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Preface

The objective of this book is to present the theory and computer
implementation of the finite element method as applied to simple nonlinear
problems of heat transfer and similar field problems, fluid mechanics, and solid
mechanics. Both geometric as well as material nonlinearities are considered,
and static and transient (i.c. time-dependent) responses are studied. The
guiding principle in writing the book was to make the presentation suitable
for (a) adoption as a text book for a first course on nonlinear finite element
analysis (or for a second course following an introductory course on the finite
element method), and (b) for use by engineers and scientists from various
disciplines for self study and practice.

There exist a number of books on nonlinear finite elements. Most of these
books contain a good coverage of the topics of structural mechanics, and few
address topics of fluid dynamics and heat transfer. While these books serve
as good references to engineers or scientists who are already familiar with the
subject but wish to learn advanced topics or latest developments, they are
not suitable as textbooks for a first course or for self study on nonlinear finite
element analysis.

The motivation and encouragement that led to the writing of the present
book have come from the users of the author’s book, An Introduction to
the Finite Element Method (McGraw—Hill, 1984; Second Edition, 1993; third
edition scheduled for 2004), who have found the approach presented there to
be most suitable for any one — irrespective of their scientific background -
interested in learning the method, and also from the fact that there does not
exist a book that is suitable as a textbook for a first course on nonlinear finite
element analysis. The author has taught a course on nonlinear finite element
analysis many times during the last twenty years, and the present book is
an outcome of the lecture notes developed during this period. The same
approach as that used in the aforementioned book, namely, the differential
equation approach, is adopted in the present book to introduce the theory,
formulation, and computer implementation of the finite element method as
applied to nonlinear problems of science and engineering.



Beginning with a model (ie. typical) second-order, nonlinear differential
equation in one dimension, the book takes the reader through increasingly
complex problems of nonlinear beam bending, nonlinear field problems in two
dimensions, nonlinear plate bending, nonlinear formulations of solid continua,
flows of viscous incompressible fluids in two dimensions (i.e. Navier-Stokes
equations), time-approximation schemes, continuum formulations of shells,
and material nonlinear problems of solid mechanics.

As stated earlier, the book is suitable as a textbook for a first course
on nonlinear finite elements in civil, aerospace, mechanical, and mechanics
departments as well as in applied sciences. It can be used as a reference
by engineers and scientists working in industry, government laboratories and
academia. Introductory courses on the finite element method, continuum
mechanics, and numerical analysis should prove to be helpful. '

The author has benefited in writing the book by the encouragement and
support of many colleagues around the world who have used his book, An
Introduction to the Finite Element Method, and students who have challenged
him to explain and implement complicated concepts and formulations in simple
ways. While it is not possible to name all of them, the author expresses his
sincere appreciation. In particular, it is a pleasure to acknowledge the help
of the author’s students Juan P. Pontaza with the least-squares finite element
analysis of fluid flow problems in Chapters 7 and 8, and Goy Teck Lim with
the plasticity example in Chapter 10. The author expresses his deep sense of
gratitude to his teacher, Professor J. T. Oden (University of Texas at Austin),
to whom this book is dedicated and without whose advice, mentorship and
support it would not have been possible for the author to modestly contribute
to the field of applied mechanics in general and theory and application of the
finite element method in particular, through author’s teaching, research, and
technical writings.

J. N. Reddy
College Station, Texas




1

Introduction

1.1 Mathematical Models

One of the most important thing engineers and scientists do is to model natural
phenomena. They develop conceptual and mathematical models to simulate
physical events, whether they are aerospace, biological, chemical, geological,
or mechanical. The mathematical models are developed using laws of physics
and they are often described in terms of algebraic, differential, and/or integral
equations relating various quantities of interest.

A mathematical model can be broadly defined as a set of relationships
among variables that express the essential features of a physical system or
process in analytical terms. The relationships that govern the system take the
form of algebraic, differential, and integral equations. Mathematical models of
physical phenomena are often based on fundamental scientific laws of physics
such as the principle of conservation of mass, the principle of conservation of
linear momentum, and the principle of conservation of energy. Mathematical
models of biological and other phenomena may be based on observations and
accepted theories. Keeping the scope of the present study in mind, we limit
our discussions to engineering systems that are governed by laws of continuum
mechanics.

Mathematical models of engineering systems are often characterized by very
complex equations posed on geometrically complicated regions. Consequently,
many of the mathematical models, until the advent of electronic computation,
were drastically simplified in the interest of analytically solving them. Over
the last three decades, however, the computer has made it possible, with
the help of mathematical models and numerical methods. to solve many
practical problems of science and engineering. There now exists a new and
growing body of knowledge connected with the use of numerical methods and
computers to analyze mathematical models of physical systems, and this body
is known as computational mechanics. Major established industries such as
the automobile, aerospace, chemical, pharmaceutical, petroleum, electronics
and communications, as well as emerging industries such as biotechnology, rely
on computational mechanics-based capabilities to simulate complex systems




2 NONLINEAR FINITE ELEMENT ANALYSIS

Here, we consider the familiar example of a simple pendulum to illustrate
how a mathematical model of the motion of the pendulum can be constructed
using the principle of conservation of linear momentum, that is, Newton’s
second law of motion. Numerical analysis of the problem will be considered
in the sequel.

Example 1.1.1

As an example of the mathematical model development, consider the problem of a simple
pendulum. The system consists of a bob of mass m, attached to one end of a rod of length I
and the other end is pivoted to a fixed point O, as shown in Figure 1.1.1. The primary goal
of the mathematical model to be derived here is tc have a means to determine the motion
(i-e. angular displacement as a function of time) of the bob. Keeping the goal of the analysis
in mind, we make several assumptions. (1) The bob as well as the rod connecting the bob
to the fixed point O are rigid; (2) the mass of the rod is negligible relative to the mass of the
bob; and (3) there is no friction at the pivot. These assumptions may be removed to obtain
a mathematical model that describes the system more accurately.

The equation governing the motion can be derived using the principle of conservation
of linear momentum, also known as Newton’s second law of motion, which states that the
vector sum of externally applied forces is equal to the time rate of change of the linear
momentum of the body:

F=ma (1.1.1)

where F is the vector sum of all forces acting on a system, m is the mass of the system, and
a is the acceleration of the system.

Applying Newton’s second law in the z direction (see Figure 1.1.1), we have

i si 91 | O 1.1.2
F, mg sin v Edt (1.1.2)

where @ is the angular displacement, v is the velocity along z, and ¢ denotes time. Then.
the equation for motion about the pivot becomes
d20 d2

—mg sinf = ml— or

= 9 sing =0 (1.1.3)

@y

Figure 1.1.1 Simple pendulum.
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Thus, the problem at hand involves solving the nonlinear differential equation

?ﬁg-l—%sinB:O, 0<t<T (1,1.4)

subjected to the initial (i.e. at time t =0) conditions

8(0) = 6o, ‘é—f(r;) - (1.1.5)

where 6y and vy are the initial values of angular displacement and velocity, respectively.
Mathematically, the problem is called an initial-value problem. If the amplitude 6 is not
small, the restoring moment is proportional to sinf, and Eq. (1.1.3) represents a nonlinear
equation. For small 6, sin  is approximately equal to the angle 6, and the motion is described
by the linear equation

d?6

e 2: 2:2
TFN0=0, N =7 (1.1.6)

which represents a simple harmonic motion.
The general analytical solution to the linear equation (1.1.6) is given by

9(t) = AsinAt + Beos A, A= \/% (1.1.7)
where A and B are constants to be determined using the initial conditions in (1.1.5). We

obtain .
A= 7? B=6, (1.1.8)

and the solution to the linear problem is
6(t) = %“sin,\t-w{,cos)\t (1.1.9)

For zero initial velocity and non-zero initial position 6, we have

f(t) = 6 cos M (1.1.10)

1.2 Numerical Simulations

By a numerical simulation of a process, we mean the solution of the
governing equations (or mathematical model) of the process using a numerical
method and a computer. While the derivation of the governing equations
for most problems is not unduly difficult, their solution by exact methods
of analysis is a formidable task. In such cases, numerical methods of
analysis provide an alternative means of finding solutions. Numerical methods
typically transform differential equations to algebraic equations that are to be
solved using computers. For example, the mathematical formulation of the
simple pendulum resulted in the nonlinear differential equation (1.1.4), whose
analytical solution cannot be obtained. Therefore, one must consider using
a numerical method to solve it. Even linear problems may not admit exact
solutions due to geometric and material complexities, but it is relatively easy
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to obtain approximate solutions using numerical methods. These ideas are
illustrated below using the simple pendulum problem of Example 1.1.1. The
finite difference method is used as the numerical method.

Example 1.2.1

Here we consider the numerical solution of Eq. (1.1.4) governing a simple pendulum using the
finite difference method. In the finite difference method, the derivatives are approximated hy
difference quotients (or the function is expanded in a Taylor series) that involve the unknown
value of the solution at time ti+1 and the known value of the solution at t;. For example,
consider the first-order equation

du

dt = f(t,u) (1.2.1)
We approximate the derivative at t; by
(EE) ] ——t&_rl—_-t—‘—- = flu;, t) (1.2.2)
t=1;
or
Uip1 = u; + At f(ug,ty) (1.2.3a)
where
Uy =u(tt-), Af,zt.,;_f_] —tt' (123]3)

Equation (1.2.3a) can be solved, starting from the known value up of u(t) at ¢ = 0, for
Uy = u(t1) = u(At). This process can be repeated to determine the values of u at times
i = At,2A8,...,nAt. This is known as Euler’s explicit method, also known as the Sforward
difference scheme. Note that we are able to convert the ordinary differential equation (1.2.1)
to an algebraic equation (1.2.3a) that needs to be evaluated at different times to construct
the time history of u(t).

Euler’s explicit method can be applied to the nonlinear second-order equation (1.1.4).
First we rewrite Eq. (1.1.4) as a pair of first-order equations

%;‘.' =v, 2N (1.2.4)

which are coupled (i.e. one cannot be solved without the other). Applying the scheme of
Eq. (1.2.4) to the equations at hand, we obtain

8,-+1 = 9,' + At Vi Vit1 = — At Az sin 9,; (125)

The expressions for 6,,; and Uit1 in Eq. (1.2.5) are repeatedly computed using the known
solution (6;, v;) from the previous time step. At time ¢ — 0, we use the known initial values
(6g, vg). Thus, one needs a computer and a computer language like Fortran (77 or 90) to
write a computer program to compute numbers,

The numerical solutions of equation (1.2.5) for two different time steps, At = 0.05 and
At = 0.025, along with the exact linear solution (1.1.10) (with 6y = 7/4) are presented
in Figure 1.2.1. The numerical solutions of the nonlinear problem are dependent on the
time step, and smaller the time step more accurate the solution is. This is because the
approximation of the derivative in Eq. (1.2.2) tends to the exact derivative with At — 0.
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2‘0___1_|_|,_||||-|||'||'<|||I\r|||:l|||_j_,_

-

Nonlinear (0.025)
(Ar =0.025)

Nonlinear (0.05)"
(At=0.05)

IIIiIIIIIIIIIIIIII!

Angular displacement

il
|||||

Figure 1.2.1 Analytical and numerical solutions of the simple pendulum.

1.3 The Finite Element Method

As illustrated in the previous section, numerical methods are extremely
powerful tools for engineering analysis. With the advent of computers, there
has been a tremendous explosion in the development and use of numerical
methods. Of these, the finite difference methods and the finite clement method
and their variants are the most commonly used methods in the analysis of
practical engineering problems. In finite difference methods, derivatives of
various order are approximated using Taylor’s series. The traditional finite
difference methods suffer from two major drawbacks: (1) applying boundary
conditions of the gradient type requires additional approximation; (2) finite
difference formulas are traditionally developed for rectangular grids, making it
difficult to use them for irregular domains. Advances have been made in recent
years to overcome these drawbacks but the remedies are problem dependent.
The finite element method is based on the idea that every system is physically
composed of different parts and hence its solution may be represented in parts.
In addition, the solution over each part is represented as a linear combination
of undetermined parameters and known functions of position and possibly
time. The parts can differ from each other in shape, material properties, and
physical behavior. Even when the system is of one geometric shape and made
of one material, it is simpler to represent its solution in a piecewise manner.
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In recent years, generalizations of the finite element method have emerged
(e.g. the generalized finite element method and element-free methods or
meshless methods); however, in this study we limit our discussion to the
traditional finite element method [9].

The traditional finite element method is endowed with three basic features.
First, a domain of the system is represented as a collection of geometrically
simple subdomains, called finite elements. Second, over each finite element,
the unknown variables are approximated by a linear combination of algebraic
polynomials and undetermined parameters, and algebraic relations among
the parameters are obtained by satisfying the governing equations, often in
a weighted-integral sense, over each element. The undetermined parameters
represent the values of the unknown variables at a finite number of preselected
points, called nodes, in the element. Third, the algebraic relations from all
clements are assembled using continuity and “equilibrium” considerations.

‘There are several reasons why an engineer or scientist should study the
finite element method; these are listed below.

1. The finite element method is the most powerful numerical method ever
devised for the analysis of engincering problems. It is capable of handling
geometrically complicated domains, a variety of boundary conditions,
nonlinearities, and coupled phenomena that are common in practical
problems. The knowledge of how the method works greatly enhances the
analysis skill and provides a greater understanding of the problem being
solved.

2. Commercial software packages or “canned” computer programs based on
the finite element method are often used in industrial, research, and
academic institutions for the solution of a variety of engineering and
scientific problems. The intelligent use of these programs and a correct
interpretation of the output is often predicated on knowledge of the basic
theory underlying the method.

3. It is not uncommon to find mathematical models derived in personal
research and development that cannot be evaluated using canned programs.
In such cases, an understanding of the finite element method and knowledge
of computer programming can help design programs to evaluate the
mathematical models.

The basic ideas underlying the finite element method are reviewed in
Chapter 2 using linear differential equations involving a single variable in one
and two dimensions. The main ob jective there is to introduce the terminology
and steps involved, e.g. weak formulation of differential equations over a
clement, derivation of the interpolation functions, and numerical evaluation
of coefficients and so on. Readers who are familiar with the finite element
method as applied to linear differential equations may skip Chapter 2 and go
straight to Chapter 3.

B | E Iaaeee sy i i Bt Rt T
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1.4 Nonlinear Analysis
1.4.1 Introduction

Recall from the simple pendulum problem of Examples 1.1.1 and 1.2.1, that
nonlinearity naturally arises in a true, rigorous mathematical formulation of
physical problems. Based on assumptions of smallness of certain quantities
of the formulation, the problem may be reduced to a linear problem. Linear
solutions may be obtained with considerable ease and less computational cost
when compared to nonlinear solutions. Further, linear solutions due to various
boundary conditions and “load” cases may be scaled and superimposed. In
many instances, assumptions of linearity lead to reasonable idealization of the
behavior of the system. However, in some cases assumption of linearity may
result in an unrealistic approximation of the response. The type of analysis,
linear or nonlinear, depends on the goal of the analysis and errors in the
system’s response that may be tolerated. In some cases, nonlinear analysis is
the only option left for the analyst as well as the designer (e.g. high-speed
flows of inviscid fluids around solid bodies).

Nonlinear analysis is a necessity, for example, in (a) designing high
performance and efficient components of certain industries (e.g. aerospace,
defense and nuclear), (b) assessing functionality (e.g., residual strength and
stiffness of structural elements) of existing systems that exhibit some types of
damage and failure, (c) establishing causes of system failure, (d) simulating
true material behavior of processes, and (e) research to gain a realistic
understanding of physical phenomena.

The following features of nonlinear analysis should be noted (see [1-7]):

The principle of superposition does not hold.

@

Analysis can be carried out for one “load” case at a time.

The history (or sequence) of “loading” influences the response.

The initial state of the system (e.g. prestress) may be important.

1.4.2 Classification of Nonlinearities

There are two common sources of nonlinearity: (1) geometric and (2) material.
The geometric nonlinearity arises purely from geometric consideration (e.g.
nonlincar strain-displacement relations), and the material nonlinearity is due
to nonlinear constitutive behavior of the material of the system. A third type
of nonlinearity may arise due to changing initial or boundary conditions. We
will discuss various types of nonlinearities through simple examples [5].

The simple pendulum problem of Example 1.1.1 is an example of geometric
nonlinearity. A common example of geometric nonlinearity is provided by (see
Hinton [5]) a rigid link supported by a linear elastic torsional spring at one
end and subjected to a vertical point load at the other end, as shown in Figure
1.4.1. Moment equilibrium (i.e. summing the moments about the hinge) and
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the linear moment-rotation relationship give

kr6
lcosf (14.1)
where k7 is the torsional spring constant, [ length of the link, and M is the
moment experienced by the torsional spring due to the angular displacement
6. If 6 is small, cos® — 1 and the governing equation is reduced to a linear
equation

M — Flcosf =0, M = kr6 or F=

k6 T
=%, 9<§‘ (1.4.2)
The nonlinear and linear responses are shown in Figure 1.4.2. Clearly, the
nonlinearity in the present case is due to the change of geometry, and the
nonlinear deflection is less than the linear deflection as the load is increased.

Such a nonlinearity is known as the hardening type.
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Figure 1.4.2 Geometric nonlinear response of a rigid link-linear torsional
spring cantilever.
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l The material nonlinearity may be introduced into the problem if the
moment-rotation relationship is nonlinear

M = kr(6)8, say kr = ko — k10 (1.4.3)

where kg and k; are material parameters that are determined through tests. If
we use the relationship (1.4.3) in (1.4.1), we obtain a nonlinear equation that
contains both geometric and material nonlinearities; if Eq. (1.4.3) is used in
(1.4.2), the resulting nonlinearity is only due to the material behavior.

Figure 1.4.3 contains plots of load F versus rotation § for the materially
nonlinear case. Note that the material nonlinearity in the present case is due
to the change (reduction) in the torsional spring stiffness, and the nonlinear
deflection is greater than the linear deflection as the load is increased. Such a
nonlinearity is known as the softening type. In the present case, the geometric
nonlinearity dominates if both nonlinearities are included.

An example of another type of nonlinearity is provided by (see Hinton [5])
the axial deformation of an isotropic, homogeneous, linear elastic rod with
constrained end displacement, as shown in Figure 1.4.4. The rod is of length
2L, uniform cross-sectional area of A, and loaded with an axial force P at its
midpoint. The lower end of the rod is constrained so that it can at most have
an axial displacement of ug (which is assumed to be very small compared to
the length L).

o — — [ =
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IIIIIII|III|IIIIIIIIIIIIIIIIIII
X .
IIIFII!'III'!III|II|Ii]|I!IIIII
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Figure 1.4.3 Material nonlinear response of a rigid link-linear torsional
spring cantilever.
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b~
-

H

Figure 1.4.4 Axial deformation of a rod with constrained end displacement.

The governing equation and boundary condition at A are given by

2
EAj—xfg =0, u(0)=0 (1.4.4)

The displacement at point B can be determined using the boundary condition
at point C, which is dependent on whether the displacement of point ' equals
ug. Thus, we have

(EAEI'E) =Pl i uUp = ug < Up (1.4.5)
dx B

uc =0, if wug>uwy (1.4.6)
In the former case, the displacement is given by

_ Pz _PL
TEA “BTERQ

In the latter case (by solving the governing equation in the two intervals and
using the continuity and boundary condition with L+ug =~ L) the displacement

u() if ue <y ‘ (1.4.7)

is given by
55 0<z<I
u(z) = (1.4.8a)
£al-s), L<z<2L
and
PL
F Nl 4.8b
2EA (a5l

Thus the force-displacement relationship of the rod is bilinear. Such problems
are called “contact” or “nonlinear boundary” problems [5].
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1.5 The Big Picture

Engineers design and manufacture various types of systems. Engineering
design is the process of altering dimensions, shapes, and materials to find
the best (optimum) configuration of the system to carry out certain specific
function. Analysis is an aid to design and it involves (1) mathematical model
development, (2) data acquisition by measurements, (3) numerical simulation,
and (4) evaluation of the results in light of known information and corrections
to the mathematical model. The mathematical model is developed using laws
of physics and assumptions concerning the process behavior. The data includes
the actual system parameters (geometry, loading, and boundary conditions)
and constitutive properties. The constitutive properties such as the modulus,
conductivity, and so on are determined in laboratory experiments. The
mathematical model, in most practical cases, does not admit analytical
(or exact) solution due to the geometric complexity and/or nonlinearities.
Nonlinearities in a mathematical model arise from changing geometry or
material behavior. It is necessary to employ numerical methods to compute an
approximate solution to the mathematical model. The finite element method is
a powerful numerical method that can be used to analyze engineering problems
[1-15].

A typical finite element analysis exercise begins with the actual physical
system or part thereof to be analyzed [5]. Then we form a set of objectives for
the analysis. If the analysis objective is to help develop a preliminary design of
the system, the analysis can be very simple. On the other hand, if the analysis
objective is to verify and certify the final design of a system, the analysis must
be the most sophisticated that can be carried out. Thus, the objectives will
dictate the type of idealization of the system to be adopted; for example,
should we model as a two-dimensional or three-dimensional problem?, analyze
as a linear or nonlinear problem and what type of nonlinearities to be
considered?, what type constitutive model to be used?, how are the loads
and boundary conditions of the actual system are idealized?, what coupling
effects, if any, to be considered?, and so on.

Once the system idealization is complete (i.e. mathematical model is in
place), one must decide on type of numerical approximation (and software to
be used). This involves (1) choice of unknowns, which in turn dictates the type
of finite element model, (2) type of elements, (3) type of mesh, and if nonlinear
analysis is to be carried out, select (4) magnitude of “load” increments, (5)
type of iterative method of solution, (6) error criterion, (7) error tolerance, and
(8) maximum allowable number of iterations for termination of the program.

The final step in creating a computational model is verification of the
code and validation of the mathematical model. Verification is the process
of determining if the computational model is an accurate discrete analog of
the mathematical model [15]. Thus, if the round-off errors introduced due to
finite arithmetic in a computer are negligible, the computational model should
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give the exact solution of the mathematical model. Thus verification involves
comparing the numerical results with known exact and /or experimental results
of benchmark problems. On the other hand, walidation is the process of
determining the degree to which the mathematical model (hence the computer
code that is verified) represents the physical reality of the system from the
perspective of the intended uses of the model. Obviously, the validation
exercise can be defined only in relation to the intended uses of the model.
For example, a mathematical model based on linear elasticity is adequate for
determining linear elastic solutions of a solid but inadequate for determining
its nonlinear response. The validation exercise allows one to modify the
mathematical model to include the missing clements that make the computed
response come closer to the physical response. In fact, a mathematical model
can never be validated; it can only be invalidated. It is always a good
idea, when developing new software, to undertake the verification exercise.
Validation is a must when studying new and mulit-physics problems.
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2

The Finite Element Method:
A Review

2.1 Introduction

The main ideas of the finite element method were presented in Chapter 1. To
summarize, the finite element method has the following three basic features:

1. Divide the whole (i.e. domain) into parts, called finite elements.

2. Over each representative element, develop the relations among the
secondary and primary variables (e.g. “forces” and “displacements”,
“heats” and “temperatures”, and so on).

3. Asscmble the elements (i.e. combine the relations of all elements) to obtain
the relations between the secondary and primary variables of the whole
system.

In the present chapter, we review the basic steps of the finite elemment model
development as applied to one- and two-dimensional problems described by
typical second-order differential equations. The main objective is to familiarize
the reader with the specific steps involved in the finite element formulation and
its applications. Readers who are already familiar with the author’s approach
to finite element modeling may skip this chapter.

2.2 One-Dimensional Problems
2.2.1 Governing Differential Equation

Consider the differential equation
d
3 ( _u) +eu=f for 0O0<z<L (2.2.1)

where a = a(z), ¢ = ¢(z), and f = f(z) are the data (i.e. known quantities) of
the problem, and u(z) is the solution to be determined. The data depends on
the material properties, geometry, and “loads” or source. The equation arises
in a number of fields, and it must be solved subject to appropriate boundary
conditions. Table 2.2.1 contains a list of fields, by no means exhaustive, in
which Eq. (2.2.1) arises.
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2.2.2 Finite Element Approximation

The domain (0,L) of the problem consists of all points between z = 0 and
z = L. The points z = 0 and z = L are the boundary points of the total
domain. In the finite element method, the domain (0, L) is divided into a set of
intervals. A typical interval, called a finite element, is of length h, and located
between points z = z, and z = xp, where x, and xp denote the coordinates of
the end points of the finite element with respect to the coordinate z.

Table 2.2.1 List of fields in which the model equation (2.2.1) arises, with
meaning of various parameters and variables (see the bottom
of the table for the meaning of some parameters*).

Field of

Primary Problem data Secondary
study variable variable
u a c f Q
Heat Tempe- Thermal Surface Heat Heat
transfer rature conductance convection — generation
T-Ty kA Apf f Q

Flow Fluid- Permea- Infil- Point
through head bility tration source
porous
medium ¢ 1 0 f Q
Flow Pressure Pipe Point
through resistance source
pipes P 1/R 0 0 Q
Flow of Velocity Viscosity Pressure Shear
viscous gradient stress
fluids Uz " 0 —dP/dz Oz
Elastic Displa- Tension Transverse Point
cables cement force force

U T 0 i P
Elastic Displa- Axial Axial Point
bars cement stiffness force force

U EA 0 f P
Torsion Angle of Shear Torque
of twist stiffness
bars 0 GJ 0 0 T
Electro- Electrical Dielectric Charge Electric
statics potential constant density flux

¢ € 0 p E

*k = thermal conductance; § = convective Slm conductance; p = perimeter; P = pressure or
force; To, = ambient temperature of the surrounding fluid medium; R = 128uh/(rd*) with
4 being the viscosity; h, the length and d the diameter of the pipe; E = Young’s modulus;
A = area of cross-section; J = polar moment of inertia.
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In the finite element method, we seek an approximate solution to Eq.
(2.2.1) over cach finite element; a typical finite element is shown in Figure
2.2.1. The finite element approximation uf(z) is sought in the form

u(z) ~ up (@) = fei(e) + Gps(e) + ... + crpn(e)

T
= Z ¢ (z) (2:2.2)
j=1

where ¢%(z) are functions to be selected and c§ are constants to be determined
such that Eq. (2.2.2) satisfies the differential equation (2.2.1) and appropriate
end conditions over the element. Since there are n unknown parameters, we
need n relations to determine them. Substituting the approximate solution
(2.2.2) into the left-hand side of Eq. (2.2.1), we obtain an expression that, in
general, will not be equal to the right-hand side of the equation, f(z). The
difference between the two sides of the equation is called the residual

d [ du§
- (a ;{h) +oul (@) — f(@) = Re(a, 5y 6. 8) 0 (223)
We wish to determine ¢§ (j = 1,2,---,n) such that the residual is zero, in

some sense, over the elemf-‘nt
One way of making the residual zero is in weighted-integral sense

T
f we(Z) RS, C1y00,..) d2 =0, §=1,2,...,n (2.2.4)
Ta

where wf (i = 1,2,...,n) are weight functions. Equation (2.2.4) provides a
set of n algcbraw reldtxons among the parameters ¢§ (j =1,2,...,n). The set
{w(x), w§(z),. .., wt(x)} must be linearly mdependent SO that the algebraic
equations (2.2.4) are also linearly independent and invertible.

There are other choices of wf that may be used. In the present study
we take w§(x) to be the same as the approximation functions yf(x). This
particular choice is known as the Galerkin method. Different choice of the
weight functions will result in a different set of algebraic equations or different
finite element models of the same differential equation.

Figure 2.2.1 A typical finite element in one dimension.
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2.2.3 Derivation of the Weak Form

To weaken the continuity required of uf§(z), we must trade some of the
differentiation in (2.2.4) from uj to wf such that both uj, and wf are
differentiated equally, once each in the present case. The resulting integral
form is termed the weak form of Eq. (2.2.1) because it allows approximation
functions with less (or weaker) continuity (or differentiability).

A three-step procedure of constructing the weak form of Eq. (2.2.1) is
presented next.

Step 1. The first step is to write the weighted-residual statement as in Eq.
(2.2.4)
Ty d dut
0= /:,:.u 'w.f l:—-a; ((Laﬁ") +cui - f} d$ (225)

Step 2. The second step is to trade differentiation from uf, to wf, using
integration by parts. We obtain

Th dw? dut dut 7%
0= —2h | cwful — wt — |we-a—h .9
/;a (a o + cwfug, m%f)dac ['wz adx]xﬂ (2.2.6)

Step 3. Examining the boundary term appearing in the weak form (2.2.6),
namely, the expression
dul®
&
{wi -a—-—}

dzl,,

The coeflicient of the weight function w§ in the boundary expression, a(du/dz),
is called the secondary variable, and its specification comstitutes the natural
or Neumann boundary condition. The primary variable is the dependent
unknown of the differential equation, u, in the same form as the weight
function in the boundary expression (i.e. replace w§ with «). The specification
of a primary variable on the boundary constitutes the essential or Dirichlet
boundary condition. For the model equation at hand, the primary and
secondary variables are

d
Primary variable: Secondary variable: a.wdi; =Q {2.2.7)

In writing the final weak form, we denote the secondary variables at the
ends of the element as

du du
C=_—-lag— =l e 228
%=-(oz), @=(gz), L

The primary and secondary variables at the nodes are shown on the typical
element in Figure 2.2.1. Students of engineering who have taken a course in

E . OE O | L A R e R I L Ll
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mechanics of deformable bodies (or strength of materials) recognize that this
figure shows the free-body diagram of a typical but arbitrary portion of a bar,
with Q¢ and Qf denoting the axial forces; Qg is a compressive force while Qf
is a tensile force (algebraically, both are in the positive z direction, as shown
in Figure 2.2.1). For heat conduction problems, QF denotes the heat input at
the left end and Qf the heat output from the right end of the element. With
the notation in (2.2.8), the final expression for the weak form is given by

e d“'":i du}zl - - e e € e e 3 '
0= f GE' E + cw;uy — wif dr — w; (SCE,)QG - wy ($b)Qb (229)
e T dx
This completes the three-step procedure of constructing the weak form.

Remarks

1. The weak form in (2.2.9) contains two types of expressions: those
containing both w¢ and uf, and those containing only wf. The expression
containing both w¢ and u§ is called the bilinear form (i.e. linear in w§ and
linear in u§):

B(wf, u) = /

T

T dwf duf,
) (aegj:i;h + c'wfui) dz (2.2.10)
Similarly, the expression containing only w§ (but not uj) is called the linear
form:

fuf) = [ s do -+ (@)@ + vl (@) 2211)

More formally, we say that B(u,v) is linear in both u and v, and f(v) is
linear in v, if and only if the following conditions hold:

B(cyug + caug,v) = c1B(uy, v) + coB(uz,v) (2.2.120)
B(u,c1v1 + cova) = c1B(u,v1) + caB(u,v9) -

U(c1vy + cov) = crb(v1) + cob(v2) (2.2.12b)

where ¢; and ¢y are constants and u, v, u1, Ug, v1, and vz are dependent
variables.

2. In view of the above definitions, the weak form (2.2.9) of Eq. (2.2.1) can
now be expressed as
B(wf, uf) = £(uf) (2.2.13)

which is called the variational problem associated with Eq. (2.2.1). As will
be seen later, the bilinear form B(w§,u§) results directly in the element
coefficient matrix, and the linear form £(w¢) leads to the right-hand side
column vector of the finite element equations.
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3. Those who have a background in applied mathematics or solid and
structural mechanics will appreciate the fact that the weak form (2.2.9)
or the variational problem (2.2.13) is nothing but the statement of the
principle of the minimum total potential energy IT(u$) (applied to the bar
element):

0 = 61T = B(6ug, uf) — £(6uf)

where 6 is the variational symbol and TI(uf) is the quadratic functional
defined by
1
I(uf) = 5 Blufs uf) — £(uf) (2.2.14)

% |a (duf 2 . . _‘ . . .
=i [5 (%) +§(“'fi)2“”ﬁfJ de — (20 QF — uf (22) Qf
(2.2.15)

Equation (2.2.14) holds only when the bilinear form B{w, u) is symmetric
in v and w,

Blw,u) = B(u,w) (2.2.16)

and £(u) is linear in u. The expression %B(ui,ui) represents the elastic
strain energy stored in the bar finite element and £(uf ) represents the work
done by applied distributed force f(x) and point loads Q5 and Q.

2.2.4 Interpolation Functions

Recall that the weak form over an element is equivalent to the differential
equation, and it contains the end conditions on the “forces” Q5 (see Figure
2.2.1). Therefore, the approximate solution uf () should be selected such that
the differentiability (or continuity) conditions implied by the weak form are
met and the end conditions on the primary variables u(z;) = u¢ are satisfied.
Since the weak form contains the first-order derivasive of ug, any function
with a non-zero first derivative would be a candidate for uf. Thus, the finite
element approximation uf, of u(x) can be an interpolant, that is, must be equal
to ug at z, and uf at 2. Thus, a linear polynomial (see Figure 2.2.2)

uj(z) = f + cx (2.2.17)

is admissible if we can select ¢i and ¢§ such that

e e e L i €y — 1 B
Up(Ta) =t + c5za = uS,  ul(zy) = 1 + Ty = up
or
8 £ upry — utx uy — us
1 m 1| _ ’”g - _-fl.i__@_‘i, E= -8 (2.2.18)
1 =z c5 ug Ty — g Tp— g

[

| S W ———
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Substitution of (2.2.18) for ¢f into (2.2.17) yields

2
up(x) = L(z)u§ + L§(z)us = ZL?(:c)uj (2.2.19)
i=1
where o P
Lie) = —2—, Liz)=—"¢ 2.2.20
i(z) P—— 2(z) Ty — Tg ( ; )

are the linear Lagrange interpolation functions, and
uf = ug, us = ug (2.2.21)

are the nodal values of u§(z) at z = z, and x = 3, respectively. Note that
L¢(x) satisfy the interpolation property

v o T ety ,
L§(a$) = {01 i @-2“;- (2.2.22)

where 2§ = z, and 2§ = =z (see Figure 2.2.2). In addition, the Lagrange
interpolation functions satisfy the property, known as the “partition of unity”:

i Li(z) = 1 (2.2.23)

u(x)=c +c,x

u(x) True solution —w L) +usL (3)
. -
uL(x) P
- o
A e u L (x)
, 2
x=x,=x - % us
¢ : ‘/ ~.y_.: 2
X=X, =X, : =
ul '/' T
| 1. ~_ ]2
(e O > X
=

Figure 2.2.2 Linear finite element approximation over an element,.
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If we wish to approximate u(zx) with a quadratic polynomial, we write
up () = cf + 5z + c§a? (2.2.24)

Since there are three parameters cf, ¢§, and c§, we must identify one more
nodal point in the element to express all three ¢'s in terms of the values of ug,
at three nodes. Of course, we can also carry the nodal values uf and ug (so
that they can be used to join adjacent elements) and the parameter c§ as the
unknowns of the approximation. Identifying the third node at the center of
the element [see Figure 2.2.3(a)), we can write

uh(@) = uf = f + oot + (a1’
up(25) = u§ = c§ + s + 5 (zf)? (2.2.25)
UR(25) = u§ = cf + c57§ + c§(25)?

where

B = I§ = Tq + —2—'5, T3 =2q+ he = 73 (2.2.26)

Solving Egs. (2.2.33) for ¢; in terms of u¢, we obtain
3
up(@) = LE(w)us + L§(z)us + Li(z)u§ = Z Li(z)us (2:2.27)
=1

where Lf(x) are the quadratic Lagrange interpolation functions [see Figure

2.2.3(b)]
aps fB—a8 T — T§
te= (%) (5=3)

$(z) = ( e ) (x_mg ) (2.2.28)

€ (= e __ me

- e
(z) = = T (:c—mz)
e 25— a2§) \2§ - 25

Higher-order Lagrange interpolation of u(z) can be developed along the
similar lines. Thus, an (n — 1)st degree Lagrange interpolation of u(z) can be
written as '

T
uh(z) = L(z)uf + L§(z)ug + ... + Ly (z)up =" Li(z)u§ (2.2.29)
j=1
where the Lagrange interpolation functions of degree n — 1 are given by

Li(z) = ﬁ (j__“";) (2.2.30)

i=1,i#j \"J

H | IF D
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Li(x)

L(x L@

T Li(%)
I_E .0
1 2 3 =
(b)

Figure 2.2.3 (a) Quadratic finite element. (b) Quadratic Lagrange
interpolation functions.

The finite element solution uf (z) must fulfill certain requirements in order
that it be convergent to the actual solution u(z) as the number of elements
(h refinement) or the degree of the polynomials (p refinement) is increased.
These are:

1. The approximate solution should be continuous and differentiable as
required by the weak form.

2. Tt should be a complete polynomial, that is, include all lower-order terms
up to the highest order term used.

3. Tt should be an interpolant of the primary variables at the nodes of the
finite element (at least interpolate the solution at the end points).

The reason for the first requirement is obvious; it ensures that every term
of the governing equation has a non-zero contribution to the coefficient matrix.
The second requirement is necessary in order to capture all possible states, that
is, constant, linear and so on, of the actual solution. For example, if a linear
polynomial without the constant term is used to represent the temperature
distribution in a one-dimensional system, the approximate solution can never
be able to represent a uniform state of temperature field in the element. The
third requirement is necessary in order to enforce continuity of the primary
variables at the end points where the element is connected to other elements.
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2.2.5 Finite Element Model

Substitution of (2.2.29) into (2.2.9) will give the necessary algebraic equations
among the nodal values uf and Qf of the element. In order to formulate
the finite element model based on the weak form (2.2.9), it is not necessary
to decide a priori the degree of approximation of ui(x). The model can be
developed using an arbitrary degree of interpolation. For n > 2, the weak
form in Eq. (2.2.9) must be modified to include non-zero secondary variables,
if any, at interior nodes:

% ( dw duj, . T = e e .
O:La (GE‘: T +cwuh) dx—fxa wf dx—gw(;ci)@ (2.2.31)

where z7 is the global coordinate of the ith node of element Q°. If nodes 1 and
n denote the end points of the element, then Qf and @5, represent the unknown
point sources, and all other Qf are the point sources at nodes 2,3,...,n, which
are always known.

Substituting Eq. (2.2.29) for up and wi = L§, w§ = L§,... A =
Lf, ... ,w; = L¢ into the weak form (2.2.31), we obtain n algebraic equations.
The ith algebraic equation can be written as

e dL‘;.: - edLE 1 [ - ere L=
[}=/¥d [a T (Zuj d;)TcLz- (Zuij) —Lide:v

F=1 j=1

- 3 L§(a5)QS
=1
" [ e [ dLgdLS 2

N iz o TeLL | da ‘f*/ Ltf da — Q8
:;[/za (Gd:zr & T e ,, Lilde— Qs
n

0=> Kgus - ff - Q5 (2.2.32)
i=1

fori:laQ,-n,n,where

z edre oy
K:; = / ' (adLi —2 + CL:L;) dr = B(Lf L_;Ei:): fie = / fL:: dz
Zq e

dz dz A
(2.2.33)
Note that the interpolation property (2.2.22) is used to write
T
> L5(=9)Q5 = 0 (2.2:34)
j=1

In matrix notation, these algebraic equations can be written as

(KNu} = {f}+{Q} (2.2.35)
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The matrix [K®] is called the coefficient matriz, or stiffness matriz in structural
mechanics applications. The column vector {f¢} is the source vector, or force
vector in structural mechanics problems.

Equation (2.2.35) has 2n unknowns (u§,u$, ..., u¢) and (Q5,Q5,...,Q%).
called primary and secondary element nodal degrees of freedom; hence, it
cannot be solved without having an additional n conditions. Some of these
equations are provided by the boundary conditions of the problem and the
remaining by the balance of the secondary variables Q¢ at nodes common
to elements. The balance of equations can be implemented by putting the
elements together (i.e. assembling the element equations) to form the total
system. Upon assembly and imposition of boundary conditions, we shall
obtain exactly the same number of algebraic equations as the total number of
unknown primary (uf) and secondary (Q¢) degrees of freedom.

The coefficient matrix [K*], which is symmetric, and source vector {f¢}
can be evaluated for a given interpolation and data (a, ¢, and f). When a, c,
and J are functions of z, it may be necessary to evaluate [K¢] and {f°} using
numerical integration. We will discuss the numerical integration concepts in
the sequel. Here we give the exact values of [K*] and {f¢} for linear as well
as quadratic interpolations for element-wise constant values of a, ¢, and f.
Suppose that ae, ce, and fe denote the element-wise constant values of a(z),
c(z), and f(z). Then the following matrices can be derived by evaluating the
integrals exactly.

Linecar element

a [ 1 -1 +r£& 2 1
e | 1 6 |1 2
Quadratic element

n@=(1-2)(1-2) @ =2 (1-2), e =-£ (1- Z)

7 -8 1
Do ohy 5 | B0
She | 1 g 7 -

30
1 (5
_ f:ﬁf’:e {4} 5 { 0% } (2.2.37)
1 Q5

Note that the contribution of uniform source to the nodes in a quadratic
element is non-uniform, that is, ff # fehe/3.
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2.3 Two-Dimensional Problems
2.3.1 Governing Differential Equation

Consider the problem of finding wu(z,y) such that the following partial
differential equation is satisfied

- {53; (am%) + 56; (ayyg—;)J = flz,y) inQ (2.3.1)

where (2 is a two-dimensional domain with boundary I'. Here azg and a, are
material coefficients in the z and y directions, respectively, and f(z,y) is the
known source. For example, in a heat transfer problem, 4 denotes temperature
T, az; and ay, denote the conductivities, k., and kyy, and f is the internal
heat generation. For an isotropic medium, we set kzg = kyy = k. Similarly, for
a ground water flow problem u denotes the water head (i.e. velocity potential),
gz and ay, are the permeabilities in the z and y directions, respectively, and
f(=,y) is distributed water source. Equation (2.3.1) also arises in other fields
of science and engineering, and some of them are listed in Table 2.3.1.

Equation (2.3.1) must be solved in conjunction with specified boundary
conditions of the problem. The following two types of boundary conditions
are assumed:

u=14(s) on T, (2.3.2)
du ou .
= (am-gm—nx + awb—t‘jny) +¢ =4(s) on T, (2.3.3)

where Iy and I'; are disjoint portions of the boundary I' such that T' = LaUTy,
gc refers to the convective component of flux (e.g. in heat transfer problems)

Ge = hc('u - uc) (2.3.4)

and (ng,ny) denote the direction cosines of the unit normal vector on the
boundary. In Eq. (2.3.4), k. denotes the convective heat transfer coefficient.
The radiative heat transfer boundary condition (which is a nonlinear function
of u) is not considered here. However, radiation boundary condition will be
considered in the nonlinear analysis.

2.3.2 Finite Element Approximation

In the finite element method, the domain O — QUT is divided into a set
of subdomains Q¢ = Q° UT*®, called finite elements (see Figure 2.3.1). Any
geometric shape for which the approximation functions can be derived uniquely
qualifies as an element. We shall discuss simple geometric shapes and orders
of approximation shortly. To keep the formulative steps very general (i.e. not
confine the formulation to a specific geometric shape or order of the element),
we have denoted the domain of a typical clement by Q¢ and its boundary by I'®.

T SRR, T U e S KR S 1
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The clement Q¢ can be a triangle or quadrilateral in shape, and the degree of
interpolation over it can be linear, quadratic, and so on. The non-overlapping
sum of all elements Q¢ is denoted by Q" and it is called the finite element
mesh of the domain (2. In general, Q" may not equal Q when the boundary I
is curved. Of course, for polygonal domains, the finite element mesh exactly
represents the actual domain.

Table 2.3.1 List of fields in which the model equation (2.3.1) arises, with
meaning of various parameters and variables (see the bottom of
the table for the meaning of some parameters*).

Field Variable Data Data Data Variable
u Gz Qyy J n
Heat Tempe- Thermal Thermal Heat Heat
transfer rature conductance conductance generation flux
T koo Ky f gn
Flow Fluid- Permea- Permea- Infil- Flux
through head bility bility tration
porous
medium (0] Mz Hyy f Gn
Torsion of  Warping 1 1 0 22
cylindrical function
members @
Torsion of Stress 1 1 2GH 2—;‘:
cylindrical function
members P
Deflection Displa- Tension Tension Transverse In
of cement force
membranes  u T T b o
Flows of Velocity 1 1 0 qn
inviscid potential
flows o] %
Flows of Stream 1 1 0 gn
inviscid function
flows ¥ g
Electro- Electrical Dielectric Dielectric Charge Electric
statics potential constant constant density flux
ay)
¢ € e p o

* k = thermal conductance; 3 = convective film conductance; T = ambient temperature

of the surrounding fluid medium; G = shear modulus; @ = angle of twist.
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Figure 2.3.1 Finite element discretization of a domain.

Suppose that the dependent unknown w is approximated over a typical
finite element Q¢ by the expression

n
u(@,y) ~ (@, y) = Y uSLi(z,y) (2.3.5)
e

where uj (x,y) represents an approximation of u(x,y) over the clement ¢,
parameters u; denote the values of the function uf (x,y) at a selected number
of points, called element nodes, in the element (¢, and L§ are the Lagrange
interpolation functions associated with the element. As we shall see shortly,
the interpolation functions depend not only on the number of nodes in the
clement, but also on the shape of the element. The shape of the element must
be such that its geometry is uniquely defined by a set of nodes. A triangle
(n = 3) is the simplest two-dimensional geometric shape in two dimensions.

2.3.3 Weak Formulation

The n parameters (or nodal values) u$ in Eq. (2.3.5) must be determined
such that the approximate solution u®(x, y) satisfies the governing Eq. (2.3.1)
and boundary conditions of the problem. As in the case of a variational
and weighted-residual method, we seck to satisfy the governing differential
equation in a weighted-integral sense, as described in Section 2.2 The type of
finite element model depends on the weighted-integral form used to generate
the algebraic equations. Thus, if one uses the weak form, the resulting model
will be different from those obtained with a weighted-residual statement in
which the weight function can be any one of several choices. In the remainder
of this chapter, we shall be primarily concerned with the weak form finite
element models.

B | Seomeeran . 7 TR T R "ML S0 Y T A SN
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The weak form of a differential equation is a weighted-integral statement
that is equivalent to both the governing differential equation as well as the
associated natural boundary conditions. We shall develop the weak form
of Egs. (2.3.1) and (2.3.3) over the typical element Q¢ using the three-step
procedure. The first step is to take all non-zero expressions in Eq. (2.3.1) to
one side of the equality, multiply the resulting equation with a weight function
w, and integrate the equation over the element domain Q¢:

B | 0 ous, 6, Ous, _
= e [ e (am 87‘) ~ o ( Gy By ) —f(a:,y)} dz dy (2.3.6)

The expression in the square brackets of the above equation represents a
residual of the approximation of the differential equation (2.3.1), because
uf(z,y) is only an approximation of u(x,y). For n independent choices of
w, we obtain a set of n linearly independent algebraic equations.

In the second step, we distribute the differentiation among u and w equally,
so that both u and w are required to be differentiable only once with respect
to z and y. To achieve this we use the component form of the gradient (or
divergence) theorem,

- (wl:q)d:c dy = j}g (wFi)ng ds (2.3.7a)
Qe O re
0 o
f Culy)dndy = jé (wF)ny ds (2.3.7b)
Qe dg e

where n, and n, are the components (i.e. the direction cosines) of the unit
normal vector

= ngé, +nyéy =cosa & +sina &, (2.3.8)
on the boundary I'®, and ds is the arc length of an infinitesimal line element
along the boundary. We obtain

Ow du ow Ou du ou
= Qpg——7— + Qyy———— [ldzd % a " + @y —mny | ds
Qe { ¥ O Ox W oy 8’y } ¥= R Woy ¥
( 3.9)

From an inspection of the boundary term in Eq. (2.3.9), we note that u is
the primary variable, and specification of u constitutes the essential boundary
condition. The coefficient of the weight function in the boundary expression,
namely
du
ox Y 8y "
is the secondary variable. Its specification constitutes the natural boundary
condition. By definition g, is positive outward from the surface as we move
counterclockwise along the boundary I'®. The secondary variable g, denotes
the flux normal to the boundary of the element.

U -
Gn = Ogpy = Ng + Ay (2310)
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The third and last step of the formulation is to use the definition (2.3.10)
in Eq. (2.3.9) and write it as

Ow du Ow du
B L e WY s
/ée (aw 9% 52 + Gy 9 B wf) dx dy jge W@, ds (2.3.11)

0= B(w,u) — £(w) . (2.3.12)

where the bilinear form B(-,-) and linear form {(') are defined by

Ow Ou Ow du
B _ e o T TR .:. el
(w, u) /Qe (am 52 55 8y 83;) dx dy (2.3.13a)

L(w) =/Q w f dedy +}i“ wey ds (2.3.13b)
Note that the bilinear form is Symmetric in its arguments (w, u)
B(w,u) = B(u,w)

and £(w) is linear in w. Therefore, it is possible to construct the associated
quadratic functional from the formula

I(w) = é B(u,u) — £(u) (2.3.14)

2.3.4 Finite Element Model

The weak form in Eq. (2.3.11) requires that the approximation chosen for v
should be at least linear in both  and y so that there are no terms in (2.3.11)
that become identically zero. Suppose that u is approximated over a typical
finite element Q¢ by the expression of the form (2.3.5). Substituting the finite
element approximation ( 2.3.5) for u into the weak form (2.3.11), we obtain

Tl

- Sw 5}_',;- Jw (9L;’: .
g= Z{/ﬂe [5:; (am 5;) +—a—y— (ayy 5 ) —wa d:cdy}uj—?iequds

i=1
(2.3.15)
This equation must hold for any weight function w. Since we need n
independent algebraic equations to solve for the n unknowns, u$, u§, gl
we choose n independent functions for w: w= L3, L§,...,L%. This particular
choice of weight functions is a natural one when the weight function is viewed

as a virtual variation of the dependent unknown (ie. w=6u®=y" fue Lg).
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For cach choice of w we obtain an algebraic relation among (u$, u§, ..., ug).
The ith algebraic equation is obtained by substituting w = L into Eq.
(2.3.15);

ke
Z Kju$ = Qf +¢f (2.3.16)
i=1

where the coefficients K, Qf, and ¢f are defined by

(. omors  orgons ‘
R‘lj = /se (Gmm—a'r— 52 —|—ﬂ,yya— (’31} dxdy (23173)

Q3 =/ fL dzdy, ¢f =j£ gn L¢ ds (2.3.17b)
Qe e

We note that K, = Kf; (i.e. [K°] is symmetric). The symmetry of the
coefficient matrix is due to the symmetry of the bilinear form, which in turn
is due to the weak form development. In matrix notation, Eq. (2.3.16) takes
the form

(K} = {Q°) + {¢°} = {F} (2:3.18)

This completes the finite element model development. Before we discuss
assembly of elements, it is informative to determine the interpolation functions
L§ for certain basic two-dimensional finite elements.

2.3.5 Interpolation Functions

The finitc element approximation u®(z,y) of u(z,y) over an element Q¢
must satisfy the following conditions in order for the approximate solution
to converge to the true solution:

1. u®(z,y) must be continuous as required in the weak form of the problem
(i.e. all terms in the weak form are represented as non-zero values).

2. The polynomials used to represent u®(z,y) must be complete (i.e. all
terms, beginning with a constant term up to the highest order used in
the polynomial should be included in the expression of u¢(z,v)).

3. All terms in the polynomial should be linearly independent.

The number of linearly independent terms in the representation of u® dictates
the shape and number of degrees of freedom of the element. Here we review
the interpolation functions of lincar triangular and rectangular elements.

An examination of the variational form (2.3.11) and the finite element
matrices in Eq. (2.3.17a) shows that the Lf should be at least linear functions
of z and y. The polynomial

u(z,y) = + Sz + 5y (2.3.19)
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is the lowest-order polynomial that meets the requirements. It contains three
linearly independent terms, and it is linear in both z and y. The polynomial is
complete because the lower-order term. namely, the constant term, is included.
To write the three constants (c§,¢5,¢5) in terms of the nodal values of uf, we
must identify three points or nodes in the element 2°. The three nodes must
be such that they uniquely define the geometry of the element and allow the
imposition of inter-element continuity of the variable u®(z, y). Obviously, the
geometric shape defined by three points in a two-dimensional domain is a
triangle. Thus the polynomial in Eq. (2.3.19) is associated with a triangular
element and the three nodes are identified as the vertices of the triangle.
On the other hand, the polynomial

u(z,y) = f + gz + Sy + cizy (2.3.20)

contains four linearly independent terms, and is linear in z and y, with a
bilinear term in z and y. This polynomial requires an element with four
nodes. It is a rectangle with nodes at the four corners of the rectangle.

The interpolation functions for linear triangular and rectangular elements
are given below. Higher-order two-dimensiona) elements (i.e. element with
higher-order interpolation polynomials) will be discussed in Section 2.4.

Linear triangular element

The linear interpolation functions for the three-node triangle [see Figure
2.3.2(a)] are (see Reddy [1, pp. 304-307])

1
Lf(:l? y) = wa

T+ B tafy),  (=1,23) (2:3.21)
Lle

where A, is the area of the triangle, and af, 8¢, and ¢ are geometric constants
known in terms of the nodal coordinates (g5 15):

oF =Tiyk - Ty BE=wi—u = —(z; — ax) (2.3.22)

for i # j # k, and 4,7, and k permute in a natural order. Note that (z,y)
are the global coordinates used in the governing equation (2.3.1) over the
domain 2. The interpolation functions L (i=1,2,...,n) satisfy the following
interpolation properties:

’ 3
() Li@ny) =8y (5=123); (@) Y Loy =1 (2323)

i=1

and they are called the Lagrange interpolation functions. Note that use of the
linear interpolation functions L of a triangle will result in the approximation
of the curved surface u(x,y) by a planar function uf(z,y) = Y3, ug L (z,y).
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Y

Figure 2.3.2 The linear (a) triangular and (b) rectangular finite elements.

The integrals in the definition of Kf; and Qf can be evaluated for given
data: agzz,ayy, and f. For example, for element-wise constant values of the
data, that is, aze = 0%y, Gyy = aj,, and f = f¢, we have (see Reddy [1, pp.
311-313)) the following results:

feAe

2
- (2.3.24)

. oy
Kj; = E(ﬂimﬁfﬁf +a;,5); @ =
where A, is the area of the triangular element, and 3f and ;" are known in
terms of the global nodal coordinates of the clement nodes, as given in Eq.
(2.3.22). For a right-angled triangular element with base a and height b, and
node 1 at the right angle (nodes are numbered counterclockwise), [K°| takes
the form (see Reddy [1, p. 387])

at a -—a 0 at }3 0 ‘—}(3

[K®) = % —a a O|+-Z| 00 O (2.3.25)
0 0 0 -3 0 g

where o = b/a and B = a/b. Of course, for cases in which the conductivities

are functions of (z,y), numerical integration can be used to evaluate the

coefficients (see Section 2.5.3).
The evaluation of boundary integrals of the type

¢ = )é e Ls(s) ds (2.3.26)

where ¢¢ is a known function of the distance s along the boundary I', involves
evaluation of line integrals. It is necessary to compute such integrals only when
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I'¢, or a portion of it, coincides with the boundary I’y of the total domain
on which the flux is specified. On portions of I'® that are in the interior of
the domain ), g5, on side (4, ) of element OQ° cancels with ¢/ on side (p,q) of
element f when sides (i,7) of element Q¢ and (p,q) of clement O/ are the
same (i.e. at the interface of elements Q¢ and Q). This can be viewed as the
balance of the internal flux. When I'® falls on the boundary T, of the domain
2, gy, is not known there and can be determined in the post-computation.
Note that the primary variable u is specified on I',. For additional details, see
Reddy [1, pp. 313-318].

Linear rectangular element

For a linear rectangular element, we have

4
u(Z,g) = ufLi(Z,7) (2.3.27)
=1

where L; are the Lagrange interpolation functions expressed in terms of the
element coordinates (Z,7) (see Reddy [1, pp. 308-311])

- T ] y Y
L1=(1—E)(1—%): Li= 2(l—g)

e_ZY e_(1_%\¥ :
15=1% Ig=(1-3)7 (2.3.28)

and (Z,7) denote the local coordinates with origin located at node 1 of
the element, and (a,b) denote the horizontal and vertical dimensions of the
rectangle [see Figure 2.3.2(b)).

The integrals in the definition of Kf; and Qf can be easily evaluated over a
rectangular element of sides a and b. For example, for clement-wise constant
values of the data, that is, aze = ag;, ayy = ag,, and f = f¢ we have (see
Reddy [1, p. 313; p. 387]) the following results:

e feab

(K] = a5, [S7] + agy 5%, QF == (2.3.29)
where

[ 2a -2 -—a o

[511]=% =T = = (2.3.30)
| o —a 20 2o
28 B8 -6 -28]

[S”]=é _g _;g _gg _g (2.3.30b)
=26 -8 B 28]
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and a = b/a and 3 = a/b. Again, for cases in which the conductivities are
functions of (z,y), numerical integration is used to evaluate the coefficients,
as discussed in Section 2.5.4. When the element is non-rectangular, that is,
a quadrilateral, we use coordinate transformations to represent the integrals
over a square geometry and then use numerical integration to evaluate them.

2.3.6 Assembly of Elements

The assembly of finite elements to obtain the equations of the entire domain
is based on the following two rules:

1. Continuity of the primary variable (i.e. temperature)
2. Balance of secondary variables (i.e. heat flux)

We illustrate the assembly procedure by considering a finite clement mesh
consisting of a triangular element and a quadrilateral element (see Figure
a3:3)

Let K%,- (i,5 = 1,2,3) denote the coefficient matrix corresponding to the
triangular element, and let KZ (i,j = 1,2,3,4) denote the coefficient matrix
corresponding to the quadrilateral element. The nodes of the finite element
mesh are called global nodes. From the mesh shown in Figure 2.3.3, it is
clear that the following correspondence between global and element nodes
exists: nodes 1, 2, and 3 of element 1 correspond to global nodes 1, 2, and
3, respectively. Nodes 1, 2, 3, and 4 of element 2 correspond to global nodes
2, 4, 5, and 3, respectively. Hence, the correspondence between the local and
global nodal values of temperature is

ui = uy, ué = fu,% = ug, -u,%, = ui = ug, u% = uy, u§ = ug (2:3.31)

which amounts to imposing the continuity of the primary variables at the
nodes common to elements 1 and 2. Note that the continuity of the primary
variables at the inter-element nodes guarantees the continuity of the primary
variable along the entire inter-element boundary.

Global node numbers

Figure 2.3.3 Global-local correspondence of nodes for assembly of elements.
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Next, we consider the balance of secondary variables at the interelement
boundaries. At the interface between the two elements, the flux from the
two elements should be equal in magnitude and opposite in sign. For the
two elements shown in Figure 2.3.3, the interface is along the side connecting
global nodes 2 and 3. Hence, the internal flux g} on side 2-3 of element 1
should balance the flux 2 on side 4-1 of element 2 (recall the sign convention
on g&):

(G)2-3=(g)a1 or (gh)2-3 = (—¢?)1_s (2.3.32)

In the finite element method, the above relation is imposed in a weighted-
integral sense:

el o0 2712 171 _
.{11, gnLs ds = ]hQ qnL7 ds, A%Sqn_.{,3 ds ]hZ

23 14 1

@ L3 ds (2.3.33)
4

where he . denotes length of the side connecting node p to node g of element
Qs

Now we are ready to assemble the element equations for the two-element
mesh. The element equations of the two elements are written separately first.
For the triangular element, the element equations are of the form

L 1

Kiul + Kiyub + Klyud = Q} + ¢}
' 1

Knut + Khub + Kjyub = QL + ¢} (2.3.34a)
Kélu% + Kr‘%Qué + K§3Ué = Qé — q%

For the rectangular element the element equations are given by

Khui + Khus + K3l + Kl = Q1 + ¢?
K3uf + K3yuf + K3uf + Kjyul = Q3+ 43
K§ui + Kipud + K3ud + K2ul = Q2 + ¢ (2.3.34b)
Kflulz + K42u§ + Kéu% -+ Kf,;ui = Qi - qg

In order to impose the balance condition in (2.3.32), it is necessary to add the
second equation of element 1 to the first equation of element 2, and also add
the third equation of element 1 to the fourth equation of element 2:

. ' : o0 9 9
(Kqui + Kjpud + Kjsud) + (K}ud + Khu? + Kfyu3 + Kul)
= (@ +a)+ (@} +¢)

(Kzu1 + Kgpuj + Kiyu) + (Kjyul + Kjpud + K2ul + K2u2)
=(Q3+a)+(QF+d3)

o | W S
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Using the local-global nodal vafiable correspondence in Eq. (2.3.1), we can
rewrite the above equations as

Kayuy + (K3o + K Jup + (K33 + K7y us + Kiyus + Kius
=Q3+ Qi+ (i3 +ad)

K3iur + K3y + K3y us + (Kis + K3 )us + Khuy + KZqus
=Q%+Q3 9’3"‘9’4)

Now we can impose the conditions in Eq. (2.3.33) by setting appropriate
portions of the expressions in parenthesis on the right-hand side of the
above equations to zero (or a specified non-zero value). In general, when
several elements are connected, the assembly of the elements is carried out by
putting element coefficients Ki;, ©F, and ¢ into proper locations of the global
coefficient matrix and right-hand column vectors. This is done by means of
the connectivity relations, that is, correspondence of the local node number
to the global node number.

The assernbly procedure described above can be used to assemble elements
of any shape and type. The procedure can be implemented in a computer with
the help of the local-global nodal correspondence.

For heat conduction problems that involve convection heat transfer at
the boundary, that is, when heat is transferred from one medium to the
surrounding medium (often, a fluid) by convection, the finite element model
developed earlier requires some modification. For a convection boundary, the
natural boundary condition is a balance of energy transfer across the boundary
due to conduction and/or convection (i.e. Newton’s law of cooling):

ou 0
e + gy ai;-ny) + R (8 = o) = gn (2.3.35)

(G'a.':c E
where h. is the convective conductance (or the convective heat transfer
coefficient), u, is the (ambient) temperature of the surrounding fluid medium,
and ¢y is the specified heat flux. The first term accounts for heat transfer by
conduction, the second by convection, and the third accounts for the specified
heat flux, if any. It is the presence of the term h.(u — u.) that requires some
modification of the weak form in Eq. (2.3.11). To include the convective
boundary condition (2.3.35), the boundary integral in Eq. (2.3.9) should be
modified. Instead of replacing the coefficient of w in the boundary integral
with ¢, we use Eq. (2.3.35):
Owou ow du
o {GM%E "Wy By

dw du ow Ou
- i i JETO pac v Acg dx dy — n — he(u — uc)| ds
/ge (am 8z Oz +ayy Oy Oy wf) i ﬁew[q to(ti— )] ds
(2.3.36)

du
0= w f] dx dy — % w [am c'?unm 4 ayya ny| ds
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or

0= B(w,u) — f(w) (2837
where w is the weight function, and B(:,-) and £(-) are the bilinear and linear
forms

5w 8 U aﬂ) 8’11.
Blw. u) = e G bt -
(w, u) fﬁ (aw 3z 9 + ayy oy B ) dz dy + }ée hewu ds  (2.3.38a)

L(w) ---:/;2 fw dz dy + éﬂ heuew ds +}( gnw ds (2.3.38b)
€ JIe e

Note that the unknown surface temperature in the convective boundary
condition has been made part of the bilinear form B(:,-) while all the known
quantities remain part of the linear form £(-). The finite element model of Eq.
(2.3.36) is (see Reddy [1], pp. 341-346) given by

[K®){u®} = {F°} (2.3.39)

OL; OL; OL. 8L
k&= [ (o, 0Li0L; g 40y Tl de  W5E
i fQ \%* 2 5o +wg, ay)da:dy-i—jic heLiLj ds  (2.3.40a)

F, = /Q fL; dedy + }{ houeLs ds + f gnLs ds (2.3.40b)
e _]_"e ]_"e

The finite element model (2.3.39) is valid for both conductive and
convective heat transfer boundary conditions. For problems with no convective
boundary conditions, the convective contributions to the element coefficients
are omitted. Indeed, these contributions have to be included only for those
elements whose sides fall on the boundary with specified convection heat
transfer. The contribution due to convective boundaries to the element
coefficient matrix and source vector can be computed by evaluating line
integrals, as discussed in Reddy [1], pp. 342--345.

2.4 Library of Two-Dimensional Finite Elements
2.4.1 Introduction

The objective of this section is to present a library of two-dimensional
triangular and rectangular elements of the Lagrange family, that is, elements
over which only the function - not its derivatives — are interpolated. Once
we have elements of different shapes and order at our disposal, we can
choose appropriate elements and associated interpolation functions for a given
problem. The interpolation functions are developed here for regularly shaped
elements, called master elements. These clements can be used for numerical

I ESowceens T § S
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evaluation of integrals defined on irregularly shaped elements. This requires a
transformation of the geometry from the actual element shape to its associated
master element. We will discuss the numerical evaluation of integrals in
Section 2.6.

2.4.2 Triangular Elements

The three-node triangular element was developed in Section 2.3.5. Higher-
order triangular elements (i.e. triangular elements with interpolation functions
of higher degree) can be systematically developed with the help of the so-called
area coordinates. For triangular elements, it is possible to construct three non-
dimensional coordinates L; (i = 1,2,3), which vary in a direction normal to
the sides directly opposite each node (see Figure 2.4.1). The coordinates are
defined such that p

ot aya 24

where A; is the area of the triangle formed by nodes j and k and an arbitrary
point P in the element, and A is the total area of the element. For example, A,
is the area of the shaded triangle which is formed by nodes 2 and 3 and point
P. The point P is at a perpendicular distance of s from the side connecting
nodes 2 and 3. We have A; = bs/2 and A = bh/2. Hence

a Al s

ILh="=3 (2.4.2)
Clearly, L is zero on side 2-3 (hence, zero at nodes 2 and 3) and has a value
of unity at node 1. Thus, L, is the interpolation function associated with node
1. Similarly, Lo and L3 are the interpolation functions associated with nodes
2 and 3, respectively. In summary, we have

Ly=E (2.4.3)

Figure 2.4.1 Definition of area coordinates L; for triangular elements.
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The area coordinates L; can be used to construct interpolation functions
for higher-order triangular elements. For example, a higher-order element with
k nodes per side (equally spaced on each side) has a total of n nodes

k-1
n=Z(k—z')=k+(k—1)+---—l-'1=g(k—f~1) (2.4.4)
i=0

and its degree is equal to k—1. The explicit forms of the interpolation functions
for the linear and quadratic elements are recorded below:

(L1(2L, - 1)
A vl
L} = {@z} ;o {Ley={ 1s@Ls~1) (2.4.5)

L

( 4Lzl )

Note that the order of the interpolation functions in the above arrays
corresponds to the node numbers shown in Figure 2.4.2(a). Thus, the first
three rows of the vectors in Eq. (2.4.5) correspond to the first three nodes of
the linear and quadratic elements, which correspond to the three vertices of
the triangular element. The last three rows of the second vector in Eq. (2.4.5)
associated with the quadratic element correspond to the mid-side nodes of the
triangular element. A similar node-numbering scheme is used for rectangular
elements, which are discussed next.

2.4.3 Rectangular Elements

The Lagrange interpolation functions associated with rectangular elements
can be obtained from the tensor product of corresponding one-dimensional
Lagrange interpolation functions. We take a local coordinate system (&, 7)
such that —1 < (&,7) < 1. This choice of local coordinate system is dictated
by the Gauss quadrature rule used in the numerical evaluation of integrals
over the element (see Section 2.5).

The linear and quadratic interpolation functions are given in Eqgs. (2.4.6)
and (2.4.7), respectively (see Figure 2.4.2(b) for the node numbers).

e
& = =] ;
=11 1+ e)irn) S

(1-&1+mn)
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3 3
6
5
1 1
4
2 2

Figure 2.4.2 Lincar and quadratic (a) triangular and (b) rectangular

=1

elements.

(1-A-m(=E-n-D+1-)(1—7
A+A-E-n-1+(1-)1 -7
1+ +nE+n-1)+(1-€H)(1-n?
(1=-81+n)(- £+n—1)+(1~ )(1—n?
21— €3)(1—n) - (1 -1 -7
HI4GJL — )~ {1 £~
2(1-&5)(1+n) - (1—«5)(1 )
21-6)(1-m) -1 -1~
L 4(1- 52)(1 )

)

)

\ (2.4.7)

The serendipity elements are those rectangular elements that have no
interior nodes. These elements have fewer nodes compared with the higher-

order Lagrange elements.

The interpolation functions of the serendipity

elements are not complete, and they cannot be obtained using tensor products
of one-dimensional Lagrange interpolation functions. Instead, an alternative
procedure must be employed, as discussed in Reddy [1]. The interpolation
functions for the two-dimensional quadratic serendipity element are given by
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{sce Figure 2.4.3)

(-1 -n)(~¢~n-1))
1+ -m)(e-n-1)
Tl S
) o = +n)(— +?}'— 1

2(1+8(1—7?
2(1-€)(1 +n)

L 2(1_@(1‘”2) J

Figure 2.4.3 Quadratic rectangular serendipity element.

2.5 Numerical Integration
2.5.1 Preliminary Comments

An accurate representation of irregular domains (i.e. domains with curved
boundaries) can be accomplished by the use of refined meshes and/or
irregularly shaped curvilinear elements. For example, a non-rectangular
region cannot be represented using rectangular elements; however, it can
be represented by quadrilateral elements. Since the interpolation functions
are easily derivable for a rectangular element and it is easier to evaluate
integrals over rectangular geometries, we transform the finite element integral
statements defined over quadrilaterals to a rectangle. The transformation
results in complicated expressions for the integrands in terms of the
coordinates used for the rectangular element. Therefore, numerical integration
is used to evaluate such complicated integrals. The numerical integration
schemes, such as the Gauss-Legendre numerical integration scheme, require
the integral to be evaluated on a specific domain or with respect to a specific
coordinate system.

o | Eee—— L W
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2.5.2 Coordinate Transformations

Gauss quadrature requires the integral to be expressed over a square region
Q of dimension 2 x 2 with respect to the coordinate system, (£,7) to be such
that —1 < (&,m) < 1. The transformation of the geometry and the variable
coefficients of the differential equation from the problem coordinates (z,y) to
the local coordinates (§,7) results in algebraically complex expressions, and
they preclude analytical (i.e. exact) evaluation of the integrals. Thus, the
transformation of a given integral expression, defined over element ¢, to one
on the domain ) facilitates the numerical integration. Each element of the
finite element mesh is transformed to (2, only for the purpose of numerically
evaluating the integrals (see Figure 2.5.1). The element  is called a master
element. For example, every quadrilateral element can be transformed to a
square clement with a side of length 2 and —1 < (§,1) < 1 that facilitates
the use of Gauss-Legendre quadrature to evaluate integrals defined over the
quadrilateral element.

The transformation between a typical element Q¢ in the mesh and the
master element €} [or equivalently, between (z,y) and (¢,7)] is accomplished
by a coordinate transformation of the form

z=Y z505(&m), Y= y565(&n) (2.5.1)
g=1 j=1

where ¢; denote the finite element interpolation functions of the master
element Q. The coordinates in the master element are chosen to be the
natural coordinates (£,7) such that —1 < (¢,7) < 1. This choice is dictated
by the limits of integration in the Gauss quadrature rule used to evaluate
the integrals. For this case, the ¢§ denote the interpolation functions of the
four-node rectangular element shown in Figure 2.4.2(b) (i.e. m = 4).

¢=1

Figure 2.5.1 Transformation of quadrilateral elements to the master
rectangular element for numerical evaluation of integrals.
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The transformation (2.5.1) maps, for example, the line ¢ = 1 in Q to the line
defined parametrically by = = z(1, n) and y = y(1,n) in the zy-plane. In other
words, the master element () is transformed, under the lincar transformation,
into a quadrilateral element (i.e. a four-sided element whose sides are not
parallel) in the zy-plane. Conversely, every quadrilateral element of a mesh
can be transformed fo the same four-noded square (master) element €2 in the
(§,n)-plane.

In general, the dependent variable(s) of the problem are approximated by
expressions of the form

k1
ue,y) = 3 usLi(z,y) (25.2)
j=1

The interpolation functions L% used for the approximation of the dependent
variable, in general, are different from @5 used in the approximation of the
geometry. Depending on the relative degree of approximations used for the
geometry [see Eq. (2.5.1)] and the dependent, variable(s) [see Eq. (2.5.2)], the
finite element formulations are classified into three categories:

1. Superparametric (m > n). The approximation used for the geometry is
higher order than that used for the dependent variable.

2. Isoparametric (m = n). Equal degree of approximation is used for both
geometry and dependent variables.

3. Subparametric (m < n). Higher-order approximation of the dependent
variable is used.

It should be noted that the transformation of a quadrilateral element of
a mesh to the master element ) is solely for the purpose of numerically
evaluating the integrals (see Figure 2.5.1). No transformation of the physical
domain or elements is involved in the finite element analysis. The resulting
algebraic equations of the finite element formulation are always in terms of the
nodal values of the physical domain. Different elements of the finite element
mesh can be generated from the same master element by assigning appropriate
global coordinates to each of the elements. Master elements of a different
order define different transformations and hence different collections of finite
elements within the mesh. For example, a quadratic rectangular master
element can be used to generate a mesh of quadratic curvilinear quadrilateral
elements. The transformations of a master element should be such that no
spurious gaps exist between elements, and no element overlaps occur. For
example, consider the element coefficients

OLg OLS OLg OLS | ;
e — ahet T d 2.5.3
K@J \/Qe [al‘a’f(xP y} 83: a:r o a‘yy (‘T? y) dy ay az Y ( Y )
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The integrand (i.c. the expression in the square brackets under the integral) is
a function of the global coordinates x and y. We must rewrite it in terms of £
and 7 using the transformation (2.5.1). Note that the integrand contains not

only functions but also deriv@tivee with respect to the global coordinates (z, y).
Therefore, we must relate (iﬁf By ) to (aéré : adL ) using the transformation
(2.5.1).

The functions Lf(z,y) can be expressed in terms of the local coordinates
(&,m) by means of the transformation (2.5.1). Hence, by the chain rule of
partial differentiation, we have :

3_.[;; _ oLt ?E Qg;@y_ OLS _ 3Lf_6£ OL? @
06 Ox 0¢ Oy ¢’ oy Ox On Oy On

aLs oz 8y ( 9L
0 a . .
{adé } = {d_f, 5} { oL } (2.5.4)
o an onl oy

which gives the relation between the derivatives of Lf with respect to the
global and local coordinates. The matrix in Eq. (2.5.4) is called the Jacobian
matriz of the transformation (2.5.1):

or, in matrix notation,

gz Oy
%] = {Sﬁ 54 (2.5.5)

on oy
\Tote from the exprcssion given for Kf; in Eq. (2.5.3) that we must relate
(eg; ' By ) to ( —5 ), whereas Eq. (2.5.4) provides the inverse relations.

Therefore, Eq. (2 5 4) must be inverted. We have

oLt aLs
{ &% } = [ { oLt } (2.5.6)
TL,L dn

This requires that the Jacobian matrix [J¢] be non-singular.
Using the transformation (2.5.1), we can write

oz 09 Oy = 05

— = of = -_— = q J 2-5-7&
o j;””} 9¢  ac ;yi o€ (25.78)
O m 9ot y ™m 3(;5&

e gy, B 2.5.7b
o fz_IT:a an Zyj ( )

and by means of Eq. (2.5.5) one can compute the Jacobian matrix and then
its inverse. Thus, given the global coordinates (z;,y;) of element nodes and
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the interpolation functions ¢} used for geometry, the Jacobian matrix can be
evaluated using Eq. (2.5.5). A necessary and sufficient condition for 5
to exist is that the determinant J, called the Jacobian, be non-zero at every
point (£,7) in Q :

0z 0y Oz dy
9o ono¢
From Eq. (2.5.8) it is clear that the functions §(z,y) and n(z,y) must be
continuous, differentiable, and invertible. Moreover, the transformation should
be algebraically simple so that the Jacobian matrix can be easily evaluated.
Transformations of the form in Eq. (2.5.1) satisfy these requirements and the

requirement that no spurious gaps between elements or overlapping of elements
oceur.

Returning to numerical evaluation of integrals, we have from Eq. (2.5.6),
ALe oL¢ aLe
;] — & _ " &
{ oL } =[] { oL } =[J ]{ oLs } (2.5.9)
S I B
dy dn dn

where J7; is the element in position (3, §) of the inverse of the Jacobian matrix
[J¢]. The element area dA = dz dy in element Q° is transformed to

dA = |[J°]| de dy (2.5.10)

Je = det[J¢] = # 0. (2.5.8)

in the master element ).

Equations (2.5.7)-(2.5.10) provide the necessary relations to transform
integral expressions on any element Q° to an associated master element €.
For instance, consider the integral expression in Eq. (2.5.3), where agy and
ayy are functions of  and y. Suppose that the finite clement Q¢ can be
generated by the master element (¢, Under the transformation (2.5.1) we can
write

oLg AL oLg OLE
C o —4 -t dz d
K;J js.ze i:axx (‘T? y) ax a:L + ayy(:’:} y) 6y 8y I y

= [, Bslen) dgdn (2:5.11)

The discussion presented above is valid for master elements of both
- rectangular and triangular geometry.

2.5.3 Integration Over a Master Rectangular Element

Integrals defined over a rectangular master element (f can be numerically
evaluated using the Gauss- Legendre quadrature formulas

1 p1 M N
/. F(g,n) didn :] / F(&n) dEdn= > F(&,ns) WiW, (25.12)
fig g g

=1J=1

W F OO T I Tl s
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where M and N denote the number of Gauss quadrature points, (£7,7;) denote
the Gauss point coordinates, and W; and W denote the corresponding Gauss
weights as shown in Table 2.5.1 (from Table 7.2 in Reddy [1]).

T‘able 2.5.1 Gauss quadrature points and weights for rectangular elements.

JHLE© =Y Fenw

Points, &;

Weights, W;

0.0000000000
= 0.5773502692

0.0000000000
= 0.7745966692

+ 0.3399810435
=+ 0.8611363116

0.0000000000
+ 0.5384693101
=+ 0.9061798459

+ 0.2386191861
+ 0.6612093865
+ 0.9324695142

2.0000000000
1.0000000000

0.8888888889
0.5555555555

0.6521451548
0.3478548451

0.5688888889
0.4786286705
0.2369268850

0.4679139346
0.3607615730
0.1713244924

The selection of the number of Gauss points is based on the formula
N = int[(p+1)/2]+1, where p is the polynomial degree to which the integrand
is approximated. In most cases, the interpolation functions are of the same
degree in both £ and 7, and therefore one has M = N. When the integrand is
of a different degree in £ and 7, we use maz(M, N). The minimum allowable
quadrature rule is one that yields the area or volume of the element exactly.
The maximum degree of the polynomial refers to the degree of the highest
polynomial in £ or n that is present in the integrands of the element matrices
of the type in Eq. (2.5.3). Note that the polynomial degree of coefficients as
well as J§ should be accounted for in determining the total polynomial degree
of the integrand. Of course, the coefficients azs,ayy, and Jj;, in general,
may not be polynomials. In those cases, their functional variations must be
approximated by a suitable polynomial (e.g. by a binomial series) in order to
determine the polynomial degree of the integrand.

2.5.4 Integration Over a Master Triangular Element

In the preceding section, we discussed numerical integration on quadrilateral
clements which can be used to represent very general geometries as well as
field variables in a variety of problems. Here we discuss numerical integration
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on triangular elements. Since quadrilateral elements can be geometrically
distorted, it is possible to distort a quadrilateral element to obtain a required
triangular element by moving the position of the corner nodes, and the fourth
corner in the quadrilateral is merged with one of the neighboring nodes. In
actual computation, this is achieved by assigning the same global node number
to two corner nodes of the quadrilateral clement. Thus, master triangular
elements can be obtained in a natural way from associated master rectangular
elements. Here we discuss the transformations from a master triangular
element to an arbitrary triangular element,

We choose the unit right isosceles triangle (see Table 2.5.2) as the master
element. An arbitrary triangular element Q€ can be generated from the master
triangular element Q7 by transformation of the form (2.6.1). The derivatives
of L§ with respect to the global coordinates can be computed from Eq. (2.5.6),
which take the form

T aL
=[P e ok, =T (2.5.13)
oL aLs o &
oy OLo 8Ly 8L

Note that only qu and_ Ly are treated as linearly independent coordinates
because L3 =1- L] s Lz. g
After transformation, integrals on Q7 have the form

/G(E;n) dédn:/( G(L1, Lo, L3) dL1 dLy (2.5.14)
Qe e

which can be approximated by the quadrature formula

N
[ Gy, bg, La) 8Ly 8la > G(SnWi (2.5.15)
e I=1

where Wy and Sy denote the weights and integration points of the quadrature
rule. Table 2.5.2 contains the location of integration points and weights for
one-, three-, and four-point quadrature rules over triangular elements.

2.6 Computer Implementation

2.6.1 General Comments

In this section, computer implementation of finite element calculations is
presented to illustrate the ease with which theoretical ideas can be transformed
into practice. The material presented here is based on a more detailed account
presented by Reddy [1] and Reddy and Gartling [4]. We begin with some
general comments on a typical finite element program.
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Table 2.5.2 Quadrature weights and points for triangular elements.

Number  Degree of

of polynomial Location of integration points
integration Order of the A
points residual Ly Ly I4 W Geometric locations
1
1 O(h?) 1/8 1/8 1/8 1 a ‘

/D

Iz

2 1/2 0 1/2 a
3 O(h?) 12 12 0 1/3
0 12 1/2 ¢
3 1/3 1/3 1/3 -27/48 a
0.6 0.2 02 2548 b 4;
4 O(h%) 02 0.6 02 25/48 c N
02 02 06 2548 d *&

A typical computer program consists of three basic parts:
1. Preprocessor

2. Processor

]

. Postprocessor

In the preprocessor part of a program, the input data of the problem
are read in and/or generated. This includes the geometry of the domain,
analysis option (e.g. static, eigenvalue, or transient analysis), the data of
the problem (e.g. definition of the coefficients appearing in the differential
equation), boundary conditions, finite element analysis information (e.g.
element type, number of elements, geometric information required to generate
the finite element mesh and element connectivity), and indicators for various
postprocessing options (e.g. print, no print, types of quantities to be
calculated, and so on). In the postprocessor part of the program, the solution is
computed by interpolation at points other than the nodes, secondary variables
that are derivable from the solution are also computed, and the output data are
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processed in a desired format for printout and /or plotting. The preprocessor
and postprocessor computer modules may contain a few Fortran statements to
read and print pertinent information, simple subroutines (e.g. subroutines to
generate mesh and compute the gradient of the solution), or complex programs
linked to other units via disk and tape files.

The processor module, where typically large amounts of computing time

are spent, may consist of several subroutines, each having a special purpose.
The main modules include:

1. Generation of the element matrices using numerical integration.
2. Assembly of element equations.

3. Imposition of the boundary conditions.

4

. Solution of the algebraic equations for the nodal values of the primary
variables (see Appendix 1).

The degree of sophistication and the complexity of a finite element program
depend on the general class of problems being programmed, the generality of
the data in the equation, and the intended user of the program. Figure 2.6.1
contains the flow chart of a typical finite element computer program. A typical
but simple finite element programs are included in the book by Reddy [1] and
interested reader may wish to study Chapters 7 and 13 of [1], where details
of the implementation of one- and two-dimensional problems of heat transfer,
fluid mechanics, and solid mechanics are discussed.

2.6.2 One-Dimensional Problems

Here we discuss the main ideas behind the calculation of element coefficient
matrices, [K®|, [M®], and {f¢} for the model problem discussed in Sections
2.2 and 2.3 (see Chapter 8 for transient problems). Recall that the coefficient
matrices are of the form

e [ dL?.CE i1 o
Kij—/% a(z) T +c(z)LiL;| dz
T Zh
Mg = / (@) LELE dw, ff = f f@Li@) dz (26.1)
Ty Ta

We use the coordinate transformation of the form [see Eq. (2.5.1)]
M
z =Y a565(6) (262)
J=1

to express the integrals posed over a typical element ¢ = (zq,xp) as those
over the interval, —1 < £ <1, so that we can use the CGauss quadrature to
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Processor
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CALL ELKMF to calculate Kﬁ(e)
M;®, and £©, and assemble

to form global [K], [M], and {F}

Impose boundary conditions

f

Solve the equations

Postprocessor

Figure 2.6.1 The flow chart of a typical finite element program.

evaluate them numerically. In Eq. (2.6.2), 2% denote the global coordinates
of node j of element w® = (z4,7s), and ¢§ are the approximation functions
used to approximate the geometry. For example, if we use linear interpolation
functions ¢5(§) = L5(€) to represent the geometry of the element, we have
z§ = 2,4, 7§ = zp and Eq. (2.6.2) becomes

a+’ d — Lq hre
7= L{(6) + oI5 = Do+ o =ae 5 (263)

The Jacobian of transformation is given by

dr h X
P 2.6.4
=2t 264)

The above transformation is exact for all (straight) line elements.
The derivatives of L¢ () with respect to the global coordinate 2 is given by
dLy _ dLj df _ deJ_l
dzx d¢ dor  d§ ¢
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Then the integrals in Eq. (2.6.1) become

K= /z:b [a(.r)

dxr dx

dLe dLs

i J

+c(z)LiLE| dx

1

L1, dLe dLe
= /_ . [a(&) (EE‘-J.S 1) (E?JJE_I) -i—é(f)LijJ Je d€

T
Mg = / ot(2) LSLS do =
T,

i = [ 1@)t(a) o

]

[

1.
[, fersts . ae

1
1

(ed©)zeLs) . de

(2.6.5)

where a(¢) = a(z(€)) and so on. Each of the integral expressions above can
be evaluated using the Gauss quadrature

/_IIF(s

where NGP is the number of Gauss

)

NGP

Je d€ = 3" F(ns) Je Wiy

(2.6.6)

Ni=1

W1 is the NIth Gauss weight.

To implement the above develo
arbitrary degree of Lf, we must first cr

points, £y is the N1th Gauss point, and

pment into a computer subroutine for
eate a subroutine of all interpolations

functions and their derivatives with respect to £ that we intend to use in our

analysis. For the present

discussion, we limit them to the linear and quadratic

Lagrange family of functions. These functions and their derivatives are given

below.
Linear

1 dl
Quadratic

Li(§) = —36(1-9),

Lye) = (1-¢%),

Ly(§) = 36 (1 +¢),

The following variables names are used in the subroutine

in Box 2.6.1):

SFL() = Li,

DSFL(i) =

=0.5; Ly(¢) = ; (1+¢), %‘5—2 =0.5 (2.6.7)
dL;
dL
d; =%
%Ig =0.5(1 4 2¢) (2.6.8)

(see INTRPL1D

dL; . dL
2 CDSFL({) = =~
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Box 2.6.1 Listing of subroutine INTRPL1D.

SUBROUTINE INTRPLID(ELX,GI.IEL,NPE.XI)

The subroutine computes shape functions and their derivatives for
Hermite cubic and Lagrange linear, quadratic, and cubic elements

X..oivsivinren. Global (i.e. problem) coordinate i
wevveeeee Local (Le. element) coordinate
H.............. Element length

{SFL}....... Interpolation (or shape) functions
{DSFL}..... First derivative of SF with respect to X1
{GDSFL}.. First derivative of SF with respect to X
GI............ Jacobian of the transformation

conoo0n000nann
[

IMPLICIT REAL*$(A-H.0-Z)

COMMON /SHP/SFL(4),GDSFL(4)

DIMENSION DSFL(4).ELX(3)

SHAPE FUNCTIONS AND THEIR DERIVATIVES

Linear functions

olpieiele]

IF(IEL.EQ.1)THEN
SFL(1)=0.5%(1.0-XT)
SFL(2)=0.5*(1+XI)
DSFL(1)=-0.5
DSFL(2)=0.5

ENDIF

Quadratic functions

anon

[F(IEL.BQ.2)THEN
SFL(1)=0.5*(XI-1.0)*XI
SFL(2)=1.0-XI*XI
SFL(3)=0.5*(XI+1.0)*X1
DSFL(1)=X1-0.5
DSFL(2)=-2.0*X1
DSFL(3)=XI+0.5

ENDIF

GI=0.0

DO 10 I=1NPE
10 GJ=GI+DSFL{I*ELX(D)

DO 30 I=1,NPE
GDSFL(I)=DSFL(I)/GJ

30 CONTINUE
C

RETURN

END

The notation should be transparent to the reader: SFL = Shape Functions
of the Lagrange family; DSFL = Derivative of SFL with respect to &; and
GDSFL = Global Derivative (i.e. derivative with respect to z) of SFL. All
of them are n x 1 arrays, where n is the Nodes Per Element, NPE (i.e. n =
NPE). In addition, GJ is used for the Jacobian J and X1 for &.
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Next, we implement the steps to evaluate the matrix coefficients K, M;;,
and f; (i = 1 to NPE) into a subroutine called ELEKMF1D. To this end,
we must assume some form of the data, a(z), c(z), c(z) and f(z). Although
we can use any integrable functions, we restrict in the present discussion our
choice of these coefficients to linear polynomials for the entire domain of the
problem:

a(x) =ap+ a1z, c(z)=cy+ az, @) =co+cnz, flx)=fo+ fiz
(2.6.9)
Obviously, the coefficients of the polynomials must be read in the preprocessor
and transferred to the subroutine ELEKMF1D through a common block (or
the argument list).

Since the evaluation of the matrix coefficients involves summation on the
number of Gauss points, the arrays used for (K], [M], and {f} must be
initialized outside the do-loop on NGP, the Number of Gauss Points. The
following notation is used:

ELK(ij) = K3, ELM(ij) = Mg, ELF()=f§ i=1,2,...,NPE

(2.6.11)
The Gauss points are arranged in a matrix form so that the Jth column
corresponds to the Jth order Guass rule. The same notation is used for the
Gauss weights: GAUSPT(NI,NJ) = £y, NIth Gauss point of the N.J-
point Gauss rule; GAUSWT(NI, N J) = Wnr, NIth Gauss weight of the
NJ weight Gauss rule. Inside the do-loop on NI = 1 to N GP, we must
call Subroutine INTRPLI1D to compute SFL(i) and GDSFL(i) at the NIth
Gauss point and then compute all necessary quantities. Box 2.6.2 contains a
listing of Subroutine ELEKMF1D.

2.6.3 Two-Dimensional Problems

The ideas presented in Section 2.6.2 for one-dimensional problems extend in a
straightforward way to two-dimensional problems. The main differences are:
(a) numerical integration over two-dimensional elements: (b) the Jacobian J,
is the determinant of the Jacobian matrix [J€] defined in Eq. (2.5.5); and
(c) global derivatives of the interpolation functions are determined using Eq.
2.5.9).

| Th)e Fortran statements of generating element coefficient matrices [K*],
[M¢], and {Q¢} are provided in the form of subroutine ELEKMF2D in Box
2.6.3, along with the subroutine INTRPL2D for interpolation functions
of rectangular elements and subroutine TEMPORAL for generating the
coefficient matrices [K*®] and {F*} defined in Eq. (8.2.10) for transient
problems.
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Box 2.6.2 Listing of subroutine ELEKMF1D.

SUBROUTINE ELEKMF1D(MODEL,NDF NGP,NPE)

IEL............ Element TYPE (1, Linear; 2, Quadratic)
H... .. Element length

. Global (i.e. problem) coordinate
... Local (i.e. element) coordinate
IGAUSPT] 4x4 matrix of Gauss points: Nth column corresponds

to the N-point Guass rule

[GAUSWT]. 4x4 matrix of Gauss weights (see the comment above)
[ELK]........ Element coefficient matrix [K]

ELF}....... Element source vector {f}

ELX}....... Vector of the global coordinates of element nodes

IMPLICIT REAL*8(A-H,O-Z)
COMMON/STF1/ELK(9,9),ELF(9),ELX(4)
COMMON/STF2/AX0,AX1,CX0,CX1LFX0,FX1
COMMON/SHP/SF(4),GDSF(4)

DIMENSION GAUSPT(5,5),GAUSWT(5,5)

eleizivivicisivivisioiele]

DATA GAUSPT/5%0.0D0,-0.57735027D0,0.57735027D0,3*0.0D0,~0.77459667D0,
* 0.0D0,0.77459667D0,2*0.0D0,~0.86113631D0,-0.33998104D0,0.33998104D0,
*0.86113631D0,0.0D0,-0.906180D0,-0.538469D0,0.0D0,0.538469120,0.906180D0/
DATA GAUSWT/2.0D0.4*0.0D0,2*1.0D0,3*0.0D0,0.55555555D0,0.88888888D0,
* 0.55555555D0,2*0.0D0,0. 34785485D0.2%0.65214515D0,0. 34785485D0,0. 0DO,
* 0.236927D0,0.478629D0,0.568889D0,0.478629D0,0.236927D0/

C
H =ELX(NPE)- ELX(1)
IEL =NPE-1
C Initialize the arrays DO 10 J=1,NPE
ELF(I)=0.0
DO 10 I=1.NPE

10 ELE(LI)=0.0
C DO-LOOP on number of Gauss points begins here
DO 40 NI=1,NGP
XI=GAUSS(NI, NGP)
CALL INTRPL1D(ELX,GJLIEL,NPE,XI)
CNST=GJ*WT(NLNGP)
X=ELX(1)+0,5*(1.0+XI)’I-I
AX=AXMHAXT*X
CX=CX+CXI1*X
FX=FX0+FX1*X
C  Calculate element coefficients
DO 20 I=1 NPE
ELF (I]—ELF(I}-\‘-FX*SFL(I)’“CNST
DO 20 J=1 NPE
SU{)—SFL(I)"‘SFL(J)*CNST
$11=GDSFL{I)*GDSFL(J)*CNST
ELK(LD)=ELK(L)+AX*S11+CX*S00
20 CONTINUE
40 CONTINUE
RETURN
END

2.7 Closure

The present chapter was devoted to a study of (1) the finite element
models of one- and two-dimensional problems involving Poisson’s equation,
(2) a derivation of interpolation functions for basic one- and two-
dimensional elements, (3) numerical evaluation of integrals, and (4) computer
implementation ideas. An understanding of the topics presented in this
chapter is a prerequisite for the subsequent chapters of this book.




54 NONLINEAR FINITE ELEMENT ANALYSIS

Box:2.6.3 Listings of subroutines ELEKMF2D, INTRPL2D, and
TEMPORAL.

SUBROUTINE ELEKMF 2D(NPENN,ITEM)

Element calculations based on linear and quadratic rectangular elements
and isoparametric formulation are carried out for the heat transfer and
penalty model of viscous incompressible fluid flow.

IMPLICIT REAL*8 (A-H,0-Z)

COMMON/STF/ELF(18),ELK(18.1 8),ELM(18,18) ELXY(9,2) ELU(18),A1 JAZ
COMMON/PST/AI0,AIX A] Y.A20,A2X A2Y,CO,CX.CY.FO,FX FY
COMMON/ SHP/SF(9),GDSF(2.9) SFH(16)
COMMON/PNT/IPDF,IPDR NIPF NIPR

DIMENSION GAUSPT(5,5),GAUSWT(5,5)

COMMON/TO/IN,ITT

DATA GAUSPT/5%0.0D0, =0.57735027D0, 0.57735027D0, 3%0.0D0,

2 ~0.77459667D0, 0.0D0, 0.77459667D0, 2*0.0D0, —0.861 13631D0,

3 —0.33998104D0, 0.33998104D0, 0.86113631D0, 0.0D0. —0.9061 7984D0,
4 —0.53846931D0,0.0D0,0.53846931D0,0.90617984D0/

DATA GAUSWT/2.0D0, 4*0.0D0, 2*1.0D9), 3*0.0D0, 0.55555555D0,
2 0.88888888D0, 0.55555555D0, 2*0.0D0, 0.34785485D0,
3 2*0.65214515D0, 0.34785485D0, 0.0D0, 0.23692688D0),

@ 4 0.47862867D0, 0.56888888D0, 0.47862867D0, 0.23692688D0/

NDF = NN/NPE
NET=NPE

Initialize the arrays

DO 1201=1NN

ELF(I) =0.0

DO 120 7= 1 NN

IFITEM.NE.0) THEN
ELM(LT}= 0.0

ENDIF

120 ELK(LY)=0.0

{5:
C  Do-loops on numerical (Gauss) integration begin here, Subroutine
g INTRPL2D is called here

DO 200 NI = 1,IPDF
DO 200 NJ = 1,IPDF
XI = GAUSPT(NILIPDF)
ETA = GAUSPT(NJ,IPDF)
CALL INTRPL2D (NPE,XI,ETA DET,ELXY.NDF)
CNST = DET*GAUSWT{NLIPDF)*GAUSWT(NJ,IPDF)
X=0.0
Y=0.0
DO 140 I=] NPE
X=X+ELXY(I,1)*SE(D)
140 Y=Y+ELXY(L2)*SF()

SOURCE=F+FX*X+FY*Y
IF(ITEM.NE.0) THEN
CT=CO+CX*N+CY*Y
ENDIF
Al=A1HAIX*X+ATY*Y
A22=A20+A2X*X+A2Y*Y

[plelalelelols!

[glale]

II=1
DO 180 1=1.NET
=1

DO 160 J=1 NET
S00=SF(I)*SF(J)*CNST
S11=GDSF(L1)*GDSF(1J)*CNST
S22=GDSF(2,1)*GDSF(2.J)*CNST

Heat transfer and like problems (i.e. single DOF problems):

ELK(LJ) = ELK(LJ) + A11*SI1 + A22%822 + A00*S00
IF(ITTEM.NE.(0) THEN
ELM(LY) = ELM(L]) + CT*S00
NDIF

160 JT=NDF*J+1 .

C  Source of the form fx = FO + FX*X + FY*Y is assumed
L=(I-1)*NDF+1
ELF(L) = ELF(L)*CNST*SF(I)*SOURCE

180 IT = NDF*1+1

200 CONTINUE

[plole]
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IF(ITEM.NE.0) THEN

Compute the coefficient matrices of the final algebraic equations
(i.e. after time approximation) in the transient analysis:

CALL TEMPORAL(NN)
ENDIF
RETURN

[alelela]

SUBROUTINE INTRPL2D(NPE XL ETA, DET.ELXY NDF)

The subroutine evaluates the interpolation functions (SF(I)) and
their derivatives with respect to global coordinates (GDSF(LI))
for Lagrange linear & quadratic rectangular elements, using the .
isoparametric formulation. The subroutine also evaluates Hermite
interpolation functions and their global derivatives using the
subparametric formulation.

SF(I)............Interpolation function for node I of the element

DEF(ID........ Derivative of SF(I) with respect to X1 if J=1 and
and ETA if J=2

GDSF(JI)......Derivative of SF(I) with respect to X if J=1 and
and Y ifJ=2

XNODE(LJ)...J-TH (J=1.2) Coordinate of node I of the element

I(:I?’({II}) -..Array of element nodes (used to define SF and DSF)

3. " e
GIINV(L])...

Jacobian matrix
Inverse of the jacobian matrix

s sisiolololpivioisipivisivieolipipie ¢

IMPLICIT REAL*S (A-H,0-Z)
DIMENSION ELXY(9,2), XNODE(9,2),NP(9),DSF(2,9),GJ(2,2),GIINV(2,2)
COMMON/SHP/SF(9),GDSF(2,9)
COMMON/IO/IN,ITT
DATA XNODE/-1.0D0, 2*1.0D0, -1.0D0, 0.0D0, 1.0D0, 0.0D0, -1.0D0,
¥ 0.0D0, 2%-1.0D0, 2*1.0D40, -1.0D0, 0.0D0, 1.0D0, 2*0.0D0/
% DATANP/1,2,3,45,7,6,89/

ENC(A,B) = A*B
IF(NPE.EQ.4) THEN

LINEAR Lagrange interpolation functions for FOUR-NODE element

[plsls]

DO10I=1NPE

XP =XNODE(L1)

YP = XNODE(I2)

X10 = 1.0+ X15XP

ETAO=1.0+ETA*YP

SF(I) = 0.25*FNC(XI0.ETAO)

DSF(1,1)= 0 25*FNC(XP ETA0)
10 DSE(21)= 025*ENC(YP X10)

ELSE
. IF(NPEEQ.8) THEN
% QUADRATIC Lagrange interpolation functions for EIGHT-NODE element

DO 201=1,NPE
NI =NP(I)
XP =XNODE(NLI)
YP = XNODE(NI,2)
XI0 = 1.0+XI*XP
ETAO = 1.0-ETA*YP
XI1 =1.0-XI*XI
ETAI1 = 1.0-ETA*ETA
IF(LLE.4) THEN
SF(ND) = 0.25*FNC(XI0,ETA0)*(XI*XP+ETA*YP-1.0)
DSF(1,NI) = 0.25*FNC(ETAQ.XP)*(2. 0*XI* XP+ETA*YP)
L?SF(Z,NI) = 0.25*FNC(X10,YP)*(2 0*ETA*YP+XI*XP)
LSE
IF(LLE.6) THEN
SF(NI) = 0.5*FNC(XI1.ETAD)
DSF(I.NI) = -FNC(XLETA0)
SD};.F(z,Nr} = 0.5*FNC(YP XI1)

SF(NI} = 0.5*FNC(ETA1,XI0)
DSF(LNI) = 0.5*FNC(XP.ETAT)
DSF(2NI) = -FNC(ETA,XI0)
ENDIF
ENDIF
20  CONTINUE
ELSE
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C
{l':‘ QUADRATIC Lagrange Interpolation functions for NINE-NODE element
DO 30 I=1 NPE
NI =NP(I)
XP = XNODE(NIL1)
YP = XNODE(NI2)
XI0 = 1.O+XI*XP
ETAQ = LO+ETA*YP
X1 =1.0-XI*X1
ETAT =1.0-FTA*ETA
X2 =XP*X]1
ETA2 = YP*ETA
IF(I .LE. 4) THEN
SE(ND) = 0.25*FNC(XI0,ETA0)*XI2*ETA2
DSF(INI)=0.25 *XP*FNC(ETA2 ETA0)*(1 DH2.0%X12)
ELé)bSF(Z,Nl)—- 0.25*YP*FNC(X12,.X10)*(1.042.0*ETA2)

IF(I .LE. 6) THEN
SE(NI) = 0.5*FNC(XI1,ETA0)*ETA2
DSF(LNI) = —X'I*FNC(ETAZ,E’IA(?
EL?I?F(Z,NI) = 0.5*FNC(XILYP)*(1. +2.0*ETAZ)

IF(1 .LE. 8) THEN
SE(ND) = 0.5*FNC(ETA1LXI0)*XI2
DSF(2,NI) = -ETA*FNC(X12 X0}

EL%EF(!,NI) = 0.5*FNC(ETALXP)*(1.042.0¥X12)

SF(NI) =FNC(XI1,ETA1)
DSF(I,NT) = -2.0*XI*ETA
DSF(2,NI) = -2 0*ETA*XI1

ENDIF

ENDIF
ENDIF
30 CONTINUE
ENDIF

. ENDF
f: Compute the Jacobian matrix (GI] and its inverse [GJINV], and [GDSF]

DO401=12
DO40T=12
GHL]) = 0.0
DO 40K = 1 NPE
40 GI(LY) = GILT) + DSF(LK)*ELXY(K.J)

DET = GI(1,1)*GI(2,2)-GI(1,2)*GJ(2,1)
GIINV(1,1} = GJ(2,2DET
GJINV(22) = GI(1.1VDET
GIINV(1,2) = -GJ(1 2)DET
GIINV(2,1) = -GJ(2.1 VDET
DOS0I =12
DOS0] = I'NPE
GDSF(LT) = 0.0
DOSOK =1,2

50 GDSF(LJ) = GDSF(LT) + GJINV(LK)*DSF(K,J)
RETURN

END
SUBROUTINE TEMPORAL(NN)

The subroutine computes the algebraic equations associated with the parabolic differential equations
by using the oc—famig' of approximations. A constant source is assumed.

IMPLICIT REAL*$({A-H,0-Z)
COMMON/STF/ELF(18),ELK(18,18),ELM(18,1 8).ELXY(9.2).ELU(18).A1,A2

Iplisipielols]

2
C  The a-family of time approximation for parabolic equations
C

DO 20 I=1,NN

SUM=0.0

DO 10 J=1,NN

SUM=SUM-+ELM(LI)-A2*ELK(I)))*ELU(J)
10 ELK(LJ=ELM(LJ)*A1*ELK(L])
20 ELF()={A1+A2)*ELF(I*SUM

RETURN

END

| O s L B
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Problems

2.1

2.2

2.3

24

2.5

2.6

(Least-Squares Method). In the least-squares method, the residual Re [see Eq. (2.2.3)]
is minimized in the following sense:

Ty P T
d b
5] [RJfdr =0 or o= / [Ré(@, 1,00, s en)Pde =0, i=1,2,-1,n
za Sy

(a) Identify the weight function w¢ if the least-squares method is to be deduced from
Eq. (2.2.4), (b) develop the least-squares finite element model, and (c) discuss the
type of finite element approximation of u that may be used.

Consider the differential equation

d [ du &2 [ du
-z (8) + & (”ng) =g

where a, b, ¢, and f are known functions of position z. (a) Develop the weak form
over a typical element (° = (zq,z3) such that the bilinear form is symmetric, (b)
identify the bilinear and linear forms and construct the quadratic functional, (c)
develop the finite element model of the equation, and (d) discuss the type of finite
element approximation of u that may be used.

Derive the Lagrange cubic interpolation functions for a four-node {one-dimensional)
element (with equally spaced nodes) using the alternative procedure based on
interpolation properties (2.2.22). Use the local coordinate F for simplicity.

Derive the finite element model of the differential equation

-EdE (a(x)j—z) =f(z) for O<z<lL

for the boundary conditions

d
u(0) = ug, Ka(m)-ﬁ) + ku} =P
dx z=L
The following differential equation arises in connection with heat transfer in an
msulated rod:

d dT
O -l L
d:v(kd:c) g for O<z<

=0

T(0) = Ty, [kd—l + (T - Too) + cj}
dx il

where T is the temperature, k the thermal conductivity, and g the heat generation.
Take the following values for the data: ¢=0,§=0,L=01m, k=001 Wm™* a1
8 =25 Wm-2°C-1, T, = 50°C, and T, = 5°C. Solve the problem using two linear
finite elements for temperature values at © = %L and L. Answer: Us = 27.59°C,
U3 = 5.179°C, Q{V = 4.482 W m~2 = -Q.

An insulating wall is constructed of three homogeneous layers with conductivities
k1, kg, and ks in intimate contact (see Figure P2.6). Under steady-state conditions,
the temperatures at the boundaries of the layers are characterized by the external
surface temperatures T} and Ty and the interface temperatures T and T3. Formulate
the problem to determine the temperatures T; (i = 1,...,4) when the ambient
temperatures 7, and Ty and the (surface) film coefficients 8y and G5 are known.
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A‘ssum? that there is no internal heat generation and that the heat flow is one-
dimensional (0T/8y = 0). Answer: Uy = 84.489°C, U, = 68.977°C, Us = 50.881°C,
Uy = 45.341°C, (Q1)ges =217.16 W-m~2, (Q3)gef = -155.11 W-m~2.

k1 =90 W/(m °C)
ko =75 W/{m °C)
k; =50 W/(m °C)
hy=0.03m
hy=0.04m
hy=0.05m

B =500 W/(m?2°C)
T.=20°C

Figure P2.6

2.7 Consider the steady laminar flow of a viscous fluid through a long circular cylindrical
tube. The governing equation is

1d ( dw\ By-P, _ _
_;{_i; (?";’J{F) = 7 _—_fO! O‘(T<R{)

where w is the axial (ie. z) component of velocity, i is the viscosity, and f, is
the gradient of pressure (which includes the combined effect of static pressure and
gravitational force). The boundary conditions are

(%)

Using the symmetry and (a) two linear clements, (b) one quadratic element, determine
the velocity field and compare with the exact solution at the nodes:

=252 - (7)]

2.8. In the problem of the flow of a viscous fluid through a circular cylinder (see Problem
2.7), assume that the fluid slips at the cylinder wall; that is, instead of assuming that
w =0 at r = Ry, use the boundary condition that

=0, w(Ry) =0
=0

kw:—p%g at r= Ry

in which k is the “coefficient of sliding friction.” Solve the problem with two linear
elements.
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2.9 The two members in Figure P2.9 are fastened together and to rigid walls. If

2.10
2.11
2.12

the members are stress free before they are loaded, what will be the stresses and
deformations in each after the two 50,000 Ibs. loads are applied? Use E, = 30 x 106
psi and E, = 107 psi; the aluminum rod is 2 in. in diameter and the steel rod is 1.5 in.
in diameter. Answer: Up = 0.0134 in., P{") = —21,052.6 Ib, and o(1) = 6701.25 psi.

Aluminum
- Steel
P =50 k=——>ji
Ja c||
P =50 k=l

b g0 1 16 in]

Figure P2.9

Evaluate the coefficients K¢, and F¢ of Eqs. (2.3.40a,b) for a linear triangular element.
Repeat Problem 2.10 for a linear rectangular element.

Consider the partial differential equation governing heat transfer in an axisymmetric
geometry

1 (ke SD) - 2 (k) = £, 2) 1)

where (krr, k..) and f are the conductivities and internal heat generation per unit
volume, respectively. In developing the weak form, we integrate over the elemental
volume of the axisymmetric geometry: rdrdfdz. Develop the weak form and
associated finite element model over an element.
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3

Heat Transfer and

Other Field Problems
in One Dimension

3.1 Model Differential Equation

We shall consider a model nonlinear differential equation governing one-
dimensional problems involving a single unknown to illustrate the finite
element model development and discuss solution methods to solve the resulting
nonlinear algebraic equations. As we shall see, the weak form and finite
element model developed in Section 2.2 for a linear model equation are also
valid for the nonlinear case. The main difference is that the finite clement
equations are nonlinear, and therefore iterative methods must be used to solve
the nonlinear finite element equations.
Consider the differential equation (see Table 2.2.1 for fields of study)

‘% [a(ﬂ:,u)j—ﬂ J.—b(m,u}% Fe(z,uwu=f(z), 0<z<L (3.1.1)

subjected to boundary conditions of the form

Mg a-g% + B(z,u) (u — Uoo) = @, or  w=# (3.1.2)
at a boundary point. Here u(z) denotes the dependent variable to be
determined, a, b, and ¢ are known functions of x and u (and possibly derivatives
of u), f is a known function of z, ux and @ are known parameters, @ the
secondary variable, and n, is the cosine of the angle between the positive z-
axis and the outward normal to the edge at the node (note that n, = —1 at
T =z, and ny = 1 at z = x5). The second boundary condition is a special
case of the first (with & = us) in the limit § — co. We wish to solve this
nonlinear differential equation using the finite element method.

Clearly, the source of nonlinearity is in a, b and/or ¢, which in most
engineering systems include geometric and material parameters that may be
functions of the dependent variable u. For example, for heat conduction in &
rod with convective heat transfer through the surface, one has a = k4, b =0,
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and ¢ = Pf3, where k denotes conductivity, 8 the convective heat transfer
cocfficient, A the cross-sectional area, and P the perimeter of the rod. Then
the nonlinearity arises from the conductivity and heat transfer coefficients
being functions of temperature .

3.2 Weak Formulation

Suppose that the domain §) = (0, L) is divided into N elements. A typical
element is denoted as Q¢ = (Ta» Tv), where z, and 7 denote the global
coordinates of the end nodes of the element. The weak form of Eq. (3.1.1)
over the element is given by

“ [ dw du du du\ 1"
s fxa [a-%% + b'w% + cwu — wf] dr — {’w (aa)]%

8 dw du i
=AaF@”b;aﬂ”@“WaVHmmwm_wﬂm}m

~ [Q1 = fa (u(aa) = o) wiza) ~ [Q5 — By (ulas) - k)] w(an) (3:2.1)
where w(z) is a weight function, and [see Eq. (3.1.2)]
du ;
o] =@t Aalutan) - u
dx],—,, .
d (3.2.2)
fud e b
— =5 — G |u(zy) — u,
[adﬂfLmb g " [u( b) oo}
Here (ul,,u% ) denote the reference values and (Ba; Bp) denote the film
coeflicients at the left and right ends of the element, respectively. The weak
form (3.2.1) suggests that u is the primary variable and @ is the secondary
variable of the formulation. Recall that specifying a primary variable is called
the essential (or geometric) boundary condition and specifying a secondary
variable is termed the natural (or force) boundary condition. The first
boundary condition in Eq. (3.1.2) is of the natural type and it is nonlinear;
the second boundary condition in Eq. (3.1.2) one is of the essential type.

3.3 Finite Element Model

Suppose that the dependent unknown u(x) is approximated over element ¢
by the finite element approximation of the form

u(@) = uf(z) = 3 usLi(z) (3:3.1)
=1

Substituting the approximation (3.3.1) for w and w = L¢ into the weak form
(3.2.1), we obtain the finite element model

[KHu} = {f} +{Q°} (3.3.2)
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where

e dLe dLs dLe
K?i" = ~/x {a(mauh)df; L+ b(z, uh)Lf L 4 C(CE, Urh,)Lg‘Lj dr

dz de
+ BaLf(za) L5 (Ta) + Bo L () L () (3.3.3a)
T
f= [ 1@ do+ Baus (o) + Biale L5 o) (33.3b)

Note that the coefficient matrix is a nonlinear function of the unknown nodal
values uj, and it is an unsymmetric matrix when b # 0; when b= 0, KF; is a
symmetric matrix. Also, the coefficients involving 3 are only present at the
boundary nodes where convection type boundary condition is specified.

Example 3.3.1

To gain more insight into the make up of the cocfficient matrix, suppose that a(x) = agu(z),
b=¢=0and 3 =0, where ag may be a function of = only. Then we have

: o - dLe dLs
= [ ()

k=1
z #h dLg dLg )
:Zu; / agLy—*—~ dz @)
k=1 Ta ’

Now consider, as an example, linear approximation (n = 2) of u(z), and ag is a constant
within an element, say aj. Then we have

T Tk d.LT dLe
K= agu; j L= de
k=1 Ta

- L1 [
- zagui (—1)"H 72 f L§ dx
k=1 %,

= (=1)iH ;i (Z“i) 5 (_1)i+j;_i (uf +u5) (i)
E=1
or .
(K] = m%:r—u%—) [_} _ﬂ (iii)

The assembly of element equations follows the same procedure as in linear
finite element analysis. If we denote the global nodal vector by {U }, the
assembled system of equations can be written as

[K{UHKU} = {F} (3.34)

where [K] and {F} denote the global coefficient matrix and the right-hand
side vector, respectively. In the example above, [K] is a linear function of
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the nodal values U; and it is a symmetric matrix. Consequently, the resulting
finite element equations are nonlinear; in the present case, they are quadratic
in U;. Example 3.3.2 illustrates these ideas.

Example 3.3.2

The assembled equations (3.3.4) associated with a mesh of two linear elements of equal
length, and with the data used in Example 3.3.1, are

1 [ i4la)  —(U1+0p) 0 U1
oh |~ +02) (Ui +2U5+Us) —(Uy+Us) | L U,
0 —(Uz2 +Us) (Uz+Us) | \Us
5O QY
=9 #0452 444 o 4 @ 6
(2) )
2 2

Now suppose that the assembled system of equations is subjected to the boundary
conditions
[ du - i
u(0) = uy, 1°% +8(u— us) =Q (ii)
dr =L
with
B =B+ Bu (iii)

These conditions for the present mesh of two linear elements imply

Ui=up, QP =0Q - (Bo+B1Us) (Us - uce) (iv)

Hence, after imposing the boundary conditions and balance of the sccondary variables
le) + Q(f) = 0, the assembled equations in (i) become

1 [ W +0o) —(Uy +U3) 0 ug
2h l’_(Ul +Us) (Up+2Us +Us) —(Us + Us) J { Us }
0 Uz +Us)  (Up+Us)+2h(By+51Us) | | Us
fl(l) le)
=¢ N+ 3+ QM + o v)
2 @+ (Bo + Bils Juce

3.4 Solution Procedures
3.4.1 General Comments

The numerical procedures used to solve nonlinear algebraic equations (3.3.4)
are iterative in nature. Two iterative procedures are outlined here for the
problem at hand. Some general features of iterative methods used for nonlincar
equations are discussed before getting into the details of each method (see
Appendix 2 for additional discussion).

Suppose that we wish to solve the nonlinear matrix equation

[AQUNHU} = {F}
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We begin by assuming that the solution {U}("~1) at the (r — 1)st iteration is
known, and we wish to seek the solution {T'}(") at the rth iteration. At the
beginning of the iteration, that is, when 7 = 1, the solution {U}(© is assumed
or “guessed” consistent with the problem data. Using the solution from the
(r—1)st iteration, we compute the coefficient matrix [A({U}"~V)]. Since [4] is
evaluated using estimated vector {U}, in general, [A({U}Y—D){U}") + {F}.
Hence, we are left with a residual

{R} = [A{UYI){U} - {F} (3.4:1)

The objective of the iteration process is to reduce this residual to a very small,

negligible value, e:
I\T
7| D RI<e (3.4.2)
\ I=1

Alternatively, the iteration may proceed until the difference between solutions
from two consecutive iterations, measured with the BEuclidean norm, is less
than the tolerance e

J Z;’Tv:]. 'l('r) - I—)T_]('r_l)|2 < € (3‘4‘3)
=i v

3.4.2 Direct Iteration Procedure

The direct iteration technique, also known as the Picard iteration method of
successive substitution, is the simplest of the two methods discussed here. In
the direct iteration procedure, the solution at the rth iteration is determined
from the equation

KUY ){U} = {F} (344)

where the coefficient matrix K] is evaluated using the known solution from
the (r—1)st iteration. It is assumed that the coefficient matrix [K] is invertible
after the imposition of boundary conditions. Thus, the initial “guess” vector
{U}Y should be such that (a) it satisfies the specified essential boundary
conditions and (b) [K] is invertible. This means, in the present case, that
U # 0 for at least one value of I.

Figure 3.4.1 depicts the general idea of the direct iteration procedure for a
single degree-of-freedom system. Here K denotes the slope of the line joining
the origin to the point K (U) on the curve F = K(U)U = f(U). Note that
K(U) is not the slope of the tangent to the curve at U. The direct iteration
converges if the nonlinearity is mild and it diverges if the nonlinearity is severe.
Divergence is more likely for hardening type nonlinearity. Acceleration of
convergenice for some types of nonlinearities may be achieved by using a
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}“1

KO)U=fU)

K ( )
F,

- Converged solution
Uy — Initial guess solution

I
I
|
1
L]
I
I
1
1
[}
I

!
1

I
|
1
1
I
|
1
i

1 '.F U
U, v U, U Us

Figure 3.4.1 Convergence of the direct iteration procedure (calculation of
U for a specified source value F).

weighted-average of solutions from the last two iterations rather than the
solution from the last iteration:

{Ty=p{U} 2 + (1-p){U} D, 0<p<1 (3.4.5)

where p is called the acceleration parameter and r is the current iteration
number (i.e. when we seek solution {U}(")). The value of p depends on the
nature of nonlinearity,

Example 3.4.1

We wish to solve the nonlinear differential equation

_%( d“) fo, O<z<1 M)

subjected to the boundary conditions
2] =0 um=a (i)

For a mesh of two linear elements with h1 = hy = h. the a.seemblod equatlons a.ro gwen by
Eq. (i) of Example 3.3.2. After imposing the boundary conditions Q =Q, Q +Q1
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and Uy = @, Eq. (i) of Example 3.3.2 becomes

y [ G+ 0) _~(0h +0s) o o) @
o | ~O1+0s) (U1 +20,40s) —(02+03) | { Us
0 (O + T3) (Ua +Us) U
1 -
He Q
=1 i@ 4y 0, (iif)
£ s

or, omitting the last equation, we obtain the following condensed set of equations:

1 G+l ~Ohi+0) 1P
2h | —(Up +Us) (Uy 4205+ Us) Us
1Y } { Q } _
= + b o} i
g+ { b "

where Uy = U ;T_l) (I =1,2,3) denote the nodal values from the previous iteration.
As a specific problem, we use the following data

Q=0, 4=v2=14142, fy=-1, h=L/2=05 (v)

and select the initial guess vector, which must be consistent with specified essential boundary
conditions (i.e. Us =i = v/2), to be

v =10, UP=10, UP=v2=14142 (vi)

Then Eq. (iii) becomes (ff = —h/2)

. 0 v )W 0.25 0
-2 44102 24142| QUy ¢ =4 05 140 O (vii)
0 -24142 24142] (V2 0.25 QP

and eliminating the third equation, we obtain the following global set of equations at the
beginning of the first iteration [sec Eq. (iv)]:

2 -2 v\ _ fos L o0\ _f-0x (vii)
-2 4.4142 Uy - 0.5 241422 2.9142
The solution at the end of first iteration is

Ul(l) — 0.9785, Uzm = 1.1035, Uélj =1.4142 (ix)

For the second iteration, the equations solved are (p =0)

20821 —2081] [U, | __foas), [ o )
20821 45998 | \Us[ 05 f 35607

and the solution becomes

U@ -09962, UP=11163, UP =14142 (xi)
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The root-mean-square error in the solution (with respect to solution obtained in th
iteration) [see Eq. (3.4.1)] is 0.0106.

The exact solution to this problem, with the data given in Eq. (i), is (one can ver

direct substitution)
u(z) = \/14 22

The convergence tolerance is taken to be e = 10-3, and the maximum number of iterati

prescribed to be 10. The finite element solutions obtained with the linear (L) and quac
(Q) elements are compared with the exact solution in Table 3.4.1. The finite element sol
converges to the exact solution in four iterations.

Table 3.4.1 Comparison of finite element solutions with the exact solu
of the problem in Example 3.4.1 (direct iteration)

z Iteration 2L 4L 1Q 2Q Exact
0.00 1 0.9785 0.9517 0.9699 0.9415
2 0.9962 0.9903 0.9954 0.9881
3 0.9995 0.9988 0.9995 0.9986

4 0.9999 0.9999 0.9999 0.9999 1.0000
0.25 1 — 0.9830 -- 0.9727
2 - 1.0226 - 1.0208
3 - 1.0299 - 1.0298

4 — 1.0307 — 1.0308 1.0308
0.50 1 1.1036 1.0767 1.1013 1.0665
2 1.1163 1.1136 1.1168 1.1127
3 1.1178 1.1176 1.1118 1.1176

4 1.1180 1.1180 1.1187 1.1180 1.1180
0.75 1 - 1.2330 - 1.2285
2 - 1.2489 - 1.2488
3 - 1.2499 - 1.2500

4 - 1.2500 - 1.2500 1.2500

1.00 1.4142 1.4142 1.4142 1.4142 1.4142

3.4.3 Newton’s Iteration Procedure

In Newton’s method, also referred to as the Newton--Raphson method, E
(3.4.4) is written as
{B} = [K|{U} - {F} = {0} (3.4.(

where {R} is the residual vector. We expand {R} in Taylor’s series about tt
(known) solution at the ith iteration:

(r—1)
{R{UN} = (REUI-D)) + (9@) {U +... @4
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first Omitting the terms of order 2 and higher, x;ve obtain
v by
' ORI\ il
) (a{v}) {8U} = —{R{U}*)} (3.4.8)
(xii)
s is [THUY){eU} = —{R{U}V)} (3.4.8b)
;2(1: where [T7] is called the tangent matriz
. SR}V
YD) = (5174 ) 3.49
5(0) S
S The component definition of the tangent matrix at the element level is
o _ OR? a .
T;j - aué- - 63-15‘3 (Z il )
K, Ty 5‘K =
= Z ( g +Kfm ) Z mye, + K (3.4.10)
m=1 Ouj ™
The residual vector after the (r — 1)st iteration is given by
~{R{UY)} = {F} - [K{UY-D){uy (3.4.11)
The solution at the rth iteration is then given by
Uy = {U}rY + {§U} (3.4.12)
The symmetry or unsymmetry of the direct matrix or the tangent matrix
depends on the original differential equation as well as the weak form used
- to develop the finite element equations; the symmetry or unsymmetry of
the tangent matrix depends on the direct matrix as well as on the nature
of nonlinearity included in a(z,w) and c(z,u).
: Figure 3.4.2 shows the convergence of the Newton-Raphson iteration
l- procedure for a single degree-of-freedom system. Here T'(U) denotes the
] slope of the tangent to the curve F = K(U)U at U. The Newton—Raphson
) ; iteration converges for hardening as well as softening type nonlinearities. For

hardening type, convergence may be accelerated using the underrelaxation in
Eq. (3.4.5). The method may diverge for a saddle point behavior. Several
comments regarding the Newton-Raphson procedure are in order.

LW

e At the end of cach iteration, the procedure gives an increment of the
solution as opposed to the total solution in the direct iteration procedure.

i S
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F
KU -F=R®U)
F, _ <
i 1
Wy o7t
f : Ue - Converged solution
'8, : sU, : Uy — Initial guess solution
g A '
= L
U, \Us =15 v

U,=dU, + U, U= &0, + U,

Figure 3.4.2 Convergence of the Newton iteration procedure (calculation o
6U for a specified residual value R).

e Since the actual specified essential boundary conditions are included in the
initial guess vector, the incremental vector {6U} is subjected to only the
homogeneous form of the specified essential boundary conditions.

e The tangent matrix does not have to be exact; an approximate [T] can
also provide the solution but it may take more iterations. In any case, the
residual vector will be computed using the definition {R} ={F}-[K){U}.

e When the tangent matrix is updated only once in a certain number
of iterations (to save computational time), the procedure is known as
the modified Newton-Raphson method. Generally, the modified Newton—
Raphson iteration method takes more iterations to converge than the full
Newton's iteration, and it may even diverge if the nonlinearity is severe.

Example 3.4.2

Consider the element coefficient matrix in Eq. (3.3.3a). Assume that a(z,u) = a®(z), b=10,
c(z,u) = cp(z) + e (z)u + ey (z)u?, G, = 0, B = Bo + Byug,. Then we have

T dle dL¢
Ky 2/ {Ge(m) s dxj + [eo(z) + 1 (z)un () + ea(z)ui (z)] LSL;?} dz

a

+[Bo + Brun(s)] L (@s) LS () ()

Note that in this case [K ¢ is symmetric. We wish to compute the element tangent coefficient
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matrix. We have

T5 =) Fu v+ K5
m=1 i

T

9 L. .
=> )—{ / [co(@) + 1 (@un + ex(a)ud] LeLe, do
J To

m=1
+ [Bo + Brun ()] L (zy) L, ($h)}‘ufn + K3

n

Ty
Z us, { / (el + 2cqunL§) LELE, dx + By LS (s) LS (z5) LE, (:cf,)] + K¢,

m=1

1
!

Ty
= / (cluh + QCQuij L§LYdz + Byun (z4) LE (@) LE (23) + K (ii)

where the identities

Qoo 1g, Y unlt = w(a)
J m=1

are used in arriving at the last line. Note that the tangent matrix [T¢] is also symmetric.

Example 3.4.3

Here we wish to solve the nonlinear finite element equations of Example 3.4.1 using the
Newton-Raphson iterative technique. First, we compute the tangent matrix at the element
level and then assemble the equations. For an element, we have

T oz

5= O e, + K¢

Jue
J

o ([, dLidls e L Ke
B -3—-1% (/z Up T i dx) um-l—K,-j

Th ¢ ) i
Buy, dLS . aLE, =
= -;--.-;—— = ( E ’!Lm—a)dx‘i‘KiJ‘
m=1

Tg

zhd dlLe - .
=/ SIS det Ky = R+ K, 0]

where the identity

is used in arriving at the last line. We have,

. b duy, arg . u§ — uf %8 daLg .
Kfj=/ _ET.T_Ljd:CZHZ_ E‘r’j dx

a Ta
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or

5 u—uf [ -1 —1
¢ NN L 1
] = 2he [1 1]

Thus, the tangent matrix becomes

[Te] = [Ke}_’_{R'P,] — (ﬂ§+ﬁ§;) [—'1 —]] y (ﬁ; - ug) {_1 _1:|

2h. 1 Toh. |1 1

where %¢ denote the nodal values known from the previous iteration. Alternatively,

8KF o, OK{, . OKS . | 8KE®
Bug Ut Uy kg t B us
] = (KT + 3

GKS, o AKE, K5 aKE
%L _} 22 e % [ 22 g€
é'ul' u'f Bu.‘f 1“’2 (juz u], 611; 11',2

u&=us
i i

=(ﬁ§+ﬁ§)[ 1 &1J+§l_[ g - a5 ﬁ‘fuﬁ,“,:[

%he: =3 1 he |~ +15 -5 + s
_@+a) [ 1 —1]  (@g-as) [-1 -1 ¥
= T oh. -1 1T o, 1 1 (i)

Note that the tangent coefficient matrix is not symmetric.
With the data in Eqs. (i) and (iii) of Example 3.4.1, at the beginning of the first iteration
we have (after assembly and imposition of the boundary conditions)

{ 2 _2}{51)?1}:_{0.25}{ 2-2 }
-2 4 U5 0.50 —2+4.4142 — 3.4142
-{22) w
The solution to these equations is
6Uy = 0.0, Uy = 0.125, 6U3 = 0.0 {iv)
and the complete solution becomes
UM =10000, UM =11250, U =14142 )
The solution at the second iteration is obtained using
[ 2 -2‘25J {wl } _ { 0.0156 } (vi)
-2 450 | ] 86U, -0.0312
The solution to these equations is
6U; = 0.0, Uy = —0.0007, U3 = 0.0 (vii)
and the complete solution becomes

U =10000, U®=1118, U =14149 (viii)

The root-mean-square error in the solution (with respect to the solution obtained in the first
iteration) [see Eq. (3.4.2)] is 0.0034.
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Table 3.4.2 contains the numerical results obtained with the Newton-Raphson iteration
method. The Newton-Raphson method gives converged solution in only three iterations as
opposed to four iterations taken by the direct iteration method. For the mesh of 1 quadratic

element, the error criterion is met while the solution did not actually coincide with the exact
solution.

Table 3.4.2 Comparison of finite element solutions with the exact solution
of the problem in Example 3.4.3 (Newton-Raphson iteration).

x Iteration 2L 4L 1Q 2Q Exact
0.00 1 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000 1.0000 1.0000
0.25 1 - 1.0312 = 1.0312
2 - 1.0308 = 1.0308
3 1.0308 - 1.0308 1.0308
0.50 1 1.1250 1.1250 1.1241 1.1250
2 1.1180 1.1180 11187 1.1180
3 1.1180 1.1180 1.1187 1.1180 1.1180
0.75 1 : 1.2812 2 1.2766
2 - 1.2504 1.2502
3

= 1.2500 = 1.2500 1.2500

3.5 Computer Implementation
3.5.1 Introduction

The nonlinear formulations and solution procedures described above can be
implemented on a computer using Fortran language. Fortran is chosen here
mainly because of its transparent nature (i.e. one can see how the statements
correspond to the theory) compared to C** language. Of course, once the
logic of implementation is understood, it is casier to carry out the actual
computations in any suitable computational languages. The logical statements
for each of the iterative methods are described here. It is necessary for the
reader to familiarize with programs FEM1DV2 and FEM2DV2 described in
Appendix 1 of the finite element book by Reddy [1] to fully understand the
logic and variable names used here. The listing of FEM1DV2 contains Fortran
statements for assembly, imposition of boundary conditions, and solution of
equations (banded symmetric and unsymmetric equation solvers are listed in
Appendix 1 of this book). A general flow chart of the nonlinear analysis
program is given in Figure 3.5.1.

3.5.2 Preprocessor Unit

The following information is read in the preprocessor.



74 NONLINEAR FINITE ELEMENT ANALYSIS

1. Read or define the model equation data

(a) Define the coefficients a(z, u), b(x,u), and c(x, u) and source f(z) in tk
model differential equation (3.1.1) (they are assumed to be polynomia.
of certain degree); for example, assume

(z,u) =a T U+ au’ +a gTf+a (5@)2
alx, = Qxo 1 ul ay2 u:cldm ur? i
du du?
(1) = b + a1 + byt + bugt? + by 2 + by (__)
dz dx

Initialize global Kj;. £

\—<'O}D

Transfer global information
(material properties, geometry, and solution)
to element

!

CALL ELKF to calculate K;®
and £, and assemble to form
global Kj and F;

Impose boundary conditions
and solve the equations

Priqt
solution
Write a
message

Figure 3.5.1 A flow chart of the nonlinear analysis program for the solution
of the model equation (3.1.1).
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du du\ 2
e(x,u) = cgo + C1T + cyyu + %2’&2 & C-uwld__r + Cuz2 (&E)

f(@) = foo + f_xlx + f.:r;2332 (3.5.1)

so that a large class of nonlinear one-dimensional problems may be solved
with the program. The choice in Eq. (3.5.1) requires us to read the following
parameters (assuming continuous data for the whole domain)

AX0, AX1, AU1, AU?2, AUX1, AUX?2; BX0, BX1, BUI,etc.

(b) Read geometric and analysis data

X0 = global coordinate of the first node of the domain (assumed to be
a straight line),

AL = domain size (length),

IEL = element type (= 1, linear; = 2, quadratic),

NEM = number of elements in the mesh,

NONLIN = flag for type of analysis (= 0,linear; > 0, nonlinear)
EPS = allowable error tolerance ¢ for the convergence test,

ITMAX = maximum allowable number of iterations for convergence.

(c) Read specified boundary and initial data: NSPV, NSSV,
NSMB, ISPV(1,J), VSPV(I), ISSV(I,J), VSSV(I), ISMB(1,J),
BETAO(I), BETAU(I), UREF(I), and GUO(I), where
NSPV = number of specified primary degrees of freedom (U),

NSEV = number of specified secondary degrees of freedom (@ =
nragy),

NS’E&"B = number of specified mixed boundary conditions

Q@+ (Bo + BuU)(U — Uses)],

ISPV (1,J) = array of specified primary degrees of freedom (I =
1,2,...,NSPV and J = 1,2); ISPV(I,1)= global node number at
which the primary variable is specified, and ISPV (I, 2) is the degree of
freedom number at that node which is specified (in the class of problems
discussed in this chapter, NDF = 1 and therefore ISPV (I,2) = 1 for
all cases).

VSPV(I) = array of specified values of primary variable DOF in

ISPV (I,J) [VSPV(I) should be in the same sequence as the specified

degrees of freedom in ISPV(I)],

1SSV (1,J) = similar to ISPV (I, J), except for secondary variables,

VSSV(I) = similar to VSPV (I), except for secondary variables,

ISMB(I,J) = array of specified mixed boundary conditions (I =

1,2,...,NSSV) and has meaning similar to arrays ISPV(I,J) and

ISSV(I1,J),

BETAO(I) = array of specified values of Gy,
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BETA1(I) = array of specified values of B,
UREF(I) = array of specified values of Uset,
GUO(I) = initial (guess) solution vector o = 19, . NEQ);
NEQ=number of total primary degrees of freedom in the mesh

2. Write out the input data and necessary warning messages.

3.5.3 Processor Unit

Here we discuss mainly the calculation of element coefficients, imposition of
various types of boundary conditions, and iterative algorithm. The number of
Gauss points needed to evaluate the coefficients is determined by the highest
polynomial degree, p [NGP = (p +1)/2]. In the present case, the expression
that dictates the degree of the polynomial is the integral involving c¢(z,u).
If we assume ¢ to be a linear function of u, and if u is approximated using
linear polynomials, the integrand of the above integral expression is cubic
(p = 3). Hence, a two-point integration is needed to evaluate it; for quadratic
interpolation of u, the integrand is a fifth degree polynomial (p = 5), and
hence it requires three-point Gauss quadrature. Of course, the polynomial
degrees goes up if a is a higher degree polynomial of z.

The element coefficients are evaluated using the Gauss rule. Based on the
discussion presented in Section 2.7, the clement coefficients in (3.3.3a), for
B =0, can be expressed as

ELK(I,J)=ELK(I,J)+ (AX * GDSFL(I) * GDSFL(J)
+BX « SFL(I) « GDSFL(J) + CX * SFL(I) * SFL(J))*
GJ* GAUSWT(NI,NGP)
which is evaluated inside a loop on NI = 1,2,..., NGP and inner loops on
I,J=1,2,..., NPE. Boxes 3.5.1 and 3.5.2 show the Fortran subroutines for
the calculation of [K*] and {f°}.

The imposition of boundary conditions on a banded system of non-
symmetric equations is discussed next. The assembled coefficient matrix
[GLK] is stored a full band width (NBW) form, and it is of the order
NEQ x NBW, the last column GLK (I, NBW) being reserved for the source

vector. Note that GLK (I, NHBW) is the main diagonal of the assembled
matrix.

Essential boundary conditions

Now suppose that U is specified to be U 1- Then the Ith equation of the
system is replaced with the equation Uy = U;. This is done as follows:

GLK(I,J)=00 forall J=1,2,.... NBW and J#I
GLK(I,NHBW) =10, GLK(I,NBW)="U; (3.5.2)
This is repeated for all NSPV conditions.
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Box 3.5.1 Subroutine for the generation of the coefficient matrices in the
direct iteration method.

SUBROUTINE COEFF (IEL.NPE,F0)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION GAUSS(5,5),WT(5.5)

COMMON /SHP/ SFL(4), GDSFL(4)

COMMON /STF/ STIF(3,3),ELF(3),ELX(3),ELU(3),AX0,AX 1,AU

DATA GAUSS/5*0.0D0,-0.57735027D0,0.57735027D0,3*0.0D0,
1 -0.77459667D0,0.0D0.0,77459667D0,2*0.0D0,-0.86113631D0,
2 -0.33998104D0,0.339981041D0,0.86113631D0,0.0D0,
3 -0.906180D0.-0.538469D0,0.0D0,0.538469D0,0.906 180D0/

DATA WT /2.0D0,4*0.0D0,2*1.0D0,3*0.0D0,0.55555555D0,
I 0.88888888D0,0.55555555D0,2%0.0D0,0.34785485D0,
2 2%0.65214515D0,0.34785485D0,0.0D0,0.2369227D0),
3 0.478629D0,0.568889D0,0.478629D0,0.236927D0/

G

NGP=IEL+1
EL=ELX(IEL+1)-ELX(1)
DO 10 [=1,NPE
ELF(I)<0.0
DO 10 I=1.NPE
10 ELK(D=0.0
o
DO 80 NI=1,NGP
XI=GAUSS(NLNGP)
CALL SHAPE (EL,ELX,GJ,JELNPE,XI)
CNST=GI*WT(NINGP)
X=0.0
U=0.0
DO 20 [=1 NPE
X=X+SFLI*ELX()
U=U+SFL(D*ELU()
20 CONTINUE

AX=AX0+AX1*X+AU*U
DO 40 I=1,NPE
ELF(I)=ELF(1)+F0*SFL()*CNST
DO 40 J=1,NPE
S00=GDSFL(I)*GDSFL(J)*CNST
ELK(LD=ELK(LJ)+AX*S00
40 CONTINUE
80 CONTINUE
RETURN
END
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Box 3.5.2 Subroutine for the generation of the coefficient matrices in th
Newton-Raphson iteration method.

SUBROUTINE COEFF (IEL,NPE,F0)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION GAUSS(5,5),WT(5.5), TANG(3,3)

COMMON /SHP/ SFL(4),GDSFL(4)

COMMON /STF/ STIF(3,3).ELF(3),ELX(3),ELU(3),AX0,AX1,AU

c

DATA GAUSS/5*0.0D0,~0.57735027D0,0.57735027D0,3%0.0D0,
1 —0.77459667D0,0.0D0,0.77459667D0.2*0.0D0,~0.86113631 D0,
2 -0.33998104D0,0.33998104D0,0.8611363 1 D0,0.0D0,
3 ~0.906180D0,0.538469D0,0.0D0,0.538469D0,0.906 180D0/

DATA WT /2.0D0,4*0.0D0,2%1.0D0,3*0.0D0,0.55555555D0,
1 0.88888888D0.0.55555555D0,2%0.0D0,0.34785485D0.
2 2%0.65214515D0,0.34785485D0,0.0D0,0.2369227D0,
3 0.478629D0,0.568889D0.0.478629D0.,0.236927D0/
€
NGP=IEL+1
EL=ELX(IEL+1)-ELX(1)
DO 10 I=1,NPE
ELF(I)=0.0
DO 10 J=1,NPE
TANG(LJ)= 0.0
10 ELK(LI)=0.0
DO 80 NI=1,NGP
XI=GAUSS(NLNGP)
CALL SHAPE (EL,ELX,GJ.IEL,NPE,XI)
CNST=GI*WT(NLNGP)
X=0.0
U=0.0
DU=0.0
DO 20 I=1,NPE
X=X+SFL(I)*ELX(I)
U=U+SFL(I*ELU(T)
DU=DU+GDSFL(I)*ELU(I)
20 CONTINUE
AX=AX0+AXT*X+AU*U
DO 40 I=1 NPE
ELF(D=ELF(I+F0*SFL()*CNST
DO 40 J=1,NPE
S00=GDSFL(I)*GDSFL(J)*CNST
S10=GDSFL(Iy*SFL(J)*CNST
SLK(LT)=ELK(ILJ)+AX*S00
TANG(LJ)=TANG(LI)+AU*DU*S10
40  CONTINUE

80 CONTINUE
C i
C  Compute the residual vector and tangent matrix

€
DO 100 I=1,NPE
DO 100 J=1,NPE
100 ELF(I)=ELF(I)-ELK(I,J)*ELU(J)
DO 120 I=1,NPE
DO 120 J=1,NPE
120 ELK(LI=ELK(LJ)+TANG(L])
c

RETURN
END
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Natural boundary conditions

Next, suppose that Q7 is specified to be Q7. Then the force in the Ith equation
is augmented with Qr:

GLK(I,NBW) = GLK(I, NBW) + O; (3.5.3)

This is repeated for all NSSV conditions.
Mixed boundary conditions

Finally, we consider mixed boundary conditions of the form
Q1+ Br(Ur — Uret) =0 (3.5.4)

where B is a function of u, say B; = 89+ 3}U;. The boundary condition may
be implemented as follows:

GLK(I, NHBW) = GLK(I, NHBW) + (8} + 8}U1)
GLK(I,NBW)=GLK(I, NBW)+ () + 8}U1) Uret ~ (3.5.5)

The above statement modifies the assembled direct stiffness matrix and source
vector in direct iteration procedure. In the case of Newton-Raphson iteration,
the assembled tangent matrix is modified as follows:

GLK(I, NHBW) = GLK(I, NHBW) + (8} + 28}U1) - fjUs  (3.5.6)
GLK(I,NBW)= GLK(I,NBW) — (87 + ,a}UI) Ur+ (B + B Ur) Uset

Box 3.5.3 contains a listing of the subroutine that imposes various types of
boundary conditions on an banded, unsymmetric system of equations.
The major steps of the two iterative algorithms are summarized below.

1. Read in the convergence tolerance TOLR, maximum allowable number of
iterations JTM AX, and the initial guess vector GUC(I).

Initialize the previous solution vector {GUP} = {0}.

Set the iteration counter, ITER = 0.

Begin the iteration counter on ITER = ITER + 1.

Initialize the global coefficient matrix [GLK]| (and source vector {GLF'} if
used); when unsymmetric banded solver is used, the last column of [GLK]
takes the place of {GLF'}.

6. Calculate the element coefficient matrices [ELK] using the last iteration
solution {GUC} (or a weighted-average of {GUC} and {GUP} when

underrelaxation is used) and element source vectors { ELF'} and assemble
to obtain [GLK] (and {GLF}).

oups o
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Box 3.5.3 Subroutine for the implementation of various types of boundary
conditions.

SUBROUTINE BNDRYUNSYM(ITYPE, MXNEQMXFBW,MXEBC,MXNBC,NDF,NHBE W,
1 GLK, GLUNSPV,NSSV N SMB,ISPV,ISSV,ISM'B,VSPV,VSSV,BETAO,BETAU,UREF}

C
&
C The subroutine is used to implement specified boundary conditions
g on BANDED UNSYMMETRIC system of finite element equations
C

IMPLICIT REAL*8 (A-H,0-7)

DIMENSION ISPV(MXEBC,2),ISSV(MXNBC,2),]SMB(MXNBC,2),VSPV(MXEBC),
I VSSV(MXEBC),UREF(MXNBC),BETAO(MXNBC),BETAU(MXNBC),
2 GLU(MXNEQ).GLK(MXNEQMXFBW)
¢
NBW=2*NHBW

C Include specified PRIMARY degrees of freedom
C

IF(NSPV.NE.O)THEN
DO 120 NP=1,NSPV
NB=(ISPV(NP,1)-1)*NDF-+ISPV(NP,2)
DO 110 J=1,NBW
110 GLK(NB,1)=0.0D0
GLK(NB,NHEW)=1.0D0
120 GLEK(NB,NBW)=VSPV(NP)
ENDIF
C
C  Modify the source vector to include specified non-zero SECONDARY VARIABLES
(o
[F(NSSV NE.0)THEN
DO 130 NS=1,NSSV
NB=(ISSV(NS,1)-1)*NDF+ISSV(NS,2)
130 GLK(NB,NBW)=GLEK(NB,NBW}+VSSV(NS)
ENDIF

¢
C Implement the specified MIXED BOUNDARY CONDITIONS
C

IF(NSMB.NE.0)THEN

DO 150 MB=1,NSMB

NB=(ISMB(MB, 1)-1)*NDF+ISMB(MB,2)

IF(TYPE.LE.1)THEN
GLK(NB,NHBW)=GLK(NB,NHBW)+BETAO(MB)+BETAU(MB)*GLU(NB)
GLK(NB,NBW)=GLK(NB,NBW)+UREF(MB)*(BETAOMB)+BETAU(MB)*GLU(NB))

ELSE
GLK(NB,NHBW)=GLK(NB ,NHBW)+BETAO(MB)+2.0*BETAU(MB)*GLU(NB)

* -UREF(MB)*BETAU(MB)
GLK(NB.NBW)=GLK(NB,NBW)+UREF(MB)*(BETAO(MB)+BETAU(MB)*GLU(NB))
* (BETAO(MB)+BETAU(MB)*GLU(NB))*GLU(NB)
ENDIF
150 CONTINUE

ENDIF

RETURN

END
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7. Impose the boundary conditions (the essential boundary conditions must
be homogeneous).

8. Solve the equations (solution is returned in the last column of [GLK]).
9a. In direct iteration, update the current and previous solution vectors
{GUP} = {GUC} and {GUC} = {GLF} ({GLF} = [GLK]jast)-
9b. In Newton-Raphson iteration, update the current and previous solution
vectors {GUP} = {GUC} and {GUC} = {GUC} + {GLF}.
10. Calculate the residual or solution error, ERROR [see Egs. (3.4.2)-(3.4.3)].

11. If ERROR < TOLR print ITER, ERROR, and {GUC} and stop. If
ERROR > TOLR, continue.

12. If ITER > ITMAX, stop; otherwise, repeat steps 4 through 11.

Example 3.5.1

Consider heat transfer in an isotropic bar of length L = 0.18 m. The surface of the bar
is insulated so that there is no convection from the surface. The governing equation of the
problem is the same as Eq. (3.1.1) with b = ¢ = 0, u = T', the temperature. The conductivity
a(z,T) =k is assumed to vary according to the relation

k= ko (1+ B8T) (3.5.7)

where kg is the constant thermal conductivity [kg = 0.2 W/(m °K)] and 3 the temperature
coefficient of thermal conductivity [3 =2 x 10~3 (°C—1)]. Suppose that there is no internal
heat generation (i.e. f=0) and the boundary conditions are

T(0) = 500°K, T(L)=300°K (3.5.8)

Table 3.5.1 shows the linear and nonlinear solutions T'(z). The results obtained with the
direct iteration method and Newton-Raphson method with e = 0.001 are tabulated in Table
3.5.1. In both methods, the convergent solution was obtained for three iterations. Both
methods and both meshes give the same solution.

Table 3.5.1 Finite element solutions of a nonlinear heat conduction equation.

DI/NR Direct Iteration Newton-Raphson
T Linear 8L 4Q 8L 4Q
0.0000 500.00 500.00 500.00 500.00 500.00
0.0225 475.00 477.24 477.24 477.24 477.24
0.0450 450.00 453.94 453.94 453.94 453.94
0.0675 425.00 430.06 430.06 430.05 430.05
0.0900 400.00 405.54 405.54 405.54 405.54
0.1125 375.00 380.35 380.35 380.34 380.34
0.1350 350.00 354.40 354.40 354.40 354.40
0.1575 325.00 327.65 327.65 327.65 327.65

0.1800 300.00 300.00 300.00 300.00 300.00
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‘3.6 Closing Remarks

In this chapter, finite element formulations of nonlinear boundary-value
problems in one dimension are discussed, iterative methods of solving the
nonlinear algebraic equations are studied, and computer implementation of
the nonlinear finite clement analysis is outlined. The simple class of problems
discussed herein should give the reader a clear understanding of the workings
of nonlinear finite element analysis steps. In the next chapter we will consider
multi-variable, one-dimensional, nonlinear equations governing bending and
stretching of straight beams.

Problems

3.1 Consider the second-order differential equation

where u(z) is the dependent unknown, f(z) is a known function of position z, and p
is a function of the dependent variable, as given in Eq. (a). Write the finite element
model and derive the tangent stiffness matrix coefficients.

3.2 Compute the tangent matrix for the case a(z,u) = ag(@)4, e(z,u) =0, and 8 =0
(see Example 3.4.2).

3.3 Consider the nonlinear differential equation

_% {(u+¢2)§_'2]:1, 0<z<1 (a)
%‘(0):0, u(1) =0 (b)

Analyze the nonlinear problemn using the finite element method with direct iteration
procedure. Tabulate the nodal values of u(z) for 4 and 8 linear elements and 2 and 4
quadratic elements.

3.4 Formulate Problem 3.2 with Newton-Raphson iteration procedure, and compute the
tangent coefficient matrix. Tabulate the nodal values of u(x) for 4 and 8§ linear elements
and 2 and 4 quadratic elements.

3.5 Formulate the nonlinear differential equation

dﬁu L » 2
4~—drg+2u =0, Lese (a)
_ L | R
wbsl, [dw o L:g =0 )

using the finite element method, and solve the problem using direct iteration
procedure. Tabulate the nodal values of u(x) for 4 and 8 linear elements and 2 and 4
quadratic elements. The exact solution is given by u(z) = 1/x.

3.6 Compute the tangent stiffness matrix associated with Problem 3.5, and solve it with
Newton—Raphson iteration procedure. Tabulate the nodal values of u(z) for 4 and 8
linear elements and 2 and 4 quadratic elements.
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3.7 Formulate the nonlinear differential equation

d? d
'E;;:%'"’“ﬁ:o‘ D<z<1 (a)

using the finite element method, and solve the problem using direct iteration
procedure. Tabulate the nodal values of u(z) for 4 and 8 linear elements and 2 and 4
quadratic elements. The exact solution is given by u(z) = 1/(1+ z).

3.8 Compute the tangent stiffness matrix associated with Problem 3.7, and solve it with
Newton—Raphson iteration procedure. Tabulate the nodal values of u(z) for 4 and 8
linear elements and 2 and 4 quadratic elements.

3.9 Formulate the nonlinear differential equation in Problem 3.7 subject to the boundary
conditions P

u(0) =1, [Eﬂ% +'uv2]m=l =0 (a)
using the finite element method, and solve the problem using direct iteration
procedure. Tabulate the nodal values of u(z) for 4 and 8 linear elements and 2 and 4
quadratic clements. The exact solution is given by u(z) = 1/(1 + ).

3.10 Compute the tangent stiffness matrix associated with Problem 3.9, and solve it with
Newton-Raphson iteration procedure. Tabulate the nodal values of u(x) for 4 and 8
linear elements and 2 and 4 quadratic elements.

3.11 Formulate the nonlinear differential equation in Problem 3.7 subject to the boundary

conditions
du

a“w“— + 21.{} _— = 1,
using the finite element method, and solve the problem using direct iteration
procedure. Tabulate the nodal values of u(z) for 4 and 8 linear elements and 2 and 4
quadratic elements. The exact solution is given by u(z) = 1/(1 + ).

3.12 Compute the tangent stiffness matrix associated with Problem 3.11, and solve it with
Newton Raphson iteration procedure. Tabulate the nodal values of u(z) for 4 and 8
lincar elements and 2 and 4 quadratic elements.

3.13 Formulate the nonlinear differential equation

[d_“ +u2] =0 (a)

dz z=1

2] 3
_gx_g - (3.2) =0, 0<z<1 (a)
(2] =2 B b
I.da: +u =0 \"f: ’ dE =1 05 ( )

using the finite clement method, and solve the problem using direct iteration
procedure. Tabulate the nodal values of u(z) for 4 and 8 linear elements and 2 and 4
quadratic clements. The exact solution is given by u(z) = 1/2(1 + z).

3.14 Consider simultancous steady-state conduction and radiation in a plate. The
mathematical formulation of the problem in non-dimensional form is given by

do

_a (k(e)E) =0; G<E<t (a)

dg

8(0) = 6o, 6(&)=1.0 (b)
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where £ is the non-dimensional thickness coordinate, § is the non-dimensional
temperature, and k is the conductivity

k(8) = kg (1 3 %93) ©

and N is called the conduction-to-radiation parameter. Develop the finite element
model of the problem and compute the element tangent matrix.

3.15 Analyze the nonlinear problem in Problem 3.14 using the finite element method with
Newton-Raphson iteration procedure. Take ko = 1, N = 0.01, §0 =1, and 6y = 0.5.
Tabulate and plot the nodal values of B(¢) for 8 linear elements and 4 quadratic
elements.

3.16 The explosion of a solid explosive material in the form of an infinite cylinder may be
described by [3]

rdr

Lg (‘r‘@)=28“, O<r<i
dr

subject to the boundary conditions

Atr=0: @=0; Atr=1: u=0
dr

The exact solution of the nonlinear equation is

4
u(r) =1In ———(l o
Analyze the nonlinear problem using the finite element method with (a) Newton—
Raphson and (b) direct iteration procedure. Tabulate and plot the nodal values of u(r)
for 8 linear elements and 4 quadratic elements and compare with the exact solution.
3.17 Redo Problem 3.16 when the right-hand side is replaced by e*. This problem has two
solutions 8.

u;i(r) = mm,

i =1;2
where A; are the roots of the equation

— . =1

1+ X2
3.18 Heat and mass transfer within a porous catalyst particle is described by [3]

Py adu el —u)
bl . —_— 0 <1
dr2 = rdr bitkeap 1+d(l-wu)|’ £

subject to the boundary conditions

At r=0: @—2

0; Atr=1: u=1
Here a,b, ¢, and d are the problem parameters. Analyze the nonlinear problem using
the finite element method with the direct iteration procedure. Takea=0,b=1,c=2
and d = 0.1, and tabulate and plot the solutions u(r) for meshes of 8 linear elements
and 4 quadratic elements.

3.19 Repeat Problem 3.18 with the data a = 2,b=2c=4and d=10.2.
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3.20 Repeat Problen;x 3.18 with the data @ = 0, b= 0.16, ¢ = 14 and d = 0.7 The problem
has three possible numerical solutions.

3.21 Axial mixing in an isothermal tubular reactor where a second-order reaction occurs is
described by [3]
1 d%u | du

e e v
Pedm?+dx+Dau =0, 0<z<l

subject to the boundary conditions

—0: 1. Ldu _q. Qu_
Atz =0: u_lTPedm" Abg=13 E-—{l

where Pe and Da are the problem parameters. Analyze the nonlinear problem using
the finite element method with the direct iteration procedure. Take Pe=5 and Da=1,
and tabulate and plot the solution u(z) for 8 linear elements.

3.22 Consider the pair of nonlinear differential equations

P 2 -
d3u 1 [ d%u dv d?v  1du fdv\®
'a;*a(@) 2= iz (@) =9

subject to the boundary conditions
dv
u(0) =v(0) =1, wu(l)=16, E(O) =-1, »(1)=05
Formulate the finite element model of the equations and compute the tangent

coefficient matrix.
3.23 Consider the pair of nonlinear differential equations

1 d?u | du u
_ﬁ_Q + E +J6(U—'U-.:) -—-CED(I (1—1})31{1) (1_“;_11%) 5

1 d2v  dv U
_ﬁd_m§+§ =Da (l—v)exp(l_!_uh)

in (0,1) and subject to the boundary conditions

du _dv

At:r=0‘Peu—£, Pe'b'—a
du dv _

At =1 E——U, E'i_'-—o

Formulate the finite element model of the equations and compute the tangent
coefficient matrix.
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4

Nonlinear Bending
of Straight Beams

4.1 Introduction

In this chapter, we consider a slightly more complicated one-dimensional
nonlinear problem than that was discussed in Chapter 1. A beam is a
structural member whose length to cross-sectional dimensions is very large and
it undergoes not only stretching along its length but also bending about an
axis transverse to the length. When the applied loads on the beam are large,
the linear load—deflection relationship cecases to be valid because the beam
develops internal forces that resist deformation, and the magnitude of internal
forces increases with the loading as well as the deformation. This nonlinear
load—deflection response of straight beams is the topic of this section.

In developing a general nonlinear formulation of beams, straight or
curved, one must define the measures of stress and strain consistent with
the deformations accounted for in the formulation. Such a formulation,
called a continuum formulation, will be discussed in Chapter 9. The present
nonlinear formulation of straight beams is based on assumptions of large
transverse displacements, small strains and small to moderate rotations. These
assumptions allow us to use the stress measure of force per unit undeformed
area and strain measure of change in length to the original length (and in
the case of shear strain, change in the angle from 7/2). The changes in the
geometry are small so that no distinction between the Piola-Kirchoff and
Cauchy stresses (to be discussed in detail later) will be made. The nonlinearity
in the formulation comes solely from the inclusion of the inplane forces that
are proportional to the square of the rotation of the transverse normal to the
beam axis.

Two different theories to model the kinematic behavior of beams are
considered here: (1) the Euler-Bernoulli beam theory (EBT) that neglects
the transverse shear strain, and (2) the Timoshenko beam theory (TBT),
which accounts for the transverse shear strain in the simplest way. In each
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case, we begin with an assumed displacement field and compute strains that
are consistent with the kinematic assumptions of the theory. Then we develop
the weak forms using the principle of virtual displacements and the associated
displacement finite element model. We also discuss certain computational
aspects (e.g. membrane and shear locking) and iterative methods for the
problems at hand. Computer implementation issues are also presented.
Discussion of other linear finite element models of the Timoshenko beam
theory are also presented for completeness.

4.2 Euler—Bernoulli Beams
4.2.1 Basic Assumptions

For the sake of completeness, the governing equations of the nonlinear bending
of beams are developed from basic considerations. The classical beam theory
is based on the Euler-Bernoulli hypothesis that plane sections perpendicular
to the axis of the beam before deformation remain (a) plane, (b) rigid (not
deform), and (c) rotate such that they remain perpendicular to the (deformed)
axis after deformation. The assumptions amount to neglecting the Poisson
effect and transverse strains. A refined theory is that due to Timoshenko, and
it will be discussed in the sequel. The principle of virtual displacements will
be used to formulate the variational problem and associated finite element
model.

4.2.2 Displacement Field and Strains

The bending of beams with moderately large rotations but with small strains
can be derived using the displacement field

up = up(z) — z%q, uz =0, uz=wp(z) (4.2.1)
where (u1, u2, u3) are the total displacements along the coordinate directions
(z,y,2), and up and wp denote the axial and transverse displacements of a
point on the neutral axis.

Using the nonlinear strain-displacement relations (sum on repeated
subscripts is implied; see Chapter 9)

1 (0u; Ouy 1 [ Oup, O,
= = -— 4.2.2
& 2 ((3?5, ¥ 8'.]’,'?;) i3 2 (axi c‘);z:j ) ( )

and omitting the large strain terms but retaining only the square of dus/dx
(which represents the rotation of a transverse normal line in the beam), we
obtain
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dug d2w0 l (d’w(] )2
2

Ellzsmwza_zdmz ELE_
dug 1 (dwg)2 d*wy
=|=+=(=||-2z| ==
dz 2\ dz dz?
dug 1 (duwg\? d?
0 0 wpy w
2=+ (@) BT e

and all other strains are zero. Note that the notation 1 = z, 2 = y, and
x3 = 2 is used. These strains are known as the von Kdrmdn strains.

4.2.3 Weak Forms

The weak form of structural problems can be directly derived (i.e. without
knowing the governing differential equations) using the principle of virtual
displacements. The principle states that if a body is in equilibrium, the
total virtual work done by actual internal as well as external forces In
moving through their respective virtual displacements is zero. The virtual
displacements are arbitrary except that they are zero where displacements
are prescribed. The analytical form of the principle over a typical clement
Q° = (4, 2p) (see Figure 4.2.1) is given by (see Reddy [2])

SWe = §WE — 6Wg =0 (4.2.4)

where §W§ is the virtual strain energy stored in the element due to actual
stresses ¢j; in moving through the virtual strains 6e;;, and §W§ is the work
done by externally applied loads in moving through their respective virtual
displacements. Here o;; and &;; denote the Cartesian components of the stress
and the Green strain tensors, respectively. Due to the assumption of small
strains, no distinction will be made here between the Cauchy and second
Piola -Kirchhoff stress tensors (sce Chapter 9).
For the beam element, we have

5Wf = / 55ij Oig dVv
JVe
(4.2.5)

T

L b ]
"C = i=1

@ [:

where V¢ denotes the element volume, g(z) is the distributed transverse load
(measured per unit length), f(z) is the distributed axial load (measured per
unit length), Q¢ are the generalized nodal forces, and §A¢ are the virtual
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generalized nodal displacements of the element (see Figure 4.2.1) defined by

At =tola), M5 =uofe), 85=[-22) =g,

AL =wug(zp), Af=wo(zp), Af= ]}%} = 0(z3) (4.2.6a)
Q5 = ~Naalza), Q5 = Noa(ay) N

=~ [orer =] L 5= [ =

Q5 = —Maz(za), Qf = Myy(zs) (4.2.6b)

In view of the explicit nature of the assumed displacement field (4.2.5) in
the thickness coordinate z and its independence of coordinate y, the volume
integral can be expressed as a product of integrals over the length and area of

the element: .
/ () dV:] / () dA dz
Ve Ty J A

Therefore, the expression for the virtual strain energy can be simplified as
follows (only non-zero components of strain and stress are €11 = Egzp and
g11 =0 mm)

swe= [ / 86atsy A dit = / " f (623, + zbe,) oz dA d
= Crx Ozx T = Ezp T 2085, | Oga i
Ae Ta JA4F

2 déug  dwyg déwo) d*6wg
- — 22| 5,0 dA dx
-[L‘a /Aic [( iz @& dz P agr | T A
xy [ déug  dwgy déwy d25TU{]
- Ngr=ob o e | 0 427
]xa Kd:c M dst) = dﬁzM} ’ L
A
2 /hgﬁ /‘T\Qs /P\Qs
A 5 Ay leg—— 9,
: !< he "'I ! |‘ ke Fl

Figure 4.2.1 The Euler Bernoulli beam finite element with generalized
displacement and force degrees of freedom. (a) Nodal
displacements. (b) Nodal forces.
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where N is the axial force (measured per unit length) and M, is the moment
(measured per unit length)

Ngz = [45 O dA ) My, :-/A Ozez dA (428)

The virtual work statement in Eq. (4.2.7) becomes

ddug dwg déwg d26wyq
0= i SR
f [( dx dr dr )'Nm dx? M| de

Ty Th 8
- f q(z) bwp(z) dz — / f(z) bug(z) dx — Z QS 6AT  (4.2.9)
Ia Ta i=1

The above weak form is equivalent to the following two statements, which
are obtained by collecting terms involving §ug and Swy separately [see the
definitions in Eqgs. (4.2.6a,b)]:

ds
e / (_“0 N, — bug f(m)) dz — Q5 6AS — Q5 6AS  (4.2.108)

B Ty d@wo duyg d2 6’&'}0
O—Aa { o ('En—Nmm) _";ag— JMxx_éwgq(:U) dx

— Q5605 — Q5 805 — QF A% — Q§6A (4.2.100)

The differential equations governing nonlinear bending of straight beams
can be obtained, although not needed for finite element model development,
from the virtual work statement in (4.2.9), equivalently, the weak forms
(4.2.10a,b), or from a vector approach in which forces and moments are
summed over a typical beam element.

Integration by parts of the expressions in (4.2.9) to relieve Sug and dwy of
any differentiation results in

ANz d (dwg . dQ?"I:r:n
0= / {(_,_f_ - )5%0 — [5 (—d“'t;:—oj\fmm) + = e +q 511.)[)}

dwy dMye d6wol™ o~ o o ne
{NxzéuD_F( h,’ Nez +— d:r:' )5 O_Mz:x e ]ma ;Qz éAi

Since dug and Swyg are arbitrary and independent of cach other in x, < x < Tp
as well as at z = 2, and = = 3 (independently), it follows that the governing
equations of equilibrium, known as the Euler equations, are

" d;\g? = f(z) (4.2.11a)

d (duo M,
: s e e SR s = 4.2.
i = ( = ) T2 = (o) (4.2.11b)

6’&0 :
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In view of the definitions (4.2.6a), definitions (4.2.6b) are obtained as the
natural (or force) boundary conditions

Qi =+ Nzw(zaJ = D: Qi - N:cm(xb) =0

dwyg dM. duig dM, :
e ik S N.'.c:z: | TT =1, P e ) - T -
@+ [ dz N dz La L Q5 [ dz Nz + dr ]ra 0

Q§ b A/Ia:x(“co.) = 01 Qg = M:z::c(xb) = U [4212)

The vector approach involves identifying a typical beam element of length
Az with all its forces and moments, summing them, and taking the limit
Az — 0. Consider the beam element shown in Figure 4.2.2, where Ngp s
the internal axial force, V() is the internal vertical shear force, M, is the
internal bending moment, f(z) is the external axial force, and g(z) is external
distributed transverse load. Summing the forces in the z and 2 coordinate
directions, and moments about the Y axis, we obtain

Y F=0 =N di(N,d ANg) + f(z)Az =0
Epzzo; =V +(V+AV) +q(z)Az =0

d
D My=0: Moot (May + AMy,) — VAz + NezBo =2

+ g(z)Az(cAz) =0

q(x)

(QUTTIIIT,

o > — X

Figure 4.2.2 A typical beam element with forces and moments to derive
equations of equilibrium using the vector approach.
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Taking the limit Az — 0, we obtain the following three equations:

Cﬂ‘vm

+ f(z) =
dV
Emj-l-q(x)zt]
dx =¥ Amd:r =9

which are equivalent to the two equations in (4.2.11a,b). Note that V is the
shear force on a section perpendicular to the z-axis, and it is not equal to the
shear force Q(z) acting on the section perpendicular to the deformed beam.
In fact, one can show that V = Q + Ny.(dwg/dz).

If one starts with the governing equations (4.2.11a,b), their weak forms can
be developed using the usual three-step procedure:

o }\‘TiCCL‘
o= o (42 1)

o (d
= ’ (%I\Txx = Ulf) dr — [%]Nxz]zi
Ta

_ f " (% Moo 91 f) 4 = vy () [~ N (a)] — 1(28) Vo () (4.2.138)
a d (dwg d2M.
= == Na"z - = —q|d
0=["w [ & (=) - q} ¢

T | dyg /dw d2v
- L [Exg (“d—on) - d—;Mm - qu} dz

duy dMzy } K d’b’z) r"
_ ~ (=22 6,
[v(dN+dx)ma e
- % | dug [ dwyg d%vy
= el i 4 © N S -er:r T d
_[%a [d:c (ds: N, ) dx? i

dwg dM. d'w[] dMys
- ’UQ(-’I?Q,) [_ (E:B_N:ca: == d;‘x)}:ru e rU2 -rb [_"'f\rmm _&? s

- [—%‘f] [~ M ()] - [—%‘ﬂ Maa(z0) (4.2.13b)

where v; and v are the weight functions, whose meaning is obvious if the
expressions fvydz and quadz are to represent the work done by external forces.
We see that vy ~ Sup and vy ~ Swp. Clearly, Eqgs. (4.2.13a,b) are the same,
with the definitions (4.2.6b) or (4.2.12), as those in Egs. (4.2.10a,b).

The resultant force N, and moment M, can be expressed in terms of the
displacements once the constitutive behavior is assumed. Suppose that the



g
i

94 NONLINEAR FINITE ELEMENT ANALYSIS

beam is made of a liriear elastic material. Then the total stress is related to
the total strain by Hooke’s law

Oge = E€gy (4.2.14)
Then we have

Now = / Orz dA = Eesm dA
Ae Ae
_ e | dug L1 fduwg dz'wg
_/eE[dx'z(E) o |
dug 1 (dwp\? . d*wq

M,, = / Y / Efepy 2 dA
AE Ae

B d’u{; dwp\ 2 P

= = i (—dx ) — 2 zdA

e |dug 1 [duwg 2 ; d2wp .
= LT +3 (%) } = (4.2150)

where AS,., Bf,, and Df, arc the extensional, extensional-bending, and

bending stiffnesses of the beam clement

(A%, BS,, DS,) = Jﬁ., E®(1,2,2)dA (4.2.16)

For beams made of an isotropic material, the extensional-bending stiffness
Bz, is zero when the z-axis is taken along the geometric centroidal axis. We
have Bf, =0, A%, = E°A®, and DS, = E¢I®, where A® and I¢ are the cross-
sectional area and second moment of inertia (about the y-axis) of the beam
clement. For simplicity, we shall omit the element label e on the variables.
In general, Az;, Bys, and Dy, are functions of z whenever the modulus F
and/or the cross-sectional area is a function of z.

The virtual work statements (4.2.10a,b} can be expressed in terms of the
generalized displacements (ug,wp) by using Eqgs. (4.2.15a,b). We have

Zh déug | du dwy Ty
= it ) P ST - Voug d
¢ /:,,,,A”dm [dm+2(dx.)}d /xﬂf(?)“odm
= Q] 5ug(ﬂ’}a) = Q4 511',0 (.I‘b) (4217&)
__ Lo d51U(] duwyg | dug dwa) dész d2w0 ;
U= ./:nn {Am dr dz {dac i) ( dzx + Dz dz? dxz? as
- / il A — D it — O OBy — O e e — @ 50 )
Ta
(4.2.17b)
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where it is assumed that the coupling coefficient B, is zero because ‘of the
choice of the coordinate system; that is, the z-axis is assumed to coincide with
the geometric centroidal axis [, z dA = 0.

4.2.4 Finite Element Model

Let the axial displacement wug(z) and transverse deflection wg(x) are
interpolated as [ = —(dwo/dz)]

2 4
up(z) = Zuj,-g:“)j (z), wils Z 9i(x) (4.2.18)
j=1 =1

A1 =wo(za), Ba=0(za), Az =wo(z), Ag4=0(zp) (4.2.19)

and 1; are the linear Lagrange interpolation functions, and ¢; are the Hermite
cubic interpolation functions. For a linear problem, this element gives exact
nodal displacements u; and A; for any f(z) and ¢(x) when Az, and Dy,
are element-wise constants. Then the element is said to be a superconvergent
element.

Substituting Eq. (4.2.18) for ug(z), (4.2.19) for wo(z), and dug(z) = ¥i(x)
and 6wg(z) = ¢i(x) (to obtain the ith algebraic equation of the model) into
the weak forms (4.2.17a,b), we obtain

2 4
0=> Kiluj+ Y KijA;—F (i=12) (4.2.20a)
j=1 d=1

4
0= Z KPuj+ > KA, - Ff (1=1,2,3,4) (4.2.20b)
J=1

where
- [g e w2
f Az d;;” ‘ff: '“?’J dr, K& =2K}
K7 _] L LT " [Am (%ﬂ W1 801 g
=/; fidz+Qi, Fi= :bqfﬁf v+ Qr (4.2.21)

for (i,j = 1,2) and (I,J = 1,2,3,4), where Q1 = Q1, Qs = Qu, Q1 = Q2,
Q2 = Qs, Qd Qs, and Q4 = Q. See Eq. (4.2.6b) for the definitions of Q.
Note that the coefficient matrices [K12],[K?] and [K??] are functions of the
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unknown wo(z). Also, note that [K12)T [K?1]; hence, the element direct
stiffness matrix is unsymmetric.

The above definition of coefficients K%ﬁ is based on a particular
linearization of Egs. (4.2.17a,b) , which is probably the most natural. Other
forms of linearization are possible. For example, if consider Eq. (4.2.17a).
the coefficient of déug/dz contains a linear term and a nonlinear term. To
preserve the linear bar stiffness, the linear term should be kept as a part of
the stiffness matrix. The nonlinear term can be either included in the stiffness
coefficient, as is done in the definition given in Eq. (4.2.21), or the whole
nonlinear term may be assumed to be known from the previous iteration.
In the latter case, the term ends up in the load vector {F'}. This choice
of linearization is known to slow down the convergence. In the case of Eq.
(4.2.17b), we know that the term duwg /dz outside the square brackets is due to
the nonlinear strain. Hence, it was linearized (i.e. calculated using the solution
from the previous iteration) in defining KZ' of Eq. (4.2.21). One may linearize
Eq. (4.2.17b) such that dug/dz +0.5(dwo/dz)? is calculated using the solution
from the previous iteration. In that case K A =0and K 22 will have additional
contribution. Thus, it is possible to computationally decouple the equations
for {u} and {A} and solve the two equations tteratively, feeding the solution
from one equation to the other. However, such a strategy often results in
nonconvergence.

Equations (4.2.20a,b) can be written compactly as

2 2 4
Z ZK:;YA; = Ff’ or Z K%lup + Z K;-‘}?Ap = };g:x (4222)
y=1p=1 p=1 P=1

In matrix form, we have

KX KN (A () .
{[Kﬂ] {K”]H{A?}}“{{Fz}} (4.2.23)
where )
Al=w, i=12% A}=A, i=1,234 (4.2.24)

Note that the direct stiffness matrix is unsymmetric only due to the fact
that [K1?] contains the factor 1/2 whereas [K2!] does not. One way to make
(KT = [K'] is to split the linear strain dug/dx in Eq. (4.2.17) into two
equal parts and take one of the two parts as known from a previous iteration:

Ty déwg dwy |dug 1 dwo)z-]
e PANCH B (Y L
/%{Am iz dm{dx+2(d:c | i
1 /= dwo dbwyg dup dug (dwg)g dbéwqg dwg
== | g BNty |G dz
2Je, | dz dz dz dx dz dr dzx

(4.2.25)
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The first term of the above equation constitutes [K [K?] and the second one
constitutes a part of [K??]. The symmetrized equations are

e fe (@) ={) e
where

Kn Ru fA di; dﬂl’g

4z da
R =k§=3 [ (452) % 9 4o
= [ () B a, R =K}
< = / sz‘ffﬁf T e
el @)sse wn

Note that in the symmetrized case, we must assume that ug(z) is also known
from a previous iteration.

4.2.5 Iterative Solutions of Nonlinear Equations

The direct iteration and Newton-Raphson methods introduced in Chapter 3
are revisited here in connection with the nonlinear finite element equations of
the EBT. Consider the nonlinear equations (4.2.23), which can be written as

(Ke({Aah{A} = {F°} (4.2.28)
where
Af=my, A= A‘j, Af = -3, Af =ug, Af = ‘g , Bg= AZ (4.2.29a)

Ft=Fl F§=F) Fe=F} F{=F}, FE=F2 F¢=F? (4.2.29b)

The system (4.2.28) of nonlinear algebraic equations can be linearized using the
direct iteration and Newton-Raphson iterative methods of Section 3.4. These
are presented next. Note that the linearized equations may be symmetric
or unsymmetric, depending on the formulation, and therefore an appropriate
equation solver must be used. On the other hand, an unsymmetric banded
equations solver may be used in all cases.
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Direct iteration procedure

In the direct iteration procedure, the solution at the rth iteration is determined
from the assembled set of equations

KA DAY ={F} or [REAYD){AY = {F}  (4230)

where the direct stiffness matrix [K®] is evaluated at the element level using
the known solution {A°}("=1) at the (r — 1)st iteration.

Newton-Raphson iteration procedure

In the Newton Raphson procedure, the linearized element equation is of the
form

[TUANDRAY = ~{REAN D)} = {F} - (KHAD™D  (4.2.31)

where the tangent stiffness matrix [T°] associated with the Euler-Bernoulli
beam element is calculated using the definition

_ (BN (oRe\ Y :
n=(5a;) o o T’*‘Z(Mf) R

The solution at the rth iteration is then given by
{A}r i {A}(?“-l) + {5A} (4.2.33)

Although the direct stiffness matrix [K®] is unsymmetric, it can be shown
that the tangent stiffness matrix [T is symmetric. Further, it can be shown
that the tangent stiffness matrix is the same whether one uses [K€] or [K¢]
[see Eqs. (4.2.23) and (4.2.26)].

The coefficients of the element tangent stiffness matrix [T°] can be
computed using the definition in (4.2.32). In terms of the components defined
in Eq. (4.2.22), we can write

(r-1)

s _ [ ORf

720 (W) (4.2.34)
7]

for a, 3 = 1,2. The components of the residual vector can be expressed as

2
RE= Y Y KpAy-
4=1p=1

2 4
=Y Kg'Ap+ Y KPA, —F?
p=1 P=1

2 4
= Z K-;;l?.bp -+ Z KFS_-?AP — F,‘iu (4235)
p=1 P=1
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Note that the range of p is dictated by the size of the matrix [K*%]. We have

0, BRQ 5
() (s )

y=1p=
__ZE (I'Oﬂ’? ﬁ aKQ?A'r
ip
oo IR

o Y 8 _ “
a/_\f (K5) uw+ Z . an” (K#)Bp  (42:36)

We compute the tangent stiffness matrix coefficients I}‘;B explicitly as shown
below:

OK 3
11 11 iP
TH =Ki + Z a Z 5, Ap
=K3_'?-1+ZU-UP+ZU-AP (4.2.37)
Since

oK’

—-_ = forall &, B,i,j and k (4.2.38)
Oug

the coefficients [T*!] and [T?!] of the tangent stiffness matrix are the same as
those of the direct stiffness matrix:

[Tll] - [Kll] i TQ] [Kr21] (4’2.39)

Next consider
2 8K11 4
12 _ pl2 Ap
w-ni+ % () w5 (58

w1 8 (dwy dvidér | 5
atzr oA . dz|A
e 20 E?A;(dm)d:r de “'“"] ?

4

2] 1 dor \ di; dop =
_ 112 s . ot - 51 A
_K1J+Z [ o Aa:a' ).,_\. (ZAK da. i dz P

@1 dojdyidop —
o — dz|A
5. 2 dr dr dr F

e I e 4 _
—kl+ [ 34 %@(zd‘f’iap) dr

za 2 dz dz \f do
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% (1 dwg\ diy; d
I\ ) dr
= Kij + Kif = 2K} = K% (4.2.40)

2 8K21 4 K22
1=K+ 3 (G5 ) w3 () a0
=1\ 98y PZ=1 04y
4

=K+ [ a2 zi”—) e
[ (@) B2 (5o E) -
= '?§+.CbAm (%—?ﬂ-%%) %%ﬁ dz (4.2.41)

4.2.6 Load Increments

Examining the expression (4.2.15a) for the internal axial force N, it is clear
that the rotation of a transverse normal contributes to tensile component
of Nz, irrespective of the sign of the load. As a result, the beam becomes
increasingly stiff with an increase in load. Hence, for large loads the
nonlinearity may be too large for the numerical scheme to yield convergent
solution. Therefore, it is necessary to divide the total load F' into several
smaller load increments 6Fy, 8Fs, ..., 0 Fy such that

N
F=Y 6F (4.2.42)
i=1

For the first load step, the iterative procedure outlined earlier can be used to
determine the deflection. If it does not converge within a reasonable number of
iterations, it may be necessary to further reduce the load increment Fy = §Fy.
Once the solution for the first load increment is obtained, it is used as the
initial “guess” vector for the next load F» = §Fy 4+ 8F,. This is continued until
the total load is reached.

Another way to accelerate the convergence is to use a weighted average of
the solutions from the last two iterations in evaluating the stiffness matrix at
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the rth iteration:

Ao =r{Ak2+(1-1{Ak1, 0<7y<1 (4.2.43)

where 7 is called the acceleration parameter. A value of v = 0.5 is suggested

when the iterative scheme experiences convergence difficulty. Otherwise, one
should use v = 0.

4.2.7 Membrane Locking

For the linear case, the axial displacement ug is uncoupled from the bending
deflection wp, and they can be determined independently from the finite
element models [sce Eqgs. (4.2.20a,b)]

(K} ={F"}, K}l= f Aiz‘;w*?f dz (4.2.44)
[ERRE =, B / mddif deﬁJ dz (4.2.45)

respectively. Here the superscript L signifies the linear stiffness coefficients.
Under the assumptions of linearity, if a beam is subjected to only bending
forces and no axial loads, then ug(x) = 0 when wy is specified to be zero at (at
least) one point. In other words, a hinged—hinged beam and a pinned--pinned
beam (see Figures 4.2.3(a) and (b), respectively) will have the same deflection
wo(x) under the same loads and ug(x) = 0 for all z. However, this is not the
case when the beam undergoes nonlinear bending. The coupling between ug
and wg will cause the beam to undergo axial displacement even when there
are no axial forces, and the solution (ug,wp) will be different for the two cases
shown in Figure 4.2.3.

First, we note that the hinged-hinged beam does not have any end
constraints on wug. If the geometry, boundary conditions, and loading are
symmetric about the center, then ug = 0 there Consequently, the beam does
not experience any axial strain, that is, €0, = 0 (because the beam is free
to slide on the rollers to accommodate transverae deflection). On the other
hand, the pinned—pinned beam is constrained from axial movement at x = 0
and z = L. As a result, it will develop axial strain to accommodate the
transverse deflection. The former beam will have larger transverse deflection
than the latter, as the latter offers axial stiffness to stretching, and the axial
stiffness increases with the load.

Thus, for a hinged-hinged beam, the element should experience no
stretching:

2
——) = 0 (membrane strain) (4.2.46)
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1
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we= = (N S oy =0
g @ e (b)

Figure 4.2.3 Nonlinear bending of (a) hinged-hinged and (b) pinned--
pinned beams.

In order to satisfy the constraint in (4.2.46), we must have

du[) dwo 4
s (_.:s?) (4.2.47)

The similarity is in the sense of having the same degree of polynomial variation
of dug/dz and (dwg/dx)?. For example, when uy is interpolated using linear
functions and wy with cubic, the constraint in Eq. (4.2.47) is clearly not
met and the resulting element stiffness matrix is excessively stiff (hence,
results in zero displacement field), and the element is said to lock. This
phenomenon is known as the membrane locking. In fact, unless a very higher-
order interpolation of ug is used, the element will not satisfy the constraint.

A practical way to satisfy the constraint in Eq. (4.2.47) is to use the
minimum interpolation of ug and wg (i.c. linear interpolation of up and
Hermite cubic interpolation of wg) but treat €l as a constant. Since dug/dz
is constant, it is necessary to treat (dwp/dz)? as a constant in numerically
evaluating the element stiffness coefficients. Thus, if Az, is a constant,
all nonlinear stiffness coefficients should be evaluated using one-point Gauss
quadrature, that is, use the reduced integration. These coefficients include
Kg, Kfjl, T%g, ’1}23,-1, and the nonlinear parts of K*? and Tsz. All other terms
may be evaluated exactly using two-point quadrature for constant values of
Azr and Do,

4.2.8 Computer Implementation

The flow chart for nonlinear bending of beams is shown in Figure 4.2.4. Note
that there is an outer loop on load increments (NLS=number of load steps).
Except for the definition of the stiffness coefficients, much of the logic remains
the same as that shown in Box 3.5.1.

The element stiffness matrix in Eq. (4.2.22) is defined by submatrices
(K'Y, [K'?], and [K??], and the solution vector {A} is partitioned into the
axial displacement vector {u} and vector {A} of transverse displacements.
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Load loop
DOL=1,NLS
F=F+DF
v

Iter=10

Initialize global K, f;

¥

<D0 1107 >

Transfer global information
(material properties, geometry, and solution)
to element

CALL ELKF to calculate K
and f{", and assemble to form
global X, and F;

Impose boundary conditions
and solve the equations

Print solution

Write a :
message

Figure 4.2.4 A computer flow chart for the nonlinear finite element analysis
of beams.

Error <g yes
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In practice, it is desirable to rearrange the solution vector as
{A} = {w, w1 = Aq,601 = Ag, ug, wy = Az, 0, = Ag)T (4.2.48)

This in turn requires rearrangement of the stiffness coefficients such that the
original symmetry, if any, is preserved. For linear interpolation of ug(z) and
Hermite cubic interpolation of wy(x), the submatrix (K] is of the order 2x 2,
[K'?] is 2x4, and [K'??] is 4x 4. Therefore, the total size of the stiffness matrix
is 6 x 6. Thus Eq. (4.2.23) has the specific matrix form

i i i A N A
ol e B A
okl kR kp kB Blia={m 42
Pl e S I I AN A
s N R
-4] 42 41 42 43 = 4 F, 4

Rearranging the equations according to the displacement vector in Egq.
(4.2.48), we obtain

K% KIQ% K}Q% R—ﬁ K%% Klf‘% A é F]2

K2111 Kzlf? f\%% .K%% Ki Kglg (-_2 = 21 (4'2-50)
21 21 22 22 23 24 us Fy

Kj K3 K Ki K3 K3 | | Af F3

LK}l Kif K K Ki Kil LAf i,

The computer implementation of such rearrangement of element coefficients
is presented in Box 4.2.1, where NDF denotes the degrees of freedom per node
(=3) and NPE the nodes per element (=2). This rearrangement is carried
out after the element coefficients [K'Y], [K1?], [K*?], {F'} = {0}, and {F?}
are computed inside loops on Gauss quadrature. There are two loops, one for
full integration and another for reduced integration.

The number of full Gauss points (NGP) is determined by the highest
polynomial degree p of all integrands of the linear stiffness coefficients (recall
that reduced integration is to be used for the nonlinear terms): NGP=(p+1)/2.
For example, if linear interpolation of ug and Hermite cubic interpolation of
wy is used, the integrands of the stiffness coefficients defined in Eq. (4.2.21)
have the following polynomial degrees (assuming that the nonlinear terms are
treated as if they are constant):

ng-l = degree of Az, Kf} = degree of A.,,

K.?fr(l) = degree of Dg, +2, K??,(Q) = degree of AZ, +0

F} = degree of f(z)+ 1, F? = degree of g(z)+3



Box 4.2.1 Fortran statements to rearrange stiffness coefficients.
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aoaanon

II=1

10=2%]-1

J1=1

J0=2*]-1
ELK(ILJJ)
ELK(ILJJ+1)
ELK(ILIT+2)
ELK(II+1,7)
ELK(I+2,]7)

100
200

JI=NDF*J+1
[I=NDF*I+1

Rearranging of the element matrix coefficients for
the EULER-BERNOULLI beam element (EBE)

DO 200 I=1,NPE

ELF(II+1)=ELF2(10)
ELF(II+2)=ELF2(10+1)

DO 100 J=1,NPE

ELK(II+1,J7+1) = ELK22(10,J0)
ELK(II+1,73+2) = ELK22(10,J0+1)
ELK(II+2,J7+1) = ELK22(10+1,J0)
ELK(I1+2,J]+2) = ELK22(10+1,J0+1)

=ELKI11(L])
= ELK12(L,J0)
= ELK12(LI0+1)
= ELK21(10,])
= ELK21(10+1,7)

In particular, for constant values of AXX = A

p e o)
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DXX =D¢,,FX = f,and

QX = g, we have NGP = (3 +1)/2 = 2 (dictated by F7) and the number of
reduced integration points is LGP = 1. The full Gauss quadrature is used to
evaluate (K1), [K2()], {F'}, and {F?}, whereas the reduced integration is
used to evaluate [K12] and [K22?)].

The computation of the direct stiffness coefficients and force vectors defined
in Eq. (4.2.21) is straightforward. For example, we have

ELF1(i) = ELF1(i) + FX « SFL(i) * CNST
ELF2(I)= ELF2(I) + QX « SFH(I) x CNST
ELK11(i,j) = ELK11(i, j)
+ AXX *GDSFL(i) * GDSFL(j) * CNST

ELK22(I,J) = ELK22(I,
+ DXX « GDDSFH(I) * GDDSFH(J) x CNST

in the full integration loop, and

J)

ELK12(i,J) = ELK12(i,J) + 0.5 AXX « DW
« GDSFL(i) * GDSFH(J) x CNST
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ELK?21(1,5) = ELK21(I,5) + AXX * DW
* GDSFH(I) » GDSFL(j) x CNST
ELK22(I,J) = ELK22(I,J) + 0.5« AXX * DW % DW
*GDSFH(I)* GDSFH(J) « CNST
in the reduced integration loop. Here, SFL(i) = y, SFH(I) = ¢y,
GDSFH(I) = %, GDDSFH(I) = %4 GDSFL(i) = %% and DW —

ol dz? ! dx
(dwo/dz) for 4,5 = 1,2 and I,J = 1,2,3,4. Similarly, the extra terms that

need to be added to the direct stiffnesses can be computed in the reduced
integration loop as [see Eq. (4.2.41)]
TANG12(i, J) = TANG12(i, J)+05% AXX x« DW
*GDSFL(i)* GDSFH(J) * CNST
TANG22(1,J) = TANG22(1,J) + AX X « (DU + DW % DW)
*GDSFH(I)« GDSFH(J)«* CNST

where DU = (dug/dx).

Example 4.2.1

Consider a beam of length L = 100 in., 1 in. x 1 in. cross-sectional dimensions, hinged
at both ends, made of steel (£ = 30 msi), and subjected to uniformly distributed load of
intensity gp Ib/in. Using the symmetry about « = L /2, one-half of the domain is used as the
computational domain. The geometric boundary conditions for the computational domain
are

wo(0) =uo(L/2) = (42 ,=° (4.251)

The load is divided into load increments of equal size Agy = 1 Ib/in. A tolerance of
€ = 103 and maximum allowable iterations of 30 (per load step) are used in the analysis.
The initial solution vector is chosen to be the zero vector, so that the first iteration solution
corresponds to the linear solution

LY (= 23 ozt &
up(z) =0, wglz)= EQ‘ED__II. (E - 2? - %) (4.2.52)

In particular, the center deflection is (for gg =1)
£ _ 5QOL4
v0(3) = 384D,

For the four element mesh, the linear stiffness matrix, force vector, and the global linear
solution vector are given by (with the specified boundary conditions Ay = 0, A;3 = 0 and
A5 =0)

= (.5208 in. (4.2.53)

24 0.0000 0.00 -24 0.0000 0.00
0 01536 -0.96 0 -0.1536 -0.96

0 -0.9600  8.00 0 09600 4.00
-24  0.0000 000 24 0.0000 0.00
0 -0.1536 0.96 0 0.1536  0.96

0 -09600 4.00 0 09600  8.00
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( Qg ) ( ~0.01666

0.000 As 0.20223

6.250 Ag ~0.01523

ey ) —13.021 Ag | 0.37109
L 0.000 (° \ Ag =9 —-0.01146
6.250 App 0.48218
13.021 Ay —0.00612

ANP 0.52083 )

Table 4.2.1 contains the results of the nonlinear analysis obtained with the direct iteration
procedure as well as the Newton-Raphson iteration (acceleration parameter, v = 0). The
Gauss rule M x N has the meaning that M Gauss points are used for the evaluation of linear
stiffness coefficients as well as the force components, and N Gauss points are used to evaluate
the nonlinear stiffness coefficients. As discussed earlier, the problem should not exhibit any
nonlinearity. The correct solution (4.2.53) is predicted by the use of 2 x 1 Gauss rule (see the
last column of Table 4.2.1). Both 4 and 8 element meshes and direct and Newton—Raphson
methods predicted the same result. The 2 x 2 Gauss rule not only yields incorrect results,
but it takes more iterations to converge.

Table 4.2.1 Finite element results for the deflections of a hinged-hinged
beam under uniformly distributed load.

Load gg Direct iteration (DI) Newton-Raphson (NR) DI-NR
(2 x2) (2 x2) 2x1

4 elem. 8 elem. 4 elem 8 elem. 4 and 8
1.0 0.5108 (3)* 05182 (3)  0.5108 (4)  05182(4)  0.5208 (3)
2.0 09739 (5)  1.0213 (3) 00739 (4)  1.0213(4)  1.0417 (3)
3.0 13763 (6)  1.4986 (4) 13764 (4) 14986 (4)  1.5625 (3)
4.0 17269 (7)  1.9451 (4) 17265 (4)  1.9453 (4)  2.0833 (3)
5.0 20356 (9) 23609 (5) 20351 (4) 23607 (4)  2.6042 (3)
6.0 23122 (11) 27471 (5) 23116 (3) 27467 (3)  3.1250 (3)
7.0 25617 (14) 3.1054 (6)  2.5630 (2) 31074 (2)  3.6458 (3)
8.0 27936 (17) 34418 (7)  2.7930 (2)  3.4422 (2)  4.1667 (3)
9.0 3.0049 (22)  3.7570 (7) 3.0060 (3) 3.7564 (2) 4.6875 (3)
10.0 3.2063 (29)  4.5013 (8) 3.2051 (3) 4.0523 (2) = 5.2083 (3)

* Numbcr of iterations taken to converge.

Example 4.2.2

Next, we consider the straight beam of Example 4.2.1 with (a) pinned ends, and (b) clamped
ends, and under uniformly distributed transverse load. Noting the symmetry of the solution
about @ = L/2, one-half of the domain is used as the computational domain. The geometric
boundary conditions for the computa’ciona& domain of the two problems are

d‘lﬂo
—=. =L

pinned: ug(0) = wy(0) = ug{ 3 Vi (4.2.54)

d'wo

clamped: ug(0) = wy(0) = Ejfmg = ug(a-) o P (4.2.55)
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‘ T!'Le load increments of Agp = 1.01b/in., a tolerance of ¢ = 10-3, and maximum allowable
iterations of 25 (per load step) are used in the analysis. The initial solution vector is chosen
to be the zero vector. Solutions to the linear problems are

. : B ‘ _ goL* =22 z\2
pﬂlﬂ@d. ‘U.O(I} =0, wp (.’L’) = 54__D=; Lﬁ-? (I == —L) [4256)
. . _ _ qolt [z 2% 4
clamped: uy(z) =0, wy(z)= 24Dos (f - 235 o+ 7 (4.2.57)

and the maximum deflections occurs at L/2. For gy = 1 Ib/in., L. = 100 in., and E = 30x 106
psi, they are given by (D.. = EH3/12, H =1)

; L 5gp L4 ; :
d: —_) = = = . 5
pinned: wg( 5 ) 381D 0.5208 in. (4.2.58)
L. It ‘ )
clamped: 'wg(—z—) = 384D = 0.1042 in. (4.2.59)

The linear nodal displacements obtained using four elements in half beam are

( Az ) ( —0.01666
Ag 0.20223 25 ggégg;
Ag —0.01523 Aﬁ _0'058,9
Ag 0.37109 8 e
{ = ; Ay ={ -0.00313
Ag —0.11458
A Aqy 0.09155
. 0.48218
iy Ao ~0.00195
12 ~0.00612 A 0.10417
L Aig ) pinned \  0.52083 ) 14 7 clamped :

Tables 4.2.2 and 4.2.3 contain the results of the nonlinear analysis of pinned—pinned and
clamped-clamped beams, respectively; the results were obtained with the Newton Raphson
iteration method. The direct iteration method did not converge even for 100 iterations per
load step when Ag = 1.0. It is possible to find a value of Ag and ITMAX for which one
can obtain converged solutions.

Table 4.2.2 Finite element results for the deflections of a pinned-pinned
beain under uniform load (N-R).

262 2051
Load gq 4 elements 8 elements 4 elements 8 elements
1.0 0.3669 (5)* 0.3680 (5) 0.3687 (5) 0.3685 (5)
2.0 0.5424 (4) 0.5446 (4) 0.5466 (4) 0.5457 (4)
3.0 0.6601 (3) 0.6629 (3) 0.6663 (4) 0.6645 (4)
4.0 0.7510 (3) 0.7543 (3) 0.7591 (4) 0.7564 (4)
5.0 0.8263 (3) 0.8299 (3) 0.8361 (4) 0.8324 (4)
6.0 0.8912 (3) 0.8950 (3) 0.9027 (4) 0.8979 (4)
7.0 0.9485 (3) 0.9525 (3) 0.9617 (4) 0.9558 (4)
8.0 1.0002 (3) 1.0043 (3) 1.0150 (4) 1.0080 (4)
9.0 1.0473 (3) 1.0516 (3) 1.0638 (4) 1.0557 (4)
10.0 1.0908 (3) 1.0952 (3) 1.1089 (4) 1.0997 (4)

* Number of iterations taken to converge.
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There is no significant difference between the solutions obtained with the two integration
rules for this problem. Figure 4.2.5 shows the load-deflection curves for the two beams. If
the axial displacement degrees of freedom are suppressed (i.e. equivalent to setting ug = 0
at every point of the beam) in the nonlinear analysis of beams, the beam will behave very
stiff, and the deflections experienced will be less than those shown in Tables 4.2.2 and 4.2.3
and Figure 4.2.5.

Table 4.2.3 Finite element results for the deflections of a clamped-clamped
beam under uniform load (N-R and 2 x 1 Gauss rule).

Direct iteration Newton-Raphson iteration
Load gy 4 elements 8 elements 4 elements 8 elements
1.0 0.1033 (3)* 0.1034 (3) 0.1034 (3) 0.1034 (3)
2.0 0.2022 (4) 0.2023 (4) 0.2022 (3) 0.2023 (3)
3.0 0.2938 (4) 0.2939 (4) 0.2939 (3) 0.2939 (3)
4.0 0.3773 (5) 0.3774 (5) 0.3773 (3) 0.3774 (3}
5.0 0.4529 (5) 0.4531 (5) 0.4528 (3) 0.4530 (3)
6.0 0.5213 (6) 0.5215 (6) 0.5214 (3) 0.5216 (3)
7.0 0.5840 (7) 0.5842 (7) 0.5839 (3) 0.5841 (3)
8.0 0.6412 (8) 0.6412 (8) 0.6413 (3) 0.6414 (3)
9.0 0.6945 (9) 0.6944 (9) 0.6943 (3) 0.6943 (3)
10.0 0.7433 (10) 0.7431 (10) 0.7435 (3) 0.7433 (3)

* Number of iterations taken to converge.

| [ Lgsaalss | il ol fes T
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LARERE RERNE

N L L Ltttk AL LALAL) L) LA

|
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 80 9.0 10.0
Load, g,

Figure 4.2.5 Load versus deflection curves.
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4.3 Timoshenko Beams
4.3.1 Displacement Field and Strains

The EBT is based on the assumption that a straight line transverse to the
axis of the beam before deformation remains (i) straight, (ii) inextensible, and
(iii) normal to the mid-plane after deformation. In the TBT, the first two
assumptions are kept but the normality condition is relaxed by assuming that
the rotation is independent of the slope (wy, ;) of the beam.

The displacement field of the beam in the TBT can be expressed as

uy = up(z) + 2¢z(x), w2 =0, wuz=wo(x) (4.3.1)

where (u1,ug,ug) are the displacements of a point along the (z,y,z2)
coordinates, (ug,wp) are the displacements of a point on the mid-plane of
an undeformed beam, and ¢, is the rotation (about the y-axis) of a transverse
straight line (see Figure 4.3.1).
The only non-zero strains are
ouy 1 (dwg)2 _dup | 1 (dwo)2+ quaw — 0 sl (432)

=" "i\d) " 2\d&) Ta
_ Ouy | Oug

dw
Yoz = H = @z + T;}:O = (4.3.3)

The virtual strains are

déu dwq déw, T )
T i PR — 5, b =6+ ——  (43.4)

dx dr dr ' ¥ dz

Figure 4.3.1 Kinematics of a beam in the TBT.



NONLINEAR BENDING OF STRAIGHT BEaAMs 111

4.3.2 Weak Forms

Next, we use the principle of virtual displacements to develop the necessary
weak statements of the TBT. We have

0= 6W® = 6WE + 6L (435
a
5%’}3 = / fAe (waasx:: + ngé'}'mz) dAdz

_ L * / [rme (6% + #86L,) + 0ustnl,] dAde

Ty
= [ (Nmésgx + Mygbel, + Qxéﬁygz) dx (4.3.6a)
Jg

Th i 6
e o i=1

where ¢ is the distributed transverse load, Qf are the element generalized
forces, A¢ element generalized displacements, and

= /A 0oe dA, My = fA ooz dA, Qp =K, / e dA  (43.7)
A

and K, is the shear correction coefficient introduced to account for the
difference between the shear energy calculated using equilibrium stresses and
that predicted by the Timoshenko beam theory on account of constant state
of shear stress through the beam height.

For example, consider a homogeneous beam with rectangular cross-section,
with width b and height h. The actual shear stress distribution through the
thickness of the beam is given by

3@0 222 h h
c —_ - 11—{— B
e 2bh[1 (h)} g =733

where Qg is the transverse load. The transverse shear stress in the first-order
theory is a constant, 0, = Qo/bh. The strain energies due to transverse shear
stresses in the two theories are

1 2 3Q5 7 1 ] Fy# Q3
C— g = —_— = — dA =
Us =26, f,; (02.)"dA = £ bk U= S5an (%) 2G13bh

The shear correction factor is the ratio of Uf to Ug, which gives K, = 5 /6.
The shear correction factor, in general, depends on the geometry and material
properties.
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The Euler-Lagrange equations are given by

dN,

Sun - )
up 7 =) (4.3.8)
, dM,
60 : =i e Q= (4.3.9)
er d dwg
dwyg - (NZEOY
wo s (i\m e ) g(z) (4.3.10)

It is clear that (ug, wy, ¢z) are the primary variables and

Nzz, Qg, and M, (4-3-11)

are the secondary variables. Thus the pairing of the primary and secondary
variables is as follows:

(UOTwa)} (1-"-’0} Qm)s (@:r& Mm:c) . (4312)

Only one member of cach pair may be specified at a point in the beam.
If we assume linear elastic behavior

O'a:a: - ES.’._".’._": O‘xz = G’}/g;z (4.3-13&)
the axial force N, the shear force (), and bending moment M, can be

expressed in terms of the generalized displacements (ug, wo, @) using the
definitions (4.3.7). We obtain

I 2
du 1 /dw do
Noz = Aza h‘f 3 (d—f) tBuyy
dug 1 [dwp\? doy i
Mzyy = Byg f:a + 5 (_:L'—) J -+ Dm—j (4.3.13b)
dw,
Q:c == Sxm (E':EE T ‘;bm)

where A;,, Bz, and Dy, are defined in Eq. (4.2.16), and S, is the shear
stiffness
Sew = K, / G dA=K,GA (4.3.13¢)
A

G being the shear modulus, K, the shear correction coefficient, and A the
area of cross-section. As discussed earlier, the stiffnesses A,;, By,, and Dy,
are functions of z whenever the modulus E and/or cross-sectional area is a
function of z.
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The equations of equilibrium of the TBT for the isotropic case can be
expressed in terms of the generalized displacements as

d duyg 1 /dwg 7
-3 {Am {E -2 (E) | }: 3 (4.3.14)

d dw{]

_d dwo [duy 1 (dwp)\?])| _ '

dz {A”EE [E; +3(@) 1= S
d (, dés d

= (Dm%) + 52 (% + qﬁm) =0 (4.3.16)

4.3.3 General Finite Element Model

The finite element model of the Timoshenko beam equations can be
constructed using the virtual work statement in Eqs. (4.3.5), where the axial
force Ny, the shear force @, and bending moment M, are known in terms
of the generalized displacements (ug,wo, ¢z) by Eq. (4.3.13b). The virtual
work statement (4.3.5) is equivalent to the following three statements

[ 4B [d 1 (dmy;
0_/% {Am dz [dm +2 ( dz i de
— Qi6uo(za) — Q36uo(zs) (4.3.17)

_ (% dbwo [ o, (dug ) e dwp | dug 1(@)2
o= _E{S“’(EJF% el | T\ &

@

—éfwgq}dm — Q56wo(za) — QEéwo(s) (4.3.18)
_ [® e B0rddr | .(@ )]
i D_/xa [ ¥ dr dx + 525 00 dz +¢z)|dz
} Q5664 (z.) — Q% 04(zy) (4.3.19)
where ug, dwp, and 6¢, are the virtual displacements. The Q¢ have the
same physical meaning as in the Euler-Bernoulli beam element, and their

_I relationship to the horizontal displacement wug, transverse deflection wg, and
;[ rotation @, is

Q? = _'Nx:c(ma)} Qi = *Nzcm(irb)

I e __ _ [ % L — [ j\," %}
[ Qz = Q:c o N:m: 3x s 1 Qs Q.‘z: = T C‘)ilf i
Q5 = —Myz(z4), Q5 = Myo(zp) (4.3.20)
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An examination of the virtual work statements (4.3.17)-(4.3.19) suggests
that uo(z), wo(z), and ¢,(z) are the primary variables and therefore must
be carried as nodal degrees of freedom. In general, up, wgy, and ¢,
need not be approximated by polynomials of the same degree. However,
the approximations should be such that possible deformation modes (i.c.
kinematics) are represented correctly. We will return to this point shortly.

It is also possible to develop the weak forms (4.3.17)-(4.3.19) using the
governing equations (4.3.8)-(4.3.10) and introducing the secondary variables
(4.3.20). It is left as an exercise to the reader.

Suppose that the displacements are approximated as

m i D
; (3
uo(@) = Yo usuy’, wole) = Y win?, gu@) = su®  (4.321)
j=1 j=1 =1

where ¢r§a)(x) (@ = 1,2,3) are Lagrange interpolation functions of degree
(m—1), (n—1), and (p— 1), respectively. At the moment, the values of m, n,
and p are arbitrary, that is, arbitrary degree of polynomial approximations of
uo, wo, and ¢y may be used. Substitution of (4.3.21) for ug, wy, and ¢z, and
bup =y, bwe = ¥, and 66, = y¥ into Fqs. (4.3.17)~(4.3.19) yields the
finite element model

m n P
0=> Kjui+) KPuf+ Y Ki3st — F} (4.3.22)
J=1 j=1 =1
. n yu
0=> KZu+> KZuw+ Zl K2ss— F} (4.3.23)
j:] j=1 j:
m n P .
0=) Kus+> KJuwt+> K¥st— F} (4.3.24)
j=1 J=1 j=1
©)
@ y3 gt 1= duwpdy® dus
Tan @a '
(2) 3,,,(1)
v, dwp diy” dY; 13 _ 31 _
Kt_zjl_f% gl dr, K =0, Kjl=0
(2) 7.1(2) 2 5(2) 1.4(2)
K= ["s. 7 s P [ ae () TR,
K , dr dzx 2 Jy z T T
Ly a
T d _[2)
KF = [ 8™ o do = K
Lg

z (3) gopy(3)
K=" (Dmd"‘i"' -d“’”—f+sww§3)¢§3)) do (4.3.250)
T €T
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Th
B = [ 90 f do+ Q5 (@) + Q5ul (ay)
Ty
Ft= | g do+ Q30 (@) + @0 (wy)
_ Q3¢i (za) +va (H‘b (4.3.25b)

The element equations (4.3.22)—(4.3.24) can be expressed in matrix form as

(K] (K2 [KB)) ( {u} {#4} |
(K] (K] [K%) { {w}}={ {Fg}} (4.3.26)
{s} {F°}

[K:ﬂ] [K32] R33]
The choice of the approximation functions d)z@ dictates different finite element
models. The choice of linear polynomials p( } = ’(2) is known to yield a
stiffness matrix that is nearly singular. Thl.‘: w111 be dlscussed further in the
next section. When t,v( ) are quadratic and 1/! are linear, the stiffness matrix
is 5 x 5. It is possible to eliminate the interior degree of freedom for wg and
obtain 4 x 4 stiffness matrix. This element behaves well. When 1,_‘) are cubic

and ﬂ’: @ are quadratic, the stiffness matrix is 7 x 7. If the interior nodal
degrees of freedom are eliminated, one obtains 4 x 4 stiffness matrix that is
known to yield the exact solution at the nodes in the linear case when the
shear stiffness and bending stiffnesses are element-wise constant. More details
of various Timoshenko beam elements will be given in the sequel.

4.3.4 Shear and Membrane Locking

A number of Timoshenko beam finite elements for the linear case (i.e. without
von Kérman nonlinearity) have appeared in the literature. They differ from
each other in the choice of approximation functions used for the transverse
deflection wgy and rotation ¢, or in the variational form used to develop the
finite element model. Some are based on equal interpolation and others on
unequal interpolation of wy and ¢,.

The Timoshenko beam finite element with linear interpolation of both wy
and ¢; is the simplest clement. Linear interpolation of wy means that the
slope dwp/dx is constant (see Figure 4.3.2). In thin beam limit, that is, as the
length-to-thickness ratio becomes large (say, 100), the slope should be equal to
—z, which is also represented as linear as opposed to being a constant. On the
other hand, a constant representation of ¢, results in zero bending energy while
the transverse shear is non-zero. This inconsistency in the representation of
the kinematics through linear approximation of both wg and ¢, results in zero
displacements and rotations, which trivially satisfy the Kirchhoff constraint
¢y = —dwp/dz, and the clement is said be very stiff in the thin beam limit.
Such behavior is known as shear locking.
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2 1l Ig
e

Figure 4.3.2 Kinematics of deformation of the Timoshenko beam element
when both wy and ¢, are interpolated linearly.

1

To overcome the locking, one may use equal interpolation for both
wp and ¢, but treat ¢, as a constant in the evaluation the shear strain,
Yoz = (dwo/dz) + ¢,. This is often realized by using selective integration,
in which one-point (reduced) Gauss quadrature is used to evaluate the
stiffness coefficients associated with the transverse shear strain, and all other
coefficients of the stiffness matrix are evaluated using exact (full) integration.
A more detailed discussion on the alleviation of shear locking and membrane
locking in Timoshenko beam element is presented below.

Since applied distributed loads are represented as point loads in the finite
element method, Eq. (4.3.15) with ¢ = 0 and constant S, implies that

dw
(shear strain) ~0, = ¢, + —d? = constant (4.3.27)

Similarly, for a problem that involves only bending deformation, the element
should experience no stretching [see Eq. (4.3.14) with f = 0]:

; dug 1 /dwg 3
(membrane strain) €2, = =t (Hd:_;) =0 (4.3.28)

In order to satisfy the above constraints, we must have

dwyg
~— 4.3.29
o 2 (4329
dug dwo)2 ;
it R [fsicet. 4.3.30
dx ( dr ( )

The similarity is in the sense of having the same degree of polynomial variation.
For example, when ¢, is linear and wy is quadratic, the constraint in Eq.
(4.3.27) is clearly met. Similarly, when both uy and wq are linear, the
constraint in Eq. (4.3.28) is automatically met; however, when quadratic
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interpolation is used for both wy and wy, dug/dz is linear and (dwgy/dz)?
is quadratic and the resulting element experiences locking, known as the
membrane locking. If ug is interpolated using a cubic polynomial, wy with
a quadratic polynomial, and ¢, with a linear polynomial, we have

g d

¢ (linear) ~ di; (lincar) (4.3.31)
d’uo . dwg % "
T (quadratic) ~ (-E) (quadratic) (4.3.32)

In summary, the constraints would be satisfied for the following two cases:

® Uy, ¢z, and wy all linear, with constant representation of ~,,; the latter

can be accomplished by using reduced integration to evaluate the shear
stiffness coefficients.

® wg is cubic, wy is quadratic, and ¢ is linear. However, this will result in a
9 x 9 stiffness matrix with different degrees of freedom at different nodes,
making it difficult (but not impossible) to implement into a computer
program.

The membrane locking can also be avoided, in addition to using
appropriate interpolation of the variables, by using selective Gauss quadrature,
as discussed in Section 4.2.7. In the present study, we shall use equal linear
or quadratic interpolation of the variables (ug, wo, ¢) with reduced integration
of all nonlinear terms (to avoid membrane locking) and shear terms, that
is, stiffness coeflicients involving Sy, (to avoid shear locking) of the stiffness
matrix.

4.3.5 Tangent Stiffness Matrix

Returning to the nonlinear finite element model (4.3.26) of Section 4.3.3, we
compute the tangent stiffness matrix of the Timoshenko beam element. Much
of the computer implementation discussion presented in Section 4.2.8 is also
valid for the Timoshenko beam element.

The tangent matrix coefficients are defined by

3 n
. 0
af : o ¢
y=1k=1 j

In particular, we have
1 11

1 [f® dwo dp'V) di;
T2 o H R | o
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i3 _ e
TP =Kj=0
T3 = K2 +0= K2

z d dwo\?] dp® dy®
T2 _ g2 / " Ay |2 (_0) v B
- & v % | g * drx dr dzx b

23 -23 23

31 _ 731 _ 731

T =K;; +0=K;

732 _ 732 _ 32

33 -33 33
Tj =K +0=K? (4.3.34)

where the direct stiffness coefficients Kgﬁ are defined by Eq. (4.3.25a).

As discussed earlier, we must use reduced integration on nonlinear stiffness
coefficients and shear stiffness coefficients, while the remaining stiffness

coefficients may be evaluated using full integration. For example, consider
the following integral expression:

2 7,,2) 2 5 ,(2) 3,2
T dyy dip; V2 dap
/bAm [@w—* L/ (dw") g T0%s ]d:c (4.3.35)

dr dr dr ' 2\ dr der  dz

If quadratic interpolation of both ug and wy is used (see Figure 4.3.3) and
Az is constant, then the first term in the integrand is a cubic polynomial
while the second term is a fourth-order polynomial. Thus, exact evaluation
of the first term requires two-point Gauss quadrature while the second term
requires three-point Gauss quadrature. If we use two-point Gauss quadrature
to evaluate T}%—Q (and Kff), the first term in the coefficient of A;; is integrated
exactly while the second term is integrated approximately. This amounts to
approximating (dwo/dz)? as a linear polynomial. Consequently, the constraint
ed. = 0 [sec Eq. (4.3.28)] is satisfied.

The rearrangement of the elements of nodal displacement vector, as shown
in Eq. (4.2.50), requires rearranging of Kf;ﬁ of Eq. (4.3.26). Box 4.3.1 shows
the logic for this rearrangement.

-V [P —

wn w2 'U)S S}_ 82 S3
1 EEEOEREED 3 1 GEEESSD )

T P - b

Figure 4.3.3 Linear and quadratic Timoshenko beam finite elements.
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Box 4.3.1 Fortran statements to rearrange stiffness coefficients.

C Rearranging of the element stiffness coefficients
C of the TIMOSHENKO beam element (TBT)
C ELKI11, ELF]I, etc are defined by Egs. (4.3.25a,b)
&
II=1
DO 160 I=1.NPE
JI=1
ELF(II) =ELFI()
ELF(II+1) = ELF2(I)
DO 150 J=1 NPE
ELK(ILJJ) =ELK11(LJ)
ELK(ILJJ+1) =ELKI2(L))
ELK(II+1,J7) =ELK21(LJ)
ELK(II+1,JJ+1) = ELK22(LJ)
ELK(II+1,JJ+2) = ELK23(LJ)
ELK(11+2,JJ+1) = ELK32(L,J)
ELK(I1+2,J3+2) = ELK33(1.J)
150 JJI=I*NDF+1
160  II=I*NDF+1

Example 4.3.1

Consider the hinged hinged beam of Example 4.2.1. Using the symmetry about z = L/2,
one-half of the domain is used as the computational domain. The geometric boundary
conditions for the computational domain are

wg(0) = uo(Z) = ¢=(Z) = 0 (4.3.36)

E;

The load is divided into load increments of equal size Agp = 11b/in. A tolerance of € = 10-3
is used in the analysis. The initial solution vector is chosen to be the zero vector, so that
the first iteration solution corresponds to the linear problem. The exact linear solution is
(up(z) = 0)

_wolt [z ,2t @l (2 ) o @l® () o2 T
wo(®) = 54p., (E'2L3+L4 T\ ) =@ ap, \1TO T
(4.3.37)

The center deflection of the linear problem is (gy = 1 Ib/in., E = 30 x 106 psi, = 0.25,
and K = 5/6)

= 0.5208 + 0.0125 x 10~% = 0.5208 in. (4.3.38)

L 5qpL* apL?
wU(E)_ do + 0

T 384D.:  B8Szc

Thus, the effect of shear deformation is negligible. It should be noted that the reduced-
integration (Timoshenko) clement (RIE), in general, does not give exact nodal values even
for the linear problem (i.e. not a superconvergent element). For a refined mesh and/or
higher-order elements, one may expect to get the exact linear solution.
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For the mesh of four reduce integration elements, the linear stiffness matrix, force vector,

and the global linear solution vector are (with » = 0.25 and specified boundary conditions
AQ = O, Alg =0 and A15 = U')

2400 00 -24 00 00
0 80 -500 0 —80 -500
05| 0 =500 3145 0 500 3105
[T =107 | o 0.0 00 24 00 00
0 -80 500 0 80 500
0 -50.0 3105 0 50.0 3145

(D3 ) (—0.01641)
0.00 As 0.19650
6.25 Ag ~0.01504
e ) 0.00 As | _ ) 036142
=000 | 2 (=) 001135 (
6.25 Aoy 0.47009
0.00 Ap ~0.00605
[ Ay ) 0.5079 )

Table 4.3.1 contains the results obtained with the Newton-Raphson iteration; FI denotes
full integration (NGP = LGP = 2 for linear elements N GP = LGP = 3 for quadratic
elements) and RI denotes reduced integration (NGP =2 and LGP =1 for linear elements
and NGP = 3 and LGP = 2 for quadratic elements). The convergence is reached in 3
iterations. It is clear that the quadratic elements are not as sensitive as the linear elements
to locking; also, the effect of locking on the solution becomes less with refined meshes. The
convergence of the solution with mesh refinement is also clear.

Table 4.3.1 Finite element results for the deflections of a hinged-hinged
beam under uniform load.

Load qp Integration 4L 2Q 8L 4Q) 16L 8Q

rule

1.0 RI 0.5079 0.5210 0.5177 0.5210 0.5201 0.5210
FI 0.0101 0.4943 0.0370 (.5149 0.1223 0.5198

2.0 RI 1.0159 1.0419 1.0354 1.0419 1.0403 1.0419
FI 0.0201 0.9817 0.0741 1.0294 0.2447 1.0395

3.0 RI 1.5238 1.5629 1.5531 1.5629 1.5604 1.5629
FI 0.0302 1.4560 0.1111 1.5428 0.3670 1.5592

4.0 RI 2.0318 2.0838 2.0708 2.0838 2.0806 2.0838
FI 0.0403 1.9130 0.1482 2.0548 0.4893 2.0788

5.0 RI 2.5397 2.6048 2.5885 2.6048 2.6007 2.6048
FI 0.0504 2.3502 0.1852 2.5654 0.6117 2.5983

10.0 RI 5.0794 5.2096 5.1770 5.2096 5.2014 5.2096

FI 0.1007 4.2312 0.3704 5.0728 1.2233 5.1927
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Exé.mple 4.3.2

Here we consider the pinned-pinned beam of Example 3.2.2. The geometric boundary
conditions for the coruputational domain of the problem are

u0(0) = w(0) = uo(3) = de(%) = 0 (4.3.39)

The load increments of Agg = 1.0 1b/in., a tolerance of € = 10~3 is used in the analysis. The
initial solution vector is chosen to be the zero vector. l

Table 4.3.2 contains the results for pinned--pinned beam; the results were obtained with
the Newton-Raphson iteration (y = 0) method and reduced integration. The convergenlce
of the solution with mesh refinement and higher-order elements is apparent from the results.
Also, higher-order elements and refined meshes are less sensitive to shear locking.

Table 4.3.2 Finite element results for the deflections of a pinned -pinned
beam under uniformly distributed load.

Load g¢g 4L 2Q 8L 40

1.0 0.3654 (5)* 0.3687 (5) 0.3677 (5) 0.3685 (5)
2.0 0.5439 (4) 0.5458 (4) 0.5451 (4) 0.5454 (4)
3.0 0.6637 (3) 0.6644 (3) 0.6639 (3) 0.6640 (3)
4.0 0.7562 (3) 0.7560 (3) 0.7557 (3) 0.7555 (3)
5.0 0.8327 (3) 0.8318 (3) 0.8316 (3) 0.8312 (3)
6.0 0.8985 (3) 0.8970 (3) 0.8969 (3) 0.8964 (3)
7.0 0.9567 (3) 0.9546 (3) 0.9546 (3) 0.9540 (3)
8.0 1.0090 (3) 1.0065 (3) 1.0066 (3) 1.0058 (3)
9.0 1.0568 (3) 1.0538 (3) 1.0540 (3) 1.0531 (3)
10.0 1.1009 (3) 1.0975 (3) 1.0977 (3) 1.0967 (3)

* Number of iterations taken to converge.

Table 4.3.3 contains nonlinear deflections, @ = Wmax10?(Dea/L?), of pinned-pinned
beams for various length-to-thickness ratios L/H. The effect of shear deformation is clear
from the results; thicker the beams, larger the shear strains and deflections w. Of course, the
maximum deflection wymaz Will be smaller with smaller L/ H ratio (or thicker beams), because
thicker beams have larger stiffness. Thus they also exhibit less geometric nonlinearity, as
can be seen from Figure 4.3.4, where the deflection at the center, wy(L/2), is plotted as a
function of the load gq for various values of L/H ratio. The deflections predicted by the
TBT are the same as those predicted by the EBT when L/H > 100.

Lastly, we consider the clamped—clamped beam of Example 4.2.3. The geometric
boundary conditions for the computational domain of the problem are

o 0) = wo(0) = 62(0) = uo(%) = 6x(5) =0 (4.3.40)

All other parameters arc taken to be the same as in the case of the pinned-pinned beam.
Table 4.3.4 contains the nonlinear analysis results for clamped—clamped beam; the results
were obtained with the direct iteration as well as the Newton—Raphson iteration method
using (a) mesh of 8 lincar Timoshenko beam elements, and (b) 4 quadratic Timoshenko
beam elements. The results obtained with both methods and meshes are virtually the same,
although the direct iteration scheme takes more iterations to converge.
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Table 4.3.3 The effect of length-to-thickness ratio on the deflections @ =

Winax 102Dy, (I of & pinned-pinned beam under uniformly
distributed load (4Q element mesh).

Load ¢qq Length-to-thickness ratio, L/H
10 20 25 100

1.0 1.335 (2)* 1.310 (2) 1.307 (2) 0.921 (5)
2.0 2.669 (2) 2.620 (2) 2.614 (2) 1.364 (4)
3.0 4,004 (2) 3.931 (2) 3.921 (2) 1.660 (3)
4.0 5.338 (2) 5.241 (2) 5.228 (2) 1.889 (3)
5.0 6.673 (2) 6.551 (2) 6.534 (2) 2.078 (3)
6.0 8.008 (2) 7.861 (2) 7.840 (2) 2.241 (3)
7.0 9.342 (2) 9.171 (2) 9.145 (2) 2.385 (3)
8.0 10.677 (2) 10.480 (2) 10.450 (2) 2.515 (3)
9.0 12,011 (2) 11.790 (2) 11.753 (2) 2.633 (3)
10.0 13.346 (2) 13.099 (2) 13.056 (2) 2.742 (3)

* Number of iterations taken to converge.
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Figure 4.3.4 Load versus deflection curves for pinned-pinned beam.
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Table 4.3.4 Finitec element results for the deflections of a clamped-clamped
beam under uniformly distributed load (v = 0.25).

Direct iteration Newton-Raphson Iteration
Load gq 8L 4Q 8L 4Q
1.0 0.1019 (3)* 0.1035 (3) 0.1019 (3) 0.1035 (3)
2.0 0.1997 (4) 0.2025 (4) 0.1997 (3) 0.2025 (3)
3.0 0.2906 (4) 0.2943 (4) 0.2906 (3) 0.2943 (3)
4.0 0.3738 (5) 0.3778 (5) 0.3737 (3) 0.3778 (3)
5.0 0.4493 (5) 0.4535 (5) 0.4492 (3) 0.4534 (3)
6.0 0.5178 (6) 0.5219 (6) 0.5179 (3) 0.5220 (3)
7.0 0.5806 (7) 0.5846 (7) 0.5805 (3) 0.5845 (3)
8.0 0.6379 (8) 0.6416 (8) 0.6380 (3) 0.6418 (3)
9.0 0.6908 (8) 0.6947 (9) 0.6910 (3) 0.6946 (3)
10.0 0.7406 {9) 0.7434 (10) 0.7403 (3) 0.7436 (3)

* Number of iterations taken to converge.
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0.3 =| TBT = Timoshenko beam theory o
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&= - _ = s =
23 LiH=10 2 o
Z T02 - —
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Figure 4.3.5 Load-deflection response predicted by the EBT and TBT for
clamped-clamped, thin (L/H = 100) and thick (L/H = 10)
beams.

We close this chapter with a note that the geometric nonlinearity considered
in the analysis of beams in this chapter is one where the strains are assumed to
be small while the rotations are moderately large. In Chapter 9 on continuum
formulations, we will revisit this topic in the context of plane elasticity.
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Problems
4.1 Consider the nonlinear differential equations

AN, ,

m e ) (a

d? d2uy d dw
where g(z) is the distributed transverse force (positive upward), and
. duy 1 (dwy\?
sz—Axw ’:dl‘ +§(Ta{:¢_) ((‘)

Rewrite the equations (by introducing the bending moment M (z) as a dependent
variable) as a set of second-order equations

d dug duwig \ ?
= {AW {——dw +3 (—-w!c') ”—f(m):o (d)
d2w Meo
&t e &
PMee  d [ duwy duy | 1 fdwg\?
S __1__143&[__+_2_(ag)}}=q(m) (f)

Develop: (a) the weak form, and (b) the finite element model using interpolation of
the form

w=) u ), vo=Y wP@, Me=YMuP@ (g
i=1

j=1 i=1

4.2 Consider the problem of (linear) bending of beams according to the Euler-Bernoulli
beam theory. The principle of minimum total potential energy states that if the
beam is in equilibrium then the total potential energy associated with the equilibrium
configuration is the minimum; that is, the equilibrium displacements are those which
make the total potential energy a minimum. Thus, solving the equations governing the
equilibrium of the Euler-Bernoulli beam is equivalent to minimizing the total potential

energy
! 2

1. A:c: d‘ug 1 dwg 2 4 D:z /dﬁwg *

“f“mwo)-f {_2‘ =i (E) | +5 \@2 ) j %

Lo

—/zh (fuo + qup) dz (2)

where Az, = E:A and D,, = E.l, are the extensional and bending stiffnesses.
The necessary condition for the minimum of a functional is that its first variation be
zero: 611 = 0, which yields the governing equations of equilibrium. As you know, the
statement 611 = 0 is the same as the weak forms of the governing equations of the
Euler-Bernoulli beam theory. The weak form requires Hermite cubic interpolation
of the transverse deflection wy. Now suppose that we wish to relax the continuity
required of the interpolation used for wy(z) by introducing the relation

) ()
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Then the total potential energy functional takes the form

% (Ao [dup 1 fdwg\2]%  D.y rdio)\2
I1 L) = P88 I B et zz (0P :
(ug, wo, ) /%{2 [dx+2(d3:)]+2 (dx)}d.n

. 6
_/ (Fuo +quo) de - " AsQ: (c)
G i=1

Since the functional now contains only the first derivative of ug and ¢, linear Lagrange
(minimum) interpolation can be used. Thus the original problem is replaced with the
following equivalent problem:

Minimize IT(ug,wq, ¢) in Eq. (c) subjected to the constraint

B p(a) =0 (@

Develop the penalty function formulation of the constrained problem by deriving (a)
the weak form, and (b) the finite element model.

Develop the weak forms of the governing equations (4.3.8)-(4.3.10); make use of the
definitions in Eq. (4.3.20).

Analyze a clamped (at both ends) beam under uniformly distributed load {of intensity,
go) using the Newton—Raphson iteration method and (a) the Euler Bernoulli beam
element, and (b) the Timoshenko beam element. Plot the non-dimensional maximum
deflection, @ = Wmaz /L versus the load parameter, P = gqL3/EI, with at least twelve
points on the graph. Use 8 elements in the beam, with

_ 30 x 109

EA =30 x 10° [1 - 0‘53} . Bl=""5

2 [1+0.5E]3 (a)

L

and L = 100. Investigate the effect of numerical integration rule on the accuracy of
the results.

The principle of minimum total potential energy for axisymmetric bending of polar
orthotropic plates according to the first-order shear deformation theory requires
6I1(wg, ¢) = 0, where

6Hm:2/
b

d dép 1 de AT
(Dn‘g +D12§) 2 4 (DIQE F D22;) 6o

dr r
duyy déwyg .
+ Ass (é + 7) (5@5 + 7) - 2QéwOl rdr (a)

where b is the inner radius and a the outer radius. Derive the displacement finite
element model of the equations. In particular, show that the finite element model is
of the form (i.e. define the matrix coefficients of the following equation)

IKH]‘ [Kl2] {w} = {F} (b)
(KT [K2]| | {4} {0}
Implement the displacement finite element model into a computer program and verify
with analytical solutions of simply supported and clamped circular plates (see Reddy

(31)-
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4.7 Include the geometric nonlinearity (by accounting for the von Kérman nonline:

strains) in the total potential energy functional of Problem 4.5, and develop the fini
element model.

4.8 Implement the nonlinear finite element model of Problem 4.7 into a computer prograi
and validate it with other published results (see Chapter 6).
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5

Heat Transfer and

Other Field Problems
in Two Dimensions

5.1 Model Equation

The finite element analysis of nonlinear two-dimensional problems involves the
same basic steps as those described for one-dimensional problems in Chapter
3. Finite element formulation of a model second-order equation was presented
in Section 2.3. Here, we extend that development to problems in which the
coefficients of the differential equation are possibly functions of the dependent
variable and its derivatives.

Consider the problem of finding the solution u of the following second-
order partial differential equation (a slightly more general equation than the
one considered in Section 2.3)

9 Ou 0 Oou ) )
Oz (amﬁ) "y (%y 5{}) + agou = f(z,y) in Q (5.1.1)

where @z, ayy, and ago are known functions of position (z,y) and the
dependent unknown u and its derivatives, and f is a known function of position
in a two-dimensional domain Q with boundary I' [see Figure 5.1.1(a)]. For
example, az; may be assumed to be of the form

du Ou _
Uz = Qg (T, Y, Uy e a_y) (5.1.2)

The equation is subject to certain boundary conditions, whose form will be
apparent from the weak formulation.

In the finite element method, the domain ) is discretized into a collection
of elements ¢ [see Figure 5.1.1(b)]

N
Qr =[]0, @=0QUT, Q=0 ure (5.1.3)
e=1
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Domaing  Boundary Triangular element  Quadrilateral element

(a) (b)

Figure 5.1.1 Finite element discretization of a two-dimensional domain §
and a typical finite element Q€.

5.2 Weak Form

We use a representative element domain Q¢ to derive the weak form of th
model equation, with the assumption that each element has a unique geometri
shape and associated interpelation functions.

Following the steps of Section 2.3, the weak form of Eq. (5.2.1) over ¢
typical finite clement €2, whether triangular or quadrilateral shape, can b
developed. The first step is to multiply Eq. (5.2.1) with a weight function w
which is assumed to be differentiable once with respect to z and y, and ther
Integrate the equation over the element domain Q¢ :

o= [ 0[-2 (622) - & ()
B / o | B\ g oy Ty dy "

In the second step we distribute the differentiation among u and w equally
To achieve this, we integrate the first two terms in Eq. (5.2.1) by parts using
the component forms of the Green-Gauss theorem (gradient or divergence
theorem).

dedy (521

ow du ow du
0= 2 (am-a:a; 4 ayya—y@ + apgwu — wf) dx dy
ou

[ Ou )
- i ) ds 5.2.9
£, w \a ()mnx - ayyayny g ( )

where n; and n, are the components (i.e. the direction cosines) of the unit
normal vector

A=ngi+n,j=cosai+snaj (5.2.3)
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on the boundary I'®, and ds is the arc length of an infinitesimal line element
along the boundary (see Figure 5.2.1). The circle on the boundary integral
denotes integration over the closed boundary I'°. From an inspection of the
boundary term in Eq. (5.2.2), we note that u is the primary variable. The
coefficient of the weight function w in the boundary expression is

. u - ou Lot
! TRy a’ o E i
Tor = Wy Ty = Qn (5.2.4)

and it constitutes the secondary variable. Thus, the weak form of Eq. (5.2.1)
is

dw Ou Ow Ou
0 —fc (a;cxﬁ-b;"a}' +%y$@ -I-aoowu—wf) dmdy—?gequ ds (5.2.5)

The function g, = ¢n(s) denotes the outward flux from the boundary as
we move counter-clockwise along the boundary I'*. The secondary variable g,
is of physical interest in most problems. For example, in the case of the heat
transfer through an anisotropic medium, a;; denotes the conductivities of the
medium, and g, denotes the heat flux normal to the boundary of the element.
The weak form (or weighted-integral statement) in (5.2.5) forms the basis of
the finite clement model of Eq. (5.2.1).

5.3 Finite Element Model

The weak form in Eq. (5.2.5) requires that the approximation chosen for u
should be at least linear in both z and y so that every term in Eq. (5.2.5)
has a non-zero contribution to the integral. Since the primary variable is just
u, which must be made continuous between elements, the Lagrange family of
interpolation functions is admissible. Hence, u is approximated over & typical

=

)

Domain, Q

Boundary, [

- x

Figure 5.2.1 A typical two-dimensional domain with a curved boundary.
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finite element Q¢ by the expression
u(z,y) ~ uf(z,y) = Zu“" UHERY) (5.3.1)

where uj is the value of uj, at the jth node of the element, and ¢§ arc the
Lagrange interpolation functions, which have the property

(@5, 5) = B (5.3.2)
where (z;,y;) are the global coordinates of the jth node of the element QF.

Substituting the finite element approximation (5.3.1) for u into the weak
form (5.2.5), we obtain

=1

t0Y5)  Bw noOYs n
0= - [(9_'1” (a';r:a: Z ’Mj ) *'Ej’ (a-yij:; Uj a:; ) -+ apow Z uju;-‘;

os 9% oy 0%
e _ o S i 1,E,1.€
K, /Q (‘1‘“ 5 T W By By Vi ool

(5.3.4)
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Note that Kf; = K§; (i.e. [K] is symmetric), even though it may be a function
of the unknown nodal values uj. The set of n nonlinear algebraic equations
can be written in matrix form as

[K°Nu} = {/} +{Q°} (5.3.5)

Equation (5.3.5) represents the finite element model of Eq. (5.1.1). This
completes the finite element model development. The usual tasks of assembly
of element equations, imposition of boundary conditions, and solution of linear
algebraic equations (after an iterative method is applied) are standard and
therefore not discussed here (see Reddy [1]).
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5.4 Solution Procedures
5.4.1 Direct Iteration

The assembled form of the nonlinear equation (5.3.5) is

[K{UHHU} = {F} (5.4.1)

where K] is the assembled coefficient matrix, {U} the vector of global nodal
values, and {F'} the assembled source vector. In the direct iteration procedure,
the solution at the rth iteration is determined from the equation

[K{U}rI){v)") = {F} (5:4.2)

where the direct matrix [K] is evaluated using the solution (known) at the
(r—1)st iteration. The direct iteration procedure can be applied to the element
equation (5.3.5), as was done in Chapters 3 and 4. We obtain

[Ke({u}r ) {u} ) = {F¢} (5.4.3)

5.4.2 Newton—Raphson Iteration

In the Newton-Raphson procedure, we solve the equation
[TEUYD){sU} = ~{RAUITV)} (5.4.4)
where {R} is the residual vector
~{(R{UY D)} = {F} - (KU} DU (5.4.5)

and [T is the tangent matrix

(r—1)
oy = (5) (5.45)

The solution at the end of- the rth iteration is then given by
{Uy ={U}r+{6U} (5.4.7)
At the clement level, Eq. (5.4.4) takes the form
T} 6u} = (Fe({u} D)} - Ko} Vel (5.48)
The coefficients of the tangent matrix can be computed using the definition

OR¢ T OKE o
e AN Y lim, e e 5.4.9
TU ; BTL‘? m=1 a”'j o t sz (j )
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Example 5.4.1

Suppose that ag_, and ag,, have the form

e e . e Ou . 0
Ay :az[’](:ray) +az,u+ Qi % +aa-cuy ' 3_':
. Ou

v g (5.4.1C

as, =a;0(s:,y) +ag, utag,, % +a

where a0, azu, and so on are functions of only = and . In addition, we assume that agg i
only a function of z and y. Then we have

= OK®
T¢ = K& E Zllim e
2 17 +m:1 auJ um (5411

oKL L _ o Bag, OYs Oy, | Oag, Yt Oyg, | Bag, . . g
Z Bu; B, = Z [/mc ( du; Oz Ox N du; Oy Oy i Ou; Vi dmd.y} bt

81;&? 6’!!}‘.: 31;}& a’!’be
= £ ahe £ 3 e YY ; .
m=1 {/9* [(amw} T ey 0w dy ) dr 8z
oys VSN Gye Hye
e t°l. € ] e _‘1 gy7 e b .
+ (aynd)_-; +ayu: Oz +ayuy 5:9. ) ay ‘_3‘9‘ dz dy Uug,
— au a%b: © © e 5"4}; 5 3,(‘{};,
= ]Qe [:% dx (axuwj + Cruz _{%' + azny_a.;
e [ e e o YR O |
o 5_y_§y“ (Gyuwj —rayquI:_’ + ayuy(Ty_. dz dy (5.4.12

Note that, although [K*] is symmetric, the symmetry of | ¢] depends on the nature of the
nonlinearity.

5.5 Computer Implementation
5.5.1 Introduction

An accurate representation of non-rectangular domains and domains with
curved boundaries can be accomplished by the use of refined meshes and/or
irregularly shaped elements. For example, a non-rectangular region can be
represented more accurately by triangular and quadrilateral elements than
rectangular clements. However, it is easy to derive interpolation functions for
a rectangular element, and it is easier to evaluate integrals over rectangular
geometries than over irregular geometries. Therefore, it is practical to use
quadrilateral elements with straight or curved sides but have a means to
cvaluate the integrals involved in the definitions of the coefficient matrices
Ki; and Tj; over the quadrilateral elements. A coordinate transformation
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between the coordinates (z,y) used in the formulation of the problem,
called global coordinates, and another coordinate system (&,7), called local
coordinate system, that is convenient in deriving the interpolation functions
and evaluating the integrals is needed. The choice of the local coordinate
system is dictated by the choice of numerical integration method. Here we
shall use, as was done in one-dimensional problems, the Gauss quadrature
method to evaluate integrals defined over two-dimensional elements. The main
steps in the numerical evaluation of finite element matrices are reviewed here
(see Section 2.5 for more details).

5.5.2 Numerical Integration

The transformation between Q¢ and ) is accomplished by a coordinate
transformation of the form [cf. Eqs. (2.5.1) and (2.5.2)]

m
z = Zx%’“’(& n) y= y5v5(&n) (5.5.1)
=1
while a typical dependent variable u(z,y) is approximated by

=Y ufvs(a,y) = > uiyi(=(& ), (& m) (5.5.2)
i=1 =

where ¢’ denotes the interpolation functions of the master element Q) and
dl are interpolation functions of a typical element Q° over which u is
‘1pproxmnted The transformation (5.5.1) maps a point (z,y) in a typical
element ° of the mesh to a point (£,7) in the master element Q and vice
versa, if the Jacobian of the transformation is positive-definite. The positive-
definite requirement of the Jacobian dictates admissible geometries of elements
in a mesh.

Recall that a finite element model is nothing but a system of algebraic
equations among the nodal values of the primary variables and secondary
variables. The coefficients of these algebraic equations contain integrals of the
physical parameters (e.g. material properties) and approximation functions.
The integral expressions are, in general, complicated algebraically due to
the spatial variation of the parameters and their dependence on the solution
and possibly its derivatives as well as due to the coordinate transformations.
Therefore, the integrals are evaluated numerically, which requires evaluation
of the integrand at a selective number of points in the domain, multiply
their values with suitable weights and summing. Here we discuss the Gauss
quadrature to evaluate integrals over quadrilateral clements.
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We illustrate the essential elements of the Gauss quadrature by considering
the integral expression [see Eq. (5.3.4)]

Oys 05 g 7 e
K= /Q E [am(:c,y) % a—; + ayy(z,y) %0 Ef + ago(, y)g&fwa dz dy
' (5.5.3)

We wish to transform the integral from Q¢ to the master element 2 = {(¢, n) :
=leik £ 1, =19y 1} so that the Gauss quadrature can be used. From

Eq. (2.5.6), we have
a%¢ o7
&= {g)
dy dn

which gives the derivatives of ¥f with respect to the global coordinates (z,y)
In terms of the derivatives of ¥¢ with respect to the local coordinates (€, 7).
The matrix [J*] is the Jacobian matrix of the transformation (5.5.1)

(5.5.4)

[J]ezﬂi 35} (5.5.5)

and its determinant |J| is the Jacobian, which must be greater than zero in
order to invert Eq. (5.5.4). Negative non-zero values of |J] imply that a
right-hand coordinate system is transformed to a left-hand coordinate system,
which should be avoided. The Jacobian matrix can be computed using the
transformation (5.5.1) in Eq. (5.5.5). We have

@ & z, 2 0 ] °
e (8 3] -[Eeg 2]

T | Oz 8y G O
Lon  dn g '5% 1Y 'g%
e
o % : T
Ovr Oy . OPm |°
ol A S I (5.5.6)
S S ... Oim o
L oOn dan an
Tm  Ym

Thus, given the global coordinates (zj,y;) of element nodes and the
mterpolation functions Y7 used for geometry, the Jacobian matrix can be
evaJuated using Eq. (5.5.6). Note that 1,5; are different, in general, from (M

used in the approximation of the dependent variables. The Jacobian is given
by

[J| = JirJaz — JiaJoy (B:5.7)
We have from Eq. (5.5.4)
s odf g
Az OEF D&
=[] = 5.5.8
ot [ TV our (U (5:58)

dy an By
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where

Jog i Ji2 5 J i J:
Ik Ji2 = R Tp=10, i =-22 (5.5.9)

g =
H ] |J]

Returning to the coefficients Kf; in Eq. (5.5.3), we can write it now in
terms of the natural coordinates (£,7) as

(-1 d 81,” 81!” .3 81‘!&
Kij = /ﬁ{ﬂmm(fﬂ) (Jll 6.; Jl? d )(Jll ¢ J12 8:)

[ oy O
+ayy(§=”?)(f21 dj + J3 )})(Jm jcj Jzz@;f‘

+ano(£,n)¢f¢b§}lrfl dg dn
sém@m@@ (5.5.10)

where the element area dA = dxdy in element Q€ is transformed to |J| d§dn
in the master element 2.

Using the Gauss quadrature formulas for integrals defined over a
rectangular master element €, which are the same as those for the one-
dimensional quadrature, we obtain

17 1 1[N
/S_]Fz'j(ﬁs??) dﬁd?’!=/_ U_ Fi;(&,m) dn}dﬁﬁj;l {;Fﬁ(ﬁaw) W’J}dﬁ

Z%@m%% (5.5.11)

where M and N denote the number of Gauss quadrature points in the £ and
n directions, (£7,77) denote the Gauss points, and W; and Wy denote the
corresponding Gauss weights (see Table 2.5.1).

As already discussed, the number of Gauss points required to.evaluate
an integral accurately is based on the following rule: if the integrand is a
polynomla.l of degree p, it is integrated exactly by employlng NGP =N =
int[5(p+1)]; that is, the smallest integer greater than 5(p+1). In most cases,
the mterpolatlon functions are of the same degree in both & and 7, and we
take NGP = MGP = M.

5.5.3 Element Calculations

Calculation of element coefficients require evaluation of interpolation functions
and their derivatives. The Fortran statements for the calculation of the
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Jacobian matrix and determinant are given in the subroutine SHPRCT (see
Appendix 2 of Reddy [1]). The notation used is as follows:

, DSF(2,4) = %W

SF() =t DsF(Li)=

[ELXY] = array of the global coordinates of element nodes
ELXY(3,1) =z, ELXY(i,2) =y
[GJ] = the Jacobian matrix, [J};[GJ] = [DSF||ELXY]
[GJINV] = inverse of the Jacobian matrix, [GJ] 7!
DET = the determinant of the Jacobian matrix, |J|
. OYf I 11
DSF(1,i)=—X , GDSF(2.i) = %%
GDSF(1,17) B GDSF(2,i) B
[GDSF] = [GJINV][DSF]
The above calculations are carried out in the subroutine SHPRECT.
The subroutine ELECOFNT that calculates [K*], [T*], and {f€} for the

direct iteration and Newton-Raphson iteration is listed in Box 5.5.1. The
following notation is used (n = NPE):

mn Ke
ELF(i) = ff, ELK(i,j)= Kg, TANG(@‘JHZ%—J%%
J

m=1

GAUSPT(I,J) = Ith Gauss point in the Jth Gauss-point rule (I < J)
GAUSWT(I,J) = Ith Gauss weight in the Jth Gauss-point rule (I < 3
ELU(I) = uf from the previous iteration

Other variables have the same meaning as indicated earlier. It is assumed that
the coefficients a,y and ayo are linear functions of z and y

0z0 = 000 + G20 T + a0y Yy Qyo = Gyog + Uyoe T + Gyoy Y (5.5.12)
of course, other variations of the coefficients may be assumed and implemented

without difficulty.

Example 5.5.1

Consider heat transfer in an isotropic medium [aze = ayy in Eq. (5.2.1)] of rectangular shape
axb=0.18x0.1 m. The conductivity a,, = Gyy = k is assumed to vary according to the
relation (agg = 0)

k= ko (1+AT) (5.5.13)

where kj is the constant thermal conductivity, § the temperature coefficient of thermal
conductivity, and T the temperature. Suppose that there is no internal heat generation (i.e.
f =10) and the boundary conditions are

T(0,y) = 500°K, T(a,y) = 300°K (5.5.14a)
ar

o 0 at y=0,bfor any « (5.5.14b)
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Box 5.5.1 Subroutine (in Fortran) ELECOFNT for the calculation of element
matrices [K¢|, [T], and { f¢} of the model problem in Eq. (5.2.1).

SUBROUTINE ELECOEF(NPE NGP.ITYPE,NONLN)

Element calculations based on linear and quadratic rectangular
elements and 1soparametric formulation are carried out for the
model equation in (4.2.1).

NPE —Nodes per element (4: linear; 8: serendipity quadratic,
9: complete quadratic)
NGP — Number of Gauss points.
ITYPE — Type of iterative method used:
ITYPE=1, Direct iteration, ITYPE>1, Newton—Raphson iteration

islolololglslisisinlsisialel

IMPLICIT REAL*8(A-H.0-Z)
COMMON/STF/ELF(7),ELK(9,9).ELXY(9.2).ELU(9)
COMMON/PST/A10,AIX.ATY,A20,A2X A2Y A00,FO.FXFY,
* AIUATUXAIUY,A2U,A2UX,A2UY
COMMON/SHP/SF(9),GDSF(2,9)
DIMENSION GAUSPT(5,5).GAUSWT(5.5), TANG(9.9)
&
DATA GAUSPT/5*0.0D0, -0.57735027D0, 0.57735027D0, 3*0.0D0,
2 -0.77459667D0, 0.0D0, 0.77459667D0, 2*0.0D0, -0.86113631D0,
3 -0.33998104D0, 0.33998104D0, 0.86113631D0, 0.0D0, -0.90617984D0,
4 -0.53846931D0,0.0D0,0.53846931D0,0.90617984D0/
c
DATA GAUSWT/2.0D0, 4*0.0D0, 2%1.0D0, 3*0.0D0, 0.55555555D0,
2 0.88888888D0, 0.55555555D0, 2*#0.0D0, 0.34785485D0,
3 2%0.65214515D0, 0.34785485D0, 0.0D0, 0.23692688D0,
4 (.47862867D0, 0.56888888D0, 0.47862867D0, 0.23692688D0/
C
C  Initialize the arrays
[
DO 100 1= 1,NPE
ELF(I) =0.0
DO 100 ] = LLNPE
[F(ITYPE.GT.1)THEN
TANG(LJ)=0.0
ENDIF
100 ELK(LJ)= 0.0

g: Do-loops on numerical (Gauss) integration begin here. Subroutine
C  SHPRCT (SHaPe functions for ReCTangular elements) is called here
8
DO 200 NI = 1 NGP
DO 200 NI = 1,NGP .
X1 = GAUSPT(NLNGP)
ETA = GAUSPT(NINGP}
CALL SHPRCT (NPE.XLETA,DET,ELXY)
CNST = DET*GAUSWT(NIL,NGP)*GAUSWT(NJNGP)
X=0.0
Y=0.0
U=00
UX=10.0
UY=0.0
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Box 5.5.1 (continued)

DO 140 1=1,NPE
U=U+ELU()*SE(I)
UX=UX+ELU(I)*GDSF(L,I)
UY=UY+ELU(I)*GDSE(2,])
X=X+ELXY(L1)*SF(I)

140 Y=Y+ELXY(I2)*SF(I)

Define the coefficients of the differential equation

FXY=FO+FX*X+FY*Y
AXX=AXHAXX*X+AXY+Y
AYY=AY0+AYX*X+AYY*Y
IF(NONLN.GT.0)THEN
AXX=AXX+AXUFU+AXUX*UX+AXUY*UY
AYY=AYY+AYU*U+AYUX*UX+AYUY*UY
ENDIF

§ Define the element source vector and coetficient matrix

DO 180 I=1NPE
ELF(I)=ELF(I+FXY*SF(I)*CNST
DO 160 J=1,NPE
S00=SF(I)*SF(J)*CNST
S11=GDSF(1,I*GDSF(1,J)*CNST
$22=GDSF(2,I*GDSF(2,J)*CNST
ELK(LJ=ELK(LI}+A11*S1 1+ A22*822+ A00+S00

é Define the part needed to add to [K] to define [T]

IF(ITYPE.GT.1)THEN
S10=GDSF(1,])*SE(J)*CNST
S20=GDSF(2,I)*SF(J)*CNST
S12=GDSF(1,1)*GDSF(2,J)*CNST
S21=GDSF(2,1)*GDSF(1,J)*CNST
TANG(LJ)=TANG(L)

+UX*(AIU*S10+AXUX*SXX4 AXUY*S12)
E +UY*(A2U*S20+AYUX*SYX+AYUY*S22)
ENDIF
160  CONTINUE
180 CONTINUE
200 CONTINUE

Compute the residual vector and tangent matrix

IF(ITYPE.GT.1)THEN
DO 220 1=1,NPE
DO 220 J=1 NPE
220 ELF()=ELF(I)}ELK(LI*ELU())
DO 240 I=1,NPE
DO 240 J=1,NPE
240 ELK(LJ=ELK(LJ+TANG(L])
ENDIF
RETURN
END

lolole]

This is essentially a one-dimensional problem (in the z coordinate}, and can be solved as
such (see Table 3.5.1).

Table 5.5.1 shows the linear and nonlinear solutions T(x,yg) for any yy. Direct iteration
is used to solve the problem. It took two iterations to converge (€ = 0.01). Also, the solution
is independent of the mesh in the y-direction. The present results were found to be identical
to those obtained with the one-dimensional model (for the same tolerance of ¢ = 0.01).
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Table 5.5.1 Finite element solutions of a nonlinear heat conduction equation

[ko = 0.2 W/(m °K) and 8 =2 x 1073 (°K™1)].

] Linear 4 x 4L* 2 x2Q9 8 x 8L4 4 x4Q9
0.0000 500.00 500.00 500.00 500.00 500.00
0.0225 475.00 — - 477.31 477.31
0.0450 450.00 454.02 454.03 454.03 454.03
0.0675 425.00 - - 430.12 430.12
0.0900 400.00 405.56 405.57 405.57 405.57
0.1125 375.00 - - 380.32 380.32
0.1350 350.00 354.33 354.34 354.34 354.34
0.1575 325.00 = - 327.58 327.58
0.1800 300.00 300.00 300.00 300.00 300.00

* m x nL4, for example, denotes a mesh of the four-node linear (L) elements.

Problems

5.1 Consider the nonlinear problem of Example 5.5.1 (heat transfer in two dimensions). Use
the uniform 4 x 4 nine-node quadratic element mesh to analyze the problem using the
following data and boundary conditions:

a=018m, b=01m, f=0 W',r’m3 (a)
E=ky(1+8T), kg=256W/(m *C) (b)
T(0,y) =100 °C, T(a,y)=>50°C
kg—: F+he(T—Tee)=0aty=0,b (c)

Use 8 = 0.2, T, = 10°C, and ke = 50 W/(m?2 °C).
5.2 The energy equation for simultaneous conduction and radiation in a participating

medium can be expressed by
~V-[ke(TVVT]) =g

where bon2T5
16on=T

AT = k4

(T)=k+—3p

Here T is the temperature, g is the internal heat generation. n denotes the refractive
index of the medium, o is the Stefan-Boltzman constant, and /4 is the Roseland mean
extinction coefficient (see Ozisik [4]). Develop the finite element model of the equation
and determine the tangent coefficient matrix for a planar (two-dimensional) domain.
5.3 Repeat Problem 5.2 for a radially axisymmetric domain.
5.4 Suppose that the boundary of a typical finite element is subject to both convective and
enclosed radiation heat transfer [cf. Eq. (2.3.36)]:
(axmgnz + ayy g-—::ny) -i—hc(u - uc) + oe(ud — uf,l) = gn
where o is the Stefan-Boltzman constant and ¢ is the emissivity of the surface.
Reformulate the finite element equations in (2.3.39) to account for the radiation term.
Hint: oe(u® — u?) = oe(u? +ul)(u+ ue) (v — ue) = he(u)(u— uc)-
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5.5 Compute the tangent coefficient matrix associated with the nonlinear radiation boundary
condition of Problem 5.4.
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6

Nonlinear Bending of

Elastic Plates and Shells

6.1 Introduction

A plate is a flat structural element with planform dimensions that are large
compared to its thickness and is subjected to loads that cause bending
deformation in addition to stretching. In most cases, the thickness is no
greater than one-tenth of the smallest in-plane dimension. A shell is much
like a plate except that it is not flat but curved. Because of the smallness of
thickness dimension, it is often not necessary to model them using three-
dimensional elasticity equations. Simple two-dimensional plate and shell
theories can be developed to study the deformation and stresses in plate
structures undergoing small strains, small to moderate rotations, and large
displacements (i.e. wg/h > 1).

Here we derive governing equations of the classical and first-order theories
of plates and shells with the von Kérman strains, and develop their
displacement finite element models. The principle of virtual displacements
is used to derive the weak forms, and the displacement finite element models
are developed using the weak forms.

6.2 Classical Plate Theory

6.2.1 Assumptions of the Kinematics

The classical plate theory (CPT) is one in which the displacement field is
selected so as to satisfy the Kirchhoff hypothesis. The Kirchhoff hypothesis
has the following three assumptions (see Figure 6.2.1):

(1) Straight lines perpendicular to the mid-surface (i.e. transverse normals)
before deformation, remain straight after deformation.

(2) The transverse normals do not experience elongation (i.e. they are in-
extensible).

(3) The transverse normals rotate such that they remain perpendicular to the
mid-surface after deformation.
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Figure 6.2.1 Undeformed and deformed geometries of an edge of a plate
under the Kirchhoff assumptions.

6.2.2 Displacement Field and Strains

Let us denote the undeformed mid-plane of the plate with the symbol Q. The
total domain of the plate is the tensor product Qo x(—h/2, h/2). The boundary
of the total domain consists of surfaces St(z = h/2) and Sy(2 = —h/2), and
the edge T =T x (—h/2, h /2). In general, T is a curved surface, with outward
normal fi = n,é, + ny€,, where n, and ny are the direction cosines of the unit
normal.

The Kirchhoff hypothesis implies the following form of the displacement
field (see Reddy [1-3] and Figure 6.2.1)

Ow
u(z,y,2) = w(z,y) — 2 8;1:0
v(o.2,2) = wo(a,y) - 250 (6.21)

w(z,y,2) = wo(z,y)

where (ug, v, wp) denote the displacements of a material point at (z,9,0) in
(2,9, 2) coordinate directions. The nonlinear strains are given by
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If the components of the displacement gradients are of the order ¢, i.e.

du Ou v v Ow ‘
% By’ pe d_y E—O(e) (6.2.3)

then the small strain assumption implies that terms of the order ¢ are omitted
in the strains. If the rotations of transverse normals are moderate (say
10° — 15°), then the following terms are small but not negligible compared

to € , )
Ow Jw ow dw )
(d) (a—y) " Bz Oy i)

Thus for small strains and moderate rotations, the strain displacement
relations (6.2.2) take the form

8 L L B, finf
fer = e To\Bz) T "M 2\8y " 0z Bz dy
(), _@g(a_w)z
== o\5: " 8z) W a2\ oy
1/6v Ow ow
o (W oWy G 6.2.5
Fyz ) (3z * By) 2 0z ( )

where, for this special case of geometric nonlinearity (i.e. small strains but
moderate rotations), the notation &;; is used in place of Ej;. The corresponding
Second- Piola Kirchhoff stresses will be denoted o;;.

For the displacement field in Eq. (6.2.1), dw/0z = 0. In view of the
assumptions in Eqs. (6.2.3) and (6.2.4), the strains (6.2.5) for the displacement
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field (6.2.1) reduce to

€ _%+1(8w0)2 9wy
B8 Y 9\ e _zaxQ_

1 ({Ouy  Ovy By duwyg &?wp
i ( dy "o T oy oudy (628
_ Oy 1 [0we\? By
w=3 *+3(7) T
_ 1/ Bwy  Owg B
5”_2( 3 +‘5;)—°
1/ 0wy Ouwg '
Eyz = § (—E + Fy—) =0 (6.2.7)
Epr, =1

The strains in Egs. (6.2.6) and (6.2.7) are called the von Kdrmdn strains, and
the associated plate theory is termed the classical plate theory with the von
Kdrmdn strains. Note that the transverse strains {Ess, €yz,E22) are identically
zero in the classical plate theory.

In matrix notation, Eq. (6.2.6) can be written as

Exx Egm E;:r
Eyy ¢ = E%y +2z E%,y (6.2.8a)
Tzy Ty ’hy

. 2

2
Bup 4 1 (duwg 9
e, o T3 ( Ba ) gl. ~
E.‘O — A 1 { Qwy 2 £ ! , = d—lugﬂ 6.2.8b
yy o J vy B
0 Y 2\ oy 1 ag
y Yy —o&ug

6.3 Variational Formulation of CPT
6.3.1 Virtual Work

Here, the weak form based on the principle of virtual displacements applied
to the classical plate theory is derived for a typical finite element Q¢. In
the derivation, we account for thermal (and hence, moisture) effects only
with the understanding that the material properties are independent of the
temperature and that the temperature T is a known function of position
(hence, 6T = 0). Thus, the temperature enters the formulation only through
constitutive equations.

As noted earlier, the transverse strains (7., Yyz: €22) are identically zero in
the classical plate theory. Consequently, the transverse stresses (o4, Oyzs Ozz)
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do not enter the formulation because the virtual strain energy of these stresses
is zero (due to the fact that kinematically consistent virtual strains must be
i Z€ro):

bezz =0, bgy; =0, be,, =0 (6.3.1)

Whether the transverse stresses are accounted for or not in a theory, they are
present in reality to keep the plate in equilibrium. In addition, these stress
components may be specified on the boundary. Thus, the transverse stresses
do not enter the virtual strain energy expression but must be accounted for in
the boundary conditions and equilibrium of forces.

The principle of virtual displacements is

0 =6W° = (6U°®+6V°) (6.3.2)
where U® is the strain energy stored and V¢ is the work done by applied
forces in an element. Suppose that g is the distributed force at 2 = —h/2, and
(Cnn,Ons, Onz) are the stress components on the boundary I'® = I'® x (—%, %’)
of the plate clement (see Figure 6.3.1).

The virtual strain energy in element € is given by
z
U = /e /2‘ (Ozabeze + Oyybeyy + 205y0ey) dzdrdy
0 1
— /s ) (Nméc-:gw RS j‘tfirﬂésim + Nyyésyy + Myybey,
+ Nmycs’}fgy + | Imyrff)-';y) dz dy (6.3.3)

where (Ngz, Nyy, Nzy) are the forces per unit length and (Mg, Myy, My,) are
the moments per unit length (see Figure 6.3.2):

Nyw Tra Moy % Oxz
Ny b= / Oy bz, | My b= / oy bzdz  (6.34)
Nzy E Oy May - Oay

(SR

iy
[SE

Figure 6.3.1 Geometry of a plate element with curved boundary.
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The virtual work done by the distributed transverse load ¢(
2 = —h/2, the transverse reaction force of an elastic found

in-plane normal stress oy, in-plane tangential stress sy
stress gy, is

z,y) applied at
ation at z = h/2,
and transverse shear

—h
ove=—{ [ newten Doty + [ Febute,y, ) dedy

h
+ }4 j [0t + 0nsbts + O] dzds} (6.3.5)
)
= _{ / (g — kwo) Swp de dy + j{ (Nméwm _ a,, 28w
Qe e an
i
+ Npsbugs — Mma—atj—o - QR(S’LUU) ds} (6.3.6)
where Fy = —kwy, k is the foundation modulus, ugn,ups, and wy are

the displacements along the normal, tangential, and transverse directions,
respectively, and (see Figure 6.3.2)

Nrn e % Tnn M., _ % Onn
{Nﬂs}hﬁg{ffﬂs}da {Mns}__/_ {o’ }zdz (6.3.7a)

i
2

ns

Figure 6.3.2 Forces and moments per unit length on a plate element.
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)
(S

Qn =j Onz d2 (6.3.7b)

3l

The stresses (0nn, 0ns) on the boundary I'® are related to (04z, 0yy, 0¢y) in the
interior of ¢ by the transformation

2 2 Ozg
Onn | _ Ny Ty, 2nzny - (6.3.8
o _d 2 — 2 vy i )
s nmny ﬂ:mf&y ?’Lr ny

Ozy

6.3.2 Weak Forms

Substituting for 6U® and 6V° from Egs. (6.3.3) and (6.3.6) into the virtual
work statement in Eq. (6.3.2), we obtain the weak form

ps (Nmam T Myobel, + Nyy

L el + Myybel, + Noybrl,

Oy
+ fmyrﬁfyiy + kwgdwy — qéwo) dz dy

= f (Nnnéuﬂn Npsbugs — Mpn - 66%’0 — Mys + Qn )
e an

Obug  Owy Odwg\ .. (86’1}9 dwg 8511}0
= N j\'{
/se[( 5z 0z 83:)iM+ Ay +3y Sy) -

4 (35%&0 i 35’1)0_ Owg 0dwy  Owyg aé’wo) \
Ay Ox dx dy Oy Oz g

6(511,0

d%6w 0*6w 6w
- 5 20 My — By QOMyy 2 920y OMxy + kbéwowo — éwgg] dz dy
B 56 (Nnnfguﬁn + Npsbugs — Mpn—F— o Mnsaawn + Qnéwo)
e on Js
(6.3.9)
The statement (6.3.9) is equivalent to the following three weak forms:
0= / (?f‘?fngﬂ d,éuﬂny) dzdy — f Npnbuon ds (6.3.10)
Qe ox dy
0= (?ny-l- dj’“”f\w) dz dy — j{ Nysbugs ds (6.3.11)
H i
Abwy [ Owg .. awg . ) (%wg (ng . Owy )
= N b 2
v QP[ Oz ( O Naz I\wy oy \ Oz Nay Oy
*6w d*6w *bw
— —8;3‘2—01"‘4{33 - B ;‘11?\/1"3&,,?’f 2 00y UMxy + kbwowo — 5w0q} dx dy

_ 35 ( M, ai‘“‘) Mas dg“’“ 4 Qnéwo) ds (6.3.12)
€ T

v
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6.3.3 Equilibrium Equations

To obtain the governing equations of the CPT, integrate expressions in Eqs.
(6.3.10)~(6.3.12) by parts to relieve the virtual displacements (8uo, Svy, Swy)
in ¢ of any differentiation (so that we can use the fundamental lemma of
variational calculus); we obtain

- (Mm,m + 2Myy o + Myy oy + N — kwy + q) (S’L[Jg} da dy

+ f}e {(Nmnm + Nzyny) bug + (Ngyna + Nyyny) bvg

+ (M'm,znx + Mayyne + Myyytty + My 2ny + P) dwg

86’11}0 ‘ aé'.wo
~ (Mzang + Myny) B (Meymz + Myyny) ¥ J ds
: - 06 Oduy
B f (‘AIT?‘J,ﬂéUO'n * Nnsbuos = Mpn ‘ ng - MRSTE + Qnﬁwo) s
Ie on ds

(6.3.13)

where a comma followed by subscripts denotes differentiation with respect to
the subscripts: Ngz o, = ON,./0z, and so on, and

d dwy Owy 0 Oy Ouwy )
_—— m—— o e fan N _____
N (uo,v0, wp) = G (Nm Bz + Ny Ay ) L] Ay (ny Ox ¥ Y

Oy Owy Ay dwg
P(”Osvﬂawﬂ} = (NZQEE T Arxy“‘é;) Tig -+ (Na:y -a—x_ + Nyy@" Ty
(6.3.14)
The equations of equilibrium are obtained by setting the coefficients of duyg,
dvg, and dwg in Q° to zero:

AN, 34?\733, -
N N i R 6.3.15
%o oz T ay (6318)
ONgy | ONyy X
. (at = 6.3.16
dug : e + By 0 ( )
2 M. M. 02 M.
dwyg : 4 ‘a:x + 26 s g K

+ N (uo, vo, wo) — kwo + ¢ =0 (6.3.17)




m

NONLINEAR BENDING OF ELASTIC PLATES AND SHELLS 149

6.3.4 Boundary Conditions

To cast the boundary conditions on an arbitrary edge whose normal is i,
we express all generalized displacements (ug, vy, wo, %, %‘1 Jfrom the (z,y, 2)
system in terms of the corresponding generalized displacements in the normal,
tangential, and transverse directions. We have

Uy = UgnMNg — UgsTly, U = UonTly + UosTig (6.3.18a)

Owp  Ouy Owg Jwg  Ouyg Owg
6’;{7 = 8?1 Ny 85‘ ﬂy, —8—2;' = é;ny + —g;“?'lx (6318b)

The boundary expression of Eq. (6.3.13) takes the form

f}e li(Nxa:nx + Nmyny) (5uonnx — (‘fuosny)
f (Nﬂ‘ynx + j\'ryyny) (5uonny —+ 6“08”’.7:)
+ (ﬂfxw’mnﬂ’ + Mmysynf-' + Myy,yny + Mmy,:rny + P) Swg

Obwyg Abwy
- (j{fxa-nr + ﬂ{myny) (_E}r:~n'$ - _5;_“'9)

Oéw
- (‘ ayNa T 4?"-/[?,!971@] (g@gny + _ril_(]ﬂm)jl ds

an Js
06 06 X
= f (-Nnnéul}n 2 1?\'Tns‘«'57450.5: = JMnn'—ﬂ - -Mnsﬂ + Qnéwﬂ) ds
Ie on Js

-+ [(Nyy — Nag)ngny + Nmy(n?c - n;) - Nm] Sugs
+ (Mg 2z + My yne + Myyyny + Moy 20y + P — Qn) bwo

: déw
3511,‘0
- [(*Myy — Myz)ngny + Mry(ni - ’”3\ - Mrns] "G }d-"' (6.3.19)

The natural boundary conditions are obtained by setting the coefficients of
dug, dvg, dwy, %}‘:—ﬂ and Q%‘gﬂ on I'¢ to zero:
bugn : Npn = ani + 2Ngyngny + 17\4"11,1,,,11.3r
bwo 1 Qn = Mggzng + Myyynag + Myyyny + Mgy oy + P
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o6

—0% : My = ani + 2Myyngn, + Myyng

bwe (6.3.20b)
5 Mg = (My, — Mez)nizny + Mgy(n2 - ’ng)

From Eq. (6.3.20), it is clear that the primary variables (ie. generalized
displacements) and secondary variables (ie. generalized forces) of the theory
are:

Sug Dup

on’ Os (6.3.21)
Secondary variables:  Npn, Nps, Qny, Mpn, Mps

Primary variables: Uon, Ugs, Wo,

We note that the equations of equilibrium in Egs. (6.3.15)-(6.3.17) have
the total spatial differential order of eight. In other words, if the governing
equations are expressed in terms of the displacements (ug, vg, wp), they would
contain second-order spatial derivatives of ug and vg and fourth-order spatial
derivatives of wg. This implies that there should be only eight (four essential
and four natural) boundary conditions, whereas Eq. (6.3.21) shows five
essential and five natural boundary conditions, giving a total of ten boundary
conditions. To eliminate this discrepancy, one may integrate the tangential
derivative term by parts to obtain the boundary term

- B o [ OMns 500 ds — [ Moty (6.3.22)
T Js r Os '

The term [Mp.6wo] is zero when the end points of a closed curve coincide
or when M,; = 0. If My, = 0 is not specified at corners of the boundary T
of a polygonal plate, concentrated forces of magnitude F, = —2M,,, will be
produced at the corners. The factor of 2 appears because M,,, from two sides
of the corner are added there.

The remaining boundary term in Eq. (6.3.22) is added to the shear force
Qn (because it is a coefficient of §wy on I'®) to obtain the effective shear force

M,

o

Va=Q@Qn+ (6.3.23)
The specification of this effective shear force V;, is known as the Kirchhoff free-
edge condition. Finally, the correct boundary conditions of the CPT involve
specifying the following quantities:

dwg

Bn (6.3.24)
Generalized forces: Nun, Nps, Vi, Mpn

Generalized displacements: g, ugs, wo,

Thus, at every boundary point one must know g, 0r Nypp, ugs O Nps, wg OF
Vn, and Owy/0n or My,. On an edge parallel to the z-axis (i.e. s = 2 and
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n =), for example, the above boundary conditions become

ow 0
Upn = Vp, Ups = Ug, Wy, _8?0 = -*% (6325&)

N—nn = Ary*y: -an = Nym, Vn = Vy, Mnr.: = Pvfw (6.3.25b)

Next we discuss some common types of boundary conditions for the linear
bending of a rectangular plate with edges parallel to the x and y coordinates.
Here we use the edge at y = 0 (n; = 0 and n, = —1) to discuss the boundary
conditions (see Figure 6.3.2). It should be noted that only one element of
each of the four pairs may (and should) be specified on an edge of a plate.
The force boundary conditions may be expressed in terms of the generalized
displacements using the plate constitutive equations discussed in the next
section.

Free edge, y = 0: A free edge is one that is geometrically not restrained in
any way. Hence, we have

w#0, w0, w0, q(%“ £0 (6.3.26a)

However, the edge may have applied forces and/or moments
Ney=Ngy, Ny =Ny, Vo=-Qy— T Vo, My, =M, (6.3.26b)

where quantities with a hat are specified forces/moments. For free rectangular
plates, M, = 0, hence no corner forces are developed.

Fixed (or clamped) edge, y = 0: A fixed edge is one that is geometrically

fully restrained 5
w
w =0, =0 wy=0, — =0 (6.3.27)
dy
Therefore, the forces and moments on a fixed edge are not known a priori (i.e.
they are reactions to be determined as a part of the analysis). For clamped
rectangular plates, Mz, = 0, hence no corner forces are developed.

Simply supported edge y = 0: The phrase “simply supported” does not
uniquely define the boundary conditions, and one must indicate what it means,
especially when both in-plane and bending deflections are involved. Here we
define two types of simply supported boundary conditions:

SS-1: wup=0, wo=0; Nyy=DNy, My=>M, (6328

SS-2:  w=0, wo=0; Npy=Ngy, My=DM, (63.29)
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6.3.5 Stress Resultant—Deflections Relations

To express the forces and moments ({N},{M}) per unit length in terms
of the generalized displacements (ug,vp, wp), we must invoke appropriate
stress-strain relations. In the CPT, all three transverse strain components
(€:2,€xz,6yz) are zero by definition. Since £,, = 0, the transverse normal
stress o, though not zero identically, does not appear in the virtual work
statement and hence in the equations of motion. Consequently, it amounts
to neglecting the transverse normal stress. Thus we have, in theory, a case of
both plane strain and plane stress. However, from practical considerations, a
thin to moderately thick plate is in a state of plane stress because the thickness
is small compared to the in-plane dimensions. Hence, the plane stress-reduced
constitutive relations may be used.

For an orthotropic material with principal materials axes (z1,x2,z3)
coinciding with the plate coordinates (z,y,z), the plane stress-reduced
thermoelastic constitutive equations can be expressed as (see Reddy [3,40])

T Q1 Q12 0 Ege — a1 AT

Oyy ¢ = le ng 0 Eyy — Q2 ar (6.3.30)
Ty 0 0 Qs Yzy
where Q;; are the plane stress-reduced stiffnesses

E vo B v B

Qu = — T Q== (6.3.31a)
1 — v1v9 1—wvpver 1 —rvpovy
E
Qu=1—"--, Q& =GCn (6.3.31b)
— V1221

and (o;,¢;) are the stress and strain components, respectively, oy and ay are
the coefficients of thermal expansion, and AT is the temperature increment
from a reference state, AT = T — Ty. The moisture strains are similar
to thermal strains (i.e. for moisture strains replace AT and «; with the
moisture concentration increment and coefficients of hygroscopic expansion,
respectively).

The plate constitutive equations relate the forces and moments per unit
length in Eq. (6.3.4) to the strains (6.2.8b) of the plate theory. For a plate
made of a single or multiple orthotropic layers, the plate constitutive relations
are obtained using the definitions in Eq. (6.3.4). For plates laminated of
multiple orthotropic layers whose material axes are arbitrarily oriented with
respect to the plate axes, the plate constitutive relations couple the in-plane
displacements to the out-of-plane displacements even for linear problems (see
Reddy [40] for details). For a single orthotropic layer, the plate constitutive
relations are greatly simplified. They are

N % Qll QIZ 0 E?‘-L + Z‘E:}:x . QIAT

Nyy =/h Qiz Qn 0 |4 ey, + 26, — AT 3 dz
Nay 20 0 Qs 0, + 2k,
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All Alg 0 Epr Ng; ’
A A 0 i Ngy (6.3.32)
0 0 Agg g 0

Moz i [Qu Q2 O e, +2el, — AT

My ¢ = / Quz Qa0 €0y + 263y — @2AT 2 dz
5
€

o o8O

H

ay 20 0 Qes 9, + 27k,
Du Dz 0 L ML,
=|Di2 Dy O { iw} - {Mg;, } (6.3.33)
0 0 Desl Ly 0

where A;; are extensional stiffnesses and Dy; are bending stiffnesses, which are
defined in terms of the elastic stiffnesses () as

h
h h3 o
(.43‘5.‘,_19«;3:) = [2h Qij(l,zz)dz or Agj = hQ:‘.;j, D@,j = EQ@J‘ (6.5.34)
=3
and {N7} and {MT} are thermal stress resultants
{ N;;, } S {Qu&] + Qu20z }
N Qre0q + Q2202 | J-

{i\)fg; } _ { Quay + Qi }

M, Q201 + Q2202

AT(z,y,z2) dz (6.3.35a)

TR

=

b

> AT(z,y,2) zdz  (6.3.35b)

—k
z

where a7 and ao are the thermal coefficients of expansion, and AT is the
temperature change (above a stress-free temperature), which is a known
function of position. For isotropic plates, Eqgs. (6.3.35a,b) simplify to

h
N . 2 . .
7 G ¢, L I
Nop=Ng = a-0)’ Np = Ea. s AT dz (6.3.36a)
ML =M =M Mp=Ea : AT zdz  (6.3.36b)

2

6.4 Finite Element Models of CPT

6.4.1 General Formulation

In this section, the displacement finite element model of Egs. (6.3.15) -
(6.3.17) governing plates according to the CPT is developed. The virtual
work statements of the CPT over a typical orthotropic plate finite element 95
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are given by [from Eqs. (6.3.10)—(6.3.12)]

Obug Ouyg Owyg Ovg 1 Ouyg %
g £CH0 } o % , 2 (ow
/Qe((')x{ 1[8 +2(3$)J+A12[3y+2(8y)
65’!..'10 a’ug (’")’EJ[) 31{}0 8’100
+Ass 5~ By [8y+__'+d$ 33;} oy
Obug

- ) FNEdwdy - j{Néugn ds (6.4.1a)

_ 8590. 611{3 1 311}0 . (91)0 1 321}0 2

0= Qe(ay {A”[ax +2(5;) i ‘a@*i("ﬁg)
Obvg [Bug 31)0 Jwyg 5wg

dy T O Oz dy ] Ay

650{] 'T

= o e N dody - j{N iy 5 (6.4.1b)

B _351,00 Awg Oug 1 [Owp\? . vy dwg)
_fge{ﬁr_[ﬁ:r {An [??;—’_2 (Sm) } +42 {?3;;-—'— (81
awo_ ( 5_1,:2 L 9% ng O 81;;9)
dy Ay dr 0y

Odwy | Owy Oug dwg) ; dug 1 ( 8'&1)())2
SRl s A — L Y
+d’tj{dJ {A [c‘zm*d(ax J* 22{8;;’2 By
dwg (5% LB g L Owy @_m)
Oxr \ 9 dz = Ox dy

+ Age

+ Ags

% 6wy 0“wo 8wy | 0%wg 92wy 0wy
LN Dy
+ 52 (Dﬂ o + D12 a2 + B2 Dy 922 + Do 2
2 L
+4Dg %_i;_uﬂg—? + kéwowg —t‘iwoq}dﬂ? dy
[ 826w, v, 0wy o , . Abwo
+/ge ( Hz? Mozt 507 oy Myy | dzdy _ffﬂe (Vn5u9 Ma= on -
(6.4.1¢)
where
Np = Ngzng + -nyny; Ny =N, ayfa + Nyyny
M‘RS
Vﬂ. = Qﬂ, + 8 . (6l4'2)

0s
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and (ng,ny) denote the direction cosines of the unit normal on the element
boundary I'. We note from the boundary terms in Eqs. (6.4.1a-c) that
ug, Ug, wo, and Owg/On are used as the primary variables (or generalized
displacements), and Nn, N, V,, and M, as the secondary degrees of
freedom (or generalized forces). Thus, finite elements based on the CPT
require continuity of the transverse deflection wqy and its derivatives across
element boundaries (i.e. C'-continuity of wg). Also, to satisfy the constant
displacement (rigid body mode) and constant strain requirements, the
polynomial expansion for wgy should be a complete quadratic. The in-plane
displacements ug and vy need only be C continuous.

Assume finite element approximation of the form

ZU.‘?%“)? z,y)
= Z vivs (e, y) (6.4.3)

wo(z,y) = > _ ASs(z,y)
4=,

where ¢ are the Lagrange interpolation functions, A¢ are the values of wy
and its derivatives at the nodes, and ¢} are the interpolation functions, the
specific form of which will depend on the geometry of the element and the
nodal degrees of freedom interpolated. Substituting approximations (6.4.3)
for (ug,vp,wg) and (¢, 9§, ¢¢) for the virtual displacements (8, dvo, bwo)
into Eqgs. [6.4.1(a)(c)|, we obtain

(KM (K] (KR ({u} {F'} [y
{[K“I K2 [K%]H{’g}}={{F?}}+ {F2T} (6.4.4)
(K] [K®] [KF]] {A) {F?} {F*"}

The stiffness coefficients K| fjﬁ (not symmetric) and force vectors F* and B
(o, B =1,2,3) are defined as follows:

O e s
K;‘;:/ (4110)% i I+ A i )dﬂfd}
Qe

dr Oz %75y oy

e Y5 s 0§ -
12 _ =t o dedy = Kj;
K / e (Alz dr Oy Telee s, ()y (9

3 1 o dwo 05 Owo 9¢5
8_ - i :
K;; = [ (A T B Ay 5 B

0 0
+A66% (8w9i,_ 5 O ?)}d « dy
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; 3@,{}"3 3 oy O
K22 i
i j (A 3z Ba + Aoy By By )dﬂ:d

1 e Fuo O wg 095
23 i 2 Sk J
K= {au (A B 0z T2y oy

+ ks oY (3?.00 3593 Owg 380?)]

5c \oz 3y T 8y @
: e e
- L[ (n Y]

oye e
+ et (Asegjﬂ—o—%— + A B _.%) }dm dy
dy r Oy y Oz

; At Owg OYS Qwg OS5
2_ [ |, 0w, 0wy
K /{e l@:c (A12 dr Oy + Aes Oy Oz
Oyt dwo 0§ Owyp 313/;
z _— dzd
| +3y(66§m3:1:+A Ty oy )|
0§ 05 o5 0°05
33 J J
g = /5 {D“ % oz + D2 3 : By

dz% Oy? 892 oz

C'}Qtpi 62(pP
+ 4Dgg 820y Da ay+k"0‘% dx dy

1 Awyg 2_ Owyg * E%

3 Qe{[ﬁ“ (5) +4(5) | 3250
A \ 2 810_0) 0y 3893
t(50) +42(50) | 53

Owo Bwo [ 9pf O¢; Bt 05 drdy (6.4.5
+ (A2 + Asg) —— ir ay'(ax 8@.+8y8 wdy (6.45)

= f Npab¢ ds, F? = }( N§ ds
Ie €

0¢§
=/ qps da:dy%—j{ ( s — M, 3—;1—) ds

T OYf 2T _ T 0Yf d
/Nmﬁ dody, F: /eNyyay dz dy

5'2% T 32995 T

208 8202 248 B2y
+D12(8% s PR )
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where N}.;}Mg;, c. are the thermal forces and moments defined in Eqgs.
(6.3.35a,b).

This completes the general finite element model development of the classical
plate theory. The finite element model in Eq. (6.4.4) is called a displacement
finite element model because it is based on equations of motion expressed in
terms of the displacements, and the generalized displacements are the primary
nodal degrees of freedom.

6.4.2 Tangent Stiffness Coeflicients

The solution of nonlinear algebraic equations arising in the analysis of
structural problems, one often uses the Newton-Raphson method or its
improvements. To this end it useful to derive the tangent stifiness coefficients
associated with the CPT.

The Newton—-Raphson iterative method involves solving equations of the

for

o T [ T ({5AY (R
@] [ [ {{W} = - (R (64.7)
o] @) ] | {ea%) {7)

where

A —w, AP=u, AY=A] (6:48)

the coefficients of the submatrices [T%] are defined by

_ OB

708 : (6.4.9)
Yo ang
the components of the residual vector {R*} are
3 nx
Z S KAl —Ff (6.4.10)

v=1k=1

and n* denotes n or m, depending on the nodal degree of freedom. Thus, we
have

B > ; k i (1 o3 :
Ty = ﬁ > ZK"”A"‘ Fy Z Z Ri ny + K7 (64.11)
A \y21 k=1 =lk=1 04

The only coefficients that depend on the displacements are K}, K2, K,
K3, and K3, and they are functions of only the transverse displacement

A? = A?. Hence, derivatives of all submatrices with respect to Al = u; and
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A? = v; are zero. We have
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The computation of Tf;d requires the calculation of three parts:
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We shall compute these terms first. We have
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(6.4.16)
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Therefore, 1”3 is given by combining the expressions in Egs. (6.4.14)-(6.4.16)
and K37 34, \Ve obtain
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Clearly, the tangent stiffness matrix of an element is symmetric (while the
original element stiffness is not symmetric).

By dwy (d{pé 05 | Opt %)

0§ 0¢5
o }dmdy (6.4.17)

6.4.3 Some Plate Finite Elements

There exists a large body of literature on triangular and rectangular plate
bending finite elements of isotropic or orthotropic plates based on the CPT
(e.g. sce [13-20]). There are two kinds of plate bending elements of the
CPT. A conforming element is one in which the inter-element continuity of
wg, 0y = Owy/dz, and 0, = Owy/0y (or Owe/On) are satisfied, and a non-
conforming element is one in which the continuity of the normal slope, dwg/0n,
is not satisfied.

An effective non-conforming triangular element (the BCIZ triangle) was
developed by Bazeley et al. [14], and it consists of three degrees of freedom
(wo, 0z, 0,) at the three vertex nodes (see Figure 6.4.1). The element performs
very well in bending as well as vibration problems (with a consistent mass
matrix).
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Figure 6.4.1 A non-conforming triangular element with three degrees
freedom (wp, Buy /0z,8wg/8y) per node.

A conforming triangular element due to Clough and Tocher [15] is a
assemblage of three triangles as shown in Figure 6.4.2. The normal slop
continuity is enforced at the mid-side nodes between the sub-triangles. I

each sub-triangle, the transverse deflection is represented by the polynomi:
(i=1,2,3),

wé(m,y} =a;+b; €+ ca'??+dg§7}+e,;§2+fm2+gz£3+h?:£2rg+ kz-fnz +n

(6.4.18
where (£,7) are the local coordinates, as shown in Figure 6.4.2. The thirt;
coefficients are reduced to nine, three (wq, dwg/dz, dwy /0y) at each vertex o
the triangle, by equating the variables from the vertices of each sub-triangl

at the common points and normal slope between the mid-side points of sub
triangles.

=

Y M==%-

o

Figure 6.4.2 A conforming triangular element.
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A non-conforming rectangular element has wyg, 6,, and fy as the nodal
variables (see Figure 6.4.3). The element was developed by Melosh [16] and
Zienkiewicz and Cheung [17]. The normal slope variation is cubic along an
edge, whereas there are only two values of dwg/dn available on the edge.
Therefore, the cubic polynomial for the normal derivative of wq is not the
same on the edge common to two elements. The interpolation functions for
this element can be expressed compactly as

of =ga (i=1,4,7,10); ¢f=gi (i=2,58,11)
©f = gis (1 =3,6,9,12)

1 :
gin = -(1+&)(1+m)2+&+m - & ~n”) (6.4.19)
1 i
giz = &€ = 1)(1 +m0)(1 + €)%, giz= 7m0 = 1)(1+ &o)(1 + mo)”
i £ =(z—zc)/a, n=(y—yc)/b, & =&, M0 =y
where 2a and 2b are the sides of the rectangle, (z¢,y.) are the global
N coordinates of the center of the rectangle, and (&;, ;) are the coordinates of the
e nodes in (€,n) coordinate system [e.g. (&1,m) = (=1,—1), (&,10) = (1,-1),
a etc.].
1 A conforming rectangular element with wg, Owg/0z, Owp/dy, and

0%wy/Oxdy as the nodal variables (see Figure 6.4.4) was developed by Bogner
et al. [18]. The interpolation functions for this element are

@i =ga (i=1,5,9,13); ¢f =gi2 (i =2,6,10,14)

‘}0:22 = g:3 (3 = 3575 11, 15) (r:‘\: = Gi4 (3 = 4=8s 12~ 16)
1 ’

gi1 = E(& +&)% (& —2)(n+m)% (o — 2)

e T

non-conforming element
a F a
1 A—bd—b/

".' 2
57/’—--"‘:: “““““ /
/ ”' -
Y S
£ [
4@ S < ' 5 E=x/a, n=y/b
/ j uo, Vo, Wo, M, dwo
4 o

x  dy

Figure 6.4.3 A non-conforming rectangular element.
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conforming element

Figure 6.4.4 A conforming rectangular element.

Gi2 = %&i(& + &)1 = &)+ m)2(no — 2)
5 = So(E + 626 — D+ m)(1 — )
Gia = %m(&: + &)1 = &) (1 + m:)(1 = m0) (6.4.20)

The conforming element has four degrees of freedom per node, whereas
the non-conforming element has three degrees of freedom per node. For the
conforming rectangular element the total number of in-plane and bending
nodal degrees of freedom per element is 8+16 = 24, and for the non-conforming
element, the total number is 8 + 12 = 920.

6.5 Computer Implementation Aspects and
Numerical Results of CPT Elements

6.5.1 Computer Implementation

The conforming and non-conforming rectangular finite elements developed
in this chapter are implemented into a computer program using bilinear
interpolation of (ugy,vy) and Hermite cubic interpolation of wy. The element
geometry is represented using bilinear interpolation functions. In view of
the different interpolation of the in-plane displacements and the transverse
deflection, one must compute both types of interpolation functions and their
first and second derivatives (see Problem 6.24) in each call of the shape
functions subroutine. In addition, one must rearrange the stiffness coefficients
such that the finite element nodal displacement vector is of the form (to
minimize the bandwidth of the stiffness matrix)

{A} = {uo1,vo1, w01, 001, 841, Oay1, w02, w03, wos, 022, 0y2, Ozy2, . . .}
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where (Ug;, Vi, Woi; Uai, Oyi, Ozyi) are the displacements at node i. The same
logic as in the case of Euler—Bernoulli beams may be used to rearrange the
stiffness coefficients of the CPT elements (see Box 4.2.1) as discussed next.

First, one must compute all clement forces F}*, element stiffnesses Kgﬁ,
and extra stiffness terms to form the total tangent matrix. Two separate
do-loops on Guass quadrature are required to compute all the force and
stiffness coefficients. The full integration loop is used to evaluate all force
components and all linear stiffnesses. The reduced integration loop is used
to compute the nonlinear stiffness terms. One may use separate arrays (say,
EXT13(I,J), EXT33(1,J), and so on) to store the extra terms (to those of
K“ﬁ ) of the tangent stiffness coefficients. Next, the stiffness coefficients K ;f,,l

and K32

;i+ for example, are rearranged as follows:

II=1
DO 300 I =1,NPE
DO 200 K =1, NWD
K0=(I-1)*NWD+K
KK=II+K+1
JJ =1
DO 100 J =1, NPE
ELK(KK,JJ)= ELK31(I,J)
ELK(KK,JJ+1) = BELK32(1,J)
100  JJ=J«NDF+1
200 CONTINUE
300 II =1+« NDF+1

where NW D is equal to 3 for non-conforming element and 4 for the conforming
element; it denotes the number of degrees of freedom per node associated
with the transverse deflection. Similar logic may be used to rearrange the
coefficients K7, K%, and K3‘3 The logic to rearrange K, K '2 K7, and
K sz is the same as shown in Box 4.3.1.

Note that the addition of the extra terms to the direct stiffness matrix [K]
in order to obtain the tangent stiffness matrix, [K]*", must be carried out
only after the imbalance (or residual) vector is computed:

—{R} = [K]{A} - {F} - ELF(I) = ELF(I) - ELK(1,J) x ELU(J)
[K]“" = [K] + [EXT] — ELK(I,J) = ELK(I,J) + EXT(I,J)
where [EXT] in the present discussion is used only for the extra terms that are

added to [K] to obtain the tangent stiffness matrix. The above two operations
must be carried out sequentially in separate do-loops.
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Solution symmetries available in a problem should be taken advantage of t
identify the computational domain because they reduce computational effor
For example, a 2 x 2 mesh in a quadrant of the plate is the same as 4 x
mesh in the total plate, and the results obtained with the two meshes woul
be identical, within the round-off errors of the computation, if the solutio
exhibits biaxial symmetry. A solution is symmetric about a line only if (a
the geometry, including boundary conditions, (b) the material properties, an
(c) the loading are symmetric about the line. The boundary conditions alon
a line of symmetry should be correctly identified and imposed in the finit
element model. The boundary conditions along the edges and the syminetr:
lines of a simply supported rectangular plate are shown in Figure 6.5.1. T
the case of the conforming element, we may also set Ory = 0%wy /020y = 0 a
the center of the plate. When one is not sure of the solution symmetry, it i
advised that the whole plate be modeled.

6.5.2 Results of Linear Analysis

We consider the bending of rectangular plates with various edge conditions tc
evaluate the elements developed herein. The foundation modulus £ is set tc
zero in all examples. The linear stiffness coefficients are evaluated using 4 x 4
Gauss rule, while the stresses were computed at the center of the elements
(ie. one-point quadrature is used). The effect of the integration rule on the
accuracy of solutions will be examined in the sequel.

dx
5 4 '
d
Symm. B.C: uy= -;UTO=0 at x=0; = %-:0 at y=0

Figure 6.5.1 Boundary conditions for rectangular plates with biaxial
symmetry.
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Example 6.5.1

Consider a simply supported (SS-1) rectangular plate under uniformly distributed load. The
geometric boundary conditions of the computational domain (see the shaded quadrant in
Figure 6.5.1) are

8’!1)0 8?!’}0 .
uoz—(%—:ﬂatx=0; 1:0=~,a;~=0aty=0 (6.5.1)
_ Ouyg a g b

vg—wn——é-y——ﬂafa:—? u()—ﬂ()—-a 0aty 5
2
g:’;; =0 at z =y =0 (for conforming element only) (6.5.2)

Table 6.5.1 shows a comparison of non-dimensionalized finite element solutions with
the analytical solutions (see Reddy [3]) of isotropic and orthotropic square plates under
uniformly distributed transverse load gg. The stresses were evaluated at the center of the
element. Hence, the locations of the maximum normal stresses are (a/8,b/8), (a/16,b/16),
and (2/32,b/32) for uniform meshes 2 x 2, 4 x 4, and 8 x 8, respectively, while those of ozy
are (3a/8,3b/8), (Ta/16,7b/16), and (15a/32,15b/32) for the three meshes. The analytical
solutions were evaluated using m,n = 1,3,...,19. The exact maximum deflection occurs
at r = y = 0, maximum stresses 0., and oy, occur at (0,0,h/2), and the maximum shear
stress gy occurs at (a/2,b/2,-h/2).

Table 6.5.1 Maximum transverse deflections and stresses* of simply
supported square plates under a uniformly distributed load go
(linear analysis).

Non-conforming Conforming

Analytical
Variable 2x2 4x4 8x8 2% 2 4 x4 8x8 solution

Isotrepic plate (v = 0.25)

o x 102 48571 4.6425 4.5883 4.7619 4.5952 4.5739 4.5698
Tz 0.2405 0.2673 0.2740 0.2239 0.2637 0.2731 0.2762
Tuy 0.1713 0.1964 0.2050 0.1688 0.1935 0.2040 0.2085

Orthotropic plate (Ey/Ey = 25, G1o = G153 = 0.5F3, v1a = 0.25)
o x 102 0.7082 0.6635 0.6531 0.7710 0.6651 0.6522 0.6497

Tpx 0.7148 0.7709 0.7828 0.5560 0.7388 0.7743 0.7866
Tyy 0.0296 0.0253 0.0246 0.0278 0.0249 0.0245 0.0244
Oxy 0.0337 0.0421 0.0444 0.0375 0.0416 0.0448 0.0463

*@ = woEsh? /(qoa?), & =oh?/(goa?).

Example 6.5.2

Here we consider a clamped square plate under uniformly distributed load. The boundary
conditions are taken to be
v ng

B Daty=0 (6.5.3a)

ug=——=0atz=0; v
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s Ee _ Ouy _ Oy - a Sury Swy K
HD—?.—-'LU(}——'EE—%?—-U&t$—§, ﬂg——‘l}o—-wO——%—-——éhTzoaty:-i
, (6.5.31

F“w
5;8—; =0 on clamped edges (for conforming element only) (6.5.¢

Table 6.5.2 contains the non-dimensionalized deflections and stresses. The locations
the normal stresses reported for the three meshes are:

2x2: (§=§)? 4x4: (220 5.5, 2.2

and shear stresses reported for the three meshes are

. 3a 3b Ta Tb 15a 15b
22 (—8—,—8-], 4x4: (E ]_(_i}’ 8x8&: (—ij,-q?
These stresses are not necessarily the maximum ones in the plate.  For example
for an 8 x 8 mesh, the maximum normal stress in the isotropic plate is found tc
be 0.2300 at (0.46875a, 0.03125b, ~h/2) and the maximum shear stress is 0.0226 a
(0.28125a, 0.09375b, —h/ 2) for the non-conforming element. The conforming element yields
slightly better solutions than the non-conforming element for deflections but not for the
stresses, and both clements show good convergence.

Table 6.5.2 Maximum transverse deflections and stresses* of clamped
(CCCC), isotropic and orthotropic, square plates (a = b) under
a uniformly distributed load ¢ (linear analysis).

Variable Non-conforming Eonfomﬁng

2x2 4x4 8x8 2x2 4x4 8x 8
Isotropic plate (v = 0.25)
o x 102 1.5731 1.4653 1.4342 1.4778 1.4370 1.4249
O 0.0987 0.1238 0.1301 0.0861 0.1197 0.1288
Oy 0.0497 0.0222 0.0067 0.0489 0.0224 0.0068
Orthotropic plate (E;/E, = 25, G2 =G13=0.5E;, vy = 0.25)
o x 102 0.1434 0.1332 - 0.1314 0.1402 0.1330 0.1311
Trz 0.1962 0.2491 0.2598 0.1559 0.2358 0.2576
Tyy 0.0085 0.0046 0.0042 0.0066 0.0047 0.0043
Ty 0.0076 0.0046 0.0019 0.0083 0.0048 0.0020

0 = woFahd/(qoat), &= oh?/(qya?).

6.5.3 Results of Nonlinear Analysis

Here we investigate geometrically nonlinear response of plates using the
conforming and non-conforming plate finite elements. The nonlinear terms
are cvaluated using reduced integration. Full integration (F) means 4 x 4
Gauss rule and reduced integration (R) means 1 x 1 Gauss rule.
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Example 6.5.3

First, we consider the nonlinear bending of an isotropic (¢ = 0.3) square plate under
uniformly distributed transverse load, ¢q (see Lévy [32], Wang [33], and Kawai and Yoshimura
[34]). The following simply supported (S5-3) geometric boundary conditions are used:

ug = vg =wgp =0 on all four edges (6.5.5)

Since 8. = (Bwy/0z) and 8, = (wy/dy) are not specified in 85 3, it follows that the
following boundary conditions are

ony=0,b: Myy=My;y =0, onz=0,a: My=Mz =0 (6.5.6)

satisfied in the integral sense [see Eq. (6.4.7)].

Using the biaxial symmetry, only a quadrant is modeled with a uniform 4 x4 or 8 x 8 mesh
of rectangular elements. The boundary conditions along the lines of symmetry are shown
in Figure 6.5.1. The following geometric and material parameters are used, although the
non-dimensional transverse deflection and stresses presented here are independent of them
(but may depend on v):

a=b=10in., h=0.1in., E=30x10%psi, v=0.3 (6.5.7)

The notation F-F means full integration (4x4 Gauss rule) is used for the numerical evaluation
of all coefficients, while F-R means full integration is used for all but nonlinear terms and
reduced integration (1 x 1 Gauss rule) is used for the nonlinear terms. The number in front
of F-F or F-R stands for the mesh (4 refers to 4 x 4 mesh and so on). Stresses are evaluated
at the center of the element (i.e. 1x 1 Gauss point). A load increment of Agy = 7.5, which
is equal to the increment of load parameter, AP = Agpa?/Eh* = 25, is used along with the
convergence tolerance of ¢ = 10-2. Except for the first load step, which took 5 iterations,
the convergence was achieved for 2 or 3 iterations.

The center deflection, @ = wg/h, and total stresses (i.c. membrane and flexural
contributions included), &zz = 022 (A, A, h/2)(a®/Eh?) and &zy = 02y(B, B, ~h/2) (a?/ER?)
as functions of the load parameter, P = gga?/ Eh? are presented in Table 6.5.3. The location
(A, A, h/2) refers to the Gauss point nearest to the center (¢ =y = 0) but at the top of the
plate, while (B, B, —h/2) refers to the Gauss point nearest to the corner z = y = a/2, at
the bottom of the plate (see Figure 6.5.1). There is very little difference between the results
obtained with reduced and full integration of the nonlinear stiffness coefficients.

Plots of the load parameter P versus the deflection w and P versus various stresses
are presented in Figure 6.5.2. Although the linear and nonlinear valnes of G, for the load
parameter P = 25 are maximum at the center of the plate, the location of the maximum
normal stress ., in the nonlinear analysis changes as the load value is increased. For
example, the maximum value of 7. at P = 250 in the finite element analysis occurs at
(z,y)=(2.8125,0.3125), and its value is found to be 21.177. It is clear that the membrane
stresses are a significant part of the total stresses.

Example 6.5.4

This example is concerned with the bending of a simply supported (SS-1) orthotropic square
plate under a uniformly distributed transverse load gp. The geometry and material properties
used are given below.
a=b=12in., h=0138in, E; =3x 108 psi, Ep=1.28 x 10° psi
Gy =Gy3=Gy3 =037 x 106 psi., vip =wg3 =v3 =032 (6.5.8)
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A load increment of Ago = 0.2 psi and a uniform mesh of 4 x 4 in a quarter plate was usc
Figure 6.5.3 shows plots of the center deflection versus the intensity of the distributed loz

The finite element results are in close agreement with the experimental results of Zaghlc
and Kennedy [35].

Table 6.5.3 Maximum transverse deflections and stresses* of simp
supported (SS-3), isotropic (v = 0.3) square plates (a = b) unds
a uniformly distributed load ¢o (nonlinear analysis).

Load Non-conforming Conforming
parameter 4F-F 4F-R 8F-R 4F-F 4F-R 8F-R
Linear v — 1.127 1.127 1.113 1.116 1.116 1.110
25 w 0.670 0.673 0.670 0.669 0.670 0.669
Bzg 5.279 2.321 5.423 5.252 5.324 5.426
Gy 3.014 3.028 3.179 2.994 3.019 3.172
50 o 0.944 0.951 0.946 0.943 0.949 0.945
T 8.035 8.142 8.227 8.018 8.219 8.247
Ty 4.510 4.552 4.818 4.484 4.566 4.810
75 w 1.124 1.136 1.128 1.123 1.135 1.127
Tz 10.057 10.231 10.271 10.048 10.390 10.309
Ty 5.600 5.674 6.036 5.569 5.719 6.029
100 D 1.262 1.280 1.268 1.262 1.279 1.267
o g 11.731 11.974 11.961 11.729 12.217 12.017
Ty 6.493 6.599 7.049 6.457 6.679 7.042
125 w 1.377 1.400 1.383 1.377 1.400 1.383
Gz 13.197 13.509 13.440 13.201 13.838 13.513
Ozy 7.265 7.403 7.933 7.224 7.521 7.927
150 w 1.475 1.504 1.433 1.476 1.505 1.483
Taa 14.519 i4.902 14.77 14.529 15.317 14.867
Tay 7.951 8.122 8.726 7.905 8.280 8.722
175 w 1.563 1.597 1.571 1.563 1.598 1.571
Tz 15.737 16,191 16.009 15.752 16.693 16.117
Tay 8.573 8.778 9.451 8.524 8.979 9.449
200 w0 1.641 1.681 1.651 1.642 1.683 1.651
Oz 16.874 17.401 17.162 16.894 17.989 17.287
Ty 9.147 9.385 10.123 9.094 9.631 10.123
225 1w 1.713 1.758 1.724 1.713 1.761 1.724
Fax 17.946 18.546 18.251 17.970 19.222 18.393
Tay 9.681 9.952 10.751 9.625 10.244 10.754
250 (7 1779 1.830 1.791 1.779 1.834 1.791
Tz 18.965 19.638 19.287 18.993 20.401 19.446
Ty 10.182 10.486 11.344 10.122 10.827 11.349

* = wy/h, &= G(ﬁszhz)‘
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Figure 6.5.2 (a) Load versus deflection and (b) load versus stress plots

for simply supported (SS-3) isotropic (v = 0.3) square plates
under uniformly distributed transverse load qo-
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Figure 6.5.3 Load-deflection curves for simply supported and clampe
orthotropic square plates under uniform load.

Example 6.5.5

The last example of this section is concerned with the bending of a clamped square plat:
under uniformly distributed load go- The geometric and material parameters used are the
same as those in Eq. (6.5.8). The boundary conditions of a clamped edge are taken to be

Uy =vp = wp = 9(%9 = %;2 =0 (6.5.9;
Of course, for conforming element, one may also impose (0%wo/0z0y) = 0.

A uniform mesh of § x 8 non-conforming elements in a quarter plate is used, and a load
increments of {Agg} = {0.05, 0.05,0.1,0.2,0.2,...,0.2} psi was used. The linear solution at
g0 = 0.05 is found to be wy(0,0) = 0.00302 in. A plot of the center deflection versus the
intensity of the distributed load for the clamped orthotropic plate is included in igure 6.5.3
(see [36-38]).

We close this section with a note that the plate bending elements of the
CPT discussed here are adequate for most engineering applications, which
involve thin, isotropic plate structures and shear deformation is negligible. In
the coming sections, we discuss plate elements based on the first-order shear
deformation plate theory (FSDT), which can be used to analyze both thin and
thick plates.
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6.6 First-Order Shear Deformation Plate Theory
6.6.1 Introduction

The preceding sections of the book were devoted to the study of bending
of plates using the CPT, in which transverse normal and shear stresses are
neglected. The FSDT extends the kinematics of the CPT by relaxing the
normality restriction (see Section 6.2) and allowing for arbitrary but constant
rotation of transverse normals.

In this chapter, we develop displacement finite element models of the FSD'T.
As we shall see in the sequel, the formulation requires only C? interpolation
of all generalized displacements. Consequently, the element is much simpler
to implement on a computer. Of course, the element can be used to analyze
thick as well as thin plates. We begin with the theoretical formulation of the
theory (see Reddy [3] for additional details).

6.6.2 Displacement Field

Under the same assumptions and restrictions as in the classical laminate theory
but relaxing the normality condition, the displacement field of the FSDT can
be expressed in the form

1 u(ﬂ::y: Z) = TLQ(:C, y) + ZQSI(I:'J 77')
v(z,y,2) = v0(T,y) + 20y(,y) (6.6.1)
w(z,y, 2) = wo(z,y)

where (ug, vo, Wo, @z, ¢y) are unknown functions to be determined. As before,
(ug, v, wo) denote the displacements of a point on the plane z = 0 and ¢4
and ¢, are the rotations of a transverse normal about the y- and z-axes,
respectively (see Figure 6.6.1). The quantities (ug, vo, Wo, Pz, Py) are called
the generalized displacements.

The notation that ¢, denotes the rotation of a transverse normal about
the y-axis and ¢, denotes the rotation about the r-axis may be confusing to
some because they do not follow the right-hand rule. However, the notation
has been used extensively in the literature, and we will not depart from it. If
(8z, By) denote the rotations about the z- and y-axes, respectively, that follow
the right-hand rule, then

)G:r. = _'?I)y ) ﬁy = ¢ (6.6.2)

For thin plates, that is, when the plate in-plane characteristic dimension to

thickness ratio is on the order of 50 or greater, the rotation functions ¢, and

¢, should approach the respective slopes of the transverse deflection [21]):
Quyg . dwy

| i { 6.6.3
(;t':r d.’[ ] (‘by ay ( )
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Figure 6.6.1 Undeformed and deformed geometries of an edge of a pla
under the assumptions of the FSDT.

The von Kérman nonlinear strains assoclated with the displacement fiel
(6.6.1) are (e, = 0)

Bug 4 18wgy2 ;

Bl £ el o +3( 5 e

2 i IT @Q.{.l(@!&ﬁ\l‘z quc

Eyy Eyy Eyu a’-‘-"aw 2% oy —d_ef

; ) Y s Qwg ‘
'}-%2 =\ Ve pF2s O 5= 5y T %y 3 0
Y. - 0 Bwg + qb

fzz lzz e
~ ~0 1 Biig o 5 S D 99: . Ody
Ty lzy Yay ;;Q-FE%Q'F‘EQF&Q gy ' Oz
(6.6.4

Note that the strains (€221 €yy: Vay) are linear through the plate thickness
while the transverse shear strains (Y25 Vyz) are constant.
6.6.3 Weak Formulation

The weak form of the FSDT can be derived using the principle of virtual
displacements
0=06W°=6U°+6Ve (6.6.5)

where the virtual strain energy 6U° and the virtual work done by applied

i —— i
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forces V¢ in an element (2¢ are given by

§U€ = /Qe {/_%% [U.’c:c (tisgm + zés}w) + oy (65&; + zég;y)

+ 0y (843 + 2675 ) + 02693, + oy dz}da: dy (6.6.6)

h
§Ve = _{ /e /1 [Onn (6uon + 28¢n) + Ons (Sugs + 2805) + onzdwo) dz ds
vES Y=g

+ /ée (g — kwp) Swp dz dy} (6.6.7)

where Q° denotes the undeformed mid-plane of a typical plate element, h
the total thickness, py the density of the plate, k the modulus of the elastic
foundation (if any), and (opn, Ons, Onz) are the edge stresses along the (n, s, 2)
coordinates.

Substituting for 6U® and §V*® from Egs. (6.6.6) and (6.6.7) into the virtual
work statement in Eq. (6.6.5) and integrating through the thickness, we obtain

0= /Q [Nacbely + Magbel, + Nyybely + Myybely + Naybr,
-+ Mmyéﬁymly + Qe672, + Qyé’ygz + kwgbwg — qdwp | dx dy
- ﬁ (NanBton + Nosbtos + Maun6n + Musb6s + Qubua) ds (6.6.8)

where the stress resultants (Ngg, Nyy, Ney, Maz, Myy, Myy) were defined in
Eq. (6.3.4), (Nun, Nus, Mpn, Mps,Qn) in Egs. (6.3.6a,b)-(6.3.7), and the
transverse forces per unit length (Qz, Qy) are defined by

b
(&A= [ {0} (6.6.9)
Qy 3 —% Oyz
and ¢, and ¢, are the rotations of a transverse normal about s and —n
coordinates, respectively.

Since the transverse shear strains are represented as constant through the
laminate thickness, it follows that the transverse shear stresses will also be
constant. It is well known from elementary theory of homogeneous beams that
the transverse shear stress variation is parabolic through the beam thickness.
This discrepancy between the actual stress state and the constant stress state
predicted by the FSDT is often corrected in computing the transverse shear
forces (Qg, @y) by multiplying the integrals in Eq. (6.6.9) with a parameter
K, called shear correction coefficient:

{82}21{5/—3

(&1

{C’m } dz (6.6.10)

Oyz
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This amounts to modifying the plate transverse shear stiffnesses. The fac
K is computed such that the strain energy due to transverse shear stres
in Eq. (6.6.10) equals the strain energy due to the true transverse stres:
predicted by the three-dimensional elasticity theory.

To obtain the governing equations of equilibrium, first we substitute -
the virtual strains in terms of the virtual displacements into Eq. (6.6.8), a
then integrate-by-parts the expressions to relieve the virtual displacemer
(6ug, bvg, Swy, 8¢z, 6¢y,) in Q° of any differentiation. We obtain

0 :/ [_ (Ar:c:c,:c + ny,y) 6u0 g (ny:m + Nyy,'y) 61,0
sc

- (Ma::r,x =+ Mo:y,y = Qm) O — (M T ﬂ/fyy,y - Qy) 5¢’y

T (Qm,m = Qy,y - ka + N+ q) &UQJ dr dy

d
I'e

(Negng + Neyny) Sug + (Npynz + Nyyny) Sy

+ (Myeng + Meyny) ¢y — (Mypyng + Myyny) 66,
7
+ (anm + Qyny + 'P) 5wgJ ds

=5 }( (NnnfsuOn + anau()s + -Mrnnéﬁbn + Mns&.bs o Qnéwﬂ) ds (6-6-11
]—‘E

where A and P are defined by Eqgs. (6.3.14a,b). The boundary terms can b
expressed in terms of the normal and tangential components ugy,, ug,, On, an
¢s using Egs. (6.3.18a,b) and

O = Nz — nyos | Py = Nybdy, + Nybo, (6.6.12

This will yield the natural boundary conditions given in Eq. (6.3.20), whicl
relate the forces and moments on an arbitrary edge to those on edges paralle
to the coordinates (z,y, £5

The Euler-Lagrange equations are

bug : 6—;%3 + ag;'*"y =0 (6.6.13)
vg : %ﬂ - %ﬁ =) (6.6.14)
Swy : %%"’ - %% —kwg+N+qg=0 (6.6.15)
8¢y agi”“‘" + %ﬂy ~Q:=0 (6.6.16)
6y - OMzy + My, _ Qy=0 (6.6.17)

Ox 0y
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The primary and secondary variables of the theory are

primary variables: UQn, UOs; Wo; Pny Ps
secondary variables: Nppn, Nps, Qny Mpn, Mg (6.6.18)

The plate constitutive equations in Eqgs. (6.3.32) and (6.3.33) are valid also
for the first-order plate theory. In addition, we have the following constitutive
equations for transverse shear forces of an orthotropic plate::

(&)-x [ {m)emnl o]l{)  com

where the extensional stiffnesses A44 and Ass are defined by

raf

(Aaa, Ass) = / &(Q44;Q55) dz, Qua= G2, Qs5=G3 (6.6.20)

The stress resultants in an orthotropic plate are related to the generalized
displacements (g, vo, wo, @z, $y) by [see Egs. (6.3.32) and (6.3.33)]

Nyo [A;1 A2 O £ N, Er
Nyy A A 0 Egy - 'r;y (6.6.21)
N | 0 0 Asee «ygy 0

Mm: -Dll D12 0 5§:m M:Ezc

My $=|Di2 Dy 0 ry ¢ — < M, (6.6.22)
Va 0
Ty

Mg, 0 0 De

FIRICIA)

6.7 Finite Element Models of FSDT
6.7.1 Virtual Work Statements

Using the weak form (6.6.9) developed in Section 6.6, we can construct
the finite element models of the equations governing the FSDT. The stress
resultants in Eq. (6.6.9) are understood to be known in terms of the
generalized displacements (ug,vo, wo, ¢z, #y) via Egs. (6.6.22)(6.6.24). The
virtual work statement (6.6.9) is equivalent to (collecting the terms involving
Sug, vy, Swy, 8¢, and S¢, separately) the following five weak forms

dbu dbuy ..
0= o (?QNH + _53;_01\,'@) dx dy — f}\e (Nggng + Nzyny) 6ug ds (6.7.1)
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36'00 aévg
0 :/g;e (_B)E_Nmy e _@“Nyy) dz dy — ﬁe (Na:ynx o Nyy?ly) dvy ds (6.7

Odw Obw 86
0-_—/;)6 [ 33:0Q$+ 0Q9+-__w—0(mms:§,?£9 +Nmy%)

Ay oz Oz Oy
+ %53—9 (ny%% + Ny %) — bwog + kwoéwﬂ} dz dy
-{. [(ch NG04 N 20
+ (Qy + Nw%% + Nyy%?) n,yJ dwy ds (6.7..
0= [ (Gt + Llrr, 6:Q: ) dz dy

- fé (Mazng + Myyn,) 86, ds

(6.7.
b a6
" ,é‘e (‘rvjxynac + Myyny) 5@5@; ds (075

We note from the boundary terms in Egs. (6.7.1)~(

@z, ¢y are used as the primary variables (or generalized displacements) a;
Opposed tO uﬂn: u’US: wos @m (b.!i'

Unlike in the CPT, the rotations (@2, &y) ar
independent of wy. Since no derivatives of (ug, vo, wo, ¢z, ®y) appear in the
list of the primary variables, all generalized displacements may be interpolatec

using the Lagrange interpolation functions. Hence, the element is called Of
element with respect to all dependent unknowns.
We identify the secondary variables of the formulation as

6.7.5) that ug, vy, wa

Np =N,pn, + Nayny, N, = Nyyng + Nyyny, (6.7.6a)
My =Myzny + Myyn,, M, = Myyng + Myyn, (6.7.6b)
« Ow _ Owyg
Qn= (Q% + xz%}o + A’:cy"(%‘) Nz
Owg Owyg
+ (Q‘y T Nx:ua; T Nwd—y_) Ty (6.7.7)

6.7.2 Finite Element Model

The virtual work statements in Egs. (6.7.1)—(6.7.5)

contain at the most only
the first derivatives of the dependent variables (

Uo, Vo, Wo, Pz, dy). Therefore,
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they can all be approximated using the Lagrange interpolation functions. In
principle, (uo, vo), wo, and (¢z, ¢y) can be approximated with differing degrees
of Lagrange interpolation functions. Let

(z,y) = Zuﬂﬂ’ (z,¥), wolz,y) Zm (z,y) (6.7.8)
mmw=zwﬁuw) (6.7.9)
j=1

P ) P
=Y 5P @y), dyzy) = =3 S @) (@110
j=1 j=1

where 1; J (cx = 1,2,3) are Lagrange interpolation functions. One can use
linear, quadratic, or higher-order interpolations of these variables. Although
the development is general, in the implementation of this element, we shall
use equal interpolation of all variables.

Substituting Eqs. (6.7.8)-(6.7.10) for (ug, vo, wo, ¢z, @y) into Egs. (6.7.1)-
(6.7.5), we obtain the following finite element model:

[Kll] [}:{12] [3’1’3] [Klr-i [K15] {ue} {Fl} {F‘]T}

(K] [K2][K®][K*] (K] ] {v°} {F?} {727}

LS SIS ol oI RS VW S ER RV SRR ()

(K9] (K] [K%] (K] [K“"’]J {s'} {4 i
(K% (K52 (K] (K] (K% L{s?} {F} {F;T_}m

or, in generic matrix form '
[K){A%} = {F°} (6.7.12)

where the coefficients of the submatrices [K*?] and vectors {F®} and {F°T}
are defined for (a,3 = 1,2,3,4,5) by the expressions

yD ¢ w(l o otV
i3 Vi J
Kij = fﬂs (All 8:1: & + Ags 3y oy dz dy

1) 5 (D) gy
Kg _ [ (Aw oY’ J:b_J_ 4 Ag 81'_”* 2 dx dy
Jae

oxr 0Oy 6 dy Ox

Ox U5e oz . Oy oy

. {1) o r{2) a.a@)
+A66d1’bz (3100 V; _1_3100 Vi }dxdy

o (1,50,

Ay dr Oy oy Oz
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' () (1) o)
22 _ o, oY, 5¢j
Ky = ,/Q= (AES Oz (S"r + Az dy By axdy

J a,+(2)
23 _ Aug O
By = [ Ay (A d.’zt 8:1*. R dy Oy

3@” dwyg 3%} Owg 31/{&2)
+ Asgs el B +—ay— . dx dy

| - M
oy By OV dwgy OY;

31 i el i
K /Q [ e T 3y Oy

a !{2) 8100 81,9;1) awo 6‘1;;j
2 .
+ 3:1,-‘ (Aﬁﬁ By ——'—ay + A 12 ——ay Bz £ dy

KSZ 81;/; 2 3'09 w( dwg aﬂr’(l)
/ Ox dz 0 Ay E);
(2) ) @@’5(-1) Swa OV
+ —6%?;— (A 6 aw ___8;? 25— 63 ;fd:rdy

oyl oy
0r Ox

1 Owg\ 2 311}0)2
T3 o {[AH (W) Aos ( Ay

A Owyg 4 8w0) 81&1) 87#’(2)
+ | Aes (m:c_ ) & dy dy 0y

/ 2 4,2 5,2
Owp Buyg 31;;{2) o O™ O
+ (A12 + AGB) Bz dy ( 3;‘ a; + 8; 3.“; dz dy

()

3
K = / K A55 o dedy, K%< [ K As = 1;;(3 dz dy
Qe
,(3) @) 2,0
‘ (9?,’ ) oy ;" O . (3) ,(3)
(M= 1 —t _J figAr, 5 : dd
K —_./e (Dl ox 83‘: + Des dy Oy T -
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o o ay® oyl
K55 — / D - 3,
. ( 6 Ay Bz + Das C)y B + KsAaa; ’éi dr dy

F! = {.anz{l) ds, F?= é‘e N}@U ds

F= | quf® dedy+ f} Qi ds
E =j{ Mnd)@ ds, F} :f Mgw?) ds
Te re
_ oy oy
FIT = ?{ —i NI ds, FT=¢ —Zi NT
¥ e Oz ds, F Qe Oy Higg; s
(3) (3)
= f Wiyt g pTo j{ K T as
Qe Oz e dy
K% = K2 K8 =K% K%fi:f{ﬁ’ (6.7.13)

and all other stiffness coefficients are zero. Here N7, and N7, denote thermal
forces and M2, and M,, T the thermal moments. It is noted that the element
stiffness matrix is not symmetnc

The displacement-based C? plate bending element of Eq. (6.7.12) is often
referred to in the finite element literature as the Mindlin plate element, which
is labeled in this book as the first-order shear deformation theory (FSDT)
element. When the bilinear rectangular element is used for all generalized
displacements (ug, vo, Wo, ¢z, Py), the element stiffness matrices are of the
order 20 x 20; and for the nine-node quadratic element they are 45 x 45 (see
Figure 6.7.1).

Figure 6.7.1 Linear and nine-node quadratic rectangular elements for the
FSDT.
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6.7.3 Tangent Stiffness Coefficients

The tangent stiffness matrix coeflicients needed for the Newton-Raphso:
method of solving the nonlinear equations in Eq. (6.7.12) can be compute:
using the definition. Since the source of nonlinearity in the CPT and FSD”
is the same, the nonlinear parts of the tangent stiffness coefficients derived fo
the CPT are also applicable to the FSDT.

Suppose that the tangent stiffness matrix is of the same form as the direc

stiffness matrix in Eq. (6.7.1). Then the coefficients of the submatrices [T#
are defined by

o
gﬁ = 8R:3 (6.7.14
c’?Aj
where the components of the residual vector { R%} are given by

5 n=

R} =YY KXAl-Fp (6.7.15)
y=1k=1

Ag =, Af = U Af = wy, A? = 511, A? = Sf (6716)

and n* denotes n, m, or p, depending on the nodal degree of freedom. Thus,
we have

5 * 5 m= oy
T _ 0 s RSVAT Y _S_J > 0K A+ K246.7.17)
iy G\ £ Z ih =k i 8&'5 k ij
aAJ v=1k=1 =1 k=1 7

: : 1
It should be noted that only coefficients that depend on the solution are K3,
K2, K3, K#, and K. Further, they are functions of only wyg (or functions
of w;). Hence, derivatives of all submatrices with respect to Uj, Vj, S:}, and
S% are zero. Thus, we have

LT . | 2 2R 12 _ 12
T =3y TEN kg ek 18-y 3R e g
y=1k=1 9Y%j y=1k=1 Vi
2, 2 KL 13 _ = 0K} 13
T7=>>" EAY + KX =y = Sy, + K
17 ';kzl dwj' —1 dw;
W 2 & 2)
S PN T
"2 Jae | Oz oz o e dy Oy
' W2 o o)
nglj Oy O; | 0wy 0, 13
' : drdy + K
+ Aes oy oz By Ay  Os Ty L
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1 2 Ty = ZZ ds}f AT+KM=KY4, TF-YY as? AL+ K5 = KIP

’y=l.ﬂ 1 y=1 k=1

% . 5 n= 2
6K i
T3 = E: > d oK AV +EG =KY, TR=% % —& A"’ + K7 =KZ

=1 k=1 N=1 k=1
5 mnx n - ,é3
23 _ zk A'Y KQS i dﬁik 23
T ij — Wy + sz
=1 k=1 = O

_1 8w§” 4, 0000w 947
T 2Jqe | By 275z oz 2 dy Oy

( Pae) )
+ Ags %Y (3%’0 b + O O, ]d:c dy+Ifé2j3

Ox oy Oz or Oy
= K-23 K??* = K??'( T32 K32)

5 5 mnx 2
Z Z zk A’T i K24. K24 T;2a _ Z Z sz A K25 Kf}?

2
.y 6sz A+ K3 =K}, T®= o zk Al + K3 = K3
9=y S g -y, T35 B
7=1k=1 =1 k=1 a1
5 nk »-31 T* aﬁvgl 8K32 E)K33
33 _ zk ¥ 33 _ ik ik ik K33
I Z Z A +K z ( B ug + Bu; v + B wg | + K
=1 k=1 k=1
a1 (2) 9.,,2) (2) 5,,(2)
dﬁ]{ BTPJ 3’% 3¢ (2
_ 8 oy dzd
,/ge, (K3A55 Or Oz o oy Oy T U 1/) e
’ (2) (2) 5.,(2)
ou) 0y ) ay® !
T i b T i J
+ s)g{(Na:x+Nmm) ax a +(Nyy Aw 8y ay
2

+ (A12 + Ase)

Awg Owg Bwt ’%D(z) . 81,b§2) 3%(-2)
dr dy Or Oy oy Oz

; ; (2)
dwg ) 2 Bwo\ %] ov 8¢
A ("ax) +A56(f-}y) dr Oz
: 2
B’LUU 2 (81}.}0)2 3#;{2) a’;f)j }
' el i . drd
+ | s ( ox ) HAz oy dy Oy e
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Note that all nonlinear coefficients are the same as those derived for the CP1T

Once again, we note that the tangent stiffness matrix of the FSDT element i
symmetric.

6.7.4 Shear and Membrane Locking

The C%—plate bending elements based on the FSDT are among the simples
available in the literature. Unfortunately, when lower order {quadratic o
less) equal interpolation of the generalized displacements is used, the element:
become excessively stiff in the thin plate limit, yvielding displacements that arc
too small compared to the trye solution. As discussed earlier for beams, this
type of behavior is known as sheay locking. There are a number of papers on
the subject of shear locking and elements developed to alleviate the problem
(see [23-28]). A commonly used technique is to use selective integration
[29,30]: wuse full integration to evaluate all linear stiffness coefficients and
use reduced insegration to evaluate the transverse shear stiffnesses (i.e. all
coefficients in Kgﬁ that contain A4 and A4 55) and nonlinear stiffnesses. Higher-
order elements or refined meshes of lower-order elements experience relatively
less locking, but sometimes at the expense of the rate of convergence. With
the suggested Gauss rule, highly distorted elements tend to have slower rates
of convergence but they give sufficiently accurate results.

6.8 Computer Implementation and
Numerical Results of FSDT Elements

6.8.1 Computer Implementation

The FSDT element is quite simple to implement, and the implementation
follows the same ideas as discussed in Chapter 5 for single-variables problems
in two dimensions. The main difference is that the number of degrees of
freedom (NDF) is 5, and one must rearrange the coefficients using the Fortran
statements included in Box 4.3.1. Thus, the element displacement vector is of
the form

{A} = {uoy, vo1, woi, ¢y1, Pyt U025 V02, W02, Pa2, Py2, - . .}
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Two separate do-loops on Guass quadrature are required to compute all
the force and stiffness coefficients. The full integration loop is used to evaluate
all force components and all linear, except for the transverse shear stiffnesses.
The reduced integration loop has two parts: one for the transverse shear
terms and the other for nonlinear terms. One may use separate arrays (say,
EXT13(1,J), EXT33(I,J), and so on to store the extra terms (to those
of K%B) of the tangent stiffness coefficients. The stiffness coefficients are
rearranged as in Box 4.3.1.

6.8.2 Results of Linear Analysis

The effect of the integration rule and the convergence characteristics of
the FSDT plate element based on equal interpolation (bilinear as well as
biquadratic elements) is illustrated through several examples.

Example 6.8.1

Consider a simply supported (SS-1) isotropic (v = 0.25 and K. = 5/6) square plate
under uniformly distributed transverse load gy. The geometric boundary conditions of the
computational domain (see the shaded quadrant in Figure 6.8.1) are

ug=0¢s =0at x=0; wvy=dy=0at y=0 (symm. lines) (6.8.1)
'un::w;)=a':y=0at:c=%; uozw{):qﬁx‘——ﬂaty=g (6.8.2)

The following non-dimensionalizations of the quantities are used:

Esh? h, h2 h, h?
= ‘IL b, = oy, { Em— T — e, P
w = wg(0,0) prym Fze = 022(0,0, 2)6290’ Tyy = Oyy(0,0, 4)b2q
m ab h, B s a h, h A b h, h
oy =0n(5i5 g T =050l T =ow0g 5l
(6.8.3)

where the origin of the coordinate system is taken at the center of the plate, 0 < x < a/2,0 <
y <b/2, and —h/2 < z < h/2. The stresses in the finite element analysis are computed at the
reduced Gauss points, irrespective of the Gauss rule used for the evaluation of the element
stiffness coefficients. The Gauss point coordinates A and B are shown in Table 6.8.1. The
finite element solutions are compared with the analytical solutions from [2,3] in Table 6.8.2
for two side-to-thickness ratios a/h = 10 and 100. The notation nL stands for n x n uniform
mesh of linear rectangular elements and nQ9 for n x n uniform mesh of nine-node quadratic
elements in a quarter plate.
The stresses are evaluated at the Gauss points as indicated below:

tes(A A D), 00a(B,B,~2), 0us(B,A ) (6.8.4)

Thus, as mesh is refined or higher-order elements are used, the Gauss point locations get
closer to the points at which the analytical solutions for stresses are evaluated.
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Vo=w0=0,=0 fo—— Gy —ale Y —= uo= wy= ;=0

Symm. B.C.. Utp=d,=0 at x=0; wvy=¢y=0 at ¥=0

Figure 6.8.1 Geometric boundary conditions for

SS-1 type simp
supported rectangular plates.

Table 6.8.1 The Gauss point locations at which the stresses are compute
in the finite element analysis of simply supported plates.

Point 2L 4L 8L 1Q9 2Q9 4Q9
A 0.125a 0.0625q 0.03125q 0.10566a 0.05283a 0.02642¢a
B 0.375a 0.4375a 0.46875a 0.39434a  0.44717a 0.47358a

The following notation is used in Table 6.8.2: F = full integration; R = reduce
integration; S = selective integration: full integration of all except the transverse shea
coefficients, which are evaluated using reduced integration rule. The CPT solution i
independent of side-to-thickness ratio, a/h.

The results of Table 6.8.2 indicate that the FSDT finite element with equal interpolatior
of all generalized displacements does not experience shear locking for thick plates even wher
full integration rule is used for the evaluation of all stiffness coefficients. Shear locking is
evident when the element is used to model thin plates (a/h > 100) with full integration rule
(F). Also, higher-order elements are less sensitive to locking but exhibit slower convergence.
The element behaves uniformly well for thin and thick plates when the reduced (R) or

selectively reduced integration (S) rule is used. The selective integration rule gives the most
accurate solutions.

Example 6.8.2

Next consider a clamped isotropic (v = 0.25 and K = 5/6) square plate under uniformly
distributed load. The non-dimensionalizations used are the same as in Eq. (6.8.3), except
for the location of the stresses. The analytical stresses were non-dimensionalized as follows:

2
: ]} : 5'xz=0zz(%:0s‘

= g o Gy B
o':i:z:—o'xm(gsos 2)‘5-‘_{}0

s (6.8.5)
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Table 6.8.2 Effect of integration rule on the linear deflections @ and stresses
¢ of simply supported, isotropic (v = 0.25 and K; = 5/6),
square plates under a uniformly distributed load gg.

a/h Mesh o x 102 Gz Ty G2z
Finite element solutions (FSDT)
10 2L-F 2.4742 0.1185 0.0727 0.2627
21-8 4.7120 0.2350 0.1446 0.2750
2L-R 4.8887 0.2441 0.1504 0.2750
1Q-F 4.5304 0.2294 0.1610 0.2813
1Q-5 4.9426 0.2630 0.1639 0.2847
1Q-R 4.9711 0.2645 0.1652 0.2886
41-F 3.8835 0.2160 0.1483 (.3366
: A1-8 4.7728 0.2661 0.1850 0.3356
y i 4L-R 48137 0.2684 0.1869 0.3356
20-F 4.7707 0.2699 0.1930 0.3437
20Q-5 4.7989 0.2715 0.1939 0.3424
2Q0-R 4.8005 0.2716 0.1943 0.3425
1 8L-F 4.5268 0.2590 0.1891 0.3700
8L-8 4.7966 0.2743 0.2743 0.2014
= 8L-R 4.7866 0.2737 0.2737 (.2008
4Q-F 4.7897 0.2749 0.2044 0.3737
- 40Q-8 4.7916 0.2750 0.2043 0.3735
4Q-R 4.7917 0.2750 (.2044 0.3735
R Ancl. solns (3] 4.7914 0.2762 0.2085 0.3927
Finite element solutions
100 21-F 0.0469 0.0024 0.0014 (.2635
21-S 4.4645 (.2350 0.1446 0.2750
2L-R 4.6412 0.2441 0.1504 0.2750
10-F 4.0028 0.2040 0.1591 0.2733
1Q-S 4.7196 0.2629 0.1643 0.2837
1Q- R 4.7483 0.2645 0.1652 0.2886
41 -F 0.1819 0.0108 0.0071 0.3462
41-8 4.5481 0.2661 0.1850 0.3356
4L-R 4.5890 0.2684 0.1869 0.3356
2Q-F 4.4822 0.2644 0.1893 0.3485
20-S 4.5799 0.2715 0.1941 0.3414
20-R 4.5815 0.2716 0.1943 0.3425
8L-F 0.6497 0.0401 0.0275 0.3847
8L-S 4.5664 0.2737 0.2008 0.3691
8L-R 4.5764 0.2743 0.2014 0.3691
4Q-F 4.5530 0.2741 0.2020 (.3749
4Q-S 4.5728 0.2750 0.2044 0.3734
4Q-R 4.5729 0.2750 0.2044 0.3735
Finite element solutions (CPT)
? 4 x 4C 4.5952 0.2637 0.1935 -
8 x 8C 4.5734 0.2732 0.2040 -

Anal. solns 3] 4.5698 0.2762 0.2085 0.3927




- e |

188 wNonLINEAR FINITE ELEMENT ANALYSIS

while the finite element solutions were non-dimensionalized as

2
Oz =ze(Aa L —E _}i_ Oz = G'IZ(A: Br"%)bh (68
(

q0

contains the non-dimensionalized displacements and stresses. The FSDT element wi
selective integration or reduced integration is accurate in predicting the bending response

Table 6.8.3 The Gauss point locations at which the stresses are compute
in the finite element analysis of clamped plates (Example 6.8.2

Point 4L 8L 2Q9 4Q9
A 0.4375a 0.46875q 0.44717q 0.47358a
B 0.0625a 0.03125a 0.05283a 0.02642a

Table 6.8.4 Effect of integration rule on the linear deflections @ and stresse
& of clamped, isotropic (v=025and K, =5 /6), square plate
under a uniform load gq.

a/h Integ. Variable 4 x 4L 2x2Q9 8 x 8L 4 % 4Q9
10 F W x 102 1.2593 1.5983 1.5447 1.6685
i 0.1190 0.1568 0.2054 0.2301
Gz 0.3890 0.4193 0.4463 0.4578
10 S T x 102 1.6632 1.6880 1.6721 1.6758
o - 0.1689 0.1813 0.2275 0.2357
Tz 0.4056 0.4118 0.4511 0.4566
10 R @ x 102 1.6854 1.6903 1.6776 1.6760
G2z 0.1718 0.1817 0.2204 0.2358
T 0.4045 0.4120 0.4509 0.4566
100 F w x 102 0.0386 1.1222 1.3982 1.3546
Oz 0.0041 0.0947 0.0204 0.1825
T 0.3734 0.4732 0.4229 0.4862
100 S W x 102 1.4093 1.4382 1.4219 1.4268
Tex 0.1731 0.1846 0.2337 0.2417
Frz 0.4236 0.4255 0.4729 0.4776
100 R W x 102 1.4334 1.4417 1.4279 1.4271
o 0.1762 0.1853 0.2346 0.2418
Fya 0.4234 0.4284 0.4727 0.4779
100 CPT(C) dx4 W x 102 = 1.4370; &, = 0.1649
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6.8.3 Results of Nonlinear Analysis

6) Here we consider several examples of the nonlinear bending of rectangular

plates using the nonlinear FSDT element. The effect of the integration rule to
P _ evaluate the nonlinear and transverse shear stiffness coefficients is investigated
th in the first example. Unless stated otherwise, a uniform mesh of 4 x 4 nine-

node quadratic elements is used in a quarter plate for the FSDT. For this

choice of mesh, full integration (F) is to use 3 x 3 Gauss rule and reduced

integration (R) is to use 2 x 2 Gauss rule. Stresses are calculated at the center
d of the element. The shear correction coefficient is taken to be K; = 5/6.

Example 6.8.3

Consider an isotropic, square plate with
a=b=10in., h=1in., E=78x10% psi, v=0.3 (6.8.7)

= Two types of simply supported boundary conditions are studied. The displacement boundary
conditions used for S5-1 and SS-3 are (see Figures 6.8.1 and 6.8.2, respectively)

S8-1: Atz=a/2: vwy=wy=¢,=0 Aty=105/2: ug=wg= 0= 06.8.8)
55-3: ug = vg = wyp = 0 on simply supported edges (6.8.9)

Wi

Uniformly distributed load of intensity gg is nsed. The boundary conditions along the
symmetry lines for both cases are given by Eq. (6.8.1). It is clear that SS-3 provides
more edge restraint than SS-1 and therefore should produce lower transverse deflections.

Using the load parameter introduced earlier, P = gya*/Eoh*, the incremental load vector
is chosen to be

{AP} = {6.25,6.25,12.5,25.0,25.0, ... ,25.0}
A tolerance of ¢ = 10~2 is used for convergence in the Newton-Raphson iteration scheme to

check for convergence of the nodal displacements.

o - uu=vo=wn=0

T "’ ___________ _ ___________ ; - u.(|=Uu=w0=U
% | : :

‘*_ | e §
b% ! Ao
; i

i e e
~

ug=vgp = wo=0 t a5 B 4"[ up=vo=wo=0
J"‘
Symm. B.C.: uo= ¢x=0 at x=0; wvo=¢y=0 at y=0

Figure 6.8.2 Geometric boundary conditions used for SS-3 type simply
supported rectangular plates.
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Table 6.8.5 contains the deflections wp(0,0) and normal stresses Ozz = Ogo(a?/E}
obtained with a uniform mesh of 4 x 4Q9 FSDT elements for various integration rules (al
see Figure 6.8.3). The number of iterations taken for convergence are listed in parenthes
The linear FSDT plate solution for load gy = 4875psi (or P = 6.25) is wy = 0.2017:
for $S-1 and wy = 0.3151in. for S8-3 (when reduced integration is used to evaluate t
transverse shear stiffnesses). As discussed earlier, the 4 x 4Q9 meshes are not sensitive

shear or membrane locking, and therefore the results obtained with various integration rul
are essentially the same,

Table 6.8.5 Center deflection @ and stresses 7., of a simply supported (SS-1 and SS—
Plates under uniformly distributed load (Example 6.8.3).

SS-3 SS-1
P R-R* F-R F-F R-R F-R F-F
Deflections, wq(0,0)

6.25 02790 (3)  0.2790 (4) 02780 (3) 0.2813 (3) 0.2813 (3) 0.2812 (3)
12.5 04630 (3)  0.4630 (3) 04619 (3) 0.5186 (3) 0.5186 (3) 0.5185 (3)
25.0 06911 (3) 0.6911 (3) 0.6902 (3) 0.8673 (4) 0.8673 (4) 0.8672 (4)
50.0 0.9575 (3)  0.9575 (3) 09570 (3) 1.3149 (4) 1.3149 (4) 13147 (4)
75.0 11333 (3) 11833 (3) 11330 (3) 1.6241(3) 1.6239(3) 1.6237 (3)

100.0 1.2688 (3) 1.2688 (3) 1.2686 (3) 1.8687 (3) 1.8683 (3) 1.8679 (3)
125.0 1.3809 (2)  1.3809 (2) 1.3808 (2) 2.0758 (2) 2.0751(2) 2.0746 (2)
150.0 LAT74(2) 14774 (2) 14774 (2) 22567 (2) 2.2556 (2) 2.2549 (2)
175.0 L5628 (2)  1.5629 (2) 1.5629 (2) 2.4194 (2) 2.4177(2) 2.4168 (2)

) -
200.0 16398 (2) 16399 (2) 1.6399 (2) 25681 (2) 2.5657 (2) 2.5645 (2)
295.0 L7102 (2) L7103 (2) 1.7103(2) 2.7056 (2) 27023 (2) 2.7009 (2)
250.0 L7752 (2) L7753 (2) 17754 (2) 2.8338 (2) 28296 (2) 2.8279 (2)

Normal stressess, .. (0.625,0.625, R/2)

6.25 1.861 1.861 1.856 1.779 1.77¢ 1.780
12.5 3.305 3.305 3.300 3.396 3.396 3.398
25.0 5.319 5.320 5.317 5.882 5.882 5.885
50.0 8.001 8.002 8.001 9.159 9.162 9.165
75.0 9.983 9.984 9.983 11.458 11.462 11.465

106.0 11.633 11.634 11.634 13.299 13.307 13.308
125.0 13.084 13.085 13.085 14.878 14.890 14.889
150.0 14.396 14.398 14.398 16.278 16.293 16.290
175.0 15.608 15.610 15.610 17.553 17.572 17.567
200.0 16.741 16.743 16.743 18.733 18.755 18.748
225.0 17.811 17.813 17.812 19.837 19.863 19.854
250.0 18.828 18.831 18.829 20.880 20.909 20.898

* The first letter refers to the integration rule used for the nonlinear terms while the second
letter refers to the integration rule used for the shear terms.
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Figure 6.8.3 Plots of (a) center deflection w versus load P and (b) center
normal stress &, versus load P for isotropic (v = 0.3),
simply supported square plates under uniformly distributed
load (4 x 4Q9 for FSDT and 8 x 8C for CPT).
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Example 6.8.4

Orthotropic plates sub jected to uniformly distributed transverse load (i.e. ¢ = gy=consta
are analyzed. The geometric and materia] parameters used are

a=b=12in, h=0.138in., FE, =3 x 106 psi, Ep =1.28 x 105 psi
Gi2 = G13 = G23 = 0.37 x 10psi, 17, = 0.32 (6.8.1

A uniform mesh of 4 x 4Q9 elements with reduced integration is used in a quadrant. T’
incremental load vector is chosen to be

{AP}={0.05,0.05,0.1,0.2,0.2, ... ,0.2}

Twelve load steps are used, and a tolerance of ¢ = 0.01 is used for convergence.

Plots of load gy (psi) versus center deflection wy (in.) and g; versus normal stress (tot
as well as membrane) &z. = 042 (a2/Esh2) are shown in Figure 6.8.4 for SS1 and SS3 plate
The figures also show the results obtained using 8 x 8 mesh of conforming CPT element
Table 6.8.6 contains the center deflection and total normal stress as a function of the load &
the two boundary conditions. The linear FSDT solution for load gy = 0.05 is wy = 00115
for 5S-1 and wy = 0.01140 for SS-3.

Table 6.8.6 Center deflection wo and normal stress G, fc

simply supported orthotropic square plates under uniforml
distributed load (4 x 4Q9; Example 6.8.4).

S8-1 55-3
q0 CPT FSDT FSDT CPT FSDT FSDT
wg wp Tza wp Wy Tz

0.05 0.0113 (2) 0.0113 1.034 0.0112 0.0113 1.056
0.10 0.0224 (2) 0.0224 2.070 0.0217 0.0218 2.116
0.20 0.0438 (3) 0.0439 4.092 0.0395 0.0397 4.058
0.40 0.0812 (3) 0.0815 7.716 0.0648 0.0650 7.103
0.60 0.1116 (3) 0.1122 10.702 0.0823 0.0824 9.406
0.80 0.1367 (3) 0.1377 13.169 0.0957 0.0959 11.284
1.00 0.1581 (2) 0.1594 15.255 0.1068 0.1069 12.894
1.20 0.1787 (2)  0.1783 17.050 0.1162 0.1162 14.316
1.40 0.1932 (2)  0.1951 18.631 0.1245 0.1244 15.602
1.60 0.2081 (2) 0.2103 20.044 0.1318 0.1318 16.783
1.80 0.2217 (2)  0.2241 21.324 0.1385 0.1384 17.880
2.00 0.2343 (2) 0.2370 22.495 0.1447 0.1445 18.909

Example 6.8.5

Here, we analyze an orthotropic plate with clamped edges, that is, all generalized
displacements are zero on the boundary (see Figure 6.8.5) The boundary conditions of 2
clamped edge are taken to be

Uy =vp =Wy =z = o, =0 (6.8.11)

The geometric and material parameters used are the same as those listed in Eq. (6.8.10). A
uniformly distributed load of intensity go 1s used.
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Figure 6.8.4 Center deflection wp(0,0) and stresses 5oz 88 functions of the

load go for simply supported, orthotropic, square plates under
uniformly distributed load (Example 6.8.4).
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— Up=Up = Wo= 0y = Py= 0

T i uo ?Uo‘:LUg:q:x:q}y: 0

.

. ) i
Uo=Up=wo=z=0y=0 Ug=Vo=Wo=Gr="0y= 0

Symm. B.C.. uo=0x=0 at x=0; Uo=¢y=0 at y=0

Figure 6.8.5 Boundary conditions for a rectangular plate with clamped
edges.

The linear solution for load gg = 0.5 is wy = 0.0301. Figure 6.8.6 contains a plot of
load versus center deflection, and Table 6.8.7 contains center deflections and stresses for
the problem (sce [36-38]). Figure 6.8.6 also contains plots of the CPT deflections obtained
using 8 x 8 mesh of the non-conforming elements and FSDT deflections of an isotropic plate
(h=0.138 in., E = 1.28 x 10° psi, and v = 0.3) obtained with 4 x 4Q9 mesh.

0.40 el bl T sl ok s vl br s by ad v byag
] CPT (orthotropic)
0.356 o
] (8%8 NC)
0.30 3  FSDT (isotropic) F
& 3 (44 Q9) E
= 025 4 > =
a 7 E
'% a FSDT (orthotropic) [
g % (44 Q9) s
Py - L
] -] a
0.15 » :
0.10 5 / -
. / x E
0.05 — Z =
0.00 TIPIIIIIi”‘I"']’III[“JllIII“‘J”"III'II'[‘II_
0 4 8 12 16 20 24
Load, g,

Figure 6.8.6 Nonlinear center deflection wy versus load parameter gy for
clamped, orthotropic, square plates under uniform load.
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Table 6.8.7 Center deflection wy and normal stress Oge for cla.mped
orthotropic square plates under uniformly distributed load

(4 x 4Q9).

qo wy fop" qo wy Gze
0.5 0.0294 (3)  4.317 12.0 0.2450 (2)  46.001
1.0 0.0552 (3) 8.467 14.0 0.2610 (2) 49.851
2.0 0.0948 (3)  15.309 16.0 0.2754 (2) 53.431
4.0 0.1456 (3) 24.811 18.0 0.2886 (2)  56.800
6.0 0.1795 (3)  31.599 20.0 0.3006 (2)  59.998
8.0 0.2054 (3) 37.078 22.0 0.3119 (2) 63.053
10.0 0.2268 (2) 41.793 24.0 0.3224 (2) 65.986

Example 6.8.6

The last example is concerned with the nonlinear bending of a clamped, isotropic, circular
plate under uniformly distributed load. Recall that axisymmetric bending of circular plates
may be studied using one-dimensional bending elements (see Problems 4.5-4.8).

Figure 6.8.7 shows the finite element mesh and boundary conditions of a quadrant of a
circular plate. The exact center deflection for the linear case is given by (see Reddy [2,3])

goa? 8 h?

where a denotes the radius of the plate. For v = 0.3, K; = 5/6, and a/h = 10, the center
deflection is given by wq(0) = 1.0457(gga* /64 D). The linear FSDT solution obtained with
the mesh of five nine-node quadratic elements is wo(0) = 1.0659(gga/64D) (; 2% error):
Figure 6.8.8 shows the load—deflection curve for the problem (¢ = 100 in., h = 10 in., E = 109
psi, and v = 0.3).

v=y=w=0
Py = ¢y =0
on the clamped edge

Figure 6.8.7 Mesh and boundary conditions used for a clamped circular
plate.
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4‘0 L 1 ' - 1 I 1 1 L I 1 1 L ! L | 1 1 L
] E=10°psi, v=03 ;
- 3.0 5 a=100in., /=10 1in. s
= ] o
= = -
o =} i
8 ] E
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2 7 »
- ] r
= = :
1.0 3 . -
3 Mesh of 5-Q9 elements -
0_0 L IR B | l T | LI i [ L i J i T | LR =
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Load parameter, (g,a¥/ERY)

Figure 6.8.8 Load-deflection curve for clamped isotropic circular plate
under uniform load.

6.9 Theory of Doubly-Curved Shells
6.9.1 Introduction

In this section, we review the governing equations of shells. A number of shell
theories exist in the literature, and many of these theories were developed
originally for thin shells and are based on the Kirchhoff-Love kinematic
hypothesis that straight lines normal to the undeformed midsurface remain
straight and normal to the middle surface after deformation. A detailed study
of thin isotropic shells can be found in the monographs by Ambartsumyan
[41-43], Fliigge [44], Kraus [45], Timoshenko and Woinowsky-Krieger [46] and
Dym [47]. The first-order shear deformation theory of shells, also known as
the Sanders’ shell theory [48,49], can be found in Kraus [45].

Following this introduction, the equilibrium equations and strain—
displacement relations are presented. For additional details, one may consult
40, 44-52]. The finite element models of doubly-curved shells is presented in
Section 6.10.
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6.9.2 Geometric Description

Figure 6.9.1(a) shows a uniform thickness shell, where (£, &,¢) denote the
orthogonal curvilinear coordinates such that £; and & curves are the lines of
curvature on the middle surface (¢ = 0). The position vector of a typical point
(€1,62,0) on the middle surface is denoted by r, and the position of an arbitrary
point (£1, &2, ¢) in the shell is denoted by R, as shown in Figure 6.9.2(b). The
square of the distance ds between points (£1,£,0) and (€& + d&y, & + d&z, 0)
is determined by (see Reddy [40, 50])

(ds)? = dr - dr = a?(d&;)? + a3(dgo)? (6.9.1a)

o
dr = g1 d&; + godéy, gﬂr:b_éiﬂ

where the vectors g and gy are tangent to the & and & coordinate lines, g,z
(e, 3 = 1,2) is called the surface metric tensor and aq (o = 1,2) are

Gap = Ba " B3 (6.9.1b)

o = \/Joa, (10 sum on o) (6.9.2)

Note that g; - g» = 0 when the lines of principal curvature coincide with the
coordinate lines.
The unit vector normal to the middle surface can be determined from

*
f B0 60 (6.9.3)
a1a2

Further, we have the Weingarten—Gauss relations

oh _ g
0 Ra'

o [a 1 Oay d [as 1 das 3 g "
85, (E) ~Ro5’ 06 (R_Q) = R0 (Codazzi conditions) (6.9.5)
The values of the principal radii of curvature of the middle surface are denoted
by R; and Ry [see Figure 6.9.1(c)]. In general, i, Ry and Ry are functions of
¢1 and &p.

The position vector R of a point at a distance ¢ from the middle surface
can be expressed in terms of r and 1 by [see Figure 6.9.1(b)]

(no sum on @) (theorem of Rodrigues) (6.9.4)

R=r+(n (6.9.6)
By differentiation we have

IR Jon
i TS . ) 9.7
Bé-a gCl‘ g (6 )

O€a
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(a)

()

dS; =a)| 1+2-|dg = A,d& dS; = a5 1+ 2= |dg, = 4, dé,
R, R,

Figure 6.9.1 Geometry of a doubly-curved shell [50]. (a) Shell geometry.
(b) Position vectors of points on the midsurface and above
the midsurface. (c) A differential element of the shell (dSy
and dSz denote the arc lengths).
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and using Eq. (6.9.4) we obtain

OR ¢
Gy= % (1 + E‘:) go, (DO sum on ) (6.9.8a)
and

Gop = Go - Gp (6.9.8b)

Hence, the square of the distance dS between points (£,6,¢) and (& +
dé1, &2 + d€2, ( + d() is given by

(dS)? = dR - dR = A2(d&1)? + A3(dg,)? + A2(dC)? (6.9.9a)

in which
dR = G d§; + Godé +nd(, (6.9.9b)

and Aj, As, and Aj are the Lamé coefficients [see Fig. 6.9.1(c)]

A= (1—‘-*—) VG111, As=ag (1—|——) VG, Az=1

(6.9.10)
Note that vector G, is parallel to the vector g,. In view of the Codazzi
conditions (6.9.5) and Eq. (6.9.10), it can be shown that the following relations
between the derivatives of a, and A, hold:

1 ﬁAl 1 8&1 1 8/-12 1 60,2

= e 6.9.11
Ay 352 a 88 A 06 06, ( )

From Figure 6.9.1(c) the elements of area of the cross sections are

dS1d¢ = Ay derd = as (1 g R%) dé1 de,

dSod( = Az d&od( = ag (1 + ??gh) déa d¢ (6.9.12)

An elemental area of the middle surface (( = 0) is determined by [see Figure
6.9.2(a)]

or 6‘r

d.40 = drl X drz ‘N = (d—&

) df] df2 = ajas df]_ d£2 (6913)

and an elemental area of the surface at ( is given by [see Figure 6.9.2(b)]

JR JOR

dA;=dR; xdRy - h = (}}c—xag

")d&d&z A1Azdéi déy  (6.9.14)
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The volume of a differential element above the midsurface is given by

dV = de X dRg - fldg = dﬂcdg = A]AQ dfl dfg dC (6915

Figure 6.9.2 Surface area clements of a doubly-curved shell [50]. (a) Area

element on the midsurface. (b) Area element on a surface at
T
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6.9.3 Strain—Displacement Relations

The engineering components of the Green-Lagrange strain tensor in an
orthogonal curvilinear coordinate system are given by (no sum on repeated
indices; see [51])

o 3 ( ) 3 kaA'& 110 U 1 3 ukaAi 2
! : 8uk Ui 8441- Z
’ 24 kg,;,_% ( a& Ay agk) (6.9.16a)
f}:éi (Eﬁ) AJ‘ 0 Ufj
YT A06 \Ai) T A 06
i 1

(?ﬁ _ U_in) (?&aff ~ ﬂ%)

+
b A 06 Ak 08 )\ 0%  Ax O&

=1,k
1 ﬁu.z u; 0A; a [y 1 S up O4;
®o = e
5 A asz) {a&( )*A ZAk 8&J
1 (Ouj  wu; 04 U; 1 3L uy 04;
e | =2 il Y 6.9.16b
A; (dét A 86}) 1: 3] (AJ) Aj AZ:_l Ay d‘gk ( )
where i # j in Eq. (6.9.16b), and

& = (, A1=G1(1+}%)- A2=az(l+R£2), As=as=1 (6.9.17)

Substituting equation (6.9.17) into (6.9.16a,b) and making use of conditions
(6.9.10) and (6.9.11), one obtains

1 (¢ 18 1 |/0u Bax a1 \?
az_(%j_ﬂﬁﬂm% [( b, o)
1

0& a2 0% 2AZ 1\ 86 ' a2 0
(3’&2 uy 6(11 ) (81&3 aq 2
e e B e
9 a2 06 & R

2

1 Ous 1 dag as ) i (31.-:2 Uy 3(12 ay
2T Ay (3—52 e a1 06, TR 243 |\ 0 T 06 T )

duy  u9 302) (81&3 as )2
t == ) a5
(f)Ez ay 06 9 Ry’

= Gees () + (G) (3]

i
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-1 8%3 o Us 1 5&2 ou u1 Oa
406 " ac\,) 4 [ac 86 " a1 08 T R,
+?_’”_1(3’“1 _EE?EE)+Q?£§(§E§ a2

0¢ \0%  a; 6& ¢ \d¢& Ry u2)

1 8u3 0 Uy 1 3%1 8%1 U9 8(::1 a
= o mr b= == e | EW SOl , 21
TS Aog T (Al) A [ & (aal " “’3)

0206 R,
Ous (3&2 U1 8&1) Oug (6%3 a;
g [ + — - =1
¢ 0&, ay 0&s ¢ 06, Ry )

_ AQ d Us Al ad Uy
T A g (E) T 4,55 (71])
(e o s
A142 |\ 0t a1 66 06 a3 06 2T R’y ?‘53)

4 (3UQ (75 8&1) (6‘1&2 + 1 aa.gu . ag )
2. ATH (o 1 dap s 88
01 a0 /) \0& " a o6 TR,

8U3 a1 ) 6u3 as
iskio ML ous _ ap ;
K (351 B (6)52 R ”2) (6.9.18)

6.9.4 Stress Resultants

Next, we introduce the stress resultants acting on a shell element. The tensile
force measured per unit length along a & coordinate line on a cross section
perpendicular to a & coordinate line [see Figure 6.9.1(c)] is 011 dSy. The total
tensile force on the differential clement in the ¢ direction can be computed
by integrating over the entire thickness of the shell:

h/2 h/2
/ 011 dS2d( = ay / 11 (l + EC—) d¢| d&s = Ny as d&s (6.9.19)
—h/2 e "

where h the total thickness of the shell, ( = —h/2 and ¢ = h/2 denote the
bottom and top surfaces of the shell, and Np; is the membrane force per unit

length in & direction, acting on a surface perpendicular to the £1-coordinate
(see Figure 6.9.3):

h/2
Ny = / - (1 4 5’%) d (6.9.20a)
~h/2
Analogously, the moment of the force o717 dSy about the £o-axis is
h/2
My = f Lo (1 + %) d¢ (6.9.20b)
—h/2
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Thus, the stress resultants per unit length can be defined as follows (Ny = Nqq,
Ng = Niz = Noi, No = Nog, My = My, Mg = My = Moy, My = Moo,
g1 = 011, 012 = 0O, etc.; see Figure 693)

g} (l + T%) )

( A‘rll g2 (]— + jg]_)
Nag o6 (1 + _§_)
1'\;12 h/2 5 (1 " E‘i)

{ j\i,i - f C: 1 S i (6.9.21)
Moo —~h/2 1 ( ¥ RQ)
My, (oo (1—.‘-;%)
( Ma Cos (1+ ng)
L CO’G (1 e Ril)

The shear forces @); are defined as

(8=x [ {208

where K is the shear correction factor K.

(6.9.22)

In developing a moderately thick shell theory we make certain assumptions
(as we did in the case of plates). They are outlined next.

All resultants on these sides ¢
are equal but with opposite

signs to those on the parallel
edges

Figure 6.9.3 Stress resultants on a shell element.
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L. the transverse normal is inextensible (i-e. €33 = 0),

2. normals to the reference surface of the shell before deformation remair

straight but not necessarily normal after deformation (a relaxed Kirchhoff-
Love hypothesis)

3. the shell deflections are small and strains are infinitesimal, and

4. as in the case of plates, we assume that o3 is negligible and use the plane
stress-reduced constitutive relations.

Consistent with the assumptions of a moderately thick shell theory, we
assume the following form of the displacement field:

ul(&la ‘521 Cr t) = u0(£1)§21 t) + C(bl (‘fl) 52; t)
u2(81, €2, 1) = vo (€1, &2, 1) + Ca(6r, £a, 8)
?1-3[51,&2,(:, t) — uJU(‘fI}£2!t) (6923)

in which (ug,vo,wq) are the displacements of a point (€1,€2,0) on the
midsurface of the shell, and (¢1,¢2) are the rotations of a normal to the
reference surface.

The Sanders’ [48] nonlinear strain-displacement relations associated with
the displacement ficld in Eq. (6.9.19) are

{e} = {e% + ¢{eY} (6.9.24a)
where
( Oug 4 wg 4 1 (Qwg _ m)z 1 . 6.
82.‘"1‘.‘ ??L‘Q T Ry 2 86.’2‘.‘ R3 £ 5‘3’
dv w lrdwg _ w2 1
Sy ?yﬂ+-x’7;+2[ Oy Rz) 'Sffif“y Fg}E
0 = ¢ Ou felt) Sw u, Bwg _ w = o falu)
TS\ E R (o) (- ¢ Tey 'a“g‘g?f
a A
Vﬁz e _I"ﬁ.%% + (i):c p;i:z
\ Yy 2
(6.9.24b)

and dz = a1 d¢;, dy = ap d&y, and dz = dc.

In the remainder of this development, we omit the term z/R in the
definition of the stress resultants and assume that dapg = 0 (a,08 = 1,2)
(i.e. constant radii of curvatures). Thus, for thin shallow shells, we have

(1 + Ec_) 1, (l + ﬁ%) ~ 1 (6.9.25)

1

and we have ng = Ngl and ﬁff]_g == Mgl.
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The stress resultants are related to the strains, for an orthotropic shell in
the absence of thermal and other influences, as follows:

ow \2
M dor Ais 9 (f )2
ﬁz =|A;p Ax 0 Fw (?yu — B
JHER BAI & Sl T
(6.9.262)
0%
Mi) [Du D O 3
My p=|Dip Dy 0 s (6.9.26b)
Ms 0 0 Des] | 98 . %
dy dzx
Bw
Qz} _ Ay 0 By R TPy S,
{Ql =K |7 As %%Q ﬁ? Sl (6.9.26¢)
6.9.5 Equations of Motion
The equations of motion of the Sanders’ shell theory are
ON;  ONg\ Q1+ 8uo o :
—(w—+ 8@;) oA Mg g, s+ s =0 (6.927)
ONg ONy Q2+ N2 62’09 0%
( + —- o ) -~ R + 1 5 +5 mif" =0 (6.9.28)
3] 0 N, 0w
( 3Q:Il + C%z) + = + E“z- — N3(ug, vo,wo) — g+ Io (51‘2{] =0 (6.9.29)
di‘vf M o? 9?u
~ (—0?1 + 6;) + Q1+ L2 mi HIT?O =0 (6.9.30)
oM _ OM, 8%¢ ) ‘
( B oy )+Q2 th dt; i ot? = @eal
where
F e Z /  pEcE dg (6.9.32)
dwyg uo) il (8’11.10 Ug)
_ o Ve M p e TR
Ni(ug, vo, wo) = ( > (3 &
) ow dw Y .
Na(uo,vo, wo) = Ne (-8_: ~ %@1) + N2 (‘3?0 - g(;) (6.9.33)
N, ONs
N (o, vo, wo) = —-= + ¥

p being the mass density.
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6.10 Finite Element Analysis of Shells
6.10.1 Weak Forms

The displacement finite element model of the equations governing doubly
curved shells, Egs. (6.9.27)-(6.9.31),

can be derived in a manner similar t
that of plates. In fact, the finite element model of doubly-curved shells i
identical to that of FSDT wi

th additional terms in the stiffness coefficients
For the sake of completeness, the main equations are presented here.

We begin with the weak forms of Egs. (6.9.27)-(6.9.31):

_ Obuy 0dug Q1+ M . 521;:0 . 32(3'1
0= - [ T Ny + "———E)y Ng — bug R +Ioéuo-5§ + I1éug 52 dz dy
- jé Pi6ug ds (6.10.1a
Ie
dévy Abvy @2 + N vy 2y
= | | =N+ 28N, — 5 + héve =22 | dzd
! Qe [ oz et Oy s =om Ry oot oz T hdvo oz | T
= % Pgé’t)g ds (6.10.1]:):
Jre
Obwy Obwy { Ny Ng) By
= 1 - = +=] =& + Ipdwy—
¢ Qe [ Oz @it Ay @2+ bwo le * Iy “pdrlgoth Ot?
+ 6&”0./\/'1 -4 C}Q@Ng dz dy —}{ Vaubwy ds (6.10.1c)
dz Ay Te
85@)1 66@1 j 82(}51 . 82?.50 i
0= /;e (-—a}“Ml + "——ay Mg + 610 + Ioégy 52 + I10¢1 2 dz dy
= jé Tyé4y ds (6.10.1d)
Ie
9665 86y s | oy Ov0 P
0= - (‘EGC_MS + —8y_M2 +692Q2 + 1'25¢'2—~*at2 +4 G257 Y
- jﬁ Tybds ds (6.10.1¢)
Te

where the stress resultants N;, M; and Q; are defined by Egs. (6.9.21) and
(6.9.22). We note from the boundary terms in Eq. (6.10.1a—e) that wug, vgd
wo, ¢1, and ¢, are the primary variables. Therefore, we can use the ¢
interpolation of the displacements. The secondary variables are

Py =Ning + Ngna, Py = Ngny + Nony
T5 =Myng + Meng, To = Mgni + Mang
Vo =(Q1 + M) nq + (Qa + Na) ng (6.10.2)
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where (n1,n2) are the direction cosines of the unit normal to the surface. Note
that in the case of shells, surface displacements are coupled to the transverse
displacement even for linear analysis of isotropic shells.

6.10.2 Finite Element Model

Using interpolation of the form

o(z,y,t) ZuJ Wi(zy), wlz,y.t)= Z “(x,y) (6.10.3)
wo(z,y,t) Zm Es(z, y) (6.10.4)
j_
P
d1(z,y,8) = > Sj(E0U5(zy),  dala,u,t) = SH()S(z,y) (6.10.5)
j=1 j=1

where 17 are Lagrange interpolation functions. In the present study, equal
interpolation (m = n = p) of five displacements, with p = 1,2, ... is used. Note
that the finite element model developed here for doubly-curved shells contains
the FSDT plate element as a special case (set 1/R; =0 and 1/Ry = 0).

%ubstltutmg Egs. (6.10.3)—(6.10.5) for (up,vo,wq, ¢1,¢2) into the weak
forms in Eqgs. (6.10.1a—c), we obtain the semidiscrete finite element model of
the first-order shear deformation shell theory:

KN (K2 K1) (K] K [0] [o] [o] [o] [o] {uc}
KT K ﬂ [K23]  [K?4]  [K*) [0 [0} [o] [0] [0] {v*}
[KPBT [K2T [K*3] (K34 [K3%) |+ |[0] [0] [G] [0] [0] {we}
[K4T [K24]T (KT [K4]  [K4] [0] [0] [0] [0] [0] {S'}
LIRBIT [T [Ee5F Rl (K68 [0 [o] [0] [0] [0] {52}
rlo[M] (0] 0  nM o {ie} {F'}
[0 LM o] o] nLM| | {5} {F2)
+] [0 [0 LM [0 [0 {we} p =4 {F%} (6.10.6)
LiM] [0 o] Io[M] O] {81 {F4)
L [0] np o [0 L] L{§%) {F5}

where the coefficients of the submatrices [K*?] are defined as follows:

[e @ 4 N&
KjF :/ (";;: Ng + 3; Ng —wf%) dz dy
Qe 1

: o
200 _ i
I\ ij = / ) ("E}T Nﬁj

dvz Qzﬁf
5 —L Ng, — 5 32 dz dy

3 [8&5 a ?W_f 23 e ﬁ E dr d
K;: LeL&E Q75 + By Q35 + Y5 R + xdy

Ry
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’ 0Yf oY
55 = f (o + ot 15, aca
£ 0
6 = o (505 + 5005 4 v10,) vy e

fora=12. .. 5. The coefficients N“ Mg, and Q}’fj fora=1,3,.. . 5m
I=1,2, Gmeglvenby

8771) Up 1 61;;0
: — — =~ | gt
M = 4n [Ek | (zRf R a:r)%

s Vo 1 Qug\ .
e [ag " (232 Rz O ) vi

3 Owg OYE e
1

Ry Bz Or } Oy c’iy

NE 1 /8 1
N i [_@’1 oL (ﬁq - 1m) ””"?J

9y R \8y 2 Ry
(%be 1 /owg 1 U
Ny = oo {3; -l 37) Y J

dr By Oy Oz

31,08 Ug 1 3’:‘1)0 »
NTQJ - A12 {‘8 + (le Rl 83" ) wj}

N3 = Ass (3_1”2% 40 3?#’8)

g O 4 Ay, D0 Bw;f)
D

Néle[}! j\.'r ‘_U ).?\"13.——0, _"I\IJ—O N2J—D NQJ_O

oys
=% RA%; = KiAss 50, Qb = KoAsgus
1 T
K A &‘1{;“-3 y
ng &= = or QEJ = KAy d;~ ng = Ks/'laswj
Q%} = 0 Ql_; 0? Q2j = 03 Q2j =0 ‘
j\r 2 Nﬁ e 81!; C_}Eb_;
N = “g‘wp Ny = TR,V My =N -2 o, TV By
[ awe
= Ng —:ﬁ- + No—
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. 4 /e o
MY =M} =M} =0, MY=Dy, C:/ , MS = Dm%—
Y
,Q(/e e
M%J = ﬂffgj = *ng = 0, Ad—zj = D12 5‘;, M2j = ng (;’Zf
we 8 E
M = fﬂ UgU dody (6.10.8¢)
Fi=§ Ptdedy, F2=§ Pt ardy
.
= [ autdvdy+ 4 Quus as
Qe Te
= 5{} Tyt dody, FP = 5£ Ty dzdy (6.10.8d)
JTe s

The tangent stiffness coefficients can be computed as in the case of plates.

6.10.3 Linear Results

Here, numerical results are presented for linear analysis of some benchmark
problems from the literature [50]. Quadrilateral elements are used with
selective integration rule to evaluate the stiffness coefficients (full integration
for bending terms and reduced integration for bending-membrane coupling
terms and transverse shear terms). Results are compared with those available
in the literature.

Example 6.10.1 (Clamped cylindrical shell)

Consider the deformation of a cylindrical shell with internal pressure [40]. The shell is
clamped at its ends (see Figure 6.10.1). The geometric and material parameters used are:

Ry = 10% (Ri~0), Ry=R=20in, a=20in, h=1in  (6.10.99)
1

Ey =75x10%psi, Fo=2x 108 psi, G1p = 1.25 x 10 psi
Gz = Gag = 0.625 x 10° psi, w19 =0.25 (6.10.9b)

The pressure is taken to be py = (6.41/m) ksi. The numerical results obtained using 4 x 4
mesh of four-node (linear) quadrilateral elements (4 x 4Q4) and 2 x 2 mesh of nine-node
(quadratic) quadrilateral elements (2x2Q9) in an octant (ug = ¢1 =0atz; =0; vy = ¢ =0
at xp =0,7R/2; and ug =vp = wg = 1 = ¢ = 0 at 2; = a/2) of the shell are presented in
Table 6.10.1. The reference solutions by Rao [53] and Timoshenko and Woinowsky-Krieger
[46] did not account for the transverse shear strains.
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Figure 6.10.1 Clamped cylindrical shell with internal pressure.

Table 6.10.1 Maximum radial deflection (wp in.) of a clamped cylindric:
saell with internal pressure.

Present Solutions

Laminate 4 x 404 2 %209 Ref. [53] Ref. [46]

0 0.3754 0.3727 0.3666 0.367

Example 6.10.2 (Doubly-curved shell panel)

Next, we consider a spherical shell panel (Ry = Ry = R) under central point load [40]. Th
shell panel is simply supported at edges (see Figure 6.10.2). The geometric and materia
parameters used are:

Ry =Ry=R=9in, a=b=32in., h=0.1in. (6.10.10a
Ey =25Ey, E>=10%psi, Giy=Gy3=0.5E;, Ga3 =0.2E3, 112 =0.25(6.10.10b

The point load is taken to be Fy = 100 Ibs. The numerical results obtained using variou:
meshes of linear and quadratic elements in a quadrant of the shell are presented in Tabl
6.10.2. The finite element solution converges with refinement of the mesh to the series
solution of Vlasov [52], who did not consider transverse shear strains in his analysis,

The remaining example problems of this chapter are analyzed using various
p levels [see Eq. (6.10.3)(6.10.5)]. With five degrees of freedom at cach node,
the number of degrees of freedom per element for different p values is given on
the next page.
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X

Figure 6.10.2 Simply supported spherical shell panel under central point
load.

Table 6.10.2 Maximum radial deflection (—wp x 10 in.) of a simply
supported spherical shell panel under central point load.

Present Solutions

Material 4x4Q4 2x2Q9 4x4Q9 4x4Q9 Ref [53] Ref. [52]
Uniform Uniform  Uniform Nonuniform

Isotropic  0.3506 0.3726 0.3904 0.3935 0.3866 0.3956
Orthotropic 0.9373 1.0349 - 1.2644 - —

Table: Number of degrees of freedom per element for different p values.

Element type plevel DoF per element

Q4 1 20

Q9 2 45
Q25 4 125
Q49 6 245
Q81 8 405
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The numerical Integration rule
K denotes the number of Gauss po
the transverse shear terms (

(Gauss quadrature) used is I x J x K , whes ‘
ints (i.c. K xK Gauss rule) used to evaluat

ie. those containing A4y and Ass), J denotes tt
number of Gauss points to evaluate the bending-membrane coupling tern
(which are zero for the linear analysis of plates), and I denotes the numbe
of Gauss points used to evaluate all remaining terms in the stiffness matris
One may use full integration for all terms, reduced integration for all terms
or selective integration where reduced integration for transverse shear an
coupling terms and full integration for all other terms in the stiffness matrix
The values of I, J and K used in the present study for different p levels an.
integration rules are listed below.

Table: The Gauss quadrature rule used for various terms.

plevel inj?a‘gélmtion ir%%lgl?g%}rgn intggepa%gg
1 2x2x2 2x1x1 130ac
2 3x3x3 IX2x2 D32
4 bx5x5 oxdx4 4dx4x4
6 TXTXT Tx6x6 6x6x6
8 Ix9x9 Ox8x8 8x8x8

Example 6.10.3 (Clamped cylindrical shell panel)

Here we consider an isotropic cylindrical shell panel with the following geometric and material

parameters and subjected to uniformly distributed transverse (normal to the surface) load
q (see Figure 6.10.3):

a=01rad, R=100in, a=20in., h=0.125in. (6.10.11a)
E=045%10%psi, v=03, g=004psi (6.10.11b)

Two sets of uniform meshes, one with 81 nodes (405 DoF) and the other with 289 nodes
(1,445 DoF), are used in a quadrant of the shell with different p levels. For example, fn:?r
p = 1 the mesh is 8 x 8Q4, for p = 2 the mesh is 4 x 4Q9, and for p = 8 the mesh is
1x1Q81 - all meshes have a total of 81 nodes. Doubling the above meshes will have 289
nodes. The vertical displacement at the center of the shell obtained with various meshes
and integration rules are presented in Table 6.10.3. The results obtained with selective and

reduced integrations are in close agreement with thoese of Palazotto and Dennis [51] and
Brebbia and Connor [54].

The next example deals with the well-known benchmark problem pf
Scordelis-Lo roof [55]. A solution to this problem was first discussed by Cantin
and Clough [56] (who used » = 0.3).
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Figure 6.10.3 Clamped cylindrical shell panel under uniform transverse
load.

Table 6.10.3 Vertical deflection (—w4 x 102 in.)Jr at the center of the
clamped cylindrical panel under uniform transverse load.

Mesh of 81 nodes Mesh of 289 nodes
P Full Selective  Reduced Full Selective  Reduced
level integ. integ. integ. integ. integ. integ.

0.3378 1.1562 1.1577 0.7456 1.1401 1.1404
1.1721 1.1351 1.1352 1.1427 1.1349 1.1349
1.1347 1.1349 1.1349 1.1349 1.1349 1.1349
1.1349 1.1348 1.1348 1.1348 1.1349 1.1349

00 W= D

f Palazotto and Dennis [51] reported —1.144 x 10-2 in. while Brebbia and Connor
[54] reported a value of ~1.1 x 10~2 in.

Example 6.10.4 (Barrel vault)

The problem consists of a cylindrical roof with rigid supports at edges & = 4+a/2 while edges
at y = +b/2 are free. The shell is assumed to deform under its own weight (i.e. ¢ acts
vertically down, not perpendicular to the surface of the shell). The geometric and material
data of the problem is (see Figure 6.10.4)

a =407 (0.698rad.), R =300in., a=600in., h=3in. (6.10.12)
E=3x lﬂapsi, v=00, gy=g¢q 5111%1 g = —q cus% , g =0.625psi

The boundary conditions on the computational domain are

Ate=0: uyg=¢; =0, Atr=a/2: yy=wyg=¢o=0
Aty=0: vy=¢y=0, Aty=5b/2: Free (6.10.13)
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Figure 6.10.4 A cylindrical shell roof under its own weight.

Two sets of uniform meshes, one with 289 nodes (1,445 DoF) and the other wis
1,089 nodes (5,445 DoF), are used in a quadrant of the shell with different p levels. T
displacement at y = +5/2 (middle of the free edge) of the shell, obtained with various mesh.
and integration rules, are presented in Table 6.10.4. To avoid shear and membrane locki
one must use at least a mesh of 4 x 4Q25 (p = 4). The results obtained with selective ar
reduced integrations are in close agreement with those reported by Simo, Fox and Rifai (57

Table 6.10.4 Vertical deflection (—wg in.)WL at the center of the free edg
of a cylindrical roof panel under its own weight.

= 7 J ) .
S

Mesh of 289 nodes Mesh of 1,089 nodes
Full Selective  Reduced Full Selective  Reduced
level integ. integ. integ. integ. integ. integ.

0.9002 3.2681 3.6434 1.8387 3.5415 3.6431
3.6170 3.6393 3.6430 3.6367 3.6425 3.6428
3.6374 3.6430 3.6430 3.6399 3.6428 3.6428
3.6392 3.6429 3.6429 3.6419 3.6429 3.6429

T Simo, Fox and Rifai [57] reported Wrer = —3.6288 in. for deep shells.

|
00 = B =

Figure 6.10.5 shows the variation of the vertical deflections wy(0,y) and (300, y) as
function of y, while Figure 6.10.6 shows the convergence of the vertical displacement wg for
P=1,2,4,8. Figure 6.10.5 also contains the results of Zienkiewicz [58].
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Figure 6.10.5 (a) Deflection wg(0,y). (b) Displacement uo(300,y).

Example 6.10.5 (Pinched cylinder)

This is another well-known benchmark problem [44, 59, 60]. The circular cylinder with rigid
end diaphragms is subjected to a point load at the center on opposite sides of the cylinder,
as shown in Figure 6.10.7. The geometric and material data of the problem is

u=grad,, R =300in., a=600in., h=3in

E=3%10%psi, v =0.3 (6.10.15)
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Figure 6.10.6 Convergence of the relative vertical deflection, wy [ Wres.

Rigid
Diaphragm

Figure 6.10.7 Geometry of the pinched circular cylinder problem.

The boundary conditions used are:
Atz =0: ug=gy =0, Atz=a/2: vy =wy =g =0

Aty=0,b/2: vg=¢y=0 (6.10.16

Three different meshes with 81 nodes, 289 nodes and 1,089 nodes (with different p values
are used in the octant of the cylinder. Table 6.10.6 contains radial displacement at the point
of load application. The solution of Fligge [44] is based on classical shell theory. It is clea
that the problem requires a high p level to overcome shear and membrane locking. Figure
6.10.8 shows the convergence characteristics of the problem.
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Table 6.10.6 Radial displacement (—w4 x 105)T at node 1 of the pinched
circular cylinder problem.

Mesh of 81 nodes Mesh of 289 nodes Mesh of 1,089 nodes

plevel Full Selec.  Reduc. Full Selec.  Reduc. Full Selec.  Reduc.

0.1282  1.5784 1.8453 (0.2785 1.7724 1.8600 0.6017 1.8432 1.8690
0.4184 1.7247 1.8451 1.2238 1.8395 1.8596 1.6844 1.8636 1.8677
1.1814 1.8108 1.8438 1.7574 1.8510 1.8586 1.8335 1.8648 1.8667
1.7562 1.8309 1.8415 1.8325 1.8548 1.8579 1.8471 1.8653 1.8661

[ o B -

T The analytical solution of Fliigge [44] is —1.8248 x 10~ in.; The value given by Cho and
Roh [59] is wyef = —1.8541 x 10~ in.

Relative deflection,
LI B 1

0.60 | PR R V) I o R o S A 5% PR ) [Pt
0 5 10 15 20 25 30 3H
Number of nodes per edge

Figure 6.10.8 Convergence of the relative radial deflection, wa/wyer-

6.10.4 Nonlinear Results

Here present some few examples of nonlinear bending of shells. The
thin shell approximation is used and the results presented are based on the
nonlinear strains in Egs. (6.9.26a—c).

Example 6.10.6 (Clamped shallow cylindrical panel)
Here, we consider nonlinear bending of a shallow shell panel clamped on all its four sides, as
shown in Figure 6.10.9. The geometric and material parameters used are:

E=0.45x%10% psi, v=0.3, a=20in.,, R=100in.,h =0.125in., o =0.1rad.

Uniformly distributed load, with a load step of Agg = —0.02 psi (for a total of 20 load steps)
is used. The boundary conditions of the computational domain are

AtE=0: uy=¢1=0; At &=0: ug=¢y=0 (symmetry)
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At§1=ga.nd§2=a: Ul = Uy = Uz =gy =gy = () (6.10.1'

Figure 6.10.10 shows the center deflection ver

integration is used on all terms. The results
and Dennis [51].

sus applied load for various meshes, Fy
are in close agreement with those of Palazoti

Clamped
a

Clamped

Figure 6.10.9 Geometry and computational domain of the cylindrica
shell panel.
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Figure 6.10.10 Center deflection versus load for the clamped cylindrical
shell panel.
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) Example 6.10.7 (Hinged shallow éy;lindﬂcal panel)

1 Consider a shallow shell panel hinged on straight edges and free on curved edges, as shown
) in Figure 6.10.11. The geometric and material parameters used are the same as those in Eq.
(6.10.17) except h = 1.0 in. Point load at the center of the panel is used with a load step

of AP = —100 lbs (for a total of 12 load steps). Full integration is used on all terms. The
boundary conditions of the computational domain are

At & =0: w1 =01 =0, At&=0: uy=¢o =0 (symmetry)
At&p=a: uy=uy=uz=¢;=0; At & =a/2: Free

Figure 6.10.12 shows the center deflection versus applied load for various meshes. The results
are in close agreement with those of Sabir and Lock [61].

(6.10.18)

/

~Hinged

Figure 6.10.11 Geometry and computational domain of the shell panel.
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Figure 6.10.12 Deflection versus load for the clamped shell panel.
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Example 6.10.8 (The Barrel Vault problem)

Here, we consider the Barrel Vauilt problem of Example 6.10.4 for nonlinear analysis (s
Figure 6.10.4). The geometric and material parameters and the boundary conditions use
are the same as those in Egs. (6.10.12) and (6.10.13). Sixteen load steps of Agp = —0.625 p
are used. Figure 6.10.13 shows the center deflection versus applied load for various meshe
For the total load (10 psi) considered, the shell experiences no snap through behavior.

Example 6.10.9 (Clamped orthotropic cylinder)

The last example of this chapter is concerned with the nonlinear bending of an orthotropi
cylinder clamped at its ends (see Figure 6.10.14). The following geometric and materis
parameters (those of glass—epoxy fiber-reinforced composite material) are used:

Ey =7.5x10% psi, Ey =2.0x106 Psi, Gz =125x 108 psi, Gy = Goy = 0.625 x 105 ps
“12 =025, a=10in, R=20in, h=10i, a= grad. (6.10.19
The boundary conditions of the computational domain are
A& =0: uy=¢1=0; At&=0,a: Uy =¢y =0 (symmetry)
At & = -g PUEw =ug =g =g =0 (6.10.20;

Twenty load steps of Ago = 500 psi are used. Figure 6.10.15 shows the center deflectior
versus applied load for various meshes. The results are in close agreement with those of
Kreja, Schmidt, and Reddy [60].

S —A— s
E|-—e—— 2:2Q25 |
7-°§i—@_ 4x4Q25 |

=

A

Dead weight (psi)
|

—

T T ITT T[T T T T oo
0.0 40 80 120 160 200 240
Vertical deflection (in)

Figure 6.10.13 Center deflection versus load for a cylindrical shell panel
under its own weight.
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Figure 6.10.14 Geometry and computational domain of a clamped circular

cylinder.
100 b b b o bl
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Figure 6.10.15 Center deflection versus load for the clamped orthotropic
cylinder.
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Problems
6.1 f;evelop the weak forms of the following linear equations governing the classical plat
eory:
2 M. M, 82 M,,
( 027 "oy T oy )zq %
9w = i
_§;§ = (D22Mma . D12*Myy) =0 (b,
Puwy - -
"B (D12Mzz — D13 My, ) = 0 (¢
82w, -
-_25786_; = (Do) Mzy =0 (d,
where
D s D@" 2 1
4=y Dy = D13 D2y - D3, (e)
D;; being the bending stiffnesses of an orthotropic plate
h3 ¢
D'SJ :Qijﬁ' (z=1,2,6), (f)

6.2

6.3

and Q;; are the elastic stiffnesses defined in terms of the principal moduli (£, Es),
shear modulus G4, and Poisson’s ratio Vg as

on=- B o _ vl __ B
YT T ey . 1 vygvng’ i - vigloy’
1 Ey
= = = G v L4 = —_— :
Qo6 5 12 VA =vip (g)

Develop the (mixed) finite element model associated with the equations in Problem
6.1. Assume approximation of the form

wo=> wi), Me.= Y Moy
i=1 i=1

r q
Myy =3 My, May=Y Moy
i=1

i=1

where ;.L'f") . (& = 1,2,3,4) are appropriate interpolation functions. Discuss the
minimum requirements of the interpolation functions.
Assume

Yl=y?2 =y = ¢# = bilinear functions of a rectangular element, (a)

and develop the finite element program of the mixed model of Problems 1 and 2.
The resulting stiffness matrix is of the order 16 by 16. Analytical computation of the
coefficient matrices for a rectangular element is simple and straightforward.
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6.4 Develop the weak forms of the following nonlinear equations governing the classical
plate theory:

- (%4 %y):o (v)

_ (?Z‘f;’ 52 Bjﬁ? + a{;:g"y) — N(ug,vo, wp) = ¢ (¢}
_%f’_ ~ (DoaMaz — D13Myy) =0 (d)

g 36__ — (D1aMas — D1y My,) = (e)

gx“‘” ~ (Des) ™" May = (f)

where (Naz, Nyy, Nay,N) are known in terms of (ug,vg,wo) and their derivatives by
Eqs. (6.3.32) and (6.3.14a). Note that the dependent unknowns are g, vy, wg, Mas
Myy, and M.

6.5 Develop the (mixed) nonlinear finite clement model of the equations in Problem 6.4.
Assume interpolation of the form

L T

=3t = o, wo= 3wl
i=1

=1 i=]

& P

3 (4 )

Mea =Y Mo, My =3 Myup{®, E Moyl
i=1

i=]

6.6 Tmplement the mixed finite element model of Problem 6.5 and validate your program
with the example problems presented in Section 6.5.

6.7 Develop the weak forms of the following nonlinear equations governing the classical
plate theory:

ONgz | ONgy ( ONzy | ONy, )
—_ - — — — _ 0
( o + dy ) 0 or e dy
02 My, wy  BEMyy, 8 [, By dwy )
oz T4 06535, " 52 T E( 22y T Nev
3] ow, o 6’!.{?()) _
"oy (A‘“‘ 9z Ty )T
9wy Py P M
= — (D2aMze + D1oMyy) =0, — By — (D12Maq + D1 My, ) =

where (Nzz, Nyy, Ney) are known in terms of (ug, vg, wg) and their derivatives by Egs.
(6.3.32). Note that the dependent unknowns are uy, vy, wo, Mzs, and My,.

6.8 Develop the (mixed) nonlinear finite element model of the equations in Problem 6.7
by assuming approximations of the form

™ b

L B
ug = Zu,;wi]), vy = Zv,;w:.:n, wy = Zwrﬂf)@gz)

i=1 i=1 i=1
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s 5 P
My, = Zszw,( ): Myy T Z ﬂfyi’ﬁé”
i=]

=1

6.9 Implement the nonlinear finite element mode] of Problem 6.8 into a computer prograr
and validate it with the known results of this chapter,

6.10 Develop the weak forms of the following nonlinear equations governing the first-orde
shear deformation plate theory:

ONzz  ON, aN, aN,
(2= O 9)=’ _(__wg ._E?i):,
( dz ay ¢ ox T Ay 0

a0 (Buo 0 (ouy
Ass@:r ( 8.3_ +d‘:r) —-A,,MBE (_@— +@y)
o (W20 4y, awﬂ)—ﬁ(N 2 41, T0) =4

Oz Oz ¥y Oy \"Vor Yoy
_ Biwz: _ 8 8@: 0‘?514' 8’!.{)[) =
?:‘Dwa(my“%9+“%4ﬁz+%)”
3 (9d. O oM, O
_D.. 2 U@y _ yy Y% 2
ﬁﬁax(ay * E}a:) By +K‘A4“(&y +¢") 0

where (Nyz, Nyy, Nyy) are known in terms of (ug, vy, wp) and their derivatives by Eqgs.
(6.3.32). Note that the dependent unknowns are (0,0, wo, Pz, By, Moz, My, ).

6.11 Develop the (mixed) nonlinear finite element model of the equations in Problem 6.10
by assuming approximations of the form

L ol ™

ug = Z u,—_ﬂq‘;flj, vy = Z'L’i",l'b%-(l)s Wy = iwi‘!??)
: s=1

i=1

i=1
%=i$¢%%=iﬁw)
i=1

i=1

& P
M.r:: = Z Mxéw,'(‘ljs Myy = Z ﬂf’%”-wES)
i=1

=1

6.12 Determine the load-deflection behavior of a rectangular plate with two opposite edges
simply supported (SS-1) and the other two edges free, and subjected to uniformly
distributed transverse load. Use a = 10 in,h=1in, By =7.8x10% psi, B, = 2.6x 100
psi, v12=0.25, G2 = Gi13 = Ga3 = 1.3 x 106 psi, and 8 x 8 uniform mesh of
nonconforming CPT elements in a quadrant of the plate. Use load steps such that
the load parameter P = gpa% /F,h4 is equal to 5, and use 12 load steps. Plot (a) load
versus center deflection (wo/h versus P), and (b) load versus maximum stress (Ozs
and ozy). Use a convergence tolerance of £ = 10~2 and a reasonable value of ITMAX.

6.13 Repeat Problem 6.12 for a rectangular plate with two opposite edges simply supported
(85-1) and the other two edges clamped.

6.14 Repeat Problem 6.12 for a rectangular plate with two opposite edges clamped and the
other two edges free.

6.15 Repeat Problem 6.12 using 4 x 4Q9 mesh of the FSDT clements.

6.16 Repeat Problem 6.13 using 4 x 4Q9 mesh of the FSDT elements.

6.17 Repeat Problem 6.14 using 4 x 4Q9 mesh of the FSDT elements.

6.18 Analyze the circular plate problem of Example 6.8.6 when the edge is simply supported
(88-3). Use all other parameters as in Example 6.8.6.
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6.19 Verify the strain-displacement relations in Eq. (6.9.18).

6.20 Verify the strain-displacement relations associated

with the displacement field in Eq.
(6.9.19) are given by (6.9.20a,b).

6.21 Derive the equations of motion in Egs. (6.9.27)—(6.9.31).
6.22 Derive the tangent stiffness coefficients associated with the finite element model in

Egs. (6.10.6)-(6.10.8). :

6.23 Analyze the circular cylinder problem of Example 6.10.12 by assuming the fiber

6.24 Show that the sccond derivatives of a function f(¢,7)

direction is {5 (as opposed to £ 1) and compare the results with those in Figure 6.10.15.

; with respect to the global
coordinates (z,y) are related to its derivatives with respect to the local coordinates
(€,m) by [see Egs. (5.5.4)~(5.5.8)]

-1

8 az\2  (8y)2 bz & a2 8% 9%y

o7 (5)° (3)° 283 ot A

o7 V= (ﬁ)z (§2‘2 00z By 2y \ _| 2% &% 9z

g?:'“ n aan 3) 8n bn %f Gin2 e %!_

8 f Hx Bz y Oy Bz dy | Oy bz 84 8%z a2, u

525y 9on 0Eon onBE T o be 5edn T
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Flows of Viscous
Incompressible Fluids

7.1 Introduction

Fluid mechanics is one of the oldest branches of physics, and is concerned with
the motion of gases and liquids and their interaction with the surroundings.
For example, the flight of birds in the air and the motion of fish in the water
can be understood by the principles of fluid mechanics. Such understanding
helps us design airplanes and ships. The formation of tornadoes, hurricanes,
and thunderstorms can also be explained with the help of the equations of
fluid mechanics.

A fluid state of matter is characterized by the relative mobility of its
molecules. Very strong intermolecular attractive forces exist in solids which
are responsible for the property of relative rigidity (or stiffness) in solids. The
intermolecular forces are weaker in liquids and extremely small in gases. The
stress in a solid body is proportional to the strain (i.e. deformation per unit
length), while the stress in a fluid is proportional to the time rate of strain (i.e.
rate of deformation per unit length). The proportionality parameter in the
case of fluids is known as the viscosity. It is a measure of the intermolecular
forces exerted as layers of fluid attempt to slide past one another. The viscosity
of a fluid, in general, is a function of the thermodynamic state of the fluid and
in some cases the strain rate.

Fluid mechanics is a very broad arca and is traditionally divided into
smaller topical arcas based on characteristics of the fluid properties or the
basic nature of the flow. An inwviscid fluid is one where the viscosity is
assumed to be zero. An incompressible fluid is one with constant density
or an incompressible flow is one in which density variations (compared to a
reference density) are negligible. An inviscid and incompressible fluid is termed
an ideal or a perfect fluid. A real fluid is one with finite viscosity, and it may
or may not be incompressible. When the viscosity of a fluid depends only on
thermodynamic properties, and the stress is linearly related to the strain rate,
the fluid is said to be Newtonian. A non-Newtonian fluid is one which does not
obey the Newtonian (i.e. linear) stress-strain rate relation. A non-Newtonian
constitutive relation can be algebraic, differential, or integral type.
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The flow of viscous fluids can also be classified into two major types:
smooth, orderly motion is called laminar flow, and a random, fluctuatir
motion is called turbulent flow. Viscous flows can be characterized by a no
dimensional parameter known as the Reynolds number, Re = PUL/u, whic
is defined as the ratio of inertial forces pU? to viscous forces uU/L. Here
denotes the density of the fluid, p the fluid viscosity, U the characteristic flo
velocity, and L is a characteristic dimension of the flow region. High viscosit
fluids and/or small velocities produce relatively small Reynolds numbers an
a laminar flow. The case of Re << 1 corresponds to the flow (called Stoke
flow) in which the inertial effects are small compared to the viscous effects an
therefore neglected. The flow of less viscous fluids and/or higher velocities lea,
to higher Reynolds numbers and a turbulent flow. High Reynolds number flow
contain regions of both laminar and turbulent flows.

The motion of a fluid is governed by the global laws of conservation ¢
mass, momenta, and energy. These equations consist of a set of nonlinea
partial differential equations in terms of the velocity components, temperature
and pressure. The equations of motion resulting from the application of th
conservation of linear momentum principle are known as the Navier-Stoke
equations. When temperature effects are not important, the energy equation i
uncoupled from the Navier-Stokes equations. Thus for isothermal flows, onl:
the Navier--Stokes equations and continuity equation are solved. One may non
dimensionalize the variables in the Navier-Stokes equations to express then
in terms of the Reynolds number. We shall work with physical quantities ir
this study.

In the present chapter we review the governing equations of flows of
incompressible fluids, develop finite element models based on alternative
formulations, and discuss computer implementation of the finite element
models developed herein. Simple examples of applications of the finite element
models are also included.

7.2 Governing Equations
7.2.1 Introduction

There are two alternative descriptions used to express the conservation laws
m analytical form. In the first, one considers the motion of all matter
passing through a fized spatial location. Here one is interested in various
properties (e.g. velocity, pressure, temperature, density, and so on) of the
matter that instantly occupies the fixed spatial location. This description
is called the Eulerian description or spatial description. In the second, one
focuses attention on a set of fized material particles, irrespective of their spatial
locations. The relative displacements of these particles and the stress caused
by external forces and temperature are of interest in this case. This description
is known as the Lagrangian description or material description. The Eulerian
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a description is most commonly used to study fluid flows and coupled fluid
' flow and heat transfer, while the Lagrangian description is generally used to
study stress and deformation of solid bodies. Here we present the governing
equations of a continuous medium based on the Eulerian description. For a
derivation of the equations, the reader may consult the books on continuum
mechanics (e.g. Bird, Stewart, Lightfoot [1], Malvern [2], and Reddy and
Rasmussen [3]), heat transfer (e.g. see Bejan [4], Holman [5], and Ozisik
[6,7]), and fluid mechanics (e.g. Batchelor [8] and Schlichting [9]).

7.2.2 Conservation of Mass

—_—e— ey =S O 2

The principle of conservation of mass can be stated as the time rate of change
of mass in a fixed volume is equal to the rate of inflow of mass through the
surface. Application of the principle to an element of the region (called control
volume) results in the following equation, known as the continuity equation:

dp

o + V. (pv) =0 (7.2.1)

where p is the density (kg/m®) of the medium, v the velocity vector (m/s),
and V is the vector differential operator. Introducing the material derivative
or Eulerian derivative operator D /Dt

D 0

Gl ] : 722

T o +v-V ( )
Eq. (7.2.1) can be expressed in the alternative form

Dp

] v=0 7.2.3
Dt%—pv v ( )

For steady-state conditions, the continuity equation becomes
V-(pv)=0 (7.2.4)

When the density changes following a fluid particle are negligible, the
continuum is termed incompressible and we have Dp/Dt = 0. The continuity
equation (7.2.3) then becomes

V.v=0 (7.2.5)

which is often referred to as the incompressibility condition.

The incompressibility condition (7.2.5) expresses the fact that the volume
change is zero for an incompressible fluid during its deformation. Since the
velocity field u is required to satisfy the equations of motion derived in the next
section, Bq. (7.2.5) is known as a constraint among the velocity components.
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7.2.3 Conservation of Momenta

The principle of conservation of linear momentum (or Newton’s Second Lz
of motion) states that the time rate of change of linear momentum of & givi
set of particles is equal to the vector sum of all external forces acting ¢
the particles of the set, provided Newton’s Third Law of action and reactic
governs the internal forces. Newton’s Second Law can be written as

%—::V-a+pf (7.2.(
where o is the Cauchy stress tensor (N/m?) and f is the body force vecto
measured per unit mass. Equation (7.2.6) is known as the Navier-Stoke
equations.

The principle of conservation of angular momentum can be stated as th
time rate of change of the total moment of momentum of a given set of particle
Is equal to the vector sum of the moments of the external forces acting o.

the system. In the absence of distributed couples, the principle leads to th
symmetry of the stress tensor:

)

vt

where the superscript T denotes the transpose of the enclosed quantity.

7.2.4 Conservation of Energy

The principle of conservation of energy (or the First Law of Thermodynamics)
states that the time rate of change of the total energy is equal to the sum of
the rate of work done by applied forces and the change of heat content per

unit time. For an incompressible fluid, the First Law of Thermodynamics can
be expressed as

ey =-V.q+Q+® (7.2.8)

where T' denotes the temperature (° C), q the heat flux vector (W/m?), Q is
the internal heat generation (W/m3),  is the viscous dissipation function

@ =T: D (7.2.9)

and ¢, is the specific heat [J/(kg -°C)] at constant volume. In Eq. (7.2.9), 7
denotes the viscous part of the stress tensor o and D the strain rate tensor,
as discussed below. Other types of internal heat generation may arise from
other physical processes such as chemical reactions and Joule heating.
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7.2.5 Constitutive Equations

For most of this study we assume the fluid to be Newtonian (ie. the
constitutive relations are linear). Non-Newtonian fluids will be considered
in Chapter 10. Further, the fluids are assumed to be incompressible, and the
flow is laminar. For flows involving buoyancy forces, an extended form of the
Boussinesq approximation (see Bejan [4]) may be invoked, which allows the
density p to vary with temperature 7" according to the relation

p = po[l = B(T — Tp)) (7.2.10)

where (3 is the coefficient of thermal expansion (m/m/°C) and the subscript
zero indicates a reference condition. The variation of density as given in Eq.
(7.2.10) is permitted only in the description of the body force; the density in
all other situations is assumed to be that of the reference state, py.

For viscous incompressible fluids the total stress o can be decomposed into
hydrostatic and viscous parts:

o=7+(—P)I (7.2.11)

where P is the hydrostatic pressure, I the unit tensor, and 7 is the viscous
stress tensor. For Newtonian fluids, the viscous stress tensor is related to the
strain rate tensor D by

r=C:D (T12)

where C is the fourth-order tensor of fluid properties. The strain rate tensor
D is defined by
1 5
D= 5[(%) + va)’f] (7.2.13)

For an isotropic fluid (i.e. whose material properties are independent
of direction), the fourth-order tensor C can be expressed in terms of two
constants, A and p, called the Lamé constants, and Eq. (7.2.12) takes the
form

7 = Atr[D])I +2uD (7.2.14)

where (tr[D]) denotes the trace (or sum of the diagonal elements) of the matrix
[D], which consists of the elements of the second-order tensor D. For an
incompressible fluid, we have tr[D] = 0 and Eq. (7.2.14) becomes

7= 2D (7.2.15)

The Fourier heat conduction law states that the heat flux is proportional to
the gradient of temperature

q=-k-VT (7.2.16)
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where k denotes the conductivity ‘tensor of order two. The negative sign
Eq. (7.2.16) indicates that heat flows from high-temperature regions to lo
temperature regions. For an isotropic medium, k is of the form

k = kI (7.2.1

where k denotes the thermal conductivity [W/(m-°C)] of the medium.
The material coefficients, u, c,, A, and k are ge

nerally functions of positic
and temperature. Conductivity tensor is a symmetric, second-order tense

(ie. kT = k). The volumetric heat source for the fluid and/or solid ms
be a function of temperature, time, and spatial location. In developing t}
finite element models, the dependence of the material properties on the spati.

location is assumed. The dependence of the viscosity and conductivity o
temperature and strain rates is discussed in [10]

7.2.6 Boundary Conditions

The boundary conditions for the flow problem (i.e. momentum equations) ar
given by [10]

v=v on I (7.2.18a
c=t on T, (7.2.18b

where 1 is the unit normal to the boundary and T'y and T, are the boundar:

portions on which the velocity and tractions are specified, respectively (se
Figure 7.2.1).

The boundary conditions for the heat transfer problem (i.e. enecrg
equation) are

T=T on Iy (7.2.19a
gn=H-q=§, on I, (7.2.19b

where I'r and Ty are the boundary portions on which the temperature anc
heat flux are specified, respectively. A more general boundary condition for
the heat transfer problem is given by

Yeond 1 Geonv + Grad = Gn  OD T (7.2‘20)

where eond, Goony, and graq are the conductive, convective, and radiative parts
of heat flux, respectively,

Geond = —k - VT, Geonv = h*c[\T . Tc)} Grad = h?‘(T - T?‘) (7221)

Here h. and h, denote the heat transfer coefficients associated with convective
and radiative heat transfer, respectively. In general, they are functions of
position, time, and temperature.
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(a) (b)

Figure 7.2.1 A schematic of various boundary portions. (a) For fluid flow.
(b) For heat transfer.

The various portions of the boundary I' must satisfy the requirements

DeldTe =F, D rl,==30} (7.2.22a)

Fpul; =T Prpnaly={0} (7.2.22b)

where {0} denotes the empty set. Equations (7.2.22a,b) imply that the total

- boundary is composed of two disjoint portions, I'y and I'y, or I'r and T'y, whose

union is the total boundary. Of course, in the analysis of practical problems

one may encounter situations where, for example, both velocity and traction

are known at a point. This is a mathematical singularity, and one must pick

one of the two conditions but not both. Often the primary variables, i.e. v
and T are picked over the secondary variables t and gy.

7.3 Governing Equations in Terms of
Primitive Variables

7.3.1 Vector Form

Equations (7.2.3), (7.2.6), and (7.2.8) can be expressed in terms of the
primitive variables (v,P,T) by means of equations (7.2.12)~(7.2.16). The
results are summarized below for isotropic, Newtonian, viscous, incompressible
fluids in the presence of buoyancy forces:

Vow=10 (7.3.1)
Po (%Eti +v- Vv) =—-VP+uV- [(Vv) + (VV)T]
+ pof + pog B(T — Tp) (7.3.2)

pocy (%:; +v- VT) =V-(kVT)+ Q@+ (7.3.3)
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where v represents the velocity vector, pg the density, g the gravity fo;
vector per unit mass, T the temperature, c, the specific heat of the fluid
constant volume, and Q the rate of heat generation.

The ahove equations are valid for the fluid region 0 7+ In the solid regi
§2s, the fluid velocity is zero, v = 0, and the only relevant equation is (7.3.:
The energy equation (7.3.3) for the solid region is given by

or
,030551‘— =V (ksVT) + Q, (7.3,
In writing Eq. (7.3.4) it is assumed that the solid Is stationary with respe
to the coordinate frame such that the convective transport of energy lie. tl
nonlinear part of Eq. (7.3.3)] need not be considered. The finite cleme;

model of Eq. (7.3.4) was discussed in Chapter 4 when the conductivity k,
a function, in general, of Tyy, and T.

7.3.2 Cartesian Component Form

The vector form of the equations in (7.3.1)~(7.3.3) allows us to expres
them in any coordinate system by expressing the vector operator V and a
other vectors in that coordinate system. In the Cartesian coordinate syster
(21,22, 73), the kinematic and constitutive relations take the form

L(dv;  Ou;
ii == | — + =2 735
Dﬁ 2 ((’):rj L 3.’1,‘3') (
Tij = —Pé‘ij + Ty s Tij = Q,UDij (7.3.6
The conservation equations can be expressed as
(9?)@ i
— s 30
8331; (
ov; O, d Ov; Ov;
! : = — |—P§.. ol Bl |
e ( at T 6'3:-;) Oz; [ g (&rj i
+mofi — pogiB(T — Tp) (7.3.8)
or aT 0 oT
— +U— | = — [ k—— 2uD;; Dy 7.3.9
poC ( ot *+ vi 3$j) ox; (kaﬁ'ri) T Q +eplsg " ( )
for the fluid region Q 7 and
oT 0 or
pCes: O; ( 3(‘:?:1:@-) @s ( )

for the solid region Q,. Equations (7.3.5)~(7.3.10) are written for a Cartesian
geometry in an Eulerian reference frame, with the indices t,7 = 1,2,3 (or




!. FLOWS OF VISCOUS INCOMPRESSIBLE FLUIDS 237

3 i,j = 1,2 for two-dimensional problems); the Einstein summation convention
1t | on repeated indices is used (see Reddy and Rasmussen [3], pp. 18-20).

; It is possible to express the equations in terms of the stream function and
n vorticity functions. For example, in the two-dimensional case, we could write
) | equations (7.3.7) and (7.3.8) in terms of the stream function v and vorticity

w which are defined in a two-dimensional case by the relations:

) o oLl oy Ove 2
n=— = _— - —=V4% 3.11)
: e ) 815’ w 922~ Do Ve (7.3.11)

Here we chose to use the standard notation for the stream function and
vorticity. The symbol 1) should not be confused with ; used for interpolation
functions. Of course, it would be clear in the context of the discussion.

In the present study, we shall consider two different finite element models
of equations (7.3.7) and (7.3.8). The first one is a natural formulation in
which the weak forms of equations (7.3.7) and (7.3.8) are used to construct
the finite element model. The resulting finite element model is termed the
velocity—pressure model or mized model. The phrase “mixed” is used because
velocity variables are mixed with the force-like variable, pressure, and both
types of variables are retained in a single formulation. The second model is
based on the interpretation that the continuity equation (7.3.7) is an additional
relation among the velocity components (i.e. a constraint among the v;), and
the constraint is satisfied in a least-squares (i.e. approximate) sense. This
particular method of including the constraint in the formulation is known
as the penalty function method, and the model is termed the penalty—finite
element model. In this case, the pressure variable is effectively eliminated
from the formulation. It is informative to note that the velocity—pressure
(or mixed) formulation is the same as the Lagrange multiplier formulation,
wherein the constraint is included by means of the Lagrange multiplier method.
The Lagrange multiplier turns out to be the negative of the pressure.

There exist in computational fluid dynamics literature hundreds of papers
on finite element models of incompressible flows and their applications.
Interested readers may consult the books by Reddy and Gartling [10] and
Gresho and Sani [11] for many of these references. Some of these works will
be cited at appropriate places of this book.

W D e

7.4 Velocity—Pressure Finite Element Model
7.4.1 Weak Form

The starting point for the development of the finite clement models of Egs.
(7.3.7) and (7.3.8) is their weak forms. Here we consider the two-dimensional
case, and the three-dimensional case follows in a straightforward manner.
First, we write Egs. (7.3.7) and (7.3.8) for the two-dimensional case using
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the notation UL = Uz, V2 = vy, 21 = 2, and T2 = y. We have

vz | Ouy
d b gy ~0 (74
vy 9‘_1:3) 0 ( vy g Ovz B, oP
po (’“x ar "Wy ) " as Q“E;) o {“ (a;; N ?;)] T or ~ Pt
(7.4.
Ouy vy 0 Ov 0 Ovy v oP
) L) E— + 1 —_— _— .__y_ R dle v ___CC_ ———y —_— =
e ( oz T ¥y ) Ay (2” f?y) Ox {ﬂ ( Ay % ) ] * Oy Poly
(7.4.

where (fz, f,) are the components of the body force vector.

The weighted-integral statements of these equations over a typical cleme:
(2¢ are given by

Ovy | Ouy\ _
@ (5 + 5 ) deay <o (T4

Oy, 0 0 Ov
oot (52 + 0, 5) = 2 (%)
O (B, Bu\] OP :
By [P? (_O‘_y_ o B;)J + 7 ,ng;r}d.’zt dy =10 (7.4.F
8’93; 8Uy) d ('31)y
' Vo= T Uy ) — — [ 2u—2
/!;ﬁ’wy{po (f p 'f-TJay 8y( p:@y)
0 vy Ou, oP B ;
—% [}L (79"54-'8}-)} +—5§ —pgfy}dmdy-(] (7.4.6

where (Q,ws,w,) are weight functions, which will be equated, in the Ritz
Galerkin finite element models, to the interpolation functions used fo
(P, vz, vy), Tespectively (see Reddy and Gartling [10] for details).

Equation (7.4.4) will remain unaffected, as integration-by-parts does no
help reduce differentiability on (vz,vy). In addition, the boundary term:
obtained will be in conflict with the physical boundary conditions. The samc
comment applies to the first expression in Eqgs. (7.4.5) and (7.4.6). Note thas
trading of differentiability between the weight functions and problem variables
is subjected to the restriction that the resulting boundary expressions are
physically meaningful. Otherwise, the secondary variables of the formulatior
may not be the quantities the physical problem admits as the boundary
conditions. An examination of the boundary stress components ¢, in equation
(7.2.18b) shows that the pressure term occurs as a part of the expression [also
see Eq. (7.3.6)]. Therefore, the pressure term must also be integrated-by-parts
to keep the boundary stresses in tact. The integration-by-parts also allows the
pressure variable to have lower-order approximation.
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The final expressions for the weak forms are given by

v d
[a(Fe+5y) wa=o (7.4.7)

vy Ovz\ Ow, Oy (’)'.',uﬂc
jgze [wm (”“‘” Oz +U”6_y) W 6 T o

Owg (Ovuy Ov
“+ ,u—a— (3_3; + 3;) pgwxfw} dx dy — f wety ds =0  (7.4.8)

81} 31' Owy Ovy = Ow,

dw B’Ux 8’Uy \
B L oz (8_"')' + 9z ) - Powyfy]dwdy f wyty ds =0 (7.4.9)
where (t,t,) are the boundary stress (or traction) components
5
to= @n 22 — Pyng + w52 + Ty,
O dy Oz _
Ouy | Ouvy vy (7.4.10)
ty = pl= : +(2u—t —
y = Kl By e oz )z + ( @y P)ny

and (ngz,n,) are the direction cosines of the unit normal vector n on the
boundary I'.

7.4.2 Finite Element Model

Since we are developing the Ritz- Galerkin finite element models, the choice
of the weight functions is restricted to the spaces of approximation functions
used for the pressure and velocity fields. Suppose that the dependent variables
(v, vy, P) are approximated by expansions of the form

M
(T, y,t) = Z VY (z, y)v7 ( vy(x,y,t) = Z wm(m,y)v;”(t) (7.4.11a)

m=1

=z

P(z,y.t) = Z z,y)Po(t) (7.4.11b)

where 1 and ¢ are interpolation (or shape) functions, and (oo P,) are
nodal values of (vz,vy, P). The weight functions (we, wy, @) have the following
correspondence (see Reddy [12,13] for further details):
Q~P, wy=vz, Wy=RUy (7.4.12)

Substitution of Eqgs. (7.4.11ab) into Egs. (7.4.7)~(7.4.9) results in the
following finite element equations [10]:

(M) (0] [0]] (A%e) [C@)] [0 [0]] ( {vs}

] M) [0S o) p+| [0 [CO (0] q u)

0] [0 [0} L{P} [0] o] 101 L{P}
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) {Q[Sﬂ% 2 oS TN [ (i
TY T + £} —|5Y Uy = 2 RS
—[8#* =89t | [U%J {{ }} {{?0}]{} "

The coefficient matrices shown in Egs. (7.4.13) are defined by
A ij ::/!:.2"3 pgwf’l,f);dﬂfdy

e 3%,')0 0 bs
Civ) =/QE poys (t-‘z (’-j; iy ij) dz dy

0
Ope Oe
S&? = % -——‘l E; =
9 Jae" 08 By dedy; n=sy (7.4.1
S8 _ 3"1’5

0=, 9% Pidrdy; &€=gz,y
fﬂaémwhm@+f¢ﬁm8
e Te

ﬂ=Amw@@@+iﬁ%®

functions - and not their derivatives. There are two different finite elemen
associated with the two sets of field variables (vz,vy) and P, and hence the;
are two different finite element meshes corresponding to the two variables ove
the same domain, Q. If one of the meshes contains the other mesh as a, subse
then we choose to display the first mesh and indicate the nodal degrees ¢
freedom associated with the nodes of a typical element of the mesh.

The interpolation used for the pressure variable should be different fror
that used for the velocities, because the weak forms in Egs. (7.4.7)-(7.4.9
contain only the first derivatives of the velocities v, and vy and no derivative
of the pressure P. In addition, the essential boundary conditions of th.
formulation do not include specification of the pressure; it enters the boundar
conditions as a part of the natural boundary conditions. This implies that the
pressure variable need not be carried as a variable that is continuous acros:
interelement boundaries. These observations lead to the conclusion that the
pressure variable should be interpolated with functions that are one order
less than those used for the velocity field and that the approximation may be
discontinuous (i.e. not continuous from one element to other). Thus, quadratic
Interpolation of v; and discontinuous linear interpolation of P are admissible.
Models that use equal interpolation of the velocities and pressure with this
formulation are known to give inaccurate results (see [14--26]).
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7.5 Penalty Finite Element Models
7.5.1 Introduction

The penalty function method, like the Lagrange multiplier method (see [3,
10, 13]), allows us to reformulate a problem with constraints as one without
constraints. In order to use the penalty function method for the flow of a
viscous incompressible fluid, first it is reformulated as a variational problem
subjected to a constraint. For the purpose of describing the penalty function
method, we consider the steady Stokes flow problem (i.e. without time-
dependent and nonlinear terms) in two dimensions. Then the penalty method
is applied to the variational problem with a constraint. The development will
then be extended to unsteady Navier-Stokes equations.

Consider the weak forms in Egs. (7.4.7)-(7.4.9), and omit the time
derivative and nonlinear terms. These can be expressed in the form

B((wg, wy, Q), (v, vy, P)) = £(wg, wy, Q) (7.5.1)
where (wg,wy, Q) are the weight functions used for the momentum and
continuity equations, respectively, B(:,-) is a bilinear form [i.e. an expression

that is linear in (wg,wy, Q) as well as (vg, vy, P)] and £(-) is a linear form,
defined by

B((wﬂfs wy: Q): (Um U’ya P))

Z/Q p,{g (Ows Ovs %%) + (% + %) (5 . 3%)]& di

0z 0r Oy Oy dy oz oy Oz
Owy  Owy Ovg Svy) }
- — — == d T:5.2
.fne{(ﬁeriiy)P_"(@x-‘_f)y o AT:52)

U(we, wy, Q) = /Q po (We fa + wy fy) dz dy + é‘n (wyty +wyty)ds (7.5.2b)

and (tg,t,) are the boundary stress components defined in Eq. (7.4.10). The
statement in Eq. (7.5.1) is known as the variational problem associated with
steady-state Stokes problem.

The finite element model based on the variational problem (7.5.1) is a
special case of the mixed finite element model in Eq. (7.4.13). Equation
(7.4.13) is more general than the problem at hand in that Eq. (7.4.13)
is valid for time-dependent Navier-Stokes equations. To make it simple
to understand the penalty function method, only the steady-state Stokes
problem is considered. The inertial (i.e. time-dependent) and convective (i.e.
nonlinear) terms may be added to the equations of the penalty formulation as
they are not connected to the divergence-free (i.c. incompressibility) condition,
which is central to the penalty formulation.
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ih.2 Penalty Function Method

Suppose that the velocity field (vz,vy) is such that the co
(7.4.1) is satisfied identically. Then the weight functions (
variations of the velocity components, also satisfy the ¢

ntinuity equat
Wg, wy), being virt
ontinuity equation

e (7.5

As a result, the second integral expression in the bilinear form (7.5.2a) drc
out, and the pressure, and hence the weight function Q, does not appe
explicitly in the variational problem (7.5.1). The resulting variational probl
now can be stated as follows: among all vectors v = Uply + Uy@y that satisf
the continuity equation (7.4.1), find the one that satisfies the variatior
problem

By ((we, wy), (vg, vy)) = fo(w;, wy) (75,

for all admissible weight functions w = w,é, + wy@y [ie. that which satisfi

the condition V - w [see Eq. (7.5.3)]. The bilinear and linear forms in E
(7.5.4) are defined by

Bo(w,v) =
Ow, Ov Ow, 81;,,,) Owy 6wy) ( v, va)J
2 = Ay 4 (T | Owy “m b= ldanh
fge“Hax 3z oy by *(ay o )\ Gy T )|
(7.5.5¢
bo(w) = / po (wefo + w, f,) da dy + ﬁ{ (Wote +wyt,) ds (7.5.5
Qe e

The variational problem in Eq. (7.5.4) is a constrained variational problerr
because the solution vector v is constrained to satisfy the continuity equation
We note that By(-,-) is symmetric

Bo(w, v) = By(v, w) (7.5.6

and linear in w as well as v, that is, the following relations hold for any vectors
W1, W2, V1, and vy that satisfy the incompressibility condition [see Eq. (7.5.3)
and arbitrary constants a and B:

By(awy + fwy,v) = aBy(wi, v) + BBy (wa, v) s

7.5.7a)
BU(W, avy + ﬁVg) = QBO(W, Vl) + (6_8[)(“’} Vg) (T.r.

5.7b)

Thus, By(-,-) is called bilinear if and if only it satisfies conditions in Eq.
(7.5.7a,b). Similarly {o(+) is called linear in w if and only if it satisfies the
condition

fo (QWI -+ ,BWQ) = afg(wl) + By (WQ) (758)
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Whenever the bilinear form of a variational problem is symmetric in its
arguments, it is possible to construct a quadratic functional such that the
minimum of the quadratic functional is equivalent to the variational problem
(see Reddy [12,13]). The quadratic functional is given by the expression

Io(v) = ~Bo(v,v) — o(v) (7.5.9)

Now we can state that Eqs. (7.4.1)—(7.4.3) governing the steady flow of viscous
incompressible fluids are equivalent to minimizing the quadratic functional
Iy(v) [v = (v, vy)] subjected to the constraint

Ovy " Ouy

G(v) = a9p 5—y

=0 (7.5.10)

At this point it should be remembered that the discussion presented in
this section thus far is to reformulate the problem as one of a constrained
problem so that the penalty function method can be used. The advantage of
the constrained problem is that the pressure variable P does not appear in
the formulation.

In the penalty function method, the constrained problem is reformulated
as an unconstrained problem as follows: minimize the modified functional

Ip(v) = Ip(v) + [G(v)dx (7.5.11)

Z Qe
where v, is called the penalty parameter. Note that the constraint is included in
a least-squares sense into the functional. Seeking the minimum of the modified
functional Ip(v) is equivalent to seeking the minimum of both Iy(v) and G(v),
the latter with respect to the weight .. The larger the value of ., the more
exactly the constraint is satisfied. The necessary condition for the minimum
of Ip is

§Ip =0 (7.5.12)
We have
0= /:e [2;182?? % - ué};;m (% + %)} dr dy — /Qe P00V fr drdy
= Sugts ds-{-/ ’ye%? (%ﬁ: ng) dz dy (7.5.13a)
0= - [2 agzy %13 G;zy (%23 + %) dzdy — Le pofybvy dxdy
j{ Suyt, ds + / %ag;;y @"’; i %ﬁ) dz dy (7.5.13b)

These two statements provide the weak forms for the penalty finite element
model with év, = w, and v, = w,. We note that the pressure does not
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appear explicitly in the weak forms (7.5.13a,b), although it is a part of tt
boundary stresses. An approximation for the pressure can be post-compute
from the relation 5 =
v Jdu
Boempimng (0 8, o 1) 7.5
Ye gz T By ) (7.5.14

where v = v(,) is the solution of Egs. (7.5.13a,b). The time derivative term
and nonlincar terms can be added to equations (7.5.13a,b) without affectin
the above discussion. We obtain

B , O, Oy Oy Obvy O,
0-./0*! {503,,00(01 + vy e + vy )+2,u ol

_(9; dzx Ox
0bvy. (Ovg vy 0bv, [ Ov, Ov,
dy ( dy T dx ) e ox (Eﬂ_ ¥ B‘E)} a4y
—/ Podv, fr dzx dy —jﬁ vty ds (7.5.15a
Qe Ie
- Ovy Ov, Avy dbvy, Ovy
0= jg:ge [5%@,09 (a‘- + 'bx'(,;g +Uy_'(;9_';;_) +21£——~8y ng_
dbvy [ Ovy .i?vy) Obvy (Ov, 8@1,)}
=l o e 5 \ - + &= [|dz
K oz (6y+c‘3{£ L Ay \6:1:+0y @ dy
- / pof,buy de dy — féﬁ Suyty ds (7.5.15b;
i Qe e

7.5.3 Reduced Integration Penalty Model

The penalty finite element model is obtained from Egs. (7.5.15a,b) by
substituting finite element interpolation (7.4.11a) for the velocity field, and
6vy = 9§ and bvy = Y¢:

[[C'(V)] (0] H{'vx}}+ [Q[SMH |5%] [5¥7] H{’vm}}

O CO]  {w} y [s=] © [s**]+ z[ijv; {v,}
" 1 J {ve Uy .
T () - () e

where [M], [C(v)], [S¢7], {F}, and {F2} are the same as those defined in Eq.
(7.4.14), and

¢ Oys
§én — / TSHOG s (7.5.17)
Jae 7 06 On
Equation (7.5.16) can be expressed symbolically as (v = [V }T)
[Clp,v)+K(u) + K(®)] v+ Mv =F (7.5.18)

The numerical construction of the penalty terms presented in Eq. (7.5.18)
requires special consideration, the details of which are given in Section 7.5.5.
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7.5.4 Consistent Penalty Model

An alternative formulation (see [10, 15, 17]) of the penalty finite element model
is based directly on the use of Eq. (7.5.14). In this formulation, the pressure
in the momentum equations (7.4.2) and (7.4.3) is replaced using Eq. (7.5.14)
and Eq. (7.4.1) is replaced with Eq. (7.5.14). The weak forms of Eq. (7.5.14)

is
Ovg & Oy .
0_/5513 {P-Q—'ye (% : —837)]@@ (7.5.19)

The finite element model of Eq. (7.5.19), with P interpolated as in Eq.
(7.4.11b), is given by

P+l S {Ee =@ a2
where
D ' 0z ' 3% Oy
Mij = _/!\')c @1éj d&‘dy, S?'J = s Q‘bz—a'? dxd?} S’!-j = ng 3 d:L‘ d';‘)}
Since [MP] is invertible, we can write

(P} =~ (18] (1} 117} } (7521)

Next, we write Eq. (7.4.13) in the alternative form

[ o [ ) - e}
N [Q[ST]S%[SW] { Sm][iyz][syy]} {gﬂ } = { gg} (7.5.22)

~gsF s )= o (7529

When Eq. (7.4.21) is substituted for the pressure into Eq. (7.5.22), we obtain

oSG [ ety
o ol s oo { £ )

+ [T eyl ()= {gﬂ% p @52



o

246 NONLINEAR FINITE ELEMENT ANALYSIS

which can be written in compact form as
Mv +[C(v) + K,+K,Jv=F (r.5.0

where [see Egs. (7.4.14) for the definition of M;; and Sfj”]
_ [[M] o] = [[CV] o]
M= ] o= "0 el

e [ISST st (5o
1= (Gt fo] oo

|
_ sl s
Ll " R

(7.5.2€

Equation (7.5.25) has the same general form as Eq. (7.5.18). The overa]
size of the penalty finite element model in Eq. (7.5.18) or (7.5.25) is reduce
in comparison to the mixed finite element model in Eq. (7.4.13). To recove
the pressure, the inverted form of (7.5.21) is used with the velocity field tha
is obtained from Eq. (7.5.25). The penalty finite element model describec
here is commonly termed a consistent penalty model because it is derivec
from the discretized form of equation (7.5.19). This is in contrast to the
reduced penalty model described earlier, which falls into the category knowr
as the reduced integration penalty (RIP) methods (see Oden [19]). Althougk
the two finite element models are mathematically identical, there are subtlc
differences that affect the numerical im plementation. The successful numerical
implementation of the consistent penalty method relies on the ability to
efficiently construct the K, matrix, that is, invert M? at the element level.
This restricts the choice of the basis functions used to represent the pressure.

7.6 Computational Aspects
7.6.1 Properties of the Matrix Equations

Some of the properties of the matrix equations in (7.4.13), (7.5.18), and
(7.5.25) are listed below because they greatly influence the choice of a solution
procedure for the various types of problems [10]

1. The matrix equations (7.4.13), (7.5.18), and (7.5.25) represent discrete
analogs of the basic conservation equations with each term representing a
particular physical process. For example, M represents the mass matrix, C
represents the velocity dependent convective transport term, K, represents
the viscous terms, and K, represents the divergence-free condition. The
right-hand side F contains body forces and surface forces.

2. An inspection of the structure of the individual matrices in (7.4.14) shows
that M and K, are symmetric, while C is unsymmetric. This makes the
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coefficient matrices of the vector v in Eqs. (7.4.13), (7.5.18), and (7.5.25)
unsymmetric, and the solution procedure must deal with an unsymmetric
system. When material properties are constant and flow velocities are
sufficiently small, the convective terms are negligible and the equations are

linear and symmetric.

3. An additional difficulty of the mixed finite element model is the presence
of zeroes on the matrix diagonals corresponding to the pressure variables
[see Eq. (7.4.13)]. Direct equation solving methods must use some type of
pivoting strategy, while the use of iterative solvers is severely handicapped
by poor convergence behavior attributable mainly to the form of the
constraint equation.

4. Equations (7.4.13), (7.5.18), and (7.5.25) represent a set of ordinary
differential equations in time. The fact that the pressure does not appear
explicitly in the continuity equation [see Eq. (7.4.13)] makes the system
time-singular in the pressure and precludes the use of purely explicit time-
integration methods.

5. The choice of the penalty parameter is largely dictated by the ratio of
the magnitude of penalty terms to the viscous and convective terms (or
compared to the Reynolds number, Re), the mesh, and the precision of the
computer. The following range of 7 is used in computations

v =10%Re to ~v=10"%Re (7.6.1)

7.6.2 Choice of Elements

As is clear from the weak statements, the finite element models of conductive
heat transfer as well as viscous incompressible flows require only the (e
continuous functions to approximate the field variables (i.e. temperature,
velocities, and pressure). Thus, any of the Lagrange and serendipity family
of interpolation functions are admissible for the interpolation of the velocity -
field in mixed and penalty finite element models.

The choice of interpolation functions used for the pressure variable
in the mixed finite element model is further constrained by the special
role the pressure plays in incompressible flows. Recall that the pressure
can be interpreted as a Lagrange multiplier that serves to cnforce the
incompressibility constraint on the velocity field. From Eq. (7.4.11b) it is
seen that the approximation functions ¢, used for pressure is the weighting
function for the continuity equation. In order to prevent an overconstrained
system of discrete equations, the interpolation used for pressure must be at
least one order lower than that used for the velocity field (i.e. unequal order
interpolation). Further, pressure need not be made continuous across elements
because the pressure variable does not constitute a primary variable of the
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weak form presented in Egs. (7.4.7)~(7.4.9). Note that the unequal order
Interpolation criteria can be relaxed for certain “stabilized” formulations such
as the methods proposed by Hughes et al. [26], which will not be discussed
here.

Convergent finite element approximations of problems with constraints
are governed by the ellipticity requirement and the Ladyzhenskaya—Babuska -
Brezzi (LBB) condition (sec Reddy [13, pp. 454-461], Oden [19], Oden and
Carey [20], and others [21-23]). It is by no means a simple task to rigorously
prove whether every new element developed for the viscous incompressible
flows satisfies the LBB condition. The discussion of the LBB condition is
beyond the scope of the present study and will not be discussed here.

Commonly used elements for two-dimensional flows of viscous
incompressible fluids are shown in Figure 7.6.1. In the case of linear elements,
pressure is treated as discontinuous between elements; otherwise, the whole
domain will have the same pressure. Two different pressure approximations
have been used when the velocitics are approximated by quadratic Lagrange
functions. The first is a continuous bilinear approximation, in which the
pressure is defined at the corner nodes of the element and is made continuous
across clement boundaries. The second pressure approximation involves a,
discontinuous (between elements) linear variation defined on the element by

1
@ ={o} = { T (7.6.2)
y

O Nodes with & and v : i
® Nodes with «, v, and P

® Nodes with P only

\ |
o b

Figure 7.6.1 The triangular and quadrilateral elements used for the mixed
and penalty finite element models.
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Here the unknowns are not nodal point values of the pressure but correspond
to the coefficients in P =a-1+b-z+c-y. In Eq. (7.6.2) the interpolation
functions are written in terms of the global coordinates (z, ) for the problem.

When the eight-node quadratic element is used to represent the velocity
field, a continuous-bilinear pressure approximation may be selected. When a
discontinuous pressure variation is utilized with this element, the constant
pressure representation over each element must be used. The quadratic
quadrilateral elements shown in Figure 7.6.1 are known to satisfy the LBB
condition and thus give reliable solutions for velocity and pressure fields. Other
elements may yield acceptable solutions for the velocity field but the pressure
field is often in error.

7.6.3 Evaluation of Element Matrices in Penalty Models

The numerical evaluation of the coefficient matrices appearing in equation
(7.5.18) requires special consideration [10]. This aspect is discussed here for the
steady-state case. For the steady-state flows with constant material properties,
Eq. (7.5.18) is of the form

(0C(v) + K +K){v} = {F} (7.6.3)

where C is the contribution due to the convective terms, K is the contribution
from the viscous terms, and K is from the penalty terms, which come from
the incompressibility constraint. In theory, as we increase the value of «, the
conservation of mass is satisfied more exactly. However, in practice, for some
large value of v, the contribution from the viscous terms would be negligibly
small compared to the penalty terms in a computer. Thus, if K is a non-
singular (i.e. invertible) matrix, the solution of Eq. (7.6.3) for a large value of
v is trivial, {v} = {0}. While the solution satisfies the continuity equation, it
does not satisfy the momentum equations. In this case the discrete problem
(7.6.3) is said to be overconstrained or “locked”. If K is singular, then the
sum (pC + pK + yK) is non-singular (because pC + uK is non-singular), and
a non-trivial solution to the problem is obtained.

The numerical problem described above is eliminated by proper evaluation
of the integrals in C, K, and K. It is found that if the coefficients of K
(i.e. penalty matrix coefﬁcients) are evaluated using a numerical integration
rule of an order less than that required to integrate them exactly, the finite
element equations (7.6.3) give acceptable solutions for the velocity field. This
technique of under-integrating the penalty terms is known in the literature as
reduced integration. For example, if a lincar quadrilateral element is used to
approximate the velocity field, the matrix coeflicients Cand K (as well as M
for unsteady problems) are evaluated using the 2 x 2 Gauss quadrature, and
K is evaluated using the one-point (1 x 1) Gauss quadrature. The one-point
quadrature yields a singular K. Therefore, Eq. (7.6.3) can be solved because
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(0C + pK + vK) is non-singular and can be inverted (after assembly and
imposition of boundary conditions) to obtain a good finite element solution
of the original problem. When a quadratic quadrilateral element is used, the
3 x 3 Gauss quadrature is used to evaluate C, K, and M, and the 2 x 2 Gauss
quadrature is used to evaluate K. Of course, as the degree of interpolation
goes up, or very refined meshes are used, the resulting equations become less
sensitive to locking.

Concerning the post-computation of pressure in the penalty model, the
pressure should be computed by evaluating Eq. (7.5.14) at integration points
corresponding to the reduced Gauss rule. This is equivalent to using an
interpolation for pressure that is one order less than the one used for the
velocity field. The pressure computed using equation (7.5.14) at the reduced
integration points is not always reliable and accurate. The pressures predicted
using the linear elements, especially for coarse meshes, are seldom acceptable.
Quadratic elements are known to yield more reliable results. In general,
triangular elements do not yield stable solutions for pressures. Various
techniques have been proposed in the literature to obtain accurate pressure
fields (see [27-29]). A procedure for the post-computation of pressure is
discussed in [10,29].

7.6.4 Post-Computation of Stresses

The analysis of a flow problem generally includes calculation of not only the
velocity field and pressure but also the computation of the stress field. A brief
discussion of the stress calculation is presented next [10].

For a plane two-dimensional flow, the stress components (0zz, Oy, 0zy) are
given by

¢ o vy O
Ozg = 2_;1,6% ety Oy =2 %y _ P, omyy=p (—--3:- - —E) (7.6.4)

Oz By oy Oz

where u is the viscosity of the fluid. Substitution of the finite element
approximations (7.4.11a,b) for the velocity field and pressure into Egs. (7.6.4)
vields

M
2 M'a—%w P =2 Z-a—_%j-P
O'ﬂ',‘:r,‘—_— #Zf}.ﬂ o H Jyy_ru’lay iy

4= (7.6.5)

M . ,
N . O
“w”'z(ﬁj”“‘a?"”i)
Jj=1

where P is calculated from [see Eq. (7.5.14)]

N
P(z,y) =Y ¢;(z,y)P; (7.6.6a)
Jj=1
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for the mixed model, and from

M ;
Py(z,y) = —7; (%vi 5 %vg) (7.6.6b)
for the penalty model.

The spatial derivatives of the interpolation functions in Egs. (7.6.5a-c)
and (7.6.6b) must be evaluated using the reduced Gauss point rule. Thus, the
stresses (as well as the pressure) are computed using the one-point Gauss rule
for linear elements and with the 2 x 2 Gauss rule for the quadratic elements.
The stresses computed at interior integration points can extrapolated to
the nodes by a simple linear extrapolation procedure, and they may be
appropriately averaged between adjacent elements to produce a continuous
stress field.

7.7 Computer Implementation
7.7.1 Mixed Model

The computer implementation of the mixed model is some what complicated
by the fact that the element contains variable degrees of freedom and the
coefficient matrix is not positive-definite due to the appearance of zeros on
the diagonal. Here, we discuss computer implementation of mixed model
with quadratic approximation of the velocity field and bilinear continuous
approximation of the pressure. A eight- or nine-node eclement depicting all
nodal values of the formulation will have three degrees of freedom (vz, vy, P)
at the corner nodes and two degrees of freedom (v, vy) at the mid-side and
interior nodes. This complicates the calculation of element matrices as well
the assembly of element equations to form the global system of equations.

Fortran statements of the element calculations for the mixed finite element
model are given in Box 7.7.1. Here {ELV} denotes the element velocity
vector, AMU the viscosity p, and RHO the density p. The meaning
of other variables remain the same as defined in earlier discussions (e.g.
NGP = number of Gauss points; GAUSSPT(I,J)= array of Gauss points;
GAUSSWT(I,J)= array of Gauss weights; DET = determinant of the
Jacobian matrix; NPE = number of nodes per element, 8 or 9; SF(I) =
;, Lagrange interpolation functions of the quadratic element; SFL(I) =
Lagrange interpolation functions of the bilinear element; and GDSF(a,1) =
i /Oy, ete.).

To facilitate the assembly, we create a companion array N F D(1,J) to the
connectivity array NOD(I, J). This array is similar to the array NOD but it
connects the degrees of freedom rather than the global nodes associated with
the element nodes:

NFD(I,J) = The last global degree of freedom number associated with the
Jth node of the Ith element.
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The word ‘last’ refers to the third degree of freedom at the corner nodes ar
the second degree of freedom at the mid-side and interior nodes. To see t}
meaning of array [NFD], consider the mesh of six nine-node elements show

in Figure 7.7.1. First note that the connectivity array for the mesh is give
by

L 2 & 4 6 7 8 9

5

(1 317 15 2 10 16 § 9-
S 5 19 17 4 12 18 10 11
—| 9 721 19 6 14 20 12 13
INOD] = 15 17 31 29 16 24 30 22 923
17 19 33 31 18 26 32 924 35
L19 21 35 33 20 28 34 926 27 |

LRI 4 BTN L N

The NFD array is

1 2 3 4 5 6 7 8 ¢

[3 8 40 35 5 24 37 20 991
8 13 45 40 10 28 42 24 96

13 18 50 45 15 32 47 28 30
INED] = 35 40 72 67 37 56 69 52 54
40 45 77T T2 42 60 74 56 58
[45 50 82 77 47 64 79 60 62

In addition, we define an array of the total degrees of freedom of nodes 1
through 9 of the element

{NFR}={3 3 3 3 2 2 2 2 2%

Now with the help of these arrays, we can assemble the element matrices.
Fortran statements of the assembly are given in Box 7.7.2.

(=2 ) T =N L R L

-~ -

Global D.O.F. numbers
Element numbers m
er{ 30 K65-67 68,69 70:72 I 75:-77
20 Qs 35 ® o 80-82
224 28 5152 63,64
15¢ 21 33359 48-50
8¢ 14 1 9’20 3 1 ,32
O
1 2 3 4.5 6 7 : : 16-18
Element node numbers Global node numbers

(a) O (v vy, P); ® (v, v) (b)

Figure 7.7.1 Element and global degrees of freedom of a mesh of nine-node
elements used for the mixed formulation.
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Box 7.7.1 Fortran statements of the mixed element calculations.

L DO 100 NI=1,NGP

DO 100 NJ=1,NGP

XI=GAUSS(NI,NGP)
ETA=GAUSS(NJ.NGP)

CALL SHP2DPV(NPE,X1,ETA,ELXY,DET)
CONST=DET*WT(NLNGP)*WT(NJ.NGP)

VX=0.0
VY=0.0
DO I=1,NPE
L=2*1.1
VX=VX+SF()*ELV(L)
VY=VY+SF()*ELV(L+1)
ENDDO
I=1
Ki=3
DO 801 = 1,NPE
=1
Ki=3
DO 70 J=1,NPE
CONV = SF()*(VX*GDSF(1,))+VY*GDSF(2,1))*CONST
SX = GDSF(1,])*GDSF(1,J)*CONST
SY = GDSF(2,))*GDSF(2,))* CONST
SXY= GDSF(1,I)*GDSF(2,J*CONST
SYX= GDSE(2,])*GDSF(1,])*CONST
IF (J.LE.4)THEN
GX = GDSF(1,)*SFL(Jy*CONST
GY = GDSF(2,1)*SFL(I)*CONST
ENDIF
IF (LLE.4)THEN
GXT= GDSF(1,])*SFL{I)*CONST
GYT= GDSF(2,J)*SFL(I}*CONST
ENDIF

ELK(LY)  =ELK(LI) +AMU*2.0*SX+SY)/+RHO*CONV
ELK(ILJJ+1) =ELK(ILJJ+1) +AMU*SYX
ELK(II+1,JJ+1) = ELK(II+ 1,77+ 1 ) +AMU*(SX+2.0¥S Y *RHO*CONV
ELK(II+1,J)) = ELK(II+1,JJ) +AMU*SXY
IF(J .LE. 4)THEN
ELK(ILJJ42) =ELK(ILJ}+2) -GX
ELK(TI+1,7142) = ELK(II+1,73+2) - GY
ENDIF
[F(I .LE. 4)THEN
ELK(II+2.J]) =ELK(II+2,J]) -GXT
ELK(I1+2,JJ+1) = ELK(II+2,J3+1) - GYT
ENDIF
[F(1 .GT. $)KJ=2
70 =] +KJ
IF(I .GT. )KI=2
80 H=I+KI
100 CONTINUE
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Box 7.7.2 Fortran statements of the asseﬁlbly procedure used for
mixed model,
ez

C  Assembly of element coefficient matrix and right-hand column vector
C  for a typical (Nth) element,

DO 90 I=1,NPE
NDFI=NFR(1)
NR=NFD(N,I)-NDFI
DO 90 T=1,NDFI

NR=NR+1
IF(LLE.5)THEN
L=(I-1)*3+11
ELSE
L=12+(1-5)*¥2+I1
ENDIF
GLF(NR) = GLF(NR)+ELF(L)
DO 90 J=1,NPE
NDFJ=NFR(J)
NCL=NFD(N,J)-NDEJ
DO 90 JJ=1 NDF]
NCL=NCL+1
IF(J.LE.5)THEN
M=(J-1)*3+J]
ELSE
M=12H(J-5)#2+J]
ENDIF
GLK(NR NCL)=GLK(NR,NCL}+ELK(L,M)
90 CONTINUE

7.7.2 Penalty Model

Computer implementation of the penalty finite element model is quit
straightforward and is the same as any multi-degree of freedom systems (sc
Chapters 2 and 5, and Box 7.7.1), and hence not discussed further. Onl
note should be made of the fact that the element calculations involve tw
Gauss loops: a full integration loop for the evaluations of all terms excer
for the penalty terms; and the other one is a reduced integration loop for th
evaluation of the penalty terms of the coefficient matrix [K] [see Eq. (7.6:3)

7.8 Numerical Examples
7.8.1 Preliminary Comments

In this section, a small number of flow problems solved using the finite elemen
models developed herein are presented. Additional examples may be found i1
the book by Reddy and Gartling [10]. The examples presented herein werc
solved using the RIP finite element model and mixed finite element model. The
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objective of the first several examples is to evaluate the accuracy of the penalty
and mixed finite element models by comparing with the available analytical or
numerical results and to illustrate the effect of the penalty parameter on the
accuracy of the solutions. The remaining examples are for Reynolds numbers
greater than unity (i.e. convective terms are included), and the results were
obtained using the RIP finite clement model.

7.8.2 Fluid Squeezed Between Parallel Plates

Consider the slow flow of a viscous incompressible material squeezed between
two long parallel plates [see Figure 7.8.1(a)]. When the length of the plates is
very large compared to both the width of and the distance between the plates,
we have a case of plane flow. Although this is a moving boundary problem, we
wish to determine the velocity and pressure fields for a fixed distance between
the plates, assuming that a state of plane flow exists.

Let Vg be the velocity with which the two plates are moving toward cach
other (i.e. squeezing out the fluid), and let 2b and 2a denote, respectively, the
distance between and the length of the plates [see Figure 7.8.1(a)]. Due to the
biaxial symmetry present in the problem, it suffices to model only a quadrant
of the domain. As a first mesh, we use a 5 x 3 nonuniform mesh of nine-node
quadratic elements in the mixed model, and a 10 x 6 mesh of the four-node
linear elements and 5 x 3 mesh of nine-node quadratic elements in the penalty
model [see Figure 7.8.1(b)]. The non-uniform mesh, with smaller elements
near the free surface (i.e. at = a), is used to approximate accurately the
singularity in the shear stress at the point (a,b) = (6,2). The mesh used for
the penalty model has exactly the same number of nodes as the mesh used for
the nine-node mesh of the mixed model. The velocity boundary conditions
are shown in Figure 7.8.1(b). The velocity field at z = 6 (outflow boundary)

Quadratic element Linear element
Computational _
ﬂ T Y domam & 0 /
e b o A1l
> T
2b s %) B ‘[ =0
2a =0 i Lg=0
v ﬂ L X
! (a) v.=0, t

Figure 7.8.1 (a) Geometry, computational domain, and (b) the finite
element mesh used for the analysis of slow flow of viscous
incompressible fluid between parallel plates.
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to requiring ¢, = ty = 0 in the integral sense. In the mixed finite eleme
model, it is necessary to specify the pressure at least at one node. Int
present case, the node at (,9) = (a,0) is specified to have zero pressure. /
approximate analytica) solution to this two-dimensiona] problem is provid:
by Nadai [30] (also see [12,13]), and it is given by

oz [ o2 3V; 2
e (1 =575 vy(a:,y)=—~2§E 3- f—z

o (7.8.
L >
P(z,y) = —gg; (a® + 3% - z?)
The velocities v, (z, 0) obtained with the two finite element models compar
well with the analytical solution (see Reddy [11]), as shown in Table 7.8.
The nine-node element gives very good results for both the penalty and mixe
models. The influence of the penalty parameter on the accuracy of the solutio;
I8 clear from the results. Whether the element is linear or quadratic, it i
necessary to use a large value of the penalty parameter.

Table 7.8.1 Comparison of finite element solution vz(z,0) with the
analytical solution for fluid squeezed between plates.

v =1.0 ¥ = 100 v = 108 Mixed
- model  Series
x Four Nine*  Four Nine Four Nine Nine  solution
T -node  -node  -node -node  -node  -node -node

1.00  0.0303 0.0310 0.6563 0.6513  0.7576 0.7505 0.7497  0.7500
2.00 0.0677 0.0691 1.3165 1.3062  1.5135 1.4992 1.5031 1.5000
3.00 0.1213 0.1233 1.991] L9769 22756 2.2557 2.2561 2.2500
4.00 0.2040 0.2061 2.6960 2.6730  3.0541 3.0238  3.0203 3.0000
450 0.2611 0.2631 3.0718 3.0463  3.4648 3.4307 3.4292 3.3750
5.00 0.3297 0.3310 3.4347 3.3956  3.8517  3.8029 3.8165  3.7500
5.25  0.3674 0.3684 3.6120 3.5732  4.0441 39944 3.9893 3.9375
5.50 0.4060 0.4064 3.7388 3.6874 4.1712 41085 4.1204 4.1250
5.75  0.4438 (0.4443 3.8316 3.7924  4.2654  4.2160 4.2058 4.3125
6.00 0.4793 04797 3.8362 3.7862  4.2549 41937 42364 4.5000

*The 3 x 3 Gauss rule for non-penalty terms and the 2 x 2 Gauss rule for penalty terms are
used for quadratic elements.

Figure 7.8.2 contains plots of the velocity vz (z,y) for 2 = 4 and T =6,
and Figure 7.8.3 contains plots of pressure P(z,y), for y = yy, where Yo is
the y—coordinate of the Gauss point nearest to the centerline or top plate.
These results were obtained with two different meshes: 5 x 3 and 10 x 8. The
pressure in the penalty model was computed using Eq. (7.5.19) with the 2 x 2
Gauss rule for the quadratic rectangular element and the one-point formula
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for the linear element, whereas in the mixed model (as well as the analytical
solution) it is computed at the nodes. If the pressure in the penalty model
were computed using the full quadrature rule for rectangular elements, we
would have obtained erroneous values. In general, the same integration rule
as that used for the evaluation of the penalty terms in the coefficient matrix
must be used to compute the pressure. The oscillations in pressure computed
nearest to the top plate are due to the singularity in the boundary conditions
at (z,y) = (6,2).

2.0
1.5
a
5
=
m 1v0
e~
z
2
0.5
— Analytical solution
0-0 |llll]]|||[lil=I|1l|||||||£|||r|||||\|||||Y||l

0 1 2 3 4
Horizontal velocity, v,

Figure 7.8.2 Velocity fields for fluid squeezed between parallel plates.

10 ? 8
7
o FEM
8 solution 6
(¥ 0.1875) 4
a7 5
o o,
% = FEM
& B % 3 solution
4 Analytical & (v = 0.0625)
: =9
g solution (y = 2) ) Analytical
1 solution (y = 0)
2
1 0 \
0 lTT[r[][I[i'IIlI['IIIIi[|i|i'|[|[] '1 l—['[llil[nlillllllxlrllIlTl'l[l[J
0 1 2 38 4 5 & 0 1 2 3 4 5 6

Distance, x Distance, x
]

Figure 7.8.3 Pressures for fluid squeezed between parallel plates.
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7.8.3 Flow of a Viscous Lubricant in a Slider Bearing

The slider (or slipper) bearing consists of a short sliding pad moving a
velocity u = Vj relative to a stationary pad inclined at g small angle w
respect to the stationary pad, and the small gap between the two pads
filled with a lubricant [see Figure 7.8.4(a)]. Since the ends of the bear;
are generally open, the pressure there is atmospheric, Py. If the upper p
is parallel to the base plate, the pressure everywhere in the gap must

atmospheric (because dP/dz is a constant for flow between parallel plate
and the bearing cannot Support any transverse load. If the upper pad
inclined to the base pad, a pressure distribution, in general, a function of
and y, is set up in the gap. For large values of Vb, the pressure generated c.

pressure is not a function of y. Assuming
two-dimensional state of flow and a small angle of inclination, and neglectn
the normal stress gradient (in comparison with the shear stress gradient), t]

equations governing the flow of the lubricant between the pads can be reduce
to (see Schlichting [9])

YA

vjv};o

P=pP =0 P=P,=Q
— == h,

V = ——

| |

% v, =V, y—OJ

(b)

Figure 7.8.4 Schematic and the finite element mesh for slider bearing.
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a B oty _ 4P O<z<L
; | b = z< (7.8.22)
is where the pressure gradient is given by
1g , '
¥ _ dP  6ulp ( H) 2h1hg
T e e =
. 0 7 v H R (7.8.2b)
), :
is The solution of Eqs. (7.8.2a,b), subject to the boundary conditions
x
. U£(0,0) = Vo, vz(z,h) =0 (7.8.2¢)
o is
& h%dPy Yy
: W)= (h--8) (1Y %
5 Ue(2,9) ( 2 2u dx h) (1 h) (:28)
1 6;‘_L%L(h1 = h)(h == hg)
P(z) = :
(z) B2 — hD) (7.8.3b)
Ov, dP h Vo ;
Umy(xa y)=u By =z (y = 5) = #‘E (7.8.3¢)
where b}
h(z) = hy + %”x (7.8.4)

In the finite element analysis we do not make any assumptions concerning
vy and the pressure gradient, and solve the Stokes equations [i.e. neglect the
convective terms in Eqgs. (7.4.2) and (7.4.3)], with the following choice of

parameters:

hy=2hy =8x 1074 ft, L=0361ft, p=8x10"*Ib/ft>, Vo=30ft
(7.8.5)
We use a mesh (Mesh 1) of 18 x 8 linear quadrilateral elements to analyze the
problem. The mesh and boundary conditions are shown in Figure 7.8.4(b).
The penalty parameter is chosen to be ¥ = u x 108. Table 7.8.2 contains
a comparison of the finite element solutions and analytical solutions for
the velocity, pressure, and shear stress. Figure 7.8.5 contains plots of the
horizontal velocity v, at z = 0 ft, z = 0.18 ft, and z = 0.36 ft. Figure 7.8.6
contains plots of pressure and shear stress as a function of z at y = 0. The
finite element solutions for the pressure and shear stress were computed at
the center of the first row of elements along the moving block. The results
are in good agreement with the analytical solutions (7.8.3a—c), validating the
assumptions made in the development of the analytical solution.
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Table 7.8.2 Comparison of finite element solutions velocities with 1
analytical solutions for viscous fluid in a slider bearing.

Uz (U$ ?,’) Uz (Ols!y) Uz (O'Sﬁ!y)

7] FEM Analy. i FEM Analy. 7 FEM Analy.
0.0 30.000  30.000 0.00 30.000  30.000 0.00 30.000  30.000
1.0 22.923 22969 0.75 25.139  25.156  0.50 29.564  29.531
2.0 16.7¢9  16.875 150 20.596  20.625  1.00 28182  28.125
3.0 11.626  11.719 2.25 16.372  16.406  1.50 25.853  25.781
4.0 7.403 7.500  3.00 12465 12500 2.00 22577 22.500
5.0 4.130 4219 3.75 8.874 8.906 250 18.354  18.281
6.0 1.805 1.875  4.50 5.600 5.625  3.00 13.184  13.125
7.0 0.429 0.469 525 2.642 2.656  3.50 7.066 7.031
8.0 0.000 0.000  6.00 0.000 0.000 4.00 0.000 0.000

Analytical solution FEM Solution

z P(z,0) —0zy(z,0) z g P —Ogy
0.01 7.50  59.99 0.1125  0.4922 846  56.61
0.03 22.46  59.89 0.3375  0.4766 2546  56.60
0.05 37.29  59.67 0.5625  0.4609 42.31  56.47
0.07 51.89  59.30 0.7875  0.4453 58.76  56.17
0.09 66.12  58.77 1.0125  0.4297 74.69  55.69
0.27 129.60  38.40 2.5875  0.3203  134.40 41.77
0.29 118.57  32.71 2.8125  0.3047 12560 36.93
0.31 99.58  25.70 3.0375  0.2891  107.60  30.76
0.33 70.30  17.04 3.2625  0.2734 77.39  22.89
0.35 27.61 6.31 3.4875  0.2578 30.80  12.82

~— Analytical
1 ¢ x,=00
1.0E-4— + x,=0.18 }FE’M
®  x,=0.36
0-0E+0 ‘illllII1'\rr.|]||l1‘|,||||-llT
0 10 20 30
Velocity, v,(x;,y)

Figure 7.8.5 Velocity distributions for the slider bearing problem.
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Figure 7.8.6 Pressure and shear stress distributions for the slider bearing
problem.

7.8.4 Wall-Driven Cavity Flow

Consider the laminar flow of a viscous, incompressible fluid in a square cavity
bounded by three motionless walls and a lid moving at a constant velocity in
its own plane (see Figure 7.8.7). Singularities exist at each corner where the
moving lid meets a fixed wall. This example is one that has been extensively
studied by analytical, numerical, and experimental methods (see [31-33],
among others), and it is often used as a benchmark problem to test a new
numerical method or formulation. In solving this problem, the mesh used
should be such that the boundary layer thickness is resolved. The boundary
layer thickness is of the order of Re'%, where Re = puvpa/p is the Reynolds
number and vp is the lid velocity and a is the dimension of the cavity.

Assuming a unit square and that the velocity of the top wall is unity, we
can discretize the flow region using a uniform, 8 x 8 mesh of linear elements or
4 x 4 of nine-node quadratic elements. At the singular points, namely at the
top corners of the lid, we assume that vz(z,1) = v = 1.0. The linear solution
for the horizontal velocity along the vertical centerline obtained with the two
meshes is shown in Figure 7.8.8, and the variation of pressure along the top
wall (computed at the reduced Gauss points) is shown in Figure 7.8.9. The
numerical values of the velocity field are tabulated in Table 7.8.3. It is clear
that the value of the penalty parameter between vy = 102 and v = 10® has
small effect on the solution.
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Figure 7.8.7 Wall-driven cavity problem.
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Figure 7.8.8 Plots of horizonta] velocity v,(0.5,y) along the vertice
centerline of the cavity.

Table 7.8.3 Velocity vz(0.5,y) obtained with various values of the penalt;
parameter +y (linear solution).

Yy Mesh: 8 x 814 Mesh: 4 x 4Q9
7 =102 v =108 v =102 =108

0.125 —0.0557 —-0.0579 —0.0589 —0.0615
0.250 —0.0938 —0.0988 —0.0984 —0.1039
0.375 —-0.1250 -0.1317 -0.1320 —0.1394
0.500 —0.1354 -0.1471 —0.1443 —0.1563
0.625 —-0.0818 —-0.0950 —-0.0983 -0.1118
0.750 0.0958 0.0805 0.0641 0.0481

0.875 0.4601 0.4501 0.4295 0.4186
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Figure 7.8.9. Plots of pressure P(z,yp) along the top wall of the cavity.

Next, we consider the wall-driven cavity problem for nonlinear analysis (i.e.
solve Navier-Stokes equations). The role of the load parameter is played by
the Reynolds number (Re = pvpa/p). For the problem at hand, the Reynolds
number can be varied by varying the density while keeping the viscosity
constant. Thus, we take (in addition to the the choice of the characteristic
velocity vp = 1 and characteristic length @ = 1) u = 1 so that Re = p.
The problem is solved using uniform 8 x 8 mesh of linear elements as well
as 4 x 4 mesh of nine-node quadratic elements, and the results are presented
in Table 7.8.4 for Re = 100,500, and 700 (y = 10% and e = 1072). The
converged nonlinear solution of the preceding Reynolds number is used as the
initial guess in the first iteration of the next Reynolds number. In general,
for very high Reynolds numbers underrelaxtion must be used to accelerate the
convergence by using the weighted average of velocities from two consecutive
iterations

(FF = B + (1 - B} (786)

to compute the coefficient matrix. Here 3 is the acceleration parameter.

Figure 7.8.10 shows plots of the horizontal velocity along the cavity
centerline obtained with 8 x 8 and 16 x 20 mesh of bilinear elements for
Re = 0 and 500 (8 = 0). The pressure obtained with the two meshes is
shown in Figure 7.8.11. Clearly, the pressure exhibits oscillations. Figure
7.8.12 contains plots of the horizontal velocity obtained with 16 x 20 mesh
for Re = 500,10%,5 x 10%,10* (the increment of Re is taken to be 500 and
8 =0.5).
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Table 7.8.4 Velocity v,(0.5, ) obtained with linear and quadratic elemg
and for various values of the Reynolds number.

y 8 x 8L 4% 4Q9

Re — 100(5) 500(8) 700(9) 100(5) 500(8) 700(10
0.125 —0.0498 —0.0242 —-0.0140 —0.0554 —0.0141 -0.0106
0.250 —0.0870 —0.0503 —-0.0345 —0.0968 -0.0540 —0.0089
0.375 —0.1164 —0.0733 —0.0564 —-0.1313 —0.1143 —0.0672
0.500 -0.1231 —0.0700 —0.0586 —0.1414 -0.1252 —0.1181
0.625 ~0.0635 0.0027 0.0039 —0.0814 —0.0455 —0.0831
0.750 0.0649 0.0389 0.0354 0.0486 0.1045 0.0808
0.875 0.3750 0.1761 0.1241 0.3629 0.2113 0.1628

* Number in parentheses denotes the number of iterations taken for convergence.
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Figure 7.8.10 Velocity v, (0.5,y) vversus y for various Reynolds number
(8 x 8 and 16 x 20 meshes of bilinear elements).

-Next, a comparison of the present results with the finite difference solution
of Ghia et al. [34] are presented. The mesh of bilinear elements used in the
present study is shown in Figure 7.8.13; a penalty parameter of v = 108R
and convergence tolerance of £ < 102 were used. Convergence was achievec
with 3 iterations at each Reynolds number step (Re = 100, 490, 10%). Figure
7.8.14 and 7.8.15 show the results for Re = 400 and Re — 10°.
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Figure 7.8.11 Plots of pressure P(z,yo) along the top wall of the cavity
(8 x 8 and 16 x 20 meshes).
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Figure 7.8.12 Velocity v,(0.5,y) versus y for various Reynolds numbers
(16 x 20 mesh of bilinear elements).
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Figure 7.8.13 Mesh used for the wall-driven cavity problems.
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Figure 7.8.14 Normalized horizontal and vertical velocity profiles along
the vertical and horizontal mid-sections of the cavity (—
computed, o Ghia et al. [34]) and pressure contours and
streamlines (Re = 400).
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Figure 7.8.15 Horizontal and vertical velocity profiles along the vertical

and horizontal mid-sections of the cavity for Re = 10°
(- computed, o Ghia et al. [34]). Pressure contours and
streamlines.

7.8.5 Backward-Facing Step

Here we analyze the well-known backward-facing problem (see Gartling [35]
and Reddy and Gartling [10]) using the penalty finite element model. The
geometry and boundary cnditions of the computatinal domain are shown in
Figure 7.8.16. A penalty parameter of v = 10®Re and convergence tolerance
of £ < 1072 are used. Convergence is achieved with 5 iterations.

Figure 7.8.17 shows contour plots of the stremlines and pressure, while
Figure 7.8.18 contains pressure profiles along the upper and lower walls for
Reynolds number Re = 800. The results compare well with those of Gartling
(35]. This problem will be revisited in the next section in the context of the
least-squares finite element model.
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Figure 7.8.16 Geometry and boundary conditions for flow
backward—facing step.
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Figure 7.8.17 Streamlines and pressure contours for flow over a
backward-facing step (Re = 800).
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Figure 7.8.18 Pressure profiles along the upper and lower walls of the
channel for flow over a backward-facing step (Re = 800).

7.9 Least-Squares Finite Element Models
7.9.1 Introduction

In this section, we present least-squares finite element model of the Navier-
Stokes equations [36-39]. The least-squares method has the property of
minimizing the residuals in the differential equations. For the Navier-Stokes
equations, which have no underlying minimum principles, the least-squares
method provides a variational framework [37,38]. The main ideas of the least-
squares method are described using the steady Stokes flow problem.

Consider the following vector form of equations governing the steady, slow
flow of a viscous incompressible fluid:

—uv- [(_vv) § (Vv)T] L VP—pf=0 (7.9.1)
Fowel) (7.9.2)

where v is the velocity vector, P is the pressure and f is the body force
vector. Choosing a suitable finite element approximation of (v,P) and their
substitution into the governing equations results in residuals

Ry = =4V - [(WV) + (V)] + VP = pf (7.9.3a)
Rz = v WV (7.9.3b)
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In the'least-squares method, the sum of the Squares of the residuals in the
governing equations is minimized: minimize I, where

v, Pl= %/

Qe

(Rt+3)
1 .
=5 (][ —uVv - [(Vv) + (VV)T} + VP — of []3 +[V-v Hé) (7.9.4)
and | - [lo denotes the L5(2)-norm of the enclosed quantity

fulg= [ 1up an (7.9.5)

The minimization problem 67 = 0 is equivalent to the variational problem:
find (v, P) in a suitable vector space such that for all (w, Q) in the same vector
space the following equation holds:

B((v, P), (w,Q)) = £((w,Q)) (7.9.6)
where B(:, ) is a symmetric bilinear form and £((w,Q)) is the linear form

B((v,P), (w,Q))
= Jo {07 [0+ (0974 9P} {9 [(90) 4 (vo7] 4 0}

+ | (797 w)an (7.9.72)

((w,0)) = /Q - {=uv- [(Tw) + (Vw)T] + v} do (7.9.7h)

The variational problem in (7.9.6) has some nice mathematical as well
computational properties. For example, the finite element model associated
with (7.9.6) has a positive-definite coefficient matrix.

Since the variational problem (7.9.6) is based on the differential equation
rather than the weak form, it involves the same order derivatives as those
appearing in the governing equations, and the variational form does not include
the natural boundary terms. Hence, the approximation functions selected
must be such that both natural and essential boundary conditions can be
imposed. This requires the use of at least C'-continuous functions for the
velocity field v.

In contrast to the weak form finite clement models developed earlier, the
least-squares finite element model based on the variational problem ( 7.9.6) has
higher differentiability requirements which could be perceived as a practical
disadvantage. A way to avoid the use of C'-continuous functions is to re-write
the governing equations as an equivalent set of first-order equations. The most
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| common transformation to an equivalent first-order system is to introduce the
vorticity vector. In two-dimensional problems, the total number of variables is
5 increased by one, but one has the benefit of directly solving for the vorticity.
Yet another approach is to introduce the stresses as independent variables.
In two-dimensional problems the total number of variables is increased by
three. A third option is to introduce all partial derivatives of the velocity
vector field as independent variables. In two-dimensional problems the total
number of variables is increased by four and one has the added benefit of easily
computing physical quantities of interest (in the post-processing stage) that
are linear combinations of the partial derivatives of the velocity vector field;
that is, vorticity and stresses. For additional details, sece Pontaza and Reddy
[37,38].

Here we present a formulation based on the first-order system of equations
involving velocities, pressure, and vorticity. To write the second-order
equations in (7.9.1) in an equivalent set of first-order equations, we introduce
the vorticity vector

w=Vxv (7.9.8)

Making use of the vector identities
VxVxv=-Vv+V (V-v), V- [(vv) ¢ (VV)T] = V2v+V (V-v) (7.9.9)

and the incompressibility condition V - v, Egs. (7.9.1) and (7.9.2) can be
replaced by the following first-order system:

UV xw+VP—pf =0 (7.9.10a)
V.-v=0 (7.9.10b)
w—-Vxv=0 (7.9.10c)

The least-squares functional associated with the first-order system
(7.9.10a-c) is given by

I(v,Pw) = (nw xw+ VP = pf |3+ 7 VI + o= V x vn%)
(7.9.11)

Like before, we can define the discrete problem by minimizing the functional
in (7.9.11) with respect to the chosen approximating spaces. The minimum
requirement on approximation functions is that they all be Lagrange family of
functions (C%-continuity). Because the formulation is based on a variational
framework there are no compatibility restrictions between the velocity and
pressure approximation spaces, so the same Lagrange basis can be used for all
primary variables (v, P,w).
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7.9.2 Finite Element Model

We will now develop the least-squares finite element model of the steady, t
dimensional flows of viscous incompressible fluids. The model is developed fo:

the vorticity based equivalent first-order system, which in dimension]ess forn
is written as

%f; " %%y ~0 (7.9.12)

T%ff + vy%?;z + gi; + EEE%? = fa (7.9.13)
i +Uy%35 + %j -, (7.9.14)
" _%%re _ %‘j " (7.9.15)

where Re = PUL/u is the Reynolds number. Note that for the two-
dimensional case the other two component of the vorticity vector are identically
zero, w = (0,0,w,).

To develop the least-squares finite element model we define the leagt-
squares functional of the residuals over a typical element ¢

Peif R eR R ety e
where _ 81& + @y
1= oz dy
8?»‘3@ av&:‘ OP 1 8\1}; —
Re = ’Ux—é;- +'by_§§ + ot * Re f’y b (7917)
om0, Qv_erQﬁ_ia_‘“zhf
3 = Ug (ﬁ Uy (‘3y 3y Re Oz v
vy 81:-3,
Re=w. + by Bz

and the primary variables (vz, vy, P,w,) are approximated by expansions of
the form

N N .
?"E(xa .?f) = Z@i(:‘:: y)vzzn! T"y(ﬂfa y) = Zﬁf’i(:ﬂ: Q)U;r
i=1 =1

= = (7.9.18)
P(&’J;y) :Zwi(xby)‘pis wZ(msy}:Zwi(xﬂy)wi
i=1 i=1

where v); are the Lagrange family of interpolation functions, and (v%, v}, By wi)
are nodal values of (v, vy, P,w,).
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In developing the finite element model, we assume that the convective
term in the residuals associated with the two momentum equations has been
linearized; that is, v, and vy in the convective terms are evaluated from known
values of v} and fv; (from the preceding iteration). In essence this amounts to
linearizing the least-squares functional prior to minimization. _

Minimizing the least-squares functional in Eq. (7.9.16) with respect to the
nodal values of velocities, pressure, and vorticity, we obtain

ore oI¢ o1¢ are

e __ T ; B Ey ==k = 919
oI - '.6% - é}‘vyévy + 3P 6P + awzéwz 0 (7 )

which yields four sets of IV equations each over a typical clement:

orIe orI¢ ore are
= i — =0, —= 7.9.20
vk, 0, ov 0, OP; L Owt ¢ ( )

fori=1,2,...,N. The resulting finite element equations are given by

[S11 4+ 822 [12 _ g2 0] (520 {va}
(251 [sn+s% o -[5%) o)
0 0 - [siesm o gsizosm | (P)
ESUZ} = [SUI] R}? [5’21 fic SlZl #’E [Sll + 822] 4 [SOU} {i'.u'z}
W) OV ACEMI () (Y
0 eNw) (e W) | ] e | _ ) )
) o) o) 0 By [T FY
EO2W)] -lC0®] ) 0 w) Ly
(7.9.21)

where the coefficient matrices are defined by

00 g 2
Cij (V) _ /S;ﬂ C?,C_;r dx dy’ Ci = 'ba:ﬁ + Uy ay
; 02 0
01 () — Y, i \V) = iy G0
Cij (v) = Qe G oz dedy;  G5'®) Qe—c ay Y
; O 0= [ Wic g
C"a%?p(", - /ge %Cj dedy, Cij(v)= Qe Oy Gl
S = [ vwsdody
Qe
N 2 / o5
o1 _ O 02 _ by —= dzd
63‘7 Qe Vi oz da:dy, Sg JQe ¥ 8'3)" d

O 05 2 [ O
dz dy s S‘U - 0e E?y l{jy

dz dy
or Oz

11
éij =

b o
J0E :
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O; O OY; O
St = | X% o g 2 [ 9%y
S Qe Oz dz ¥ Sﬁj Qe 8y (’)y d.,{?dy
Np; O N O
St f ZVAOY s g2l _ L)
YooJaedr gy T 5 Joe By Bg W
F = [ ¢ fodsay, 7= [ drdy
o; O
F3 = / (__E i .
; e LB fe+ By fy | dzdy
1 /0Oy, O,
F4 :f S— (-__'_1' B it - S
! ae Re \ Oy e Or fy) dedy (7.9.2

Note that Eq. (7.9.21) cannot be solved until they are assembled and bounda
conditions are imposed.

7.9.3 Computational Aspects

L. Inspection of the structure of the finite element equations in (7.9.21) revea
that the system is symmetric and positive-definite, even in the convectic
dominated limit 1/Re — 0. In contrast with the mixed finite eleme
model, where the resulting system of discrete equations is unsymmetr
and indefinite (zeroes along the diagonal), the least-squares finite elemer
model offers great, advantages from a computational point of view.

2. The symmetric positive-definiteness property allows the use of robus
iterative methods for the solution of the discrete system of equation:
Iterative solution techniques such as preconditioned conjugate gradier
methods can be implemented without the need of global assembly. Larg

scale problems can be solved using element-by-element solution procedure
in a fully parallel environment.

In the context of least-squares finite element models for the incompressibl:
Navier -Stokes equations, predominantly low-order expansions, i.e. linea
or quadratic Lagrange functions, have been used. Although not commonly
emphasized, low-order approximations tend to lock, and reduced integratior
techniques must be used to obtain acceptable numerical results. When enougt
redundant degrees of freedom are constrained, the least-squares finite element
model using reduced integration yields a collocation finite element model
However, the collocation finite element model may not always be reliable
and the least-squares functional cannot be used to measure the quality of
the solution. Moreover, the collocation solution may not be smooth at the

nodes and post-processing is needed to recover nodal values from the reduced
integration points.




Ty

FLOWS OF VISCOUS INCOMPRESSIBLE FLUIDS 275

Appropriate minimization of the least-squares functional is done using
full integration and p-refinement (see Pontaza and Reddy [37,38] and
Winterscheidt and Surana [39]). The quality of the numerical solution may be
judged by the value of the least-squares functional, which decays exponentially
fast as the expansion order of the basis is increased (see Pontaza and Reddy
[38]). Commonly used elements suited for p-refinement are either of the nodal
or modal type. A nodal expansion is of the Lagrange type; when the node
spacing is chosen such that the nodes coincide with the location of the roots
of a Jacobi polynomial the basis is known as a spectral basis. Modal basis
are nodeless expansions whose coefficients are associated with modes of a
hierarchical basis. Multi-dimensional nodal and modal basis can be easily
constructed by taking tensor product of the one-dimensional basis. Details on
the construction of both the nodal and modal expansions can be found in the
work of Warburton et al. [40].

7.9.4 Numerical Examples

Kovasznay flow

We consider two-dimensional, steady flow in Q = [-0.5,1.5] x [-0.5,1.5]. We
use Kovasznay’s exact solution to the stationary incompressible Navier—Stokes
equations to verify exponentially fast decay of the Ly least-squares functional
and Ly error norms. The solution is given by

(1-e) (1.9.23)

B2 =

;s A
v =1—eMcos(2my), vy = 2—_6)”’ sin(27y), P=
i

where A = Re/2— (Re? /4+4n?)1/2. Figure 7.9.1(a) shows vz-velocity contours
of the exact solution for Re = 40 and Figure 7.9.1(b) shows the discretization
of the domain using a non-uniform mesh of 8 quadrilateral finite elements.

The exact solution is used to compute the velocity boundary conditions on
I' and pressure is specified at a point. No boundary conditions on vorticity
are necessary. The resulting discrete system is solved using Newton’s method
with Cholesky factorization at each Newton step. Convergence is declared
when the normalized norm of the residual in velocities, ||Av|[/|/v]|, was less
than 10~%, which typically required 5 Newton iterations. A plot of the Lo
least-squares functional and Ly error of the velocity and vorticity ficlds as a
function of the expansion order in a logarithmic-linear scale is shown in Figure
7.9.2. Exponentially fast decay of the Ly least-squares functional and L error
is observed.
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Figure 7.9.1 Kovasznay flow: (a) ve-velocity component contours of th
exact solution for Re = 40; (b) computational domain using
8 quadrilateral elements.
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Figure 7.9.2 Decay of the least-squares functional and convergence of the
velocity and vorticity fields to the exact Kovasznay solution.
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Flow over a backward—facing step

We consider two-dimensional, steady flow over a backward—facing step at
Re = 800. The geometry and boundary conditions are taken from the
benchmark solution of Gartling [35] and are shown in Figure 7.8.16. As shown
in Figure 7.8.16 the standard step geometry was simplified by excluding the
channel portion upstream of the step. The boundary conditions for the step
geometry include the no-slip condition at all solid surfaces and a parabolic
inlet velocity profile given by v,(y) = 24y(0.5 — y) for 0 < y < 0.5. The
Reynolds number is based on the mean inlet velocity.

Instead of imposing an outflow boundary condition in a strong sense we
impose it in a weak sense through the least-squares functional. For example,
if we use the vorticity based first-order system the Lo least-squares functional
is given by '

1 1
T, B, ) = 5(“ (V- V)V TP+ =V xw £ + o~V x Vi3
V-V 6 = PR r (7.9.2)

where & is a pscudo-stress (see Gresho [35]), 6 = —PI + (1/Re) Vv, and f*
are the prescribed pseudo-tractions, typically taken to be zero at an outflow
boundary.

The domain, Q = [0,30] x [~0.5,0.5], is discretized using 20 finite elements:
two elements along the height of the channel and 10 uniform elements along
the length of the channel. The numerical simulation is performed using
the two-dimensional incompressible Navier-Stokes equations in the velocity
gradient based first-order form (see Pontaza and Reddy [38]). A 11th order
modal expansion is used in each element and the resulting discrete system
is solved using Newton’s method. At each Newton step, the linear system
of algebraic equations is solved using the conjugate gradient method with
a symmetric Gauss-Seidel preconditioner. Convergence of the conjugate
gradient method was declared when the norm of the residual was less than
1075, Nonlinear convergence was declared when the normalized norm of the
residual in velocities, ||Av||/||v||, was less than 10~*, which typically required
four Newton iterations. The analysis starts with Re = 100 and steps to
Re = 800 using a solution continuation technique with increments of Re = 100.
Away from the corner of the step at (z,y) = (0,0), the Ly least-squares
functional remained below 107> through the Reynolds number stepping.

Figure 7.9.3 shows the streamlines, the vector velocity field, and pressure
contours for 0 < z < 10, where most of the interesting flow structures occur.
The flow separates at the step corner and forms a large recirculation region
with a reattachment point on the lower wall of the channel at approximately
r = 6. A second recirculation region forms on the upper wall of the channel
beginning near z = 5 with a reattachment point at approximately = = 10.5.
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Figure 7.9.3 Flow over a backward—facing step at Re = 800 (a
streamlines, (b) vector velocity field, and (c) pressure field.

Figure 7.9.4 shows Uz-velocity profiles along the channel height at = =
and z = 15. We compare with tabulated values from the benchmark solutior
of Gartling [35] and find excellent agreement. Gartling’s benchmark solutior
is based on a mixed Galerkin formulation using grid systems ranging from
6 x 120 to 40 x 800 biquadratic elements. Figure 7.9.5 shows pressure profiles
along the length of the channel walls. The slopes of the pressure profiles
become constant near the exit plane, meaning that the flow has recovered to
fully developed conditions at the exit.

Flow past a circular cylinder at low Reynolds number

The last example deals with the two-dimensional flow of an incompressible
fluid past a circular cylinder [37]. The cylinder is of unit diameter and is
placed in the finite region Q = [~15.5, 30.5] x [-20.5,20.5]. The center of
the cylinder lies at (z, ¥) = (0,0), so that the inflow boundary is located
at 10.5 cylinder diamecters left (or in front) of the center of the cylinder
and the outflow boundary is at 30.5 cylinder diameters downstream of the
center of the cylinder. The top and bottom boundaries are located each at
20.5 cylinder diameters above and below the center of the cylinder. Having
considered a large computational domain allows us to impose free-stream
boundary conditions at the top and bottom of the domain without noticeably
affecting the solution.
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Figure 7.9.4 Flow over a backward- facing step at Re = 800: Horizontal

velocity profiles along the height of the channel at = T

’ and z = 15. Comparison with the benchmark solution of
Gartling [35)].
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Figure 7.9.5 Flow over a backward-facing step at Re = 800: Pressure
profiles along lower and upper walls of the channel.
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The boundary conditions include a specified value of 1.0 for the
component of velocity at the mflow, top, and bottom boundaries; that -
the free-stream velocity ue, is specified to be unity. At these boundaries 1]
y-component of velocity is set to zero, The outflow boundary conditions a
imposed in a weak sense through the least-squares functional. The Reynolc

The vorticity based finite element model in Eq. (7.9.21) is used with sixt}
order nodal expansions in cach element. The finjte element mesh consists
501 finite elements (see Figure 7.9.6), where a close-up view of the geometr;
discretization around the circular cylinder is also shown. To accuratel
represent the circular arc, the same approximation for the geometry and th
solution (i.e. isoparametric formulation) is used. The total number of degree
of freedom for the problem is 73,344. The storage of the assembled systen
of equations in banded or iy compressed sparse row/column format for sucl
large size problems is prohibitively expensive in terms of computer memory
Therefore matrix-free techniques, also known as element-by-element solutior
algorithms, are implemented in g matrix-free version of the conjugate gradien
method with a Jacobi preconditioner,

(a) {b)

‘ | ll.J_u|||l
| T

=10 0

o
x

Figure 7.9.6 Computational domain and mesh for flow past a circular
cylinder. (a) Computational mesh. (b) Close-up view of the
geometric discretization around the circular cylinder.
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At each Newton step the linear system of equations is solved using the
matrix-free conjugate gradient algorithm with a Jacobi preconditioner and
convergence tolerance for the norm of the residual to be 107%. Nonlinear
convergence is declared when the relative norm of the residual in velocities
between two consecutive iterations was less than 1074, which required less
than six Newton iterations.

Figure 7.9.7 shows the computed surface pressure coefficient distributions
along the cylinder surface for Re = 20 and 40, together with experimental
measurements of Grove et al. [41] for Re = 40. The finite element results
are in good agreement with the experimental measurements. The computed
drag coefficients for Re = 20 and Re = 40 are Cp = 2.0862 and Cp = 1.5537,
respectively. Good agreement is found between the computed drag coefficients
and the experimental mean curve of Tritton [42], where the corresponding
values are Cp = 2.05 and Cp = 1.56.

Figure 7.9.8 shows computed pressure contours and streamlines in the wake
region for Re = 20 and Re = 40. The predicted wake extends 1.86 and 4.55
cylinder radii measured from the back of the cylinder. The values for the
wake lengths are in good agreement with the numerical solution of Dennis and
Chang [43], whose computed wake lengths for Re = 20 and 40 were reported
as 1.88 and 4.69 cylinder radii, respectively. Better agreement for the case
Re = 40 is found with the numerical solution of Kawaguti and Jain [44], who
reported a computed wake length of 4.50 cylinder radii.

15
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Figure 7.9.7 Flow past a circular cylinder: comparison of the computed
pressure coefficient distributions along the cylinder surface
with experimental results of Grove et al. [41] for Re = 40.



|

282 NONLINEAR FINITE ELEMENT ANALYSIS

&
£
1
i 5
i
=
g
&
3 D

- 0.600

t 0.525

i 0450

i@ — 0375

§ — 0300

- 0225

0.150

| 0.075

5 -0.000

| 0.075

| 0150

-0.225

-0.300

-0.375

-0.450
i
iy

Figure 7.9.8 Flow past a circular cylinder at (a) Re = 20 and (b) Re = 40:
pressure contours and streamlines in the wake region.
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Problems |

7.1 Consider the vector equations (7.3.1) and (7.3.2). Develop the weak statements of the
equations in vector form.

7.2 Consider equations (7.4.1)-(7.4.3) in cylindrical coordinates (r, 8, z). For axisymmetric
viscous incompressible flows (i.e. the flow field is independent of the 6 coordinate),
and when the convective (nonlinear) terms are neglected, we have

Bvx - 18 Tg 30'1-2 : .
R T by @
Gv. 18 - Joa: v
P T rar )T gy T "
18 O,
12 ey + 22 = (i)
where 5
1""1 x
or=—P+2 o , O = P+2ut—
_ Ov. _ v, Bv.
.= P—I-Zpuaz .o'r:—,u(—gJ.—Ta? )

Develop the semidiscrete mixed finite element model of the equations.
7.3 Develop the semidiscrete penalty finite element model of the equations in Problem 7.2.
7.4 The equations governing unsteady slow flow (i.e. Stokes flow) of viscous incompressible
fluids in the x-y plane can be expressed in terms of vorticity w and stream function

e
Ow 2
— —pVw=
Pt "
—w— V2 =10

Develop the semidiscrete finite element model of the equations. Discuss the meaning
of the secondary variables. Use the a-family of approximation to reduce the ordinary
differential equations to algebraic equations.

7.5 Compute the tangent coefficient matrix for the penalty finite clement model in equation
(7.5.16).

7.6 Verify Eqs. (7.9.10)-(7.9.12).

7.7 Develop the least-squares finite element model with velocity field and pressure as
variables of the Navier-Stokes equations governing axisymmetric flows (see Problem
7.2).

7.8 Develop the least-squares finite element model with velocity field, pressure, and
vorticity as variables of the Stokes equations governing axisymmetric flows.
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8

Nonlinear Analysis of
Time-Dependent Problems

8.1 Introduction

In this chapter, we develop the finite element models of time-dependent
problems with nonlinearities and describe some standard time approximation
schemes. All classes of problems discussed in the previous chapters will be
revisited in the context of transient analysis. We begin with the general
discussion of the finite element modeling of time-dependent problems.

The finite element formulation of time-dependent problems involves
following two stages:

1. Spatial approzimation, where the solution u(z,t) of the equation under
consideration is approximated by expressions of the form

u(z,t) = U®(z,t) = Z ui(t)¥5 (z) (8.1.1)
j=1

and the spatial finite clement model of the equation is developed using
the procedures of static or steady-state problems, while carrying all time-
dependent terms in the formulation. This step results in a set of ordinary
differential equations (i.e. a semidiscrete system of differential equations)
in time for the nodal variables u(t) of the element. Equation (8.1.1)
represents the spatial approximation of u for any time {. When the solution
is separable into functions of time only and space only, u(z,t) = T(t)X (z),
the approximation (8.1.1) is justified for the overall transient response of a
structure, in contrast to wave propagation type solutions.

2. Temporal approzimation, where the system of ordinary differential
equations in time are further approximated in time, often using finite
difference formulae for the time derivatives. This step allows conversion of
the system of ordinary differential equations into a set of algebraic equations
among 'u,j at time 4,11 = (s + 1)At, where At is the time increment and s
1s an mnteger.
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At the end of the first step (i.e. after spatial approximation using the finite
element method), we obtain, in general, a matrix differential equation of the
form

[CHa} + MY} + [Ke){us} = {F*) (8.1.2)

at the element level, which represents a system of ordinary differential
equations in time. Here {u} represents a m x 1 vector of nodal values, and
[C€], [M®], and [K®] are m x m matrices and {F*} is mx 1 vector, m being the
number of nodal degrees of freedom per finite element. The matrices appearing
in Eq. (8.1.2) may be functions of the unknown u(z,t), making (8.1.2) a set
of nonlinear differential equations. Next, using a time approximation scheme,
Eq. (8.1.2) is reduced to a set of nonlinear algebraic equations, as will be
shown in the sequel, of the form

[R‘e]s'f'l{ue}s—l-l = {ﬁc}s,s—é—l (813)

where [K¢] and {£*} are known in terms of [C], [M¥), [K®), {F®}, {ut}s,
and {4°}s. The subscript s + 1 refers to the time, ts13, at which the
solution is sought. Equation (8.1.3) is then assembled and solved using known
boundary conditions and initial conditions. Thus, at the end of the two-stage
approximation, one has a continuous spatial solution at discrete intervals of
time:

W ts) = iuj(ts)ﬂqu(m) (s=0,1,...) (8.1.4)
=1

In the next section, we study time approximation schemes using Eq. (8.1.2).
We discuss stability and accuracy of time approximation schemes in Section
8.3. The two-step procedure is illustrated for all major problems of the
previous sections, namely, nonlinear heat conduction (or field problems of

that type), bending of plates, and viscous incompressible flows. Of course, the
procedure described here can be applied to other problems.

8.2 Time Approximations
8.2.1 Introduction

All time approximation schemes are broadly classified as implicit and ezplicit.
In explicit schemes, we find uj at time {541 using the known value of u; at
time ts. The implicit schemes are based on finding u; at time t54; using not
only the known value of u; at time ¢; but also values at t.1. Explicit schemes
are conditionally stable, that is, the time step size is limited approximately to
the time taken for an elastic wave to cross the smallest element dimension in
the mesh. Implicit schemes have no such restriction and the time steps used
in these schemes can be one or two orders of magnitude larger than the time
steps used in simple explicit schemes. However, the accuracy of the implicit
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schemes deteriorates as the time step size increases relative to the period of
response of the system. The economy of the two schemes depends on (1) the
stability limit of the explicit scheme, (2) the cost of the implicit scheme, (3)
the relative size of time increments that can yield acceptable accuracy with
the implicit scheme compared to the stability limit of the explicit scheme, and
(4) the size of the computational model.

In this section, we consider time approximation schemes to reduce Eq.
(8.1.2) to Eq. (8.1.3). The case of [M] = [0] arises in heat transfer
and fluid dynamics, and the equation is known as the parabolic equation.
Equation (8.1.2), in its general form is known as an hyperbolic equation, and
it arises in structural dynamics with damping ([C] # [0]) and without damping
([C] = [0]); [C] denotes the damping matrix and [M] the mass matrix. The
time approximation of (8.1.2) for parabolic and hyperbolic equations will be
derived separately. Equation of the form (8.1.2) is also obtained by other
spatial approximations methods like the finite difference method and boundary
element method, among others. Therefore, the discussion of converting matrix
equations of the type (8.1.2) is equally valid for methods used to approximate
the spatial variation of the solution.

8.2.2 Parabolic Equations

Consider the parabolic equation [i.e. set [M] equal to zero in Eq. (8.1.2)]
[CNu®} + [K{u} = {F°} (8.2.1a)

which arises in heat transfer and fluid dynamics problems. The global solution
vector is subject to the initial condition

{u(0)} = {u}o (8.2.1b)

where {u}g denotes the value of the enclosed quantity u at time ¢ = 0.
The eigenvalue problem associated with Eq. (8.2.1a) is obtained by
assuming the solution u(t) to decay with time

{u} = {u®}e X, {F}={F'}e™ (8.2.2a)

where {u’} is the vector of amplitudes (independent of time) and A is the
eigenvalue. Substitution of Eq. (8.2.2a) into Eq. (8.2.1a) gives

[-A[C] + [K]) {u°} = {F°} (8.2.2b)

The most commonly used method for solving (8.2.1a,b) is the a-family
of approximation, in which a weighted average of the time derivative of a
dependent variable is approximated at two consecutive time steps by linear
interpolation of the values of the variable at the two steps:
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(1= a){i}s + afi}es ~ {—H%S—J“—l:—ﬁﬁi for0<a<1 (8.2.3)
s+1 — ls

where {};, for example, refers to the value of the enclosed quantity at time
t = t5. In the interest of brevity, the element label e on various quantities
is omitted (i.e. time approximation scheme is used at the element level).
Equation (8.2.3) can be expressed alternatively as

{u}sr1 = {u}s + At{i}siq
{@}sra = (1 - a){a)s + aftu}syr for 0<a<1 (8.2.4)

whera A =44 ¥,
Note that when o = 0, Eq. (8.2.3) reduces, for any nodal value wu;(t), to

du; o Uiltsr1) — ui(ts) &
( > )Hs n Bilet1) ~ (8.2.5)

t&-l—-i - ts
Clearly, it amounts to replacing the time derivative of ui(t) at £ = t, with the
finite difference of its values at t — ts+1 (i.e. value from a time step ahecad)
and t = t,. Equation (8.2.5) is nothing but an approximation of the derivative
of a function, since At = ts+1 — 15 is finite, i.e. not make it approach zero.
The approximation in Eq. (8.2.5) is known as the forward difference because
it uses the function value ahead of the current position in computing the slope
(see Figure 8.2.1). One may also use the value of the function from a time
step behind

( Qi) Yills) = iltsn) (8.2.6a)
dt }1'-=3s ts —ts—1
or
((_i’_!ﬁ) - Uiltsry) — uq(ts) (8.2.6b)
dt )iy, ., tat1 — s

which is the same as that in Eq. (8.2.3) when o = 1. Equation (8.2.6b) is
known as the backward difference. If we use the values ahead and behind in
computing the slope

{gfcﬂ) ~ i (ts+1) = uits—1) (8.2.7)
k dl[( f,::t8 ts+1 - t‘q—]

1t is called the centered difference, which is not a special case of Eq. (8.2.3).




TIME-DEPENDENT PROBLEMS 291

A
u(t)
Actual tangent line at = £,
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Figure 8.2.1 Approximation of the first derivative of a function.

For different values of «, we obtain the following well-known numerical
integration schemes from Eq. (8.2.3):

0, the forward difference scheme (conditionally stable);
Order of accuracy = O(At)
the Crank-Nicolson scheme (stable); O((At)?) (8.2.8)
the Galerkin method (stable); O((At)?)
the backward difference scheme (stable); O(At)

= s iraba |

The phrases ‘stability’ and ‘conditional stability’ will be discussed in Section
8.3.

Equation (8.2.4) can be used to reduce ordinary differential equations
(8.2.1a,b) to algebraic equations among the u; at time t541. Assuming that
[C] is independent of time ¢, we obtain (see Problem 8.1)

[K]s--r-l{u}sﬂ = {F}s,s—i—l (8.2.9)

where

Kla1 = €1+ atlKles, [Klo=[Cl-aalK]y  (8:2.100)
{P}S,s-i-l = [K]S{_Tb}g + aj {F}s+1 + (LQ{F}S (8210b)
a1 = alt, as=(1-a)At (8.2.10c)

Equation (8.2.9) provides a means to compute for {u}s+1 whenever {u}s is
known. Of course, [C], [K], and {F} are known for all times (parts of {F'}
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may not be known at the element level, but after assembly they are known
whenever the corresponding {u} are unknown).

Equations (8.2.9) is valid for a typical element. The assembly, imposition
of boundary conditions, and solution of the assembled equations are the same
as that used for static (or steady-state) problems. Calculation of [K] and {F }
at time ¢ = 0 requires knowledge of the initial conditions {u}o and the time
dependency of [C], [K ], and {F}.

Note that for a = 0 (the forward difference scheme), Eq. (8.2.10a) gives

[K°] = [C®]. When the matrix [C*] is diagonal, Eq. (8.2.9) becomes ezplicit
in the sense that one can solve for {u}ss1 directly without inverting [K].
However, in spatial approximation by the finite element met hod, [C*] is derived
using a weak form, and it is never a diagonal matrix. The matrix [C¥]
derived using a weak form is called the consistent matriz. Thus, the finite
element equations with consistent (mass) matrix [C¢] never are explicit (in
the sense that no inversion of the coefficient matrix is required). In a finite
difference method, the matrix [C*] is diagonal, and thercfore an explicit time
integration scheme (such as the forward difference method) results in explicit
set of equations, which are quite inexpensive to solve at each time step. To
have the advantage of less computational time in dynamic/transient analyses
by the finite element method, it is desirable to have [C*¢] diagonalized (sec
Problem 8.8). Thus, explicit (in the sense that [K] is diagonal) finite element,
equations can be obtained only when (a) the time approximation scheme is
explicit, and (b) the ‘mass’ matrix [C] is diagonal.

8.2.3 Hyperbolic Equations

Consider the second-order equation
[Me){@} + [CWac} + [Ke){u®} = {F*) (8.2.11)

which arises in structural dynamics; [C¢] denotes the damping matrix, [Me]
the mass matrix, and [K] the stiffness matrix. The global displacement vector
{u} is subject to the initial conditions that the displacement and velocity are
known at time ¢t = 0

(w0} ={ulo,  {@(0)} = {v}o (8.2.12)

There are several numerical integration methods available to integrate second-
order (i.e. hyperbolic) equations 12,4,5]. Among these, the Newmark family
of time integration schemes [4] is widely used in structural dynamics. Other
methods, such as the Wilson method and the Houbolt method [5], can be used
to develop the algebraic equations from the second-order differential equations
(8.2.11).
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In the Newmark method, the function and its time derivatives are
approximated according to

{uborr = {uhs + Atfifs + 1 (A {ii}es, (82.13a)
{i}ot1 = {}s + {i}s4alrt (8.2.13b)
{t}sra = (1 —a){ii}s + afii}ssr (8.2.13¢)

and ¢ and y are parameters that determine the stability and accuracy of the
scheme. For o = 0.5, the following values of v define various well-known

schemes:
%, the constant-average acceleration method (stable)
%, the linear acceleration method (conditionally stable)
7 =140, the central difference method (conditionally stable) (8.2.14)
%; the Galerkin method (stable)
2, the backward difference method (stable)

The set of ordinary differential equations in (8.2.11) can be reduced, with

the help of Eqs. (8.2.13a—c), to a set of algebraic equations relating {u}s+) to
{u}s (see Problem 8.2). We have

[Klst1{u}s1 = {F}senn (8.2.15)
where

[R—]e&l = [Kls—k—l + a‘3[ﬂ'ﬁf]s+l + aﬁ[c]s-i-l
{—?‘}s‘s-l—l = {F}s+1 + [P"ﬂs-i-l{A}s o+ [C]s-l—] {B}% (8216)
{A}s = as{u}s + as{i}s + as{i}s, {B}s = ag{u}s +ar{i}s + as{ii}s

and a;, 1 =1,2,...,8, are defined as

a = alt, az=(1-a)At (8.2.17a)
1 1 ; y
a3 = /JJ{TT)Q’ a4 = (lgAf.: ag = 'y -1, Y= 23 (82171))
« e x
=——> ar=—--—1 ag=At|—-1 8.2.17¢c
o= g =51 a=ar(Z-1) (8217

The following remarks concerning the Newmark scheme are in order:

1. The calculation of [K] and {F} in Newmark’s scheme requires knowledge
of the initial conditions {u}g, {it}o, and {i}p. In practice, one does not
know {ii}g. As an approximation, it can be calculated from the assembled



e e R RN

294 wonLINEAR FINITE ELEMENT ANALYSIS

3.

system of equations associated with (8.2.15) using initial conditions on {u},
{u}, and {F} (often {F} is assumed to be zero at ¢ — 0):

{ito=[M]7Y ({F}o - [K{u}o — [C){a}) (8.2.18)

. At the end of cach time step, the new velocity vector {t}s11 and

acceleration vector {#},,; are computed using the equations

{ﬁ}3+1 = 33({”}3—#1 = {u}s) - 0»4{’1'5}3 = a5{ﬂ}s

{_ﬂ-}s—kl = {u}s + 02{&}5 +a {ﬁ}3+1 {8'2-19)
where a; and ay are defined in Eq. (8.2.17a).

Equation (8.2.15) is not valid for the centered difference scheme (y = 28 =
0), as some of the parameters a; are not defined for this scheme. An
alternative algebraic manipulation of the equations is required. It can be
shown that (see Problem 8.7)

[H}s-!—l{ﬁ}s—!-l = {l?}s—l.—'[ - [‘K].‘;—H{A}s - [C]S+]{B}-9 (8220)

[H]s1 = BAY? Koty + @A[Clo1 + [M]oyq
(4 = fubs + At{a} + 25 Y (a0, (82.21)
{B}s = {@}s + (1 — @) At{ii},

and the displacements and velocities are updated using the relations

{utorn = {u}; + At{u}s + Lé;f (1= m){i}e + ii}s1] (8.2.22)
{osr = {ids + At[(1 - a){ii}, + afii} ] (8.2.23)

. The centered difference scheme (y=28=0) witha =0 yields [see Eqs.

(8.2.20) and (8.2.21)]
Mo {ihess = {Fhosn = o (Tuby + At} + (A0,
 [Closs ({?}.}s 4 At{'ﬂ:}g) (8.2.24)

Thus, if the mass matrix is diagonalized, the system in Eq. (8.2.24) becomes
explicit (no inversion of the coefficient matrix 1S required).

For natural vibration, the forces and the solution is assumed to be periodic

{u} = (%)™, {F}={F%)e ;=1 (8.2.25)
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where {u°} is the vector of amplitudes (independent of time) and w is the
frequency of natural vibration of the system. Substitution of Eq. (8.2.25)
into Eq. (8.2.11) yields

[—w?[M] +iw[C] + [K]) {u} = {F*) (8.2.26)

Equation (8.2.26) is called an eigenvalue problem, which may have complex
eigenvalues when damping [C] is included.

8.3 Stability and Accuracy

8.3.1 Preliminary Comments

In general, the application of a time approximation scheme to an initial-value
problem results in equation of the type

if{]{.u}s+1 = [R—Hu'}s or {u}st1 = [A]{'U-}s (8.3.1)

where [A] = [K]"}[K] is called the amplification matrix, and [K] and [K]
are matrix operators that depend on the problem parameters, for example,
geometric and material properties and finite element mesh parameter, and
{u}s+1 is the solution vector at time ts11.

Since Eq. (8.2.3), for example, represents an approximation that is used
to derive equation of the type (8.3.1), error is introduced into the solution
{u}s+1 at each time step. Since the solution {u}et1 at time t,.; depends
on the solution {u}s at time ts, the error can grow with time. The time
approximation scheme is said to be stable if the error introduced in {u}, does
not grow unbounded as Eq. (8.3.1) is solved repeatedly for s = 0, 1i:00: In
order that the error to remain bounded, it is necessary and sufficient that the
largest eigenvalue of the amplification matrix [A] is less than or equal to unity:

[Amax| <1 (8.3.2)

where Amax i the largest value that satisfies the equation
(14] - M1]) {u} = {0} (8.3.3)

Equation (8.3.3) represents an eigenvalue problem. If condition (8.3.2) is
satisfied for any value of At, the scheme is said to be unconditionally stable or
simply stable. If Eq. (8.3.2) places a restriction on the size of the time step
At, the scheme is said to be conditionally stable.

Accuracy of a numerical scheme is a measure of the closeness between the
approximate solution and the exact solution, whereas stability of a solution
is a measure of the boundedness of the approximate solution with time. As
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one might expect, the size of the time step can influence both accuracy and
stability. When we construct an approximate solution, we like it to converge to
the true solution when the number of elements or the degree of approximation
is increased and the time step At is decreased. A time approximation scheme is
said to be convergent if, for fixed t, and At, the numerical value {u} converges
to its true value {u(t,)} as At — 0. Accuracy is measured in terms of the rate

at which the approximate solution converges. If a numerical scheme is stable
and consistent, it is also convergent.

8.3.2 Stability Criteria

The a-family of approximations is stable for all numerical schemes in which
a < %, only if the time step satisfies the following (stability) condition:

2

where Apay is the largest eigenvalue of the finite element equations (8.2.2b):
(K] = A[C¥]) {u}e = {FO)° (8.3.50)

Note that the same mesh as that used for the transient analysis must be used
to calculate the eigenvalues of the assembled system (8.3.5a); after assembly
and imposition of boundary conditions, the eigenvalue problem in Eq. (8.3.5a)
becomes homogenecous

(K] = AC) {U°} = {0} (8.3.5b)

The stability criterion in Eq. (8.3.4) is arrived using Eq. (8.3.2). The
amplification matrix for the a-family of approximations is given by

[A] = [K]7HE] = (0] + a1[K])™Y([C] — aa[K]) (8.3.6)

Let Amax be the maximum eigenvalue of Fq. (8.3.5b). Then it can be shown
that (using spectral decomposition of [A]) the maximum eigenvalue of [4] is
equal to
A 1—(1-— a)At Apax
RRET T Y ol A

from which it follows that the a-family of approximations is unconditionally
stable if @ > 5. In the case a < 1, the method is stable only if condition
(8.3.4) is satisfied.

Similarly, all Newmark schemes in which v < a and a > 3, the stability
requirement is

<1 (8.3.7)

1, ~ipd

At < Mo = [Jun(a =) (8.3.6)




TIME-DEPENDENT PROBLEMS 297

where wmax is the maximum natural frequency of the undaa.'nped system
(8.2.26)

(18] - w?[M]) {A} = {0} (83.7)

8.4 Transient Analysis of Nonlinear Problems
8.4.1 Introduction

Here we discuss time approximations of the problems considered in heat
transfer, fluid mechanics, and solid mechanics with nonlinearities. The
discussion mainly focused on developing the fully discretized finite element
equations for transient response. It should be noted that the stability criteria
discussed in the previous sections for conditionally stable schemes are valid
only for linear problems, and no such estimates are available for nonlinear
problems.

8.4.2 Heat Transfer

Consider the model equation (4.2.1). For time-dependent problems, it takes
the form

ou 0O Ou ] u
T e = f(x. y.t 8.4.1
G~ = (a”dm) 3 ( 220}) + agou = f(z,y,t) (8.4.1)

where a;; are, in general, functions of position and time. In addition, aj;
(i,j = 1,2) are functions of u, du/dz, and du/dy. However, we assume that
co is only a function of position but not time. The semidiscretization follows
the same steps as in the steady-state case (see Chapter 4). The weak form of
Eq. (8.4.1) is given by

g / (CQ’U_I(—?'U PP Ow du e Ow du + agowu — 'wf) dx dy — jé\e wan ds

oz dz | 2oy dy
(8.4.2)
The finite element approximation is assumed to be of the form
mn
u(z,y,t) = uj(2,y,t) Z QUHERY) (8.4.3)

where the nodal values uj are now assumed to be functions of time.
Substitution of Eq. (8.4.3) into Eq. (8.4.2) gives rise to the finite element
equations

[Ce{u} + [KNu} = {F°} +{Q°} (8.4.4)
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where '

Cs = fm Covsyt da dy

e BUE VS oy dys
K= /g;e (au—(,);:—'(—?_j— + agg—é};-éjl + agowf?bj) dx dy

fi= [ vifdeay, Q= # Vion ds (8.45)
The fully discretized set of equations associated with (8.4.4) is given by

K ({usri){udors = (K ({ush{u}s + {F}s 001 = {F) (8.4.6)

where

K ({uea})] = €]+ anlK (Quer})], - (R ({ueh)] = €] - ool ({us))]
{FYsst1 = a1{F}ss1 + ao{F}s, a5 = alt, az=(1- a)At (8.4.7)
Note that only [K] is a function of the nodal unknowns {u}.

When the direct iteration is used to solve the nonlinear equations, at the
(r + 1)st iteration we solve the equation

K DHu)rH = (7} (8.4.82)
with

{F} = ([C] - aal K ({us D)) {u}s + a1 {F}ss1 + anf F}, (8.4.8b)

Note that {F} remains unchanged during the nonlinear iteration for a given
time step, whereas [K| changes during the iteration due to the latest known
solution {u}7t].

8.4.3 Flows of Viscous Incompressible Fluids

Weak form finite element model

The weak form (Ritz-Galerkin) finite element models developed in Chapter
7 already include time-dependent terms [see Egs. (7.4.13), and (7.5.16) or
(7.5.18)]. The fully discretized equations of (7.5.18) are discussed here. We
have

[K({VSH DHv}st = [K({Vs}n{"}s ¥ {F}s,sH (8.4.9a)
where

[KE{V3+1_})] = [M] + a1 ([C{vesa})] + [K({ves1})] + [K])
[K({vePls = M] - a2 (IC({v})] + K{vs})] + [K]) (8.4.9b)
{f‘}s,s-i-l =a {F}s-}-l %+ Gz{F}s
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where [M], [C], [K], and [K] are defined in Eqs. (7.4.14) and (7.5. 17).

Dependonce of [C] on the nodal values {v} is due to the (,onvecuve terms,
and dependence of [K] on {v} is due to viscosity being a function of the strain
rates (e.g. power-law fluids). If viscosity is constant, that is, Newtonian fluids,
then (K] is independent of the nodal values {v} of the velocity field. For direct
iteration solution, Eq. (8.4.9a) takes the form

KV DUV = KV hvEs + {(Flasn (8.4.10)

Least-squares finite element models

The least-squares finite element models of time-dependent Navier- Stokes
equations (see Section 7.9) are discussed next. We consider two alternative
least-squares formulations [6,7]: (1) velocity —pressure—vorticity model, and (2)
velocity—pressure—velocity gradient model.

The velocity-pressure-vorticity formulation is based on the minimization
of the least-squares functional

- 2[ é;: V-V)v+ VP - _}%Eww-fﬁ
+llw =V x vIB+ V- VI3 + |V 'wn%] (8.4.11)
where || - ||o denotes the Lo(2)-norm
fullo= | lutx 0 a2, te () (8.4.12)

The finite clement model based on minimization of Iy requires that we choose
at least piecewise bilinear (in two dimensions) or trilinear (in three dimensions)
polynomials for v, P, and w. The temporal terms are approximated using the
backward (Euler) difference scheme.

The '
velocity-pressure-velocity gradient formulation is based on minimization of
the functional

ov 2
o SRE N
5 + (v- ] + VP R (V- )

2

1
I(v,P,U) = {
0

+ U= (VTR + V- v[3+

) 2} (8.4.13)

where U is the velocity gradient tensor. The finite element model based on
minimization of I also requires, at the minimum, piecewise bilinear (in two
dimensions) or trilinear (in three dimensions) polynomials for v, P, and U.
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8.4.4 Plate Bending (FSDT)

Here we consider the FSDT with von Kérmdn nonlinearity (see Chapter 6).

We begin with the following equations of motion of the theory (see Reddy
5-7)):

012 9 d oy ) oy \"war THw
— %%m- — ?é%' —qg=10
(8.4.14a)
where [y and I are the principal and rotatory inertias
Io=ph, I= %};—3 (8.4.14b)

and the inplane forces (N, Nzy, Nyy), transverse shear forces (Qz)Qy), and
moments (Mzq, Mgy, My,) were defined in Eqs. (6.3.4) and (6.6.11).
The weak forms of Egs. (8.4.14a) are given by

61& 3 61,9 :; 822159 r . .
)= /QE (2}%1"?\"3;3 + "ajj\’xy - Iﬁszi'a? dCC d?,‘ - s Annﬁ'% ds (84103‘)

I 2
0= (g’ﬁ N,, + %Nyy o Im.ffa'?j;g) dz dy — }ﬁ Npst); ds (8.4.15b)
Qe ( y Bf Ie

or ™' 5
o, dw, o aw(-’ (’)d) ) (911)3 awo
U:/f;e [8% (Qm‘f‘Nxx—(%g +f\’a:y_éj;) + _C}_t; Qy*i-f\fmy—a; +Nyy_a§
2 q
+ IUT,;&Q(}—:;_O, = /U)?'Q’J dx dy = ﬁ‘e an? ds (8.4150)
6'?,9 (’}’ﬂ") , E 82(5’.1 ‘ .
0= s (3:; My, + ﬁMm +viQ: + Ip w,&:—aﬁw dzx dy — 3 Myt ds
(8.4.15d)

Boes ?%M + %M 4 9Q, + Ingi?i?—y d:cdi;—ﬁ{ Mysi; ds
Jae \ oz Y gy W at? © Jre

(8.4.15¢)
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| where (Npn, Nps, Mpn, Mps, Qn) are the stress resultants on an edge with unit
normal fi, and they are defined in Eqs. (6.3.7a,b), (6.3.9), and (6.4.2). Note
_ that the nonlinearity in Eqgs. (8.4.15a) is solely due to wp, and the nonlinear
terms are present only in (Ngq, Ngy, Nyy)-

For convenience of writing the fmlte element equations, the linear and
nonlinear parts of the inplane forces (Ngg, Ny, Nyy) are denoted as

(N} = {N°} +{N"} (3.4.16)

where {NU} is the linear part and {N'} is the nonlinear part. For an
orthotropic plate (with the principal material axes coinciding with the plate
axes), the forces and moments are related to the generalized displacements
(ug, Vg, Wo, Pz, qby) as follows:

An% AIZ%ZO Nj= Alz? Azz%—?
= Ags (ﬁuo i %T) . Mg, = Dn ‘?:iw L Dl?%
i

Niz = [Au (Bguo) + A2 (8;;0) }

o Owp \ 2
Nrjry_ [AIB ( e ) + Aga (@) }

Owg Owg

Nl = Kz e By (8.4.17a)
and A;; and D;; are the plate stiffnesses [see Eq. (6.3.34)]
h3
Aij=hQij, Dij = 5@y (8.4.17b)

and Q;; are defined in Egs. (6.3.31a b).
The finite element model based on equal interpolation of all generalized

displacements

T

uo(x, Y1) Z ()%;(z,9), wolz,y,t) = ZA%

wo(z,y,t) = > AF(t)v5(x,y) (8.4.18)
j=1

o2,y 1) Zfﬁ‘l(t)% z,9), dy(z,u,0) =D Ad(t);(z,y)

=1 =1
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can be expressed as

5 n 5 n
ol & 8 8 —
0= S MPM+ VY KPA R 2R ()
B=1j=1 f=1j=1
for o = 1,2,...,5, where Af denotes the value of the ath variable, in the

order (ug, vo, wo, ¢z, ¢y ), at the ith node (i =1,2,...,n) of the element. The
non-zero coefficients of Eq. (8.4.19) are defined by

MY = [ Tovty dedy, M2 = v = P
443-4 =M= /g;c Linh; dx dy

Eil = f Nyn iy ds, -F;‘,Q = f -N.rw@i ds

Te e
= [ o dedy+ § Quis ds
Jae e

Fio jé Moty ds, FS = ﬁ My ds

K%‘" = /Qe (awiN"‘ - %mg;) dx dy

or Y Oy
K= (%‘%Ng; ¢ %% 5;) dz dy
+ %% (@8 + 522 + %‘-"’5&%)] dz dy
Kfﬁ :/Qc ( ‘i‘*}@,-jt%%ﬂ f; £ %Mg;) dz dy

and Kfjﬁ denotes the coefficient matrix of the ath variable in the (th equation
(,6=1,2,3,4,5). Thus, NY; denotes the contribution from Ni(= N?+ N}
to the ath variable, where j denotes the node number. The non-zero terms
appearing in the definition of I&gﬁ are given below:

, b 4
j\"]lj = Al] 3:_(‘;’__‘?3 Nblj = Aﬁﬁq_l

d 9y
. 81,{» . 5115
N = A125;-= N§; = Asﬁﬁf
. L/, Owdy, Ow 6’1_1':-)
Tdon ol it ) it
N 2 \\Al] Or Ox 7 oy Ay
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N"% o A66 (8% d% @%)
2 \oz dy " 9y oz

1 0Y; O,
sz = Al?(.—'?a sz = A22a—;
d Ow P Ow O1;
N3- i 28 i i
9 = (AIQ 3 92 T Az By Oy )
oY 0,
L i 3 _
Q1 = Ass "3;3-, Qy; = Ama—;
Qi = Asstyy, Q5 = Auy;
0, 0Y;
4 : .
ﬂ'iflj = Dn?‘;j ) ﬂ'fﬁj = Daﬁ—gyi
O i} R
Mii=Dio—2, MPi=Dp-2
2 12 B 1; 12 8y
My 5 0Y; ;
Mg; = Des 5+, M3; = Dgga—; (8.4.21)
Equation (8.4.19), when generalized to include structural damping, has the
form
[MI{A} + [CH{A} + [K[{A} = {F} (8.4.22)
The fully discretized equations are
[K({AYsr1){AYsr1 = {F s (8.4.23)
where

[K({AYs11)] = [K({A}sr1)] + a3[M]es1 + a6[Cls1n
{F‘}s,s+l : {F}s—i-l + [M]s—e—i {A}s F [C]s+1{B}s

; 2 (8.4.24a)
{B}s = aG{A}s T aT{A}s + aS{A}s
and a; are defined as (y = 20)
1
a1 = alt, ay=(1-a)At, a3= =75, a4=a3dt,
) At (8.4.24b)
@ o
5= = — =—, =—-1, —At(—wl)
O 3 1, ag BAi ay 3 asg o

At the end of each time step, the new velocity vector {A}Hl and
acceleration vector {A}¢1; are computed using the equations

{A}SH =a3({A}s+1 — {A}s) - CM{ﬁ} o= &5{3&}3 (8.4.25a)
{AYor1 = {A}s + a2{A}s + ar{A}ss1 (8.4.25b)
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. Solution of Eq. (8.4.23) by the Newton-Raphson iteration method results

in the following linearized equations for the incremental solution at the (r+1)st
iteration

{64} = —[KT({AY, ) RY,, (8.4.26)

[RT({A), )] = [g}f{] B = RAAYL A — (B

(8.4.27)
The total solution is obtained from

(A ={A}, +{6a} (8.4.28)

Note that the tangent stiffness matrix is evaluated using the latest known
solution, while the residual vector contains contributions from the latest known
solution in computing [K ({AYe41){A},; and previous time step solution in
computing {13'} s,s+1- Lhe velocity and acceleration vectors are updated using
Egs. (8.4.25a,b) only after convergence 1s reached for a given time step.

8.5 Computer Implementation

Computer implementation of nonlinear  time-dependent problems is
complicated by the fact that one must keep track of the solution vectors
at different loads, times, and iterations. Thus, there are three levels of
calculations. Often, for a fixed value of load (or Reynolds number in the
case of fluid flows), one wishes to obtain the transient solution. Therefore, the
outer loop is on the number of load steps, followed by a loop on the number of
time steps, and the inner most loop being on nonlinear iterations. Flow chart
shown in Figure 8.5.1 illustrates the general idea.

As an example, Fortran statements showing the transfer of global solution
vectors from previous time step and current iteration of the current time
step to subroutine to calculate element matrices and residual vector are given
below. Here variable IDY N is a flag: IDYN = 0 is for static analysis and
IDYN >0 is for transient analysis. Also we have

WO(I) = element displacement vector at time t,
W1(I) = element velocity vector at time £
W2(I) = element acceleration vector at time &
W(I) = element displacement vector at ts+1 in the latest iteration.

Fortran statements showing the transfer of global solution vectors to element
solution vectors are given in Box 8.5.1. Statements showing the residual vector
calculation inside the subroutine are given in Box 8.5.2.
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Load loop )

DO nl =1, nload

: F=F+AF J

Time loop
DO nt =1, ntime

iter = iter + 1

| Initialize global K, M, and £, |

Transfer global information
(material properties, geometry and solution)
to element

{

CALL ELKMF to calculate K,
M), and £©), and assemble to form
global K, M;, and F;

ij?

\

Impose boundary conditions
and solve the equations

Update velocities,
yes .
@ accelerations, and

no

print solution
Write a
message

Figure 8.5.1 Flow chart of the nonlinear transient analysis of a problem.

yes : :
iter < itmax
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Box 8.5.1 Fortran statements showing the transfer of global solutio

vectors to element solution vectors.

C

E Initialize the global coefficient matrices and vectors
DO 180 I=1,NEQ
GLE(I)=0.0
DO 180 J=1,NHBW

680 GLK(LI=0.0

C  Do-loop on the number of ELEMENTS 1o compute clement matrices
8 and their assembly begins here (IDYN > 0, flag for dynamic anal.)

DO 200 N=1,NEM
L=0

DO 190 I=1 NPE
NIENOD(N.T)
ELXY(I1)=X(NI)
ELXY(L2)=Y(NI)
LI=(NI-1)*NDF
DO 190 J=1 NDF
LI=LI+1
L=L+1]
IF(IDYN.GT.0)THEN
F,LP(L)=GLP(LI) !GLP - Global solution vector at time 1,
ELV(L=GLV(LI) IGLV - Global velocity vector at time L,
ELA(L)}=GLA(LI) !GLA - Global acceleration vector at time 1,
ENDIF
ELU(L)=GLU(LI) IGLU - Global solution vector at t..; & current iteration,
190 CONTINUE

Call subroutine to compute [ELK], [ELM], [ELC] and {ELF}

200 CONTINUE

-

Box 8.5.2 Fortran statements for the calculation of [K] and {F}.

SUM=SUM -+ (ELM(I,J)-A;Z"ELKP(I,J))*ELP(J)
100 ELK(LIFELM(LJ)+Al *ELK(L]) o
120 ELF(D=(A1+A2)*ELF(I) + SUM  !Assumed time-independent source

ELSE 'Hyperbolic equations

C  ELC(LJ) - Damping matrix: ELP, ELV, ELA are displacement, velocity, and
C  acceleration vectors from previous time step (do not change during iteration).
C

DO 150 I=1,NN
SUM=0.0
DO 140 J=1,NN
SUM=SUM+ELM(LI)*(A3*ELP(J)+A4*ELV(J+AS*ELA(J))
* *ELC(L])*(A6*ELP(J)*AT*ELV(J)+AS*ELA(J))
140 ELK(LD=ELK(LJ}+A3*ELM(LJ)+A6*ELC(LJ)
150 ELF()=ELF(I)+SUM
ENDIF
RETURN
END

C
C  ELM(LJ) — mass matrix: ELK(LT) - current coefficient matrix (ugdatcd in each
C  iteration for nonlinear problems). ELKP(L)) - coefficient matrix based on
C  previous step solution (ELK=ELKP for linear problems); ELP(J) - solution vector
C grom previous time step; ELU(T) - solution vector at current time and iteration.
C
IF(IDYN.EQ.1)THEN !Parabolic equations

DO 120 I=1,NN

SUM=0.0

DO 100 J=1 NN
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8.6 Numerical Examples

8.6.1 Linear Problems

Here we consider several representative examples of time-dependent linear
problems. We begin with a heat conduction problem.

Example 8.6.1 B

Consider the transient heat conduction equation

o8 820 026 :
8‘} = (@ + CJTF) =% A Q (8-6-”

where # is the non-dimensional temperature and (1 is the square domain of side 2. The
boundary condition is that § = 0 on the boundary for ¢ > 0 (see Figure 8.6.1). The initial
condition is that #(x,y,0) = 0. We wish to find the temperature field inside the domain for
#3540,

In view of the biaxial symmetry, it is sufficient to model one guadrant of the domain.
The boundary conditions along the lines of symmetry require that the heat flux be zero
there. Thus, the boundary conditions of the computational domain are

o _ o9 _ N y _
e (0,y,t) =0, @(m, 0,t) =0, 6(1,y,t) =0, O(z,1,t) =0 (8.6.2)

We choose a uniform mesh 8 x 8 of linear rectangular elements to model the domain,
and investigate the stability and accuracy of various schemes. Since the Crank-Nicolson
(e = 0.5) and backward difference (o = 1.0) methods are unconditionally stable schemes,
one can choose any value of At. However, if At is too large, the solution may not be accurate
even when it is stable. In order to estimate the time step, one must calculate the maximum
cigenvalue for the mesh used in the transient analysis. The solution of the eigenvalue problem
associated with the 8 x 8 mesh of linear elements yields 64 eigenvalues, of which the maximum
eigenvaluc is Amax = 1492.56. Therefore, the critical time step for the forward diflerence
scheme (@ = 0.0) is given by Ater = (2/1492.56) = 0.00134.

Figure 8.6.2 shows plots of the temperature #(0,0,1) versus time ¢ for a At = 0.002, which
is greater than the critical time step. For very small times, 6(0,0,t) ~ ¢, and both backward
difference and Crank-Nicolson schemes show stable behavior while the forward difference
is unstable. For At = 0.001, the forward difference too gives the same result as the stable
schemes using At = 0.05. Table 8.6.1 shows the numerical values of 6(0,0,¢) predicted by
varions schemes and two different meshes. One must note that the critical times step for the
4 x 4Q9 mesh is different as the maximum eigenvalue is different (Atcr is likely to be smaller
for the mesh of quadratic elements). Figure 8.6.3 contains plots of the evolution of (0,0, t)
with time, reaching a steady-state at around t = 1.2. Finally, Figure 8.6.4 shows plots of
8(x,0,t) versus x for t = 0.2, 0.5, and 1.0. The difference between the solutions obtained by
the two meshes and different time approximation schemes cannot be seen in the plots.
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Figure 8.6.1 Actual and computational domains of the transient
transfer problem.
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Table 8.6.1 Evolution of 6(0,0,f) obtained with various time
approximation schemes (At = 0.05 for Crank-Nicolson and
backward difference schemes, and At = 0.001 for the forward
difference scheme).

8 x 8L 4 % 40Q9

Crank- Backward Forward Crank- Backward  Forward
Time Nicolson difference  difference  Nicolson difference  difference
0.05 0.0497 0.0480 0.0500 0.0496 0.0479 0.0500
0.10 0.0975 0.0916 0.0983 0.0971 0.0913 0.0979
0.15 0.1398 0.1294 0.1400 0.1390 0.1288 0.1393
0.20 0.1740 0.1612 0.1737 0.1730 0.1604 0.1728
0.25 0.2006 0.1873 0.2004 0.1996 0.1864 0.1994
0.30 0.2215 0.2085 0.2213 0.2205 0.2075 0.2202
0.35 0.2379 0.2257 0.2376 0.2368 0.2247 0.2365
0.40 0.2506 0.2395 0.2503 0.2495 0.2385 0.2493
0.45 0.2605 0.2506 - 0.2603 0.2594 0.2496 0.2592
0.50 0.2682 0.2595 0.2680 0.2672 0.2585 0.2670
0.55 0.2743 0.2667 0.2741 0.2732 0.2656 0.2731
0.60 0.2790 0.2724 0.2788 0.2779 0.2714 0.2778
0.65 0.2826 0.2770 0.2825 0.2816 0.2760 0.2815
(.70 0.2855 0.2807 0.2854 0.2845 0.2797 (0.2844
0.75 0.2877 0.2837 0.2876 0.2867 0.2827 0.2866
0.80 0.2895 0.2860 0.2894 0.2885 0.2850 0.2884
(.85 0.2908 0.2879 0.2908 (0.2898 0.2870 0.2898
0.90 0.2919 0.2895 0.2918 0.2909 0.2885 0.2909
0.95 0.2927 0.2907 0.2926 0.2917 0.2897 0.2017
1.00 0.2933 0.2916 0.2933 0.2924 0.2907 0.2924

Example 8.6.2 : S

Here we consider the transient response u(x,y,t) of a square membrane fixed (v =0) on its
boundary. The governing equation is

0%u 8%u  O%u . ; ;

See Figure 8.6.1 for the domain and boundary conditions with 6 replaced by u. We use 8x8
mesh of linear elements in the quarter of the domain to determine the response. The critical
time step for the linear acceleration method (o = 0.5 and v = 1/3) is (Amax = 1492.56)
Ater = 0.0897.

Figure 8.6.5 shows plots of the transverse deflection u(0, 0, ) versus time ¢ for a At=0.1,
which is greater than the critical time step. The linear acceleration method (o = 0.5
and v = 1/3) gives almost the same response as the constant-average acceleration method
(=05 and v = 0.5) when At = 0.05 (see Table 8.6.2).
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Figure 8.6.5 Evolution of the deflection u(z,0,t) of the membrane.

Table 8.6.2 Deflection u(z,0,t) versus time ¢ for a squarc membrane
fixed on its edges and subjected to uniform load (8 x 8L4).

t u U u t U U U

CAM* LAM* LaMT CAM*  LAM* Lamt
0.1 0.0025 0.0017 0.0029 1.7 0.5624 0.5578 0.5424
0.2 0.0125 0.0117 0.0154 1.8 0.5025 0.5023 0.4858
0.3 0.0325 0.0317 0.0379 1.9 0.4419 0.4397 0.4260
0.4 0.0625 0.0617 0.0704 2.0 0.3833 0.3872 0.3661
0.5 0.1025 0.1017 0.1129 2.1 0.3243 0.3122 0.3069
0.6 0.1525 0.1517 0.1657 2.2 0.2655 0.2841 0.2511
0.7 0.2125 0.2117 0.2269 2.3 0.2105 0.1740 0.1959
0.8 0.2825 0.2812 0.2989 24 0.1601 0.2250 0.1427
0.9 0.3624 0.3626 0.3896 25 0.1131 —0.0078 0.1014
1.0 0.4500 0.4565 0.4876 2.6 0.0706 0.2833 0.0693
1.1 0.5378 0.5482 0.5701 2.7 0.0343 —0.3422 0.0289
1.2 0.6110 0.6161 0.6301 2.8 0.0038 0.6653 —0.0196
1.3 0.6550 0.6546 0.6619 2.9 —0.0204 —1.1816 —0.0553
1.4 0.6656 0.6658 0.6608 3.0 —0.0348 1.9455  —0.0625
1.5 0.6492 0.6482 0.6359 3.1 —0.0339 -3.5061 —0.0358
1.6 0.6133 0.6079 0.5939 3.2 -0.0102 5.9403 0.0207

*COAM = constant-average acceleration method (At = 0.1); LAM = linear acceleration
method (At = 0.1).

F LAM with At = 0.05.
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Example 8.6.3

Next, we consider the transient response wg(x,y,t) of a simply supported (85-1), isotropic
square plate under uniform load of intensity g(z,y,¢) = goH(t), where H () denotes the
Heaviside step function. We use 4 x 4Q9 mesh in the quarter of the domain to determine
the response. The constant-average acceleration method (o = 0.5, vy = 0.5) is used with
At =20 us =20x%10-6 5, The geometric and material parameters used are

a=b=25cm, h=1or25cm, E; = F9 = 2.1 x 105 N/cm?

v12 =025 p=8x10-F N-sg/cm4 (8.64)

Figure 8.6.6 shows plots of the non-dimensionalized transverse deflection w =

10%wg(0,0,t) Eoh? /gya? versus time ¢ (in ps) for thin (h = 1 cm) and thick (A = 2.5 cm),

simply supported, isotropic (v = 0.25) plates (4 x 4Q9 mesh; At = 20us). Note that the effect

of shear deformation is to increase the amplitude and reduce the period of the transverse
deflection (sece Table 8.6.3).

Example 8.6.4

Lastly, we study the motion (for Re = 0) of a viscous fluid inside a wall-driven cavity (see
Section 7.8.4). We use 16 x 20Q4 non-uniform mesh (of four-node rectangular elements) in
the domain. The mesh size in each coordinate direction are given by

{DX} = {0.0625, 0.0625, ..., 0.0625}, {DY} = {0.0625, ..., 0.0625, 0.03125, ..., 0.03125}

The Crank-Nicolson method (o = 0.5) with two different time steps At = 0.01 and
At = 0.001 are used. Table 8.6.4 contains the velocity field v, (0.5,y,%) x 10 for times
t = 0.01, 0.05, and 0.1. The solution reaches the steady state (e = 10~ 2) at time t = 0.1
when At = (.01 is used. Figure 8.6.7 shows the evolution of v(0.5,y,t) (At = 0.01).

100 Lo e b g beo el ey b g Vi byey Loy
80 — =
! Y
Iz i A
g 60 — L.
g ] -
-Js - =
@ - L
E -
o J
[m] 40 = B
20": —
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0 500 1000 1500 2000
Time, 7 (1s)

Figure 8.6.6 Evolution of the transverse deflection @ of a simply supported,
isotropic plate under uniform load.
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Table 8.6.3 Non-dimensionalized center deflection @ wversus time t for
simply supported, isotropic, square plates.

t w t w
(ps) h=1 k=25 (us) h=1 h=25
20 0.067 0.426 360 50.661 76.739
40 0.334 2.193 380 54.768 68.263
60 0.860 6.074 400 58.922 58.352
80 1.626 12.813 420 63.078 46.337
100 2.674 22.770 440 67.238 33.574
120 4.189 34.696 460 T1.368 22.403
140 6.405 46.408 480 75.488 13.751
160 9.348 56.971 500 79.533 7.423
180 12.871 66.677 520 83.218 3.213
200 16.819 75.708 540 86.276 0.605
220 21.044 B4.185 560 88.635 —0.511
240 25.459 91.721 580 90.348 0.728
260 30.002 96.806 600 91.472 5.332
280 34.532 98.062 620 92.084 13.441
300 38.861 95.669 640 92.323 23.727
320 42 878 90.826 660 92.251 34.641
340  46.718 84.384 680 91.849 45.351

Table 8.6.4 The horizontal velocity field v.(0.5,y,t) x 10 versus time ¢ for
the wall-driven cavity problem (16 x 20Q4 mesh).

y t=001 t=001 ¢=005 t=005 t=0.10 Steady
At=001 At=0.001 At=001 At=0001 At=0.01  state

0.0625 _01342  —0.1953  —0.3103  -0.3247  -0.3655  —0.3688
0.1250 01936  -0.3140  -0.5624  -0.5841  —0.6558  —0.6631
0.1875 _02314  —0.3940  —0.7888  —0.8163  -0.9108  —0.9198
0.2500 _02601  —0.4651  -1.0122  -1.0435  -1.1499  -1.1593
0.3125 _03157  -0.5475  -1.2346  -1.2746  -1.3802  -1.3886
0.3750 _03759  -0.6536  —1.4790  -1.5053  —1.5967  —1.6028
0.4375 _04516  —-0.7902  -1.6964  —1.7151  -1.7793  -1.7820
0.5000 _05435  -0.9605  —1.8536  —1.8643  -1.8906  —1.8895
0.5625 _0.6465  —1.1577  —1.8846  —1.8878  —18700  —1.8652
0.6250 _07474  ~1.3479  -17011  —1.6046  -16336  —1.6250
0.6875 _0.8097  —1.4428  -1.1889  -1.1653  —1.0700  -1.0572
0.7500 _0.7536  —1.1523  —0.2093  —0.1693  —0.0520  —0.0382
0.7813 _0.6325  —0.7744 0.5100 0.5471 0.6713 0.6820
0.8125 04077  —0.1695 1.4014 1.4197 1.5467 1.5526
0.8438 —0.0054 0.7336 2.4885 2.4716 2.5918 2.5965
0.8750 0.6329 1.9318 3.7259 3.6716 3.7646 3.7824
0.9063 1.7000 3.5232 5.1185 5.0707 5.1198 5.1616
0.9375 3.3334 5.3837 6.5139 6.5756 6.6082 6.6410

0.9688 5.9470 7.5970 7.9975 8.2488 8.3805 8.2838
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Figure 8.6.7 Evolution of the horizontal velocity v, (0.5, y, t) inside a wall:
driven cavity.
8.6.2 Nonlinear Problems

The nonlinear results of time-dependent problems are presented for heat
transfer, plate bending, and fluid flow problems.

Example 8.6.5

Consider the equation

or & ;. 87T a ¢, 0T . 2
L k—)zOmQ 8.6.5
ot d:r:(i?:r.) ay(ay ( )
where T is the temperature and k is the conductivity. The domain Q is a rectangle of
dimensions @ = 0.18 m and b = 0.1 m along the z and y coordinates, respectively; the
conductivity k is of the form

k=kq(1+ BT) (8.6.6)

where kg is the constant thermal conductivity, and 8 is the temperature coefficient of thermal
conductivity. We take kg = 0.2 W/(m °C) and 8 = 2 x 10-3 (°C-1), and the boundary
conditions to be

T(0,y,¢) = 500°C, T(a,y,t) = 300°C | % =0aty=0,b (8.6.7)
The initial condition is assumed to be
T(En Yy 0) =0°C (868)

This is essentially a one-dimensional problem.
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Table 8.6.5 contains numerical results of the finite element analysis using 4 x 2Q9 mesh:
Figures 8.6.8(a) and (b) show the evolution of the temperature at different locations of the
domain.

Table 8.6.5 The temperature field T'(z,y,t) (for any fixed ) of the heat
transfer problem (4 x 2Q9 mesh, At = (.005).

T t=10.01 t=10.02 t=0.03 t=0.05 t=10.10 S-State
0.0225 426.96 456.51 471.49 77.91 477.55 477.31
0.0450 289.94 386.79 427.71 44857 453.08 454.03
0.0675 178.69 343.34 401.45 427.63 430.45 430.12
0.0900 119.17 311.90 375.40 402.23 404.97 405.57
0.1125 118.00 289.10 350.39 377.39 380.54 380.32
0.1350 167.10 278.42 326.87 350.13 353.99 354.34
0.1575 250.20 293.20 316.46 327.12 327.80 327.58

Example 8.6.6

Here we consider the nonlinear transient response of the plate considered in Example 8.6.3.
The problem data used is the same as given in Eq. (8.6.4), except h = 2.5 cm and At = 10 ps.
Figure 8.6.9 shows plots of the linear and nonlinear center deflections versus time for gy = 103,
gop = 5% 102, and gy = 10* (also see Table 8.6.6). The deflection is non-dimensionalized as
@ = 10%wg(0,0,) Eoh3 /gpat.

Example 8.6.7

The next example is concerned with the nonlinear transient analysis of the wall-driven cavity
problem of Example 8.6.4. A mesh of 16 x 20 four-node quadrilateral elements is used with
At = 0.001. The transient response is calculated for Reynolds numbers Re = 1,000 and
Re = 2,500 separately. Figures 8.6.10(a) and (b) show plots of the nonlinear steady-state
and transient center horizontal velocity vz (0.5,y,1) versus y for various times.

Example 8.6.8 (Least-squares model)

The last example of this chapter deals with the transient flow past a circular cylinder
[6,7). The interest of this problem is in the periodic flow pattern that develops when the
free stream Reynolds number is greater than Re. = 46 and the modeling of the outflow
boundary conditions. The outflow boundary condition is a particularly challenging one since
the computational domain must be truncated in a region where the vortex street is fully
developed.
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Figure 8.6.8 Evolution of the temperature T'(z, y,¢) for the nonlinear heat
transfer problem. (a) Temperature, T(z, yo,t) for any value of
yo- (b) Evolution of temperatures for different values of .

We consider a circular cylinder of unit diameter placed in the finite region {Q : -8 <
z < 25,-8 < y < 8}. The boundary conditions include a specified value of 1.0 for the z-
component of velocity at the inflow, top, and bottom boundaries. At these boundaries the
y-component of velocity is set to zero, see Figure 8.6.11 (a). At these boundaries no boundary
conditions for vorticity or velocity gradients are specified. We consider flow at a free stream
Reynolds number of 100. The finite element mesh used for the computations is shown in
Figure 8.6.11(b) and consists of 6,052 bilinear elements and 6,226 nodes. A collocation
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solution will be sought for this problem. One collocation point per element is used, with

the collocation point located at the center of each element. For the bilincar elements, the
collocation point coincides with the reduced integration point.
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Figure 8.6.9 Plots of the linear and nonlinear center deflections w versus
time ¢ (us) for simply supported square plate under uniform
load (4 x 4Q9 mesh, At = 10us).
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Table 8.6.6 Center deflections @ versus time ¢ (us) for simply supported
square plate under uniform load.

t Linear Nonlinear
(ps) go =1 go=103 go=5x10% ggp=10*
10 0.105 0.105 0.105 0.105
20 0.525 0.625 0.525 0.525
40 2.637 2.637 2.637 2.637
80 15.119 15.119 15.116 15.108
100 26.282 26.277 26.147 25.746
200 78.605 T7.565 61.334 42.258
300 93.457 86.558 30.263 4.352
400 53.509 41.715 —2.343 T.872
500 6.760 2.214 25.179 42.854
600 9.727 17.908 62.625 18.889
T00 59.089 69.535 33.608 0.115
800 95.215 90.271 0.151 36.143
900 73.660 51.497 23.921 37.009
1,000 20.968 5.232 60.393 1.060
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In the weak form (Galerkin) finite element

‘ model, the outflow boundary conditions [¢
Figure 8.6.11(a)]
1 v v
e Pl Ol Sy
% Re 0z T Or ¢ (86.

are imposed in a weak sense rat

her than in a pointwise manner. They are
least-squares sense in the least-s

imposed in
quares finite element model.
The velocity pressure- vorticity formulation

In the velocity-—pressme—vcrticity formulation we are left to m
condition by specifying bath velocity components or 2 vel
or vorticity. We can set a reference pressure of P
can say nothing about either of the vel
P =0 at the outflow boundary
problem.

Taking advantage of the flexibility of the least-squares method, we can modify th

velocity-pressure-\rorticity Ly least-squares functional I of Eq. (8.4.11) to enforce th
outflow boundary conditions (8.6.9) in a weak sense:

odel the outfow bounda
ocity component and either pressu
=0 at the outflow boundary; however, v
ocity components or about the vorticity. Just settir

is not sufficient and would lead to a mathematically ill-pose

1| [|av T 2 -
h(v,Pw)=; Hﬁr_ +(v-V)v+VP+ —R—Gwa—fHO-I—Hw—V X VIE+ Vv
1 & By |12
am: V-w2+[—P s e S 8.6.10
“ ”O '! i }{ﬂ aﬁ" D.Poln.flow 8‘2: U.-I‘ou\.flr;w (

We consider a space-time decoupled formulation,
discretized using the trapezoidal rule (see [7] for details on space-time coupled and decouplec
least-squares formulations). The collocation solution is most accurate at the collocatior
points, i.e. at the reduced integration points. In a post-processing stage the nodal values for
all degrees of freedom are recovered by taking an average of abutting clements to a node.

We choose the point (z,y) = (2,0) to trace the change of
with time. We use a fixed time increment of At — 0.1 for the simulaticn. Even though the
least-squares method is stable for large time increments, a small time increment is desirable
for accuracy reasons. When a small time increment is used, the solution at the previous
time step serves as a very good initial guess for the solution at the current time step, thus
the conjugate gradient method takes only a few iterations to converge.

where the temporal terms arc

the velocity component v,

Figure 8.6.12 shows the time history of the velocity component vy at the point (z,y) =
(2,0). From the figure we see that shedding starts around ¢ = 50. The shedding period
measured from Figure 8.6.12 is found to be T = 6.10, which gives a dimensionless shedding
frequency of St = 0.164. Our result is in good agreement with the experimental result
St = 0.166 of Hammache and Gharib [16].

Figure 8.6.13 shows contour plots of the vz- and vy-velocity components. From visual
inspection of the contour plots we see that the outflow boundary condition is modelled in
a satisfactory manner. By definition, an outfow boundary condition should permit the
flow to exit the domain gracefully and passively and not have any effect on the behavior
of the solution in the domain near the open boundary and especially far from it (see Sani
and Gresho [14]). Clearly, the outflow boundary condition did not have any effect on the
behavior of the solution immediately behind the cylinder or near the open boundary. The

imposition of the outfow boundary condition through the least-squares functional is not
only efficient but very elegant.
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Figure 8.6.10 Evolution of the horizontal velocity field v,(0.5,y,¢) for the
wall-driven cavity problem (nonlinear analysis).
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(-8.8) v, =1, v,=0 (25,8)
]
y
ve= 1 . Outflow
v=0 ‘ (g.d.. x boundary
v.=10
v=0
-8.-8) | n=Lv=0 .3

Figure 8.6.11 (a) Geometry and boundary conditions for flow past a
circular cylinder. (b) Finite element mesh for flow past a
circular cylinder.
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Figure 8.6.12 Time history of uy-velocity component at (z,y) = (2, 0).
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Figure 8.6.13 Numerical results for cylinder in cross flow using the velocity-
pressure-vorticity formulation: (a) vg-velocity contours and
(b) vy-velocity contours.

Yet another approach is to carry out the simulation using a space-time
coupled formulation [7]. In such an approach the least-squares functional

1(,0v 1
Il(v,P,w) 25(“‘(,‘}? I (V‘ V)V‘]r VP+ E Vxw-—f lg'QX(O,Tl

+|lw =V x VN%,nx(e;r] +V- V”%,nx(o,r] +||V-w ”g,nx(o,r])

is minimized in space-time, where | - [loax (o, denotes the Ly norm of the
enclosed quantity in space-time, i.e.,

T

HUH%,Qx(o,T] = //]u(x,t)|2d£2 dt
0 Q

Details and applications of such a formulation to this and other problems can
be found in Pontaza and Reddy [7].
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The veloca‘ty-pf&ssum—velocéty gradient formulation

In the velocity—pressure—velocity gradient formulation we have the added freedom ¢
specifying any of the velocity gradients at the outflow boundary. Here we set el
Utz = 8vy, /0 = 0 &t the outflow boundary to model the outflow

we choose the point (,9) = (2,0) to trace the change of the vy-velocity component wit;
time and use a fixed time increment of At = (.1 for the simulation.

Figure 8.6.14 shows the time history of the vy-velocity component at the point (z,y) =
(2,0). Like in the velocity—pressur&mrticity formulation, the outfow boundary conditio;
is satisfactory (sce Figure 8.6.15) and the shedding period is found to be 7 — 6.10, whicl
gives a dimensicnless shedding frequency of St = 0.164.

=0 an
boundary condition. Agair

e R e e
il TR
4 ol W fl |’| H[fﬂf“/“’“HIW‘”
| | i Mlmljl”f*f | ‘]\”![
N i 'ff’,fii",r':? it
j‘;' J' |||I| illl\jll.!.]\l'] | JJIUI!.!if[i"Ll LI[:J | -bll.ull!
-o.sDL———-——*‘___‘_'—"_wc _—_—_133___—__%0

Figure 8.6.14 Time history of vy-velocity compenent at (z, ¥) = (2,0).

Figure 8.6.15 Numerical results for cylinder in cross
pressure-velocity gradient formulation:
and (b) v,-velocity contours.

flow using the velocity—
(a) ve-velocity contours



TIME-DEPENDENT PROBLEMS 323

Problems

8.1
8.2
8.3

8.4

Derive Eq. (8.2.9) for parabolic equations. What if [C] is a function of time?
Derive Eq. (8.2.15) for hyperbolic equations.

The a—family of approximation and a general class of time approximation schemes
can be derived using the finite element method in time domain. Consider a first-order
differential equation of the form

O% + Ku(t) = F(t) (1)

The weighted-integral statement of Eq. (i) over a typical time interval (¢s,t..1) is
given by

f ! w(t) (Cti+ Ku— F) de (i)

where w is a weight function, which is arbitrary at the moment. Suppose that w is
approximated as

u(t) = Y _Us¥s(8) (i)
i=1

where U; denoctes the value of u(t) at ‘time node’ t = t; and 1;(t) is the associated
interpolation function. In general, to obtain n independent relations w(t) can be chosen
to be n independent functions ¢; # v, (§ = 1,2,...,n). Such a scheme is known as
the Petrov-Galerkin method [10]. When ¢; = 45, it is known as the Galerkin method.
Obtain (a) the Petrov-Galerkin finite element model of the weighted-integral statement
(i), and (b) for the choice of n =2 in Eq. (iii) [i.e. linear interpolation of u(t)] and
$1(t) = —1+3t+3a(l-2t), ¢2(t) =2-3t—30(l -2t (iv)

show that the finite element equations are given by

(_g {_1 1] L kat [ a 1--aD {L{l}z At {aF‘l—:—(l—a}FQ} ")
2.1 1 7 |1-a « Us 2 1 1-0a)F +oF,
where F(t) is also interpolated as
F(t) = Fiy(t) + Favo(t) (vi)
Solve the second equation of (v) for Us = u, in terms of U = us, and obtain
[C + aAtK]u 1 = [C - (1 - a)AtK]u, 4+ At[(1 - a)Fs + aF 1] (vii)

Use quadratic approximation of u(t) with ¢; = ¢; (i.e. Galerkin’s method) in the weak
form (ii) of Problem 8.1 and arrive at the finite element equations

[-8 4 -1 4 2 -1\ (O & 2 =17 (B
(—é 40 af[+E3 9 16 2 {UQ}:% 2 16 QHFQ}
X 3 3 4i) L, 12 4] B

R )
Uy=us, Us=u,y1, Usg=us (i)

where

(i)
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8.5

8.6

8.7
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and similar definition holds for F. Determine the values of Us and Uy in terms of U;.
Consider the second-order equation

dPu | _du ;
M’E?_T-FCEE-I-Ku:F (i)

The weighted-integral statement over an element is given by
t.e-i 1
] w(t) (Mii + Ci+ Ku—F)dt (ii)
ty
The ‘weak form’ is given by
tag1
/ (=M + Cwi + Kwu ~ wF)dt = Mw(t,)v(t,) ~ Muw(t,1)v(t) (i)
ts

where v(t) = 4(¢). The weighted-integral form in Eq. (ii) requires quadratic or higher-
order interpolation while that in Eq. (iii) admits linear or higher-order approximations.
Use the weighted-integral statement in Eq. (ii) with w(t) = ¢; = ¥; and n = 3 (i.c.
quadratic approximation) and obtain

2 -4 2 -3 4 -1
M C
(E_’Tt ]:_8 —-16 8] = T {—4 0 4J

2 4 -2 1 —4 3
4 2 N\ (1 4 2 17 (R
+£3§‘—t 2 16 2}\{@}:%{2 16 2}{&} (iv)
212 o4)) us) Pl o2 4 | A
where
Ul = Ug, U2 = u5+%: US = Ugpq (V}

Equation (iv) can be solved for Uty and Uz = u . in terms of u,.

Use the weak form (iii) of Problem 8.5 with w(t) = ¢; = ¥; and n = 2 (i.e. linear
approximation), and obtain

M" 1 -1] , C[-1 1 LKAt 1 U;
‘E:‘L-1 178 =1 878 le 2 Us

At |2 1] [ R U :
= M . 1
and then solve for Uy = u.,; in terms of quantities known at time ¢,. Hint: Replace
Fy = F, with F; = Mii, + Cti, + Kus, and solve for Uyt ]

6M | 3C 6 6 . . ( 3 % )
RN e = A oy Us o Us ] = Us 5 +F3
(([_\.t)2+Az+K)u““’“1 M((A”zu +A1u +2u)+C i + 24 +1
(if)
which is the same as the Newmark scheme with o — 1/2 and v = 1/3 (and a7 = 0).
Use the Newmark scheme in Egs. (8.2.22) and (8.2.23) to reduce Eq. (8.2.11) to that

in Eq. (8.2.20). Hint: Use Eqgs. (8.2.22), (8.2.23), and (8.2.11) to eliminate {u}et1
and {i},,; to arrive at the desired equation.
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8.8 The mass matrices of the finite element formulations are always non-diagonal. They

8.9

8.10

may be replaced with rationally derived diagonal matrices, also called lumped mass
matrices, for use in explicit formulations. The row-sum lumping and preportional
lumping techniques are two ways to compute diagonal matrices. In row-sum lumping
the sum of the coefficients of each row of the consistent ‘mass’ matrix is used as the
diagonal element and the off-diagonal elements are set to zero:

T
M= [s e dx = j pus dx, M;; =0 for i#j (i)

j=1" e

where the property 3 ""_, ¥¢ = 1 of the interpolation functions is used. In proportional
lumping the diagcmal] elements are computed to be proportional to the diagonal
elements of the consistent mass matrix while conserving the total mass of the element:

t=a | putvtdx, a=—d2?™
bk 1 1 e : ) - n
Qe A fszc psys dx

Compute the lumped mass matrices for linear and quadratic one-dimensional clements
and show that the critical time step computed using lnmped mass matrices is greater
than that computed using the consistent mass matrix.

The equation governing bending of beams according to the Euler-Bernoulli
assumptions and in the presence of viscous (velocity-dependent) damping is given

by
2 2 3 52 y
a (Efa U o o w[}) T asuy 31&0

(i)

=g L 5 d —= — +c— =q(z,1t i

dz? 2 Or2ot 07512 ot a(z:1) @
where I denotes the moment of inertia, I; the principal mass inertia, ¢, the viscous
resistance to strain velocity, and ¢ the viscous resistance to transverse displacement.
Develop the semidiscrete finite element model and fully diseretized finite element model
using the Newmark scheme.

Establish the stability condition in Eq. (8.3.4).
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9

Finite Element Formulations
of Solid Continua

9.1 Introduction
9.1.1 Background

In the linear description of the motion of solid bodies one assumes that the
displacements and strains are very small and that the material is linearly
elastic. In addition, the equilibrium equations were derived using the
undeformed configuration of the body. In geometrically nonlinear analysis
of beams and plates that was considered in earlier chapters the assumption
of small strains allowed us to ignore the changes in the geometry of the
body and the distinction between various measures of stress and strain,
as we proceeded to determine the deformation for the next load. In this
chapter, we shall study geometrically nonlinear behavior in which changes
in geometry, however large or small, have a significant effect on the load-
displacement characteristics of solid bodies. When the geometric changes are
significant, that is, displacements and strains are large, the geometry of the
body must be updated to determine the new position x of the material point X.
Consequently, it becomes necessary to distinguish between various measures
of stress and strain, and descriptions of motion. Intuition tells us that if strain
energy is based on the product of stress and strain, it is not expected to change
simply because of our choice of stress or strain measure. Thus, “energetically
conjugate” pairs of stress and strain that produce the same strain energy must
be used [1-6].

Before we develop geometrically nonlinear finite element formulations of
solid continua, it is useful to familiarize ourselves with the associated nonlinear
continuum mechanics. The knowledge of nonlinear continuum mechanics
enables us to understand better the restrictions placed on the model, better
interpret and apply the results of the analysis, and prevent the use of a
computer program beyond the range of its applicability.
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9.1.2 Descriptions of Motion

Consider a deformable body of known geometry, constitution, and loading
For a given geometry and loading, the body will undergo deformation (i.c
macroscopic geometric changes within the body). If the applied loads ar
time-dependent, the deformation of the body will be a function of time, tha
is, the geometry of the body will change continuously with time. If the load
are applied slowly so that the deformation is only dependent on the loads, th
body will take a definitive shape at the end of each load application. Whethe
the deformation is time-dependent or not, the forces in the deformed bod:
will be in equilibrium at all times,

Suppose that the body initially occupies a configuration Cg, in which ;
particle X of the body occupies the position X, referred to s rectangula;
Cartesian system (X1, X2, X3). Note that X is the name of the particle tha
occupies the location X in configuration Cp, and therefore (X1, X2, X3) are
called the material coordinates. After the application of the loads, the body
deforms and assumes a new configuration C. The particle X now occupies the
position x in the deformed configuration C (see Figure 9.1.1).

An analytical description of the deformation of a continuous body follows
one of the two approaches [1-3,5,6]. In the first approach, called the materia,
or Lagrangian description, the motion of the body is referred to a reference
configuration Cg, which is often chosen to be the undeformed configuration,
Cr = Cp. Thus, in the Lagrangian description, the current coordinates
(%1, %2, 23) are expressed in terms of the reference coordinates (X, X3, X3):

x = x(X, 1) (9.1.1)

(o
% (Undeformed  Particle X
T configuration) _ (occupying
position X)
Xz, X

/ C= G
u (Deformed
configuration)
X
Particle X
(occupying

position x)

xl,X;

Figure 9.1.1 Reference and deformed configurations of a body.
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and the variation of a typical variable ¢ over the body is described with respect
to the material coordinates (X7, Xz, X3)

¢ =o(X,t) (9.1.2)

In the spatial or Eulerian description, the motion is referred to the current
configuration C occupied by the body, and ¢ is described with respect to the
position (z1, 29, x3) in space, currently occupied by material particle X:

¢ = QI)(X» t)'s X = X(K: t) (913)

The coordinates (x1,z3,x3) are termed the spatial coordinates.

Equations (9.1.2) and (9.1.3) each convey a different information [1-3]. In
Eq. (9.1.2), a change in time ¢ implies that the same material particle X s
occupying position X in Cp, has a different value ¢. Thus the attention is
focused on the material particle X. In Eq. (9.1.3), a change in time ¢ implies
that a different value ¢ is observed at the same spatial location x, now probably
occupied by a different material particle X. Hence, attention is focused on a
spatial position x.

In the study of solid bodies, the Eulerian description is less useful since
the configuration C is unknown. On the other hand, it is the preferred
description for the study of motion of fluids because the configuration is known
and remains unchanged, and we wish to determine the changes in the fluid
velocities, pressure, density and so on. Thus, in the Eulerian description,
attention is focused on a given region of space instead of a given body of
matter. The development of continuum equations in the Eulerian description
of fluid flows was presented in Chapter 7. Here we focus our attention on
the Lagrangian description of the motion of solid bodies undergoing geometric
changes.

9.2 Strain and Stress Measures
9.2.1 Deformation Gradient Tensor

Consider two material particles P and @ in the neighborhood of each other
in the reference configuration Cy (see Figure 9.2.1). The positions of P and @
are denoted by Xp and Xg, respectively. The position of @ relative to P is
given by the elemental vector dX in Cy:

dX =Xg-Xp
After deformation the material particles P and @ occupy spatial positions xp
and x(, respectively in C; they are now labeled as P and @. The position of

Q relative to P is denoted by dx and it is given by

dx = Xg — Xp
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x X

C (time ¢)

Figure 9.2.1 Deformation of a line segment PQ) in a continuous medium.

The displacements of the material particles P and @ are given by
up =xp—Xp, up=xg-Xg (9.2.1

One of the key quantities in finite deformation analysis is the deformatio
gradient tensor F, which gives the relationship of a material line dX befor
deformation to the line dx after deformation. It is defined as [1-3]

T (ax L T 2
dx=F-dX=dX -F' where F={-—) =(V,x) (9.2.2
\OX
and V, is the gradient operator with respect to X. We also have
dX=F'-dx=dx-FT, where F7T= (—? = VX (9.2.3
X

and V is the gradient operator with respect to x. In indicial notation, Eqgs
(9.2.2) and (9.2.3) can be written as

- 0% .
F = Fue?;E;, Fﬂ = BX?;( (924&;‘
= —1& A i 0X
Fl= Fh'lEIem's Fh‘l = B‘z—j (9.2.4b)

Here the lower case indices refer to the current (spatial) Cartesian coordinates,
whereas upper case indices refer to the reference (material) Cartesian
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coordinates. The determinant of F is called the Jacobian of the motion and it

is denoted by J. The deformation tensor F can be expressed in terms of the
displacement vector as

F=(Vx)T'= Vu+D)T, FI=V,x=V,u+I (9.2.5)

| The deformation tensor conveys no information about the translation of the
body. Further, if F=I everywhere in the body, then the body is not rotated
and is undcformcd If F has the same value at every material point in a body,
then the mapping x = x(X. ¢) is said to be a homogeneous motion of the body.

9.2.2 Green and Almansi Strain Tensors

Next we discuss a general measure of deformation, independent of both
translation and rotation. Consider two material particles P and @ in the
neighborhood of each other (separated by dX) in the reference configuration
(see Figure 9.2. 1). In the deformed configuration the material points P and Q
are denoted by P and @, and they are separated by dx. We wish to determine
the change in the distance dX between the material points P and Q as the
body deforms and the material points move to the new locations P and Q.

The distances between points P and @ and points P and @ are given,
respectively, by

(dS)? =dX - dX (9.2.62)
(ds)? = dx-dx = (F-dX) - (F-dX) =dX- (FT-F) -dX
=dX-C dX (9.2.6b)

where C is the right Cauchy-Green deformation tensor
C=FT.F (9.2.7)

The change in the squared lengths that occurs as the body deforms from
the initial to the current configuration can be expressed relative to the original
length as

(ds)? — (dS)* = 2dX -E-dX (9.2.8)

where E is called the Green-Lagrange strain tensor or simply the Green strain
tensor, which can be expressed as

= (F"-F-1)=-(C-D (9.2.9)
=%[(VOH)T+V’0“+(V )q'(VOU)] (9.2.10)

Clearly, the Green strain tensor is symmetric. Also, the change in the squared
lengths is zero if and only if E = 0.
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Alternatively, the change in the squared lengths that occurs as the body

deforms from the initial to the current configuration can be expressed relative
to the current length as

(ds)* - (dS)? = 2dx - e - dx (9.2.11

where e is called the Almansi-Hamel (Eulerian) strain tensor or simply the
Euler strain tensor, which can be expressed as

. (I -FT.p~ ) =- (I = B_l) (9.2.12)
2 2
e ; (Vw)T + vu - (vu)T. (Vu)] (9.2.13)

where B = F - FT is the Cauchy strain tensor, and its inverse is called the left
Cauchy-Green or Finger tensor.

In the Cartesian component form, we can write

E= E]J‘E]EJ (9.2.14)
e = et‘jé-géj (9.2.15)
with components
Y OpnBme: )

g = i B Udm 9.2.16a
Fr1 =3 (E}X; ax, oM ( )
1 /0ur Ou; Oug 3‘&5’) :

e o Y 9.2.16b
z(axJ+d,x' T 5%, 9%, (3.2100)
1/ 0Xk 0Xx

S| B e o CUHE 9.2.17a

&y 2 (éw Jx; 8.’1.'j ) ( )

~1fou By  OuOu (9.2.17h)
2\0z; Oz O Oz

In expanded notation, the Green strain components, for example, are given

by
-
. Ouy 8U1) (3’&2) (?Tﬁ)
=%t Kaxl “\ox;) T\ax,) |
Ous (8u1 )2 ( auz g ( Oug )2-
Ep=s—4+- |5 FE
3X2 2 0X2 3X), 5X2 |

dug Ouy \? Oug )2 (%) 2]
> A Kaxg,) * (()Xg 5%3) |
+

duy 3’&!3 Ouy Ouy ~ Oug Ous  dug aug)

X
(aXQ 0X: ' 08X, 0X, | 09X, 0X, X, 6X»
(dul 3'&,5 61::1 61&1 a’ug 61;:3 4 31453 8?1,3)

12

00X, 6X1 8X1 0X3 0X;0X3 06X, 0X;
8u2 6'ug é)ul Ou;  Oug Buy  Bus 5_9@ ) (9.2.18)
BXQ 0Xy0X3 0O8X20X3 00X, 0X3
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Example 9.2.1

Consider a rectangular block of dimensions a x b x h, where h is very small compared to
a and b [5]. Suppose that the block is deformed into the diamond shape shown in Figure
9.2.2. By inspection, the geometry of the deformed body can be described as follows: let
(X1, X5, X3) denote the coordinates of a material point in the undeformed configuration.
Thus the coordinate mapping and its inverse are given by

€g ab aeq
Ty =X]_ +—X s X = Py — — T
b f . ab— e} ab-e2 2
e be b
m2‘__}(2-1__0)(11 X2=_ 02 1+ 5 T2
a ub—e“ ab €5
I3 ‘:Xg, X3=.'1!3.

Thus, the displacement components of a material point in the Lagrangian description are
€o €0
up =2y - Xy = - Xy, u2=$2_X2=EX13 uz =3 — X3 =0.

The only non-zero Green strain tensor components are given by

s 1 feg\2 ey € 1 (eg 2
f‘; = — o = — —_ == —— .
S (a) v Bu=gptg, En=g b)

The Almansi strain tensor components are

e 1[G
ab—ed 2| (ab—ed)? |’
. _ eola+b) egla+d)
2 (ab—e€?) * (ab—ed)? !
g ] 'eﬁ@%ﬂﬂ
ab—eé 2 I (a.b—eé}g
X2
A X2 fﬂ
£ D
Cadl S ¢
T C Di Tﬂ
]
b 3 €
|z o
A *'_a—ﬂg ey

Figure 9.2.2 Undeformed and deformed rectangular block.



334 NONLINEAR FINITE ELEMENT ANALYSIS

9.2.3 Polar Decomposition

Recall that the deformation gradient tensor F transforms a material vecto:
dX into the corresponding spatial vector dx, and it forms an essential part o
the definition of any strain measure. Another role of F in connection with the
strain measures is discussed with the help of the polar decomposition theorer
of Cauchy, which enables F to be written as [1-3]

F=R-U=V.R (9.2.19°

where R is an orthogonal rotation tensor and U and V are symmetric stretel
tensors. An orthogonal rotation tensor R. is one that satisfies RT . R = L.

To evaluate the tensors R and U, we recall the definition of C:
C=FT.F=UT.RT.R.U=UT.U (9.2.20)

To compute U using Eq. (9.2.20), it is necessary to write C in terms of its
eigenvalues and eigenvectors:

3
C=>" XN,N, (9.2.21)

where )2 are the eigenvalues and N, are the ecigenvectors of C. Then
o g

3
U= MN,N, (9.2.22)

=1

and the rotation tensor R can be obtained from Eq. ( 9219 asR=F-UL

9.2.4 Stress Tensors

The equations of motion or equilibrium must be derived for the deformed
configuration of the structure at time 1. However, since the geometry of the
deformed configuration is not known, the equations must be written in terms of
the known reference configuration. In doing so we introduce various measures
of stress. They emerge in a natural way as we transform volumes and areas
from the deformed configuration to undeformed configuration [1-3].

First we introduce the true stress, that is, stress in the deformed
configuration. Consider a deformed body at its current position. If we denote
by df(1) the force on a small area fida located at the position x, the stress
vector can be defined as t(n) = d—:. The Cauchy stress tensor o is defined to
be the current force per unit deformed area:

df =tda=da-o, where da=dan (9.2.23a)
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where Cauchy’s formula, t = o - 11, is used (see Problem 9.5).

requires a new stress tensor P,

To express df in terms of a stress times the initial undeformed area dA
: df = dA - P,

where dA =dA N

where N is the unit normal to the undeformed area dA. The stress tensor
P is called the first Piola-Kirchhoff stress tensor, and it gives the current
symmetric.

(9.2.23b)

force per unit undeformed area. The first Piola-Kirchhoff stress tensor is not

The second Piola—Kirchhoff stress tensor S, which is used in the total

transform the force df on the deformed elemental area da to the force dF on
and deformation tensor F)

Lagrangian formulation of geometrically nonlinear analysis, is introduced as
the undeformed elemental area dA (not to be confused between the force dF

follows. Recall from Eq. (9.2.3) that dX = F~!.dx. Analogously, we can

dF =F1.df=F 1. (dA-P)=dA-P.F T=dA-S

(9.2.24)
Thus, the second Piola Kirchhoff stress tensor gives the transformed current
force per unit undeformed area. The second Piola-Kirchhoff stress tensor is
symmetric whenever the Cauchy stress tensor is symmetric.
In summary, we have the following relationships between various stress
measures (J denotes the determinant of F):

1

P=JF1l.6=8.FT

(9.2.25a)

}F.P=%F-S-FT (9.2.25b)
S=JF!.¢.FT=p.FT (9.2.25¢)

9.2.5 Energetically-Conjugate Stresses and Strains

The rate of internal work done (power) in a continuous medium in the current
configuration can be expressed as (see [3])

1
W= f" . ddv (9.2.26)
2 Jy
where ¢ is the Cauchy stress tensor and d is the symmetric part of the velocity
gradient tensor
1 T . dX
d—i[(VV) +VVjI, V—E

(9.2.27)
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The pair (0,d) is said to be energetically-conjugate since it produces the
(strain) energy stored in the deformable medium. We can show that the
second Piola- Kirchhoff stress tensor S is energetically-conjugate to the rate of
Green-Lagrange strain tensor E:

W = 1fs B4V (9.2.28)
2Jv

The proof of the above statement requires the use of a number of identities
(3], which are presented next.

. The first one is a relation between the rate of deformation gradient tensor
F and Vgv. We have

. _dF _d (0x\T 108 /dx\1T [ov\T v dx
=g =5 (ox) =[5i(a€ﬂ = (%) =", v

Next, we note that

F— (av)T: (%)T.(ax)TzL.F, L= (g_:)T=F-F—1 (9.2.30)

I

X dx X
where L is the velocity gradient tensor.

The time derivative of the Lagrangian strain tensor, E, is known as the
material strain rate tensor. We have

B=T -1 (prp_y)-

— = FT.F+FT.F 9.2.31
d - 2d ( ) (9.2.31)

1
2
The symmetric part of the velocity gradient tensor can be related to the strain
rate tensor

(LT+L)
{(F S S 3 F‘I} =

-(FT+FT-F-F‘1)

s (FT T4 B

|
=

d=

F

Il

e I e R T

F'. (FT-F+F"-F) F!
T g (9.2.32)

Now returning to Eq. (9.2.26) for the rate of work done, we have

/o ddv = %/O’ : L dv (by symmetry of ¢ and d)

[
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~5 / Jo:(B-F ) av [by Bq. (9.230)
=5 fv J (0158185 : [(Bprepli) - (B )50 Bs,)] dv
= %[J J oy Fi(F Yy dvV = %/V J 05iF1(F~ ) dV (since oij = 0ji)
= 1/ Joz-ng(F_l)gj dV  (by renaming ¢ to be j and j to be 1)
2/ (F“ ;QE;eq) (awezejj} ( PJepEJ) dv
2] (7P o) Fav= / P.Fav (9.2.33)

Thus, the first Piola-Kirchhoff stress tensor P is work conjugate to the rate
of the deformation gradient tensor F. Similarly,

2/0 ddv

2 Jcr (F_T-E-F_l) dV  [using Eq. (9.2.32)]

. §LJ (04;6:€5) : ((F_l)fpép Ers (F Y, éq) av

1 B .
E/VJ ((Fui)Iz’ Tij (F I)Jj) Er;dV (Erj=Ej)

=%/VJ ((F_l)h‘ Tij (F_I)Jj) Egr dv

E4

=% J [((F—l);pﬁfép) (0178:85) - (F~)E Jéq)T} : (BroErEq) dV
; J(F o FT) BV = / S:Edv (9.2.34)

Thus, the second Piola—Kirchhoff stress tensor S is work conjugate to the rate
of the Green—Lagrangian strain tensor E.

9.3 Strain and Stress Measures
Between Configurations

9.3.1 Notation

The determination of the final configuration of a solid body undergoing large
deformation is not an easy task. A practical way of determining the final
configuration C from a known initial configuration Cj is to assume that the total
load is applied in increments so that the body occupies several intermediate
configurations, C; (i = 1,2,...), prior to occupying the final configuration.
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The magnitude of load increments
method used is capable of predicting
step. In the determination of an inter

should be such that the computation
the deformed configuration at each Io;
mediate configuration C;, the Lagrangi:
description of motion can use any of the previously known configurations (
Ci,..., Ci—1 as the reference configuration Cg. If the initial configuration
used as the reference configuration with respect to which all quantities a
measured, it is called the total Lagrangian description. If the latest know

configuration C;_1 is used as the reference configuration, it is called the updat,
Lagrangian description.

Here we introduce the notation used for positions, displacements, strain
stresses, etc. in the rest of this chapter. We consider three equilibriu
configurations of the body, namely, Cy, C;, and Cs, which correspond to thre
different loads. As shown in Figure 9.3.1, the three configurations of th
body can be thought of as the initial undeformed configuration Cp, the las
known deformed configuration C1, and the current deformed configuration (
to be determined. It is assumed that all variables, such as the displacements
strains, and stresses are known up to the C; configuration. We wish to develo
a formulation for determining the displacement field of the body in the curren
deformed configuration Cy. It is assumed that the deformation of the bod
from C; to C; due to an increment in the load is small, and the accumulate:
deformation of the body from Cy to C; can be arbitrarily large but continuou
(i.e. neighborhoods move into neighborhoods)

Figure 9.3.1 Initial and two consecutive configurations of a body.
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The following notation is adopted in the present study (see Bathe [4]). A
left superscript on a quantity denotes the configuration in which the quantity
occurs, and a left subscript denotes the configuration with respect to which
the quantity is measured. Thus }Q indicates that the quantity Q occurs
in configuration C; but measured in configuration C;. When the quantity
under consideration is measured in the same configuration in which it occurs,
the left subscript may not be used. The left superscript will be omitted on
incremental quantities that occur between configurations C; and C. Of course,
right subscript(s) refer to components in rectangular Cartesian coordinate
systems, as will be clear in the context of the discussion. Although somewhat
cumbersome, the notation conveys the meaning more directly.

Since we are dealing with three different configurations, it is necessary to
introduce the following symbols in the three configurations [4,25]:

configuration: Co (641 Co
coordinates of a point: 0% 1x 2x
volumes: 7 ly 2y
areas: 04 14, ZA (9.3.1)
density: 0 1p g
total displacements of a point: Ju 2u

We use a rectangular Cartesian coordinate system to formulate the
equations. We rewrite the equations presented earlier in a form suitable
for the current study. When the body deforms under the action of
external forces, a particle X occupying the position x = (z1,%2,%3) =
(X1, X5, X3) in configuration Cy moves to a new position 'x = (*z1, lzo, 123)
in configuration C; and position 2x = (21,213, 2:1:3) in configuration Cs. The
total displacements of the particle X in the two configurations C; and Cz can
be written as

(l}u =1x- Ox or 61&@ = 11?1: = 0-171' (i = 1}2!3) (9'3'2)

gu——“zxvox or gug=2$@—0mi (3= 1,2,

and the displacement increment of the point from C; to Cp is

u= gu - éu or u; = 31,53- — é,u; (="1,2.3) (9.3.4)

9.3.2 Conservation of Mass

The relations among the mass densities %p, lp, and 2p of materials in
configurations Cp, C;, and Cs, respectively, can be established using the
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principle of conservation of mass. The principle requires that the mass c
a material body be conserved in moving through different configurations

/ 2pd2V-——/ 1pd1V=/ % dov (9.3.5
2y 1y oy

where V' is the volume of the body when it occupies the configuration C;. By
a change of coordinates of integration from 2z; to Oz;, we have

/ 25 42y =f 2927 40y (9.3.6
27 oy

where §J is the determinant of the deformation gradient tensor 2F (or the
Jacobian of the transformation)

2 82 82
8233' gr‘:L 3522 Bgi;-]
2 2 e il _ | 8%, 82z 82z
4 8%z;  9%r3 92z
d0x CLr AdYgps

Equation (9.3.5) implies, in view of Eq. (9.3.6), that

Yp=dply (9.3.8)

Similarly, we have
1y=2,27 (9.3.9)

9.3.3 Green Strain Tenscrs for Various Configurations

The Cartesian components of the Green-Lagrange strain tensors, {E;; and
%Ez-j, in the two configurations C; and Cy are defined by

. 1 (913% @lxk 4
1p 1[0 @bz 9.3.10
0% 2 (301‘3- LT ( )

1 323:;; 32.’23,:5 .
0B = 3 (m 90z, % (9:3.11)

The strain components in Eqgs. (9.3.10) and (9.3.11) can be expressed in
terms of the displacement components bui and 2u;. First, using Egs. (9.3.2)
and (9.3.3), we can write

Suk 82 Ok

Oz R B0 T By, + bri (9.3.12)
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£ . Note that %z; = X;. Substituting into Eqs. (9.3.10) and (9.3.11), we obtain
; 1 (0pui  Ofu;  OlupOfu
Eij=3 J 0 DUk ‘
obij =5 gy~ 80 + 80z; 89z, (9.3.13)
6B = ol | TopU; | Oplk Oguk
By 5 ,
0-ij 2 (80:1:3' 00z, + 00z, auxj (9.3.14)

Green-Lagrange Incremental Strain Tensor

It is useful in the sequel to define the incremental strain components ¢¢;;, that
is, strains induced in moving from configuration C; to configuration Cy. The
Green-Lagrange strain increment tensor is defined as

20sij d°z; d%; = (ds)? - (1ds)”
= [(ds)? = (°ds)?] = [('ds)? — (°ds)?
=2 (38 3By ) d'z: ', ©(9:3.15)
= 2(0ey + o) 421 4z (9.3.16)

where ge;; are linear components of strain increment tensor

1 ({?ug 814‘._;; a%uk 61% 81% Béuk
.. 9.3.1
0% = 3 (8O$j o, 9% 8%, 8V 0Y%; ( 7
and gn;; are the nonlinear components
1 a’ILk Suk_ (9318)

ki = 3 50z, 50z,

The linearity of ge;; and nonlinearity of gn;; is understood to be in terms of
the incremental displacement components u;.

For geometrically linear analysis, that is, when strains are infinitesimal,
only two configurations C; = Cp and Cy are involved, Ly = 0, 2ui = u,
and wu; ; are small enough to neglect their products. Consequently, the linear
components of strain increment tensor pe;; become the same as the components
of the Green-Lagrange strain tensor §E;;, and both reduce to the infinitesimal
strain components

1/({ 6y Ou;
0% =5 (3033}. + 30:::_.1_) (2:3:19)
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Updated Green—Lagrange Strain Tensor

The Green-Lagrange strain tensor 6E:j introduced earlier is useful in the tota

Lagrangian formulation. With the updated Lagrangian formulation in mind

we define the components of Green-Lagrange strain tensor with respect te

configuration C;. Such a strain tensor, denoted as %Eéj,' is called the update
- Green—Lagrange strain tensor. It is defined by

2(Yeis)d a; dlz; = (2d3)2 — (1053)2 (9.3.20

Using (note that all are first-order derivatives)

0%x; 0%y, 0%z,
22 = 12, (Cds)? =L Tk Tk 1 a1
diz; = 313;; dzj, (ds)* = 570 31 d'z; d'z; (9.3.21)
0%z Ay
2 = 0
Ui =" — "z, Tz = Bl + Ok; (9.3.22)

we can write

fe =5 (572 575, ~ &

_1( 0w | 0w Buy du (9.3.23)
- 2\0%; 9l ' 9z 01z,
s (9.3.24)
where
1( Ou; Ou; ,,__1 %ﬁ‘i& 9.3.25
=g e+ ). =) 9T0; 01z, o

Note that the definition of %aij involves the components of the displacement
increment vector u. Therefore, %Egj are also called the updated Green-Lagrange
strain increment components.

9.3.4 Euler Strain Tensor

Suppose that a body occupying the undeformed configuration Cp takes
a number of intermediate configurations before occupying the deformed
configuration C;, and we wish to determine the next configuration Cp in a
single incremental step. Although the accumulated displacements 'u; of the
body from configuration Cg to configuration C; can be large, the incremental
displacements u; within the incremental step from C; to Cy are assumed
to be small. Hence, we may refer the strains to configuration Cp. The
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strains occurring in the body at configuration Cy and measured in the same
configuration are defined by

: 2 2
21 dlz; dlz; = (lds) — (Uds) (9.3.26)
2 2
23€ij d2z; d%z; = (st) - (lds) (9.3.27a)
Olay Oz \
— ( 1‘? - 8_2";3;&2-_7:3- d .T:idzxj (9-3.27]:))

These strains are called the FEuler strain tensor components. Using

: olz du
S —— 'azmj- = b4j — 62_; (9.3.28)
we obtain (3¢;; = 26i;)
1 0u; Ou; Oup Oug
284 = 9 (62.’1:;; 8231' = 82__1,:?,. 523}3‘ (9329)

The linear part of the Fuler strain tensor o¢;; is called the infinitesimal strain
tensor and denoted 2¢;;

1/{ Ou; 5. Ou;
2€i = 5 (8_2’.;; i %;) (9330)

which is identical in form to the infinitesimal strain tensor ge;; given in Eq.
(9.3.19), except that the reference configuration is changed to Ca. These strain
components are energetically-conjugate to the Cauchy stress components.

9.3.5 Relationships Between Various Stress Tensors

The Cauchy stress components o;; in configurations C; and Cs are denoted by

Loi; = 1o, oij = 303 (9.3.31)
The Cauchy stress components loj;, for example, can be depicted in the
configuration C; by selecting a rectangular parallelepiped with faces parallel
to the lzy — l2g, 129 — lzs, 123 — 1z; planes — much the same way as in small
strain formulations.

Recall that the second Piola—Kirchhoff stress tensor characterizes the
current force in Cy but transformed to Cp and measured per unit area in Co:

(°n-8)d%A = d°f (9.3.32)
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where %A denotes the unit normal to the area element d%4 in C). The forc
df is related to the force d2f by

2
A% =3F-1.q% 2p_0X (9.3.33)

where 2F is the deformation gradient tensor between configurations Cy and Cs.

It is useful in the updated Lagrangian formulation to define another kind
of stress tensor called the updated Kirchhoff stress tensor. Consider the

infinitesimal rectangular parallelepiped containing the point P in configuration
C1 enclosed by the six surfaces

la; = const., lg;+ d'z; = const. (1=1,2,3) (9.3.34)

The Cauchy stress components on this rectangular parallelepiped are 101;3-. As
the body deforms from configuration C; to Cy, this rectangular parallelepiped
will deform into, in general, a non-rectangular parallelepiped. Using the
configuration C; as the reference, we can define the updated Kirchhoff
stress components %S}j as the internal forces per unit area acting along the
normal and two tangential directions of each of the side surfaces of the
parallelepiped in the Cy configuration. The updated Kirchhoff stresses 1Sy
can be decomposed as

%S@‘ = 10’53' +18;; (9.3.35)

where lcr?;j = }Sij are the Cauchy stress components in ¢ 1 configuration and
15;; are the updated Kirchhoff stress increment tensor components.

The second Piola-Kirchhoff stress tensor components in the C; and (s
configurations are denoted by }S;; and 3Sij, respectively. The components in
the two configurations are related by

ﬁSij = %)S‘ij + []Sij (9.3.35)

where (S;; are the components of the Kirchhoff stress increment tensor.

Recall from Egs. (9.2.25a,b) that the stress tensors 2o and 2S are related
by

A1 -1{ 9% ; 0%z, .
zgz(&f) F-25.FT 20’4;‘:(3J) (fo{) - (a@’i’) (9.3.37)

0... O
MW=L JF % BT 25, =2 ( ,8 ””*) 2 em (3 ”’3"') (9.3.38)

02z,

where . is the determinant of K.
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The relations between the Cauchy stress tensor compon.ents 20?;5,- and the
second Piola—Kirchhoff stress tensor components 351'3- can also be written as
[0 =2p 3J; see Eq. (9.3.8)]

‘ 2 2 2
i 2 e 5 I; 5 ﬂ:jz
[ gij 0,0 3G$p 60:qusm ( 33(])
0 0 0
2 p 0°z; 0°z;,
Sij =5 = 9.3.40
| 0°1j 25 92z, 82:1:q Opq ( )

where p and ?p represent the mass densities of the material in configurations
Cy and Cy, respectively.

The Cauchy stress tensor components Qa%‘j in Co can be related to the
updated Kirchhoff stress tensor components %S?;j by the following formulae:

b 1

5q P O'm; 0z,

151'3' = % 822313 % qu (9341)
By HBe HE

21 = 1 0 i 0 % (9.3.42)

lp 8lz, Olg, "™

The transformation between the second Piola—Kirchhoff stress tensor
components in different reference configurations is provided by the following

relations:
0 80 ) 30 ;
N 4 Ty Lja
055 =1, 3y, Big, 10 (9.343)
0 0 0. .
p 07z 07xj, :
{135‘,3. v (9.3.44)

= o
1p 9z, dlzy ™

Finally, from Eqs. (9.3.43) and (9.3.44), we obtain the relations between the
incremental stresses ¢S;; and 15y

0, 70 0
o P 0°m 53 9.3.45
054 = lp 81z, 01z, 1550 ( )
Tuots: gla
1545 = Fa 4 9 4 (9.3.46)

ik B Y
0p 80z, 0z, 0%

These relations are useful in the calculation of the material coefficients for
large strain problems in the updated Lagrangian formulation, as will be seen
shortly.
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9.4 Constitutive Equations

Materials for which the constitutive behavior is only a function of the curren
state of deformation are known as elastic. In the special case in which the
work done by the stresses during a deformation is dependent only on the
initial state and the current configuration, the material is called hyperelastic
For hyperelastic materials we assume that there exists a stored strain energy

function, Uy per unit undeformed volume, such that the components of the
material elasticity tensor C are given by

S

Cijre = OE,

(9.4.1)

In the derivation of finite element models of incremental nonlinear analysis
of solid continua, it is necessary to specify the stress-strain relations in
incremental form. In the total Lagrangian formulation, for example, the
constitutive relations can be expressed in terms of the Kirchhoff stress

increment tensor components 0Si; and Green-Lagrange strain increment
tensor components gg;; as

0545 = 0Cijke 0€ke (9.4.2)

In the updated Lagrangian formulation, it can be expressed in terms of
the updated Kirchhoff stress increment tensor components 15;; and updated
Green-Lagrange strain increment tensor components 1€45:

1Si5 = 1Cijke 16ke (9.4.3)

where (Cjjx; and 1Cijk denote the incremental constitutive tensors with
respect to the configurations Cy and C1, respectively. It can be shown that the
following transformation ruies hold between the components of the elasticity
tensor C in different configurations:

0 0 0 20 0.
”__{)aa:@axjd:cka.bgo 9.44
0Ciike = 'p 8z, 8z, 8z, §lg, 1P )
1 1 1 1 1
_pa:ci@xjafckaxg
1M =0, 502, 305, 505, 05 Crrs ey

With these two equations, only one set of coefficients, namely, 0Cijk1 or 1C;ji,
need to be known or given. The other set of coefficients can be obtained simply
by transformation. We can therefore ensure that the material properties
implied by the total and updated Lagrangian formulations are identical to
each other, provided that the same step sizes are used in both formulations.
Often, the incremental material laws (94.2) and (9.4.3) with identical
coefficients, that is, 0Cijre = 1Cijke, are employed in the total and updated
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Lagrangian finite element formulations. Of course, the error introduced by
the assumption can be negligible if the strains are relatively small but the
difference can be significant in large deformation problems, for example, in
high velocity impact problems. I

9.5 Total Lagrangian and Updated Lagrangian
Formulations of Continua

9.5.1 Principle of Virtual Displacements

The equations of the Lagrangian incremental description of motion can be
derived from the principles of virtual work (i.e. virtual displacements, virtual
forces, or mixed virtual displacements and forces). Since our ultimate objective
is to develop the finite element model of the equations governing a body, we
will not actually derive the differential equations of motion but utilize the
virtual work statements to develop the finite element models.

The displacement finite element model is based on the principle of virtual
displacements. The principle requires that the sum of the external virtual
work done on a body and the internal virtual work stored in the body should
be equal to zero:

(ﬂ{-’—:—/; 20’25(28) dQV—é‘?R:O (951&)
v
= /zv 20ij 8(zeij) 42V~ 6 'R =0 (9.5.1b)

where & 2R denotes the virtual work done by applied forces
523:/2 2 . fu d2V+j; 2. u d>S (9.5.2a)
v s

= / 2 f.6u; A2V + / %.5u; 428 (9.5.2b)
2y 25

and d2S denotes surface clement and 2f is the body force vector (measured per
unit volume) and 2t is the boundary stress (or traction) vector (measured per
unit surface area) in configuration Cy. The variational symbol ‘6" is understood
to operate on unknown displacement variables (Pu; and w;).

Equation (9.5.1) cannot be solved directly since the configuration Cp is
unknown. This is an important difference compared with the linear analysis
in which we assume that the displacements are infinitesimally small so that
the configuration of the body does not change. In a large deformation analysis
special attention must be given to the fact that the configuration of the body
is changing continuously. This change in configuration can be dealt with
by defining appropriate stress and strain measures. The objective of their
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introduction into the analysis is to express the internal work in Eq. (9.5.1) i
terms of an integral over o configuration that is known. The stress and straj
measures that we shall use are the 2nd Piola-Kirchhoff stress tensor and th

Green-Lagrange strain tensor, which are “energetically congugate” to eac
other [see Eq. (9.2.34)].

9.5.2 Total Lagrangian Formulation

In the total Lagrangian formulation, all quantities are measured with respec
to the initial configuration Co- Hence, the virtual work statement in Eq. (9.5.1°

must be expressed in terms of quantities referred to the reference configuration.
We use the following identities 4]

ﬁ |, %01 oeiy) d 2V = l 38y 63Ey) oV (9.5.3)
2fibus d2V = [ 2760, a0V (9.5.4)

2y oy
f 2ti du; d2S§ = / gti du; dos (9.5.5)

2g Jog

where 2f; and 2t are the body force and boundary traction components

referred to the configuration Co. Using Egs. (9.5.3)-(9.5.5) in Eq. (9.5.1b) we
arrive at

ﬁ 85 6GEy) d°V - 6@R) = 0 (9.5.6)
where

6(83’):/;1» 21, 6u, dDV+£S 24, 6u; d°S (9.5.7)

Next we simplify the virtual work statement (9.5.6). First, we note that
[see Eqs. (9.3.15) and (9.3.16)]

8(3E1s) = 6(5EBi) + 8(0css) = 6(oes;)
= 8(oei;) + 8(omi) (9.5.8)

where 8(3E;;) = 0 because it is not a function of the unknown displacements.
The virtual strains are given by

1 551&3‘ 36Uj 66% a 6‘(!43 d (]]uk “8_5%_ 9.5.9
8loeis) = 2 (3 “w_;- + 0%, 90z 5_0?3 * 80z, 8 O; (559)
1 { Obup, Ouy Ouy, Obuy,
8lomij) = 5 (5@;5@? 992,50, (35.10)
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1 Substituting Eqs. (9.5.8) for 6(3E;;) and Eq. (9.3.36) for 3S;; into Eq. (9.5.6),
1 we arrive at the expression

= .LV (ésﬁj + Osij) 8(ogis) d By — 6{%}-’{)
- AV {”Sﬁ 8(os5) + 0S5 [6(0ei) + 6(0?}@;;)]} d % - 6(R)
= /,L 0S5 6(ogi) d °V + ﬁv 5Si; 8(omi;) d°V + 6(3R) — 6(2D.5.11)

where (3 R) is the virtual internal energy (in moving the actual internal forces
through virtual displacements) stored in the body at configuration C;

66R) = [ 383 8loeis) d°V (9.5.12)

Since the body is in equilibrium at configuration C;, by the principle of virtual
work applied to configuration C; we have

0= /OV %}ng 5(0@ij) d UV - AV %)f? é‘ui d OV — LS %1?51‘,5%‘4 d OS (9513)
and therefore

5(5R) = fo | bfibud®V + ﬁ  Htidusd®s (9.5.14)

Equation (9.5.11) forms the basis for the finite element model. We only
need to replace ¢Si; in terms of the strains and ultimately the displacement
increments using an appropriate constitutive relation. The first term of Eq.
(9.5.11) represents the change in the virtual strain energy due to the virtual
incremental displacements u; between configurations C; and C3. The second
term represents the virtual work done by forces due to initial stresses $Si;. The
last two terms together denote the change in the virtual work done by applied
body forces and surface tractions in moving from C; to C2. This is primarily
due to the geometric changes that take place between the two configurations.
Equation (9.5.11) represents the statement of virtual work for the incremental
deformation between the configurations C; and Cz, and no approximations are
made in arriving at it.

Towards constructing the displacement finite element model of Eq. (9.5.11),

we invoke the constitutive relation (9.4.2) to express ¢Si; in terms of the
incremental strain components ge;;. Equation (9.5.11) takes the form

A y 0Ciske 0cke 8(0gi;) OV + ﬁ , 385 8(omij) d°V = 6(3R)—6(5R) (9.5.15)
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Equation (9.5.15) is nonlinear in the displacement increments u;. To ma

053 ~ 0Cijre oere and - 6(0€ij) ~ 6(oes;) (9.5.1

Then Eq. (9.5.15) can be simplified to
j?v 0Cijiee 0ere 6(oeif) d GV+£V 05i; 8(omi5) d OV = 5(8R)-8(R) (9.5.1;

Equation (9.5.17) is the weak form for the development of the finite elemer
model based on the total Lagrangian formulation. The total

stress component
éS?;j are evaluated using the constitutive relation

65 = 0Cijke §Ene (9.5.18

where § By are the Green -Lagrange strain tensor components defined in Eq
(9.3.13).

A summary of all the pertinent equations of the total Lagrangiar
formulation is presented in Table 9.5.1.

9.5.3 Updated Lagrangian Formulation

In the updated Lagrangian formulation, all quantities are referred to the latest
known configuration, namely C;. Hence, the virtual work statement in Eq.

(9.5.1b) must be recast in terms of quantities referred to C1. We use the
identities

/ZV 2U§j 6(26@') d 2V = [v %S@jj' 5(%51‘3‘) d 1V (9.5.19&)
l 2, 6u; d 2V =/ 2f, 6u; d 1V (9.5.19b)

v 1y
/ % u; d 25 = / 2%, 6u; d 18 (9.5.19¢)

25 . 13

where 2f; and 2t are the body force and boundary traction components
referred to the configuration Ci, and %ei‘j are the components of the updated
Green-Lagrange strain tensor components defined in Eq. (9.3.23). Using Egs.
(9.5.19a~c), Eq. (9.5.1b) can be expressed as

ﬁv 15i 6Gey) d WV —62R) = (9.5.20)
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where

5(R) = Lf 21, 6u; d 1V+[S 2. 6u; d 18 (9.5.21)

Table 9.5.1 Summary of equations of the total Lagrangian formulation.

1. Weak form
= / 25, 6(3Ei;) d°V —6@2R) (9.5.6)
oy
8 9z; a9z,
28, = 27 (a_%f) 25, (63—.}3:) (9.3.40)
1/032u; 02u; 02udu
o 0 0™ 0 (Thais
L (Ei Og; * 80z; ' 80x; 3 0x; 0414
5(3R) = / 2 fibu; d OV + / 2:6u; d°S (9.5.7)
0y g
2. Incremental decompositions
285 = 18+ 0Si; (9.3.36)
ﬁEﬁ = éE@j + 0€ijy 04 =0 €5 T 0Thj (9.3.15) & (9.3.16)
éSiJ = oCijne %Ekh 05:5 = 0Csjme 08ke (9.4.2)
1p o 1(0gwm  O%u  Ojuxdpu 9.3.13
0B =3 (8”:::;.- t 90z, T 8z, 90z, (9:8.18)
1 Ju; 3TLj 9] éuk Oy, duy, o éuk C
.. : $9.3.17
0% =3 (d Oz, *3 Oy T3 Op; 8 Yz, *3 Og; 0 Va; ( )
1 auk Buk 9 5
. B 3.18
074 28 033.,' d UQ’.‘j ( )

3. Weak form with incremental decompositions

f OSU' 5(0&':{) dov +/ 653'3' 5(07?:&) d'V = 5(%R) —/ éS«sj 5(0%‘) d %
oy 1] oy
d v (9.5.11) & (9.5.12)
4. Linearized weak form with incremental decompositions Use the approximations
0Si = 0Cixe o€kt = 0Cijke 0€hes b(geiz) ~ 6(oeis) (9.5.16)

to rewrite the weak form as

/ 0Cijke 0€xe 6(pess) 4 OV + / gl)Sij 8(omiz) d OV
JOoy .

Oy

= 8(3R) - / §Si5 6(0ei;) d°V (9.5.17)
JOv
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TEE virtual strains are given by 6(3ei;) = 6(1€55) + 6(17mi;) [sce Eq. (9.3.24)
where

' 1 [ 06u;  Obu;
6(1e45) = 5 (5—‘—-1%_ ra 5 1:;1) (9.5.22)
1 [ Obuy Ouy, Ouy, Obu
1] ii ] = — 3 i ka8 k &
(a735) 2 (O‘ lg: 8 l:;cj 81z, 9 1333’ (9.0.25)

Now using Egs. (9.3.24) and (9.3.35), we can write Eq. (9.5.20) as
0= [V 18 8(ei;) d 1V - 6(CR)
= L_ (o + 184) 8Gess) 4V - 52R)
N [v {15%'3‘ 8(feis) + Loy [8(1e) + 5(1%’)]} d'V - 5(3R)
:lv 185 6(ey;) d 1V+jfv Y015 6Gmg) AV + 6(LR) — 5GR).5.24)

where §(}R) is the virtual internal energy stored in the body at configuration
C

S(1R) = [v Yoy 6(rei5) d 'V (9.5.25)

Since the body is in equilibrium at configuration Cy, the principle of virtual
work applied to configuration C1 yields

S(iR) = [V 1fibu; d 1V + [q Hibu; d 1S (9.5.26)

Next, we invoke the constitutive relation (9.4.3) to express 154 in terms of
the incremental strain components %ei;. Equation (9.5.24) takes the form

[1' 1Cijke Tere 6(3ei;) d 1V + ﬁv Yoi; 6(imi) d 'V
=5(R) - _KV Yoy 6(1ei5) 41V (9.5.27)

As before, we assume that the displacements ; are small so that the following
approximations hold:

18@; ~ lcijkﬁ 1€R¢ and é(%sij) ~ 5(1853') (9.5.28)
Then Eq. (9.5.27) takes the form

[v 1Cijke 1682 6(re55) d 1V + /lv Yaij 6(1miz) d 'V

= 6GR) ~[V Loy 8(1ei;) d 1V (9.5.29)
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Equation (9.5.29) is the weak form for the de'velopment of the finite element
model based on the updated Lagrangian formulation. The total Cauchy stress
components o;; are evaluated using the constitutive relation

10’1‘3‘ = 1Cijke Lere | (9.5.30)

where jcg are the Almansi strain tensor components defined by [see Eq.
(9.3.26)]

2 lesy d Yo d 'o; = (ds)” — (%ds)” (9.5.31)

which gives

1
" 1(30151-;66% 36%35%) (9.5.32)

2 0lz; 31$5_31w¢31wj

A summary of all the pertinent equations of the updated Lagrangian
formulation is presented in Table 9.5.2.

9.6 Finite Element Models of Two-Dimensional
Continua

9.6.1 Introduction

Here we discuss finite element models based on the total and updated
Lagrangian formulations presented in the last section. Attention is focused
here on two-dimensional problems under the assumption of linear elastic
behavior. Further, we assume orthotropic behavior.

9.6.2 Total Lagrangian Formulation

We introduce the notation

0 1

=2, zo=y, 'wi=u, 'w=v, w=1u4 u

v (9.6.1)
We can write the first expression of Eq. (9.5.17) in the alternate form
/ oCijke oexe 8(oess) d °V = ] {60} T[0Cl{oe} 4 °V
oy oy

= ﬁv (6} (ID] + [Du))T [oC] (D] + [Du)) {8} %V (9.6.2)

where
ou fudn | v oo
0Czr dz gm dz 8z Oz
_ 5% Lot o0
foe} =4 otw = 8 Vo " Budt Dy B sewe
v & | Bidu | 80
2 0Cay 5+ 5 5oy T Oxby T by T 0w by



e E——

354 NONLINEAR FINITE ELEMENT ANALYSIS

2 du 0 v 8

dr - ga: Oz Oz dz _
s 0 2 du d v 9 u
- oy | + Oy dy 3y dy T

9 & 9ud L ud gyo 4+ v o

Sy  Bx dydxr " Bz8y Oydr T oz dy

(D] + [Dy)) {a} (9.6.3)

2

Table 9.5.2 Summary of equations of the updated Lagrangian formulation.

_—
1. Weak form
U= / $5i 6Gey) d 1V - 6(IR) (9.5.20)
J1y
. 1, Ht M.
2g P Oxy Ei ,_
194 =%, §%, . O (9.3.41)
1 [ oy Ou; Ouy,  Ou,
fey=c (e ¢ 24, Our Ou 9.3.23
1% 2(5—) Py +atmf+aixﬁaixj) (958
6(fR)=f 3 f: bu dlv+[ ftidu, d 18 (9.5.21)
117 J1g
2. Incremental decompositions
185 = Yoy + 18y, 1S, = 1oy (9.3.35)
%51'3' = 1€ + 1myy (9.3.24)
lo',;j = Icijkf ifkh i = J_Cijktf fEH (9.5.30)
Lo, =1 (0qu  8fu; 9 gui 9 (9.5.32)
Y201y T, T3 lr; 0 la;
i} 81.&,' 8Hj — 1 3'u.k 3"!146 9.3.95
1€ij = 3 (___3 T2y + 51—;) v 1T = B ((9 1z, 9 Tz, ( )

3. Weak form with incremental decompositions

] 15i; 6(3ei;) d 1V+/ Yai; 6(1miy) 4 1V = 5GR) */ Loy 8(1ei5) d 1V
1y
v & (9.5.24) & (9.5.25)
4. Lincarized weak form with incremental decompositions Use the approximations

15 = 1Cijke 2ere = 1C 00 140, 8(1845) = 6(1e45) (9.5.28)

to rewtite the weak form as
v r 13-
/ 1Cijke 1exe 6(1€45) d 1V 'I-/ Yoi; 6(1mi;) d 1V
iy 1y

=§{%R} —/ lgij 5(167;3,‘) d 1V (9529)
iy
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6 0€zx
{6 0e} = { 6 0€yy } = ([D] + [Dy]) {60} (9.6.4)
20 g€ay
0oCn oCi2 0
0C]= | 0C12 0C22 O (9.6.5)
0 0 oCes

The second expression of Eq. (9.5.17) can be written as

1 0 .
ﬂv 05 Oomiz) A7V = ﬁv{é o} {65} 4V (9.6.6)
oudu 4 OV 0L
07z 9z 9z " 92 9z
9uou | O 0v
{on} = { 07lyy } = By oy T By Oy
duda , 8O
2 Oy 255 +85)
8u o v 8 _
1| &% 5% i
=5| oy audy
oo oud mo oo ||p
dy 9z or Oy oydxr | Oz 0y
1 £
= 5[Dal{n} (9.6.7)
; g
07z r Or = Oz Oz
$u0u | 005 Ov
" k i
| 20 0Mzy R e+ 5, T o T Oy
| = [Dal{68} = [Dsal{n} (9.68)
_ 92 oCnn oC2 O
{388}=2 84Sy ¢ = |0C12 oCz O
%S:cy 0 0 0066

2
o 1|(@&
7 T3 {(a—i) +

1 %fEa’.‘:t‘ 2
Bi= E ={ Ov_ 1|(du v
{oE} Zoééyy % T3 [(d‘y‘) + (2
I s s
du g-u (Q@au 4 v av)

dy e

However, the expression (9.6.6) is not convenient for the finite element
development since the vector {§ o7} is a nonlinear function of the vector
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of displacement increments @. It must be written in an alternate way tc
facilitate the construction of finite element matrices. We have

Joy oy idsy aov

06udu 967 O 06udu 860 O
— 1 et R 1 il niing
_jv{ﬂgm(é‘r 8.r+8x8m)+ Sy (8{; 6y+8y 33;)
déudu 0650t  Ou s 0t 86p
1 St ) el d ﬂV
+B&w(6$8y+8m8y+5mﬁy+ddeH

86w \ T o
—émi égxm (11]3,33’, 0 0 z
_ Oy ()Swy gSyy 0 0 _dg OV
= /0 st 0 0 38 §S,|)2 !
%%‘ 0 0 éSxy %}Syy Sé
- Ap {5ﬁ}T[_D]T[ éSJ[D]{ﬁ} 4oy (9.6.10)
where
(IJS:rm (115923; 0 4
lg lg 0 0
[éS] — |0 Omy 0°yy %Sxm 65:5‘? (9611&)
0 0 %Sa:y éSny

{g} (9.6.11b)

This completes the development of alternate form of the expressions in the
virtual work statement (9.5.17).

Suppose that the total and incremental displacement fields are interpolated

0

ISm* _ id:f (

{éS} = {Usyy} [DJ =% a‘a‘
5

[)Sﬁ'»‘y

o= (2} (gl -me onn
o=} (Fspig)-mm ons
where
. w1 0 e 0 ... Yn O  14a
[‘I”:['Ol bi O Yo o o wn} (96.142)
{A}T ={u1: U1, U2, V2, Uy, 1’1‘-‘1} (9'6‘14b)

{AY! = {ay, o, @, V2, Up, U} (9.6.14c)
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We have
]ﬂ  of&oe}TIoCl{ae} d °V
= [, 68)™ (1D] + [Dul)™ [oC1 (D] + [Du]) {5} 4 °V

= [}, 6AYT{(1D] + [Da]) 1} 1aC) (D] + [Du]) [#1{A} 4 O

= [ BYIBLToCYBLIA} 4OV 9.6.15)
|, 16 o ids} a®v

= [ 6ayT DI §sIID(a} 4 °V

=Lf {62} [Bni]T[ §811BNL){A} 4 °V (9.6.16)

ER) = [ 3y 8loess) 4V
- /; (6 0¢)T{3S) 4 OV
Vv

= [ AV (B (S} d (0.6.17)

* r n
6(3R) = jﬂv 2fibu; d OV +‘£S t.6u; d°S
- ﬂ (6AVT[U]T{3E) 4OV + ﬁ (BAVIUT (2t} 405 (9.6.18)
V S
where [By] is the 3 x 2n matrix and [Bn1] is the 4 x 2n matrix defined by
[Br] = ([D] + [Du]) [¥], [Bnel = [D][¥] (9.6.19)

Substitution of Eqs. (9.6.15)-(9.6.18) into Eq. (9.5.17), and usc of the
fundamental Lemma of calculus of variations (i.e. {6A} arbitrary variations),
‘vields the following finite element model associated with the total Lagrangian
formulation of two-dimensional nonlinear continua:

(IKz] + [Enc]) {A} = §F} - (6F} (9.6.20)
where
K] =£ [BL]*[oC)[Bz] d (9.6.21)

[Knt) =£ [Bni]™[ 3S][Bnz] d OV (9.6.22)
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GFh= [ (Baids) aov (9623

Grr= [ av s [ wrgna0s g
2 2

0= (i), oo~ (i)

Note that the stiffness matrix (K] = [KL] + [K ~r] is symmetric since
[ 48] and [0bC] are symmetric. Also, the total and updated Lagrangian
formulations are incremental formulations, that is, determining {§A} = {A},
the stiffness matrix in Eq. (9.6.20) is the tangent stiffness matrix. The direct
stiffness matrix is implicit in the vector {}F}. For a linear analysis, we have
{A} ={A}, 3F} = {0}, and [Knz] = [0]. The formulation presented above
s easily extendable to three-dimensional problems.

For two-dimensional problems, the matrices [B 1] and [Byy] arc given by

[Br] = [B}) + [BY] + [BY] (9.6.26)
o d by
% 0 G 83 o 33
[Bil=| 0 % ¢ B 0 (9.6.27a)
Our G B B Bn O
dy dr dy dx oy o
For Ou O Bu B
%ﬁ-(_}:cwl 0 @'% oz Oz 0
u] . du Gy du Fa Qu O, 0
1551 = ) afg Bu & P afy_ fm@@ ou ans-dy o B
oy to e 0 GeGR 4 Qul oy T oy oe O
(9.6.27b)
C r Oz e
B=[0 @& o @k )
- oy dy oy oy
: v s | B By Qv d¢n | Bv B
0 %%Jrg‘;% O B +E3 3;5%%-'_83;53:
(9.6.27¢)
&0 B oo
S0 9 Zn
c 1 2
Bre)= | ¥ oy ¥ gy e (9.6.28)
0 7 0 ¥ 0 e
L R

The finite element equations (9.6.20) can be written in explicit form as

{[KHL] 2 [}(111\’] [K12L] J { {ﬁ}}

_ _ [B3F") - (iFY}
[KQIL] [KQzLJ s [KZQN} {,-ﬁ}

“Udr) =} oo
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; where

ou a’b’ad Oy O;
K“L = / { ( ‘_) oy; ( ) i O%j
e e 0Cu {1+ 5z 0z 0z T 0C22 dy) 0Oy Oy

+ oCi (1 8u) ou (8@03 611)3 OY; O )

dz) oy \ 0z By = Oy Oz

COu\ OY;  Oudyy
+o0u(1+5) 5+ 3 30

du\ 0; _ Bu v,
(”aq) P aa:]}d”y

4 v O; O Ov\ Ou O; OY;
120 _ Rl 5 i v 2088 ol Fating a1
K™ =he /sz{ 1 (1 ) oz Oz 83 + ol (1 " By) 9y Oy 9y

i ()00 D) 2R SRR
a8 B0
. K g)%‘ gf;%v"}}dwdyﬂc;w

+ oC12 (1+7) 5” (%ﬁ%@; %ﬁi%)

By By ;OO
o0 [(145) 5 * 5 3

dwj B 31,;_,,” f
X Kl + é{;) 55 di dy

5
/ |iOS 8w18%+ 15, (Gwzﬁvu_@i_ﬂﬁ)

11N _
K" = he A 5 O oy 0z  Ox Oy
s Falrs 2

0 = he : ofzi dzdy + he }‘,{ Ot ds

SF2 = he oSyt d dy + he% Sty ds

Qe
I o 0 {(1+3”)3%11 O 2.4
0+ e e )

or 8? 8y
oYy duawt] }
sahucch S0 I S IR )
Kl+ dr) Ay * oy oz | O T
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“ v 0291 v 6¢,
IF} =l {_—____ ; ?:m: ( o ik lL
ate = qe | 0z Oz 09z + 1+(‘)y Ay 053y
I\ s B By 1
1+ — )24 2¥5% .
¥ K T ay) oz | Bz ByJ ony}dMy (9.6.30b)

where h, is the thickness of the element (for the plane elastic problem).

9.6.3 Updated Lagrangian Formulation

In view of the detailed discussion of the finite element model development for
the total Lagrangian formulation and the similarity between Egs. (9.5.17)
and (9.5.29), the finite element model based on the updated Lagrangian
formulation can be simply written as

(K] + [Kxzl) (B) = GF) - (1F) 961
where
kil = [ IBLOlBY a v 9.632)
Kt = [ Byal™ ol[Byy) d 'v (9.6.33)
{iF} = [V[B?,}T{lrf} dtv (9.6.34)
2F} = / TG d Y o / 9T ats (9.6.35)
{if} = {%:i } it} = {gi;} (9.6.36)

where [B}] and [By] are defined by Fgs. (9.6.27a) and (9.6.28), respectively,
and

Opa lo':sy 0 0
5 oy g 50 9.6.37a
o] 0 0 log Lowy ( )
0 0 1 o'w'y 103;3;
1f7x:c ]CII 1012 0 %Emm
{lo}={loy }={1C1r 1Cnn 0 1o (9.6.37h)
touy 0 0 1Cs6] \2{esy
2 2
Bu 8
1 % - ‘1’. [('a?) & (t’%) J
1 1o " 2 el (9.6.37¢)
_J) i _ i Fes ’ -
BT ) B8+ ()
2 150y du | 9y (Budu . B b
oyt o~ (maﬁ‘;ﬂ@)
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The finite element equations {9.6.‘31) can be written in explicit form as

Gl sl 9}~ () oo

[K2L) (2] 4 [K2N) | { {5}
where
K" = hE/Qe ( 1011%% 1066%ﬁi.7?) dz dy
K%?L he/sze ( 1012%86—? 1 6%%%) dgsdy:KngL
K2t = he /Qe_ ( lcﬁﬁ%% + 16'22%? %—?) dx dy
+ 1“%%? %Z—J] drdy = KN (9.6.39a)

%Fil = fiz \/;F %fx’{f)a dz dy + he?é :fta:i}'r)i ds
2FP=he | 2fylidedy+he ¢ Ity ds
1F; Le - 1Jy¥s ax ay + he . 1by¥h @8

O; oy
e b, L (ﬂ Logp + —— 1(7@) dx dy

oz Yy
o; o
1 FQ 1 1
e he Qe (a—:; Tzy 2 ?T; Uw) de dy ' (9.6.39’0)

where h, is the thickness of the element 'z; = z and 'z3 = y.

9.6.4 Computer Implementation

The computer implementation of the two nonlinear formulations discussed in
this chapter follows along the same lines as discussed for the Newton-Raphson
procedure used for plate bending. Box 9.6.1 contains the portion of the main
program where element information is passed on to the element subroutine and
error check, while Box 9.6.2 contains the main parts of the element subroutine.

9.6.5 Numerical Results

Here we present numerical results obtained for a cantilever beam under
uniformly distributed load using the total and updated Lagrangian
formulations. Suppose that the beam is of length a = 10 in., height b = 1
in.. and thickness h = 1 in. A mesh of five eight-node quadratic elements are
used, and load increment of Agy = —0.5 psi (acting downward) is used. The
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Box 9.6.1 Fortran statements showing the transfer of element informatio
and error check,

P0=0.0 —[
NFLAG=0

DO 500 LOAD=1,NL§
PO=P0+DP(LOAD)
ITER=0

220 ITER=ITER+]

C
g Cempute and assemble element matrices

DO 340 N=1.NEM
DO 260 [=1,NPE
NI=NOD(N,T)
ELXY(L,1)=X(NT)
ELXY(1,2)=Y(NI)
L=NI*NDF-1
K=I*NDF-1
ELUK) =GLU(L)
ELU(K+1)=GLU(L+1)
260  CONTINUE
C

270 CALL STIFF (IEL,NGP,NN,NPE_.P,NAXIS,ITER,NEWTON.LFORM}

340 CONTINUE
C

C Impose the specified displacement and force dof and solve the equations (GF is the
C  incremental displacement vector). Update the total solution vector GT and coordinates.
C

DO 420 I=1,NNM

L=(I-1)*NDF+]

GLUL) =GLU(L) +GF(L)

GLU(L+1)=GLU(L+ 1+ GF(L+1)

IF(LFORM.GT.1)THEN
X(I=X(D+GF(L)
Y(D=Y(I)}+GF(L+1)

ENDIF

420 CONTINUE
C

SNORM=0.0
ENORM=0.0
DO 430 I=1,NEQ
SNORM=SNORM+GLU{'I)*GLU(I)
430 ENOR.M-—“ENORM+GF{D*GF(J)
TOL=DSQRT(ENORM}SNORM)
IF (TOL.GT.EPS) THEN
IF ( ITER.GT.ITMAX) THEN
Write a message
STOP
ELSE
GOTO 220
ENDIF
ENDIF

500 CONTINUE
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9.6.2 Fortran statements showing the element matrix calculations for

the total and updated Lagrangian formulations.

eRoNeRoRoNoNoNoRe!

ooz ooo

[sNoNS]

20

SUBROUTINE STIFF(IEL,IDYN,NGP,NN,NPE,P,NAXIS,ITER NEWTON.LFORM)

STIFFNESS MATRIX FOR ISOPARAMETRIC QUADRILATERAL ELEMENTS
(Total and Updated Lagrangian Formulations)

LFORM.....Indicator for the type of formulation:
LFORM=1, TOTAL Lagrangian formulation
LFORM>1, UPDATED Lagrangian formulation

Initialize element force vector and stiffness matrix

DO 10 I=1.NN
F(1)=0.0

DO 10 J=1,NN
ELSTIF(LI)=0.0
CONTINUE

Numerical integration to evaluate the element matrices

DO 60 NI=1,NGP

DO 60 NJ=1NGP

X1 =GAUSSPT(NINGP)

ETA=GAUSSPT(NI,NGP)

CALL SHAPE (NPE.XLETA,SF,GDSF.DET ELXY)
CONST=DET*GAUSSWT(NLNGP)*GAUSSWT(NIJ,NGP)

Define the gradients of displacements and strains

X=0.0

U=0.0

UX=0.0

UY=0.0

VX=0.0

VY=0.0

DO 20 I=1,NPE
L=(I-1)*NDF+1
X=X+SF()*ELXY(L1)
U=U+SF(I)*ELU(L)
UX=UX+GDSF(1,[}*ELU(L)
UY=UY+GDSF2I*ELU(L)
VX=VX+GDSF(1,)*ELU(L+1)
VY=VY+GDSF(2,))*ELU(L+1)
UX2=UX*UX

UY2=UY*UY

VX2=VX*VX

VY2=VY*VY
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(Box 9.6.2 continued)

C
IF(LFORM.EQ.1)THEN
UXPI=1.0+UX
UXP2=UXP1*UXP]
VYPI=1.0+VY
VYP2=VYPI*VYP]

EX=UX+0.5*(IDQ+VX2}
EY=VY+0.5*(Uy2+Vy2)
EXY=UY-+VX+UX*UY+VX*VY
SH=C(1,1)*EX+C(1.2)*EY
822=C(1,2)*EX+C(2,2)*EY
S12=C(3,3)*EXY
ELSE
c

EX=UX-0.5%(UX2+VX2)
EY=VY-0.5*UY24VY2)
EXY=UY+VX-UX*UY-VX*VY
S11=C(1,1)*EX+C(1,2)*EY
$22=C(1,2)*EX+C(2.2)*EY
$12=C(3,3)*EXY
ENDIF
C

C

=1

DO 50 I=1,NPE
C

(#

ELSE
F(I)=F(ID+(P*SF(I)-GDSF(1,1)*S11
F(I1+1)=F(I1+1)HP*SF(I)-GDSF(1,I)

ENDIF

73=1

DO 40 J=1,NPE

IF(LFORM.EQ.1)THEN

C Compute the Almansi strains and Cauchy stresses

C  Compute element force vector and stiffness matrix

C  Imbalance force coefficients for the TOTAL Lagrangian formulation

JY*GDSF(2.1)*S22

-VYPI*GDSF(2.1)*S22

C
IF(LFORM.EQ.1)THEN
F(Il) <F(II) +(P*SF(1)-UXP1*GDSF(],[j*S1 1.
* «(UXPI*GDSF(2,[/+UY *GDSF(1,1))*$12)*CONST
F(IE-1)=F(I1+1)+(P*SF(I)-VX*GDSF(1,)*S11
* -(VYPI*GDSF(1,1)+VX*GDSF(2,1))*S12)*CONST
¢

C  Imbalance force coefficients for the UPDATED Lagrangian formulation

~GDSF(2,1)*S12)*CONST
*S12-GDSF(2,1)*$22)*CONST

SIG=S11*GDSF( LI*GDSF(1,7+822*GDSF(2,]
* +S12%(GDSF(1,I*GDSF(2.] HGDSF(2,1)*G
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(Box 9.6.2 continued)

[ 2
8 Stiffness coefficients for the TOTAL Lagrangian formulation

ELSTIF(ILJT)=ELSTIF(ILII)+(C(1,1)*UXP2*GDSF(1,[)*GDSF(1,J)

* +C(22)*UY2*GDSF(2,))*GDSF(2,])

*  +0(1.2)*UXP1*UY*(GDSF(1,I)*GDSF(2,])+GDSF(2,])* GDSF(1,J))

¥ +Q(3.3)*(UXPI*GDSF(I+UY*GDSF(1,I)*

* (UXP1*GDSF(2,])+UY*GDSE(1,]))}+SIG)*CONST
ELSTIF(I+1,JJ+1)=ELSTIF(II+1,JJ+1)HC(1,1 *VX2*GDSF(1,])

*  *GDSF(1,1)+C(2,2)*VYP2*GDSF(2.1)*GDSF(2.])

+O(1.2*VYP1*VX*(GDSF(1,))*GDSF(2,])+GDSF(2,1)*GDSE(1,1))

+C(3 3)*(VYPI*GDSF(1.1)+VX*GDSF(2,))*

+ (VYP1*GDSF(1,Jy+VX*GDSF(2,7))+SIGy*CONST

ELSTIF(ILIJ+1 =ELSTIF(ILJI+1)+(C(1,1)*UXP1 *VX*GDSF(1.I)
*GDSE(1.J)+C(2,2)*VYP1 *UY*GDSF(2.))* GDSF(2.])
+C(1,2)*(UXP1*VYP1*GDSF(1.))*GDSF(2.J)
+UY*VX*GDSF(2,I)*GDSF(1,)))
+C(3,3)*(UXP1*GDSF(2, )+ UY*GDSF(1.I))*

(VYPI*GDSF(1,I)+VX*GDSF(2.J)))*CONST

ELSTIF(IT+1,J7=ELSTIF(II+1,J+C(1,1)*UXP1*VX*GDSF(1.J)
*GDSF(1,1+C(2,2)*VYPI*UY*GDSF(2,])*GDSF(2,])
+C(1,2*(UXP1*VYP1*GDSE(1,J)*GDSF(2.I)
FUY*VX*GDSF(2,Jy*GDSF(1,1))
+C(3,3)*(UXP1*GDSF(2,1)+UY*GDSF(1,1))*

* (VYP1*GDSF(1,I)+ VX*GDSF(2,I)))*CONST

C
(L; Stiffness coefficients for the UPDATED Lagrangian formulation

*

* % % ¥ @ *

* ¥ *® *

ELSE
ELSTIF(ILJN=ELSTIF(ILIN=(C(1,1)*GDSE(1 I*GDSE(1,3)
* +C(3,3)*GDSF(2.I*GDSF(2,7)+SIG)*CONST
ELSTIF(II+1JJ+1)=ELSTIF(II+1,73+ 1 +(C(3,3)*GDSF(L)
* *GDSF(1,J)+C(2,2)*GDSF(2.1y*GDSF(2.J1+S1G)* CONST
ELSTIF(ILJJ+1)=ELSTIF(ILIJ+1+(C(1,2)*GDSF(1,))*GDSF(2.J)
* +C(3,3)*GDSF(2.))*GDSF(1,7))*CONST
ELSTIF(II+1,J0)=ELSTIF(II+1,J1)+C(1,2)*GDSF(2,1)*GDSF(1,1)
* +C(3.3)*GDSF(1,1y*GDSF(2,J))*CONST
ENDIF
40 JI=NDF*J+]
50 T=NDF*+]
60 CONTINUE
RETURN
END

material properties used are
E=12x10%psi, v=0.2 (9.6.40)

The beam assumed to be in the plane state of stress so that (no distinction is
made between 1C;; and oCj; for the two formulations, and they are assumed
to remain constant during the deformation).



- IS )

366 NONLINEAR FINITE ELEMENT ANALYSIS

Table 9.6.1 contains the numerical results obtained with the updatec
Lagrangian formulation for the center deflection at the free end (also se
Figure 9.6.1), while Table 9.6.2 contains (also see Figure 9.6.2) the Cauchy
and second Piola—Kirchhoff stresses at the fixed end of the beam (at the Gauss
point located nearest to the top left end). The load was distributed equally at
the top and bottom of the beam. Surprisingly, the solution without iteration

Is very good, except for initial oscillations, It took only 2 or 3 iterations to
converge for each load step.

Table 9.6.1 Transverse deflections of a cantilevered beam under uniform
load (applied equally at the top and bottom), obtained with
the updated Lagrangian formulation (5x1Q8 mesh).

—qy T y ©(10,0.5) ©(10,0.5)
1.0 9.914 —-0.730 —0.086 -1.230*
9.968 —0.287 —0.032 —0.787
2.0 9.674 —1.884 —0.326 —2.384
9.822 -1.291 -0.178 -1.791
3.0 9.327 ~2.893 —-0.673 —3.393
9.530 -2.373 -0.470 —2.873
4.0 8.920 -3.750 -1.080 —-4.250
9.145 -3.327 —0.855 —-3.827
5.0 8.493 ~4.460 ~1.507 —4.960
8.699 —-4.153 -1.301 -4.653
6.0 8.070 ~5.045 -1.930 —5.545
8.244 —4.831 -1.756 -5.331
8.0 7.286 -5.926 —2.714 —6.426
7.391 —5.831 —2.609 —6.331
10.0 6.600 —6.540 -3.301 —7.040
6.656 —6.506 —3.344 —7.006
12.0 6.035 —6.981 —3.965 —T7.481
6.052 —6.971 —3.948 —7.471
14.0 5.550 -7.309 —~4.450 -7.809
5.557 —7.305 —4.443 ~7.805
16.0 5.137 —7.562 -4.863 —8.062
5.142 —T7.559 —4.858 —-8.059

*The first row corresponds to iteration and the second row to the no iteration.
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Figure 9.6.1 Transverse deflection v(10,0.5) versus load gy for a cantilever
beam under uniform load of intensity go.

Table 9.6.2 A comparison of the stresses 1y, and 5SM obtained with the
updated Lagrangian formulation.

—q0 Youx (1]3:1 lo Yy {I]Syy
1.0 153.55 161.76 23.15 28.88
2.0 300.14 332.20 43.65 65.41
3.0 434.44 503.43 61.50 107.05
4.0 555.38 671.46 77.11 151.82
5.0 662.83 833.34 90.87 198.02
6.0 758.08 988.19 103.17 244.66
8.0 918.14 1277.32  124.61 337.16

10.0 1046.77  1542.59  143.15 427.19
12.0 1152.26 1788.70 159.78 514.33
14.0 1240.32  2019.60  175.11 598.72

16.0 1314.87 2238.26 189.50 680.62

Table 9.6.3 contains the numerical results for the center deflection at the
free end and the second Piola—Kirchhoff stresses at the fixed end of the beam
(at the Gauss point located nearest to the top left end). The results were
obtained with the total Lagrangian description and with nonlinear iteration.
Results are included only for selective loads. Only 2 to 3 iterations were taken
to converge at each load step.
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Table 9.6.3 Transverse deflections of a cantilevered beam obtained wi:
the total Lagrangian formulation.

—go* 4(10,0.5) (10, 0.5) loge %Sm
1.0 —0.087 -1.230 143.84 151.97
2.0 -0.331 —2.382 263.28 294.79
4.0 -1.091 —4.237 426.04 538.12
6.0 -1.942 —5.516 509.29 728.24
8.0 -2.721 ~6.380 539.85 877.75
10.0 —-3.391 -6.979 536.14 998.51
12.0 -3.957 -7.408 009.23 1098.78
14.0 —4.434 —-7.726 465.82 1184.04
16.0 -4.839 -7.971 410.10 1257.97

*The linear solution at qo = —0.5 is ©(10,0.5) = —0.6227.

16 L)} [ | -l A | | l’:\l L |' Lt 1 | ] 1% 1 l
7 Cauchy stress :
] (five Q8 elements) i
12— —
3 J L
= 87 =
<23 3 L
g : | _
. " Second Piola-Kirchhoff stress -
4— : (five Q8 elements) =

(updated Lagrangian formulation)

T | T 1T ] | I e ! | T 2 ; | T F (7 J T T |
0 400 800 1200 1600 2000 2400
Axial stress, o,,

Figure 9.6.2 Normal stresses versus load for a cantilever beam under
uniform load of intensity gq.

This completes the development of finite element models of nonlinear
continua. The procedures developed herein can be readily extended to
axisymmetric problems, three-dimensional problems, problems with assumed
displacements and/or strains [7-9], and composite plates and shells [10]. The
extension of the formulations to transient problems is straightforward.
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9.7 Shell Finite Elements
9.7.1 Introduction

In previous chapters, the beam and plate elements were developed using
beam and plate theories that were derived from an assumed displacement
field. Such theories are limited to geometrically linear analyses and nonlinear
analysis with small strains and moderate rotations. The finite element models
to be developed in this section are based on three-dimensional elasticity
equations, and the geometry and the displacement fields of the structure
are directly discretized by imposing some geometric and static constraints
to satisfy the assumptions of a beam or shell theory. Both shell and beam
elements can have a variable number of nodes, and the shell element can
be modified as transition elements to model shell intersections or solid-to-shell
transition regions. Such formulations would appear to be especially applicable
to material and geometrical nonlinear analysis of shell-type structures in which
large displacements and rotations are experienced (see [2,10-27]).

9.7.2 Incremental Equations of Motion

Consider the motion of a body in a fixed Cartesian coordinate system.
Assuming that the body may experience large displacements and rotations,
we wish to determine deformed configurations of the body for different
times/loads. We assume that all configurations from time ¢ = 0 to the current
time £, both inclusive, have been determined, and the configuration C; for time
t =t + At is sought next. The total Lagrangian description with the principle
of virtual displacements (9.5.17) is used to express the dynamic equilibrium
of the body in the configuration Cs.

For dynamic analysis, the principle of virtual displacements (9.5.17) must
be modified to include inertial terms. In this case we have

/ 2p 241 6%u; d2V :/ 0p 24i; 6%u; d°V (9.7.1)
Vv oy

2

and hence the mass matrix can be evaluated using the initial configuration of
the body. Using Hamilton’s principle we obtain the equations of motion of the
moving body at time ¢ + At in the variational form as

/ p 2ty 6(3us) d°V —I—f 0Cijrs 0€rs 6 peij % +/ 6Sij 6 omij v
oy oy oy

=2R- . %,S;‘j 8 peij d'v (9.7.2)
JOV

where §(%u;) = Su;.
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9.7.3 Finite Element Model of a Continuurn

Equation (9.7.2) can be used to develop the nonlinear displacement, finite
element model for any continuum. The basic step in deriving the finite
element equations for a shell clement is the selection of proper interpolation
functions for the displacement field and geometry. In the case of beam and
shell elements, the approximation for the geometry is chosen such that the
beam or shell kinematic hypotheses are realized. First, we derive the finite
element model of a continuum and then specialize it to shells [24-26].

It is important that the coordinates and displacements are interpolated
using the same interpolation functions (isoparametric formulation) so that
the displacement compatibility across element boundaries can be preserved in
all configurations. Let

T 1 L
2 2
Og; = E Uk Oatf, 1, = E Uy '2f, 2z, = E Ui *xk (9.7.3)
k=1 k=1 k=1

b n
Yup= gy tuk, oy = Y teuf (i=1,2,3) (9.7.4)
k=1 k=1

where the right superscript k indicates the quantity at nodal point %, 14, is the
interpolation function corresponding to nodal point k, and n is the number of
element nodal points.

Substitution of Egs. (9.7.3) and (9.7.4) in Eq. (9.7.2) yields the finite
element model

o[M{A} + GIKL] + §[K i) {A%) = 2R} - }{F} (9.7.5)
where {A®} is the vector of nodal incremental displacements from time ¢ to

time ¢ + Af in an element, and J[M]{A¢}, }[K]{A®}, 3[Enz]{A°}, and }{F}
are obtained by evaluating the integrals, respectively:

/ %0 2ii; 62%u; 4OV, / 0Cijrs oers §oei; d°V
0y oy

r . 0
/DV 65i5 Somig d°V, Av 05 6oeij d°V

Various matrices are defined by

Kz = [ 3B olC] §(Bu) aY (9.7.6a)
BN = [ HBwil olS) §[Bri] a0V (9.7.6b)
vy = [0t ta) aty (0.7.6¢)
§F) = [ 3BT HS) av (9.7.6d)
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In the above equations, §[Br] and 5[BNL] are the linear and nonlinear
strain-displacement transformation matrices, o[C] is the incremental stress-
strain material property matrix, 41S] is a matrix of 2nd Piola- Kirchhoff stress
components, §{S} is a vector of these stresses, and ![H] is the incremental
displacement interpolation matrix. All matrix elements correspond to the
configuration at time ¢ and are defined with respect to the configuration at
time ¢ = 0. It is important to note that Eq. (9.7.5) is only an approximation
to the actual solution to be determined in each time step [see Eq. (9.5.15)].
Therefore, it may be necessary to iterate in each time step until Eq. (9.5.15)
with inertia terms, is satisfied to a required tolerance.

The finite element equations (9.7.5) are second-order differential equations
in time. In order to obtain numerical solutions at each time step, Eq. (9.7.5)
needs to be converted to algebraic equations using a time approximation
scheme, as explained in Chapter 8. In the present study the Newmark scheme
(see Section 8.2.3 for details) is used.

In the Newmark time integration scheme, the displacements and velocities
are approximated by [see Eqgs. (8.2.22) and (8.2.23)]

. 1 . .

HAAL = AtH{AY +HAY + (AtJQ[(i - B) YA} + 4 A AY
tALAY = H{A} + At[(1 - a) {A} +a HAHAY] (9.7.7)
where o = % and 8 = % for the constant-average acceleration method, a,z;d At
is the time step. Rearranging Egs. (9.7.5) and (9.7.7), we obtain [§[M] ~ §[M];

see Eq. (8.2.15)] A h
ol K{A} =*{R} (9.7.8)
where {A} is the vector of nodal incremental displacements at time ¢, {A} =

‘H'At{A}—t{A}, and

SIK] = a3 §[M] + §[Kr] + o[ENL] (9.7.9a)

(R = (R} ~ F} +HM) (as*{A} +aa {4} + a5 4AY}) (07.90)

1 1
i = = 5 = — — 1 9.7.10
| B = Frage “ ast, as 23 ( )

Once Eq. (9.7.8) is solved for {A} at time t+ At, the acceleration and velocity
vectors are obtained using [a; = @At and az = (1 — a)At; see Eqgs. (8.2.19)]
HAHAY = ag{A} - s {A} - as*{A}
HALAL = A} + a1 A} 4+ a2 {A) (9.7.11)
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The finite element equations (9.7.8) are solved, after assembly and
Imposition of boundary conditions, iteratively at each time step until Eq
(9.5.15) is satisfied within a required tolerance. The N ewton-Raphson method
with Riks-Wempner algorithm (see Appendix A1) is used in the present study.

9.7.4 Shell Finite Element

The shell element is deduced from the three-dimensional continuum element
by imposing two kinematic constraints: (1) straight line normal to the mid-
surface of the shell before deformation remains straight but not normal after
deformation; (2) the transverse normal components of strain and stress are
ignored in the development. However, the shell element admits arbitrarily
large displacements and rotations but small strains since the shell thickness
Is assumed not to change and the normal is not. allowed to distort [22, 24-26,
28].

Consider the solid three-dimensiona) element shown in Figure 9.7.1. Let
(€,m) be the curvilinear coordinates in the middle surface of the shell and ¢
be the coordinate in the thickness direction. The coordinates (¢, n, ¢) are
normalized such that they vary between —1 and +1. The coordinates of a
typical point in the element can be written as

H 1+4+¢ 1- 5
zi= Y k(&) [——9-&(3? Jtop + —‘§‘£ (% bottom (9.7.12)
k=1 = '

where n is the number of nodes in the element, and ¥y ((,n) is the finite
element interpolation function associated with node k. If Yi(€,n) are derived
as interpolation functions of a parent clement, square or triangular in-plane,
then compatibility is achieved at the interfaces of curved space shell elements.
Define

Vs = (@F)sop = (2)bottom, 6§ = VE/[VE| (9.7.13)

where V¥ is the vector connecting the upper and lower points of the normal
at node k. Equation (9.7.12) can be rewritten as

3= 306 |(@Eosa + V8] = 3 6 [(eF o+ Shuch| 0119
k=1 - k=1

where hy = V5| is the thickness of the shell element at node k. Hence,
the coordinates of any point in the element at time # are interpolated by the
expression

¢

n
'z = g€ n) [le + 53%16%} (9.7.15)
k=1
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Figure 9.7.1 Geometry and coordinate system of a curved shell element.

and the displacements and incremental displacements by

Ly = 1o = 02y = Zwk E.17) {1 g C (legﬁ—ﬂeﬁt)} (9.7.16)

Ui = 2’.‘.;53' = l’ua‘ — Z ¢k(§ T?) [u? + ghk (283% - 1821)} (9717)
k=1
Here 'uf and uf denote, respectively, the displacement and incremental
displacement components in the x;-direction at the kth node and time ¢. For
small rotation d§2 at each node, we have

2 = 05 Tel + oF Lek 4 ok Lek (9.7.18)
the increment of vector 'é§ can be written as
Alef =265 —1eb = d x 'ef = 0f '] - 05 &} (9.7.19)

Then Eq. (9.7.17) becomes
— . fy %\3 g_ k 1 k y — 0y of
Ui = kgl "'Pk(g: Ti) [uz + Qhk (6 fjlz 92 th)] (3 12, ‘3) (9720)

The unit vectors &% and &5 at node k can be obtained from the relations

X E, x 18k
gh= 2 5 lgk =gk i gk (9.7.21)
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where E; are the unit vectors of the stationary global coordinate systerr
(%1, %2, %z3). Equation (9.7.85) can be written in matrix form as

{u} = {w1 w2 w3} T = 1[H],, 5 (Ao (9.7.22)

where {A¢} = {uk ok 6E1T (i = 1,2,3,k=1,2,...,n, and n is the number of
nodes) is the vector of nodal incremental displacements (five per node), and
'[H] is the incremental displacerment interpolation matrix

Y, 0 0 %Uﬁkﬁlk le‘;fl —éwkchkle’gl
Hlsxsn=|... 0 Yk 0 JupChileh, —3UrChy Lek,
0 0 ’!,[Jk %?,I’)k(:hk 16?3 ‘%T.if)kchk 1(3';3 Ve
(9.7.23)
For each time step or iteration step one can find three unit vectors at each
node from Egs. (9.7.19) and (9.7.21).

From Eq. (9.3.17) the linear strain increments {p¢} = {0€11 0€22 pes3 20e19
20€13 20€23} T can be expressed as

{oe} = "[A]{ou} (9.7.24a)
where {ou} is the vector of derivatives of increment displacements,

T
{oﬂ-} = {0“1,1 0U1,2 0U1,3 0U2,1 QU22 0U2,3 0U3,1 0U32 (1’153,3}

L+ duy 0 0 co o Busa 0 0
0 (1)1.&1,2 0 - 0 éu&g 0
1[A]6 _ 0 0 (I]L-‘,l_g cen 0 . 0 1+ é‘u;g_.g
e 111.1‘2 1+ éu1‘1 0 . é‘u,g,g 6113?1 0
ouL3 0 1+ éum R é'u,g‘g 0 &1)1!,3,1
0 éul‘g é’u‘,l__z ¥ 0 1+ éu'g,‘:_.; oUs,2
(9.7.24b)

The dots correspond to the entries (not displayed due to the page width)

51&2‘1 0 0
0 1+%U2‘2 0
_ 0 0 éug,g
. 1+éu2,2 éu;;'; 0
Ju2,3 0 dug1
0 éﬁg_g 1+§,u2.2
and ou;; = Ou;/8%;. The vectors {ou} and {pe} are related to the

displacement increments at nodes by

{ou} = [V] {u} = [N]"[H]{A%)
{oe} = '[Al{ou} = AN [H){A%} = 4[BLI{AY)  (9.7.25a)
B = '[4][N) *[A]
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where [N]T is the operator of differentials”

8
2 80%1 35812 533:-‘3 0 0 0 0 9 .
— 3
[M[T:=:{ B 0 0 5% 3% 7 O 0 0 (9.7.25b)
il a &
0 0 0 0 0 0 3 5 T

The components of '[A] include {u;;. TFrom Eq. (9.7.16) the global
displacements are related to the natural curvilinear coordinates (¢,7) and the
linear coordinate (. Hence the derivatives of these displacements ju;; with
respect to the global coordinates %z1, ®x9, and %z3 are obtained thrm:fgh the

relation
Aluy  Blus  Blug 61u1 311.(,2 8luy
(9?3?1 621}1 621:1 f BE 65
1., 17— | 8lu 81y a _0rp-1| 8y 8% At
ouigl= | som o2 Fom | = 1] o = “h (9.7.26)
dtug & lus 9lua 8luy 3 lus A luy
Uz 0Uzz  OUxg ac ¢
The Jacobian matrix °[J] is defined as
8%, 8%5 9%
dE ae 3
Orp | 8% 8% 8%z
[J] — | Ton on an (9727)

8%, 8%, 9%z
¢ a¢ an

and is computed from the coordinate definition of Eq. (9.7.15). The derivatives
of displacements 'u; with respect to the coordinates §,n, and ( can be
computed from Eq. (9.7.16). In the evaluations of element matrices in Eqgs
(9.7.6a-d), the integrands of }[BL], o[C], 3Bwc], 31S], 1[H], and {5} should be
expressed in the same coordinate system, namely the global coordinate system
(Oz1, %4, %3) or the local curvilinear system (7, 5, 75).

The number of stress and strain components are reduced to five since we
neglect the transverse normal components of stress and strain. Hence, the
global derivatives of displacements, [Ju; ;] which are obtained in Eq. (9.7.26),
are transformed to the local derivatives of the local displacements along the
orthogonal coordinates by the following relation

1,7 B 10
B_u] Gluy, 8 ug

oz} oz or)

8 tul Blul, AW, | _ T 11

dal, 35;2?2 a, | [6]3x3(0wi,5] [6]3x3 (9.7.28)
dluy ol 8y

Oz Oy azf

where [f]T is the transformation matrix between the local coordinate system

(z, zh, %) and the global coordinate system (%z1,%z2,%s3) at the integration
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point. The transformation matrix [f] is obtained by interpolating the ‘thref
orthogonal unit vectors (1é;, 185,183) at each node:

Zgﬂ %i egl 2t w"‘i eé‘l 2k=1 1»’1’):]3!51
! 7 .
6] = L Uk €y Tio e Th w,ﬂieEQ (9.7.29)
n ] [~
Dicivelel; Tp_; plek, B cutak

Since the element matrices are evaluated using numerical integration, the

transformation must be performed at each integration point during the
numerical integration.

In order to obtain 0[BL], the vector of derivatives of incremental
displacements {ug} needs to be evaluated. Equations (9.7.26) and (9.7.28)
can be used again except that Lu; are replaced by u; and the interpolation
equation for u;, Eq. (9.7.17), is applied.

The development of the matrix of material stiffness, o[C"], is discussed next.
Here we wish to present it for shell element composed of orthotropic material
layers with the principal material coordinates (%1, 22, 23) oriented arbitrarily
with respect to the local coordinate system (z1, %5, @4) (with 23 = a4). For a
kth lamina of a laminated composite shell the matrix of material stiffnesses is
given by

[Cu Cip Cig 0 0

12 Co Chg 0 0

olClwy = |Cls Chs Cl 0 0 (9.7.30)
0 0 0 Cy Oy

0 0 0 Cy Cl

where

C11 = m*Qu + 2m*n*(Q13 + 2Qes) + n* Qo
Cla = m*n*(Qu1 + Qo — 4Qgq) -+ (mh + ") Q12
Y16 = mn[m*Q11 = n2Qay — (m2 — n2)(Qup + 2Q66))
Caa = n* Q11 + 2m?n?(Qo + 2Qs66) + m* Q22
Céﬁ = mﬂ.[nQQn = m2Q22 + (m2 - n2)(Q12 + 2Q¢6)]
Cos = m*n*(Qu + Qaz — 2Q12) + (m? — n?)*Qss
14 =M Qua +1°Qs5,  Cls = mn(Qs5 — Qua)
Css = m*Qss + n2Quq
m =cosfy), n=sin Ok (9.7.31)

If

where (45 are the plane stress-reduced stiffnesses of the kth orthotropic lamina
in the material coordinate system. The Q;; can be expressed in terms of
engineering constants of a lamina

0 Ey 0 v12Fy 0 Eo
= ———, Q=" Q= —
== Viai91 1 — g1’ 1~ 109
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Qaa = Ga3, Qs5=G13, Qg6 = Gr2 (9.7.32)

where E; is the modulus in the z;-direction, Gij (i # j) are the shear moduli
in the ;-z; plane, and v;; are the associated Poisson’s ratios (see Reddy [10]).

To evaluate clement matrices in Eqs. (9.7.6a-d), we employ the Gauss
quadrature. Since we are dealing with laminated composite structures,
integration through the thickness involves individual lamina. One way is to
use Gauss quadrature through the thickness direction. Since the constitutive
relation ¢[C] is different from layer to layer and is not a continuous function
in the thickness direction, the integration should be performed separately for
each layer. This increases the computational time as the number of layers is
increased. An alternative way is to perform explicit integration through the
thickness and reduce the problem to a two-dimensional one. The Jacobian
matrix, in general, is a function of (¢, n, (). The terms in ¢ may be neglected
provided the thickness to curvature ratios are small. Thus the Jacobian matrix
O[J] becomes independent of ¢ and explicit integration can be employed. If ¢
terms are retained in °[J], Gauss points through the thickness should be added.
In the present study we assume that the Jacobian matrix is independent of ¢
in the evaluation of element matrices and the internal nodal force vector.

Since the explicit integration is performed through the thickness, the
expression for

1.0
[%;z:]’ {1][‘4’]? {Ou;}a ]'[HL (:g[BF}& {(]jE:J

are now expressed in an explicit form in terms of (. Hence, we can use exact
integration through the thickness and use the Gauss quadrature to perform
numerical integration on the mid-surface of the shell element.

For thin shell structures, in order to avoid “locking” we use reduced
integration scheme to evaluate the stiffness coefficients associated with the
transverse shear deformation. Hence we split the constitutive matrix ¢[C’]
into two parts, one without transverse shear moduli ¢[C'|p, and the other.
with only transverse shear moduli ¢[C’]s. Full integration is used to evaluate
the stiffness coefficients containing ¢[C'] g, and reduced integration is used for
those containing ¢[C’]s.

If a shell element is subjected to a distributed load (such as the weight or
pressure), the corresponding load vector 2{ R} from Eq. (9.7.6) is given by

2}31

T / UHT 2R, V04 (9.7.33)
04 2P3

where 2P; is the component of distributed load in the 0g,-direction at time
t + At, YA is the area of upper or middle or bottom surface of the shell
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element depending on the position of the loading and the loading is assumed
deformation-independent.

Substituting 1[H] into Eq. (9.7.33) yields

s R o
, 0 Tfiﬂk U 2P1
{R}snn:/DA ) 0 TR 0 . Yk 2p, 3d%4
-glf;%hk er;  3C¥rhilely, —icurhs lefs | | 2P
—3CUehi el 1Cuphy tek, —3Ctihy teks
Yk 2P
NGP NGP U 2P, 5
=g 9
3D N C R SRR LY M R

=l s=1 | 3Cukhy T, 2Pk,
1 3
—5CUkhy 2, 2P ek,

where h = Y NEE (§,m)hg is the shell thickness at each Gauss point, and W
is the weight at each Gauss point, and [0.J] is the determinant of the Jacobian
matrix in Eq. (9.7.27) at each Gauss point. Here the ¢ terms are retained
in Jacobian matrix and let ¢ equal to 1, —1, or 0, respectively, when the
distributed loading is at the top, bottom, or middle surface.

9.7.5 Numerical Examples

A number of numerical examples of isotropic and orthotropic plates and
shells are presented. Only static bending problems of plates and shells are
included. The Riks-Wempner method is employed for tracing the nonlinear
load-deflection path (see Appendix 1). For most of the problems the
reduced/selective integration scheme is used to evaluate the element stiffness
coefficients. For additional examples, the reader may refer to [22,24-26).

Simply-supported (BC1) orthotropic plate under uniform load

Figure 9.7.2(a) shows the plate and material properties used. A quarter of
the plate with the boundary and symmetry conditions shown in the figure is
modeled with four nine-node shell elements. The results are shown in Figure
9.7.2(b) along with the experimental results of Zaghloul and Kennedy [29]. For
this simply-supported plate, the finite element results are in good agreement
with the experimental results of Zaghloul and Kennedy [29].
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E, =3x10° psi, E, =1.28x10° psi,
Gy, =G5 =Gyy =0.37x10° psi, v;5 =0.32

h=0.138 in.
T b b e B
@) b=6inp—e -
4 @ 4 [ ] I
X
l—a =6 in.—
2.0
1.5 -
3 ’I
& 127 " Linear solution
o -
(b) g
=] -
= 0.8 ;
o . -
A ‘/' —-— Experiment [29]
TR —=— Present
00T —T1 1T 1

0.0 0.1 0.2 03~ 04 0.5
Center deflection, u, (in)

Figure 9.7.2 Geometrically nonlinear response of an orthotropic plate.
(a) Geometry and mesh. (b) Load-deflection curves.

Four-layer (0/90/90/0) clamped plate under uniform load

Figure 9.7.3(a) shows a clamped, symmetrically laminated, square plate under
uniform load. The material properties of a typical layer and finite element
mesh are also shown in the figure. A quarter of the plate is modeled using
four nine-node elements. The present results along with the experimental



380 NONLINEAR FINITE ELEMENT ANALYSIS

results of Zaghloul and Kennedy [29]
results are not in good agreement in
theoretical and experimental results is

are shown in Figure 9.7.3(b). The tw
this case. The difference between t}
attributed to possible difference in t}
lement analysis and those used in th
clamped boundary conditions used j
he finite element analysis), because t}
ainst independent finite element study by Putch

experiment (i.e. the exact nature of
the test may not be the ones used in t
present results are verified ag

and Reddy [30].

E, =1.8282x10° psi, E, =1.8315x10° psi,
Giz =Gy =Gy =0.3125x10° psi, vy, =0.2395

h =0.086 in.
Yy
@ b e o o &
a
b=6inf—= .
® & ¢ &
& —= X

2.0 ) o

(b)

Load intensity (psi)

— — Experiment [29]
—=— Present (close to [30])

' I ' | ' I
0.0 0.1 0.2 0.3 04 0.5

Center deflection, u, (in)

Figure 9.7.3 Nonlinear response of a clamped cross-ply laminated plate.
(a) Geometry and mesh. (b) Load—deflection curves.
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Cylindrical shell roof under self-weight

Here we consider the linear analysis of a cylindrical panel under its own weight
[sec Figure 9.7.4(a)]. This is often used as a benchmark problem [27] in the
literature to validate numerical methods (i.e. assessment of the performance
of shell finite elements). It was shown in [28] that with the uniform (i.e.
for all stiffness coefficients) reduction of integration order the quadratic and
cubic shell elements show a more rapid convergence and better accuracy than
with the reduced integration order applied to transverse shear terms only.
The linear results obtained in the present study with the nine-node quadratic
element and uniform reduced integration order are shown in Figures 9.7.4(b)
and 9.7.4(c). Even with one element the results show good agreement with
the exact solution [27], and for further mesh refinement the results are close
to the exact one.

Simply-supported spherical shell under point load

A simply supported isotropic spherical shell panel under central point load
[sec Figure 9.7.5(a)| is analyzed for its large displacement response using a
meshes of sixteen four-node clements and four nine-node elements in a quarter
of the shell. Figure 9.7.5(b) shows the responses calculated, including the
postbuckling range, with the modified Riks—-Wempner method. The figure
also includes the results of Bathe and Ho [17].

Shallow cylindrical shell under point load

An isotropic shallow cylindrical shell hinged along the longitudinal edges and
free at the curved boundaries and subjected to a point load is analyzed [see
Figure 9.7.6(a)]. Onec-quarter of the shell is modeled with four nine-node
shell elements. The structure exhibits snap-through as well as snap-back
phenomena. as shown in 9.7.6(b). The solution obtained by Crisfield [18]
is also shown in Figure 9.7.6(b) to be compared with the present results.

Problems -

9.1 Consider the uniform deformation of a square of side 2 units initially centered at
X = (0,0). The deformation is given by the mapping [3]

2= i(18+4X1 +6X5), Ty = :1(14 +6X3)

(a) Sketch the deformed configuration of the body.

(b) Compute the components of the deformation gradient tensor F and its inverse
(display them in matrix form).

(c) Compute the components of the right and left Cauchy—Green deformation
tensors (display them in matrix form).

(d) Compute the Green’s and Almansi’s strain tensor components (display them in
matrix form).

e e T e S MY | ; SOESSE u W me
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Symmetry line

L=¢g =0
g @

Simply supported
rigid diaphram
Ly =u,=¢,=0

(a)

E, =3x10°psi., v=0.0
pgh = 0.625 Ib/in®

1 U

Usg
o) RN

@
10°
Integration
Mesh rule 2 x 2
1x1 °
2x2 ¢
3x3 °
" uz
o] L4 400
] hd &
© 10° 20° 30°N\ ‘
- 30°
— —0.005
[ o
=~ 0.01

Figure 9.7.4 A cylindrical shell roof under self-weight. (a) Geometry and
the finite element mesh. (b) Vertical displacement on mid-
section. (c¢) Axial displacement at support.
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X3 Symmetry line: u, = ¢, =0

Simply supported:
U S Uy =uy =g, =0

E=10"psi,v=0.3
R=1001n., a= 30,9017 in. 7

Simply supported:

h=8.9154in. £
: u1=u2=u3:¢g=0

A Symmetry line:
4 » u,=¢,=0

(a)

20.0
17.5 - e Bathe and Ho [17]
@ 9-node elenrmm:s]_P -
& 4-node elements S 150 ¢
15.0 — 2
12.5 4
=
=
2
~ 10.0 7
Ry
]
o 7.8 1
=
5.0 7
2.5 +4
0.0 [ ] ] ] T ] r | T T T T T
0.0 05 1.0 1.5 2.0 25 3.0 35

Transverse deflection, u3fh

(b)

Figure 9.7.5 A simply supported spherical shell panel. (a) Geometry and
finite element mesh. (b) Load—deflection curves.
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Symmetry line: u, = @ =0

Simply supported:
w1=u2=u3: %:0

(a) h =6.35 mm,

Simply supported:
. Uy = Uy =Yg = %:{)

E=3103 Nmm®, v = 0.3
R =2540 mm, I = 254 mm.

Symmetry line:
uy =g, =0

0.7
0.6
0.5 1
0.4 4
0.3 -

Load, P (kN)

=0.5 T T T T T
0 5 100 15 20 25 30

Center deflection, u, (mm)

Figure 9.7.6 Geometrically nonlinear response of a shallow cylindrical
shell. (a) Geometry and finite element mesh. (b) Load—
deflection curves.

9.2 Consider the deformation given by the mapping 13]

7 = i [4X) + (9 -3X; - 5Xp — X1 Xo)¢], @3 = i [4Xo + (16 + 8X1) 4

(a) For X = (0,0) and ¢ = 1 determine the deformation gradient tensor F and right
Cauchy-Green tensor C.
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(b) Find the eigenvalues (stretches) A, and A and the associated eigenvectors N; and
Ny. Partial answer: \; = 2.2714, N; = {0.8385 0.5449}T,

(¢) Use the polar decomposition to determine the symmetric stretch tensor U and
rotation tensor R.

Determine the displacements and strains in the (z;, x9) system for the bodies shown in

Figure P9.3.

Determine the displacements and strains in the (@1.z9) system for the bodies shown in

Figure P9.4.

Xy Iz

c. e -»'e|¢__
e
j :

A B\
A =— a—>B

xp, Xy

Figure P2.3 Figure P9.4

Consider the infinitesimal tetrahedron in Cartesian coordinates shown in Figure P9.5. If
—ty,—tg, —ts, and t denote the stress vectors in the outward directions on the faces of
the infinitesimal tetrahedron whose areas are Asy, Asg, Asy, and As, respectively, we
have by Newton’s second law for the mass inside the tetrahedron,

tAs —t1A81] —tolsy —t3Ass + pAvf = pAva (a)

where Awv is the volume of the tetrahedron, p the density, { the body force per unit mass,
and a the acceleration. Establish the Cauchy formula by writing

t; = 04181 + 03082 + 0,383 = 04;€; (b)
Asy = (h-&;)As, Asy=(0-&)As, Asy=(h-é3)As (c)
Ay = A_ih As (d)

where Ah is the perpendicular distance from the origin to the slant face.

Figure P9.5
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9.6 Establish the following relationships between area elements and volume elements of
reference configuration and current configuration:

(a) Nanson’s formula: fdg — F-T.NJ dA.
(b) dv=J av.

where dA and dV are area and volume elements, respectively, in the reference
configuration and dg and dv are area and volume elements, respectively, in the deformed
configuration.

9.7 Let an arbitrary region in a continuous medium be denoted by v and the bounding closed
surface of this region he continuous and denoted by 5. Let each point on the bounding
surface move with the velocity v,. Tt can be shown that the time derivative of the volume
integral over some continuous function Q(x,1) is given by

%[@(x,t]dvz/%‘tg dv-l—j{@‘fs'ﬁd*"' (a)

This expression for the differentiation of a volume integral with variable limits is
sometimes known as the three-dimensional Leibniz rule. The material derivative operator
D/Dt corresponds to changes with respect to a fixed mass, that is, pdv is constant
with respect to this operator. Show formally by means of Leibniz’s rule, the divergence
theorem, and conservation of mass that

D o [ Df .

9.8 Newton’s second law of motion applied to a continuum states that the rate of change of
momentum following a material region of fixed mass is equal to the sum of all the forces
on the region. When the forces are divided into surface forces and body forces, Newton’s

second law reads:
%/gvd@zﬁ[ﬁ-gds-f-/pbdv (a)

where 7 is the surface stress tensor, b is the body force per unit mass, p is the mass
density, and v is the materiai velocity. Since the material particle mass pdv is constant
with respect to the material time derivative D/Dt, make use of the divergence theorem
and obtain the differential form of Newton’s second law of motion for a continuum (see
Chapter 7):

p%‘i =div g+ pb (b)

9.9 Let e denote the thermodynamic internal energy per unit mass of a material. Then the
equation of change for total energy of a material region can be written (see Chapter 7):

D v? N o .
b_t/’o(e"“g_) d":j{n‘f"vd8+fpb-vdv—f§q-nds (@
v & v &

The first two terms on the right-hand side describe the rate of work done on the material
region by the surface stresses and the body forces. The third integral describes the net
outflow of heat from the region, causing a decrease of energy inside the region. The
heat-flux vector q describes the magnitude and direction of the flow of heat energy per
unit time and per unit area.

T T o T
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By suitable operations obtain the differential form of the energy equation:
D v2 . o :
Lo e+§ = div (a-v)+pb-v— div g (b)
Subtract the contribution from kinetic energy and obtain
De . — 3. :
p—D—t=dlv (J-V)—V< div o — div q (c)

This is called the thermodynamic form of the energy equation for a continuum.

9.10 Determine the two-dimensional displacement ficld and the infinitesimal strain field for
the simple shear of a rectangular block shown in the figure below. Determine the normal
and shear strain in the diagonal line element of the rectangular block shown in Figure

P9.10.
Xy
XZ
C‘_'._el) K _’[ €y r.g
75 =
b Loy
/’ [
e o
g m— = - .
Figure P9.10
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Material Nonlinearities
and Coupled Problems

10.1 Introduction

Recall that nonlincarities arise from two independent sources. (1) Nonlinearity
due to changes in the geometry or position of the material particles of a
continuum, which is called the geometric nonlineerity. (2) Nonlinearity due to
the nonlinear material behavior, which is called material nonlinearity. In solid
mechanics, the geometric nonlinearity arises from large strains and Jor large
rotations, and these enter the formulation through the strain-displacement
relations as well as the equations of motion. In fluid mechanics and coupled
fluid flow and heat transfer, the geometric nonlinearity arises as a result of
the spatial (or Eulerian) description of motion, and they enter the equations
of motion through material time derivative term. Material nonlinearity in
all disciplines of engineering arise from nonlinear relationship between the
Kkinetic and kinematic variables, for example, stress—strain relations, heat flux-
temperature gradient relations, and so on. In general, material nonlinearities
arise due to the material parameters (e.g. moduli, viscosity, conductivity,
etc.) being functions of strains (or their rates), temperature, and other basic
variables.

The finite element formulations presented in the previous chapters were
Jargely based on geometric nonlinearity. However, the nonlinearity in the one-
and two-dimensional field problems discussed in Chapters 3 and 5 could have
come from either sources. In this chapter, material nonlinear formulations
are given attention. This field is very broad and special books are devoted
to various types of nonlinearities (e.g. plasticity, viscoelasticity, and non-
! Newtonian materials). The objective here is to briefly discuss nonlinear elastic
i and elastic-plastic material models for solids and power-law model for viscous
| incompressible fluids.
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10.2 Nonlinear Elastic Problems

Materials for which the constitutive behavior is only a function of the current
state of deformation are known as elgstic. In the special case in which the work
done by the stresses during a deformation is dependent only on the initial state
and the current configuration, the material is called hyperelastic, that is, there
exists a strain energy density function Uo(E;;) such that

oU;
Sij = ETE;E (10.2.1)
where S;; ard Ej; are the components of the second Piola-Kirchhoff stress
tensor and Green-Lagrange strain tensor, respectively. When U is a nonlinear
function of the strains, the body is said to be nonlinearly elastic. A nonlin early
elastic material has the following features: (a) Up is a nonlinear function of
strains, (b) all of the deformation is recoverable on removal of loads causing
the deformation, and (c) there is no loss of energy (i.e. loading and unloading
is along the same stress-strain path; see Figure 10.2.1).
Here we consider a one-dimensional problem to discuss the finite element,
formulation of a nonlinear elastic material for the case of kinematically
infinitesimal strains. Consider the nonlinear uniaxial stress-strain relation

where e, is the infinitesimal strain, £ is a material constant, and F is a
nonlinear function of the strain.

The virtual work expression for the axial deformation of a bar made of a
nonlinear elastic material is

- [ ] " Osabese drdA — f " fou dz — PESu(z,) - Pesu(z)
A Ta Tg

I
- / [BA F(ra)Sere — f6u]da — Pebulny) - Pgu(zy)  (10.2.3)

The residual vector for the finite element model is

{

Re= [ [BA Ao _ | do - Py (10.2.4)

and the tangent stiffness matrix is

ORe % OF gy duys % ¢ OF \ duys dys

L SN, YR e b T T ) i

Ky du EA,/% Oz QU da & fou (df) dz dz *°
(10.2.5)

where small strain assumption is used in arriving at the last step.
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Figure 10.2.1 A nonlinear elastic stress-strain curve.

An example of the nonlinear elastic response is provided by Romberg-
Osgood model
oF

dv:tz
where n > 0 is a material parameter. The value of n = 1 yields the linear

elastic case. This discussion can be extended to multi-axial case, where

g f(&ij).

F(eze) = (€za)"

=1 (Egg)" (10.2.6)

10.3 Small Deformation Theory of Plasticity
10.3.1 Imtroduction

Plasticity refers to non-recoverable deformation and non-unique stress paths
in contrast to nonlinear elasticity, where the entire load—deflection path is
unique and the strains are recovered on load removal. The mathematical
theory of plasticity is of a phenomenological nature on the macroscopic scale,
and the objective of the theory is to provide a theoretical description of
the relationship between stress and strain for a material that exhibits an
elasto-plastic response. The plastic behavior is characterized by irreversibility
| of stress paths and the development of permanent (i.e. mnon-recoverable)
deformation (or strain), known as yielding (or plastic flow).

If uniaxial behavior of a material is considered, a nonlinear stress-strain
relationship on loading alone does not determine if nonlinear elastic or plastic
behavior is exhibited. Unloading part of the curve determines if it is elastic or
plastic [see Figure 10.3.1(a) and (b)]; the elastic material follows the same path
in loading and unloading, while the plastic material shows a history-dependent
path unloading.
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Figure 10.3.1 Stress—strain behavior of (a) ideal plasticity, and (b) strain-
hardening plasticity.

The theory of plasticity deals with an analytical description of the stress—
strain relations of a deformed body after a part or all of the body has yielded.
The stress-strain relations must contain:

1. The elastic stress-strain relations.
2. The stress condition (or yield criterion) which indicates onset of vielding.

3. The stress—strain or stress- strain increment relations after the onset of
plastic flow.

10.3.2 Idea} Plasticity

Many materials exhibit an ideal plastic (or elastic- perfectly-plastic) behavior,
as shown in Figure 10.3.1(a). In this case. there exists a limiting stress, called
yield stress, denoted by oy, at which the strains are indeterminate. For all
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stresses below the yield stress, a linear (or nonlinear) stress—strain relation is
assumed:

oi; < oy linear elastic behavior

oij 2 oy plastic deformation (not recoverable) (10.3:0)

10.3.3 Strain Hardening Plasticity

A hardening plastic material model provides a refinement of the ideal plastic
material model. In this model, it is assumed that the yield stress depends on

some parameter £ (e.g. plastic strain &), called the hardening parameter. The
general yield criterion is expressed in the form

F(oij,k) =0 (10.3.2)

This yield criterion can be viewed as a surface in the stress space, with the
position of the surface dependent on the instantaneous value of the hardening
parameter £. Since any yield criterion should be independent of the orientation
of the coordinate system used, F should be a function of the stress invariants
only. Experimental observations indicate that plastic deformation in metals is
independent of hydrostatic pressure. Therefore, F' must be a function of the
stress invariants of the deviatoric stress tensor o:

F(J3,J5,6) =0, Jj= 0}, J{;:;.agjcr;kg;ﬂ (10.3.3)

Two of the most commonly used yield criteria are given next.

The Tresca yield criterion
‘ F=25cos-Y(k)=0, &= \/?5 (10.3.4)

The Huber-von Maises yield criterion

| F=1/3],-Y(x)=0 (10.3.5)

' where Y is the yield stress from uniaxial tests, § is the angle between the line
of pure shear and the principal stress o1, and & = 4/J} is called the effective
stress.

After initial yielding, the stress level at which further plastic deformation
occurs may be dependent on the current degree of plastic straining, known
as strain hardening. Thus, the yield surface will vary (i.e. expand) at each
stage of plastic deformation. When the yield surface is independent of the
degree of plasticity, the material is said to be ideally (or perfectly) plastic.
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If the subsequent yield surfaces are a uniform expansion of the original yield
surface, the hardening model is said to be isotropic. On the other hand, if the
subsequent yield surfaces preserve their shape and orientation but translate in
the stress space, kinematic hardening is said to take place.

Consider the uniaxial stress-strain curve shown in Figure 10.3.2. The
behavior is initially linear elastic with slope E (Young’s modulus) until onset
of yielding at the uniaxial yield stress oy. Thereafter, the material response is
elasto--plastic with the local tangent to the curve, Er, called the elasto-plastic
tangent modulus, continually changing.

At some stress level ¢ in the plastic range, if the load is increased to induce
a stress of do, it results in a corresponding strain de. This increment of strain
contains two parts: elastic de® (recoverable) and plastic de? (non-recoverable):

do do

de =de® +de?, de*=—, — = E 10.3.6
= + <y d E ? d&_ i ( ]
The strain-hardening parameter, H, is defined by
do "
- or (10.3.7)

er dee E
deP 1-4= " [ _Er
The element stiffness for the linear elastic portion is, say [K€|:
Ty
K] = / [BI7[D°[B] da (10.3.8)
Tp
where [D,] is the linear elasticity matrix (D¢ = E for the uniaxial case). When

the element deforms plastically, [D¢] reflects the decreased stiffness. This is
computed, for uniaxial material behavior, by the following procedure: The

Stress
_——Slope E - Elastic—plastic
. tangent modulus
[‘ {’ ’!, ~
2 SN
/ S
do o / et P
P / de
J’ dsc
Oy |
E
= Strain

Figure 10.3.2 A strain hardening plastic behavior for the uniaxial case.
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increment in load dF causes an incremental displacement du
du = hedegy = he (de€ + deP), dF = Ado = A HdeP (10.3.9)

where he is the length and A, the area of cross-section of the element. The
effective stiffness is

dF A Hde? EA E
Eﬁp = —_—= & sz £ — y
du  he(de® + deP) he [1 (E+H)] (10.3.10)
; The element stiffness for plastic range becomes,
| o
| Lo f |B]" D] B]dz (10.3.11)

where [D¢P] is the material stiffness in the plastic range. For uniaxial case
D = E°P,

Equation (10.3.8) is valid when ¢ < oy and Eq. (10.3.11) is valid for
o > oy. Note that do = 0 — oy when ¢ > oy.

10.3.4 Elastic—Plastic Analysis of a Bar

Here we present a detailed computational procedure for the analysis of an
clasto—plastic problem. The procedure is described via a one-dimensional
i clasto—plastic bar problem. We shall consider a linear strain-hardening
material subjected to an increasing uniaxial load.

Update of stresses

At a load-step number r where the deformation is elastic, the stress in a typical
| element with the strain increment Ae” can be readily updated as
| r (r—1) r 2
| o =o; '+ Eile (10.3.12)
where E; is the elastic modulus of element . This linear elastic behavior
will continue up till a point where the resulting strain increment will initiate
plastic yielding of the material. Now the updating of the stress in the element
is not as straighforward as given in Eq. (10.3.12), and it can get complicated
when the deformation is partly elastic and partly elasto-plastic, as shown from
Points A to B in the stress-strain curve of Figure 10.3.3.

To update the stress state from Points A to B, one can first assume that the
deformation is elastic and compute the corresponding elastic stress, commonly
referred to as the elastic stress predictor. Using Eq. (10.3.12), the elastic stress
' predictor o, can be calculated as

oo = 0"V + BiAE] (10.3.13)
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Computing the elastic stress predictor brings the stress state from Point A to
A’. A correction is made to transfer the stress state back to the elasto-plastic
state at Point B. We introduce a correction factor R (see Figure 10.3.3)

—_ T~ 0y
= D (10.3.14)
so that the stress at point B can be written as
of ="V + (1~ R)E, + REr) AT (10.3.15)

Here E7 denotes the elastic-plastic tangent modulus, which is related to the
elastic modulus £ and strain-hardening parameter H by Eq. (10.3.7). In the
case where the clement has already yielded in previous load steps, as illustrated
by point C in Figure 10.3.3, the approach of determining the clastic stress
predictor and making correction to the stress state at point D still applies
with R = 1 in Eq. (10.3.15):

of =0V 4 BrAe (10.3.16)

1

Update of plastic strain

The extent of plastic flow in a deformed material can be readily characterized
by the measure of plastic strain. To determine the plastic strain in an element
at point B of Figure 10.3.3, it will be useful to rewrite Eq. (10.3.15) as

O’;' =0y + ET(R Aegl) =0y + AV 4 (10317)
o) cg
ot IiP ;’i}
/L
i /{ ! ¢
oL
; i B
a;ik :
e B
o T SRR
| |
I |
I I
| ?
i‘ﬁ"-—) £
R

Figure 10.3.3 Transition of elastic to elasto -plastic behavior.
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Equation (10.3.17) can be interpreted as that adjusts the stress state at
point A to the yield stress before predicting the elastic stress and its correction.
This will allow one to isolate the stress component Ao? and strain Re] that
are involved in the plastic flow. With Eq. (10.3.6), the plastic strain increment
is

L E;

Equation (10.3.18) can also be used for elements that have already vielded in
previous load steps by setting R = 1.

AoT
AE;E _ RAE; . a; — (1 i EI) RAE:E‘ (10318)

Update of yield stress limit

Besides assessing the extent of plastic deformation, the measure of the plastic
strain will become especially crucial for strain-hardening materials where the
yield limit is a function of the plastic strain. A plot of yield limit against the
plastic strain for a typical linear strain-hardening material is shown in Figure
10.3.4. Once the plastic strain occurs, the yield limit will be modified and
updated as

0y = 0y + H Aey; (10.3.19)

Identification of deformation modes

The updated yield limit will come in handy when one is to check the type of
deformation an element is undergoing. Once the correct type of deformation
is identified, the stress and strain values can then be updated according to
Egs. (10.3.15) and (10.3.18). There are four types of deformation:

v

Figure 10.3.4 Stress—strain behavior of a strain-hardening material.

i
|
|
1
|

__I /ISR Y s



398 NONLINEAR FINITE ELEMENT ANALYSIS

(a) Elastic Loading: (an element that has not yielded previously continues to
deform elastically)

loF = < |of;? and |oef < |o]; (10.3.20a)

(b) Elastic-Plastic Loading: (an element that has not yielded previously will
deform elasto-plastically)

lof ™ <oy and  |owi] > |0l (10.3.20b)

(c) Plastic Loading: (an element that previously yielded will continue to
deform plastically)

o7 > 1ot and o] > Jof ) (10.3.20¢)

(d) Elastic Unloading: (an element previously vielded is now unloading
elastically)

o7~ > |l and |ou| < |07 (10.3.20d)

Force equilibrium

Since the displacement finite element model is based on the principle of virtual
displacements, the solution satisfies the equilibrium equations, provided the
deformation is linearly elastic. However, in the finite element analysis of
clasto-plastic problems equilibrium equations may not be satisfied during the
period when stresses are adjusted to account for plastic strains. Adjustments
must be made to achieve equilibrium at each step by redistributing the forces
neighboring elements.

For example, consider a node N at the interface of element i that has
vielded and the adjacent element i + 1 that is still elastic (see Figure 10.3.5).
At this node, the force equilibrium will be violated during the analysis because
the force in element ¢ is limited such that the stress in the element does not
exceed the yield stress. The difference between the force calculated using the
elastic analysis and the plastic force must now be taken up by all other elastic
elements in the mesh. Thus to restore equilibrium of forces, a force correction
must be made at the node N:

AF = Fi—= By By (10.3.21)
_’-*A.F‘
—
Fg “_p——— | i ‘ i—l-l—l —_—
N

Figure 10.3.5 Force equilibrium at node .
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However, to preserve the finite element equations of the original problem
(to retain the same forces in other unaffected elements), the force correction
cannot be imposed as a nodal force. Instead, the force correction may be
applied as a nodal displacement

AF L;
Erd;

Aufy = (10.3.22)
where L; and A; are the length and cross-sectional arca of element i. This
correction procedure will continue until force equilibrium at all nodes is
restored, within an acceptable error of tolerance.

Figure 10.3.6 contains the flow chart of various steps in the elasto-plastic
analysis of a typical problem. A subroutine that updates stresses and plastic
strains is also given in Box 10.3.1.

A numerical example

Consider a bar of length 5 m that is fixed at one end and is subjected to a
uniform body force f. The material properties of the bar are taken as

E=10*N/m?, A=1m? o,=5N/m? H=10°N/m?

The bar is discretized using a mesh of five linear elements. The elasto—plastic
iterative scheme discussed in this section was implemented and the results
are presented in Tables 10.3.1 and 10.3.2. At the start of the analysis when
clements are still elastic, a nominal body force of 0.005 N/m was imposed to
find the maximum stress induced in the elements. The critical load Fy, for the
first clement to yield was computed from this maximum element stress and is
imposed in the next load-step:

. | ' (10.3.23)
mazx|o;|

Here i is the element number and N is the total number of unyielded elements.
In the new load-step where f is 1.1111 N/m, the computed results reveal that
the first element (clement 1 in this example) had just yielded; up to this point,
the analysis is still elastic. Then another nominal body force of 0.005 N/m is
added to calculate the critical load for the next element to yield. The stiffness
of the yielded Element 1 is reduced in this load-step and the results in Table
10.3.2 indicate a violation of force equilibrium at the nodes connecting the
yielded element, except for the node that is fixed. Corrections to the nodal
displacements were made until equilibrium was satisfied at all nodes. Only
then, the critical load for the next element to yield could be calculated and
the same procedure is repeated until all elements yield.

Reaction forces at the fixed end of the bar against the free-end
displacements are plotted in Figure 10.3.7, together with the results from

R T R R A e Ry SRR R B



400 NONLINEAR FINITE ELEMENT ANALYSIS

¢ Load increment
fr = ’cr—l +:ﬁf
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Compute element
strain increment

% START

v

i

(assume elastic
¥ deformation)
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Figure 10.3.6 Flow chart for elasto-plastic analysis of a bar.
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Box 10.3.1 Fortran statements for the subroutine to calculate the stress
and plastic strain of a bar element.

SUBROUTINE STRESS(N,MXELM,NDF,NPE.JELEM,ELSIG,PSTRAIN)

C

C The subroutine evaluates the stress at the center of the element and then update

C the siress and plastic strain against the yield criteria.

C SIGMA ... Updated elastic stress YOUNG ... Elastic modulus

C TYIELD ... Current yield limit TYOUNG... Elasto—plastic tangent modulus
C ELSIG(N) ...Elastic stress of element N YSTRESS... Yield stress

C PSTRAIN(N)... Plastic strain of element N HP ... Strain hardening parameter

C

: Definition of global and lacal variables and common blocks

C Compute the total strain increment at the center of clement
H=ELX(NPE)-ELX(1)
CALL SHP1D (H,IELEM,NPE,0.D0)
UX=0.D0
DO K=1NPE
UX=UX~+EPV((K-1)*NDF+1)*GDSF(K)
ENDDO
C Update the elastic stress and current yield limit
SIGMA = ELSIG(N)+YOUNG*UX
IF(ELSIG(N).GT.0.0)TYIELD=YSTRESS+HP*PSTRAIN(N)
IF(ELSIG(N).LE.0.0)TYIELD=—YSTRESS+HP*PSTRAIN(N)
C Check the updated clastic stress for yielding
IF (ABS(ELSIG(N)) .GT. ABS(TYIELD)) THEN
IF (ABS(SIGMA) .GT. ABS(ELSIG(N))) THEN
R=1D0
ELSE
R=0.D0
| ENDIF
i ELSE
| IF (ABS(SIGMA) .GT. ABS(TYIELD)) THEN
R = (ABS(SIGMA)-ABS(TYIELD))/(ABS(SIGMA)-ABS(ELSIG(N)))
ELSE
R = 0.D0
ENDIF
ENDIF
C Correct the elastic stress and calculate the plastic strain
ELSIG(N)= ELSIG(N)+((1.D0-R)*YOUNG+R*TYOUNG)*UX
PSTRAIN(N)= PSTRAIN(N)+(R/(1.DO+HP/YOUNG))*UX
RETURN
END
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Table 10.3.1 Nodal displacements for various load steps.

Body force f Node no. Nodal displacement*

0.0050 2.2500%10-6
4.0000x10-6
5.2500%10-6
6.0000x10-6

6.2500%10-6

5.0000x10~%
8.8889x 104
1.1667x10-3
1.3333%10-3
1.3889%10-3

5.2475x10~% (5.2475x10-4)
9.1539x10~* (9.1539%10—4)
1.1944x10~3 (1.1944x10-3)
1.3618x103 (1.3618x10-3)
1.4176x10~3 (1.4176x10-3)

4.9525x102 (4.4525%10-2)
8.8044x1072 (7.8044x10~2)
1.1556x10~1 (1.0056x10~1)
1.3207x10-1 (1.1207x10-1)
1.3257x10% (1.1257x10-1)

"
|

QL OB QW QN §— Qi
Iy

1.1111

1.1161

10.0050

e LI ] OO s O b (=2 =L S TR ] OO e WS b2

L= b

* Values in parenthesis are corrected to satisfy force equilibrium at each node.

100 4
90 1 — Present results (5 elements)
80 1 e ABAQUS (5 elements)
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g 0 !
40 1 |
E =10,000, |
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504 H=1000.0,=5 | |
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Nodal displacement at the bar end

Figure 10.3.7 Reaction forces versus nodal displacements at bar end.
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Table 10.3.2 Element stresses and strains for various load steps.

Body force Element Total strain Plastic strain Bar force
f number £ Ep |F| =cA
0.0050 1 12.2500x 105 0 0.0225
2 1.7500x 106 0 0.0175
3 1.2500x 106 0 0.0125
4 0.7500x10-8 0 0.0075
5 0.2500x10-6 0 0.0025
1.1111 1* 5.0000x10—4 0 5.0000
2 3.8889x 104 0 3.8889
3 2.7778x10—4 0 2.7778
4 1.6667x10—4 0 1.6667
5 0.5556x 104 0 0.5556
1.1161 1 5.5248x10~4 4.5680%x10-3 9.5680
2 3.9064x 104 0 3.9064
3 2.7903x 104 0 2.7903
4 1.6742x10~4 0 1.6742
5 0.5581x10~% 0 0.5581
Corrected 1 5.2475x10~% 0.2250x10—4 5.0225
to satisfy 2 3.9064x10~4 0 3.9064
force 3 2.7903x10—4 0 2.7903
equilibrium 4 1.6742x10~* 0 1.6742
5 0.5581% 10~ 0 0.5581
10.0050 1 4.9525%102 4.4568x 102 49.5680
2 3.8519x10~2 3.4563% 102 39.5630
3 2.7514x10—2 2.4558 %102 29.5580
4 1.6508%10-2 1.4553% 102 19.5530
5 0.5503%10—2 0.4548x10-2 9.5480
Corrected 1 4.4525x10-2 4.0023%10~2 45.0225
to satisfy 2 3.3519%10-2 3.0018x10-2 35.0175
force 3 2.2514x10~2 2.0013x10-2 25.0125
equilibrium 4 1.1508x10~2 1.0008x10—2 15.0075
5 5.0275x10% 0.0025%10—4 5.0025

* Element just yielded at that load step.

the commercial finite element software ABAQUS. There is a very good
agreement with the solutions generated by the iterative scheme discussed
and those obtained with ABAQUS. A 20-element mesh also produced results
identical to those in Figure 10.3.7; the results are also verified using ABAQUS.
Figure 10.3.8 contains the true stress—strain diagram of Element 1, where one
may note that the elasto-plastic material curve is recovered.
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Figure 10.3.8 True stress-strain curve of Element 1.

10.4 Non-Newtonian Fluids
10.4.1 Introduction

Some of the most challenging and important areas currently under
investigation in computational fluid mechanics concern flows of non-Newtonian
fluids. A non-Newtonian fluid is defined to be the one whose constitutive
behavior is nonlinear (i.e., stresses are nonlinear functions of strain rates).
Such fluids may or may not have memory of past deformation (i.e. viscoelastic
or not). Practical examples of such fluids are multigrade oils, liquid detergents,
paints, and printing inks. Polymer solutions and polymer melts also fall within
this category. All such flows are extremely important in forming processes of
_ various kinds applied to metals, plastics, or glass.

Numerical approaches used for analyzing flows of non-Newtonian fluids
differ vary little from the ones used for Newtonian fluids. When the shear
viscosity 1s a function of the rate of deformation tensor (i.e., for so-called
power-law fluids), the equation of motion can still be written explicitly in
terms of velocity components. For such fluids, the same formulations as those
of the Newtonian fluids can be used. For example, the pressure—velocity and
penalty finite element models discussed in Chapter 7 can be used for power-
law fluids. The constitutive equations of a viscoelastic fluid can be described
in terms of the extra stress components and are given in terms of either
differential equations or as integral equations. In a differential constitutive
model, the extra stress components and their derivatives are related to the
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velocity components and their derivatives [6-9]. The computational models
of viscoelastic fluids obeying a differential model require us to treat stress
components as independent variables along with the velocity components and
pressure.

Most existing works in the finite-element analysis of viscoelastic fluids
“have considered different types of Maxwell/Oldroyd models, in which both
viscosity and relaxation time are constants. The analyses were based on mixed
formulations in which the velocities, pressure, and stresses are treated as nodal
variables. An important class of fluids, which are characterized by shear
viscosity and elasticity require additional study from numerical simulation
point of view. The viscoelastic effects along with memory effects of such fluids
can be studied using the White-Metzner model [7].

The objective of this section is to study penalty finite element models
of power-law and viscoelastic White-Metzner type fluids. As a part of this
discussion, we present finite element models of equations governing flows of
viscous incompressible fluids through axisymmetric geometries. Therefore,
first we rewrite the conservation of mass and momentum in the cylindrical
coordinate system.

10.4.2 Governing Equations in Cylindrical Coordinates

Equations (7.3.1)-(7.3.3) can be expressed in a cylindrical coordinate system,
(r,0,z), by writing all vectors and tensors, including the del operator, in
terms of components in a cylindrical coordinate system. For example, the
del operator and the material time derivative operators in the cylindrical

coordinate system are given by
0 10 0 :
=8, — 48— — + 8. — 10.4.1
| V=l T 5t %5, (10.4.1)
D 0 g v 0 a
P A T T . - A 3 10.4.2
Dt o e T o8 oz (10-42)

where (&,,&p,8,) are the unit basis vectors and (vr, vg, v,) are the velocity
components in the 7, 8, and z directions, respectively. Note that the basis
vector &, is constant while the vectors &, and & depend on the angular
coordinate 0. Thus the derivatives of the basis vectors &, and & with respect
to the coordinates r and z are zero, and the derivatives with respect to 0 are
given by

—& (10.4.3)

The components of the strain rate tensor D in Eq. (7.2.13) and constitutive
relations (7.2.11) and (7.2.15) take the form
e 1 ?’U_ﬁ .

d
O 5 Dﬁ‘ﬂ ]

Der = 5,5 Troee T T
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Ov,
D=z = 0z’
10v, Oy
s i
9Z r 89 az k] 2D.z'r

Orr = =P +2uDy; og9=~P+2uDpg; 0., =—P+2uD,

Org = 21D, ;

The governing equations (7.3.1)-(7.3.3)

coordinate system are

NONLINEAR FINITE ELEMENT ANALYSIS

0gz = 2uDy, ;

vg 10v,

- T 50 (10.4.4)
v,

or

Car = 2uD,,

(10.4.5)

expressed in the cylindrical

%c%(mr) — %%% i % =0 (10.4.6)

(5 - 3) e e B 2o ey

P (%‘;_8 i ’”'fﬂ) — ofs +% :?%‘_’:_6) ?gﬁ + ﬂgﬁ"l; + 72 (104.7)
" (P%) — of. +§ ja(gizr) 3;;9 3(;2::): (10.4.7¢)
+34+Q (10.4.8)

where the stress components are known in terms of the velocity components
via equations (10.4.4) and (10.4.5). The viscous dissipation @ is given by

=2 (D2 + D}, + DZ) +4u (D% + D2, + D%) (10.4.9)
and the material time derivative becomes
D 0 vy a
LU 1 I 10.4.10
Di- et a0 T, ( )

Note that the time derivative of a vector (or tensor) in a rotating reference
frame is given by (sec Reddy and Rasmussen [5], pp. 69- 74)

5. = (B +ex0
daf =

where w = %@, = %8, is the angular velocity vector of the rotating frame of
reference. Therefore, we have

(10.4.11)

Vo .

(DV) (Dv) (L) x
— — s M i b v
Dt nonrot Dt roi N :
. [ Du, Ug . { Dug g . Duv.
= — Up— —_tv— ) +e.—= 4.12
e"(Dz ”‘%)“9(05“’”«) g 0L
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Equation (10.4.11) could be used in conjunction with (10.4.7a—c) to provide a.
description of fluid motion in a rotating cylindrical coordinate system.

For axisymmetric conditions (i.e. all variables are independent of 8, and
fo = vg = 0), the governing equations are simplied to

E—Q[?‘U )+ ov,
rors Oz

=0 (10.4.13)

Ovy o, Ouy 10(rowy) 00,  Opp
( Ot LTE Uz'&_) ,Ofr &+ = T + ‘a—z = T (10414&)
v, v, ov, 13(roy) 0o,
(G +w g T) =0t T Ty sl
orT orT oT 10 orT 0 oT
+@+Q (10.4.15)

10.4.3 Power-Law Fluids

Many fluids used in industrial applications are characterized by so-called
power-law constitutive behavior. Power-law fluids exhibit nonlinear material
behavior according to the relation

o=7—PL, 7=2u)D (10.4.16)
(n—1)
=i (T T (10.4.17a)
| = éD,-jDij (sum on 7 and j) (10.4.17b)

where 7 is the viscous part of the stress tensor ¢, I is the unit tensor, Iz is
the second invariant of D, and parameters pug and n characterize the fluid
(determined experimentally). For many non-Newtonian fluids, the viscosity u
decreases with increasing shear rate. These are called shear thinning fluids and
have the power law index n < 1. Fluids with power law index n > 1 are called
shear-thickening fluids. For such fluids, u increases with increasing shear rate.
For n = 1, Eq. (10.4.17a) gives the Newtonian relation (y = g, constant).
The power-law constitutive relation in (10.4.16) makes the problem nonlinear
for n # 1, even for the case where the convective term v - Vv is negligible.

To illustrate how the power-law comstitutive equation affects the finite
element equations, we consider steady, isothermal, axisymmetric flows of
viscous incompressible fluids. Assuming negligible viscous dissipation and
body forces, The governing equations (10.4.13)-(10.4.15) can be expressed

AR T A R OIS BTSeT  ATETL € § meE
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in terms of the velocity components (v,,,) as

19 Ov.
;5;(?-3;?_ + e 0 (10.4.18)
v,  du\ 10 v\ 8 [u 0w,
— & L —_- i i cxibi —
¢ (UT or %8s ) ror (2’{”' or ) o Oz [ﬂ' ( Oz i+ or )J
v, OP
-2 - (10.4.19)
"o %8z ) ror |\ T B 2z \“¥ 8,
oP
- (10.4.20)

The penaltyfinite eclement model of Egs. (10.4.18)-(10.4.20) is
straightforward. After replacing P in Eqs. (10.4.19) and (10.4.20) with

v, v,  Ov,
LER 1”) (10.4.21)

P=—y|—4+ 2
F}p((’)ir’ T+3z

one may construct their week forms and go on to develop the finite clement
model [note that Eq. (10.4.18) is no longer used]. The value of the penalty
parameter 7, that is most suitable for this class problems must be determined
by conducting numerical experiments with some benchmark problems. The
finite element model has the form

[C(v) + K(u) + Kpl{v} = {F} or K(V)|{v}={F} (10.4.22)

where [C], [K|, and [K,] are the convective, diffusive, and penalty
contributions to the coefficient matrix. Note that [C] and [K] both depend on
the unknown velocity field.

The direct iteration scheme for this case is given by
[K{v}"){v}" = {F} (10.4.23)

where [K] is evaluated using the viscosity g = p(D;;) computed according to
Eq. (10.4.17a) at the rth iteration. It would be more appropriate to compute
i at the Gauss points of the element and use it in the evaluation of K’ij,
than to assume p is element-wise constant. For example, consider the element
coefficients K}jl in the diffusion/viscous portion of the coefficient matrix:

1 [ Ow; O, oY; O
KU — / ik ke Y __-_?:__J) 0.4.24
” . k Hor oz " H dy By dzdy S )

T R R R T T
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For numerical evaluation of K}jl we use the Gauss quadrature rule

NGP
Kil = > AMU(I,J)*[2.0 « GDSF(1,i)* GDSF(1,5)
I,J=1

+GDSF(2,i) * GDSF(2,j) | * CONST (10.4.25)

where AMU(I,J) is the value of u at the (I, J)th Gauss point. Obviously,
AMU (I, J) must be evaluated using Eq. (10.4.17a) prior to using it in Eq.
(10.4.25).

10.4.4 White—Metzner Fluids

The general constitutive equation for fluids dominated by shear viscosity is
given by (see [7-9])

P ME v Ve ()T (W) =2D (10426)

where ) is the relaxation time, 7 is the shear viscosity of the fluid, and D is
the rate of deformation tensor.
To characterize the White-Metzner fluid, it is necessary to know the
viscosity curve as a function of shear rate and the first normal stress difference.
The extra stress temsor 7 is separated into purely viscous part 72 and
i viscoelastic part 7':
{ =1l 472 (10.4.27)

1
™+ A {% +v.Vrt - [(VV)T gt fTv)]} =2mD (10.4.28)

72 = 2D (10.4.29)

and 7; and 7o can be defined as the fractions of the shear viscosity 1. The
| fluid which obeys Eq. (10.4.27) is characterized by 71,72, and A, which are
the functions of rate of deformation tensor, D.

Here, the relaxation time A is assumed to depend on the shear rate
according to

A(y) = a+blogy) +c(logy)?, v=VA4l (10.4.30)

All constants in Eq. (10.4.30) are evaluated by curve fitting data of polymeric
melts (see [16]). Also, 7 is assumed to be of the particular form

1
n=n(l), L= ang Di; (10.4.31)
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Although Eq. (10.4.31) gives the general functional form for.the viscosity
function, experimental observation and a theoretical basis must be used to
provide a specific model for non-Newtonian viscosities. A variety of models
can be used to calculate viscosity. Here, the power law model in Eq. (10.,4.17a)
is used (replace u with 7).

In view of Eq. (10.4.27), the equation of motion (in the absence of body
forces) for the White-Metzner viscoelastic fluids can be written as

V-t + 2neD) - VP =p (—8(% +v- Vv) (10.4.32)
For simplicity, we drop the superscript 1 from 7! in Eq. (10.4.32) as well as in
Eq. (10.4.28). Equations (10.4.32) and (10.4.28), together with the continuity
equation V-v = 0, represent the system of governing equations for the White-
Metzner fluids. The viscosity m; is calculated using Eq. (10.4.28) and A from
Eq. (10.4.30). Viscosity 7, is often taken as a function of 5;. Note that the
power-law constitutive equation can be obtained as a special case from Eq.
(10.4.28).

For axisymmetric flows of White-Metzner fluids, the governing equations
are given by

Cr)u + ¥ + a._w = (10.4-.33)
ar 1 z
ou 1 ou U
5 (Tr'r‘ = 2?}‘2{—)}-) < ; (Trr + 2??25? — Tpo — 2”2;)
U

d 0 ow aP du ou ou )
Sl R e T i | PPN o T R i T
+6‘7‘ {‘rz PTI2(82+ E)r)] or p(é?f,‘_}_u(‘?r—'—w@z ( )

a ou N ow 1 ou 2@_{1)}
ar {’“’z*w (37 | a—ﬂ Ty ["'”*”2 (a— T o

d ow oP ’ Ow ow Bw) : .
ey e et W PSR g e = [T 10.4.35
T (T +2025, ) bz ( 3 "o TV ( )
[ O OTpr A1 ou ou ﬂ 5 ou .
_ Che, yfO%.  OU =222 (10.4.36a
Trr + A ot +TjL Br + w 5 2(3?‘ e+ az’Trz fldr ( )
[ 0T 0722 : .aTzz 5 ow ?E _ a_w 10.4.36b
Tz A | Ot TV TV T\ G T e )| T 2m 8z( 0i4.200)
[ 87—?2: 0 Trz ) 87}'3 du ow : QE ) @ ) }
Trz + A |t U ar + s -2 (a—?’?“r,, + - Trz + 5'sz;: T ar Trr
— (%—‘i 4 %) (10.4.36¢)
OTog OTge O07o6 oL U .
el o QTR 9 = 1 — 10.4.36d
A { ot L ar - 0z 2 e ( )

where v, = v and v, = w denote the velocity components in the radial and
axial directions, respectively.
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. The (mixed) penalty—finite element model of the above equations can
be developed by constructing the weak forms of Egs. (10.4.34)-(10.4.36)
[after replacing the pressure with Eq. (10.4.21)] and interpolating velocities
(u,w) and extra stress components (T, 799, Tzz,7rz) @S follows (with equal
interpolation of all variables):

i1, 2, 1) Zuj Yj(r, 2) w(r, z,t) = Y‘w t)y(r, 2)
L L
Tor(T, 2, 1) Z ()i (r, 2), T i) Z 3, (t)a;(r, 2) (10.4.37)
3-‘*1 _j—l
Trgl ZTM OYi(r,2),  Tea(r,2,t) ZTGQ Yi(r, z)
i=1 7=1

where, (uj,w;) are the nodal velocities, (7,77, ,T4..T3p) are the nodal extra

stress components, and v; are the Lagrange interpolation functions. The finite
element model has the general form

[Me{A®} + [K{A%} = {F¢} (10.4.38)

where
{u}
{w}
{a%} = g:ﬁ (10.4.39)
{72}
{700}

The nonzero coefficient matrices are listed below.
O; oY O O | O Oy i )}
1 _ J J i T 25 ) | rdrde
K /a [’O%( Br “’“az)“”( 5 br | Bz 0z | 12
+ 4 — 4~ 3 4 2 )rdrd
I-’}p/rze(ar . TL)(aT‘ —1-ij rdradz

y O O / (31;.'??: E, ) O;
12 _ 2 skt MW £ B
Kz / ( "5 B )rdr dz + Y pe T?, 5 rdrdz

"~ O 5 o,
-13 _ % d K3 = _2/ o —+ rdrdz
}\U o B ——; Tdrdz, 3y i 2 ar

, u; O (aw- 1 )awﬂ-,
21 e _l_l b —afr: £ d -d
K .[c (732 or 3~)Tdrdz+7p/ or +'r% Bz | ez
O; o O O Oy 81,&')}
(77 = L +w? P29 9T ) | rdrdz
B /sze [M’*(“ BT d,-,)“”’ (ar B ol Bl
i O
d
. 02 Bz rdrdz
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K= %‘i"'u rdrdz, K2 = ‘% i rdrdz
-33 oy _8‘& (0T
Rt_? / {%UJ + A |:’(z, ( dTJ + ’wa—;) — 2 (g'r-‘wj):[ }?"d?" dz

- ou b
K =2 g ity  drdz, Kg‘§2=~2f L. AN
Qe Qe Oz

(M - - O O\ 0w
R = .[Qe{wiwj & [‘”i (“()TJ + %‘gj) ~ 25— %‘W}} }?‘ dr dz
P _ o,
e e ! 5l ; i
K = —2/06 AE)?‘ Yy rdrdz, Kj; = -2 /ée v C)"i’ v dis

- E) ) 2 c‘)—;
Ky = _2./nc T!lli'rg% rdrdz, K = ‘“2/ )"—uﬂ'fﬂbj rdrdz

5 du
54 _ . . i
Kij = _QLJ\EW% rdrdz, Iig-l = &Qf ’?11.;9@'}% # i

55 iy o on  ow
K _/Q {z,uijrA( L 4w 5;)—(& + 5 )m%}?"d?dz

; o, 0%\ T ]
ng _ /5; { i + A [% ( _;fi +—_..i_3.) _ ZEwiij }frdr dz

MG = fQ Py rdrdz, M= f{ o PPy rardz

MEP = / My rdrdz, Mg = f Apg; rdr dz
Qe

M = f Mty rdrdz, M = / My v dr dz (10:4.20)
e

Bar over u and w indicate that they are to be calculated using values from
the previous iteration.

For viscoelastic fluids, specification of velocities is insufficient on account
of fluid memory. If the boundary of the domain contains an entry region, then
fully developed flow conditions may be assumed. All extra stress components
must be specified as essential boundary conditions along the entry region.
Failing to do so may lead to the propagation of errors throughout the flow
domain when relaxation time A becomes large.

10.4.5 Numerical Examples

Consider the steady flow of a power-law fluid in a uniform pipe (R =1, L = 6,
we = 10, n = 0.2, o = 1.0, and v, = 10%). The geometry and boundary
conditions of the computational domain are shown in Figure 10.4.1. Three
different meshes shown in Figure 10.4.2 are used. The finite element results
obtained using the velocity finite element model in Eq. (10.4.22) along with
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the analytical results for the axial velocities as a function of the radial distance
are presented in Table 10.4.1.

ta

u=0
W=WU

Lr u=w=0

Figure 10.4.1 Geometry and boundary conditicns for flow through a pipe.

Mesh 1: 3x5 (uniform)

Mesh 2: 6x10 (uniform)

Mesh 3: 12x15 (non-uniform)

% 7

Figure 10.4.2 Three different meshes used for the pipe flow.
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rIj.:-mble 10.4.1 A comparison of the velocity field w(r,6) for the flow of a
power-law fluid in a pipe (R = 1, L = 6, wo = 10, n = 0.2,
po = 1.0, and +, = 10°).

Velocity, w(r, 6)

i ~ Mesh 1 Mesh2 Mesh 3 Analytical*
0.00 11.894 12.833 13.402 13.333
0.05 - - - 13.333
0.10 - 12.832 13.401 13.333
0.15 - - - 13.333
0.20 11.865 12.826 13.395 13.332
0.25 - — - 13.330
0.30 — 12.795 13.360 13.324
0.35 — - - 13.309
0.40 11.721 12.686 13.243 13.279
0.45 - - - 13.223
0.50 - 12.401 12.940 13.125
0.55 - - 12.679 12.964
0.60 10.852 11.783 12.305 12.711
0.65 - - 11.787 12.328
0.70 — 10.610 11.086 11.765
0.75 — - 10.156 10.960
0.80 7.916 8.563 8.946 9.838
0.85 i - 7.396 8.305
0.90 - 5.133 5.451 6.248
0.95 - - 2.993 3.532
1.00 0.000 0.000 0.000 0.000

* '?.L‘(T‘?ﬁ) = Uy {%{%1') {1 - (ﬁ)l+&:| .

Next, the same problem (with R = 1 and L = 5) is studied with the
mixed finite element model in Eq. (10.4.38). Both power-law (n = 0.25,
no = 104, my = 0) and White-Metzner (n=0.25, ng = 104, 7o = 0, a = 0.435,
b= —0.453, ¢ = 0.1388) fluids are analyzed. A uniform mesh of 10 x 6 bilinear
elements is used. In addition to the velocity boundary conditions shown in
Figure 10.4.1, the stresses are specified to be zero at the entrance. The penalty
parameter is taken to be 1, = 1087;.

Figures 10.4.3 and 10.4.4 contain plots of the axial velocity profiles at
z= 2.0 and z = 5.0, respectively. We note that the velocity profiles obtained
with the velocity model (VM) in Eq. (10.4.22) and mixed model (MM) in Eq.
(10.4.38) are cssentially the same when stress boundary conditions are not
imposed. The stress boundary conditions (which can be imposed point-wise
only in the mixed model) do have an effect: specification of the stresses at the
inlet increases the centerline velocity for both power-law fluids as well as
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O Nonlinear (MM) without SBC
<> Linear (MM) with SBC
@ Nonlinear (MM) with SBC

— Linear (VM, MM) without SBC
- === Nonlinear (VM)
SBC = Stress boundary conditions

£ A A
w(r, 0)
1.0 1.0F 1.0 s ;0
£ /¢
0.8+ 0.8 08 F w(r,5) ae /o
de f¢
0.6} 0.6F 0.6} o8 /o
]
ol
0.4} 0.4¢ 04 F :
e
02} 0.2 02 F 3
Iu‘
0‘0 _-"',-/‘ O & ! 1 1 1 0.0 i t | !
00 05 1.0 0 05 1.0 1.5 20 00 05 1.0 1.5 20

Axial velocity, w(r,z)

Figure 10.4.3 Axial velocity profiles for the flow of power-law fluid through

a pipe.
4 = = Linear without SBC = O Nonlinear with SBC
— = — - Linear with SBC r SBC = Stress Boundary Conditions
1.0 1.07 T !
0!
: ," i
0.8 0.87 ff
Q H
it
0.67 0.6 i
; /w
v
— A (s Py
0.4 0.47 s
%’ w(r, 5)
0.27 0.7 -
%’
0.0 T T T T T 00 - T 1 T T T
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5

Axial velocity, w(r,z)

Axial velocity, w(r,z)

Figure 10.4.4 Axial velocity profiles for the flow of White Metzner fluid

through a pipe.
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White-Metzner fluids. If the stress boundary conditions are not imposed, the
mixed model for the White Metzner fluid does not yield converged solution.

Figure 10.4.5 shows the effect of the penalty parameter on the velocity field.
The results are self-explanatory.

Table 10.4.2 Effect of the convective terms on the velocity field for the
flow of a power-law fluid in a pipe (R=1,L =5, w = 10,
n = 0.2, and 10 x 6Q4 mesh).

Velocity, w(r,5)

Non-Newtonian

T Newtonian Re =10 Re=102 Re=10%
0.0 1.8358 1.3357 1.1312 1.0267
0.1 1.8001 1.3355 1.1302 1.0265
0.2 1.7398 1.3338 1.1289 1.0266
0.3 1.6461 1.3271 1.1270 1.0268
0.4 1.5186 1.3081 1.1241 1.0271
0.5 1.3578 1.2657 1.1197 1.0275
0.6 1.1651 1.1849 1.1097 1.0274
0.7 0.9397 1.0468 1.0799 1.0265
0.8 0.6712 0.8273 0.9809 1.0209
0.9 0.3079 0.4795 0.6709 0.8967
1.0 0.0000 0.0000 0.0000 0.0000

" Re = e,

1.0 4|~ v,=10°

| ;
- Y=10
08| 10! /’ P

0.6 —
0.4 - ,/
/ _—=="%% | — Newtonian
0.2~ A s i — Yoo
W
0‘0 | i | t . I T 1 T T
0 5 i T = 25

Axial velocity, w(r,6)

Figure 10.4.5 The effect of the penalty parameter on the flow of a power-
law fluid.
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The effect of the convective terms on the velocity field is also investigated
for the power-law fluid (n = 0.25, 70 =10%, 7, =0, R=1, L =5, and wp = 1)
using the velocity model in Eq. (10.4.22). The results are presented in Table
10.4.2. The effect is to flatten the velocity profile from a parabolic one. Figure
10.4.6 shows the axial velocity profile for flow through a plane channel {a = 6,
b=1,n=0.2,1n =m =1). The results are in good agreement with those in

[9].

X
L0 e

. mn::; S g O 2. 0 Newtonian fluid (Re = 0)
0.8 — g <> Non-Newtonian (Re = 0)

o Non-Newtonian (Re = 12.5)

0.6 - e Non-Newtonian {Re = 25.0)
0.4-
0.2 -
0-0 1 T ] 1

l I i ]
0 2 4 6 8 10 12 14 16 18 20
Axial velocity, v(x,6)

Figure 10.4.6 Axial velocity profiles for flow of power-law fluid through a
plane channel.

10.5 Coupled Fluid Flow and Heat Transfer
10.5.1 Finite Element Models

There exist many engineering systems where the fluid flow is affected by the
heat transfer to or from the system and vice versa. Convective cooling of a
heated body (like in an internal combustion engine) is a generic example of the
coupling. In such cases, we solve the governing equations of fluid flow (i.e. the
Navier-Stokes equations and continuity equation) as well as the heat transfer
(i.e. the energy equation), as discussed in Section 7.3. The energy equation is
given by [see Eq. (7.3.3)]

r(eT eT\ oT|_ 8 (, 9T\, d (, OT
o [(v5 +vg) ) =5 () 5 (k) +#+a @03

where C is specific heat, © is the dissipation energy

b = i€ (1052)
J=1]

and ¢ is internal heat generation.
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The finite element model of the energy equation is given by

[CHT®} + [HNT} = {Q°} (10.5.3)

where

Q= /Q (g + ¢>)da:dy+j£ g9V ds W0-5:4)

u and v being the velocity components (that couple to the fluid flow

problem), and ?,-952) the Lagrange interpolation functions used to interpolate
the temperature field.

Equation (10.5.3) must be solved along with the flow equations
[Me]{A®} + [K®){A®} = {F*} (10.5.5)

developed carlier (see Chapters 7 and 8). Both equations, Egs. (10.5.3)
and (10.5.5), must be solved iteratively, using the latest velocity field and
temperature field to compute the coefficient matrices. It should be noted that
fluid flow equations are coupled to the heat transfer equation through the
body force terms f, and fy in the Navier-Stokes equations. For buoyancy-
driven flows, the body force in the direction of the gravity is a function of the
temperature, that is, f, = —pgB(T — Tp) if the y-axis is taken vertically up.
Thus, the momentum equations are fully coupled with the energy equation.

The following strategy is found suitable for the convective heat transfer
problems. Solve the energy equation (10.5.3) with an assumed velocity field
(say, zero). Then use the assumed velocity and temperature fields in (10.5.5)
and solve for the new velocity field. The initial guess of the velocity field can
be either the linear (Stokes) solution (or the solution of a problem at lower
Rayleigh number when solving for high Rayleigh number flows). The Rayleigh
number Re and Prandt]l number Pr (charactristic numbers used in convective
heat transfer) are defined by

_ BgI*AT

KV

Ra
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where g is acceleration due to gravity, 3 is thermal expansion coefficient, L
the characteristic dimension of the flow region, AT the temperature difference
between hot and cold walls, p the density, u the viscosity, k& the conductivity,
and ¢, is the specific heat at constant pressure.

10.5.2 Numerical Examples

Here we include couple of sample problems, taken from Reddy and Gartling
115], to illustrate the ideas presented above.

Heated cavity

Consider a closed square cavity filled with a viscous incompressible fluid. The
top and bottom faces of the cavity are assumed to be insulated while the
vertical faces subjected to different temperatures, as shown in Figure 10.5.1(a).
A typical 16 x 16 mesh of eight-node quadratic elements is shown in Figure
10.5.1(b).

This problem was solved using the earliest versions of NACHOS code [24],
which is based on velocity-pressure (mixed) formulation and used the direct
iteration (Picard) scheme. More recent solutions have been obtained using
Newton’s method for the combined equation set equivalent to (10.5.3) and
(10.5.5). The streamline and isotherm plots are shown in Figures 10.5.2 and
10.5.3 for Rayleigh numbers of Ra = 10* and 10%, respectively (Pr = v/k =
0.71). For the lower Rayleigh number, the flow is relatively weak and the
thermal field is only slightly perturbed from a conduction solution. At the
higher Rayleigh number, the flow field develops a considerable structure while
the thermal field becomes vertically stratified in the core of the cavity with

, high heat flux regions along the vertical boundaries [24].

u=v=20 Y
T
' T=Te
T=T, sl |
u=v=>0
L L Insulated
(a) (b)
i L il
A 4 J 7 x>
wu=v=_0

Figure 10.5.1 (a) Geometry of a heated square cavity. (b) A typical finite
element mesh.
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Solar receiver

Figure 10.5.4 shows a cross section of an annular solar receiver tube surrounded
by an eccentrically located glass envelope. The inner tube carries a heat
transfer fluid that is heated by a flux that varies with position around the
tube. The incident flux is due to solar energy being concentrated on the tube
by a parabolic trough collector. The glass envelope provides a shield to reduce
the forced convection (wind) heat loss from the collector tube [15, 24].

Streamlines Isotherms

Figure 10.5.2 Streamlines and isotherms for natural convection in a square
. cavity filled with viscous fluid (Ra = 104, Pr = 0.71).

Isotherms

Figure 10.5.3 Streamlines and isotherms for natural convection in a square
cavity filled with viscous fluid (Ra = 10, Pr = 0.71).
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Figures 10.5:5-10.5.7 contain streamline and isotherm plots for an air-
filled annulus for various temperature and geometric configurations. The flow
pattern and heat flux distribution are quite sensitive to variations in these
parameters even though the Rayleigh number is the same for all cases [15, 24].

T = constant
u=v=0 T = constant

o/ u=v=0

_;-Receiver tube

Figure 10.5.4 Mesh and boundary conditions for the annular solar receiver.

Streamlines Isotherms Streamlines Isotherms
(<10 *em?/sec) (x10 " cm2/sec)

Figure 10.5.5 Plots of streamlines and isotherms for the solar receiver. (8.1.)
uniform wall temperature, Ra = 1.2 x 10%. (b) asymmetric
wall temperature, hot on top (Ra'= 1.2 x 10%).
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Streamlines Isotherms

Figure 10.5.6 Plots of streamlines and isotherms for the solar recciver;
uniform wall temperature, kot on bottom (Ra = 1.2 x 107},

Streamlines
(%107 in¥sec)

Figure 10.5.7 Plots of streamlines and isotherms for the solar receiver;

uniform wall temperature, eccentric geometry (e = 12x%
10%).

Additional details on the formulation as well as applications of coupled
heat transfer and fluid flow can be found in [17-24] (in particular, see [23,24]
and Chapter 5 of the book by Reddy and Gartling [15] and reference therein)
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Appendix A1

Solution Procedures for
Linear Algebraic Equations

A1.1 Introduction

All finite element equations, after assembly and imposition of boundary (and
initial) conditions, can be expressed as a set of linear algebraic equations that
must be solved. In general, the finite element equations are of the form

41X} = {B) (ALL1)

where [A] is the coeffienct matrix resulting from the assembly of element
matrices, {X} column of unknowns (typically nodal values), and {B} is
the known column vector. In the finite element method, [A] is a banded
sparse matrix that may be either symmetric or unsymmetric depending on the
characteristics of the governing differential equation(s) describing the physical
problem, and possibly the nonlinear solution method used (see Appendix A2).

A banded matrix is one in which all elements beyond a diagonal parallel
to the main diagonal are zero. The maximum number of non-zero diagonals
above or below the main diagonal plus 1 (to account for the main diagonal) is
called half bandwidth (NHBW) of the matrix [see Figure Al.1.1(a)]. When the
matrix is symmetric, it is sufficient to store elements in upper or lower half
bandwidth of the matrix [A] [see Figure A1.1.1(b)] and write solvers to take
note of the fact a;; = aj; for all rows ¢ and columns j of the matrix. When
the matrix is not symmetric, one must store all elements in the full bandwidth
(2*NHBW-1) of the matrix. Here we include the Fortran subroutines of a
symmetric banded equation solver (SYMSOLVR) and unsymmetric banded
equation solver (UNSYMSLV).

A linear set of algebraic equations can be solved by either a direct or
iterative method. Direct methods, like the Gauss elimination method, provide
the solution after a fixed number of steps and are less sensitive to the
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conditioning of the matrix (the condition number of a matrix is the ratio of
the largest to smallest eigenvalue associated with the matrix). Apart from the
round-off errors introduced in the computer, direct methods yield the “exact”
solution to the equations. However, the main deficiency of the direct solvers
is that they require the coefficient matrix be stored in an ordered format to
carry out the elementary operations (i.c. multiplication, division, etc.) on
the coefficients of the augmented matrix [A|B] and obtain the solution. In
recent years, the direct solvers have been refined to reduce this deficiency
through innovative data management techniques (e.g. frontal solvers, skyline
solvers, and others; see Carey and Oden [1]). These improvements enable
users to solve moderately large systems of equations efficiently. However, they
have been found to be unsuitable for solving very large systems of equations
(especially in three-dimensional problems) because they demand out-of-core
storage of the equations and hence require large data transfers. In addition,
direct methods are difficult to organize for efficient use on multiprocessor,
parallel computers and are therefore seeing reduced utilization.

All zeros
(&)
NEQ=n
NHB2
Al A parallel diagonal
All zeros Main diagonal
NHBW= max {NHB1, NHB2}
NHBW
(b) NHBW .
iy _ & S
GO~ 000 ... 0 Ay dy ..o ay
e % Uy Gy ovn Gy,
oy By voe Oy By 0 0. 0 2 Hx 2k41
a, a; .\.\.\\a“ ajk_TB}}\,: 0 0.. Ay Oy ven Ay
[A_ =1. \\\ \\-\ et [A] = NEQ =n
Gymm) |+« -+ - 2w o g (half banded| * - - - - - -
‘\\\ \\'\\ form) aﬂ-l.n'l an-ll,ronlo
h ~
O wu il ay veay ../?\qﬂ__/_;\ _‘TMD e

Main diagonal

L— Last diagonal beyond which all

coefficients are zero

Figure A1.1.1 Banded symmetric and unsymmetric matrices.
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The limitations on CPU time and storage requirements preclude the use
of direct solvers for complex problems with more than a quarter million
equations, and iterative methods are found to be more efficient in that they
require less storage and CPU time. Iterative methods are approximate and
only converged solutions will be close to the true solution. In iterative
methods, the global matrix formation may be avoided. The major operation
in iterative methods is the matrix-vector multiplication as compared to the
matrix reduction (by elementary operations) in direct methods. A significant
advantage of iterative methods is that a given set of equations can be divided
into as many subsets of equations as there are processors and calculations can
be performed in parallel on the array of processors. However, convergence
characteristics of iterative methods depend on the condition number of the
system of linear equations, and a suitable preconditioner is a must to achieve
convergence.

Following this introduction, a brief review of some methods for the solution
of linear algebraic equations is presented. For additional details, the reader
may consult [2-4].

A1.2 Direct Methods

A1.2.1 Preliminary Comments

Direct methods are those in which simultaneous linear algebraic equations
are solved “exactly” (within the computational round-off error) by successive
elimination of variables and back substitution. The Gauss elimination method
is a fixed-step technique [2-8], and frontal [5] and skyline [6] solution methods
are examples of direct solution methods that use the Gauss elimination
technique efficiently. The direct methods are the most commonly used
techniques when the number of equations involved is not too large. The
number of elementary operations for Gauss elimination is of the order
n3/3 4+ O(n?), where n denotes the number of unknowns.

The frontal solution procedure [5] is faster than most direct solvers; it
requires less core space as long as active variables can be kept in the core, and
it allows for partial pivoting. An additional advantage is that no specific node
numbering scheme is needed, though a judicious element numbering helps to
minimize the front width.

Due to the fact that the approximation functions are defined only within an
element, the coefficient matrix in the finite element method is banded; that is,
aij = 0 for j > i+ np, where np is the half bandwidth of the matrix [A]. This
greatly reduces the number of operations in solving the equations, if we make
note of the fact that elements outside the bandwidth are zero. Of course, the
bandwidth size depends on the global node numbering. The skyline technique
is one in which bandedness of the finite element equations is exploited by
storing the row number m; of the first nonzero element in column j. The
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variables m;,i = 1,2,-.. n, define the skyline of the matrix. For additional
details see Bathe [6].

Here, we include the Fortran subroutines of a symmetric banded equation
solver (SYMSOLVR) and unsymmetric banded equation solver (UNSYMSLV)
that are used in most of the calculations presented in this book [7].

A1.2.2 Symmetric Solver

In the case of symmetric solver the global coefficient matrix [4] = [GLK]
18 stored in symmetric banded form (NEQ x NHBW), where N EQ is the
number of global equations and NHBW is the half bandwidth. Fortran
statements for the assembly of element coefficient matrices [ELK] and element
source vector {ELF} for the symmetric case are included in Box Al1.2.1.
Note that the global source vector is stored in array {GLF}. After Gauss
elimination is completed in SYMSOLVR (see Box A1.2.2), the solution is
returned in array {GF'}.

Box A1.2.1 Fortran statements for the calculation of the half bandwidth
and assembly of element coefficient matrices.

DO 140 N=1,NEM

DO 110 I=1,NPE

NI=NOD(N,])

ELU(I}=GAMA*GP2(NI+(1.0-GAMA)*GP1 (NI)
110 ELX(=GLX(NI)

CALL ELEKMF(IEL.NPE NONLIN,F0)

DO 130 I=],NPE o i

NR=(NOD(N,I)-1)*NDF ! GAMA = Acceleration parameter, p

g [see Eq. (3.4.5)]
Dg}i"irIRI:NDF i GP2 = Solution from the(r - 2) iteration

i GP1 = Solution from (r —1) iteration
L=(I-1)*NDF-11 S 10 i T

GLF(NRY=GLF(NR}-ELF(L)
DO 120 J=1,NPE
NCL=(NOD(N,J)-1)*NDF
DO 120 JJ=1.NDF
M=(J-1)*NDF-+JI
NC=NCL-NR+JJ+1
IF(NC.GT.0)THEN
GLK(NR,NC)=GLK(NR,NC)}+ELK(L M)
ENDIF
120 CONTINUE
130 CONTINUE
140 CONTINUE
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‘Box A1.2.2 Subroutine for solution of banded symmetric equations.

SUBROUTINE SYMSOLVR(NRM,NCM,NEQNS ,NBW _BAND,RHS.IRES)

The subroutine solves a banded, symmetric, system of algebraic equations [BAND]{U? = {RHS}
using the Gauss elimination method: The coefficient matrix is input as BAND(NEQNS NBW) and
the column vector is input as RHS(NEQNS), where NEQNS is the actual number of eguations and
NBW is the half band width. The true dimensions of the matrix [BAND] in the calling program, are
NRM by NCM. When IRES is greater than zero, the right hand elimination is skipped.

OO0 n0

IMPLICIT REAL*8(A-H.0-2)
DIMENSION BAND(NRM,NCM) RHS(NRM)
MEQNS=NEQNS-1
IF(IRES.LE.0) THEN
DO 30 NPIV=1.MEQNS
NPIVOT=NPIV+1]
LSTSUB=NPIV+NBW-1
IF(LSTSUB.GT.NEQNS) THEN
LSTSUB=NEQNS
ENDIF
DO 20 NROW=NPIVOT LSTSUB
NCOL=NROW-NPIV+1
FACTOR=BAND(NPIV.NCOL)/BAND(NPIV, 1)
DO 10 NCOL=NROW,LSTSUB
ICOL=NCOL-NROW+1
JCOL=NCOL-NPIV-+1
10 BAND(NROW.ICOL}>=BAND(NROW ICOL)}-FACTOR*BAND(NPIV JCOL)
20 RHS(NROW)=RHS(NROW)-FACTOR*RHS(NPIV)
30 CONTINUE
ELSE
40 DO 60 NPIV=1 MEQNS
NPIVOT=NPIV+1
LSTSUB=NPIV+NBW-1
IF(LSTSUB.GT.NEQNS) THEN
LSTSUB=NEQNS
ENDIF
DO 50 NROW-NPIVOT,LSTSUB
NCOL=NROW-NPIV+1
FACTOR=BAND(NPIV.NCOL)BAND(NPIV, 1)
50  RHS(NROW)=RHS(NROW)-FACTOR*RHS(NPIV)
60 CONTINUE
ENDIF

NPIVOT=NPIV-1
DO 80 JKI=LSTSUBNPIVOT"
C Back substitution NROW=NPIVOT-JKI+LSTSUB
C NCOL=NPIV-NROW+1
DO 90 IJK=2,NEQNS FACTOR=BAND(NROW.NCOL)
NPIV=NEQNS-IJK+2 80 RHS(NROW)=RHS(NROW)-

o]

: RHS(NPIV)=RHS(NPIVY/BAND(NPIV,1) FACTORfRHS{NPW)
' LSTSUB=NPIV-NBW+] 90 cozﬁ INUE ‘
IF(LSTSUBLT.) THEN . .. . RHS(1)=RHS(1)BAND(1.1)
LSTSURB=1 Continued in the inset RETURN
ENDIF END
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A1.2.3 Unsymmetric Solver

In the case of unsymmetric solver the matrix [GLK] is stored in full bandwidth
form (NEQ x NBW), where NEQ is the number of global equations and
NBW = 2%« NHBW is twice the half bandwidth. Since there is an additional
column in NBW, we use it to store the global source vector; that is,
GLF(I) — GLK(I, NBW). Fortran statements for the assembly of element
matrices for the unsymmetric case are included in Box A1.2.3. After Gauss
elimination is completed in UNSYMSLV (see Box A1.2.4), the solution is
returned in the last column of the coefficient matrix {GLK(I, NBW)}.

Box A1.2.3 Fortran statements for assembly of the element matrices and
source vector into a banded unsymmetric global matrix.

DO 140 N=1,NEM
DO 110 I=1 NPE
NI=NOD(N,I)
ELU(D)=GAMA*GP2(NI)+(1.0-GAMA)*GP1(NI)
110 ELX(D=GLX(NI)
CALL ELEKMF(IEL,NPE,NONLIN,F0)
DO 130 I=1,NPE
NR=(NOD(N,T)-1)*NDF
DO 130 II=1,NDF
NR=NR+1
L=(I-1)*NDF-+I
GLK(NR,NBW)=GLK(NR,NBW)+ELE(L)
DO 120 J=1,NPE
NCL=(NOD(N,J)-1)*NDF
DO 120 JJ=1,NDF
M=(J-1)*NDF+JJ
NC=NCL-NR+JI+NHBW

IF(NC.GT.0)THEN
GLK(NR,NC)=GLK(NR,NC)+ELK(L,M)
ENDIF
120 CONTINUE
130  CONTINUE
140 CONTINUE

A1.3 Iterative Methods
A1.3.1 General Comments

Among the various iterative methods that are available in the literature, the
Conjugate Gradient (C'G) method [9] is most widely used because it is a finite
step method (i.e., apart from round-off errors, the solution is achieved in
a fixed number of iterations) and it can be used to determine the inverse.
However, the number of iterations required depends on the condition number
of the coefficient matrix. The convergence of the conjugate gradient method,
and iterative methods in general, can be improved by preconditioning and/or
scaling the equations [10-12).
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Box A1.2.4 Subroutine for solution of banded unsymmetric equations.

SUBROUTINE UNSYMSLV(A,NRMAX ,NCMAX,N,ITERM)

Solver for BANDED UNSYMMETRIC system of algebraic equations

[olplelgle

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(NRMAX,NCMAX)
CERO=1.0D-15

PARE=CERO**2
NBND=2*ITERM

NBM=NBND-1

Begin elimination of the lower left

DO 80 I=1,N
IF (DABS(A(LITERM)).LT.CERO) GO TO 10
GO TO20
10 IF (DABS(A(LITERM)).LT PARE) GO TO 110
20 JLAST=MINO(I+ITERM-1,N)
L=ITERM+1
DO 40 J=LIJLAST
L=[-1
IF (DABS(A(J,L)).LT.PARE) GO TO 40
B=A(IL)
DO 30 K=L,NBND
30 A(JK)»=A(LK)YB
IF (LEQ.N) GO TO 90
40 CONTINUE
L=0
JFIRST=1+1
IF (JLAST.LE.I) GO TO 80
DO 70 J=JFIRSTJLAST
L=L+1
IF (DABS(A(J,ITERM-L)).LT.PARE) GO TO 70
DO 50 K=ITERM,NBM
50 A(JK-L)=A(J-LK)-A(K-L)
A(INBND)=A(J-LNBND)-A(JNBND)
IF (LGE.N-ITERM+1) GO TO 70
DO 60 K=1.L
60 A(J,NBND-K)=-A(JNBND-K)
70 CONTINUE
80 CONTINUE
90 L=ITERM-1
DO 100 =2,N
DO 100 =1L
IF (N+1-I+J.GT.N) GO TO 100
A(N+1-ILNBND)=A(N+1-I,NBND)-A(N+1-I-+], NBND)*A(N+1-LITERM+])
100 CONTINUE
RETURN
110 WRITE (6,140) LA(LITERM)
STOP
140 FORMAT (/,2X,'Computation stopped in UNSYMSLV because zero appears
* on the main diagonal *** Eqn no. and value:'I5,E12.4)
END

plple!
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The limitations on storage can be overcome by solving the equations at
the element level, that is, use the Gauss-Seidel iteration idea for the set
of variables associated with the clement. This approach avoids assembly of
element matrices to form the global coefficient matrix. This idea of using the
element-by-element data structure of the coefficient matrix was first pointed
out by Fox and Stanton [13] and Fried [14-16]. The phrase element-by-
element refers to a particular data structure for finite clement techniques
wherein information is stored and maintained at the element level rather than
assembled into a global data structure. In this method the matrix-vector
multiplications are carried out at the element level and the assembly is carried
out on the resultant vector. This idea proves to be very attractive when
solving large problems, because the matrix—vector multiplication can be done
in parallel on a series of processors. Another advantage of this method is that
the resultant savings in storage, compared to direct solvers, allows solution of
large problems on small computers.

For iterative solution methods, the advantages of the element-by-element
data structure over assembling the global coefficient matrix are

1. the need for formation and storage of a global matrix is eliminated, and
therefore the total storage and computational costs are low,

o

the amount of storage is independent of the node numbering and mesh
topology and depends on the number and type of elements in the mesh,
and

3. the element-by-clement solution algorithms can be vectorized for efficient
use on supercomputers.

The major disadvantage of the element-by-element data structure is the
limited number of preconditioners that can be formulated from the
unassembled matrices. This becomes of critical importance when the linear
system is not well-conditioned as in the mixed method, incompressible flow
model. A review of the literature on element-by-element algorithms can
be found in [17], and the methods have been investigated by numerous
investigators [18-32].

A1.3.2 Solution Algorithms

In this section, we review three iterative solvers from [17] that are applicable
to nonsymmetric, positive definite equation systems that are typical of
isothermal flow algorithms. The three iterative solution schemes used here
are the Biorthogonal Conjugate Gradient method (BCG) [11], the Lanczos
ORTHORES [11], and the GMRES [31].

The conjugate gradient method for solving a system of equations can
be interpreted as the search for the minimum of the energy E of the
system. The energy of the system is a minimum when the residual vector
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-r = F — KU”" vanishes. The algorithm for the biorthogonal! conjugate
gradient method (also known as two-term form of the steepest descent method,
Lanczos/ORTHOMIN) for unsymmetric systems of equations [11,17] is given
in Table A1.3.1, and the steps involved in the Lanczos ORTHORES solution
algorithm [11,17] are given in Table A1.3.2.

The third iterative solver uses the GMRES solution algorithm. For an
approximate solution of the form Uy + z, where Uy is the initial guess
vector and z is a member of the Krylov space K of dimension k, the
GMRES algorithm determines the vector z such that | F - K(Up + 2) I
is minimized, where || - || denotes the Ly—norm. The Krylov space is given
by K = spa,n{ﬁo, KU,, KUy, -I_{k_lﬂg}. Therefore, when solving large
systems of equations, as the value of k increases. the amount of storage required
also increases. This drawback can be overcome by employing the GMRES
algorithm iteratively by using a smaller value for k£ and restarting the algorithm
after every k steps. The restart version of the GMRES algorithm [31,17] is
explained in Table Al1.3.3.

The presence of a penalty matrix in the global coefficient matrix of the
penalty model spoils the condition number. This results in slow convergence
when using iterative solvers. However, the convergence of the iterative
solvers can be improved by preconditioning the system. In [17], the system
of equations is transformed using diagonal scaling matrix (Jacobi/diagonal
preconditioning). Accordingly,

KU*=F becomes KU=F (A1.3.1)

K = W-12KkW-1/2, U = WI2U* F = W1/2F (A1.3.2)

where W;; = Iu(; ! is a diagonal matrix. During the matrix multiplication,
the element-by-element data structure is exploited and the multiplications
are carried out at the element level and the residuals are then assembled to
form the global vector. The diagonal terms are always positive because of the

viscous and penalty terms.
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Table A1.3.1 Steps involved in using biorthogonal conjugate gradient
method (Lanczos/ORTHOMIN solver).

Repeat the following steps for each nonlinear iteration:

L Initial Calculations
(1) Form the element stiffuess matrix K¢ and force vectorFe.
(2) Apply essential and/or natural boundary conditions, and modify K¢ and Fe,
(3) Store the element matrices in A (whose dimensions are nem, neleq, neleq)*.

(4) Store the inverse of the diagonal terms of the global system in W (W
nem y._)
K

e=1 id

i =

(5) Assemble the global force vector.

II. Preconditioning

Form the preconditioned system of equations

KU=F, K=W-12RW-12  QT=Wl2U", F=w-12
1. Lanczos ORTHOMIN Algorithm
(1) For known initial solution vector U0, compute:
=F _ K{o , P(}=I‘D, 1-.{):1-)U=r0’

(r{?,f-u)__ Tl = T4 APO

ay=0, AO:ER_ 0 rf‘”:} ;

(2) For each ORTHOMIN iteration m = 1,2, 3, ..., compute [(a,5) = 3" asby:

_ (™) - AENT
m = (—KP—;T v Bm= (rm—T g1y

P™—=m -i-C!um_l, f;m =F+ a_um—l ,
rm—i—l —pm _ }\mKPm ) fm—!-l —=fFm _ }leTl-;ﬂ:—J'. :

[_Tm'H' s 'E'rm + A P™

(3) Convergence criterion |[U™+1|/|Ir%) < 10-¢

(4) If convergence criterion is satisfied {7* = W~ 1/2{jm+1

* nem = number of elements in the finite clement mesh, neleq = number of element equations.
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Table A1.3.2 Steps involved in using Lanczos/ORTHORES solver.

Repeat the following steps for each nonlinear iteration:
L. Initial Calculations

1) Form the element stiffness matrix K¢ and force vector .

(1)
(2) Apply the boundary conditions, and modify K¢ and F.
(3) Store the element matrices in A (whose dimensions are nem, neleq, neleq).

{4) Store inverse of the diagonal terms of the global system in W

nem

W= K
e=1

(5) Assemble the global force vector.

II. Preconditioning:
Form the preconditioned system of equations

KU=F, R=W-12gw-1/2  OT=wW120, F=w-12F

TII. Lanczos ORTHORES Algorithm
(1) For known initial solution vector U?, compute:

O =F - KOO

(2) For each ORTHORES iteration m = 0,1,2,..., compute (¥ = rg, A? = 0):

(e, E™)

m+1l __ i
5 (Krm,i"m)

1 ;ifm=0
- m =1 _-1
3 +1={|:1“—}‘m-HM 1:| yifm>1

AT (rms TFm-1) Ben
rmtl = ﬁm+1 (rm _ /\m+1f<rm) + (1 L ﬁm+1)rm_1
gl — IlGnm+1 (f.m — ym+l Ki:m) i (1 _ ﬁm+1)fm—1
ﬁﬂl+ L I@m‘i‘l ('D'm + Avn-l-]r'm.) + (1 Lﬁm-{-l)]’jm--l

(3) Check convergence ~ ‘
o +441/1e°) < 10-8

(4) If convergence criterion is satisfied, set

U* = W-l/."l'[jm-!-l
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Table A1.3.3 Steps involved in using the GMRES solver.

Repeat the following steps for each nonlinear iteration:

L. Initial Caleulations
(1) Form the element stiffness matrix K¢ and force vector Fe.
(2) Apply the boundary conditions, and modify K¢ and Fe.

(3) Store the element matrices in A (whose dimensions are nem, neleq, neleq).

nem ;-1
e=1 ii

(4) Store inverse of the diagonal terms of the global system in W: W, = >

(5) Assemble the global force vector.
II. Preconditioning: Form the preconditioned system of equations

KU=F, K=W-12KW-12, §=W20, F=wW-12F

III. GMRES Algorithm

(1) Start Choose U and compute
r0 =F - K00, and
=T G

(2) Iterate: For § = 1,2....k do:

hi; = (Kvj,w), i=1,2,...,5,
Oj41 = Koy~ 1 by o,
hit1,5 =l 841 |, and
Vit1 = Bp1/hi
(3) Form the approzimate solution
U* = 00 + Vy, where y minimizes
le-Hy ||,y € R*.

(4) Restart
Compute rk = F — KUF;
check convergence; if satisfied stop; otherwise, compute
U0 .= U*, vy := U*/|U*, and go to step 2.

(5) Convergence criterion |[U™+1)/[r9) < 10-6
(6) If convergence criterion is satisfied U* = W~1/20

where V' is a N x k matrix whose columns are -2 orthonormal basis vectors
{v1,v2,...,vi}, e={| UY|,0,...,0}, and H is the upper k x k Hessenberg matrix
whose entries are the scalars h; ;. When using the restart version of the GMRES
algorithm, the total number of iteration m can be computed from the number of
restarts and the dimension of k.
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Appendix A2

Solution Procedures for
Nonlinear Algebraic Equations

A2.1 Introduction

Finite element formulations of nonlinear differential equations lead to
nonlinear algebraic equations for each element of the finite clement mesh.
The element equation is of the form,

(Ke({u"HH{u}t = {F} (A2.1.1)
where

[K¢] — element coefficient matrix (or “stiffness” matrix), which
depends on the solution vector{u‘},

{uf} — column vector of element nodal values, and (A2.1.2)

{F¢} — column vector of element nodal “forces™.

When [K¢] is independent of {u}, the matrix coefficients can be evaluated for
all clements, and the assembled equations can be solved for the global nodal
values {u} after imposing boundary conditions. When [K®)] depends on the
unknown solution vector {u¢}, the matrix coefficients cannot be evaluated.
If we can find an approximation to {u®}, say {u®}!, then [Ke({u¢}')] can be
evaluated and assembled. This amounts to linearizing the nonlinear equations,
Eq. (A2.1.1). Then a next approximation to the solution can be obtained by

solving the assembled equations,
{uf = [K({u}")]7H{F} (A2.1.3)
This procedure can be repeated until the approximate solution comes close to

the actual solution in some measure. Such a procedure is called an iterative
procedure.
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Here we discuss the following commonly used iterative procedures:

1. The Picard Iteration (or Direct Iteration) Method

2. The Newton-Raphson Iteration Method

3. The Riks Method
The details of these methods are discussed next, with the aid of a single
nonlinear equation. For a more complete presentation of these methods, the

reader may consult the references at the end of this appendix.
Consider the nonlinear equation,

Ku)-u=F or R(u)=0 (A2.1.4)

where u is the solution to be determined, K (u) is a known function of u, F is
the known ‘force’, and R is the residual

R(u)=K(u) -u—F (A2.1.5)

A plot of the equilibrium path, R(u, F) = 0, is shown in F igure A2.1.1. For
any value uy, K(uj) denotes the secant of the curve at u = u;, and (‘g—f)]m
denotes the tangent of the curve at u = u;.

A2.2 Picard Iteration Method

In the Picard iteration, also known as the direct iteration method, we begin
with an initial guess for u, say w9, (u(® = 0 in Figure A2.1.1) and determine
a first approximation to u by solving the equation

u = (K@®)) " F (A2.2.1)

I,
’3: Lipear: K Tangent to the path
5 .
____“_Jfr_ Equilibrium path
i Rw,F) =0
7/
V. L secant

!

1

I

!

I

i

i

:

Uy

Displacement, u

Figure A2.1.1 Typical force—displacement curve.
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ulM) £ u, and a second approximation for u is sought by using the last
approximation to evaluate K

u® = (K(um))‘l F (A2.2.2)

This procedure is continued until the difference between two consecutive

approximations of u differ by a preselected value. Thus, the algorithm and
criterion for convergence may be written as

Algorithm  u® = (K(u(""-”))_l F (A2.2.3)

(r) — o (r—1))2
Convergence Criterion (i—u—)
(-‘a.(f'])z

<€ (A2.2.4)
where € denotes the convergence tolerance and r denotes the iteration number.

A geometric interpretation of the procedure described above is illustrated in
Figure A2.2.1(a) for an initial guess of 19 = 0. At the beginning of iteration
r, the secant of the curve R(u) = 0 is found at the point u = w1 and
the solution «(") is computed using Eq. (A2.2.3). Figure A2.2.1(a) shows the
convergence to the true solution u., whereas Figure A2.2.1(b) shows a possible
divergence of the algorithm. Thus, the success of the algorithm depends on
the nature of the nonlinear curve R(u) = 0, the initial guess, and the load
increment.

In the direct iteration method discussed above, the secant is evaluated at
each iteration and inverted to obtain the next approximate solution. This can
be computationally very expensive when the number of algebraic equations to
be solved is large, that is, when K is a matrix and [K]™! is its inverse. When
K has a linear portion, and in most problems of interest to us it does, an
alternative direct iteration algorithm can be formulated. Let

K(u) = K + Kn(u) (A2.2.5)

where K and Kn(u) are the linear and nonlinear parts of K. Note that Ky,
is the slope at u = 0 of the curve R(u) = 0. Then we can write

u™ = (Kz) YF - K (ulmD) . o= (A2.2.6)

This scheme involves evaluating the nonlinear part Ky at each iteration, which
is computationally less expensive when compared to evaluating [K(u"_l))] and
inverting it. The inversion of K, is required only once, and it should be saved
for subsequent use. The criterion in Eq. (A2.2.4) can be used to check for
convergence.

Geometrically, the alternative direct iteration algorithm uses the initial
slope, that is, slope at the origin of the curve for all iterations, while updating
the effective force

F= F—K;\r(u(r_l)) (1)
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at each iteration (see Figure A2.2.2). Therate of convergence of this algorithm,
if at all it converges, is slower than that in Eq. (A2.2.3)

< u' = linear solution = FIK,
=
g K(0)=FK,
S T KuW)=K,
Fihssa —f—
(a) w‘r I : u, = Converged solution
=8 ! u®=Solution at the end
i i of the ith iteration
I i
[ :
Co
| | i
[ 1
[ i
o i
1 i 1
_ P
ul 4@ @ u,
Displacement, u
& Possible divergence
=
@
o
(b)
Filccmmengl oo f Lo ™ =
i I
i i
I !
i i
i 1

UO 4@ O L6 O

Displacement, u

Figure A2.2.1 Direct iteration scheme. (a) Case of convergence. (b) Case
of divergence.
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Load, I
i
i

w; = solution at the end
of the ith iteration

[
[
[
i
i
i
1
1
i
I
i
i
i
i

D

- U

s e O

b~y
[

5 Uc Displacement, u
Figure A2.2.2 Modified direct iteration scheme.

As applied to the assembly of finite element equations (A2.1.1), the two
algorithms take the following forms:

Algorithm 1 {u}" = [K({u}")]7{F} (A2.2.7)

Algorithm 2 {u}" = [K]* ({F}—[KNL({u}('"'l))]{u}(r_l}) (A2.2.8)

Sy —uf )2
i)

The global matrices [K], [K7] and [K 1] are assembled from the corresponding
element matrices:

Convergence Criterion J <e (A2.2.9)

[K] is assembled using [Ke({ue}(f—l))]
[Kp] is assembled using [K§] (A2.2.10)
[Knr] is assembled using [KﬁL({ue}(r—l)H

where

(K] = [Ki]+ [K§] (A2.2.11)

The rate of convergence of the iterative procedure can be accelerated,
in certain type of nonlinear behavior, by a relazation procedure in which a
weighted average of the last two solutions is used to evaluate [K¢] (or [K§;]):
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K*({@°}), where {z°} = Pt R 41 Y{ue}r=1 and 0 < y<1is
called the relazation or acceleration parameter. In this case Eqs. (A2.2.7) and
(A2.2.8) take the form,

Algorithm 1 {u}" = [K({@})]"HF} (A2.2.12)
Algorithm 2 {u}" = [K;) " ({F} - [Kn;({z}){m}) (A22.13)
@ =} + Q- (a22.14)

The actual value of + varies from problem to problem.

The computational algorithm of the direct iteration is summarized below.
At each load level follow the steps:

1. Compute element matrices [K] and {F*°} (for transient problems, [K il
and {F*} are to be replaced by [K ¢] and {#*}) using the solution {u}r-D)
from the previous iteration (of current load and/or time). For the first
iteration of the subsequent load steps, use {u.}, the converged solution of
the last load step. For the first load step use {uc} = 0, provided [K¢|~!
exists, to compute the linear solution.

Assemble the clement matrices [K°] and {F°} (or [K¢] and {F*}).
Apply the boundary conditions on the assembled set of equations.
Solve the assembled equations.

oo

Check for convergence using Eq. (A2.2.9).

[op]
o

. If the convergence criterion is satisfied, increase the load to next level,
initialize the counter on iterations, and repeat Steps 1-5.

6b. If the convergence criterion is not satisfied, check if the maximum number

of allowable iterations is exceeded. If ves, terminate the computation

printing a message to that effect. If the number of iterations did not

exceed the maximum allowed, update {u}"—1) and {u}") and repeat

Steps 1-5.

A2.3 Newton—Raphson Iteration Method

Suppose that we know solution of Eq. (A2.1.1) at (r — 1)st iteration and
interested in seeking solution at the rth iteration. We expand R(u) about the
known solution u("~1) in Taylor’s series,

OR 1 (&R
= I(T_l) il o4 = | — . )2 + e =
B(u) R(u ) + (31&) ulr=1) e L 2 ((9'&2) ulr—1) ((5’1;!) 9
(A2.3.1)
where 6u is the increment,
T ) S S (A2.3.2)

e
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Assuming that the second- and higher-order terms in §u are negligible, we can
write Eq. (A2.3.1) as

-1

sul™ = — (KT(u(r—l))) . R(u(r—l))
= (KT(u(r—l)))—l (F - (D). ur) (A2.32)

where K7 is the slope (tangent) of the curve R(u) at u(™1:

p = OF

5 (A2.3.3)

u{""l)

The residual or imbalance force, R(u("=V) is gradually reduced to zero if the

procedure converges. Equation (A2.3.2) gives the increment of u at the rth
iteration so that the total solution is

u") = 41 4 yln) (A2.3.4)

The iteration is continued until a convergence criterion, say Eq. (A2.2.4), is
satisfied. Other convergence criteria include checking the magnitude of the
imbalance force.

A geometrical interpretation of the Newton-Raphson procedure is shown
in Figure A2.3.1(a). For most problems, the method has faster convergence
characteristics. Figure A2.3.1(b) illustrates possible divergence of the iterative
procedure for certain problems.

The Newton—Raphson method requires that the tangent Kp be computed
at each iteration. This can be very expensive when many degrees of freedom
are involved. A modified Newton-Raphson technique involves, for a fixed load
step, cither keeping Kp fixed while updating the imbalance force at each
iteration (see Figure A2.3.2) or updating Kt only at each preselected number
of iterations while updating the imbalance force at each iteration. There are
several other modifications of the procedure.

The Newton-Raphson and modified Newton-Raphson procedures take the
following forms when applied to the assembly of element equations (A2.3.2):

Newton-Raphson Procedure

{6U} = —[K7)"{R} (A2.3.5)
Modified Newton—Raphson Procedure

{6U} = —[K1]"{R} (A2.3.6)
where [K7] is the tangent matriz

[Kr| = 'g"g%

OR; . " 0Kk
r (Kr)ij = B0, = Kij+)_ au;
i k=1 .

U (A2.3.7a)
{L’}r‘-l
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and
{R} = [K{U}N{U}Y - (7} (A2.3.7b)
_ K] = Kz ({T))], [K)=[K({0})] (A2.3.8)
and {U} is the solution at the beginning of the current load step, and
{T}") = (U}-D) 4 (57} (A2.3.9)

The relaxation procedure described in Eq. (A2.3.9) can be used to accelerate
convergence for certain nonlinear problems.

A
k, K+1(0) = K(0) = K,
e
2 Ki(uw)
= ) y — sue ._.,516@./
Pl ___ &
(@) 4' I &=y = linear solution = FIK,
i
| I
i i i u, = Converged solution
’ i i 6u® = Solution increment at the
1 i end of the ith iteration
: : i u®=Total solution at the end
i ! :: of the ith iteration (for load F )
1 |
i i i
i I i
[ i i
uw u? U, 3
pries
Displacement, u
Possible divergence
Ry
o8 i
: ;
(b) = i
i
!
I
|
F ___________________________________
!
I
i
1
]
j
Uy

Displacement, u

Figure A2.3.1 The Newton-Raphson scheme. (a) A case of convergence.
(b) A case of divergence.
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u® = Linear solution = FIKj

9
=l
g 7(0) = K(0) = K,
L
Kop(uw)
F ol o] »."’
| Al
y Pt
Y b .
1 i 1ii wu. =Converged solution
i B u® = Solution at the end
i P of the ith iteration
i [
i il
i ol
| Pobi
| [
i R
i AR X
L ne u{a\ U,
ut

Displacement, u

Figure A2.3.2 Modified Newton—-Raphson scheme.

Since only the increment of the solution is computed in each iteration of the
Newton—-Raphson iteration, the incremental equations in (A2.3.5) and (A2.3.6)
are subject to homogeneous form of specified essential boundary conditions of
the problem. Thus after the first iteration of the first load step, any specified
non-zero values of {U} should be set to zero so that in the subsequent iterations
and loads, {§u} is subjected to homogeneous boundary conditions.

For each load step, the following computations are required for the Newton-
Raphson or modified Newton-Raphson procedure:

1. Evaluate element matrices [K¢] and {F¢} (or [K®] and {F*} for the
transient problems), and compute [K%] and {R®} using Eqs. (A2.3.7a,b)
for an element.

2. Assemble element matrices [K%| and {R®}; for the modified Newton-
Raphson iteration procedure, save either assembled [Kr] or its inverse
for use in subsequent iterations.

3. Apply the boundary conditions on the assembled set of equations.
Note: Set the specified boundary conditions on {U} to zero after Step 3
in the first iteration of the first load step.

4. Solve the assembled equations.
5. Update the solution vector using Eq. (A2.3.9).
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6. Check for convergence.

7a. If the convergence criterion is satisfied, increase the load, initialize the
iteration counter, and repeat Steps 1-6. For the modified Newton—
Raphson iteration, compute {F¢} — [K]{U¢}"~1) in Step 1 and go to
Step 2.

7b. If the convergence criterion is not satisfied, check if the maximum number
of iterations allowed is exceeded. If it is, terminate the computation by

printing a message. If the maximum allowable number of iterations is
not exceeded, go to Step 1.

In order to reduce the number of operations per iteration, in the modified
Newton-Raphson method the same system matrices are used for several
iterations. These matrices are updated only at the beginning of each load
step or only when the convergence rate becomes poor. The modified Newton—
Raphson method may require more iterations to reach a new equilibrium point.

A2.4 Riks and Modified Riks Schemes

The Newton Raphson method and its modifications are often used to trace
nonlinear solution paths. However, the Newton-Raphson method fails to trace
the nonlinear equilibrium path through the limit point (sce Figure A2.4.1),
because in the vicinity of a limit point the tangent matrix [K7] becomes
singular, and the iteration procedure diverges. Riks [1] and Wempner [2]
suggested a procedure to predict the nonlinear equilibrium path through
limit points. The method provides the Newton—-Raphson method and its
modifications with a technique to control progress along the equilibrium path.
The theoretical development of this method and its modification can be found
in [3-6]. In the modified Riks method (see [3-6]) the load increment for cach
load step is considered to be an unknown (see [3]) and solved as a part of the
solutiomn.

The basic idea of the Riks technique can be described for a single nonlinear
equation as follows (see Figure A2.4.2): The length As of the tangent to
the current equilibrium point is prescribed, and the new point is found as the
intersection of the normal to the tangent with the equilibrium path [sec Figure
A2.4.2(a)]. Then iteration is performed along the normal toward the new
equilibrium point, as illustrated in Figure A2.4.2(a). Crisfield [4] suggested
using a circular arc in place of the normal [see Figure A2.4.2(b)]. The center
of the circle is at the current equilibrium point and As is its radius. For
multidimensional problems the normal and circular arcs become a plane and
sphere, respectively, Crisfield [4] updated the tangent stiffness matrix only at
the beginning of each load increment (i.e. modified Newton—Raphson method).
In the present study we describe the modified Riks method due to Crisfield

[4].
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Limit points (Kp = 0)

Load, F

Displacement, u

Figure A2.4.1 Load-deflection curve with limit points.

We wish to solve Eq. (A2.1.4) for u as a function of the source term A
F is independent of the geometry, we can write it as

F=)\F (A2.4.1)

where ) is a scalar, called load parameter, which is considered as an unknown
parameter. Equation (A2.1.5) becomes

R=K(u) -u-AF (A2.4.2)
Now suppose that the solution (ug_l) ’ )\S’_U) at (r — 1)st iteration of the nth

load step is known and we wish to determine the solution (u&f ),)\if )) at the
rth iteration. Expanding R, which is now a function of A and u, in Taylor’s
series about the known solution, we have,

8R\ OR\ Y
(r) 0y = (r=1) y(r=1) = (r) i () ...
R(ﬂn 4 An ) R(’E.Ln : )‘n ) e (8)\) 6An + ( (}u) 6Un -+

=0

Omitting the higher-order terms involving the increments s\ and 6u£1T), we
obtain L
0= RV —F .\ + (Kr)Y - 6ul) (A2.4.3)
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Figure A2.4.2 The Riks scheme. (a) Normal plane method. (b) Circuar
arc method.

where K1 = OR/0u is the tangent matrix [see Eq. (A2.3.3)]. The incremental
solution at the current iteration of the nth load step is given by

ul) = —~K7(RTY —F . 62
= sul”) + 600 - 54, (A2.4.4a)

where § ug‘) is the usual increment in displacement due to known out-of-balance

force vector Rgf_i} with known ,\L"‘” and Kr is the tangent at the beginning

of the current load increment (i.e. Modified Newton-Raphson method is used)

677 = —K7 RI-D (A2.4.4b)
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and 0y, is the tangential solution (see Figure A2.4.3)

St = Kp'F (A2.4.4c)
Note that K is evaluated using the converged solution u,—; of the last load
step, _
JdR\ | 0K
Kr=|— = _ =i ¢ Uy A2.4.
0= (5) o, KO0+ () | e (249

and &1, is computed at the beginning of each load step.
The solution at the rth iteration of the current load step is given by

Up = Un_1 + Aug} (A2.4.6a)
Al = Ayl 4 sulD, AD = 2D 460D (A2.4.6b)

For the very first iteration of the first load step, we assume u = up, and a
value for the incremental load parameter 61, and solve the equation

5ty = (Kp)'F (A2.4.7)

and compute 6u{” = 8X0 - 8.

A2.4.3 Modified Riks scheme.

n . . = g
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Select the arc length As to be the length of the vector
(As)? = Au) - AulD (A2.4.8)

Substituting for Au” from Egs. (A2.4.6b) [and 6ul” from Eq. (A2.4.4a)]
we obtain the following quadratic equation for the. increment in the load
parameter, SAL

a1 A2 + 2a5[607] + a3 = 0 (A2.4.9a)

where

a; = 6’&” : éﬂn

az = (AT + 67y - 84y,

a3 = (Au ™D +670) - (Aul 4 67)) - (As)? (A2.4.9b)
Let us denote the roots of this quadratic equation as 6)\,(:1} and 5)\53}. To avoid
“tracing back” the equilibrium path (i.e. going back on the known equilibrium
path), we require the angle between the incremental solution vectors at two
consecutive iterations, Aug*l) and Auw(:), be positive. Corresponding to the
two roots, 6/\5:"1} and 6)\£:2), there correspond to two values of Aul”, denoted
Augl} and Aug. The root that gives the positive angle is the one we select
from ((‘})\,(:1), §)\$). The “angle” is defined to be product of the vector Aull ™"
and Au£f ). Then we check to see which one of the following two products is
positive:

AulT . Aul) and AulY . AT (A2.4.10a)

If both roots are positive, then we select the ones closest to the linear solution,

[N (R (A2.4.10b)
2a

The first arc length As is computed using Eqs. (A2.4.7) and (A2.4.8):
As = 6XI\/61iy - 6 (A2.4.11)

To control the number of iterations taken to converge in the subsequent load
Increments, §s can be scaled,

Iq

Asy = Asyq- f_o

(A2.4.12)

where As, 1 is the arc length used in the last iteration of the (n — 1)st
load step, I; is the number of desired iterations (usually < 5) and Iy is the
number of iterations required for convergence in the previous step. Equation
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(A2.4.12) will automatically give small arc lengths in the arcas of the most
severe nonlinearity and longer lengths when the response is linear or nearly
linear. To avoid convergence of the solution at a higher equilibrium path,
maximum arc lengths should be specified.

For all load steps after the first, the initial incremental load parameter & )\%0)
is calculated from

A0 = £As, - [Siiy, - it 2 (A2.4.13)

The plus sign is for continuing the load increment in the same direction as the
previous load step and the negative sign is to reverse the load step. The sign
follows that of the previous increment unless the value of determinant of the
tangent matrix has changed in sign.

The modified Riks procedure described above for a single equation can be
extended to the finite element equations in (A2.1.1). We introduce a load
parameter A as an additional dependent variable,

{F} = MF} (A2.4.14)

In writing Eq. (A2.4.14), loads are assumed to be independent of the
deformation. The assembled equations associated with Eq. (A2.1.1) become

(R{U}, N} = [K[{U} = MF} =0 (A2.4.15)

The residual vector {R} is now considered as a function of both {U} and A.

Now suppose that the solution ({U }J WA r_l)] at the (r — 1)st iteration
of the nth load step is known. Expandmg {R} m Taylor’s series about

({U}g_l), )\S-U), we have

OR; y [ OR; (r) 4
(U (r—1) )\(T 1) +( 1) SA)— ( ) 6U;  +
Ri = R({U}n ) O R ou, U ! :

where the subscript ‘n’ is omitted for brevity. Omitting second- and higher-
order terms involving 6A(") and oU; (r) , We can write

{0} = {R}™D = 62D - (F} + [K7]{6U})

() = — (K" YR} + DK "HF}  (A24.16a)
= {5U}") + 5XD{60} s, (A2.4.16b)

where { F'} is the load vector, {R}&I‘” the unbalanced force vector at iteration

(T 2 1)7
(6T}0) = —[Kr]"YR}TD, (A2.4.17a)

B T S TR GRS | | FSRESE T T DT



454 NONLINEAR FINITE ELEMENT ANALYSIS

and cff)\gf) the load increment [given by Eq. (A2.4.10)], and
{6U}n = [Kr|"H{F) (A2.4.17b)
For the first iteration of any load step, 6)\,(10) is computed from [see Eq.
(A2.4.13)]: :
XY = £As,({60}T{60},,)~1/2 (A2.4.18)
where [sec Eq. (A2.4.12)]

(A%)p = (Ad)n - Iy/I (A2.4.19a)

and (A8)y, is the arc length computed using the relation

(A8)n = {AUYT_ {AU}nr (A2.4.19b)

{AU},_1 being the converged solution increment of the previous load step.
For the first iteration of the first load step. we use:

As = 5,\2\/{—55?}}’ : {55}: (A2.4.20a)

{60 = [Kr]{F), (K7 = [Kr({Uo})] (A2.4.200)
where 6\ is an assumed load increment and {Uo} is an assumed solution
vector (often we assume A9 = 1 and {Up} = {0}).

The solution increment is updated using
{AUY;, = (AU 4 {sU}0) (A2.4.21)
and the total solution at the current load step is given by
{Utn = {U}no1 + {AUFD) (A2.4.22)

The constants in Eq. (A2.4.9b) are computed using

a1 = {80} {60,
ay = ({AUTD + (TN {6073, (A2.4.23)
a3 = ({AUY™D + {6TH)T (AU + {6T}0) — (As)2

The computational algorithm of the modified Riks method is summarized
next.
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First iteration of first load step

(i) Choose a load increment 619 (say, 6A? = 1) and solution vector {U}q (say, {U}q = {0}).
(ii) Form element matrices [K%] and

{R°} = [K°|{U°}o — {F*}
(i) Assemble clement matrices.
(iv) Apply the boundary conditions.
(v) Solve for {607}, and {87} using Eqs. (A2.4.17a,b).

(vi) Compute the solution increment [see Egs. (A2.4.16) and (A2.4.21)] and update the
solution

(UM = T +6X046071;  {aUyY = sy
{Uh = {U}o + {0}V

(vii) Update the load increment A{ll) = 6)\?.
(viii) Compute the arc length [see Eq. (A2.4.20a)]

As = 60/ {8U}T {60}

(ix) Go to Step 9.

First iteration of any load step except the first
1. Calculate the system matrices [K*],[K£] and {F*}.
2. Assemble the element matrices.
3. Apply the boundary conditions.

4. Compute the tangential solution
{60}n-1 = [Kz]H{F}

o

. Compute the initial incremental load parameter 5)\530) by Eq. (A2.4.18):

A = £(As)a[{60}E - {80}l /2 (A2.4.24)

(=2

. Compute the incremental solution using Eq. (A2.4.17a):
T3 = ~[Kr] R
7. Update the total solution vector and load parameter:

U = (503D + XD (0
{Un = (U1 + {03
A =20 10 avyd) = (st (A2.4.25)
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456 NONLINEAR FINITE ELEMENT ANALYSIS

8. Check for convergence [see Eq. (A2.4.28)]. If convergence is achieved, go to step 15
below. If not, continue with the 2nd iteration by going to step 9.

The rth iteration of any load step (r=2,3,...)

9. Update the external load vector
{Fyr-1) = 2I-VF (A2.4.26)

10. Update the system matrices (skip forming of [Ky] for modified Newton-Raphson
iteration).

11. Solve for {6?7}5; ) and {é{}}n from the two sets of equations in (A2.4.17a,b); for the
modified Newton-Raphson method Eq. (A2.4.17b) need not be resolved.

12. Compute the incremental load parameter $A[= 6/\5:} | from the following quadratic
equation:

a1(6A)? +2a5 6X+ a3 =0

a1 = {60}T - {60}
ay = ({7} +{AUITNT . 607},
ag = ({7} + {AUYT T . ((6T10) + (ATHED) — (As)2
and As is the arc length of the current load step. Two solutions §X; and ) of

this quadratic equation are used to compute two corresponding vectors { AU}E";} and

{AU} ::2 The 6 that gives positive value to the product {AT/} %) JAUY) is selected.
If both 6A1 and 8, give positive values of the product, we use the one giving the smallest
value of (~as/as).

13. Compute the correction to the solution vector
(U = (6T 4+ 6 - {60,

and update the incremental solution vector, the total solution vector and the load
parameter:

(AU = (Avy-Y 4 sy
{Utn = {U}nay +{AT}) (A2.4.27)
M =20 4 )

14. Repeat steps 9-13 until the following convergence criterion is satisfied:

) 3
(D = @ (@i - D) |
(ot RIS

<e (A2.4.28)

15. Adjust the arc length for the subsequent load steps by lsee Eq. (A2.4.9a)] As =
AS(I4/1).

16. Start a new load step by returning to Step 1.
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Acceleration of convergence, 65

Acceleration parameter, 66, 101, 107,
444

a-family of approximation, 289, 296

Algorithm, 441, 443, 444

Almansi-Hamel strain tensor, 332,
333, 353

Alternative direct iteration algorithm
441

Amplification matrix, 295

Area coordinates, 37

Assembly of element, 33, 251

Axial force, 91, 112

?

Backward difference method, 290, 291,

293, 307
Basis vectors, 405
BCIZ triangle, 161
Beam:
bending of, 88
Euler-Bernoulli theory of, 88
Timoshenko theory of, 110
Bilinear form, 17, 28, 241, 270
Biorthogonal Conjugate Gradient
method, 432
Boundary conditions:
Dirichlet, 16
essential, 16, 76
force, 92
mixed, 79
natural, 16, 79, 92
Neumann, 16
of fluids, 234
Boussinesq approximation, 233
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Subject Index

C'—Continuity, 155
Cauchy-Green deformation tensor,
331, 332
Cauchy strain tensor, 332
Cauchy stress, 334
Central difference method, 290, 292
Clamped, 107, 121, 151, 167, 192, 195,
209, 212, 217, 220
Classical beam theory, 88
Classical plate theory (CPT):
assumptions of, 141
boundary conditions, 149
displacement field, 142
equations of motion, 148
finite element model of, 153
strains, 142
Codazzi conditions, 197
Coefficients:
of thermal expansion, 152
Collocation method, 274
Computational mechanics, 1
Conditionally stable, 295
Configuration, 328, 337, 338, 339
Conforming element, 161
Conjugate gradient method, 274, 277,
280, 430
Consistent mass matrix, 292
Consistent penalty model, 245, 246
Constant-average-acceleration
method, 293, 309, 312, 371

" Constitutive relations, 405

Continuity equation, 231, 242
Continuum formulation, 87
Convergence criterion, 441, 443
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Convergence tolerance, 441
CPT, see: Classical plate theory

Crank-Nicolson scheme, 291, 307, 312

Cylindrical coordinate system, 405
Cylindrical shell, 209, 212

Deformation gradient tensor, 330
Direct iteration, 65, 77, 98, 107, 121,
131, 408, 440
Direct methods, 427
Displacement finite element mode]
157
Doubly-curved shell, 196, 210
displacement field, 204
equations of motion, 205
finite element model of, 206, 207
strains, 204
stress resultants, 203

Eigenvalue problem, 289

Eigenvalues, 334

Elasticity tensor, 346

Elastic- perfectly-plastic, 392

Elasto-plastic tangent modulus, 394

Element-by-element, 432

Energetically-conjugate, 336

Engineering constants, 376

Equations of equilibrium,
Euler-Bernoulli beam theory, 91
Timoshenko beam theory, 113

Essential boundary condition, 76
See Boundary conditions

Euler strain tensor, 332, 343

Euler-Bernoulli beam theory, 88
displacement field of, 88

Euler-Bernoulli hypotheses, 88

Euler-Lagrange equations, 112, 176

Eulerian description, 230

Euler’s explicit method, 4

Explicit scheme, 288

Extensional stiffnesses, 94, 153

Finger tensor, 332

Finite difference method, 5
Finite element, 5, 13

Finite element mesh, 25
Finite element method, 5, 290

Finite element model of:
beams (EBT), 95
beams {TBT), 113
heat transfer, 297, 418
isotropic, Newtonian, viscous,
incompressible fluids, 235
plates (CPT), 153
plates (FSDT), 177
power law fluids, 407, 411
First-order shear deformation theory:
displacement field, 173
equations of motion, 177
finite element model of, 177, 179
generalized displacement. 173
strains, 174
First law of thermodynamics, 232
First Piola-Kirchhoff stress, 335
Fixed edge, 151
Flow over a backward-facing step, 277
Flow past a circular cylinder, 278
Fluid mechanics, 229
Force boundary condition, 92
Forward difference scheme, 4, 290, 291
Fourier’s heat conduction law, 233
Free-body diagram, 17
Free edge, 151
Frontal solution, 427
FSDT, see: First-order shear
deformation theory
Full integration, 104, 116, 118, 120, 168

Galerkin’s method, 15, 291, 293
Gauss elimination method, 427
Gauss points, 45, 135, 185, 251
Gauss quadrature, 45, 102, 116, 118, 135
Gauss weights, 45, 135, 251
Gauss- Legendre quadrature, 44
Generalized nodal displacements, 90
Generalized nodal forces, 89
Geometric nonlinearity, 7, 389
Global coordinates, 30, 130, 133
GMRES, 432
Governing Equations:

of Newtonian, viscous,

incompressible fluids, 235

of non-Newtonian fluids, 406

Green- Lagrange incremental strain, 341
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Green-Lagrange strain tensor,
201, 331, 333, 340, 390

h-refinement, 218

Half bandwidth, 425

Hamilton’s principle, 369

Hardening, 8

Heated cavity, 419

Heat flux, 233

Hermite cubic interpolation
functions, 95

Hinged, 119, 219

Homogeneous motion, 331

Hydrostatic pressure, 233

Hyperelastic material, 346, 390

Ideal plastic, 392

Imbalance force, 445

Implicit scheme, 288
Incompressibility condition, 231
Incompressible flow, 229
Infinitesimal strain tensor, 341, 343
Initial conditions, 288, 292
Initial-value problem, 3
Interpolation property, 19, 30
Inviseid fluid, 229
Isoparametric formulation, 42
Iterative method, 274, 430

Jacobian, 44, 134, 331, 340
Jacobian matrix, 43, 134, 251

Kinetic hardening, 394

Kirchhoff assumptions, 141

Kirchhoff free-edge condition, 150
Kirchhoff stress increment tensor, 344
Kovasznay flow, 275

Ladyzhenskaya-Babuska—Brezzi (LBB)
condition, 248
Lagrange interpolation, 30, 32, 38,
114, 130, 155, 179, 207, 411, 418
Higher-order, 20
Linear, 19, 95
Quadratic, 20
Lagrange multiplier method, 241
Lagrangian description, 230, 328
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Lamé constants, 199, 233
Laminar flow, 230
Lanczos orthores, 433
Least squares finite element model,
267, 269, 272, 299, 315
Least squares functional, 271, 272,
275, 277, 299, 318
Linear acceleration method, 293
Linear element, 23
Linear form, 17, 28, 241, 270
Linear rectangular element, 32
Linear triangular clement, 30
Linearly independent, 15
Local coordinates, 133
Locking, 274
membrane, 102, 117
shear, 115, 184
Load increments, 100, 106, 108, 119, 172,
361

Master element, 36, 41
Material coordinates, 328
Material description, 230, 328
Material nonlinearity, 7, 389
Material stiffnesses, 376
Material strain rate tensor, 336
Mathematical model, 1
Matrix,

coefficient, 23

stiffness, 23, 358

tangent stiffness, 358
Membrane locking, sée Locking
Metric, 197
Mindlin plate theory, 181
Mixed finite element model, 237, 240,

254, 274

Moment, 91

Natural boundary condition, 16, 79,
92

Navier-Strokes equation, 230, 232

Newmark’s integration scheme, 293,
296, 371

Newton—Raphson iteration scheme,
68, 78, 98, 107, 121, 131, 157,
189, 439, 444

modified, 70, 445
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Newtonian fluid, 229, 233
Newton's iteration procedure, 68
Nodal degrees of freedom, 23
Nodes, 6, 26
global, 33
Nonconforming element, 161
Nonlinear analysis of:
Euler-Bernoulli beams, 88
Timoshenko beams, 110
Non-Newtonian fluid, 229, 404
Numerical integration, 40
Numerical simulation, 3
p-refinement, 21
Parabolic equations, 289
Penalty finite element model, 237,
241, 246, 405
Penalty parameters, 243, 247, 256,
261
Picard iteration, 65, 440
Pinned, 107, 121
Plane stress, 365
Plane stress-reduced stiffnesses, 152,
376
Plastic flow, 391
Plasticity, 391
Power-law fluid, 404, 407
Primary variables, 16, 27, 62, 112,
150, 177, 206, 235
Primitive variables, 235
Principal radii of curvature, 197
Principle of:
conservation of angular
momentum, 232
conservation of energy, 232
conservation of inear momentum,
232
conservation of mass, 231, 340
minimum total potential energy, 18
virtual displacements, 89, 111, 145,
174, 347, 369
virtual work, 349, 352

Quadratic element, 23
Rate of deformation gradient tensor,

336
Rectangular elements, 38

Reduced integration, 102, 104, 118, 120,

168, 212, 214, 249, 254, 274, 377
Reduced integration penalty model,
244
Relaxation, 443
Residual, 15
Riks, 440, 448
Riks-Wempner method, 378
modified, 381
Romberg-Osgood model, 391
Rotation tensor, 334

Sanders’ shell theory, 196, 205
Second Piola-Kirchhoff stress, 335,
390
Secondary variables, 16, 27, 62, 112,
150, 177, 206, 235
Serendipity elements, 39
Shallow cylindrical panel, 217, 219
Shear correction coefficient, 111, 175
Shear correction factors, 203
Shear force, 112, 203
Shear locking, see Locking
Shear thickening fluids, 407
Shear thinning fluids, 407
Simply supported, 151, 167, 169, 185
189, 210, 312, 378, 381
Skyline technique, 427
Softening, 9
Solar receiver, 420
Space-time coupled formulation, 321
Spatial approximation, 287
Spatial description, 230, 329
Specific heat, 236
Stability, 295, 296
Stiffnesses:
bending, 94, 153
extensional, 94, 153
extensional-bending, 94
Strokes flow, 230, 241, 269
Strain—displacement relations, 143
nonlinear, 83
Strain energy, 89, 174
Strain energy density, 390
Strain hardening, 393, 394
Strain rate tensor, 232, 405
Stream function, 237




Stress,

Cauchy, 334

deviatoric, 393

invariants, 393

tensor, 232

vector, 334
Stretch tensor, 334
Subparametric formulation, 42
Superconvergent element, 95
Superparametric formulation, 42

Tangent matrix, 69, 131, 445
Tangent stiffness matrix, 98, 117, 157,
182, 390
Theorem of Rodrigues, 197
Thermal coefficients of expansion, 153
Thermal stress resultant, 153
Timoshenko beam theory, 110
displacement field of, 110
finite clement model of, 113
Tolerance, 65, 108, 119, 169, 189, 192
Total Lagrangian description, 338
Total Lagrangian formultaion, 348,
353
Transverse force, 2, 175
Tresca vield criterion, 393
Triangular elements, 37
Turbulent flow, 230

Unconditionally stable, 295

Updated Green-Lagrange strain
tensor, 342 :

Updated Kirchhoff stress increment
tensor, 344

Updated Kirchhoff stress tensor, 344

Updated Lagrangian description, 338

Updated Lagrangian formulation,
350, 360
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Validation, 12 )

Variational problem, 17, 241, 242, 270

Vectors, 23

Velocity gradient tensor, 335

Velocity—Pressure model, 237

Velocity-Pressure-Velocity model,
299

Velocity -Pressure—Vorticity model,
299

Verification, 11

Viscoelastic fluid, 404

Viscosity, 229

Viscous incompressible fluid, 407

Viscous stress tensor, 233

von Kdrmén nonlinearity, 300

von Kérmén strains, 89, 144, 174

von Mises yield criterion, 393

Vorticity, 237, 271

Weak form, 16, 26, 62, 128, 239
Weak forms for:

Doubly-curved shell, 206

Euler-Bernoulli beam, 89

heat transfer, 297

plates (CPT), 147

plates (FSDT), 174, 300

steady Stokes flow, 241

Timoshenko beam, 111
Weight functions, 15
Weighted-integral, 15
Weingarten—Gauss relations, 197
WhiteMetzner model, 409

Yield criterion, 392
Yield stress, 392
Yielding, 391
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