, came on the market.

Mukhopadhyay: Now please describe the worst episode during your tenure in Leeds
in the sense that you would happily change your course of action right now if you could
turn the clock backward?

Mardia: Very early on, the Science Research Council (SRC, now EPSRC) threatened
our masters program. The SRC came up with a new policy to cut the number of courses in
order to streamline programs across the university. I fought against this decision and made
an appeal to the higher administration. All our M.Sc. courses were then reinstated.

Figure 1.11 From left to right: F. L. Bookstein, W. S. Kendall, K. V. Mardia, J. T. Kent,
C. R. Goodall. The 15th LASR Workshop, Leeds, 1995.
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Figure 1.12 Workshop in action at home in Leeds. Playing bowls. From left to right: D.
Terzopoulos, J. Koenderink, E. Berry, K. Mardia, L. Marcus.

But after three years of some calm and quiet, the SRC went back to the drawing board
and decided to drop the M.Sc. program in statistics. Our Ph.D. program was hurt because
our M.Sc. program fed students into our Ph.D. program and now that channel was elimi-
nated! Difficult financial situations were knocking at the door. We lost some regular faculty
members and some were replaced by temporary positions in order to cut costs. We continue
having an active but smaller Ph.D. program. If I could turn the clock backward, I would
definitely fight more to save the M.Sc. program.

Mukhopadhyay: Statistical methodologies have certainly changed focus over the years.
In your view, where are we heading?

Mardia: During the periods of R. A. Fisher and P. C. Mahalanobis, statistics brought
revolutions with path-breaking applications in the areas, for example, of agriculture, biology
and sampling, with great impact on population census and economic planning. In the past
ten or fifteen years, new statistical ideas and methodologies have energized IT which is a
general name to describe subject areas such as computer vision, image analysis and machine
learning. In my department, we have a large group of internationally recognized experts in
these and related fields. Fundamental challenges in data handling in IT have enriched the
field of statistics tremendously. My feeling is that this change in emphasis and directions
will continue in the foreseeable future. In Leeds, we have been preparing for such changes
for quite some time.

1.16 High profile research areas

Mukhopadhyay: Kanti, in your opinion, what are your primary areas of research expertise?

Mardia: Broadly speaking, the major thrust areas include multivariate analysis, direc-
tional data, shape analysis, spatial statistics and spatial-temporal modeling. Another big
area, which goes hand in hand with these can be categorized as applications involving imag-
ing, machine vision and so on.
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1.16.1 Multivariate analysis

Mukhopadhyay: Please highlight some of your important contributions in multivariate
analysis.

Mardia: Classical multivariate analysis heavily depended upon the multivariate nor-
mality assumption of the parent population. I developed methods for checking multivariate
normality (Mardia 1970b) by introducing multivariate analogs of skewness and kurtosis and
gave measures to quantify departures from normality. The impact of this paper has lasted
more than that of some other papers of mine. When others come up with newer measures
of multivariate skewness and kurtosis, they compare performances with earlier measures
given in Mardia (1970b).

Mukhopadhyay: What do you suggest users do when multivariate normality is suspect?

Mardia: Unfortunately, I have not addressed that aspect. I would expect one to use
multivariate Box-Cox transformations as a possible route. But it is not always an easy task
to accomplish. One may alternatively use permutation tests for the mean or the location
parameter. I wrote a related paper (Mardia 1971) describing the effect of nonnormality on
some multivariate tests and robustness to nonnormality in the linear model. In that paper I
gave permutation tests which may provide plausible solutions.

Figure 1.13 From left to right: C. R. Rao, B. Mandelbrot, K. V. Mardia, at Penn
State, 1994.

Mukhopadhyay: What other kinds of multivariate problems attracted your attention?

Mardia: I have enjoyed creating new and interesting multivariate distributions and
deriving some of their important properties. For example, I elaborated Plackett’s family
of bivariate distributions.

I worked on multidimensional scaling. The subject of multidimensional scaling helps
one to come up with similarity measures. When I examine configurations, I can come up
with numerical measures which will in turn tell us how similar or dissimilar these configu-
rations are.
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My 1977 work on how the singularity of the variance-covariance matrix X affects infer-
ence techniques involving the Mahalanobis distance has also been well cited in the literature.
In Mardia (1977), I had defined what is known as the Mahalanobis Angle.

Perhaps the most important contribution was my Mardia et al. (1979) multivariate anal-
ysis book, jointly written with John Kent and John Bibby which we talked about earlier.
This book has met the test of time. My feeling is that a good book should last at least ten
years. Some of my books, for example, the Families of Bivariate Distributions, have not
been of this caliber. (Laughs.)

Mukhopadhyay: Since the early days of Fisher, Mahalanobis, Hotelling, Hsu, Roy,
Bose, Rao and others, multivariate analysis has come a long way. Where will this field take
us next?

Mardia: My best guess is that the field will become more exploratory and data oriented.
There will be more emphasis on statistical modeling, for example through elliptic distribu-
tions, and in nonparametric or semiparametric models. There was a time when distributions
were discarded as models if there were no analytical expressions for the maximum likeli-
hood estimators of the parameters. That scenario has changed for the better. Model checking
has become more a visual art than anything else. With easy accessibility to computers,
statisticians are now driven more by the complexity of the problems rather than opting for
a narrow set of “nice distributions” for analytical reasons alone.

1.16.2 Directional data

Mukhopadhyay: Now we move to directional data. Please highlight some of your impor-
tant contributions.

Mardia: There were quite a few important problems involving directions on which
I had the opportunity to work. I studied, for example, flying patterns of migratory birds
(Mardia 1975), various problems in geology, analysis of megalithic-yard data in archeology
(Mardia and Holmes 1980), and in astronomy the behavior of long-period comets (Jupp and
Mardia 1979).

John Kent and I had worked with Jim Briden, an earth scientist, on the formation of the
earth, its various layers, continents and their movement patterns over time. The data reduces
to the directions of the prevailing magnetic field of the earth, but sudden movements of some
layers may change the course. Using the natural remnant magnetization in rocks, our work
shows how to find out where a continent was located when a particular rock was formed and
involves identification of linear segments given a set of ordered points. Our paper (Mardia
et al. 1983) is highly regarded.

Once the magnetic components have been extracted, the objective is to follow the move-
ment of the continents over geologic time — that is, the apparent wander paths. This prob-
lem was investigated with Dick Gadsden (Mardia and Gadsden 1977). Also, a related prob-
lem is the movement of the area of vulcanism or hot spots. As the plates move, a chain of
hot spots is assumed to be formed on the earth’s surface. Both can be viewed as following
points along the arc of a small circle on the earth’s surface and thereby determining (fitting)
that circle. We looked at the actual data for validation of the theoretical model. Further
distributional work was developed with C. Bingham (Bingham and Mardia 1978).

One time I worked with a physicist, Professor Alan Watson of Leeds, on high energy
particles. It was believed that these particles could have arrived on earth from one of two
possible galaxies. The question was whether these particles came from one single source.
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The points where these particles hit the earth may be thought of as a cap on a sphere. Jointly
with Rob Edwards, I came up with an appropriate distribution and analyzed the observa-
tional data (Mardia and Edwards 1982). I understand that the physicist’s postulates have
since been modified.

Another project was on central place theory. Suppose that a town grows in a regular
fashion. Then, using the principles of Delaunay’s triangle (Dryden and Mardia 1998) for
the set of sites of the towns, one should claim that these triangles should be equilateral.
With Madan Puri and one of my students (Robert Edwards), we developed a statistical test
(Mardia et al. 1978) to check whether the triangles are equilateral. This work is again often
cited and, in a way, inspired some shape work by others later on. We found the distribution
of shapes of the equilateral triangles assuming that they were independent. But they were
not really independent! More works followed later, including those by other researchers.
If one looks at wind directions at two time points, they will be naturally correlated. The
analysis of such data had led to another collaboration with Madan Puri (Mardia and
Puri 1978).

Mukhopadhyay: Your Mardia (1972) book, Statistics of Directional Data, was cer-
tainly major work.

Mardia: The directional data book has been a success. The field really took off after
this book was out. My Mardia (1975) discussion paper, read at the Royal Statistical Society,
also created much enthusiasm among researchers in this field.

Mukhopadhyay: Preparations for its second edition have gone on for years. Will it be
out soon?

Mardia: P. R. Halmos once wrote that one should never go for a second edition of a
book. But, Halmos himself published second editions of some of his works! (Laughs.)

I was hesitant to prepare a second edition of my book. Peter Jupp, who had a background
in pure mathematics and differential geometry, later worked with me as a postdoc around
1976-78. He is now a Reader in St. Andrews. Peter and I have completely rewritten and
updated the material. What one will find is a new book, Directional Statistics, which is
expected to be out soon (Mardia and Jupp 1999). The rewritten book took us close to eight
years to finish!

1.16.3 Shape analysis

Mukhopadhyay: Kanti, how did you get into the area of shape analysis?

Mardia: I have been fascinated by shapes, being brought up in the midst of the famous
Jain temples with intricate marble carving (see Figure 1.1 of Mount Abu). I always won-
dered “How were these shapes generated? Are the replications accurate?”

Another exposure has been in childhood through palmists who would make claims based
on various features of palms, for example, palm shapes. Apparently, there are seven basic
types of palm shapes. This intrigued me — why are there seven?

Mukhopadhyay: Actually, you have been intrigued by palmistry for a very long time.
Would you care to explain?

Mardia: When I was a small child, I was brought up with the expectation that I would
pursue the family-run business, but a palm reader looked at my palm and forecasted that
I would end up going abroad for higher studies. Notions like “higher studies” or “going
abroad” were not even on the horizon. I have no idea how this palm reader could forecast
my fate! (Laughter.)
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Mukhopadhyay: Regardless of how the forecast was made, it turned out to be accurate.
Where is that palm reader now? (Laughter.)

Mardia: I have also asked myself, “Where is that palm reader now?” Perhaps he should
be invited to come and give some lectures in one of my workshops! That will constitute
practical statistics on shapes! (Laughter.)

In fact, in 1980 I collected some preclassified palm shapes in the literature and con-
structed various landmarks to characterize the palm outline. I obtained what are now called
Bookstein shape variables. It turned out that there is quite a large overlap between the
shapes. I think that Ian Dryden also used this data in the initial period of his Ph.D. work.

Indeed, whenever there are claims related to “palmistry,” I try to get involved! There
was an article in the J. Roy. Soc. Medicine (1990) by a medical doctor (Dr. P. G. Newrick)
and his collaborators in the United Kingdom claiming that longevity depends on the length
of what is called a life line. I got the data and analyzed it, but found that even the life line
was not well defined (Mardia 1991).

Scientific studies of ridge-patterns of the hand are important to detect genetic disorders
and malformation. The field of scientific studies of such patterns is called dermatoglyphics.
Now, there are various known features which are used to describe ridge-patterns. In the
1960s, L. S. Penrose — a Galton Professor — proposed a number of feature variables which
are in use. I wrote a joint paper (Mardia and Constable 1992) characterizing a unique special
feature. We also provided software. Our proposed theory along with its computer algorithm
have enhanced automatic recognition of fingerprints in forensic investigations (Mardia et al.
1997a). The software is slow but it does provide a unified statistical approach!

Mukhopadhyay: How and when did the actual transition to shape analysis take place?

Mardia: Fred Bookstein’s paper “Size and shape spaces for landmark data in two
dimensions,” appeared in Statistical Science (1986) and I thought that this was the kind of
paper that I had been waiting for quite some time. Fred’s paper showed me the light.

The following year, I believe, Ian Dryden came from Nottingham to Leeds to work on his
Ph.D. with me. We started working on a joint project with an anatomist who had a problem
which had originated from experimental breeding with mice. The anatomist started with big
(heavy weight), average, and small (low weight) mice, and then let the breeding process go
through some generations within the weight groups. One question was whether the shapes
of mice, within a weight group, remained the same across generations. The anatomists were
comparing shapes of the vertebrae of mice in each group. This is how I got into this area
which gave me the impetus to start a brand new career, so to speak.

I should add that the subjects of shapes and directions are closely related. Ideas of
constructing distributions are similar. In shapes, what was lacking was that there was no
analogous “normal” distribution to work with. The question we faced was whether there
could be an exponential family of distributions for shapes. In a series of papers, Ian Dryden
and I considered the marginalization approach by integrating out the nuisance parameters
(Dryden and Mardia 1991; Mardia and Dryden 1989a,b).

Mukhopadhyay: These investigations eventually led to the distributions which are
known in the literature as Mardia-Dryden distributions.

Mardia: I presented the distribution in my discussion (Mardia 1989) of David Kendall’s
(1989) Statistical Science paper. The distribution I proposed was clearly too simple for a
problem that had seemed so intractable for some time! David liked the distribution but he
did not believe the answer at first. Later, David validated the distribution using a stochastic
formulation.
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I worked as a catalyst. I got several people interested in a new and interesting subject.
In turn, I was able to accomplish new results too, both theoretical and applied in nature.

Mukhopadhyay: You have not yet mentioned your recent book, Statistical Shape Anal-
ysis (1998), coauthored with Ian Dryden.

Mardia: Ian Dryden has been my colleague in Leeds since 1989. The book was finally
launched as I was giving the special invited lecture on the same subject at the 1998 Joint
Statistical Meetings in Dallas, Texas. I advised Wiley to print a large number of copies of
the book. They did not take a statistician’s forecast too seriously! (Laughs.)

It turned out that they ran out of copies within four months of publication. The reprinted
version came out in April, 1999.

In shape analysis, there are many unsolved theoretical aspects. A shape or an image
looks different when viewed from different angles or subspaces. If one rotates the axes or
stretches or squeezes the axes, the basic characteristics of a regular shape should be pre-
served. For example, I considered projective shape space and the associated distributions.
A theory paper, jointly written with C. Goodall and A. N. Walder, has appeared as (Mardia
et al. 1996). Walder was formerly my student and then he became a postdoctoral fellow.
One of the fundamental challenges in the field of computer vision is to enable computers to
“see,” that is, to emulate human vision, and these projective invariants allow object recog-
nition. This latter piece is a joint work with Colin Goodall which included machine vision
applications (Goodall and Mardia 1999).

1.16.4 Spatial statistics

Mukhopadhyay: Another of your major interest is spatial statistics. How did this interest
arise for you?

Mardia: Early on, I became interested in kriging within geostatistics and spatial statis-
tics. I taught an M.Sc. course on geostatistics as early as 1978. I was charmed by the
methodologies. Given some of the coordinates in a space, I was thrilled to learn how practi-
cal models were built with the help of variograms and covariograms. One could fit a surface,
if nothing else was feasible.

I had a grant on geostatistics on which R. Marshall and I worked (Mardia and Marshall
1984) to develop a spatial linear model under normality where the errors were correlated.
The parameters were estimated by the maximum likelihood method. But there were some
crucial difficulties. We had one realization from a stochastic process. We were not too sure
whether we should proceed with asymptotics by increasing the size of the grid or by mak-
ing the grid more dense. In other words, we were unsure whether we should “fill in” or
“fill out!” Eventually, I thought that “fill out” should be the way to go because then the
information would steadily increase. We could obtain asymptotic results with complicated
looking criteria under which the distributions of the parameter estimates were multivariate
normal. One of my students, Alan Watkins, worked on multimodality, bias and other criteria
in related spatial problems (Mardia and Watkins 1989).

Iam pleased to say that my (Mardia and Marshall 1984) Biometrika paper with Marshall
is highly regarded in geostatistics. Here, we modified some of the classical ideas to come up
with appropriate linear models in the new area of spatial statistics. Because of the general
acceptance and popularity of linear models in statistics, I believe, our approach to spatial
statistics with linear models has caught on rapidly.
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Mukhopadhyay: Subsequently, you became more involved with research related to
kriging.

Mardia: Yes, you are correct. John Kent’s interest also turned to kriging. Fred Bookstein
was working on comparing images. This involved comparing landmarks of two or more
averages in the space. Suppose that we consider one plane in the (z,y) coordinate system
and another one in the (u,v) coordinate system. The question may be whether these two
planes are similar. If they are similar, then one should be obtainable by the identity mapping
from the (z,y) to the (u, v) systems. But, if the two planes are not similar, then one may
try to find the corresponding mapping of the plane in the (z,y) system to the one in the
(u,v) system, and examine how deformed or stressed this mapping is if compared with
the identity map. Fred did some important work (Bookstein 1989) using thin-plate splines.
One should bear in mind that this kind of mapping should not depend upon rotation or other
similarity transformations of the shapes under consideration. Fred used thin-plate splines
with linear terms which “kill” affine transformations. So one sees local shape changes.

This approach of Fred Bookstein helped to identify one kind of deformation. But in
many applications, deformation may arise from a larger class which consists of kriging.
Here, self-similar processes provide the necessary background. Then one may not only
ask questions about the landmarks, but the tangent directions may also be included in our
considerations. Fred had handled (Bookstein 1996) this more general situation. This aspect
of spatial analysis has a bright future.

Mukhopadhyay: I am quite certain that you have other ongoing book projects as we
speak.

Mardia: I actually started writing another book on spatial analysis. When I introduced
and taught the M.Sc. course on geostatistics, perhaps as early as 1978, I prepared my own
lecture notes. I was using those lecture notes instead of any book. In the meantime, Brian
Ripley’s Statistical Inference for Spatial Processes came out in (1981). Now I was in the
same boat that Hotelling had been in his aspiration to write a multivariate analysis book!
Even though I had a contract with a publisher to write this spatial statistics book, I could
not see what purpose such a book would serve, particularly because Ripley had just written
an excellent book on the same subject but also covering spatial point patterns. However, I
lately have been actively writing the spatial analysis book with John Kent as my coauthor.

Mukhopadhyay: Sometimes, you have used Bayesian analyses. Are you a Bayesian
now?

Mardia: Personally, I am a very pragmatic Bayesian. If there is prior information avail-
able, I tend to use it, especially in situations where there is no readily available better
technique. I started relying upon Bayesian techniques when I began working on image and
shape analysis. I do not see any practical value of using Bayesian techniques indiscrimi-
nately.

1.16.5 Applied research

Mukhopadhyay: Methodologies you have been vigorously pursuing in spatial statistics,
directional data and shape analysis are clearly in the cutting edge of statistical computing.
Any thoughts?

Mardia: The images in general are very large and therefore techniques are developed
which can use local contextual information. This is more so in low level image analysis
where the aim is segmentation. Hence the use of Markov random fields as priors has come
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into use. On the other hand, for high level image analysis, such as in object recognition,
structural information of objects in priors (e.g., deformable templates) reduces computa-
tional complexity to some extent.

In 1979, T attended a conference on geology in Paris where Paul Switzer gave a talk
using some Landsat and showed how he had classified types of rocks. It was delightful. I
requested the data and he kindly gave it to me. The pixels had very low resolutions, perhaps
5 x 5km, I vaguely recall. The rock types were overlapped. At that time most statisticians
had not even heard about pixels. (Laughs.)

I got some work done and submitted the paper to the J. Roy. Statist. Soc. Ser. C, but
the referee did not like my work. I got an impression that the referee thought this approach
of mine would go nowhere. But I felt otherwise. Soon, Paul Switzer presented a related
paper (Switzer 1983) at the International Statistical Institute meeting in 1983 where Julian
Besag was one of the discussants. Besag (1986) later pursued the iterated conditional mode
approach. Geman and Geman (1984) on the other hand took the statistical computations to
another level by exploiting the ideas of stochastic relaxation and Gibbs distributions. Now
these are labeled Markov chain Monte Carlo (MCMC) methods.

I started working more vigorously on low level image analysis. Then 1 published
two papers in IEEE Trans. on Pattern Analysis and Machine Intelligence (Mardia and
Hainsworth 1988; Mardia and Kent 1988) on image segmentation and spatial classifica-
tion, respectively. The work with John Kent developed spatial classification using fuzzy
membership models. Some of these methods are robust and fast.

Mukhopadhyay: Suppose that a criminal has been on the run for five years. The inves-
tigating agencies try to reconstruct a “recent” photo of this criminal based on his file photos
which are between five and fifteen years old. The theory and practice behind any such recon-
struction fall right in your alley, I am sure.

Mardia: You are absolutely right. Modeling image warping is an area I have worked
on. There are many difficult problems here. For example, suppose we have four photos of
someone’s face at different ages. What kind of image should be called an “average” of these
four photos? How different are the four photos from the so-called average image? These
are important, interesting and challenging problems. For researchers in machine vision, the
problems of identification and tracking are crucial. Success in this area of research depends
heavily on one’s expertise with the methodologies of spatial statistics, shape analysis and
computing.

Mukhopadhyay: I understand that spatial and spatio-temporal modeling are important
for environmental monitoring too.

Mardia: Indeed, spatial and spatio-temporal modeling are essential for environmen-
tal monitoring. For example, what should be the location of the next monitoring station?
There is no quick-fix answer for this. Such a question can be addressed with the help of a
complex interplay between spatial and spatio-temporal modeling. I had worked with Colin
Goodall on some spatio-temporal analysis of multivariate environmental monitoring data
(Mardia and Goodall 1993), and the results were presented at the 1993 Multivariate Con-
ference held at Pennsylvania State University. I read related papers at the 1994 Biometric
Society meeting in Hamilton, Canada (Goodall and Mardia 1994) and in the University
of Granada, Spain, in 1996. A discussion paper on the Kriged-Kalman filter was read at
the Spanish Statistical and Operations Research Society meeting in November, 1998. This
paper marries the two prediction approaches, kriging for space and Kalman filter for time
(Mardia et al. 1998). In July, 1999, a workshop was arranged: Spatial-Temporal Modeling
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and its Applications in Leeds. In the coming years, I expect a lot of activity in these exciting
areas.

Mukhopadhyay: Automatic classifiers are used in harvesting and packaging. A robot
does the work, but what can you say about the behind the scene modeling which creates the
“brain?”

Mardia: In automatic harvesting of mushrooms, for example, how does one design a
robot which will pick only the good mushrooms of a certain size? The problem may appear
very simple on the surface, but the mathematics and the implementation of the model behind
the algorithms are both far from trivial. In Mardia et al. (1997b), an appropriate Bayesian
methodology was developed. Such techniques have a good future in general.

Mukhopadhyay: Would you mention one or two upcoming papers with important
applications?

Mardia: Right now I am writing a paper with Fred Bookstein and another one with John
Kent. Both papers have to do with bilateral symmetry. In some individuals, one half of the
face does not look the same as the other half because one half of the face is distorted. This
phenomenon is called hemifacial microsomia and can be corrected only by surgery. We are
collaborating with a surgeon, Jim Moss, and a physicist, Alf Linney, at University College,
London. The common practice is to take laser scans of the face both before and after the
surgery. But how should one go about comparing the before-and-after pictures of the face?
How should one compare the images of two brains, one normal and another schizophrenic?
This is not a routine matter. Many scientists from different fields are working on these types
of problems. Some of my recent work with Fred and John falls in this area.

Mukhopadhyay: How do you get ideas? How do you know which ideas to pursue?

Mardia: Most of my ideas are data driven. Somebody may give me a set of data or it
may come out of our consultancy or collaboration. I enjoy looking at data inside out and try
to understand the hidden message it has for me. The data gives clues in every turn, but I have

Figure 1.14 Launching of CoMIR. Seated from right to left Three Founding Directors,
Kanti Mardia, Mike Smith, David Hogg. Elizabeth Berry (seated between Smith and Hogg)
is an additional new Director since 1998.
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to discover the punch line. I remember the fun I used to have when solving different puzzles
as a small child. I assume that the data is challenging me to uncover its message, and then it
becomes a lot of fun. But in such exercises, I often find that I need newer and sharper tools
to proceed. This leads to deeper data analysis and more methodological research. My ideas
have been predominantly driven by some kind of data and my attempts to make sense of this
data. The bottom line is the challenging data analysis where my research ideas germinate.

1.17 Center of Medical Imaging Research (CoMIR)

Mukhopadhyay: You are a founding director and now Director of the Center of Medical
Imaging Research (CoMIR) in Leeds. The creation of this prestigious center within the
university has become a benchmark in your career. Where would you like to start?

Mardia: Within our department, collaborative activities and research in imaging, espe-
cially for medical diagnostics, kept growing tremendously through the 1980s. Obviously
there was real need for this type of fundamental research in this area. In 1992, three depart-
ments in Leeds got together for a joint venture with myself as the founding director. Pro-
fessor David Hogg, an expert in artificial intelligence from the Department of Computer
Science, joined hands. Professor Mike Smith, Director of the Research School in Medicine
and Head of the Department of Medical Physics, joined the team. Three of us got together.
The University of Leeds pumped in a lot of money and we got some external grants too.
The key idea was to bring the three groups of researchers together to solve practical and
important problems in medical imaging with clinical imports from the university hospital
and other nearby hospitals. The area of research problems may arise from the interface of
medicine, physics, imaging, modeling, design, computer hardware and/or software and so
on. The CoMIR has been extremely successful.

Mukhopadhyay: Would you please describe briefly an ongoing CoMIR project?

Mardia: One substantial project consists of longitudinal data collected by an orthopedic
surgeon, Professor Bob Dickson, on spinal scoliosis for a cohort of one thousand children in
the age group 9-14 years over a period of five years. Images of the spinal columns viewed
from two important orthogonal directions have been recorded for these children. The chal-
lenge is to be able to forecast the onset of a debilitating disease, spinal scoliosis, as early
as practically possible. One has to pinpoint the presence (or absence) of the disease with a
very high accuracy. The criteria for recommending the presence (or absence) of the disease
have to be formulated, implemented and tested medically. Assuming that everything goes
as planned, in the end, the large group of health providers in the clinics have to be trained
so that they can diagnose and treat the disease appropriately. Every aspect of this project’s
successful completion depends heavily on each team player’s full participation.

Mukhopadhyay: The project sounds very challenging. Where are you now in this
project?

Mardia: The criteria to quantify the curvature of the spinal column are being devel-
oped. Alistair Walder and I have developed some of these criteria. The medical trials are
continuing to test both the feasibility and validity of the suggested statistical and physical
models for the early detection of the onset of spinal scoliosis. Significant theoretical as well
as methodological research in statistics would have major impact on children’s health. This
is the kind of project of national importance for which one needs a center to attract experts
from many areas under one roof. The CoMIR has been doing some fundamental work in
this area (Mardia et al. 1999).
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Mukhopadhyay: Would you be willing to describe another significant project under
CoMIR?

Mardia: The CoMIR has been working on another project of immense practical impor-
tance. Many companies manufacture models of parts of a human body, for example, the
head, brain, knee and so on, which are used to guide and/or train in the preparation for
surgery or as prosthesis for a patient. Jointly with the Department of Anatomy, we are work-
ing on a project to develop statistical and computational methods to check the accuracy of
the manufactured models.

Consider, for example, a manufactured model of a human head. How is it created in the
first place? From a cadaver, the head is surgically removed. Then its internal and external
shape, structure and content are thoroughly scanned. This scanned data is then used to cre-
ate a physical model by stereolithography for a human head. But how should one compare a
model head with the original cadaver head? Many deep statistical, mathematical and com-
putational problems are involved in this project. The dental surgeon and anatomist, Alan
Jackson, as well as a plastic surgeon, Hiroshi Nisikawa, are participating in all aspects of
modeling because ultimately one has to decide how the bones are distributed both around
and inside the physical model in relation to the real head. The challenges are numerous.
There are no quick or easy solutions. But, at every turn, the team members are making
progress. This research at the CoMIR is supported by the Wellcome Trust.

1.18 Visiting other places

Mukhopadhyay: Please comment on some of the exciting places you have visited.

Mardia: All my visits have been exciting. Let me, however, comment briefly on some
of the visits to the U.S.A., the U.S.S.R., India and Spain. In America, I have visited many
places, but visiting Princeton never fails to fascinate me. The environment in Princeton
stimulated my research every time I went there. It was so kind of Geoff Watson to invite
me for a month every year until 1993. I recall that it started in 1985. I had the opportunity
to talk to Geoff and his colleagues at any time during these visits, but the best part of the
arrangement had to do with my total freedom whenever I was there. There was never any
push to work with so and so or to guide me to think like so and so. I felt totally free to pursue
any research project that I wanted to pursue and Geoff was always there to give the moral
support and advice. I considered Princeton my second home.

I came to know Colin Goodall at Princeton. A series of collaborations took place and are
still continuing between Colin and me over many years. Subsequently, he moved to Penn
State. In Princeton, Colin and Geoff organized many workshops on shapes and every single
one of these was productive and stimulating. One time I complained to Henry Daniel[s]
that I normally got very little money from Leeds to attend these workshops and that I had
to spend a large amount of money from my own pocket to take care of the expenses during
each trip. Henry said, “Kanti, remember this. It is worth getting out of England for one
whole month every year even if you finance the trips yourself.” (Laughter.)

Mukhopadhyay: (Laughter.) It sounds like very saintly advice!

Mardia: Saintly advice indeed! Lengthy visits to Princeton have slowly been replaced
by regular visits to Ann Arbor, Michigan, for collaborations with Fred Bookstein. You may
think of it as a transition from Princeton to Ann Arbor. I like visiting Ann Arbor very much.
I also visited Penn State a number of times to collaborate with Colin Goodall.

Mukhopadhyay: Didn’t you visit Bloomington, Indiana, for some time?
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Mardia: In 1977, I came to visit Bloomington, Indiana, for a semester on account
of Madan Puri’s invitation. I taught two courses and I got the opportunity to work with
Madan Puri.

Mukhopadhyay: Any recollections from your trip to the U.S.S.R?

Mardia: In 1976, there was a conference, Stochastic Geometry and Directional Statis-
tics, in Yerevan, Armenia, U.S.S.R., which was attended by a selected group of British
delegates. The list of delegates included David Kendall, Brian Ripley, John Kent, Peter
Jupp and me. When we arrived there, this woman (an interpreter) repeatedly asked me,
“How could you be a British delegate?”” You see, I looked so different from other British
delegates! Eventually I replied, “Well, I am the contradiction.” (Laughter.)

I think that M. Abramowitz was one of the main organizers. This was a wonderful con-
ference and we were treated like royalty. All the facilities were there and the talks were very
enjoyable too. I still remember that the hospitality was remarkable.

We used to get breakfast a little late. It used to be sort of a brunch. I am a pucca (that
is, one-hundred percent) vegetarian. The local hostess knew this. So she used to put large
amounts of cereal, fruits, bread, salad, etc. on my plate in order to make up for all the missed
meat and fish. Everyone else used to get very small portions!

Mukhopadhyay: I believe that there is a punch line to this story. (Laughs.)

Mardia: Oh yes! Then came the conference dinner where each delegate was supposed to
propose a toast. When my turn came, I got up and said, “The nice lady who has been looking
after me did such a fantastic job. [ am so grateful to her. But, I did not quite understand why
I was given three or four times the normal portion of bread, fruits and salads during each
meal.” My hostess did not realize what I was saying and in the meantime she served me a
large fruit plate with a lot of varieties. It was the largest fruit plate I had ever seen. It was
so funny! Everyone broke into laughter. But, as soon as she realized what I had said, she
replied calmly through the interpreter, “A cow must eat a lot of grass to sustain good health.”
What a defense! I was amazed by her spontaneity and sense of humor. It was hilarious.

Mukhopadhyay: Kanti, you have lived outside of India for nearly thirty-five years.
Even though you have Indian roots and heritage, my guess is that many a time you have
made trips to India as any other visiting scientist. Any recollections of your special visits
to India?

Mardia: Right after I had settled in the United Kingdom, whenever I used to visit India,
I'made special efforts to go and visit the University of Bombay and give seminars there. This
is the place where I grew up as an academic. I have always felt that bond. I was humbled
to be invited for the M. C. Chakrabarti Memorial Lectureship Endowment in 1991. There
I gave a series of seminars in shape analysis with applications to image processing. When
I developed those lecture notes, my shape analysis book was slowly taking its shape. I was
also moved and humbled by the presence of my own professor, Mr. Mehta, in the audience.
It felt like a fairy tale to me.

After C. G. Khatri’s untimely death, a conference in Delhi, organized in 1990, was ded-
icated to his memory. I felt touched when I was invited to present a paper there in memory
of my long-time friend and collaborator. I read the paper on “Khatri’s contribution to the
matrix von Mises-Fisher distribution and its relation with shape analysis” and I genuinely
felt honored.

I have visited Jaipur, India, where my career started and gave some talks in the Depart-
ment of Statistics. It was wonderful to see again my advisor, Professor G. C. Patni, after
many years.
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Figure 1.15 Conference at the Indian Statistical Institute, Calcutta, 1995. From left to
right: C. H. Sastri (Head, Applied Statistics Division), S. B. Rao (Director), K. Mardia and
A. Sengupta.

Mukhopadhyay: Did you happen to see Professor B. D. Tikkiwal again?

Mardia: I have seen Professor Tikkiwal in large conferences, for example, at the Indian
Science Congress. I do not necessarily go to visit with him when I am in India. He continues
to do research on sampling. He also came to visit England and I invited him to come to
Leeds, probably in 1980. He was passing through but we had some nice times together.

Mukhopadhyay: Are you going to mention your trips to Spain?

Mardia: I recall visits to the Department of Statistics in the University of Granada,
Spain, for joint projects on distribution theory and spatio-temporal modeling during the last
four years. I have actively collaborated with Ramon Gurtziat and José Angulo. Either I visit
there once a year or someone from there visits Leeds. José visited Leeds in July, 1999.

However, the visits to the Continent do not exactly suit us since we are completely
vegetarians. Even in salads, one will often find the crunchies prepared with ham! But, lately
when we have visited, we have rented an apartment with kitchen facilities.

Mukhopadhyay: During a recent visit to India, you have launched long-term joint col-
laborations with scientists from the Indian Statistical Institute (ISI), Calcutta. Would you
like to mention that?

Mardia: At one point, the Indian High Commissioner to the United Kingdom,
Dr. L. M. Singhvi, became the Ambassador from India to the United Kingdom. He was
very keen on creating interactions among the universities in the United Kingdom and India.
He suggested looking into possible collaborations and exchange programs between Leeds
and some Indian universities. I thought that ISI, Calcutta, was the right place to begin this
exchange program on an experimental basis because the activities in image analysis and
machine vision were strong in both places. I approached Professor Jayanta Ghosh and
we made formal arrangements in 1995 to embark on the program in the next five years.
The progress has been slow but several things have happened. A large conference was
held in 1998-99 in ISI, Calcutta, where Ian Dryden gave a workshop, Shapes and Images.
In the conference, I happened to deliver both the keynote and closing addresses. These
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were attended by groups of researchers in machine vision, pattern recognition, statistics,
mathematics, computer science, both from within ISI, and other academic institutions as
well as companies and industries. There were participants from overseas too. This was a
very high profile event.

At the end of the conference, there was substantial dialogue among various groups and
this was one of the objectives for initiating such a large exchange program in the first place.
The former Director of ISI, Professor S. B. Rao, mentioned that this was the first time the
statisticians and the staff members from the computer vision and image analysis within ISI
got together on a large scale. I anticipate that there will be a reciprocative conference on
shapes and images in Leeds in the year 2000 to preserve the flame. I expect a delegation of
three to six researchers from India to Leeds in that event.

1.19 Collaborators, colleagues and personalities

Mukhopadhyay: Let us now hear about some influential collaborators, colleagues and per-
sonalities.

Mardia: Let me start with Geoff Watson. I first met Geoff in February or March, 1977,
in Houston, Texas. The way I met him was very interesting. Earlier, Tom Downs visited us
in the United Kingdom and I went to Houston to reciprocate that visit. I heard that Geoff was
coming to Houston as an external examiner of one of Tom’s Ph.D. students. Geoff was to
stay in the university guest house. He was possibly returning from a skiing trip. He missed
some connecting flights on account of bad weather and his plane was very late. He was very
tired but he somehow arrived on campus around 3 a.m. Geoff knocked on the entrance to
the guest house a few times, but no one came to open the door for him. He slept through the
rest of the night on the “welcome mat” at the entrance.

Next morning, the Ph.D. exam was right on schedule. I was invited to observe the pro-
ceedings. Geoff arrived there with a smile on his face. Last night’s episode did not bother
him even the least bit. He was laughing and joking as he described what had actually hap-
pened. This was my first encounter with Geoff. He was probably the most rugged man I
ever met.

Later that day, Geoff gave a seminar on genetics, and in the evening we formally met
and went out to dinner together with a couple of other people. We had some informal discus-
sions. He spoke very kindly of my book on directional data which he had reviewed earlier.
Geoff was of course a pioneer in this area and his encouragement meant a lot to me. Geoff,
Tom and I went to a cowboy show and Geoff quickly bought and wore a very distinctive
cowboy hat. I did not anticipate this at all. He was very easy to get along with!

Mukhopadhyay: Any other recollections about Geoff Watson?

Mardia: I first visited Princeton in 1985. Henry Daniels was also visiting at that time
and we were living close to each other on the campus of the Institute of Advanced Studies.
That period was particularly hard for Geoff. His department was disintegrating. In fact we
attended a musical evening, “On the demise of the Department of Statistics” and Henry
Daniels took part in the show. Colin Goodall’s wife, Lisa, had a part in this too. It was a
great musical evening but the unfortunate part was that we were bidding farewell to Geoff’s
department.

Geoff was busy with regular teaching duties. But frequently he appeared very frustrated.
He even looked depressed sometimes. So, I used to talk to him about Yoga exercises.
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Figure 1.16 Kanti Mardia with Geoff Watson, in Houston, 1977.

Whenever we saw each other, we discussed what both of us were doing, but we never
came up with a problem where the two of us could work together. He was always very
modest about his own research. Geoff was also a great painter. He was his own man when
he painted. Geoff visited Leeds perhaps four or five times. He last visited Leeds about four
years ago. Whenever we came to Princeton, Geoff’s wife, Shirley, was kind to take care of
us. They were wonderful hosts.

Mukhopadhyay: You edited The Art of Statistical Science (Mardia 1992a), a seventieth
birthday festschrift volume for Geoff Watson. Did you present the volume to him in person?

Mardia: In 1992, Geoff turned seventy and he was to retire. I prepared a special volume
of papers in his honor. Many collaborators and admirers of Geoff participated in this volume.
All contributors responded enthusiastically. In 1993, there was a conference in Princeton
where many of us participated. Michael Stephens, Jim Durbin and John Kent were also in
attendance. One of his daughters is a famous opera singer and she gave a recital. Geoff
became very emotional and he had tears in his eyes. At the end of the conference, I pre-
sented the festschrift volume to Geoff. He could barely speak and said only a few words of
appreciation. After I presented the festschrift volume, he presented to me one of his many
beautiful paintings in water colors.

Mukhopadhyay: When did you last see Geoff Watson?

Mardia: Geoff was visiting Colin Goodall in New Jersey. This was 1997 when Pavan
and I drove there to say hello to him. At that time he was creating a painting of the Fine
Hall. He kindly gave me a print of that painting.

Mukhopadhyay: Who comes to your mind next?

Mardia: Let me give you some recollections about David Kendall. I came to know
David more than twenty years ago when he invited me to Cambridge to give a seminar on
directional data. My colleague John Kent was one of David’s students.
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From the very beginning, David and I liked each other. Subsequently, we exchanged
ideas on stochastic geometry. I got to know him well during our trip to Yerevan, Armenia,
U.S.S.R., on a delegation. A lot of people casually think that directional data is just another
part of multivariate analysis. In Russia, when we walked together, David would emphasize
that we must convince the mathematicians and statisticians that such a simplistic attitude is
not correct. He argued vigorously that non-Euclidean geometry and topology actually set
apart directional data and shape analysis from traditional multivariate analysis. He discussed
these with unmistakable energy.

He knew my hobby of collecting editions of the Rubaiyat of Omar Khayyam. One day,
David mentioned that he was once invited to the Omar Khayyam Club in London during a
special event. He said that most of the major publishers were represented there. He went on
to describe how this club was unique in its mission. At that time I did not know anything
about this club. Eventually I found the club and now I am a member of the Omar Khayyam
Club. It is quite a merry place. Sometimes visitors give light-hearted and hilarious lectures
on Omar Khayyam and Edward FitzGerald, and other times the gathering may be quite for-
mal. The membership consists of people from all walks of life. I presented my millennium
paper (Mardia 2000) entitled “Omar Khayyam, René Descartes and solutions to algebraic
equations” and put forward a thesis that Omar Khayyam’s work during the twelfth century
might have foreshadowed the contributions of Descartes in analytical geometry.

Figure 1.17 Kanti Mardia with David Cox in Oslo, 1977.

Mukhopadhyay: You mentioned Fred Bookstein before. Do you wish to add
anything else?

Mardia: The proceedings volume of the first conference on shape, organized in Leeds
in 1995, was dedicated to Fred Bookstein and David Kendall. They are both pioneers in this
field. I may say that Fred complemented David’s fundamental ideas and vision in his own
characteristic style and created the impetus for this field’s phenomenal growth.

Fred is superb in giving intuitive geometrical arguments. Frequently we have to work
hard to come up with algebraic validation of Fred’s original “simple” claims. But sometimes



A CONVERSATION WITH KANTI MARDIA 47

Fred’s intuitive answer and the algebraically derived answer will differ slightly, especially
in higher manifolds. Then, the situation becomes serious! (Laughs.)

Mukhopadhyay: Do you now wish to give some remarks about D. R. Cox?

Mardia: With great pleasure. Let me start by saying that David R. Cox got his Ph.D.
degree in statistics from the University of Leeds in 1949. He is the “jewel in the crown” of
Leeds. David was jointly supervised by Henry Daniels from the Wool Industries Research
Association (WIRA) and Bernard Welch from the university. Some of the early works of
David Cox had to do with fiber and yarn data having long-range and serial correlations.

I first met David a long time ago, perhaps when I was in Newcastle. David is very easy
to get along with and talk to for his comments and advice. When he was in London, I used
to visit him for his advice and guidance on technical as well as administrative matters.
When I work on some new results, I ask him for advice or related references. Regardless of
the problem, whether it is statistical, mathematical, conceptual or administrative in nature,
David always has something very valuable to say.

Now he is in Oxford and he is technically retired. But we all understand that retirement
for David R. Cox means that he is a full-time researcher. He is a very popular person and a
great, inspiring speaker. He is always in demand as an invited speaker all over the world.

Figure 1.18 Visit to Omar Khayyam Tomb in Nishabur, Iran, 1994. Standing in the garden
alongside Omar Khayyam statue.
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Figure 1.19 Kanti Mardia with Ulf Grenander, in Newton Institute, Cambridge, 1994.

Mukhopadhyay: So far you have not mentioned Ulf Grenander or Stu Geman of Brown
University.

Mardia: In 1985 or 1986, there was a workshop or conference in Edinburgh where 1
first met Ulf Grenander and Stu Geman. Subsequently, I have visited Brown a number of
times. I have become close to their group. I find Stu Geman extremely clever and we get
along very well. When we discuss topics in image analysis, he will freely share new ideas
with me. Often these ideas, once polished and tightened, lead to new concepts or measures.

Ulf Grenander came to Leeds as an invited participant at a conference, “The Art and
Science of Bayesian Image Analysis,” in 1997. Of course, Ulf is mathematically very deep.
Ulf is always very precise in what he says. By talking to him, one will easily discover that he
is a great mathematician. At the Newton Institute in Cambridge there is a regular program
of workshops and symposia to bring experts together. I have taken part in some of these
workshops. So I came to know Ulf and his wife, Paj, well. I know Paj as a very outgoing
person. She is an energetic bridge player. I once asked Ulf, “Your wife plays bridge in her
spare time. What do you do in your spare time?” He replied, “I do not have much spare
time, but when I do, I do more mathematics.”

Mukhopadhyay: So far, you have talked about some of the leading statisticians. In your
research, you have met and worked with many scientists from other fields. Do you wish to
mention any of these?

Mardia: I have been fortunate to meet many leading scientists in the areas of machine
vision and image analysis. I may mention Joseph Kittler from Surrey and David Hogg, my
colleague in the Department of Computer Science in Leeds. From the United States, I may
mention some of the pioneers such as Azriel Rosenfeld and Laveen Kanal, both from the
University of Maryland, and Anil Jain from Michigan State University, East Lansing. These
are some of the top people in what they do.

1.20 Logic, statistics and Jain religion

Mukhopadhyay: Over the years you have done research and written extensively on the sci-
ence and logical structure of the Jain religion. What is the origin of this aspect of your life?
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Mardia: Sirohi is my birthplace where the predominance of Jain religion and culture
is the way of life. I was nourished by the practices and philosophy of Jainism. My life has
since been greatly influenced by this environment. The Jains are pure vegetarians which
implies the total exclusion of meat, fish, eggs and even onions and potatoes from their diet.
My involvement and passion for the Jain religion has given me a lot of excitement in life.
A part of it is because I was brought up within the Jain tradition.

Mukhopadhyay: In your Inaugural Lecture delivered at Leeds in October 1975, you
had talked on “Do-it-yourself statistical analysis.” This lecture was a serious mix of science,
philosophy, logic, statistics and Jainism (Mardia 1976).

Mardia: In Leeds up to 1980s, when one received the position of a full professor, huge
official ceremonies were held for the inauguration. This was a big moment in anyone’s
life. The Professor would deliver a substantial inaugural address directed toward the col-
leagues as well as the larger community. It is an overwhelming experience. I got the Chair
in Leeds in 1973, and on 13 October, 1975, I delivered the inaugural address. Lord Boyle
was Vice-Chancellor of Leeds then.

In a scientific theory, one proves many results under some basic assumptions or hypothe-
sis. In statistics, we make inferences regarding a population with the help of the information
gained from a random sample. This is inductive logic. But, no assumption or hypothesis is
perhaps universally true or false. In statistics, we say, “Do not reject the null hypothesis,” but
is it equivalent to say, “Accept the null hypothesis?” In statistics, there is a middle ground
which is because in the logic of statistics, there is no place for absolutism. Simply put, a
core in Jainism says, “It is wrong to assert absolutely.” In fact, I really should say, “Maybe
it is wrong to assert absolutely.”

The idea of nonabsolutism, a principle which is shared by the conditional predication,
was advocated by Karl Popper, one of the greatest logicians of the twentieth century. J. B. S.
Haldane, a famous geneticist and statistician, also hailed nonabsolutism. My Inaugural Lec-
ture (Mardia 1976) outlined the arguments which thread together science, philosophy, logic,
statistics, Jainism and decision-making. I emphasized the utmost need for solid understand-
ing of statistical logic and principles whenever some useful decisions are to be made. No
statistical package will serve one iota of purpose for the overall good of the society unless
the user of the statistical package knows both statistics and the package extremely well.

Mukhopadhyay: In your Inaugural Lecture, you pointed out that through the principle
of conditional predication, one may try to justify the logical foundation of Jainism. Is there
any other viewpoint?

Mardia: One may consider the holistic view called Anekantvada. From this viewpoint,
the philosophy of Jainism requires that one must consider anything as a whole in order to
understand it. Understanding some bits and pieces about something is not same as under-
standing the whole thing.

Mukhopadhyay: The connection between what you just said and what we normally
do in statistics is very clear. Statisticians take a look at part of a population only, and by
examining its features try to guess the features in the whole population. Thus the inferences
made cannot be perfect. When I say that, I actually become a believer of nonabsolutism.

Mardia: Your understanding is correct.

Mukhopadhyay: You have written a very authoritative book on Jainism. Do you wish
to mention anything on that?

Mardia: Jain religion is not personality based. It derives its foundations from what is
called Jain-science. Once I sorted out the logical links and scientific arguments, I discussed
my axiomatic theory with some scholars of Jain religion, religious leaders and leading
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monks both in India and abroad. My theory has been received very well. Subsequently,
in Mardia (1990), I published a book, The Scientific Foundation of Jainism. The book has
now gone into a second edition. I went to a Indian publisher in India because then the book
would be more affordable to the general public. But, looking back, I realize that it was a
mistake. The book is cheaper in India, but the publication quality is not very high and its
copies are hardly distributed overseas. The book is essentially for members of the younger
generation with scientific minds.

Mukhopadhyay: You authored a booklet, Jain Thoughts and Prayers (Mardia 1992b),
which was prepared also for the younger generations.

Mardia: That is correct. We have to get the younger generation involved; my booklet
helps in that mission. I may add that a Jain Center, including a temple, has been built in
Leicester (England). I was deeply involved with the whole project for a number of years.
I am Chairman of the Yorkshire Jain Foundation, formally established in April, 1987. The
Foundation holds a library on Jainism and comparative religions. I am also Vice-Chairman
and a Trustee of the Jain Academy which promotes educational initiatives related to Jain
Studies.

1.21 Many hobbies

Mukhopadhyay: Do you have any hobbies?

Mardia: I started learning chess by myself when I was six years old. During my school
and college days, I played chess extensively. My eldest brother used to play chess. I had
a great fascination for this wonderful game. I became quite proficient in this game. As a
student representing the University of Bombay, I played in a chess tournament, reached
the college-level final, but then I lost in the final round. That loss put a damper on my
pursuit of chess! I discovered later that the chap who defeated me in the final actually went
on to become the national champion. I already was committed to becoming a statistician!
(Laughter.)

I still play chess now and then. Everyone in my family plays chess and I hope that my
four-year-old grandson, Ashwin, will pick it up too. Indeed, my grandson plays with me,
but at present sometimes he makes up his own rules — he has to win! (Laughter.)

Mukhopadhyay: Do you also play bridge?

Mardia: I play bridge occasionally with my family. In the past, I have also taken part in
bridge tournaments in Leeds. I collected some master points, but I was spending too much
time on this to continue to play at the tournament level. Subsequently, I gave up playing in
tournaments.

Mukhopadhyay: Among colleagues, have you met some exciting chess or bridge play-
ers? Do you have other hobbies?

Mardia: I am sure that I have, but I do not remember many details. I can tell you an
interesting story. Probably in 1977, when I did lot of traveling from Bloomington, I went
to Virginia to give a seminar. Before the seminar, I was talking to Jack Good and casually
mentioned that I heard he was very good in chess and I was also interested in chess. He
said, “Very good. Let us play a game before your seminar then.” It turned out to be the
preseminar game. (Laughter.)

He is an extremely good chess player. He made a number of great moves. Even though
I gave him a good fight, I naturally lost the game to a much better player.
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My other hobby is to collect antiquarian books. When I go to conferences or visit places,
whether in Europe, Asia, the U.S.A. or Canada, I must go and check out some of the best
local antique bookshops. I watch whether any book fair will coincide with a conference in
some city and plan my itinerary accordingly so that I can also go to the book fair while I am
in that neighborhood. I have a large library of antiquarian books. When other conference
delegates go to visit palaces and museums, Kanti Mardia goes to some out of the way old
bookshops! (Laughter.)

In Ann Arbor, I feel at home when I walk around. One reason is that there are quite many
exciting bookshops there for used or old books. I love buying and reading old books on art,
religion, culture, music, society, languages, history of computing and travel. Sometimes
Shirley, Geoff Watson’s wife, took me to book fairs in Princeton.

Mukhopadhyay: How did this hobby get started?

Mardia: I started with the Rubaiyat of Omar Khayyam. Over the years, I have gathered
a large collection. I mentioned earlier that I am a member of the Omar Khayyam Club in
London.

1.22 Immediate family

Mukhopadhyay: What do you wish to mention about your immediate family?

Mardia: I consider myself very lucky to have Pavan as my wife. Pavan took care of
the family’s upbringing and practically all other conceivable responsibilities on top of her
full-time career as a math school teacher. She is very talented. She sacrificed much more
than anyone will ever know. If I am light, she is the electric current; if I am software, she
is the hardware. Indeed, she ran the family and kept me in line, which is not always easy. I
am actually a good-for-nothing on the domestic front. Perhaps, I should not have said that.
(Laughter.)

Pavan is patient and she stays calm when suddenly some unexpected things happen. I
am literally the opposite of that. She does not say much, but on the other hand I am too
extrovert. Thank God, Pavan’s habits and demeanor complement mine. (Laughter.)

She took early retirement about four years ago so that the two of us are now able to travel
abroad together. She also takes over my general secretarial work when I travel. On the road,
to have someone to talk to or share something exciting is always healthy for both minds and
souls. We have many common interests; for example, we both swim, enjoy traveling and
collect antiquarian books.

Mukhopadhyay: How about your son, Hemant, and daughters Bela and Neeta? Do they
take after you or their mom?

Mardia: From the very beginning my children have been more attached to their mother
and that is quite expected. They also inherited the best qualities from Pavan. Generally
speaking, they are quite calm and patient. Our children can relate to Pavan easily. I am
always there for them, but for everyday’s nitty-gritty details, the children will probably
have more confidence in their mom. (Laughter.)

Mukhopadhyay: (Laughter.) Kanti, there is no need to explain. I understand exactly
where you are coming from. What do your daughters and son do?

Mardia: Quite early, Pavan and I decided that our children must have the freedom to
pursue their own interests to build careers. We were always available for advice and guid-
ance, but we never pushed the children to any particular profession. Our children are now
grown-ups, and I am proud of their individualities and specialties.
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Figure 1.20 Mardia’s children with spouses, 1991. Standing from left to right: Raghu
(Bela’s husband), Hemansu (Neeta’s husband), Bela (daughter) and Hemant (son). Sitting
from left to right, Kanti Mardia, Preeti (Hemant’s wife), Neeta (daughter) and Pavan Mardia.

Our eldest daughter, Bela, is the only one who took some statistics courses for her
degree. She has been working as a systems analyst and her husband, Raghunathan, is a
medical doctor. They have given me a grandson, Ashwin, whom I mentioned earlier. Bela
lives in Hull with her family.

Our son, Hemant, studied electrical engineering. He is now the director of a company
in telecommunications that manufactures special types of low-frequency filters for digital
technology. His wife, Preeti, is a food scientist and is now a manager of marketing. Hemant
and Preeti live near our place.

Our youngest daughter, Neeta, lives more than two hundred miles away. She is a lawyer
and her husband, Hemansu, is a purchasing manager in a large business complex. Raghu,
Hemansu and Preeti hail, respectively, from Southern India, Gujarat and Delhi. A good
cross-section of India is thus represented in my immediate family.

Mukhopadhyay: Do you get to see your children and their families frequently?

Mardia: We are very close to one another. We visit them or they come to visit us on
birthdays, holidays, and other special occasions. So we all constantly keep in touch.

My children gave me a surprise sixtieth birthday party. Many of my friends from New-
castle and Hull were invited. Leeds was very well represented too. It was a big affair and
the party was arranged in a cunning way! I had no idea what was about to hit me!

Mukhopadhyay: You just said you were close to your children. So what happened!
(Laughter.)

Mardia: I thought all along that I knew my wife, the children, and my friend Raj very
well! Behind my back, they were in this together. (Laughter.)

On a serious note, I add that I was moved and I was delighted to see so many friends
and well-wishers. I enjoyed the party thoroughly.
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Figure 1.21 Kanti Mardia’s sixtieth birthday celebration in 1995. The birthday cake with
Omar Khayyam’s Rubai (adapted).

1.23 Retirement 2000

Mukhopadhyay: I hear that you are to retire in September, 2000. That is going to be an
important landmark, in your career. In the professional life, are you resetting the priorities?

Mardia: Retirement is mandatory at age 65 in U.K. universities. But because I am
still active in research and I have several grants, I was to become at least an emeritus pro-
fessor after retirement. I have started thinking about the changes the retirement will bring.
Long-term prospects are totally unknown. Things will no doubt be different. I will probably
have a small desk in the corner of an office somewhere. (Laughs.)

On a serious note, I have been appointed as a full-time Senior Research Professor from
1 October, 2000, at Leeds — a special position of its type created for me. So things are
going to be quite exciting.

Mukhopadhyay: Congratulations. This sounds like a great opportunity and you cer-
tainly deserve it. But let me ask you this. You have been the mover and shaker at the
University of Leeds for a long time. What are some of the items on your “must do list”
before retirement?

Mardia: Upon my retirement from the University of Leeds on September 30, 2000, I
want to finish so many things! My top priority is to finish the book on spatial analysis with
John Kent. Another top priority for me is to prepare the department in a way that in the next
Research Assessment Exercise, due 2001, we receive the top grade. I want the department
to march forward with solid footing. My successor will have to come aboard, along with
a few other important appointments, so that the new leadership and other appointees may
overlap with my administration for about a year. This is to make sure that the transition is as
smooth as possible and none of the ongoing projects are affected adversely. This is a very
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Figure 1.22 Kanti Mardia with his grandson, Ashwin, and the Indian High Commissioner,
Dr. L. M. Singhvi, in Leeds, 1996.

difficult task to accomplish. I have prepared the department for the new leadership as best
as I possibly can.

Mukhopadhyay: What will you be doing immediately after retirement from Leeds?

Mardia: I will be collaborating with the researchers at the Center of Medical Imaging
Research (CoMIR) in Leeds. In the newly created position of Senior Research Professor,
I will be stationed at the University of Leeds. Several universities in the United Kingdom
have urged me to join their faculty as a research professor and accordingly I may visit
these places perhaps a couple of times in order to stimulate their research programs. I will
continue to visit abroad as I have done for a number of years.

Mukhopadhyay: For the post-retirement life, in the long haul, have you made any
plans?

Mardia: Statistical research has always fascinated me and I have greatly enjoyed doing
whatever I have done. If my wife’s and my health cooperate, I will continue remaining
active in research. Changes in our lives and careers are on the horizon, and naturally we
wait with some apprehensions. But we have weathered changes in our lives so many times
in the past forty years or so! Hopefully, this time around we will do all right too. I remain
very optimistic.

Mukhopadhyay: You have several research grants right now. I suppose that some of
these grants will continue into your retirement.

Mardia: This is right. I am all set for a number of years. A few postdoctoral fellows
and four graduate students will continue to work with me. However, the Senior Research
Professorship will allow additional postdoctoral fellows and graduate students.

The remit of this position is to continue to promote and lead research in the department.
We already have made plans for the next five years’ LASR workshops. My guess is that
the research papers will flow for many years to come. A joint paper with Chris Glasbey is
expected to be read to the Royal Statistical Society in the near future, I think.

I hope to continue my collaborations on projects at the CoMIR. I hope something big
and something useful will evolve from the joint initiatives between Leeds and the Indian
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Statistical Institute. I would like to visit the United States perhaps for two or three months
a year to carry out joint research with my collaborators.

Naturally, there will be some financial constraints, but we will be all right as long as I
stop spending money on those antiquarian books! (Laughs.)

Mukhopadhyay: Do you want to mention any other big plans?

Mardia: I have decided that I am not going to start the revisions of any of my earlier
books. However, I may not mind an advisory role in revising the multivariate analysis book.
I will not really enjoy rehashing these old materials. I have decided to take up the challenge
to write two books simultaneously. I expect that one of the books will be on spatio-temporal
modeling. The other one will likely be on statistics of images. I organized a number of
conferences and edited special volumes in related areas. The material is there. But, the books
are expected to be more self-sufficient and comprehensive. A synthesis would be the most
important aspect in each book. These are two very substantial future projects. Hopefully I
will succeed.

I am also seriously looking into the history of computing. I may narrow this field down
to the history of statistical computing. We all know and appreciate the fact that the area of
statistical computing has come a long way in the past fifty or sixty years. It will be great to
compile this history of development.

I have so many serious projects planned beyond retirement! I sometimes wonder myself
whether I will be able to reach my goals. An Indian proverb comes to mind: “When I had
teeth, I could not afford those crispy chickpeas. But now that I can afford an unlimited supply
of crispy chickpeas, to my amazement I discover that I have no teeth left.” (Laughter.)

Mukhopadhyay: Your record speaks for itself. I have all the confidence that you will
indeed finish all these marvelous projects in the very near future. Thank you so much for
this conversation which I have enjoyed immensely. I wish you, Pavan, and your loved ones
all the health and happiness in the world.

Mardia: Many thanks, Nitis.
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A Conversation with Kanti
Mardia: Part 11

Nitis Mukhopadhyay

Department of Statistics, University of Connecticut, Storrs, CT, USA

In April 1999, Kanti Mardia and I sat down to record a comprehensive conversation at the
time which later appeared in Statistical Science (Mukhopadhyay 2002). He was 64 in 1999.
Mardia continues to be one of the leading researchers internationally. It is a second nature
for him to break new grounds and open new horizons. He travels extensively all over the
globe as a true ambassador of statistical science.

Enquiring minds will surely want to know what this amazingly colorful colleague with
nonstop energy has been up to since 1999. I take this opportunity prior to Mardia’s eightieth
birthday celebration to record a brief but updated conversation. I am on a mission to discover
how Mardia’s life, work, and views of statistical science have twisted and turned during the
past 15 or so years. The following conversation took place in July 2014.

2.1 Introduction

Mukhopadhyay: Kanti, first let me congratulate you on your upcoming eightieth birthday
celebration in 2015. How does it feel to be almost 807

Mardia: Thank you, Nitis. It feels wonderful to be almost 80. Life continues to be
interesting, though sometimes it can be too hectic.

Mukhopadhyay: If you do not mind, shall I take this opportunity to converse with you
about your life and work? How about detailing whatever you have been up to since April
1999 when we had our first comprehensive conversation (Mukhopadhyay 2002)?

Mardia: That should be fun. Please go right ahead.
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Figure 2.1 Kanti Mardia and Nitis Mukhopadhyay at the University of Connecticut-
Storrs, during the first conversation. April 19, 1999.

2.2 Leeds, Oxford, and other affiliations

Mukhopadhyay: What is your position now at Leeds? What have been your major respon-
sibilities?

Mardia: In our Statistical Science interview, we talked about my impending retirement
in October 2000. At that time, it was known that I was appointed as a full-time Senior
Research Professor at the University of Leeds, though on a rolling contract. There has been
increasing focus on getting grants as a precondition but I could not get a major one except
one in 2002. However, the University has been renewing the contract year by year on con-
sidering my other contributions.

In particular, the post has allowed me to take PhD students and lead the Leeds Annual
Statistical Research (LASR) workshops. These PhD students have been mostly involved
with research on statistical bioinformatics — a subject which I did not even mention in my
earlier conversation. More than ten PhD students have completed their degrees. Two are
continuing, one at Leeds and one at Oxford University.

Recall that I was preparing the Department then for the Research Assessment Exercise,
one of my last tasks as Chair of the Department. We came through with flying colors and
this performance also continued in RAE 2008. In fact, the Department was able to include
my name in the RAE 2008 and again in what is called REF 2014. REF depends very much
on case studies having made an impact, and the only one from the Statistics Department
is mainly from my initiative; this case study relates to FASD, which I will tell you more
about later. As commented by the former Dean, Mike Wilson: this goose keeps on laying
golden eggs!

Mukhopadhyay: You mentioned Oxford University. What is your affiliation at Oxford?

Mardia: I have been a Visiting Professor in Oxford from March 2013. I enjoy this
appointment as the ethos of Oxford is so inspiring. I have developed successful collabo-
rations there including supervision of a PhD student. I was awarded a Dorothy Hodgkin
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Figure 2.2 25th Anniversary of the Department of Statistics, Oxford University, South
Park Road, Oxford. Front row standing 4th from left: Kanti Mardia. October 4, 2013.

studentship which allowed selection of a PhD student from overseas, including India and
China. Thanks go to Clive Bowman, formerly Director at Glaxo-Smith-Kline (GSK) for
initiating this studentship.

Mukhopadhyay: What other positions have you held, perhaps elsewhere, especially in
India and China?

Mardia: I was appointed an Adjunct Faculty in the renowned Indian Institute of Man-
agement, Ahmadabad (IIMA) from March 2012 — March 2014 though I have been vis-
iting informally from 2008 for conference presentations and seminars. At first, visiting
IIMA as Adjunct Faculty fitted very well with my travel plans as it gave me and my wife,
Pavan, opportunities to reunite with our families who live there. But the IIMA framework
required longer visits which I could not accommodate just yet. So my formal appointment
has come to an end, though informal visits and collaborations continue such as with Pro-
fessor Arnab Laha.

Mukhopadhyay: These sound definitely exciting.

2.3 Book writing: revising and new ones

Mukhopadhyay: What is the status of some of your previous books? Should I watch for
new editions?

Mardia: I had said in my 1999 conversation that my top priority was to finish writing the
book on spatial analysis with John Kent. Alas, the effort is still going on, and I am hopeful
that it will be finished in 2015. The end is in sight. Our publisher, Wiley, keeps reminding
us the phrase, “if manuscripts are not realised — they escape!”
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Figure 2.3 From left to right: Ashish Nanda (Director), Kanti and Pavan Mardia,
Raghuram (Dean). IIMA Director’s office. January 8, 2014.

I optimistically mentioned at the time that I would write a new book on spatial temporal
modeling and another one on statistical imaging. Neither has materialized yet. I also said
that I was not going to start the revision of any of my books, other than the multivariate
analysis book (Mardia et al. 1979) in an advisory capacity. In fact, its second edition is in
preparation with Charles Taylor as a new coauthor in place of John Bibby. Ian Dryden is
revising the shape analysis book (Dryden and Mardia 1998). Also there have been so many
developments in directional statistics that it would be worthwhile to make a new edition of
the directional statistics book with Peter Jupp (Mardia and Jupp 2000).

Mukhopadhyay: Please tell me about your new book initiatives since 1999.

Mardia: There has been more concentration on research articles and the spatial
analysis book.

Since 2000 through 2013, I have jointly edited LASR Proceedings, produced
annually. I am pleased that we took the important step of making these proceedings
available online. One may visit: www]1.maths.leeds.ac.uk/statistics/workshop. Another
important book (Hamelryck et al. 2013) is the volume on Bayesian Methods in Structural
Bioinformatics, jointly edited with Thomas Hamelryck (Copenhagen University) and
Jesper Ferkinghoff-Borg (Technical University of Denmark, Lyngby).
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Figure 2.4 Thomas Hamelryck (left), David Westhead (center), and Kanti Mardia (right).
Launch of ‘Bayesian Methods in Structural Bioinformatics’. LASR in July 2012.

Mukhopadhyay: I understand that you feel excited about the Foreword specially pre-
pared for this edited volume.

Mardia: The Foreword was written by Gerard Bricogne (Global Phasing Ltd., Cam-
bridge, UK) who summarized our objective succinctly in the opening paragraph: “The
publication of this ground-breaking and thought-provoking book in a prestigious Springer
series will be a source of particular pleasure and of stimulus for all scientists who have used
Bayesian methods in their own specialized area of Bioinformatics, and of excitement for
those who have wanted to understand them and learn how to use them but have never dared
ask.” The 2013 Hamelryck et al. book, together with my paper (Mardia 2013) in the Journal
of Royal Statistical Society, Series C (JRSS, C) would give a good start for a new researcher
interested in this area.

2.4 Research: bioinformatics and protein structure

Mukhopadhyay: Please tell me about your JRSS, C paper of 2013.

Mardia: Proteins are the workhorses of all living systems, and protein bioinfor-
matics deals with analysis of protein sequences (one-dimensional) and their structures
(three-dimensional). This paper reviews statistical advances in three major active areas
of protein structural bioinformatics: structure comparison (alignment), Ramachandran
plots, and structure prediction. These topics play a key role in understanding one of the
greatest unsolved problems in biology — that is, how proteins fold from one dimension
to three dimensions and have relevance to protein functionality, drug discovery, and
evolutionary biology.

In each area, the paper gave the biological background and reviewed one of the main
bioinformatics solutions to a specific problem in that area. It then presented statistical
tools recently developed to investigate these problems, consisting of Bayesian alignment,
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directional distributions, and hidden Markov models. It illustrated each problem with a
new case study and described what statistics can offer to these problems. It also highlighted
challenges facing these areas and concluded with an overall discussion. I feel that this
unique format makes the paper accessible to statisticians as well as bioinformaticians.

I am proud of this paper, which by the way I had hoped to be a “Discussion Paper”
for the Royal Statistical Society, but this format did not materialize. It turned out that way,
perhaps because those who could referee it happened to be mostly my collaborators. Hence,
the editorial board had problems in getting it refereed for a discussion paper!

Mukhopadhyay: By the way, what is protein sequence and protein structure? The read-
ers will benefit from your brief explanations.

Mardia: A protein is a sequence of amino acids, of which there are 20 types, and each
amino acid has a one-letter code: A, C, D, ...; for example, DYMQKREVDLHN represents
a protein subsequence (in contrast to A, C, T, G for DNA). Broadly speaking, a protein struc-
ture is concerned with its three-dimensional atomic configuration. Details might include the
location of particular atoms, such as the C,, carbon atom which is present in every amino
acid. Other important features of protein structure include so-called elements of secondary
structure, in particular, a-helices and [3-sheets. An a-helix is a helix which contains 3.6
amino acids per turn and a (3-sheet is composed of aligned strands of amino acids, called
(B-strands. These secondary structures are largely summarized by dihedral angles between
certain atoms of amino acids, of which the most important are the ¢- and ¢-angles that
occur in alternation along the protein.

Mukhopadhyay: Will you please explain the phrases such as a-helix, (3-sheet, and the
¢- and -angles in simple terms for the general readership?

Mardia: A protein has two parts: one part is known as the backbone (main chain) which
has a repeated sequence of three atoms, carbon (C), nitrogen (N), and carbon (C,). The
second part is the side chain which is attached to the carbon atom C_, in the backbone and
it is different for each of 20 amino acids. The backbone plays a major role in understanding
protein function and, in view of the physicochemical properties, this can be summarized
in terms of the dihedral angle ¢ between the four consecutive atoms (C, N, C_,, C) and the
dihedral angle 1) between the next four atoms (N, C_, C, N) of the backbone (imagine these
five atoms C, N, C_, C, and N in a sequence).

When a protein folds, it has two main repeated patterns (secondary structure): a-helix,
(B-sheet. In fact, the late William Astbury of Leeds University found that there were repeated
patterns in a protein and he called these « and 3 patterns. Subsequently, the details of the
two shapes — one as a helix and the other as a sheet with strands were discovered. See
http://www.leeds.ac.uk/heritage/Astbury/Molecular_models/index.html.

Mukhopadhyay: Will you care to explain what is a Ramachandran plot and what does
it do? I am sure that a brief explanation will help the general readership.

Mardia: The angles ¢ and v lie between O and 27, and these angles can be shown
in a scatter plot — now known as a Ramachandran plot which was invented in 1963 by
Ramachandran jointly with his colleagues in Chennai.

The plot is an unwrapped version on a plane of the points on a torus. Such a plot
indicates which areas are allowed for the angles to cover so that there are no-go (forbidden)
areas. It also shows clusters for different shapes such as a-helix or g-sheet so that it is
viewed as a classification map. Such plots are used in assessing the quality of new protein
structures as one of their main applications, namely in assessing how many points may go
into the no-go areas.
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Mukhopadhyay: What research interests have been predominant in your deliberations
since 19997 Please explain their importance and novelty.

Mardia: Since 1999, I have been mainly focusing on new statistical methodology
required for structural bioinformatics. It turns out that it needs advances in directional
statistics and shape analysis, among other areas.

In particular, I have been focusing on protein structure and functions, which has
applications in drug discovery, medicine, and evolutionary biology. Proteins are extremely
important for all living systems, but there is still a lot of mystery in their functions. A
malfunction or misfold leads to diseases, such as Alzheimer’s and cancer.

Mukhopadhyay: Handling protein folding is tough, is it not?

Mardia: One of the hardest problems in biology is that of protein folding, which affects
protein function, that is, how protein from amino acid sequences (one dimension) folds into
three dimensions. What I am working on is, in a tangential way, moving toward solving this
puzzle.

Mukhopadhyay: How did you come into the area of protein bioinformatics?

Mardia: I came into this field by chance. In 1999, the late Harshinder Singh from the
National Institute for Occupational Safety and Health, West Virginia University, Morgan-
town, invited me to collaborate on a problem in protein bioinformatics.

The problem involved deriving entropy of molecules such as methanol which reduces to
an application of directional distribution. In fact we published the first paper on this in LASR
2001 (Demchuk et al. 2001). The paper has also to do with a particular protein TNF-beta
(which has 707 dihedral angles) and is one of the key mediators of AIDS pathogenesis.

Then, we started working on multivariate von Mises distribution since the atomic struc-
ture of protein can be described by a set of dihedral angles. This paper (Mardia et al. 2008)
was published after Singh passed away.

Mukhopadhyay: Did you form a critical mass of researchers in Leeds and elsewhere
dedicated to protein bioinformatics?

Mardia: Yes, I feel I succeeded in forming a critical mass slowly and steadily. To start
off, Ilooked for a collaborator to carry the subject forward in Leeds and was lucky to come to
know Dave Westhead (Professor of Bioinformatics, Leeds University) and his PhD student
Nicola Gold, who helped us to get into deeper aspects of the subject. Fortunately, then to
create a critical mass, we had several good PhD students jointly with my colleagues in
the Department and with biologists in Leeds; the biologists also actively participated in
the thematic LASR workshops. In particular, it led to the development of unlabeled shape
analysis, which was important for aligning proteins (Green and Mardia 2006). Also we
developed how to detect biomarkers using a statistical model and EM algorithm protein gel
data of renal cancer which appeared in the Annals of Applied Statistics (Mardia et al. 2012b).
Another paper of great potential interest in drug discovery appeared in Biometrics (Mardia et
al. 2011); itis on modeling what are called pharmacophores; a pharmacophore characterizes
the physicochemical properties common to all active molecules, called ligands.

Mukhopadhyay: Will you please highlight some of your other major contributions in
this area?

Mardia: One of the major contributions has been with Thomas Hamelryck, solving the
probabilistically local structural prediction problem. Given a sequence of amino acids, we
predicted what will be, for example, secondary structure such as the helix, the 3-sheet and
so on. The paper (Boomsma et al. 2006) appeared in the Proceedings of National Academy
of Sciences (PNAS), and the valuable software which has been used by biologists is available
in the public domain.
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2.5 Research: not necessarily linked directly with
bioinformatics

Mukhopadhyay: This may be a good time to summarize succinctly some of your highly
influential publications since 1999 in areas which are not necessarily linked directly with
bioinformatics. Kanti, will you please elaborate?

Mardia: Some key papers [ would like to mention include the PNAS paper and the Sig-
nificance paper (Mardia et al. 2013) on Foetal Alcohol Spectrum Disorder (FASD). While
much of my work during this period has been motivated by protein bioinformatics, I have
also published extensively in other highly visible areas of research.

An important paper, following my old interest in image analysis, was the discussion
paper (Glasbey and Mardia 2001) in JRSS B with Chris Glasbey. There were a number of
good discussants included from the image analysis community as well as statisticians. This
has led to some new work by others, but I stopped working in this area to concentrate more
on statistical bioinformatics.

Other important work has been with Fred Bookstein with whom I have been visiting for
many years starting from 1996. Our paper (Mardia et al. 2006) in intrinsic random field has
been important in application to FASD. A recent paper in Significance (Mardia et al. 2013)
had a substantial impact in the sense that Fred Bookstein has served as an expert witness
on FASD at murder trials.

Mukhopadhyay: Who else have you collaborated with?

Mardia: I have collaborated with Sujit Sahu and Giovanna Jona Lasinio on spatial tem-
poral modeling, extending my Kriged Kalman filter (Sahu and Mardia 2005; Sahu et al.
2005). I also worked on projective shape with Vic Patrangenaru (Mardia and Patrangenaru
2005). This area still needs more attention (Kent and Mardia 2012). Another collaboration
is with Eulogio Pardo-Igtizquiza and related to spatial statistics on maximum likelihood
estimator of a spatial model. The methodology is implemented in the software MATERN
(Pardo-Igizquiza et al. 2009). Further work in image analysis includes a paper on image
deformation with Miguel Angelo (Mardia et al. 2006). It has been fun to continue to col-
laborate so widely.

Mukhopadhyay: Currently which group or groups are you collaborating with?

Mardia: I am collaborating with the group in Copenhagen headed by Thomas Hamel-
ryck and with another group in Oxford University headed by Charlotte Deane. I hope that
these will resolve various cutting-edge problems.

Mukhopadhyay: How did some of these collaborations begin?

Mardia: Let me start with my collaboration with Thomas Hamelryck — my work with
Thomas started with one query which he had sent to me and John Kent. John took the
opportunity to collaborate with Thomas, and then I came to know Thomas well during his
visit to LASR. We started working on using bivariate distributions into his hidden Markov
model for local structural prediction for protein. Wouter Boomsma was his PhD student at
that time, and he imaginatively pursued the challenge.

The work with Thomas still continues, having worked with quite a number of his col-
leagues and researcher collaborators. One aim is to produce a global structural predictor
of proteins, and we have been working on this theme by using a reference ratio method
(Mardia et al. 2012a; Mardia and Hamelryck 2012) in conjunction with our local predictor.

Mukhopadhyay: Please explain what may entail a global structural predictor and a
reference ratio method.
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Figure 2.5 LASR 2011 team welcoming Vice-Chancellor Michael Arthur. From left to
right: Kanti Mardia, Michael Arthur, Pavan Mardia, Jochen Voss, and Arief Gusnanto.

Mardia: The proteins I have been talking about are called globular proteins. These
have compact spherical shape, that is, these may fold. Roughly speaking, the reference
ratio method allows the combination of a probability distribution of local structure (which
would lead to predicted protein as noncompact) with the probability distribution of some
global variables, which will make the predicted protein compact. The problem is still open
for the latter distribution. We do not know fully what global variables would do the trick.

Mukhopadhyay: Could you tell me about your collaborations with Peter Green?

Mardia: Collaboration with Peter Green started in a curious way when I was giving
a seminar in Bristol in 2003 on the alignment method which we had been developing at
Leeds. After the seminar, Peter said something like, ““We can jointly improve the method
using Bayesian methods.” The improved paper (Green and Mardia 2006) was published in
Biometrika. We still collaborate, but with Peter’s simultaneous appointment in Sydney, our
once vigorous collaborations are now slowing down. Our good friendship continues.

Mukhopadhyay: When speaking about your position in Oxford, you mentioned your
new collaboration with Charlotte Deane. That must be exciting.

Mardia: Oh, yes. Since joining Oxford University, I have been lucky to start collabo-
rating with Charlotte Deane who leads a very large group of researchers on bioinformatics.

I already have one joint PhD student. We discuss the works of her other PhD students and
see if I can provide important feedback. In particular, I have worked with Henry Wilman
who is working on a challenging problem for drug discovery. But, interestingly, it boils
down to analyzing the geometry of a helix (Deane et al. 2013). It was nice of Charlotte to
nominate me to be a Fellow of Kellogg College, which has been a new experience.

Mukhopadhyay: Other selected collaborators you may mention?

Mardia: Other kinds of work have been pursued with many collaborators during these
years, including Dave Westhead and Richard Jackson (Leeds University Bioinformatics
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Figure 2.6 Kanti Mardia with James Watson in Cold Spring Harbor, March 30, 2006.

Group), Douglas Theobald (Brandeis University, Massachusetts), and Luigi Ippoliti (Uni-
versity of Chieti, Italy).

2.6 Organizing centers and conferences

Mukhopadhyay: Given your high profile presence in the forefront of bioinformatics
research, why have you not created a new center dedicated to bioinformatics in Leeds?

Mardia: Since I saw the development in bioinformatics, I thought of channeling these
activities through a Centre of Statistical Bioinformatics which was founded in 2006 with
Wally Gilks from Cambridge. My dream to make it the world center has not yet materialized.
However, its influence on our MSc course and PhD intake, plus follow-up and publications
has been evident.

In 2006, I was still dreaming and I went to see James Watson to assess what was his
view of the importance of statistics in bioinformatics. I recall a very vague answer, but
he remembered with some fondness the late William Astbury (Leeds University) who pio-
neered molecular biology.

Mukhopadhyay: In your assessment, why has such a dream of the world center not
become a reality? Has a less-than-ideal level of funding been a sore point?

Mardia: One of the saddest parts of my last 15 years is that I did not succeed in getting
any research grant to hire a postdoctoral fellow or a junior researcher in a field motivated by
bioinformatic applications. I have consistently received one negative report whereas the oth-
ers would rate my proposals “outstanding.” The negative reports have carried more weight,
perhaps due to the change of structure of the panel at EPSRC. Previously, there was a full
statistical panel, but now it is a part of the mathematics panel. All my research in the last
15 years in this area has been with PhD students and collaborators. With additional fund-
ing, I am sure that the subject of protein bioinformatics, in particular, would have had more
cutting-edge statistical methodologies in its forefront.

In spite of the claim by the funding authorities to support interdisciplinary projects,
mostly it has been a difficult concept to execute, partly hampered by the reviewing process
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of the grants. For example, in reviews of my interdisciplinary grant applications a math-
ematician thinks it is too “applied,” whereas a biologist thinks it is too “mathematical.”
My last successful major EPSRC application was in mining with Peter Dowd in 2002. The
topic was “Stochastic Modeling of Fractures in Rock Masses,” which is directly relevant to
depositing nuclear waste.

Mukhopadhyay: All corners of this world around us are now more accessible than
ever and there exist established as well as upcoming bioinformatics centers. University of
California, Berkeley, University of Louisville, Kentucky, and others come to mind. So, the
situation is not entirely hopeless. What are your global assessments about some of these
existing leading centers?

Mardia: The centers you have mentioned are mainly working on DNA, micro-arrays,
and so on. I have been working with my collaborators (Copenhagen, Oxford, and Bran-
deis University) on Bayesian inference of protein structure. As far as I know, the other
“Laboratories” I think of would include those in Seattle, Stanford, Ann Arbor, and Duke.

Mukhopadhyay: In our last published conversation (Mukhopadhyay 2002), we dis-
cussed at length the creation of the Center of Medical Imaging Research (CoMIR) and
many wonderful prospects. What is the present status of CoOMIR? What is your role there
now? Would you say that your original vision behind CoMIR has largely been attained?
How so? Please explain.

Mardia: Unfortunately the main Director, Mike Smith, moved to another university.
So, the progress with the Center became very limited eventually and it slowly died a natural
death. We simply could not attract input and financial support from industries. My experi-
ence says that computer scientists play a key role in converting methodological advances
into a usable resource. This experience has helped me in finding the right type of collabo-
rators in statistical bioinformatics.

Mukhopadhyay: I am sorry to hear that COMIR has nearly folded with time. The severe
economic downturn felt all over the globe since 2007-2008 is probably one reason for
reduced funding that led to CoMIR’s untimely demise. On a more positive note, will you
share the present status of LASR?

Mardia: LASR has been flourishing and it has kept pace with the times; see http:
//www1.maths.leeds.ac.uk/statistics/workshop. In the first decade, we started emphasizing
geosciences, but in the second decade we focused on image analysis. In the third decade,
beginning with the year 2000, the LASR has mainly focused on statistical bioinformatics.
Since life-science consists of such a large area, I believe that this theme will continue: there
is plenty of big data in this area.

The LASR workshops have provided a template on how to bring statisticians together
and make them think on new emerging areas of science, especially by creating the work-
shop’s format as a mixture of invited and contributed presentations plus posters. It has
created a tradition of being informal and relaxed by encouraging interactions and discus-
sions among participants and to have a good mix of young and experienced researchers
representing both genders.

Mukhopadhyay: Kanti, what is your role in organizing LASR workshops now?

Mardia: My role has been continuing to be the Chairman of the workshop. The detailed
task of organizing the workshop has become very smooth with key supports from my
colleagues, including Robert Ackroyd, Paul Baxter, Stuart Barber, John Kent, and Arief
Gusnanto. Also, there has been support from PhD students, including Jochen Voss, Chris
Fallaize, and Anthony Riley in particular.

We have invaluable support from Dave Westhead, Professor of Bioinformatics. The
funding situation has always been a sticky point, though LASR has been supported occa-
sionally by EPSRC, LMS, RSS plus a select group of industries, including GSK.
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Figure 2.7 25th Anniversary celebration at the Royal Armouries, Leeds. In the fore-
ground, from left to right: David Cox, John Kent, Kanti Mardia, and Councillor Mohammed
Igbal (Lord Mayor of Leeds).

Mukhopadhyay: Would you say that your original vision behind LASR has largely
been attained? Please feel free to elaborate.

Mardia: For a number of years, we have focused partly on statistical bioinformatics in
which the LASR workshops have been instrumental in bringing together different scien-
tific communities under a single roof. However, importance of shapes, images, directional
statistics, spatial statistics in other scientific areas still continue to be emphasized. I may
mention that one theme in this year’s LASR workshops falls squarely on “Non-Euclidean
Statistical Models and Methods.”

These Workshops started more than three decades ago as an annual event to foster
interdisciplinary research in statistics in an emerging area of science. A special event was
LASR’s 25th anniversary celebration in 2006. We held the conference dinner at the Leeds
Armouries. Most of these workshops were held in the idyllic setting at Hinsley Hall, Leeds,
which was an original seventeenth-century monastery. We also produced a comprehensive
leaflet describing the achievements of LASR and highlighting historical bioinformatics in
Leeds; see http://www1.maths.leeds.ac.uk/statistics/workshop/LASRwebleaflet.pdf.

During these workshops, I had been reminding the gathering that some of the original
pictures of X-ray similar to those used by Crick and Watson were available to William Ast-
bury. Visit: http://www.leeds.ac.uk/heritage/Astbury/From_Wool_Fibres_to_DNA/index
.html. He had the model for DNA as well as full protein, but these were wrong and, as it
has been said, if he had collaborated with the School of Mathematics here, perhaps Leeds
would have been the first to discover the models for DNA and protein. See also Hall (2014,
Chapter 1).

Mukhopadhyay: Will you mention some of the distinguished visitors to LASR?

Mardia: There have been many distinguished bioinformaticians including Michael
Levitt from Stanford University, California who was awarded a Nobel Prize in 2013 in
chemistry. Statisticians included Terry Speed, David Cox, Peter Green, John Kingman,
Bernard Silverman, David Hand, Wilfred Kendall, John Haslett, and the late Julian Besag.
Thus, we have been very well supported by the statistical community.
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Figure 2.8 Very early X-ray picture (1930s) of collagen fiber (frog’s toe tendon) from
Astbury’s laboratory, Leeds. Such X-ray images were instrumental in DNA discoveries by
Watson and Crick (Source: from the personal collection of K. V. Mardia).

2.7 Memorable conference trips

Mukhopadhyay: Your work, accomplishments, and visibility have certainly continued to
take you to visit many corners of the world since 1999. Please mention some of these trips.

Mardia: There have been visits to several conferences at different venues to give
plenary lectures. The list includes visits to the University of Peradeniya (Kandy, Sri
Lanka), Copenhagen University (Aarhus), University of Rome (Italy), Hong Kong,
Research Triangle Institute (SAMSI, North Carolina), Banff Conference Center (Alberta,
Canada), Granada and Valladolid (Spain), Beijing and Shanghai (People’s Repub-
lic of China), Montreal (Canada), Florence (Italy), Berlin (Germany), and Brussels
(Belgium).

Most of my talks have been on protein bioinformatics in order to make statisticians
aware of this new and challenging area of research. I have also given a talk on the pleasure
and pain of interdisciplinary research so that young researchers may become aware of both
aspects.

Mukhopadhyay: How about most memorable trips and why were they memorable?

Mardia: Memorable trips — some of my trips have included sightseeing. Memorable
trips were largely those which took me to new and exciting places for the first time such as
Sri Lanka, Banff, Rome, and Beijing and Shanghai. It was fantastic to see the Great Wall
of China. When I last saw David Kendall in October 2006 (a year before his death), he
regarded the Great Wall of China as one of his memorable places. So, I always wanted to
visit the Great Wall of China.
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Figure 2.9 From left to right: Nobel Laureate Michael Levitt, Kanti Mardia, Fred
Bookstein, and Clive Bowman. LASR 2008, Hinsley Hall, Leeds.

Figure 2.10 From left to right: Terry Speed, Philippa Burdett (PhD student), Arthur Lesk,
Thomas Hamelryck, Kanti Mardia, and Chris Fallaize in a poster session during LASR
2010.

In Beijing IAMG conference, I selected my topic (Mardia 2007) as “Should Geostatis-
tics Be Model-Based?” The audience was mostly from geosciences (nearly 500 people)
and I decided to bring the model-based approach to geostatistics to their attention. Often,
there are two streams in statistical research — one developed by practitioners and other by
mainstream statisticians. Development of geostatistics is a very good example where pio-
neering work under realistic assumptions came from mining engineers (French School led
by Matheron) whereas it is only now that the statistical framework is getting more transpar-
ent. Indeed, the subject with statistical emphasis has been maturing fast, as seen by various
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excellent books from the statistical side. The model-based approach is mainly based on my
formulation as the spatial linear model. I presented first time the basic ideas of the model
in 1980 to a geological conference in Paris followed by my full joint paper in Biometrika
in 1984 (Mardia and Marshall 1984). These maximum likelihood estimates in the 1980s
generated some debate but now through new research work by many, there is better under-
standing of their behavior and consequently their practical importance as I discussed in this
paper (Mardia 2007). Of course, there will be a good coverage of these developments in my
forthcoming book on Spatial Statistics with John Kent.

Also, a place like Valladolid was interesting because I could visit a town which was full
of bookshops, more like Hay-on-Wye in the United Kingdom. Banff was especially great
because it was so scenic with snow and ice on the hills. I particularly enjoyed the layout of
the workshop held in Banff.

2.8 A select group of special colleagues

Mukhopadhyay: Kanti, after 1999, both Robin Plackett and David Kendall have passed
on. I know that they influenced you greatly. Would you like to add your remarks in memory
of their legacy?

Mardia: David Kendall pioneered in particular shape analysis and I will always remem-
ber him as someone tackling hard problems. His way of combining geometry in statistics
and computation has been an influential pathway. He had a rigorous way of dealing with his
submission of papers — if I recall correctly, once he submitted a paper to JRSS, B (Kendall
1984) but it was too long for the journal. So, David was asked to cut his paper’s size which
I am glad to say he refused. I also recall his paper for Geoff Watson’s festschrift volume
(Mardia 1992) which I was editing: I asked David to show more details on his key differ-
ential geometry ideas in the paper, but he politely declined saying that the details given
there were adequate. I should mention that David Kendall was the PhD supervisor of my
colleague, John Kent.

Robin Plackett was my PhD supervisor and mentor. I remember that his work always
had been motivated by practical problems and he gave hints that one had to keep a watch
on what other prominent researchers were working on such as that of David Cox. Unlike
David Kendall, Plackett was not keen on doing his own computation and I recall helping
with one of his computational problems in the 1960s. I think he was somewhat shy and the
last I saw him was when he came to my seminar in the 1990s that I gave in Newcastle, but
he left straight after my seminar. Before the seminar, he said how delighted he was to see
my work in the emerging areas.

Mukhopadhyay: Will you mention a thing or two about some of your other special
colleagues or collaborators?

Mardia: These years have been exciting from this point of view. I have already men-
tioned a few special collaborations. Coming back to Thomas Hamelryck, our combination
has been good in that I provide, in some cases, appropriate statistical methodology to his
problem in bioinformatics; he has then been able to incorporate the method in software
in the public domain (PHAISTOS). In the process, I have collaborated with many of his
postdocs and the strong collaboration continues.

I should mention my collaboration with my departmental colleagues, John Kent, Charles
Taylor, Stuart Barber, and Jochen Voss. Most of the collaboration has been in statistical
bioinformatics, though with John Kent our collaboration which started as early as 1977 still
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thrives. It is very difficult to clearly differentiate our style, but John has a special talent for
getting to the heart of a problem analytically. If I recall correctly, the late Julian Besag once
said to me that we are a formidable team.

Mukhopadhyay: How about some of your students?

Mardia: 1 have written a large body of papers with my PhD students who really
helped in building the subject in spite of no substantive external funding. Since 2005,
my PhD students who worked on statistical bioinformatics in Leeds include Mani
Subramanium, Vysaul Nyirongo, Gareth Hughes, John Davies, Emma Petty, Kerstin
Hommola, Zhengzheng Zhang, Chris Fallaize, and Anthony Riley. Pip Burdett (Leeds
University) and Jinwoo Leem (Oxford University) are continuing PhD students as we
speak.

Mukhopadhyay: Your thoughts on C. R. Rao, Ulf Grenander, David Cox, Fred
Bookstein?

Mardia: This is a hard question since these scientists are all pioneers and original
thinkers. I treat C. R. Rao, Ulf Grenander, and David Cox as my role models, and I hope I
could continue working as they have been doing. Fred Bookstein has enormous energy and
talent to cross boundaries. He is very prolific, dynamic, and quick on sharing his thoughts,
and besides he is also approachable. Fred has been a regular supporter of LASR and he has
attended the workshops continuously from 1991. He has found the LASR workshops to be
a platform to air his unorthodox ideas in statistical science.

Peter Green stands out among new collaborators. He is extraordinarily quick to grasp
new ideas and come up with new approaches for solutions. Besides, Peter also has a great
talent in computational statistics. I believe that he is a superstar in statistical science.

2.9 High honors

Mukhopadhyay: Please tell me about the high honors bestowed upon you since 1999. The
Guy Medal in Silver from the RSS and S. S. Wilks medal from the American Statistical
Association (ASA) come to mind. Congratulations for those great honors. What were the
corresponding citations?

Mardia: I was awarded the Silver Medal of the RSS in 2003. The citation for the award
read: “The Guy Medal in Silver for 2003 is awarded to Professor Kanti Mardia for his many
path-breaking contributions to statistical science, including two fundamental papers read to
the Society on ‘Statistics of directional data’ (1975) and ‘A penalized likelihood approach
to image warping’ (with C. A. Glasbey, 2001), his highly acclaimed monographs and his
lasting leadership role in interdisciplinary research”.

Mukhopadhyay: Did the Guy Medal consider your full body of work too or other
highly influential publications?

Mardia: This award depended mainly upon the discussion papers as cited.

Mukhopadhyay: How about the S. S. Wilks award?

Mardia: In August, 2013, the Samuel S. Wilks Memorial Medal was awarded to me by
the ASA during the Joint Statistical Meetings held in Montreal, Canada. I was the fiftieth
recipient.

The citation for the award read: “For extensive work covering a wide span of applied
and theoretical research, including seminal results in shape analysis, spatial statistics, mul-
tivariate analysis, directional data analysis and bioinformatics with special applications to
geostatistics, image analysis and protein structure; for the international dissemination of
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Figure 2.11 Peter Green, the RSS President, presenting Silver Guy Medal of the Royal
Statistical Society to Kanti Mardia, Junel8, 2003.

statistical thought and innovative ideas through research publications, presentations, books,
monographs, the establishment and running of annual research workshops and interdisci-
plinary centers; and for his insightful guidance of future generations of statisticians”.

Mukhopadhyay: What were the requirements for the nomination of the S. S. Wilks
award?

Mardia: The requirements for the nominations were: “The Wilks Memorial Award
is bestowed upon a distinguished individual who has made statistical contributions to the
advancement of scientific or technical knowledge, ingenious application of existing knowl-
edge, or successful activity in the fostering of cooperative scientific efforts that have been
directly involved in matters of national defense or public interest ...”.

Mukhopadhyay: It seems to me that this was the first time the S. S. Wilks medal went
to someone living in United Kingdom. How so in your view?

Mardia: It is difficult to pin-point exactly why I got this award, but my guess is that
it is given for the cumulative research contribution with possibly my kind of special brand
of leadership in interdisciplinary research, and for moving Leeds and the UK forward in
geosciences, image analysis, and bioinformatics. Also, I may add that I began working
when these subjects were just emerging so that the LASR workshops helped tremendously
in crossing the research boundaries at the right time.

Mukhopadhyay: What is your unique philosophy on honors and life in general?

Mardia: I wrote a parody on a verse from Thomas Gray’s “Elegy written in a Country
Churchyard”:

“The pomp of professorship, boast of medal, All that publication and breakthrough e’er
gave, Await alike th’inevitable hour. The paths of glory (also) lead but to the grave.”

This is also complemented by the famous quote from Jain thinking:

“Kashaya muktih kil muktirev,”

meaning freedom from destructive emotion is in reality the only way to true enlighten-
ment. This line becomes clearer when seen in the context of the transliteration of the full
stanza as follows:
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Figure 2.12 Samuel S. Wilks Memorial Medal presented in Montreal, Canada to Kanti
Mardia by Marie Davidian, President of the American Statistical Association, August 4,
2013.

“Neither by wearing white robes nor by wearing nothing, Neither by logical discussion
nor by metaphysical discourse, Nor is there liberation by adopting a particular theology
Liberation comes only by liberating oneself from Kashaya”.

2.10 Statistical science: thoughts and predictions

Mukhopadhyay: Where is statistical science going?

Mardia: I think the most important development has been the computational power
which has changed attitudes of statistical scientists to move from small sample statistics
to large-scale statistics. What was not feasible before as a practical methodology has now
become a reality.

There is a significant rise of Bayesian methods. I think the next few years will still see
the impact of statistics on new data coming from advances in technology. The greatest chal-
lenge for statisticians is to remain “ahead” of computer scientists, that is, to have substantial
computational skills combined with sound statistical principles and techniques.

Mukhopadhyay: Kanti, you attend numerous international conferences. How do many
nonstatisticians tend to address statistical aspects and do you feel comfortable with present
status? What is your mission?

Mardia: Let me mention a quote related to our image problem (Mardia and Gilks 2005):

“In conferences we have attended where statistics is not the main topic, such as image
analysis and bioinformatics, one sees the use of terms like data processing, data analysis,
prediction, estimation, hypothesis, significance, etc., but the discipline of statistics is rarely
acknowledged. Upon asking presenters why they have not made use of statistical methods,
we have received such bizarre replies as: ‘Statistics deals only with small datasets, but our
problem is for a very large amount of data,” or ‘Oh yes, we use statistics only when we want
to calculate a measure of uncertainty,” or ‘Statistical models deal only with observables, but
we need models which consider also unobserved variables.” ”
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I have not taught now for nearly 15 years except supervising PhD students. Before then,
as Head of Department, my attitude was taken from Edward Boyle, the Vice-Chancellor
here, when I joined Leeds University. Boyle’s maxim was to do teaching in the atmosphere
of research so that they fed each other, especially at MSc level. Most of my research prob-
lems arose from interdisciplinary projects, and the LASR workshops have been a great
platform in which to have interdisciplinary dialogue, and to keep up with the changing
nature of statistical science itself. I believe that LASR has been a big force in many ways.
To tell you the truth, the LASR embodies my mission: “Statistics without science is incom-
plete, Science without statistics is imperfect.”

Mukhopadhyay: Where do you believe statistical science will be in 10 or 20 years from
now?

Mardia: Nitis, since my last published conversation with you, research life has already
become easier when I consider accessibility to literature and pdf files, e-books, and sub-
stantially more available data on the web.

It is not possible for me to exactly foresee what will be the development of statistics in
the next 20 years. However, I may make some predictions based on the developments that
have happened in the last decade or so.

In recent years, new methods of acquiring “big” data have become available in many
fields such as medicine, genetics, engineering, management, and these have led to inception
of new statistical methods for analysis of data.

Mukhopadhyay: Please share some of your personal experiences.

Mardia: When I began working on image analysis, those images were very coarse.
But, over time with improvements in technology, images have become significantly sharper.
The analysis of images over the years has given rise to a large number of problems which
required development of new statistical methods.

For example, problems of object recognition, classification, and discrimination with
image data have led to development of exciting new statistical methods. For the purpose
of object recognition, obviously shape is an important attribute. After David Kendall and
Fred Bookstein gave initial ideas of how to quantify shape (Bookstein 1986; Kendall 1984;
Kendall 1989), a large body of work has been created by me and others, especially regard-
ing the distributions of shapes and analysis of shape data. The Mardia—Dryden distribution
(Kendall 1989) is now regarded as an important probability model for the distribution of
shapes.

Mukhopadhyay: Kanti, did you have similar personal experiences when you turned
your research toward proteomics?

Mardia: Nitis, yes, of course. Very little statistical work had been done in this field
before the turn of the century as there was very little communication between the biol-
ogists and the statisticians. With better communication now in place, statisticians have
been able to participate in dealing with challenging problems and studying huge amounts
of data — mostly multivariate and high dimensional in nature — emanating from this field.
Again, analysis of these data is triggering development of new and substantial methods of
statistical analysis.

Mukhopadhyay: Kanti, is there anything else you want to add on this topic?

Mardia: Real data arising from any field, where statisticians’ expertise is crucial, are
often complex and large in size. They are often difficult to analyze since they contain out-
liers, have multimodality, show skewness, and consist of a mixture of discrete, continuous,
ordinal, and nominal measurements. Customary statistical methods may not always answer
questions arising from such data.
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Further, I feel that statisticians should go beyond writing purely mathematical papers.
Instead, attention may be diverted into development of applicable solutions, algorithms,
plus computer programs and software. They should make the new methods so developed
easily accessible to scientists and practitioners of other disciplines.

I think good statistical science will be more computational and the new research method-
ologies will have available web-based software, more libraries in R, and more data in the
public domain. More support for interdisciplinary teams will be essential for new break-
throughs.

Mukhopadhyay: But, now, if everyone moves away from pure mathematics, there is
clear danger that we will be faced with numerous methodologies without solid theoretical
foundations which will surely create a kind of anarchy. To be frank, we are already seeing
some of that in the horizon. Are we not? So, let me ask you to clarify your stance. Will you
please?

Mardia: My paradigm is: New Questions «<» New Data <+ New Methods. I think that the
future trend in statistics will be a hybrid of model-based statistics and algorithmic statistics.

Walter Gilks and I wrote the article (Mardia and Gilks 2005) entitled “Meeting the
statistical needs of 21st-century science” in Significance, December 2005 issue, which said:

“... we propose a holistic approach to statistics. Holistic medicine (‘alternative’
medicine) treats the patient as a whole rather than targeting just the affected part. The same
philosophy applied to statistical practice suggests that one should set clients’ problems in
the context of their priorities, available data and methods, current scientific knowledge,
computational considerations, risk assessment and required end-product. Bayesian or
frequentist, exploratory or predictive, all provide different types of cure!”

It concludes with: “Through our brief account, we have identified three themes. First,
statistics should be viewed in the broadest possible way for scientific explanation or predic-
tion of any phenomenon. Second, the future of statistics lies in a holistic approach to inter-
disciplinary research. Third, a change of attitude is required by statisticians — a paradigm
shift — for the subject to go forward.”

Mukhopadhyay: In 1999, you told me that you were a pragmatic Bayesian. What did
that mean? Are you more (or less) of a Bayesian now than you were in 1999?

Mardia: Still I remain open-minded and whatever statistical tool works, I go for it. I
will remain a pragmatic Bayesian.

2.11 Immediate family

Mukhopadhyay: Kanti, shall we talk about your immediate as well as extended family?

Mardia: Inevitably, both sad and happy events have taken place in the family over
the past few years. One of my elder brothers (Jawerchand) died. The eldest brother
(Mangeshkumar) reached the age of 90 this year, and my mother-in-law has reached the
wonderful age of 103. My wife, Pavan, and I are both fortunate to have good health so
far. We celebrated our Golden Wedding anniversary in 2008. We both travel together to
most conferences and when I spend time on my visiting professorships. Incidentally, we
complete 50 years in this country in September this year.

Other great family news since 2000 is that my eldest daughter has Sashin, our second
grandson (now 11 years old), and my first grandson Ashwin has just started a degree in
economics at York University. There is almost zero probability of more grandchildren but
we look forward to great-grandchildren.
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Figure 2.13 The Golden Wedding Anniversary 2008: Family photo (from left to right)
shows Hemant, Preeti, Sashin (in front), Kanti, Pavan, Ragunath, Bela, Ashwin, and Neeta.

-

Figure 2.14 Sashin reciting four noble truths during the launch of “Living Jainism,” Jain
Temple, Leicester, July 15, 2013.
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Mukhopadhyay: How about your son, Hemant, and daughters, Bela and Neeta? Where
are they now and what are they doing?

Mardia: My son, who was living earlier very near to us, was the CEO of a publicly
quoted company (Filtronic) until 2013. He has moved approximately nine months ago to
Norway as the CEO of a new company (Idex), specializing in fingerprint imaging and fin-
gerprint recognition technology. His wife, Preeti, has a key role in the company, while also
doing an M.Sc. in Business Management.

My younger daughter, Neeta, had a tough time in heading her legal firm and she took
a sabbatical from her profession to fulfill successfully her dream of inventing and market-
ing “sweet samosas” (under the banner of “Sweet Karma”). She is joined in this by her
partner, Jon Handley, and is growing it successfully in her spare time as she is back in her
professional work as a lawyer.

Currently, my elder daughter, Bela (who manages her several properties) and her hus-
band Raghunath (who is a medical doctor), live in Hull, meaning about one hour’s drive to
and from Leeds. Neeta and Hemant live far away, so that in an emergency, we have to rely
on each other (my wife and myself) and our friends, Raj, Meena and Tilak in Leeds.

Mukhopadhyay: What are some of your hobbies now?

Mardia: There has been no time to play either chess or bridge except sometimes I play
chess with my grandchildren.

My previous hobby of collecting antiquarian books has come to an end. More concen-
tration has been on books which I read including those related to Jainism. Yoga exercises
and health club visits are new additions to my hobbies since we spoke last.

2.12 Jain thinking

Mukhopadhyay: How is your work in Jain thinking going on?

Mardia: My “The Scientific Foundations of Jainism” has become a classic. It has now
been translated into Hindi (2004) and Gujarati (2012). The axiomatic system of the Four
Noble Truths of Jains devised by me is described in this book. In 2013, a Bollywood music
director, Ravindra Jain, composed songs based on Four Noble Truths, and this album was
launched in Mumbai, India in January 2014 under the media glare (Jain et al. 2014).

These also provided a basis for my new book Living Jainism (Mardia and Rankin 2013)
written with Aidan Rankin. In it, we addressed the unique nature and teachings of Jainism,
the unity of life with which Jainism began, the implications of that unity, and the need to
reorient our behavior accordingly.

Mukhopadhyay: How about other related activities in the north of England?

Mardia: I continue as the Chairman of the Yorkshire Jain Foundation (YJF), which we
founded in 1987. One of the major contributions has been having a Jain temple (part of
a Hindu Temple) in Leeds from 2001; the Jain temple is a focus for Jains in the north of
England but receives many visitors including from schools learning comparative religions.
As there are a very few Jains around in Yorkshire, the activities of the YJF have been also
at the national and international levels.

During the last 20 years when I found time, I wrote on the subject of “kashayas,” which
approximately stands for destructive emotions. The book will highlight chronological think-
ing of Jains on this topic starting from time immemorial. Indeed we hope to spend more
time on the YJF and Mardia Punya Trust. In 2004, the Vanik Association (a community of
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Figure 2.15 Cover of an album launched in January 2014, in Mumbai. Lyrics are based
on the Four Noble Truths formulated by Kanti Mardia in 1978. Musical compositions:
Ravindra Jain, Bollywood celebrity.

professionals in the UK) honored in appreciation of my contribution in education as well
as in Jainism. This was during their silver jubilee anniversary celebration year.

Mukhopadhyay: In January 2007, I recall that you met the President of India, His
Excellency Dr. Abdul Kalam, and discussed with him the topic of “Statistics, Science, and
Spirituality.” Could you please elaborate?

Mardia: Nitis, thanks for bringing this up. Someone arranged a brief interview with the
President of India, His Excellency Dr. Abdul Kalam, for 5 minutes. However, our discussion
continued for half hour.

Mukhopadhyay: What did you two discuss?

Mardia: One topic was the Four Noble Truths that I had produced for Jainism. Of
course, he was aware that Jainism influenced Mahatma Gandhi in his principle of nonvi-
olence. It is claimed to be a religion and Kalam knew Jain philosophy and its pre-Vedic
origin, but obviously he was not aware of my work.

Also, we discussed how Jain ideas foreshadowed statistics in relation to the principle of
inference from samples to population, the idea of meta-analysis (anekantvad = many-sided
view), nonabsolutism in scientific discovery (syadvad). Dr. Kalam himself is a scientist
interested in philosophy. In fact, he recently wrote a joint book with a very important Jain
guru (the late Mahapragna). We both believe that divine values are necessary in science and
religion. Einstein summarized this beautifully: “Science without Religion is lame, Religion
without Science is blind”.

2.13 What the future may hold

Mukhopadhyay: What are some of your small or big plans in the future?

Mardia: I want to see our spatial statistics book finished and the second editions of my
three previous books done. I hope to keep up-to-date with at least my own areas of expertise.
I need to learn more R.
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Figure 2.16 Best professional award to Kanti Mardia (center) by the National Council of
Vanik Associations, UK, during its silver jubilee celebration, April 25, 2004.

I would like to lend my helping hands to support “LASR-type” workshops. I intend
to push geometry-driven statistics with real problems arising from life sciences. Statistics
on manifolds is now recognized as a very important area of applications and it is growing
fast — curves, surfaces, and non-Euclidean data. A key problem is to invent the right type
of models for such manifolds. As in directional statistics and shape analysis, here again it
is expected that the normalization constants would be intricate, as will be the associated
inference.

Mukhopadhyay: What else may be on your plate?

Mardia: I hope to spend more time in Oxford and IIMA although my base will remain
in Leeds, especially since we have been here since 1973 and our very close community life
is here. As long as my brain and body will allow, I will continue to be active.

Mukhopadhyay: You have been a truly optimal role model for me. I certainly wish
wholeheartedly that your wonderful wishes will all come true.
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Figure 2.17 Kanti Mardia met the President of India, His Excellency Dr. Abdul Kalam.
The Presidential Palace in Delhi, January 3, 2007.

Figure 2.18 Kanti and Pavan Mardia. Leeds, August 19, 2014.
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Mardia: Nitis, thanks a lot, but everything also depends on Pavan’s health as I depend
on her completely in day-to-day life. I mentioned in my last published conversation that my
wife is the hardware if I am the software. This is more so now.

Mukhopadhyay: Kanti, I have to close this conversation with some final heartfelt words
of appreciation. Thank you so much for giving me the rare opportunity to chat you not once,
but twice, in 1999 and again in 2014. I pray for continued best of health and happiness for
you, Pavan and the rest of your family. I have no idea how you preserve your youth and
bubbling energy. Whatever is your secret, please do not change a thing.

Wish you the happiest 80th birthday in 2015. Rest assured, I will be ready to have a chat
with you yet again in 2024-25 prior to your 90th birthday celebration. God bless, my friend.
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4.1 Introduction

Constraints on parameters arise naturally in many applications. Statistical methods that
honor the underlying constraints tend to be more powerful and result in better interpre-
tation of the underlying scientific data. In the context of Euclidean space data, there exists
over five decades of statistical literature on constrained statistical inference and at least four
books on the subject (e.g. Robertson et al. 1988; Silvapulle and Sen 2005). However, it was
not until recently that these methods have been used extensively in applied research. For
example, constrained statistical inference is gaining considerable interest among applied
researchers in a variety of fields, such as, for example, toxicology (Peddada et al. 2007),
genomics (Hoenerhoff et al. 2013; Perdivara et al. 2011; Peddada et al. 2003), epidemiol-
ogy (Cao et al. 2011; Peddada et al. 2005), clinical trials (Conaway et al. 2004), or cancer
trials (Conde et al. 2012, 2013).
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While Euclidean space data are commonly encountered in applications, there are numer-
ous instances where the underlying data and the parameters of interest reside on a unit
circle. Statistical theory and methodology for analyzing such angular data has a long his-
tory (Fisher 1993; Mardia and Jupp 2000) and, as witnessed through his publications and
his highly referenced book (Mardia and Jupp 2000), Professor Mardia was one of the
chief architects and pioneers of this important research area. His work has a wide range
of applications in fields such as, for example, geosciences, spatial data, image analysis, and
bioinformatics.

In comparison to over fifty years of statistical literature on constrained inference for
Euclidean space data, constrained statistical inference for circular data is almost nonexistent
although constraints on unit circle were encountered by applied researchers such as, for
example, social psychologists and neuroscientists (Schlosberg 1952; Russell 1980; Forgas
1998; Mechsner et al. 2001; Oullier et al. 2002; Posner et al. 2005) or molecular biologists
(Whitfield et al. 2002; Peng et al. 2005; Hughes et al. 2009).

Parameters on a unit circle are often the result of an oscillatory system. Oscillatory sys-
tems arise naturally in many applications, such as, among others, sales of seasonal products,
regulation of hormones in humans, circadian clock, or periodic expression of genes partic-
ipating in cell division cycle. Often there are several components (or variables) involved
in such oscillatory systems that act in a well-coordinated manner such as an orchestra for
the system to function. The system can be disrupted if one or more components go out
of order. Researchers are often interested in detecting such components. For example, large
scale genomic studies are routinely conducted to identify genes/proteins that have a periodic
expression in a given biological system. Depending on the underlying scientific question of
interest, researchers are often interested in, for example, correlating the phases of periodic
genes across different experimental conditions or species or tissues. Thus, the statistical
problem of interest is to draw inferences regarding the relative order among parameters on
a unit circle.

Just as one cannot trivially extend standard methods developed for unconstrained sta-
tistical inference in the Euclidean space to circle, constrained statistical inference for the
Euclidean space cannot be extended to constraints on a unit circle (cf. Rueda et al. 2009).
Since constrained statistical inference on a unit circle is a relatively new topic and yet has
numerous applications, the purpose of this paper is threefold. First, we describe recent
theoretical and methodological advances in this field, next we shall describe some appli-
cations of the methodology in cell biology and lastly we shall present several open research
problems and potential applications. While the methodology described here is a review of
what has already appeared in our previous papers, the applications are new. More specif-
ically, in Section 4.2 we introduce the framework and the problem of interest. In Section
4.3, we describe the problem of estimating ordered parameters on a unit circle using cir-
cular isotonic regression. Analogous to the isotonic regression estimator in the Euclidean
space, circular isotonic regression estimator (CIRE) obtains ordered estimates of circular
parameters under a prespecified order among them. Using these ordered point estimators,
under suitable distributional assumptions, in Section 4.4 we describe conditional tests for
order among circular parameters. In Section 4.5, the problem of estimation of a global order
among a set of circular objects using data from multiple experiments is described. Statis-
tical methodology described in this paper is illustrated in Section 4.6 using data obtained
from cell biology. We conclude the paper by presenting several open research problems and
potential applications in Section 4.7.
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4.2 Oscillatory data and the problems of interest

Time course data are commonly obtained in many applications. However, in some appli-
cations such as, among others, marketing research, cell biology, endocrinology, and psy-
chology, researchers are interested in studying various characteristics (or parameters) of
the time course pattern. Although the raw data itself may reside in the Euclidean space, the
underlying parameters of interest may be points on a unit circle. To illustrate this, consider
data provided in the toy example described in Figure 4.1. To promote tourism to its summer
resort in an island in the Pacific, suppose a travel agency runs an advertisement campaign
several months before each summer. The advertisement costs in dollars over time are plot-
ted in Figure 4.1 (dashed curve). The travel agency tracks the sales of airline tickets to the
island over the same period (dotted curve) as well as the income revenues on the island due
to tourism (solid curve). One of the parameters of interest to the travel agency is to deter-
mine the time of peak advertisement to maximize its impact on the overall sales. Thus, the
parameters of interest are the times that correspond to the peaks of the curve (location of
the vertical lines in Figure 4.1). Since these curves are periodic, they can be mapped onto
a unit circle and the time to peak value of any given curve can be thought of as an angular
parameter on the circle (see Figure 4.2). Thus in this example, the angular parameters are
ordered with the dashed value followed by the dotted value, which is followed by the solid
one in the anticlockwise direction. Focus of this paper is to draw inferences regarding the
relative order among these angular parameters on the unit circle. As noted in the introduc-
tion, similar examples arise in a wide range of settings and the application of interest in this
paper is cell biology, which is explained in greater detail in the illustration section.

In Liu et al. (2004), a nonlinear model called the Random Period Model (RPM) was
introduced for such time course data. Although their motivation was to describe the time
course expression of cell cycle genes, their model can be used for any such time course
data. The model is given by Y, (t) = f(t,n,) + &,(t), where ¢ is the time, and ¢(t) is a
zero mean error term with no additional distributional assumptions made. The expected
response f(t,7,) is modeled as,

K o0 2t —2?
_ g
f(t,n,) =a, +b,t+ VT /ﬂc cos (Texp(o’z) + ¢g) exp ( 5 )dz,

Figure 4.1 Advertisement costs (dashed curve), sales of airline tickets (dotted curve) and
income revenues (solid curve) in dollars over time.
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Figure 4.2 Peak costs plotted on a circle. Angle from O to the dashed line for advertise-
ment costs, from O to the dotted line for sales of airline tickets and from O to the solid line
for the income revenues.

forallt =1,...,n,and g = 1,..., k and where n, = (K, T,0,¢,,a,,b,) is the parame-
ter vector. Parameters of the model are interpreted as follows. The parameters 7" and o are
the same for all cells and genes in the population. The parameter 7' governs the duration of
the cell cycle, while o0 measures the rate of attenuation in amplitude with each cycle (the
larger o the faster the decay in amplitude). The parameter ¢, is the angle of peak expression
of gene ¢ in the cell cycle with ¢ = 0 being the point when cells are released. Parameter
K, is the amplitude of the first period and parameters a,, and b, take into account possible
drifts in the gene background expression level. The unconstrained estimators of all parame-
ters of RPM, including the angular parameter ¢, are obtained using nonlinear least squares
methodology. Throughout this paper, we shall refer to the angular parameter ¢, as the phase
angle due to its biological relevance.

Suppose we have k oscillatory variables (in the aforementioned tourism example we
had three) and suppose for the ith variable the phase angle is denoted by ¢,,7 = 1,2, ... k.
Then, using the unconstrained estimators 6,,% = 1,2, ..., k obtained from the RPM model,
our goal is to conduct inference regarding the relative order of ¢, ¢,, ..., ¢, around the
unit circle. Suppose we travel around the circle in an anticlockwise direction and suppose
the angle ¢, is followed by ¢,, which is followed by ¢; - - - followed by ¢, which is finally
followed by angle ¢,. Then we shall adopt the following notation (cf. Rueda et al. 2009;
Fernandez et al. 2012) to describe the relative order:

P12y 2 2Py 2Oy

It is important to note that the aforementioned order is invariant of the location of the
pole of the circle. Alternatively, the aforementioned order is rotation invariant. For this rea-
son, Rueda et al. (2009) referred to the aforementioned order as an isotropic order. The
focus of this paper is to discuss recent developments in the literature on the following prob-
lems: (i) estimation of ¢, ¢, . .., ¢, under the aforementioned order constraint using the
unconstrained estimators of ¢;,7 = 1,2, ..., k, obtained from RPM; (ii) testing the hypoth-
esis that the aforementioned relative order is satisfied for a set of angular parameters; and
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(iii) testing whether the relative order among a set of phase angles is conserved using data
from multiple experiments performed under different conditions.

4.3 Estimation of angular parameters under order
constraint

We begin by discussing the problem of estimating the phase angles ¢,, : =1,2,... k
under the order constraint ¢; = ¢, = --- <X ¢, = ¢, using the unconstrained estimators 6,,
i=1,2,..., kobtained from the RPM. The general idea of estimation resembles the analo-
gous problem in the Euclidean space. LetC = {¢ € [0,27)% : ¢, < hy < ... < ¢ < ¢}
Suppose C' = {¢ € [0,2m)" : 0 < ¢; < ¢, < -+ < ¢, < 27}, thus the pole of the unit
circle is between the parameters ¢, _; and ¢,. Then we have C = Ule Cl.

For an estimator 6 = (6,,0,, ..., 6,) of a parameter ¢ = (¢, @, . . ., ¢;,), the distance
between the two is defined as the sum of circular errors (SCE) given by:

SCE(0, ¢) = d(6,6) = 3 {1 = cos(0; — ¢,)},

where r; represents a measure of concentration of 6, about its modal direction (see Mardia
and Jupp 2000, p. 17). Consequently, using the unconstrained estimator 6, the estimator of
¢ under the constraint ¢ € C is obtained by solving the following minimization problem:

k
min SCE(6, ¢) = rggg;m{l — cos(f; — ;) }- .1

In the case of Euclidean space data where 6 has a known diagonal covariance matrix, the
corresponding restricted cone is the simple order cone given by ¢; < ¢, < --- < ¢, SCE
is replaced by the Euclidean distance (i.e., sum of squared errors) and the corresponding
minimization problem is called the isotonic regression. Typically the problem is solved
using the pool adjacent violator algorithm (PAVA). The basic underlying idea of PAVA is
that components of # that violate the underlying relative order are pooled or averaged so
that the overall order is satisfied. To illustrate this, we consider the following toy example
in the Euclidean space.

Example 4.3.1 Suppose ¢ = (¢, by, 3) € R® with ¢y < ¢y < ¢5. Suppose the uncon-
strained sample means are given by 6, = 0.6, 0, = 2.5, and 05 = 1.5. Since 0, > s,
therefore, the order ¢ < ¢y < ¢ is violated. The PAVA would average the last two
coordinates, yielding the ¢, = 0.6, ¢y = ¢35 = (1.5+2.5)/2 =2 as the constrained
estimates.

In the case when ¢ € C, the unit circle, the solution to the minimization problem (4.1) is
more complicated as noted in Rueda et al. (2009). Since (4.1) resembles the usual isotonic
regression estimation for Euclidean space data, Rueda et al. (2009) refer to the solution of
(4.1) as circular isotonic regression estimator (CIRE). More precisely, the CIRE, denoted
as ¢, is given by:

¢ = arg I;lelgl SCE(6, ¢). 4.2)
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Before we formally describe CIRE, we consider the following toy example to describe
the calculation of CIRE geometrically. We remark that when considering angular data, the
arithmetic means are not always appropriate for describing the average direction between
a pair of angles. Instead, one should use the angular mean direction (cf. Mardia and Jupp
2000; Rueda et al. 2009).

Example 4.3.2 Suppose k=3 with ¢, = ¢, = @3 = ¢,. Suppose the unconstrained
estimates using the RPM are given (in radians) by 0, = 6, 0, = 2.5 and 05 = 1.5 (see
Figure 4.3). Clearly these estimates do not satisfy the desired order. In the Euclidean space
example described earlier, it was easy to identify the violator of the order and one could
accordingly deal with it. However, in this case, since the data wrap around the circle, the
violator may not be unique and one needs to explore all possibilities. If the violation is
due to 6, and 6, then one would average these two and leave 0, as is. This would result
in the constrained estimates given in the top left circle in Figure 4.4 with an SCE of 0.74.
However, if the violation is due to 0, and 0, then one would average these two and leave 0,
as is. This would result in the constrained estimates given in the top right circle in Figure
4.4 with an SCE of 1.64. Or the last possibility could be that 6, and 0 are in violation of
the order. In which case, we pool the estimates 0, and 05 and leave 0, as is, resulting in
an SCE of 0.24. See the bottom circle in Figure 4.4. Since this SCE is the smallest, it is
the CIRE.

0,=25

(];2 =25 3 _ ~
b= b3 =061 / =g, =11
A Pole ‘ Pole

Figure 4.4 Possible constrained estimates with the CIRE appearing at the bottom circle.
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An important observation to make from the aforementioned example is that in the case
of circular data it is not enough to consider the adjacent violators of the order. This makes the
problem computationally challenging. The main reason for this is that, unlike the arithmetic
mean in the Euclidean space, the circular mean does not verify the Cauchy Mean Value prop-
erty. Rueda et al. (2009) provide a general algorithm to derive CIRE and demonstrated that
their algorithm is exact and computationally efficient, especially as the number of param-
eters increases. CIRE is implemented in the R package isocir (Barragan et al. 2013). The
solution to their algorithm is characterized in the following theorem.

Theorem 4.3.3 The CIRE exists, is almost sure unique, and can be obtained from circular
means of adjacent angles as,

&g :Ave(Sm)forg =1,.,k,i=1,..,m,
with 0 < AV@(S(l)) < AV@(S(Q)) < e < AVe(S(m)) < 271_’

where (i);", is a partition of {1,...,k}, Ave(S|;)) are the circular mean directions for
angles in S;) = {0,,9 € (i)}, (1), .., (m) are the so called level sets (cf. Robertson et al.
1988), ;) = #(i) and 331" ng;y = n.

In some situations, especially in cell biology, one may be interested in partial orders of
the following type:

{¢17¢27 ce a¢r1} = {¢r1+1’ o '7¢r2} == {¢r5+1’ o 7¢k} = {¢1a¢27 e "¢r1i"- 3)
In the aforementioned notation, angles within each set are not ordered but the angles in one
set precede the angles in the next set. Thus, all angles in {¢;, ¢, ..., ¢}, } precede all the
angles in {¢,. 1, ¢, 1o, -.,®,,} and so on. This occurs when a biologist may hypothesize
that, as a group, genes in a given set have to function before the genes in the next set function
for the cell division cycle to proceed. He/she may not know the order of expression of genes
within each set. Barragdn et al. (2013) extended the CIRE methodology of Rueda et al.
(2009) to estimate parameters under the aforementioned order constraint.

4.4 Inferences under circular restrictions in von Mises
models

When dealing angular data, analogous to normal distribution on the real line, one typically
uses the von Mises distribution for performing inferences regarding the angular parame-
ter (cf. Mardia and Jupp 2000). Accordingly, in this section, we shall make a simplifying
assumption that the unconstrained estimators ¢;,7 = 1, 2, . .., k are mutually independently
distributed with 6, ~ VM(¢,, k), where VM stands for von Mises distribution, ¢; denotes
the angular mean direction and « is the concentration parameter of the distribution. The
probability density function (pdf) is given by

1
271y (k)

9(@, §;, k) er ez z € 0,2m),

where I is the modified Bessel function of first class and order zero. As noted earlier, there
exists a large body of literature on statistical tests for angular data, especially under the
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von Mises distribution (cf. Mardia and Jupp 2000). However, until Fernandez et al. (2012)
and Barragén et al. (2013), there did not exist any formal literature on testing for order
among angular parameters. Motivated by various applications, that is, in social psychology,
neurology, cell biology, one may be interested in testing the following hypotheses:

Hy: ¢;,i=1,...kfollow a known order O,

H, : H,isnot true. “4)

For example, O may be the circular order described earlier, that is, ¢; = ¢y <
<o+ =2 ¢, 2 ¢;. Under the aforementioned distributional assumptions, the CIRE
of (¢y,¢9,...,0,) is the restricted maximum likelihood estimator (RMLE) of
(¢1, dg; - - -, ¢y) (Rueda et al. 2009). From Theorem 4.3.3, we see that CIRE partitions the
estimates into m level sets of consecutive coordinates on which ¢, is constant.

Assuming « is known, one may derive the likelihood ratio test (LRT) statistic 7" for
hypotheses (4.4) as the angular distance between the unconstrained maximum likelihood
estimator (6, 0,,...,0,) and the RMLE (¢, ¢, . .., ¢, ) which is given by:

T2y (1-cos(0- )

Since in practice it is not easy to implement the LRT, Ferndndez et al. (2012) derived a
conditional test (CT) by conditioning on the number of level sets m. Conditional tests have
been well studied in the case of order restricted inference for normal models (Robertson
et al. 1988) but unknown until Ferndndez et al. (2012) for von Mises populations. The
CT of Fernandez et al. (2012) rejects the aforementioned null hypothesis whenever T' >
c(m), where m is the number of level sets for (¢, ¢, . .., ¢,.)" and ¢(m) is chosen so that
P(X}_ > ¢(m)) = ;——. Ferndndez et al. (2012) demonstrated that for large values of

n—1)!

(K, k), CT is an « level test (see the following theorem).

Theorem 4.4.1 Let ¢' = (41, ..., ¢;.), with ¢; = m/2,¢, = 31 /2 for any g # I. Denote
also as (1), ..., (m) the level sets of ® and RE, = {9 € [0,2m)" : ¢ has m level sets}.

(i) If p = ¢, then Py (T > c/R’fn) — P(x3_,, > o).
(ii) For large k, the level o of the conditional test is attained at ¢' :
Py (T > c(m)) — a.

KR—00
(iii) If ¢ verifies the order O:
Py (T > ¢(m)) — bwithb < G(k)a and G(k) R 1.
K—00 c—— 00
In practice, x is usually unknown. In this case, x can be replaced by a consistent esti-
mator &, and accordingly 7" can be modified. By appealing to Mardia and Jupp (2000),
pp- 87-89, ¢,,i = 1,2,...,k, and k are approximately independent and furthermore

R approx. o
= ~ Xk-1

As a consequence, we may approximate the distribution of CT by the central F' distribu-
tion instead of the chi-squared distribution. The proof of the theorem and other theoretical
details of CT are given in Ferndndez et al. (2012).
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Barragan et al. (2013) extended the aforementioned methodology to test hypotheses
regarding partial orders. More precisely, they extended the conditional test to test the fol-
lowing hypotheses:

Hy: ¢;,i=1,.. kfollow a known partial order O*,

H,: H,isnot true, 4.5

where O* may be the partial order appearing in equation (4.3).

4.5 The estimation of a common circular order from
multiple experiments

Often data are available from multiple experiments or multiple sources and researchers are
interested in estimating the common order among circular parameters. For example, using
data obtained from multiple experiments on fission yeast (Schizosaccharomyces pombe), the
yeast used in brewing alcohol, researchers are not only interested in identifying periodically
expressed genes but also interested in estimating their order of peak expression (see Oliva
et al. 2005; Rustici et al. 2004; Peng et al. 2005).

More precisely, our problem of interest is to determine the true relative order among k
angular parameters ¢y, ¢, . . ., ¢, using the corresponding unconstrained estimators ©,; =
(Hlj, Ogjs s ij)’, j=1,2,... p, from p independent experiments. Stacking these esti-
mators, we obtain the a k X p matrix © = (0, ...,0,,).

As for Euclidean space data, combining data from multiple experiments to estimate a
common parameter requires one to take into account variability between and within studies.
However, since the underlying time course data are usually based on a large number of time
points, one may assume that the variability within experiments is negligible compared to
variability between experiments. Also it is important to recognize that in addition to esti-
mating ¢y, ¢, . . ., ¢;,, we are more importantly interested in estimating their relative order.

The problem at hand resembles the classical problem of determining the “true” order or
ranks among k objects using the ranks assigned by p independent “judges”. For example,
suppose there are k£ gymnasts competing in an event and there are p judges assigning ranks
to each of the contestants. The goal is to estimate the true rank among the £ contestants using
the ranks assigned by the p judges. This is a well-studied problem in the Euclidean space
(cf. Diaconis and Graham 1977; Borda 1781; Condorcet 1785; Schalekamp and Zuylen
2009) and known to be NP-hard (see Bartholdi et al. 1989). Again, due to the underlying
geometry, the Euclidean space-based methods cannot be directly applied here. Barragan
(2014) and Barragén et al. (2014) took the first step in addressing this problem for circular
data as follows.

Let © denote the set of all pos51ble orders among k ob]ects on a unit circle. Using
data from the jth experiment, let <I> (¢1 i ¢2 FAPT ¢ kj ) denote the CIRE under the

circular order O. Then the dlstance between ©; and <I> ) i given by:

16,,0) = SCR(©, 57 = 3" (1 - cos (8, - 17 ).

i=1
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The average distance between O and the estimator of ¢, ¢, . . . , ¢, based on the p inde-
pendent experiments, called mean sum of circular errors (MSCE), is given by

p
d*(©,0) = MSCE(©, $© Z (4.6)

where w; is the weight associated with jth experiment, which is related to the precision of

the experiment j. For instance, assuming 6, ~ VM(g, with ; known, the weights
K

may be defined as w; = 7 &

With this notation, Barragan (2014) and Barragan et al. (2014) restated the problem of
estimating the optimum circular order O* € O as the following minimization problem:

979 _])

p
0" = arg ronelgd (0,0) = arg glelggwjd(Gj7 0). 4.7

As done in the case of Euclidean space data (cf. Dwork et al. 2001a; 2001b), the method-
ology of Barragédn (2014) and Barragan et al. (2014) consists of two steps as briefly outlined
subsequently. For more details, one may refer to the aforementioned references. In the first
step (Step E1), an initial approximate solution to the problem is obtained. This approximate
solution is refined in the second step (Step E2) by smoothing out local “bumps” in the order.

Step E1 ( v ): In this step, we cast the aforementioned optimization problem as a Traveling
Salesman Problem (TSP) to obtain an approximate solution to (4.7). The TSP is well studied
in the graph theory literature (cf. Hahsler and Hornik 2011; Reinelt 1994; Lawler et al.
1985), and is often used in numerous applications. Starting from a particular city, a salesman
is required to visit each of the remaining &£ — 1 cities in his tour exactly once and then return
to the city he started. The goal for the salesman is to determine the order in which he tours
the cities so that total distance traveled by the salesman is the shortest among all possible
paths he can take. Even though this problem is considered to be computationally difficult, a
large number of heuristics and exact methods are available in the literature. Some of these
methods provide exact solutions when the number of cities is in tens of thousands and
provide good approximations when the number of cities is in millions (Reinelt 1994).

In our application, each experiment is represented by a graph where the objects are
the cities/nodes (or estimated angles) and the length of the edges among nodes are the
angular distances between the corresponding estimated angles in the experiment. There
is a correspondence between tours in the graph an circular orders within the objects.
For each experiment, we have a distance matrix. We then aggregate (using means) the
p matrices to summarize all the information in a single matrix. Finally, the heuristic
algorithms implemented in R in the TSP package (Hahsler and Hornik 2011), are used to
obtain the minimum length tour among nodes. The TSP solution results in an approximate
circular order O". Not only does this strategy results in a very good approximate solu-
tion but it is also computational fast and efficient (see Barragdn 2014; Barragan et al. 2014).

Step E2 ( O* ): In this second step, Barragan (2014) and Barragén et al. (2014) fine-tune
the solution obtained in Step E1 by performing local smoothing to reduce the MSCE (4.6).
Their solution is a modification of the Local Kemenization algorithm that was originally
developed by Dwork et al. (2001a) for Euclidean data. This modification is called Circular
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Local Minimization. It consists of checking possible permutations in each consecutive triple
of adjacent cities in the order determined in O°. The MSCE between the new order with the
permutation and the data is computed. If the MSCE for the new circular order is smaller the
candidate order is appropriately updated. Each time a triple is permuted, the previous ones
are checked back again to ensure that no further improvement in the order is possible.

4.6 Application: analysis of cell cycle gene expression data

A cell division cycle in a normal eukaryotic cell consists of four phases, namely, G1, S,
G2, and M phases. In G1 phase, the cell rests and grows. This is also the first check point
phase where any DNA damage is detected. G1 phase is followed by the S phase where DNA
replication occurs. Following S phase, cells go through a second check point called G2 phase
to detect damage. In a normal setting, cells that cannot be repaired are not allowed to proceed
to mitosis (M phase) where the cells divide. Genes involved in cell division cycle (called
cell cycle genes) have a periodic expression consistent with the duration of cell division
cycle. Such genes attain peak expression just before their biological function (Jensen et al.
2006). For a given organism, biologists are typically interested in (i) identifying cell cycle
genes, (ii) identifying the time to peak expression (i.e., phase angle ¢) of a cell cycle gene,
(iii) comparing the phase angles of cell cycle genes across different experimental conditions
or different organisms (cf. Bihler 2005; Jensen et al. 2006; Ferndndez et al. 2012). A useful
database containing results from various cell cycle microarray experiments is available at
www.cyclebase.org, henceforth referred as cyclebase. Cyclebase provides estimates of the
peak expressions by using a simple mathematical model and data from a single experiment.

To answer questions such as the aforementioned, researchers conduct long series time
course gene expression studies measuring gene expressions of thousands of genes over sev-
eral time points, long enough to include at least one full cell division cycle (if not more). We
illustrate the methodology described in this paper using the 34 cell cycle genes S. pombe
genes and their Saccharomyces cerevisiae orthologs/paralogs described in Fernandez et al.
(2012). We used time course data available on 10 experiments conducted on S. pombe in
three laboratories (five by Rustici et al. (2004), three by Oliva et al. (2005) and two by Peng
et al. (2005)) and six experiments conducted on S. cerevisiae (one experiment each by Cho
et al. (1998) and de Lichtenberg et al. (2005), and two experiments each by Pramila et al.
(2006) and Spellman et al. (1998)). For each gene 7,7 = 1, 2, . .., 34 within the jth experi-
ment, j = 1,2,..., 16, we fitted the RPM to obtain the unconstrained phase angle estimates
0,; for the 34 genes in the 16 experiments. Results of the estimated phase angles for the 34
genes for S. pombe and their S. cerevisiae orthologs/paralogs for the 16 experiments con-
sidered are not provided here in order to save space but can be obtained from the authors
on request.

We assumed that 0, ; ~"9Pe™ VM (¢, k), where ¢;; is the true unknown phase
angle for the ith gene in the jth experiment. Note that r; is experiment specific and not
gene specific. Thus, r; reflects the uncertainty associated with the jt" experiment and phase
angles of all genes within that experiment are estimated with same uncertainty. As noted
earlier, since for each gene its phase angle is estimated using RPM with a reasonably large
number of time points, we assume that uncertainty associated within gene is ignorable
compared to the overall uncertainty associated with the experiment. The parameter «; is
estimated using the random effects model for circular data described in Ferndndez et al.
(2012). Using the methodology of Barragan (2014) and Barragan et al. (2014) described in
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Section 4.4 and the phase angle estimates 6, of 34 genes obtained earlier for Rustici et al.
(2004), Oliva et al. (2005) and Peng et al. (2005) data, we obtained the common global order
among the phase angles of the 34 S. pombe genes. Using the estimated order, we obtained
the constrained estimates of the phase angles using CIRE for the 34 S. pombe genes. These
estimates along with the estimates according to cyclebase are given in Table 4.1. Similarly,
using the phase angle estimates of the 34 S. cerevisiae orthologs/paralogs, based on the data
from Cho et al. (1998), de Lichtenberg et al. (2005), Pramila et al. (2006) and Spellman et al.
(1998), we estimated their global order along with their constrained estimates using CIRE
(Table 4.1).

Using the conditional test CT, we shall compare the global order of phase angles of
the aforementioned 34 genes determined by our methodology with the order described in
cyclebase for the two species of yeast. The order given by cyclebase has several ties as
some genes are given the same phase angle in this database. In order to determine a sim-
ple order to be compared with the one we have estimated, we broke the ties following the
simple order given by our estimation process. Within each species, for each experiment we
tested the null hypothesis that the global order holds against the alternative that the null
is not true using the CT. Thus for each experiment, we obtain one p-value based on the
CT. Within each species, we then combined p-values from all the experiments (i.e., p = 10
in the case of S. pombe and p = 6 in the case of S. cerevisiae) using Fisher’s method to
obtain L = — Zﬁ»’:l log(p-value, ), where p-value; is the p-value obtained for experiment j.
If the p-values are independently and uniformly distributed in the interval (0, 1), then 2L
is distributed as a central x? random variable with p degrees of freedom. Then, if [ is the
observed value for L, the final p-value, p-value , = pr( Xf, > 21), yields a single value to test
the null hypothesis. The resulting p-values for each species and the orders considered for
each species are given in Table 4.2. From the table, we see that the orders estimated using the
methodology proposed in Section 4.4 have a much higher p-value than those appearing in
cyclebase. This happened not only for the global p-value ;> but for the almost all the p-value;
values, suggesting that the global order provided by the cyclebase for the two species should
be rejected and that the order derived by the methodology of Barragan (2014) and Barragan
et al. (2014) described in Section 4.4 is plausible for the two species.

The disagreement between the order specified by the cyclebase and the order specified
by the methodology of Barragan (2014) and Barragén et al. (2014) can partly be explained
by noting that there are some major differences in the estimates of the phase angles between
cyclebase and CIRE for some genes as seen in Table 4.1. Among them, the noticeable
ones (identified in bold face) are the S. pombe gene mcpl and the S. cerevisiae gene SST2.
According to cyclebase, both genes have a very high periodicity rank (i.e., have a poor peri-
odic expression) and hence are likely to have less precise estimates of phase angles and
hence not surprising that the two methods disagree in their phase angle estimates. (For this
reason, these genes are dropped from any further study.) Since our estimator of the global
order uses information from all experiments, while taking into consideration the uncertain-
ties associated with each experiment, we believe that our estimator of the global order is
more reliable.

Since the CIRE estimators have common values for some genes (those appearing in the
same level set), they also yield a partial order among the genes. The partial orders given by
cyclebase and by the CIRE estimator for S. cerevisiae appear in Table 4.3. In that table, we
can see that there is no big discrepancy among the two partial orders. The most noticeable
one is perhaps that of gene MOB1, which also has a high periodicity rank.
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Table 4.1 Cyclebase and CIRE phase angles estimates for the two Species.

CEREVISIAE CycleB CIRE POMBE CycleB CIRE
HTZ1 0.57 0.03 phtl 6.09 6.09
HHF1 6.16 0.03 htb1 6.22 6.22
HTA2 0.00 0.03 hta2 0.00 0.00
HTB2 0.00 0.03 hhf1 0.00 0.00
HHT2 6.09 0.03 hht3 0.06 0.06
HHT1 6.22 0.03 h3_3 0.06 0.06
KIP3 0.38 0.38 klp5 4.78 4.76
FKHI1 0.63 0.63 fkh2 4.59 4.76
SWI5 1.57 1.57 ace2 4.71 4.76
BUD4 1.57 1.57 mid2 5.40 5.07
CDC5 1.57 1.78 plol 4.27 4.76
CHS2 1.88 1.78 chs2 4.71 4.76
MYOl 1.88 1.78 myo3 4.65 4.76
HOF1 1.95 1.88 cdel5s 4.71 4.76
MOBI1 1.82 1.88 mobl 5.03 5.07
ASE1 1.88 1.88 mcpl 3.83 4.76
CDC20 2.26 2.26 slpl 4.65 4.76
KIN3 2.58 2.58 finl 4.96 5.07
DBF2 2.70 2.70 sid2 4.78 4.76
CDC6 3.58 3.83 cdcl8 4.90 5.07
PST1 3.77 3.83 SPAC1705_03C 4.65 4.76
DSE4 4.15 3.83 engl 5.15 5.07
SST2 3.14 5.01 rgsl 4.78 4.76
RFAL1 4.96 5.01 ssb1 5.22 4.76
MRC1 5.03 5.01 mrcl 5.09 4.76
SMC3 5.03 5.01 psm3 5.09 4.76
RNRI1 5.03 5.01 cdc22 5.22 4.76
MSH6 5.03 5.01 msh6 5.09 5.07
POL1 5.03 5.01 poll 5.09 5.07
RADS1 5.09 5.01 rhp51 4.96 4.76
MCD1 5.09 5.01 rad21 4.96 5.07
POL2 5.15 5.01 pol2 4.65 4.76
CLN2 5.15 5.01 cig2 5.09 4.76
SWE1 547 5.01 mik1 5.03 5.07

Now, we illustrate the methodology to determine a common partial order among the two
species of yeasts by using a subset of orthologs/paralogs by dropping genes that have either
poor periodicity in at least one of the two species (cdc18 and eng1) or by dropping genes that
were considered to violate the common order according to Fernandez et al. (2012) (mid2,
myo3, mobl, finl, rhp51) and the corresponding S. cerevisiae ortholog/paralogs appear-
ing in bold in Table 4.3). The partial orders obtained from cyclebase and the CIRE for the
remaining 25 S. pombe genes are summarized in Table 4.4. According to cyclebase {msh6,
poll, rad21, mik1} are activated before {ssbl, cdc22}; however, based on our methodol-
ogy, {ssbl, cdc22} are activated before {msh6, poll, rad21, mik1}. It is interesting to note
from Tables 4.3 and 4.4 that the partial order derived by our methodology is satisfied by
both species of yeast. Furthermore, this order is also satisfied by other previously published
results (see Fernandez et al. 2012).
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Table 4.2 MSCE and Fp-values for the 34 core set genes considered.

Species Order MSCE p-value
POMBE Estimated order 0.06168913 0.8443571
POMBE Cyclebase 0.08702997 4.954466e-06
CEREVISIAE Estimated order 0.0281629 0.1659825
CEREVISIAE Cyclebase 0.08564166 1.067372e-27

Table 4.3 Partial orders for S. cerevisiae Genes.

Cyclebase partial order

Phase Genes

G1/S {HISTONES} <

S/G2 {KIP3}=<{FKHI1}={SWI5,BUD4} <{CDC5}<{MOB1} =
{CHS2,MYO1}=<{HOF1} =

G2/M  {CDC20}={KIN3}=<{DBF2}=< {CDC6}<{PST1} =<

M/G1 {DSE4} <{RFA1}=<{MRC1,SMC3,RNR1,MSH6,POL1} <
{RAD51,MCD1} < {POL2,CLN2}<{SWEI}=

G1/S {HISTONES}

CIRE partial order

Phase Genes

G1/S {HISTONES } <

S/G2 {KIP3}={FKHI1}={SWI5,BUD4} <{CHS2,CDC5MYO01} <
{HOF1,MOB1} =

G2/M  {CDC20}=<{KIN3}=<{DBF2} <

M/G1 {CDC6,PST1,DSE4} <
{RFA1,MRCI1,SMC3,RNR1,RAD51,POL2,CLN2,MSHES,...
..POL1,MCDI1,SWE1} =<

G1/S {HISTONES}

Table 4.4 Partial orders for S. pombe Genes.
Cyclebase partial order

{HISTONES} < {plo1} ={fkh2}={slp1,SPAC1705_03C,pol2} =

{ace2,chs2,cdc15}<{klp5,sid2} <{rad21} <{mik1} =<
{mrcl,psm3,cig2, msh6,poll}<{ssbl,cdc22} < {HISTONES}

CIRE partial order

{HISTONES } < {klp5,kfh2,ace2,plol,chs2,cdc15,slpl,...
...sid2,SPAC1705_03C,ssb1,mrc1,psm3,cdc22,pol2,cig2 } <
{msh6,poll,rad21,mik1} =< {HISTONES}

The methodology developed in Barragan (2014) and Barragéan et al. (2014) is also useful
to study phases of genes across multiple species. In fact, those papers provide a general
methodology to discover order among cell cycle genes and subsequently allow biologists to
explore new hypotheses regarding functional relationships and interactions among various
cell cycle genes.
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In general, the circular order restricted inference methods developed in Rueda et al.
(2009), Fernandez et al. (2012), Barragén et al. (2013), Barragdn (2014), and Barragan et
al. (2014) provide a general framework and tools for cell biologists to discover new biology.

4.7 Concluding remarks and future research

In this paper, we discussed the current and ongoing research on the estimation and testing
hypotheses regarding ordered parameters on a unit circle using data from multiple exper-
iments. Although we illustrated these methods using data from cell biology, as described
in the introduction, these methods are broadly applicable in a variety of contexts includ-
ing, among others, evolutionary psychology (Russell 1980; De Quadros-Wander and Stokes
2007), motor behavior (Baayen et al. 2012), and circadian biology.

System biologists are often interested in developing gene networks to describe
interrelationships among various genes. Much commercial software such as QIA-
GEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.
com/ingenuity) attempts to provide such networks using curated data. However, most
of those networks are based on static data. They do not take into account the temporal
component in the data. However, cell division cycle is a dynamic process where at each
time point a collection of cell cycle genes (and others) interact and they impact on the
genes that express at a later time point. The methodologies summarized in this paper
describe temporal order among cell cycle genes , but it would be useful to develop dynamic
networks among a collection of cell cycle genes based on the order information provided
by the methods described here.

Constrained inference methods will have a natural role in other applications involv-
ing circular data, such as regression models for angular data described in Fisher and Lee
(1992), Lund (1999), Downs and Mardia (2002), Kato et al. (2008), or Kato and Jones
(2010). In an ongoing research project with Professor Mardia, we are exploring piecewise
circular-circular regression model under constraints which may have applications in cell
biology. For instance, such models would be useful to relate phase angles of cell cycle
genes from different species or experimental groups.

All the methodology presented here is available in the R language (R Core Team 2014).
Barragan et al. (2013) have developed a package called isocir (isotonic inference for circu-
lar data). The last version released contains CIRE and cond. test as principal functions.
CIRE executes the algorithm developed in Rueda et al. (2009) to find the CIRE (4.2). The
R objects called SEXP are used in C++ to improve efficiency and execution time. The func-
tion cond. test executes the conditional test described in Ferndndez et al. (2012) for the
hypotheses (4.5). The methodology proposed to deal with the minimization problem (4.7)
has also been implemented in the R language as part of the new version of the isocir package.
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5.1 Introduction

Circular regression has been used and applied in many areas. For example, in medicine,
it is interesting to know the relationship between the peak times for two successive mea-
surements of diastolic blood pressure (Downs 1974). In studying earthquakes, it may be
useful to know whether the direction of ground movement is related to the direction of the
steepest descent (Rivest 1997). In a marine biology study, it is often of interest to observe
a relationship between spawning time and time of low tide (Lund 1999).

Jammalamadaka and Sarma (1993) proposed and explored a regression model for the
case of a circular response variable and a circular explanatory variable. Their (bivariate)
regression model is expressed by trigonometric polynomial functions of degree m and their
suggested method for estimating parameters is based on least squares. Rivest (1997) pre-
sented a circular—circular regression model for decentred predictor. Downs and Mardia
(2002) proposed a model for circular—circular regression by using a Mobius transforma-
tion to obtain a regression curve. Kato et al. (2008) provided a circular—circular regression
model, which also uses a Mdbius transformation but the errors are assumed to follow a
wrapped Cauchy distribution. Taylor (2009) proposed a regression model using a slightly
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more general transformation and also extended to a polynomial regression model and a
multiple regression model. Kato and Jones (2010) proposed a regression curve, which is
an extension of the regression models of Downs and Mardia (2002) and Kato et al. (2008).
In order to choose between models, it is helpful to know the similarities and differences
between them as well as some properties. These are studied in this chapter, including param-
eter estimation. In addition, we consider some diagnostic tools for circular regression.

This chapter is organized as follows. In Section 5.2, we review similarities and dif-
ferences of existing circular—circular regression models. A useful strategy for estimating
parameters in circular—circular regression context is introduced in Section 5.3. In Section
5.4, we investigate diagnostic analysis. Jammalamadaka and Sarma (1993) provide meth-
ods for identification of outliers in circular—circular regression. Here, we firstly investigate
an approach for checking the von Mises distribution assumption and introduce a method for
detecting influential observations, which can be used more generally. A practical example
and a simulated example are given in Section 5.5. We conclude with a discussion.

5.2 Review of models

In this section, we briefly survey existing circular—circular regression models and set these
into a common framework; this will allow us to highlight similarities and differences. Let
Y be a circular response variable and X be a circular explanatory variable, where X and Y
take values in the circle S; conveniently represented as the interval [—m, ) or as the real
numbers mod 27. A general regression model is expressed as follows:

y; = wlz;9) +e;, i=1,....n
= atan2{g,(z;;¥), 9, (x;;¢¥)} +¢; (mod 2m), (5.1

say, where () represents the conditional mean direction of y given x, 1 is the vector of
all parameters, ¢ is the angular error and the function atan2 (v, u) returns the angle between
the x-axis and the vector from the origin to (u, v). This is undefined when v = v = 0. It
may be noted that g, (-) and g,(-) are not uniquely identifiable in (5.1) since atan2(v, u) =
atan2(cv, cu) for ¢ > 0.

General expressions for g, (z) are trigonometric polynomial functions of degree m,

g;(x;9) = ajo + Z(ajk coskx + by sinkx), j=1,2, (5.2)
k=1

where 7 = (ayg, ..., A1y Gogy -+ -5 Aoy D11y« + 5 Dl Dags « - - by, ) are 4m + 2 parame-
ters of the model.

Jammalamadaka and Sarma (1993) suggested to consider transformations y; = cosy
and y, = siny and then regressing y, on the parameters in g,(z). However, this approach
will not lead to fitted values ;,7 = 1,2 which satisfy 37 + 93 = 1, or even |j;| < 1. More-
over, the use of least squares is problematic since there is a lack of independence between
cos y and sin y, and there will also be heteroscedasticity in the errors. However, even though
it is not straightforward to use a bivariate regression model, we nevertheless consider this
strategy as an ad hoc method, which we discuss further in Section 5.3.

Various models have been proposed in the past 20 years, which can be recast in the form
of (5.1) with various forms for g, and ¢, and for the angular error distribution. In particular,
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Rivest (1997), Downs and Mardia (2002), and Taylor (2009) have proposed models that
take the form as follows:

Rivest: p(z;a, 8,1) = B+ atan2(sin(x — ), r + cos(x — «)),

Downs and Mardia:  p(x; a, 8,w) = 8 + 2atan{w tan[(x — «)/2]}, (5.3)

Taylor:  p(z;a, 3,a,b) = B+ atan2(asin(x — ), beos(z — a) + 1),
where r,a,b are real numbers, w € [—1,1] is a slope parameter, and « and 3 are angu-
lar location parameters. The mean function y is centered on («, 3). We note that Rivest
(1997) also introduced an apparent five-parameter model, though it was not considered
further.

We briefly review these models and establish a framework that highlights the similari-
ties and differences. It can be easily shown that all three models in Equation (5.3) can be
re-written in the form of (5.1) in which

g1(x) = cos f+ (B cos S cosa+ Asin sina) cosz + (B cos B sin a
— AsinBcosa)sinz,
go(x) =sin 8 4 (Bsin fcosa — Acos sina) cosz + (Bsin fsina
+ Acos B cosa)sin .
These are both of the form given by Equation (5.2) and so the apparent six parameters
@y, @11, Ao, Go1, byy, by are determined by only four parameters A, B, o, 3. Moreover, the
correspondence of the parameters A and B for each of the aforementioned models is given

in Table 5.1.
The following properties are then easily seen:

(i) The Rivest model constrains A = B, obviously reducing it to a three parameter
model.

(ii) For the Downs & Mardia model, both A and B are determined by w. Also B > 1
since |w| < 1.

(iii) The regression curve is continuous, unless |B| = 1.
(iv) The curve passes through the locations («,8 —n(I[B > —1]—1)) and
(a+ 7,3+ sign(A)xI[B > 1]).

Table 5.1 The parameters A, B and the gradient at + = o and x = « + 7 for each of the
models.

Parameters Gradients
Model
ode A B =« r=a+m
Rivest 1/r 1/r 1/(1+7) 1/(1—=r)
Downs and Mardia ~ 2w/(1 —w?) (1 +w?)/(1 —w?) w 1/w

Taylor a b a/(b+1) a/(b—1)
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(v) The turning points are at (o + atan2(++v/1 — B2, —B), 3 + atan2(+Av/'1 — B2,
1 — B?)) which are real only if | B| < 1.

(vi) The behavior of the model with | B| < 1 and the model with |B| > 1 are very dif-
ferent. As angle x changes in clockwise direction, x(-) oscillates (clockwise and
anticlockwise) in a range less than 7 for the case |B| < 1, whereas p(-) changes
in a uniform direction (clockwise for AB > 0 and anticlockwise for AB < 0) for
the case |B| > 1.

(vii) Note that u(z; o, 8, A, B) = u(x;a + m, 3, —A, —B) for B < 0. This means we
can restrict attention to the model with B > 0 without loss of generality.

Note that properties (v) and (vi) are not relevant to Downs and Mardia’s model since

1+ w?
1 — w?

|B|:’ >1 for |w|<1.

The second ingredient of the model is the distribution of errors. In the papers of Rivest
(1997), Downs and Mardia (2002), and Taylor (2009), they focus on the model in which
the angular error is distributed as a von Mises distribution. Before considering other distri-
butions of errors, it is worth noting an alternative representation of the model in Equation
(5.1), which uses complex numbers (Kato et al. 2008; Kato and Jones 2010). The condi-
tional mean formulation given by Downs and Mardia (2002), Kato et al. (2008), and Kato
and Jones (2010) are the same, but the error distributions are different. The angular error is
distributed as a wrapped Cauchy distribution in Kato et al. (2008’s) model, whereas the error
distribution of Kato and Jones (2010’s) model is in a family of four-parameter distributions
on the circle.

Finally, we note the following points for a general model (5.2) :

(a) A parameterization that makes use of all a;;, and b;;, will lead to obvious redundan-
cies since dependencies exist, for example, scale all parameters by constant.

(b) Two seemingly different sets of parameters can lead to very similar predicted values.

(c) Alternative representations, although equivalent, may have parameters that are not
so easy to interpret.

5.3 Parameter estimation and inference

Given an error distribution, the maximum likelihood function is easily expressed as a
function of parameters. However, in maximizing the likelihood function, the model must
avoid obvious redundancies. If the number of parameters is large relative to the number of
observations, unless there is high concentration, it will be numerically difficult to find the
maximum likelihood estimators. In our experience using simulated data, the R optimiza-
tion routines nlm and optim can sometimes reach local maxima rather globally optimal
solutions. The success will depend on the parameterization used as well as the number of
parameters.

One possibility is simply to try several starting values, but another useful heuristic strat-
egy that seems to work well in practice is to initially follow the approach of Jammalamadaka
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and Sarma (1993) and use least squares to fit

Y1 = g1() + ey,
Yo = go(x) + ey,

where y; = cosy and y, = siny and g; (x) are in general form (5.2). Using this approach
leads to a vector of least squares estimates, 1[), and standard errors (computed in the stan-
dard way) for each estimate, s 5,5 see (Jammalamadaka and SenGupta 2001, p. 191). We
note that the fact that the fitted ¢, do not lie on the circle is not so problematic, since, as
previously noted, atan2(v, u) = atan2(cv, cu) for ¢ > 0. This strategy was found to be use-
ful in selecting an appropriate value of m, but also for removing redundancies in the final
model through standard variable selection procedures.

Our proposed method is to find the coefficient that has the largest absolute value of a
t-ratio, say 1/311, such that

Then, in view of point (a) discussed earlier, we compute standardized parameters, 1[)1’ =
ﬂl / 1[)17 such that all parameters are multiplied by a constant. We then treat 1/3; = l as afixed
value. In the second stage, we assume a von Mises distribution for the errors and maximize
the log-likelihood function

Y
S

P = argmaX;_i . 4m+2 {

L(Y(_p) =& Z cos {y; — atan2 (g,(x;), 9, (z;))} + constant

i=1

over 4m + 1 parameters, ¢E7p)’ where Wfp) is the vector of parameters left for consider-
ation after fixing ¢7, = 1. The maximum likelihood estimators must be computed numeri-
cally and suitable starting values can be defined by

The validation of the Hessian matrix for obtaining the standard errors of parameter esti-
mates after maximizing the likelihood (in a circular context) was investigated via a small
simulation. It was found that the Hessian matrix was invariant to changes in angular loca-
tion (z or y) of the data, and it can also be used to perform variable reduction by stepwise
method. Alternatively, stepwise variable selection can be carried out using AIC or BIC.

In simulations, this approach worked well for large «, but in other cases the issue
of dependencies can cause trouble. However, the reliability of the solution was greatly
improved when the parameters were normalized as described earlier. It could be that use of
some MCMC scheme could help to overcome the problem of multiple solutions, but this
would need to be investigated further.

5.4 Diagnostic analysis

The aim of this section is twofold. First, we introduce two statistical tests for checking the
distribution assumption of circular residuals. The second goal is to investigate ways for
detecting influential observations in circular—circular regression.
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5.4.1 Goodness-of-fit test for the von Mises distribution

In this section, our main aim is to compare the power of two tests for the von Mises distri-
bution. The first test is Watson’s U? test, proposed by Watson (1961), and it is an analogue,
for circular data, of the Crarher-von Mises test. The test statistic given by

n . 2 2
s (20 —1) 1 1
U—Z{“W o }‘”(“‘5 T

i=1

where u; = F(0;; i, &); f1, & are the MLE of p and r, respectively, u;) denotes the ordered
u; and w =Y u;/n. The table of critical values for this test is given by Lockhart and
Stephens (1985).

The second test is a score test proposed by Cox (1975) and then documented in
Barndorff-Nielsen and Cox (1989) and Mardia and Jupp (2000, pp. 142—143). However,
there are a few discrepancies in these three publications; all have (different) misprints. The
von Mises distribution can be extended to a density function, which is proportional to

exp(ay cos @ + aysin @ + 3, cos 20 + G, sin 20).

To test the von Mises distribution, the hypothesis 3, = 3, = 0 is examined. Considering
the conditional distribution of V' = (> cos 26,, > sin 26,) given U = (3 cos6,, > sinb;)
leads to the test statistic

where s, and s, are defined by

S, = Zcos{2(9i — )} —nAy(k) and s, = Zsin{2(6i — )}

Here

>

- _ (&)
Ay(R) = Ig(ﬁ)’

where I,(x) is the modified Bessel function of the first kind and order p, and s, and s,
are independently normally distributed with zero mean and variance nv, (%) and nv (%)
respectively, where

L+ I -203 (Lol + 1D, — 214 1,)?

V(R — ,
(%) 212 21313 + 1,1, — 21%)
v (l%) _ (IO - 14)(10 - 12) - (Il - 13)2

° 21y(1y — 1) 7

and I, = I, p(/?;). Therefore, the asymptotic distribution of S is chi-squared with two degrees
of freedom.

A simulation study was conducted to investigate type I errors of the aforementioned two
tests and then compare the power of the tests under some alternatives. We first generated
data that have a von Mises distribution with ¢ = 0 and x = 0.5, 2, 3,4. We used sample
sizes n = 20, 30, 50, 100, 200, 500 and the number of replications in the simulations was
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Table 5.2 Type I errors for various values of x and n. Nominal level of test o = 0.05.

k=10.5 k=2 k=3 k=4

n U? S U? S U? S U? S

20 0.050 0.053 0.055 0.045 0.053 0.036 0.049 0.039
30 0.043 0.049 0.050 0.043 0.050 0.040 0.051 0.040
50 0.055 0.057 0.049 0.048 0.053 0.041 0.053 0.045
100 0.046 0.052 0.049 0.052 0.059 0.045 0.047 0.049
200 0.052 0.051 0.049 0.047 0.063 0.044 0.049 0.045
500 0.051 0.055 0.049 0.053 0.057 0.046 0.049 0.054

5000. The results of the simulation are shown in Table 5.2. As can be seen both tests can
control type I errors (the nominal level is 0.05) in most settings.

We then examined the power of these tests via a further simulation study. In this case, we
generate data from an alternative hypothesis, which is not von Mises. Here, we chose to use
data that has a mixture of von Mises distributions with two components with p; = 0, y =
3m/4, k; = Ky = 0.5,2,3,4 and a mixing proportion of 0.5. We considered sample sizes
n = 20, 30, 50, 100, 200, 500 with the number of replications equal to 5000. The results of
the simulation are shown in Table 5.3. It can be seen that the power of the score test is
greater than the power of Watson’s U? test when « is small but that their powers get closer
as n and k increase.

5.4.2 Influential observations

In this section, we investigate a possible way to detect an influential observation in
circular—circular regression. Cook (1977) investigated the detection of influential obser-
vations in linear regression and proposed a distance measure for judging the influential
observations on the basis of difference between the parameter estimates with and without
the ith data point. However, we cannot easily apply this to circular—circular regression,
since some of the parameters in a circular model are not on a line. So, we would need to
obtain a “mixed distance” with some measured on the circle, and others on a linear scale.
More importantly, in circular regression, some models that have a fairly large difference in
magnitude of parameters can look similar in shape of regression curve. Therefore, we will
consider an approach based on the likelihood function to identify influential observations.

Table 5.3 The power of the test for various values of « and n.

Ky =Ky =0.5 Ky =Ky =2 K =HRy =3 Ky =Ry =14
n U? S U? S U? S U? S
20  0.049 0.053 0.231 0.278 0.529 0.617 0.799 0.868
30 0.051 0.055 0.353 0.417 0.759 0.837 0.950 0.975
50 0.052 0.060 0.574 0.649 0.949 0.973 0.998 0.999
100 0.058 0.061 0.892 0.932 0.999 1 1 1
200 0.057 0.067 0.998 0.999 1 1 1 1

500 0.088 0.101 1 1 1 1 1 1
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As with Cook’s distance, values will be computed with and without the ith observation in
order to measure influence.

Let L(¢)) and L(i[)(i)) denote the log-likelihoods of all observations. The former is based
on the maximum likelihood estimates obtained by using all observations, while the latter is
based on the maximum likelihood estimates obtained by omitting the ith observation. We
consider a test statistic given by

D; = L@) - L(z[}(i))'

It is straightforward to show that the distribution of D, for a random sample from a normal
population is a scaled chi-square, that is D, ~ ax?, where a = 1/(2(n — 1)) and v = 1
are the parameters of a scaled chi-square.

A simulation study was used to investigate the distribution of D, in various
circular—circular regression models, in which all the data were simulated from the model.
We carry out a goodness of fit test for a scaled chi-square distribution of statistic D, by
using the Kolmogorov—Smirnov test where the estimates of a and v are computed to match
the first two moments, i.e.

where d and s? are sample mean and sample variance of D, respectively. Simulation results
suggest that the distribution of D, in circular—circular regression models is also a scaled
chi-square. However, this statement will only be true if the null hypothesis () — that there
are no influential observations — is correct. If outliers are present, this will affect both s and
d, so estimates of the parameters of this distribution will result in a loss of sensitivity for
the detection of outliers among the D, and, of course, the outlying observation itself will
not follow this distribution. To solve this, we consider the concept of censored data, which
is akin to that of the trimmed mean, which is often used as a robust location measure. Let

Dy = Dy < -+ = Dy < Djyny S -+ < Dy < Dy

be the order statistics.
To allow for the fact that some — say the largest n — j — of these D, may be influential,
we consider a log-likelihood function of the parameters to be given by

L(a log{Hf ) lav)[1—=F(t]a, u)]"f}, (5.4)

where ¢ is a value chosen (independently of @ and ) to threshold the (largest j) observations,
which — in this case — will be outliers, and 1 — F(t | a,v) = [ f(z | a,v)dz, with f given
by the scaled chi-square, ax?2. As can be seen, it is necessary to define the value of ¢. In the
case where there are no outliers, then a larger value of ¢ will lead to less precise (though still
unbiased) estimates of a and v, whereas if there are outliers, then a smaller value of ¢ will
lead to a “corrupt” sample and biased estimates. We first investigate the selection of ¢ by
using sample quantiles (based on the data) corresponding to values from 0.90 to 0.99. The
results are shown in Table 5.4. From this simulation study in which there were no outliers,
it was found that the estimates of a and v were similar over this range of sample quantiles.
Based on these results, we fixed ¢ equal to the sample quantile corresponding to 0.90 for
the remainder of this chapter.
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Table 5.4 The estimates of parameters a and v.

Quantile

0.90 091 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

0.054 0.052 0.050 0.049 0.048 0.047 0.045 0.044 0.043 0.042
0.870 0.879 0.888 0.895 0.904 0910 0918 0925 0934 0.941

> Q>

Taking f(+) to be a scaled chi-square in Equation (5.4), the log-likelihood is

1 (v —2) &
Lla,v) =—5-) Dy + O E log D
3 i=1

© (2/a) V22 exp(—x/2a
+(n_j)10g/t (z/a) p(~z/2a) .

a2/2T(v/2)

— jlog[(2a)"/’T'(v/2)]

and then the estimates of parameters a and v can be obtained by maximizing this function.

Finally, to obtain a critical value, we consider the distribution of the nth order statistic
because if we use the aforementioned scaled chi-square, even when H,, is true, the largest
observation will generally be detected as an influential observation. Therefore, the distribu-
tion of the nth order statistic needs to be evaluated. Let Y = max; D,, then

P(Y >y)=1-[P(D; <y)|"

Hence, a critical value can be computed using the following Expression:

PV >y)=1- l/OJ (x/a) 2" exp(—a/2a)

a2v/?T(v/2)

It should be noted that this is a two-stage procedure. The computation of the D, does not
involve identification of outliers. It is only the estimation of the scaled y? parameters, which
is influenced by the presence of larger values in the resulting set of D,. If the threshold ()
is chosen incorrectly (so that outlying D, are deemed to satisfy H)), then this will clearly
have an impact of the final p-values. However, a conservative choice of ¢ will only lead to
a small loss of efficiency. This is a very similar position to the amount of exclusion applied
in a trimmed mean estimate.

In the case that there are several influential observations, then a sequential procedure
could be attempted, though this may not work in the case that there is a cluster of
similar-valued observations which have undue influence.

5.5 Examples

In this section, two examples are used to compare some existing models and illustrate the
influential diagnostic in circular—circular regression, respectively.
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Example 1. The wind directions at 6.00 and 12.00 a.m. are considered in order to consider
how the wind direction at 12.00 a.m. is related to the wind direction at 6 a.m. These wind
direction data were used in work of Kato and Jones (2010) and used for illustration of a
nonparametric regression model in DiMarzio et al. (2013). They are part of full dataset
that was measured at a weather station in Texas. The dataset contains hourly resolution
surface meteorological data from the Texas National Resources Conservation Commission
(TNRCC) Air Quality Monitoring Network. This data covers the period from 20 May to
31 July 2003 and is provided by NCAR/EOL under sponsorship of the National Science
Foundation, available at data.eol.ucar.edu/codiac/dss/id=85.034.

We use the model proposed by Taylor (2009) for regressing the wind direction at
12.00 a.m. on the wind direction at 6.00 a.m. Figure 5.1(a) shows that the estimated
regression model of Taylor’s model represents the relationship between the wind direction
at 6.00 a.m. and 12.00 a.m. reasonably well. A residual analysis was conducted and the
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Figure 5.1 Top: plot of the wind direction at 6.00 a.m. and 12.00 a.m. with fitted regres-
sion line (a), and histogram of the residuals with the kernel density estimate (b), Bottom:
Q-Q plot (¢) and P-P plot (d).
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results are also shown in the other panels of Figure 5.1. In addition, the goodness-of-fit
test for von Mises was computed using the test statistic .S. Here S = 3.13, which is less
than the critical value of x3, confirming that the angular errors are compatible with the
von Mises distribution. Finally, we calculated D, and the critical value. All values of D,
are less than the critical value (d, = 0.509), so there is no influential observation in this
dataset.

The maximum likelihood estimates (with standard errors), the maximum log-likelihood,
AIC and BIC values for Taylor’s model are given in Table 5.5. It can be seen that the estimate
of 3 is less than two standard errors. Refitting the model with  constrained to be zero leads
to a slightly improved AIC and BIC.

Table 5.6 shows the maximum likelihood estimates, the maximum log-likelihood,
AIC and BIC values for model proposed by Jammalamadaka and SenGupta (2001). In
this case, we simply apply the procedure as a bivariate regression, taking no account of
over-parameterization. Even so, it can be seen that the likelihood is somewhat less than
that in Table 5.5.

We then compare these models to the ones in Kato and Jones (2010’s) paper and these
are reproduced in Table 5.7 (the entries in parentheses are the constrained value of the
parameters). According to the AIC criterion, AIC for the Kato and Jones’s model is 201.4,
which is lower than the others, while the Downs and Mardia’s model (a von Mises case in
Table 5.7) has lower BIC for this data set.

Example 2. In this example, a simulated data set is used to illustrate our method for detect-
ing influential observations. We generated data from the following model:

y, = atan2(2sinx,,0.1cosz; + 1) +¢;,

where e; ~ vM(0, 10) and = 1, ..., 100. Then, we manually added two more observations
at (—0.5,2) and (—3, —2.5).

Table 5.5 Maximum likelihood estimates (and SEs), the maximized log-likelihood, AIC
and BIC for Taylor’s full model (1) and constrained (5 = 0) model (2).

a b Q I6; K L AIC BIC

1 14434 1405 0527  -0273 1811 -9691 203.8 2153
0.496)  (0.209)  (0.150)  (0.192)  (0.267)

2 1.374 1.499 -0.356 1.784 -97.79  203.6 212.7
(0.605)  (0.262) (0.111) (0.264)

Table 5.6 Maximum likelihood estimates (and SEs), the maximized log-likelihood, AIC
and BIC for model proposed by Jammalamadaka and SenGupta (2001).

b L AIC BIC
ag 0.297 (0.078) ¢ ~0.114(0.054)  -1112 2384  256.7
a, 0.570 (0.097) o 0.277 (0.067)

by —0.128 (0.128) dy 0.593 (0.088)
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Table 5.7 Maximum likelihood estimates of parameters, the maximized log-likelihood,
AIC and BIC for model proposed by Kato and Jones (2010) and two of its sub-models
(Source: Kato and Jones 2010).

Model arg(6,) |3 arg(B) A D fi L AIC BIC
K-J model 0317  0.255 —0.558 1.40 0.399 —1.57 (0.772) —94.7 201.4 215.1
von Mises 0.280 0.384 —-0.498 1.79 (0) ()  (0) -97.5 203.1 212.2

wrapped Cauchy 0.216 0.299 -0.470 (0) 0.609 (0) (0) -97.7 203.5 212.6

Table 5.8 The estimates, log-likelihood and value of D, for selected observations.

i x y a b a 3 L(y)  D;  Rank

102 -3.000 -2.500 1.885 0.195 -0.078 0.020 -51.384 4.770 1
99 1.868 0.887 2770 1.045 0.133 0.204 -46.758 0.144 2
35 -0.243 0247 2749 1016 0.139 0.198 —46.751 0.136 3

101 -0.500 2.000 3.063 1251 -0.033 0.045 -46.654 0.039 30

Firstly, we fit a model for all n = 102 observations and calculate the log-likelihood,
L(v)). Then, we compute L(ﬁ(i)) and D,; selected values are shown in Table 5.8.

The critical value d, at 0.05 significance level was computed as d, = 0.625. It shows
that the observation 102 is an influential observation, while the observation 101 and the
other observations do not significantly influence the model. The fitted regression curves

when the observation 101 is omitted and 102 is omitted are shown in Figure 5.2.

5.6 Discussion

All models considered here can be expressed as a general form of the tangent link function
of two trigonometric polynomial functions. In addition, the models proposed by Downs
and Mardia (2002), Kato et al. (2008), and Kato and Jones (2010) are the same. However,
the distributions of the angular errors are different. Using the form of the models given in
Equation (5.3), it is hard to see how to generalize Downs and Mardia’s model. As usual,
increasing the number of parameters gives more flexibility in the fitted values, but this comes
with a cost in estimation and identifiability.

In our experience with simulated data, the proposed test statistic for detecting influential
observations in circular—circular regression gives a satisfactory performance for detecting
an influential observation. Of course, this test statistic requires computational effort; for
example, full analysis for about 100 observations takes about a minute on a 3 GHz desktop.
However, this will become less of a disadvantage in time.

For further research, it could be interesting to investigate whether or not the proposed
starting value approach will work also for alternative error distributions. Similarly, the
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Figure 5.2 The continuous curve is the fitted regression model for all observations, 3§ =

0.034 + atan2(3.003 sin(x + 0.053), 1.248 cos(z + 0.053) 4+ 1) where L(¢)) = —46.615.
The dashed fitted regression curves; (a) when omitting the observation 101, (b) when omit-
ting the observation 102.

extension to higher order models and multiple explanatory variables requires further inves-
tigation.
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6.1 Introduction

In many scientific disciplines, observations are directions and are referred to as “directional
data”. A two-dimensional direction can be represented by (i) a vector in R? of length one
since magnitude has no relevance, (ii) by a complex number of unit modulus, (iii) by a point
of S', the circumference of the unit circle centered at the origin, or (iv) by an angle measured
in radians or degrees. In this chapter, we adopt this last representation using radians. Data
representing two-dimensional directions is referred as “circular data.” Circular data arise in
many natural sciences, including geology, seismology, meteorology, animal behavior, and
so on just to name a few. Moreover, any periodic phenomenon with a known period can be
represented in terms of two-dimensional directions, such as the circadian rhythms.

The analysis of circular data relies on specific statistical procedures, which differ from
usual statistical methodology for the real line. Since there is no prescribed null direction
or sense of rotation (either clockwise or anticlockwise), it is important that procedures for
circular data remain independent of the arbitrary choices of the zero direction and of the
sense of rotation. The von Mises distribution provides one of the basic models for circular
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data. It is often considered as central as the normal distribution is, for linear data. However,
since there is no systematic mathematical rationale for invoking the von Mises distribution
as much as there is for using a normal distribution on the line, distribution-free or non-
parametric techniques assume a more important role in the context of circular data. This
chapter focuses on nonparametric tests for circular data and in particular on nonparametric
two-sample tests based on the so-called “spacing-frequencies”. In this chapter, the impor-
tance of this type of tests is stressed in terms of invariance properties. Moreover, tests based
on “circular ranks” on the circle can be reexpressed in terms of these spacing-frequencies.

Two seminal publications on circular distributions are Langevin (1905) and Lévy (1939)
and one pioneering statistical analysis of directional data is due to Fisher (1953). Two gen-
eral references are Mardia and Jupp (2000) and Jammalamadaka and SenGupta (2001).
There is considerable literature on modeling and analysis of circular data including, for
example, Rao (1969) and Gatto and Jammalamadaka (2007).

The remaining part of this chapter is organized as follows. Section 6.2 presents an
overview of spacing-frequencies tests for circular data. In particular, it presents some
careful analysis of the invariance, the maximality, and the symmetry properties. It then
reviews three well-known two-sample tests for circular data, which are the Dixon,
the Wheeler—Watson, and the Wald—Wolfowitz tests. A slight generalization based on
high-order spacing-frequencies, called multispacing-frequencies, is then reviewed. The
end of Section 6.2 mentions a conditional representation for the distribution of the
multispacing-frequencies, which allows one to derive the asymptotic normality and
a saddlepoint approximation. Section 6.3 provides an extension of Rao’s one-sample
spacings test (see Rao 1969, 1976) to the two-sample setting using the spacing-frequencies.
A geometrical interpretation of the proposed test statistic is provided. Its exact distribution
and a saddlepoint approximation are then discussed. Section 6.4 provides a Monte
Carlo comparison of the powers of Wheeler—Watson’s, Dixon’s and Rao’s two-sample
spacing-frequencies tests. In this study, it is demonstrated that if one of the two sam-
ples is suspected of coming from a certain bimodal distribution, Rao’s and Dixons’s
spacing-frequencies tests have comparable power, whereas Wheeler—Watson test, which
is commonly used in this context, has substantially lower power. It may be remarked that
this deficiency is comparable to that suffered by Rayleigh’s test for uniformity in a single
sample, when the data is suspected of not being unimodal.

6.2 Spacing-frequencies tests for circular data

Suppose we have two independent samples of circular data, the first sample consisting
of m independent and identically distributed (iid) circular random variables X, ..., X,,,
with probability distribution Py and a second sample of n iid circular random variables
Y, ..., Y, with probability distribution P;-. As mentioned, these samples represent angles
in radians, with respect to some arbitrary origin and sense of rotation. Py and Py- are cir-
cular distributions in the sense that they assign total measure one to [c, ¢ + 27), Ve € R.
The general two-sample problem is to test the null hypothesis that both these samples come

from the same parent population, viz.
H0:PX:.Py. (6.1)

Stating H;) in terms of the probability distributions or measures Py and Py-, instead of the
usual formulation in terms of cumulative distribution functions (cdf), is more appropriate
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because the cdf depends on the choice of the null direction and the sense of rotation. For
convenience, we denote X = (X;,..., X, )andY = (Y},....Y,).

rTn

6.2.1 Invariance, maximality and symmetries

Let X ;) < --- < X;,) denote the circularly ordered values X, ..., X, , for a given origin
and sense of rotation. With I{ A} denoting the indicator of statement A, the random counts

n m—1
S]:ZI{YZG[X(J)’X(]-H[))}’ forj:L...,m—l, andSm:anSj,
i=1 Jj=1

are commonly called (circular) spacing-frequencies, as they provide the number of
observations Y}, ...,Y,, which lie in-between successive gaps made by X,..., X(,,.
A substantial amount of nonparametric theory for the real line is based on the “ranks,”
for example, refer to Sidak et al. (1999). If one were to define “ranks” on the circle
with respect to the same origin and sense of rotation (on which they depend), then the
spacing-frequencies Sy, ..., .S,, could be related to such ranks. Specifically, if R, denotes
the circular rank of the &' largest X, ..., X,, in the combined sample, with origin given

b m
by X, 1) and same sense of rotation as before, then

k—1
Ry=k+)Y S, fork=1,..m, (6.2)
j=1

(where ZO o 0). Conversely,

=1 =

R, =R, +5,+1, fork=1,...,m—-1,and R, =m+n—S

yield
S,=Ry—R,—1, for k=1,....m—1, and S, =m+n—-R,, (6.3)
so that, S}, ..., .S,, may be thought of “rank-differences” when such ranks are well defined,

as they are on the line. Moreover, note that in this context, the spacing-frequencies are well
defined even in the presence of ties, that is, repeated values in the combined sample. Indeed,
there is no reason to assume absolute continuity (with respect to the Lebesgue measure) of
either Py or Py, whereas ranks have to be adapted whenever ties have positive probability
of occurring, for example, by defining “midranks.”

A natural question that arises in this context is the symmetry with respect to roles of
the two samples X and Y in the construction of the spacing-frequencies tests. Precisely, let

Yy < -+ <Y, denote the circularly ordered values Y7, ..., Y, for the same origin and
sense of rotation used with S}, ..., S,,. The random counts
m n—1
Si=> HX, €Y, Y )k for j=1,...,n—1, and S, =m — > _ 5,
i=1 j=1

are called the “dual spacing-frequencies.” The next proposition addresses this question of
sample symmetry.
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Proposition 1

The dual spacing-frequencies S7, ..., S, can be obtained as a one-to-one function of the
original spacing-frequencies S, ...,.S,, and conversely, so that tests may be based on
either set of spacing-frequencies.

We show this result in case where Py and Py~ are absolutely continuous.

Proof

Assume Py and P, absolutely continuous. Let R}, denote the circular rank of the &' largest
Y,,...,Y, in the combined sample, for £ = 1,...,n, with origin given by X1y which is
the origin used for the original ranks, and same rotation sense as for the original ranks.
Then, we can compute the dual circular ranks as follows:

m k—1
Ry =1+ X, €[X4),Yy)} and Ry =k+ R, —1+» 8}, fork=2,....n
k=1 j=1

(6.4)
Given absolute continuity, we have

(Rl,....R.}={1,....m+n}\{Ry,...,R,},

where the elements of the aforementioned sets are ordered from the smallest to the largest,
when going from left to right. We then obtain

S, =R —R,—1, for k=1,...,n—1, and S, =m+n—R,, + R}.
Conversely, absolute continuity yields
{Ry,....,R,}={1,....m+n}\{R},...,R,}
and S, ...,S5,, can be obtained through (6.3). Ul

We can thus arbitrarily decide which sample is used for constructing the spacings and
which sample is used for obtaining the frequencies. Constructing tests based on either set
of spacing-frequencies would make sense.

It turns out that the spacing-frequencies play a central role in comparing two circular
distributions. This is because in many applied problems with circular data, the null
direction and the sense of rotation are arbitrarily chosen. Assume that all circular random
variables take values on [0,27) and denote by G the transformation group consisting
of all changes of origin (zero direction) and of the two changes of sense of rotation
[0,27)™*™ — [0,27)™*", that is, for the two samples. We recall that a (two-sample test)
statistic 7 : [0,27)™*"™ — R is called invariant with respect to the transformation group G
if, for any (X,Y) and (X,Y) [0, 27)("+7),

Jg € Gsuchthat (X,Y) =g(X,Y) = T(X,Y) = T(X,Y).
If, in addition to this, for any (X,Y") and (X,Y) [0, 27)("+7),
T(X,Y)=T(X,Y) = 3g € Gsuchthat (X,Y) = g(X,Y),

then the statistic 7" is a “maximal invariant”. It can then be shown that the statistic 1T’
is G-invariant iff 7" is a function of maximal G-invariant. This leads us to ask whether
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(Sy...,S,,) is invariant or maximal invariant with respect to the transformation group G
and for the testing problem (6.1).

Consider first the equivalence classes generated by any maximal invariant for G, cf.
Schach (1969).

Proposition 2 o
The circular [0, 27)™""-valued samples (X, Y") and (X, Y') belong to the same equivalence
class generated by G, iff

(S1y-e s Sm) = (Siiks- -5 Spin)s for some k € {0,...,m— 1},

with S; = S,_,,, whenever j > m, or

(Sys--,8,) = (S5 S1),

where (S5,...,5,,) are the spacing-frequencies of (X,Y’) and (S,,...,5, ) are the
spacing-frequencies of (X,Y).

We often use the terminology that (X,Y") and (X,Y) are equal modulo G.

Proof
The transformation group of all changes of origin is made of the set of functions F;
[0, 27)™ ™ — [0, 27)™* "™, which transform the spacing-frequencies of (X,Y") as

(517"-aSm) = (525'“7‘5’771351)'

The transformation group of sense reversions is made of the set of functions F,
[0, 27)™ ™ — [0, 27)™ " yielding
(Slv ] Sm) = (S'rm ce Sl)?

when clockwise changes to anticlockwise. The transformation group G is made of 7} U F,,.
So we clearly obtain the equivalence classes mentioned in Proposition 2. (]

Theoretically, one can obtain the desired G-invariance by taking, for example, the supre-
mum or the average of any function of 5, ..., 5, over the given equivalence classes, but
this approach seems clumsy and should not lead to any practical or useful statistic. There-
fore, as a viable alternative, we consider functions of “ordered” Si,...,S5,,, which serve
almost the same purpose and lead to G-invariance. Obviously, the vector (S;,...,S,,) is
not by itself G-invariant: if we change for example the zero direction, then the new vector
of spacing-frequencies is a permutation of the original one. Solet S;) < --- < 5,y denote
the ordered spacing-frequencies S| . .., S,,. They constitute an invariant statistic for G and
so is any statistic based on these ordered values. The complete description is given by the
next proposition.

Proposition 3
1. T'is a symmetric function of Si,...,S,, <= T is a function of (S, ..., ()

2. T is a symmetric function of S}, ..., S,, = T is G-invariant.
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Proof
1. (=) T'is a function of any permutation of Sj, . .., S,, and in particular of (Sy), ..., S(,))-
(<) T is invariant under permutations of S, ..., 5,,, thatis, " is a symmetric function of

these values.
2. By part 1, T is a function of (S(l), R S(m)). With Proposition 2, it is directly seen that
any G-transformation is without effect on these ordered values. O

We should remark that maximal invariance is, however, not obtained by (S, (1)s -+ 2 O(m) ).

Proposition 4
The vector of ordered spacing-frequencies (S(y),...,S,,)) is not a maximal invariant
statistic under the group G.

Proof

Denote by S, ...,S,, the spacing-frequencies obtained by the new samples X and Y.
Denote also Sy < -+ < S,,,) the corresponding ordered spacing-frequencies. “Maximal-
ity” means that

Sy =Sy, for k=1,....m = (X,Y) =g(X,Y), forsomegecg.

However, S 5‘ , for k=1,...,m, means exactly that (S,,...,S, ) is obtained
through a permutatlon of the elements of (Sy,...,5,,). This last situation can be obtained
in many different ways: for example, with X = X and with Y obtained from different
individual transforms of the elements of Y, in such a way that (Sl, o ,S ) becomes the
desired permutation. It is then not necessary that X and Y derive from a change of origin or
sense of rotation, applied to X and Y simultaneously. Thus, we do not have maximality. [J

As a concrete counter-example, the G-invariant Wheeler—Watson statistic can be reex-
pressed as a function of (S, ..., S,,), but not as a function of (S, ..., S(,,): itis nota
symmetric function of the spacing-frequencies. See Example 6 for details.

We may note the following observations about the unordered spacing-frequencies. First,
Si,..., S, are exchangeable random variables under H, (i.e., any permutation of these
random variables is equiprobable and follows the Bose—Einstein distribution in statistical
mechanics). Second, consider any class of circular models parameterized by the null direc-
tion and by the sense of rotation. Then, (S5, ..., S,,) is an ancillary statistic for this class

of models under H, that is, its distribution is invariant within this class.

6.2.2 An invariant class of spacing-frequencies tests

From the previous results, because the popular nonparametric Wilcoxon test statistic takes
the nonsymmetric form ) ;" | kS, it should not be used with circular data. Define N =
{0,1,...}. Assume h : N — Rand h; : N — R, for j = 1,...,m, satisfy certain mild reg-
ularity conditions. Holst and Rao (1980) consider nonparametric test statistics of the form

=Y h(S;) and T}, , = > hi(S)), (6.5)
j=1 j=1
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which are called the symmetric and the nonsymmetric test statistics based on
spacing-frequencies. As mentioned in Proposition 2, only the symmetric statistic 7,,, ,,
is relevant with circular data, when considering G-invariance. However, the asymptotic
efficiencies of the nonsymmetric tests 7}, ,, are shown to be superior by Holst and Rao
(1980), when considering data on the real line.

The limiting null distribution of the most general nonsymmetric statistic 77, ,, , when
{m,}, >0 and {n,},-, are nondecreasing sequences in N> such that, as v — oo,
m, — oo, n, — oo and p, Wf Ty, p, for some p € (0,00), (6.6)
nl/
is given by
T hi(S5) —
22520 1 (S5) = thm, d N(0,1),
T,
where j1,, and o2, are defined as follows. If V;, ..., V,  arei.i.d. geometric random variables
with .
P[Vk](1>pfk01 (6.7)
—= = _— or = .
! 1+p) 1+p

then p1,, = E[3°7, h;(V;)] and o, = var(3_72, hy(V;) = B, Yo, V;), in which 3,
cov (7L, hj(ij, > Vj)/var(zjz1 V;); refer to Corollary 3.1 on p. 41 of Holst and
Rao (1980).

One can see that the circular Wald and Wolfowitz (1940) run test (see Example 6) and
the circular Dixon (1940) test (see Example 5) have the symmetric form 7,,, ,, whereas
the Wheeler and Watson (1964) test (see Example 7) is nonsymmetric with respect to the
spacing-frequencies. One can also note that any linear function of the ranks R,,..., R, in
the combined sample can be expressed in terms of the nonsymmetric statistic 7, ,,. Further
discussion on this type of tests can be found in Rao and Mardia (1980).

We now give two examples of symmetric statistics of the form given in (6.5). A third
example will be suggested later in Section 6.3.1. Then we present Wheeler—Watson test,

which will be analyzed numerically in Section 6.4.

Example 5 Dixon’s test Theorem 4.2 at p. 48 of Holst and Rao (1980) states that the
locally most powerful test among all symmetric tests in the spacing-frequencies given in
(6.5) is

m

=) 5 (6.8)
j=1

Note that this local optimality is under a sequence of alternative cdf’s for Y, that converge
to the cdf of X, both depending on the choices of zero direction and the sense of rotation,
see Equation (4.2) in Holst and Rao (1980).

Example 6 Wald—Wolfowitz run test Another example in the class of symmetric
two-sample test statistics is given by the circular version of Wald—Wolfowitz run test
statistic; see also David and Barton (1962). The Wald-Wolfowitz run test statistic is 7}, ,,
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as given by (6.5) with h(x) = I{z > 0}. We define a “Y-run” in the combined sample as
the largest nonempty group of adjacent Y -values. Since any positive value of S},...,S5,,
constitute a Y-run, 7, ,, gives the number of Y-runs in the combined sample, and it takes
values in {1,...,m}. But in the circle, the number of X- and Y-runs must be same and
so 2T, ,, gives the total number of runs made by the combined sample. Large values of
T,,,., show evidence for equal spread, that is, for H,. Note that Section 2.3 of Gatto (2000)
provides a saddlepoint approximation to the distribution of this statistic under H,, in the
linear setting.

Example 7 Wheeler—Watson test This test has also been called the Mardia—
Watson—Wheeler test, see e.g. p. 101 of Batschelet (1981), and the uniform scores test. It
assumes absolute continuity of Py and Ps- (in order to almost surely exclude ties). The
idea is the following. Adjust the values of X and Y by respecting their relative order,
in such a way to obtain m + n equidistant values. So the spacings between any two
consecutive adjusted values are all equal and equal to 27 /(m + n). For a given choice of
origin and rotation sense, X and Y are thus mapped onto {27k/n};_; .., The values
of X become 27R,/(m +n),...,2wR,,/(m + n), which are called “uniform scores,”
where R,,..., R, are, as before, the ranks of X in the combined sample. Because of
being uniformly spread, the overall resultant vector V' of the uniform scores is null, that is,
V = 0. However, since V = Vyx + V5, where Vy and V3, are the resultant vectors of the
transformed samples X and Y/, it follows that Vi, = —V4-. (So only one of the statistics
Vyx and V4 is relevant.) Under H,, the two samples should be evenly spread over the
circumference and thus ||V || ~ ||V4|| = 0. So a relevant decision rule is given by: reject
H, if ||V || is large. But Vy can be obtained from the spacing-frequencies through (6.4),

2 2
i 2m i 2T
2 _ 2m .
[Vl —{;cos <m+an)} +{;sm (m+an)}

m o k-1 2 m ' o k-1 2
= Zcos . k‘+ZS]« + Zsm i k+ZSj ,
k=1 j=1 k=1 j=1
(6.9)
which cannot have the symmetric form 7,,, ,, given in (6.5). From Proposition 3, it is not
a function of (S(), ..., S,,)). However, ||[Vy|| is clearly G-invariant. This illustrates the
non-maximality of (S(), ..., S(,,)) claimed by Proposition 4.

Note, however, the following drawback inherent to this test in the presence of bimodal
distributions. Assume that the sample Y presents two similar modes, the second mode being
located approximately at the antimode. For various configurations of the sample X, these
modes lead to the cancelation in the uniform scores so that || V3, || and ||V || tend to be small,
even without H;, being true. Low power is thus expected in these cases. Our extensive sim-
ulations in Section 6.4 provide a numerical confirmation. This weakness, as we remarked
in the introduction, is similar to that suffered by Rayleigh’s test for uniformity when used
in bimodal or multimodal samples.

6.2.3 Multispacing-frequencies tests

It turns out that the asymptotic power of the tests based on spacing-frequencies (6.5) can be
improved by considering larger spacings or gaps in the following sense. Let [ > 1 denote
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the order of the gap between the values of X and define the nonoverlapping or disjoint
multispacing-frequencies as

| m
Sj(l> = ZI{Y; S [X(]l)7X((j+1)l))}7 for ] = 1, ey Ty with r déf \‘T — 1J .
i=1

Soifl =1,thenr =m — 1 andSJ(.l) =S, forj=1,...,m — 1. In this case, S,, can be
defined as before.

Assume h: N — Rand h; : N — R, for j = 1,...,r, satisfy certain regularity condi-
tions (given under Assumption A in Jammalamadaka and Schweitzer 1985) and define the
general classes of test statistics

T, =>"h(s)) and TU: =" hy(s)), (6.10)
j=1 j=1

which represent, respectively, the symmetric and the nonsymmetric test statistics based on
multispacing-frequencies. When [ = 1, both sums in (6.10) go up to m = r + 1 (instead
of r). Jammalamadaka and Schweitzer (1985) establish the asymptotic normality of these
statistics (and of similar statistics based on overlapping multispacing-frequencies), under
the null hypothesis and under asymptotically close alternatives as well. The locally most
powerful test, for a given smooth sequence of alternative c.d.f. of Y| converging toward the
cdf of X, is provided by Theorem 3.2 at pp. 41-42 of Jammalamadaka and Schweitzer

(1985). We reject Hy, if
J )
(i) s>
Jj=1

for some ¢ € R, where the real-valued function g depends on the sequence of alternative
cdf of Y and on the cdf of X . So the optimal test statistic has the nonsymmetric form 77, ,
given in (6.10). For the same reason that nonsymmetric statistics in spacing-frequencies
are not G-invariant and symmetric statistics are G-invariant, the nonsymmetric statistic
in the multispacing-frequencies Tf,i);i is not G-invariant, whereas the symmetric statistic
Tﬁ)n is G-invariant. Jammalamadaka and Schweitzer (1985) show that the sum of squared

multispacing-frequencies, leading to the statistic

T, = Z (S§T>)2, 6.11)

Jj=1

is the optimal choice among all symmetric and nonoverlapping statistics. When [ = 1, this
is the Dixon (1940) statistic of Example 5. We may note that the multispacing-frequencies
statistics (6.10) are clearly nonsymmetric with respect to the roles given to the samples X
and Y: if the spacings would be defined by Y and the frequencies by X, then we would
obtain a different test statistic.

6.2.4 Conditional representation and computation of the
null distribution

For the most general statistics based on the multispacing-frequencies, consider the indepen-
dent random variables W, ..., W, with the negative binomial distribution with parameters
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landp = p/(1 + p), namely

l k
o ([ l+k-1 p 1 _
P[Wl—k}—< . )<1+p) (1+p> , for k=0,1,... (6.12)

The next proposition tells that under H,,, the » multispacing-frequencies have the same
distribution as these negative binomial random variables, when conditioned to sum up to n.

Proposition 8
IfW,,..., W, are independent random variables with probability function (6.12), then Vp €
(0, 00),

(S, 80y ~ (Wy,... W) | Z, =n, (6.13)

where Z, = 7| W,

This conditional representation is the central argument for the determination of
the null asymptotic distribution of symmetric statistics, based on (nonoverlapping)
multispacing-frequencies. The next proposition is a direct consequence of Theorem 4.2 on
pp. 613-614 of Jammalamadaka and Schweitzer (1985).

Proposition 9
The following asymptotic distribution holds under H, and under the asymptotics (6.6),

LY (() - I} - N, (6.14)

where )

¢ = var(h(W))) — T+,

-cov?(h(W,), W,). (6.15)

We also note that the distributions of the most general test statistic T,(Ti)fl can be obtained
with saddlepoint approximation suggested by Gatto and Jammalamadaka (2006), which
also exploits the conditional representation (6.13); see also Section 6.3.3.

6.3 Rao’s spacing-frequencies test for circular data

In this section, we provide an extension of the idea of Rao’s one-sample spacings
test (cf. Rao 1976) to the two-sample setting, making use of the spacing-frequencies.
Although the Wheeler—Watson test is a popular two-sample nonparametric test, Rao’s
spacing-frequencies test has a simple intuitive interpretation and has efficiencies compa-
rable to that of the locally most powerful Dixon’s test. It also admits a nice geometrical
interpretation, which is provided in Section 6.3.1. However, as mentioned in Example
6, Wheeler—Watson test has the drawback of not distinguishing the case where the
Py is bimodal at its antimode from H,, a situation that often occurs when measuring
wind directions, see for example, Section 3 of Gatto and Jammalamadaka (2007). The
Wheeler—Watson test may have low power in this circumstance. A small sample power
comparison in this situation and with these three tests, namely, the Wheeler—Watson test,
the Dixon test, and the Rao spacing-frequencies test, is presented in Section 6.4.
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6.3.1 Rao’s test statistic and a geometric interpretation

Motivated by Rao’s one-sample spacings test which takes the form » 7", [D; — 1/ml|,
where D,,...,D,, denote the (one-sample) spacings (i.e., the gaps between successive
points or the first-order differences) and which is widely used for testing isotropy of a single
sample, we will define what we will call “Rao’s two-sample spacing-frequencies test,” by

8- =|. (6.16)
m

1 m
Tma" = 5 Z
This is symmetric in the spacing-frequencies and has been briefly mentioned in the study
by Rao and Mardia (1980).

An interesting geometrical interpretation can be given for this statistic similar to that
available for the Rao’s spacings test. We first note that

S (5-2)=0 = T, = > max{s; - —.0f. (6.17)
J=1 Jj=1
Consider for the moment a circle with circumference n (i.e.nS'/(27)) and consider the
spacing-frequencies S, ...,S,, as spacings of a conceptual sample Z = (Z,,...,Z,,)
on this circle, that is, S; = Z(; ) — Z;), for j=1,...,m —1, and S,, = Z(}) — Z,.
With this interpretation, we can consider the spacing-frequencies as {0,...,n}-valued

random variables. On this circle, we then place m arcs of equal length n/m, starting at
each one of the m values of Z. In this situation, 7, ,, as given by (6.16) becomes the total
“uncovered part of the circumference" of this circle. The case 7, ,, = 0 means that all

m,n
spacing-frequencies are exactly equal, that is,

which is clearly the strong evidence for Hj : Py = Py-. On the other extreme, the case
T, = n(1 —1/m) means that

Jj€{l,...,n}, such that S; =n and S, =0, Vk#j € {1,...,n},

which is the strong evidence against H,, that is, for dissimilarity between Py and Ps.

6.3.2 Exact distribution

It is difficult to obtain an analytical expression for the exact distribution of the circular
Rao’s spacing-frequencies test statistic given in (6.16). One can, however, obtain a formula
for its characteristic function, along the lines of Bartlett (1938); see also Mirakhmedov et al.
(2014). More generally, we consider the symmetric test statistic 7, ,, given in (6.5).

Consider the negative binomial random variables given in (6.12) with [ =1 and ¢ :
(R™,B(R™)) — (R,B(R)). Letv € Rand k € N, then

E[p(Wy,...,W,,)e"%"] Ze“’kP = KkE[e(W,,....W,) | Z,, = k]
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(where Z,, = 77", W);). The right side of the aforementioned equation is a Fourier series
and from Fourier inversion we obtain

1 T
E[SO(WD R w,

- 0(Zm k)] .
mPZ, =K /. m)e ldv

(6.18)

E[SO(WU R 14

m

) | 2y = K]

m

The conditional representation (6.13) directly yields
E[<p(517 R Sm)] - E[@(WI’ e >Wm) | Ly = n]’

which together with (6.18) at k = n yields

1 g .
E e =— E e v(Zm=n))dy,

Define v =E[W,]=(1—p)/p=p"' and 7> =var(W;) = (1—p)/p* = (1 +p)/p.
Given the function A of the symmetric test statistic given in (6.5) and v, v, € R, we define

(v, vy) =
E {exp {1% (h(Wl) — E[n(Wy)] -

1

cov(h(Wy), W)

T

(W, — u)) Fi2 (W, — V)H

-
and

1 WT\/R —ivex 1 m
YV (v1,7) = \/—2_7r/ e TP (vy, vy)duy,

for x € R, where (; is defined by (6.15). This last result and the inversion formula for the
probability P[Z, = n| provide a Bartlett-type formula for the characteristic function of

cov (h(W,), W1)

U= 52 3 {105,) ~ Elneis)) - EEL s, )}

which is given by

E [e"Umn] = ¥ (v, ) (6.19)

(0, 2)

Getting an analytical form for this characteristic function and inverting it to the exact prob-
ability is a difficult task, although asymptotic distribution and Edgeworth expansion can be
obtained along the lines of Mirakhmedov et al. (2014).

However, given that one can compute the list of all possible realizations of (S|, ..., S,,).
for any given n > 1, one can actually compute the value of the statistic for each of these
(”“:71) equiprobable configurations and in this way determine the exact probability dis-
tribution of Rao’s spacing-frequencies statistic 7, ,,, given in (6.16).

6.3.3 Saddlepoint approximation

An alternative to finding all possible realizations of the spacing-frequencies is to
approximate the exact distribution of Rao’s spacing-frequencies statistic by the saddlepoint
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approximation. The saddlepoint approximation is a large deviations technique, which
provides approximations to the exact distributions with bounded relative error. It is thus a
very accurate method for computing small tail probabilities. It was introduced in statistics
by Daniels (1954). In this section, we provide the cumulant generating function required
for computing the saddlepoint approximation of Gatto and Jammalamadaka (1999) to the
distribution of Rao’s spacing-frequencies test statistics, under H,.

For this purpose, we reexpress Rao’s spacing-frequencies statistic (6.16) in the general
M-statistic form 7" 4, (S}, T, ,,) = 0, where

—x)— L ife <

X
(r—2)—4 ifz>

1n t,
t = —|— — e
Yl ) 2Ilm x‘ {

EERE]E

We also define ¢, (z,t,) = x — t,/m. Next, we compute the following joint cumulant gen-
erating function of these scores,

K(Ula vy; by, ty) = log {E[GXP{%%(WDH) + U2¢2(W17t2)}]},

where W, has the distribution (6.12) with [ = 1, which is a geometric distribution. After
algebraic simplifications, we find

K(vy,v95ty,ty) = .
e

1 n
logp +lo ex {{v (t)vt}} 5
gp g( p m 15 1 2l2 1_ (17p)eq,2771

o, [ ]+1
+exp{—% {vl (g +t1) +v2t2}} {(1 “Plei } ),

1—(1—p)er o

Yuy, vy € R such that v,/2 4 vy, < —log(1l — p). The saddlepoint approximation to
PI[T,,.,. > t;] can now be obtained by a direct application of Step 1 and Step 2 provided
at p. 534 of Gatto and Jammalamadaka (1999) to the function K,, = nK, where K is the
cumulant generating function given by the aforementioned formula. We also set t, =n
and p = p,/(p, + 1), where p, = m/n, see (6.6). One may refer to Gatto (2000) for a
continuity correction for the case where the statistic is discrete, as it is the case here, and
also for an algorithm for computing the quantiles, that is, the critical values of the test.

Although this approximation represents only the leading term of an asymptotic series, its
accuracy is very good, even for small values of m and n and for very small tail probabilities.
For the “exponential score” spacing-frequencies statistic, Table 1 in Gatto (2000) shows that
with sample sizes as small as m = 4 and n = 12, this approximation is good: it yields 12%
as relative error when applied to the upper tail probability 1%.

6.4 Monte Carlo power comparisons
This section presents a comparison of the power of Wheeler—Watson, Dixon’s and Rao’s

spacing-frequencies tests, under a specific deviation from the null hypothesis, which appear
unfavorable for Wheeler—Watson test. Numerical evaluations are done by Monte Carlo
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simulation, because it does not seem possible to extend the saddlepoint approximation
of Section 6.3.3 to distributions under the alternative hypothesis. The reason is that the
conditional representation (6.13) is valid only under the null hypothesis.

As is done on the real line, it is possible through a probability integral transform to make
the distribution of say X uniform. Thus, let us consider the null hypothesis (6.1) wherein Py
is the circular uniform distribution with density fy(0) = 1/(27), V8 € R, and alternatives
where and Py is a generalized von Mises distribution (GvM) of order two, with density
given by

1
Sy (0] pys pgs gy ky) = 326, 7 1) exp{r; cos(0 — 1) + Ky cos2(6 — puy)},
(6.20)
V0 € R, where uy € [0,27), py € [0,7), Ky, ke > 0, § = (p4y — pg)modm and where the
normalizing constant is given by

1 27
Go(0, Ky, ky) = oy /0 exp{r, cos 6 + kycos 2(6 + 0)}d6.

A circular random variable with density (6.20) is denoted GVM (111, pto, K1, ko). We refer to
Gatto and Jammalamadaka (2007) for various interesting theoretical properties and char-
acterizations regarding this class of distributions. We note that the well-known von Mises
distribution is obtained by setting x, = 0 in (6.20) and that the uniform distribution (with
density fy) is obtained by setting x; = x5 = 0 1in (6.20).

We consider alternative hypotheses where Py is the GvM distribution with p; = py =
0,x; = 0.1and k, € {0.5,1,...,7}. The graphs of some of these densities, over the interval
[—7, ), are given in Figure 6.1. We can see that each density is symmetric around zero
and possesses two clear and quite similar modes. Figure 6.1 shows also that these GVM

1.4 — T T T T T T

121 R

08 Lo
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1
[~ v 21
0.4 g 3 )
. Xy

Figure 6.1 GvM densities over [—m, 7) with 1y = py = 0, kK, = 0.1 and ko = 0.5 (solid
line), ko = 2 (dashed line), k, = 7 (dashed-dotted line).
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densities deviate increasingly from uniformity as the value of x, increases. We compare the
small sample power of the following tests: Wheeler—Watson test (see Example 7), Dixon’s
test (see Example 5) and Rao’s spacing-frequencies test (see Section 6.3.1). All tests have
(approximate) size 5% and the selected sample sizes are m = 15 and n = 25. Let us rewrite
Wheeler—Watson test statistic |[Vy|| given in (6.9) as T,y and let us denote its o™ upper
tail quantile as ¢V Let us also rewrite Dixon’s spacing-frequencies test statistic T, given
in (6.8) as T'F | and let us denote its o' upper tail quantile as t2. Let us also rewrite Rao’s
spacing-frequencies test statistic T, given in (6.16) as TE  and let us denote its a'!
upper tail quantile as tZ. Large values of T,‘,’K o T/,?’n, and Tnljn provide evidence against
H,. Based on 0.5 - 10° Monte Carlo simulations, we obtain t{/(; = 5.3305, t5; = 149, and
t,s = 14.6667. In this setting, the powers of Wheeler-Watson and Rao’s tests have been
computed for various values of ., each time based on 10° Monte Carlo generations.

The results are displayed in Table 6.1. We see that Wheeler—Watson test appears
substantially less powerful for distinguishing the uniform distribution from the selected
bimodal GvM distributions. This confirms the claim given at the end of Example 7, that
the Wheeler—Watson test may not be appropriate when dealing with bimodal distributions
displaying two similar well-separated modes with one at the antimode. Dixon’s and Rao’s
spacing-frequencies test behave substantially better in this case. For other configurations
with less accentuated bimodality, the power of Wheeler—Watson test is closer to the one of
its competitors. Nevertheless, this important result and conclusion are in the same spirit as
the well-known result that the Rayleigh test in one-sample case loses to tests such as the
one-sample Rao’s spacings test and is indeed inappropriate, when the data is not unimodal.
We see also that Dixon’s test shows slightly better power than Rao’s test when &, is
small, that is, close to the null hypothesis and is known to be asymptotically locally most

Table 6.1 Power comparison between Wheeler—Watson, Dixon’s and

Rao’s tests.

Ko Pnz [TT‘)/IV;n > t(%f)] PK»Z [T7g,n > t(?()f)} PHQ [Trﬁn > t(})%.05]
0.5 0.060 0.090 0.056
1.0 0.074 0.189 0.142
1.5 0.090 0.326 0.291
2.0 0.104 0.462 0.456
2.5 0.117 0.563 0.588
3.0 0.127 0.641 0.684
3.5 0.134 0.670 0.754
4.0 0.141 0.743 0.804
4.5 0.146 0.776 0.841
5.0 0.151 0.803 0.866
5.5 0.153 0.824 0.887
6.0 0.157 0.843 0.903
6.5 0.161 0.859 0918
7.0 0.161 0.870 0.928

Py : uniform distribution. Py-: GvM distribution with p; = py =0, K, =
0.1 and s, = 0.5,1,..., 7. Each probability is obtained from 10° simula-
tions. Size of tests: 5%. m = 15, n = 25.
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powerful test among the symmetric tests in (6.5). However, this small advantage turns in
favor of Rao’s test as x, increases.
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Barycentres and hurricane
trajectories

Wilfrid S. Kendall
Department of Statistics, University of Warwick, Coventry, UK

7.1 Introduction

This paper is principally motivated by intellectual curiosity. After work by Huiling Le
(Kendall and Le 2011) on laws of large numbers and central limit theorems for empirical
Riemannian barycentres, it seemed natural to investigate the use of Riemannian barycentres
in data analysis. This topic relates to contemporary interest in the statistical analysis of data
comprised of intrinsically geometric objects, which can be viewed as part of the subject
sometimes known as ‘object-oriented data analysis’. Indeed, the statistical use of barycen-
tres has already been pioneered, for example, in Fournel et al. (2013) and Ginestet et al.
(2012) (also see early work by Ziezold 1994); the purpose of this paper is to use a specific
application to explore their use in analysing trajectories with strong geometric content. In
the following, we use Riemannian barycentre theory to produce a simple non-parametric
analysis of the extent to which consecutive North Atlantic hurricanes might have similar
behaviour. Note that considerably more sophisticated methods of curve-fitting on manifolds
could have been used here (see for example the use of smoothing splines described in Su et
al. 2012): the barycentre approach is relatively simplistic, but nonetheless may be useful.
Writing this paper affords the opportunity of expressing sincere homage to Kanti Mardia
for his seminal leadership in the application of geometry to statistics. I owe him thanks
for kindness and encouragement stretching right back to 1978, when as a callow research

Geometry Driven Statistics, First Edition. Edited by Ian L. Dryden and John T. Kent.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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student I was invited by Kanti to make a most stimulating research visit to the University of
Leeds Statistics group. Moreover, the present work originated in preparation for a talk I gave
at one of the famous LASR workshops initiated and nurtured by Kanti at Leeds (specifically
LASR 2011). I hope that Kanti finds pleasure in reading this brief account.

The paper commences (Section 7.2) with a speedy review of relevant aspects of Rie-
mannian barycentres, with special attention paid to the simple but fundamental case of
sphere-valued data. Section 7.3 then reviews HURDAT?2 a remarkable publicly available data
set composed of hurricane trajectories (tropical cyclones in the North Atlantic) and some
associated data concerning wind speeds and atmospheric pressures. This is the test data set:
attention will be confined to the hurricanes viewed as trajectories on the terrestrial sphere.
We then describe (Section 7.4) how barycentre theory interacts with non-parametric statis-
tics via k-means clustering and discuss preliminary results for the test data set (Section 7.5).
The concluding Section 7.6 reviews the results and considers some possible next steps.

7.2 Barycentres

Fréchet (1948) introduced barycentres in metric spaces as minimizers of ‘energy
functionals’ z — E [distQ(X , as)] for random variables X taking values in metric spaces.
Kendall (2013) presents a recent review of some subsequent theory; there is a strong link
with convexity via ‘convex geometry’ (Kendall 1990, see also Afsari 2011). Our interest
is focussed on the theory of Riemannian barycentres for random variables taking values
in the 2-sphere S2: indeed this can be viewed as normative for Riemannian barycentres
(Kendall 1991). In particular, sphere-valued random variables can be guaranteed to
possess unique barycentres when their distributions are concentrated in closed subsets
of open hemispheres (which is to say, when the random variables are confined to ‘small
hemispheres’). Considerable work has been devoted to establishing laws of large numbers
and central limit theorems for empirical barycentres (Bhattacharya and Patrangenaru 2003;
2005; Bhattacharya and Bhattacharya 2008); this has even opened up a new multivariate
perspective on the classical Feller-Lindeberg central limit theory Kendall and Le (2011). An
interesting non-Riemannian case is discussed in the pioneering work of Hotz et al. (2013);
see also Barden et al. (2013). In this chapter, our interest centres on more data-analytic
concerns, based on barycentres of measurable random maps ® : [0,7] — S? from a
time-interval to S2. Convex geometry, hence uniqueness of barycentres, is maintained if
for each time ¢ the random variable ®(¢) is supported in a (possibly time-varying) small
hemisphere.

There are a number of studies of iterative algorithms for computing Riemannian
barycentres (e.g., Le 2004; Arnaudon et al. 2012). We shall finesse such considerations
by approximating Riemannian barycentres on the sphere by cosine-barycentres, given by
projecting the conventional expectation onto the sphere,

: : E [X]
aﬂ;ggImeE [1 — cosdist(X, x)] TEX]
This is the ‘mean direction’ in the terminology of directional statistics. We choose to
use the term ’cosine-barycentre’, to emphasize that it minimizes what one might term
the cosine-energy (related to chordal distance) 1 — cosdist(z,y) ~ %dist(a:, y)?. In
particular, it provides a feasible and explicit approximation to the Riemannian barycentre if
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the dispersion of X on 52 is not too large. Note, however, that its explicit and constructive
definition provides no easy panacea for questions of uniqueness: evidently the construction
only works when E [X] # 0, and indeed if the support of the data cannot be contained in a
closed subset of an open hemisphere, then it is possible for the barycentre to be ill-defined.
(Consider, for example, the problem of finding the cosine-barycentre for a probability
distribution spread out uniformly over a fixed great circle. Then all points on the sphere
minimize the cosine-energy.)

Cosine-barycentres allow us to choose representative barycentre trajectories for a col-
lection of hurricane trajectories, defined as solving the minimization problem

1 T
argmin — / E[1 — cosdist(F(t), ®(t))] dt . (7.1)
Fio,m—s2 1 Jo

Here, the expectation is actually the empirical sample average over the collection of hurri-
cane trajectories, so that ® is viewed as drawn uniformly at random from this collection.
Note that the minimization in (7.1) can be carried out separately for each time ¢, since there
is no continuity requirement placed on F'. We choose to avoid considerations of continuity
or of smoothness of trajectories; close inspection of the hurricane trajectories in Figure 7.1
suggest that smoothness, at least, is perhaps not a paramount consideration. However, there
are some practical issues that need to be faced. Our hurricane trajectories are not a priori
registered to comparable starting and/or finishing times; in fact typically their durations do
not overlap. We restrict attention to trajectories that make upcrossings on latitudes of 20°N
and 35°N: we register times to agree at the first upcrossing of latitude 35°N. (The following
analysis is sensitive to these choices: lower latitudes do not produce a clear statistical signal.)

Figure 7.1 Trails of the 233 hurricanes recorded over the period 2000-2012 in the
HURDAT?2 data set (darker trajectories indicate high maximum sustained wind speed). The
viewpoint of this and similar following images is placed 5000 km above the centre of the
image, which is therefore distorted at normal viewing distance for all but the most extremely
short-sighted. We will consider the longer period 1950-2012 and will restrict attention to
hurricanes crossing 20°N and 35°N (drawn as continuous lines in figure), and register hur-
ricanes on their first crossing of 35°N.
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A further issue is the need to average over hurricanes that, even when time-registered,
start at different negative times and finish at different positive times. A possible solution
is suggested by the observation that all hurricanes under consideration are confined to the
Northern hemisphere. This suggests the following idea: if ®_(¢) is not defined for some
sample point w € €2, then replace 1 — cosdist(F(¢), @, (¢)) in (7.1) by the average when
®(¢) is uniformly distributed over the equator (this decision could be justified by arguments
of maximum entropy type). However, this modification does not lead to good results in our
current application. Instead, we solve the issue by restricting attention to the largest time
interval over which our collection of time-registered hurricanes all has defined locations.
This cropping procedure has the disadvantage of restricting the analysis to behaviour of the
trajectories near the specified upcrossing used for registration.

Finally, we mention two more possible refinements, both of which would be compu-
tationally demanding and which we will not adopt. Firstly, one could attempt to solve the
extended minimization problem allowing time-shifts of individual trajectories within the
minimization problem (7.1). Secondly, one could replace the time integral in (7.1) by an
integral over arc-length, or perhaps an integral over upcrossings of latitudes (though in this
case one would be deliberately introducing discontinuity in cases when hurricane trajec-
tories decrease as well as increase in latitude). Indeed one could envisage a whole variety
of possible nonlinear warpings of time. We defer to another occasion the consideration
of these refinements, as well as of assessment of the effect of approximating Riemannian
barycentres by cosine-barycentres.

Our application needs to find a number of representative barycentre trajectories
instead of just one. The natural remedy is to apply the k-means algorithm, adapted to
use cosine-barycentres. Specifically, we aim to use barycentre k-means to cluster the
chosen set of hurricane trajectories, so that we can study temporal association between
cluster labels defined by the barycentre trajectory to which each hurricane trajectory is
attached. We use Lloyd’s algorithm (Lloyd 1982) for k-means: beginning with a random
initial set of k trajectories serving as cluster centroid trajectories, the algorithm alternates
between associating each trajectory to the closest cluster centroid trajectory (measured
by cosine-distance), and then replacing each cluster centroid trajectory by the computed
barycentre trajectory for the cluster. The algorithm has to be run repeatedly in order to
find a good clustering; we choose to use 10 repetitions. Typically a single run of the
algorithm will not produce an optimal set of cluster centroid trajectories (here, minimizing
within-cluster sum of cosine-distances); indeed the task of producing such an optimal set
is typically NP-complete.

Faster algorithms do exist for the one-dimensional problem (Wang and Song 2011), but
it is an open problem to extend these to ‘nearly one-dimensional’ structure as exhibited
by the set of hurricane trajectories. In this study, we use the k-means algorithm, setting
k = 20, to group hurricanes into 20 groups linked to 20 barycentre trajectories. The groups
are ordered from west to east according to where the barycentre trajectories first cross
latitude 35°N.

7.3 Hurricanes

As an illustrative application, we consider the remarkable and freely available HURDAT?2
data set concerning hurricanes (tropical cyclones) of the North Atlantic ocean, a collec-
tion of 1740 hurricane trajectories in the North Atlantic recorded by various means over
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161 years from 1851 to 2012 (see Figure 7.1 for a display of recent hurricanes; the data set
is discussed in Landsea and Franklin 2013; McAdie et al. 2009). The data set is available at

www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html.

Our interest centres on whether there is any evidence for temporal association; is there a
tendency for successive hurricane trajectories to be close? MacManus (2011) used geomet-
ric methods to investigate similar issues (area of overlapping curvilinear strips based on
paths and non-parametric measures of association). Here, we intend to use this question to
illustrate application of the notion of barycentres based on hurricane paths considered as
S2-valued trajectories. Evidently the extent of these paths, ranging over wide expanses of
the North Atlantic, means that their underlying geometric nature should be taken seriously.

We emphasize that this investigation is of purely methodological interest, aimed at
illustrating the use of barycentres in data analysis. Addressing the question of temporal
association properly would require serious attempts to relate HURDAT?2 to other data sets
and sources of information.

The following remarks are taken from McAdie et al. (2009) (further useful background
is also given in a striking statistical survey of data acquired from three years of USAF flight
missions flown into Northwest Pacific tropical cyclones which is reported by Weatherford
and Gray 1988a; 1988b). Each hurricane trajectory in the HURDAT2 data set is a ‘Best
Track’, defined using best estimates of the location of the hurricane centre, reconciling
measurements obtained by various means and taken at six hourly intervals with small-scale
smoothing applied. In essence, each hurricane trajectory is represented by a timed sequence
of latitude/longitude pairs, measured every quarter of a day in degrees of latitude and lon-
gitude to an accuracy of 1 decimal place. Recall that a degree of latitude or longitude at the
equator represents separation slightly in excess of 110 km, so stated location precision is of
order 5 km. For the North Atlantic basin, McAdie et al. (2009) reports that diameters of
hurricane eyes lie in the range of 15-50 km, so this is an entirely adequate level of precision.
Typically hurricane eyes move at speeds of order of 5 m/s, so successive 6 hourly measure-
ments are separated by order of 100 km (Figure 7.2). Measurements of maximum sustained
surface wind speed and (subsequent to 1979) central surface barometric pressure are also
recorded at various distances from hurricane centres; However, we focus on geographic
location alone.

Surveillance methods for data capture have, of course, varied over the period of the data
set. Early observations were acquired from sailing ship logs; in due course these were sup-
plemented by radio reports, then by aircraft and radar observations, and finally by satellite
observation and other systems such as dropsondes. Whether because of increased observa-
tional capacity or whether because of secular change (long-term non-periodic variation) in
global weather conditions, the number of recorded hurricanes over the period 1851-2012 is
clearly increasing with time (see the 1lowess curve for annual counts of hurricanes crossing
20°N and 35°N, given in Figure 7.3): for example, later years seem more likely to experience
six or more such hurricanes. Further evidence of secular change is obtained by categoriz-
ing these hurricanes using the k-means algorithm, with k£ = 4, applied to those hurricanes
crossing latitudes 20°N and 35°N. Figure 7.4 indicates that the East—West distribution of
recorded hurricanes also varies over this period; it appears that more easterly hurricanes are
recorded in later years.

It is evident from this discussion that, for the purposes of study of temporal association,
the HURDAT2 data set is best considered as a temporally ordered sequence of short
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Figure 7.2 Sampling points (measured every 6 hours) of the Best Track of hurricane Isaac
in 2012. Typical separation between measurement points is about 100 km.
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Figure 7.3 Numbers of hurricanes per year in the HURDAT2 data set over 1851-2012
which cross latitudes 20°N and 35°N, together with fitted lowess curve.

time-series, one short time-series per year over the period 1851-2012; moreover, the
statistics of these short time-series should be expected to be different in later as opposed
to earlier years. We shall focus subsequently on the period 1950-2012, but should bear in
mind the trends illustrated in Figure 7.4.

7.4 Using k-means and non-parametric statistics

We seek to employ barycentre techniques to investigate temporal association between suc-
cessive hurricanes.

Regardless of the ad hoc aspects of clustering using the k-means algorithm (specifically,
a potential dependence of actual implementation outcomes on initial conditions), the crucial
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Figure 7.4 Numbers of hurricanes per year in the HURDAT2 data set over 1851-2012
which cross latitudes 20°N and 35°N, grouped according to whether they first cross lati-
tude 35°N at far-west, near-west, near-east, or far-east locations as indicated using k-means
clustering (with k = 4) together with fitted Lowess curves (except in the far-east case, for
which the large majority of years record no hurricanes).

point is that the clustering takes no account of time order, whether by year or by time within
year. Consequently, this clustering method can be used to detect temporal association using
non-parametric statistical permutation tests.

Note that we do not consider the issue of estimation of the number of clusters &, as we
are interested in the output of the k-means algorithm solely as an intermediate device to
facilitate the detection of temporal association.

The simplest choice is to compute the statistic 7' counting the number (summed over all
years) of pairs of hurricanes, one immediately succeeding the other in a given year, such that
both hurricanes are categorized as belonging to the same k-mean cluster. Note that this is
effectively a multiple category variant of the runs test for randomness, as discussed by Wald
and Wolfowitz (1940), since each hurricane either initiates a run or completes a successive
pair of hurricanes from the same cluster. (A discussion of the multiple category variant is
given by Mood 1940, who also records an informative early history of the runs test.)

Itis enlightening to impose a narrative based on an informal statistical model of temporal
variation, as this allows a somewhat more statistically principled approach and suggests a
useful generalization. Independently for each year y, let X, ; (fori =1,2,...,h,) record
the k-mean cluster containing the ith hurricane (measured in time order) of the h, hurricanes
observed that year. Then, the year y in question contributes the following summand T}, to
the total non-parametric statistic 7" = Zy T,:

hy

Ty(xl, . 7xhy) = ZH [Xy,l == Xy,'i—l] .
=2

This suggests that we model the sequence of k-mean labels in a given year by a
one-dimensional Potts model (Grimmett 2006, S1.3): conditional on h,, the total number
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of hurricanes in that year, the probability of observing the sequence x, zy, ...,z is

IED |:Xy71 - fE17. . '7Xy,hy - {,Chy|hy} -

h"zl
exp [0 Tz, ==, ]. (72

=2

1 1
Z(0,h,) xp0 1) = 707 )
Here, 6 > 0 is the parameter relating to strength of association, and the partition func-
tion can be computed explicitly in this simple one-dimensional case: Z(0, h) = k(e + k —
1)h~1. (The k = 2 case corresponds to a one-dimensional Ising model and can be traced as
far back as Ernst Ising’s 1924 thesis, published in part in Zeitschrift fiir Physik in 1925.)

Treating each year y as independent, we choose to condition not only on the total num-
ber h,, of hurricanes in that year but also on the total numbers R, ; = #{i: X, ;, = j} of
hurrlcanes in the year y categorized as belonging to k-mean cluster j. The action of con-
ditioning on the R, ; discards some information about 6, since large positive values of ¢
would promote dominance by a single cluster in each year y. However, the empirical evi-
dence of secular trends supplied by Figure 7.4 suggests the need for a more realistic model
for the measurements R, ;, allowing for their distributions not being exchangeable over the
label j; conditioning on the R, ; allows us to evade this difficulty. The score statistic for the
resulting conditioned model at ¢ = 0 is then the year’s contribution 7, to the non-parametric
statistic 7". Thus, consideration of 7" amounts to performing a conditional Neyman—Pearson
hypothesis test of a null hypothesis H,, : § = 0, against a one-sided compound hypothesis
H,:6>0.

It is of course possible to develop this theme further, using the evaluation of Z (6, hy)
for the one-dimensional Potts model. Thus,

1. Inference could be improved to take explicit account of the information provided by
the pattern of values of R, ,, for example, by imposing an external field on the Potts
model (7.2) to obtain

7,y

P[X,0 =20 Xy, = b, o

yahy

hy hy

exp [ 6 ZH[.Z‘Z- =z, +Zzwjﬂ[xi = J]

i=1 j=1

2. Or one could attempt maximum likelihood estimation of 6, or even of different 9]-
pertaining to different clusters j using a refined probability mass distribution

P[X,1= o0 Xy, = o, | By Byt Ry
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However, we avoid pursuing either of these leads here, not only because of the resulting
increase in model complexity but also because this would commit us in excessive detail
to a parametric model that is motivated largely by heuristic considerations. Moreover, the
model is dependent on the output of the k-means Lloyds algorithm, itself potentially a ran-
dom phenomenon, insofar as the actual outcome of the algorithm can depend on essentially
random selection of initial conditions (mitigated by using repeated independent runs and
taking the best resulting clustering). Finally, the model, as expressed here, uses (naive) free
boundary conditions (it treats initial and final hurricanes of each year in much the same way
as all the others), which is a further reason not to take it too seriously.

To evaluate the significance of the score statistic 7', we compute the conditional mean
and variance of each T, add up the T, over the years y under consideration, and refer
the sum 7" to a normal distribution with matching mean and variance (this relies implic-
itly on a central limit theorem approximation of Lyapunov type), or use a simulation test
based on random permutations within each year. Means and variances can be computed by
straightforward combinatorial methods: suppose that in year y there are R, ; = r; hur-
ricanes present belonging to cluster j, for j = 1,..., k. For convenience, we set m, =

Z?:l ri(r; — 1) and my = Z?:l r;(r; —1)(r; —2), and find
E[T, Ry, =7, . Ry =n] ==, (7.3)

mi Wy m3me  dmy g

Var T|R —r ] =
[ wh =7 hi(h,—1) ' h,(h,—1)  h,(h,—1)

R

y,l —

Note that differentiation of the partition function Z (6, h,) would produce means and vari-
ances not conditioned on the pattern of R, ; values, which would not suit our purpose.

It is useful to modify the one-dimensional Potts model (7.2) to allow for a geometric
decay in strength of association, with decay rate 8 € (0,1) and 8 < 1:

P [Xy,l =2y, X, = xhy|hy] -

hy—1 h,
v 1 - _
2.1, 5 " T2 = 20,5 P\ ;5 Z;l ;=] (05

The corresponding conditional score statistic (given the pattern of values R, ;) is

hy—1 h, hy—1
T, 5= Z gt Z (X, =X, = Z B¢ 14+ {agreements at lag £}, (7.6)
i=1+/4 =1

and this provides some capacity to allow for detection of temporal association between
trajectories, which are not immediately consecutive in time. The computations of mean and
variance at (7.3) and (7.4) can be generalized to cover this case, though the formulae are
too unwieldy to report here. In any case, in the sequel we shall evaluate test statistic scores
by using a simulation test based on random permutations within each year.
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7.5 Results

We consider a specific example, namely 179 North Atlantic hurricanes occurring over
the time-range 1950-2012, and crossing latitudes 20°N and 35°N, and registered at
first upcrossing of 35°N. It is candidly admitted that other crossing latitude choices
lead to results which are not statistically significant, so assessment of the phenomena
observed here needs to take judicious account of associated implicit selection effects.
We have excluded years in which no more than two hurricanes occur, as they supply
no information about clustering within a year. A k-means algorithm (k£ = 20, using
Lloyd’s algorithm based on 10 repetitions) classified the remaining 179 hurricanes from
37 years. The 20 groups provided by the k-means algorithm are loosely ordered on an
East—West axis as illustrated in Figure 7.5 (see also Figure 7.4, which uses a k-means
analysis with & = 4, based on the entire 1851-2012 data set). In the figure, the apparently
anomalous barycentre trajectory running nearly horizontally near the more eastern end
of the collection arises from a single rather long hurricane trajectory, whose initial
behaviour (including its upcrossing of 20°N) is removed as part of the process of confining
the barycentre trajectories to the strict intersection of registered time intervals for the
component hurricane trajectories. Consequently the grouping by k-means relates to
trajectory behaviour on quite a narrow band of latitudes, as can be seen from Figure 7.5.
Labelling the groups in this order, so that the most westerly group at first crossing of 35°N
is given index 0, we obtain Table 7.1. Reading from west to east, numbers in the 20 groups
are given in Table 7.2. This procedure yields a test statistic (sum of numbers within each

Figure 7.5 Plot of 20 barycentre trajectories arising from the k-means algorithm with
k = 20, applied to the 1950-2012 data set of hurricanes crossing 20°N and 35°N. Barycen-
tre trajectories are denoted by thick paths (the two outline paths correspond to clusters of
just one or two hurricanes). The apparently anomalous trajectory running nearly horizon-
tally near the more eastern end of the collection arises from a single rather long trajectory,
whose initial behaviour (including its upcrossing of 20°N) is cropped as part of the process
of cropping all hurricane trajectories to the same maximal time-interval.
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Table 7.1 179 hurricanes over 37 years, classified by year and by 20 groups using the
k-means algorithm with & = 20. Groups are ordered according to how westerly is the
upcrossing by the corresponding barycentre trajectory of latitude (35°)N.

Year Labels

1950 5 1 13 8 2 13

1951 12 14 7

1952 6 3 8 9

1953 11 12 11 4

1954 11 5 5

1955 7 5 13 0 14 5 11
1958 5 14 7 13 8

1961 14 0 17 8 8 9

1962 19 14 11

1963 12 13 16 12

1964 7 13 2 4 12 8 3
1965 1 1 17 14

1966 7 9 9

1969 5 13 1

1975 1 13 11

1976 14 19 15

1979 0 11 3 1 19 16 16
1980 19 19 8 17 16

1981 3 18 8 13 14 13

1985 1 1 5 7

1988 3 0 16 10

1989 12 17 17 13 5

1990 14 16 15 17

1995 4 8 8 16 13 11 11 19 1
1996 3 8 5 11 19 15

1998 7 8 17 19 19 10

1999 14 3 13 3 13

2000 14 4 4 14

2001 11 13 19

2003 1 12 5 14

2004 4 6 17 2 1 2 16 17
2005 1 1 1 8 15 15 10
2006 3 12 14

2008 12 1 0 5 0 15

2010 13 5 0 12 13

2011 3 8 11 13 14

2012 0 13 19 12 9

year of consecutive pairs belonging to the same group) of 7' = 15. Computing mean and
variance of 7', conditional on the numbers of each cluster occurring in each year, and
assuming the normal approximation of 7" to be valid, this can be referred to a conditional
one-sided 5% level of 10.66 + 4.15 = 14.81.

A quantile—quantile plot, based on 1000 randomized versions of the data displayed in
Table 7.1, shows that the standardized distribution of 7" has somewhat lighter tails compared
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Table 7.2 Numbers of hurricanes in each of the 20 groups determined by the k-means
algorithm with £ = 20. Groups are ordered according to how westerly is the upcrossing
by the corresponding barycentre trajectory of latitude 35°N.

8§ 15 4 10 6 13 2 7 14 5 3 12 11 19 15 6 8 9 1 11

Normal quantile—quantile plot

Standardized sample quantiles
0
N

Normal quantiles

Figure 7.6 Quantile—quantile plot assessing approximate normality of the distribution of
the test statistic 7' (with 7" constructed using k-means clustering with £ = 20) based on
1950-2012 hurricanes crossing latitudes 20°N, 35°N.

to a normal distribution (see Figure 7.6). However, a simulation test based on 1000
simulations yields an unremarkable p-value of 7.5%, compared to a p-value of 4.3% using
the normal approximation.

If we replace the test statistic T' by T}; (obtained by summing the contributions from
T, 5 as defined in (7.6)), so as to make a weighted count of repetitions at longer lags, then
there is a slightly stronger indication of clustering. We choose § = 0.25, so that longer
lags are penalized quite heavily, (results do not appear to be particularly sensitive to the
choice of small 5 > 0.) A quantile—quantile plot suggests normality of the distribution of
T5_p.95 under the hypothesis of no temporal association, though we omit this plot here,
and in any case focus on assessment via a simulation-based permutation test. We obtain
Ts_g.95 = 16.97, and a simulation test based on 1000 simulations yields a p-value of 3.2%.
(Examination of the data confirms that the dominant contribution to the modest improve-
ment in p-value arises from pairs of similar hurricanes separated by lag 2.) This, therefore,
suggests modest evidence of temporal association among this particular set of hurricanes.
Given the hurricane trails have been classified into 20 clusters, over an East—West range
of order 6000 km, the length scale of this association may be deemed to be of order of
300 km. This is supported by the boxplots of root-mean-square average distances of hurri-
canes from associated barycentres in Figure 7.7 (the calculation employs the approximation
of Riemannian barycentres by cosine-barycentres). Mean distances between hurricanes and
associated barycentres do indeed appear to be of order of 300 km. Visual inspection of the
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Figure 7.7 Boxplots of root-mean-square (RMS) average distances of hurricanes from

associated barycentres (in kilometres). Boxplot widths are proportional to square roots of
sample sizes.

individual clusters confirms that some clusters do group together rather different hurricane
trajectories, underlining the need to be cautious in interpreting the formal statistical analy-
sis given earlier. We note the two groups containing fewer than three hurricanes (groups 6
and 18); inspection shows that trajectories in both groups exhibit atypical behaviour. Var-
ious outliers and the larger dispersion of group 19 appear mostly to be linked to the more
diverse behaviour of easterly hurricane trajectories.

7.6 Conclusion

This work illustrates how barycentres can be used in the analysis of trajectories with strong
geometric content (here, hurricane trajectories lying on the surface of the terrestrial sphere).
The conclusions drawn are modest, namely that there is rather limited evidence in favour
of temporal interaction. We repeat that potential selection effects need to be borne in mind
here. The nature of the data set (secular trends, structure of temporal sequence of short
time-series) hamper further investigation. Were the purpose of this paper to develop such
an applied theme, then the next step would be to pay greater attention to other features
of the underlying data set (in particular, records of wind strength and atmospheric pres-
sure), and also to combine the aforementioned analysis with inference drawn from other
associated meteorological data sets. But the intention of this paper is more methodolog-
ical: further development in such a direction could include the investigation of the more
parametric inferential approaches mentioned in Section 7.4: including information derived
from varying proportions of different groups of hurricanes, attempting maximum likelihood
estimation of interaction parameters or even Bayesian inference exploiting the form of the
likelihood of the heuristic parametric model.

Other avenues of investigation would require commitment of more computational
resource: investigation of the effect of the cosine-barycentre approximation, factoring out
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time-shifts, or making a discontinuous time-change by referring trajectories to their times
of upcrossing of successive latitudes, or working in terms of arc-length rather than time.

Finally, and more speculatively, the geometric context of these data is very simple. Use-
ful insight might arise from consideration of more ambitious questions. For example, and
following one of the applications in Su et al. (2012), this methodology could be extended
to deal with the more complicated geometrical considerations that would arise when com-
paring three-dimensional trajectories arising in the study of chemotaxis, or more generally
of motility of small organisms living at low Reynolds number (Purcell 1977). One spec-
ulates that it might be possible to use these three-dimensional trajectories to draw infer-
ences concerning stochastic characteristics of trajectories in the rotational group, using the
imputed orientation of the small organism in question; at small length scales (where Brow-
nian effects cannot be neglected) this might lead to intriguing statistical applications of
the techniques underlying the celebrated Eells—Elworthy stochastic development (Elworthy
1982, ch.VIL.11).
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Beyond Procrustes: a proposal to
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8.1 Introduction

In his long and productive career, Kanti Mardia has serially focused his attention on a very
broad range of methodological innovations that together link the foundations of statisti-
cal science to its cutting-edge applications. Some of these bridge designs have excited the
interest of many adopters or further innovators — his new formal models for directional data,
his methods for Bayesian analysis of unlabelled point matching, the kriged Kalman filter —
whereas others that would appear on formal grounds to be equally brilliant have been over-
looked by the applied statistics community. This generalization is true as well of my own
collaborations with him. The paper by Mardia and me introducing the rigorous Procrustes
analysis of bilateral symmetry (Mardia et al. 2000), for instance, is among my greatest hits
(132 citations over 15 years, according to Web of Science), whereas our paper on intrinsic
random field models for deformations (Mardia et al. 2006) has generated only seven cita-
tions over its nine years of postnatal life. I think this imbalance is unrepresentative of the
importance of the innovations. This chapter is an attempt at redress.

The focus of this return visit is a model that explicitly contradicts the assumption of
spatially uncorrelated variability at the foundation of the Procrustes method. Figure 8.1 is
a pedagogic aid showing a sample of shapes derived from a starting 5 x 5 square grid by

Geometry Driven Statistics, First Edition. Edited by Ian L. Dryden and John T. Kent.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Figure 8.1 Deformations of a template (lower left) on an isotropic offset Gaussian model
can be sorted into shells that are spherical in Procrustes distance.

independent and identically distributed (i.i.d.) perturbations at a range of amplitudes in the
appropriate spherical shape space. By sorting into bins of Procrustes distance, we display
these samples as a nest of spherical shells. While the grids of the successive shells certainly
appear steadily more irregular, the specific irregularity proffered by the examples toward
the right seems unconducive to most biologically useful pattern recognition approaches.

As 1 explained in Bookstein (2007), the reason these simulacra are unsatisfactory as
hints of organismal variability is the total spatial noncorrelation of the underlying model.
Figure 8.2 shows a far more appropriate generative model, whereby a 13-landmark form is
parcellated into successively smaller compartments within each of which the variability is
represented by one “new’” landmark varying isotropically at a scale that shrinks with the size
of its compartment. When the mean landmark positions involve such artificial symmetries,
parcellations such as this can be extended indefinitely.

Regarding the prototype in Figure 8.2, for instance, the first four landmarks to be con-
sidered, as in the upper left panel, are the outer corners of the square, which, given their
symmetry, are known to delimit a Procrustes shape space of four dimensions that takes
the form of the tensor product of two planes, one for isotropic variation of the so-called
uniform term (affine transformations) and the other for the purely inhomogeneous trans-
formations (Bookstein 1991). In the upper central panel, the fifth landmark, at the center



BEYOND PROCRUSTES: A PROPOSAL TO SAVE MORPHOMETRICS 165

0
4o 0 -
0 ®
[}
o o ~ o @
c ©
0 ®
S .
o . { . @
2O ©
g ¥ i
|
-15 -10 -05 0.0 05 10 15 -2 -1 0 1 2 -2 -1 0 1 2
®
o @ o
@
®
9 9
-2 -1 0 1 2 -2 -1 0 1 2

Figure 8.2 In an approach far more likely to be useful to the organismal biologist, defor-
mations may be constructed serially from a parcellation of the form into cells involving one
new landmark each with isotropic variance that is linearly scaled to the size of its compart-
ment in some sense.

of the square, is perturbed with circular symmetry around the location imputed to it by the
deformation of the square, with a variance that is half that of the corners of the square. Then
(upper right) the midpoints of the edges of the square follow, independently in this simula-
tion, each perturbed around its imputed location with variance reduced by a further factor
of one-half, and so forth. If we stop at the 13-landmark stage, lower center, the resulting
net deformation (graphed of course as the thin-plate spline at lower right) appears to have
discrete features at a satisfying range of spatial scales — if this were a summary of some
experimental or evolutionary phenomenon, we would be able to report it and speculate on
its causes or effects.

A sampling of forms at varying amplitude for the cascade of isotropic generations here,
Figure 8.3, shows this quite clearly. Now each deformation of the template seems to sug-
gest a short list of one or two specific features of that deformation, a circumstance entirely
contrary to that of the analogous offset isotropic shape distribution sampled in Figure 8.1.

Note. The examples in this paper are all two-dimensional, but preliminary simulations
suggest that the protocol here extends to data in three dimensions in accordance with the
rules set out in Section 3.1 of Mardia et al. (2006) for covariance kernel |r| in place of
r?logr.

8.2 Analytic preliminaries

It proves helpful to approach this antinomy using a formalism that has proved useful in many
other contexts of geometric morphometrics as well, the bending energy of the thin-plate
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Figure 8.3 Further instances of multiscale models like that in Figure 8.2, over a range of

parcellation-scaled variances that increase from left to right.

spline. We have already encountered this notion tacitly in Figure 8.2, where the mean loca-
tion around which each “new” landmark was perturbed was the location assigned it by the
thin-plate spline transformation on the landmarks already fixed — the target location of least
bending from the template given the locations of the landmarks already assigned.

We have recourse to one standard notation. Let U be the function U(r) = 7% log r, and
let P, = (v;,y;), i = 1,...,k, be k points in the plane. Writing U;; = U(P; — P;), build

up matrices

0 U12 Ulk‘ 1 Ty
K — U.21 0 : Ui?k: Q= 1 37‘2
Ukl Uk2 ... 0 ]. xk

and

L= (gt g) (k+3) x (k+3),

h
Y2

Yk

where O is a 3 x 3 matrix of zeros. Write H = (... h;, 000)" and set W = (w; ... w,,
ay a, ay)t = L~'H. Then the thin-plate spline f(P) having heights (values) h, at points
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P, = (x;,y;),i=1,...,k, is the function

k
= ZwiU(P - P) +ay+a,x+a,y.
i=1

This function f ( ) has three crucial properties:

1. f(P;) = h;, all i: f interpolates the heights h, at the landmarks P;.

2. The functlon f has minimum bending energy of all functions that interpolate the
heights £, in that way: the minimum of

2 2 2\ 2
/ / v 21N L (O,
R2 8x2 Ox Oy Oy?
where the integral is taken over the entire picture plane.
3. The value of this bending energy is

t t 1 1
SﬂWKW_S we. H_8 HiL,'H,,
where L,;l, the bending energy matrix, is the k x k upper left submatrix of L1, and H, is
the initial k-vector of H, the vector of k heights. The bending energy matrix has rank k£ — 3,
corresponding to its three zero eigenvalues for the hyperplane of deformations that have no
bending, the linear transformations a, + a,z + a,y.

In the application to two-dimensional landmark data, we compute two of these splined
surfaces, one (f,) in which the vector H of heights is loaded with the z-coordinate of the
landmarks in a second form, another (f, ) for the y-coordinate. Then the first of these spline
functions supplies the interpolated z-coordinate of the map we seek, and the second the
interpolated y-coordinate. It is easy to show (see Bookstein 1989) that we get the same map
regardless of how we place the (z, y) coordinate axes on the picture. For any such coordinate
system, the resulting map (f,.(P), f,(P)) is now a deformation of one picture plane onto
the other that maps landmarks onto their homologues and has the minimum bending energy
of any such interpolant. The bending energy of a grid is now the scalar sum of the bending
energies in the z- and y-coordinates of the target configuration separately.

Bending energy scales as the inverse square of spatial scale; it will be our key to the
link with organismal biology. To intuit one crucial geometric aspect of this link, the scale of
features, it may be helpful to examine the fundamental diagram of dimensions of the shape
space for a familiar prototype, the quincunx (pattern of the five-spot of a die). Corresponding
to the five landmarks, there are two nonzero eigenvalues of Lgl corresponding to the two
patterns in Figure 8.4. The eigenvalues of bending energy are in a ratio of 25:9. Whereas the
less bent eigenmode of bending leaves the central landmark unmoved, displacing only the
landmarks at the corners, the more bent has the opposite action, leaving the corners invari-
ant but displacing only the centroid. The resulting gradients of squared second derivative,
therefore, need to be quite a bit steeper, as assessed globally by that eigenvalue ratio. The
intensification is also apparent visually: note, in Figure 8.4(a), the greatly increased com-
pression of the grid lines at right center in the upper PW2 panel in comparison to those
at lower center in the PW1 panel to its left. In Figure 8.4(b), this imbalance of spacing is
effectively eradicated.
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Figure 8.4 Nontrivial eigenvectors of a quincunx of landmarks, here drawn as parallel
displacements in the horizontal direction. They can be drawn in either the Procrustes norm
(a) or the bending energy norm (b).
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Figure 8.5 The same for a 3 x 3 grid of landmarks. The attenuation by the square root of
specific bending energy steadily increases from left to right.

We can pursue the analogous investigation for any other prototype scheme of landmark
spacing. Figure 8.5, for instance, surveys the situation for a 3 x 3 grid of nine landmarks.
The nonzero eigenvalues of the bending energy matrix are now in proportion to 6.75, 3.73
(twice), 2, 1.51, and 1.

Note that the uniform transformations (square to parallelograms), corresponding to the
zero eigenvalues of Lgl, do not appear in diagrams of this style. These terms “have no
scale,” or, rather, have infinite scale. They do not fit into this reformulation, but must be left
outside as one additional two-dimensional aspect of any sample variation encountered.

8.3 The core maneuver

The key observation driving the claim that we can do better than the Procrustes approach
for applications in organismal biology is the following observation (which follows from the
analytic strategy set out in Mardia et al.
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When shapes are sampled in a covariance structure inverse to the bending
energy matrix, as restricted to the subspace spanned by its eigenvectors
of nonzero eigenvalue, then the distribution of component subshapes is
self-similar as a function of scale.

Although it is relatively simple to demonstrate this proposition, its validity is startling.
The corresponding proposition, after all, is false as it pertains to the isotropic Procrustes dis-
tribution itself: the smaller the square, the larger its own nonaffine shape variability when
studied as a configuration of four landmarks only. As an accessible example, I return to
the 13-landmark scheme of Figure 8.2. But this time, instead of producing those maps by
an ad hoc parcellation, I rigorously deflate each dimension of the nonaffine shape space
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Figure 8.6 Ordinary Procrustes shape coordinate scatters for the isotropic offset Gaussian
distribution on the indicated grid of 13 landmarks (b) versus the self-similar version (c). The
inset (a) indicates the numbering scheme for the landmarks in the next two figures. See text.
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according to the specific bending energies of its ten nontrivial dimensions. These bending
energies are proportional to 15.22, 9.06, 8.41 (twice), 7.57, 3.57 (twice), 2.25, 1.26, and
1. The symmetries of this didactic configuration are irrelevant to the point being made
here; they only afford the possibility of attending to a wide range of nominally square
subconfigurations.

We get a hint of the new situation if we simply compare the usual Procrustes coordinate
scatters for these two covariance structures. The two scenes are juxtaposed in Figure 8.6.
The ordinary Procrustes shape coordinates, at left, show the familiar scaling of variance by
1 — r? where r is the distance from the common centroid. The situation at the right is quite
different. Here the corner points have the most variation, not the least, while the central
landmark is actually more variable than the landmarks of the little square around it, as it
contributes to larger scale features than they do.

Figures 8.7 and 8.8 combine the demonstration of imperfect scaling for the Procrustes
shape distribution with evidence of perfect scaling for the new bending energy modifica-
tion as applied to squares selected from the 13-landmark configuration in two orientations.
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Figure 8.7 Ordinary Procrustes nonaffine shape scatters for square subconfigurations
from the distributions in Figure 8.6. Upper row, to the isotropic Gaussian offset distribu-
tion; lower row, to the bending energy modification recommended in this paper. (a) For a
small square in a corner of the full configuration. (b) For the square at the center. (c) For
the four corners of the configuration as a whole. Under each panel is printed the variance
of the z-coordinate of any one of the landmarks plotted.
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Figure 8.8 The same for squares rotated 45° to a diamond orientation, at small size (a) or
large (b).

(Landmark numbering goes according to the guide shown in Figure 8.6(a).) In Figure 8.7,
we show the distributions of the nonaffine component of the shape of three squares from
our prototype: the square on landmarks 7, 2, 5, and 8, the upper left quadrant; the square
on landmarks 10, 11, 13, and 12, the central four; and the square on the outside corners 1,
2,4, 3. In Figure 8.8, by contrast, we rotate the square by 45°, comparing a selected small
exemplar (6-10-13-5, on the lower edge) to the larger diamond on all four edge centers
of the large square. In every panel of either picture, now that we are in the nonaffine sub-
space only two dimensions of shape variation remain to be displayed (i.e., the coordinates
of each of the four landmarks plotted are equal or opposite), and all distributions are circular
separately.

The results are unequivocal. The plots of the Procrustes squares show variances that
differ by a factor of four for squares differing in edge length by a factor of two, and by
a factor of two for the square versus the diamond on its diagonal. There is even a hint
at a positional effect for identical squares in different positions within the configuration
(Figure 8.7, upper central versus upper left panel — the variance-ratio here is significant with
a p of about 0.01). By contrast, all five of the configurations in the lower row, corresponding
to the bending energy norm, have effectively the same variance regardless of scale, position,
or orientation.

Hence, obviously, it is this shape space, not the Procrustes shape space, against
which the biologist should be assessing shape covariances of empirical data sets
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whenever the purpose is to search for patterns of shape features that may or may
not span the length and breadth of an organism over processes of growth, aging,
or evolution.

We can put all this another way: comparisons of the same Procrustes length can have
substantially different bending energies, and thereby substantially different feature lan-
guages. Figure 8.9 shows the scatter of Procrustes distance against bending energy for a
simulation of 1000 isotropic perturbations of a 5 x 5 square grid at unit spacing. (The corre-
lation of these two metrics is about 0.76.) The horizontal segments indicate a slab from near
the middle of this distribution that spans a more than twofold range of bending energy for
nearly constant Procrustes distance. Figure 8.10 shears this slab into a square plot and puts
a little icon for the actual grid transformation at every point. Those toward the left are less
bent and those toward the right more bent at given Procrustes length. Figure 8.11, finally,
extracts three representative grids from the extreme left and likewise at the right, showing
how the contrast between Procrustes length and bending energy is, precisely, the contrast
between short-range and longer-range disorder in the shapes of the little grid polylines here.
The simulations in the upper row, based in the 5 x 5 equivalent of the shape coordinates
of the right-hand panel in Figure 8.6, would be a carefully structured oversampling of the
perturbations tending to have the least bending energy for each slab in Figure 8.9.

The two magnitudes for 1000 simulations, 5x5 grid

0.015

0.010

Squared procrustes distance

0.005

0.0

0.0 0.005 0.010 0.015 0.020
Bending energy

Figure 8.9 Squared Procrustes length versus bending energy for an isotropic sample of
perturbations of a square 5 x 5 grid. The short segments indicate the slab extracted for
closer examination in the next figure.
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Figure 8.10 Vertical expansion of the slab from Figure 8.9, including an icon for each of
the grid perturbations in this region.

8.4 Two examples

I would like to demonstrate the usefulness of this approach by way of two examples, each
deriving from a data set that has been the object of study and manipulation not only by me
but also by Mardia himself.

The first of these is my data set of midsagittal corpus callosum outlines gathered on a
sample of 45 adult Seattle males, 30 of them with a pre-existing diagnosis in the fetal alco-
hol spectrum and the other 15 apparently normal. Mardia’s description of these data can be
found in Mardia et al. (2013). The Procrustes scatter we are examining is as in the guide
figure in Figure 8.12(a): 40 points, of which only one is a proper landmark (the rest being
sliding semilandmarks as explained in, e.g., Bookstein 2014), for the two-dimensional pro-
jection of the points along the curve of greatest local symmetry following around the waist
of the corpus callosum, the neural structure that links the two halves of the cortex of the
human brain. For the isotropic offset Gaussian distribution on this mean form, the rotation
to eigendirections of our bending energy formalism is a function of the mean form alone;
then it ought not to be associated with variances after the rotation. However, when we actu-
ally examine this pattern, Figure 8.12, we see that that naive expectation of isotropy is not
fulfilled. Instead, variances drop in nearly inverse proportion to specific bending energy,
connoting exactly the pattern of self-similarity we just confirmed in Figures 8.7 and 8.8. In
this interpretation, the emergence of ordinary Procrustes principal components (cf. Book-
stein et al., 2001, 2002) as large-scale aspects of variation is not a property of the tissue per
se, but only of the method of analysis.
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Figure 8.11 Grid transformations of extremely low (a) or high (b) bending for the given
Procrustes distance. These are the three leftmost and rightmost grids, respectively, in the
preceding figure.

A second example shows a falloff of variance with bending energy that is even more
rapid than what we just saw in the brain data. The data undergoing reanalysis are the
celebrated Vilmann rodent skull octagons originally analyzed by me in Bookstein (1984)
and subsequently reanalyzed in (Bookstein 1991; 1994; 2014; 2015), Bookstein and Mit-
teroecker (2014), and Kent et al. (2001). There are eight landmarks involved, hence five
nontrivial eigenvalues of the bending energy matrix. Figure 8.13 shows the five correspond-
ing eigenvector scores as Cartesian (x,y) pairs (the so-called partial warp scores) along
with the uniform term, which does something quite interesting over the course of growth
from age 7 to 150 days in these 18 rats. At the lower right is a sketch showing the lie of this
octagon in situ (the rat is facing to the right).

Following a hint from Bookstein (1991), it helps to approach trends such as these as
dimensions of a composite quadratic growth-gradient that can be fitted by appending six
more terms to the two-dimensional affine subspace that is already part of the standard
decomposition (see the JJ-matrix in Bookstein 2014, Section 7.3 [which was originally work
joint with Mardia]). In this sample of forms, there is only one dimension of such a quadratic
component, corresponding to the left-hand grid in Figure 8.14. This feature does not, how-
ever, exhaust the correlated variation in the data. There is also an entirely local (i.e., not
quadratic) term in the ordinary first Procrustes principal component of the nonaffine change
(Figure 8.14(b)). This pattern modifies the growth gradient by a little twitch at the upper left
(the top of the back of the head) that matches the corresponding grid feature at the upper
left in the grid for the last (most bent) partial warp, Figure 8.13 (far right, second row).
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Figure 8.12 Toward the large-scale end of the callosal data set, the scaling of variation
by eigenvectors of bending energy falls exactly inversely to bending energy, resulting in a
spherical distribution after the standardization. Variation of these extended neural structures
thus appears to be self-similar in the sense of the text. (a) The original Procrustes scatter,
40 points by 45 cases. Lower row: least-squares estimates of scaling dimension, all partial
warps (b) or the 10 of the largest scale only (c).

We can move this into a more formal modeling context by actually plotting the variances
of the partial warps (projections of the eigenvectors of bending energy) by their eigen-
value. As Figure 8.15 shows, these fall into two sets: a quartet with variance dropping with
bending even faster than inversely, left panel, together with an orphan term, the smallest
scale partial warp, showing specific local variation over time. In place of the loglinear fit
to the scaling subset, at left, one might explore a modification that includes a nugget effect
like the one previously suggested by Mardia et al. (2006) for the analogous application to
variance components alone. In the present setting, a nugget would stand for an irreducible
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Figure 8.13 The five partial warp score two-vectors, plus the uniform component, for
the 18 Vilmann rat skulls imaged at eight ages each. Each partial warp is shown along
the principal component of its own partial warp scores, except that the uniform term (far
left column) is displayed separately for its 7-to-30-day (upper) and 30-to-150-day (lower)
orientations. Below right: the octagon of landmarks for a typical specimen cut midsagittally
(up the middle of the skull, Source: from Bookstein 1991.

component of landmark perturbation that is uncorrelated with everything else, near or far,
in its diagram. A least-squares estimate of this nugget term is 0.01142, which is most of the
variance 0.016 of the second-last partial warp in Figure 8.13 but only a small fraction of the
variance 0.21 of the largest-scale partial warp and an even smaller fraction of the variance
0.37 of the uniform term. Of course, in a sample of a mere 18 growing rats observed at 8
landmarks only, it is pointless to argue that the magnitude of this nugget effect has been
identified with any precision.

This graphical representation with respect to the a priori basis of the partial warps, as
exemplified in Figure 8.12 or Figure 8.15, is a limited view of a more formalized multivari-
ate analysis, the relative eigenanalysis of Procrustes shape covariances with respect to the
bending energy matrix. The algebra of this matrix maneuver, which is classical, was recently
reviewed in Bookstein and Mitteroecker (2014) in a more general biometrical context. Its
role in the modeling of scale-specific morphometric features was previously sketched in
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Figure 8.14 Summary of the single dimension dominating this covariance structure. (a)
The large-scale (quadratic) growth gradient. (b) The first principal component of nonaffine
growth, combining this gradient with a spatially focused additional feature at IPP (upper
left margin of the configuration).
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Figure 8.15 More detailed model of the Vilmann rodent skull. After the nugget correction,
the diminution of variance with bending scales with dimension —2.2, much faster than
self-scaling. The local term (fifth partial warp; Figure 8.13, rightmost column) is an entirely
separate feature.

Bookstein (2007), under the name of “relative intrinsic warps,” and well before that was
introduced via the “relative warps” defined in Section 7.6.1 of Bookstein (1991). But please
note that the meaning of the technical term “relative warps’ has changed since then. The sub-
jectin 1991 was what Rohlf (1993) renamed “relative warps with o = 1,” whereas today’s
relative warps are, by convention (at least, within the community of people saying that they
are using “geometric morphometrics”), those with v = 0 — see, for example, Weber and
Bookstein (2011), Chapter 4.
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8.5 Some final thoughts

The point I am making is a methodological one, and it is far from trivial. For a statistical
method to be of much use in any specific scientific application (here, in organismal biology),
its models of variability and noise must be aligned to some extent with the actual patterns of
variability or noise that characterize the real phenomena of that science or the explanations
that customarily are found to account for those phenomena. In the application to covariance
structures of biological shape, for the last twenty years or so our attention has been uncom-
fortably stretched between two extreme poles: the isotropic offset Gaussian model, which is
totally disorganized and thus could not correspond to patterns from any actual living thing
(if your features manifested no meaningful covariances across space or time, you would
not have been liveborn), and the general model of unspecified positive-semidefinite covari-
ances, which, in morphometric applications, has far too many parameters to be of much
use in discriminating between models of quite different import that are equally reasonable
a priori. This unsuitability of current statistical shape analysis for studies of actual living
things has been masked by the simultaneous turn to the models of industrial biometrics and
proteomics, which emphasize molecules over larger scale features of organisms and also
privilege strategies of identification or classification in preference to the search for trends,
equilibria, or other dynamical modes of explanation. In effect, we have been emphasizing
control over understanding here in morphometrics, and we have been doing so long enough
that our main toolkit has actually suffered some deformation of its own.

The model of self-scaling in landmark systems serves two functions, then. First, it has
arisen as a point null model, a specific proposed covariance structure that is not remotely the
sphere of the isotropic Procrustes shape model but that can nevertheless serve as a plausible
null in some circumstances, for example, the regulation of brain form as we explored it in
Figure 8.12. Its second function, though, might be even more important. If you ignore the
nugget, which was just me showing off, the slope of the curve in Figure 8.15 is a single addi-
tional parameter for the organization of complex biological systems, a parameter that links
the case of complete biomechanical homogeneity (which involves no gradients at all) to the
case of isotropic Gaussian variation (which involves no organization) by a one-parameter
family having a specific meaningful value of 1 (self-scaling) along its dimension. We can
thus decompose biologically meaningful shape variations by a scheme that brings with it a
system of the associated rhetorical tools: self-similarity or, by contrast, large-scale gradi-
ents (the curve in Figure 8.15) often paired with local features such as the outlying partial
warp 5 here (which is too local to be self-scaling even while the rest of these rodent skull
configurations are too global to be).

In the morphometrics of organisms, we do not want our null models to involve meaning-
less noise, the way they do in ordinary linear modeling. Instead, we want the noise terms
to be meaningful expressions of the part of biological shape that is in fact being ignored
by the organism, presumably for good reason, at the same time that it is actively manag-
ing the rest. (This has been a theme of theoretical biology for at least 50 years. Consider,
for instance, the comment from the embryologist Paul Weiss during the 1956 meeting on
“concepts of biology” (Weiss 1958): “Identical twins are much more similar than any micro-
scopic sections from corresponding sites you can lay through either of them.” Or the equally
nuanced insight of Walter Elsasser, in his Chief Abstractions of Biology (Elsasser 1977), that
the crucial problem of representation in organismal biology is the selection of a finite set of
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constructs worth measuring out of the effectively infinite class of things that might be quan-
tified, whether theoretically pertinent or not.) The issue for organismal biology is not mere
hypothesis testing or the estimation of posterior probabilities. It is, rather, the far deeper
issue of understanding the actual sources of variation encountered in samples of forms, and
the developmental and evolutionary origins of that variation; likewise the sources of dimen-
sions that do not vary, and the origins of that canalization; likewise the explanations of how
features pass back and forth between these two complementary domains over the course of
developmental and then evolutionary time. The models that appear in the molecular sciences
are impoverished by comparison, as they offer so much less to explain.

The set of strategies that this organismal context suggests for spatiotemporal method-
ology, strategies that seem mostly to be missing from the work of others over in the related
domain of geostatistics (see, e.g., Cressie and Wikle 2011), can be viewed as a generaliza-
tion of the emphasis that was already present in Mardia’s work on bilateral symmetry in
the late 1990s. Bilateral symmetry is, after all, a version of integration, probably the most
intuitively familiar we’ve got. Our reinterpretation of symmetry analysis in terms of com-
plementary subspaces of symmetrical versus asymmetrical dimensions in shape space is a
discrete analogue to the continuous rescaling of Procrustes variation according to bending
energy that is being proposed here, following on Mardia’s work of a decade ago, and the
notion of the hyperplane of exactly symmetric structures against which all this geometry
of asymmetry is calibrated is the analogue of the exactly self-scaling covariance structure
that the corpus callosum data set here hints at, the structure that at last justifies the exactly
self-scaling intrinsic random field models proposed in Mardia et al. (2006).

With Mardia it usually works like that. Typically he has his tools in hand years or decades
before they are called out by the queries of others. All through the course of his long career,
Kanti Mardia has made a habit of unearthing fundamental aspects of applied statistics along
these lines — places where radical changes in the scope of uncertainty that is being modeled,
and in the style of that modeling, bear huge implications for the understanding of the signal
that remains — by seeing the corresponding analytic possibilities before anybody else has
suspected their existence. Always, too, he has pursued the specific sort of concern I am
concerned with here: the provenance of a single new parameter that enables the radical
reorganization of one or another applied field. In this domain of descriptive features of
landmark configurations, his fundamental intellectual strategies — the tie between splines
and kriging, the role of Bayesian inferences in high dimensions, the willingness to dive into
virtually any applied domain in search of new problems — usually provide the rest of us with
the best hints we can muster about the directions in which to search for the most promising
new discrete parameters.

Mardia’s work on the spatial structure of deformation maps, greatly underappreciated
in its initial incarnation, deserves far more attention than it has thus far received. Once the
associated display conventions are more fully developed, the feature language it sketches
against a background of self-similar processes will bear powerful implications for a whole
host of spatiotemporal problems in organized systems from the scale of the Earth or even
the solar system down to climate, biomes (ecosystems), single organisms, and their organs,
tissues, and, ultimately, molecules. If the job of the applied mathematician is to find what is
mathematizable in the world, then Mardia’s self-assigned task has always been to find what
is mathematizable in our uncertainty about the world, and then phrase the new language(s)
necessary for reporting on that uncertainty. He has pursued this goal doggedly for more than
half a century, and his innovations now make possible a thoroughgoing reformulation of the
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very field, geometric morphometrics, that he was responsible for bringing to the attention
of the mathematical statisticians in the first place. I am honored to be part of this Festschrift.

8.6 Summary

The familiar Procrustes metric of contemporary morphometrics is fundamentally unsuited
to organismal biology for a variety of reasons. One is the unrealistic nature of its symmetries,
which involve uncorrelated errors at every digitized landmark separately contra the biolo-
gist’s intuition of organisms as integrated systems of very high dimension. Another is the
refractory nature of its covariance modeling: either a sphere in shape space, which is wholly
unrealistic in these applications, or else some version of a general positive-semidefinite
alternative that affords no practical possibility of meaningful biometrical pattern analysis.
This essay reminds the reader of a different possibility: analysis with respect to the bend-
ing energy metric of the associated thin-plate splines, a metric closely associated with the
intrinsic random field model of Mardia et al. (2006). To this approach corresponds a postu-
late of self-similar shape variability apparently aligned both with the cognitive psychology
of the search for characteristics of groups in systematic biology, physical anthropology, and
medicine and with the rhetoric used to convey such patterns once unearthed. The model
appears relevant to understanding two of our standard data sets, the Vilmann rodent skull
octagons and the midline corpus callosum semilandmark 40-gons from my study of the
brain in the fetal alcohol spectrum disorders. A closing comment speculates on how this
project exemplifies Kanti Mardia’s approach to statistical science in general.
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9.1 Introduction

Shape-based statistical methods for medical imaging started around the early nineties (see
Bookstein 1991; Dryden and Mardia 1998) and the first nonparametric methods started
being used slightly later. A classical medical imaging library that was heavily used in devel-
oping nonparametric tests in medical imaging was the one resulting from the Louisiana
Experimental Glaucoma Study (LEGS), consisting of two types of imaging outputs: Heidel-
berg Retina Tomograph (HRT) images and stereo pairs of images of the back of the eye (see
Burgoyne et al. 2000). The LEGS images are from Rhesus monkeys retinae. Tragically, the
animals survived all the experiments, only to fall victims of the hurricane Katrina in 2005.
In each of the individuals in the LEG study, an increased internal ocular pressure (IOP) was
induced in one eye, while the other eye was left as control. Both eyes were imaged, and for
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each individual in the study, a complete set of observations, both HRT and stereo pairs were
stored. The stereo pairs consisting of four optic nerve head (ONH) images were processed
only in 2008 or later. They consisted of two images of the control eye (A) and two of the
treated eye (B). Section 9.2 is dedicated to a review of results of nonparametric shape data
analysis for HRT and stereo LEGS library data. HRT image data allows a recovery of the
similarity shape information; therefore, for such data, the analysis is performed on the space
Y% of direct similarity shapes of k-ads in 3D, known as Kendall shape space. Along these
lines, we recall results from Derado et al. (2004) and from Bhattacharya and Patrangenaru
(2005). For the stereo LEGS data, the camera parameters are unknown, thus only 3D pro-
jective shape data could be recovered. A 3D projective shape change analysis due to Crane
and Patrangenaru (2011) is, therefore, pursued in this part of Section 9.2.

In Section 9.3, we focus on the important task of recovery of 3D data from CT scans of
the human skull. This task includes preprocessing and postprocessing steps for CT images.
The preprocessing step consists of the extraction the boundary of the bone structure from
the CT slices, while the postprocessing step consists of 3D reconstruction of the virtual
skull from these bone extractions. Given that the bilateral symmetry of the skull allows
for a 3D size-and-reflection shape analysis on a manifold, therefore, in Section 9.4, we
briefly introduce the general nonparametric bootstrap on manifolds methodology, based on
extrinsic means and extrinsic sample covariance matrix computations. Next, in Section 9.5,
we introduce in detail the 3D size-and-reflection shape space SRE;’;O, as orbifold (space of
orbits of the action of the orthogonal group O(3) on centered k-ads in general position in R?.
The Schoenberg embedding, the Schoenberg extrinsic mean, and the asymptotic behavior of
the Schoenberg sample mean are also given in this section, for which the main reference is
Bandulasiri et al. (2009). In Section 9.6, we present preliminary results for skull shape anal-
ysis based on bootstrap distributions of the Schoenberg’s sample mean size-and-reflection
shape for a selected group of k anatomical landmarks, and report a confidence region for
the Schoenberg mean configuration of the corresponding k-ads on the midface.

The third part of the chapter is dedicated to examples of nonparametric analysis on
homogeneous spaces applied to MRI brain imaging. The first example, following results
from Osborne et al. (2013), is given in Section 9.7. There a two-sample test for DTI intrin-
sic means, based on their nonparametric methodology, was applied to a concrete DTI small
data set previously analyzed by Schwartzman et al. (2008), consisting of a voxelwise com-
parison of spatially registered DT images belonging to two groups of children, one with
normal reading abilities and one with a diagnosis of dyslexia. The data provides strong evi-
dence of differences between the intrinsic means of the two groups. The second example in
Section 9.8 is on the infinitely dimensional homogeneous space of direct similarity shape of
contours, in the context of neighborhood hypothesis testing on manifolds, as it was recently
developed in Ellingson et al. (2013). As an illustrative application, a test is carried out to
see how far is the average direct similarity shape of contours of the midsection of corpus
callosum in elderly people from that of Albert Einstein, at the time when he just passed away.

9.2 Shape analysis of the optic nerve head

Since glaucoma is a disease affecting the 3D appearance of the ONH region due to high IOP,
it leads to a change in the 3D shape of this region. Given the small sample size of the LEGS
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Figure 9.1 Change in the ONH topography from normal (a) to glaucomatous (b) (Source:
Derado et al. 2004, Figure 3, p. 1243. Reproduced by permission of Taylor and Francis
http://www.tandfonline.com).

data, any analysis has to undergo a drastic dimension reduction. For shape data, a first step
in the dimension reduction consists of a selection of a few significant anatomical landmarks.
In the case of HRT outputs, each “image” was presented in the form of a series of 256 x 256
2D arrays of ONH height values from a plane spanned by the ridge of the ONH cup. Due
to the increased IOP, as the soft spot where the ONH enters the eye is pushed backward,
eventually, the optic nerve fibers that spread out over the retina to connect to photoreceptors
and other retinal neurons can be compressed and be damaged. Two processed images of the
ONH cup surface before and after the IOP increment are shown in Figure 9.1.

Regarding landmark-based dimension reduction analysis, assume that the position vec-

tors of these landmarks are X, ..., X,k > 4. Two configurations of landmarks have the
same Kendall shape, if they can be superimposed after a direct similarity. The Kendall shape
of the configuration z = (11, ...,z;) is labeled o(z) and the space ¥ , of shapes of con-

figurations of £ points in R™" at least two of which are distinct introduced in Kendall (1984)
is the Kendall shape space of k-ads in m dimensions.

We now return to the shape of an ONH region, which resembles a “cup” in the shape
of half an ellipsoid with an ellipse-shaped margin. Following Patrangenaru et al. (2000), in
Bhattacharya and Patrangenaru (2005) four landmarks were used; the first three, denoted by
S, T, and N were chosen to be the “top, left, and right” points on this ellipse, that is, (when
referring to the left eye) Superior, Templar, and Nose papilla (see Derado et al. 2004). The
fourth landmark, V, was called vertex, the deepest point inside the ellipse bordering the ONH
cup; therefore, in Bhattacharya and Patrangenaru (2005) the data analysis was carried out on
the shape space of tetrads, 3, which is topologically a 5 dimensional nonstandard sphere,
according to Kendall et al. (1999), p. 33. On the other hand, it is known that if a proba-
bility distribution on ¥¥, has small support outside a set of singular points, any distance
that is compatible with the orbifold topology considered is not relevant in data analysis
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Figure 9.2 Landmarks on the ONH for HRT outputs (Source:Derado et al. 2004, Figure 1,
p. 1242. Reproduced by permission of Taylor and Francis http://www.tandfonline.com).

(Dryden and Mardia 1998, p. 65) as the data can be linearized. Therefore, for practical
considerations, distances that are derived using a partition of unity and Euclidean distances
in various coordinate domains of 333 are useful for such distributions. In Dryden and Mardia
(1998), pp. 78-80, five coordinates, that were later called DM coordinates by Bhattacharya
and Patrangenaru (2005), were defined on the generic subset of Kendall shapes of nonde-
generate tetrads in Y3, and labeled v',...,v°. The five DM coordinates proved useful in
detecting a significant glaucomatous means shape “difference” due to the increased IOP,
as shown in Bhattacharya and Patrangenaru (2005). Nevertheless, since it was preferable
to have a single medical measurement to detect glaucoma from HRT outputs, Derado et al.
(2004) defined a glaucoma index and showed that this index is useful in mean shape change
detection (Figure 9.2). Due to its simplicity, the landmark-based glaucoma index method,
is cited in the medical literature (see Hawker et al. 2007; Sanfilippo et al. 2009).

In the case of stereo data of the back of the eye, which is the most common imaging
data for eye disease detection, Crane and Patrangenaru (2011) developed a landmark-based
projective shape analysis approach. They analyzed data from LEGS consisting of fifteen
independent complete paired observations of stereo pairs. Figure 9.3 displays the fifteen
independent stereo pairs of observations. Unlike with HRT data, which is 3D from the out-
set, in the case of stereo imaging, one has to retrieve the 3D structure of the landmark
configuration from its stereo pair images. The problem of reconstruction of a 3D configura-
tion of points from a pair of its ideal noncalibrated camera images was solved by Faugeras
(1992) and Hartley et al. (1992), who showed that:

Theorem 9.2.1 A finite configuration C of eight or more points in general position in 3D
can be reconstructed from the coordinates of the images of these points in two ideal non-
calibrated digital camera views, and the reconstruction R is unique up to a projective
transformation in 3D.

This projective ambiguity in Theorem 9.2.1 was reinterpreted in Sughatadasa (2000),
Patrangenaru et al. (2010), Crane and Patrangenaru (2011) as follows:

Corollary 9.2.2 The projective shapes of the 3D configurations of points R and C in
Theorem 9.2.1 are identical.
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Figure 9.3 Optic nerve head region data (Source: Crane and Patrangenaru (2011),
Figure 2, p. 232. Reproduced by permission of Elsevier).

Among reconstruction algorithms, Crane and Patrangenaru (2011) suggested using the
eight-point algorithm in Ma et al. (2006, p. 121), for a conveniently selected camera
internal parameters matrix, or the refined eight-point algorithms for the estimate of
the fundamental matrix (Ma et al. 2006, p. 188, p. 395), (Hartley and Zisserman 2004,
p. 282). For details on the reconstruction of the projective shape of a 3D configuration
from the pixel coordinates of two of its digital images, see Patrangenaru et al. (2010)
and the references therein. In a study by Crane and Patrangenaru (2011), coordinates
of nine landmarks on the approximate elliptic contour of the ridge of the ONH were
recorded, as well as those of certain blood vessels junctions and estimated location of
the deepest points. These included the landmarks considered for HRT data. They were
S(superior), I(inferior), N(nasal), T(templar), V(vertex-the deepest point of the ONH
cup), SM(mid-superior), IM(mid-inferior), NM(mid-nasal), and TM(mid-templar), and
their positions in the ONH cup are schematically displayed in Figure 9.4. Note that
projective shape analysis can be performed using different approaches, by representing
a projective shape on a certain projective shape space. The most recent approach, due
to Kent and Mardia (2012), has the advantage of being independent of the landmark
labels. On the other hand, the projective frame approach (Mardia and Patrangenaru
2005; Patrangenaru et al. 2010) has the advantage of being rooted in projective geometry
and computationally faster; no 3D projective shape analysis was so far published using
the approach in Kent and Mardia (2012). Moreover, in 3D, the projective shape space
obtained via the projective frame approach has a Lie group structure, thus allowing a
two-sample test for mean projective shape change in matched pairs to be reduced to a
one-sample test. For such reasons, in their projective shape analysis of mean glaucomatous
projective shape change, Crane and Patrangenaru (2011) used a projective frame approach,
by selecting the projective frame 7= = (N, T,S,I,V). For the analysis, the projective
coordinates (defined in Mardia and Patrangenaru 2005) of the remaining four landmarks
(hy il Tho gl [hs il [hy ji), 5 = 1,2, =1,...,15 were computed with respect to this
frame. To test if there is a difference between the extrinsic mean projective shape change
from the configuration in the control eye and the treated eye, given the small size of the
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Figure 9.4 Nine anatomical landmarks of the ONH for one stereo image (Source: Crane
and Patrangenaru (2011), Figure 3, p. 235. Reproduced by permission of Elsevier).

sample, Crane and Patrangenaru (2011) computed the bootstrap statistics 7., s = 1, 2, 3, 4,
in Patrangenaru et al. (2010) for the four RP? marginals for 20,000 resamples. The
histograms for the bootstrap distributions of 77,s=1,2,3,4 corresponding to the
marginal axes are displayed in Figure 9.5 (see also Crane and Patrangenaru 2011). The
values of the statistics 7, s = 1,2, 3,4 under the null hypothesis of no projective shape
change are T| = 1474.7,T, = 2619.9, T; = 860.2, T, = 1145.7, and since the T}, T}, T,
and 7T are much larger than the corresponding cutoffs given earlier, there is a significant
mean projective shape change due to the increased IOP in the treated eye.

It is worth noting that while test statistics for mean glaucomatous Kendall shape change
based on HRT outputs, including tests for mean glaucoma index change in Derado et al.
(2004) are easier to compute, most ophthalmologists cannot afford an HRT, while any oph-
thalmologist has access to stereo cameras designed for eye fundus imagery; thus, tests for
mean projective shape change due to glaucoma onset might be more useful for the onset of
glaucoma detection.

9.3 Extraction of 3D data from CT scans

In this section, our main focus is on preprocessing and postprocessing steps of CT images.

9.3.1 CT data acquisition

The CT images were taken using a computed tomography device (CT scanner). This was
done for twenty-eight individuals. A computed tomography (CT) scan uses X-rays to make
detailed pictures of structures inside the body. A CT scan is used to study all parts of the
human body. In this study, one CT scan in our data set consists of about 100+ X-rays of the
head above the mandible per individual. Figure 9.6 displays an example of one CT scan of
an individual in our data set.
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Figure 9.5 Histograms for the bootstrap distributions of 77,s =1,2,3,4 for 20,000
resamples (Source: Crane and Patrangenaru (2011), Figure 4, p. 236. Reproduced by per-
mission of Elsevier).

Figure 9.6 CT scan of an individual.
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9.3.2 Object extraction

Numerous methods of thresholding and segmentation have been developed for object
extraction from 2D for 3D display Harris and Camp (1984), Robb (1996), Serra et al.
(1997), and Sher (1977). Surface rendering (Gibson et al. 1998; Heffernan and Robb 1985;
Herman and Liu 1977; Lorensen and Cline 1987; and Robb 1994) and volume rendering
(Cabra et al. 1994; Drebin et al. 1988; Kaufman et al. 1993; Levoy 1988; Pflesser et al.
1998; Robb 1994; and Robb and Barillot 1989) are two different techniques that have
traditionally enabled the visualization of 3D biomedical volume data (images). Both
techniques produce a visualization of selected structures in 3D volume data (images), but
one should note that the methods involved in these techniques are quite different, and each
has its advantages and disadvantages. Selection between these two approaches is often
based on the particular nature of the biomedical image data, the application to which the
visualization is being applied, the desired result of the visualization, and computational
resources. Here, we focus on surface rendering techniques. Surface rendering, when based
on a sequence of stacked 2D images, requires the extraction of contours (the edge of the
intersection of the object with each slice, in our case of 2D slice level the skull surface).
Then, a tiling algorithm is applied that places surface patches (or tiles) at each contour
point and with hidden surface removal and shading, the surface is rendered visible. The
advantage of this technique lies in the relatively small amount of contour data, resulting
in a fast 3D rendering (reconstruction) speeds. The disadvantages may vary depending
on object extraction (or segmentation) software or algorithms. Ideally, one would like to
extract all objects of interest from 3D volume data (images) quickly and accurately. In
other words, the extracted object should be a good representation of the original object
inside the image. Here, we explored various segmentation methods in order to extract the
bone structure from the CT slices and then perform 3D reconstruction of the virtual skull
from these bone extractions.

9.3.2.1 Segmentation: minimizing the geodesic active contour

Segmentation is a well-studied area, and it is usually formulated as the minimization of a
cost/energy function subjected to some constraints. Segmenting 3D image volumes slice by
slice using image processing techniques is a lengthy process and requires a postprocessing
step to connect the sequence of 2D contours into a continuous surface (3D reconstruc-
tion). Caselles et al. (1997) introduced the geodesic active contour (GAC) algorithm, as
an enhanced version of the snake model of Kass et al. 1988. The GAC algorithm is defined
as the following variation problem:

|C]
min {Egac[C]) where EgyolC] = / G(IVI(C(s) ). o)

In (9.1) |C| is the Euclidean length of the curve C' and dl the Euclidean element of arc. The
edge detection function, g € (0, 1] in Equation (9.1) has the following meanings: values
close to 0 are at strong edges in the image I, whereas values close to 1 are not at edges in
the image I. |V I| acts as an edge detector. In particular, VI is the gradient of the gray level
along the curve C'(s) Caselles et al. (1997). A (local) minimal distance path between given
points is a geodesic curve. To show this Caselles et al. (1997) used the classical Maupertuis
principle from dynamical systems (Caselles et al. 1997), which essentially explains when
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an energy minimization problem is equivalent to finding a geodesic curve in a Riemannian
space (see also Milnor 1963). Typically, to find the global optimal solution of Equation
(9.1), graph-based approaches are commonly used which rely on partitioning of a graph
that is built based on the image I. Unfortunately, such approaches can lead to major sys-
tematic discretization error problems. Appleton and Talbot (2006) presented an approach
that minimizes the GAC energy using continuous maximal flows. The amazing gain from
their approach is that it does not suffer from any discretization errors. Bresson et al. (2005)
produced a different approach, which uses the weighted Total Variation. The weighted Total
Variation or simply weighted TV is defined as

TVg(u):/Qg(mﬂVde. 9.2)

TV, (u) is the weighted gradient of u. The active contour C' is a level-set of a function
u :0,a] x [0,b] — R.In other words, u is an implicit representation of the active curve C,
since C coincides with the set of points u = constant. Bresson et al. showed that under
certain conditions, namely if w is a characteristic function 1. then Equation (9.2) is equiva-
lent to Eqac in (9.1). The details are provided in Bresson et al. (2005). In order to find the
geodesic curve, the corresponding steepest descent flow of Equation (9.2) is computed. If
we allowed u to vary continuously in [0, 1], then Equation (9.2) becomes a convex function,
meaning that one can compute the global minimizer of it. Unger et al. (2008) proposed the
following variational image segmentation algorithm:

m[(l)nl] {Eq..} where Eg,, = / g(2)|Vul|dQ + / AMx)|u — f|dQ. 9.3)
u€el0, QO Q

Here, the first term of the energy is the weighted TV of u as defined in Equation (9.2), which
minimizes the GAC energy. The second term is used to incorporate constraints into the
energy function. The variable f € [0, 1] is provided by the user, and it indicates foreground
(f = 1) and background (f = 0) seed regions. The spatially varying parameter A(z) is
responsible for the interpretation of the information contained in f. Figure 9.7 displays ten
3D reconstruction based on the method of Unger et al. (2008) summarized earlier.

9.4 Means on manifolds
9.4.1 Consistency of the Frechet sample mean
Consider a separable metric space (M, p) and a random object
X (QAP) — (M,B,). 9.4)

Given a probability measure () associated with a random object X on a metric space M
with the distance p, a natural index of location is the Fréchet mean (Fréchet 1948; Ziezold
1977) which is the minimizer of

F(p) = E(p*(p. X)) = / P (p. 2)Q(dx), ©.5)

if the minimizer is unique. The set of all such minimizers form the Fréchet mean set.
Bhattacharya and Patrangenaru (2005) showed that if the Fréchet mean set has only one
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Figure 9.7 Select 3D reconstruction results via segmentation.

point (Fréchet mean), then the Fréchet sample mean (set) is a strongly consistent esti-
mator of the Fréchet mean. In this paper, we define the definition of a distance between
size-and-reflection shapes just like that presented in Bandulasiri and Patrangenaru (2005)
and Bandulasiri et al. (2009). The Fréchet mean is called extrinsic mean if the distance p
is induced by an embedding j : M — E¥, and intrinsic mean if the distance p is induced
by a Riemannian structure on M. Furthermore, the extrinsic (intrinsic) sample mean is a
consistent estimator of the extrinsic (intrinsic) mean.
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The projection map P; : F'© — j(M) is defined as
Pi(p) = j(x) if dy(p,j(M)) = dy(p, j(x)), (9.6)

where d,, is the Euclidean distance and F° is the set of nonfocal points of M in EV. In
a study by Bhattacharya and Patrangenaru (2003), it was shown that if X is a j-nonfocal
random object on M, then the extrinsic mean is given by

;=3 (Pi(B((X)))), 9.7)

where P; is the projection on j(M). Furthermore, if we let X = (Xy,...,X,,) be i.i.d.
M-valued random variables with nonfocal measure @ on (M, 5) and if the mean j(X) of
the sample j(X) = (j(X,),...,7(X,,)) is anonfocal point, then the extrinsic sample mean
is given by

X, =5 (PuGOX))) - 9.8)

The extrinsic sample covariance matrix, which shows in the extrinsic T? asymptotic statis-
tics (see Bhattacharya and Patrangenaru 2005), is

JEn = sz (Pj(m))} a=1,...,m

HZ APy (@) - ea (PG| m] y (9.9)

,,,,,

where S, =n"t SN ((X,) —j(X))(j(X,) — j(X))T is the sample covariance and
(ea(y),a =1,...,N)is an orthoframe field around P;(j(X)), whose first m vectors are in

T,j(M),y € j( ), and d5zy Py 1s the differential of P; at the sample mean j(X).

9.4.2 Nonparametric bootstrap

Efron’s nonparametric bootstrap methodology (Efron 1982) is extremely useful in data
analysis on manifolds where the sample is small. If {X,.},_; , is a random sample from
the unknown distribution @, and { X'}, _; , is a bootstrap resample from {X,.},_; ,,
then S} g, is obtained from S, p, substituting Xy,..., X, for X;,...,X,. For
example, if n is not large, from Bhattacharya and Patrangenaru (2005) it is known that a
100(1 — «)% nonparametric bootstrap confidence region, for the extrinsic mean pj is

given by D;, , == j~'(V,: ), where

S, 2 tany, ) (B GEX0) = PP < di o). 9.10)

Vo ={n€jM):n|S

Here tanp( v) is the tangential component of v with respect to the splitting T,EN = T, M &
(T,M)* and d;_, is the upper 100(1 — «)% point of the values

1S5 b, e (P, GOX) — PGP ©.11)

among the bootstrap resamples. This region has coverage error Op(n’Q).
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9.5 3D size-and-reflection shape manifold

9.5.1 Description of SRX%

We consider configurations x = (z!, ..., z"), which consist of ¥ > 3 labeled points in 3D,

called k-ads. These k-ads are in general position (i.e., the minimal affine subspace contain-
ing the landmarks in x spans R?) and they represent k locations on an object. Translation
is removed by centering the k-ad x = (2%,...,2%) to

E=(,.. . Mg =2 —TVji=1,... k 9.12)

The set of all centered k-ads form a vector subspace L} C (R3)* = M(3,k;R) of dimen-
sion 3k — 3, where
L} = {¢ € M(3,k;R), €1, = 0}. 9.13)

The orthogonal group O(3) acts on L} on the left, via the action « given by (4, &) = AE.
The 3D size-and-reflection shape [x]pg of a k-ad x is the O(3)-orbit of the correspond-
ing centered configuration ¢ under the diagonal action oy, (4, &) = (AEY, ..., A€X) of the
orthogonal group O(3) on the set of all centered k-ads:

[x|ps = {A¢: A€ O(3)}. 9.14)

A k-ad is in general position if and only if {&;, ..., &, } spans R3. The 3D size-and-reflection
shape space SRZ;’{O is the set of all size-and-reflection shapes of k-ads in general position

SRYf o = {[x]gg, rank(x) =3} 9.15)

This space is a manifold because the action of an orthogonal matrix on R? is uniquely
determined by its action on a basis of R?, and a centered k-ad in general position includes
such a basis (Bandulasiri and Patrangenaru 2005). The dimension of SREQO is 3k — 6.
This space, SRY , can be represented as a quotient space (Lj (\{O3})/O(3), where L}
is given by (9.13).

9.5.2 Schoenberg embeddings of SRE’:;O

Bandulasiri and Patrangenaru (2005) introduced the Schoenberg embedding of reflection
shapes in higher dimensions to perform an extrinsic analysis. The Schoenberg embedding
of the size-and-reflection shape manifold is .J : SRE’;VQ — S(k,R), given by

J([€]lrs) = §T§- (9.16)

The range of the Schoenberg embedding of SRY% , is the subset SM, 5 of k x k positive
semidefinite symmetric matrices A with rank(A) =3, A1, = 0. Also M, is the space
of k x k symmetric matrices A with A1, = 0. Dryden et al. (2008) and Bandulasiri et al.
(2009) showed that if the map ¢ from M, to S(k — 1,R), given by ¢(A) = HAHT, where
(1, HT) € O(k), is an isometry, then 1 : SX5 ; — S(k — 1,R), given by

Y([x]rs) = HfoHT, 9.17)

is an embedding; the Schoenberg embedding and the embedding v induce the same distance
on SRY% .
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9.5.3 Schoenberg extrinsic mean on SRZ’g,O

Let X be a random k-ad in general position, which is centered as X, = (X' —

X,..., X" —X) e R}k ~ M(3,k;R).
Theorem 9.5.1 (Bandulasiri et al. 2009)  Assume C = 25:1/\464621 is the spec-

71

tral decomposition of C = FE(X,X,"), and v; = /Aje;, 5 =1,...,k Obviously,
Cl,=0,C >0.Let £ = VT where

V = (v vyv3). (9.18)
Then, the extrinsic mean i size-and-reflection shape exists if \s > Ay and p; = [¢]pg-

Furthermore, if k = 4, then the projection P, is the identity map, and any distribution @ is
y-nonfocal and ¥ (pg) is the mean p of 1(Q). The approach taken in Theorem 9.5.1 is the
same as saying that, given C, £ is a classical solution in R? to the MDS problem, as given
in Mardia et al. (1979) in terms of the three largest eigenvalues of C'.

For estimation purposes, let {X;, . .., X,, } be a sample of k-ads in general position in R?,
where x; = (:c;, . 7.%?), for j = 1,...,n. The extrinsic sample mean size-and-reflection
shape is E = [é} ng» Where é is given by the eigenvectors corresponding to the three
largest eigenvectors of

é:

S|

RIS (9.19)
j=1

assuming that 5\3 > ;\4, where ;\1 > > ;\k are the eigenvalues of C. £ is the classical
solution in R? to the MDS problem (Mardia et al. 1979, p. 397) for the matrix C. Note that
&, 1s the matrix obtained from x; after centering (removing translation). If A; > A,, then
;=[] rg, and [fiyps] ps (see Bandulasiri et al. 2009) is a consistent estimator of [u] .
The asymptotic distribution of the extrinsic sample mean size-and-reflection shape is given
in a study by Bandulasiri et al. (2009).

Related results are given by Dryden et al. (2008) and Kent (1994).

9.6 3D size-and-reflection shape analysis of the human skull

Here, we give a comprehensive application of size-and-reflection shape space SRZQO of
k-ads in general position in 3D. One potential application is to surgery planning, where a
natural approach is to take into account size in addition to shape when analyzing the CT
scan data. In this context, one performs a nonparametric analysis on the 3D data retrieved
from CT scans of adults, on the size-and-reflection shape space SRY% , of k-ads in general
position in 3D. l

9.6.1 Confidence regions for 3D mean size-and-reflection shape
landmark configurations

Once we obtained the 3D reconstruction of the virtual skull from the bone extractions, we
proceed to perform landmark-based analysis based on the Schoenberg embedding. For the
purpose of one analysis, we were interested in £ = 9 and £ = 17 matched landmarks around
the eyes. The landmarks were registered on the reconstructed 3D virtual skulls.
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Figure 9.8 Two groups of landmarks around the eye: (a) k = 17 and (b) k£ = 9.

Here, we consider nonparametric statistical analysis size-and-reflection shape data using
landmarks in which each observation x = (z!,...,2%) and x = (2%,...,z!") consists of
9 points and 17 points in R? (see Figure 9.8). The landmark coordinates can be found in

Appendix A and Appendix B of Osborne (2012), pp. 74-77 and 78-84, respectively.

We remove translation by centering the k-adsx = (!,...,2%)andx = (2!,...,2'") to
g=(¢ . ands=(,....¢)
=2/ —-zVj=1,...,9andj=1,...,17.

The set of these centered k-ads lies in the vector subspace L3 € (R*)” and L3, € (R?)',
respectively. The dimensions of the manifolds SRY ; and SR, are 3k — 6, where k =
9, respectively k = 17.

Finally, in order to estimate the 3D size-and-reflection shape for the selected group
of landmarks, we compute the Schoenberg sample means. That is, we used 500 bootstrap
resamples based on the original 20 skull configurations (k = 9 and k£ = 17), represented by
the 3 by k matrices (where k& was the number of landmarks selected in the analysis). For
the purpose of one analysis, we were interested in £k = 9 and k£ = 17 landmarks around the
eye region. Registered representations, for these mean size-and-reflection shapes yield the
bootstrap mean size-and-reflection shape configurations given in Figures 9.9 and 9.10.

60 80 100 120 140 160
Skull 1

Figure 9.9 Bootstrap distribution for the Schoenberg sample mean configurations k = 9
based on 500 resamples.
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Figure 9.10 Bootstrap distribution for the Schoenberg sample mean configurations k =
17 based on 500 resamples.

Table 9.1 90% Lower confidence limit for the bootstrap distribution of the 3D sample
mean size-and-reflection shape configuration.

Landmark 1 2 3 4 5 6 7 8 9
T —45.76 —28.65 —9.75 —32.06 —-0.90 7.84 27.15 40.79 26.28
y 10.10 —2.37 —5.91 027 —19.20 —3.84 0.86 10.04 —0.06
z —0.19 973 424 —-11.67 —-8.06 3.00 —12.70 —1.70 9.36

Table 9.2 90% Upper confidence limit for the bootstrap distribution of the 3D sample
mean size-and-reflection shape configuration.

Landmark 1 2 3 4 5 6 7 8 9
T —42.03 —24.44 -—-7.27 —28.29 0.41 10.19 30.65 44.52 30.30
Y 11.85 —-0.93 —3.39 1.82 —15.92 —1.69 252 1283 4.17
z 1.43 11.12 593 —-10.02 —-5.73 483 —11.25 —0.32 13.08

In addition, we provide a 90% simultaneous confidence limits for the 3D mean
size-and-reflection shape configuration are given in Tables 9.1 and 9.2. Similar tables,
with 90% simultaneous confidence bounds for the 3D mean size-and-reflection shape
configuration of 17 landmarks given in Figure 9.8, based on the nonparametric bootstrap
distribution displayed in Figure 9.10, are given in Osborne (2012). For practical purposes,
these simultaneous confidence regions may be used, for example, to design helmets or
other protection devices of the midface area region of an average individual.

9.7 DTI data analysis

In this section, we analyze the DTI data according to the new methodology presented in
Osborne et al. (2013) using a concrete DTI example. The data was collected from two
groups of children, a group of six children with normal reading abilities and a group of
six children with a diagnosis of dyslexia. Twelve spatially registered diffusion MRIs (DT
images) were obtained from the two groups of children, respectively. The prognosis is gen-
erally helpful for individuals whose dyslexia is identified early, who have supportive family
and friends and a strong self-image, and who are involved in a proper remediation program.
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Figure 9.11 DTlI slice images of a control subject (a) and of a dyslexia subject (b) (Source:
Osborne et al. (2013), Figure 1, p. 171. Reproduced by permission of Elsevier).

In Figure 9.11, we display DTT slices including a given voxel recorded in a control subject
and a dyslexia subject.

Commonly in DTI group studies, a typical statistical problem is to find regions of the
brain whose anatomical characteristics differ between two groups of subjects. Typically, the
analysis consists of registering the DT images to a common template so that each voxel cor-
responds to the same anatomical structure in all the images and then applying two-sample
tests at each voxel.

Osborne et al. (2013) presented a nonparametric analysis of a single voxel at the inter-
section of the corpus callosum and corona radiata in the frontal left hemisphere that was
found in Schwartzman et al. (2008) to exhibit the strongest difference between the two
groups. Table 1 in Osborne et al. (2013) shows the data at this voxel for all 12 subjects. The
d;; in the table are the entries of the DT on and above the diagonal (the below-diagonal
entries would be same since the DTs are symmetric).

For this analysis, the primary goal is to demonstrate that the nonparametric two-sample
testing procedure in Section 3 of Osborne et al. (2013) is able to detect a significant differ-
ence between the generalized Frobenius means of the clinically normal and dyslexia groups
without increasing the dimensionality in the process. For distances, other than Riemannian
ones, on the set Sym™(3) of 3 x 3 positive definite matrices, see Dryden et al. (2009).
Namely, we are interested in detecting, on average, from diffusion tensor images (DTI),
dyslexia in young children compared to their clinically normal peers, without making any
distributional assumptions.

Given two independent populations with ii.d. samples of random SPD matri-
ces X;1,Xy9,...,X,,, €Sym*(3) from the clinically normal population and
Xy1, X5, X5, € Sym™(3) from the dyslexia population with sample sizes
of ny =6 and ny, =06 and the total sample size n =n; +n, =12, where, for
a=1,2,X,, ~ [ip,, the sample generalized Frobenius mean for the clinically normal
population and dyslexia population is given by

0.6318 0.0046 —0.0924 0.6146 —0.0261 —0.1910
T p=1| 0.0046 0.9863 —0.0873 | and z, = | —0.0261 0.8118 —0.0901
—0.0924 —0.0873 0.7803 —0.1910 —0.0901 0.9537
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Figure 9.12 Marginals of the bootstrap distribution for the generalized Frobenius sample
means for d;;, dsy, ds3, djy, di3, and dys; clinically normal (light gray) versus dyslexia
(dark gray).

The test statistics 7" and V/, previously described in Osborne et al. (2013), are given by

. 0.9862  0.0000  0.0000 —0.0139  0.0000  0.0000
T =1-0.0485 0.9067 0.0000 | andV = | —0.0513 —0.0980 0.0000
—0.1487 —0.0152 1.0781 —0.1446 —0.0153 0.0752

In addition, let tAij and v;; correspond to the entries of the test statistics T and V on and

below the diagonal (since the test statistics T and V are lower triangular matrices).

In order to test hypothesis 3.9 or hypothesis 3.10 from a study by Osborne et al. (2013),
for § = I;, we repeatedly resample observations from the original data and compute the
generalized Frobenius sample mean for each respective group. The generalized Frobenius
sample means are computed as described in Section 2 of a study by Osborne et al. (2013).
Figure 9.12 displays a visualization of the bootstrap distributions of the Generalized Frobe-
nius sample means. They used 10,000 bootstrap resamples and computed the bootstrap
generalized Frobenius sample mean for each respective group.

In addition, for each bootstrap resample, we calculate the Cholesky decomposition of
the bootstrap generalized Frobenius sample mean for each respective group and then pro-
ceed to calculate the bootstrap distribution of our test statistics T and V as described in
Equation (3.16) of Osborne et al. (2013). Figures 9.13 and 9.14 display a visualization of
our nonpivotal bootstrap distribution of our test statistics 7" and V.

Under the null hypothesis 3.10 of Osborne et al. (2013), 6 = I; on T"(3,R) or
log(671) = 0, on the vector space T(3,R) of lower triangular 3 x 3 matrices; however,
after visually examining Figures 9.13 and 9.14, we informally conclude that there is a
significant difference between the generalized Frobenius means of the clinically normal
and dyslexia group, since the 7%, and V5 values do not overlap with d,, = 1, respectively,
and with 03 5, = 0. Moreover, we also observed that the distributions of Ty, Vi and T3,
V3 barely touch 433 = 1,05 35 = 0 and 03, = 0, 03 5, = 0.
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Figure 9.13 Bootstrap distribution of our test statistics T The images (1-3) in the first
row correspond to the diagonal entries of the matrices 7: ¢, tyy, t55 and images (4—6) in
the second row corresponds to the lower triangular off-diagonal entries of the matrices T
91, 31, 3o (Source: Osborne et al. (2013), Figure 2, p. 172. Reproduced by permission of
Elsevier).
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Figure 9.14 Bootstrap distribution of our test statistics V: The images (1-3) in the first
row correspond to the diagonal entries of the matrices V*: v;;, 45, v33 and images (4-6)
in the second row corresponds to the lower off-diagonal entries of the matrices V*: vy,

V31, U32-

These results are formally confirm at level «, that there is significant evidence that the
clinically normal and dyslexia children display on average different DTI responses. The
results were obtained by constructing a 100(1 — «)% — simultaneous bootstrap confidence
intervals, as described in Remark 3.8 of Osborne et al. (2013), for Tz j and V - Tables 2 and 3
in Osborne et al. (2013) display the results of the Bonferroni 100(1 — )% — simultaneous
bootstrap confidence intervals for Tl ; and V; ; at various significance levels: for example, the
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94% simultaneous c.i. for Ty, and Ty; are (0.8488,0.9600) respectively, (1.0085,1.1465),
and the simultaneous c.i. 94% for V,, and Viy are (—0.1640 — 0.0409) respectively
(0.0084,0.1367), both pointing to a significant mean difference between the two groups
of children.

9.8 MRI data analysis of corpus callosum image

Albert Einstein’s brain was removed shortly after his death (most likely without prior family
consent), weighed, dissected, and photographed by a pathologist. Among other pictures, a
digital scan of a picture of General Relativity creator’s half brain taken at the autopsy is
displayed subsequently. The corpus callosum (CC) connects the two cerebral hemispheres
and facilitates interhemispheric communication. It is the largest white matter structure in
the brain. We extracted the contour of the CC from this Einstein’s brain image, the shape of
which would be set at the center of a null hypothesis in our testing problem (see Figure 9.15).

Fletcher (2013) extracted contours of CC midsagittal sections from MRI images, to
study possible age-related changes in this part of the human brain. His study points out
certain age-related shape changes in the corpus callosum. Given that Einstein passed away
at 76, we consider a subsample of corpus callosum brain contours from Fletcher (2013), in
the age group 64—83, to test how far is the average CC contour from Einstein’s. The data is
displayed in Figure 9.16.

We consider contours, boundaries of 2D topological disks in the plane. To keep the
data analysis stable, and to assign a unique labeling, we make the generic assumption that
across the population there is a unique anatomical or geometrical landmark starting point
Py on such a contour of perimeter one, so that the label of any other point p on the contour
is the “counterclockwise” travel time at constant speed from p,, to p. A regular contour 7 is
regarded as the range of a piecewise differentiable regular arclength parameterized func-
tion~y : [0, L] — C,~(0) = (L), that is one-to-one on [0, L). Two contours 7, , 7, have the
same direct similarity shape if there is a direct similarity S : C — C, such that S(3,) = 5.

(b)

Figure 9.15 Right hemisphere of Einstein’s brain including CC midsagittal section (a)
and its contour (b).

@ 65 67 69 @
74 77 m 81 83

Figure 9.16 Corpus callosum midsagittal sections shape data, in subjects ages — 64—83.
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Figure 9.17 Matched sampling points on midsagittal sections in for CC data (Einstein’s is the upper left CC).
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Two regular contours 7, , 7, have the same similarity shape if their centered counterparts sat-
isfy 4, o = M, o, for some A € C\0. Therefore ¥5°%, set of all direct similarity shapes of
regular contours, is a dense and open subset of P(H), the projective space corresponding to
the Hilbert space H of all square integrable centered functions from S to C (see Ellingson
et al. 2013).

We will use the neighborhood hypothesis testing method on the manifold of planar
contours to test if the average shape of the CC in a population of 64- to 83-year-old peo-
ple is close to the shape of Einstein’s CC in the sense of Ellingson et al. (2013). Data in
Figure 9.16 was used to test the hypothesis that the mean CC shape is in a small ball of
radius § around the shape of Einstein’s CC (see Qiu et al. 2014). Note that Fletcher (2013),
from which we borrowed the MRI data, tacitly assumes that the similarity shape is preserved
during the data acquisition. Likewise, frontal pinhole camera images of a planar scene are
similarity preserving (see Mardia and Patrangenaru 2005); therefore, comparing similarity
shapes from data collected using these two methods makes sense.

The closest representatives of the VW sample mean of the shapes of contours of the
CC midsections compared to the shape of Einstein’s CC midsection are displayed in
Figure 9.17. The overlaps of the two contours are rare, which visually shows that the
average CC contour shape is significantly different from Einstein’s. The 95% bootstrap
confidence region for the extrinsic mean CC contour (Figure 9.18), based on a conveniently
selected icons, is given in Figure 9.19.

We set § as the radius of the null hypothesis ball around Einstein’s CC contour shape,
as a point p, on P(H). The maximum value for 6 where the test is significant was found to
be 0.1367, which is quite large taking into account the fact that the diameter of any finite
dimensional complex projective space with the VW metric is /2. The result is explained
by the fact that Einstein’s brain halves had more interconnections than in an average 64-
to 83-year-old individual. This is reflected in the thicker shape appearance of his CC mid-
section; when this shapes are regarded as points on the shape space P(H), p, is a remote
outlier of the cluster of shapes of CCs in the data because these are thinner.

0.06
— Einstein main CC
0.04 —— Einstein CC

0.02

0

-0.02

-0.04

-0.06
-0.1-0.08-0.06-0.04-0.02 0 0.02 0.04 0.06 0.08 0.1

Figure 9.18 Registered icons for 2D direct similarity shapes of CC midsections : sample
mean (light gray) versus Albert Einstein’s (dark gray).

Figure 9.19 95% bootstrap confidence region for the extrinsic mean CC contour by 1000
resamples.
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higher shape spaces
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10.1 Introduction

This chapter aims to enlarge the repertoire of useful distributions on the spaces, %F , of
shapes of ordered sets of & landmarks in R™ with m > 2. It is a pleasure to include it in a
volume dedicated to Kanti Mardia, since he has been so influential in the development of
shape analysis.

The shape of an object is usually understood as the geometrical information that remains
when allowance is made for changes in location, scale and orientation. One standard con-
struction of the shape space ¥ is as follows. Every set of k (not totally coincident) labelled
points x,, ...,X; in R™ can be centred and scaled to give a pre-shape

Z = {tr (XH'HX")}/* XH",

where X = (x,...,x;)and Histhe (k — 1) x k Helmert matrix, that is, the matrix having
Jth row
(hj’ B hj7 _jhjvoa oo 7O)a with hj = {J(J + 1)}71/2
N
J
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forj=1,...,k—1.Then Z is an m x (k — 1) matrix which satisfies
tr(ZZ") = 1.

The set of such pre-shapes Z forms the pre-shape space, S¥,.
The (similarity) shape space, YF,, corresponding to sets of k labelled points in R™ is

obtained from S* by removing the effect of rotations. Thus
S = Sp/SO0(m),

where SO(m) acts on S¥ on the left by

Z — UZ U € SO(m). (10.1)
For a pre-shape represented by an m x (k — 1) matrix Z in S¥,, the corresponding shape in
Y will be denoted by [Z]. The shape spaces ¥ and 5 can be identified with the sphere
S*=2 and the complex projective space C P*~2, respectively; see Dryden and Mardia (1998,
Section 4.1.9) or Kendall et al. (1999, Section 1.4). The uniform distribution on Zf?n is the
distribution of [Z] when Z has the uniform distribution on S¥ . In this chapter, all probability
densities of distributions on X¥ are with respect to the uniform distribution. It is useful to
identify distributions of [Z] on X¥, with distributions of Z on S, that are invariant under
the action (10.1) of SO(m).

The reflection shape space, RXF,, is obtained from S* by removing the effect of rota-
tions and reflections. Thus, R¥F = S* /O(m), where O(m) acts on S¥ on the left by
Z — UZ for U € O(m), generalising (10.1). The function Z +— Z*Z on S¥ provides an
embedding of RYF, in the space of symmetric (k — 1) x (k — 1) matrices having rank r

with 1 < r < m; see Chikuse and Jupp (2004) or Dryden et al. (2008). Distributions on
RYF can be identified with distributions on S”, that are invariant under the action of O(m).

10.1.1 Distributions on shape spaces

The main parametric families of distributions that have been used on shape spaces fall into
the following groups:

(1) offset shape distributions, in which the observed landmarks x;, ..., x; in R are
obtained by subjecting fixed ideal landmarks to appropriate random perturbations;
see Dryden and Mardia (1991), Goodall and Mardia (1991, 1992, 1993), Kendall
(1984), Mardia and Dryden (1989a, 1989b); Dryden and Mardia (1998, Section
6.6);

(ii) distributions on X} that rely on the identification of X5 with CP*~2 obtained by
identifying each real 2 x (k — 1) matrix Z in S¥ with a unit vector z in C*~!.
These distributions include

(a) the complex Bingham distributions of Kent (1994), having densities
f([z]; A) = c¢(A) exp{z" Az}, (10.2)

where A isa (k — 1) x (k — 1) Hermitian matrix;
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(iii)

Thus, for m > 2, only a few families of distributions on X
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(b) the complex Watson distributions of the form (10.2) with A of rank one, so that
the densities have the form
F([2); 5, [1]) = e(x) exp{r|z*p|*},
where  is a scalar and g is a unit vector in C*~1;

(c) the complex Bingham quartic distributions of Kent et al. (2006), having
densities

f(z]; A,B,u) = c(A,B, p) exp{z"Az + R ((z*u)zzTBz)}7 (10.3)

where A and B are (k — 1) x (k — 1) complex matrices with A negative-
definite Hermitian and B symmetric, and g is a unit vector in C*~! with Ay =
Bp = 0;

(d) the complex angular central Gaussian distributions of Kent (1994; 1997) on
¥5, having densities

f([z); A) = |A| (z"Az) Y (10.4)

where A is a positive-definite (k — 1) x (k — 1) Hermitian matrix;

(e) the rotationally symmetric distributions on X%, having densities
f([z); [w. ) = ey (k) exp{—ro(1 — [2"w[*)},

where w is a unit vector in C*~1, k is real and ¢ is a positive function; see
Dryden and Mardia (1998, Section 6.5);

the shape Bingham distributions of Chikuse and Jupp (2004) on XX | having
densities

FUZIA) = F (1/2im(k — 1)/ A®1,) 'exp{tr(AZ'Z)},  (10.5)

where A is a symmetric real (k — 1) x (k — 1) matrix. For m = 2, the distribu-
tions (10.5) are the complex Bingham distributions (10.2). For m > 2, Chikuse and
Jupp (2004) showed that the distributions (10.5) are the Bingham distributions on
Sk that are O(m)-invariant. The distributions with densities (10.5) are invariant
under reflection, and so can be regarded as distributions on R,

k

m

have been explored. Of

these, the shape Bingham distributions (10.5) have the disadvantage that they are concen-
trated near the shapes of collinear landmarks.

In Section 10.2, we introduce various families of distributions on ¥¥, that are gener-

alisations of the complex angular central Gaussian distributions (10.4). The shape Bing-
ham distributions and the distributions of Section 10.2 are invariant under reflection, so in
Section 10.3 we modify them to obtain shape distributions that allow departures from such
symmetry. Section 10.4 proposes a test of symmetry under reflection.
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10.2 Shape distributions of angular central Gaussian type

Hints on possible ways of generalising the complex angular central Gaussian distributions
(10.4) from X5 to $¥ come from the facts that (a) they are complex versions of the angu-
lar central Gaussian distributions of Tyler (1987) on real projective spaces RPP~!, having
densities

f(£z; A) = |A|V?(2"Az) P2 ze SP (10.6)

where A is a p X p positive-definite matrix, (b) the densities (10.6) have been generalised
by Chikuse (1990) to the matrix angular central Gaussian distributions on Grassmann man-
ifolds, having densities

F(XXTA) = |A]"HXTAX| P2 X e V.(RP), (10.7)

where X is a p x r matrix satisfying X"X = I,. and so representing an orthogonal r-frame
in R?, that is, an element of the Stiefel manifold V,.(R?), while XX" is the matrix represen-
tation of (the orthogonal projection onto) the subspace spanned by this frame, an element
of the corresponding Grassmann manifold.

In this section, we present three families of distributions on ¥ that are analogous
to (10.6) and (10.7). Their densities are proportional to |ZAZ"|~%, {|ZAZ"|/|ZZ"|}
and {tr(ZAZ")}"“, respectively, where A isa (k — 1) x (k — 1) positive-definite matrix.
Details are given in Sections 10.2.1-10.2.3, respectively.

10.2.1 Determinantal shape ACG distributions

The densities (10.7) of the matrix angular central Gaussian distributions suggest the family
of determinantal shape ACG distributions on ¥, which have probability density functions
of the form

F(Z); A, a) = c(a, k,m) {,F,(a,m/2; (k —1)/2;1,_, — A)} ' |ZAZ'|™, (10.8)
where A isa (k — 1) x (k — 1) positive-definite matrix and
(k—1)m/2
c(a, k,m)~t = 7T—/ T|(k=m=2)/2=a g (10.9)
( ) Fm(<k - 1)/2) T>0,trT=1 | |

the integral being over positive-definite m x m matrices T with tr'T = 1. For
a < (k—m)/2,

7T(k_1>m/2F7rL((k - 1)/2 - a)

akm) ™ = Dm0 a7

4

I',, being the multivariate Gamma function given by T, (t)=x™m1/

[[;%, (¢t — (¢ — 1)/2). Without loss of generality, we can assume that

trA = 1. (10.10)
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If (10.10) holds, then the eigenvalues of A lie in (0, 1), so that ,F,(a,m/2;
(k—1)/2;1,_; — A) is defined. The densities (10.8) have the equivariance property

f(ZV]; VAV a) = f([Z];A,a) V €O(k—1), (10.11)

and so form a composite transformation model under the right actions
[Z] — [ZV] VeO(k-1) (10.12)
A—V'AV VeOk-1) (10.13)

of O(k — 1) on ¥, and the space of symmetric (k — 1) x (k — 1) matrices.
In the case k = m + 1, (10.8) becomes

f(Z]; A, a) = c(a)|ZZ"| 77,
whatever the value of A, where

mZ
c(a)™! = 7T/2/ IT| /24T,
Fm(m/2) T>0,trT=1

7™/, (m/2 — a)
r,,(m/2)T(m[m/2 —a] + 1)

If @ > 0 then the density (10.8) is infinite at singular shapes, that is, those for which the
landmarks lie in a proper affine subspace of R, and so rk Z < m. Thus, the distribution
is appropriate for modelling shapes that are clustered near a singular shape. A calculation
based on the polar decomposition of Z and the spectral decomposition of A shows that if
a < 0 then the density has a mode at [Z], where mZ'Z = 11 . is the projection matrix of
R*~! onto the subspace spanned by the 7 dominant unit eigenvectors of A.

Fora < 1/2,

cla) ™ =

Remark
Multiplying the determinantal ACG shape densities (10.8) by the shape Bingham den-
sities (10.5) gives the model with densities

f([Z]; A,B) = c¢(A,B,a)|ZAZ"|"*exp {tr(ZBZ")}. (10.14)

Some lengthy manipulation shows that

k 1)m/2

¢(A,B,a)"" = T (k—1)/2) Z Z > Z 0,10, IO G0 (L)

=0 £5=0 \-01 A0y

X { / |T|k-m=2/2eCy (T) dT}
T>0,trT=1

2 cy (1,1
~ Z m/ ) ( m m)
¢€)\l )\2 - 1 /2 C¢ ( )

C)\IAZ (Ik 1 A’ B) ’

where the polynomials C2'™ of two matrix arguments are defined in e.g. Chikuse (2003,
Appendix A.3). Because of the complexity of the normalising constant ¢(A, B, a), we do
not consider the distributions (10.14) any further here.
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10.2.2 Modified determinantal shape ACG distributions

The singularity in the densities (10.8) (for a > 0) can be removed by replacing |ZAZ"| by
|ZAZ"|/|ZZ"|. This yields the family of modified determinantal shape ACG distributions
on X¥ _ which have probability density functions of the form

FZ); A, a) = ¢(A, q) <||Z£AZZ||) A >0, (10.15)

where

A )_1 qlk=1)m/2 / |T\<’€‘m‘2>/2dT
c(A,a = =
Fm((k - 1)/2) T>0,trT=1

xoFy(a,m/2;(k—1)/2;1;, — A).

Without loss of generality, we can assume that (10.10) holds, and so ¢(A,, a) is defined. The
densities (10.15) have the equivariance property (10.11) and so form a composite transfor-
mation model under the actions (10.12) and (10.13) of O(k — 1). They are also invariant
under reflection, and so can be regarded as densities on REfn.

When a = (k — 1)/2, (10.15) reduces to

)

A 11/9) - m2 |ZAZT|><’“>/2
where

k—1)m/2
W/ |T|(k*mf?)/2dT
Fm((k - 1)/2) T>0,trT=1

= 7 E=Um/2 D ((k — 1)m/2 + 1).

ey (k, mf1 =

In the case k = m + 1, the density (10.15) is constant, i.e. the distribution is uniform, for
all A and a.

A calculation shows that for a > 0 the density (10.15) has amode at [Z], where mZ'Z =
IT, _, whereas fora < 0, the mode is at [Z], where mZ'Z =TI, ,.Here,I1, _andII, .
are the projection matrices of R*~! onto the subspaces spanned by the m dominant unit
eigenvectors of A~! and A, respectively. .

In the case a = (k — 1)/2, the maximum likelihood estimate A of A based on observed
shapes [Z,], . ..,[Z,,] satisfies

. E—11Nn (e Arr) !
A= Nz (ZiAZ§> Z,
mon
which is similar to the equation for maximum likelihood estimation in the angular central
Gaussian distributions; see Tyler (1987).
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10.2.3 Tracial shape ACG distributions

An alternative method of producing distributions on ¥, is to exploit (a) the identification
of SO(m)-invariant distributions on S¥, with distributions on ¥*  that identifies the distri-
bution of Z in 8% with that of [Z] in ©¥,, (b) the identification of Z in S¥, with z = vec Z,
where vec Z is the vector obtained by writing the columns of Z above one another. The form
(10.6) of the angular central Gaussian densities on RPP~! suggests the use of densities on
SPF that are proportional to (z'Bz) . Such a density is SO(m)-invariant precisely when

B = A ®1,,, so that the density of [Z] on XF is
FUZ; A a) = (A, a){tr(ZAZ")} ¢ A >0. (10.16)

These are the tracial shape ACG distributions. In the case a = m(k — 1)/2, z has an angular
central Gaussian distribution, and density (10.16) takes the form

F(Z]; A, m(k —1)/2) = |A|™/*{tr(ZAZ")} k172, (10.17)

If a # 0, then identifiability of A in (10.16) can be ensured by condition (10.10). The densi-
ties (10.16) have the equivariance property (10.11) and so the family (10.16) is a composite
transformation model under the actions (10.12)—(10.13) of O(k — 1). They are also invari-
ant under reflection, and so can be regarded as densities on RXF,.

In the case m = 2, the family (10.17) consists of complex angular central Gaussian
distributions (10.4) for which the Hermitian parameter matrix A is real.

The density (10.16) has a mode at [Z], where mZ'Z =11, _ if a > 0 but mZ'Z =
IT,  ifa <O.

Both diffuse and concentrated tracial shape ACG distributions can be approximated by
shape Bingham distributions. For a near 0 or A = I, _; + B with B near 0,

{tr(ZAZ")}* = {1+ tr(ZBZ")}
~1—atr(ZBZ")
~exp{—atr(ZBZ")},

and so densities of the form (10.16) with A almost a multiple of I,,_; can be approximated
by densities of the form (10.5). On the other hand, for A = Vdiag(ky,...,k;_)V" with
VinO(k—1)andk; > -+ > K,y >0,

w(ZAZ") =, {1 -y (1-2) |y,;|2} |

=2

where ZV = (yy,...,¥._1). If k;/ky is large, then with high probability |ly,[?,...,
|ly1_1||* are small and so

{tr(ZAZT)} " = iy {1 n z (1 - ) ||yi||2}

k—1
—a K;i
=~ Ky €Xp {GZ (1 - K_) ||Yi|2}
i=2 1

=k, ‘e exp {—(a/k)tr(ZAZ")} .
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Thus, concentrated densities of the form (10.16) can be approximated by densities of the
form (10.5).

If a > 0, then the tracial shape ACG distributions (10.16), like the shape Bingham dis-
tributions (10.5), have a mode (which is unique if x; > k) at the ‘collinear’ shape [0~1],
where ~; is a dominant unit eigenvector of A and 6 is any unit vector in R™.

In the case a = m(k — 1)/2, the maximum likelihood estimate A of A based on obser-
vations [Z,], ..., [Z,,] can be obtained from

Ak - ! i {tr (ziAzg)}*1 7'7,,

1=

which is reminiscent of the equation for maximum likelihood estimation in the angular
central Gaussian distributions; see Tyler (1987).

10.3 Distributions without reflective symmetry

The shape Bingham distributions (10.5) and the shape ACG distributions (10.8), (10.15) and
(10.16) are invariant under reflection, and so can be regarded as distributions on the reflec-
tion shape space, RY:¥ . Thus, they can be inappropriate for modelling in contexts in which
the distinction between a shape and its reflection is important. In this section, we introduce
and explore some distributions on ¥, that need not have such symmetries. Our construc-
tion is to alter reflection-invariant densities by multiplying them by suitable non-invariant
functions. This process of modulation of symmetric densities is inspired by the modula-
tion of centrally symmetric densities on R¢ described in Azzalini (2014, Section 1.2). The
modulating functions that we consider exploit the fact that interchanging two columns of a
determinant changes its sign. In Section, 10.3.1 the modulating functions are exponential
functions of determinants involving pre-shapes; in Section 10.3.2, the modulating functions
are linear functions of determinants.

10.3.1 Volume Fisher-Bingham distributions
Multiplying the shape Bingham density (10.5) by a modulating function of the form

exp{za:ba|za|}

yields the density
f([Z]; A, B) = ¢(A,B) exp {tr (ZAZ") + Zb Z,, |} (10.18)

where A is a symmetric (k — 1) x (k — 1) parameter matrix, B is a set of skew-symmetric
m-dimensional (k—1) x -+ x (k — 1) arrays with entries b,, the multi-index « runs
through all (j;...J,,) w1th 1<j<---<j,<k—1, and |Z,| is the determinant
Iz, 2;, )| where Z = (z,... ,zk_l). We may assume that A satisfies

trA =0.
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The parameter B measures the asymmetry of (10.18) under reflection of R™. The model
(10.18) is (a) a full exponential model of dimension (k — 2)(k +1)/2 + (’21) with canon-
ical statistic [Z] — (Z"Z,{|Z,]|}), (b) a transformation model under action (10.12) and
(A, {b,}) — (V"AV {b_}). In the case m = 2, the family (10.18) is the family of com-
plex Bingham distributions (10.2).

To obtain a more manageable model than (10.18), we consider the submodel in which
the densities have the form

F(Z); A, M), k) = c(A, [M], &) exp {tr (ZAZ") + & |MZ'|}, (10.19)

where x > 0and [M] is in 3%, . The parameter  in (10.19) is a measure of asymmetry. When
k = 0, the densities (10.19) reduce to the shape Bingham densities (10.5). The submodel
of (10.19) with x > 0 and M of rank m has dimension m(2k —m — 1)/2. Because the
determinant of a m X m matrix is the signed volume of the m-dimensional parallelepiped
generated by its column vectors, we call the distributions with densities (10.19) ‘volume
Fisher—Bingham distributions’ and those in the submodels with A = 0 ‘volume Fisher dis-
tributions’.

If A = 0 then (10.19) has a mode at [M]. As k — oo, the distribution of [Z] becomes
concentrated near [M].

Remarks

(i) If k =m + 1 then

m?/2
cA,M,nfl:L/ T|~'/2 cosh{x|M||T|"/?
(A = s [mIM T2}
x  F" (A, T)dT,
where OFOUC*1> is a polynomial in two matrix arguments defined in for example,

(A.6.6) of Chikuse (2003). In particular,

m?/2
_ m
(0. M) R) ! =

(T/2)/T D[ cosh{wMI[T| .
m >0,trl'=

(i1) In the case k = m + 2, (10.18) reduces to
F(IZ); A, b) = exp {tr (ZAZ") + |(b, Z") — x(A. D)},

where b is a parameter vector in R*~!. In this case, the models (10.18) and (10.19)
have dimensions (m? + 5m + 2)/2 and m(m + 3)/2, respectively.

(iii) It might be interesting to explore models in which |Z,| in (10.18) is replaced by
other symmetric functions of the eigen-values of Z,.



SOME FAMILIES OF DISTRIBUTIONS ON HIGHER SHAPE SPACES 215

10.3.2 Cardioid-type distributions

Multiplying the shape Bingham density (10.5) or the determinantal, modified determinantal,
or tracial ACG shape densities (10.8), (10.15) or (10.16) by a modulating function of the
form 1 + x|MZT|, where x > 0 is a scalar and [M] is in X , gives probability density
functions of the form

F(Z) Ak M) = F (1/2im(k - 1)/2,A®L,) "

x exp{tr(AZ'Z)} {1+ xMZ"|}, (10.20)
F(Z); A, a5, [M]) = cla, k,m) {oFy(a,m/2; (k= 1) /2T, — A}
X|ZAZ"|* {1+ xMZ"|}, (10.21)
f(Z); A, a,k,[M]) = ¢(A, q) [||Z;‘ZZT|T|]_G {1+x MZ"|}, (10.22)
or
f([Z); A a5, [M]) = c(A, a){tr(ZAZ")} * {1+ x| MZ"|}, (10.23)

where c(a, k,m) is given by (10.9) and ¢(A,a) is an appropriate normalising constant.
Models (10.20)—(10.23) are transformation models under action (10.12) and (A, x, M)
(VPAV, k,MV). A necessary and sufficient condition for any of (10.20)-(10.23) to be
non-negative is that xm~"/2 [IMM"|"/* < 1.

For m =1,k = 3, the space Efn can be identified with the circle, and taking A =0
in densities (10.20)—(10.23) gives the cardioid distributions, having densities f(0; u, k) =
(2m) "1 {1 + Kk cos(f — w)}. It, therefore, seems appropriate to describe general distribu-
tions with densities (10.20)—(10.23) as being ‘of cardioid type’.

Because pre-multiplication of Z by a reflection in O(m) leaves densities (10.5), (10.8)
and (10.14)—(10.16) unchanged, whereas it changes the sign of |[MZ”|, the normalising
constants in (10.20)—(10.23) are the same as those in (10.5), (10.8) and (10.14)—(10.16). It
then follows from the product form of the densities in (10.20)—(10.23) that inference can be
carried out separately on the parameters A and ([M], ). In particular, A and ([M], k) are
orthogonal.

Given a random sample [Z,], ..., [Z, ] from any of the models (10.20)—(10.23), x and
[M] can be estimated as follows. An intuitively reasonable estimator of [M] is [M], where
the columns of M" are the largest m principal components of > | Z!Z,. The (partial)
maximum likelihood estimator (given [M]), i, of K satisfies

Z IMZ;|
14 #|MZ?|
and is unique.

10.4 A test of reflective symmetry

A natural hypothesis on a distribution on 3¥ is that it is invariant under reflection of shapes.
The following simple randomisation test is based on (signed) volumes of simplices formed
from suitable subsets of m + 1 landmarks. Given a sample [Z,], ..., [Z,,] of shapes in ©¥ ,
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it is intuitively reasonable to reject the null hypothesis of invariance under reflection if the

value of )
roy (z |zm|) |
i=1

[e3

is large. Here, o runs through all (j; ... j,,) with1 < j, <--- < j, <k —1,and|Z; |is
the determinant |(z; ;.. .,%; ;, )|, where Z; = (2, 1, ...,2; ;). Significance of the value
of T' can be assessed by comparing it with its randomisation distribution, in which |Z, |
is replaced by ,|Z; ,| and (¢4, . . ., ¢,,) has the uniform distribution on {—1, 1}". The ran-
domisation distribution can be enumerated for small n or simulated for large n. This test
is consistent against all alternatives to reflective symmetry in models (10.18), (10.19) and
(10.20)—(10.23).

10.5 Appendix: derivation of normalising constants

The normalising constants of distributions (10.8), (10.14) and (10.15) can be derived using
the polar decomposition Z" = HT'/? of Z (which has rank m with probability 1), in which
He Vm(R’“’l) and T > 0. Calculations based on (A.6.4), (A.6.6) and (A.2.7) of Chikuse
(2003) show that [ H"AH| ® = | Fy(a, (I, — H"AH)) and that

[ EAE) = R @l - AT
HEV,, (RF1)
=oF(a,m/2; (k= 1)/2;1, , — A),

which leads to the normalising constant of (10.8). The normalising constants of the other
distributions can be obtained similarly.
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Elastic registration and shape
analysis of functional objects

Zhengwu Zhang, Qian Xie, and Anuj Srivastava
Department of Statistics, Florida State University, Tallahassee, FL, USA

11.1 Introduction

Professor Kanti Mardia and his colleagues have led the advancement of ideas and tools in
the field of statistical shape analysis of objects for more than two decades. This progress has
been triggered by a confluence of tools from geometry, statistics, computing, and imaging,
and has continued in several interesting directions. One area that has seen an increasing
focus is the joint solution to registration and shape comparison problems. Traditionally,
shape analysis has been performed on finite point sets that have been labeled or registered,
that is, one is given a correspondence between points across the sets (Dryden and Mar-
dia 1998; Mardia and Dryden 1989). However, in many real applications, especially those
involving image data, this correspondence may not be available. Thus, one has to solve
for the registration problem as a part of shape analysis. While some early efforts took a
sequential approach, where one registers the objects first and then uses this registration in
subsequent shape analysis, it quickly became clear that a more comprehensive joint solu-
tion is needed. Thus, the simultaneous registration and shape analysis of objects became an
important goal in shape analysis. In this chapter, we summarize advances in elastic shape
analysis, a class of Riemannian solutions that provide a metric-based framework for regis-
tration of points while using the same metric for shape comparisons.
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The objects of interest in shape analysis can vary according to applications. While
shapes of planar, closed contours are of prime interest in image analysis and computer
vision, where objects’ boundaries help us classify objects and their motions, there is also
interest in other types of objects. Some problems require analyzing shapes of curves in more
than two dimensions. An example is protein structure analysis where one studies shapes of
protein backbones (Liu et al. 2010, 2011), as curves in R3. Another object of interest is
the shape of surfaces as embeddings of spheres or discs in R? (Kurtek et al. 2012a). This
is useful, for instance, in medical imaging where one studies shapes of anatomical struc-
tures for diagnosing medical conditions. Shape analysis of surfaces that form boundaries
of 3D objects has also found interest in computer graphics, 3D printing, and visualization.
There are also problem areas that do not directly involve shapes but where the ideas and
methods derived from shape considerations can contribute significantly. An example is the
problem of alignment of real-valued functions, the so-called phase-amplitude separation in
functional data analysis (FDA) in Tucker et al. (2013, 2012), that has benefited from metrics
and procedures developed initially for shape analysis of curves. Such alignment problems
also arise in image registration where a metric-based approach offers significant advantages
in Xie et al. (2012). The extensions of shape analysis of Euclidean curves have also led to
formal studies for comparisons and modeling of trajectories on Riemannian manifolds in
Su et al. (2014).

11.1.1 From discrete to continuous and elastic

As mentioned earlier, a large majority of past statistical analyses of shapes use discrete,
point-set representations, while the more recent trend is to study continuous objects. Since
continuous objects, such as parameterized curves and surfaces, are represented by coordi-
nate functions and functional spaces are typically infinite-dimensional, this change intro-
duces an additional complexity of infinite dimensionality. So, the question arises: Are we
making the problem unnecessarily complicated by using functional representations? Let us
study the options more carefully. Say we are given two sets, each set contains a finite num-
ber of unregistered points, and our goal is to register them and to compare their shapes.
Now the problem of registration is a combinatorial one and adds considerable computa-
tional complexity to the solution. On the other hand, let us assume that the original objects
are parameterized curves: ¢ — (f,(t), f5(t)), for t € D where D is an appropriate domain.
The interesting part in this approach is the following. For each ¢, the pair of points, f;(t)
and f,(t) are considered registered. In order to change the registration, one simply has to
re-parameterize one of the objects. In other words, find a re-parameterization ~y of f, such
that f,(¢) is now registered to f,(v(¢)). Thus, we can find optimal registration (or align-
ment) of curves by optimizing over the variable v under a proper objective function. If this
objective function is a metric that is invariant of all shape-preserving transformations, then
we simultaneously achieve a joint solution for registration and shape comparison. Thus,
parameterization controls registration between curves and an optimal registration can be
found using algorithms with complexity much smaller than those encountered in combi-
natorial solutions. Similar arguments can be made for higher dimensional parameterized
objects, such as surfaces and images, as well. The optimization over parameterization vari-
ability in shape analysis of objects, under a metric with proper invariance properties, leads
to a framework called elastic shape analysis. In this chapter, we summarize the progress
in elastic shape analysis of different types of continuous objects and point out some funda-
mental issues — theoretical and computational — in these areas.
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11.1.2 General elastic framework

Here onward we focus exclusively on parameterized objects — functions, curves, surfaces,
images, trajectories — and use parameterizations to control registrations.

For different types of objects, the choice of mathematical representations and domains
will be different. In the case of FDA and shape analysis of curves, the domain of interest
is D = [0, 1]; for analyzing shapes of surfaces, it is D = S?, and for performing registra-
tion of 2D images, it is D = [0, 1]%. The re-parameterization is chosen to be a direction-
and boundary-preserving diffeomorphism from D to itself, and I' is the set of all such
diffeomorphisms. For instance, in the case of FDA, I is the set of all positive diffeomor-
phisms of [0,1] such that v(0) = 0 and (1) = 1. Similarly, for shape analysis of surfaces T’
includes all orientation-preserving diffeomorphisms of S? to itself. An interesting property
of I" is that it forms a group action under composition, with the identity element given by
the function v, ,(t) = ¢. Therefore, for any two 7, , 7,, the composition v, o 7, is also a valid
re-parameterization, and so is the inverse y~! for any .

The next issue is to decide the objective function so that an optimal re-parameterization
can be found in a variational framework. A seemingly natural idea of performing align-
ment using the criterion inf_ || f, — f, o 7|/, where || - || denotes the I norm, turns out to
be problematic. The main issue is that it allows degeneracy, that is, one can reduce this
cost arbitrarily close to zero even when the two functions may be quite different. This is
commonly referred to as the pinching problem in Ramsay and Silverman (2005). Pinching
implies that a severely distorted  is used to eliminate (or minimize) those parts of f, that
do not match with f;; this can be done even when f, is mostly different from f,. Another
way to state the problem is that one can easily manipulate || f o || into a broad range of
values, by choosing an appropriate . Of course, one can avoid the pinching problem by
imposing a roughness penalty on ~, thus avoiding a severe distortion of ~ys, but it leads to
other issues including asymmetry. A related problem from the registration perspective is
that: || f; — foll # If1 oy — fo o || in general. Why is this problematic? Observe that if
we warp two functions by the same ~: earlier f,(¢) matches with f,(¢), and now f;(v(¢))
matches with f,(v(¢)). Each point-wise registration remains unchanged, but their L2 norm
changes. Hence, the IL.? norm is not a proper objective function to help solve the registration
problem.

The solution comes from deriving an elastic-metric based objective function that is bet-
ter suited for registration and shape comparison. While the discussion of the underlying
elastic Riemannian metric is complicated, we directly move on to a simplification that is
based on certain square-root transforms of data objects. Denoted by ¢, these objects take
different mathematical forms in different contexts, as explained in later sections. The impor-
tant mathematical property of these representations is that ||¢; — ¢5|| = |(¢1,7) — (g2, 7) ||
for all v, where ¢;s represent the objects f;s and (g;,~y) represents the re-parameterized
object (f; o y). This property allows us to define a solution for all important problems:

igfllql — (2,7 = igfll(ql,v) — gl (11.1)

Not only does the optimal v help register the object f, to f;, but also the infimum value of the
objective function is a proper metric for shape comparison of the two objects. (In the case
of shape analysis of curves and surfaces, one needs to perform an additional rotation align-
ment for shape comparisons.) This metric enables statistical analysis of shapes. One can
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compute mean shapes and the dominant modes of variations given a set of shape samples,
develop statistical models for capturing observed shape variability, and use these models
in performing hypothesis tests. While we focus on static shapes in this chapter, these ideas
can also be naturally extended to dynamic shapes.

In the next few sections, we demonstrate applications of this elastic framework in the
contexts of FDA, shape analysis of parameterized curves, shape analysis of surfaces and
2D image registration.

11.2 Registration in FDA: phase-amplitude separation

Recent years have seen an increasing involvement of functional data in statistical
analyses (Ramsay and Silverman 2005; Kneip and Ramsay 2008; Ramsay and Li
1998; Tang and Muller 2008). The variables of interest here are functions on certain
intervals, and one is interested in using these variables in a variety of problems, including
modeling, prediction, and regression. Examples of functional data include growth
curves, mass spectrometry data, bio-signals, human activity data, and so on. These
observations are typically treated as square-integrable functions, with the resulting set of
functions forming an infinite-dimensional Hilbert space. The standard L. inner-product,
(f1, fo) = [fi1(t) fo(t)dt, provides the Hilbert structure for comparing and analyzing
functions. For example one can perform function principal component analysis (FPCA)
of a given set {f;} using this Hilbert structure. Similarly, a variety of ideas, such as the
functional linear regressions, partial least squares, have been proposed for working with
functional data.

A difficulty arises when the observed functions exhibit variability in their arguments.
In other words, instead of observing a function f(¢) on an interval, say [0, 1], one observes
a “time-warped” function f(v(¢)), where  is a time-warping function. This extraneous
effect, termed phase variability, has the potential to add artificial variance in the observed
data and needs to be accounted for in statistical analysis. Let { f;} be a set of observations of
a functional variable f. Then, for any time ¢, the observations { f;(¢)} have some inherent
variability. However, if we observe {f; o v,} instead, for random warpings ~;s, then the
resulting variability in {f;(v;(¢))} has been enhanced due to random ~;s. The problem of
registration of functional data, also called phase-amplitude separation, is an important one
(Srivastava et al. 2011b; Tucker et al. 2013). Given a set of functions { f;} on a common
interval, say [0, 1], the goal is to find a set of warping functions {~, }, such that { f, o v, } are
aligned/registered. Let I" denote the set of all warping functions (positive diffeomorphisms
from [0, 1] to itself) .

We illustrate a solution to this problem based on a Riemannian metric that has origins
in information geometry. This metric can be viewed as an extension of the classical
Fisher—Rao metric, or rather its nonparametric version, from pdfs to a more general class of
functions as mentioned in Srivastava et al. (2011b). While the original form of this metric is
quite complicated, a simplification results from a simple change of variable. For a function
f:[0,1] — R, define a new function called the square-root slope function (SRSF)
according to:

¢:[0,1] =R, q(t) =sign{f()}/|/ ()]
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Figure 11.1 Alignment of two functions: align f, to f;. The middle panel shows the
aligned result.

If the original f is absolutely continuous, then the resulting ¢ is square integrable.
Srivastava et al. (2011b) has shown that the Fisher—Rao metric becomes the L2 metric under
the change of variable f — q. Let f;, f, be two functions that need to be registered and let
41, ¢, be their SRSFs. Then, the registration problem is solved by:

inf [|q, — (g, ©9)V/All = inf [lg, — (@ 0 7)VA- (11.2)
~yel ~yel

The optimization is performed using a numerical procedure called the dynamic program-
ming algorithm. Figure 11.1 shows an example of this alignment between two Gaussian
density functions. After optimization, the two functions are nicely aligned, as shown in (b),
and the resulting optimal warping v* is shown in (c).

In case we have multiple functions that need to be aligned, we can extend the previous
pairwise alignment as follows. We use the fact that the quantity in Equation (11.2) is actually
a proper metric in a certain quotient space and use it to define a mean function. This mean
function serves as a template for aligning other functions, that is, each function is aligned
to this mean function. In fact, the problem of multiple alignment and mean computation are
formulated and solved jointly using an iterative procedure: initialize the mean function p
and iteratively solve for

v; = arg in£||u — (g oNVALi=1,2,...,n,and
~eE

1 n
p==> (g %)V (11.3)

i
A synthetic example of multiple functions alignment is shown in Figure 11.2. Figure 11.2(a)
shows a number of bimodal functions in which the heights and locations of peaks are differ-
ent. The aligned functions are shown in Figure 11.2(b), and the optimal warping functions
;s are shown in 11.2(c).

Next we show one example of the multiple functions alignment in a real data set:
the Berkeley growth data set, which contains 54 female and 39 male subjects. To better
illustrate, we analyze the first derivatives of the growth curves. The results are shown
in Figure 11.3. Figure 11.3(a) shows the alignment result for 54 female subjects and
(b) shows the alignment result for 39 male subjects. The last column shows the mean
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Figure 11.2 Multiple functions alignment. (a) A set of functions which have different
height and peak locations. (b) The aligned result. (c) The optimal warping function +;’s.
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Figure 11.3  Analysis of growth data. (a) The growth data for 54 female subjects. (b) The

growth data for 39 male subjects.

=+ (cross-sectional) standard deviation plot after the alignment. From the result, one can
see that while the growth spurts for different individuals occur at slightly different times,
there are some underlying patterns to be discovered.

11.3 Elastic shape analysis of curves

The framework for function alignment can be easily extended to perform shape analysis
of parameterized curves. Here, the objects of interest are given by parameterized
curves f :[0,1] — R™. (Note that in the case of closed curves, it is natural to use S!
as the parameterization domain, rather than an interval.) The L? metric is given by

(fr. fo) = fy (f1(£), fo(t)) dt and the resulting norm [|f, — f,|| = [ | £, (t) —

Fa(t)Pt,
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where | - | denotes the vector norm. The mathematical representation of curves is in the
form of the square-root velocity function (SRVF) given by Srivastava et al. (2011a) and
Kurtek et al. (2012b):

q:[0,1] = R", q(t) =

The re-parameterization group here is the set of all positive diffeomorphisms of [0, 1]. If ¢
is the SRVF of a curve f, then the SRVF of the re-parameterized curve f o~y is given by
(q o v)v/7; we will denote this by (g, ). Other simple representations of planar curves have
been presented in Bauer et al. (2013).

From the perspective of shape analysis, a rigid motion (or translation), re-parame-
terization, rotation, and scaling of a curve do not alter its shape. The translation has
been removed by the SRVF representation automatically. An illustration of different
parameterizations of a curve is shown in Figure 11.4. The shape of f is exactly the same
as the shape of f o ~, for any . The same holds for the rigid rotation of a curve. For any
O € SO(n), the rotated curve O f(t) has the same shape as the original curve. If we do not
consider the scaling for the moment, this leads to formulation of equivalence classes, or
orbits, of representations that all correspond to the same shape. Let [f] denote all possible
translations, rotations, and re-parameterizations of a curve f. The corresponding set in
SRVF representation is given by [¢] = {O(q,7)|O € SO(n),v € T'}. Each such class
represents a shape uniquely and shapes are compared by computing a distance between the
corresponding orbits.

As mentioned earlier, the SRVF representation satisfies the property that
lall = 1[(a. ), and |lg; — a5l = [[(g1,7) = (a.7)] for all ¥ €T and all ¢, ¢q;,q, € L*.
Using this property, the shape distance between any two shapes is given by

d - inf _ —  inf —gll. 114
([a1] la2]) »yer,érelso(n)HQI O(q2,7) |l Vengelso(n)\l@(ql,v) Pl (11.4)

This optimization emphasizes the joint nature of our analysis — on the one hand, we
optimally register points across two curves using re-parameterization and rotation,
and on the other hand, we obtain a metric for comparing shapes of the two curves.
The optimization over SO(n) and I' is performed using coordinate relaxation —
optimizing over one variable while fixing the other. The optimization over SO(n) uses
the Procrustes method while the optimization over I' uses the dynamic programming
algorithm (Srivastava et al. 2011a). In the absence of any other constraints on the curves,

fom 7 fom V2

Figure 11.4 An illustration of re-parameterization curve in domain D = [0, 27].
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a straight line between ¢, and the registered g,, that is, O*(g,,v*), with these quantities
being the minimizers in Equation (11.4), forms the desired geodesic. However, if we
rescale the curves to be of unit length and/or restrict ourselves to only closed curves,
then the underlying space becomes nonlinear and requires additional techniques for
computing geodesics. We have developed a path-straightening algorithm for computing
geodesics in the shape space of closed curves under the elastic metric, as described
in Srivastava et al. (2011a). Figure 11.5 shows some examples of geodesic paths
between several pairs of closed curves taken from the MPEG7 data set (Jeannin and
Bober 1999). One can see that this joint framework deforms one shape to another in
anatural way — the features are better preserved across shapes and deformations are smooth.

11.3.1 Mean shape and modes of variations

This framework is amenable to the development of tools for statistical analysis of
shapes. For example, given a set of observations of curves, we may want to calculate
the sample mean and modes of variations. Furthermore, we are interested in capturing
the variability associated with the shape samples using probability models. The notion
of a sample mean on a nonlinear manifold is typically defined using the Karcher mean
(Karcher 1977). Let fi, f5,...,f, be the observed sample shapes and q;,qs,...,q,
be the corresponding SRVFs. The Karcher mean is defined as a quantity that satisfies
(1] = argming, 7", d([g], [¢;])%, where d([g], [g;]) is calculated using Equation (11.4),
and p is the SRVF representation of the mean shape f. The search for the optimal
mean shape f can be solved using an iterative gradient-based algorithm (Karcher 1977;
Srivastava et al. 2005; Kurtek et al. 2012b). Figure 11.6 shows some sample mean shapes
calculated using this approach.

Figure 11.5 Each row shows an example of geodesic path between the starting and ending
shapes under the elastic framework.
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Figure 11.6 Mean shapes of four different classes of shapes. Each mean shape (shown in
bottom right) is calculated from shapes on its left.

In addition to the Karcher mean, the Karcher covariance and modes of variation can
be calculated to summarize the given sample shapes. Since the shape space is nonlinear,
we can use the tangent space at the mean shape p, which is a standard vector space, to
perform the statistical analysis. We first map each sample shape onto the tangent space
using inverse exponential map: v; = log,,(g;) , then we define the covariance matrix to
be: C' = ﬁ >, v;vr. Using principal component analysis (PCA) of C, we can get the
modes of shape variation. If PC,, denotes the kth principal direction, then the exponential
map exp,, (tPCy;s;) as a function of ¢ shows the shape variation in PC,, principal direction
with standard deviation s,,. Figure 11.7 shows the modes of variations for different classes
of shapes in Figure 11.6.

11.3.2 Statistical shape models

After obtaining the mean and covariance, we develop probability models to capture the
distribution of given sample shapes. It is challenging to directly impose a probability density
on the nonlinear shape space. A common solution is to impose a distribution on a finite
subspace of the tangent vector space. For example, one can restrict to principal subspace
of the tangent space at mean y. Then, we can impose a multivariate Gaussian distribution
on the principal subspace with zero mean and covariance matrix obtained from the sample
shapes. Figure 11.8 shows the examples of random samples using means and covariance
matrices estimated from shapes shown in Figure 11.6.

While traditional shape analysis removes the transformations resulting from rigid
motions and global scaling in shape considerations, in elastic shape analysis we addition-
ally remove the effects of re-parameterizations. In some situations, however, there is a
need for removing other groups such as the affine and projective groups. For a discussion
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Figure 11.7 Modes of variations: for each class of shapes in mean shape examples (Figure
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on the resulting affine-elastic shape analysis of planar curves, we refer the reader to the
paper Bryner et al. (2014). This paper also describes a framework for projective-invariant
shape analysis of planar objects but using point-set representations rather than continuous
curves, using the ideas first proposed in Kent and Mardia (2012).

11.4 Elastic shape analysis of surfaces

The task of comparing shapes of 3D objects is of great interest in many important
applications. For instance, the shapes of anatomical parts can contribute in medical
diagnoses, including monitoring the progression of diseases (Samir et al. 2014; Grenander
and Miller 1998; Kurtek et al. 2011). The main challenge in such shape analyses comes
from the fact that image data are often collected from different coordinate systems and
data registration becomes a critical part of the analysis. In the following discussion,
we focus on surfaces that are embeddings of a unit sphere S? in R®. In other words,
the surfaces of interest can be parameterized using the sphere according to a mapping
f:S* — R3. For any s € S?, the vector f(s) € R? denotes the Euclidean coordinates of
that point on the surface. The domain of interest is D = S?, and the L2 metric is given by
(f1: fa) = Jo (f1(5), f2(s)) m(ds), with m(ds) denoting the Lebesgue measure on S?, and
the resulting norm is || f; — f5| = fe [f1(s) — fo(s)|*m(ds). Let (u,v) denote the local
coordinates of a point s € S?. Then, the vectors % (s) and % (s) span the two-dimensional
space tangent to the surface at point f(s) and

_of

of
© Ou o

n(s) En

(s) (s)

is a vector normal to the surface at f(s). Its magnitude |n(s)| = \/(n(s),n(s)) denotes
infinitesimal area of the current parameterization at that point and the ratio n(s) /|n(s)| gives
the unit normal vector. The mathematical representation of surfaces, suitable for elastic
shape analysis, termed square-root normal field (SRNF), is defined as (Jermyn et al. 2012;

Xie et al. 2013):

¢:S* =R’ q(s) =

The re-parameterization group here is the set of all positive diffeomorphisms of S2. If ¢
is the SRNF of a surface f, then the SRNF of the re-parameterized surface f o~y is given
by (go~) \/J_v , where J is the determinant of the Jacobian matrix of the mapping 7 :
S? — §?. We will denote this by (g, 7). Similar to the identities presented for previous two
cases, this representation also follows the isometry conditions: for all surfaces f, f;, and
/5, and the corresponding SRNFs ¢, ¢, and ¢,, and all v € T', we have ||¢|| = ||(¢,~)|| and
a1 = @l = (a1, 7) — (2. V)l-

Once again, from the perspective of shape analysis, a re-parameterization and a
rotation of a surface do not alter its shape. The shape of f is exactly same as that of
O(f o), for any v € T and O € SO(3). This motivates the formulation of equivalence
classes, or orbits, of representations that all correspond to the same shape. Let [f] denote
all possible rotations and re-parameterizations of a surface f. The corresponding set in
SRNF representation is given by [g] = {O(g,7)|O € SO(3),~ € I'}. Each such class
represents a shape uniquely, and shapes are compared by computing a distance between
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the corresponding orbits. Similar to curves, the joint registration and shape comparison of
surfaces are performed according to:

il -0 = inf 0(g1,7) — || 115
wer,géso(s)”(h (g2, Wep,géw@)” (41,7) = @l (1L.5)

While the optimization over SO(3) is relatively straightforward, the optimization over
I" is much more difficult here than the curve case. We have developed a gradient-based
approach that uses the geometry of the tangent space 7', | (T). It uses a set of vector fields
that incrementally deform the current grid on f,, so as to minimize the cost function given
in Equation (11.5).

Similar to the case of constrained curves, the task of computing geodesics between
any two registered surfaces is not trivial and requires a path-straightening algorithm (see
Kurtek et al. 2012a). More recently, Xie et al. (2014a) have developed an approximation
that first computes a straight-line geodesic between any two registered surfaces in the SRNF
representation space and then inverts each point along this geodesic to obtain a geodesic in
the surface space. For more details, we refer the reader to these papers.

In Figure 11.9, we show some examples of geodesics between objects including human
hands and animals. In Figure 11.10, we compare the geodesics between surfaces to the
linear interpolation of surfaces. From the results, we can see that the tail part of the cat is
distorted and inflated on the linearly interpolated path, but the tail part is better persevered
along the geodesic path.

Using geodesics, we can define and compute the mean shape using a standard algorithm
for computing Karcher mean. Furthermore, we can define and compute Karcher covari-
ance, and perform PCA on the tangent space at the mean shape. Figure 11.11 displays

NWYy

11144
111X

Figure 11.9 Each row shows an example of geodesic between a pair of objects (the start-
ing and ending shapes) (Source: Xie et al. 2013, Figure 4, p. 870. Reproduced by permission
of IEEE).
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194004
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141X

Figure 11.10 Comparing geodesic to linear interpolation (Source: Xie et al. 2013,
Figure 5, p. 871. Reproduced by permission of IEEE).
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1st PD | ond PD 3rd PD

TTYINTY

Random samples

BUEL L2ALLY

Figure 11.11 Computing mean shape, PC analysis and random samples under a Gaussian
model. (a) Some observations of chess piece. (b) The three main principal components.
(c) Several randomly sampled chess pieces using a Gaussian model are shown (Source: Xie
etal. 2013, Figure 9, p. 872. Reproduced by permission of IEEE).
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the observations and the kth principal directions (PD) by constructing principal geodesics
exp,,(ts;, - PCy,), where PC;, € T,(F) is the kth principal component and s, denotes the
corresponding standard deviation. The PDs are displayed using the triples {exp,,(—s;, -
PC,), j1,exp,,(s;, - PCy) }. This analysis can be used to define a multivariate normal distri-
bution on the principal coefficients. Assume that v is a random deformation of the mean
surface, that is, v € T,,(F) according to the normal model. Then, we can use the shoot-
ing method to get a random sample of surfaces such that f = exp #(v). Several randomly
sampled chess pieces are shown in Figure 11.11c.

11.5 Metric-based image registration

In the problem of image understanding, especially in object recognition and classification
using image data, it is important to perform registration of images during their analysis. The
importance of image registration comes across clearly in many applications. For example,
in developing image templates of different letters and numbers in human handwriting, for
the purposes of automated handwriting recognition, it is important to align images of same
objects before averaging. To improve performance, it is often necessary to perform a non-
rigid alignment, that is, deform one image so as to match its pixel patterns with the other
image as much as possible. While these deformations have been performed using various
energy minimization methods in the past (Viola and Wells 1995; Collignon et al. 1997;
Davies et al. 2002; Twining et al. 2004; Dupuis and Grenander 1998; Trouve 1998; Beg
et al. 2005; Miller et al. 2002; Joshi et al. 2004; Lorenzen et al. 2005; Thirion 1998; Ver-
cauteren et al. 2009; Bookstein 1989; Szeliski and Coughlan 1997; Eriksson and Astrom
2006), a novel idea is to use a proper metric for registration. As described in this section,
there are several distinct advantages in this approach over the conventional ideas.

An image is treated as a function f:D — R", and the image space is
F={f:D—R"| fe(C>®D)}. For a gray-level image, we have n =1, and
for a colored image, we have n = 3. The domain of interest is D = [0, 1], and the L2
metric is given by (fy, fo) = [}, (f1(s), f2(s)) ds. Let I' = Diff " (D) be a subgroup of
Diff ™ (the orientation-preserving dlffeomorphlsm group) that preserves the boundary of
D. A registration of image f; to image f; is to find a diffeomorphism v € I" such that pixel
values f;(s) and f,(v(s)) are optimally matched to each other.

In the elastic framework, the mathematical representation of any image is given by
a square-root map (SRM): ¢(s) = /a(s)f(s), where a(s) is the “generalized area mul-
tiplication factor" of f at s € D It takes the form a(s) = |Jf(s)|,, where |[Jf(s)|,, =
[l 52 LAAN af ;||. Here, A denotes the wedge product, (z!,2%) : D — R? are the coordinates
on (a chart of) D and Jf(s) is the Jacobian matrix of f at s with the (j,)th element
as Of7/0x'(s). The two special cases are as follows: if n = 2, then a(s) = |Jf(s)[; if
and n = 3, then a(s) = || %( ) x 812( s)||- Note that this SRM, by definition, applies to
images such that n > 2. In the case of gray-level images, one can use their gradient images,
(fu, f,)(s) € R?, to fit into this representation. Intuitively, the SRM leaves uniform regions
as zeros while preserving edge information in such a way that it is compatible with change
of variables, that is, stronger edges get higher values.

For f € F and any -, the SRM representation of fo-~ is given by (¢,v) =
v/ |J7|(g o). As mentioned earlier, under this representation, we have ||q|| = ||(g,7)]|
and ||(q1,7) — (g9, V)|l = ll¢y — @s||; for all ¢, q,q, and for all v € T'. For the purpose
of registration, we define an objective function between two images f; and f, by
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L(f1, (f957)) = llay — (g9,7)||- The registration of two images is then achieved by
minimizing the objective function according to:

V= argirnfﬁ(fl, (f2:7)) = arginf llay = (g2, M)1l- (11.6)
~e

~E

The optimization problem over I' in Equation (11.6) forms the crux of our registration
framework and is solved using a gradient descent method as in Kurtek et al. (2010 and
Xie et al. 2012, 2014b).

This registration framework satisfies a list of fundamental properties such as: (i)
it is invariant to simultaneous warping; (ii) it is inverse consistent (Xie et al. 2014b).
Additionally, the optimal registration is not affected by scaling and translations of
image pixels: let ¢, = ¢, f, +d; and g, = ¢y f5 +dy with ¢;,¢c, > 0 and d,;,d, € R", if
7" = arginf. L(fy, (fa,7)) then v* = arginf, L(g;, (g,7)) as well.

In Figure 11.12, we first present some results on synthetic images to demonstrate the
use of the registration framework suggested in Equation (11.6). The images f; and f, are
registered twice by first taking f; as the template image and estimating -, that optimally
deforms f, using Equation (11.6). Then, the roles are reversed and f; is used as the template
to obtain v,. We show the two converged energies, ||(q;, v2) — ¢l and [|¢; — (g2, 791) I,
associated with the optimal 7,5, and ~,; to verify symmetry. The cumulative diffeomor-
phisms 7y, 0 7,5 and 7,4 © 75, are also used to demonstrate the inverse consistency of the
proposed metric. The theory indicates that ,, and -5, are expected to be inverses of each
other. We show the original images f; and f, with the matching warped images f, o vy, and
f1 © 712, respectively. The diffeomorphisms ;, and ~,, learnt to register the images are also
presented. By composing them in different orders, we expect the resulting diffeomorphisms
to be the identity map. In order to better visualize that the composed diffeomorphisms are

fi (fi,7m2) (f2.712)

(f2,721) (f1.%1)

Figure 11.12 Registering synthetic smooth grayscale images. v,, = arginf. . [|(¢;,7) —

% and vy = arginf cr [lg; — (g2,Y)I llay — goll = 0.2312, gy — (g9, 721)[| = 0.0728
and ||(qy, v12) — @2|] = 0.0859 (Source: adapted from Xie et al. 2014b, Figure 3, p. 246.

Reproduced by permission of Springer).



ELASTIC REGISTRATION AND SHAPE ANALYSIS OF FUNCTIONAL OBJECTS 233

close to identity, we apply them to checkerboard images. We observe that the composed
diffeomorphisms -y, © 7y, and 75 0 5, are close to the identity map.

In Figure 11.13, we present registration results using 2D brain MR images. In order
to illustrate our method, in each of the two experiments, we show (i) the original images
overlapped f, / f5 and (i) overlapped images after registration (f,/ f, © 9, and f5/ f1 © 715).
The overlapped images show image pairs in a common canvas.

When objects in images have some specific landmarks, either provided by experts or
some additional data analysis, they can provide some guidance in defining image corre-
spondence. Automated registration methods routinely produce results that conflict with
our contextual knowledge, and annotated landmarks provide a way to reconcile these two
ideas. The framework can be further extended so that landmark information is incorporated
during registration and all of the nice mathematical properties of the objective function are
preserved.

Two pairs of 2D brain MR images are used to illustrate this procedure. In Figure 11.14,
we want to register f; to f,. Four landmark points are provided and are displayed in each
image. The images are first registered using only the landmarks, with a kernel-based
approach, and the resulting deformed image is f/™. We further deform f/™ by applying

Example 1

filfa Jilf2 0 v21 Jol f1 o2

Example 2

filfa filfa oy fal f1 0112

Figure 11.13 Two examples of brain MR image registration (each row as an example).
First column shows overlapped original images f; and f,; second column shows overlapped
images f; and deformed f,; third column shows f, and deformed f, (Source: adapted from
Xie et al. 2014b, Figure 4, p. 247. Reproduced by permission of Springer).
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fi f2

Figure 11.14 Two examples of brain image registration with landmarks. In each
experiment, the top row shows the original images f; and f,, and in the bottom row, the
first column shows the deformed images f/™ using only landmarks; the second column
shows the final deformed images (f{™,~) with fI™ as the initial condition; and the last
column shows the registered images ( f;, v) without involving landmarks (Source: adapted

from Xie et al. 2014b, Figure 5, p. 248. Reproduced by permission of Springer).
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our registration method as in Equation (11.6) with restricted vector fields, specified by a
set of basis so that the landmark points remain intact. The final result is shown as (f{™,~)
and are compared to registration without landmarks as f{". The optimally deformed f,
without landmark information is displayed in the last column as (f;,~) as a baseline. Since
the deformation in the skull is so large that our method gives a local solution. By adopting
the landmark-aided registration, we at first get a deformed image f/™, with the landmarks
nicely matched and the skull deformed correspondingly. Then f{™ is further deformed
to register the intensity details without moving the landmarks. The final result (f™, ~)
matches f, with no artifacts around the skull. Generally, the registration with landmarks
outperforms registration without landmarks.

11.6 Summary and future work

We have presented an overview of elastic shape analysis for several kinds of objects, includ-
ing Euclidean curves, surfaces in R3, real-valued functions on [0, 1], and 2D images. The
analysis is characterized by a simultaneous registration of points across objects and compar-
isons of their shapes. The key idea is to restrict to parameterized objects and to use param-
eterization as a tool for registration under metrics that are invariant to all shape-preserving
transformations, including re-parameterizations. The use of such metrics is facilitated by
square-root mappings of original data because under these mappings, the original metrics
become the standard I.? metric. For each of the data type considered, we present the corre-
sponding square-root transformation and demonstrate some associated statistical tools.

In terms of future work, there are several questions associated with this framework that
remain open. An important issue in choosing the elastic metric (or the related square-root
representation) is the uniqueness. For instance, in the context of FDA and phase-amplitude
separation, one can pose the question: Are there other transforms that allow, under the L2
metric, an appropriate framework for function registration? In fact, there exist other map-
pings, for example, f(t) — G(f(t), f(t))1/|f(t)|, where G is an arbitrary function of f
and f , that leads to isometry under the .2 norm. However, their pros and cons in different
situations need to be explored further.

Another important area in shape analysis of curves is the groups beyond the similarity
transformations. We have already mentioned the paper by Bryner et al. (2014) that provides
affine-invariant shape analysis of elastic curves. However, such an elastic analysis of planar
curves that is invariant under projective transformation group, remains to be developed.
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12.1 Introduction

In the twenty-first century, we can build large, complex statistical models that are very much
similar to the scientific processes they represent. We use diagnostics to highlight inadequa-
cies in the statistical model, and because of the complexity many different diagnostics are
needed. This is analogous to the process of diagnosis in the medical field, where a suite of
diagnostics is used to assess the health of a patient.

This chapter is focused on evaluating model diagnostics. In the medical literature, a
structured approach to diagnostic evaluation is used, based on measurable outcomes such
as Sensitivity, Specificity, Receiver Operating Characteristic (ROC) curves, and False Dis-
covery Rate (FDR). We suggest using the same framework to evaluate model diagnostics
for hierarchical spatial statistical models; we note that the concepts are the same in the
nonspatial and nonhierarchical setting, although the specific proposals given in this chapter
may be difficult to generalize.
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12.1.1 Hierarchical spatial statistical models

The statistical models that we use to model a spatial process involve many sources of
uncertainty, including uncertainty due to the observation process, uncertainty in the spatial
process, and uncertainty in the parameters. A hierarchical spatial model allows us to
express these uncertainties in terms of conditional probabilities that define, respectively,
the data model, the process model, and the parameter model (e.g., Cressie and Wikle 2011,
Chapter 2).

Suppose that Y = {Y(s) : s € D} is a spatial process of scientific interest, where D
is a known region in the d-dimensional Euclidean space R?. We use a spatial statistical
model that depends on unknown parameters, ,,, to quantify our uncertainty in the scientific
process of interest, and we use a data model that depends on unknown parameters, 6, to
quantify our uncertainty in the measurement process. The joint distribution of Y, given all
possible parameters 6 = (GdT, 0§)T, can be written as,

[Y|e] = [Y0,], (12.1)

where [A|B] is generic notation for the probability density or mass function of A given B.
We call (12.1) the process model.

Due to measurement error and incomplete sampling, the scientific process is not directly
observed. Instead, Z = (Z(s;),..., Z(s,))" is observed, whose uncertainty can be quan-
tified through the data model,

In a fully Bayesian model, uncertainty in the parameters is quantified through a parameter
model,
[9] = [0d79p]a (123)

where recall that 6, and 0, are the parameters from the process model and the data model,
respectively.

The use of conditional distributions to specify a hierarchical statistical model is a pow-
erful way to model complex dependence structures with many sources of uncertainty. Using
Bayes’ Rule, the posterior distribution for the process and the parameters, which forms the
basis for inference in a Bayesian hierarchical model, is given by,

[Y,6|2] = [Z]Y, 0][Y|6][6]/[Z]. (12.4)

Statistical modeling is commonly undertaken to make inference on (i.e., predictions
for) the spatial process Y. The usefulness of the hierarchical framework is demonstrated by
comparison with a nonhierarchical-model specification. Bayesian, nonhierarchical statisti-
cal models implicitly integrate over the process model to obtain the posterior distribution,
01Z] = [,,[Z|Y, 6][Y|6][6]/[Z])dY. When Y is not included in the model specification,
the scientific relationships and the observation process are confounded. This has impor-
tant implications for diagnostics because uncertainty in the measurement process is very
different from uncertainty in the scientific process.

12.1.2 Diagnostics

Once we have specified a hierarchical spatial statistical model and fitted it to the data Z, we
use diagnostics to “stress-test” the model, to assess whether it is adequate for our purposes.
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There is a wide range of diagnostics that we may use to do this, because the meaning of
“adequate” depends on the purpose of fitting the model in the first place. Analogous to
a medical diagnostic, each model diagnostic should be looking for something unusual, to
indicate an inadequacy in the model.

The general features of common statistical-model diagnostics are well known and found
in many statistical texts (e.g., Carlin and Louis 2009; Gelman et al. 2013; Huber-Carol et al.
2002), including those for hierarchical models (e.g., Banerjee et al. 2004; Cressie and Wikle
2011) and those for spatial data (e.g., Cressie 1993; Gelfand et al. 2010; Schabenberger
and Gotway 2005). They include diagnostics to assess residuals (e.g., Belsley et al. 1980;
Cook and Weisberg 1982; Cox and Snell 1968; Fox 1991; Kaiser et al. 2012), parameter
estimates (e.g., Bousquet 2008; Evans and Moshonov 2006; Presanis et al. 2013), modeling
assumptions (e.g., Goel and De Groot 1981; O’Hagan 2003; Scheel et al. 2011), and prior
distributions (e.g., Hill and Spall 1994).

Many diagnostic criteria derive from probability measures (e.g., Crespi and Boscardin
2009; Meng 1994; Steinbakk and Storvik 2009), which may or may not be associated with
an explicit hypothesis test. Alternatives include visualizing a diagnostic (e.g., Bradley and
Haslett 1992; Massmann et al. 2014; Murray et al. 2013) and identifying “interesting” values
heuristically or using an empirically derived “rule of thumb.”

For hierarchical models, we typically wish to diagnose the adequacy of the model fitted
to [Y'|0,]. However, Y is not observed. Instead we observe data Z, which includes measure-
ment error and possible summarization and approximation. Loy and Hofmann (2013), Yan
and Sedransk (2007), and Yuan and Johnson (2012) are general references, and an impor-
tant class of hierarchical-model diagnostics is based on predictive distributions (e.g., Box
1980; Gelfand et al. 1992; Gelman et al. 1996; O’Hagan 2003).

Diagnostics for spatial statistical models (e.g., Anselin and Rey 2010; Christensen et
al. 1992; Cressie 1993; Cressie and Wikle 2011; Gelfand et al. 2010; Glatzer and Miiller
2004) are more complex due to spatial dependence between locations (e.g., Baddeley et
al. 2005; Kaiser et al. 2012; Lee and Ghosh 2009). Global diagnostics applied to the fitted
model give an indication of the overall adequacy of the model, but they do not assess the
fit of the model at particular locations (e.g., Hering and Genton 2011). Here, local statistics
can be powerful diagnostics (see Fotheringham 2009; Fotheringham and Brunsdon 1999,
for a review of local analysis), although they can be computationally expensive. Examples
include the Local Indicators of Spatial Association (LISA) (Anselin 1995; Getis and Ord
1992; Moraga and Montes 2011; Ord and Getis 1995), LICD, a LISA equivalent for categor-
ical data (Boots 2003), the structural similarity index (SSM) (Robertson et al. 2014; Wang
et al. 2004), the S-statistic (Karlstrom and Ceccato 2002), the local spatial heteroskedastic-
ity statistic (LOSH) (Ord and Getis 2012; Xu et al. 2014) and local diagnostics based on
the spatial scan statistic for identifying clusters (Kulldorff et al. 2006; Read et al. 2013).

12.1.3 Evaluation

Model diagnostics are widely used, and questions such as “How reliable are the results of
the diagnostic?” and “What are the consequences of using a fitted model that a particular
diagnostic deemed inadequate?” naturally arise. In the statistical literature, these questions
are answered in ways that include reference to theoretical properties of the diagnostic (e.g.,
Gneiting 2011; Robins et al. 2000), the performance of the diagnostic on simulated data with
known properties (e.g., Dormann et al. 2007), and the distribution of p-values (e.g., He et al.
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2013). When a diagnostic is evaluated using the same data that were used to fit the model, the
results are well known to be biased (Bayarri and Berger 2000; Efron 1986; Dahl 2006; Hjort
et al. 2006). An alternative is to use cross-validation (Gelfand 1996; Le Rest et al. 2014;
Stone 1974; Zhang and Wang 2010), where the model is fitted to m < n observations and
evaluated using the remaining n — m observations. While cross-validation is considered a
gold standard for diagnostics (Gelfand et al. 1992; Marshall and Spiegelhalter 2003; Stern
and Cressie 2000), it is computationally expensive and may be impractical for very large
data sets. Alternatives such as testing data sets (Efron 1983; 1986), importance sampling
(Stern and Cressie 2000), simulation-based model checking (Dey et al. 1998), posterior
predictive checks (Gelman et al. 1996; Marshall and Spiegelhalter 2007), and approaches
that balance bias with the computational burden of cross-validation (Bayarri and Berger
2000; Bayarri and Castellanos 2007) may also be used.

For hierarchical spatial statistical models, an obvious class of diagnostics identifies those
locations where the model is inadequate and those locations where it is adequate. However,
in most cases the diagnostic will misclassify some locations. There is potentially a strong
parallel here between spatial-model diagnostics and medical diagnostics (e.g., Moraga and
Montes 2011; van Smeden et al. 2014), where a diagnostic test is used to identify unusual
values (e.g., Pepe and Thompson 2000; Sackett and Haynes 2002). Two summary statistics
that are routinely used to assess the performance of medical diagnostics are Sensitivity and
Specificity (e.g., Akobeng 2007; Enge et al. 2000; Hui and Zhou 1998). More recently, there
has been a greater use of the FDR (e.g., Benjamini and Hochberg 1995, 1997; Efron 2004;
Storey 2003; Storey and Tibshirani 2003; Genovese and Wasserman 2002), and the False
Nondiscovery Rate (FNR) (e.g., Craiu and Sun 2008). FDR has been used with correlated
data (Benjamini and Yekutieli 2001; Finner et al. 2007; Hu et al. 2010) and, for spatial data,
generalized degrees of freedom and clustering may be used to increase the power of the
FDR approach (Benjamini and Heller 2007; Shen et al. 2002).

In Section 12.2, we introduce a simple example of county-level sudden infant death
syndrome (SIDS) (or cot death) to illustrate our ideas. In Section 12.3, we exploit a
strong analogy between medical diagnosis and model diagnosis, and we define the
summary measures of Specificity, Sensitivity, FDR, and FNR for evaluating a diagnostic.
In Section 12.4, we use these ideas to define a Discovery curve that can be interpreted in
an analogous way to the ROC curve. Finally, a discussion and our conclusions are given in
Section 12.5.

12.2 Example: Sudden Infant Death Syndrome (SIDS) data
for North Carolina

This section introduces an example that will be used to illustrate our proposal for the eval-
uation of model diagnostics. The data set includes the counts of SIDS for the 100 counties
of North Carolina for the period July 1, 1974-June 30, 1978 (Cressie 1993; Cressie and
Chan 1989; Symons et al. 1983), where the counties are numbered according to the alpha-
betical order of their county name. For each county, the data set also includes the number
of live births, the spatial location of the county (here specified as the county centroid), and
the adjacent counties (i.e., all pairs whose county seats are within 30 miles of each other);
see Figure 12.1. The SIDS data have been extensively studied (e.g., Bivand 2014; Cressie
1993; Cressie and Read 1985; Cressie and Chan 1989; Sengupta and Cressie 2013), and
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Figure 12.1 Map of the 100 counties in North Carolina, showing edges between the coun-
ties whose seats are within 30 miles of each other. The counties are numbered according to
the alphabetical order of their county name (adapted from Bivand 2014).

they are widely available (e.g., in the spdep package in the R Statistical Software, Bivand
2014; R Core Team 2014).

Our purpose in this chapter is not to identify new diagnostics nor in this section to model
the SIDS data in a new way. Instead, we shall model the data with a simple statistical model
and then diagnose the fit of the model by using several established diagnostics. Using these
results, we shall then evaluate the diagnostics for the model in the manner described in
Sections 12.3 and 12.4. For this reason, we base our analysis on the results of previous
exploratory analyses conducted by Cressie and Read (1985), Cressie and Chan (1989), and
Cressie (1993, Sections 4.4, 6.2, and 7.6). These authors found that the Freeman—Tukey
(square-root) transformation of the SIDS rates stabilizes the variance and results in a sym-
metrical distribution, so that an approximate Gaussian assumption can be made for the
transformed data. Most analyses of this transformed data set are based on an auto Gaus-
sian spatial model. We will follow this approach and fit a null statistical model that assumes
a constant mean and Gaussian variation in the error. All 100 counties are included; note
that in the past, Anson County (county 4) has been identified as an outlier and sometimes
removed. Having fitted the model, we use the local Moran I statistic and the local Getis—Ord
G” statistic to assess the adequacy of the fitted model. The local statistics will be applied to
the residuals to identify whether there is unusual spatial behavior after the model has been
fitted.

In our study, recall that the seat of county ¢ is used to define its location

s;;4=1,...,100. Previous studies have found that the spatial correlation between
the counties is close to zero at distances, d;; = ||s;, — s;||, of 30 miles or more.
Fori =1,...,100,let N(s;) and S(s;) denote the number of live births and the number

of SIDS deaths, respectively, for county ¢. Its Freeman—Tukey transformed SIDS rate (per
thousand live births) is given by

Z(s;) = (10005(s;)/N(s;))"/* + (1000(S(s;) + 1)/N(s;))"/* .
The null model for the transformed SIDS rate is defined as

Z(Si) = oy + 5(31')7 (12.5)
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where the mean transformed rate, p,, is assumed to be constant, and the error,
5(s;), is assumed to have a Gaussian distribution with mean zero and variance
var(6(s;)) = o3V;(s;), for o3 > 0 and V(s;) = N(s;)~'. We fitted this model by using
weighted least squares, but not generalized least squares since initially d(-) is assumed to
exhibit no spatial dependence. The estimate for the mean was 2.84 with a standard error of
0.075.

We would now like to determine whether there is any spatial clustering in the residuals
after fitting the null model. To do this, we applied the local Moran I statistic (Anselin 1995),
and the local Getis—Ord G* statistic (Getis and Ord 1992) to the residuals from the model.
For a spatial process {z; : i = 1, ..., n}, the local Moran I statistic is given by

I — (z; — ) Z?:1 wz‘j(%‘ - 7)

' Tt (-2

where w;; is a measure of the spatial dependence between observations ¢ and j. In this
example, the spatial-dependence matrix is given by W = {wij 24,7 =1,...,100}, where
w;; = 0; and for i # j, w;; = 1 when d;; < 30 miles, and w,; = 0 otherwise.

The local Getis—Ord G* statistic is given by

Gf _ th:l Cigj — T Z?=l Cij (12.7)

1/2°
(n ' S @ = 2P & — () ) (= 1))

(12.6)

where the spatial-dependence matrix is given by C' = {cij 24,7 =1,...,100}. In this
example, ¢;; = 1; and for i # j, ¢;; = 1 when d;; < 30 miles, and ¢;; = 0 otherwise.
Values for the local Moran I statistic and the local Getis—Ord G* statistic are shown in
Figures 12.2 and 12.3; in each case, values of the statistic that are “statistically significant for
« = 0.05” are highlighted. The local Moran I statistic identifies 18 counties with significant
spatial dependence. The local Getis—Ord G* statistic identifies 12 counties with significant
spatial dependence. Using the local Moran I statistic, we would conclude that our model is
inadequate for four clusterings of counties in the study area. Using the local Getis—Ord G*
statistic, we would conclude that our model is inadequate for three clusterings of counties
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Figure 12.2 Local Moran I statistic for the residuals of the null model fitted using the
transformed SIDS rates: Positive (i.e., unusually large) values are shaded.
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Figure 12.3 Local Getis—Ord G* statistic for the residuals of the null model fitted using
the transformed SIDS rates: Positive (i.e., unusually large) values are shaded.

in the study area. Both diagnostics identify two common spatial clusterings, but each also
identifies additional spatial clusterings of counties.

12.3 Diagnostics as instruments of discovery

Whether diagnostics are applied to a spatial model, a hierarchical model, or really any sta-
tistical model, they are meant to highlight inadequacies (and adequacies) of the model.
While one diagnostic might indicate no inadequacies with a model, it is perfectly plausi-
ble that another diagnostic might reveal inadequacies. And just because an inadequacy is
found, it does not mean that it is truly an inadequacy. This latter statement may look differ-
ent from the usual discussion about diagnostics, and it is something we shall pursue in this
chapter.

We deem the declaration of an inadequacy of the model a “positive.” Likewise, the
declaration of an adequacy is deemed a “negative.” This is clearest in the spatial setting
where each datum Z(s,) at spatial location s,, for i« = 1,...,n, is potentially a positive
(model gives an inadequate fit) or a negative (model gives an adequate fit). If one thinks of
diagnosing a model as an act of discovery, analogous to diagnosing a patient in a medical
setting (see Section 12.1), then an indication by a diagnostic that something is unusual is
seen as a positive.

Discovery of positives and negatives comes with its own uncertainty; a negative could
either be a “true negative (TN)” or a “false negative (FN),” and a positive could either
be a “false positive (FP)” or a “true positive (TP).” In the spatial setting, if we have n
data points and we diagnose the adequacy of each one, then the number of positives
(Ap) plus the number of negatives (A,) equals n. From the aforementioned discussion,
we have

Ary +Apn = Ay,

12.8
App+Arp = Ap, (12.8)

where Ay + Ap = n, and clearly A, is the number of True negatives, Ay 5 is the number
of False negatives, A p is the number of False positives, and A p is the number of True
positives.
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Table 12.1 A 2 x 2 table resulting from our diagnostic
evaluation based on a precise follow-up reanalysis.

Negative Positive Total
Diagnostic negative Arn Apn Ay
Diagnostic positive App Arp Ap
TOtal ATN+AFP AFN+ATP n

The way Equation (12.8) is written suggests Table 12.1, which is a 2 x 2 table, where
the rows are classified according to the behavior of the diagnostic, negatives along the first
row and positives along the second row. The columns are classified according to a precise
“follow-up” reanalysis of each spatial datum; down the first column are the follow-up neg-
atives and down the second column are the follow-up positives. Hence, the top left-hand
corner gives the number of True negatives (since both row and column correspond to neg-
atives); the top right-hand corner gives the number of False negatives (since the row is
negative but the column shows it should actually be positive); and so forth.

This chapter is about evaluating diagnostics and is not directly concerned with defining a
“better” diagnostic. Although once we have a yard-stick by which to compare diagnostics,
there is a path forward to making them better and better. Our strategy is to take a given
diagnostic, based on a particular fitted spatial model, and to determine how well it performs.
Just as in the medical setting, we are interested in the diagnostic’s False Discovery Rate
(FDR), given by

FDR = App/Ap = App/(App + Arp), (12.9)
and its False Nondiscovery Rate (FNR), given by

Notice that the FNR and FDR are obtained from the first and second rows, respectively, of
the 2 x 2 table given by Table 12.1.

In our evaluation of a diagnostic, we treat it as an algorithm that acts on the n spatial
data and, for better or for worse, separates Z(s,),..., Z(s,,) into negatives and positives.
A summary of this is captured by the counts, A and A, (Whererecall Ay + Ap = n), but
the full results of which datum is negative and which is positive are available and can be
considered part of the output of the algorithm. Hence, for a given algorithm (i.e., diagnostic),
the row totals Ay and Ap of Table 12.1 are given. Consequently, our statistical evaluation
is derived from the distribution of A, and Ay p, given Ay and Ap.

Several statistics are routinely used to assess the performance of medical diagnostics,
and a similar approach can be used here for model diagnostics. The Specificity, or True
negative rate, is

Sp= Apy/(Apy + App), (12.11)

which is obtained from the first column of Table 12.1. The denominator of (12.11) is the
number (out of n) that are in fact negative, as determined by the precise follow-up reanalysis.
In a hypothesis-testing setting, 1 — Sp is analogous to

size = o = Type I error rate.
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The Sensitivity, or True positive rate, is
Se = App/(Apn + Arp), (12.12)

which is obtained from the second column of Table 12.1. The denominator of (12.12) is the
number (out of n) that are in fact positive, as determined by the precise follow-up reanalysis.
In a hypothesis-testing setting, Se is analogous to

power = 1 — 3 = 1 — Type II error rate.

In Section 12.4, we suggest alternatives to Sp and Se for assessing the performance of
model diagnostics. These are the FDR and the FNR defined by (12.9) and (12.10), respec-
tively.

Recall that we treat a model diagnostic as an algorithm that separates Z(s,), ..., Z(s,,)
into negatives and positives, and hence A, and Ap in (12.8) are given. We propose that
the precise follow-up reanalysis of each spatial datum (to determine which of the negatives
are True and which are False; and which of the positives are False and which are True) is
obtained by cross-validation (e.g., Hastie et al. 2009, Section 7.10). The model diagnostic
is based on a spatial model, and the cross-validation is, of course, based on the same spatial
model. It is worth noting that cross-validation is typically very slow to implement and,
hence, we are only proposing to use it in evaluation. This is analogous to the way a cheap
and easy medical diagnostic might be used in the general population, but its evaluation
typically involves expensive but precise laboratory analysis.

For cross-validation in the spatial setting, a datum Z(s,) is held out, and the spatial
model is fitted to Z_; = (Z(s,),...,Z(8;_1), Z(8i41), - - -, Z(8,,))T. That model is then
used to predict Z(s;) from data Z_,, resulting in a predictor of Z(s,) that we denote

—1°

Z_,(s;). Then, a negative at s, is declared:
Trueif |Z_,(s;) — Z(s;)| < K
N ! v 12.13
False it |2_,(s,) — Z(s,)| > ki, (12.13)

and a positive at s; is declared:

False if |Z ,(s;)— Z ;
< —i\74 — 12.14
Trueif |Z_,(s;) — Z(s;)| > k;, ( )

where {k,:i=1,...,n} are thresholds determined by the variability in the
cross-validation errors,

Hence, given the negatives (whose number is A ;) and the positives (whose number is
Ap =n — Ay), through (12.13) and (12.14), we can obtain all the numbers in Table 12.1.
Consequently, we can compute the FDR given by (12.9), the FNR given by (12.10), the
Sp given by (12.11), and the Se given by (12.12). We shall see in Section 12.4 how these
quantities can be used to evaluate and compare spatial-model diagnostics. However, we first
discuss the various entries in Table 12.1, for nonhierarchical models and then for hierarchi-
cal models.
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12.3.1 Nonhierarchical spatial model

The concepts from which our diagnostic evaluation follows are clearest in the nonhierar-
chical case. Here, data Z are fitted directly to a spatial model without invoking a hidden
model Y to deal with measurement error and “missingness.” The original geostatistical
paradigm (Matheron 1963) makes no distinction between Z and Y, and we start with this
case. In a sense, this nonhierarchical spatial model is a special case of the hierarchical
model in (12.1) and (12.2), where the data model’s error variance is zero (e.g., a§ =0
for (12.5)). Then, at the location s; where Z(s;) is observed, the conditional distribution,
[Z(s,)|Y] = [Z(s;)|Z(s;)], is degenerate.

The missing data, which are at locations other than {s;, . .., s,, }, represent unknowns in
the model. For example, if there is no observation at s, then we wish to predict Z(s,)) given
Z . Kriging (e.g., Cressie 1993, Chapter 3) is based on this. Thus, in the nonhierarchical case,
we wish to obtain [Z(s,)| Z], sometimes called the predictive distribution, to make inference
on the missing datum Z(s,). We shall see in Section 12.3.2 that this goal generalizes to
wishing to obtain [Y(s)| Z], for all s in the spatial domain of interest.

Cross-validation means that Z(s,) is predicted from [Z(s,)|Z_,]. That predictor was
notated Z_,(s,) earlier, and a common example is

Z (s;) = E(Z(s)|Z_,): (12.16)

other predictors are possible. The cross-validation error (12.15) is substituted into (12.13)
and (12.14) to determine which of the negatives and positives are True or False, and the
counts are summarized in Table 12.1.
The SIDS example discussed in Section 12.2 involved two different diagnostics. The
2 x 2 table for each of them is given in Tables 12.2 and 12.3. The threshold k; used for
location s, is given by
k; = kos/N(s;)'"/?, (12.17)

where k is chosen so that
Pr(IN(0,1)] < k) = Pr(IN(0,1)| > k) = 0.5,

and N (0, 1) is a standard normal random variable. This results in £ = 0.675, which ensures
that we give equal probability to being inside or outside the limit, assuming that the model
fits. The map of positives given by cross-validation, namely, the counties where |Z_,(s;) —
Z(s;)| > k;,fori =1,...,n,is shown in Figure 12.4.

Table 12.2 The 2 x 2 table given by Table 12.1, for the Local
Moran I diagnostic applied to the transformed SIDS residuals after
fitting the null model; cross-validation is abbreviated as CV.

CV negative CV positive Total

Diagnostic negative 54 28 82
Diagnostic positive 2 16 18

Total 56 44 100
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Table 12.3 The 2 x 2 table given by Table 12.1, for the Local
Getis—Ord G* diagnostic applied to the transformed SIDS residuals
after fitting the null model; cross-validation is abbreviated as CV.

CV negative CV positive Total

Diagnostic negative 53 35 88
Diagnostic positive 3 9 12
Total 56 44 100

-,

Figure 12.4 Cross-validation for the null model fitted to the transformed SIDS rates: Pos-
itive (i.e., unusually large) values are shaded.

Values of smaller £ in (12.17) are of obvious interest because the precise follow-up
reanalysis is then very stringent; and values up to k£ = 1.96 satisfy Pr(|JN(0,1)] < k) <
0.95. Hence, we consider k to vary from small values near zero to values up to 2; in
Section 12.4.1, it leads to a new type of curve that we call the Discovery curve.

12.3.2 Hierarchical spatial model

From the hierarchical model (12.1) and (12.2), there is a hidden process Y (+) that is to be
inferred. In this case, the cross-validation error is

Vii(s) = Z(s,)ii=1,....n, (12.18)

where Y, (s;) is a predictor of Y (s;) obtained from the predictive distribution, [Y (s;)|Z _,].
A common example is .
Y_i(s;) = E(Y(s;)|Z_;).
Ideally, we would like to base the criterion for True/False negatives/positives on the error,
Y_.(s;) — Y (s,). However, Y (s;) is unavailable.
In the hierarchical spatial model, (12.13) and (12.14) are modified, respectively, to: A
negative at s; is declared:

True if

i(8) i
False if s (12.19)

i(si) =

e
ia



252 GEOMETRY DRIVEN STATISTICS
and a positive at s; is declared:

False if |}A/—i(8i) — Z(s;)| < my,

N 12.20
True if |Y_,(s;) — Z(s;)] > m;. ( )

The threshold m; used for location s, is determined as follows: From (12.1) and (12.2),
Z(s;) =Y (s;) + €(s;), and hence the cross-validation error given by (12.18) is

Yfi(si) = Y(s;) —e(s;),

where (s, ) is independent of Y (s;) and Y, (s,). Its variance is

var(Y_,(s;) — Y(s;)) + var(e(s;)).

Thus, m, is obtained in a similar manner to k; with a modification to account for the mea-
surement error, var(e(s;)) = o (s;)>.
If a hierarchical model similar to that given by Cressie (1989) were fitted to the SIDS

data in Section 12.2, we would have o, (s;)? = ¢2/N(s;), and hence
var(Z(s;)) = (o5 + 07) /N (s,),

where we assume that o2 is known (e.g., from spatial-sampling considerations). Conse-
quently, (12.17) is modified to give the following threshold in (12.19) and (12.20):

m; = k(o} + o?)'/? /N (s;)"/?, (12.21)

where once again k = 0.675 gives equal probability to being inside or outside the limit,
assuming that the model fits. By varying k& from small values near O to values up to 2, a
Discovery curve for the hierarchical spatial case is obtained; see Section 12.4.2.

12.4 Evaluation of diagnostics

When evaluating medical diagnostics, biostatisticians often use the ROC curve (e.g., Metz
1978), which is a plot of Se (on the vertical axis) versus 1 — Sp (on the horizontal axis). It
is well known from hypothesis testing that the Type I error rate (i.e., 1 — Sp) and the Type II
error rate (i.e., 1 — Se) cannot both be kept small. Significance testing puts an upper bound
on the Type I error rate (the level of significance) and uses tests whose 1—Type II error rate
is large (preferably maximized). To evaluate a medical diagnostic, it is recognized that Sp
and Se will co-vary, which is captured by an (z, y) curve in [0, 1] x [0, 1], where

r=1-—Sp and y = Se.

This defines an ROC curve, and ideally it is confined to a region of the domain that is
close to (z,y) = (0,1), or at the very least it maintains a consistently high Se for most
values of 1 — Sp. Furthermore, two diagnostics can be compared using their respective ROC
curves, by ascertaining which values of 1 — Sp lead to a uniformly dominant Se value for
one diagnostic over the other. A definitive ordering of several medical diagnostics can be
obtained through the areas under their respective ROC curves (e.g., Fawcett 2006). In Table
12.1, the ROC curve computes rates with respect to each column and plots them. Craiu and
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Sun (2008) propose another type of curve with z = FDR and y = 1 — Se, which involves
error rates from both a row and a column of Table 12.1.

When a medical diagnostic is applied many times over, error rates computed with respect
to the two rows of the 2 x 2 table are more relevant. The analogy to spatial-model diag-
nostics is immediate, where each datum Z(s;) at spatial location s, for i = 1,...,n, is
potentially a positive or a negative. Thus, we propose to replace the ROC curve with some-
thing we call a Discovery (DSC) curve; it is an (x, y) curve in [0, 1] x [0, 1], where

r =FDR and y=1—FNR,

for FDR and FNR given by (12.9) and (12.10), respectively.

The DSC curve captures the rate of False positives among all positives (plotted on the
x-axis) and the rate of True negatives among all negatives (plotted on the y-axis). Ideally,
the curve is confined to a region of the domain that is close to (x,y) = (0,1), or at the
very least it maintains a consistently high 1 — F'N R for most values of FDR. Hence, two
diagnostics for a spatial model can be compared using their respective DSC curves, and a
definitive ordering can be obtained through the areas under their respective curves.

In the next two subsections, we pursue the DSC-curve approach to evaluating diagnos-
tics, first for nonhierarchical spatial models and then for hierarchical spatial models.

12.4.1 DSC curves for nonhierarchical spatial models

Table 12.1 is obtained from (12.13) and (12.14). If each entry in the table is seen as a function
of k = (ky,...,k,)T, then by varying k, a DSC curve can be obtained. The SIDS example
discussed in Section 12.2 and earlier in this section, has a 2 x 2 table that is determined by
a single, normalized threshold k; see (12.17). By varying k from near O up to 2, we obtain
a DSC curve for each of the two diagnostics. These are shown in Figure 12.5.

Recall the interpretation of these DSC curves; Figure 12.5 shows uniformly superior

behavior of the local Moran I diagnostic compared with the local Getis—Ord G* diagnostic.
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Figure 12.5 DSC curves for the SIDS data, for 0 < £ < 2 in (12.17).
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12.4.2 DSC curves for hierarchical spatial models

Because a DSC curve depends on Table 12.1, if we can find such a 2 x 2 table for a
hierarchical spatial model, then everything proceeds as in Section 12.4.1. From Section
12.3.2, we see that each entry in the 2 x 2 table can be seen as a function of the thresholds
m = (my,...,m, ). Then by varying m a DSC curve can be obtained.

If a hierarchical model similar to that given by Cressie (1989) were fitted to the SIDS
data in Section 12.2, we have seen in Section 12.3.2 that m would depend only on a sin-
gle k (Equation (12.21)) that could be varied from small values near O to values up to 2.
This would result in a DSC curve for the hierarchical spatial model fitted to the SIDS data,
representing the next step in this line of research.

12.5 Discussion and conclusions

This chapter explores the strong analogy between medical diagnostics and
spatial-hierarchical model diagnostics. A spatial datum is analogous to an individ-
ual whose health is being diagnosed. Medical diagnostics can be evaluated with ROC
curves, and in some applications they are investigated using the concept of false discovery
rates. We have made the observation that a different curve, which we have called the
Discovery (DSC) curve, gives another way to evaluate a diagnostic. For a spatial model,
the True negatives and False positives are defined in our proposed evaluation procedure
through cross-validation.

By its very nature, a spatial model describes statistical dependence between the data
Z . Hence, the cross-validation errors given by (12.15) or (12.18) are themselves spatially
dependent. In future research, we wish to go beyond our descriptive, visual evaluation of a
spatial-model diagnostic and address questions such as, “What is the confidence region for
agiven (E(FDR), E(1 — FNR)) pair?” and “Are two DSC curves significantly different?”

Cross-validation is almost always computationally expensive, which is why other diag-
nostics are preferred when data sets are massive. In this work on evaluation of a model
diagnostic, we are willing to spend the computing resources to gauge a diagnostic’s “good-
ness” on benchmark data sets.

Cross-validation is just one way to define a precise follow-up reanalysis that is used to
determine the counts in Table 12.1. Another way would be to base this reanalysis on “testing
data sets” proposed by Efron (1983, 1986), which adapt well to the hierarchical-model
setting.

Instead of Table 12.1 for nonhierarchical models, this chapter is really about a 2 x 2 X
2 table for hierarchical models where the extra dimension captures a 2 x 2 table for the
Z-process on top of a 2 x 2 table for the Y -process. The bottom table is hidden since Y is
hidden, but it could be thought of as representing an “oracle” table. In this chapter, we have
given ways to construct an appropriate 2 x 2 table and hence an appropriate DSC curve
that recognizes the hierarchical nature (i.e., presence of a hidden process Y') of the spatial
model, without appealing to the oracle table.
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13.1 Introduction

Bayesian forecasting in time and interpolation in space is a challenging task due to the
complex nature of spatiotemporal dependencies that need to be modeled for better under-
standing and description of the underlying processes. The problem exacerbates further when
the geographical study region, such as the one in the Eastern United States considered in this
chapter, is vast and the training data set for forecasting, and modeling, is rich in both space
and time. This chapter develops forecasting methods, and the associated computation meth-
ods using Markov chain Monte Carlo (MCMC), for three recently proposed hierarchical
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Bayesian models for spatiotemporal data sets. A number of forecast calibration measures
are also described and their computation methods developed to facilitate rigorous compar-
isons of Bayesian forecasting methods. The methods are illustrated with a test data set on
daily maximum eight-hour average ozone concentration levels observed over a study region
in the Eastern United States. Forecast validations, using several moving windows, find a
model developed using an approximate Gaussian predictive process (GPP) to be the best,
and it is the only viable method for large data sets when computing speed is also taken into
account. The methods are implemented in a recently developed software package, spTimer,
which is a publicly available contributed R package that has wider applicability.

Bayesian forecasting methods are very much in demand in many application areas in
environmental monitoring and surveillance. Consequently, model-based forecasting has
attracted much attention in the literature, see for example, Bauer et al. (2001), Damon and
Guillas (2002), Feister and Balzer (1991), Huerta et al. (2004), Kumar and Ridder (2010),
Mardia et al. (1998), McMillan et al. (2005), Sahu and Bakar (2012a), Sahu and Mardia
(2005a, 2005b), Sahu et al. (2009, 2011), Sousa et al. (2009), Stroud et al. (2001), West and
Harrison (1997) and Zidek et al. (2012). Some of these papers also consider space—time
modeling for forecasting. However, the methods proposed in these articles are not able to
handle the computational burden associated with large space—time data sets that we model
in this chapter for forecasting purposes.

For point referenced spatial data from a large number of locations, exact
likelihood-based inference becomes unstable and infeasible since it involves computing
quadratic forms and determinants associated with a high-dimensional variance-covariance
matrix Stein (2008). Besides the problem of storage (Cressie and Johannesson 2008),
matrix inversion, at each iteration of the model fitting algorithm, such as the EM algorithm,
is of O(n®) computational complexity, which is prohibitive, where 7 is a large number of
modeled spatial locations. This problem also arises in evaluation of joint or conditional
distributions in Gaussian process—based models under a hierarchical Bayesian setup;
see for example, Banerjee et al. (2004). To tackle this problem, we develop a Bayesian
forecasting method based on a model recently developed by Sahu and Bakar (2012b),
using GPP approximation method for the underlying spatial surface, see Banerjee et al.
(2008). Throughout this chapter, for convenience, we shall use the acronym GPP to also
denote the modeling method based on the GPP approximation.

Forecasting using hierarchical Bayesian models is further limited by the lack of suitable
software packages. There are a few available packages for forecasting using variants of the
dynamic linear models (West and Harrison 1997), see for example, Petris et al. (2010).
However, these packages do not allow incorporation of rich spatial covariance structure for
the modeled data. On the other hand, spBayes, a recently developed spatial data analysis
package, developed by Finley et al. (2007), can model short-length time series data by treat-
ing those as multivariate spatial data, but it is not really intended to handle large volume of
spatiotemporal data that can be analyzed using the spTimer package developed by Bakar
and Sahu (2014).

This chapter develops forecasting methods for three Bayesian hierarchical models that
have been implemented in spTimer. The first of these is independent in time Gaussian
process (GP) -based regression model, which is simple to implement and is often regarded
as a starting model. The second is the hierarchical auto-regressive model developed by
Sahu et al. (2007), which has been shown to be better in out-of-sample validation than
some versions of dynamic linear models (Sahu and Bakar 2012a) and also a wide class of



262 GEOMETRY DRIVEN STATISTICS

models (Cameletti et al. 2011). The third and final forecasting method is the one based on
the GPP approximation method mentioned earlier. These methodological developments are
then used to augment the spTimer package with the forecasting modules that can be used
in a wide variety of applications in space—time data analysis.

Another objective of the chapter is to rigorously compare the Bayesian forecasts
obtained from the three models. Toward this end, we develop MCMC implementation
methods for several forecast calibration measures and diagnostic plots that have been
proposed to compare the skills of the Bayesian forecast distributions, see for example,
Gneiting et al. (2007). The measures include the continuous ranked probability score
(CRPS), which is an integrated distance between the forecasts and the corresponding
observations, the hit and false alarm rates and the empirical coverage. The diagnostic
plots include the probability integral transform (PIT) and a marginal calibration plot
(MCP) that is used to calibrate the equality of the forecast and the actual observations;
see Section 13.4. These measures and plots enable us to compare the implied Bayesian
forecast distributions fully — not just their specific characteristics, for example, the mean
forecast, as would be done by simple measures such as the root-mean-square error (RMSE)
and the mean absolute error (MAE).

A substantial application on an air pollutant, ground-level ozone, illustrates the fore-
casting methods of this chapter. Ground-level ozone is a pollutant that is a significant health
risk, especially for children with asthma and vulnerable adults with respiratory problems.
It also damages crops, trees, and other vegetation. It is a main ingredient of urban smog.
Because of these harmful effects, air pollution regulatory authorities are required by law
to monitor ozone levels, and they also need to forecast in advance, so that at-risk popula-
tion can take necessary precaution in reducing their exposure. In the United States (US),
a part of which is our study region in this chapter, the forecasts are issued, often, up to
24 hours in advance by various mass-media, for example, newspapers and also the web-
site airnow.gov. However, ozone concentration levels, and also other air pollutants, are
regularly monitored by only a finite number of sites. Data from these sparse network of
monitoring sites need to be processed for developing accurate forecasts. In this chapter, we
compare the forecasts of ground-level ozone, based on three models using a 3-week test
data set on daily maximum ozone concentration levels observed over a large region in the
Eastern United States.

The rest of this chapter is organized as follows: Section 13.2 describes the validation
data set we use in this chapter with some summary statistics. In Section 13.3, we develop
forecasting methods based on three recently proposed Bayesian spatiotemporal models.
Section 13.4 discusses several useful and important forecast calibration methods and devel-
ops their MCMC implementation techniques. These are used to compare the forecasting
methods with a smaller subset of the full validation data set in Section 13.5. This investi-
gation finds that the GPP model is fast and it performs the best. Subsequently, this model
is used in Section 13.6 to analyze and forecast for the full Eastern US data set. Finally,
Section 13.7 concludes with a few summary remarks.

13.2 Test data set

The forecasting models proposed in this chapter will be tested using daily ozone concentra-
tion data for the 3-week period, June 24 to July 14 in 2010. A daily observation, measured
in units of parts per billion (ppb), is the maximum of 24 averages in a day where each
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Figure 13.1 A plot of the 639 (62 validation and 577 model fitting) ozone monitoring
sites in the Eastern United States.

average is based on hourly ozone concentration readings from eight consecutive hours. In
this chapter, we use daily data from 639 monitoring sites in the Eastern United States. We
aim to perform forecast validation for completely out-of-sample data from sites that we do
not use for modeling at all. Hence, we set aside data from 62 randomly chosen sites (roughly
10%) for validation purposes. Figure 13.1 provides a map of these validation sites and the
remaining 577 sites, data from which are used for modeling.

We perform forecast validation for seven moving windows of data from July 8 to July
14. July 8 is taken to be the earliest day for forecast validation that allows modeling of
data for 14 days from June 24 to July 7. We also compare the next day forecasts based
on modeling data from just seven previous days that complete a weekly cycle. Thus, for
example, for forecasting for July 8 we use data from July 1-7.

Often, see, for example, airnow.gov, a deterministic model, known as the commu-
nity multiscale air quality (CMAQ) model, is used for forecasting levels of ozone concen-
tration and other air pollutants such as particulate matter. The CMAQ model in forecasting
mode, known as Eta CMAQ, is based on emission inventories, meteorological information,
and land use, and it produces gridded forecasts, up to two days in advance, for average
ozone concentration levels at each cell of a 12 square-kilometer grid covering the whole
of the continental US (Ching and Byun, 1999). However, these outputs are well known to
produce biased forecasts, and to reduce this bias, in this chapter, we develop statistical mod-
els that can improve the Eta CMAQ forecasts by refining those in the light of the observed
monitoring data. Incorporation of gridded CMAQ forecasts in a spatial model for point
referenced monitoring data poses a spatial misalignment problem that is well known in the
literature; see for example, Fuentes and Raftery 2005), Jun and Stein 2004, Lorence (1986).
To incorporate the Eta CMAQ output, the hierarchical models are set up as spatiotemporal
downscaler models, first implemented by Sahu et al. (2009) and then generalized by Berro-
cal et al. (2010b, 2010a) and Zidek et al. (2012). We use the forecasts for daily maximum
8-hour average CMAQ ozone concentration for the grid cell covering the monitoring site
as the single covariate, following Sahu et al. (2009).
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Many meteorological variables such as the daily maximum temperature are important
predictors of ozone levels; see for example, Sahu et al. (2007). However, the meteorological
variables no longer remain significant if the model for ozone levels also includes output of
the CMAQ model; see for example, Sahu and Bakar (2012a). Moreover, direct inclusion of
the meteorological variables in an ozone concentration forecasting model will also require
forecasting of the meteorological variables in the first place. The models proposed in this
chapter avoid this, although we note that the CMAQ forecasts already include future values
of the meteorological variables that have been used as model inputs.

Out of the 13,419 observations from 639 sites for 21 days, 299 (~2.23%) are missing.
Our Bayesian models automatically estimate those by simulating from their full conditional
distribution in each iteration of the Gibbs sampler. Table 13.1 provides the summary statis-
tics for ozone levels and Eta CMAQ output, where it is seen that the Eta CMAQ forecasts
are upwardly biased, although the medians seem to be close. Figure 13.2 investigates this
further by providing side-by-side boxplots for each of 21 days for both the observed and
the Eta CMAQ forecasted ozone levels. This figure also shows that the data set includes
an episode of high ozone levels during days 12—16, which corresponds to July 5-9, just
after the 4th of July celebrations in the United States. This episode of high ozone lev-
els provides an opportunity to model and forecast when demand is likely to be higher
than usual.

13.3 Forecasting methods

13.3.1 Preliminaries

We first define the generic notations that we need and use throughout the chapter. Let ¢
denote the time where ¢ = 1,...,7 and T is the total number of time units. Let Y (s;, ¢)
denote the observed point referenced data at location s; and at time ¢ fori = 1, ..., n where
n is the total number of locations. Modeling the data on the original scale, as noted by many
authors; see for example, Sahu et al. (2007), is prohibitive due to the instability in variance
that often leads to negative forecasts. In this chapter, we model data on the square-root scale,
denoted by Z(s;, t), that encourages symmetry and normality; see for example, Sahu et al.
(2007), but report all forecasts and predictions on the original scale, Y, for ease of interpre-
tation by practitioners, although this may increase the mean square error of the forecasts.
With this approach, negative forecasts on the square-root scale are conveniently truncated
to zero, although we were never required to do this in our examples here. We also note
that other variance stabilizing transformations such as log and the more general Box—Cox
transformation can also be adopted depending on the nature of the problem, and finally, the
methods we describe subsequently can also be used if a variance stabilizing transformation

Table 13.1 Summaries of the daily maximum ozone concentration
levels and Eta CMAQ output for the test data set described in
Section 13.2.

Minimum Mean Median Maximum

Ozone levels 0.00 50.62 50.99 113.00
CMAQ output 16.50 59.19 60.36 145.50




BAYESIAN FORECASTING USING SPATIOTEMPORAL MODELS 265

150 -

- B
100 - E' L - . 3
. H - hd h N -
t 3 -
. . .
s - s ° - 78 LY |
! 1 s s :- = Values
8 < T . E= Observed
E3 CMAQ
50 -
|
-
H .
8 - 2 o -
0- o g - S D M
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Days

Figure 13.2 Side-by-side boxplots of the observed daily maximum ozone concentration
levels and Eta CMAQ output for 21 days from all 639 sites in the eastern United States.

is not needed in the first place. MCMC methods enable us to estimate the uncertainties of
the forecasts on the original scale.

Let O(s;, t) be the true value corresponding to Z(s;, t) atsite s;, ¢ = 1,...,n at time ¢.
LetZ, = (Z(s;,t),...,Z(s,,t)) and O, = (O(s,,t),...,0(s,,,t))/. We shall denote that
all the observed data by z, and z* will denote all the missing data. Similarly, O will denote
all O,,fort =1,...,T. Let N = nT be the total number of observations to be modeled.

For forecasting purposes, it is of interest to obtain the one-step ahead forecast distri-
bution for noisy data Y'(s,,T + 1) on the original scale, and not for O(s,, T + 1), since
our objective is to compare the forecasting methods by validation of the noisy data itself,
where s, denotes any particular, monitored or unmonitored, site of interest. In the sequel,
we shall obtain the marginal one-step ahead forecasts at a number of sites, say m. The joint
one-step ahead forecast distribution for the m forecasts can also be developed for the models
described subsequently, but are not of interest here.

We also assume that, in general, there are p covariates, including the intercept, denoted
by the n x p matrix X,. Some of these covariates may vary in both space and time. The
notation 3 = (4, .. ,ﬁp)/ will be used to denote the p x 1 vector of regression coeffi-
cients. In this chapter, we do not allow 3 to be dynamic, but it is possible to incorporate
the dynamic models along the lines suggested by Mardia et al. (1998), and this will be
considered elsewhere. We shall use the generic notation 6 to denote all the parameters.

13.3.2 Forecasting using GP models
The spatiotemporal linear regression model is defined by:

Z, =0, +¢, (13.1)
O, =X,8+mn,, (13.2)
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where €, = (€(s,t),...,€(s,, 1))/ ~ N(0,0°1,) is the independently distributed white
noise error with variance o2 also known as the nugget effect, and I,, is the n x n identity
matrix. The term n, = (n(sy,t),...,n(s,,t))/ is an independent, over time, realization of
a GP with zero mean and the correlation function x(d; ¢, v), often assumed to be a member
of the Matérn family; see for example, Banerjee et al. (2004), is allowed to depend on two
unknown parameters ¢ and v describing the correlation at distance d. In effect, this implies
that the smooth process, O(s, t) is assumed to be isotropic and stationary. Note that this
does not necessarily imply the same assumptions for the untransformed noisy data, ¥ since
other hierarchical model components will contribute to the overall space—time correlation
function.

Thus, we assume that n, ~N(0,%,), where X, =o0.5, and (S, );; =
k(lls; —s;ll;¢,v), i,j=1,...,n; o} is the site invariant common variance and
k(.; ¢, v) is the spatial correlation that depends on spatial decay, ¢, and smoothness, v,
parameters. For convenience, in this chapter, we use the exponential covariance function
to model spatial dependence as

¥, = 0‘72757] = 0727 exp(—¢,D),
where ¢, > 0 is a spatial correlation decay parameter, and D is the matrix that has
elements d,;, that is the distance between sites s, and s;, i, j = 1,...,n. Here, and in
the sequel, the matrix exponential is used to mean element-wise exponentiation, that is,
(En)ij = 072, exp(—qﬁndij), 1,7 =1,...,n. The spTimer package provides options to
implement using the full Matérn family. The error distributions of €, and 1, are assumed
to be independent of each other. For future reference, let 6 denote all the parameters, 3,
o2, 0727, and ¢. We assume independent normal prior distribution with zero mean and a
very large variance, 10'°, to achieve vague prior specification, for the components of 3.
The inverse of the variance components o2, 0727 are given independent gamma distribution
with mean a/b and variance a/b%. Although any suitable values for a and b can be chosen,
following Sahu et al. (2007) we have taken a =2 and b =1 to have a proper prior
distribution for any variance component that will guarantee a proper posterior distribution.
We assume discrete uniform prior distributions for the correlation parameters ¢ and v,
although many other choices are possible. Full details are provided in the spTimer
package; see Bakar and Sahu (2014).

To obtain the one-step ahead forecast distribution of Z(s,, 7' + 1) at any unobserved

location s, at time 1" + 1, we first note that

Z(syg, T+ 1) =0(sy, T+ 1) +€(sy, T+ 1),
O(SO7 T + 1) = X/(SO’ T + 1)/6 + n(SOa T + 1)

The one-step ahead forecast distribution is the posterior predictive distribution of Z (s, 7'+
1) given z and is given by

ﬂ-(Z(SO’ T+ 1)|Z) - /T‘-(Z(S(]v T+ 1)’0a 07 O(SO’ T+ 1)7 Z)?T(O(SO, T+ 1)|67 Z)
7(6,0]z)dO(sy, T + 1)dO dé, (13.3)

where 7(6,0]z) denotes the joint posterior distribution of O and 6. Note that
w(Z(sy, T+ 1)|0,0,0(sy, T+ 1),2z) = m(Z(sy, T +1)|6,0,0(sy, T + 1)) due to the



BAYESIAN FORECASTING USING SPATIOTEMPORAL MODELS 267

conditional independence of Z(s,, T'+ 1) and Z given O. Similarly, O(s,, T + 1) does not
depend on Z given 6, hence in the following development we replace 7(O(s,, T + 1)|0, z)
by 7(O(sy, T+ 1)|0).

Now the one-step ahead forecast distribution (13.3) is constructed by composition sam-
pling as follows. Assume that, at the jth MCMC iteration, we have posterior samples, ov)
and OU), Then we first draw, O (sy, T + 1) from N (x/;., 8", 072](])). Finally, we draw
20)(s,, T + 1) from N(0U)(s,, T + 1), o2Y)).

Note that in the aforementioned paragraph, we use the marginal distribution instead of
the conditional distribution because we have already obtained the conditional distribution
given observed information up to time 7" at the observation locations s, ...,s,, and at
the future time 7"+ 1 there is no further new information to condition on except for the
new regressor values x(s,, 7" + 1) in the model. However, the conditional distribution can
be used instead if it is so desired. To do this, we note that the joint distribution of O, | =
(O(sy, T +1),...,0(s,, T + 1))ris simply given by N (X3, %, ), according to (13.2).
Similarly, we construct the joint distribution of O(sy,T 4 1) and O, from which we
obtain the conditional distribution 7(O(sy, T + 1)|Or, ), that is Gaussian with mean

x(sp, T +1)B8 + Sn,12S;1(OT+1 - X710)

and variance

2 -1
Un(l B Sn,12‘977 Sm21>’
- — o—¢dp -
where S, o1/ =5, 15 =€ ¢ and dyy = (I[s; = sgll, -+ [, = soll)r.
For forecasting at any observed site s; forany ¢ = 1,...,n at time 7" 4+ 1 we note that

Z(s;, T+1)=0(s;, T+ 1) +¢e(s;, T+ 1),

O(S'La T+ 1) = X/(Sia T+ 1)6 + n(sia T+ 1)
These two identities make it clear that the one-step ahead forecast distribution of Z(s;, T' +
1) given z can simply be constructed by iteratively sampling from the conditional dis-
tribution OY)(s;, T + 1) ~ N (x/(s;, T + l)ﬂ“),agm) and then ZU)(s,, T + 1) from the

normal distribution with mean OY)(s,, T + 1) and variance 02"’ Finally, Z)(s,, T + 1)
values are transformed back to the original scale giving MCMC samples Y'/) (s;, T+ 1).

13.3.3 Forecasting using AR models
In this section, we briefly describe the forecasting method based on the hierarchical AR
models proposed by Sahu et al. (2007; 2009). The model equations are given by
Z, =0, +e, (13.4)
0O, =00, +X,B8+n,, (13.5)
where €, and 7, have been previously specified, and p is a scalar denoting site-invariant tem-
poral correlation. These auto-regressive models also need an initialization for O, which we

assume to be independently normally distributed with mean g and the covariance matrix
028, where the correlation matrix S, is obtained using the exponential correlation function
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with a new decay parameter ¢,,. These additional parameters and initialization random vari-
ables are added to @ and O, respectively.

The temporal correlation, p in (13.5), for the smooth process O(s, t), has been assumed
to be site invariant given the effects of the spatially and temporally varying covariates and
the spatiotemporal intercepts 7(s, t). A site-specific temporal correlation will perhaps be
needed, though not pursued here, if only the last two terms are omitted from the model. We
also assume, for stationarity, that |p| < 1.

We assume the same set of prior distributions for 3, the variance components o and
0727, and the correlation decay parameters ¢ as previously discussed in Section 13.3.2. For
the additional p parameter, we again provide a normal prior distribution with zero mean and
a large variance (10'° in our implementation), but we restrict the prior distribution in the
range |p| < 1.

Under the AR models, the predictive distribution of Z(s), T + 1) is determined by
O(sy, T + 1). Following (13.5), we see that O(s,, T + 1) follows the normal distribution
with site-invariant variance o7, and mean pO(sy, T') + x/(s;, T 4 1)8. This depends on
O(sy,T'), and as a result, due to this auto-regressive nature, we have to determine all the
random variables O(s, k), for k = 0,...,T. In order to simulate, all these random vari-
ables, we first simulate from the conditional distribution of O(s,0) given O, which is
a univariate normal distribution. Then, at the jth MCMC iteration, we sequentially sim-
ulate O (s, k) given OU)(sy, k — 1) for k = 1,...,T + 1 from the normal distribution
with mean pOU) (sy, k — 1) + x/(sy, k)BY) and variance af](] ). For forecasting at any
observation location s;, we draw Z)(s;, T + 1) from the normal distribution with mean
pNOU)(s,, T) + x/(s,T + 1)BY) and variance 02", For further details regarding predic-
tion, see Sahu et al. (2007). Now these Z values are transformed back to the original scale,

Y as in the case of GP models.

13.3.4 Forecasting using the GPP models

The models described in Section 13.3.3 assume the AR model for the true values of the mod-
eled response O,. Sahu and Bakar (2012b) modified this model so that the modified version
does not assume a true level O(s;,t) for each Z(s;,t) but instead assumes a space-time
random-effect denoted by 7(s;, t). It then assumes an AR model for these space—time ran-
dom effects. For a large number of spatial locations, the top level space—time random-effect
term will lead to the estimation problem discussed in Introduction. Hence, we use the pre-
dictive process approximation technique (Sahu and Bakar 2012b). Here the main idea is to
define the random effects 7(s,, ¢) at a smaller number of locations, m say, where m < n,
called the knots, and then use kriging to predict those random effects at the data locations.
The top level model is written as follows:

Z,=X,8+n,+e€,t=1,...,T, (13.6)
where €, has been previously specified. The space—time process 7, is specified by
n, = Aw, (13.7)

with A = CS, !, where S,, is the correlation matrix of w, with ijth element, which cor-
responds to two locations s, and s;, is given by exp(—¢,,|[s; — s;[|). The elements of the
n X m matrix C are also calculated using this correlation function.
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In the next stage of the modeling hierarchy, the AR model is assumed as
Wy =pw &, (13.8)

where ¢, ~ N(0,02S,,). Again, we assume that w, ~ N (0, c%S,), where the elements of
the covariance matrix S, are obtained using the correlation function, exp(—¢d,;), which
is the same correlation function used previously but with a different decay parameter ¢,,.
The Bayesian model specification here is completed by assuming the same set of prior
distributions as noted in the previous two subsections.

At an unobserved location s, the one-step ahead Bayesian forecast is given by the pre-
dictive distribution of Z(s,, T + 1), which we determine from equation (13.6) replacing
t with T + 1. Thus, the one-step ahead forecast distribution has variance > and mean
x/(sg, T + 1)B + 1(sy, T + 1), where 7)(s,, T' + 1) is obtained analogous to (13.7) as

(s, T+ 1) = Sw,us;lWTHv

where S, 15 = e~ %wdi2 and W, 1 is obtained from (13.8).

Thus, at each MCMC iteration, we draw a forecast value Z/) (sg, T+ 1) from this nor-
mal distribution. Forecasting at the observation sites sy, . .., s,, is performed by noting that,
according to (13.6),

Zyp = Xp B+ Ny + €,

with 7y = Awp,, and €7, ~ N(0,021,). Thus, as before wy,, is obtained

from (13.8) and MCMC sampling from the forecast distribution of Z(s,, T+ 1) for
i =1,...,nis straightforward. Again these Z samples are transformed back to the original

scale Y, which we use for forecast calibration purposes.

13.4 Forecast calibration methods

The three model-based forecasting methods discussed in the previous section must be com-
pared using suitable methods. Predictive Bayesian model selection methods are appropriate
for comparing Bayesian models; see for example, Gelfand and Ghosh (1998). However, the
main objective of this chapter is forecasting, and hence we compare the models on the
basis of their forecasting performance. There is a large literature on forecast comparison
and calibration methods; see for example, Gneiting et al. (2007) and the references therein.
In the Bayesian context of this chapter, we need to compare the entire forecast predictive
distribution, not just summaries such as the mean, since forecasting is the primary goal here.

To simplify notation, suppose that y,,¢ = 1, ..., m denote the m hold-out validation
observations that have not been used in model fitting. Note that we use a single indexed
notation y;, instead of the more elaborate y(s, ¢) used previously. Clearly, some of these
validation observations may be future observations at the modeling sites or completely at
new sites — what’s important here is that those must not have been used for model fitting.
Let F;(y) denote the model-based forecast predictive distribution function of Y}, the random
variable whose realized value is y,. Thus, F;(y) is one of the three forecast predictive distri-
butions, corresponding to one of the three models: GP, AR, and GPP, described previously
in Section 13.3. Let G,(y) be the true unknown forecast predictive distribution function,
which the F;(y) is trying to estimate. The problem here is to calibrate F;(y) for G,(y),
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i =1,...,m, conditional on the modeled data, y or equivalently its transformed value z.
Let g, be the intended forecast for y,, that is, ¢, mean or median of the forecast distribu-
tion F(y), estimated using the mean or median of the MCMC samples yij ), j=1...,J,
where J is a large number. In our implementation in Sections 13.5 and 13.6, we have taken
J = 15,000 after discarding the first 5000 iterations; that was deemed to be adequate to
mitigate the effect of initial values. Subsequently, we describe seven important forecast cal-
ibration and diagnostic methods and develop their computation methods by using MCMC.

1. The RMSE is defined by

It is perhaps the most popular forecast comparison criterion and the method with the
smallest RMSE value is preferred.

2. Sometimes the MAE, defined by,
1 & .
MAE = — > |y, — 4|
m =

is preferred to the RMSE. Both the RMSE and the MAE are on the original unit of
the data, and they provide a quick check on the magnitude of the errors in forecasts.

3. The CRPS is a proper scoring rule for comparing forecasts, (Gneiting et al. 2007) and
is defined by

1
cps(FLy) = EplY —y| - §EF‘Y ~Y'|
where Y and Y7 are independent copies of a random variable with distribution func-

tion F' and finite first moment. With m hold-out observations, we calculate the overall
measure, given by

1 m
CRPS = p” z_: crps(F,

We estimate the CRPS using J MCMC samples ygj ), j=1,...,J, as follows. We
first obtain,

1 J J
crps(F, ;) —72 —yi QJQZ; i ,i=1,...,m,

<

and then the overall average CRPS is estimated as
CEPS — icf s(F,
= - P Yy

Again, the model with the smallest CRPS value is the preferred choice.
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4. The empirical coverage is defined by

where [, and u; are, respectively, the lower and upper limits of a given predictive
interval for y;, and 1(A) = 1 if A is true and 0 otherwise. Good forecasting methods
must have the empirical coverage close to their true value so that the uncertainties
in the forecast distributions are correct, not only their central tendencies as mea-
sured by the RMSE or the MAE. In practice, the limits /; and u; are estimated using
the appropriate quantiles of the MCMC samples ygj ) ,j=1,...,J. For example, for
95% prediction intervals, these are estimated to be the 2.5th and 97.5th percentile of
yl(j ) j=1,...,J, respectively.

5. The concentration of the forecast distribution is compared using the sharpness
diagram. A sharpness diagram plots the widths of the (m) forecast intervals as
side-by-side boxplots, where each boxplot is for a particular forecasting method.
The forecasting method that produces narrower width forecast intervals, but with
good empirical coverages, is preferred.

6. The hit and false alarm rates are also considered by many authors for forecast compar-
ison purposes, see for example, Sahu et al. (2009). These rates are defined for a given
threshold value y,, which is often the value beyond which the pollutant is considered
to be very dangerous. Hit is defined as the event where both the validation observa-
tion, y; and the forecast, g, for it are either greater or less than the threshold y,,. The
false alarm, on the other hand, is defined as the event where the actual observation is
less than y, but the forecast is greater than y,,. Thus, we define:

m

) 1 R .
Hitrate(yy) = — > {1 (s > v &9, > vo) + 1 (i < s &3 < o)}
i—1

1 m
False alarm(y,) = = Z Yi < Yo & > yp)-

Forecasting methods with high hit rates and low false alarm rates are preferred.

7. Many authors have proposed the PIT diagram as a necessary diagnostic tool for com-
paring forecasts. For each hold-out observation y,, the PIT value is calculated as

p; = Fi(y;),i=1,...,m.

If forecasts are ideal, and F; is continuous, then p; has a uniform distribution. The
PIT diagram is simply an histogram of the p;’s, 1, ..., m. Using MCMC samples, p,

is estimated by:
J
Z ( ),izl,...,m.

kll'—‘
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8. A MCP is used to calibrate the equality of the forecast and the actual value and is
constructed as follows. First, take a grid, y;,, k = 1,..., K, say, covering the domain
of the forecast distribution. For each of those y,, values, calculate

—
3

G(yy) = Ezl(yi <)

Now calculate

where

Now, the plot of the differences F(y,,) — G(y,,) against y,,, for k = 1,..., K is the
desired MCP. If the forecasts are good, only minor fluctuations about 0 are expected.
Thus, a forecast distribution whose MCP stays closest to 0 will be the preferred
choice.

13.5 Results from a smaller data set

The computation of all the forecast calibration methods for the whole eastern US data set
is prohibitive because of the big-n problem as mentioned in Introduction; see also the next
section. Due to this reason, we compare all three forecasting methods using a subset of
the whole eastern US data, consisting of four states: Illinois, Indiana, Ohio, and Kentucky.
There are 147 ozone monitoring sites in these states; see Figure 13.3. We set aside data
from 20 randomly selected sites for validation purposes. As mentioned in Section 13.2, we
validate for seven days from July 8 to 14.

For the GPP model, the knot size is taken as 107, which has been chosen from a sensitiv-
ity analysis similar to the ones reported in Sahu and Bakar (2012b). We have also performed
a number of different sensitivity analysis with respect to the choice of the hyper-parameter

Figure 13.3 Map of the four states, Ohio, Indiana, Illinois, and Kentucky. A total of 147
ozone monitoring locations are superimposed.
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values in the prior distribution, tuning of the MCMC algorithms and have also monitored
convergence using trace plots and the package CODA (Plummer et al. 2006). We omit all
those details for brevity.

All three models are fitted using the MCMC code developed within the spTimer pack-
age. As mentioned in Section 13.4, MCMC algorithms are run for a total of 20,000 iterations
of which first 5000 are discarded to mitigate the effect of starting values. The algorithms
run very fast taking only about 9, 16, and 3 minutes for the GP, AR, and GPP models,
respectively, in a 2.6 GHz personal computer with 4GB of RAM running 32 bit Windows
operating system. Thus, it is quite fast to fit the models and produce forecasts using all the
models.

The RMSE and the MAE for the seven validation days are plotted in Figure 13.4. As
expected, the RMSE and the MAE are very similar (compare the columns). But we do not
see a large difference between modeling 7 and 14 days data (compare the rows). The RMSE
and MAE of the GP and AR models are very similar, and they both have worse performance
than the GPP model. This is also confirmed by the CRPS values; see Table 13.2. The actual
coverages, of the 50% and 95% forecast intervals, provided in Table 13.3, however, are
not able to compare the forecasting methods; but those show that all three methods are
adequate. The average widths of the forecast intervals, see Table 13.4, clearly show that the
GPP model is the best. This is also confirmed by the sharpness diagram; see Figure 13.5.

The hit and false alarm rates using all seven validation days data are provided in
Table 13.5. All three models perform very well. The hit rate increases as the threshold
value increases, and it is actually 100% when we use the threshold value of 85. The false
alarm rate decreases to zero as
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Figure 13.4 Plots of RMSE and MAE based on modeling 7 days data (a and b) and 14
days data (c and d).
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Table 13.2 CRPS values from modeling data from four states during July 8 (denoted as

7/8) to 14.
Values from modeling 7 days data
Models 7/8 7/9 7/10 /11 7/12 7/13 7/14 7/(8-14)
GP 6.12 10.22 5.04 5.05 4.78 5.70 6.95 6.27
AR 6.19 10.12 4.95 5.31 4.85 4.38 4.31 5.73
GPP 4.95 10.02 4.89 5.33 4.87 4.33 4.13 5.52
Values from modeling 14 days data
GP 6.14 9.82 5.33 542 5.21 5.64 6.29 6.27
AR 591 9.83 4.56 5.27 5.19 4.43 5.90 5.87
GPP 5.32 9.56 4.37 5.30 5.15 4.28 5.26 5.60

Table 13.3 Empirical coverages of the 50% and 95% forecast intervals for
the one-step ahead forecasts at the 20 randomly chosen validation sites.

Intervals
Using 7 days data Using 14 days data
Models 50% 95% 50% 95%
GP 51.43 95.71 55.00 95.71
AR 50.71 94.29 50.71 93.43
GPP 50.71 94.95 49.71 94.00

Table 13.4 Average width of the forecast intervals for the four states

data set.

Using 7 days data Using 14 days data
Models 50% 90% 50% 90%
GP 12.76 30.95 12.57 30.69
AR 13.51 32.95 13.36 32.28
GPP 11.54 28.11 9.58 2347

the threshold value is increased from 65 to 75 ppb. These rates, however, do not dis-
criminate between the three different forecasting methods.

The PIT diagrams for all three forecasting methods for the 14 days data modeling case
are provided in Figure 13.6. Here also the GPP model is the preferred choice since its his-
togram is more uniform than the other two. The same diagrams based on modeling 7 days
data showed similar patterns and hence have been omitted.

Figure 13.7 provides the MCPs of all three models using data for 7 and 14 days. Here
also the GPP model performs better than its rivals, and the performance is differentiated
better in the case of modeling data for 14 days. In addition, calibration improves toward the
upper tail of the distribution that assures that the models are able to forecast high levels of
ozone concentration quite accurately. In conclusion, we find that the GPP model is the best
for forecasting among the three methods considered here.
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Figure 13.5 Sharpness diagram using: (a) 7 days data (b) 14 days data.
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Figure 13.6 PIT diagrams for (a) GP, (b) AR, and (c) GPP models using 14 days data for
modeling.
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Figure 13.7 Marginal calibration plots for all the models using (a) 7 days data (b) 14 days
data for modeling.

A further remark regarding the performances of the AR and GPP models is appropriate.
As with any approximation, it can be expected that the approximate GPP model to perform
worse than the full AR model. However, the GPP model in Section 13.3.4 cannot be seen
as a true approximation for the AR model in Section 13.3.3 due to the inclusion of the
auto-regressive term in two very different manners: one at the top level O, in (13.5) and
the other at the random-effect level w, in (13.7). Thus, the AR and GPP models are very
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Table 13.5 False alarm and hit rates for ozone threshold values of 65
and 75 for the four states data set.

Using 7 days data | Using 14 days data

Ozone levels Model False alarm Hitrate False alarm  Hit rate
65 ppb GP 0.92 91.67 0.92 91.67
AR 4.59 92.50 1.83 92.50
GPP 3.67 91.67 2.75 91.67
75 ppb GP 0.0 95.83 0.0 95.83
AR 0.0 95.83 0.0 95.83
GPP 0.0 96.67 0.0 97.50

different, and it is not surprising that we do not see any strict one-way performance ordering
in our examples.

13.6 Analysis of the full Eastern US data set

As mentioned in Section 13.2, we use data from 577 sites to fit our models and the data
from 62 sites are set aside for validation purposes. The implementation of the GPP model
requires the selection of the number of knots. Using a similar sensitivity study that we have
used in Sahu and Bakar (2012b), but with the forecast RMSE, as the criterion we compare
the GPP model with 68, 105, 156, and 269 knots, which were all inside the land boundary

Table 13.6 Parameter estimates (mean and SD) for the models based on GPP
approximation fitted with 14 days observations for the period June 24 (denoted as 6/24) to
July 13, 2010 from the 577 modeling sites in the whole Eastern United States.

Fitted days By B, p o? o2 o)
6/24-1/7 Mean 4.13 0.37 0.40 0.24 0.49 0.0046
SD 0.20 0.03 0.04 0.005 0.04 0.0005
6/25-7/8 Mean 4.34 0.36 0.39 0.25 0.53 0.0042
SD 0.23 0.02 0.03 0.004 0.04 0.0004
6/26-7/9 Mean 4.68 0.33 0.39 0.25 0.57 0.0041
SD 0.33 0.03 0.04 0.006 0.05 0.0007
6/27-17/10 Mean 3.40 0.33 0.39 0.25 0.52 0.0046
SD 0.22 0.03 0.04 0.005 0.04 0.0005
6/28-7/11 Mean 4.74 0.31 0.35 0.25 0.60 0.0031
SD 0.17 0.02 0.04 0.005 0.05 0.0007
6/29-7/12 Mean 4.66 0.31 0.36 0.25 0.54 0.0037
SD 0.20 0.02 0.04 0.005 0.04 0.0003
6/30-7/13 Mean 4.92 0.29 0.35 0.26 0.60 0.0032

SD 0.30 0.03 0.04 0.005 0.07 0.0006
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of the United States. The forecast RMSE improved with the increasing knot sizes, but only
slightly when the size increased to 269 from 156. Henceforth, we adopt 156 as the knot size
that implies a much smaller computational burden.

For the model fitting (a data set with 14 days data) and forecasting using 20,000 itera-
tions, using the same personal computer as in the previous section, we have estimated that
the GP model will take about 40 hours, while the AR model will take about 66 hours to run.
This excludes the use of GP and AR models for forecasting next day ozone levels, which
must be produced within 24 hours of computing time. The GPP model, on the other hand,
takes only about 50 minutes to run the same experiment on the same personal computer and
is the only feasible method that we henceforth adopt.

We compare the performance of the GPP model based with those obtained from a
non-Bayesian linear regression model with the Eta CMAQ output as the only covariate,
which is a simple method that does not require advanced modeling and computation tech-
niques. We also illustrate parameter estimation and maps providing forecast surfaces.

We report the parameter estimates and their standard deviations in Table 13.6 for the
model fitting cases with 14 days data. The estimates are broadly similar for different subsets
of fitted data. The Eta CMAQ output always remains a significant predictor with very small
standard deviation relative to the mean. The temporal correlation remained always near
20%. The random-effect variance o2 is always estimated to be larger than the nugget effect
o2. The estimate of the spatial decay parameter is 0.0024, which corresponds to an effective
range of 1250 km. A similar table based on model fitting from 7 days data is omitted for
brevity.

We now compare the GPP model-based forecasts with those from the linear regression
model using the RMSEs based on validation data both from the 62 hold-out sites. The RMSE
values, provided in Table 13.7, are smaller for the GPP model than the linear regression
model. Moreover, the RMSE values are smaller when the forecasting model is trained with
14 days data than the same with 7 days data. The RMSE values for the forecasts made
by the Eta CMAQ model are considerably higher, which justifies this additional statistical
modeling effort.

The empirical coverages of the 95% forecast intervals, provided in Table 13.8, show
that the uncertainty in the forecasts based on the GPP model is about right. However, the
empirical coverages for the linear model-based forecasts are closer to 100%, which shows

Table 13.7 Values of the RMSE of the forecasts at the hold-out sites
for the simple linear model and the GPP model based on modeling 7 and
14 days data for the whole of Eastern United States. The corresponding
RMSE values for the Eta CMAQ output are also shown.

Forecast CMAQ 7 days 14 days

Linear GPP Linear GPP

718 20.52 12.16 10.34 10.97 10.30

719 19.68 12.25 10.79 11.59 10.04

7/10 16.36 9.87 8.59 9.49 8.13
7711 15.51 8.55 8.17 8.69 7.98
7712 13.12 8.99 8.67 8.44 8.17
713 20.36 12.70 10.85 13.95 9.83

7/14 18.10 9.64 9.20 10.25 9.05
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Table 13.8 Empirical coverage of the 95% forecast intervals using the linear and GPP
models and the CRPS values for the hold-out data for the GPP model for the whole
Eastern US data set.

Forecast  7/8 79 7710 7/11 7712 7113 7714 7/(8-14)
Empirical coverage of the 95% forecast intervals using the linear model
7days  99.94 99.80 99.44 100.00 100.00 99.07 98.15 99.11
14 days 99.94 98.50 97.59 100.00 100.00 97.50 98.15 98.64
Empirical coverage of the 95% forecast intervals using the GPP model
7days  93.55 9375 9496 95.16 9496 9375 95.56 94.53
14 days 94.62 9430 94.84 95.05 94.62 94.84 94.84 94.74
CRPS values
7 days 10.05 798 652  6.79 712 718  7.11 7.54
14days 943 7.25 589 6.80 693 694 6.74 7.15

that these forecast intervals are too wide and this method fails to reduce uncertainty in
forecasts.

Table 13.8 also provides the CRPS values, which turn out to be slightly higher than
the values presented in Table 13.2 for the four states data. This is not surprising since it
is usually more difficult to extrapolate in larger spatial domains. We have also obtained
the false alarm and hit rates of the forecasts from the GPP model, which are 0 and 95.33,
respectively, when the threshold value is 75 ppb. Clearly, the GPP model is very accurate
for forecasting, and hence, we do not consider the other diagnostics such as the PIT diagram
and the MCPs. Instead, we proceed to illustrate the forecasts.

Figure 13.8 illustrates the forecast maps based on the GPP model along with their stan-
dard deviations for the three days, 8th, 9th, and 10th of July. Here, each forecast map has
its own color scheme that enables us to show the full spatial variation of the forecasts.
In addition, the maps of standard deviations reveal that higher ozone levels are associated
with higher uncertainty levels, which is a common phenomenon in ozone concentration
modeling.

13.7 Conclusion

This chapter has developed Bayesian forecasting methods using three recently published
Bayesian hierarchical models for spatiotemporal data. MCMC methods have been
developed to compute the Bayesian forecast distributions based on large space—time
data. These methodological developments have enabled us to add the suite of forecasting
routines in the contributed R software package, spTimer which is available from CRAN
(http://cran.r-project.org/) and allows modeling of large space—time data sets.

The contribution of the chapter also includes development of methods for estimating
several forecast calibration measures using output from the implemented Markov chain
Monte Carlo algorithms. We have demonstrated that these measures are able to compare
different Bayesian forecasting methods rigorously and conclusively. A forecasting method
based on a space—time model developed using a GPP approximation has been shown to be
fast and the best for the illustrative ozone concentration forecasting problem of the chapter.
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Figure 13.8 Maps showing the forecasts and their standard deviations for July 8,9 and 10
in 2010. Observed ozone levels are also superimposed on the forecast maps from a selected
number of sites only, to avoid clutter.
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Visualisation

John C. Gower
Department of Mathematics and Statistics, The Open University, Milton Keynes, UK

14.1 Introduction

When I was young, ‘visualisation’ was something that went on in the mind’s eye. Sometime
in the 1960s, or thereabouts, visualisation came to mean the act of depicting things either
on paper or on a computer VDU screen. Indeed, the coming of the VDU screen has driven
developments to such an extent that some say that the rising use of visualisation is on a
par with the invention of the printing press. Be that as it may, the idea of depicting things
goes back to classical times and, if we include cave-paintings, into prehistory. The current
craze with visualisation has many aspects, much of it having little connection with statis-
tics. Statistical visualisation is concerned with conveying information about data, given in
numerical or categorical form. Here remarks are confined to statistical visualisation and
ignore other forms of visualisation such as technical drawings and advertising.

The work of Playfair, Minard and Florence Nightingale represent well-known nine-
teenth century milestones in the use of diagrams to convey statistical information. Original
references are hard to find but for Playfair’s 1786 atlas see the reissue edited by Wainer and
Spence (Playfair 2007) and for Minard see Robinson (1967). Nightingale developed a form
of circular histogram (the Nightingale rose diagram, or coxcomb), and made extensive use
of coxcombs to present reports on the nature and magnitude of the conditions of medical
care in the Crimean War. Such reports were addressed to Members of Parliament and civil
servants who would have been ‘unlikely to read or understand traditional statistical reports’.
The work of all these pioneers was aimed at conveying information to officials and others
who may have found visual summarisations more informative than numbers. It is interesting
that Playfair, Minard and Florence Nightingale all used colour in their diagrams, a facility

Geometry Driven Statistics, First Edition. Edited by Ian L. Dryden and John T. Kent.
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rarely available in the 20th century publication; indeed, many journals were reluctant even
to publish black and white diagrams. In the twenty-first century publishers seem to have
caught up with the techniques of colour reproduction that are commonplace with today’s
personal computers.

Throughout most of the twentieth century, statistical visualisation had not been in much
favour. This may have been dictated, at least in part, by publication costs, including the
cost of making professionally drawn diagrams. Yet, in scientific laboratory work the main
cost was in doing the experiments; the drawing of diagrams was a relatively minor issue.
In multivariate analyses, computation was a significant cost but in addition the multidi-
mensional nature of the data was a problem that called for the development of worthwhile
visualisation tools. Initially one-dimensional scales sufficed for publication and these hardly
needed graphical representation. In the early part of the twentieth century, especially in fac-
tor analysis, two factors were considered, but I have been unable to find when these were
first presented as two-dimensional graphical visualisations. My guess is that it had to wait
until computers enabled both the computations and the finished diagrams to be produced
with ease. There were certainly forerunners, such as the canonical variate analysis of Rao
(see Mahalanobis et al. 1949, especially Appendix 4, pp. 248-251, and Rao 1952), but my
recollection is that it was only in the early 1960s that technical advances and associated
software had developed sufficiently in the United States and it was some years after that
that the United Kingdom had caught up.

Another reason for the lack of diagrams in the first part of the twentieth century, espe-
cially in those statistical journals that had mathematical pretensions, was that under the
influence of Bourbaki, diagrams were infra dig. As Arnol’d (1990, p. 40) put it:

Bourbaki writes with some scorn of Barrow [Newton’s teacher] that in his
book in a hundred pages of text there are about 180 drawings. Concerning Bour-
baki’s books it can be said that in a thousand pages there is not one drawing,
and it is not at all clear which is the worse.

Even in the seventeenth century, the problem of excessive mathematisation had been
recognised. In c1676 Leibniz wrote (see Leibniz 1993):

Nothing is more alien to my mind than the scrupulous attention to minor
details of some authors which imply more ostentation than utility. For they
consume time, so to speak, on certain ceremonies, include more trouble than
ingenuity and envelop in blind night the origin of inventions which is, as it
seems to me, mostly more prominent than the inventions themselves.

Finally we have R. A. Fisher’s attitude as reported by Mahalanobis (1938):

The explicit statement of a rigorous argument interested him, but only on
the important condition that such explicit demonstration of rigour was needed.
Mechanical drill in the technique of rigorous statement was abhorrent to him,
partly for its pedantry, and partly as an inhibition to the active use of the mind.
He felt it was more important to think actively, even at the expense of occasional
errors from which an alert intelligence would soon recover.

Fisher’s papers rarely included formal mathematics though famously, he used geomet-
rical ideas to derive distributions (chi-squared, Student’s ¢, Correlation etc.). Whatever
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Bourbaki said, it did not strike a chord with leaders of the statistical community. One of
the few things I learned as an undergraduate was that even committed Bourbakistes were
not above using diagrams to back their analytical developments, though never a hint of this
would appear in their formal publications.

There is a well-recognised division between Numbers/Algebra people and Geometry
people, but there is no reason why they cannot coexist. A famous mathematician said that
beautiful mathematical theories are constructed by first erecting an elaborate scaffolding
and then knocking it down once its purpose is fulfilled. I think that it is useful to keep the
scaffolding. This is especially true for research into multivariate methods such as multi-
dimensional scaling, biplots and Procrustes analysis, where appeals to multidimensional
spaces are invaluable for visualising methodology by means of diagrams involving spaces,
subspaces, intersection spaces, orthogonal spaces, projections, rotations and so on. When
conveying the results of one’s research to colleagues, all reference to diagrams that under-
pin theory could be suppressed and only algebraic results presented, but although Bourbaki
might not approve, it seems ridiculous to deny oneself the possibility of using visualisations
when describing methodological developments whose objective is to provide visualisations.
Thus, one purpose of statistical visualisation is to help develop statistical methods and to
present their visualisation for the convenience of colleagues and this may call on revealing
some of the scaffolding (Stone 1987 is a good example of this approach.). But the primary
purpose of visualisations is to present aspects of data in a form accessible to applied sci-
entists and to the journal public. The presentation of visualisations in the press and other
media, to members of the general public is also important. We shall not pursue their spe-
cial problems here, except to point out that in some ways their position is similar to that of
the previous group but there is the added hazard that some sections of the media sometimes
produce visualisations that are deliberately aimed to misinform (by using false origins, ques-
tionable scalings and presenting linear information in volumetric form etc.). An excellent
account of the aesthetics and misuse of visualisations is given by Tufte (1983). Our concern
here is not with aesthetics, nor with misinformation but with lack of information.

14.2 The problem

The coming of the VDU has revolutionised the use of statistical visualisations, but it also has
brought with it some problems. I wrote a short paper (Gower 2003) about shortcomings of
the visualisations given in publications. In the following, I shall refer only to the deficient
visualisations to be found only too often in much of the applied literature. I was made
aware of the problem when an email came to me from Indonesia asking if I could help
interpret a visualisation given by a well-known statistical package. The main concepts used
in statistical visualisations are distance, angle, projection, area but there was no indication
which, if any, of these were appropriate, although I could make some guesses. I could only
sympathise with my enquirer’s predicament and suggest that he might get more information
from the package’s supporting manual, though I was not very confident about this. I soon
became aware that interpretation of visualisations was not an isolated problem and that
many published visualisations are defective. Even our statistical colleagues may sometimes
have problems with interpreting visualisations (I know that I do), so how much more of a
problem is it with the users of statistical software when analysing their data. Because they
may not be aware of all the possibilities that are familiar to statistical methodologists, users
may feel more secure. They will note various patterns in the visualisations presented to
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them and will be happy to report them, whether or not the patterns they see are justifiable.
This is dangerous.

In most cases, users see a set of points relating to objects, possibly supplemented by
some directions relating to variables and scaled orthogonal coordinate axes. If we con-
fine our attention to visualisations of multidimensional scaling and allied multidimensional
methods, the most important interpretive tools are distance (usually Euclidean), isocontours,
neighbourhoods, convex hulls, inner-products, sometimes angles, the meaning to be asso-
ciated with any origin and area. Being knowledgeable, our colleagues know what are the
relevant tools in any particular instance, and, if our colleagues are not to be misled, it is vital
that the diagrams are properly scaled. Thus, if distance is important, a circle must be exhib-
ited as a circle — what I would term isotropic scaling. Unfortunately, some software (and
sometimes an editor) attempts to fit diagrams neatly onto printed paper or computer screen.
Such diagrams may be elegant but they are not interpretable. The situation is particularly
dangerous when users are not aware that extraneous scaling has been introduced by the soft-
ware. Often the diagrams include a scaling of both x- and y-axes. These axes, and especially
their associated scales, are rarely of interest in themselves, but if it is noted that one unit in
the z-direction does not equal one unit in the y-direction, the user is at least forewarned that
the scaling is anisotropic. Isotropic scaling is vital for preserving distance and angle, includ-
ing projection interpretations, but some flexibility is available with areas and centroids. A
change of scale in one direction may be compensated for by an inverse change of scale
in the other direction, without affecting area. Similarly, centroids are self-compensating
although the distance between centroids is not. Note that the mediancentre of a set of points
depends on minimising the sum of distances to these points and hence requires isotropic
scaling. The topological properties of convexity, including convex hulls, are preserved by
anisotropic scaling. An isocontour is the locus of a point P that has a constant relationship
with one or more fixed points. Thus, a circle is an isocontour for all points with the same
Euclidean distance from a fixed point; a square (rotated at 45° to the axes) is the correspond-
ing locus for the L; norm. With area representations of asymmetry, all points P generating
the same area with two fixed points is a line through P parallel to the line joining the fixed
points. In three-way analyses, each choice of triadic distance generates its own set of isocon-
tours that fall into three main classes: elliptical (including circles), hyperbolic and figures
of eight; some triadic distances give isocontours in disjoint segments (De Rooij and Gower
2003). To interpret visualisations based on triadic distances, users need to be aware of the
appropriate shape of isocontours. If we use inner product models, as with linear biplots
and correspondence analysis of a two-way table, there is another danger. It is valid to inter-
pret two projections onto the same biplot axis but not projections onto different biplot axes.
Even if one were clever enough to be able to evaluate ab cos # in one’s head, the comparison
would still be invalid. As explained by (Gower and Hand 1995), this is because each biplot
axis has its own scale that, with appropriate calibration, allows the inner product to be read
directly. If the scales are shown on the biplot axis, valid comparisons between projections
onto different axes may be made without having to evaluate ab cos §. However, biplots may
be used for two different purposes — interpolation and prediction — each of which needs its
own scale. Furthermore, prediction uses projection, while interpolation uses the process of
vector summation. The interpreter of any biplot needs to know these things and know which
form is being presented in any biplot visualisation.

Orthogonal projection of a point P is given by its nearest point in a subspace, often
a coordinate axis. For a categorical variable, rather than a subspace, we have a set of
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category-level points, CLPs (Gower and Hand 1995) and the nearest CLP to P is required.
The CLPs define a set of convex neighbour regions, which may be shown on visualisations
and used to predict category levels in the same way that projection predicts quantitative
variables. Ordered categorical variables define ordered neighbour regions. See Gower
(2002) for further information. Other problems arise with approximations based on the
singular value decomposition where singular value contributions may be assigned to rows
and columns in a variety of ways. The relevant variant needs to be recognisable in any
visualisation.

The considerations that underlay the interpretation of multidimensional scaling type dia-
grams differ markedly from those appropriate for plotting functional relationships in two
dimensions. There, the scaling of the two variables may be chosen to optimise concepts such
as the aspect ratio (Cleveland 1995). In multidimensional scaling, differences between mea-
surement scales are accommodated by normalisation or a choice of distance function such
as one of the many dissimilarity coefficients or chi-squared distance; thereafter Euclidean
visualisations are isotropic and are usually rotationally invariant. Note, however, that the
group-average configuration of INDSCAL is isotropic but not rotationally invariant. The
root of this difference between visualisations of functions and multidimensional visualisa-
tions is the identification, or not, of a response variable.

14.3 A possible solution: self-explanatory visualisations

The previous section has identified that multidimensional visualisations are often incom-
pletely described. It is true that a careful reading of manuals accompanying software may
resolve some problems, but you have to know that there may be a problem in the first place.
Also, in principle, all the information could be given in the legend describing a visualisation,
but this would be incredibly tedious and repetitive. What is needed is some coded form of
the information which would tell the initiated all that was required and would alert the unini-
tiated to the possibility of difficulties. A readily available document would give a detailed
description of the code. The objective is to give a compact form of all the information needed
to enable a correct interpretation of the visualisation. I called this a Self-Explanatory Visu-
alisation and the compact form of the code a ‘cartouche’ although more recently we use the
term ‘icon’.

Gower (2003) gave some preliminary suggestions of what information may be presented
in the cartouche/icon form. Information would be needed on: Origin, Isocontours, Dis-
tances, Scales, Projection and inner product, Eigenvalue scaling, Neighbourhoods but only
when relevant. As mentioned earlier the discussion was confined to applied multivariate
analysis but it was recognised that if the idea were to be successful it should be extended to
include the whole of statistics and even beyond! Of course, nothing happened but recently
a group of colleagues tried again to raise interest in the problem. We were stimulated by
the very poor examples of visualisations to be found in much of the applied literature and
wrote a short account of our findings. To limit the extent of our investigations, we focused
on the marketing literature. We had trouble in getting it published in any of the marketing
journals, although most editors said that they had found the paper interesting, it was just that
it was not the sort of paper that they published, or they did not think their readers would be
interested or it was not methodological research and so on. Eventually the Journal of Food
Quality and Preference (Gower et al. 2014) accepted it and it has just been published. We
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await responses. However, I am convinced that there is an in urgent need of some gener-
ally agreed method for making visualisations self-explanatory and I hope that others will
be sufficiently interested to take the essential steps.

I am not sure what all this has to do with Kanti except in so far as good visualisations
are in the interest of all statisticians. I am sure all Kanti’s visualisations are good and I do
not think he has Bourbaki tendencies.
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15.1 Introduction

Biometric traits, such as palmprints (Duta et al. 2002) and fingerprints (Jain et al. 1997),
refer to distinctive anatomical and behavioral characteristics for automatic human iden-
tification. Fingerprints, which are ridge and valley patterns on the tip of a human finger,
are one of the most important biometric traits due to their known uniqueness and persis-
tence properties (Maltoni et al. 2009). Since the advent of fingerprints for identifying and
tracing criminals in Argentina in 1893 (Hawthorne 2008), fingerprints have been primar-
ily used as evidence in law enforcement and forensics. After the first paper on automated
fingerprint matching was published by Mitchell Trauring (1963) in Nature in 1963, the
Federal Bureau of Investigation (FBI) installed the first Automated Fingerprint Identifica-
tion System (AFIS) in 1980. Now large-scale fingerprint recognition systems are not only
used worldwide by law enforcement and forensic agencies, they are also beginning to be
deployed in civilian applications, such as (i) the OBIM (formerly the US-VISIT) program
by the Department of Homeland Security (Department of Homeland Security 2014) and
(i1) India’s Aadhar project (Planning Commission, Goverment of India 2014). In 2013, the
TouchID system (Apple, Inc. 2014) in the Apple iPhone 5s for authenticating mobile phone
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Figure 15.1 Some major milestones in fingerprint recognition.

Figure 15.2 [Illustration of fingerprint features at three different levels. (a) A gray-scale
fingerprint image (NIST SD30, A002_01), (b) level 1 features: orientation field and singular
points (core point shown as a circle and delta point shown as a triangle), (c) level 2 features:
ridge ending minutiae (squares) and ridge bifurcation minutiae (circles), and (d) level 3
features: pores and dots.

users launched the application of fingerprint in mobile devices. Some major milestones in
the history of fingerprint recognition are illustrated in Figure 15.1.

The purported uniqueness of fingerprints is characterized in terms of three levels of
features (Maltoni et al. 2009) (see Figure 15.2). Level 1 features include the general ridge
flow and pattern configurations such as pattern type, ridge orientation, and frequency fields,
and singular points (core and delta points). While level 1 features are not sufficient for
individualization, they can be used for exclusion (the outcomes of comparing a fingerprint
pair are one of three possibilities: match, inconclusive, and exclusion). Level 2 features
mainly refer to local ridge discontinuities, called minutia points; ridge endings and ridge
bifurcations are the two most prominent types of minutia points. Level 3 features cover
all other attributes at a fine level, such as width, shape, curvature, and edge contours of
ridges, pores, and incipient ridges. Level 3 feature extraction requires that the fingerprint
images be acquired at a 1000 ppi resolution. Among all these fingerprint features, the set of
minutia points (called minutiae) is regarded as the most distinctive and, hence, is the most
commonly used feature in fingerprint identification, both by human experts and AFIS.

Based on the fingerprint image acquisition method and their source, fingerprints can be
classified into three types, namely rolled, plain, and latent (see Figure 15.3). Rolled fin-
gerprints are obtained by taking the impression from “nail to nail” in order to capture the
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(©)

Figure 15.3 Three types of fingerprint images. (a) Rolled fingerprint (from NIST Special
Database 4 2014), (b) plain fingerprint from (FVC2002 2002), and (c) latent fingerprint
(Source: adapted from NIST Special Database 27 2014).

complete ridge details of a finger. Plain fingerprints are acquired by pressing a fingertip
onto a flat surface of either a paper for the inking method or a flatbed of a live-scan device
(Maltoni et al. 2009). Latent fingerprints (or simply latents) refer to fingerprints lifted from
the surfaces of objects, which are inadvertently touched or handled by a person. Compared
to rolled and plain fingerprints (or collectively called exemplar fingerprints), which are typi-
cally acquired in the presence of an officer or trained personnel, latents are generally of poor
quality with incomplete ridge structure, background noise, and nonlinear distortion. Con-
sequently, the accuracy of latent-to-exemplar matching is significantly lower than that of
exemplar-to-exemplar matching. In NIST evaluations, the best performing AFIS achieved
a true acceptance rate of 99.4% at a false acceptance rate of 0.01% for exemplar-to-exemplar
fingerprint matching (Wilson et al. 2004). The best performing commercial latent matcher
could only achieve a rank-1 identification rate of 63.4% in searching 1,114 latents against a
background database containing 100,000 exemplar prints (Indovina et al. 2012). The search
for the source of a latent is a challenging problem in terms of both the algorithmic efficiency
and identification accuracy, especially when the reference or exemplar database (rolled or
plain fingerprints) is extremely large. Figure 15.4 shows examples of rolled-to-rolled fin-
gerprint matching and latent-to-rolled fingerprint matching.

Figure 15.4 Examples of (a) rolled-to-rolled fingerprint matching and (b) latent-to-rolled
fingerprint matching. Features in the rolled fingerprints shown here are extracted automati-
cally by an AFIS, but features (minutiae, region of interest, and singular points) in the latent
were manually marked.
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Given the difficulty of automatic latent matching, human intervention is unavoidable
in order to assess the value of latents as forensic evidence, mark features such as region
of interest (ROI) and minutiae, and make a decision whether the latent has a match in the
reference database given the candidate list (typically top 50 matches) generated by AFIS.
Hence, latent examiners and AFIS work collaboratively in a framework called Analysis,
Comparison, Evaluation, and Verification (ACE-V) (Ashbaugh 1999). However, human
involvement in latent examination has raised some concerns related to repeatability and reli-
ability (Ulery et al. 2011; 2012). Furthermore, when the comparison time (between latent
and exemplar prints) is limited, latent examiners are more likely to make an inconclusive
matching decision (Dror et al. 2011). One of the priorities in the FBI's Next Generation
Identification (NGI) program is to support the development of a lights-out! capability for
latent identification (FBI- NGI 2014). An essential component necessary for achieving the
lights-out capability is automatic feature extraction from latent fingerprints, this is neces-
sary to (i) increase the throughput of latent matching systems, (ii) achieve repeatability of
latent feature extraction, and (iii) improve the compatibility between features extracted in
the latents and in the exemplar prints (Feng et al. 2013).

In order to achieve reliable feature extraction from latents, the latent images need to
go through two main preprocessing steps: (i) segmentation to separate friction ridges from
noisy background and (ii) fingerprint enhancement to enhance ridge and valley structures.
Directional filtering, such as Gabor filtering (Hong et al. 1998), can adaptively improve the
clarity of ridge and valley structures; the filters are tuned based on the local ridge orienta-
tion and frequency. Therefore, for latent enhancement, it is essential to first obtain a good
estimate of ridge orientation and frequency fields.

There is a rich body of literature on fingerprint segmentation (Chikkerur et al. 2007;
Hong et al. 1998), orientation field estimation (Chikkerur et al. 2007; Hong et al. 1998;
Mardia et al. 1997; Wang et al. 2007), and frequency field estimation (Chikkerur et al.
2007; Jiang 2000) for exemplar fingerprints. But these approaches do not work well on
latent fingerprints since they did not consider (i) the presence of structured noise, such
as lines, markings, characters, and speckles (see Figure 15.3(c)), which break the friction
ridge pattern and hinder reliable feature extraction; and (ii) unclear fingerprint ridges in the
foreground area. Some approaches have been proposed to specifically address the problem
of latent fingerprint segmentation (Karimi-Ashtiani and Kuo 2008; Short et al. 2011; Zhang
et al. 2013) and enhancement (Yoon et al. 2011). However, none of these approaches use the
prior knowledge of ridge structure in fingerprints, resulting in only a marginal improvement
in latent matching.

A dictionary, which is a set of words (or vectors) used to sparsely and linearly represent
signals of the same dimension (called sparse coding), has been successfully applied to a
number of signal processing problems, such as image denoising (Elad and Aharon 2006;
Mairal et al. 2008b), classification (Lian et al. 2010; Mairal et al. 2008a), and face recogni-
tion (Liao et al. 2013; Wright et al. 2009). The dictionary learned from a set of training data
is a collection of representative vectors of the training data. In this chapter, we investigate
the use of dictionaries for the challenging problems in latent fingerprint image analysis,
namely, latent fingerprint segmentation and enhancement. Given that fingerprint patterns
can be represented at two different levels (i.e., coarse representation for fingerprint ridge
flow or orientation field and fine representation for ridges and valleys), two dictionaries are

! Lights-out identification refers to an AFIS requiring minimal or no human assistance in which a query fin-
gerprint image is presented as input, and the output consists of a short candidate list (Indovina et al. 2009).
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developed: an orientation patch? dictionary (Feng et al. 2013) and a ridge structure dictio-
nary (Cao et al. 2014). An orientation patch dictionary, which contains only the orientation
information in patches, is proposed to estimate the orientation field for latent fingerprint
enhancement. A ridge structure dictionary, which contains ridge and valley patterns, is pro-
posed for latent fingerprint segmentation (locating friction ridge pattern) and enhancement
by estimating orientation and frequency fields. Experimental results on public domain latent
fingerprint databases show that the dictionaries, learned from a large number of fingerprints,
capture a domain-specific knowledge, which is effective in improving the accuracy of latent
fingerprint matching.

The rest of the chapter is organized as follows. In Section 15.2, the method of dictionary
construction for fingerprint patterns at orientation level and ridge level is described. The
orientation patch dictionary for orientation field estimation in latent fingerprints is presented
in Section 15.3. The ridge structure dictionary for latent segmentation and enhancement
is introduced in Section 15.4. Conclusions and future research directions are described in
Section 15.5.

15.2 Dictionary construction

Orientation patch and ridge structure dictionaries are both constructed off-line from
high-quality fingerprints to capture prior knowledge about fingerprint patterns.

15.2.1 Orientation patch dictionary construction

To construct a dictionary of reference orientation patches, we used a set of 50 high-quality
fingerprints (referred to as reference fingerprints) in the NIST SD4 database (NIST Spe-
cial Database 4 2014). All five major pattern types (plain arch, tented arch, left loop, right
loop, and whorl) are covered by the reference fingerprints. The high-quality fingerprints are
manually selected, and their orientation fields (with block size 16 x 16 pixels) are estimated
using VeriFinger 6.2 SDK (Neurotechnology Inc. 2012). A number of training orientation
patches are obtained by sliding a window (of size b x b blocks) across the orientation field
and its mirrored version for each reference fingerprint, where an orientation patch consists
of b x b orientation elements and an orientation element refers to the dominant orienta-
tion in a block of size 16 x 16 pixels. Each orientation patch is rotated by 21 different
angles {7 - 5°, —10 <4 < 10} to generate additional training orientation patches to cover
all possible directions in the latent fingerprints.

Given the training orientation patches, the orientation patch dictionary (shown in
Figure 15.5) is constructed by a greedy Algorithm, which is described as follows:

1. The first orientation patch in the training set is added to the dictionary, which is
initially empty.

2. The next orientation patch in the training set, which is sufficiently different from
all orientation patches in the dictionary, is added to the dictionary. The similarity
measure between two orientation patches of size b x b is computed as n,/b?, where
n, denotes the number of orientation elements whose difference is less than 10°.

3. Repeat step 2 until all orientation patches have been considered.

2 An orientation patch refers to the block-wise orientation field of a fingerprint patch.
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Figure 15.5 Examples of orientation patches in the dictionary; an orientation patch con-
tains 10 x 10 orientation elements, and each orientation element corresponds to a block of
16 x 16 pixels.

The number of reference orientation patches in the dictionary depends on the number
of reference fingerprints and the patch size. When the patch size is 10 x 10 blocks and 50
reference fingerprints are used, the number of reference orientation patches in the dictio-
nary is around 23,000. While a larger size of the orientation patch is better for correcting
errors in the initial orientation field, it would require a larger dictionary, which takes more
time to search. To further demonstrate the impact of patch size, orientation fields corrected
using different patch sizes are compared in Figure 15.6, where an initial orientation patch is
directly replaced by its closest orientation patch in the dictionary without considering com-
patibility between neighboring patches. The performance of the dictionary-based approach
improves with an increase in patch size. The estimation errors close to the fingerprint bound-
ary are due to border effect (these patches contain very few foreground blocks with a friction
ridge pattern).

15.2.2 Ridge structure dictionary construction

The orientation patch dictionary characterizes ridge flow patterns of fingerprints, which can
be used for correcting an initial orientation field. However, the structure of ridges and valleys
is ignored in the orientation patch dictionary. To remedy this, a ridge structure dictionary,
which is learned directly from the fingerprint image patches, is introduced in this section.
A large size of image patches will result in high dimensionality (a 4096-dimensional vector
for a 64 x 64 image patch, compared to 100-dimensional vector for a 10 x 10 orientation
patch which covers a 160 x 160 image patch) and hence, a large dictionary. On the other
hand, image patches of small size are not robust to structured background noise in the latent
images. Hence, two levels of ridge structure dictionaries are constructed: (i) a coarse-level
dictionary with large patch size of 64 x 64 pixels, and (ii) 16 fine-level (orientation-specific)
dictionaries with small patch size of 32 x 32 pixels. The patch size for fine-level dictionaries
is 32 x 32 pixels, which covers about two ridges and valleys for 500 ppi fingerprints, and
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(a)

(b)

Figure 15.6 Orientation fields extracted from two latent fingerprint impressions ((a) and
(b)) estimated using different patch sizes (increasing from left to right: 3 x 3,5 x 5,7 x 7,
9 x 9and 11 x 11). Only the nearest dictionary element of each initial orientation patch is
considered here (Source: Feng et al. (2013), Figure 8, p. 931. Reproduced by permission
of IEEE).

is robust to structured noise. The patch size for the coarse-level dictionary is twice the size
of the fine-level dictionary to cover additional ridge structures.

15.2.2.1 Training set selection

A large number of high-quality fingerprint patches from rolled fingerprints in NIST SD4
(NIST Special Database 4 2014) are selected for the dictionary construction as follows:

1. High-quality fingerprint selection: NIST Fingerprint Image Quality (NFIQ) (Tabassi
et al. 2004) is used to select 500 fingerprints of high quality® (i.e., NFIQ < 3) in
NIST SD4.

2. High-quality patch selection: The block-wise orientation field and ridge quality map
of the selected fingerprints are computed by MINDTCT (Garris et al. 2004). For the
coarse-level dictionary, an image patch of size 64 x 64 pixels is included into the
training set P¢ if the average quality value of the image patch is larger than a pre-
defined threshold 1" (T is set to 3.75, where the block ridge quality in MINDTCT
ranges from O (the lowest quality) to 4 (the highest quality)). For the fine-level dictio-
nary with the ith orientation (« = 1, ..., 16) orientation-specific dictionary, an image

3 NFIQ ranges from 1 to 5, with 1 indicating the highest quality and 5 indicating the lowest quality fingerprint.
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patch is included in the training set Pf if it satisfies the following two conditions: (i)
average quality value of the patch is larger than 7" and (ii) average ridge orientation

of the patch is within the range [(i — 1) x 7&,i x &).

3. Vector normalization: Each patch p in the training sets is converted into a vector by
concatenating the rows and normalized with a mean of zero and standard deviation
of one.

Let P¢ = {p; N*, be the training set with N training patches for the coarse-level dictio-

nary, and Pf = {pl g } PR 1 =1,...,16, be the training set for the ith fine-level dictionary,
where N; 7 denotes the number of tralning patches for the ith fine-level dictionary specified
by ridge orientation. We then randomly select 80,000 image patches from P¢ and 10,000

image patches from each P for dictionary learning.

15.2.2.2 Dictionary learning

The goal of dictionary learning is to construct a dictionary D of size N X Np that provides
the best sparse representation for each patch in P = {p; H j=1. Where Np is the dimension-
ality of the patches in P and N, is the number of elements in the dictionary D. After the
ridge dictionaries are constructed by K-SVD (Aharon et al. 2006), each dictionary element
is normalized with a mean of zero and standard deviation of one.

A total of 17 different dictionaries are constructed by taking subsets selected from P°
and P ,i=1,...,16 as the training sets. The number of elements N7, in the coarse-level
dlctlonary is set to 1,024, and the total number of elements [N ]‘é in each fine-level dictio-
nary is set to 64. Figure 15.7(a) shows a subset of dictionary elements in the coarse-level
dictionary D€ and Figure 15.7(b) shows a subset of dictionary elements in the 16 fine-level
dictionaries le .
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Figure 15.7 Examples of coarse and fine-level dictionaries. (a) A subset of elements in
the coarse-level dictionary, and (b) a subset of elements in the 16 orientation- speciﬁc dic-
tionaries. The ¢th row in (b) corresponds to the orientation range [(z — 1) x & ix )
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15.3 Orientation field estimation using orientation patch
dictionary

Given the orientation patch dictionary learned in Section 15.2.1, the orientation field in the
latent foreground is estimated using the following three steps (see Figure 15.8):

1. Initial estimation: The initial orientation field is obtained using a local orientation
estimation method, such as local Fourier analysis (Jain and Feng 2009).

2. Dictionary lookup: The initial orientation field is divided into overlapping patches.
For each initial orientation patch, its six nearest orientation patches in the dictionary
are selected as candidates for replacing the noisy initial orientation patch.

3. Context-based correction: The optimal combination of candidate orientation patches
is found by minimizing the energy function, which includes the similarity between an
initial orientation patch and its selected reference orientation patch in the dictionary
and the compatibility between neighboring reference orientation patches.

Details of the orientation field estimation algorithm are presented in the following
sections.

15.3.1 Initial orientation field estimation

The initial orientation field (16 x 16 pixel block size) is obtained by detecting a peak in
the magnitude spectrum of the local image (Jain and Feng 2009). Other local estimation
approaches should also suffice for this initial estimation. Although the initial orientation
field is typically very noisy due to the poor quality of latents, it should not be smoothed at
this stage since the correct orientation elements may be degraded by noise in the neighboring

= | ——
Dictionary

Orientation :
- {construction

field estimation

: : - Dictionary of reference o H
Reference fingerprints Reference orientation fields orientation patches Off-line
—— e e e - —— -

On-line

> Candidate
orientation patches
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1 orientation patch | - -
| ——. =
. Context-based | -———
correction SITTTTITIIE

Corrected orientation field

Input fingerprint Initial orientation field

Figure 15.8 Flowchart of the orientation field estimation algorithm, which consists of
an off-line dictionary construction stage and an online orientation field estimation stage
(Source: Feng et al. (2013), Figure 5, p. 929. Reproduced by permission of IEEE).
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regions. The initial orientation field is updated in the later stages by utilizing prior knowl-
edge of fingerprints contained in the orientation patch dictionary.

15.3.2 Dictionary lookup

Given an initial orientation patch that contains at least one foreground block, a number of
candidate reference orientation patches from the dictionary are retrieved based on their simi-
larity with the initial orientation patch. The similarity S(©, ®) between an initial orientation
patch © and a reference orientation patch ® is defined as

S(@aq)) = ns/nfv (151)

where n; is the number of orientation elements in the initial orientation patch and n, is
the number of orientation elements whose differences are less than a predefined threshold
(empirically set as 7/12). However, for many initial orientation patches, the top candidate
orientation patches of an initial orientation patch are quite similar to each other. In order
to increase the probability of including the correct reference orientation patches in a short
list, it is better to select a set of diverse candidates. A diverse set of n, (empirically set as
6) candidates is selected from the top 10n, initial candidates using the following greedy
strategy:

1. Choose the first initial candidate orientation patch.

2. The next candidate patch is compared to each of the chosen candidates. If its sim-
ilarity to all the chosen candidates is less than a predefined threshold (empirically
set as 0.8), it is included in the list. Note that similarity is computed using only the
foreground blocks in the initial orientation patch.

3. Repeat step 2 for all the initial candidates until n_ candidates have been chosen or
all initial candidates have been checked.

As a result of the diversity heuristic, the correct orientation patch is more likely to appear
in the candidate list, even if the initial orientation patch is very noisy or incomplete.

15.3.3 Context-based orientation field correction

After dictionary lookup, we obtain a list of ¢; (1 < ¢; < n_) candidate orientation patches,
o, = {®;,,®;5,...,P, .}, for an initial orientation patch ©,. Let r; denote the index of
the selected candidate for the patch 4, and r = {r, 7, ..., rnp} be the vector of the indices
of the selected candidates for all n,, foreground patches. Any combination of candidate
indices could be a solution for the orientation field estimation. But this leads to a large
solution space, so we utilize contextual information to reduce the search space.

We address this problem by searching for optimal indices vector, r*, which minimizes
an energy function F(r). Choice of a proper energy function is crucial for the success of
this method. We consider two factors in designing the energy function: (i) the similarity
between the reference orientation patches and the corresponding initial orientation patches
and (ii) the compatibility between neighboring reference orientation patches. The proposed
energy function F(r) is defined as

E(r) = E,(r) + w,E,(r), (15.2)



298 GEOMETRY DRIVEN STATISTICS

where E,(r) and E_(r) denote the similarity term and compatibility term, respectively, and
w,, (empirically set to 1 by the authors in Feng et al. 2013) is the weight of compatibility
term. The similarity term is defined as

E(r)=) _(1-5(6,2,,)), (15.3)

9%

where V denotes the set of foreground patches and S(+) is defined in Equation (15.1). The
compatibility term is defined as

E(r)= > (1-C(®;,,2;,)), (15.4)
(irj)EN

where A denotes the set of adjacent foreground patches, which are four-connected neigh-
bors.

The compatibility between two neighboring orientation patches ®; . and ®; . is mea-
sured by the similarity of orientations in the overlapping blocks. Let {a,, }°, and {3, }2°,
be the set of orientations in the NN, overlapping blocks of two orientation patches. The
compatibility is computed as

1
C(@is ®0,) = > Jeos(a, = B,)I- (15.5)

To minimize the energy function in Equation (15.2), the well-known loopy belief prop-
agation algorithm (Blake et al. 2011) is used for optimization.

15.3.4 Experiments

The goal of an orientation field estimation algorithm is to obtain an accurate estimation of
fingerprint orientation field for fingerprint enhancement and feature extraction and then
to improve the fingerprint matching accuracy. The dictionary-based algorithm is, there-
fore, evaluated in terms of the accuracy of orientation field estimation and the accuracy
of fingerprint matching, respectively. The latent orientation field estimation and subsequent
matching experiments are conducted on NIST SD27 (NIST Special Database 27 2014),
which contains 258 latent fingerprint images (500 ppi). These latents have been classified
into three different qualities, namely, “Good,” “Bad,” and “Ugly” (very bad), and their corre-
sponding mated rolled fingerprints. The numbers of “Good,” “Bad,” and “Ugly” latents are
88, 85, and 85, respectively. Figure 15.9 displays examples of latent with these three qual-
ities. To make the latent matching problem more realistic and challenging, 27,000 rolled
fingerprints (file fingerprints) in the NIST SD14 database were also included in the back-
ground database.

In addition to the proposed orientation field estimation algorithm, two other approaches
were included for comparison:

1. FOMFE: Combination of gradient-based local estimation and FOMFE-based global
model (Wang et al. 2007).

2. STFT: Combination of STFT-based local estimation and low-pass filtering
(Chikkerur et al. 2007).
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Figure 15.9 Examples of latents of different qualities. (a) Good, (b) bad, and (c) ugly.

The accuracy of orientation field estimation algorithms is measured in terms of the
average Root Mean Square Deviation (RMSD) (Turroni et al. 2011). The ground truth ori-
entation fields were manually marked by one of the authors in Feng et al. (2013). Average
RMSD of the dictionary-based algorithm, FOMFE, and STFT are computed on all the 258
latents in the NIST SD27 database and also on the three quality level subsets (Good, Bad,
and Ugly). Table 15.1 shows that the dictionary-based algorithm outperforms FOMFE and
STFT for all three subsets of latent fingerprints in NIST SD27.

In order to evaluate the matching performance, latent fingerprints are enhanced using
a Gabor filter (Hong et al. 1998) whose frequency parameter is fixed at 1/9 cycles per
pixel, orientation parameter is tuned to the estimated orientation field, and standard devi-
ations of the Gaussian envelope in x and y directions are fixed at 4. VeriFinger SDK 6.2
(Neurotechnology Inc. 2012) is used for feature extraction and matching.

Figure 15.10 shows the Cumulative Match Characteristic (CMC) curves obtained from
the three orientation field estimation algorithms and the manual markup (ground truth). The
dictionary-based algorithm consistently outperforms the other two algorithms (FOMFE and
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Table 15.1 Average estimation error (in degrees) of the orientation field estimation
algorithm based on orientation patch dictionary and two competing algorithms on the

latent fingerprints in the NIST SD27 Database.

Algorithm All Good Bad Ugly
Orientation patch dictionary (Feng et al. 2013) 18.44 14.40 19.18 21.88
FOMEFE (Wang et al. 2007) 28.12 22.83 29.09 32.63
STFT (Chikkerur et al. 2007) 32.51 27.27 34.10 36.36

Source: Feng et al. (2013), Table 2, p. 932. Reproduced by permission of IEEE.
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Figure 15.10 CMC curves of three orientation field estimation algorithms and the man-
ual markup of orientation field on the NIST SD27 latent database: (a) all (258 latents),
(b) good quality (88 latents), (c) bad quality (85 latents), and (d) ugly quality (85 latents)
(Source: Feng et al. 2013, Figure 13, p. 933. Reproduced by permission of IEEE).

STFT) on latents of all three quality levels. Three examples given in Figure 15.11 compare
the enhanced latent fingerprints using the orientation fields obtained by the dictionary-based

algorithm, FOMFE, and STFT.

For many latents of good quality, the dictionary-based algorithm outperforms the man-
ual markup (see Figure 15.10(b)). Our analysis of these examples demonstrates that the
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(a) Latent fingerprint (b) FOMFE (c) STFT (d) Proposed

Figure 15.11 Enhanced images of three latent fingerprints in (a) using orientation fields
estimated by (a) FOMFE, (b) STFT, and (c) the orientation patch dictionary-based algorithm
(Source: Feng et al. (2013, Figure 14, p. 934. Reproduced by permission of IEEE).

dictionary-based algorithm has smaller deviation from true ridge orientation for good qual-
ity latents because it is difficult and time consuming for a fingerprint expert to accurately
mark the complete orientation field in a latent. Manual markup still performs better on bad
and ugly quality latents.

15.4 Latent segmentation and enhancement using ridge
structure dictionary

Given the learned ridge structure dictionaries (Section 15.2.2), latent segmentation and
enhancement consists of the following steps (see Figure 15.12):

1. Decomposition: Input latent is decomposed into cartoon and texture images using
local total variations (LTVs) (Buades et al. 2010); the cartoon image, which primarily
consists of structured noise, is discarded.

2. Coarse-level estimation: The coarse-level dictionary is used to estimate orientation
and frequency fields on the texture image and assess coarse-level quality of the latent.
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Figure 15.12 Overview of latent segmentation and enhancement algorithm based on ridge
structure dictionary. The off-line dictionary learning (a and c¢) and online latent segmenta-
tion and enhancement stage (b) are shown (Source: Cao et al. (2014), Figure 3, p. 1850.
Reproduced by permission of IEEE).

3. Fine-level estimation: Using coarse-level orientation field, select one fine-level dic-
tionary out of the 16 fine-level dictionaries for each image patch in the texture image;
this gives fine-level orientation and frequency fields and ridge quality map.

4. Segmentation and enhancement: The coarse-level quality map and fine-level quality
map are fused for latent segmentation. In the foreground of texture image, a Gabor
filter tuned to the orientation and frequency fields obtained in steps 2 and 3 is applied
for latent enhancement.

15.4.1 Latent image decomposition

A latent fingerprint image, f, is decomposed into a cartoon (piece-wise smooth) image and
a texture (oscillatory) image. The texture image primarily includes the ridge structure pat-
terns, so it is kept for further latent segmentation and enhancement, while the cartoon image,
viewed as structured noise, is discarded. We adopt the nonlinear decomposition method
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based on LTV proposed by Buades et al. (2010). Figure 15.14(b) shows the texture com-
ponent of three different latent images shown in Figure 15.14(a); most of the structured
noise in latents has been successfully removed by excluding the cartoon image and only the
friction ridge pattern is retained in the texture image.

15.4.2 Coarse estimates of ridge quality, orientation, and frequency
15.4.2.1 Sparse coding and patch quality

The texture image is divided into overlapping patches of size 64 x 64 pixels (Pf). Each
patch has 64 x 48 or 48 x 64 overlapping pixels, with each of its four-connected neigh-
boring blocks. Each patch p € P is converted into a vector by row concatenation and
normalized with a mean of zero and standard deviation of one. The sparse code o of p
with respect to coarse-level dictionary D¢ is obtained using orthogonal matching pursuit
(Mallat and Zhang 1993). In general, the reconstructed patch p is close to p if p is a finger-
print patch. In order to measure the similarity between p and p, we have used the structural
similarity index SSIM(p, p) (Wang et al. 2004).

Figure 15.13 compares the reconstructed patches using different values of dictionary
elements and SSIM indices for two fingerprint patches (the top and middle rows) and one
non-fingerprint patch (the bottom row). We observe that the value of SSIM indicates the
quality of a patch in terms of fingerprint ridges. The quality of patch p, @, is therefore
defined by

Q, = SSIM(p, p). (15.6)

A single dictionary element is selected for each image patch for the reconstruction. This
is because (i) with just one element, the sparse code and SSIM index are easy to compute,

SSIM=0.522 SSIM=0.599 SSIM=0.630 SSIM=0.652

"B A1y

SSIM=0.175 SSIM=0.286 SSIM=0.333 SSIM= 0373

Z % 7

SSIM=0.005 SSIM=0.009 SSIM=0.333 SSIM=0.373

Figure 15.13 Patch reconstruction results (overlaid on orientation field) with different
number of dictionary entries, 7. (a) Texture component of a high-quality fingerprint patch
(top), low-quality fingerprint patch (the middle), and non-fingerprint patch (the bottom), (b),
(c), (d), and (e) are the reconstruction results when 77 = 1, 2, 3, 4, respectively. The SSIM
indices between the given patch (column (a)) and the reconstructed patch with different
value of 7T} are shown above the reconstructed patches.
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Figure 15.14 Illustration of latent fingerprint segmentation. (a) Gray-scale latent images,
(b) texture component images, (c) coarse-level quality maps, (d) fine-level quality maps, and
(e) segmentation results shown overlaid on the gray-scale latent images. The top, middle,
and bottom latent fingerprints in column (a) are of good, bad, and ugly quality in NIST
SD27. The contrast of the middle and bottom latent fingerprints has been adjusted for better
visual quality.

and (ii) the orientation and frequency fields of p can be computed off-line since p is simply
one of dictionary elements. Figure 15.14(c) shows some examples of coarse-level quality
maps when a single dictionary element is retrieved for reconstruction.

15.4.2.2 Ridge quality map, and orientation and frequency fields estimation

As shown in Figure 15.13, the reconstructed patches have better ridge quality. The orien-
tation field and frequency field of patch p in the latent image can be obtained from the
reconstructed patch p. For a block b (16 x 16 pixels) in the latent covered by multiple
patches, let {g;, 6;, f;} be the ridge quality, orientation, and frequency of the ith patch cov-
ering the block b. The coarse estimates of ridge quality Qf, orientation 6}, and frequency
fiy for block b are computed as:

1 &
=—> q, (15.7)
ny, i—1
05 = —tan (qu Sln291,qu cos29> (15.8)
qu i (15.9)

zlzil
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where n; is the number of patches covering the block b. In this case, a higher weight (g;)
is assigned to the patch with better ridge and valley structures. Other elaborate weighting
strategies may lead to better results.

15.4.3 Fine estimates of ridge quality, orientation, and frequency

While the coarse-level dictionary is robust to local noise, it cannot extract detailed ridge
information. Instead, small patch size dictionaries can be used to compute the fine-level
quality map and fine-level orientation and frequency fields. The texture image is divided
into smaller overlapping patches of size 32 x 32 pixels (Pg ). Each patch has 32 x 16 or
16 x 32 overlapping pixels with each of its four-connected neighboring blocks. All patches
in PI{ are normalized with a mean of zero and standard deviation of one. For each patch
pe P!, a dominant orientation 6 is used to select the corresponding orientation-specific
dictionary D{, where k = [wxe] and [-] is the ceiling operator. The closest dictionary
element p to p in Df is selected, and the quality of the patch p is determined by the SSIM
index between p and p. For each 16 x 16 block b in the latent, the fine-level quality Qb,
orientation 9,{ , and frequency fb are obtained from the covering patches using Equations
(15.7)-(15.9).

15.4.4 Segmentation and enhancement

The final quality map () is computed as the average of the coarse-level quality map and
fine-level quality map. () is then normalized to the range [0,1] and a global threshold T7,,
determined by Otsu’s method (Otsu 1979) is used to binarize the normalized quality map.
The blocks with normalized quality less than 7}, are regarded as background, otherwise
foreground. Morphological operations (dilation and opening) are then applied to remove
small foreground blocks and fill holes inside the foreground. Finally, the convex hull of the
set of foreground blocks determines the final segmentation result. Figure 15.14(e) shows
the segmentation results for latent fingerprints in NIST SD27.

In the foreground region, the texture image of a latent obtained from the decomposi-
tion is enhanced by Gabor filtering (Hong et al. 1998), where the orientation and frequency
parameters of the filter are tuned based on the fine-level orientation field (67) and the aver-
age frequency of coarse-level frequency field and fine-level frequency field (#); the
standard deviations of the Gaussian envelope in x and y directions are set to 4.

15.4.5 Experimental results

Two latent databases are used for performance evaluation: NIST SD27 and the West Virginia
University latent database (WVU DB) (iPRoBe 2014). The NIST SD27 contains 258 latent
fingerprints with their mated rolled fingerprints. The WVU DB contains 449 latent finger-
prints with their mated rolled fingerprints and an additional 4,290 rolled fingerprints. All
these latent fingerprint images are 500 ppi images. The algorithm was implemented in MAT-
LAB and C/C++ and run on a dual-core 2.66 GHz, 4GB RAM machine running a Windows
7 operating system. The average computation time for segmentation and enhancement per
latent is about 2.6 seconds for latents in NIST SD27 and 1.6 seconds for latents in WVU DB.
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Figure 15.15 An example of latent segmentation and enhancement by the proposed algo-
rithm. (a) A latent fingerprint (U286 from NIST SD27); (b) fully automatic segmentation of
(a) by the proposed algorithm; (c) the true mate (rolled print) of (a) with the segmentation
boundary in (c) outlined on the mate. By feeding the original latent in (a) and the segmented
and enhanced latent in (b) into a commercial off-the-shelf (COTS) latent matcher (with a
background database of 31,997 reference prints), the mated print is retrieved at ranks 4,152
and 2, respectively.
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Figure 15.16 CMC curves of latent fingerprint identification with the COTS Ilatent
matcher on (a) NIST SD27 and (b) WVU DB (Source: adapted from Cao et al. (2014),
Figure 12, p. 1857. Reproduced by permission of IEEE).

The ultimate goal of fingerprint segmentation and enhancement of latent images is
to improve the latent matching performance. To make the latent matching problem more
realistic and challenging, the background database size is expanded to 31,997 rolled finger-
prints by including 27,000 rolled fingerprints in the NIST SD14, 258 rolled fingerprints in
NIST SD27, and 4,739 rolled fingerprints in WVU DB.

The segmentation and enhancement algorithm based on ridge structure dictionary is
evaluated by a state-of-the-art latent matcher (COTS) to determine whether the proposed
algorithm is able to boost latent matching performance. The match scores from the two
input images (original latent image in Figure 15.15(a) and segmented and enhanced image
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in Figure 15.15(b)) are fused by a weighted sum method; the weights for original latent
image template and segmented and enhanced image templates are empirically set as 0.7
and 0.3, respectively. The resulting CMC curves for the COTS latent matcher on NIST
SD27 and WVU DB are shown in Figure 15.16. The fusion of match scores from these
two inputs improves the rank-1 identification rate of COTS latent matcher on both NIST
SD27 and WVU DB. Fusing outputs of diverse search templates extracted from different
segmentation and enhancement algorithms appears to be a good strategy to boost latent
matching performance.

15.5 Conclusions and future work

Automatic Fingerprint Identification Systems (AFIS) have achieved extremely high match-
ing accuracies in tenprint searches (rolled or plain fingerprints). For this reason, almost
every law enforcement agency in the world relies on the use of AFIS to identify suspects and
criminals. Further, there is a growing use of fingerprints to conduct background searches of
applicants for visa and other government-issued secure documents. However, latent finger-
print search is still a challenging problem due to the presence of complex background noise
and poor quality of friction ridge structure that is typical for latent fingerprint images found
at crime scene investigations. For this reason, human intervention, such as manual markup
of minutiae and singular points, is common practice for latent fingerprint identification.

A fully automatic latent identification (“lights-out” mode) is highly desired to allevi-
ate the concerns about repeatability and reproducibility of latent examiners’ performance
and increase the throughput of the latent matching process. Automatic feature extraction is
one of the most crucial steps in “lights-out” latent identification. In this chapter, we have
summarized the role of two types of dictionaries, orientation patch dictionary and ridge
structure dictionary, as representations of prior knowledge about fingerprint patterns. We
show how these dictionaries can be used in latent segmentation and enhancement. The ori-
entation patch dictionary is used to update the initial orientation field in the input ROIL.
The ridge structure dictionary is used for ROI segmentation and enhancement. Experimen-
tal results on two different latent fingerprint databases demonstrate the advantages of our
dictionary-based approach for fingerprint segmentation and enhancement.

In order to further improve the dictionary-based algorithms, we need to address the
following issues:

1. Instead of simply using local orientation patch dictionary, global orientation field
dictionary may further improve the accuracy of orientation field estimation.

2. A multiresolution approach should be considered to construct orientation patch dic-
tionaries for both small and large friction ridge areas.

3. Arobustridge quality estimation for fingerprint images with low contrast (as in “dry”
fingerprints) and background line structure noise is needed.
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16.1 Introduction
16.1.1 Overview

The structure of a protein is constrained by its function. Sequence alignments from homol-
ogous proteins that are from a range of species provide information on these evolutionary
constraints. The analysis of correlated mutations within multiple-sequence alignments can
be used to predict residues that are in proximity in three-dimensional space. We study the
co-evolution of protein sequences and structure to distinguish between the residue correla-
tions that correspond to structural proximity and potential confounding residue correlations.
Confounding residue correlations can occur as a result of noise or other biological evolu-
tionary constraints (Marks et al. 2011).

The exploratory data analysis reported here focusses on the trypsin protein family.
The structures were aligned using a multiple structural alignment algorithm, MUSTANG
(Konagurthu et al. 2006), to determine how the structure of the family has evolved.
Calculating basic summary statistics on the resulting aligned distance matrices revealed
an interesting result. We discovered a set of residues where the distance between these
specific residues and every other in the structure is highly conserved across all of the
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structures in the protein family. These residues appear to hold the structure of the trypsin
protein family in place like anchors.

We conduct a series of tests to determine the validity and origin of the intriguing concept
of ‘anchor’ residues and the resulting conclusions drawn about the trypsin protein family
following their discovery. However, many of these tests proved inconclusive or provided
conflicting evidence. Therefore, the question is still open: are the anchor residues artefacts?

16.1.2 Protein sequences and structures

Proteins are biological macromolecules comprised of polypeptide chains; these in turn are
made up of amino-acid residues. Figure 16.1 displays the chemical structure common to
all amino acids, where R represents the unique side chain of the 20 standard amino acids.
The R group is connected to the alpha carbon, or C,, atom. To form the polypeptide chain,

Amino acid (1) Amino acid (2)

Peptide bond

Water

Dipeptide

Figure 16.1 A two-dimensional ball-and-stick model of peptide bond formation between
two amino acids. Atoms are represented by circles and bonds are lines between them, where
double bonds are indicated by two parallel lines. Nitrogen, Carbon, Oxygen and Hydrogen
are represented by ‘N’, ‘C’, ‘O’ and ‘H’, respectively. The unique side chains or ‘R’ groups
of the two amino acids are represented by a square. Peptide bonds are formed when the
carboxyl group of one amino acid reacts with the amino group of another resulting in the
loss of a water molecule, as shown in the lower panel.
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the amino-acid residues are combined by peptide bonds, resulting in the loss of a water
molecule for each link.

The complex structure of a protein is determined by four different levels of folding,
known as the primary, secondary, tertiary and quaternary structures. The primary structure
is the sequence of amino-acid residues of each polypeptide chain. Each of the 20 amino
acids is represented by a distinct single-letter code.

The secondary structures of a protein are the regions of the polypeptide chain that are
organised into regular structures identified as alpha helices and beta-pleated sheets. Alpha
helices are the most common type of secondary structure. The protein chain twists into
a coil held together by hydrogen bonds where the side chains of the amino acids point
outwards. The helix is orientated in an anti-clockwise direction, with approximately 3.6
amino-acid residues per turn. Beta sheets are rigid planar surfaces formed when two or
more strands of the protein chain lie side by side. This structure is also held together by
hydrogen bonds. The side chains lie alternately above and below the plane of the surface of
the beta sheet. Between the organised secondary structure regions are less structured loops
and turns, which are less rigid and freer to move.

The tertiary structure of a protein describes the folding of the polypeptide chain to
form its final three-dimensional shape. Interactions between the side chains of amino-acid
residues hold this structure in place. Disulphide bonds or sulphur bridges occur when cys-
teine side chains align as a result of higher order folding.

The quaternary structure of a protein is the combination of more than one polypeptide
chain. For example, dimers are proteins comprised of two polypeptide chains. The qua-
ternary structure is held together by the same interactions as the tertiary structure. Not all
proteins have a quaternary structure. Those that do not consist of one polypeptide chain are
known as monomers (Branden et al. 1991).

16.2 Exploratory data analysis

16.2.1 Trypsin protein family

Trypsin is a protein of the serine protease family involved in the digestive processes of most
vertebrates. It is produced in the pancreas and breaks proteins down into smaller proteins
to be absorbed through the lining of the small intestine. Trypsin has many applications; it is
used in many biotechnological processes, the food industry, biological research, as a treat-
ment for inflammation and in microbial form to dissolve blood clots (Bateman et al. 2004).
Due to its multiple varied uses, over 2000 trypsin structures have been experimentally deter-
mined over a wide variety of species. A typical trypsin structure is displayed in Figure 16.2,
displayed using the molecular visualisation software, Jmol (Jmol: an open source java
viewer for chemical structures in 3D. http://www.jmol.org/). Trypsin is in the all-beta class
of proteins because it consists entirely of beta sheets, with the exception of two alpha
helices that are isolated on the outside of the structure. Trypsin contains two beta barrels
that lie perpendicular to each other in the structure. The beta barrels are a closed structure
formed when the beta sheets twist such that the first strand is hydrogen bonded to the last.

Trypsin structures were downloaded from the Protein Data Bank (PDB) (Berman et
al. 2000). After filtering out inappropriate structures, such as low-resolution structures and
corrupt PDB files, our final data consists of 83 trypsin chains, originating from a variety of
species. The protein chains were aligned in order to identify regions of similarity throughout
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Figure 16.2 Ribbon representation of a trypsin molecule (Protein Data Bank (PDB)
accession code: 1S5S) displayed with the molecular visualisation software, Jmol. The sec-
ondary structures are coloured; dark grey indicates an alpha helix, light grey indicates a beta
sheet and the black helix is a 3, helix; a helix with three residues per turn rather than 3.6.

evolution. There are two types of alignment: sequence and structural. Sequence alignments
are constructed based on the similarity between amino-acid residues and their physiochem-
ical properties, while structural alignments use shape and three-dimensional conformation
to align the atomic coordinates of the structures. Structure alignments are of interest because
the structure of a protein family evolves more gradually than the amino-acid sequence and
is, therefore, more conserved. Due to the size of the sample, the MUSTANG multiple struc-
tural alignment algorithm (Konagurthu et al. 2006) was used as it is one of the few structural
alignment algorithms capable of operating with a large number of structures.

16.2.2 Multiple structure alignment

An overview of the MUSTANG procedure is given in Figure 16.3. The main steps in the
procedure are as follows. The MUSTANG method first tries to find structural similarity in
pairwise fragments of the structures before building the multiple structure alignment . Each
pair of structures is initially scored using root-mean-square deviation (RMSD) in order
to find similar substructures. The RMSD is a measure of the average distance between the
atoms of superimposed structures. The individual residue alignments are then scored using a
similarity measure that is closely based on the elastic similarity function proposed by Holm
and Sander (1993). These scores are used to align each pair of structures by a dynamic
programming algorithm. The pairwise alignment scores are then recalculated in the con-
text of all of the structures. This is achieved by taking every structure as an intermediate
for each pairwise alignment. The more intermediate structures that support the alignment
of a pair of residues, the higher the score assigned to them. The multiple structure align-
ment is finally obtained following a binary guide tree constructed using the neighbor-joining
method (Saitou and Nei 1987) applied to the similarity scores.

Berbalk et al. (2009) and Konagurthu et al. (2006) compare MUSTANG with other mul-
tiple structure alignment algorithms; POSA, CE-MC, MALECON and MultiProt. Accord-
ing to Konagurthu et al. (2006), MUSTANG performs as well as the other alignment tools
for closely related proteins and outperforms them for more distantly related proteins or pro-
teins that exhibit conformational changes. Berbalk et al. (2009) supports the conclusion that
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Figure 16.3 An overview of the MUSTANG algorithm (Source: adapted from
Konagurthu et al. 2006, Figure 2, p. 562. Reproduced with permission of John Wiley and
Sons).

MUSTANG performs as well as other alignment tools when the structures have high struc-
tural similarity but suggests that there is room for improvement when structures are more
distantly related.

MUSTANG has several disadvantages; it can be very temperamental in what can be
aligned and also only uses the information in the C,, coordinates of the structures and the
distances between them, the information contained in the amino-acid sequence is ignored
completely.

The output of the alignment is a multiple-sequence alignment constructed using the
structural alignment of the chains. We prepared the alignment for subsequent analysis by
removing all positions in the alignment where more than 20% of the entries consist of
gaps. (Gaps are introduced in alignments where insertions or deletions are predicted to have
occurred throughout evolution.) For smaller samples, MUSTANG produces a PDB file con-
taining the coordinates for the superimposed structures; this can be visualised using Jmol
(Jmol: an open source java viewer for chemical structures in 3D. http://www.jmol.org/).
Visual analysis is impractical with such a large number of structures; instead, we considered
the distances between the residues in the superimposed structures.

16.2.3 Aligned distance matrix analysis

The three-dimensional shape of a protein can be summarised by its residue—residue dis-

tances. A distance matrix for a protein structure, k, contains the Euclidean distance, dg?,

between the C , atoms of each amino-acid residue pair, ¢ and j. The positions in the distance
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matrices can be aligned, or superimposed, using the MUSTANG alignment to analyse corre-
sponding distances across the structures. The alignment produced by MUSTANG respects
the sequence order of the amino acids.

There are 219 alignment positions in the MUSTANG alignment of the 83 trypsin struc-
tures downloaded from the PDB, resulting in a 219x219x83 data array. This large data
structure can be summarised by calculating a measure of location and divergence for every
distance across the aligned structures. We achieved this by calculating a weighted median
and a weighted interquartile range, where the weights are calculated using the method of
Henikoff and Henikoff (1994) as follows:

e For each position in the alignment, divide a total weight of one evenly between the
unique letter types in that position.

e Divide the weight that has been assigned to each letter type between the number of
that letter type in that position.

e For each sequence, sum the weights that have been assigned at each position.

e Normalise the sequence weights to sum to one.

Sequences from the same species are likely to be very similar, whereas sequences from more
diverged species differ more. If all of the sequences are weighted equally, then information
may be lost when there are many similar sequences due to independent information from
the more diverged sequences being diluted. The sequences are weighted so that very simi-
lar sequences are down-weighted and unusual sequences are up-weighted. We constructed
a median matrix, d, and divergence matrix, div, using the aligned distance matrices; the
(4, 7)th element of each of these matrices is given by

i (k)
di,j = MED(di,j)7
div, ; = IQR(d\")),

fori,j =1,...,219and k = 1, ..., 83, where IQR and MED are the weighted interquartile
range and weighted median.

To assess the relationship between the median and divergence matrices, they are plotted
against each other in Figure 16.4. There are a vast number of data points as a result of
the size of the matrices, 219% = 47 691 data points; however, there does not appear to be an
obvious relationship between the divergence and the median. Intuitively it might be assumed
that a larger median would correspond to a larger divergence, since the distance between
the residues is larger. However, only a handful of points exhibit this property, suggesting
that for the majority of the sample the overall framework of the structures is very similar.
Interestingly, there are a collection of points where the divergence is high while the median
is very low. This pattern corresponds to the scenario where the distance between the two
residues are small, yet there is a lot of variation in the corresponding distances across the
structures, suggesting a different local structure for some of the sample.

Each row (and column) of the median and divergence matrices corresponds to a position
in the structural alignment. This is plotted in Figure 16.5. The bars appear as a result of
many points plotted close together. The plot of divergence against position in Figure 16.5(b)
shows that there are positions in the alignment where the range of divergences is low as
indicated by distinct troughs between the peaks. This suggests that there are residues where
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Figure 16.4 Plot of median aligned residue-residue distance against the divergence
between the distances for each pair of residues, for the MUSTANG structural alignment
of the trypsin sample.
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Figure 16.5 Plots of the rows of the median and divergence matrices calculated from
structurally aligned distance matrices of the trypsin sample. The bars appear as a result
of many points plotted close together. (a) Median, Jz} ;» of the structurally aligned distances
plotted against position, ¢, in the alignment. (b) Divergence, div, ,, of the structurally aligned

distances plotted against position, ¢, in the alignment.

2,J°

the distance between that residue and every other residue in the structure is conserved,
across all of the structures. If this result is genuine, these residues could be used to predict
the structure of proteins in the trypsin family and might also provide a basis for predicting
structure from multiple-sequence alignments of other protein families.

16.2.4 Median distance matrix analysis

The median matrix is plotted as a heatmap in Figure 16.6. The heatmap is interpreted iden-
tically to a typical heatmap for a structure; small distances are represented by white, while
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Figure 16.6 Median matrix heatmap. The median residue-residue distances are plotted
in greyscale; small distances are white and large distances are dark grey.

large distances are given in dark grey. As a result, the heatmap is not dissimilar to a typical
distance-matrix heatmap produced by any of the structures. This is unsurprising given that
the median matrix is an average of the aligned distance matrices. This suggests that MUS-
TANG has produced a reasonable structure alignment and the median distance matrix is a
suitable measure to be used to construct a consensus structure to represent the sample, that
is, the average structure of the sample. Multidimensional scaling is a technique used to con-
struct a configuration of data points in the Euclidean space using the distances, similarities
or dissimilarities between them. The data points are assigned coordinates in n dimensions
that aim to preserve the distances between them (Mardia et al. 1979). Metric multidimen-
sional scaling can be applied to the weighted median distance matrix in order to obtain
a consensus structure. We could also perform multidimensional scaling on the divergence
matrix, which would allow us to see where the differences from the median structure are.

The R (R Core Team 2013) function cmdscale was used to perform metric multidimen-
sional scaling on the median distance matrix. There are three eigenvalues that are much
larger than the remaining eigenvalues. These normalised squared eigenvalues are 0.61, 0.28,
0.10, while the remaining values are close to zero, suggesting that the first three coordinates
are sufficient to reproduce the median distance matrix. This is unsurprising given that we
know that the distances are obtained from three-dimensional objects. The resulting coordi-
nates are used to produce a PDB file that can be viewed in Jmol. The consensus structure is
displayed superimposed over the trypsin structure 1S5S in Figure 16.7.

The consensus structure is comprised only of C,, atoms since the distance matrices used
to construct it contain the distances between the C,_, atoms of each residue. Despite this,
Figure 16.7 shows that the configuration produced using multidimensional scaling is a good
approximation of the trypsin structure 1S58S.

16.2.5 Divergence distance matrix analysis

The divergence matrix is plotted as a heatmap in Figure 16.8(a). In this case, dark grey indi-
cates large divergences implying distances that are less conserved while white regions rep-
resent small divergences or distances that are more conserved. The scale in Figure 16.8(a)
is inflated by a small area of high divergence. The low-range divergences identified in
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Figure 16.7 Multidimensional scaling structure of the median distance matrix, displayed
in black. The C_, atoms of each position in the alignment are given by a black circle.
C,, atoms corresponding to adjacent alignment positions are connected by black lines to
represent the backbone of the median structure. The trypsin structure in Figure 16.2 is
superimposed with the consensus structure and displayed in grey. The structures were
superimposed using TM-align pairwise structural alignment algorithm (Source: Zhang and
Skolnick 2005).
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Figure 16.8 Divergence matrix heatmaps for different colour scales. The divergence
between the residue—residue distances are plotted in greyscale; small divergences are white
and large divergences are dark grey. (a) Divergence matrix heatmap based on the original
scale. The information in white is diluted by a small amount of grey that is pulling up the
scale. (b) Divergence matrix heatmap recalculated for all of the divergences that are less
than 5 A°, larger divergences are blacked out.

Figure 16.5 are approximately 5 angstroms (5 A°); to analyse alignment positions at this
end of the scale, all divergences greater than 5 A° are coloured black and the heatmap recal-
culated based on the scale 0-5, as displayed in Figure 16.8(b).

The pattern of divergence at the lower end of the scale can now be visualised more
clearly. There is a clear pattern of horizontal and vertical white lines running across the
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Figure 16.9 (a) Ribbon representation of a trypsin structure (PDB ID: 1JIR) identifying
the location of the anchor residues, displayed in blocks of black, and the three disulphide
bonds, indicated by black lines and labelled cysteine (C) residues. (b) The same structure
identifying the location of functional residues, including the catalytic triad of residues and
the oxyanion hole, displayed in blocks of black, and the three disulphide bonds, indicated
by black lines and labelled cysteine (C) residues.

heatmap. These lines represent where in every structure the distance between one residue
and every other residue is highly conserved, in agreement with the conclusions drawn from
Figure 16.5. Four distinct groups of alignment positions can be identified as having a low
range of divergences. These residues are of interest as they appear to be anchors for each
of the structures, conserving their distances and holding them in place.

To accurately determine the positions in the multiple structure alignment corresponding
to the low-range divergences, the maximum divergence in each position was analysed and
a natural divide was found around 7 A°. It remains to identify which positions have a max-
imum divergence of less than 7 A° and determine where these lie on each of the structures.
We define an anchor residue to be any residue, ¢, with max; divi’ ;< 7 A°. Figure 16.9(a)
displays the structure of a representative sample structure (PDB identifier 1JIR), in a grey
ribbon representation with the anchor residues identified in blocks of black. Consecutive
anchor residues are coloured the same, resulting in longer bands of black where anchor
residues lie next to each other in sequence. In fact 70 of the structures in the sample exhibit
identical colourings to 1JIR.

The anchor residues are predominantly located on the outside of the protein and in loop
regions. One of the beta barrels is the only region that appears to be completely devoid of
colour. The beta sheets found on the section of the beta barrels that faces into the centre of
the structure form the hydrophobic core that is important in attracting the specific residues
that trypsin cleaves.

Protein structure is closely related to its function. The enzymatic mechanism of trypsin
involves a catalytic triad of residues: the amino-acids histidine-57, aspartic acid-102 and
serine-195, where the numbers after the hyphen indicate the sequence position. These three
residues form a charge relay that causes the active site serine residue to become nucleophilic
by modifying its electrostatic environment (Bateman et al. 2004). Trypsin also contains
an ‘oxyanion hole’ formed by the backbone amide hydrogen atoms of glycine-193 and
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serine-195. This hole stabilises the developing negative charge on the carboxyl oxygen atom
of the cleaved amides. Another important functional residue is aspartic acid-189 located
in the catalytic pocket of trypsin. This residue is responsible for attracting and stabilising
positively charged lysine and arginine residues (Bateman et al. 2004).

In order to determine whether these functional residues coincide with the anchor
residues, Figure 16.9(b) displays the location of the functional residues, coloured in black.
The functional residues are generally in the centre of the protein, in contrast to the location
of the anchor residues. It can easily be seen that the functional residues and anchor residues
do not overlap; that is, none of the anchor residues correspond to a functional residue.

Trypsin has a number of disulphide bonds stabilising its structure. Stroud (1974) claims
that trypsin has six disulphide bonds; however, only 36 of the structures have the required
number of cysteine residues, 12. According to Vdrallyay et al. (1997), there are three con-
served disulphide bonds: C42—-C58, C168—C182 and C191-C220. It was found that 80 of
the 83 structures have enough cysteine residues to form at least three disulphide bonds.
Figure 16.9 indicates by black lines connecting the ribbons in the structure where these
three disulphide bonds are found in relation to the anchor residues and functional residues.
The bonds appear to be positioned around the substrate-binding pocket; this is unsurprising
given that this is the part of the structure vital to the protein’s function . Only one of the
bonds involves an anchor residue.

It is important to check that the positions in the structural alignment that correspond to
the anchor residues are not predominantly comprised of gaps. If most of the sequences cor-
respond to gaps in the anchor positions, then the structural conservation in these positions
would be the result of a small number of structures in the sample. The median percentage
of gaps in the anchor columns is 12.05 compared to a median percentage of gaps of 4.22 in
the other columns in the alignment. However, because there are fewer anchor columns, the
percentage of gaps in the anchor columns is much less variable, with a standard deviation
of 1.89 compared to a standard deviation of 37.09 for the percentage of gaps in the other
columns. Overall, the anchor columns of the alignment are not excessively gapped com-
pared to the other columns in the alignment; however, the median number of gaps in the
anchor columns is larger than that of the other alignment columns. Given that the anchor
columns are not disproportionately gapped, it remains to determine which residue types are
found in each anchor position and how conserved these residues are. Table 16.1 contains
the percentage of each residue type in each of the anchor columns. Some of the anchor
columns appear to be conserved in sequence; however, overall they do not appear to be
more conserved than every other column in the alignment.

Rypniewski et al. (1994) propose several conserved residues, in both sequence and struc-
ture. Comparing the anchor residues in Table 16.1 to those proposed by Rypniewski et
al. (1994) results in an overlap for some of the residues; there are 7 anchor columns that
correspond to the conserved residues identified in the paper. The residues 42, 43 and 44
correspond to anchor columns 3, 4 and 5 in Table 16.1. These three residues are strongly
conserved in the aligned sequences and they are identified as conserved in the paper. These
three residues are found close to the active site; glycine-43 forms a hydrogen bond with the
carbonyl oxygen of serine-195, one of the catalytic triad residues, and cysteine-42 forms
a disulphide bond, as displayed in Figure 16.9. Anchor column 11 corresponds to residue
94, which lies in the exposed side of the loop that contains the active site residue aspar-
tic acid-102 and is important in maintaining structure; its side chain is in contact with two
residues of the catalytic triad: aspartic acid-102 and histidine-57. In the paper, residue 94 is
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tyrosine; however, in Table 16.1 the corresponding column shows that the residue is tyro-
sine in only 39% of the structures. This could be due to the fact that the amino acid at
residue 91 that forms a hydrogen bond with residue 94 is variable, and thus residue 94
varies to accommodate this. Conserved residues 171 and 172 are important in the speci-
ficity function of trypsin. In particular, residue 172 forms a hydrogen bond with a residue at
the bottom of the specificity pocket. These residues correspond to anchor columns 23 and
24. Rypniewski et al. (1994) identify residue 172 as tyrosine, but also state that it is substi-
tuted in many sequences, explaining why it is not very conserved in Table 16.1. The final
residue that is identified as conserved in the paper and is also an anchor residue is residue
225, or anchor column 30. This residue is a conserved proline residue in Table 16.1, and
its role is linked to residues 171 and 172. A number of the anchor columns are found next
to the residues identified as conserved by Rypniewski et al. (1994). Overall, this identifies
that some of the anchor columns correspond to known conserved residues, suggesting that
MUSTANG has managed to align some of the key conserved residues well.

16.3 Are the anchor residues artefacts?

The anchor residues identified by analysing the structure alignment produced by MUS-
TANG are intriguing. It is necessary to test that these residues are not simply an artefact
produced by MUSTANG. There is no common standard for assessing the quality of a struc-
tural alignment (Liu et al. 2011); therefore, we propose the following tests.

16.3.1 Aligning another protein family

One way to identify whether the anchor residues are an artefact of MUSTANG is to align
another protein family and determine whether low-range divergences are apparent. If MUS-
TANG is reliable, we expect the anchor residues not to be present because it is unlikely that
this feature would be observed in every protein family. However, if the anchor residues are
a feature of protein evolution, we would expect to see them in another protein family.

A search of Pfam (Bateman et al. 2004) produced a suitable family from a diverse
range of species, short-chain dehydrogenase. A sample of 49 structures were aligned and
divergence and median matrices calculated for the aligned distance matrices. Figure 16.10
displays the divergences and medians in each position of the alignment. The plot of diver-
gences in Figure 16.10(b) does not exhibit the distinct troughs that were seen for trypsin;
however, the majority of the divergences are low at less than 5 A°. The distances between
the residues in the structures of this protein family are more similar than those in the trypsin
family, suggesting that the short-chain dehydrogenase family of proteins is more highly
conserved in structure than the trypsin protein family. Therefore, aligning short-chain dehy-
drogenase does not conclusively determine whether MUSTANG introduces bias. However,
it does cast doubt on the significance of the anchor residues, suggesting that they are merely
well-aligned regions of the trypsin protein family.

16.3.2 Aligning an artificial sample of trypsin structures

The following method generates a sample of 83 artificial proteins consisting only of C,
atoms by resampling the C_ -atom coordinates of residues from one structure. We expect the
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Figure 16.10 Plots of the rows of the median and divergence matrices calculated from
structurally aligned distance matrices of the short-chain dehydrogenase sample. The bars
appear as a result of many points plotted close together. (a) Median, Ji, ;» of the structurally
aligned distances plotted against position, 7, in the alignment. (b) Divergence, div, ., of the
structurally aligned distances plotted against position, i, in the alignment.
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anchor residues to be present in the artificial sample if they truly exist, since the structures
are created from one structure that exhibits the anchor residue property.

The trypsin structure 1ILVY was chosen for the resampling procedure because it is rela-
tively long and exhibits the conserved anchor residue pattern displayed in Figure 16.9. The
resampled structures are generated by selecting residues to remove from 1LVY at random
and then closing the resulting gaps in three-dimensional space. The gaps are closed using
the following method.

When a gap is produced, the adjacent residues are linearly translated such that the
Euclidean distance between their C_, atoms is equal to the standard bond length between
these atoms in a typical structure.

Consider the example structure displayed in Figure 16.11. The nodes represent the C,,
atoms. Let x,, be the vector of (x, y, z) coordinates of the C,, atom to be removed.

Once the C,, atom corresponding to x, is removed, the coordinates of the adjacent C,
atoms, x_; and x;, are translated using the following equation

X_y/ =g + Ao(xX_1 — %),
X/ = Xg + Ag(Xy — Xg)s (16.1)
where x_,/ and x,/ are the new coordinates of the adjacent C,, atoms and where )\, € [0, 1].
When A, = 0 the new coordinates are x_,/ = X, and X,/ = X,. At the other extreme, when
Ao = 1, the new coordinates are x_,/ = x_; and X,/ = x;. We want to choose )\, such that

x_,/ and x,/ lie between these extremes, specifically at a distance of d,, apart, where d,, is
defined to be the standard distance between C,, atoms:

B2 = (xy/ —x )T (% —x_47). (16.2)

The average C,, atom to C, atom bond distance in the structure 1LVY is calculated to be
3.81 A°; therefore, d, is taken to be 3.81 A°.
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Figure 16.11 Example structure consisting only of C_, atoms, represented by dots; adja-
cent residues are connected by lines to form the backbone of the structure. The C_, atoms
are labelled in accordance with the method for closing gaps in structure; x,, is a vector con-
taining the (z,y, z)-coordinates of the residue that will be removed to form the gap, and
X;,...,X4and x_q,...,x_, are the coordinates of the sequence of residues reading away
from the gap on either side. See text for further explanation.

Substituting x_/ and x/ from Equation (16.1) into Equation (16.2) and rearranging in

terms of A\, gives

d

\/(Xl —x_1)7 (%1 - X71).

Next we translate the residues adjacent to those either side of the gap. In this case,
only one residue is moved in order to preserve the distance between the residues that were
translated in the previous step; x_ is translated to correct for the distance between x_, and
x'_, as follows:

X ol =X 4/ + A (X g —X_4/), (16.3)

where the scale constant A_; is calculated similarly to A, and is thus given by

da
Ay = 3 .
V(x_y = x )T (x5 —x_1/)

Equation (16.3) is applied successively to each C_, atom in the structure, substituting for
the appropriate coordinates at each iteration.

The number of residues removed was calibrated such that the number of gaps produced
by the alignment was close to the average number of gaps in the original sample alignment.
The average number of gaps per row in the original alignment was 71.99, and an align-
ment with 66 gaps per row was produced for the resampled structures when 28 residues
are removed at random from 1LVY and aligned using MUSTANG. Removing 30 residues
produced too many gaps.

To complete the simulation of artificial proteins, it is necessary to add noise to the C,
atom coordinates since all of the resampled structures originate from the same structure and
because not all C,, atom to C, atom bond lengths are precisely 3.81 A°.
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Figure 16.12 Plots of the rows of the median and divergence matrices calculated from
structurally aligned distance matrices of the artificial trypsin sample. The bars appear as a
result of many points plotted close together. (a) Median, a?L ;» of the structurally aligned dis-
tances plotted against position, 7, in the alignment. (b) Divergence, div, ., of the structurally
aligned distances plotted against position, , in the alignment.
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The previous analysis was carried out on the aligned sample of artificial structures to
produce the divergence and median plots displayed in Figure 16.12. The plot of divergence
against position in Figure 16.12(b) shows that the range of divergences is very high, cer-
tainly none are below 5 A°. There is no evidence to suggest the existence of anchor residues.
It might be expected that the structures are very similar and would thus align well, producing
low divergences; however, the range of divergences is high suggesting that the distances are
less conserved than in the trypsin sample. There is certainly no evidence of the previously
observed anchor residues.

When compared to Figure 16.5(a), the plot of median against position in Figure 16.12(a)
for the artificial structures does not exhibit similarities with the plot for the real trypsin
sample. This difference in median distances suggests that the artificial structures have a
different structure to the trypsin sample structures. This is not unusual since the artificial
structures are all variations of one structure, 1LVY. However, it is necessary to understand
the effect that the gap-closing method has on the shape of a structure; this is explored in
Section 16.4.

Similarly to Figure 16.8(b), the divergence matrix can be displayed as a heatmap for the
artificial sample, given in Figure 16.13. In this case, it is the high divergences that bring up
the scale; as a result divergences greater than 10 A° have been coloured black. There is no
longer the pattern of horizontal lines that could be observed in Figure 16.8(b), confirming
that there are no anchor residues. In fact, there are very few areas on the off diagonal that
have low divergences at all.

The number of gaps removed was also varied for each resampled structure in the sample;
however, the same results were obtained concerning the low-range divergences or anchor
residues.

There are a number of ways in which this methodology for producing artificial struc-
tures could be improved. In order to reflect true evolutionary processes, insertions and
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Figure 16.13 Divergence matrix heatmap for the artificial trypsin sample, recalculated
for all of the divergences that are less than 10 A°. Larger divergences are blacked out. The
divergence between the residue—residue distances is plotted in greyscale; small distances
are white and large distances are dark grey.

substitutions could be incorporated as well as deletions. The method could also be extended
to include all of the atoms in the starting structure, not just the C,, atoms.

Therefore, this method provides evidence against MUSTANG; we would expect anchor
residues to be apparent in 1LVY if they truly exist. However, they are not apparent in arti-
ficial structures, suggesting that the phenomenon is an artefact of MUSTANG.

16.3.3 Aligning C_, atoms of the real trypsin sample

Since the method in the previous section uses only the C,, atom coordinates, it is necessary
to compare the structural alignment of the trypsin sample with the alignment produced
when only the C,, atoms of their residues are structurally aligned. MUSTANG appears to
use only the C,, atoms of structures when producing an alignment. Therefore, we expect
the full-atom trypsin alignment and the C,, only trypsin alignment to be similar.

In this case, the plots of divergence and median against position displayed in
Figure 16.14 are produced and compared to the full-atom structural alignment of the
trypsin sample in Figure 16.5. The distinct troughs in the divergences in Figure 16.5(b)
are not apparent when only the C, atoms of trypsin are aligned; however, there are a
lower range of divergences compared to the artificial structures. There appears to be
some correspondence between the peaks of the median distances in Figure 16.5 and
Figure 16.14, suggesting the overall shape of the structures is not too different, and thus
the two alignments are reasonably similar. However, it also suggests that using only C,
atoms is not representative of the full sample.

To understand more about how the full-atom trypsin structural alignment and the corre-
sponding C_-atom-only structural alignment differ, their gaps are analysed. In this case, a
gap is defined to be a consecutive run of insertions where the length of the gap is the number
of insertions. The median number of gaps in the C_,-atom alignment is much larger at 41.00,
compared to a median number of gaps of 24.00 in the full-atom alignment. The number of
gaps is also much more variable in the C_-atom alignment with a standard deviation of
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Figure 16.14 Plots of the rows of the median and divergence matrices calculated from
structurally aligned distance matrices of the trypsin sample with only C, atoms. The bars
appear as a result of many points plotted close together. (a) Median, Ji, ;» of the structurally
aligned distances plotted against position, 7, in the alignment. (b) Divergence, div, -, of the
structurally aligned distances plotted against position, i, in the alignment.

i3>

13.66 compared to a standard deviation of 1.92 in the full-atom alignment. However, are
these gaps shorter than those in the original alignment?

The median length of the gaps in the two alignments is the same at 2.00; however,
the range of values is very different. The largest gap in the full-atom alignment is 21.00,
compared to an incredibly long gap of 119.00 in the C_-atom alignment. Unsurprisingly,
the standard deviation for the length of the gaps in the C_-atom alignment is larger at
7.80, compared to a standard deviation of 2.703 for the length of the gaps in the full-atom
alignment. Therefore, not only does the C_-atom alignment appear to have more gaps for
most sequences, some of the gaps are also significantly longer compared to the original
alignment.

Clearly, the full-atom alignment and the C,, atom alignment are quite different; there-
fore, the methods for testing bias may not be entirely representative of the full-atom case.
This is an interesting result since MUSTANG aligns structures by using only the informa-
tion from the C_, atoms and the distances between them; therefore, the alignments should
be similar.

16.3.4 Aligning the real trypsin sample with anchor residues removed

The following further test was conducted. The anchor residues were removed from the struc-
tures in the sample and the resulting structures aligned; if the alignment results in more
anchor residues, then MUSTANG is unreliable. The divergence and median were again
plotted against position and are displayed in Figure 16.15.

The peaks of the median distance plots in Figures 16.5(a) and 16.15 are very similar,
suggesting that the alignments are similar. However, there is no longer evidence of
low-range divergences or anchor residues as the distinct troughs in the divergences in
Figure 16.5(b) are no longer apparent; the divergence between the distances appears to be
higher overall.
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Figure 16.15 Plots of the rows of the median and divergence matrices calculated from
structurally aligned distance matrices of the trypsin sample with the anchor residues
removed. The bars appear as a result of many points plotted close together. (a) Median,
‘ii, ;» of the structurally aligned distances plotted against position, 4, in the alignment. (b)
Divergence, div, ., of the structurally aligned distances plotted against position, i, in the
alignment.

4,7

Therefore, removing the anchor residues produces results in favour of MUSTANG. This
suggests that more tests are necessary in order to definitively determine whether the anchor
residues are artefacts of MUSTANG.

16.4 Effect of gap-closing method on structure shape

In order to explore the effect of the gap-closing method in Section 16.3.2 on the shape
of a structure, we applied it to a selection of shapes typically found in protein secondary
structures. The shapes investigated include a zigzag and an idealised helix.

16.4.1 Zig-zag

The structure of trypsin has many beta sheets, where the C-atoms of residues lie alternately
above and below the plane of the beta sheet, not dissimilar to a zigzag. A zigzag structure
was generated such that the residues were d, apart, and such that each set of three consecu-
tive residues formed an equilateral triangle with sides of length d . Figure 16.16(b) shows
how the zigzag structure is affected when a gap is closed. The same pattern is observed wher-
ever the gap is placed. However, Figure 16.16(c) shows the effect on the structure when a
gap of size 16 is closed. Clearly, closing large gaps disrupts the structure around the gap
significantly.

16.4.2 Idealised helix

The structure of trypsin has two small helices; therefore, it is of interest to analyse how the
structure of a helix changes when residues are removed and the gap closed. An idealised
helix with 50 residues was generated such that the residues are d,, apart and the helix has 3.6
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Figure 16.16 Plots displaying the effect of the gap-closing method on a zigzag structure.
(a) Zigzag structure before a gap is closed. (b) Zigzag structure after closing a gap of size
one that is introduced in the middle of the structure. (c) Zigzag structure after closing a gap
of size 16 that is introduced in the middle of the structure.
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Figure 16.17 Plots displaying the effect of the gap-closing method on a helix structure.
(a) Helix structure before a gap is closed. (b) Helix structure after closing a gap of size one
that is introduced in the middle of the structure. (c) Helix structure after closing a gap of
size 16 that is introduced in the middle of the structure.

residues per turn. Figure 16.17 displays the effect of the gap-closing method on the helical
structure. Figure 16.17(b) displays the helix structure after one residue is removed. It is dif-
ficult to spot, but there is an irregular kink at the end of the helix. This kink occurs regardless
of the position of the residue being removed. However, when more residues are removed,
the gap is far less subtle. Figure 16.17(c) displays the result of removing 16 residues and
closing the gap; the helical structure is barely recognisable. In fact, the helix structure is
almost completely destroyed after only five residues are removed.

16.5 Alternative to multiple structure alignment

One way to be sure that MUSTANG introduces no structural bias is to conduct the analysis
using a multiple-sequence alignment of the structures where only sequence and no structural
information is used. Distance matrices can be obtained based on the sequence alignment
and divergence and median matrices calculated as before. The sequences are aligned using
Clustal W (Thompson et al. 1994), and the divergences and medians plotted against position
in Figure 16.18.

Compared to Figure 16.5(b), the divergences in Figure 16.18(b) are similar in range;
however, the divergences in the anchor positions are not small or distinct. The median plots
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Figure 16.18 Plots of the rows of the median and divergence matrices calculated from
the aligned distance matrices of the Clustal W multiple-sequence alignment of the trypsin
sample. The bars appear as a result of many points plotted close together. (a) Median, d
of the aligned distances plotted against position, ¢, in the alignment. (b) Divergence, div
of the aligned distances plotted against position, 4, in the alignment.
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Figure 16.19 Plots of the rows of the median and divergence matrices calculated from
the aligned distance matrices of the MUSCLE multiple-sequence alignment of the trypsin
sample. The bars appear as a result of many points plotted close together. (a) Jz} ;» of the
aligned distances plotted against position, i, in the alignment. (b) Divergence, div, ; of the
aligned distances plotted against position, ¢, in the alignment.

in Figures 16.5(a) and 16.18(a) have a very similar pattern of peaks, further suggesting that
the structure alignment is similar to the sequence alignment.

For comparison, a second multiple-sequence alignment algorithm is used, MUSCLE
(Edgar 2004). The same plots for this alignment are displayed in Figure 16.19. Compared
to Figure 16.18(b), the divergences in Figure 16.19(b) are much smaller overall and there
are fewer large divergences. Most of the positions contain divergences small enough to be
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considered as the anchor residues that were identified previously; however, the divergences
are not as low as the troughs in Figure 16.5(b). This suggests that the MUSCLE sequence
alignment results in more conserved aligned distances compared to the MUSTANG struc-
ture alignment, and even the Clustal sequence alignment. However, despite producing a
better structural alignment than MUSTANG overall, the anchor positions do not appear
to be aligned as well. Similarly to Figure 16.18(a), the median distances exhibit almost
identical peak patterns to Figure 16.5(a).

16.6 Discussion

We have presented an investigation into the possibility that the trypsin protein family con-
tains ‘anchor’ residues. That is, residues where the distance between these residues and
every other in the structure is highly conserved across all of the structures in the protein fam-
ily, compared to the other distances in the structure. These anchor residues were identified
from the aligned distance matrices from the structural alignment produced by MUSTANG.
We conducted several tests to determine the validity and origin of these anchor residues.

Investigation into the origin of the putative anchor residues did not result in a defini-
tive explanation; while some of the anchor residues appeared to correspond to important
conserved residues identified by Rypniewski et al. (1994), the evidence was not overwhelm-
ing. The anchor residues were not more conserved in sequence compared to the rest of the
columns in the structural alignment.

The artefact testing method proposed in Section 16.3.2 proved inconclusive; we would
expect anchor residues to be apparent in 1LVY if they truly exist. However, they were
not apparent in the artificial structures suggesting that the phenomenon is an artefact of
MUSTANG. When the artefact testing method was investigated in Section 16.4, it became
clear that the gap-closing method distorts the structures significantly and as a result the
distances are also distorted. This method used only the information contained in the C,
atoms of the structures. This was considered reasonable because MUSTANG appears to
use this information only. Despite this, aligning only the C_, atoms of the trypsin sample
produced a different alignment compared to the trypsin sample; the alignment has more
insertions, as well as longer consecutive runs of insertions. This suggests that incorporating
only the information contained in the C,, atoms of the structures produces a less desirable
alignment, and therefore, MUSTANG either incorporates additional information or is unre-
liable. Consequently, we do not have much confidence in the artefact testing method to
accurately determine whether the anchor residues are an artefact of MUSTANG. A simple
test of removing the anchor residues in order to test whether MUSTANG would artefactu-
ally introduce more residues concluded in favour of MUSTANG, as no new anchor residues
were produced. The median distance matrix also provides evidence in favour of the MUS-
TANG alignment, owing to the fact that the structure produced by multidimensional scaling
of the median distance matrix resulted in a homogeneous trypsin structure.

When another protein family was aligned, we expected the anchor residues not to be
apparent if MUSTANG is not introducing bias because it is unlikely that this feature would
be observed in every protein family. However, the anchor residues may be a feature of
protein evolution rather than an artefact. The divergences in each position were all small,
suggesting that anchor residues merely identified areas of the alignment where trypsin
aligned well. Since this was not a large area, it appeared to be an interesting result.
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While multiple-sequence alignments do not introduce bias, they also do not produce
an alignment based on how the structural components are aligned. A reliable structural
alignment would be preferred to an alignment based purely on sequence because the protein
structure evolves more slowly than sequence.

The Clustal-W sequence alignment results in a similar range of divergences compared
to the MUSTANG alignment. However, the MUSCLE sequence alignment is significantly
different with a much lower range of divergences overall. We expect differences between
the structure and sequence alignments because the structure alignment completely ignores
the amino-acid sequence while the sequence alignments only use the amino-acid sequences.
MUSTANG ignores the amino-acid sequence in order to align more distantly related pro-
teins; similarly Clustal-W weight sequences based on their similarity. This focus on the
evolution of the structures may explain why Clustal-W and MUSCLE produce different
alignments.

Out of the tests that were conclusive, many are in favour of MUSTANG. However, some
tests identify inconsistencies that lead us to believe that MUSTANG may be unreliable.
The most convincing result against the existence of anchor residues arose from aligning
another protein family; the distances in the short-chain dehydrogenase protein family have
smaller divergences than the anchor residues in every position. This strongly suggests that
the anchor residues merely indicate well-aligned regions of structure in the trypsin family.
Combined with the result that the anchor residues do not appear to be strongly conserved
in sequence or correspond to important functional residues, we conclude that MUSTANG
may be introducing bias, but it is also likely that the anchor residues are artefacts of the
trypsin family. To support this conclusion, a larger range of protein families from diverse
organisms would need to be aligned, both in sequence and structure. There is also scope to
subject MUSTANG to further testing to determine its reliability.
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Individualised divergences

Clive E. Bowman
Mathematical Institute, University of Oxford, Oxford, UK

17.1 The past: genealogy of divergences and the man of
Anekantavada

Fundamental to the analysis of shape is the ability to compare profiles of variables across
individual instances in a geometry. Insight into the relatedness of such multidimensional
things is by contrasting them in this space. A distance measure over such ‘signatures’ in the
context of any group distinction of instances is needed for this operation — and, of course,
in practice any individual measurement of reality has error. For a statistician, knowledge
is based upon the evidence that stochastic data yields in a designed test of a hypothesis
(i.e. an experiment). Evidence is information in a context. Shannon founded the use of
information in the theory of communication in 1948 (Shannon 1948), with Kullback and
Leibler building upon this, formalising measures of evidence by introducing the concept of
information divergences in 1951 (Kullback and Leibler 1951). Knowledge about the size
and shape of profiles in the world is driven by the evidence found for hypotheses or claims
and assertions about them. Divergences explicitly measure any distinctions in a space of
stochastics — yet outside of statistical density comparisons such measures of distance have
been little used in shape analysis. Sibson (1969) extended the theoretical field around the
1970s and facilitated its brief impact among the early interest of numerical taxonomy by
biologists (Jardine and Sibson 1971). Thereafter, it languished despite its august family tree.

Professor Kantilal Mardia, MSc, PhD, DSc, ...a statistician specializing in directional
statistics, multivariate analysis, geostatistics, statistical bioinformatics and statistical
shape analysis’ (Wikipedia 30th December 2013) has fostered the rediscovery and

Geometry Driven Statistics, First Edition. Edited by Ian L. Dryden and John T. Kent.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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popularisation of these probabilistic distance measures for the last 10 years. Kanti, as he
is known to his friends, has always been far-sighted about under-considered professional
advances and the renaissance of long forgotten results — having a keen historical eye
and genealogical interest. A sage ‘look-out’, he intuitively identified something when a
strange non-academic from an industrial ‘back-water’ (myself) offered a poorly written
abstract for a talk at LASR2005 (Delrieu and Bowman 2005). This talk outlined the
Euclidean geometric decomposition (using SVD) of a smooth universal metric of evidence
(individualised divergences) to understand contrasts in observed very high dimensional
profiles (i.e. patterns and features in size and shape simultaneously over multiple data
types). Negentropic at heart, individualised divergences encapsulate the evidence that each
point itself, among the measurements made, engenders for a question (i.e. a comparison)
that a researcher may ask. From that generous opportunity much has flowed over the
subsequent time in and around comparison of the shape of single nucleotide polymorphism
profiles in precision medicine (Alfirevic et al. 2009; Bowman 2009; Bowman and
Delrieu 2009a; Bowman et al. 2006; Charalambous et al. 2008; Delrieu and Bowman
2006b, 2007). Individualised divergences have advanced scientific understanding in the
immunogenetics of drug-induced skin blistering disorders (Bowman and Delrieu 2009b,
2009c) and in dissecting the biochemistry of platelet function (Bowman and Jones 2010).
A detailed semi-worked disease example is given in Delrieu and Bowman (2006a) and an
applied genetic example is in Pirmohamed et al. (2007). Many other practical examples
of these evidence methods needed to generate knowledge from medical profile data
such as Zhang et al. (2008) are outlined in Bowman (2013). They are now part of grand
initiatives such as my Royal Society Industrial Fellowship IF110047 (2012-2016), and
a European Union Seventh Framework Programme for Research FP7 grant. The field
has been reawakened courtesy of the consideration of humble-born Kanti, a man of
Anekantavada who exemplifies the ‘Middle Path’ (Mardia 2007): Right speech, right
action and right livelihood constituting ethical conduct; Right effort, right mindfulness
and right concentration as mental disciplines; and, Right understanding and right thought
constituting wisdom. Without Kanti, knowledge and application of divergences could have
remained forgotten for many more years.

17.2 The present: divergences and profile shape

Outside of their recent application to contrasting genetic profiles and in Jardine and Sibson
(1971), divergences are not yet widely used in shape work (Dryden and Mardia 1998). This
is despite shape analyses being comparative (Procrustean) at their heart, that is, based upon
a contrast. Accordingly, the basis of the individualisation of divergences for shape analy-
sis needs wider explanation. The subsequent sections give this in detail to complement the
practical examples referenced in the previous section. First the theory is explained, then a
likelihood formulation is outlined employing parameter estimation, expectation and indi-
vidualisation. Finally, the whole algorithm is assembled and a brief justification of why it
works given together with a new example.

17.2.1 Notation

The starting point is a probability model, g(x; #) for a random observation X under a model
with parameter 6. For simplicity, we focus on continuous models (so g is a probability
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density function with respect to dx), but the same conclusions hold in the discrete case with
integrals replaced by sums. When we wish to emphasise vector-valued observations with p
components, we use bold-face and write « = (z,...,z,)".

The emphasis in this chapter will be on comparing two models, with parameters 6,
and 6,, say. When investigating medical profiles, a common setting is a case-control study
to compare two groups of individuals. An example using the profile of high-dimensional
SNP divergences is given in Delrieu and Bowman (2005) where a simpler decomposition
is required to understand between and within profile sample structure.

Data from these two models will take the form of an n x p data matrix X, where the
first n,; rows come from the first model and the last n, rows come from the second model,
ny + ny = n. A typical data value is written z;;, ¢ = 1,...,n, 7 =1,...,p.

Throughout the chapter, log means the base e logarithm. In information theory, base
2 is often used, with information measured in bits. Of course, a base e logarithm can be
converted into a base 2 logarithm by multiplying by log, e.

17.2.2 Known parameters

In the simplest setting, we imagine a single univariate observation x, coming from a prob-
ability model, g(x; #). Define the marginal self-information Shannon (1948),

—log g(z; ).

This is a measure of the information content associated with the outcome of a random vari-
able from this distribution. The unit of this information, after multiplying by log, e, is the
‘bit’. It has also been called surprisal Tribus (1961), as it represents the ‘surprise’ of seeing
the outcome (e.g. a highly probable outcome is not surprising). It is marginal in the sense
that the dependence of = on any other variables we might measure is not being taken into
account here.

The marginal differential entropy (or expected surprisal) is

- / 9(z;0) log g(z; 0)dz.

This information entropy is a number measuring the uncertainty associated with a random
variable. It is a continuous analogue of the discrete Shannon entropy (Shannon 1948). It is
a measure of the average information content a recipient is missing when they do not know
the value of the random variable. Some authors define the negative of this to be ‘Risk’.
However, this usage can be confused with the colloquial use of the word ‘risk” and is not
included in this outline.

These entropies can be used to define divergences. Divergences (Kullback 1959; Kull-
back and Leibler 1951) are natural measures for analysis which flow from considering any
scientific question as a contrast (Mead 1990). All hypotheses posed in science are relative;
that is, they are a contrast from a basis (in the Popperian paradigm — from a ‘null” hypothe-
sis, null being used colloquially here). Contrasts are compact ways of comparing estimated
summary measures by adding or subtracting them and interpreting the answer. So ‘Is the
cost of a car more than the cost of a bicycle?’ is a contrast summarised by the algebra:

Cost-of-Car — Cost-of-Bicycle > 0.
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This may be estimated from a cost of a single car and a single bicycle (one instance at a
time) or perhaps by some summary measure of costs or ‘typical’ values over many cars and
bicycles; the principle is the same. With thought, any experiment or scientific assertion can
be posed as a contrast, even if one uses logarithms to move from a multiplicative or ratio
space of interest to a linear additive one.

Taking any two populations (with known parameters 6, and 0,), the log probability ratio

between the populations is
;0
log{g(gj’ 1) } )
EHZY

It is a measure of the information in « for discriminating between 6, and 6,.

The marginal relative entropy (or Kullback—Leibler divergence) between the two pop-
ulations is a measure of the directed (i.e. oriented or asymmetric) difference between the
two probability densities. It is defined by the expected value (under population 1) of the log

probability ratio,
g(z;0,)
Dy1.(04;60 :/gx;ﬁ log{ dx.
KL( 1 2) ( 1) g(x792)

It is the ‘loss’ on average when the g(x;60,) density is used to approximate the g(z;6,)
density. Note that the expectation is over g(x; 6, ), not g(z; 6, ). It can be viewed as a measure
of the mean information in discriminating between 6, and 6, using X. It is sometimes
confusingly called the (marginal) discrimination information function (see Dadpay et al.
2007). It is a contrast (expand the log term as a difference).

The Kullback—Leibler divergence has some advantageous properties as a summary
measure.

e It is always non-negative.

e [t equals O only if both distributions are identical.

e The larger the divergence is in value, the further apart are the two densities; small
values indicate closeness.

e [tis not symmetric; swapping ¢, and 6, generally leads to a different value. Hence, it
is not necessarily a metric as it stands.

e [t is additive for independent random variables; i.e. if X is a bivariate random vector
with independent components, then the overall Kullback—Leibler divergence is just
the sum of divergences for the two components.

e It is invariant against transformations of the sample space of X. That is, if instead of
the random variable X, one considers Y = h(X), where h is an invertible function,
then the Kullback-Leibler divergence remains the same. In this sense, it is a geometric
quantity independent of the choice of the co-ordinate system.

e [t belongs to the class of f-divergences (see Table 17.1).

If 0 is an m-dimensional vector, and if 6, is close to 6,, 6, =6, + 06, the
Kullback-Leibler divergence can be simplified using a Taylor’s series approximation to

1 !
Dy (6,;6,) ~ E(seTIggshewse.
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Table 17.1 Various ‘f-divergences’ (Ali-Silvey distances) between two discrete
probability measures 1(z) and 7(z) in Euclidean space; see Nyguyen et al. (2005).

Name of distance Continuous convex function f-divergence
f(u) :[0,00) — RU{+o0} I;(p,m)
Kullback-Leibler ulog(u) >, u(2) 10g(zg))

)
Variational distance lu — 1| > n(z) — w(2)]
Hellinger distance } s(Vu—1)? 3> ez (Wz) — /w(2))?

For continuous densities see Barnett et al. (2002). This tableau is focused on distances, but detection and discrim-
ination are ‘two faces of the same coin’ as are nearness and relatedness; see Tobler (1970). One is a surrogate for
the other, just as SVD ordination of objects (aka PCA) can be seen as geometrical transformation of data or as
a loss minimisation of mutual inter-data-point distances over a kernel (aka PCOORD); they are duals. Distances
detect shapes in ordinations and vice-versa. Note that these f-divergences (widely used in signal processing,
that is, stochastic density and distribution detection) can be mapped to an equivalence class of particular convex
loss functions in machine learning classification decisions (e.g. support vector machines, boosting and logistic
regression). * Variational distance = ‘[0,1] loss’ and ‘hinge losses’. { Hellinger distance = ‘exponential loss’ =
[1-Bhattacharyya distance] (Taneja 2005).

Here I gfmer is the usual m x m Fisher information matrix,

2

isher d
Ig]‘h =—-FK {W logg(ﬂc; 9)} )

where the expectation is taken under g(z; 6, ).

As alocal version of information about the parameters, the Kullback—Leibler divergence
is not invariant to a change in the co-ordinate system of the parameters. That is, if @ is, say,
changed to ¢(6), then the Jacobian matrix J,(¢) of partial derivatives comes into play as
usual,

Igisher(¢) _ J0 (¢)Tjgisher(9<¢))J9(¢)-

The marginal Jeffrey’s symmetric divergence (Jeffreys 1946) is the average of the two
Kullback-Leibler divergences,

1
DJ(917 92) = 5 {DKL(91§ 92) + DKL(92§ 91)}-

This numerical value like its particular variant the Jensen-Shannon divergence (Endres and
Schindelin 2003) is an undirected (i.e. symmetric) distance and measures the difference
between the two probability densities. It is the average ‘loss’ when each of the densities
g(x;6,) and g(x;6,) is used to approximate each other. It is a metric distance if square
rooted. It is a type of information radius (Sibson 1969). Note the expectations over the
different densities in the two terms mentioned earlier. It is a contrast (expand the log term
as a difference). It is always greater than or equal to 0 and equals O if and only if the two
densities are identical.

For well-behaved distributions, all of these information measures are additive and open
to manipulation by standard linear algebra. When simple closed forms are available, these
should be used (especially in the following marginal likelihood formulations) in prefer-
ence to numerical derivations. For instance, consider two full d-dimensional multivariate
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normals, N, (1, 31) and N, (g9, 3). Then, with 6; = (uy,3;) and 0, = (p,, %), the
(asymmetric) Kullback-Leibler divergence is

1 _ - _
Dy (6,;0,) = 5{(% — 1) T3 (g — ) + (271 8y) — d — logdet(; ')}
(17.1)
When 3, = 3, = 33, say, then the asymmetry collapses and Dy, reduces to

1 _
Dy, (0;065) = 5(#1 — )" (g — ), (17.2)

which is known as half the squared Mahalanobis distance.

17.2.3 The likelihood formulation

The previous section covers the distributional theory of information, but experimental sci-
ence is about dealing with samples, presented as an n x 1 data vector  when there is just
p = 1 variable. If it is possible to move easily from theoretical distributions to observed data,
then a linear measure of observed information (cf. evidence) is available for experimenters
for any form of the statistical distribution.

To illustrate these ideas, suppose that the two populations represent a treatment group
(6;) and a control or reference group (6,), respectively. The first step is to estimate the
parameters. A variety of methods can be used, including standard maximum likelihood
techniques, least squares (Dobson 1983) or Bayes’ estimates with simple conjugate priors
(Congdon 2006). In some cases, explicit forms are available; in other cases, an iterative
solution of complex non-linear equations is needed. (Ironically, maximum likelihood esti-
mation itself is equivalent to a minimisation of a Kullback—Leibler divergence between the
actual data and an empirical data distribution of Dirac delta functions!) A .

For this chapter, we limit attention to maximum likelihood estimates, denoted 6, and 6,,
with estimation carried out separately for each group. For each observation i = 1,...,n,
Delrieu and Bowman (2005) suggested considering the individualised log likelihood ratio,

o) = log{L(xi;él)/L(xi;éQ)} L i=1,....n.

Delrieu and Bowman (2005) regard this value as an observed divergence or individu-
alised likelihood ratio. For instance, if the two populations were N (111, 03) and N (1, 03),
then twice this log-likelihood ratio for x; would be

A N2 A N2
A Ly — W A Ty — K
log(53) + % —log(67) — (&721)-
2 2

Taking the expectation over the first population yields the Kullback—Leibler divergence

1 o? — 2
Dyy,(01;0,) = B {log(ag/af) +5 -1+ %72%)} ;
03 03
the one-dimensional version of (17.1), where now the hat notation for estimates has been
dropped for simplicity. The one-dimensional symmetric J-divergence is

Uil + ‘73 + (Ug + U%)(/ﬁ - M2)2
20703

1
D;(0y;6,) = §{DKL(01;92) + Dk, (01;65)} = -1,

see Bowman et al. (2006).
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Since the first n; observations are assumed to come from the first population and the
last n, from the second population, we see that

1 n A ) 1 ni1+ns . .
”_1 Zlog{L(Gl; z;)/L(0y; ;) } + n_2 Z log{L(0y;x;)/L(6y;2;)}
i=1 i=ni+1

is an estimate of the overall symmetrised divergence. In particular when n; = n,, this is an
entropy approximation to the logarithm of an evidence ratio for testing if two samples have
been drawn from the same underlying distribution (Endres and Schindelin 2003).

For Bernoulli distributed variables (such as genotypes treated each distinct genotype
at a time), the observed log-likelihood ratio resolves to the log relative frequency of that
genotype occurrence between the two groups, and the expected to a probability weighted
version. These surrogate measures, originally called ‘/bfs’ (Delrieu and Bowman 2006a),
can be inserted in place of each data point as a transformation from data space to evidence
space for each observation. For more detail together with the concepts of case-ness and
this-ness, see Bowman (2009).

The formulation here does not impose any penalty for complexity if #; and 6, have
different dimensions, such as in Akaike (1974). Simple closed forms are available for
likelihood-based divergences if the models belong to the exponential family of distributions
(Delrieu and Bowman 2005, 2007; Bowman et al. 2006) or finite mixtures thereof.

17.2.4 Dealing with multivariate data — the overall algorithm

Next we turn to multivariate models where the data takes the form of an n X p data matrix
X. Delrieu and Bowman (2007) use independent parameter estimation per variable, that is,
each column separately, but joint estimation over multiple variates is possible.

Thus for each variable j = 1,.. ., p we replace the data values x;; by the individualised
log divergences

ﬁj(i) = log {g(mij; 91]')/9(%]'? 92;‘)} )

where 6, ; and 6,; denote the parameters for the marginal distribution of variable j under the
two models, and for simplicity we have dropped the hats on the parameter estimates. The
new data set then can be analyzed with correlation decomposition methods — see Bowman
(2009) for a procedural flowchart. For further shape investigations, the size of an overall
profile for each individual can be summarised by the sum over variables

>~ 6,(0)

J=1

or the analogous mean (‘Measure M’) or variance (‘Measure V’) over p. Weights allowing
for variable interdependencies can be derived from ordinations.

Parameter estimates can be theory-free, treating the observations as a phenomenolog-
ical ‘heap of data’ (Bookstein 2014b) or contingent upon prevailing mechanistic theories
or models of the underlying biological phenomena within 6 (neutral genetic drift, demic
diffusion, positive selection, co-adaptation, biochemical dependence etc). Joint parame-
ter estimation may be appropriate for specific propter hoc ascertainment or physiological
relationships between columnar measurements j, and j,, say, and thus entail columnar
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collapsing (or aggregation). Importantly, parameter estimates may be covariate adjusted (or
linearly modelled) with terms not included as columns in the later orthogonal decomposition
(for instance when modelling time to event data as proportional hazards, etc). Sensitivity of
parameter estimates to the data can be explored using Fisher’s (Expected) Information as
usual (Cox and Hinkley 1974); standard statistical theory applies.

However, the aim of using /bf divergences is to reach evidential conclusions regarding
the samples and the observations therein, not parameter inferences. As such, the parameter
estimates are useful condensates (and are often summary statistics themselves) but are not
of actual interest in themselves — they are a means to an end, not an end in themselves. The
end is key insights regarding distinctions between groups and the contributional structure
of individual observations within them.

Some of the key questions in this exercise are the following:

What is the question of interest?

What is the reference group?

What sort of group heterogeneity is to be explored?
e How to pose the parameterisation?

e How to estimate the parameters?

Answering these questions will lead the applied experimenter to the appropriate divergence
to use.

The experimenter can use their own favourite validation tools for the estimation of
the parameter estimates and their impact on where the transformed data sits in evidence
space such as leave-one-out cross-validation, k-fold cross-validation, influence and
leverage measures (e.g. Hat matrix, Cook’s distance, partial leverage, DFFITS, even a
datum’s Mahalanobis distance itself!) as they desire to establish confidence in parameter
estimability.

Then in terms of the robustness of the individualised divergence values themselves, an
area to investigate (beyond such parameter estimate validation) is the influence or ‘lever-
age’ of any one observation on the divergence measured distinction (and its subsequent
decomposition). This could be through a suitably scaled and summed (over individuals)
divergence-based comparison of the ‘goodness of fit’ of set of data with parameter esti-
mates estimated from all observations versus a set of data minus one observation (with
parameter estimates estimated from all observations or all observations minus that datum);
the summed divergence measure is computed by not including the ‘held-out’ datum in both
cases. Here this divergence- based ‘similarity measure’ (sensu Kwitt and Uhl 2008) is mea-
suring the distinction between the true full set of data and an approximation excluding one
datum. In this way, one would not be looking at where the individual is in the sample diver-
gence space (i.e. the standard displays in Delrieu and Bowman (2006a), ‘Measure M’ etc.)
but would be looking at the number of bits (or, an average number of bits) that an individual
datum contributes in defining what that full set final sample divergence space actually looks
like. A datum which on exclusion causes a poor similarity measure is one that clearly has
a large impact in defining what the final /bf space looks like; that is, it has high ‘influence’
or ‘leverage’ on the specified contrast.
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Table 17.2 Seven data columns from a small unpublished case-control genetic study on
cutaneous adverse reactions to drug treatment covering a total of 78 patients (28 cases and
50 controls) assayed for 241 single nucleotide polymorphisms and 8 HLA loci.

Subject TNF TNF BAT1 ... HLA_LA HLA_ B ... ADR
A_G_308A A_G_238A_2 Ché6 hsr v sjs
Cho6 Cho6 1933100
213 451
CASE 1 A G G G A_A 02.03 0844 ... hsr
CASE 2 G_G G_G A_A ... 0368 1444 ... sjs
CASE 3 A_A G_G A_A ... 01.01 08_08 ... hsr
1
CASE 28 A_G G_G A_G 01_01  08_38 ... sjs
CONT 1 G_G G_G A G 24 26 0738 ... -
CONT 2 A G G G A_A 01.02 07_44 ... -
!
CONT 50 G_G G_G A G ... 0225 1844 ... -

For illustration only. ADR = Adverse drug reaction: hsr = hypersensitivity syndrome; sjs = Steven—Johnsons
Syndrome (includes Toxic Epidermal Necrolysis in this study).

17.2.5 Brief new example

Table 17.2 gives a partial extract from a small unpublished case-control study on cutaneous
adverse drug reactions covering 28 anticonvulsant drug ‘Ell’-treated cases and 50 controls,
assayed for 241 single nucleotide polymorphisms and 8 HLA loci. It is offered as a ‘toy
example’ of stratification in medicine simply for method illustration.

There are » = 2 groups here with p = 249 variables. There are n; = 28 cases and n, =
50 controls. As in Pirmohamed et al. (2007) carriage of alleles at HLA loci were separated
out from genotypes into new columns with three states for each allele (i.e. HLA-B44_57 car-
riage becomes two new binary carriage columns scored ‘HLA-B44 YesNo’ and ‘HLA-B57
YesNo’). Their frequencies together with the frequencies of each genotype within each
SNP column were estimated within cases and controls separately as Delrieu and Bowman
(2006a). The observed individualised likelihood divergences (Ibf's) ﬁj(i) were calculated
and each corresponding data point replaced accordingly (see Table 17.3).

Profiles of case-ness evidence are distinctly spiky (Figure 17.1, Lower). Eigen decom-
position of a correlation matrix of the transformed data set shows, as in Bowman (2009),
the likely importance of IL1 loci proteins in indicating propensity for these syndromes (i.e.
they are aligned with case-control direction with loadings to the far right, see Figure 17.1,
Upper). Overlay of the type of ADR shows that different syndromes clump in different parts
of genetic space within this. Overlaying as a heat-map the carriage of the split-out HLA loci
into further aggregated binary serotypes (Y/N) highlights HLA-A*68 carriage as a possible
risk indicator together with perhaps the previously published implication of serotype B17
(HLA-B*57 and HLA-B*58) in some specific adverse drug reactions. Note the marked dif-
ference in the shapes of the average group profiles in Figure 17.1. Further large rigorous
studies would be needed to confirm and prove these illustrative ‘toy example’ results. No
change to medical practice is to be inferred.
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Figure 17.1 Eigen decomposition of evidence (‘toy’ illustrative genetic example from
text). Upper biplot showing cases (dark circles), controls (open circles) and loadings
(pale dots). Note good separation of cases from controls and in particular labelled load-
ings for IL1F proteins to the right. Almost horizontal case-control axis suggests robust
well-informed study. Second row: to the left — heat-map for hsr cases; to the right — heat-map
for sjs cases; Third row: to the left — heat-map for serotype B17 carriage; to the right —
heat-map for HLA-A*68 carriage. Lower graphs (next page) show the shape of average
case evidence profile over loci (grey mean shape) plotted above average control evidence
profile (pale grey mean shape), with mean shape difference (case-control) plotted at foot in
black. Shape of the comparative profile is impenetrable unless framed as an ordination of
individuals in correlation space within the context of the biology.
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Figure 17.1 (Continued)

Table 17.3 Transformed data columns from Table 17.2 now containing surrogate
numeric values for the individualised case-ness evidence of group distinction.

Subject TNF TNF BAT1 ... HLA_A02 HLA_B44
A_G_308A A_G_238A_2 Ch6

Ch6 Ch6 1933100

213 451
CASE 1 0.565 0.134 0236 ... 0.054 0.410
CASE2 —0.266 0.134 0236 ... —0.060 0.410
CASE 3 0.565%* 0.134 0236 ... —0.060 —0.274
!
CASE 28 0.565 0.134 0.054 ... —-0.060 —0.274
CONT 1 —0.266 0.134 0.054 ... —0.060 —0.274
CONT 2 0.565 0.134 0236 ... 0.054 0.410
1
CONT 50 —0.266 0.134 0.054 ... 0.054 0.410

The original data co-occurrence pattern stays the same. Not all columns shown. Each cell contains the observed
individualised divergences (in base 2) corresponding to each original data point (here equivalent to log(relative
genotype frequency) comparing cases to controls). * = simply a co-incidence that the Ibf is the same for A_A as
for A_G in this example.

17.2.6 Justification for the consideration of individualised divergences

Why consider individual data points? After all as Abbasi (2012) points out ‘case reports
are usually deemed to be the lowest form of evidence. What can you really learn from a
single case?’. The key is that within the context of a group distinction, variation between
individuals (especially ‘sports’ or ‘outliers’) can yield useful insights for the applied exper-
imenter. In the Popperian paradigm, it is the discrepancies from the null hypothesis that
matter, not issues of complete agreement with beliefs. Thus one focuses, not on a whole
sample of individuals, but only on the 7th individual. Assuming the collection of individuals
in the populations give a good coverage of each population, then this likelihood approx-
imation is a reasonable indicator of the importance of the evidence which that data point
gives to the directed or undirected population comparison. An observed sample x? (in some
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sense) is fractionated by the ‘contribution’” or importance of individual row observations in
the observed data space (or column space) of the contrast. Although this is an analytical
approach, it has many features of non-analytical case-based reasoning practised by diag-
nostic physicians (Norman et al. 2007) — the data ‘speaks’ for itself. Treating the data as a
phenomenological ‘pile of data’ relies little on underlying biomedical knowledge (although
that can be built in to the parameterisation and choice of contrast). The group distinction is
acting like prior experience. Examining each individual is akin to continued (clinical) taxo-
nomic practice and exposure. The scaled evidence deviations of individuals within the posed
contrast (aka the hypothetical grouping) offers the structured feedback to prompt the investi-
gator to learn. The deployment of this /bf mathematical strategy is mimicking the clinician.

Adding dummy variables into this non-linear kernel projection of the data (see Pirmo-
hamed et al. 2007) reapportions variation in information into context, the final dimension of
the problem now being greater than the dimension of the original data. The parametrisation
of binary indicator variables can be [0,1],[—1,1],[—3, 5] and so on according to conve-
nience of interpretation or display scaling. Conditional characters (Jardine and Sibson 1971)
can be dealt with by defining synthetic variables as cross products of dummy indicator vari-
able vectors with the data. Column recoding can be used such as re-expressing genotype
data as homozygosity measures (when inbreeding is to be examined). Aggregations of diver-
gences to genes or ontologies or known models or extra hypotheses can be carried out by
simple (weighted) columnar summation in /bf space (Delrieu and Bowman 2006a) and over-
lay display or by co-analysis. For SNPs, such aggregations collapse ‘spilt-plot’ variation
into the ‘main plot’ gene stratum and reduce noise (yet increase the comparative rugosity
of the resultant variate). Aggregations can be linear or non-linear functions, with appro-
priate covariance adjustment for the resultant concomitant (biased) reduction of variation
(outlined in Delrieu and Bowman 2007). Hence non-linearity or curvature among ordered
columns can be explored through posing three level aggregation weights such as [—1, 0, 1]
and [1, —2, 1] across columns. Interactions and residuals can be investigated between vari-
ables (so for j columns there are potentially j(j + 1)/2 interaction columns (see Bowman
and Delrieu 2009a) formed by categorical cross-products before translation into evidence
space or by multiplication in data space first, for example, Fisher’s Iris data, where petal sur-
face area (petal length x petal width) is a good group discriminant. Standard statistical tools
are available to examine the stability of likelihood-based divergences. For example, let any
one of these observed divergence measures mentioned earlier be called 7; then, the slope
‘;—g |, and the curvature % |, with respect to the estimated parameters 6 can be explored for
robustness over the estimation space. Since the Ibf algebra is linear, all standard mathemati-
cal tools are available for easy deployment according to need. The algebra is easy to deploy
for the applied scientist.

17.3 The future: challenging data

There are many new challenges in the use of these informational individualised divergences
measures in simultaneously analysing the evidence of biological and medical profiles.

17.3.1 Contrasts of more than two groups

The preceding analysis was concerned with r = 2 groups, typically a case group and a
control group. Here we present some new results for comparisons between r > 2 groups,



INDIVIDUALISED DIVERGENCES 349

represented in the data matrix X as r row blocks. For convenience, we concentrate on the
case of = 3 groups represented by samples from multidimensional densities ordered in
some (other) covariate(s) space of interest.

Effectively in the information contrast-based outline mentioned earlier, the observed
density for a case group (let us now denote this case set by subscript (2)) is measured by
a ‘distance’ to that of a control group (let us now denote this control set by subscript (0).
Now consider intercalating a third density (for instance a ‘mild’ case group) denoted by a
(1) subscript; see Table 17.4. The objective is to understand the comparative size and shape
of the data in all three groups or ‘row blocks’.

The two polynomial contrasts (x and y) in the table are orthogonal (as Y z, y, = 0), that
is, they are the ‘row-analogue’ of non-overlapping columnar aggregates such as genes in
SNP studies. Applying them both to data and simultaneously decomposing the covariance
matrix will not induce extra structure in the results as their variances are constant (see Del-
rieu and Bowman 2007). Rescaling the quadratic contrast in the last row of the table to give
the same variance as the unscaled linear contrast * in the table retains the latter’s epistemo-
logical interpretation yet does not introduce unequal variances into later decompositions.
Then, it is possible to construct new ‘Kullback—Leibler-like’ expected individualised like-
lihood divergences structured as in Table 17.5. As before, likelihood measures (L) can be
appropriately substituted for the densities when dealing with an actual sample of data.

These quadratic contrasts are not obviously directed divergences. However, they are
asymmetric measures of how non-linear or curved the approximating space of densities are
between the two extremal ‘row block’ samples through the intermediate ‘row block’ sample.
The typical curved-ness in Table 17.5 is the expected or typical loss of information when g,
is used to approximate g, and g, together (i.e. one is ‘looking outwards’) along a gradient
of row blocks. The typical non-linearity in Table 17.5 is the expected or typical loss of
information when g, and g, each are used to approximate g, (i.e. one is ‘looking inwards’
along a row block gradient). By virtue of the different expectation in the log density ratio
inside the Kullback—Leibler divergences, these may yield different results depending on
the statistical distribution. It will be easier (and less confusing!) to use only one or the
other in any comparative analysis of sample profiles since the two forms are not necessarily
orthogonal. In practice, for well-behaved data, they should be broadly equivalent. However,
the linear formulation (Delrieu and Bowman 2007) can be simultaneously analysed with
either newly posed quadratic form as they remain orthogonal. Again, most importantly the
Ibf individualisation that is carried out on each data column at a time over all the rows

Table 17.4 Proposed framework for contrasts of three groups (row blocks) leading to
new divergences for profile comparisons.

Contrast Sw, Y wi Meaning
Control  ‘Mild case’ Case
Wy wy Wy
Linear () -1 0 1 0 2 Case-ness*
Quadratic (y) 1 -2 1 0 6
1 2 1

Scaled to match* 0 2 Curved Case-ness

V3 3 V3
See text for detailed explanation. Subscripts denote group (row blocks). The quadratic contrast can be considered
as the sum of two contrasts [1, —1, 0] & [0, —1, 1]. * Base comparison.




350 GEOMETRY DRIVEN STATISTICS

Table 17.5 New Expected divergences using the contrasts from Table 17.4.

Expected divergence Meaning

E, {log( = )} Typical Case-ness

Eogs {% log(go) — % log(g1) + % 103(92)} » Or

Eoger [% log( % )} Typical Curved-ness

BBy [~ log(gn) + 2 log(g,) — 5 1og(gy)]] , or
1 191
E\[B, | Jlog(24]] , or
E, [% log(%)} + E; [% log(%)} Typical Non-linearity

See text for detailed explanation. Subscripts denote group (row blocks). g are densities from Table 17.4 — these can

be replaced by appropriate likelihoods (L). £ [log(g—i)] = expected loss when density g, in the log function
denominator approximates density g, in the log function numerator. Note how contrast coefficients play out.
Also: recall that E[z] = pand Elu] = p, so E,[E,[...]] = E|[...]; Eyg,|[...] = expectation over pooled (wy, w,)
density; so the quadratic expectations are only over = domain of log ratio numerator in this example of distinct
‘row block” densities.

is the same (i.e. there is no change in basis when calculating these linear and quadratic
divergences for decomposing the shape relations of real data; see Bowman 2009). Recall
that similar shapes in a (relative) log space means that the actual arithmetic shapes may be
dramatically different (cf. well-known allometry, and the importance of geometric means
in differential shapes).

This approach could be used for instance in generating knowledge about the multidi-
mensional genetic shape of distinctions between mild and severe carbamazepine hypersen-
sitivity cases versus controls (see Bowman and Delrieu 2009a; Zhang et al. 2008), that is,
as a ‘case, (another) case, control study’. Here, different variables indicated by the simul-
taneous covariance (or correlation) decomposition of both linear and row block quadratic
contrasts would suggest non-linearity or curvature, that is, that the mild mid-group was not
a centrally placed gradation between the structure of the extremal case and control samples
(an inconsistent ‘dog-leg’). If no particular curved-ness or non-linearity is detected, then the
three densities sit in some sense on the same linear manifold of structure over the ordering
(other) covariate(s) of interest; there are consistent shape differences as one moves along
the ordering of disease severity , that is, they have similar regular fundamental components
that smoothly interpolate. In some sense, the components of g; — g, and the components
of —g, + g, are each a fraction \/7§ of the components for g, — g, (i.e. smoothly equivalent
size differences in profile shape), or, the shape of the scaled g, — g, distance components
is compensated by the shape of the scaled —g, + g, distance components to resolve to the
overall component shape for g, — g,; that is, there is a consistent ‘dog-leg’ in the space of
profile differences.

Some of many open questions concerning these new divergences for profile shapes
include the following. What might be the practical merit of three-group ‘control, another
control, case multidimensional profile studies’? What do cubic, quartic and so on contrast
polynomials look like in an individualised Kullback—Leibler formulation for finer-ordered
densities? What is the general form (and is there an asymptote) as the number of distinct row
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blocks tends to co? Could this approach be extended to explicitly compare decompositions
on smooth interpolations between the covariance matrices of extremal groups using the
result of Dryden et al. (2009) where covariance matrices grade on a geodesic in log space?
Can one use the method of Felsenstein (1985) to calculate the contrast coefficients over an
ordered tree space of densities? Is there a proof that all or a subset of sub-tree contrasts are
orthogonal when applying this approach to contrasting sampled densities arranged in such
a notional tree space? If not, how does one adjust for partially overlapping ontologies (in
row or even column space) inducing biased covariance structure decompositions? What are
the information radii in this polynomial space? What does the average-over-p profile size
‘Measure M’ (Delrieu and Bowman 2006a) mean using these quadratic contrasts? and so on.

17.3.2 Other data distributions

Many medical experiments are based on survival assessments or time to disease expression
and so on (for instance, in oncology trials). Some oncology studies measure many such
measures, for example, PFS, OS and so on. Kent and O’Quigley (1988) outline an infor-
mation gain (Kullback—Leibler divergence) measure to compare statistical models over a
censored time to event sample. However, this does not decompose the contribution each
data point makes. Multi-column data from such experiments could be examined using indi-
vidualised divergences (/bfs), but the issue arises as to what individualised divergence (Ibf)
value to give to a right censored data point in column j of observed variables observed at
time ¢ for the ¢th individual in the kth population, k£ = 1, 2, as its true time of the event is
actually unknown (although per force must be greater than ¢, ;, the censoring time on the
Jjth time-to-event variable for the ith individual). The obvious choice for Ibf; () is the ratio
of the two survivor functions at the censoring time Cijs that is, ‘all I know about the evi-
dence is what I knew when the individual was lost to observation’. This is taking the same
view as the philosophy of the Kaplan—-Meier non-parametric estimator of hazard rate (see
Kaplan and Meier 1958). However, given the smooth form of the fitted exponential fam-
ily distribution for that (and all other) group’s data, then the estimated likelihood functions
are known rightwards of the censor time ¢;; and would thus be being ignored (although
the real event time will be somewhere in this interval). A dummy conditional variable of
censor time may instead highlight issues in any analysis of censored data that inform what
sort of modelling of the hidden tail should be. A sensitivity analysis of the results of any
profile shape that contains censored data could be done allowing for this extrapolation or
not — although in well-posed data, that is, well followed-up data with low censoring, little
departures are expected.

Mardia and Jupp (1999) outline the statistics of directional data but publication of diver-
gences for von Mises and other circular multidimensional distributions awaits. This is not
just for the integration of say, just directional covariates into analyses. But they are needed
for the smooth decomposition of medical image data comparisons of, say, diseases caus-
ing head and neck arterial tortuosity without the use of summary indices (such as ‘“VTI’
see Morris et al. 2011), arc-chord ratio or curvature and torsion measures of the midline
curve across individuals. A further open challenge is to pose individualised divergences of
statistical distributions for a unified inverse approach to the aetiology of medical shape dif-
ferences that contain full or partial reflections between individuals along with traditional
deformations (e.g. in situs inversus). Many of these gross malformations that, on the face of
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it, appear to defy simple 2D warp-analysis (see Bookstein 1986) actually have straightfor-
ward genetic lesions. Individuals show statistical variation in the placement of these organs
— so distributions and an algebra in a smooth space is needed beyond aspects of just bilat-
eral symmetry (see Kent and Mardia 2001; Mardia et al. 2000). Smoothness is needed to
accommodate data from situs ambiguus or heterotaxy individuals, where situs cannot be
easily denoted other than by full shape description.

Another open challenge is how to pose individualised divergences to deal with com-
paring strictly branching structures (such as the bronchi in lungs) or complicated tree-like
structures such as anastomoses (as in angiogenesis — the growth of vascular structures within
tumours). Both can be extremely complex and have long puzzled biologists but perhaps
could be described by simpler decompositions of combinations of /bfs from straightfor-
ward stochastic processes and coalescents. Particular structures could show both between
and within individual variation in estimated parameters much as in simple longitudinal
growth profiles and thus yet to be posed multi-level divergences may be required. It also
remains open to explicitly pose appropriate divergences for the simultaneous analysis of
extreme value data; unaligned sequence data from Next Generation Sequencing initiatives;
spike-train data from neuro-physiological recordings; continuous EEG/ECGs and so on
without a pre-processing step of motif or feature selection and so on. Range data known
to be Gumbel distributed does not have closed analytical form for its density. Divergences
for such data are needed that do not rely upon mapping into variances (via that the standard
deviation of a sample is approximately equal to one fourth of the range of the data) and then
deploying x? divergences derived from those of Gamma variables. Folding multidimen-
sional volatility data from, say, stock-markets as a column into the approach could be via
such approximate normal theory or by using exact Wishart divergences. Many opportunities
for extension lie around.

17.3.3 Other methods

Plugging in observed values may engender bias in this methodology. A full Bayesian
approach could, of course, be used instead. However, this runs the risk of re-introducing
potential operational opacity to the applied experimenter. Permutation (Delrieu and
Bowman 2006a) or empirical bootstrapping can re-instate the lost stochasticity in part by
engendering not only appropriate variation in the parameter estimates (i.e. restore the lost
variability in the ‘maximum’ likelihood data weights) but also variation in the location
of the actual data (i.e. compensate for the lost density and the lack of formal integration
over the domain). Such an empirical ploy obviates the need for prior data densities
and hyper-parameter distributions and a fully rigorous Bayesian approach to the use of
individualised divergences for an applied experimenter. Bayesian posterior parameter
estimates are possible using a conjugate prior, for example, Poisson, exponential, normal
(with known mean), Pareto, Gamma (with known shape parameter), and inverse gamma
(with known shape parameter) and have yet to be used. Prior beliefs can be inserted
into divergences by appropriate integration. Also, to date nobody has used divergences
in analyses based on three variate tensors, nor have many others chosen and interpreted
equivalent SVD decompositions of such. This could be of use in genetic profile shape
comparisons where second-order (i.e. three locus) linkage disequilibrium is of interest.
Whether sufficient amount of accurate and reliable data is available to support such an
extended approach remains to be seen. And, of course, other decomposition methods
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than SVD (aka eigenanalysis) could be used, that is, independent components analysis,
non-negative matrix decomposition and so on. The field is wide open.
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18.1 Introduction

Proteins are the workhorses of the living cell. They are responsible for our immune response,
propagation of signals through nerves, digestion of food, oxygen transport, and many other
vital tasks. In medicine, proteins are the target of most drugs. In biotechnology, proteins are
for example used in the production of biofuels, chemicals, food, and feed. Understanding
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proteins and their behavior in molecular detail is thus an important task in science, medicine,
and technology.

Proteins are linear polymers of amino acids. In a watery environment, many proteins
spontaneously fold up into a distinct three-dimensional (3D) structure, the so-called folded
state or folded conformation (Dill 1999; Dill and Chan 1997; Dill and MacCallum 2012).
The folded state of a protein is in most cases uniquely defined by its amino acid sequence —
a discovery that earned the American biochemist Christian B. Anfinsen the Nobel prize in
chemistry in 1972 (Anfinsen 1973). Nonetheless, it should be noted that all proteins are, to
some extent, dynamic molecules that undergo movements. Indeed, proteins exist that are so
flexible that they do not fold into a specific 3D shape (Tompa 2002). However, such proteins
might still adopt one or more specific 3D shapes when interacting with binding partners
such as other proteins or nucleic acids. In this chapter, we will mostly ignore the dynamical
aspects of proteins, though these are also potentially within the scope of the models we
discuss here (Boomsma et al. 2014; Harder et al. 2012; Olsson et al. 2013, 2014).

The 3D shape and the dynamical properties of a protein are crucial for its function. In the
current genomic era, it has become straightforward to determine the sequences of proteins
on a vast scale. The case for their matching 3D structures is unfortunately very different.
Today, it is still very expensive and time craving to determine the structure of a protein in
atomic detail. Therefore, there is great interest in obtaining the 3D structure of a protein by
computational means, starting from the protein sequence. In addition, there are also strate-
gies to obtain a protein structure in atomic detail that fall in between these two extremes, for
example, by including low-resolution experimental data that can be easily obtained (Lipfert
and Doniach 2007), by using the known structure of related proteins as templates (Dill and
MacCallum 2012) or by using evolutionary information to infer plausible amino acid con-
tacts in the folded state (Marks et al. 2011).

The prediction of a protein’s structure in atomic detail from its sequence is just one of
the many manifestations of what has been called “the protein folding problem” (Dill and
MacCallum 2012). Indeed, the protein folding problem is not limited to the prediction of
the static 3D structure of a protein. It also covers related problems such as protein design —
which concerns designing a protein sequence that folds into a given 3D shape — simulating
the dynamics of a protein, simulating the folding process in atomic detail, designing drugs
that specifically bind disease-related proteins, modeling the way proteins bind to each other
and to other biomolecules, and so on.

Current methods take two different roads; they are either knowledge based (Koppen-
steiner and Sippl 1998; Simons et al. 1997; Sippl 1990) or physics based (Duan and Kollman
1998; Lindorff-Larsen et al. 2011). Knowledge-based methods make use of the database of
known protein structures and are — or ideally should be, at least — essentially statistical meth-
ods. Physics-based methods make use of physical energy functions to simulate the entire
folding process. The latter methods are still too time-consuming for large-scale, routine
use in protein structure prediction and currently still far from perfect (Faver et al. 2011). In
practice, most methods use a blend of knowledge-based and physics-based approaches. Pro-
grams that are based on such methods, including ROSETTA (Bradley et al. 2005; Simons
et al. 1997) and I-TASSER (Roy et al. 2010), have demonstrated that prediction of protein
structure in the absence of known related structures is now sometimes successful.

Despite frequent claims to the contrary, the protein folding problem is in many respects
an open problem. Currently, it is still not routinely possible to predict the structure of
an arbitrary protein if no closely related structures are known, or to routinely design
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protein sequences that fold into a given structure. Nonetheless, triumphant claims that “the
protein-folding problems is now solved” have been somewhat of a tradition in the field for
decades. A recent example of such claims can be found in an editorial article that appeared
in Science in 2008, boldly entitled “Problem solved (sort of)” (Service 2008). However,
the current state of the field is rather well summarized by Eugene Shakhnovich’s poignant
and critical reaction to this article:

The article ‘“Problem solved (sort of)” highlights a bizarre state of the
protein-folding field where some claim that the problem is solved but keep
the solution in strict confidence. While useful in emphasizing (albeit not
for the first time) the statistical-mechanical aspect of the protein-folding
problem, the early phenomenological models mentioned in the article do
not provide a solution even in the most approximate sense. The assertion
that “proteins fold because their energy landscape is funneled” is hardly
satisfactory because neither the protein energy landscape, nor the funnel,
are clearly defined, and analogies in science cannot substitute for research.
[...] However, coarse-grained statistical-mechanical models did advance our
understanding of folding proteins. They explicitly demonstrated that proper
sequence selection can guarantee a fast and reliable folding of large model
proteins, providing also a conceptual foundation of modern protein design.
While important in removing the shroud of miracle from the problem, these
early studies provided only a limited insight on how real proteins fold. Recent
successful ab initio sequence-based all-atom folding of several small proteins
showed that mechanistically folding proteins is a far more complex process
than suggested by analogies and even by coarse-grained models. It remains to
be seen which aspects of the observed protein-folding mechanisms are general
and which vary between individual proteins. Emergence of computationally
tractable yet realistic protein models combined with enhanced computer power
and advanced experimental approaches make it possible, for the first time, to
obtain an atomistic picture of statistical folding pathways. Certainly we are at
the beginning of the path towards solving the protein-folding problem.

Currently, it is fair to say that none of the knowledge-based methods for protein
structure prediction are based on a well-defined Bayesian model. Most knowledge-based
methods build on two key methodologies: fragment libraries (Simons et al. 1997) and
knowledge-based potentials of mean force (KPMFs) (Koppensteiner and Sippl 1998;
Sippl 1990).

KPMFs are energy functions that are estimated from the set of known protein structures
(Koppensteiner and Sippl 1998; Pohl 1971; Sippl 1990). These potentials typically concern
pairwise distances between amino acids in a protein structure. Such knowledge-based
potentials should not be confused with the well-justified potentials of mean force as,
for example, used in the physics of liquids (Chandler 1987). Rather, KPMFs are ad hoc
constructions that aim to mimic their rigorous counterparts in physics (Ben-Naim 1997;
Thomas and Dill 1996).

Fragment libraries (Simons et al. 1997) are used to assemble plausible protein structures
by tying together short fragments of existing protein structures (Simons et al. 1997). They
are typically used in Monte Carlo methods as proposal methods, and thereby also bring
in an associated — and typically unknown — energy term (Boomsma et al. 2014; Przytycka
2004).
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Fragment libraries and KPMFs were proposed two decades ago and still form the back-
bone of most knowledge-based protein structure prediction methods. Unfortunately, neither
of them have an underlying sound probabilistic model. In the case of KPMFs, it was until
very recently not even clear why these potentials were to some extent successful in the first
place (Ben-Naim 1997; Hamelryck et al. 2010; Thomas and Dill 1996).

Currently, success in protein structure prediction, at least in the absence of a related
structure that can be used as a convenient template to start from, seems to be stagnating
(Kryshtafovych et al. 2014). This poses a problem, as genome-wide prediction of pro-
tein structure certainly requires covering such “orphan proteins.” For example, the recently
reported genome of the giant Pandora virus revealed more than 2500 putative protein-coding
sequences, 93% of which are without recognizable homologue in the structural databases
(Philippe et al. 2013). We postulate that the current stagnation can be broken by the devel-
opment of state-of-the-art, well-justified, and computationally efficient Bayesian models
and methods. In addition, such models will also allow to evaluate the precision of the
predictions. In this chapter, we outline such a model. In our formulation, protein struc-
ture prediction simply corresponds to sampling from a well-defined posterior distribution
obtained from applying the Bayesian probability calculus.

The underlying probabilistic model is based on three pillars. First, graphical models, and
more specifically dynamic Bayesian networks, represent the sequential nature of a protein
as a linear polymer (Boomsma et al. 2008; 2014; Hamelryck et al. 2006; Harder et al. 2010).
These models capture the shape of a protein on a local length scale, but without adequately
modeling the global features. Second, directional statistics (Mardia and Jupp 2000) — the
statistics of angles, directions, and orientations — is used to model the main degree of free-
dom when representing protein structure, which are the dihedral angles. Finally, inference
of protein structure is a multi-scale problem (Ferreira and Lee 2007), much like modeling
the movements of an animal might involve covering minute movements as well as much
larger patterns of migration. Rather than developing one complicated model that covers all
scales, we develop a short-range (local) and a long-range or global (non-local) model. The
reference ratio method (RR method) — which constitutes the third and final pillar —is used to
combine the local and non-local models into a joint posterior distribution (Borg et al. 2012;
Frellsen et al. 2012; Hamelryck et al. 2010, 2013; Mardia et al. 2011; Mardia and Hamel-
ryck 2012). The RR method corresponds to a special — and little known — case of Bayesian
belief updating called Jeffrey’s conditioning or probability kinematics (Jeffrey 2004).

It remains to be seen how successful this approach will be. Preliminary results are
promising and demonstrate that the approach is computationally efficient (Valentin et al.
2014). Although it will take time to bring this method up to par with ad hoc methods
that have been manually honed and refined for decades by many developers and users,
a well-defined Bayesian approach to protein structure prediction — and its many advan-
tages — is now within reach.

18.2 Overview of the article

The structure of the chapter is as follows. First, we outline the nature of the probabilistic
model of protein structure that we want to develop. Then, we present a brief overview of
protein structure in terms of local and non-local structure and discuss its implications for the
development of the probabilistic model. The resulting model consists of a prior distribution
concerning local structure and a likelihood concerning non-local structure. The latter two
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are only briefly discussed, as they have been discussed extensively elsewhere (Boomsma
et al. 2008; Valentin et al. 2014).

Due to the nature of the models, combining the prior and the likelihood according to
the Bayesian calculus requires a special technique that we called the reference ratio method
(RR method). We discuss the RR method and why it is needed and give five different ways
in which the method can be derived and understood. Finally, we point out how the RR
method solves a twenty-year-old conundrum regarding the nature of KPMFs and discuss
its interpretation as a maximum entropy method.

18.3 Probabilistic formulation

The problem of protein structure prediction from amino acid sequence (Dill and MacCallum
2012) can be stated in the following way. We want to formulate the following probability
distribution:

p(x | a, My), (18.1)

where x is a — typically high-dimensional — vector that specifies a protein’s structure and
a is the amino acid sequence, which is a vector of symbols chosen from an alphabet with
twenty letters. Each letter represents one of the twenty different naturally occurring amino
acids. M is the underlying model; the subscript NV indicates that the model refers to the
protein’s native folded state.

The subscript IV deserves some more explanation. Roughly speaking, a protein can be
in an unfolded or folded state. For our purposes, we can say that in the unfolded state, the
long-range interactions that keep a protein in a compact, globular folded state are absent.

Later, we will introduce a second model, M} that concerns this unfolded state. In that
case, the subscript L refers to the fact that only the local structure is considered. Specifically,
the models express the following hypotheses:

e M; specifies protein-like local structure but does not consider any long-range fea-
tures (i.e., non-local structure). Under this hypothesis, the partition of compact, folded
conformation has a low probability.

e M, specifies protein-like local and non-local structure. Under this hypothesis,
unfolded conformations have a low probability — at least for compact folded proteins.

Naturally, we want to obtain p(x | a, M) in the form of a well-justified posterior
distribution.

If we assume ideal bond angles and bond lengths, which is a reasonable approximation,
a protein’s structure can be entirely parameterized by a vector x of dihedral angles (see
Figure 18.1). As each dihedral angle corresponds to one point on the unit circle, a protein
can be fully parameterized as a sequence of such points (Boomsma et al. 2008; Harder et al.
2010).

18.4 Local and non-local structure

Protein structure can be conveniently understood as consisting of local and non-local fea-
tures (Figure 18.2). With local structure, we refer to the shape of the protein on a local length
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scale. Typically, the local structure of a protein is classified into three types — a-helices,
[-strands, and coils. With non-local structure, we refer to the contacts between amino
acids that are far apart from each other in the sequence, but close together in space in
the compact folded conformation. The distinction between local and non-local structure
is somewhat artificial. However, it is a very useful concept for the development of methods
to predict protein structure, which typically have components that deal with local struc-
ture and non-local structure. In the former case, fragment libraries — collections of local
fragments excised from known protein structures (Simons et al. 1997) — are typically used.
The latter case is typically covered by knowledge-based energy functions such as KPMFs
(Sippl 1990).

The solution that we propose here also makes use of a divide-and-conquer approach that
distinguishes local from non-local structure (Simons et al. 1997). The probability density
that concerns local structure is only accurate on a local length scale and does not capture
non-local features. On the other hand, it provides atomic detail, is efficient, and is easy
to estimate. This density can be viewed as a prior distribution on the local shape of the
protein. The probability density that concerns non-local structure provides information on

Figure 18.1 When bond angles and bond lengths are considered as fixed to their ideal
values, a vector of dihedral angles is the remaining degree of freedom describing a
three-dimensional protein structure. The dihedral angles can be subdivided into back-
bone and side chain angles, respectively involving (¢, ¢,w) triplets and vectors of y
angles. All angles are illustrated in the figure, with the exception of w, which is typ-
ically close to 180°. The number of x angles varies between zero and four for the
twenty standard amino acids. The figure shows a ball-and-stick representation of a sin-
gle amino acid, glutamate, which has three x angles, within a protein. The fading
conformations in the background illustrate a rotation around y,. The figure was made
using PyMOL (http://www.pymol.org, DeLano Scientific LCC) (adapted from Harder
etal. (2010) http://www.biomedcentral.com/1471-2105/11/306. Used under CC-BY-SA
2.0 http://creativecommons.org/licenses/by/2.0/).
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Figure 18.2 Three views of the same protein (protein G; Protein Data Bank code 2GB1).
(a) A ball-and-stick representation of the protein, showing all bonds between atoms as
sticks. Apart from the dynamics, this view includes essentially all relevant details. (b) Same
view, but only showing the linear polymer part of the protein — the so-called main chain. The
side chains are not shown in this view. (c¢) A schematic representation of the protein — called
a “cartoon” — which shows an «-helix in the back, a 3-sheet consisting of four (3-strands
(shown as arrows) and the interconnecting coils. The dotted lines show hydrogen bonds,
which are some of the features that stabilize the folded conformation. The helices, strands,
and coils can be considered “local” features, while the hydrogen bonds shown between
the 3-strands in the 3-sheet can be considered “non-local” features, as they involve amino
acids close in space, but relatively distant in sequence. This distinction between local and
non-local is somewhat artificial, but can be used to great advantage in the formulation of
probabilistic models of protein structure, as discussed in the chapter.

the interactions that are not captured by the local model. This density is coarse grained,
which means that it involves a lower dimensional variable that does not capture atomic
detail. In summary, we have

e One density that captures local, but not non-local, structure and provides atomic
detail.

e A second density that captures non-local structure, but does not offer atomic detail.

In the following sections, we briefly describe how these densities are formulated and how
they are combined into the desired final model.

18.5 The local model

Local structure concerns protein structure on a local length scale, including a-helices,
(-strand, and coils. We will denote the “local” probability density as p(x | a, M}).
This density is conditioned on the model M;, which accurately captures local, but not
non-local, structure. Conditioning on the imperfect model M allows the formulation of
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the density p(x | a, M) that has very appealing properties, notably regarding estimation
and computational efficiency. Conditioning on the desired model A, which correctly
covers both local and non-local structure, will be added in a next step, as explained
subsequently.

As the local model — TORUSDBN - has been described in great detail elsewhere
(Boomsma et al. 2008, 2014; Hamelryck et al. 2006, 2012; Harder et al. 2010), we here
give a high-level overview of the ideas behind it. To formulate a joint probability density of
amino acid sequence and dihedral angles, we combined graphical models with directional
statistics. The linear part of a protein — the so-called main chain — can be parameterized as
a sequence of dihedral angles pairs. Thus, we used a dynamic Bayesian network consisting
of a Markov chain of hidden nodes, to which nodes representing the amino acid symbols
and dihedral angle pairs are attached (Boomsma et al. 2008, 2014). The dihedral angle
pairs are modeled using a bivariate distribution on the torus — the bivariate von Mises
distribution — which was especially developed for this purpose by Kanti Mardia and
co-workers (Mardia et al. 2007). The dihedral angles of the so-called side chains — which
can be considered as adornments of the main chain — are modeled using a similar approach
(Harder et al. 2010).

The use of graphical models featuring Markov chains of hidden variables leads to
probabilistic models that are computationally efficient and easy to estimate. However, they
have one important shortcoming: a Markov chain has a finite memory along the sequence.
Therefore, a Markov chain performs quite well on a local length scale, but cannot capture
the many long-range interactions that are important features of the folded conformation
of a protein. In other words, sampling from these models results in protein conformations
that look like “unfolded” conformations. They are not compact, but locally they look like
proteins, featuring a-helices, 3-strands and coils, but — for example — not [3-sheets, which
are non-local features. These shortcomings can be alleviated by formulating a second
probabilistic model that accurately covers non-local structure but provides less detail, and
by combining the two models.

18.6 The non-local model

Nonlocal structure concerns protein features of a more global nature, including hydrogen
bonds (see Figure 18.2(c)), amino acid packing in a hydrophobic core and so on. These
interactions are not adequately captured by the local model. To model the non-local features
of proteins, we introduce another variable, y. This variable concerns the non-local structure
of a protein and can be calculated from the vector of dihedral angles, x,

y = f(x).

The dimensionality of y is typically much lower than the one of x, and the relationship
between x and y is many-to-one. We refer to the random variable y as a coarse-grained
variable, while x is referred to as the fine grained variable (Borg et al. 2012; Frellsen et al.
2012; Hamelryck et al. 2010, 2013; Mardia et al. 2011; Mardia and Hamelryck 2012). For
example, y could be a single positive, real value, describing the radius of the protein (Hamel-
ryck et al. 2010).

We are interested in two probability densities concerning y, namely p(y | a, M, ) and
p(y | a, My ). As we will explain in the next section, we need both densities to formulate
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our final joint model of protein structure. The first one is the probability distribution over
y as implied by p(x | a, M, ). The second density models the non-local structure of folded
proteins — indicated by the conditioning on M, — and can be inferred from the database
of known proteins. Because y is a coarse-grained variable, it only provides limited — but
accurate — information on the local structure.

For the coarse-grained variable y, we recently proposed to use a low-dimensional vector
of energy values that describe various aspects of the non-local structure of a protein, notably
hydrogen bonding, hydrophobic interactions, and electrostatic interactions (Valentin et al.
2014). At this point, it is unclear how to optimally estimate this model, but a simple mul-
tivariate Gaussian model based on Bayesian linear regression delivered promising results.
Another possibility is to infer amino acid contacts from evolutionary information (Marks
etal. 2011) and to define y accordingly.

18.7 The formulation of the joint model

18.7.1 Outline of the problem and its solution

A direct, computationally efficient formulation of p(x | a, M) is intractable. However,
as we outlined in the previous two sections, the following probability distributions are
available:

p(X | a, ML)» (182)
p(y | a, M), (18.3)
p(y | a, MN)? (184)

where y is some deterministic function y = f(x) of x, and dim(y) < dim(x). The second
density is defined by

oy [adt) = [ plx]ay)dx
x:f(x)=y

Conceptually, the first two probability densities concern protein structure on a local
length scale in terms of the fine grained variable x and the coarse-grained variable y; the
third distribution concerns the non-local structure of actual proteins. Note that the latter
distribution thus accurately covers local structure as well, but does not provide enough detail
to parameterize it unequivocally. The question is now, how can p(x | a, M) be obtained
from the aforementioned three probability densities? The solution is given by

p(y | a, MN)
p(y | a, ML)

We call this solution the reference ratio method (RR method), because it involves a factor,
consisting of a ratio of two probability densities, that modifies p(x | a, M ). This solution
can be derived in different ways: as the result of Bayesian reasoning, from combining the
local and nonlocal models, starting from a conditional independence relationship, as a Jaco-
bian factor resulting from a change of variables, and from marginalization over y. Finally,
the expression can also be seen as a special case of Jeffrey’s conditioning or probability kine-
matics — a variant of Bayesian belief updating — and as a maximum entropy method. Protein

p(x|a,My) = p(x | a, My).
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structure prediction now amounts to sampling from the well-justified posterior distribution
p(x | a, My).

In the next sections, we give various derivations of the RR expression and also point out
how this expression explains the success of KPMFs that are used ubiquitously in protein
structure prediction (Koppensteiner and Sippl 1998; Sippl 1990; Sippl et al. 1996).

18.7.2 Model combination explanation

The outline of the problem and its solution is as follows. We have a probabilistic model p(x |
a, M, ) that covers protein structure on the local level. This model is tractable with respect
to estimation, simulation, and computational efficiency. However, we want the probabilistic
model p(x | a, My ), which covers protein structure on both local and nonlocal levels. The
latter model is, however, intractable. The question is, how can the local model be “salvaged”
by adding nonlocal information?

A first step to the solution is the introduction of the random variable y = f(x), — with
dim(y) < dim(x) — which can be calculated deterministically from x. For clarity, we will
leave out the conditioning on the amino acid sequence a from now on. By involving y,
we can reformulate the local and nonlocal models in terms of a marginal and a conditional
distribution as follows:

p(x | Mp)=p(x|y, Mp)p(y | M),
p(x | My) =p(x |y, My)p(y | My).

Conceptually, by choice, y should constitute a good descriptor of the nonlocal structure of
a protein. In addition, by construction, y is chosen such that

Thus, the desired probability density is given by

p(x | My) =p(x |y, M )p(y | My),

provided that both the marginal and the conditional probability densities are available. In
practice, y is chosen such that the marginal distribution p(y | M) can be easily obtained
by estimating a probabilistic model from the set of known protein structures.

If the conditional distribution p(x | y, M) of the local model were available, the prob-
lem would be solved at this point. However, only p(x | M ) is available, not p(x | y, M).
A tractable solution is obtained by applying Bayes’ theorem to the conditional as follows:

p(x [ My)=px |y, M)p(y | My)
- p(y | x, Mp)p(x | M)

AT A B
- M“X | My). (18.5)

The factor p(y | x, M, ) is equal to one as y is a deterministic function of x by construction.
The final issue that remains is how to obtain p(y | M, ). In contrast to p(x | y, M, ), the
marginal p(y | M) can be fairly easily obtained by
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1. sampling a set of samples {x, } from p(x | M),
2. calculating the set {y,} from the sampled {x,},

3. and estimating p(y | M) from the obtained {y,}.

The final solution given by Equation (18.5) involves a ratio of probability densities that
modifies the local model p(x | M} ), hence the name “reference ratio method”. We call
p(y | M) the “reference distribution,” for reasons explained in Section 18.9.

18.7.3 Conditional independence explanation

All the derivations we present here share one common feature: they all make use of some
conditional independence assumption. In this derivation, this is where we start. Note that
the presented independence assumptions are equivalent, as we will show in Section 18.7.6.
Specifically, we assume that the conditional distribution of the local and nonlocal models
is identical

p(X | Y7MN) :p(X | y7ML)'

This is a reasonable assumption for all choices of y that parameterize the non-local structure
of a protein in adequate detail. The RRM is simply obtained by applying Bayes’ rule to both
sides of the equation,

p(x |y, My)=p(x|y, M) (18.6)
p(y | x, My)p(x | My)  ply | x, Mp)p(x| My)
p— 18.7
=Ty | My) oy | My) (18D

(y | My)p(x | Mp)
p(y ‘ My) .

Note that p(y | x, M) and p(y | x, M) both are equal to one and cancel because

y = f(x).

18.7.4 Marginalization explanation

= p(x | My) =2 (18.8)

Next, we obtained the RRM by marginalization over the coarse-grained variable y, making
use of the same conditional independence assumption as in the previous section,

p(x |y, My)=p(x|y, M),

as follows:

px | 20) = [ plx | ¥ M0l | M)y’ (189)

y
=/p(XIY’,ML)p(y’|MN)dy’ (18.10)

yl

p(y | X, ML>p(X | ML) / /

= My)d 18.11
/y’ p(y/ ‘ M ) p(y | N) y ( )
Py | MN)p(X | My). (18.12)
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In the last step, the integral disappears because p(y | x, M) is zero if y' #y = f(x), and
one otherwise.

18.7.5 Jacobian explanation

The RR expression can also be derived making use of the Jacobian of a transformation of
random variables. We assume that it is possible to augment y with z, resulting in v = (y, z)
such that

e There is a one-to-one mapping between x and v = (y, z).
e dim(x) = dim(y) + dim(z).

Following the rules regarding transformations of variables, we can write

dv
p(x | My) =ply.z | My)— (18.13)
dv
px [ M) =p(y,z | My) (18.14)
and thus ( M)
pyaz N
p(x| My) = —F"——=p(x| Mp).
( | N) p(y7Z|ML) ( | L)
After applying the product rule to both factors in the ratio, we obtain
p(z |y, My)p(y | M
plx | My) = ALY MNP L) ) (18.15)

p(z |y, My )p(y | M)

Next, we make the following assumption:

p(z |y, My)=p(z|y, M),

which reduces Equation (18.15) to the RR expression.

18.7.6 Equivalence of the independence assumptions

In the three derivations given earlier, we have used two seemingly different conditional
independence assumptions, namely,

p(x |y, My) =p(x |y, M), (18.16)
p(z |y, My) =p(z |y, Mp). (18.17)
The equivalence of the assumptions is established by
p(x |y, My) =p(x |y, Mp) (18.18)
=ply,z|y, My) =ply,z|y, Mp) (18.19)
=p(z |y, My)=p(z |y, M), (18.20)

which follows from the fact that there is a one-to-one transformation between x and
v = (y, z). It is trivial to show the inverse equivalence.
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18.7.7 Probability kinematics explanation

Recently, it has also become clear that the RR method can be seen as an application of
probability kinematics or Jeffrey’s conditioning (Jeffrey 2004). Jeffrey’s conditioning was
proposed by the American philosopher of probability Richard Jeffrey (1926-2002)." Here
is a simple illustration of Jeffrey’s conditioning, as given by Diaconis and Zabell (1982).

Example 18.7.1: Whitworth’s horses

Question: Three horses, A, B, and C, enter a race. Their initial probabilities to win are %,
1—41, and % We gain extra information, which changes A’s probability to win to % What are
the corresponding probabilities in favor of B now?

Answer: The solution follows, if we assume that the new information on A does not affect
the relative probabilities of B and C. The new information diminishes the probability that A
loses by %. Hence, the probabilities of B and C winning are diminished by the same ratio.
Thus, the probability of B winning is

2

4 1
p'(B wins) = p(B wins | A loses)p’(A loses) = 955 9
where p(-) stands for the previous probabilities and p'(-) stands for the updated
probabilities. [

In this section, we use a slightly different notation, following Diaconis and Zabell
(Diaconis and Zabell 1982, 1986). We start out with a probability distribution p(x) and
a partition {E,, E,, ..., E,} of the space of x. The partition is assumed to be mutually
exclusive and exhaustive. Now, we are given new probabilities p'(E;) for all the elements
of the partition. The question is now, how can we update the probability distribution p(x)?
The answer is given by Jeffrey’s rule of conditioning,

n

p(x) = Zp(x | )V (E;),

i=1

where the sum runs over all elements of the partition. Since the partition is mutually exclu-
sive and exhaustive, we can also write

P (x) = p(x | Ex)p'(Ey),

where F, is the unique partition to which x belongs.
By casting the expression in a slightly different way, making use of Bayes’ rule, we can
easily obtain an expression that corresponds to the reference ratio distribution

p(E, | X)p(x)
p(Ey)
The factor p(F, | x) is equal to one, as x belongs to exactly one partition, F,. The RRM

thus corresponds to Jeffrey’s conditioning when the conditional probability distribution
p(x | E,) is not available or intractable, but one knows p(E, ) and p(x) instead.

p(x) =

!'Not to be confused with Harold Jeffreys (1891-1989), the well-known pioneer of Bayesian statistics.
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The valid application of Jeffrey’s rule amounts to the assumption that
P (x| E) =px|E,),

for all 7. The condition is called the “J-condition” by Diaconis and Zabell (1982; 1986).
In short, the conditional probabilities given an element of the partition stay the same, but
the probabilities of the elements themselves are changed. This condition is identical to the
independence assumptions discussed in the previous section, notably

p(x |y, My) = p(x |y, Mp).

Thus, the introduction of y is a way to impose a partitioning on the conformational space
of a protein. The local density, p(x | M) is incorrect in the sense that the probabilities
of the partitions are wrong. In other words, p(y | M) is incorrect, but p(x | y, M;) is
correct. The RRM thus corrects the probabilities of the elements of the partition, according
to Jeffrey’s rule.

18.7.8 Bayesian explanation

The RRM can also be obtained as a result of conventional Bayesian reasoning. In order
to show this, we formulate the nonlocal model as the probability density p(x | N = 1,1),
where NNV is a Boolean indicator variable that specifies a folded (N = 1) or unfolded (N = 0)
conformation and I represents the general background knowledge. Conventional Bayesian
updating based on the data IV results in

p(N [ x, I)p(x | 1)
p(N [ 1)
x p(N | x,Dp(x | I). (18.21)

p(X|N,I) -

Now we assume that it is possible to chose a random variable y, with y = f(x) and
dim(y) < dim(x), such that

p(N [x,1) =p(N |y, 1).

In addition, y is assumed to be a good descriptor of a protein’s nonlocal structure. Next, we
reformulate p(N | y, I) by applying Bayes’ theorem, resulting in
ply | N, D)p(N | I)
p(y [ 1)
p(y ‘ N, I)
ply | 1) -

Substituting Equation (18.22) into Equation (18.21) results in the expression

p(YleI)
PN D T

which is equivalent to the RRM if we choose p(x | M) for p(x | I). That is, the background
knowledge I represents what is known about local protein structure. Thus, it can be seen

p(N [ x,1) =

(18.22)

p(x | 1),
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that the RR expression can be obtained as a result of Bayesian updating of the local model
p(x | M) in the light of nonlocal information. The modifying ratio in front of p(x | M)
in the RR expression can be interpreted as a likelihood. Hence, the distribution obtained
from the RR expression is a valid posterior distribution from this point of view.

18.8 Kullback-Leibler optimality

The RR method can be interpreted as a maximum entropy modification of p(x | M, ) such
that the correct distribution over y = f(x) is attained. More precisely, the RR expression
represents the minimal modification of p(x | M) in terms of the Kullback—Leibler (KL)
divergence to fulfill the requirement with respect to the marginal distribution of y, which
isp(y | My).

Consider the set D of all densities on the space of x that imply the correct distribution
overy = f(x), that is,

D= {helvs [ hode=pty' | M),

where we have used the notation h(x) = h(x | y)h(y). Now, we are looking for h(x) € D
with the minimal KL divergence from p(x | M ). Using the definition of the KL divergence,
and leaving out the conditioning on a and M below the first line for clarity, we have

h(x) = arg hg)iélD KL [p(x | M}) || h(x)] (18.23)
= arg hg(l)iélD/xp(x) log %dx (18.24)
_ - p(y) p(x|y) ]
~ Y ep /y /x Fx)=y {p(y)p(x 1) {log hy) T hxy) } edy

(18.25)
= arg min /P(Y) log PLy) dy + /p(y)/ p(x | y)log plx | y)dxdy
h(x)eD y h’(y) y x: f(x)=y h(X ‘ y)
(18.26)
_ - log P& 4 / / oo PELY)
argh&lgD/yp(Y) oy | M) Y yp(Y) x:f(x):yp(X| ¥)log e y) Y
(18.27)

where we have used h(y) = p(y | M) in the last step. The first term is constant. The
second term is non-negative according to Jensen’s inequality and reaches the minimal value
of zero when h(x | y) =p(x |y, M) = pIMe) Thys, we indeed obtain the RR, given

that p(y|Mr)
h(x) = h(x | y)h(y) (18.28)
p(x | M)
= My). 18.29
(v | ML)p(y ‘ ~) ( )
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The KL optimality of the RR method — and of Jeffrey’s conditioning, for that matter
(Diaconis and Zabell 1982; Frellsen et al. 2012) — is an attractive property and provides a
clear bridge to physics, where maximum entropy methods are widely used (Jaynes 1957,
1978). The main difference with most maximum entropy applications is that we impose a
probability distribution over a many-to-one function of x, rather than adjusting the mean
of x to a new value.

18.9 Link with statistical potentials

The RR method has in fact been used for over twenty years for protein structure prediction,
but in an ad hoc fashion and without understanding as to why the method works (Borg et
al. 2012; Hamelryck et al. 2010). The workhorse for dealing with non-local interactions in
protein structure prediction are KPMFs. Typically, these potentials assign an energy to a
protein structure based on the pairwise distances between the amino acids (Koppensteiner
and Sippl 1998; Sippl 1990). This energy is equal to

ET*ZE 1,7 a;, ] ER(dz]7 1’a])

where E is the total energy, the sum runs over all relevant atom pairs (3, j), d, ; is the
distance between amino acids 7 and j and (a,,a;) are the amino acid types. The energies
E and ', correspond to an energy function derived from the known folded proteins and a
so-called “reference” energy, which is supposed to model unfolded proteins. These KPMFs
are justified by analogy with true potentials of mean force, as used in the physics of liquids
(Koppensteiner and Sippl 1998). However, vague analogies are not a substitute for true
understanding, and as a result, KPMFs are currently not used to their full potential.

If we reformulate KPMFs in a probabilistic way, by turning energies into probabilities
using Boltzmann’s law, we obtain the RR expression for p(x | a) uniform. In this case, y is
a vector of pairwise distances calculated from the protein structure x, and it is (incorrectly)
assumed that the distances are conditionally independent given the amino acid sequence a,
resulting in

p(x|a, My)=

w (x | a, M,) (18.30)

p(yla ML)
:Hi,jp< L]‘a’l’ j’MN)
Hi,jp( |a1’ ]’ML)

In most KPMF applications, the uniform assumption for p(x | a, M ) is incorrect, however.
Typically, a non-uniform p(x | a, M, ) is brought in by sampling from a fragment library.
Thus, the fragment library — or any other method that is used for the conformational sam-
pling — will unequivocally determine the denominator in the RR expression, corresponding
to the reference energy.

After two decades of successful applications in protein structure prediction and sim-
ulation (Sippl 1990) despite much debate about their physical validity (Ben-Naim 1997;
Thomas and Dill 1996), KPMFs are now finally explained as statistically well-defined quan-
tities (Borg et al. 2012; Frellsen et al. 2012; Hamelryck et al. 2010). The new insights about
the nature of KPMFs are not only of theoretical interest; they readily translate into improved
energy functions. Notably, current KPMFs can be improved in two respects:

p(x | a, M,). (18.31)
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1. KPMFs are not limited to pairwise distances, but can be extended to any
coarse-grained descriptor of protein structure (Hamelryck et al. 2010).

2. The local model used for conformational sampling determines the reference energy.
As this fact remains largely unknown, the reference energy is now typically con-
structed based on ad hoc arguments (Borg et al. 2012; Frellsen et al. 2012).

18.10 Conclusions and outlook

In this chapter, we have outlined a tractable, computationally efficient, and well-justified
Bayesian model of protein structure, which can be used for inference of protein structure
from sequence (Boomsma et al. 2008; Hamelryck et al. 2010; Valentin et al. 2014). The
key idea behind the model is to formulate complementary models — some effective on a
local scale and others on a non-local scale — and to tie them together in an unusual, but
well-defined, Bayesian way.

The local model is computationally efficient and detailed, but only valid on a short-range
scale (Boomsma et al. 2008). This is because it is based on a graphical model that is
essentially a Markov model. On the other hand, the global model lacks detail but provides
long-range information (Valentin et al. 2014). Glueing the two models together results in a
joint model that represents the best of both worlds: the model is detailed and computation-
ally efficient, and valid on both local and global scales (Valentin et al. 2014).

The way in which the two models are combined is quite interesting. It involves mod-
ifying the local model with a factor — a ratio of two densities concerning the non-local
structure — that brings in the global information. The method can be understood as resulting
from updating the local model with non-local information and can be derived in various
ways. Notably, the method can be seen as an example of Jeffrey’s updating or probability
kinematics — a specific way of belief updating first proposed by the philosopher of prob-
ability Richard Jeftrey (Jeffrey 2004). The method can also be interpreted as a maximum
entropy method and as resulting from conventional Bayesian updating.

This is the first time that a well-defined Bayesian model of protein structure in atomic
detail is formulated. We believe that it has great potential and that it might provide a new
impetus to the field of protein structure prediction.

Developing a sound probabilistic model of something as complicated as a protein struc-
ture, consisting of thousands of atoms, poses a fascinating statistical challenge. It involves
large amounts of data, inference on unusual manifold such as hypertori and hyperspheres,
(Boomsma et al. 2008; Hamelryck et al. 2006), and stringent demands on computational
efficiency. The method we developed to tackle this challenge adopts a unique strategy that
can be applied to a wide range of unrelated problems. Many statistical problems are of a
multi-scale nature — they involve the modeling of phenomena on local and global scales. A
tractable strategy can be to develop local and global models — each of them mainly covering
essentially one scale — and to combine them with Jeffrey’s conditioning into a model that
covers all scales.

In short, the strategy consists of the following three aspects:

e Develop a detailed probabilistic model p(x | M) that accurately covers the
short-range scale of the problem, but not the long-range scale. Focusing solely on
the short-range scale often makes it possible to formulate computationally efficient,



PROTEINS, PHYSICS AND PROBABILITY KINEMATICS 373

yet detailed models, for example, by making use of Markov models, at the expense
of modeling long-range features.

e Develop a second model p(y | M) that covers long-range aspects of the problem.
By leaving out the short-range details, it is often possible to develop a computa-
tionally efficient and adequate model of the long-range features. Specifically, the
first model concerns a detailed feature vector x, while the second model concerns a
coarse-grained feature vector that is a deterministic function of x, thatis, y = f(x).

e We now have two models that cover different ranges of the problem. One model
concerns the short-range scale and provides detail, but does not cover the long-range
scale. The other model covers the long-range scale but does not cover details. By
combining the models using a variant of Jeffrey’s conditioning, one obtains a final
model, in the form of a posterior distribution

ply | My)
py | My)

that covers both short- and long-range scales, provides detail on all scales and yet
remains computationally efficient.

p(x | My) = p(x | Mp),

e This approach can be readily extended beyond two models, in order to cover multiple
scales, which is reminiscent of strategies adopted in deep learning (Bengio 2009).

The RR method is an excellent example of how tackling a challenging, real-life problem
can lead to exciting new statistical methods and concepts that can potentially be widely
applied. It is quite surprising that a fundamental and potentially widely applicable concept
such as Jeffrey’s conditioning is so little known by the statistical and machine learning
communities. Previously, Ferreira and co-workers proposed to use Jeffrey’s conditioning to
create multi-scale random field models (Ferreira and Lee 2007) . It has been suggested that
the brain approximates Bayesian methods in its computations (Friston 2010). Perhaps the
brain also makes use of the multi-scale modeling possibilities offered by probability kine-
matics? In any case, we look forward to see this elegant method pop up in other applications
and contexts.
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19.1 Introduction

When Professor Mardia presented a seminar on protein structural bioinformatics in Bristol
in February 2003, I was fascinated by one of the problems he described, about matching and
alignment, impressed by his visual aids (the things you could do with overlaid acetates!),
but rather unsatisfied by the inferential approach he took. The basic problem (which is
properly introduced subsequently) involves two key unknown quantities — the matching
between unspecified subsets of two data clouds and the geometrical transformations the
clouds had each been subjected to — and it seemed to me essential to treat these two things
simultaneously, not sequentially: if that is accepted, then it is natural to use a Bayesian
treatment. I think that I said something to this effect in discussion and followed it up later
with a proposed model framework, which Professor Mardia and I investigated, with the
results eventually becoming a Biometrika paper, Green and Mardia (2006).

Some subsequent developments of this idea appear in Mardia et al. (2007) (using the
formal Bayesian fitting algorithm as a numerical technique for refining a non-Bayesian
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solution), Ruffieux and Green (2009) (extending the idea to alignment of multiple con-
figurations), Green et al. (2010) (largely a review article, but describing broader classes
of biomolecular matching and alignment problems, and anticipating extensions to the mod-
elling) and Fallaize et al. (2014) (employing a ‘gap prior’ to use sequence information when
it is available).

I have also enjoyed robust, but friendly, conversations about the approach with both
of the Editors of this volume, each of whom has also made significant contributions to
understanding and addressing the problem, including Kent et al. (2004) and Kenobi and
Dryden (2012).

This paper revisits inference based on the models such as those in Green and Mardia
(2006) and Fallaize et al. (2014), using MAD-Bayes, a new perspective on fast approximate
inference due to Broderick et al. (2013). This view might help to reconcile rival paradigms
applied to this problem: it turns out to nicely bridge the gap between Bayesian and optimi-
sation approaches to inferring matching and alignment.

19.2 Modelling protein matching and alignment

A mathematical abstraction of a certain problem in protein alignment involves a form of
unlabelled shape analysis: we observe two point configurations x = {xj :j=1,2,...,m}
andy = {y, : k=1,2,...,n} in R? (typically d = 2 or 3); unknown subsets of each con-
figuration are assumed to be matched, apart from noise, but the two configurations have
been subject to different unknown geometrical transformations. These transformations are
assumed to lie in prescribed families, for example, translations, rotations, rigid-body or
affine transformations, or perhaps there has been some nonlinear warping. The problem
is to make simultaneous inference about the alignment and the (relative) transformations.
In turn, this abstraction can be set up in various ways: to preserve symmetry in the treat-
ment of x and y, Green and Mardia (2006) supposed both configurations to be transformed
from some latent configuration in another space, after being subject to both thinning and
the addition of noise.

For the case of affine transformations, Green and Mardia (2006) assumed that the x
configuration lies in the same d-dimensional space as the latent points, while the ¢ config-
uration needs transforming to Ay + 7 to lie in this space. The noise is assumed zero-mean
spherical Gaussian with variance o2, independently for each point. The alignment between
the configurations is represented by the binary (0/1) matrix M, where M, = 1 if and only
if © j and y, are matched. Each point can be matched at most once, so there is at most one
non-zero entry in each row and each column of M. We will write {j ~ k} for the set of

(j, k) pairs matched according to M, that is, {(j, k) : M, = 1}.

In Green and Mardia (2006), a stochastic model for point configurations and their align-
ment is derived, leading to a posterior distribution of the form

p(M, A, 7o, z,y) < |Al"p(A)p(r) ||

]IVI

p6{(z; — Ayy —7)/oy/2)
( ov2) ) (1D

over the unknown parameters A, 7 and M, assuming here that o is fixed, where ¢ is the
standard normal density.
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In the modelling, the distribution of the alignment M arises indirectly through a
thinned-hidden-point formulation, and the induced prior for M has the form

p\L

(M) o ()7, (19.2)
Av

where L = 3, M, is the number of matches. It follows that all feasible alignment matri-

ces M with the same value for L have the same prior probability: M|L is uniformly dis-

tributed. Of course, the number of different M with the same value of L varies greatly with

the value of L — in fact it is m!n!/[L!(m — L)!(n — L)!] (Green and Mardia 2006).

Expressions similar to (19.1) can arise from other underlying formulations by other
authors, perhaps with /2 replaced by o, and perhaps with p/Av expressed as a single
parameter.

Green and Mardia (2006) build a methodology using the posterior distribution (19.1),
concentrating primarily on the case of a rigid-body motion in 2- or 3-dimensions, where A is
a rotation matrix, modelled a priori by a matrix Fisher distribution. Posterior sampling can
be accomplished with a relatively straightforward Markov chain Monte Carlo (MCMC)
sampler. This uses Gibbs updates for o> and 7, Metropolis—Hastings updates for M (in
which addition, deletion, or switching of matches are proposed), and, in the 3-D case, a
novel Metropolis sampler for the matrix Fisher distribution for updating A.

For Bayesian point estimation of the alignment, we can take a decision theory approach
based on a loss function that is additive over (j, k) pairs and exchangeable with respect to
indexing. This turns out to require only the pairwise posterior match probabilities P{M ik =
1|z, y}, which are readily estimated by direct enumeration from an MCMC sample. The
resulting optimisation computation is equivalent to a mathematical programming assign-
ment problem, and standard methods can be used to solve it.

These methodologies were illustrated by application to alignment of 2-D protein gels
and of 3-D configurations of active sites. The MCMC methodology is in principle vulner-
able to mixing problems caused by multi-modality in the posterior distribution, although
such problems are not apparent in the examples shown.

19.3 Gap priors and related models

When sequence information is available, it is appealing to consider using it, and an attractive
approach is to use a ‘gap prior’ of the form

p(M) o< exp(—U(M))

using the so-called gap penalty U (M) given by
S(M)
UM)=gS(M)+h Y (I,—1), (19.3)
i=1

where S(M) is the number of instances where a new gap in the alignment is opened, [, is
the length of the ith gap, and g, h are positive hyperparameters, with commonly, g > h. See
Rodriguez and Schmidler (2010) and Fallaize et al. (2014). Informally, the effect of using
this prior with ¢ > h > 0 compared to g = h = 0 is that among alignments with the same
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likelihood, preference is given to those where consecutively numbered atoms are matched,
and where this fails, preference goes to those where the unmatched atoms are consecutive.

Using this prior in place of that used by Green and Mardia (2006), with other modelling
details unchanged, leads to the posterior

e~ o),

p(M, A, 7|o,z,y) o |A["p(A)p(T)v" exp(—U(M)) H ( (0/2)¢

Ik

(19.4)

Although the gap penalty is commonly expressed in the form (19.3), this form is

arguably ambiguous, and it can be helpful to express it more explicitly (Fallaize et al. 2014).

Let M be a binary m x n matrix with L 1s, located in entries (j;,%;),i =1,2,...,L,

where the js and ks are consistently ordered: j; < j, < --- <jpand k; < ky <--- < k.

This represents, of course, the matching of x;, and y, , fori =1,2,..., L. Then, the gap
penalty can be written

L+1

UM) =[£G — dia) + Fll; — k)], (19.5)

i=1

where f(1) =0 and for r > 2, f(r) =g+ (r—2)h. Here, we write j, =k, =0
and j;, ., =m+1, k;; =n+1. We take U(M) = +oo if the js and ks cannot be
consistently ordered, that is, if the alignment M is inconsistent with sequence ordering;
such M have zero prior probability under this model.

In Fallaize et al. (2014), the MCMC algorithm of Green and Mardia (2006) is adapted to
sampling for the posterior distribution for the gap prior model. The resulting algorithm relies
upon proposing stepwise updates to M corresponding to adding, removing or switching a
match. These are particularly easy to implement for the gap prior. If we insert a new match
(7%, k*) between (j;, k;) and (j,, 1, k;, ), then the reduction in total gap penalty is the sum
of two terms, one from the js and one from the ks. The term from the js is equal to

g if jip —Ji = 2,
h if j,.1 —j; >2and j* = j, +1oryj, ; — 1, and
2h — g otherwise.

These three possibilities correspond to filling (and so eliminating) a gap, shortening a gap,
or splitting a gap into two. The term from the £s has the same form.

A feature of this gap model that some might feel unappealing intuitively is that, condi-
tional on the number of matches and the number of gaps, the indices of the x and y points
forming those matches are a priori independent. In fact, the penalty U (M), and hence the
probability p(M), depends only on L and S, where S is the total number of gaps in the two
sequences combined; S is the number of blocks of consecutive all-zero rows or columns in
M. To be explicit,

UM)=(g—h)S+h(m+n-—2L). (19.6)

Thus, for example, if there are three matches and the = indices are (4, 5,9), then under
this model the y indices (7,8, 12) are exactly as probable as (7,11,12). Indeed, if m =9
and n = 15, this probability is also the same as that the « indices (1, 2, 3) match y indices
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(2,7,14), for any j =4,5,...,12 as all of these situations give L = 3 and S = 5. The
penalty (19.3) should, therefore, more accurately termed a ‘gap-count’ penalty!

Changing the specification of U(M) to better match intuition, or different scientific
judgement, about likely patterns of insertion and deletion would often still yield a distri-
bution amenable to posterior sampling using an appropriately modified MCMC algorithm.
This would be especially straightforward if the penalty remained a sum over the individual
gaps, but all that is really needed is that the change to the penalty when a match is deleted,
added or switched is cheaply computed, meaning in practice that it uses only information
that is local to the revision in M. Two possibilities that come immediately to mind are
to use (19.5) but with a function f that is strictly concave but still increasing for positive
gap lengths, or to use a form where the penalty is a decreasing function of the correlation
between the matched (7, k) indices — with the effect that in the first example mentioned
earlier, the x indices (4, 5, 9) are less likely to be matched to the y indices (7,11, 12) than
to (7,8,12).

194 MAD-Bayes

MAD-Bayes (MAP-based Asymptotic Derivations from Bayes) is a novel methodology for
fitting complex stochastic models due to Broderick et al. (2013). It was devised to meet the
sometimes contradictory desiderata of complying with the Bayesian paradigm and deliver-
ing practical methodology that can be executed very quickly even on large data sets.

MAD-Bayes is essentially a simple framework for delivering small-variance asymptotic
approximations to MAP (maximum a posteriori) estimation, yielding results that, while not
usually of closed form, are nevertheless typically amenable to solution using fast optimi-
sation techniques. It exploits the fact that in many statistical models, when the likelihood
is taken to a ‘small-variance’ limit, a non-trivial limit is obtained for the MAP estimator,
provided that hyperparameters in the prior are also taken to appropriate limits. Except in the
simplest of cases, there may be more than one way to do this, giving different non-trivial
limits, so some judgement is needed.

Although MAD-Bayes was conceived as a perspective to take in the presence of non-
parametric priors and models with discrete allocation structures such as mixtures and clus-
tering, the idea can be more simply illustrated and understood with a toy example from
parametric Bayes. Suppose y ~ N (X3, 0?) with a normal prior: 3 ~ N (/3,, 72I). Then, of
course, the posterior is

Bly~N ({o?X"X + 721} o 2 Xy + 7268, 1, {o > X" X +721}7Y). (19.7)

The posterior mean and mode are both { X7 X + oI} 1{XTy + af,}, the value minimis-
ing ||y — XB||* + |8 — By||? over 3, where a = ¢ /72. This is a non-trivial combination
of data and prior information, providing 0 < 0?/72 < oo strictly. Unlike the other appli-
cations of the MAD-Bayes principle for approximating the posterior mode and later the
posterior distribution, discussed later in this chapter, these results hold exactly for any pos-
itive o2.

The canonical example of MAD-Bayes presented by Broderick et al. (2013) provides an
extension to the classical K-means clustering algorithm that they call DP-means. They pro-

pose clustering multivariate data (1, z,, . . ., x,,) by partitioning the index set {1,2,...,n}
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as a disjoint union |J;_, C;, where K, {C;} and cluster means {4 } are chosen to minimise

K
SOl = P+ (K — 1A%, (19.8)

j=11ieC};

A being a regularisation constant. This approach, intuitively reasonable in itself, can be
derived by a MAD-Bayes argument approximating the MAP estimate of the clustering
under a Dirichlet/Chinese restaurant process mixture model (Lo 1984). As with « in the
normal linear model example discussed earlier, the constant \? is the ratio of the variance o
to a function of a hyperparameter in the prior, so the asymptotic framework again demands
that the prior concentrates as the variance decreases. Broderick et al. (2013) further illustrate
the idea applied to feature learning, particularly exploiting other Bayesian nonparametric
prior models such as the Indian buffet process, and various extensions. The idea has more
recently been used in feature learning for studying tumour heterogeneity by Xu et al. (2014).

A different kind of recent application is to image segmentation. Pereyra and McLaughlin
(2014) apply a MAD-Bayes argument to the posterior arising from an image model based
on a hidden Potts—Markov random field. Computing the MAP estimate in this problem is
NP-hard, but a convex relaxation is possible, leading ultimately to an objective function of
the form

K
SN Ay =zl + s — P} + Bl V2], (19.9)

j=14eC;

to be minimised over z, y1, {C; } and K, given a data image y. Here || V|| is the /; norm
of the first-order discrete gradient of the hidden image x, a convexification of the ||Vz||,
arising formally from the model. The minimisation over x is equivalent to a total-variation
denoising problem of a kind which has been extensively studied in the recent optimisation
literature and that can be solved very efficiently even in very high-dimensional scenar-
ios using parallel proximal splitting methods. The minimisation over the other variables
involves K-means clustering.

19.5 MAD-Bayes for unlabelled matching and alignment

To develop a MAD-Bayes method for matching and alignment, we use (19.1) to obtain,
ignoring additive constants in the log-posterior,

— 40 logp(M, A, |0, z,y) = —40” log{|A|"p(A)p(7)}

—40”Llog(p/A) + 40°dLlog(c/\/2) + 207 log 2w + Y _ ||z; — Ay, — 7[>, (19.10)
I~k

According to the MAD-Bayes approximation paradigm of Broderick et al. (2013), we

should examine this function in the small-variance limit, as > — 0. For a non-degenerate

limit in this asymptotic analysis, the prior cannot be held fixed. Suppose p/\ = exp(a/40?)
for some real constant . Then as ¢ — 0 in (19.10) we obtain

—40%logp(M, A, 7|0, z,y) = —aL + > _ ||z, — Ay, — 7|

Ik
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Thus, finding the MAP estimate of M, A, 7, the values maximising the log posterior, is
asymptotically equivalent to minimising the penalised sum-of-squares

—aL+ Y |lz; — Ay, — 7. (19.11)

Tk
v

The similarity in general form between (19.11) and (19.8) or (19.9) is clear.

When «a > 0 there is a non-trivial solution, and the optimisation serves to limit the
number of matches L; informally, with A and 7 held fixed for simplicity of the argument,
including an additional match (', k") will decrease the penalised sum-of-squares if and only
if ||z, — Ay — 7> < o

The parameter « controls the behaviour of the prior parameter p/\ in the small-variance
limit: positive o implies that p/\ — oo as o> — 0, at a particular rate. This is easy to under-
stand qualitatively: if the noise variance is reduced so that matches become harder to find,
that must be compensated by concentrating the prior for M on higher numbers of matches L.

In summary, this simple analysis of MAP inference in our Bayesian model has reduced
to an optimisation problem, penalised least-squares, one with a fairly simple structure by
the standards of problems addressable by modern optimisation techniques. For fixed A, 7,
optimisation over M is an instance of a weighted matching problem for a bipartite graph,
for which the Hungarian algorithm (Jacobi 1890; Munkres 1957) provides a solution; this
is usually posed as a maximisation problem and the weight on edge (7, k) to be used would
be simply max{0, a — ||z; — Ay, — 7||*}. For fixed M, optimisation over A and T (say,
in the case of rigid-body transformation) is an example of Procrustes analysis. It is easy
to see (since each step reduces the value of the criterion (19.11) and because the set of
possible alignments is finite) that alternating between these two steps defines an algorithm
that converges to a possibly local optimum in a finite number of iterations. We stress that
this may not be a global optimum as complex models often lead to multi-modal posteriors;
we comment further on multi-modality in Section 19.11.

This simple idea could no doubt be improved using techniques from modern optimisa-
tion methodology. But even without such improvements, this algorithm runs very quickly.
Without making any attempt to optimise coding of the outer loop, an implementation in R,
using function solve LSAP from package clue and function procOPA from package
shapes, provides an algorithm that runs in 0.03 seconds on a 3.20 GHz processor for the
small problem in Section 4.2 of Green and Mardia (2006), to be compared to 10.85 seconds
for 10° sweeps of the MCMC sampler on the same problem (but which, of course, provides
a much richer inference).

Note that use of the Hungarian algorithm, or other code for the assignment problem,
guarantees that the inferred alignment is feasible in the sense that no point is simultane-
ously matched to more than one point in the other configuration, in contrast to the formally
somewhat similar method using the EM algorithm to compute the maximum likelihood
estimate of the alignment (see for example Kent et al. 2004).

There is a related approach called ‘Softassign Procrustes’ to this problem due to Ran-
garajan et al. (1997). This proceeds by first relaxing the constraint that M is a binary matrix
to set up an iterative deterministic annealing algorithm using Lagrange multipliers that alter-
nates between updating the geometrical parameters and updating M ; the method appeals
to a theorem of Sinkhorn (1964) to deliver a solution in which M is in fact binary. The
Softassign Procrustes algorithm has been given an EM-like interpretation by Kent et al.
(2010).
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19.6 Omniparametric optimisation of the objective function

An interesting perspective on the optimisation of (19.11) allows simultaneous consideration
of all @ € (0, 00), delivering what is often called a ‘regularisation path’ (for example, in the
context of the Lasso (Efron et al. 2004)). Picture a two-dimensional scatter plot of points,
each representing a possible alignment M, with horizontal coordinate L(M) and vertical
coordinate Zj&k ||a; — Ay, — 7[>

The optimal M according to (19.11) corresponds to the point where a line of slope « is
a lower tangent to the scatter of points, and the set of all M that are optimal for some « is
represented by the lower convex hull of the configuration. Because there are only finitely
many possible values of M, this lower convex hull is a polygonal line, so there exists a finite
grid of values of a, say oy > oy > ay, > -, such that forall & € (0,1, 05),i=0,1,..,
the optimal M is constant, say M,. Note that L(M,) will decrease with i. One approach to
constructing the «; and M ;» following a suggestion of the referees, is to proceed sequentially
fori = 0,1,..., using each «; as a starting point for determining c;_ ;.

The setup also invites comparison with that of Lau and Green (2007), who discussed
optimal Bayesian point estimation of a clustering (of gene expression profiles) based on
a pairwise-coincidence loss function. ‘Omniparametric’ optimisation of the expected loss
over all values of the parameter in the loss function was implemented in a fast heuristic
algorithm, which might be used to inspire a similar approach to the present problem. Fol-
lowing that paradigm would suggest iteratively refining the grid («, ), starting with an initial
pair of (low, high) values; the recursive step to split an interval («, , ;) would search for
an alignment M whose representative point in this diagram lies outside the line segment
determined by the interval endpoints.

19.7 MAD-Bayes in the sequence-labelled case

In the sequence-labelled case, the points in each configuration are numbered in sequential
order (along a protein, in typical application), and we can use this numbering in specifying
a prior on the alignment matrix M. This leads to the posterior (19.4) instead of (19.1). The
‘energy function” U (M) in the prior for M may take the gap penalty form (19.3) or some-
thing more general, either with the same intention of promoting or insisting upon sequence
order being maintained, or with some other purpose.

For such a posterior, we obtain

— 40%log p(M, A, 7|0, 2, y) = —40” log{|A["p(A)p(r)v" }
+40*U (M) + 40*dLlog(c /\/2) + 20% log 27 + Z |lz; — Ay, — 7. (19.12)
Ik

Since all of the other terms vanish as > — 0, we need for a non-trivial limit that U (M)
or its parameters scale in such a way that 46°U (M) has a non-trivial limit. For example,
in the case of the gap penalty (19.3), if 8¢2h — « and 46%(g — h) — (3, then according to
(19.6) the resulting optimisation problem is to minimise

—aL+BS+ > |lz; — Ay, — 7| (19.13)

Ik
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Intuitive interpretation of this objective function is less straightforward: adding a match
always increases L by 1, but the associated change in S may be 42, 41,0, —1 or —2. Opti-
misation over the alignment for fixed A and 7 is no longer a weighted matching problem,
taking this setup out of reach of the Hungarian algorithm; as suggested by the referees, there
may be a role here for dynamic programming.

19.8 Other kinds of labelling

In their Section 3.6, Green and Mardia (2006) propose a way to extend the model leading to
(19.1) to allow simultaneous model-based inference about alignment when the points in the
observed configurations are recorded as belonging to different clusters, or ‘colours’, and
pairs of points where both belong to the same cluster are more likely to be matched. An
example in protein bioinformatics arises when the amino acids characterising the observed
points are categorised as hydrophobic or hydrophilic (possibly subdivided into charged,
polar and glycine). The model extension achieving this amounts to modifying the prior on
the alignment matrix M to favour like-coloured matches, so provides a general mechanism
for handling ‘partially labelled’ configurations, where labels are not unique.
The modified prior on M that was proposed has the form

p) o (L) TLexplatlry = s + 1l # 5.,

where z; is coloured r; and y,, coloured s, instead of (19.2). This modification needs only
trivial changes to the Metropolis—Hastings updating of M in the posterior simulation.

It is easy to see that such modified priors also lead to a simply modified MAD-Bayes
objective function. The penalised sum-of-squares (19.11) is replaced by

—alL + Z {||mj — Ay, —7|* + W'I[rj = s, + 6’I[rj #+ sk]}, (19.14)

i~k
]JVI

where v/ = 402y and ¢’ = 4026.

Numerical optimisation of (19.14) can again in principle be addressed by alternating
between optimising over M and over A and 7, and again the former step is an instance of
a weighted matching problem, since the objective function can be expressed as a sum over
{(jvk) : Mjk = 1}

The extensions in this section and the previous one can readily be combined, simul-
taneously penalising gaps and favouring like-coloured matches, and giving the objective
function

—alL + 35+ Z {Hl’] — Ay, — 77 JF’Y/I[T]‘ =53] + 57[7“‘7‘ # Sk}}'
Ik
19.9 Simultaneous alignment of multiple configurations

Ruffieux and Green (2009) generalised the two-configuration methodology of Green and
Mardia (2006) to handle the case of multiple configurations. They argue that information is
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lost by treating the configurations pairwise; the truth of this is most easily seen in the kind
of latent-true-configuration model they use (since we should want to use all information at
once in the implicit inference about the positions of the latent points), but the point will be
generally true. Kenobi and Dryden (2012) match multiple configurations using a model that
considers them only two at a time. The ideas illustrated in this chapter will continue to apply
mutatis mutandis to the multiple-configuration case, although I do not know whether the
discrete optimisation algorithms that would be needed for implementation are still instances
of standard optimisation theory problems.

19.10 Beyond MAD-Bayes to posterior approximation?

The motivating example in the Gaussian case delivered the whole posterior (19.7) not only
the posterior mode. Could we extend the MAD-Bayes perspective to deliver at least an
approximation to the posterior, by slightly refining the asymptotic argument? In this section,
I attempt only a preliminary, speculative answer to this question, which seems a promising
subject for further investigation.

For the unlabelled case, leaving aside technicalities for the moment, the argument lead-
ing to the penalised least-squares objective function (19.11) equally well delivers the formal
approximation, valid as o2 — 0,

p(M, A, 7|0, z,y) ~ e/ exp{(—1/40?) Z ||lz; — Ay, — 7|*}. (19.15)

Tk
v

Our focus will be to investigate the form of the density on the right-hand side. For definite-
ness, we take the case of rigid-body transformations, so that A is special orthogonal.

It is possible to make some progress interpreting the approximate joint posterior (19.15)
by considering the full conditionals for each of A, 7 and M in turn.

For A,
> ey = Ay — 7117 =D A2y = 7l + il P — 2(Ayy) " (2 — )}
Ik Ik
= oy = 7P+ D el = 20{AT > (2, — )y
i~k J~k Jrk
M M M
(19.16)

This reveals that under the approximate distribution (19.15), A given 7 and M (and z, y, o)
has a matrix Fisher distribution (Mardia and Jupp 2000, p. 289), as shown in Green and
Mardia (2006). The normalising constant of this distribution is known, so that A can be
integrated out to give

(M, 7lo,,y) e 17 expd (<1/40%) Y |la; — 7P+ lyslI* 0o Fi (/2. (Y160 ) FTF),
Ik

(19.17)

where F = 3", (z; — 7)yj. depends on both 7 and M, as well as the data. This does not

M
seem amenable to further analytic simplification.
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Similarly, we can evidently extract from the right hand side of (19.15) the approximate
conditional for 7 given M and A as

TIM, A, z,y,0 ~ N Lilz(xj—Ayk),QUQ/L ,

i~k
JJ\/I

while the approximate conditional for M given 7 and A is also explicit but hardly tractable.

In an effort to gain more insight into the form of the approximate posterior, we could
consider one of the approximations to the matrix Fisher distribution developed by Khatri
and Mardia (1977) and Bingham et al. (1992). However, these seem too intricate to use for
practical statistical analysis.

So let us consider further approximation: we could try to use a Normal approximation
for p(A|M, 7, 2,y,0). Suppose that A ~ MatrixFisher(F') with F' non-singular; note that
this demands that the M in question matches sufficiently many (x, y) pairs with coordinates
in general position. Now let K = (FT F)!/2 be the elliptical part of F and N = FK~!its
polar part (Mardia and Jupp 2000, p. 286). Let VAV with A = diag(8,,5,,...,d,) be
the spectral decomposition of K. In the concentrated case, where all §, become large (many
matches), we have (Peter Jupp, personal communication)

(A—N)~ NVSVT,

where S is a skew-symmetric matrix with (§; + (5j)1/ 231-]- ~ N (0, 1), independently.

It seems probable that the argument leading to this can be refined to yield a joint Normal
approximation for p(A, 7|M, z,y, o), although I have not attempted to verify the details.
Under such an approximation, the approximate joint posterior (19.15) becomes a Normal
mixture distribution, and this seems to be the analysis of (19.15) most likely to be useful
for numerical implementation. More work is needed here.

Returning to the mathematical basis for the approximation, a rigorous analysis would
need to establish that the approximation of densities that we have investigated really does
imply convergence of the probability measures (say, in the sense of total variation norm)
under suitable regularity conditions.

19.11 Practical uses of MAD-Bayes approximations

It is hoped that the optimisation-based techniques suggested in this chapter could be devel-
oped to make a practically useful contribution to methodology. They seem to offer to supply
some of the advantages of the Bayesian approach — notably treating uncertainty about the
alignment and the geometrical transformation symmetrically and simultaneously — without
having to pay the price of relying on Monte Carlo computation.

However, even neglecting the fact that the Bayesian setup has to be approximated to
allow delivery of these optimisation solutions, there are other caveats. In particular, they
are not a panacea for the problems of multi-modality that can bedevil MCMC methods. The
MAD-Bayes perspective is really blind to the possible existence of modes other than the
one under consideration, and numerical optimisation methods need to be special and care-
fully chosen to deliver optima of multi-modal objective functions reliably, just as MCMC
methods have to be specifically designed to handle multi-modal target distributions.
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It may be useful to regard optimisation approaches as complementary to posterior sam-
pling — for example, MAD-Bayes might provide a starting point for an MCMC simulation,
from which perhaps a rather short MCMC run might be used to assess variability; again this
would demand some guarantee about unimodality for reliable inference. This is very much
in the spirit of the work of Mardia et al. (2007).
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