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Preface

If you want to go fast, go alone.
If you want to go far, go together.

African Proverb

This monograph has two main aims: to make precise a distinction between the
concepts of confirmation and evidence and to argue that failure to make it, in our
terms, is the source of certain otherwise intractable epistemological problems.
Confirmation has to do with the adjustment of our beliefs in light of the data we
accumulate, and is therefore “in the head” and in this sense “subjective;” evidence,
however, has to do with the relationship between hypotheses or models and data,
accumulated or not, and is “in the world” or “objective.” A subsidiary aim is to
demonstrate to philosophers the fundamental importance of probabilistic and sta-
tistical methods not simply to inferential practice in the various sciences, where
they are now standard, but to epistemic inference in other contexts as well.

The argument for the main aim depends in turn on three others:

1. That the best-known attempts to characterize a satisfactory concept of evidence
in terms of Bayesian or other non-Bayesian confirmation theories fail;

2. That the standard error-statistical, “bootstrap,” and “veridical evidence”
accounts of hypothesis testing are not as successful as the one developed in this
monograph;

3. That some traditional epistemological puzzles are solved in a clear and
straightforward way once the confirmation/evidence distinction is made along
our lines.

Although the argument is rigorous, it is also accessible. No technical knowledge
beyond the rudiments of probability theory, arithmetic, and algebra is presupposed,
symbols are kept to a minimum, otherwise unfamiliar terms are always defined, and
a number of concrete examples are given. More specialized material has been
placed in Appendices to several of the chapters. That our line of argument is at least
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initially somewhat counterintuitive should make it all the more interesting and
important to philosophers and the philosophically-minded.

The first part of the African proverb above can be taken to promote single
authorship of a monograph for expeditious publication. It could have been written
much more quickly by any one of us. But “going it alone,” we would not have been
able to go as far as we have collectively. We each brought ideas from our varying
specializations and created a synergy that propelled the work to what we hope are
far-reaching ends. We envision that it will spur subsequent discussion of statistical
and epistemic reasoning by philosophers, as well as their consideration by scientists
interested in a larger view of their own inferential techniques.
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Part I
Clarification, Illustration,

and Defense of the
Confirmation/Evidence Distinction



Chapter 1
Introductory Remarks—Inferential
Uncertainty

Abstract Most of the claims we make, nowhere more so than in the empirical
sciences, outrun the information enlisted to support them. Such claims are never
more than probable/likely. Intuitively, even obviously, some claims are more
probable/likely than others. Everyone agrees that scientific claims in particular are
probable/likely to the extent that they are confirmed by experimental evidence. But
there is very little agreement about what “confirmation by empirical evidence”
involves or how it is to be measured. A central thesis of this monograph is that a
source of this disagreement is the near-universal tendency to conflate the two dif-
ferent concepts—“confirmation” and “evidence”—used to formulate the essence of
the methodology. There is no doubt that the words signifying them are used inter-
changeably. But as we will go on to argue, failure to make the distinction leads to
muddled thinking in philosophy, statistics, and the empirical sciences themselves.
Two examples, one having to do with the testing of traditional psychotherapeutic
hypotheses, the other with determining the empirical superiority of the wave or
particle theories of light, make it clear how data can confirm a hypothesis or theory,
yet fail, in context, to provide evidence for it.

Keywords Belief � Evidence � Inferential uncertainty � Dodo bird verdict �
Poisson spot

The “Experimental Method”, Belief, and Evidence

We begin with a paradox. At least since the time of Galileo, “science” has virtually
been defined in terms of its use of the “experimental method”, to wit, the tenet that its
various hypotheses must be confirmed by empirical evidence if they are to be
accepted. This is the widely-acknowledged source of the pre-eminent credibility that
many scientific theories have enjoyed since the 16th and 17th centuries. Yet there is
as yet very little agreement among philosophers and philosophically-minded
statisticians about what such “confirmation by evidence” amounts to, or how it is to
be analyzed and understood. Indeed, the situation is even worse. Without exception,
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the standard philosophical analyses advanced have led to paradoxes, and the dis-
agreements among those involved seem to grow greater by the day. We need to set
out on a new path.

Among much else, Immanuel Kant left philosophers two pieces of superb
methodological guidance. One is contained in the opening words of the second
section of Thoughts on the True Estimation of Living Forces:

… An insight that I have always used as a rule of the examination of truths. If men of good
sense, who either do not deserve the suspicion of ulterior motives at all, or who deserve it
equally, maintain diametrically opposed opinions, then it accords with the logic of prob-
ability to focus one’s attention especially on a certain intermediate claim that agrees to an
extent with both parties.1

This might be taken to mean: if men of good sense maintain diametrically
opposed opinions, then it is a wise move to split the difference between them,
establishing some sort of common ground. Indeed, Kant’s practice often suggests as
much, that the truth generally lies between extremes; both rationalism and
empiricism, for example, have something to be said in their favor, and the best
strategy is to begin at those places where they intersect.

We take Kant’s advice in another way, however. On our reading, when neither
of two sides is willing to relent, and more especially when it seems that the
arguments on each side are cogent, we should look for premises that both accept,
and examine them more closely. On this reading, whatever common ground the two
sides to an apparently endless dispute share is itself suspect, a likely source of their
ultimate disagreements.

The other piece of methodological advice Kant left us confirms our way with the
first. It has two aspects. On the one hand, philosophy proceeds largely, if not
entirely, by way of resolving paradoxes or what he called “antinomies” in thinking
about the world and our knowledge of it. On the other hand, such resolution is
obtained by making crucial distinctions. In the case of the debate between
Cartesians and Leibnizians which is the focus of Thoughts on the True Estimation
of Living Forces, the distinction to be made is between two very plausible senses of
“living force”, between what we now term “momentum”, mv, and “mean kinetic
energy”, ½ mv2. The heretofore shared premise, that there is but one plausible
sense, must be given up and the dispute is resolved.

Our two-fold argument in this monograph is straightforward. It is that
philosophers who otherwise disagree about the character of scientific and other
kinds of epistemic inference share a common assumption, that the concepts of
evidence and confirmation are but two sides of the same coin, and that the holding
of this assumption is the source of many of the seemingly intractable, often para-
doxical, difficulties into which they fall.

In the process of making this distinction as precise as possible, confirmation in
terms of up-dating probabilities by way of Bayes Theorem and evidence in terms of

1Section II, #20.
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the ratio between likelihoods,2 we will draw on a wide array of probabilistic tools
and statistical methods. We hope to demonstrate to those not already convinced that
these tools and methods provide indispensable help in the clarification and eventual
solution of questions surrounding the character of scientific inference in particular
and the grounding of human beliefs in general. It is a source of continuing concern
to us that while multiple courses in logic and set theory continue to be part of the
philosophy curriculum everywhere, comparatively little instruction in probability
theory and statistics is offered. This is somewhat puzzling in light of the fact that
David Hume, Bishop Butler, and other philosophers in the 18th century focused so
much attention on probabilistic concepts,3 as did Hans Reichenbach, Rudolf
Carnap, and other leading philosophers of science in the 20th century.4

Inferential Uncertainty

Most of the claims we make, nowhere more so than in the empirical sciences, outrun
the information enlisted to support them. This can be brought out in two different and
familiar ways. On the one hand, however much information has been gathered, it is
still possible that the claims they are taken to support are false. As Hume famously
said, for all we know, the sun might not rise tomorrow morning. The conclusions of
such arguments are nevermore thanmerely probable/likely.On the other hand, adding
information to the premises of deductive arguments does not affect their validity. If p
& q logically entails p, so too does p& q& r.But if a foxy scent in the air supports the
claim thatwe are on the track of a fox, it does not so soon aswe add the information that
this is a “dry hunt” (i.e., someone has gone ahead to lay down a scent for the hounds to
follow). In this case (of non-monotonic reasoning), the claims wemake are hostage to
the information taken to support them and in this sense as well inevitably outrun that
information. Once again, such claims are never more than probable/likely. Intuitively,
even obviously, some such claims aremore probable/likely than others. It is the task of
uncertain inference to say under what conditions and to what extent this is so. It is
customary in the first sort of case, when it is possible for the informational premises to
be true and the claimmade on their basis false, to talk about “inductive probability”, in
the second sort of case, when the credibility of a claim rests on the kind of evidence
available to support it, to talk about “epistemic probability”, the one attaching to
arguments and the other to statements, but it should be clear that the probability of

2The likelihood ratio is one among a number of evidence functions. We will later list the reasons
for its choice.
3See Hacking (1975), for a lucid account of the history.
4Perhaps it can be explained in terms of the fact that philosophical claims are traditionally taken as
true or false, to be established or refuted on the basis of deductive arguments. Logic and set theory
are well suited to appraise their validity. In science, on the other hand, there is a much greater
emphasis on quantitative models which are all strictly false, but whose adequacy is best assessed
probabilistically.
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statements is tied closely to their figuring as conclusions of inductive arguments. We
might bring these considerations together under the heading of formal or inferential
uncertainty. It has been a source of philosophical concern at least since the time of
Hume.5

There is more. It is not simply that many of the claims we make are sensitive to
and invariably outrun the information we have in hand, but that we live in an
increasingly complex world, whose description and a fortiori its adequate expla-
nation(s) requires probabilistic and statistical concepts. We might bring this fact
under the heading of substantive uncertainty, by which we understand statistical as
well as quantum uncertainty. It has been acknowledged as such at least since
Bernoulli and Pascal in the 17th century and Heisenberg in the 20th.6

Our concern in this monograph is with inferential uncertainty.7 To re-state our
initial paradox in more contemporary terms, our ability to explain and describe the
world goes far beyond whatever abilities to do so our ancestors might have had, yet
the inferential structures which support this ability of ours are the source of con-
tinuing controversy and their own uncertainty. Still, we have some very elegant and
well-developed probabilistic and statistical tools with which to work. Our aim here
is not to extend but to re-deploy them, in the expectation that at least some of the
controversy, if not also uncertainty, will be mitigated.

The Action Agenda

In the final section of this chapter, we will document the way in which the notions
of confirmation and evidence have been conflated and sketch two examples that
indicate why and how they should be distinguished. In Chap. 2, the distinction
between the two notions is made formally precise, and in Chap. 3, several examples

5Hume understands “By probability, that evidence, which is still attended with uncertainty. ‘Tis
this last species of reasoning I propose to examine” (1888/1739–1740, p. 124). It is significant that
in this paragraph from A Treatise of Human Nature, Hume attributes “degrees” to evidence,
associates it with “reasoning” or inference, and (implicitly) distinguishes it from “experience” (by
which we understand “data”). In all three respects, our discussion follows his and breaks with what
has come to be the conventional wisdom.
6One can distinguish between statistical and quantum uncertainty, but not isolate them. A certain
amount of statistical uncertainty, on occasion not insignificant, will be due to quantum uncertainty.
Butterfly-like amplifications translate some quantum uncertainty into statistical uncertainty. The
behavior of animals responding to chemoreceptors is an example. Some chemoreceptors are so
exquisitely sensitive that they will respond to single molecules. Whether or not a particular
molecule comes into contact with a receptor depends on the quantum uncertainty of Brownian
motion.
7The distinction between inferential and substantive uncertainty, the one having to do with the
kinds of conclusions we humans are capable of drawing, the other with the course of natural
phenomena, is not sharp. Statistical distributions are natural phenomena, but they often give the
arguments in which they figure as premises an inductive character.
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are given to illustrate it further and demonstrate its importance. Chapter 4 replies to
several of the most prominent difficulties that have been raised in connection with
our way of formulating the confirmation/evidence distinction, and in the process
clarifies our intentions.

The first part of the monograph thus sets out, develops, and defends our dis-
tinction between evidence and confirmation. The second part of the book discusses
alternative accounts of hypothesis-testing which either dispense with the distinction
or cast it in different terms. Chapter 5 considers, and then rejects, a well-known
attempt by David Christensen, James Joyce, and Alan Hájek to make something
like the distinction, or least to provide an adequate surrogate for “evidence”, in
Bayesian “confirmational,” terms alone. Chapter 6 takes up Deborah Mayo’s
well-known error-statistical (“Neyman–Pearson”-based) account of the severe
testing of hypotheses, develops some key difficulties with it, and notes the
advantages of our own. Clark Glymour both rejects the Bayesian (and more gen-
erally probabilistic) approach to uncertain inference and adds influential “bootstrap”
conditions to some of its traditional alternatives. In Chap. 7, we examine his
account, find problems in it stemming from its conflation of evidence and confir-
mation, and as a corollary show in an intuitive way how the problem of selective
hypothesis testing can be solved. Peter Achinstein has developed another very
interesting quasi-probabilistic conception of evidence which, we argue in Chap. 8,
similarly confounds evidence with confirmation and, in addition to other problems,
eventually runs afoul of some powerful theorems about the probability of mis-
leading evidence.

The third part of the monograph makes a case for the usefulness of the dis-
tinction between confirmation and evidence by redeploying it to solve some epis-
temological puzzles. Chapter 9 sets out and then resolves three so-called “paradoxes
of confirmation”—the Raven, Grue, and Old Evidence Paradoxes—in terms of it.
Chapter 10 discusses Descartes’ celebrated argument for radical doubt about the
existence of a mind-independent world, the argument from dreaming, and attempts
to show both how it depends on a conflation of evidence and justification and
instantiates a broader pattern of arguments for paradoxical and skeptical claims.
Finally, in Chap. 11, we put our argument in a larger perspective and point out a
new direction in understanding uncertain and epistemic inference. Relatively brief,
somewhat technical, appendices which amplify and make more precise certain
crucial issues discussed in the body of the monograph have been attached to Chaps.
2, 6, and 11. The Appendix to Chap. 11 addresses several of these issues and,
although mathematically sophisticated, should serve to put them at rest.

Confirmation and Evidence Conflated

Open any one of the numerous and excellent anthologies of work in epistemology.
In their introductory commentaries, the notions of confirmation (used inter-
changeably with “justification”) and evidence are invariably run together. Thus
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(Bernecker and Dretske 2000, p. 3): “what distinguishes knowledge from mere true
belief and lucky guessing is that it is based on some form of justification, evidence,
or supporting reasons”. Or again, (Sosa et al. 2000, p. 190): “a justified belief is one
in which the available evidence makes the truth of the belief very likely”. Even
when the context is not introductory and casual, the same assimilation between
evidence and confirmation or justification is made. (Bonjour 2002, p. 41), for
example, asserts without further ado that “the concepts of an epistemic reason or of
an epistemic justification as they figure in the traditional concept of knowledge are,
if not simply identical to the concept of evidence, at least fairly straightforward
generalizations of that concept”. As yet one more example, (Kim 1988) insists on
their assimilation: “…the concept of evidence is inseparable from that of justifi-
cation. When we talk of ‘evidence’ in an epistemological sense we are talking about
justification; one thing is ‘evidence’ for another just in case the first tends to
enhance the reasonableness or justification of the second”.

There are many different ways in which contemporary epistemological theories
are classified. They are variously internalist or externalist, foundationalist or
coherentist, naturalized or normative. But almost all of them seem to share, over
and above a common interest in answering epistemic questions, the assumption that
“evidence” and “confirmation” or “justification” are congruent notions.8 This
assimilation of evidence and confirmation is perhaps most striking in conventional
Bayesian epistemology, where data D are usually taken as evidence for hypothesis
H just in case Pr(H│D) > Pr(H), that is to say, just in case our degree of belief in
H given D is greater than our degree of belief in, or confirms, H.

The situation is no different with respect to the philosophy of science, where the
focus is more narrowly on scientific inference.9 Evidence and confirmation are
habitually run together. Carl Hempel, for a notable example, writes in his classic

8There is little point in multiplying examples from the standard literature. Suffice it to note that
advocates of “reliabilism,” perhaps the currently most popular “naturalized” epistemological
theory, assimilate evidence and justification without apology. See Alvin Goldman’s seminal “A
Causal Theory of Knowing” (Goldman 1967); he equates “a highly warranted inductive inference”
with one which gives an epistemic agent “adequate evidence” for his belief. The most recent
comprehensive summary of theories of confirmation with which we are familiar, the article
“Confirmation” in the Stanford Encyclopedia of Philosophy (Crupi 2013/2014) simply assumes
that evidence and confirmation are inter-definable regardless of the confirmation theory at issue,
which is to say that no attempt is made by any of the theories discussed to distinguish “data” from
“evidence”. For a more popular on-line assimilation, see the helpful article entitled “Evidence” in
the Internet Encyclopedia of Philosophy (DiFate 2007): “In the philosophy of science, evidence is
taken to be what confirms or refutes scientific theories” (p. 2) and again “evidence is that which
justifies a person’s belief” (p. 7), although this latter claim is not simply assumed but argued for. It
is worth adding, as a note to those who have told us on occasion that the discussion of evidence
has advanced well beyond our characterization of it, that this relatively recent summary of the
current situation focuses on exactly those positions and people that we do here.
9Not simply the inference at stake when we infer the description of and thus predict future events,
but identify and select models to describe natural processes, estimate and select the values of
parameters in the descriptive models, and assess the consistency of the evidence with all three. See,
for example, (Cox 2006).
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paper, “Studies in the Logic of Confirmation”, that “an empirical finding is relevant
for a hypothesis if and only if it constitutes either favorable or unfavorable evidence
for it; in other words, if it either confirms or disconfirms the hypothesis”.10 The “in
other words” indicates that for Hempel, the connection between evidence and
confirmation is self-evident. As we shall see in more detail in what follows, almost
every succeeding philosopher of science echoes something like this conflation.11

There is little point in denying that the words “evidence” and “confirmation” (or
in the present context, “justification”) are often used interchangeably, in ordinary
English as well as among scientists, philosophers of science and inductive logi-
cians.12 Our case for distinguishing two concepts that the words can be used to
identify rests not on usage, but on the clarification in our thinking that is thus
achieved. Making the distinction between concepts allows us to solve some
long-standing paradoxes and problems. The main task of some of the chapters to
follow will be to spell these solutions out in detail. But it might help here to
consider another case where advancing an initially counter-intuitive distinction
contributed in important ways to philosophical progress.

Before 1905, the sentence “the present King of France is bald” was universally
taken as subject-predicate in form, and the definite description “the present King of
France” within it as a singular term.13 But in the 20th century’s most celebrated
English-language philosophy paper, “On Denoting”, Bertrand Russell argued that
this was simply an illusion, fostered by surface grammar, which did not in any way
correspond to the deep structure reality. “The present King of France is bald” is to be
rendered correctly as “(Ex){[Kx & (y)Ky→ (x = y)] & Bx}”, i.e., “there is an object
x such that it is King of France, and for all objects y, if any one of them is King of
France it is identical to x, and x is bald”. Intuition to the contrary, “The present King
of France is bald” is not really of subject-predicate form and “the present King of

10Hempel (1965, p. 5) Rudolf Carnap, too, assimilates evidence and confirmation in underwriting
the idea that degree of belief should be identical to weight of evidence. See his “Statistical and
Inductive Probability,” reprinted in Brody (1970, p. 441).
11There are many good features of Bovens and Hartmann’s highly original application of both
probability and Bayesian-network theories to solving philosophical problems (Bovens and
Hartmann 2004). Our approach differs from theirs, however, in three respects. First, unlike their
“engineering approach,” ours is a foundational investigation into issues concerning “evidence” and
“confirmation”. Second, and again unlike theirs, ours is not simply an exercise in “Bayesian
epistemology”. Third, like almost all writers on confirmation theory, they fall victim to the con-
flation of evidence and confirmation (see especially their chapter on confirmation).
12Or in denying that “evidence” and “confirmation” has each been endowed with a variety of
different meanings. It is entirely typical of the literature, however, that in a foundational article,
“Confirmation and Relevance” (Salmon 1975), Wesley Salmon first notes the ambiguities and then
proceeds to focus on “investigating the conclusions that can be drawn from the knowledge that this
or that evidence confirms this or that hypothesis”. Even, and perhaps especially, the very best
philosophers working in the area cannot resist conflating the two concepts.
13At least this is the story we have long learned to tell. It is questioned, to put it mildly, by Oliver
(1999).
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France” is not a term. Neither ordinary language nor philosophical tradition informs
us of this fact. Rather, Russell argues for his analysis on the basis of another fact, that
it solves a variety of notorious puzzles, the problem of attributing truth-values to
sentences in which the apparent subject-term fails to refer among them. In the
process, he made a distinction between logical and grammatical form that few
people, not even Frege (at least not with respect to terms) had ever made, and set
analytic philosophy a central task, to make the former perspicuous.

“Evidence” and “confirmation” (or “justification”) are often used interchange-
ably. This is certainly clear, even from the comparatively few passages cited. But
we also believe that this conflation, whatever terms are used to denote two other-
wise distinct concepts, is the source of a great deal of error in philosophy, statistics,
and the practice of science. In what follows, we will try to make good on this claim
so far as philosophy in particular is concerned. In the next chapter, the distinction
we have in mind will be made precise. For the moment, two well-known examples,
one from applied psychology, the other from theoretical physics, should help make
our fundamental insight more intuitive, and, we hope, motivate its further elabo-
ration, discussion, and application.

In 1936, Rosenzweig published a ground-breaking paper, “Some Implicit
Factors in Diverse Methods of Psychotherapy”.14 In it, he proposed that the features
common to different therapeutic methods, among them the therapist’s personal
interest in the patient’s recovery, led to generally positive outcomes for all of them.
In this connection, he quoted the Dodo-bird’s verdict in Alice in Wonderland after
judging a race: “everybody has won so all shall have prizes”. What Rosenzweig
supposed, that in virtue of their common factors the various psychotherapies were
to a large degree equally efficacious, has thus come to be called “The Dodo-bird
Verdict”. Whatever the form of psychotherapy in practice, more patients feel better
after treatment than before, their psychological-behavioral symptoms are to one
extent or another relieved. Given the greater number of positive outcomes, it is
natural to conclude that in general the psychotherapies “work”, that is, that the
efficacy of each has been confirmed. This is certainly what many therapists claim:
the fact that a particular method—Freudian, Jungian, Rogerian, whatever—raises
the probability of a patient’s symptomatic relief demonstrates the validity of the
method.

An enormous literature has sprung up in the wake of Rosenzweig’s paper.
Although the “Dodo-bird Verdict” remains controversial in some quarters, most
subsequent research seems to support it.15 That is, the diverse psychotherapies still
in use tend to be more or less equally efficacious, the factors common to them all

14Rosenzweig (1936).
15See Luborsky et al., (2002) for an especially rigorous examination of 17 meta-analyses of the
relevant data. What follows in the above paragraph draws on this examination. The article includes
an extensive bibliography.
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explain the beneficial results, and, it comes as no surprise, most of the studies that
appear to show that one psychotherapeutic method is clearly superior to others have
been carried out by researchers who were in one way or another already biased
toward that method.

But the fact that all of the psychotherapies studied “win”, and in this sense are
confirmed, is unsettling, for the methods employed by one or the other vary, in
precisely those respects underlined by their practitioners, radically. What we want
to say is that while all are “confirmed”, there is no evidence that one is superior to
the others. “Evidence” for all is evidence for none; a race where everyone wins has
no winner. To say this, in turn, is to say that the likelihood of positive outcomes on
one or the other treatment is roughly the same.16 The available data do not favor
one over the other.17

The implication is that what we term “confirmation” should be distinguished
from “evidence”. Confirmation is agent-dependent in the sense that a hypothesis is
confirmed just in case an agent’s degree of belief in it is raised. It is in just this sense
that the diverse psychotherapies have been confirmed or justified by and for their
practitioners and patients. It is in this same sense in part subjective, starting with the
element of belief. Evidence, however, is agent-independent; it has to do not with
raising prior degrees of belief in a hypothesis on the basis of the data collected, but
in assessing the relative likelihood of the data given one or the other of the two
hypotheses. It is in this sense “objective”.18 It is also comparative. Evidence con-
sists of data more likely on one hypothesis than another. The greater the likelihood
ratio, the stronger the evidence. Hypotheses are confirmed individually, however, as
the probability of their truth is raised.

The same main insight, that what we are calling “confirmation” and “evidence”
vary conceptually and numerically, is perhaps best illustrated by so-called “crucial
experiments” in the history of physics. No one now thinks that there are any crucial
experiments in the sense that a single experiment can demonstrate definitively either
the truth or falsity of a hypothesis or theory as against its available rivals. But there
are nonetheless “crucial experiments” that allow us to discriminate between

16Luborsky et al., claim that “there is much evidence already for their mostly good level of
efficacy”. As noted, many, perhaps most, people talk this way. But it should be clear that the data
do not provide evidence that any one of them is particularly efficacious.
17Those tempted to draw the conclusion that psychotherapies are “pseudo-sciences” need to be
reminded of the fact, given wide publicity by the former head of Sloan-Kettering Cancer Institute,
Lewis Thomas, that the body cures most of the diseases by which it is attacked, without any
medical intervention. See Thomas (1974).
18Julian Reiss, to provide still another example, runs what we call “evidence” together with what
we call “confirmation” in the usual way. He writes, “[a] good theory of evidence should be a
theory of both support and warrant”. As he goes on to explain, “[s]upport pertains to the gathering
of facts, warrant to the making up of one’s mind. Gathering of facts and making up one’s mind are
different processes…[But] we cannot have warrant for a hypothesis without having support” (Reiss
2015, pp. 34–35). On his view, one cannot have “justification” without “evidence,” the conflation
that we are attempting to undo. Along the same lines, he conflates “gathering facts” with “having
evidence,” when the two activities are to be rather sharply distinguished.
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otherwise equally well-confirmed alternatives, providing very strong evidence for
one as against the other.

One notable example has to do with the wave and particle theories of light. The
particle theory preceded Newton, but he provided it with a great deal of empirical
support by way of his prism experiments and of course lent it his immense
authority. But for a variety of reasons, the theory that light consists not of a stream
of particles but of waves had gained serious adherents by the first years of the 19th
century. Both were confirmed in the sense that a number of widely-observed data
could be explained satisfactorily on either; given the data, it was more probable than
not that each was true. The problem was to devise a “crucial experiment” the result
of which was much more likely on one theory than the other. In 1818, the French
Academy of Sciences held a competition to elicit such an experiment. The great
mathematician-physicist Poisson quickly deduced from Fresnel’s version of the
wave theory that the shadow of a disk in a beam of light should have a bright spot in
its center. Poisson was a partisan of particles, and he confidently predicted that no
such spot would be observed. In fact, another French physicist, Arago, carried out
the experiment at once and observed the spot, an observation quickly replicated by
many others. On the wave theory, the existence of the spot is, as Poisson showed,
highly likely, on the particle theory its likelihood approaches zero. Thus its
observation provided strong evidence for the wave over the particle theory. Of
course, this was not the end of the matter; efforts to support one or the other theory
of light, and to somehow combine or replace them, continue.

This is what evidence (or any similarly-named concept) does, allows us to
discriminate in a perfectly objective way between hypotheses which may otherwise
be equally well-confirmed. As we have seen, there are cases in which there is no
evidence favoring one well-confirmed hypothesis over another, “Dodo-bird cases”,
and cases in which there is strong evidence for one of a pair of more or less
equally-confirmed hypotheses, “Poisson cases”. As we will go on to illustrate, there
are also paradigm cases in which evidence and confirmation vary dramatically,
other cases in which both are high and strong, and still others in which both are
weak. What the example also shows is that evidence is always conditional on the
data and the models. On our evidential approach, it should be emphasized, the data
may be misleading in the sense that they may be error-prone, evidence is always for
one specific model vis-à-vis another specific model, and there is always a better
model out there to be explored.

Now down to the work of making the key insight more precise and defending it
against alternative accounts of hypothesis-testing.19

19Although the discussion in this monograph is self-contained, readers who would like a more
general introduction to some of the notation and basic concepts of elementary probability theory
and statistics might look at (Bandyopadhyay and Cherry 2011).
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Chapter 2
Bayesian and Evidential Paradigms

Abstract The first step is to distinguish two questions:

1. Given the data, what should we believe, and to what degree?
2. What kind of evidence do the data provide for a hypothesis H1 as against an

alternative hypothesis H2, and how much?

We call the first the “confirmation”, the second the “evidence” question. Many
different answers to each have been given. In order to make the distinction between
them as intuitive and precise as possible, we answer the first in a Bayesian way:
a hypothesis is confirmed to the extent that the data raise the probability that it is true.
We answer the second question in a Likelihoodist way, that is, data constitute
evidence for a hypothesis as against any of its rivals to the extent that they are more
likely on it than on them. These two simple ideas are very different, but both can be
made precise, and each has a great deal of explanatory power. At the same time, they
enforce corollary distinctions between “data” and “evidence”, and between different
ways in which the concept of “probability” is to be interpreted. An Appendix
explains how our likelihoodist account of evidence deals with composite
hypotheses.

Keywords Confirmation � Evidence � Bayesianism � Likelihoods � Interpretations
of probability � Absolute and incremental confirmation � Lottery paradox �
Composite hypotheses
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Two Basic Questions

Consider two hypotheses, H1, that a patient suffers from tuberculosis, and H2, its
denial. Assume that a chest X-ray, administered as a routine test for the presence of
tuberculosis, comes out positive. Given the datum that the test is positive, and
following the statistician Richard Royall’s lead, one could ask three questions:1

1. Given the datum, what should we believe, and to what degree?
2. What kind of evidence does the datum provide for H1 against an alternative

hypothesis H2, and how much?
3. Once questions 1 and 2 have been answered, what should we do?

We call the first question the confirmation question, the second the evidence
question, and the third the decision question.2 Like Royall, we think that they are
very different questions. Our concern in this monograph is with the first two.3 A
number of answers have been given to each. We want to use two of these answers
to make clearer an intuitive distinction between confirmation and evidence which
the questions presuppose, and then to show how this distinction both advances our
understanding of uncertain inference and provides solutions to notable epistemo-
logical puzzles. To this end, and for illustrative purposes, we draw on the Bayesian
and Likelihood statistical paradigms, the first to make precise a conception of
confirmation, the second of evidence. Each is at least somewhat familiar to many
philosophers and scientists, and all statisticians. In Chap. 3, we will show in more

1See Royall (1997). That the distinction between belief and evidence questions is pre-theoretically
intuitive is underlined by the fact that Royall himself is a Likelihoodist who eschews any reference
to an agent’s subjective degrees of belief (he is, however, a Bayesian in regard to the decision
question). Despite the philosophical differences that one or another of us has with him, our
monograph owes a great deal to his work. See in particular Royall (2004).
2For a Bayesian response to Royall’s three questions, see Bandyopadhyay (2007).
3Mark Kaplan (1996) is one of the very few philosophers to take note of the confirmation/evidence
distinction (p. 25, footnote 32), but his argument for making it seems to involve no more than a
reference to Nelson Goodman (quoted on p. 26, footnote 34), to the effect that “[a]ny hypothesis is
‘supported’ by its own positive instances; but support … is only one factor in confirmation.”
Kaplan’s own very interesting and extensive account of evidence is itself generally “Bayesian” and
makes no use of likelihoods. Goodman thinks that since incompatible and arbitrary hypotheses are
“supported by the same evidence,” there must be another “linguistic” (data-independent) factor
involved in “confirmation.” As we will see in Chap. 9, Goodman’s well-known “grue paradox,”
which he uses to argue for this claim, depends on running “confirmation” and “evidence” together.
Others who have made a confirmation/evidence distinction include Ellery Eells and Branden
Fitelson in their (2000) and Malcolm Forster and Elliott Sober in their (2004). Forster and Sober
are neither Bayesians nor Likelihoodists, which fact underlines our claim that the distinction is
pre-theoretical, that is to say, statistical-paradigm independent.
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detail how confirmation and evidence differ, and as a corollary how “data” are to be
distinguished from “evidence.” In Chap. 4 we consider, and then reject, four very
general objections that have been made to the kind of account we set out in this
monograph. In Chaps. 5, 6, 7 and 8 we will discuss some modifications of and
alternatives to them.

Probabilities and Beliefs

On the Bayesian way of construing what we (and not Royall) call the “confirmation
question”, the answer has to do with beliefs and with belief probabilities. On it,
data confirm (disconfirm) a hypothesis just in case they raise (lower) our degree of
belief in it. In John Earman’s vocabulary, we “probabilify” hypotheses by the data.4

There are at least three reasons for adopting a belief-probabilistic approach, over
and above various difficulties with the alternatives to doing so.

First, such an approach reflects the inductive character of the relation between
data and hypotheses. As we emphasized in Chap. 1, hypotheses “go beyond” the
data enlisted to support them in the sense that all of the data gathered might be
correct and yet the hypothesis, on the basis of further such data, be false.5 One way
in which to put this is to say that hypotheses are never more than probable given the
data.

Second, the mathematical theory of probabilities is well understood, universally
accepted, and precise. It allows for the methodical re-adjustment of the probabilities
of hypotheses over time in the light of new or different data, and thus captures the
non-monotonic character of inductive inference. In this way it also allows us to
rank-order hypotheses with respect to the data that have been gathered or observed.

Third, the use of probabilities affords simple and straightforward measures of
relevance. Thus data D are relevant to the confirmation of a hypothesis H just in
case Pr(H│D) ≠ Pr(H). Similarly, an auxiliary hypothesis H’ is useful in predicting
data from a target hypothesis H just in case Pr(D│H & H’) ≠ Pr(D│H), and so on
for many other examples.

There is more controversy in construing probabilities in this particular context as
degrees of “belief”, something in the heads of agents, and in this sense “subjective.”
The construal can be bolstered by two considerations.6

4Earman (1992).
5Although most of the hypotheses we will use to illustrate our argument do not take the form of
universal conditionals, “All A are B,” it is especially clear in their case that the claims they express
typically outrun the inevitably finite data gathered to support them.
6Understanding probabilities as degrees-of-belief and connecting them to confirmation has a long
history. See, for example, (Keynes 1921, pp. 11–12). Carnap, too, thought that inductive proba-
bility, i.e., the probability of the conclusion of an inductive argument given its various data
premises, is “ascribed to a hypothesis with respect to a body of evidence… To say that the
hypothesis h has the probability p (say 3/5) with respect to the evidence e, means that for anyone to
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First, confirmation has to do with something like a “logical” (although not
deductively valid) relation between data and hypotheses, i.e., it has an inferential
structure. But inferential structures are propositional in character, they express
relations between something like sentences. Beliefs on the usual account are
propositional attitudes, they have the sort of sentential form that allows them to
enter into inferences.7 Beliefs like propositions are the bearers of truth and falsity,
and probabilities attach to both.

Second, Royall’s “what to do?” question presupposes that the first be expressed
in terms of degrees of belief. For on the usual Aristotelian account, we act not on
the basis of what is true or somehow established, but on the basis of what we
believe to be true or established. For Bayesians, confirmation is linked to action by
way of the concept of belief.8

To say that this account of confirmation is probabilistic, and that probabilities in
connection with it are identified with degrees of belief, is to say that this account of
confirmation is generally “Bayesian.”9 What makes it more specifically Bayesian is
that central importance is accorded to Bayes Theorem, a way of conditioning

(Footnote 6 continued)

whom this evidence and no other relevant knowledge is available, it would be reasonable to
believe in h to the degree p, or, more exactly, it would be unreasonable for him to bet on h at odds
higher than [p(h)/p(1-h]).… Thus inductive probability measures the strength of support given to
h by e or the degree of confirmation of h on the basis of e (Carnap 1950, p. 441) As Skyrms (1986,
p. 167) summarizes the situation, the concepts of inductive and epistemic (which, as we saw in
Chap. 1, applies to statements rather than arguments) probabilities were introduced … as
numerical measures grading degree of rational belief in a statement and degree of support the
premises give its conclusion…. Why should epistemic and inductive probabilities obey the
mathematical rules laid down for probabilities and conditional probabilities? One reason that can
be given is that these mathematical rules are required by the role that epistemic probability plays in
rational decision” (our italics). James Hawthorne helped prepare this brief history. See his (2011).
For our purposes, it is as important to note that neither Keynes, nor Carnap, nor Skyrms distin-
guishes between confirmation and evidence (as the title of the selection from Carnap’s work in
Achinstein 1983, “The Concept of Confirming Evidence,” makes clear).
7Although it is not needed for our argument, it is worth mentioning that a
confirmation-generalization of logical entailment has been worked out by Crupi et al.(2013).
8On the traditional account of voluntary action, an action is voluntary just in case it is performed
by a rational agent on the basis of her desires and beliefs. For Skyrms and other Bayesians,
“rational agency” requires at a minimum that the agent’s beliefs conform to the rules of the theory
of probability.
9There are other ways in which to model belief within the context of a confirmation theory, for
example, the Dempster-Shafer belief function. See Shafer (1976). Since the probability-based
account is well-known and has a long tradition, we are resorting to it.

18 2 Bayesian and Evidential Paradigms

http://dx.doi.org/10.1007/978-3-319-27772-1_1


degrees of belief on the data gathered. At any time ti, Bayes Theorem (to be
described very shortly) tells us to what extent it is reasonable to believe a particular
hypothesis given the data. On this account of confirmation, an agent should change
her degree of belief in a hypothesis H from ti to ti+1 by the amount equal to the
difference between the posterior probability of H, Pr(H│D), and Pr(H), its prior
probability.

Bayesian confirmation theory is “subjective” in the sense that all probabilities
are identified with degrees of belief and confirmation with the way in which new
data raise the probability of initially-held or prior beliefs. That said, many
philosophers believe that some Bayesian approaches are more “objective” than
others, depending on the constraints put on the determination of prior probabili-
ties.10 Those who reject a Bayesian approach in toto do so entirely on the basis of
such “subjectivity”, large or small, which in their view is incompatible with the
objectivity of science, although they also allege that subjective belief leads to
paradox. We will try to unravel the alleged paradoxes later in this chapter and in
Chap. 9. But we will not try to defend the Bayesian approach against every chal-
lenge. We think that the rule of conditional probability on which it rests makes
precise the notion of learning from experience, and that learning from experience is
the intuitive basis of all confirmation. Our use of the Bayesian approach in this
monograph, however, is purely instrumental, and is intended to make the distinction
between confirmation and evidence as sharp as possible.

Bayesian Confirmation

The account of confirmation we take as paradigm involves a relation, C (D, H, B)
among data D, hypothesis H, and the agent’s background information B.11 However
it is further specified, it is modeled on the basic rules of probability theory including
the rule of conditional probability, together with some reasonable constraints on
one’s a priori degree of belief in whatever empirical hypothesis is under consid-
eration. If learning from experience is to be possible, one of these constraints is that
the agent should not have an a priori belief that an empirical hypothesis is true to
degree 1, i.e., with full certainty, or 0, in which case it would have to be
self-contradictory. This said, the agent learns from experience by up-dating her

10See Bandyopadhyay and Brittan (2010).
11Except when it is important, we leave out reference to the background information in what
follows.
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degrees of belief that hypotheses are true by conditionalizing on the data as she
gathers them, i.e., in accord with the principle, derivable from probability theory,
that Pr(H│D) = Pr(H)Pr(H & D)/Pr(D). Assuming that Pr(D) ≠ 0, her degree of
belief in H after the data are known is given by Pr(H│D). Thus, D confirm H if and
only if Pr(H│D) > Pr(H). Call this the Confirmation Condition.12 It is qualitative,
i.e., compares the probabilities of a hypothesis before and after data have been
collected, the intuitional basis of this conception of confirmation. This definition
rests, as do most Bayesian conceptions of confirmation as a probability measure, on
the following principle: for any H, D1, D2,, the confirmation (disconfirmation) of
H in the light of D1 is greater (less) than the confirmation(disconfirmation) of H in
the light of D2 just in case Pr(H│D1) > (<) Pr(H│D2).

13 This principle makes
explicit that as the probability of the hypothesis increases (decreases) as a result of
further data-gathering, so too does its degree of confirmation (disconfirmation).
A quantitative notion of confirmation of a hypothesis at any given time, is mea-
sured, for instance, in terms of the difference between its prior and posterior
probabilities.14 A hypothesis is always confirmed to some degree if the confirma-
tion condition is satisfied. Whether it is “low” or “high” depends on the particular
confirmation measure chosen,15 the implicit standards of particular scientific
communities, and the purposes of the investigator. On its Bayesian reading, the
posterior probability of a hypothesis H equals its prior probability multiplied by the
probability of D given H, Pr(D│H), divided by the marginal probability of D,
Pr(D):

Pr HjDð Þ ¼ Pr Hð ÞPr DjHð Þ=PrðDÞ ð1Þ

12Or as it is sometimes called, “the positive relevance condition.” See Salmon (1983) for an
extended argument in behalf of the primacy of this condition in an analysis of confirmation.
13Following Crupi et al. (2013). The article includes a long list of Bayesians who subscribe to this
principle.
14Clark Glymour (in an e-mail comment to us) and Peter Achinstein (2001, especially Chap. 4)
object that this sort of account has a counter-intuitive consequence, that the same data could
confirm incompatible hypotheses to different degrees. But so long as our assignments of degrees of
belief are consistent, i.e., do not violate the rules of probability theory, it is possible to be rationally
justified in believing incompatible hypotheses to different degrees on the basis of the same data.
15That is to say, we use this as an exemplary measure of degree of confirmation. Many others are
possible. See Fitelson (1999), for a discussion of the sensitivity of confirmational values to the
measure used. We believe that the choice of a specific confirmation measure depends on the type
of question one is asking. The same idea, that the type of question asked determines the measure
chosen, applies to the evidence question as well. Although we have adopted the likelihood ratio to
weigh evidence, different evidential measures would be required if we were to ask a different set of
evidential questions. See Taper et al. (2008) and Chap. 5 for further discussion of alternative
measures.
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Pr(H│D) is also called the conditional probability of H given D. The prior prob-
ability of a hypothesis represents the agent’s degree of belief that the hypothesis is
true before (i.e., prior to) new data bearing on the hypothesis have been gathered.
This agent-relative prior probability component of the definition is the most con-
troversial element in the application of Bayes’ Theorem, and will be discussed in
more detail later.

The quantity Pr(D│H) is often referred to in the philosophical literature as the
likelihood. While numerically the likelihood of the hypothesis given the data is
equal to the probability of the data given the hypothesis, likelihood and probability
are not the same thing; likelihood is considered a function of the hypothesis,
whereas the probability is considered a function of the data. We here adopt the
common philosophical notation of denoting the likelihood by Pr(D│H) rather than
the common statistical notation of L (H; D),16 but do not mean to imply that the
hypothesis H needs to be considered a random variable.

The likelihood function provides a tool, through the likelihood ratio, to answer
the question, “How much support for a hypothesis is there in the data relative to
another hypothesis?” The likelihood function is an important tool for Bayesians and
non-Bayesians alike, but too rarely accorded the kind of importance that we do
here.

The final element of Eq. 1 is Pr(D). This is calculated as the marginal probability
of the data over the alternative hypotheses, that is, the probability that D would
obtain, averaged over H and ̴ H:17

Pr Dð Þ ¼ Pr Hð ÞPr DjHð Þþ Pr �Hð ÞPr Dj �Hð Þ: ð2Þ

16In the eyes of many statisticians this notation signals the difference between “probability” and
“likelihood,” as two different concepts. More than a simple notational difference is involved. The
“│” notation indicates conditioning on a random variable, i.e., in the case of Pr(D│H) the
hypothesis is a random variable, while Pr(D; H) indicates that the data are conditioned on a
variable that is considered fixed. The first is fundamentally Bayesian, the second is fundamentally
evidentialist.
17For convenience, hypotheses are most often presented as exhaustive pairs, H and ̴H, but in theory
the list of hypotheses considered is not limited to such pairs. It is difficult, among other reasons, to
compute the probability of the data under the catch-all hypothesis [Pr(D│ ̴ H), and in consequence
it is difficult to calculate the posterior probability of the catch-all. This difficulty then extends to
comparing the posterior probability of the catch-all with the posterior probabilities of other
hypotheses. We avoid such difficulties by confining our discussion to simple hypotheses. It might
be added here that on the present account of what is often called “incremental confirmation,” the
Special Consequence Condition does not hold see Salmon (1983, p. 106). To handle objections in
this connection, Kotzen has produced a principle which he calls “Confirmation of Dragged
Consequences:” If [Pr(H│D) > Pr(H), and H1 entails H2, and Pr(H2) < Pr(H1│D)] then
Pr(H2│D) > Pr(H2). See Kotzen (2012).
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Evidence and Likelihood Ratios

As we understand it, evidence invariably involves a comparison of the merits of two
hypotheses,18 H1 and H2 (possibly, but not necessarily, ̴ H1) relative to the data D,
background information B, and auxiliaries A.19 This is to say that we distinguish
“evidence” from “data.” All evidence depends on data. But data constitute evidence
only when, in context, they serve to distinguish and compare hypotheses. Four
preliminary points might be made in this connection.

First, it is a commonplace that not all data constitute evidence. Whether they do
so or not depends on the hypothesis being tested, whether the data “fit” or are
relevant to appraising the hypothesis. Whether data constitute evidence is a matter
of context. Data themselves, which are often taken as a first approximation as the
reports of observations and the results of experiments, are in this sense context-free.

Second, data are paradigmatically invoked as evidence in the history of science
in a comparative context; Galileo’s sighting of Jupiter’s moons was rightly taken as
evidence for the truth of the Copernican as against the Ptolemaic hypothesis.

Third, a comparative account of evidence meets the demand of one key goal of
science. The goal is to understand and explain natural phenomena. To do so,
scientists propose descriptive-explanatory models of these phenomena, and seek
better and better models as closer and closer approximations to the truth. We think
that there is in some meaning of the words, truth or reality which we study with the
help of models. But, none of the models are true since they all contain idealizations
which are false. Our evidential framework is designed to quantify in what sense and
by how much one model is a superior approximation to the truth about natural
phenomena than another.

Fourth, a distinction between data and evidence first allows us to understand and
then helps resolve many if not all of the difficulties that beset traditional theories of
confirmation. In Chap. 9, for example, we take up “the old evidence problem” for
subjective Bayesian accounts of confirmation. Unless a distinction between data
and evidence is made, the problem is trivial. To the question “does old evidence
provide evidence for a new theory?” the obvious answer is “yes, of course.” But the

18Statisticians prefer to use the term “models,” by which they mean statistical models that allow for
quantitative testing vis-à-vis the data, rather than “hypotheses” in this connection. Although we
mostly stick to the more general (albeit vaguer) philosophical usage, the difference in meaning
between the terms is important. As we emphasize at the end of this chapter in connection with
various interpretations of probability, a hypothesis is a verbal statement about a natural state or
process, a model is a mathematical abstraction that captures some of the potential of the
hypothesis. Although we occasionally use the terms interchangeably, it matters a great deal
whether one has models or hypotheses in mind when it comes to the correct characterization of the
hypothesis-data and model-data relationships.
19Again in what follows, and except where it matters, we will not include reference to A or B in our
formulations.
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question is no longer trivial when it is re-phrased: “do old data provide evidence for
a new theory?” The answer to this second question requires serious reflection.20

On our account of evidence, a model or hypothesis is a defined data-generating
mechanism. Observed data support model1 over model2 if the data that would be
generated by model1’s mechanism are by some measure more similar to the observed
data than the data that would be generated by model2. Thus on our account, data
provide evidence for one hypothesis against its alternative independent of what the
agent knows or believes about either the available data or the hypotheses being
tested.21 A subtle but important distinction in this connection is between knowing that
the data are available and knowing the probability of the data. One can know how
probable observations of the data are without knowing whether the data have actually
been observed. For example, one could calculate the probability of obtaining 100 tails
out of 100 flips of a coin on the hypothesis that the coin is biased towards tails with a
probability of 0.9. This differs from asserting that we know on the basis of the data
that out of 100 flips a coin has landed tail-side up 90 times.

One final preliminary. We have assumed for the sake of clarity and convenience
that the hypotheses in our schematic examples are simple and not complex.
Error-statisticians object that clarity and convenience have little to do with it; we are
forced to make this assumption in the case of our account of evidence because it
cannot deal with composite hypotheses.22 The issues involved are technical, and for
that reason we have put our discussion of them in an Appendix to this chapter.
Suffice it to say here that this objection can be met.

The Evidential Condition

Now back to our characterization of evidence. It is made precise in the following
equation:23

D is evidence for H1&B as against H2&B if and only if LR1;2

¼ PrðDjH1&BÞ
PrðDjH2&BÞ

� �
[ 1

20Robert Boik pointed this out to us.
21It thus stands in sharp contrast to the well-known position of Williamson (2000), whose sum-
marizing slogan is “a subject’s evidence consists of all and only the propositions that the subject
knows.” Williamson is not analyzing the concept of “evidence,” or more precisely “evidence for a
hypothesis or theory,” but the concept of “evidence for a subject.” This concept is important in
classical epistemology, but has little use, or so we believe, as applied to scientific methodology or
theory assessment. For us, evidence is evidence, whether or not the subject knows it, and con-
versely, whether or not the subject knows something does not thereby qualify it as “evidence” for
any particular hypothesis.
22See Mayo (2014).
23We use “LR” rather than “BF” in what follows to underline the fact that our account of evidence
is not in any narrow sense “Bayesian.”.
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Call this the Evidential condition. It serves to characterize data which, in context,
play an evidential role. But a quantitative measure is immediately possible by
taking account of the numerical ratio of the two hypotheses. Note in this connection
that if 1 < LR ≤ 8, then D is often said to provide “weak” evidence for H1 against
H2, while when LR > 8, D provides “strong” evidence for H1 over H2 (Royall
1997). This cut-off point is sometimes determined contextually by the relevant
scientific communities and may vary depending on the nature of the problem
confronting the investigator, but it follows a statistical practice common among
investigators.24 It follows from the Evidential Condition that the range of values for
the LR can vary from 0 to ∞ inclusive.25

Since Bayesians by definition do not assign the end-point probabilities 0 or 1 to
any empirical proposition, it follows that an agent’s (subjective) degree of belief in
the hypotheses over which she has distributed prior probabilities does not affect
whether D is evidence for H1 as against H2.

26 This is especially evident if we assign
the extreme probability 0 to H1. In that case, the LR for H1 against H2 relative
to D becomes Pr(D│H1)/Pr(D│H2) = [Pr(D & H1)/Pr(H1)]/ [Pr((D & H2)/
Pr(H2)] = 0/0, which is undefined.27

We have argued that evidence has to do with the degree to which data help
distinguish the merits of competing hypotheses. Several measures are available to
capture the resulting evidential strength of one hypothesis as against another. We
have fixed on ratios of likelihood functions as our exemplar in this monograph for
three reasons. First, it is the most efficient evidential function in the sense that we
can gather strong evidence for the best model with the smallest amount of data.28

Second, the LR brings out the essentially comparative feature of evidence in a clear
and straightforward way. Third, and as we have pointed out, it is a measure of

24Royall (1997) points out that the benchmark value = 8, or any value in that neighborhood, is
widely shared. In fact, the value 8 is closely related to the Type I error-rate 0.05 in classical
statistics and to an information criterion value of 2. See Taper (2004) and Taper and Ponciano
(2016) for more on this issue.
25One might argue that the posterior-prior ratio measure (PPR) is equal to the LR measure and
therefore precludes the necessity of a separate account of evidence. But the objection is misguided.
The LR is equal to Pr(H│D)/Pr(H) only when Pr(D)/Pr(D│ ̴ H) is close to 1. That is, [Pr(D│H)/
Pr(D│ ̴H)] = Pr(H│D)/Pr(H) x [Pr(D) x Pr(D/ ̴H)] ≈ 1. Otherwise, the two measures, LR and
PPR, yield different values, over and above the fact that they measure very different things.
26Berger (1985, p. 146). Levi (1967) also emphasizes the objective character of the likelihood
function.
27We are indebted to Robert Boik for this clarification.
28See Lele (2004) for the proof. It is worth noting the comments of a referee on a similar claim in
another paper of ours: “…if in the end we hope for an account of evidence in which evidence gives
us reason to believe, it is totally unclear why efficiency in the sense described would be taken as a
sign of a meritorious measure of evidence.” One of the principal aims of this monograph is to
disabuse its readers of what we call the “true-model” assumption, that evidence gives us reasons to
believe that a hypothesis is true. In our view, evidence provides information about a hypothesis on
the basis of which we can make reliable inferences and not reasons to believe that it is true. Since
evidence is a way of identifying and assessing such information, efficiency in the sense indicated is
indeed a meritorious property of it.
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evidence embraced by such otherwise diverse approaches to statistical inference as
Bayesian and Likelihoodist (Evidentialist) insofar as we confine ourselves to simple
statistical hypotheses. We are in good company.

We wish to be clear, however, that the likelihood ratio is a special case of a rich
family of evidence measures or functions.29 In principle, an evidence function, Ev
(D, M1, M2), is the difference between the statistical distance30 between the prob-
ability distributions generated by each of the models,M1 and M2, and an estimate of
the “true” underlying distribution based on D. That is to say,

Ev D;M1;M2ð Þ ¼ n SD ŝD;M1ð Þ � SD ŝD;M2ð Þð Þ:

where n is the sample size, SD(•,•) is a statistical divergence (distance) between two
probability distributions indicated by place-holders, ŝD is the estimate of the “true”
distribution based on the data D. For discrete distributions, this could be simply the
proportion of observations in each discrete data category. For continuous distri-
butions, it will be some smoothed estimate such as a kernel density estimate
(Silverman 1986). The inclusion of n in the formula for evidence conforms to the
intuitive expectation that the strength of evidence should increase with increased
amounts of data.31

The most famous statistical distance is the Kullback-Leibler Distance (KLD), the
expected log likelihood ratio between two distributions. For discrete distributions,
P and Q with categories indexed by I, this is given as:
KLDðP;QÞ ¼ P

i
Pi � log Pið Þ � log Qið Þ½ �

It is easy to show that the log (LR) is the KLD-based evidence function for
comparing simple hypotheses. Similarly, the differences of information criterion
values are KLD-based evidence functions for cases where the models compared
differ in the number of parameters estimated.32

29What follows is drawn from Lele (2004). We go into the details, technical as some of them are,
simply because evidence functions are so much less familiar than confirmation functions.
30In fact, evidence functions only use the weaker criterion of divergences (statistical distances are
divergences with some additional constraints). A divergence quantifies the dissimilarity between
two probability distributions. The statistical literature is quite loose in its use of the terms “di-
vergence,” “disparity,” “discrepancy,” and “distance.” We use “distance” rather than the more
general term “divergence” because “distance” is more intuitively evocative. Good discussions of
statistical distances can be found in Lindsay (2004) and Basu et al. (2011).
31Although it does not do so in a linear fashion.
32The technical definition of evidence functions (Lele 2004) includes a consistency requirement
(i.e., the probability of correctly selecting the best approximating model must go to 1 as sample
size goes to infinity). Thus only “order consistent” information criteria such as Schwarz’s criterion
(variously denoted as the SIC or BIC) can be used to construct evidence functions.
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A large number of potential statistical distances could be used to construct
evidence functions in response to different types of evidence question. For example,
one alternative to the KLD is the Hellinger distance.33 Evidence functions based on
different distances will have different statistical properties. For instance, while
KLD-based evidence functions will be maximally efficient, Hellinger-based evi-
dence functions will be more resistant to the presence of outliers. But none of the
following discussion turns on these technical details.

Absolute and Incremental Confirmation

An important objection that has been made to our account is that its main theme,
that confirmation and evidence should be distinguished, has already been developed
in the literature in terms of confirmation alone.34 The objection is that both (Carnap
1950) and (Salmon 1983) long ago made a parallel distinction between “absolute”
and “incremental” confirmation which does all of the work that ours does without
recourse to any distinct notion of evidence. On the absolute concept, sometimes
also called “the high probability requirement,” the data confirm H if and only if the
probability of H given D exceeds some suitably high threshold, say, 0.9 (or min-
imally >0.5). It thus picks up on an ambiguity in the word “confirmed” already
introduced. In certain contexts, the word connotes something like “well confirmed”
or “put to rest”, as in “Well, we certainly managed to confirm that guess.” In this
respect it is to be contrasted with the incremental way in which we confirm
hypotheses or for that matter hunches, gathering evidence as we go along,
becoming more and more sure that our hunch was right or wrong.

On the incremental conception of confirmation favored by most Bayesians, the
data D confirm H if and only if the data raise the probability of H relative to its prior
probability. It is how we understand confirmation here. Although there are
important differences between the incremental and absolute conceptions, neither
can be used to explicate, still less is tantamount to, anything like the notion of
evidence that we and many others draw on. First, and as we will see in more detail
in the next chapter, strong evidence does not entail a high degree of confirmation,
either absolute or incremental. Second, confirmation of both varieties is sensitive to
an agent’s prior probability distribution and endorses a rule for up-dating degrees of
belief, whereas evidence is insensitive to prior probabilities, characterizes the
relation between data and hypothesis regardless of whether the agent knows or
believes that either data or hypothesis is probable, let alone certain or true, and
indicates no way in which to up-date degrees of belief. Third, and unlike our

33(HD): HDðP;QÞ ¼ 1� ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

ffiffiffiffiffi
Pi

p � ffiffiffiffiffi
Qi

p� �2r
for discrete distributions.

34Two previous readers raised this objection. We are assuming the standard account of absolute
confirmation. Please see the following footnote for more on this point.
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characterization of evidence, absolute confirmation is, as its name suggests, abso-
lute; if one restricts what counts as evidence to data that confirm a hypothesis
absolutely, there is no way in which to determine whether some evidence is
stronger than others, still less a way to quantify its strength.35 Given a prior
Pr(H) = 0.2 and a posterior Pr(H│D) = 0.901, H is intuitively much more strongly
confirmed than in a parallel situation in which Pr(H) = 0.899 and Pr(H│D) = 0.90,
but the notion of absolute confirmation is unable to capture this intuition. Still
worse, it undermines it.

Finally, and perhaps most importantly, the concept of absolute confirmation,
unlike the more standard conception of evidence, applies to hypotheses considered
singly and not pair-wise, i.e., it does not necessitate a separation and comparison
between rival hypotheses which is, we contend, at the center of what we should
expect a measure of evidence to provide; again as in courts of law, evidence is what
distinguishes the guilty from the blameless and indicates which data determine who
is guilty and who not, and to what degree.

Quite apart from its failure to capture the intuitive concept of evidence, the
notion of absolute confirmation has its own difficulties. We mention two because
each throws more light both on the incremental conception and on the distinction
with evidence that we use it to make.

One difficulty with absolute confirmation is that it runs directly into the lottery
paradox.36 Suppose a fair lottery with a thousand tickets. Exactly one ticket will
win and, since the lottery is fair, each stands an equal chance of doing so. Consider
the hypothesis, “ticket #1 will not win.” This hypothesis has a probability of 0.999.
Therefore we have a conclusive reason, on the absolute conception, to believe that it
is true. But the same line of reasoning applies to all of the other tickets. In which
case, we should never believe the hypothesis that any one of them will win. But we
know, given our initial supposition, one of them will win. The paradoxical result
can be avoided by denying that any hypothesis is ever absolutely confirmed.37

The lottery paradox also exposes one way in which our distinction between
(incremental) confirmation and evidence is of real use. Sober uses the lottery
paradox to argue for a wholesale rejection of the notion of “acceptance.” First, to
accept a hypothesis is to have a good reason for believing that it is true (or
empirically adequate, or whatever). But the converse does not hold. However good
our reason for believing it to be true, however well-confirmed, we might still not
accept the hypothesis. We might not accept it because the otherwise confirming

35There is a non-standard account of “absolute confirmation” in the literature on which it does admit
of degrees; on this account a hypothesis is “absolutely confirmed” if it is “confirmed strongly,”
where “confirmed strongly” can have different degrees. See Eells (2006, p. 144). Our argument
depends on the standard account, on which D confirm H “absolutely” just in case Pr(H│D) = r,
where r is identified as a particular number (or, occasionally, any number greater than 0.5).
36First propounded by Kyburg (1961). We follow Elliott Sober’s informal statement of it (1993).
37Kyburg himself avoids the paradox by denying the uncritical “conjunction principle” on which it
rests, that if each of a set of hypotheses is accepted, then their conjunction must be as well.
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data are not evidentially significant.38 They are not evidentially significant, on our
characterization, when they fail to distinguish between competing hypotheses. In
the lottery case, the likelihoods of all of the competing hypotheses, that is, the
likelihood of cashing a winning ticket on the hypothesis that it is not a winning
ticket, are the same. In which case, the data fail to distinguish between the com-
peting hypotheses, in which case they are, in context, evidence for none of them. If
acceptance requires evidential significance, as we will in more detail in Chap. 6,
then we should not accept any of the hypotheses.

The other difficulty with the absolute conception of confirmation is that it entails
what is sometimes called the inconsistency condition: the data can never confirm
incompatible hypotheses. But when more than two hypotheses are at stake, the data
can and do incrementally confirm more than one, however incompatible they might
be.39

Our Two Accounts and Interpretations of Probability40

Before proceeding further, we need to make explicit what has been implicit from
the outset, that adequate accounts of confirmation and evidence presuppose dif-
ferent interpretations of the concept of “probability”, and therefore different read-
ings of the probability operator in our various conditions and equations as it is
applied to events, hypotheses, and propositions. What is important to our funda-
mental distinction is not so much the details of these readings, still less the wide-
spread and often intense controversies to which they have given rise, but that some

38This is our view, not Sober’s.
39A well-known example was provided by Popper (1959, p. 390). “Consider the next throw with a
homogeneous die. Let x be the statement ‘six will turn up’; let y be its negation…; and let z be the
information ‘an even number will turn up’. We have the following absolute probabilities: p
(x) = 1/6; p(y) = 5/6; p(z) = 1/2. Moreover, we have the following relative probabilities: p(x,
z) = 1/3; p(y, z) = 2/3. We see that x is supported by z, for z raises the probability of x from 1/6 to
2/6 = 1/3. We also see that y is undermined by z, for z lowers the probability of y by the same
amount from 5/6 to 4/6 = 2/3. Nevertheless, we have p(x,z) < p(y, z).” Popper mistakenly drew the
conclusion that there was a logical inconsistency in Carnap’s confirmation theory. But the
inconsistency follows only if we were to take confirmation in its “absolute” sense, i.e., just in case
the data raise the probability of a hypothesis beyond a high threshold. There is no inconsistency if
confirmation is taken, as we do, in its incremental sense. See also Salmon (1983, pp. 102−03).
40John G. Bennett has drawn our attention to the need to address the varying interpretations
of probability involved in our accounts. In a very helpful e-mail communication, Marshall Abrams
has underlined some of the difficulties in calculating probabilities from probabilities defined
by two different interpretations and in taking as paradigm some of the ways in which the likelihood
relationship between data and hypothesis has been construed. As for the first, we offer reasons
in what follows for taking posterior probabilities as subjective despite their embedding objective
components. As for the second, our account of objective probabilities uses empirical frequencies
to estimate and not to “define” probabilities.
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of them are generally “subjective” and others “objective”, and that there are “ob-
jective” ingredients in our account of confirmation as well as in our account of
evidence. In our view, one needs to mix and match probabilities of different kinds
and not rely on one to the exclusion of the others. As we will now show, to do
otherwise would be to seek an overly monistic methodology.

Consider first our account of confirmation. It is informed by a subjective
Bayesianism. D confirm H just in case an agent’s prior degree of belief in H is
raised. The degree to which D confirm H is measured by the extent to which the
degree of belief has been raised. The probabilities involved have to do with belief,
and are in this sense subjective. But determining an agent’s degree of belief in a
hypothesis, Pr(H│D) requires determining the probability of D on H, Pr(D│H),
which is independent of an agent’s belief and is therefore objective.

One possible response to this claim is that the probability function is mistakenly
construed as objective; it needs to be construed as a conditional belief-probability in
which the probability operator is understood in subjective terms. But even otherwise
staunch Bayesians are not in full agreement to do so, witness L.J. Savage’s
admission in his famous 1963 paper with W. Edwards and H. Lindman41 that
likelihoods are “public,” implying that they are objective. As Isaac Levi points out
in this connection,42 likelihoods are agent-invariant and fixed, and in this sense
objective, and unlike variable conditional probabilities which are
agent-dependent.43 At the same time, subjectivity spreads through a compound
probability like falsehood through conjunctions and truth through disjunctions;
since the posterior probability, Pr(H│D), is calculated in part on an agent’s prior
degree of belief it is subjective, as should be expected on a Bayesian account of
confirmation.

There is a possible justification from the subjective Bayesian standpoint
regarding how one could mix and match those two types of probabilities together.
David Lewis argues that when the chance probability of a proposition, A, is
available, one needs to set an agent’s subjective probabilities, Pr(A|M) = Pr(M)
where M is a statistical model (Lewis 1980.)44 Lewis thinks that this alignment of
subjective probability with objective chance is possible because of the Principal
Principle. The idea behind this principle is that when we have the likelihood of a

41Edwards et al. (1963).
42Levi (1967).
43This is perhaps clearest when D are entailed by H, for in this case Pr(D│H) = 1, regardless of
what anyone happens to believe.
44We are indebted to both John. G. Bennett and Colin Howson for some clarifications about the
need to introduce the Principal Principle. For more on the justification of the Principal Principle,
see the forthcoming book by Robert Pettigrew, Accuracy and the Laws of Credence, Part II of
which is devoted to it. We are indebted to Jason Konek for calling our attention to this important
discussion.
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model given the data (what we have just called “propositions”) available we should
treat an agent’s subjective probability which is a conditional probability of the data
given a model to be equal to its objective likelihood. This alignment of the sub-
jective probability with the objective chance helps treat both probabilities, the
likelihood functions, and prior probabilities, in the application of the Bayes theorem
as subjective.45

Consider, second, our evidentialist account. It makes no use of
belief-probabilities and in this sense is thoroughly objective. But in a way generally
similar to the account of confirmation, it too mixes and matches interpretations of
the probability operator in a way that without explication might invite misunder-
standing but that, though nuanced, is necessary to get our inference-engine running.
The likelihood of a model given the data is an essential component of the account.
For simplicity’s sake, we identify it with a conditional probability, Pr(D0|M), where
“D0” stands for a yet to be realized model-generated datum and M is the generating
model. What data will be realized a priori depends on what sorts of models we have
proposed. At the initial stage, when no data have yet been realized, the relationship
between a model46 and its unrealized data is deductive. One could come up with an
open-ended number of distinct models, M1, M2, M3,…Mk. Let’s assume M1 says
that the coin has 0.9 probability to land with heads. Assume further that M2 says
that it has 0.3 probability, M3 says that it has probability 0.5, and so on. Given these
models, before any real data have been observed, each will tell us how probable any
set of observations would be under the model. So, the relationship between M1 and
D0 is completely deductive. So, too, are the relationships between other competing
models and 0. Now assume that a real coin has been flipped. Further assume that out
of 100 flips, 60 of them have landed with heads and the rest are tails. Let’s call the
data D1 60 heads and 40 tails. The relationships expressed via Pr(D1|M1), Pr(D1|H2)
…..Pr(D1|Hk) continue to be deductive. We find that each model tells us how
probable those data are under that model, although the probability values will vary
from one model to the next.

It is natural to assume that the “propensity” of a model to generate a particular
sort or set of data represents a causal tendency on the part of natural objects being
modeled to have particular properties or behavioral patterns and this tendency or

45Given the limited scope of this Monograph, we are not going to evaluate rigorously whether this
consideration is well-grounded.
46As we noted earlier and for the reason given, we use “model” (less often) and “hypothesis”
(more often) interchangeably. But there are crucial differences between them that in the present
context might give rise to misunderstandings. A hypothesis is a verbal statement about a state of
nature or some natural process. A model is a mathematical abstraction that captures some
dimensions of the hypothesis. When we say that the likelihood relationship between data and
hypothesis is “logical,” this is not in the precise sense in which Keynes or Carnap use the term; it
has to do rather with the evaluation of a single hypothesis based on the statistical data. On the other
hand, the calculation of the probabilities of the data given two or more models is in our sense of the
term “deductive.” The central point is that the relationships between data and hypothesis and data
and models must be kept distinct; our use of the words “logical” and “deductive” is intended to do
so, whatever other connotations those words might carry.
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“causal power” is both represented and explained by a corresponding hypothesis.
According to the propensity interpretation of probability,47 the probability of an
event is a dispositional property of it.48 In our case, the probability of a coin’s
landing heads, if it is flipped, is estimated at 0.6. The theme behind this interpre-
tation is that the probabilistic statement is true because the object in the nature of
the case possesses a special sort of dispositional property, called a propensity. If a
sugar cube would dissolve when immersed, the sugar cube has the dispositional
property of solubility. In the same vein, if a coin has a 0.6 probability of landing
heads when flipped, the coin is to have a propensity of a certain strength to land
heads when flipped. However, we have no way to know for sure what this tendency
is except to estimate it through finite empirical frequencies.

The empirical interpretations of probability championed by von Mises49 and
Reichenbach50 define probability in terms of the limits of relative frequencies; but
the empirical sequences we encounter in the world are always finite, and we have
often good reason to suppose that they cannot be infinite. Although there are
significant mathematical considerations for that kind of idealization in their fre-
quency interpretation, that is, that sequences are infinite, insofar as scientific
experiments are concerned this kind of idealization is not implausible. We cannot
assume that in a physical experiment we have an infinite number of helium nuclei in
various stages of excitation. Nor should we assume in any case that the probability
operator is to be “defined” in frequency terms.51 Rather, finite frequency is no more
than a way of estimating propensities in particular cases. Troublesome cases do not
undermine an interpretation of “probability” so much as they raise difficulties for
approximating values under certain conditions.

In other words, and in our view, it is misleading to say that there are three
distinct interpretations of objective probability—deductive, propensity, and finite
frequency. Rather, likelihoods allow us to choose models whose deductive prob-
abilities best match natural propensities as approximated by finite frequencies. It is
in this way, we think, that they are best to be understood, a case for their
agent-independence and objectivity to be made, and a distinction with subjective
belief-probabilities to be drawn. As we indicated at the outset, confirmation is in a

47See Popper (1957). See also Berkovitz (2015) for a defense of the propensity interpretation of
probability against the traditional twin criticisms that the explication of propensities is circular and
therefore non-informative and that it is metaphysical and therefore non-scientific.
48A doctor in Molière’s Le Malade Imaginaire attributes a “dormitive power” to opium, becoming
the object of ridicule then and for the next 300 years. But to attribute a dispositional property is not
to provide a causal explanation but to aggregate natural processes which must then be explained at
a deeper, in this case pharmaceutical, level of analysis. Sugar has a propensity to dissolve in water,
but it has almost no propensity to dissolve in gasoline. This difference can be understood through
the chemical structure of sugar, water, and gasoline.
49See von Mises (1957).
50See Reichenbach (1949).
51See Hàjek (1997).
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fundamental sense “in the head”, evidence in that same sense “in the world.” The
fundamentally two-fold interpretation of “probability” makes this sense clearer.

The Limits of Philosophical Taxonomy

Philosophical taxonomies play a useful role in locating positions on the conceptual
map, drawing attention to their general features, and instructing students. But they
can mislead. Although there is a functional, but not conceptual, connection between
our characterizations of evidence and confirmation, they are, as just indicated,
otherwise quite distinct, and it would be a mistake to bring them under some such
common rubric as “Partial-Subjective Bayesianism” or “Probabilistic
Evidentialism.” Confirmation is to some degree “subjective”, involving personal
probabilities and the up-dating of beliefs. Evidence is not. Following Kant’s
guidance, our task here in any case is not to suggest a new statistical or
hypothesis-testing paradigm, but to use two already well-established paradigms to
draw a distinction which, once drawn and understood, will help chart a new
direction in our thinking about uncertain epistemic inference, mitigate, to some
extent, the overly adversarial nature of its discussion, and dissolve some traditional
epistemological puzzles.

Appendix

A Note on the Likelihoodist Treatment of Simple
and Composite Hypotheses

Bayesians use the Bayes Factor (BF) to compare52 hypotheses (Kass and Rafferty
1995), while others use the likelihood ration (LR) to measure evidence. For simple
hypotheses, as in the tuberculosis example discussed near the outset of the next
chapter, the Bayes Factor and the Likelihood Ratio are identical; both capture the
essential core of our analysis of the concept of evidence. Throughout the mono-
graph we assume that the hypotheses being tested are simple statistical hypotheses,
which specifies a single value to a parameter, in contrast to a compound or

52Glymour (1980), p. 102, rightly draws attention to what he calls “misplaced rigor.” But rigor is
otherwise indispensable. Error-statisticians have focused their criticisms of the evidential position
on an alleged failure to deal with composite hypotheses; see Mayo (2014). This is our reply
(following Taper and Lele 2011, Sects. 6 and 7). It is rather technical in character, and does not
affect the main line of our argument. We have similarly added technical Appendices to Chap. 6 to
reply to another error-statistical criticism of our evidential account, that it needlessly employs
multiple models in its account of hypothesis testing, and to Chap. 11, to illustrate some of our main
themes in more mathematical detail.
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composite hypothesis which restricts a parameter θ only to a range of values.53

Since some philosophers have claimed recently that the likelihood account of
evidence cannot deal with composite hypotheses, it is worth our while to argue why
they are mistaken.

Here is a test case:54

[M]edical researchers are interested in the success probability, θ, associated with a new
treatment. They are particularly interested in how θ relates to the old treatment’s success
probability, believed to be about 0.2. They have reason to hope θ is considerably greater,
perhaps 0.8 or even greater. To obtain evidence about θ, they carry out a study in which the
new treatment is given to 17 subjects, and find that it is successful in nine.

How would an evidentialist test the composite hypothesis that the true propor-
tion (θ) is greater than 0.2?

The maximum likelihood or ML 0.5294. The k = 32 support interval for quite
strong evidence is [0.233, 0.811]. Royall would say that for any value θ’ outside of
this interval, there is quite strong evidence for the maximum likelihood estimate or
MLE as opposed to θ’. For an evidentialist, this is sufficient to infer with strong
evidence that (θ) > 0.2, even though the likelihood of the MLE is not the likelihood
of the composite. The following considerations support this claim.

(1) There is quite strong evidence against any value outside the interval relative to
a value inside the interval (i.e. the maximum likelihood estimate).

(2) No two values inside the interval can be quite strongly differentiated.
(3) (1) and (2) together imply that there is quite strong evidence that the true

proportion θ is in the support interval [0.233, 0.811].
(4) Since 0.2 is entirely below the support interval, there is therefore quite strong

evidence that the 0.2 is less than the true proportion.

It does make explicit that there are limits on how high the true proportion is
likely to be.

We will use a notion called “the probability of misleading evidence”which will be
discussed in much detail in Chap. 8. The probability for the presence of evidence for a
hypothesis is called misleading because although there is probability for the presence
of the evidence for the hypothesis, the latter is in fact false. If one had set up k = 32
(quite strong evidence) then the probability of misleading evidence for this statement
is MG < 1/32 = 0.031. TheML represents the probability of misleading local evidence
after the data have been gathered. The MG represents the probability of misleading
global evidence before the data have been gathered. Both ML and MG represent a

53This assumption is common to different schools of statistics. Both Royall (1997), who is
committed to a likelihoodist (and not, as already noted, Bayesian) approach, and Mayo (1996) who
operates within the error-statistical framework, also take the assumption for granted (at least Mayo
did in 1996, although she does so no longer; again see Mayo 2014).
54Royall (1997, pp. 19–20).
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bound on the probability of misleading evidence for a hypothesis. The post hoc
probability of misleading evidence is a little lower MG = 0.011.

Taper and Lele (2011) suggest that since there is an estimated parameter in finding
the MLE, the MG is biased high, and that composite intervals should use a biased
corrected estimate of the likelihood. We use Akaike’s bias correction (for simplicity).
With the bias correction, the quite strong evidence support interval is a little bit wider
at [0.201, 0.840]. The inference is still the same. There is still quite strong evidence
that the true proportion is greater than 0.2, but now the post hoc probability of
misleading evidence is slightly greater at 0.030. Using the more severe Swartz bias
correction, we find that there is only fairly strong evidence for 0.2 being less than the
true value, with a M of 0.045 (see also Taper and Ponciano 2016).
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Chapter 3
Confirmation and Evidence Distinguished

Abstract It can be demonstrated in a very straightforward way that confirmation
and evidence as spelled out by us can vary from one case to the next, that is, a
hypothesis may be weakly confirmed and yet the evidence for it can be strong, and
conversely, the evidence may be weak and the confirmation strong. At first glance,
this seems puzzling; the puzzlement disappears once it is understood that confir-
mation is of single hypotheses, in which there is an initial degree of belief which is
adjusted up or down as data accumulate, whereas evidence always has to do with a
comparison of one hypothesis against another with respect to the data and is
belief-independent. Confusing them is, we suggest, a plausible source of the
so-called “base-rate fallacy” identified by Kahneman and Tversky which leads most
of us to make mistaken statistical inferences. It is also in the background, or so we
argue in some detail, of the important policy controversies concerning
human-induced global warming.

Keywords Degree-of-belief � Likelihood ratio � Diagnostic testing � Base-rate
fallacy � Global warming hypothesis � Uncertain inference

Confirmation as Increased Degree-of-Belief,
Evidence as a Likelihood Ratio > 1

The notion of confirmation relates to single hypotheses. From a Bayesian per-
spective, it has to do with the ways in which, and the degree to which, belief in a
hypothesis is reasonable; the degree to which belief in a hypothesis H is reasonable
is a function of the degree to which data D confirm it. In general, D confirm H just in
case Pr(H│D) > Pr(H), that is, the data raise its posterior relative to its prior
probability. The degree to which its posterior probability has been raised or lowered
is, in turn, a function of the prior probability of the hypothesis, the probability of the
data on the hypothesis, and what is sometimes called the “expectedness” or marginal
probability of observing the data averaged over both hypotheses H and ̴H (in the
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simplest case). It follows that the degree to which we are justified in believing that a
hypothesis is true presupposes no inter-hypothetical comparison.1 Whether data
constitute evidence, on the other hand, has to do with the ways in which they serve
to distinguish and compare competing hypotheses. It is a three-part relation
involving data and two hypotheses. Data that cannot tell for or against such
hypotheses do not constitute evidence for one or the other. A natural way to express
this very basic intuition is through the use of likelihood ratios. Thus, data
D constitute (positive) evidence for hypothesis H just in case the ratio of likelihoods,
Pr(D│H)/Pr(D│H′) is greater than 1, where H and H′ are not necessarily mutually
exclusive. If D is equally likely on H and its competitors, then D does not constitute
evidence for any of them. The point needs to be emphasized: data by themselves do
not constitute evidence, but only in a context provided by competing hypotheses.
The same data can constitute evidence for a hypothesis in one context and not
constitute evidence for it in another context, depending on the alternative hypotheses
with which it is compared.

Confirmation and evidence as just characterized are two very different notions.
Degree of confirmation as we understand it here2 is the difference between posterior
and prior probabilities; it must range from anywhere above 0 to anywhere below 1.
Evidence as a ratio between likelihoods can range between 0 and ∞ as its limits.
Moreover, there is a coherence condition on confirmation that need not be satisfied
by our account of evidence: if H1 entails H2, then the probability of H1 cannot
exceed the probability of H2, In addition, the notion of justification is
agent-sensitive; it depends on a distribution of prior probabilities on hypotheses,
and relates, like belief generally, to what is in one’s head. The notion of evidence is
agent-independent; it depends on a ratio of likelihoods already determined, and to
this extent has to do with how things stand in the world, independent of the agent’s
belief or knowledge. Finally, although evidence is accompanied by confirmation
and vice versa when the hypotheses being compared are mutually exclusive and
jointly exhaustive, even then the relation is not linear. Indeed, in sample cases they
can vary dramatically. A hypothesis for which the evidence is very strong may not
be very well confirmed, a claim that is very well confirmed may have no more than
weak evidence going for it.

1That is, we do not need to know the posterior probabilities of the mutually exclusive and jointly
exhaustive H’s and not-H’s in order to calculate the posterior probability of H in the simple cases
that we use to illustrate our point. It might be thought that there is a cryptic reference to two
hypotheses in the determination of Pr(D) in the denominator of Bayes Theorem, since it involves
averaging the data over H and ̴ H. But there is only one hypothesis, H, and the data are averaged
over whether it is true or false. From this point of view, the expression “mutually exclusive and
jointly exhaustive hypotheses” is misleading. Asserting “ ̴H” (is true) is just another way of saying
that “H” is false. In more complex cases, we do need to know the priors of all of the hypotheses
being considered in order to calculate the marginal probability of the data.
2Since it is the Bayesian measure most frequently encountered in the literature. As noted in
Chap. 2, there are other measures of confirmation and evidence than those we are taking as
paradigm.
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A Diagnostic Example: Testing for Tuberculosis

On the basis of a very extensive sample, viz., 100,000 people, the probability of
having a positive X-ray for those people infected with TB was near 0.7333, and the
probability of a positive X-ray for those people not similarly infected is near
0.0285. Denote this background information regarding such probabilities as B. As
earlier, let H1 represent the hypothesis that an individual is suffering from tuber-
culosis and ̴H1 the hypothesis that she is not. These two hypotheses are clearly
mutually exclusive and jointly exhaustive. Finally, assume that D represents a
positive X-ray test result.

The task is to find Pr(H1│D & B), the posterior probability that an individual
who tests positive for tuberculosis actually has the disease. Bayes theorem enables
us to obtain that probability. In order to apply the theorem, however, we first need
to know Pr(H1), Pr( ̴ H2), Pr(D│H1 & B) and Pr(D│ ̴ H1 & B). Pr(H1) is the prior
probability that an individual in the general population has tuberculosis. Because
the individuals in different studies who showed up in the medical records were not
chosen from the population at random, the correct frequency-based prior probability
of the hypothesis could not be inferred from the large data-set referred to above. Yet
in a 1987 survey (Pagano and Gauvreau 2000),3 there were 9.3 cases of tuberculosis
per 100,000 people. Consequently, Pr(H1) = 0.000093. Hence, Pr( ̴H1) = 0.999907.
As already indicated, on the basis of a large data-set kept as medical records, we
may take the following probabilities at face-value: Pr(D│H1 & B), the probability
of a positive X-ray given that an individual has tuberculosis, = 0.7333; Pr(D│
̴ H1 & B), the probability of a positive X-ray given that a person does not have
tuberculosis, = 1−Pr( ̴ D│ ̴ H1 & B) = 1−0.9715 = 0.0285. Using all of this
information, we compute Pr(H1│D & B) = 0.00293.

Because most people do not have tuberculosis, the surprising result is that, even
though the test has fairly good specificity, most positive tests are false positives. For
every 100,000 positive X-rays, only 239 signal genuine cases of tuberculosis. For a
test of an individual, the posterior probability is very low, although it is slightly
higher than the prior probability. The posterior-prior difference, our measure of
confirmation, is only 0.00284. The hypothesis is not very well confirmed, yet at the
same time, the LR, viz., 0.7333/0.0285 (i.e., Pr(D│H1 & B)/Pr(D│ ̴ H1 & B)
= 25.7, is high. Therefore, the test for tuberculosis has a great deal of evidential
significance.4 A crucial aspect of our account of evidence is that a datum could be
evidence for a hypothesis as against its alternative independent of whether the agent
believes/knows that the datum has been gathered or the hypothesis is true. The TB
example shows that the positive test, D, is strong evidence that the individual is
more likely (approximately 26 times more likely) to have the disease than not,
independent of whether D or H1 or ̴H is believed or known to be true.

3Subsequent research shows that this frequency-based prior probability still holds for the US
population.
4Recall that a standard benchmark for “strong” evidence is an LR > 8.
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Appraising the Human-Induced Global
Warming Hypothesis

A much more complex example of widespread failure to make and appreciate the
distinction between confirmation and evidence in our terms leads to overlooking an
element in a controversy with sweeping social, political, and economic dimensions.
The controversy has to do with the anthropogenic “global warming” hypothesis,
that is, the hypothesis that present warming trends are human-induced. A wide
variety of data raise the probability of the hypothesis, in which case they confirm it.
Indeed, in the view of most climatologists, this probability is very high. The
Intergovernmental Panel on Climate Change contends that most of the observed
temperature increase since the middle of the 20th century was caused by increasing
concentrations of greenhouse gases resulting from human activity such as fossil fuel
burning and deforestation.5 In part this is because the reasonable prior probability
that global warming is human induced is very high, as against the rather low prior in
the tuberculosis example. In the TB example, the prior was assigned on the basis of
relative frequencies. In the global warming case, it is assigned not on the basis of
relative frequencies (which for better or worse are unavailable), but because there is
a very good theoretical explanation linking human activity to the “greenhouse
effect,” and thence to rising temperatures. In part, the posterior probability of the
hypothesis that global warming is human-induced is even higher because there are
many strong correlations in the data, at least for the last 650,000 years or so (the
period for which some reliable data have been extracted from ice cores), between
the burning of fossil fuels, in particular, and rising globally-averaged temperatures,
most especially since the Industrial Revolution took hold in the middle of the 18th
century.6 Not only is there a strong hypothesized mechanism for relating green-
house gases to global warming, this mechanism has been validated in detail by
physical chemistry experiments on a micro scale, and as already indicated there is a
manifold correlation history between estimated CO2 levels and estimated global
temperatures. Of course, some climate skeptics emphasize how difficult it is to get
standardized and reliable data for such a long period of time and from so many
different places, others point out that it has not always been true that changes in
CO2 levels precede changes in temperature,7 still others draw attention to the
apparent but controversial datum that global temperatures have not been rising for
the last 15 years or so,8 despite the fact that atmospheric CO2 levels continue to do

5See IPCC (2007).
6See Spahni et al. (2005), Siegenthaler et al. (2005), and Petit et al. (1999).
7Although over the past 200 years, when a rise of temperatures and the vastly increased use of
fossil fuels both occurred, the rise in CO2 levels invariably preceded the temperature rise.
82014, however, has apparently been the hottest year since accurate temperature records began to
be kept. This claim has been disputed by the well-known Harvard astrophysicist Willie Soon, but
taking the observation at face value, the evidence for a lack of recent temperature increase is
greatly weakened. Preliminary results for 2015 indicate that it was hotter still.
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so.9 But the main skeptical lines of argument mounted by such credible climate
skeptics as Richard Lindzen and Freeman Dyson (who, although a celebrated
physicist, and not a climatologist, was in the vanguard of serious students of climate
change in the 1970’s) are that (a) the likelihood of the data on the alternative default
(certainly simpler) hypothesis, that past and present warming is part of an otherwise
“natural” long-term trend and therefore not (significantly) human-induced or “an-
thropogenic,” is just as great,10 (b) that the data are at least as likely on other, very
different hypotheses,11 among which solar radiation and volcanic eruption12 (c) that
not enough alternative hypotheses have been considered to account for the data.13

That is, among credible climate skeptics there is some willingness to concede that
burning fossil fuels leads to CO2 accumulation in the atmosphere and that carbon
dioxide is a greenhouse gas that traps heat before it can escape into the atmo-
sphere,14 and that there are some data correlating a rise in surface temperatures with
CO2 accumulation. But, the skeptics continue, these correlations do not “support,”
still less “prove,” the anthropogenic hypothesis because they can be equally well
accounted for on the default, “natural variation” hypothesis or by some specific
alternative. In our terms, there is no or only very weak evidence for the anthro-
pogenic hypothesis. In their view, alternative hypotheses are not taken seriously
enough and therefore are not systematically and rigorously compared with it. Since
there is little evidence for the hypothesis, it is not, the skeptics conclude, very well
confirmed (and for this and other reasons massive efforts to reduce carbon emis-
sions are a costly mistake). But this conclusion rests on a conflation of evidence

9There has been a great deal of controversy about the nature of the data and the ways in which
correlations between CO2 levels and temperature changes are established. One among many
criticisms of both data and correlations taken to support the human-induced warming hypothesis is
in Douglass and Christy (2009). For a history of the data/correlation controversy by the person
who was chiefly responsible for developing the initial data sources and correlation models, see
Mann (2012). Mann’s methodology and his models have been revised, extended, but in the main
confirmed by a number of subsequent studies, including (Marcott et al. 2013), which uses marine
and terrestrial fossils, inter alia, from ocean and lakebed sediments, as well as ice cores and
tree-ring data (which don’t extend over the entire period).
10See Lindzen (2010) who asserts that IPCC computer models don’t “accurately include any
alternative sources of warming—most notably, the natural, unforced variability associated with
phenomena like El Niňo, the Pacific Decadel Oscillation, etc”.
11Lindzen argues not so much that there are better alternative hypotheses but that the anthro-
pogenic hypothesis incorporates assumptions about negative radiation feedback which have not
been tested against their positive feedback rivals, i.e., the global thesis has indispensable com-
ponents for which there is as yet no “evidence.” See Lindzen and Y-K Choi (2009). Lindzen’s
argument has been much criticized. See, e.g., (Lin et al. 2010).
12See Camp and Tung (2007) and Rypdal (2012).
13See, in particular, Dyson (2009).
14According to Christy (2014), these are the “two fundamental facts” that everyone must accept.
Christy, a credible global warming skeptic, is, however, very dubious about the claim that there are
strong correlations between a rise in surface temperatures and CO2 accumulation and critical of the
way in which “surface temperatures” have been defined and measured.
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with confirmation, and provides a striking reason why it is necessary to distinguish
them.

Data are evidentially significant only if they discriminate between hypotheses,
and such data in the case of human-induced global warming have been difficult to
come by. That fact has premised at least part of the sceptics’ argument. But such
data have increasingly been identified.

We think, in fact, that variations on the anthropogenic hypothesis are both well
confirmed by the data and supported by the evidence. In implicitly denying the
second claim, that the anthropogenic hypothesis is supported by evidence in our
precise sense of the word, some skeptics claim that the rise in atmospheric CO2

comes from the ocean, and not from burning fossil fuel. Its rise is therefore “nat-
ural,”15 or at the very least it is as likely that the greenhouse-gases responsible for
temperature rise come from the ocean, for example, as it is that they are produced as
a result of human activities.

But a crucial observation has been made to distinguish the two sub-hypotheses,
H1, that the CO2 increases responsible for (longer-term) temperature rise come from
burning fossil fuel, and H2, that the ocean is responsible. Most carbon atoms have
an atomic mass of 12, but about 1% have an atomic mass of 13. Both kinds can
form CO2 molecules, 12CO2 and

13CO2, distinguishable in the laboratory. To put a
somewhat complex story very simply,16 it can be shown that if the CO2 atmosphere
comes from the surface (and not the depths) of the ocean, then 13CO2 will increase
over time. If the CO2 comes from fossil fuel burning, then the relative abundance of
13CO2 to 12CO2 will decrease. Experimental results show that the 13CO2/

12CO2

ratio is decreasing,17 evidence for the hypothesis that fossil fuels rather than surface
water is mainly responsible for rising levels of CO2 in the atmosphere, and hence
(on the assumption that rising levels of CO2 are a cause of rising temperatures) for
the anthropogenic hypothesis.

It is not our aim to show that the anthropogenic hypothesis is (very likely) true,
but to indicate that front-page controversies as well as otherwise obscure journal
articles have the conflation between evidence and justification/confirmation as one
of their sources,18 and to issue the methodological advice that it is never enough in

15What follows draws from a very accessible overview by a Professor in the Department of
Physics and Astronomy at the University of Las Vegas (Farley 2008).
16Mark Greenwood and his colleagues have, to give but one example, shown just how complex the
application of statistical techniques to the detection of changes that provide support for the global
warming hypothesis is. See Greenwood et al. (2011).
17IPCC (2004, Chap. 2, page 138).
18Another source of the misguided controversy has to do with the Bayesian account of confir-
mation that we have taken as paradigm. The prior probability of the hypothesis that global
warming is not human-induced, is admittedly subjective, and for many people its rough deter-
mination depends not only on the plausibility of the “greenhouse gas” model, but on such
otherwise extraneous considerations as that attempts to limit fossil fuel emissions will damage the
economy and lead to the loss of jobs. Expected economic consequences often bleed over into the
generation of priors concerning the existence and causes of global climate change, neither of which
are in themselves economic hypotheses.
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testing a hypothesis to gather data that confirm or disconfirm it. One must also find
ways in which to discriminate and judge the hypothesis against its rivals with
respect to the data. This is the challenge that is now being met by climate scientists,
to provide evidence for, in addition to confirmation of, the anthropogenic
hypothesis.

A Possible Source of the Base-Rate Fallacy

The confirmation/evidence distinction has a number of significant corollaries. One
of them concerns a widespread inferential error that has been much discussed over
the past generation or so, A key premise in our simple schematic demonstration that
it is possible to have very strong evidence and yet a very low degree of confirmation
is that for every 100,000 positive X-rays, only 239 signal genuine cases of tuber-
culosis. Yet the premise leads to a result that strikes many people as wildly
counter-intuitive. It is therefore worth our while to examine the intuition. It rests on
what has come to be called “the base-rate fallacy.” The base-rate fallacy ascribes the
propensity that the general populace has to miss-estimate the probability of com-
plex events to an overweighting of the frequency of secondary attributes to the
frequency of the fundamental or base event in the overall population. We speculate
that the fallacy stems from our common tendency to conflate evidence and con-
firmation. Further, we take the near-ubiquity of the base-rate fallacy as “evidence,”
so to speak, that a distinction between them should be made.

As we underlined at the outset, uncertainty is an inescapable aspect of human
life. For one thing, it makes the analysis of scientific inference very difficult. For
another thing, and more importantly, it forces us to make significant choices on the
basis of inevitably partial information. Amos Tversky and Daniel Kahneman have
argued famously19 that we often make mistakes when we reason probabilistically,
as we must, on the basis of such partial and uncertain information. They set out case
after case of probabilistic inferential error. Perhaps the most wide-spread of these
errors is the base-rate fallacy. It can be illustrated using a variant of the TB example
just discussed.

There are a couple of ways the base-rate fallacy has gained currency.20 Here, we
follow David Papineau’s characterization of the base-rate fallacy (Papineau 2003).
Groups of subjects are given a case and a multiple-choice question to answer with
respect to it:

19See their classic paper, “Judgment Under Uncertainty: Heuristics and Biases,” re-published as
Appendix A in Kahneman (2011).
20In the original question in the Harvard Medical School Test the subjects were told that nothing
was known about the person’s symptoms or background, justifying the use of the base-rate prior,
and they were asked to give the probability, on the assumption, that the person had the disease (see
Howson (2000) for this discussion). We are thankful to Howson for some clarification here.
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Someone is worried that she has tuberculosis. 1 percent of the population has tuberculosis.
There is a simple and effective test, which identifies the presence of tuberculosis in
everyone who has it, and only gives a false positive result in 10 percent of the people who
do not have it. She takes the test, and gets a positive result. What is now the closest
probability that she in fact has tuberculosis?

(A) 90 percent
(B) 10 percent
(C) 50 percent
(D) 89 percent

Again and again, the subjects fail to give the correct response. Their average
estimate of the probability that she suffers from the disease is 85 %, whereas the
correct answer (computed using Bayes Theorem as we have done above) is about
10 %. Why do they fail to get it? According to Kahneman and Tversky, they fail
because they overlook the base-rate of the disease in the population; as we noted, no
more than roughly 1 % of the population suffers from the disease. In a variety of
uncertain situations, we can safely ignore the base-rate. This leads us, on the
Kahneman and Tversky “heuristics and biases” approach, to ignore it generally.
They explain why humans generally get the wrong estimate by arguing that human
beings adopt certain heuristic strategies in solving problems, strategies that gen-
erally provide useful short-cuts to reasonably accurate answers, but that also bias
subjects irrationally toward certain kinds of mistakes.21

In our view, the distinction between confirmation and evidence provides an
alternative, equally plausible, rationale for the subjects’ failure to get the TB
probability right. The base-rate fallacy results from the subjects’ (certainly not the
investigators’) conflation of the two notions. They think the evidence question has
been asked, whereas in fact the confirmation or belief question was asked. That is,
given the data about the likelihood of positive and negative test results on the
hypotheses that the people tested were and were not affected, they rightly concluded
that the data provided very strong evidence that a person who tested positive was
much more likely to have rather than be free of TB. Given the data, the evidence on
our LR account of it provide 10 times more support for the person in question
having the disease than not having it.22 This is strong evidence for the hypothesis
that she has the disease, despite the fact that the confirmation of it is low. So our
diagnosis of the fact that people tend in certain kinds of cases to ignore the base-rate
is that they mistakenly take the question, “what is the probability post-test that she

21We have argued that another heuristic short-cut, using the so-called “collapsibility principle”
across the board, results in the celebrated Simpson Paradox (Bandyopadhyay et al. 2011) and have
carried out our own experiments to confirm it, an exercise in “experimental philosophy”.
22Pr(D│H)/Pr(D│ ̴H) = 1/0.1 = 10.
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has tuberculosis?” as a question about the strength of the evidence, and not about
the degree of confirmation that the data give to the hypothesis that she has the
disease, which is only 10 %.23

Provisional Conclusion

We have demonstrated using the difference between the posterior and prior and the
likelihood ratio measures of confirmation and evidence respectively that there are
cases in which the evidence is strong and the confirmation limited. There are similar
cases in which the evidence is weak and the confirmation is high, and there are also
tests the results of which provide neither strong evidence nor high confirmation.
Those scientific hypotheses for which the data provide both strong evidence and
high confirmation are, and should be, commonly accepted, at least until such time
as new hypotheses out-compete them with respect to the data.24

However, the demonstration is not restricted to these two measures. The same
result can be found whenever the confirmation measure depends on the prior and
the evidence measure does not. For instance, we have also found this feature using
other well-known confirmation measures, including r and S.25 Evidence and con-
firmation occasionally increase together, but not to the point where strong evidence
or high confirmation entail the other. They are distinct, even to the point where
evidence sometimes supports a rival, and yet the degree of confirmation of the

23Referring to the Harvard Medical School Test, subjective Bayesians might contend that the
answer the subjects gave were definitely wrong, and not just misunderstanding of what was
required. They might add that in our version the person is already worried that they have TB, and
so the prior is already much larger than the base rate. We will make two comments here. First, we
agree with subjective Bayesians that subjects committed a probability error regarding the base-rate
in our example. However, as contrasted with subjective Bayesians, we are able to provide an
explanation for why subjects might have committed that sort of error. Second, if what we have
stated is not the exact formulation of the base-rate fallacy typically understood then we need to
know the entire probabilistic machinery at least conceptually required to address the way we
discussed the fallacy because of the claim made by the subjective Bayesian. The onus is on the
subjective Bayesian to offer that probabilistic mechanism regarding how the issue at stake can be
handled within subjective Bayesianism.
24An anonymous referee of a paper containing the tuberculosis example claims that “the measures
of confirmation literature…already provide the conceptual resources to acknowledge cases in
which, by some measures, a hypothesis is greatly confirmed by a piece of evidence (e.g., when it
ends up 100x as probable as it previously was), even though it does not end up highly probable nor
does its probability change a great deal in absolute terms. This is what’s going on in the authors’
discussion of the TB example…” But it should be clear that “greatly confirming by a piece of
evidence” (sic) is not at all tantamount to having strong evidence that the hypothesis is much better
supported by the data than its rivals. In the TB case, the likelihood of a positive result on the
hypothesis that the person tested has TB is much greater than on the hypothesis that she does not,
independent of whether the first hypothesis is “greatly confirmed” by the data. As the referee’s
criticism indicates, it is very difficult to shake the conflation of “evidence” with “data”.
25See Fitelson (2001).
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target hypothesis is nonetheless high.26 In the case of such well-known diagnostic
tests as the PAP Smear for cervical cancer (to be worked out in Chap. 6), the data
do no more than provide weak evidence and do not raise the posterior probability
appreciably, whereas in paradigm episodes in the history of science they do both.27

Uncertain Inference

The premise with which we began this monograph is that a great deal of scientific
as well as day-to-day inference is uncertain; many of the conclusions drawn go
beyond the data on which they are presumably based in the twin sense that the data
gathered can be correct and the conclusion false and that adding or subtracting
premises from the arguments in which they figure can undermine or strengthen
support for the conclusions, in which case the reasoning is not monotonic. In both
kinds of cases, the inference from data-premises to conclusion is not deductively
valid, i.e., the truth of the premises does not guarantee the truth of the conclusion.

To mark the contrast, uncertain inference is usually called “inductive.”
A variety of questions are raised by uncertain or inductive inference. Three have

been the focus of philosophers’ attention. First, “when and under what conditions
does evidence confirm a hypothesis?” To answer this question is to provide a list of
criteria. Second, “what rules, if any, will (if followed) make reasonably sure that the
hypothesis is well-supported by a given set of data-premises and perhaps also to
what degree?” To answer this question is to provide a “logic” of inductive rea-
soning. Third, “how can the choice of one set of rules as against another be
rationally justified?” To answer this question is to solve/dissolve at least one form
of Hume’s notorious “problem of induction.”

In our view, all three questions are defective. That the third question has not
been answered, despite enormous efforts to do so, in a generally accepted way
provides an inductive and ironic argument for the claim that it is seriously flawed.
A number of philosophers have tried to pinpoint the flaws, beginning with Hume,
the first person in the western world to ask the question in something like this form.
This is not the place to canvas their attempts. As for the second question, there is no
doubt that at least some of the rules of inductive inference proposed both describe

26With multiple hypotheses it is easy to create scenarios where one model’s posterior probability is
greater than its prior, in which case the model is confirmed, but have evidence against it. Consider
three urns (A, B, and C) each containing 100 black or white balls. Urn A has one black ball and 99
white balls, Urn B has two black balls, and Urn C has no white balls. You are presented with an
urn, but don’t know which it is. For whatever reason, you strongly believe that it is Urn C, but
allow for the possibility that it could be A or B by assigning prior probabilities of 0.01, 0.1, and
0.89 to A, B, and C respectively. You draw a white ball randomly from the unidentified urn. Urn B
is strongly confirmed because its posterior probability of 0.90 is much greater than its prior;
however, there is weak evidence against B relative to A in that the LR B/A is 0.99.
27Bandyopadhyay and Brittan (2006).
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certain aspects of successful scientific practice and incorporate deep intuitions that
render hypotheses more or less probable. We have discussed several of these rules
in some detail. But a key implication of our distinction between confirmation and
evidence is that there is no one set of rules that will, if followed, make reasonably
sure that a hypothesis is supported by a given set of data premises.28 There is no
“logic” (on the model of deductive logic) of inductive reasoning. For one thing,
what inferential procedures are “best” depends on the specific questions the
investigator wants to answer and on the aims of the investigation. For another thing,
inductive inference is “uncertain” in a variety of ways. As we noted at the outset,
the conclusion of such an inference can never be more than merely probable or
likely. But the inferences are also made uncertain by the fact that a choice, which
itself is not rule-governed, has to be made among possible procedures to be used
and, as we will see at greater length in Chap. 8, even when a procedure has been
chosen, the ever-present possibility of “misleading evidence” makes its application
itself uncertain.

But the main argument against a “logic of inductive inference,” and the focus of
this monograph, is that the premise of the first question, “when and under what
conditions does evidence confirm a hypothesis?” is mistaken and therefore badly
misleading. “Evidence” does not “confirm.” The two concepts provide very dif-
ferent accounts of how data bear on the estimation of parameters and the choice of
hypotheses or models. It is this conflation, we suggest, that has given rise to the
“which set of rules is best?” and “how can they be justified?” questions, and in the
process set philosophers and philosophically-minded statisticians off on what has
been an enlightening and in many ways productive, but ultimately unsuccessful
quest.

In the next chapter, we address some of the traditional criticisms made of the
components of our bifurcated account and further clarify our intentions.
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Chapter 4
Initial Difficulties Dispelled

Abstract In our view, data confirm a hypothesis just in case they increase its
probability; they constitute evidence for one hypothesis vis-à-vis others just in case
they are more probable on it than on its available rivals. In subsequent chapters, we
go on to clarify and amplify the confirmation/evidence distinction. Before doing so,
however, we need to consider various objections that might be made, not to the
distinction itself but to the way in which we have formulated its principal elements.
Four of these objections are standard in the literature. The first, third, and fourth raise
questions concerning our analyses of both confirmation and evidence; the second has
to do more narrowly with the application of Bayesian methods. Each suggests a
different way in which our intentions in this monograph might be misunderstood.

Keywords Theory acceptance � Probabilistic measures � The “simple rule” �
“Certain” data

Philosophical Analysis Cannot Deal with the Complexity
of Theory Acceptance

The first objection is that a precise and formal account of evidence, and by the same
token of confirmation, cannot be given.1 It can be expressed in several ways. The
main line of argument goes like this. If a precise account of either evidence or
confirmation could be given, then debates between the relative merits of particular
hypotheses, say between the advocates of the phlogiston theory of combustion and
Lavoisier and his followers’ oxygen theory, could be settled quickly. But they
cannot be settled quickly, as one key episode after another in the history of science

1See, for example, Kitcher (2001, pp. 29–41), whose discussion itself runs together the two
concepts we distinguish. “We lack an analysis that will reveal exactly which claims are justified (to
what degree) by the evidence available at various stages” (p. 30). The distinction we make implies
that no such analysis is possible. Kitcher does not himself advance the view that scientific claims
cannot reasonably be appraised, but his discussion is so seamless and subtle that it is often difficult
to know which side of the debate he is on.

© The Author(s) 2016
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demonstrates. Therefore, a precise account of neither can be given. The acceptance
of scientific hypotheses is simply too messy an affair, depending as it does on
adjusting philosophical constraints and shifting strategic considerations, not to
mention cultural and social conditions, for the kind of artificial order we are
imposing to have much effect.

Two subsidiary lines of argument are often invoked in this connection. One,
famously ascribed to Thomas Kuhn,2 is that the concepts of evidence and confir-
mation (along with such other ostensibly meta-theoretical concepts as explanation
and observation) are themselves internal to particular scientific paradigms, and as
such are subject to the shifts that such paradigms undergo. “The” concepts of
evidence and confirmation are social-historical artifacts, tied to particular historical
developments and valid only within individual communities of belief.

The other subsidiary line of argument is that no precise account of evidence or
confirmation yet given has been immune to counter-examples, drawn either from
the history of science or from the fertile imagination of philosophers and statisti-
cians. Whatever the account, the latter have always been able to devise otherwise
spurious hypotheses which are supported in all and only the same ways by the data
for them as more apparently legitimate, even accepted, hypotheses, or on which the
data are equally probable.

We will discuss the second subsidiary line of argument in the next section of this
chapter and in Chaps. 9 and 11. It will be one of our main contentions that the “idle
hypotheses”—the grue hypothesis, the dreaming hypothesis (that we live in a
dream-world), and at least some of the rest—which are often invoked as
counter-examples derive their intuition-pumping power from conflating the con-
cepts of evidence and confirmation, and not from the attempt to make particular
conceptions of them more precise.

So far as the Kuhnian line of argument is concerned, it does not much matter
whether the concepts of evidence and confirmation are intra- or extra-paradigmatic.
Our problems are not connected, at least not very directly, with paradigm shifts and
historical considerations; they have been with us at least since the twin advent of
modern science and philosophical reflection on it in the 16th and 17th centuries.
Besides, precision, even at the expense of some simplification, has its own virtues.
Clarification is one of them. Explanation is another. Our distinction is a kind of
clarifying hypothesis which will explain why many philosophers, scientists and
statisticians make certain kinds of mistakes. Even momentary stays against con-
fusion are useful.

The more general theme, that if precise accounts of either evidence or confir-
mation could be given then scientific progress would have been much more orderly
and disciplined than it in fact has been has been voiced by many philosophers over
the past generation or so, particularly when it is conjoined with the call for a
“naturalistic” epistemology, the replacing of “arm-chair” and normative accounts of
how scientists do and should proceed by a scientific inquiry “describing processes

2Kuhn (1962/1970/1996).
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that are reliable, in the sense that they would have a high frequency of generating
epistemically virtuous states in our world.”3 In our view, this sort of objection
trades on taking the analysis of a concept as tantamount, in paradigm cases anyway,
to providing an objective decision procedure, a set of rules on the basis of which the
acceptability of hypotheses can be assessed in the light of available data. But an
analysis of concepts does not provide such a procedure. Nor is there any reason to
demand that it should. The point of the analysis is, as just noted, clarification and
explanation, not a prescription for doing good science. As for the “naturalist” claim
that epistemology should be applied evolutionary biology or cognitive psychology
if it is to have any value, it is enough for our purposes to point out, first, that this is
itself a normative claim, resting on arguments whose validity is assumed to be
independent of the outcome of biological or psychological investigations, and
second, that the true test of a philosophical claim is whether it provides insight and
has little to do with whether it originates in “arm-chair” reflection or is in some
sense “a priori.”4 In footnote 11 in Chap. 1, we noted that Alvin Goldman, the
progenitor of “reliabilism,” still the epistemological theory most favored by natu-
ralists, blithely assimilates “adequate evidence” with “highly warranted inductive
inference” and thereby locates himself squarely, if also ironically, among traditional
theorists.5 We happen to think that science is more credible than most human
cognitive activities, that it generates sufficiently good approximations to what we
term “reality,” and that some theories are better approximations than others. But our
goal now is not to celebrate a particular methodology, or arbitrate between scientific
hypotheses, or make a case for an ideal of objectivity or rationality, but to help
resolve some long-standing epistemological difficulties.

Probabilistic Measures of Empirical Support Are Inevitably
Dogmatic

The term “probability” has multiple definitions.6 A number of critics have opined
that the definition of probability as a measure of belief will inevitably prove to be
inadequate. It has many variants. The eminent statistician Barnard (1949) argued
that belief probabilities were unscientific when he said: “To speak of the probability
of a hypothesis implies the possibility of an exhaustive enumeration of all possible
hypotheses, which implies a certain rigidity foreign to the true scientific spirit.

3Kitcher (1992, pp. 75–76).
4“Naturalism” in epistemology to this point remains little more than a program, with few concrete
results or basic insights other than those of Tversky and Kahneman mentioned in the preceding
chapter. Hatfield (1990) exposes some of the difficulties when the program is actually pursued
rigorously, as it was by Helmholtz in his theory of spatial perception.
5Indeed, he thinks that both traditional and naturalized perspectives have a place in epistemology.
6See Our Two Accounts and Interpretations of Probability in Chap. 2.
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We should always admit the possibility that our experimental results may be best
accounted for by a hypothesis which never entered our own heads.” These senti-
ments are echoed in the philosophical literature by Philip Kitcher:

…there is an interesting challenge to probabilistic notions of empirical support, since, when
there are uncountably many rival hypotheses, it is impossible that all of them should be
assigned non-zero probability. Does this make a certain dogmatism unavoidable?7

There are at least three different ways in which to mitigate if not also solve the
problem. Each has to do with limiting the number of hypotheses or models under
consideration.

A determined Bayesian could circumvent the problem by declaring that her
probabilities are conditional on the true model being among the explicitly stated
alternatives.8 While technically correct, this way of mitigating it is less than sat-
isfactory because probabilities would then no longer represent beliefs in hypotheses
or models tout court, and the declaration would amount to begging the fundamental
question.

A more “objective” Bayesian could rank order hypotheses in virtue of their
respective simplicity9 as measured in terms of the number of their parameters, for
example, (or some other similar epistemic-pragmatic criterion), and then start by
testing at the top of the order. Although no one has ever characterized
“model-simplicity” in a generally acceptable way, the intuitive notion does have
several important instrumental values for science.10 On the one hand, simple
models are more precisely estimable than complex models and, on the other hand,
simple models are generally more understandable. These values enhance the two
primary functions of models in science: to make predictions and to provide
explanations.

Unfortunately, while the estimates of simple models are less variable than those
of more complex models, there is a well-known trade-off between bias and preci-
sion with model complexity (Bozdogan 1987). In general, for every simple esti-
mated model, a more complex model can be found which is less biased for
prediction. Thus for the predictive use of models, at any rate, the benefit of esti-
mation precision is offset by a cost due to reduction in prediction accuracy.

7Kitcher (2001, p. 37, n. 5). It illustrates the ambiguity of “probability” that what Barnard takes as
the misleading character of the expression “the [measurable] probability of a hypothesis” is itself
the flip side of the claim that no hypothesis is ever more than merely “probable” [i.e., might be
mistaken].
8During the late 19th century, there were two mutually exclusive and jointly exhaustive theories of
the nature of light, the corpuscular and wave theories. Now we know that this way of dividing the
alternatives was mistaken, and that light has a wave-particle duality. The more we know about
light, the more finely we should be able to partition possible competing theories.
9Or some other epistemic-pragmatic criterion. See Rosenkrantz in Earman (1983) for an argument
in behalf of the “evidential value” of simplicity. See Bandyopadhyay and Brittan (2001) for a
survey of several criteria of model-selection and an argument for adopting one in particular. See
also Forster (2000) for some novel proposals.
10What follows is taken from Lele and Taper (2012). See also Fishman and Boudry (2013).
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Similarly, for the explanatory use of models, the benefit of comprehensibility that
comes with model simplicity is offset by the cost of lack of comprehensiveness. We
return to this “curve-fitting problem” in the final paragraphs of the monograph. For
the moment, it is enough to say that an appeal to “simplicity” alone is a slender,
although not necessarily a broken, reed on which a Bayesian might limit the number
of potential hypotheses to be at least in-principle under consideration.

Finally, Kitcher himself dismisses the problem, and with it all similar attempts to
undermine objectivity on the basis of the fact that no matter how extensive, the data
will always be compatible with an uncountable number of hypotheses, by appealing
to the practice of those engaged in assessing hypotheses. “They tacitly suppose that
there’s a class of relevant alternatives and that fault lies in dismissing one of these
without adequate evidence” (Kitcher 2001, pp. 37–38). There is no doubt that some
hypotheses are intuitively more “relevant” than others, and that therefore they
should be taken seriously. Nor is there any doubt that scientists focus their attention
on only a small number of hypotheses at any given time. The problem, as Barnard
indicates, is that a hypothesis initially neglected as “irrelevant” may prove to be the
one which best accounts for the experimental results.

In our view this difficulty for purely probabilistic accounts of empirical support
has not yet been dispelled (if in fact it is dispellable). We would only point out that
the evidential approach to support avoids it completely by keeping its inferences
local, that is, between alternative models considered pair-wise. This is a chief
reason why we think that a Bayesian account of confirmation alone is not sufficient.
The way in which data constitute evidence for and against hypotheses must also be
taken into consideration. The ways in which taking it into consideration solves at
least some of the classical dilemmas concerning the under-determination of
hypotheses by data will be taken up again and at greater length in the section on the
Grue Paradox in Chap. 9 and in all of Chap. 10.

On the Bayesian Account, Everyone Is (Wrongly)
Justified in Believing All Tautologies

The third objection has to do more specifically with our account of confirmation. Our
concept of evidence is not in terms of raising or lowering the belief probabilities of
hypotheses on the basis of the data gathered, and to this extent our position is not
simply “probabilistic,” still less “Bayesian,” but our concept of confirmation is. At
first glance it seems little more than refined common sense that the more data we
have for a claim the more justified we are in believing that it is true, but it has often
encountered the objection that it leads to unintuitive results. There are two subsidiary
lines of argument. One has to do with some of the beliefs allegedly “confirmed,” the
other with the improbable “grounds” of such confirmation. We will take up the first
line of argument here, the second in the next section on the fourth objection.
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Probabilistic analyses of confirmation (or here “justification”) are often thought
to incorporate “the simple rule:”11

A person is justified in believing P if and only if the belief probability of P is
sufficiently high.

A direct defense of the simple rule has been made by any number of distin-
guished epistemologists,12 many of whom are not Bayesians of any stripe. But it
has also been very much criticized when it is framed in probabilistic terms.

A reasonably familiar objection is that it follows from the probability calculus that every
tautology has probability 1. It would then follow from the simple rule that we are justified
in believing every tautology. Such a conclusion is clearly wrong. If we consider some even
moderately complicated tautology such as [P ↔ (R v–P)] → R, it seems clear that until we
realize that it is a tautology, we are not automatically justified in believing it. The only way
to avoid this kind of counterexample to the simple rule is to reject the probability calculus,
but that is a very fundamental feature of our concept of probability and rejecting it would
largely emasculate probability [understood in a Bayesian way, in terms of degrees of
belief].13

This line of criticism rests on three assumptions, all of which are at the very least
controversial: that the notion of “believing a tautology” makes sense, that tau-
tologies (and all so-called “logical truths”) are true, and that we are justified in
believing any proposition only if we are aware of (“realize”) the way in which we
come to believe it. These assumptions can be rejected. That is, rejection of the
probabilistic calculus (as measuring degrees of belief) is not the “only” way to
avoid the counterexample indicated. Our task now is to show what is wrong with
the first two.14

We take it that “believing a tautology” is tantamount to “believing that a tau-
tology is true.” This assumes, first, that “belief” is appropriate to with respect to
tautologies (or, for that matter, the whole class of logical truths). It is not. The
concept of belief is parasitic upon the concept of truth.15 By this we mean that at
least part of what is involved in attributing beliefs to oneself or others is to mark out
a distinction between what is believed (to one degree or other) and what is true.
That is, what is crucial to the concept of belief is the ever-present possibility that

11See Pollock and Cruz (1999, pp. 101ff).
12See Chisholm (1957, p. 28) and especially Kyburg (1974), passim, among many other classic
sources.
13Pollock and Cruz (1999, p. 105), second emphasis ours.
14The third assumption is often known as “internalism,” that a person must be in possession of the
grounds on which a belief is held if she is justified in believing it. It is captured in our Bayesian
account of confirmation. But our account of evidence is “externalist,” i.e., whether or not data
constitute evidence is independent of what an agent knows or believes.
15The line of argument here has been indicated most clearly by Donald Davidson. See, for
example, his (1982). Very possibly Wittgenstein had something like this line of argument in mind
at Tractatus 5.1362 when he writes “(‘A knows that p is the case’, has no sense if p is a
tautology).” Pears and McGuiness translation.
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one might be wrong. One cannot have a “belief” unless it is possible that it is false.
It follows at once that one cannot believe truths of logic (or their substitution
instances), nor, a fortiori, tautologies. For truths of logic, if true, cannot possibly be
false.

“Believing that a tautology is true” assumes, second, that truths of logic are true.
It is, of course, a presupposition of the usual classical semantics for first-order
languages that “truths of logic” are true. But this presupposition can be questioned.
If the apparent “truth of logic” has the form of an identity, a = a, for example, and
the singular term a does not refer, then there are good arguments to the conclusion
that the identity is either truth-valueless or false, and so on for other atomic contexts
in which singular terms do not refer.16 It does not follow in one step from our
realization that a given proposition is a tautology that we believe that it is true, for
we might very well require, inter alia, that whatever singular terms it contains must
refer before we assign it a truth-value.

The simple rule in its probabilistic guise, taking probabilities as degrees of
belief, does not need to be rejected for the reasons given.17

Probabilistic Accounts of Justification (Wrongly)
Hold that All Data Are Certain

The fourth objection is, like the third, against a generally probabilistic account of
confirmation, and is perhaps a main reason why relatively few mainstream con-
temporary epistemologists, even philosophers of science, take belief-probabilities
as seriously as they should. Pollock and Cruz (1999, p. 102) formulates it as
follows: On Bayes Theorem,

When we come to acquire new data Q, it (sic) will come to have probability 1. This is
because prob (Q│Q) = 1. But what is it to acquire new data through, for instance,
perception?…The beliefs we acquire through perception are ordinary beliefs about physical
objects, and it seems most unreasonable to regard them as having probability 1.
Furthermore, it follows from the probability calculus that if prob (Q) = 1, then for any
proposition R, prob (Q│R) = 1. Thus if perceptual beliefs are given probability 1, the
acquisition of further data can never lower that probability. But this is totally unreasonable.
We can discover later that some of our perceptual beliefs are wrong.

When we have uncertain data, subject to correction in the light of subsequent
experience, it makes little sense to assume, as applications of Bayes
Theorem apparently must, that the data have probability =1, which is to say that

16This is to take a “free-logical” way with logical truth. See Meyer and Lambert (1968).
17Although we do so for other reasons. See the section on Absolute and Incremental Confirmation
in Chap. 2.
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they are certain. Sometimes the point is put in the form of a paradox: probabilistic
approaches to confirmation claim that no empirical propositions are certain, yet
must assume that some empirical propositions are certain if conditionalization on
them is to be possible.

The second half of the paradox is freely acknowledged by at least some epis-
temologists. Thus C.I. Lewis in a famous passage: “If anything is to be probable,
then something must be certain. The data which themselves support a genuine
probability, must themselves be certainties” Lewis (1946, p. 186). Lewis avoids
paradox by denying its first half, that is, he asserts that at least some empirical
propositions, those having to do with what is immediately given in sense experience
as against ordinary beliefs about physical objects are certain, and thereby provide
suitable foundations for knowledge.

So far as our argument in this monograph is concerned, it does not much matter
whether the data invoked in applications of Bayes Theorem are eventually subject
to revision or not. It is enough for almost all of our purposes to point out that
inference is hypothetical in character. If the premises are true, and the inference is
deductively valid, then the conclusion is true. Whether the premises are true or not
is a separate matter. In the same way, if the data are as given, and the posterior
probability of a hypothesis is thereby raised, then to this extent the data justify or
confirm the hypothesis. Confirmation in our view has to do with the relation
between data and hypothesis, and not with the character of the data considered in
and of themselves, even though the account of conditionalization so far roughly
sketched presupposes that the data are to be taken at face value.

Most classical accounts of hypothesis testing presuppose the very same idea, that
the data from which conclusions are drawn are not themselves subject to question.
Only the inferential structure of such testing is at issue. For example, on the
hypothetico-deductive model of confirmation observational consequences are
derived from a hypothesis (or, more usually, hypotheses) either directly or together
with so-called “correspondence rules,” “bridge laws,” or “operational definitions”
linking theoretical concepts in the hypotheses with concepts more directly
descriptive of experience in the observation statements. If the derived consequence
is in fact observed, then to that extent the hypothesis is confirmed, if not, then the
hypothesis is disconfirmed. No attempt is made, within the model, to assess the
quality of the data. It is similarly the case with such other methods of theory testing
as error-statistics. This is not to defend such methods, still less to argue that every
genuine epistemic question can be resolved using them. It is to underline the fact
that our use of conditionalization in our analysis of justification does not commit us
uniquely to assuming that the data are correct, and not subject to further analysis
and revision.

But Lewis was undoubtedly trying to make a more general point. It was not
simply that in all inferences, the premises must be assumed, but that knowledge is
possible only if what is “assumed” is also self-evident or certain in the sense that it
cannot be denied (without contradiction) or doubted. This is to say that Lewis was a
foundationalist. Claims about physical objects, which are never more than merely
probable, can be justified only if the data supporting them are not, even in principle,
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subject to revision. We do not share this view. Hypotheses can be justified, indeed
knowledge is possible, even if data-premises are themselves uncertain. This claim
has two dimensions.

First, our way with data incorporates what Skyrms (1986) calls the “certainty
model;” for the sake of simplicity, the data on which we conditionalize are taken to
have Pr = 1. But as he goes on to point out, there are other “fallibility” models of
conditionalization available, in fact an infinite number of them, among which
so-called Jeffrey Conditionalization (Jeffrey 1990, Chap. 11), on which probabili-
ties are not assigned to data themselves but are re-assigned to hypotheses as the
result of some (apparently non-propositional and therefore neither true nor false,
still less “certain” or “uncertain”) experiential inputs. Fallibility models in general,
Jeffrey Conditionalization in particular, offer ways out of Pollock and Cruz’s
argument. But we are wary of the idea that experiences per se can or should lead to
a re-distribution of probabilities over hypotheses. From our point of view, what
justifies us in believing something are the facts of the case, states of affairs
described in particular ways. That the planets trace elliptical orbits around the sun
justifies us in believing that Newton’s Law of Universal Gravitation is true, and of
course the fact of elliptical orbits rests on the observations that both Brahe and
Kepler made. As we acquire more facts, we re-distribute probabilities over
hypotheses accordingly. It is entirely consistent with our view that some of what we
take to be “facts” at any given time turn out to be false. Nothing is really certain,
knowledge has no bed-rock foundations. But our probability distributions are on the
basis of the data in hand, the facts as we have them, to be revised as more and better
information comes along.18

Second, there are many techniques available to bring data under some control,
even if there is no way in which to guarantee their certainty. In the sciences we
generally take as exemplary of objectivity, these data consist of measurements. The
difficulty is that such measurements are invariably subject to error.19 Two simple
examples illustrate the point. First, it is an axiom of the measurement of length that
if some object a is the same length as b and b is the same length as c, then a is the
same length as c. We could scarcely proceed to measure objects in a coherent way if
we did not assume that sameness of length was transitive. The difficulty is that in

18In this we follow Howson and Urbach (2006, p. 287): “In our [Bayesian] account there is
nothing that demands what [are] taken as data in one inductive inference cannot be regarded as
problematic in a later one. Assigning probability 1 to some data on one occasion does not mean
that on all subsequent occasions it needs to be assigned probability 1.” See also Levi (1967,
p. 209). We use conditionalization as an eminently clear way of making a distinction between
confirmation and evidence, not to defend it as a principle of rationality. For objections to it, and to
the certainty and fallibility models, see Bacchus, et al. (1990). It should be noted that in fact more
and more scientific testing does take data uncertainty into account, and our account is easily
accommodated to it. More important conceptually is the possibility of misleading evidence, dis-
cussed in Chap. 8.
19What follows is indebted to Kyburg’s work, in particular to Kyburg (1984). It remains a scandal
that so many philosophers of science ignore both the importance of error and the sophisticated
statistical techniques that have been developed to deal with it.

Probabilistic Accounts of Justification (Wrongly) Hold that All … 57

http://dx.doi.org/10.1007/978-3-319-27772-1_8


repeated trials, observers report that although a looks to be the same length as b,
and b the same length as c, a and c do not appear to be the same length.

Third, and here we appeal to no more than one’s elementary carpentry experi-
ences, only very rarely do one’s measurements of a particular length agree if the
ruler allows tolerances of 1/32, even 1/16, of an inch. Errors happen. The problem
is not to avoid them entirely, which is impossible no matter how many pains one
takes in setting up experiments, but to quantify their appearance and then to develop
statistical tools that will allow us to systematize the data in such a way that they can
be used to compare and in confirmation of individual hypotheses. Henry Kyburg
suggests two such statistical tools—the minimum rejection principle, which allows
us to take the frequency of observational error to be “the least we must assume” in
order to reconcile our observations with such axioms as transitivity of length, and
the distribution principle, which “directs us to suppose that the distribution of errors
among the various categories of statements is as uniform as possible” (given sat-
isfaction of the minimum rejection principle).20 Such principles do not provide for
the detection of individual errors, but they do give us the relative frequencies with
which they occur; once we have the mean of a series of measurements in hand, the
standard deviations from it, and certain other statistical facts,21 we can proceed to
make inferences from the data. The point is that, using the statistical principles just
outlined and/or many other others, one can tame if not also avoid error, to the point
where data can be used to up-date probabilities and provide evidence even in the
face of measurement error.

Of course, questions of judgment enter in.22 If a well-trained physicist makes
careful measurements that suggest some hypothesis might be false,23 then we have to
begin to take that possibility seriously. If a first-course physics student makes mea-
surements that are outside the predicted values, we conclude that she needs to spend
more time in the lab perfecting her skills. As in all science, there is the need to balance
the demands of theory, for example, the theory of measurements of length (on which

20Ibid., p. 91.
21As Kyburg notes, one does not have to be a statistician to know that “large errors are much less
frequent than small errors; that errors tend to average out; and that [in day to day carpentry, say] an
error of a quarter of an inch is relatively infrequent.” Ibid., p. 257. In the case of at least one of the
authors, if in a series of measurements of a board to be cut we get the same value for two
consecutive measurements, we call it good and proceed to saw away.
22Patrick Suppes (1984, p. 215), like Davidson and Kyburg one of our mentors, issues a caution
that must be taken seriously with respect to our own and others’ examples. “Published articles
about experiments may make it seem as if the scientist can in a simple, rational way relate data to
theory in the finished form commonly found in the scientific literature. In my own experience,
nothing can be further from the truth. In the setting up of experiments and in the analysis of the
results there are countless informal decisions of a practical and intuitive kind that must be made”.
23I.e., measurements that are outside the predicted interval of values for the quantity in question,
not measurements that are incompatible with the absolute value in the hypothesis, for only
occasionally, and in a statistically predictable way, will measurements coincide with the absolute
value.
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transitivity, additivity, and so on, hold) and the results of experiment and observation,
and no way to say in principle how in particular cases this balance is to be determined.

Just as the simple rule does not have to be rejected when we construe confir-
mation in terms of up-dating probabilities, so too we do not have to abandon the
means by which we carry out such up-dating if, as is inevitably the case, the data
with which we do so are not error-free or in the relevant sense “certain.”

The Way Forward
Thus ends Part I, the clarification, illustration, and defense of our distinction

between evidence and confirmation. In Part II, we examine four notable other ways
in which evidence and confirmation have been understood, the first a modification
of the classical Bayesian tradition, the other three very critical of that tradition.
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Part II
Comparisons with Other Philosophical

Accounts of Evidence



Chapter 5
A Subjective Bayesian Surrogate
for Evidence

Abstract We contend that Bayesian accounts of evidence are inadequate, and that
in this sense a complete theory of hypothesis testing must go beyond belief
adjustment. Some prominent Bayesians disagree. To make our case, we will discuss
and then provide reasons for rejecting the accounts of David Christensen, James
Joyce, and Alan Hàjek. The main theme and final conclusions are straightforward:
first, that no purely subjective account of evidence, in terms of belief alone, is
adequate and second, that evidence is a comparative notion, applicable only when
two hypotheses are confronted with the same data, as has been suggested in the
literature on “crucial experiments” from Francis Bacon on.

Keywords Subjective bayesianism � S measure of confirmation � Accumulation of
evidence � Paradox of subjective evidence

Christensen’s S Measure of Confirmation

Christensen is interested both in developing an account of how data support
(confirm, provide evidence for) a hypothesis and in determining which probabilistic
measure appropriately represents the support relation between data and hypothesis.1

One way to understand his account is to contrast it with a standard measure,
derivable in probability theory that captures the effect of the improbability of a
datum on raising confidence in a hypothesis, H. The lower the marginal probability
of the datum [Pr(D) ≠ 0], the greater the effect on raising an agent’s confidence in

1Christensen has shown that another measure, S*(D/H) = Pr(H/D) - Pr(H), is equivalent to S(D,
H). Joyce arrived at the same measure independently, and Hájek and Joyce (2008) later called it
“probative evidence,” denoting it by q(,).
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H, i.e., in raising the posterior probability of H. Christensen thinks that the potential
increase in Pr(H│D) is a consequence of two factors: the degree of “evidential tie”
D has to H and the distance Pr(D) has to travel to attain probability 1.2 Since he is
interested in the “evidential tie” between D and H, Christensen wants to control the
effect of the second factor, viz., how far D has to travel in attaining probability 1,
viz., [1– Pr(D) = Pr( ̴D)]. After normalizing the measure by dividing by Pr(*D),
the measure of (confirmational) support he arrives at is:

SðD;HÞ ¼ Pr HjDð Þ � Pr Hð Þ
Prð�DÞ

where 0\Pr Dð Þ\1:
Like many Bayesians, Christensen holds that Pr(D) never equals 1 since D is an

empirical proposition and empirical propositions are always possibly false. In
contrast, Joyce leaves room for cases in which Pr(D) could increase or decrease
continuously to 1 or 0. His allowing for the increase/decrease of Pr(D) to 1/0 is
related to the motivation of his evidence relevance measure q (,). He couches his
measure in terms of a comparison of “confirmational power” between two propo-
sitions, that of D and its negation. Confirmational power involves comparing an
agent’s degree of belief in a hypothesis H upon learning that D is true to her degree
of belief in H on learning that *D. The comparative difference in the agent’s
degrees of belief is then reflected in his q (,), which equals Pr(H│D)– Pr(H│ ̴ D).3

For the present discussion, however, what matters are the similarities between
Christensen and Joyce’s approaches to confirmation issue. The most important of

2Christensen’s own candor needs to be acknowledged at the outset. What he has provided, he says
(Christensen 1999, p. 460), is not an “account of confirmation”, but a way of understanding certain
features of it. Shedding even a little light is better than shedding no light at all.
3Joyce (1999) handles the case where Pr(D) reaches its highest value by considering a
Reyni-Popper measure, on which (as against the standard Kolmogorov definition), Pr(H│ ̴ D) is
defined when Pr(D) = 1. Joyce finds it quite counter-intuitive that when the agent’s value for
D changes continuously and ultimately attains value 1, due to her learning new information, the
confirmational value of D for her will stop suddenly. The intuitive way to approach the case where
Pr(D) reaches 1, according to him, is to consider a specific sense in which D could still be counted
as evidence for H even when the agent is certain about D. On his interpretation, D is evidence for
H in that H is more likely to be the case given D (whatever its probability) than not-D. He thinks
that this sort of intuition underlies the confirming power of “old evidence (see Chap. 9 for a
discussion of the “old evidence” paradox). Fitelson (1999) notes, however, that if one incorporates
a Reyni-Popper measure in q(,) or its equivalents, then q(,) differs not only from the conventional
quantitative Bayesian measure of confirmation (as they do not on the Kolmogorov definition), but
also from the purely qualitative measure. Indeed, Fitelson argues that if one incorporates the
Reyni-Popper measure, there are many possible qualitative “Bayesian” measures of confirmation,
and just as many “old evidence problems” (only one of which the Christensen-Joyce measure
addresses). Since a principal motive of the C-J account is to resolve “the” old evidence problem,
this is a serious difficulty for it. In trying to close one door, many others appear to have opened.
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these similarities is that for both of them confirmation and evidence can be
understood uniformly in a Bayesian way as subjective probability measures, and
thus that they can be folded into the same conception.

Intuitions and Purely Probabilistic Measures

Christensen is careful to note that his S-based measure of evidence fails to match
pre-theoretic intuitions. Furthermore, he thinks that this shortcoming exists in
general for any formal probabilistic account of confirmation/evidence. He writes,
“The reasons for the mismatches suggest that no purely probabilistic account could
match those (intuitive) judgments” (Christensen 1999, p. 460). He construes
“purely probabilistic” in a wide sense to include even measures that are charac-
terized in terms of probabilistic concepts but whose values are not restricted to the
0–1 range. Thus he claims, for instance, that the ratio of likelihoods measure, the
basis of our account of evidence, fails just as much as the S-measure does to match
our intuitive confirmational/evidential judgments. We will briefly discuss two
reasons he advances for this claim, and argue that they do not apply to our account
of evidence.

His first reason is that the common-sense concept of evidence and support is
“indeterminate”. Christensen feels that an account of evidence that is limited to a
single evidence/support function misses something important about our intuitive
judgments about the concept, namely, that we habitually ask a number of different
questions, not just one, when we ask how data provide evidence for or support a
hypothesis. They are in this sense “indeterminate” notions. We agree. The recent
literature on evidence (e.g., Lele 2004; Claeskens and Hjort 2008; Taper et al. 2008)
has stressed that a wide variety of evidence functions are both possible and nec-
essary in the face of a wide variety of evidential questions. Consequently, the
formal evidential account, of the kind proposed in the section “The Evidential
Condition” of Chap. 2 is able to handle this wide variety of evidence-questions. We
will discuss this point by adapting an example from Christensen for our purpose.

In his example, Christensen notes that the question “[how much] is a candidate C
supported by an interest group I?” is indeterminate because a variety of more
specific questions could be intended, for instance, “[what is] the number of dollars
C received from I?” or “what proportion of C’s funds is supplied by I?”
Christensen’s insight is that scientists and philosophers are more interested in
certain features of the data or underlying process than they are in the data or process
as a whole. Fortunately, evidence functions can be constructed using any trans-
formation of the data or any functional4 of the data distribution. Thus, not only can
one ask which model best matches the data as a whole, one can also ask which

4A functional is a “function” of an entire distribution such as the mean, variance, or proportion in a
category.
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model recapitulates certain specified features of the data such as the total amount or
proportion of donations greater than a threshold as in Christensen’s questions.5

It is perfectly reasonable to apply different evidence functions to the same data
and set of models, and perfectly plausible to find different models with the greatest
degree of support if we do. For instance, researchers may want to ask which model
is most similar to the underlying process that generated the data, or they may wish
to ask which model will best predict a new data point.6 The same model may not
provide answers to these two questions.7

So, contrary to Christensen’s general claim that the common-sense notion of
support is indeterminate and that any formal (and therefore “determinate”) account
won’t be able to handle a variety of cases misses the mark in two respects: first,
different evidence functions can be chosen based on the specific evidence question
being asked, and, second, all of these evidence functions can be distinguished from
a Bayesian confirmation function.

Consider Christensen’s second reason for claiming that “purely probabilistic”
accounts do not match our intuitive judgments concerning the support data provide
hypotheses. The relationship represented by S or any other formal account of
evidence is symmetric as, according to him, the data confirm a hypothesis just in
case the hypothesis confirms the data.

Pr HjDÞ�Pr Hð Þð �[ 0 $½ ½Pr DjHð Þ�Pr Dð Þ�[ 0:

This is possible because in such frameworks, including our own account of con-
firmation, both data and parameters are implicitly treated as random variables (i.e.,
described by probabilities with specified priors). Christensen continues that on our
common-sense notion of evidence and support, the evidential relationship is
asymmetrical. For example, the bending of light in the vicinity of a massive object
like the sun provides evidential support for the General Theory of Relativity (GTR),
but the GTR does not provide evidence for the bending of light. In the evidential
framework we advocate, observed data, although generated by a stochastic process,
are assumed known and thus fixed,8 while models are assumed to be fixed
data-generating mechanisms which have an unknown relationship to the “true”
data-generating process. Thus data can support one hypothesis over another, but they
need no support because they are (on our assumption) already known. Because they
are known, and hypotheses, although fixed, are at an unknown distance from the
truth (whatever that might prove to be), the relationship between data and competing
hypotheses is intrinsically asymmetrical in our evidential framework as well.

5See particularly the discussion of the Focused Information Criterion (FIC) in Claeskens and Hjort
(2008).
6Even though prediction is involved, this is an evidential question as soon as the researcher asks
the comparative questions, “which model has the greatest predictive power?”
7See Bozdogan (1987) for a thorough statistical discussion of the point and Taper and Gogan
(2002) for an ecological example.
8See our earlier discussion of this assumption in Chap. 2.

66 5 A Subjective Bayesian Surrogate for Evidence

http://dx.doi.org/10.1007/978-3-319-27772-1_2


Neither of the worries that Christensen thinks plague formal “purely proba-
bilistic” accounts of confirmation and evidence tell against our account of the latter.
As we have argued, our account incorporates certain deep intuitions about the
notion of evidence, and is at the same time able to handle a variety of questions
about support with the help of different types of evidence functions.

The Subjective Bayesian Account and Ours Compared

Now to make clear the main differences between what we are calling the “subjective
Bayesian account” of confirmation and evidence and our own.9 According to their
account, when confidence is high or low, additional evidence does not necessarily
affect any significant change in an agent’s degree of belief in a hypothesis (“con-
fidence” used interchangeably with “degree of belief”). Borrowing Christensen’s
example,10 suppose an agent has formed a hypothesis that there is a deer nearby,
and has observed fresh deer droppings. The droppings provide high confirmation,
other things being equal, for the deer-presence hypothesis. As we know, an agent’s
up-dated degree of belief becomes her new prior probability for the deer hypothesis,
which is now very high. On subsequently observing an antler nearby, the agent’s
confidence in the deer hypothesis does not change significantly even though
observing the antler (at the right time of year) is also strong evidence for the deer
hypothesis. In the same way, when an agent’s degree of confidence in a hypothesis
is very low, strong evidence may not be able to raise it substantially.

A real-world example in physics of this resistance to changing confidently-held
beliefs is the 2011 experimental claim that neutrinos travel faster than the velocity
of light in a vacuum. In the OPERA experiments conducted in Italy, neutrinos
(which have small mass), appeared to be traveling faster than the speed of light.11

Before these results were called into question, many particle physicists, including
both theoreticians and experimentalists, took them as ground-breaking if they could
be verified, but did not have any confidence in the experiments originally con-
ducted. Even before a glitch in the experiments was uncovered, the results were
considered highly improbable; a speed higher than that of light in a vacuum would
be a clear violation of a corner-stone of modern physics. Because the degree of
confidence of a member of the particle-physics community in the hypothesis that
neutrinos could travel faster than the speed of light was already so low, the
apparently (though temporary) strong evidence for the hypothesis did not signifi-
cantly affect the community’s confidence that it was false. In such cases, the
S-measure seems to encapsulate nicely the popular idea that extraordinary claims
require extraordinary evidence.

9Our reconstruction is based mainly on Christensen (1999).
10Although not necessarily endorsing the “woodscraft” expressed.
11For a brief summary, see Brumfiel (2012).
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What those two examples imply is that S measure is sensitive to prior proba-
bilities in a way that our conception of evidence is not. We can demonstrate the
sensitivity of S to prior probabilities in a schematic way by plotting S in screening
tests for diagnostic studies. The purpose of these screening tests (e.g., PAP smear)
is to determine the likelihood of having cervical cancer, so that physicians can
reduce morbidity by detecting diseases in their earliest stages when treatment is
usually more successful. The quality of a diagnostic test, as well as the values of S
and LR depend on the probabilities of possible test outcomes if the patient has the
disease and if she does not. Often these probabilities are quantified as the sensitivity
and specificity of the test. Sensitivity refers to a test’s ability to designate an
individual with disease as positive. The specificity of a test is its ability to designate
an individual who does not have a disease as negative. It is desirable to have a test
that is both highly sensitive and highly specific. But frequently this is not possible.

In Fig. 5.1, we plot S given a positive test result as a function of the prior
probability that the patient has the disease. We plot under 3 combinations of sen-
sitivity and specificity. In all cases S depends strongly on prior probability. S is
small if the prior probability is either high or low. The likelihood ratios for these
three cases are 9, 3, and 7 respectively, and are independent of prior probability.

Although it has been lurking at the edges of our discussion, we have not yet
made explicit the tension in Christensen’s analysis between taking it as an account
of confirmation or of evidence. In the deer example, he correctly points out that
both observing deer droppings and, on a separate occasion, observing an antler are
evidence for the hypothesis that there is (or recently was) a deer nearby. Likewise,
from the perspective of our own account of evidence, observing deer droppings or
observing an antler counts as evidence for the deer hypothesis, and they can be
pooled to constitute still stronger evidence for the deer hypothesis than its
deer-absence alternative (For how our account of evidence is able to pool data, see

Fig. 5.1 A plot of S given a
positive test result as a
function of the prior
probability that the patient has
the disease. We plot under 3
combinations of sensitivity
and specificity
(sensitivity = 0.9 and
specificity = 0.9,
sensitivity = 0.9 and
specificity = 0.7, and
sensitivity = 0.7 and
specificity = 0.9)
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Chap. 8, section “Quantitative Thresholds, the Accumulation of Evidence and
“Good Reasons to Believe””. His S-based account of confirmation, which exploits
an agent’s prior probability, is not, however, able to incorporate this evidential
intuition. Once deer droppings are observed, observing antlers does not increase an
agent’s degree of belief in the deer hypothesis. An examination of the S-measure
makes this clear. The deer example and the OPERA experiment illustrate what the
S-measure really measures: how degree of belief should be revised by data in the
context of current beliefs. In downplaying the importance of new evidence, it is an
essentially conservative approach to the methodology of science.

The Subjective Bayesian Account: Inadequate on Evidence

The S-measure makes explicit the two key features of Christensen, Joyce, and
Hájek’s (CJH) position: (i) when an agent’s degree of confidence in a hypothesis is
high, intuitively strong evidence is not able to influence her degree of belief in it
very significantly; (ii) when an agent’s degree of confidence in a hypothesis is low,
intuitively strong evidence is unable to contribute in a significant way to increasing
her degree of belief in it. Thus on the CJH position, degree of confidence (belief) is
to be distinguished from strength of evidence. But, we have argued, in downplaying
strength of evidence, the S-measure does not provide a complete account of
hypothesis-support, still less of hypothesis-testing.

We used the TB example to show that, yes, it is possible that a rational agent
have a low degree of belief that a person has the disease, even though the evidence
that the disease is present rather than absent is strong. It does not follow that
confirmation and evidence are numerically unconnected. D confirms H just in case
D provides at least some evidence for H against a rival hypothesis, so long as the
hypotheses in question are mutually exclusive and jointly exhaustive. That is, Pr(H |
D) > Pr(H) if and only if [Pr(D | D)/Pr(D |*H) > 1], a result owing to our colleague
Robert Boik. This point bears in an instructive way on the counter-intuitive char-
acter of the S-measure.

Explicitly, the S-measure is not a comparative account of evidence in that only
one hypothesis appears in its formulation. Implicitly, however, it could be con-
ceived of in terms of a comparison between a hypothesis, H, and its denial, ̴ H,
because with an exhaustive pair of hypotheses, any increase in the probability of
H implies a decrease in the probability of ̴ H. We will argue with the help of a
schematic example that if one’s hypotheses are not binary, S turns out to be less
than satisfactory as an evidence measure since it would provide evidence for a
hypothesis which is not the most confirmed by the data.

Consider H1, H2, and H3 to be three mutually exclusive and jointly exhaustive
hypotheses in a domain with priors of 0.33 assigned to each of them. We use
uniform priors over these competing hypotheses so that priors will have the least
influence on which hypothesis should be most confirmed. Data D are observed.
Let’s assume Pr DjH1ð Þ ¼ 0:6, Pr Dj �H1ð Þ ¼ 0:4, Pr Dj �H2ð Þ ¼ 0:3,

The Subjective Bayesian Account and Ours Compared 69

http://dx.doi.org/10.1007/978-3-319-27772-1_8
http://dx.doi.org/10.1007/978-3-319-27772-1_8


Pr DjH3ð Þ ¼ 0:2, and Pr Dj �H3ð Þ ¼ 0:8. Based on those values, we calculate
S H1ð Þ ¼ 0:14, S H2ð Þ ¼ 0:26, and S H3ð Þ ¼ �0:4. Based on the S-measure, two
hypotheses have positive values; therefore, according to the Bayesian account of
confirmation, there is increased reason to believe both H1 and H2. However,
because S is not comparative, we have “reason to believe” a hypothesis that is not
most supported by the data. When we use the LR-based account of evidence, we
discover that only H2 is the more likely hypothesis because the likelihood ratios
indicate that given the data H2 is supported 1.17 times as much as H1 and 3.5 times
as much as H3.

On our analysis, the counter-intuitive character of the CJH position just indicated
stems from its failure to distinguish sharply enough between confirmation and
evidence,12 which is to say that whatever account of “evidence” it might offer
already presupposes an agent’s subjective degree of belief, in particular her prior
probability. On a deeper analysis, the CJH position fails to acknowledge the dif-
ference between the “what should I believe?” and “what is the evidence?” ques-
tions.13 Christensen concedes that his account does not necessarily match our
intuitive understanding of evidence, but he does not consider that a problem.
Neither does he think that it is exactly an account of confirmation. But then we have
to ask, what is its descriptive or normative force?

The Paradox of Evidence on the Subjective Bayesian
Account

Christensen writes that it is paradoxical that “[t]he more confident we become in
our evidence, the less it can be evidence”. But it is only paradoxical if one conflates
evidence and confirmation. Data with a high marginal probability change belief in
hypotheses little, and thus have little confirmatory power. The evidential

12See Christensen (1999): “It [i.e., probability theory] provides a basis for conditionalization
principles regulating change of belief—a topic about which traditional logic had little to say; it
offers a quantitative analysis of our notion of confirmation, or evidential support”. See also Joyce
(1999): “all Bayesians agree that the degree to which D counts as evidence for or against H for a
given person is a matter of the extent to which learning D would increase or decrease her
confidence” (we have replaced Joyce’s “X” by “H” and “C” by “D” in the quote to square with our
usage), or again, “Relative to q(q,)…the extent to which D counts as evidence in favor of H for a
given person depends on that person’s degree of belief for H” (same letter replacement). As already
noted in the text, Joyce uses “confirmational power” and “evidential relevance” interchangeably.
13Joyce (2004) might well question whether there is any worth to this objection because he denies
that there is any issue. He would like to say that the various measures represent distinct, but
complimentary notions of evidential support. Our response to his attempt to bring confirmation
and evidence under the encompassing rubric of “evidential support” is, first, that these notions are
intuitively distinct, second that the distinction exposes the motive for the scientific need to dis-
tinguish hypotheses (recall the global warming example) and, third, that blurring the line between
them is the root cause of important epistemological problems.
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relationship, as we and other evidentialists understand it, is independent of prior
belief; whether or not we become more confident of our data does not change the
way in which they provide or fail to provide evidence. The dependence of con-
firmation on prior belief generates another problem for our intuitive understanding
of what counts as evidence. The degree of Bayesian confirmation depends on the
order in which the observations are made. This is not necessarily the case in an
assessment of evidence as we have characterized it14 as we will demonstrate in the
next chapter.

Revisit our discussion of the deer example. In it, observing deer droppings
increased an agent’s degree of confidence in the deer hypothesis. However, as the
story proceeds, antlers are subsequently observed in the same area. Yet their
sightings do not increase the agent’s confidence in the deer hypothesis significantly,
even though intuitively the antlers provide additional strong evidence for the
hypothesis. Christensen is puzzled by this, that while observing antlers is strong
evidence, it does not much increase the agent’s confidence in the hypothesis once
the deer droppings have been sighted. Our diagnosis for his puzzlement is that he
wants to treat both deer droppings and antlers as evidence on the same par, but
cannot given his account of confirmation via the S-measure.

We hope that this discussion of the Christensen, Joyce, and Hájek Bayesian
confirmation measure illuminates not simply its independent interest and the ways
in which we part company with it, but as well why an independent, non-Bayesian
account of evidence is a necessary supplement to any “purely probabilistic” account
of confirmation. What the S-measure does well is to reveal how belief should be
changed by data in the context of other current beliefs. A case in point is the deer
example. But it has the untoward consequences that we might very well have reason
to believe a hypothesis which is not, as against its competitors, the most likely and
that new evidence for it, however strong, is discounted.

In the next three chapters we turn to non-Bayesian accounts of evidence.
A careful consideration of these accounts further strengthens our own.
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Chapter 6
Error-Statistics, Evidence, and Severity

Abstract Several non-Bayesian and non-Likelihood accounts of evidence have
been worked out in interesting detail. One such account has been championed by the
philosopher Deborah Mayo and the statistician Ari Spanos. Following Popper, it
assumes from the outset that to test a hypothesis is to submit it to a severe test. Unlike
Popper it relies on the notion of error frequencies central to Neyman-Pearson
statistics. Unlike Popper as well, Mayo and Spanos think that global theories like
Newtonian mechanics are tested in a piecemeal way, by submitting their component
hypotheses to severe tests. We argue that the error-statistical notion of severity is not
adequately “severe,” that the emphasis on piecemeal testing procedures is misplaced,
and that the Mayo-Spanos account of evidence is mistakenly committed to a “true
model” assumption. In a technical Appendix we deflect Mayo’s critique of the
multiple-model character of our account of evidence.

Keywords Error-statistics � Severe tests � Error-probabilities � Piecemeal testing �
Global theories � The “true-model” assumption � Multiple models

Three Main Features of Error-Statistical Accounts
of Theory Testing

There are a variety of objections to Bayesianism. We have already argued at length
that it cannot provide an adequate account of evidence, and hence cannot provide a
fully general and satisfactory characterization of hypothesis testing or support. The
usual reason given by its critics is that the use of prior probabilities in a variety of
contexts where relative frequencies, application of the Indifference Principle, or
what are sometimes styled “plausibility arguments” are not available to determine
them, introduce an element of unwanted “subjectivity” into the testing process.
Consequently, alternative approaches to hypothesis testing and support have been
developed. For the most part, they eschew subjective probabilities as we do in the
case of evidence, but collapse the distinction between confirmation and evidence,
i.e., maintain that data which constitute evidence for at the same time confirm
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hypotheses, and thus explicate a conception of evidence which is very different
from our own.

One such alternative has been worked out in interesting detail by the philosopher
Deborah Mayo and the statistician Ari Spanos, among others.1 It is known as the
error-statistical approach. Following Popper,2 it assumes from the outset that to test
a hypothesis is to submit it to a severe test. Unlike Popper, Mayo relies on the
notion of error frequencies central to Neyman-Pearson error statistics.3 The basic
idea is that a test is severe just in case it would detect an error in the hypothesis, that
is, the chances of its doing so are very high if in fact an error were present (and
would very likely not detect one if the hypothesis were true). Error frequencies
provide adequate information to compare hypotheses. Sellke et al. (2001) show that
for simple hypotheses, the likelihood ratio, P-values, and α (the size of a
Neyman-Pearson test) are transformable into each other. Thus properly considered,
error frequencies can constitute evidence, and one should be able to make reliable
statistical inferences about hypotheses based solely on them. It is in this way that
the approach is thoroughly objective.

Mayo breaks with Popper in two other respects as well. First, while he focuses
on the severe testing of global theories which consist of a number of different
hypotheses, she proceeds piecemeal, gaining experimental knowledge by local
arguments from error. “[W]hen enough is learned from piecemeal studies,” she
writes, “severe tests of higher-level theories are possible”4 and again, “[b]y building
up severely affirmed effects and employing robustness arguments, a single type of
local inference—once corroborated, can yield the theory.”5 In this and in other
ways, Mayo likes to say that error statistics is much closer to the “nitty-gritty” of
actual scientific practice than are, for example, the rather schematic Bayesian and
Popperian approaches. Second, error-statisticians contend that the passage of one or
more severe tests provides us with a good reason to believe that a hypothesis which
passes is true, as against Popper who holds that passage of severe tests allows us to

1See especially Mayo (1996, 1997a, b, 2005), Spanos (1999), and Mayo and Spanos (2006).
2Popper (1959). In addition to the terminology, Mayo incorporates (as does the Bayesian para-
digm) the Popperian theme that the more surprising the experimental/observational outcome, the
better will be its value as a test of a particular hypothesis. This is not to suggest, however, that
Mayo simply takes over Popper’s conception of severity. Note the following: First, Popper is a
deductivist; he thinks the rules of deductive logic suffice for capturing the idea of falsification (the
key to theory-testing on his account), whereas the error-statistical, Bayesian, and evidentialist
accounts are all very much non-deductivist in spirit (probability theory is crucial to an explication
of severity). Second, Popper links his idea that hypotheses can never be confirmed, only “cor-
roborated” (not falsified to this point); but corroboration is exclusively a measure of past per-
formance and provides no indication concerning the success of a hypothesis in the future, whereas
Mayo thinks, as we shall see, that a test passed severely provides good reasons to believe that it is
true, i.e., will continue to hold of our experience.
3Which itself borrows from the “learning from errors” theory of Ronald Fisher. See Fisher (1930).
See also Pearson (1955), and Neyman (1976).
4Mayo (1996), p. 190.
5Mayo and Spanos (2010), p. 83.
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say no more than that the successful hypothesis is not false. We will call the
error-statistical contention that genuine evidence for a hypothesis provides us with a
good reason to believe the hypothesis is true the “true-model” assumption. It is
common to all of the theories of evidence we discuss in this monograph with the
exception of our own. It is also, as we shall try to show in this and the following
chapters in Part II of the monograph, very problematic.

Now to examine all three features of the error-statistical position—the account of
severe testing, the emphasis on piecemeal procedures, and the “true-model”
assumption.

Severe Tests

Mayo begins by characterizing strong evidence in terms of severity. “Passing a test
(with D) counts as a good test or good evidence for H just to the extent that H fits D
and is a severe test of H.”6 She terms this “the severity requirement” (SR). It is
“always attached to a particular hypothesis passed or a particular inference
reached.”7 Severity is the property of a test of a particular hypothesis H implicitly
contrasted with its negation ̴ H with respect to background information B, auxil-
iaries A, and data D.8 H passes a severe test T with outcome D just in case

1. “D agree with or ‘fit’ H (for a suitable notion of fit) and
2. Test T would (with very high probability) have produced a result that fits H less

well than D does, if H were false or incorrect.”9

Mayo does not provide a further specification of “fit.” Any specification will do
so long as it entails that Pr(D; H) > Pr(D; not-H), where Pr(D; H) is not to be read
as Pr(D│H), and is not to be construed as a likelihood.10 In this connection, she
quotes approvingly the engineer Yakov Ben-Haim, whose restatement of 2. is “We
are subjecting a proposition to a severe test if an erroneous inference concerning the

6Mayo (1996), p. 180. She eventually replaced “e” with “x” in her formulation, signaling a
distinction between “data” and “evidence.”We will use our “D” to make comparisons between our
accounts syntactically more perspicuous.
7Mayo (1996), p. 184.
8Mayo is not explicit about auxiliaries and background information in formulating her definition of
a test’s severity. But it is a standard assumption in present-day philosophy of science that a
hypothesis given a datum is unlikely to yield a reliable probabilistic relationship unless we specify
its auxiliaries and background information. However, how local or global testing of a theory via an
auxiliary can be done remains unclear in her error-statistical account. We owe this point to
Malcolm Forster.
9Mayo (2005, p. 99).
10Pr(D; H) is the probability of the data under a fixed hypothesis, Pr(D│H) is the probability of
the data under a realized value of a random hypothesis, i.e., on a Bayesian account. Neither is in
sensu stricto a likelihood. L(H; D) is only proportional to Pr(D; H). There is an unknown constant
that is removed by taking ratios.
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truth of the proposition can result only under extraordinary circumstances.”11 Note
that this condition makes the same sort of appeal to a general consensus concerning
what constitutes “high” probability or “extraordinary” circumstances that is
involved when we say that probabilities or likelihood ratios are “very high/low” or
“very strong/weak,” and that it is similarly “contextual” in that tests as such are not
severe, but only relative to the particular inference that is claimed to have passed the
test. The main conceptual and formal differences, rather, are that she does not
include prior probabilities, likelihoods, and likelihood ratios in her characterization
of severity. According to her, it is neither appropriate to do so since
error-probabilities are to be distinguished from likelihoods, nor helpful since like-
lihood ratios cannot handle composite hypotheses,12 nor necessary since the various
objections to her account, which focus in part on her neglect of prior probabilities,
can all be dissolved.

Reduced to its bare bones, here is the sort of intuitive case she has in mind. We
test for the presence of a disease, say cervical cancer using the PAP smear. Suppose
that when the disease is present, the test has a positive result over 80 % of the time;
when the disease is not present, the test has a negative result over 90 % of the time.
Given the high percentage of true positives if the disease is present, and the very
low percentage of false positives if it isn’t, the test would seem to be severe; it rules
out that the subject has cervical cancer when she does not, and rules in, so to speak,
that she does when she has it. Along the same lines, if the test were to result in the
same percentage of false positives when disease is absent as true positives when
disease is present, it would not be severe; a positive result would not rule out, to a
high degree of probability, that the subject did not have the disease.

The Error-Statistical Account of Severity Tested

The basic idea that the severity of experimental tests can be used both to charac-
terize and measure evidence is initially promising. For one thing, the search for
severe tests, as Popper urged very effectively, does characterize scientific practice,
and it is intuitive to connect this search with the strength of the evidence for
hypotheses that it produces. For another thing, severity is “statistically correct;” a
number of excellent statisticians13 have vetted the mathematics and seen no
problems. The issues concern the epistemological assumptions made and the
implications drawn when evidence is defined in terms of severity and no distinction
between it and confirmation is made.

11Mayo (2005, p. 99), where what counts as “extraordinary circumstances” is hinted at but not
further defined.
12There is no need to repeat our demonstration that our likelihood ratio-based extended account of
evidence can handle composite hypotheses. It is included as an Appendix, A Note on Simple and
Composite Hypotheses, to Chap. 2.
13See Cox (2006), Lele (2004), Spanos (1999), and Dennis (2004), for examples.
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To begin to focus these issues, consider the PAP smear test for cervical cancer in
more detail. Although as we noted above, Mayo distinguishes between
error-probabilities and likelihoods, it is convenient for the sake of our exposition to
identify them. For one thing, it allows us to make a straightforward comparison
with our own account. For another thing, and to the best of our knowledge,
although Mayo warns us against reading her severity criterion as Pr(D│ H) is very
low, she does not tell us in a formal and precise way how it is to be read. In any
case, none of the criticisms we will make turn, so far as we can see, on temporarily
construing the error-statistical position in terms of likelihoods. Again we make the
same assumptions, viz., H is the hypothesis that an individual has a particular
disease and ̴ H is the mutually exclusive and jointly exhaustive hypothesis that she
does not, and D represents a positive screening result. We would like to know
whether a test is in this context severe.

Cervical cancer is a disease for which the chance of containment and subsequent
management as “chronic” is high if it is detected early. The PAP smear was until
very recently a widely-used screening technique intended to detect a cancer that is
as yet asymptomatic. An on-site proficiency test conducted in 1972, 1973, and
1978, assessed the competency of technicians who scan PAP smear slides for
abnormalities.14

Overall, 16.25 % of the tests performed on the women with cancer resulted in
false negative outcomes ( ̴ D). A false negative test occurs when the test of a woman
who has cancer of the cervix incorrectly indicates that she does not. Therefore, in
this study Pr( ̴ D│H) = 0.1625. The other 100–16.25 = 83.75 % of the women who
had cervical cancer did test positive; as a result, Pr(D│H) = 0.8375.

Not all of the women who were tested actually suffered from cervical cancer.
In fact, 18.64 % of the tests were false positive outcomes. This implies that Pr(D│ ̴
H) = 0.1864. The probability that the test results will be negative given that the
individual tested does not have the disease is Pr( ̴ D│ ̴ H) = 1−0.1864, or 0.8136.

On Mayo’s account as we reconstruct it, T is a severe test of H given D just in
case Pr(D│H) is very high (condition 1) and Pr(D│ ̴ H) is very low or (equiva-
lently) Pr( ̴ D│ ̴ H) is very high (condition 2). As we have seen, in the PAP case,
Pr(D│H) = 0.8375, which is high, Pr(D│ ̴ H) = 0.1864, which is low. It follows
on the error-statistical account that the PAP smear is a severe test of the hypothesis
that a given woman has cervical cancer.

On our account, which requires both evidence and confirmation for the test of a
hypothesis to be severe, the PAP smear is not. We need to know, first, the
Pr(H│D), that is, the posterior probability that a person with a positive test result
actually does have the disease. To apply Bayes Theorem, we need to know the prior
probability of H in particular. The most reasonable (and in no way “subjective”)
Pr(H) is the probability that a woman suffers from cervical cancer when randomly
selected from the female population. In this case, it is simply the measure of the
relative frequency of cervical cancer. One source reports that the rate of cases of

14See Pagano and Gauvreau (2000), pp. 137–138.
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cervical cancer among women studied in 1983–1984 was 8.3 per 100,000.15 That
is, the data yield Pr(H) = 0.000083. It follows that Pr( ̴ H) = 0.999917. Using the
likelihoods given in the last two paragraphs and applying Bayes Theorem, we arrive
at Pr(H│D) = 0.000373. So although the posterior probability of the hypothesis is
larger than its prior, the hypothesis is only marginally confirmed. Hence on our
account, T does not provide a severe test of H given D.

We need to know, second, whether D provides strong evidence for H. Since
Pr(D│H) = 0.8375 and Pr(D│ ̴ H) = 0.1864, their ratio is 4.49. After we know that
the individual tested has a positive PAP smear, her chances of having cervical
cancer as against not having it have increased almost five-fold. While this might
seem ominous, it is not, statistically speaking, a very large increase. It assuredly
justifies a woman who receives a positive PAP result in taking more tests to make
sure about her present state of health.16 However, it does not justify a belief that she
has the disease, nor does it provide very strong evidence that she does. The PAP
smear satisfies neither of our criteria: it is simply not a severe test for the presence
of cervical cancer.

In particular, the likelihood of the data given the presence or absence of cancer is
not adequate to determine the posterior probabilities of the hypotheses. From a
Bayesian perspective on confirmation, these posterior probabilities are important.
To calculate them in the sort of diagnostic case we are taking as exemplary, we
must also include information about the probability of an individual being afflicted
when selected randomly from the population. In the PAP case, the prior probability
of an individual’s being afflicted is just 8.3 per 100,000 people. It is extremely low.
At the same time, it plays a crucial role not simply in determining the posterior
probability of an individual’s having a disease, but also in saving us from generally
counter-intuitive results.17 In this case, if we were to believe on the basis of a
positive result that a particular person had cervical cancer, we would be wrong the
vast majority of the time. Evidence on the error-statistical account does not always
provide us with reasons to believe that a hypothesis is true.

A number of philosophers have suggested that the error-statistical account of
severe testing fails to take relative frequencies or base-rates into account.18 Mayo’s
response is to accuse her critics, Bayesian and non-Bayesian alike, of committing

15Ibid.
16At this juncture, everyone confronts Royall’s “what should I do?” question. Answering it
involves utilities as well as probabilities, and lies outside the scope of the monograph.
17Achinstein (2001), pp. 134–136, sets out some very simple and schematic cases to make the
same point, that neglect of prior probabilities, whether they are interpreted in an objective or
subjective way, leads to counter-intuitive results. The list of other philosophers and statisticians,
Bayesians and non-Bayesians alike, who have made the same criticism is long. See as an example
of the Bayesian variety (Howson 1997). See also Bandyopadhyay and Brittan (2006) which was
originally presented at the APA, Central Division in 2000.
18Again see Achinstein (2001), as well as Curd et al. (2012). p. 618. The importance of taking
base-rates into account for a Bayesian account of confirmation was spelled out in our discussion of
testing for tuberculosis in Chap. 2.
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the “fallacy of instantiating probabilities.”19 This fallacy involves taking a relative
frequency, of cases of cervical cancer in the general female population, say, and
then attaching it to the hypothesis that a particular person has cervical cancer, viz.,
inferring the probability that Jane has cervical cancer is 0.0083 from the fact that
0.0083 percent of the female population has cervical cancer and that Jane is a
female. That this sort of single-case inference from a statistical generalization is
problematic has been understood among philosophers of science at least since
Hempel’s article, “Inductive Inconsistencies” (1960).20 We are not going to fully
unravel the problems here. But two comments about Mayo’s support of her claim
that the base-rate criticism itself rests on a “fallacy of probabilistic instantiation” are
in order.

First, Mayo correctly draws attention to the problem of reference classes. It
matters very much from what reference class a subject is drawn before we can infer
a reasonable degree of belief that she has a particularly property. Hempel’s
examples are familiar. On the one hand, since Peterson21 is a Swede and the
proportion of Roman Catholic Swedes is less than 2 % we can infer that it is little
likely that Peterson is a Roman Catholic. But this inductive inference needs to be
set against another, that since Peterson made a pilgrimage to Lourdes and the
proportion of those who make such a pilgrimage and are not Roman Catholics is
less than 2 % we can infer that almost certainly Peterson is a Roman Catholic. True
premises, inconsistent conclusions, we must conclude that both arguments are
invalid. But this is not the end of the matter. As the smoking-lung cancer studies
that will be a focus of the next chapter illustrate, it is possible in statistically careful
ways, to take reference-class variation into account in both testing a thesis and
inferring individual probabilities, e.g., that a male between the ages of 25 and 65
who has smoked two or more packs of cigarettes a day has an X probability of
developing a cardio-vascular disease (notably lung cancer) and a Y probability of
dying from it. Very sophisticated techniques have been developed in connection
with epidemiological studies in particular to eliminate “biased” results. Of course, it
is always possible that there is some heretofore unconsidered factor, something in
the drinking water of all and only those who smoke and develop lung cancer that
would greatly alter the probabilities.22 The problem is the same one raised in our
discussion of inherent dogmatism in Chap. 4, and is subject to the same comments:
one would rigorously calculate a posterior probability representing an objective
appraisal only if one could characterize all possible reference classes and assign
prior probabilities to each. Second, clinicians working in the field23 commonly

19See Mayo (2005, pp. 114ff.).
20In Hempel (1965).
21We’ve changed Hempel’s “Petersen” to “Peterson.” Petersen would be a Dane or Norwegian, not
a Swede!
22Ibid.
23Schulzer (1994) is an especially clear discussion of the mistake often made by overlooking the
notion of prior probability in analyzing diagnostic test results. See also Galen and Gambino
(1975).
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make diagnoses based in part on the relevant base-rates. To ignore them would not
only lead to dramatically counter-intuitive results, it would invalidate a large swath
of current practice. Better reasons than she provides are necessary to support a case
for sweeping changes.24 Nor is this a point of conflict between Bayesians and
frequentists. Bayesians can view these diagnoses as posterior probabilities, while
frequentists can view them as predictions conditional on a hypothesized reference
class. The conflict that is exposed might be called a scope of inference conflict.
A public health worker husbanding scarce resources and a patient whose life may
be on the line probably should have very different opinions about which is the
appropriate approach to take.

If a test satisfies our conditions of severity, it satisfies Mayo’s as well.25 On the
other hand, as our examples make clear, a test that satisfies Mayo’s conditions does
not necessarily satisfy ours. Our conception is in this sense “more severe” than hers.
It results from distinguishing and requiring both evidence and confirmation, at least
understood as we have characterized them. It also better matches some of our
scientific practice, particularly well, of course, when prior probabilities are deter-
mined objectively by way of relative frequencies as they are here.

Piecemeal Testing

The second main claim of the error-statistics methodology concerns piecemeal
testing. A global theory passes a severe test by way of all of its component
hypotheses passing what error-statistics understands as “severe tests.”

Consider testing the General Theory of Relativity (GTR) to better understand
how the error-statistical testing of a global theory proceeds. According to the GTR,
gravity is a property of space-time geometry. More specifically, gravity is a
space-time curvature. There are three classical tests for GTR, each of which tests a
local hypothesis—H1E, H2E, and H3E—severely. H1E is the hypothesis that, as seen
from the Earth, the precession of Mercury’s orbit is 5600 s of arc per century. H2E is
the hypothesis that spectral lines from bodies with strong gravitational fields (e.g.,
the Sun and other stars) have longer frequencies than those that do not. Finally, H3E

is the hypothesis that gravitational fields alter the path of light. Since the expla-
nation of Mercury’s perihelion was the most important of all three tests in securing
acceptance of the General Theory, we will discuss it first.

24In fact, Mayo admits the point Mayo (2005, p. 117): “Nor need we preclude the possibility of a
statistical hypothesis having a legitimate frequentist prior. For example, a frequentist probability
that Isaac is college-ready might refer to genetic and environmental factors that a high school
student (from a specified population) is deficient—something we can scarcely cash out, much less
compute” (Ibid.). But we cash out, indeed compute, such legitimate frequentist probabilities all the
time in epidemiological studies.
25Insofar as it is possible to make a direct comparison between them since she avoids likelihoods
and prior probabilities.
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Perihelion is the epoch when a planet or comet is at its closest distance to the
sun. The orbits of these heavenly bodies are not circular, but rather elliptical to
varying degrees, and so there is a maximum distance, the aphelion, as well as a
minimum, perihelion, distance from the Sun. It has been observed that Mercury’s
perihelion shifts over a very small distance. This shift of forty-three seconds of arc
per century cannot be accounted for by classical gravitational theory; it predicts
5557 s of arc per century whereas the observed shift is 5600 s of arc. GTR is able to
explain this residual 43 s.26 The perihelion shift of Mercury is generally taken as a
severe test of GTR and, as noted, very much helped to secure its acceptance. It
clearly satisfies the error-statistical criteria: Pr(D│H1E) is very high, i.e., close to 1,
and the probability for its local Newtonian hypothesis, Pr(D│H1N) is close to 0
where “D” is the observed shift of Mercury. Once we are able to show that H1E has
passed severely relative to a particular outcome and a specific test, then, following
Mayo, we can say that “we have learned about one facet or one hypothesis of some
more global theory such as GTR” (Mayo 1996, p. 190). To know whether the entire
GTR has passed severely, and on the assumption that the three taken together
comprise it, we need to know whether its other two local hypotheses, H2E and H3E,
separately have passed their own severe tests.

The observational data for H2E is that when light consisting of photons climbs
out of a gravitational well it undergoes a time-dilation resulting in a red-shift, i.e., a
shift in the spectrum of light emitted towards its red end. Again, Pr(D│H2E) is very
high, and for its alternative hypothesis H2N, Pr(D│H2N) is very low, in which case
and on the error-statistical criteria, H2E has passed a severe test. Similarly, detailed
astronomical observations reveal that gravitational fields do alter the path of light,
in which case the third local hypothesis, H3E, also passes a severe test. Given these
facts, error-statisticians are able to conclude that the global theory GTR has itself
passed a severe test and therefore warrants acceptance.27

But the assumption on which this conclusion rests, viz., that if local hypotheses
pass severe tests then the global theory passes a severe test and thus warrants
acceptance, is questionable. In our view, this assumption incorporates a misuse of
the conjunction law from probability theory.28

Suppose we want to submit some global theory, T, to a severe test. Following
Mayo’s guidance, we do so by submitting its component hypotheses, H1, H2, and
H3, to global hypotheses. Collectively they constitute a severe test of T if and only
if Pr(D│T) is high and Pr(D│ ̴ T) is low, where D are the respective passings of
their own severe tests by the three components. But the probability of the global
theory passing this (meta-) test will be less than the probability of its local

26See Will (1993).
27Mayo (1996), p. 183.
28The lottery paradox is sometimes taken to show that conjunction poses problems for probabilistic
epistemology. In the section on Absolute and Incremental Confirmation of Chap. 2 we have shown
how this paradox can be resolved in terms of our dual conceptions of evidence and confirmation. It
should also be mentioned that in the literature on classical statistics, there are discussions of how to
collate p-values, but they are not germane to the present point.
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hypotheses passing their own severe tests. In other words, since Pr(D│T) will be
less than any of its conjuncts, it does not follow that if they are high, Pr(D│T) will
also be high and the first criterion of error-statistical “severity” satisfied. We call
this the “probability conjunction” error. It can be put more generally.29

Take a global theory, T, and several local hypotheses, H1, H2,…, Hi,… and
corresponding severe tests with outcomes D1, D2,…, Di,…. These data are the
passing or failing of each locally severe test. We know that for each i, Pr(Di│Hi) is
high, but not 1 (by the first error-statistical criterion for a severe test). By the rules
of probability theory for conjunction, Pr(D1 & D2 & Di & …│T) will be less than
Pr(Di│T) for all i. Hence if passing all the severe tests of its local hypotheses is
taken as a severe test of the global theory, then Pr(D│H) will be less than the
corresponding probability of any of the local hypotheses. Indeed, the more local
hypotheses that pass severe tests, the less probable on the data would be the global
theory that comprises them.30 But this is counter-intuitive. The more local
hypotheses that pass severe tests, the stronger should be the evidence for the global
theory. The paradigm example of this is, of course, Newton’s gravitational theory;
as successful predictions on the basis of its component hypotheses piled up, among
many others that tides and comets are alike subject to the same gravitational forces,
the theory became more and more credible.

The “True-Model” Assumption

The third dimension of the error-statistical account of evidence we will discuss has
to do with its incorporation of the “true-model” assumption, that strong evidence for
a hypothesis provides us with good reasons for believing that it is true. It should be
noted at the outset that there is room for another, possibly more charitable, construal
of error-statistics, which fights shy of such a problematic “true-model” stance
toward models/theories. Error-statistics often stresses the statistical adequacy of a
model, which is different from the truth of a model. Statistical adequacy of a model
concerns the empirical validity of the probabilistic assumptions underlying the
estimated statistical model. So, instead of claiming that severe tests provide good
reasons that model/theory are true or false, error-statisticians could make the more
limited claim that models are statistically adequate or inadequate. We will even-
tually argue, however, that this construal has a price to pay for failing to account for

29We thank John G. Bennett for pointing out this objection to error-statistics.
30This objection is still more general and need not rely on the independence assumption that
each local hypothesis be tested. On the error-statistical account, if we assume that each local
hypothesis (three of them, for example) has passed a severe test, then each would constitute data
D1, D2, and D3 for the global theory, T. Then for any D1, D2, and D3,
Pr(D1, D2, and D3│T) = Pr(D1│T) x Pr(D2│D1 &T) x Pr(D3│D1 & D2│T) for the probability
of the conjunction for the global theory, but this probability for the global theory will still be less
than Pr(D1│T) because each of the other terms is less than 1, as required by the inductive nature
of the error-statistical account.
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causal claims made in global scientific theories. Moreover, the more limited claim
does not cohere very well with what we might call the “logic” of Mayo’s argument,
or with the many occasions on which she urges the less limited “true-model”
assumption.

We can begin with her words: “passing … severe tests warrants accepting H”
(Mayo 1996, p. 183). Or again, “When a test is sufficiently severe, … the passing
result may be said to be a good indication (or a good ground for) H,” and again,
“evidence indicates that H is true” (Ibid., p. 186), although with the same breath
(Ibid., p. 186), she sometimes takes a model adequacy stance: “Within a canonical
experimental test, the truth of H means that H gives an approximately correct
description of the procedure generating experimental outcomes.” The general drift
of her remarks is to embrace the “true-model” assumption. Her recent reference to
Glymour’s long-time move to relate a theory’s ability to provide a good explanation
with the theory being true is still another example. She writes, “Like Glymour, I
deny that what matters is explanatory power as opposed to truth—truth does
matter” (Mayo and Spanos 2010, p. 354).31

Moreover, there are at least three reasons why Mayo must make something like
the “true-model” assumption. We will discuss them in order of increasing
importance.

The first reason has to do with the way in which she parts company with Popper.
On her reading,32 the latter was committed to our comparative likelihood account of
evidence. Mayo concludes correctly that on this account, evidence does not provide
us with good reasons to believe that a hypothesis is true. Indeed, this is one of our
main themes. From this she draws the further conclusion that Popper had to settle for
falsification and the correlative notion of “corroboration,” that the most we can claim
for a theory is that it has not yet been falsified. But, in contrast, it follows from the
error-statistical approach that “when a hypothesis H has passed a highly severe test
we can infer that the data x provide good evidence for the correctness of H.”

The second reason why error-statistics must embrace the “true-model” distinction
is simply an elaboration of the first. Mayo conflates evidence and confirmation,
implicitly maintaining that the second reduces to the first. But the first on our
(Popperian) comparative likelihood account of it does not do what any account of
confirmation must, viz., provide good reasons for believing that the hypothesis
confirmed is true. So she rejects our account of evidence33 and replaces it with an
error-statistical account which, in her view, does provide us with appropriate good
reasons. But this is to say that she must embrace the “true-model” assumption. Our
view, of course, is that evidence and confirmation must be distinguished.
Confirmation but not evidence makes this assumption. We have also argued that the
assumption provides ready ammunition for those who want to attack the pre-eminent

31See Mayo and Spanos (2010, p. 354).
32Whether this is a correct reading of Popper does not concern us. See Mayo (2005) for the
material to support our reading of her position.
33This is not the only reason she does so, but it is “crucial” (Ibid., p. 105).
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credibility of scientific methods, in particular the gathering of objective evidence for
one theory or model as against another.

The third and most important reason that error-statistics assumes that some
models are true has to do with a deep tension in its account of the results of severe
testing. On the one hand, the error-statistical account presupposes that you can test,
and thus gather evidence for, a hypothesis or model in isolation. It is in this way that
a severe test constitutes an acceptance or rejection procedure for the hypothesis; it
supplies good reasons for believing that the hypothesis is true or false (or, syn-
onymously, “correct” or “incorrect”). Some of our own examples, in which the
probability of the data on a hypothesis and its negation are contrasted, might have
suggested as much. But the testing of a hypothesis in isolation presumes not only
that it and its negation are mutually exclusive but that they are jointly exhaustive. In
the real world of science, this second presumption is rarely true. The fact of the
matter is that there are a variety of ways in which a hypothesis can be false. It might
be, for example, that a hypothesis H is tested severely and successfully against its
negation ̴ H, but that it cannot be so tested against another hypothesis H’. This
comes to saying that although Pr(D│H) might be high, Pr(D│H’) might also be
high. Although in reconstructed cases, one theory is pitted against another, it is
much more typical to have a spectrum of theories under consideration, not just
Copernicus’ and Ptolemy’s (understood in an overly-simplified way as
mutually-exclusive and jointly-exhaustive kinematic descriptions of the solar sys-
tem), but Copernicus’, Ptolemy’s, Brahe’s, and Kepler’s; as in the usual whodunit,
there is not one suspect or perhaps two, but several. Mayo occasionally chides
Royall for allowing too many alternatives. The criticism is more pointed in reverse.
Mayo allows too few alternatives to be an accurate representation of actual sci-
entific practice. She often stresses her desire to reflect actual scientific practice, but
here she is flying in the face of a long tradition of practicing scientists—from
Chamberlain (1897) to Platt (1964) to Burnham and Anderson (2002), for a century
and a quarter multiple models have been held to be a good thing. Multiple models
ask the question “how can I be wrong?”, while a single model, even if carefully
iterated, only asks “how can I be made to seem right?” or “what errors need to be
corrected?” Chamberlin’s key paper on The Method of multiple working hypotheses
put it this way: “With this method the dangers of parental affection for a favorite
theory can be circumvented.” What he has in mind is the ever-present danger of
bias. Equally important in our view is that evidence has real bite only when it serves
to distinguish between multiple models. Human-caused and ocean-
temperature-caused global warming are not simply mutually-exclusive and
jointly-exhaustive alternatives; evidence for and against them may be gathered in a
genuinely comparative context. The same is true of the alcohol- and smoking- lung
cancer hypotheses. Evidence is gathered to separate and compare them, prior to any
assessment of the “severity” of the tests to which they are submitted, even as it
prompts the search for new and better models to test. But this fact implies that the
“true-model” assumption is inappropriately incorporated into an account of evi-
dence. This implication has to be set beside the error-statistical claim that severe
testing provides good reasons to think that particular hypotheses are true.
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Although the argument undermining Mayo’s “multiple-model” criticism of our
own Royall-derived evidential account is rather technical, and therefore put in an
Appendix to this chapter, its conclusions can be summarized briefly. First, in both
evidence and severe testing, there is model comparison. It is explicit in evidence
and implicit in severe testing. Second, in both evidence and severe testing, there is a
statistical test. It is implicit in evidence and explicit in severe testing. Third, in both
evidence and severe testing, there is estimation of post-data error probabilities and
is explicit in severe testing. The kinds of differences alleged between the two
accounts do not exist.

As we mentioned earlier in this section, error-statisticians sometimes suggest a
more limited claim, that severe tests demonstrate only the statistical adequacy of
hypotheses, and do not also give us good reasons to believe that they are true. It is
not simply that the more limited claim is sometimes made. It would also be forced
on them if, as we have just contended and argue in more detail in the Appendix to
this chapter, their account of severe testing must acknowledge, however implicitly,
a connection between the concept of evidence and multiple models. For once
multiple models are admitted, as we think they must be on any adequate account of
evidence as it is correctly understood in scientific practice, then, as is also argued,
the “true-model” assumption must be abandoned.

Statistical adequacy deals with the empirical validity of the statistical assump-
tions of a model. Philosophically speaking, a model is statistically adequate just in
case it is able to describe data up to a desired level of precision. The error-statistical
account of severity is one step in determining the statistical adequacy of a
hypothesis. Error-statisticians like Mayo couple their account of severity with
misspecification of a hypothesis in order to provide a full-blown test of its statistical
adequacy. In regression analysis, for example, the model specification consists of
selecting an appropriate functional form for the model and choosing which vari-
ables to include in it. It can also arise from various considerations, among them
omitting a variable that might be related to both dependent variables and one or
more of the independent variables is one of them. Model misspecification could
also stem from an irrelevant variable in the model. However, the construal of a
model/theory as statistically adequate instead of true has its own short-comings,
which we will proceed to elaborate.

Error-statisticians seem to be confronted with two options. Either they could opt
for the true-model assumption, which in the case of global theories involves having
good reasons to believe that the causal mechanism postulated by such theories
explains the phenomena described by its local hypotheses or make the more limited
claim that we have good reason to believe that the models are statistically adequate.
On either option, error-statistics suffers from defects. If error-statistics holds the
true-model assumption concerning global scientific theories, then, since we may
assume that truth and causal explanation are connected in the way that Glymour,
Mayo, and many others insist, it is able to make truth-claims about causal expla-
nations. Global theories as commonly understood do not simply describe what is
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the case but explain why.34 But in the process error-statisticians might seem to have
committed the fallacy of affirming the consequent.

P1. If a theory/model is true, then the value of the test-statistic should be closer to
the value derivable from the model in question

P2. The value of the test-statistic is closer to the value derivable from the model in
question
Therefore, the theory/model is true.

The erroneous nature of this inference is obvious. Statistical literature is replete
with cases in which infinitely many competing models may satisfy premise 2. Yet
we can’t conclude from this that they are all equally true models. Making the true—
model assumption is bound up with the explanatory character of global scientific
theories. But making this assumption, as we have just seen, gives rise to an invalid
inference. So, error-statisticians could instead retreat to the claim that models tested
successfully are no more than statistically adequate. This move avoids the error by
claiming that the model in question describes the data adequately, but fails to make
provision for the causal-explanatory character of global scientific theories.
Therefore, error-statistics is confronted with a dilemma. Either embrace the
true-model or the statistical-adequacy assumption. If the former, then it is able to
provide causal explanations of the phenomena, the widely agreed-upon aim of most
global scientific theories. But, in the process error-statistics commits the fallacy of
affirming the consequent. By contrast, if it gives up on the true-model assumption
then it does not commit the fallacy, yet it loses the possibility of providing causal
explanations. Given the link between truth and explanation, one cannot have both
mere statistical adequacy and causes.

None of this poses any threat to our comparative likelihood account of evidence.
We will make three comments. First, we are able to make inferences about causal
mechanisms by comparing two causal models to see which one of them is more
supported by the data. Second, we do not claim on the basis of the evidence that
either of the causal models is true, because there could be a better model which we
are yet to consider which is more supported by the data than the two considered so
far. Third, we make a local causal inference about the relative evidential strength of
those two models because we make inferences regarding the comparative strengths
of only two models at a time, and not for all causal models. Whether one or the
other of the models is confirmed is another matter. Confirmation is to be distin-
guished from evidence. Unlike Mayo, we do not try to have it both ways.

34Newton’s theory explains why the orbits of the planets are (more or less) elliptical, Einstein’s
(general) theory explains why light bends in the vicinity of large masses such as the Sun, the
examples are both numerous and familiar.
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Further Reflections

Classical error-statistics provides researchers with a variety of useful tools, confi-
dence intervals and significance tests among them, and rightly focuses attention on
error and reliability in the assessment of data, not to mention the corollary necessity
of random sampling and other statistical techniques. But from our perspective,
Mayo’s attempt to fashion these tools into an account of Popper-like severe testing
suffers from at least two problems.

First, her account is both too weak and too strong. It is too weak because it is
open to counter-examples of the PAP smear-cervical cancer variety. At the same
time, it is too strong because it precludes the necessity of assessing the evidence for
a variety of hypotheses with respect to the same set of data. Like Popper, she thinks
that hypotheses can be tested in isolation, but only sometimes is this possible, and
even more rarely is it satisfactory.

Second, and unlike Popper, Mayo often gives the impression that passage of a
severe test provides us with a good reason to believe that it is true. That is to say,
instead of falsification, which relies on a straightforward application of modus
tollens, error-statistics seems to be committed to a version of modus ponens. If local
hypotheses H1, H2, and H3 pass severely then the global theory T which comprises
them also passes severely. Given that the antecedent of the conditional is true, the
conclusion follows. We have argued that the first premise is false, consequently, the
argument is unsound. Although each local hypothesis, H1, H2, and H3 passes
severely, it does not follow that T will thereby pass severely, as this inference
violates the probability conjunction rule. Perhaps for this reason or some other,
error-statisticians seem increasingly to play down the connection between piece-
meal hypothesis and global theory testing. “The growth of knowledge has not to do
with replacing or confirming or ‘rationally accepting’ large-scale theories, but with
testing specific hypotheses in such a way that there is a good chance of learning
something-whatever theory it winds up as part of” (Mayo 2010, p. 28, emphasis
ours). This more modest version of the error-statistical account, that it is concerned
solely with testing local hypotheses and controlling their errors (and only as a kind
of corollary with the appraisal of theories of which they may happen to form part),
avoids the probability—conjunction and possibly other similar sorts of objections.
But it pays a price in doing so and it suggests a very misleading relationship
between global theories and their component hypotheses.

The price paid is that it no longer provides an alternative account of
theory-acceptance or rejection, on the same scale as the Popperian or Kuhnian
paradigms, or for that matter the other less iconic accounts surveyed in this
monograph. The status of an error-statistician if solely interested in testing local
hypotheses might now seem comparable to a mechanic who can identify problems
and make repairs to one part of a boat at sea or another, but can’t promise (to any
degree of certainty) that the entire boat won’t be capsized.

The more modest approach suggested at times is also misleading in two respects.
Consider this general and relatively recent error-statistical claim:
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A severity assessment is not threatened by alternatives at ‘higher levels.
If two rival theories, T1 and T2, say the same thing with respect to the effect or

hypotheses H being tested by experimental test E…then T1 and T2 are not rivals
with respect to experiment E. Thus, a severity assessment can remain stable
through changes in “higher level theories” or answers to different questions. For
example, the severity with which a parameter is determined may remain despite
changing interpretations about the cause of the effect measured (Mayo 2010, p. 36).
On the one hand, we are invited to infer that if two rival theories do not say “the
same thing” with respect to the hypothesis being tested then they are rivals with
respect to the test, in which case there are grounds for preferring one to the other,
grounds that presumably error-statistics can make clear. In this case, it would seem
that Mayo believes error-statistics provides the means for global as well as local
theory assessment. As statistical adequacy is the only inferential tool that error
statisticians have, it seems inevitable that the rivals T1 and T2 will be compared on
the basis of it alone. Lele (2004) points out that evidence functions are the dif-
ferences of statistical adequacy measures. Thus, it seems that the desire to assess
rival theories will transform an error statistician into an evidentialist, perhaps
unknowingly.

On the other hand, and depending on what the vague “saying the same thing” is
intended to mean, this claim suggests a rather naïve view of the relationship
between global theory and local hypothesis. At the time when Newton began his
work on gravitational attraction, there were other ways of calculating planetary
orbits besides Kepler’s, of roughly comparable accuracy. All were elliptical.
Presumably they would have passed the same severity assessment with respect to
the data. But Newton’s “higher level” theory was able to show that elliptical tra-
jectories were not simply mathematically tractable, but required dynamically.35 It
provided a well-supported causal explanation. Perhaps more important for present
purposes, with the aid of his theory corrections were made in the determination of
these trajectories, which in turn led to modifications of the theories, which in turn
led to more accurate determinations, a dialogue between global theory and local
hypothesis which seems to be left out of the rather casual claim that local severity
assessments are left untouched by the theoretical contexts in which they are made.
Like Popper, we believe that assessments of global theories must be made, if for no
other reason than that just mentioned, that a sharp separation of them from their
constituent hypotheses is not possible, not simply because of the causal and
explanatory connections of the former to the latter, but also because of the
parameter adjustments that the former allows us to make in the latter. Like him, we
give up the “true-model” assumption. Unlike Popper, however, we think that evi-
dence can nonetheless provide us with approximations to the truth, as well as a way
of measuring their distances from it. We think there is something called “the truth”
or “reality.” But, what we deny is the true-model assumption. As we will see more

35As Newton famously wrote Halley, “Kepler knew the Orb to be not circular but oval, and guest it
to be elliptical,” whereas I have now shown why it must be so.
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clearly in the next chapter, his view that hypotheses can be falsified by deducing
consequences which do not match what we in fact observe, and therefore that we
can dispense with probability theory and its attendant measures of confirmation and
evidence, rests on untenable assumptions concerning the possibility of testing
hypotheses in isolation.

Appendix

A Note on Severe Testing, Evidentialism, and Multiple Models

Mayo distinguishes her severe testing account from Royall’s evidential account
along three axes, first that she is concerned with the evaluation of a single
hypothesis and not with the comparison of hypotheses, second that tests with error
rates are superior to likelihood ratio evidence, and third that severity involves
post-data error rate calculations which she thinks LR evidence does not. Let us try
and understand severity a little better to see if her critique is valid.

Mayo and Spanos (2006) say that:

A statistical hypothesis H passes a severe test T with data x0 if,
(S-1) x0 agrees with H and
(S-2) with very high probability, test T would have produced a result that accords less well
with H than x0 does, if H were false.

This is a general form which can’t be applied or assessed without two things:
(1) a method to determine if x0 agrees with H and just as importantly (2) a method
to determine the distribution of x0 if were false.

While requirement 1 can be met with Fisherian tests that do not express an
alternative model, requirement 2 can only be met if there is an explicit alternative
model or family of models. To repeat, severity, Mayo’s key inferential innovation,
can only be calculated under an explicit alternative model. Mayo’s language sup-
presses recognition of the alternative by folding it into a “test of H”, but it must be
present nonetheless.

To further quote from Mayo and Spanos (2006):

SEV l � l1ð Þ ¼ P dðXÞ[ d x0ð Þ; l � l1falseð Þ ¼ P dðXÞ[ dðx0Þ; l[ l1ð Þ:

The severity calculation given above is the second step in a severe test. The first
step is the evaluation of a test of H of size a, T að Þ. This evaluation will involve the
null model l0, whether the test is a Neyman-Pearson test or a Fisherian test. Thus,
to conduct a severe test there must be at least two models which are being com-
pared. This deflects her first critique of Royall. The examples that Mayo uses tend
to be comparison of the means of normal distributions. She uses a function of �x as
her test statistic, d x0ð Þ. As �x is a sufficient statistic for the mean of a normal
distribution, a corollary to the Neyman-Pearson theorem indicates that her test is
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equivalent to a test using the likelihood ratio as a test statistic. Such a test can be
written as LR1;0\ka, where kα is selected so that the test will have size a.36 In fact,
if there is a “best test,” it will be, or be equivalent to a likelihood ratio test, with
“best test” being defined in terms of lowest probability of type II error, exactly
Mayo’s currency. If there isn’t a best test, but only a uniformly most powerful test,
it will be, or be equivalent to, a likelihood ratio test. If there isn’t a uniformly most
powerful test, the likelihood ratio will still be a good test.37 Neyman-Pearson tests
are isomorphic with likelihood ratio evidential comparisons with a given test size
specifying a strength of evidence and vice versa. This deflects Mayo’s second
criticism.

Another thing to note is that the severity expression above can’t be evaluated
without placing a prior on l. Mayo and Spanos actually evaluate a lower bound for
severity given by:

SEV l � l1ð Þ[P d Xð Þ[ d x0
� �

; l ¼ l1
� �

:

That is severity is an error probability bound evaluated at the alternative model.
Taper and Lele (2011) point out that the probability of obtaining misleading evi-
dence as strong as the observed evidence (ML) has an upper bound of 1�

LR1;0
.

Severity and post-data (local) probability of misleading evidence are compliments
of one another (i.e. ML = 1−Sev),38 and thus contain the same information. A post
data error bound calculation is implicit in every likelihood ratio evidential assess-
ment. The calculation needs to be made explicit in severe testing because of the
granularity of dichotomous test in the first step of severe testing. This deflects
Mayo’s third critique.

The concept of misleading evidence will be discussed further in Chap. 8.
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Chapter 7
Selective Confirmation, Bootstrapping,
and Theoretical Constants

Abstract Clark Glymour’s “bootstrap” account of confirmation rightly stresses the
importance of selective confirmation of individual hypotheses, on the one hand, and
the determination of theoretical constants, on the other. But in our view it is marred
by a failure to deal with the problem of confounding, illustrated by the demon-
stration of a causal link between smoking and lung cancer, and by the apparent
circularity of bootstrap testing (which is distinguished from statistical bootstrap-
ping). Glymour’s proper insistence on a variety of evidence is built into our account
of evidence and not added on as a way of handling the apparent circularity in his
account. We discuss and dissolve his well-known charge against Bayesian theories
of confirmation, that they lead to the paradox of “old evidence,” in Chap. 9.

Keywords Bootstrapping � Selective confirmation � Theoretical constants �
Confounding � Bootstrap circularity � Variety of evidence

Setting the Context

Clark Glymour’s “bootstrap” account of confirmation1 is like DeborahMayo’s in that
they both eschew anything like belief probabilities and disregard the central evi-
dential role we assign to likelihoods and their ratios. As we have just seen, Mayo’s
main reason for resistance has to do with the subjectivity introduced into scientific
methodology by the indispensability of prior probabilities in Bayesian inference,
although as we noted early on, she also thinks the use of likelihoods and their ratios in
an account of evidence is problem-ridden. As for Glymour, the resistance has also to
do with conventional problems surrounding the determination and distribution of
priors,2 butmore especially with what he thinks is the in-principle dispensability of all
probabilities in the analysis of paradigm examples of inference in the history of
science, and also with his apparent demonstration that Bayesian confirmation leads to

1See Glymour (1980).
2See both Glymour early (1980) and late (2010).
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paradox, notably in the form of the “old evidence problem”.3 Moreover, both the
error-statistical and “bootstrap” accounts fail to recognize any distinction between
confirmation and evidence. Beyond that, the differences between them are significant.
Mayo’s account is quantitative, Glymour’s qualitative for starters.4 So far as he is
concerned, statistics plays no role in theory-testing.

But more important, they are animated by very different concerns. Mayo wants
to provide an account of severe testing that both mirrors crucial aspects of scientific
practice and explains why; on her error-statistical account, there is evidence for and
hence good reason to believe individual hypotheses that have passed severe tests
with respect to the data. But for Glymour, the issue is not severity but selectivity; in
his well-known view, the actual practice of science is concerned mainly with
establishing the relevance of particular observational, especially measurable, data to
an individual hypothesis.5 The task of confirmation theory shifts to making clear the
general structure of the arguments that do so. This in turn requires showing how, in
a rigorous way, observation selectively supports theory. Glymour does it by adding
further constraints to existing accounts of the confirmation relation and proposing a
strategy for proceeding, using one or the other of these accounts, to confirm or
disconfirm hypotheses.

Selective Confirmation

The problematic character of selective confirmation was first emphasized by the
French physicist and philosopher, Pierre Duhem.6 Duhem pointed out that
hypotheses in physics are never tested in isolation, but only in conjunction with
other so-called auxiliary hypotheses. The use of telescopes to confirm Newton’s
theory of gravitation, for example, depends on assuming the correctness of a par-
ticular optical theory, among many other such theories, and thus on the acromatic
corrections in astronomical observations that it makes possible. On the traditional
hypothetico-deductive model that Duhem accepts, to test a hypothesis is to draw
observational consequences or predictions from it. If the consequences are verified
in the course of our experiments, then the hypothesis is to that extent confirmed, if
not, then it is falsified. Duhem was not particularly worried about the fact that a
hypothesis being tested must share the credit with all of the auxiliary hypotheses (in
his view, ultimately all of physics) necessary to derive observational consequences

3To be discussed in Chap. 9.
4See Douven and Meijs (2006), for an elaboration of Glymour’s account as a quantitative theory of
confirmation.
5Although his recent work on causal inference has shifted his focus to severe testing in which
“explanation and explanatory virtues are essential to produce testable hypotheses …” Glymour
(2010, p. 349), which, we noted in the last chapter, Mayo has incorporated in her own account of
severe testing.
6Duhem (1954).
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from it, although Glymour is.7 Duhem’s worry concerned the attribution of blame,
the apparent failure of a negative result to single out one of a number of conjoined
hypotheses as false. “The only thing the experiment teaches us is that among the
propositions used to predict the phenomenon and to establish whether it be pro-
duced, there is at least one error, but where this error lies is just what it does not tell
us”.8

It is difficult to overstate the influence of this claim on philosophy of science in
the 20th century.9 “Since logic does not determine with strict precision the time
when an inadequate hypothesis should give way to a more fruitful assumption,”10

the door was open to a sweeping new view of theory change on which it was in
some fundamental sense illogical or “irrational”.11

7Under the heading of “irrelevant conjunction.” If a hypothesis is confirmed when a successful
observational prediction is derived from it, then so too is any hypothesis, relevant or not, with
which it can be consistently conjoined, a matter of elementary logic. If H is confirmed by D, so too
are H and H′, however irrelevant H′ might be to the derivation of D. But we do not have to worry
about undeserved credit within our framework, first, because what Duhem refers to as “the
common sense of the working scientist” (who ignores arbitrary and therefore irrelevant
hypotheses) is built into the prior probability on which the confirmation of hypotheses in part
depends, second, because within our framework and in the most common cases, observational
predictions per se are not “derived” from hypotheses; what is derived from hypotheses are the
probabilities or probability distributions of observations expected under hypotheses, third, because
irrelevant hypotheses can be identified ab initio: if Pr(H│D) = Prob(H & H’│D), then H’ is
“irrelevant,” i.e., not confirmed by D. So much, it would seem, for the confirmation of irrelevant
hypotheses. But in an e-mail communication, Glymour contends that our likelihood-based account
of evidence also leads to the irrelevant conjunction problem. If data provide evidence for one
hypothesis against a competitor, then they also provide evidence for the first hypothesis + an
irrelevant proposition, e.g., that the Pope is infallible. Consider H1, the hypothesis that Jones has
tuberculosis, and H2, the hypothesis that H1 is false. Let’s assume that Jones’s X-ray is positive,
and that Pr(D│H1) is very high, and Pr(D│H2) is very low. In such a case, the LR value for H1

over H2 is very high, in which case the data provide strong evidence for the hypothesis that Jones
has tuberculosis and the Pope is infallible as against the hypothesis that Jones does not have
tuberculosis. We grant the objection, but it has little sting so far as scientific practice is concerned.
The likelihood account of evidence is to be applied within a conventional statistical framework. In
this framework, the hypothesis and the hypothesis + irrelevant conjunct are not an estimable pair.
H1 and H2 are not estimable because, given the data in hand, there is no way in which to
distinguish between them. They would be estimable if we were to gather data about Papal
infallibility (and not simply more positive X-rays), but with the data in hand this point, they cannot
be distinguished. As such, and as a matter of scientific and statistical practice, what we have
dubbed the evidential condition cannot (yet) be applied to them.
8Duhem (1954, p. 185).
9For a notable example, it appears to undermine Karl Popper’s claim that whereas confirming
consequences of a hypothesis, no matter how many, never prove that it is true, a single discon-
firming evidence entails, as a matter of logic, that it is false As soon as two or more hypotheses are
needed to deduce the consequences, as Duhem argues, disconfirming results can never show as a
matter of elementary logic which one is false.
10Duhem (1954, p. 218).
11See Kuhn (1970), and the discussion of the “Kuhnian” argument in Chap. 1 against the possi-
bility of the sort of descriptive-normative account that we and the other authors discussed in Part II
of the monograph are trying to provide.
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“Bootstraps”

Glymour wants to close this door. In his view, the paradoxical claim that neither
selective confirmation nor disconfirmation is possible in principle runs up against
the widespread intuition that both are routine, that individual hypotheses are
accepted or rejected on the basis of experiment. The task is to show precisely how it
is possible. The key to the account is that hypotheses are confirmed or disconfirmed
by verifying positive or negative instances of them, and instances are verified by
computing or determining the value of every quantity or property they contain.
Those quantities or properties not directly measured in, or determined by, experi-
mental observations may be calculated by using auxiliary hypotheses, including the
very hypothesis from which the instance was derived. Quantities that are neither
measurable nor computable are indeterminate, and hypotheses containing them
cannot be tested; they are for this reason empirically meaningless and therefore
“irrelevant”. Confirmation, then, is a three-termed relation linking a piece of evi-
dence E12 to a hypothesis H by way of a background theory T, with the provisos
that other evidence might have led to the derivation of a negative instance and that
H might be included in T. It is this last feature, that a hypothesis may be assumed in
the course of testing it, that a hypothesis can and often does support (or “lift”) itself
by its own bootstraps, that has come to define the position.

The testing strategy is straightforward. An experiment to test a hypothesis is
carried out against a particular theoretical background. The experiment involves
making a series of measurements. Some quantities that the hypothesis ascribes can
be determined by the experiment; others cannot. Those that cannot (often some
theoretical constant) are computed by means of other hypotheses of the theory (or
even the original hypothesis itself) and available empirical generalizations. The
computed values confirm or disconfirm the hypothesis by way of providing positive
or negative instances of it.

In the simplest case, a hypothesis may be used to test itself and, in more complex
cases, hypotheses belonging to the same theoretical framework can be made
mutually supportive. Thus the basic gas law, PV = kT, can be used to test itself
simply by conducting two or more experiments in which values for P (pressure), V
(volume), and T (temperature) are obtained for instances of the generalization, and
then seeing whether the inferred values for k, a constant that cannot be measured
directly, match. If they do, the law is confirmed by the experiments, if not, it is
disconfirmed. The crucial points are that a value for k has to be determined before
the hypothesis can be tested, since a hypothesis can be tested only when all its
values are determined, and that one, although not the only, way to do this is to use
the hypothesis itself. The apparent circularity involved is not vicious, for the second
set of measurements could have led to a negative result, that is values such that

12As with every other author discussed in Part II of the monograph, Glymour does not distinguish
between “data,” D, and “evidence,” E, a consequence of their all conflating confirmation and
evidence.
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PV ≠ kT. The “bootstrap” strategy requires that in every case such negative results
are at least possible.

In more complex cases, one hypothesis in a theory is used to test another
hypothesis in the same theory by deriving, in a non-trivial way and often with the
aid of one or more empirical generalizations, the value for a constant which both
contain, or data which agree with each. Thus, Newton used Kepler’s second law,
that a line segment joining a planet and the Sun sweeps out equal areas during equal
intervals of time, together with his own second law of motion which allows us to
measure force in terms of mass and acceleration, to derive instances of the law of
universal gravitation for the planets and their satellites.13 We “pull ourselves up by
our bootstraps” because we use certain parts of a theory to obtain evidence for other
parts of the same theory without having to assume “auxiliary hypotheses” from
other theories. Testing in this way can be confined to particular theoretical contexts;
it does not inevitably implicate, as Duhem insisted, other more distant hypotheses.

A somewhat more complex example is similarly drawn from Newton’s gravi-
tational theory.14 Newton used his first two laws to derive Kepler’s third law, that
the square of the orbital period of a planet is proportional to the cube of its orbital
radius. Using terrestrial experiments as evidence together with his own third law
that for every force there is an equal and opposite force, Newton was able to deduce
that a planet must exert an equal and oppositely directed force on the Sun that the
Sun directs on the planet. Newton then argues that these forces must depend on the
masses of both objects. In this way Newton confirmed the law of universal grav-
itation which asserts that all bodies exert an inverse square attractive force on one
another. Newton used bits of his own theory of motion (first and second laws) to
derive an instance of the same theory (law of universal gravitation) with the help of
terrestrial observations.

In Theory and Evidence, Glymour writes, “[t]he key question, …, is how it is
possible for evidence… to test, support, and confirm hypotheses [without invoking
hypotheses from other theories]”.15 He answers,“[bootstrap confirmation] illustrate
[s] the fashion in which the testing procedure localizes confirmation, permitting one
to say that particular pieces of evidence bear on certain hypotheses, but not on
others, in a complex theory” (p. 106).

On Glymour’s account of selective confirmation, it should be underlined,
probabilistic reasoning is in principle not needed (or at any rate marginal), and,

13In this and other examples in Theory and Evidence, Glymour uses Hempel’s “positive instance”
account of “confirming evidence” (to be described in the Chap. 9) as paradigm, but emphasizes
that the use of one part of a theory to test other parts of it can and must be added to other traditional
accounts. He does not assume the correctness of, still less defend, the positive instance account,
although he does think that it provides a very good reconstruction of Newton’s method in
Principia.
14We have very much simplified both examples. One of the many virtues of Glymour’s account is
the detailed way in which he tries to align Newton’s own reasoning with it. At the same time, the
alignment can be criticized in the same detailed way, as by Laymon (1983).
15Glymour (1980, p. 110).
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worse, as we shall see in Chap. 9, it leads in his view to a fundamental paradox, the
so-called “old evidence problem”. The Bayesian element in our account of
hypothesis testing is neither necessary nor possible (i.e., consistently applicable),
according to him, nor does it very well describe the methods invoked in paradigm
cases by the scientists involved to relate specific pieces of evidence to particular
hypotheses.16 Moreover, there is no need, as in our account, for a separate con-
ception of evidence. “Evidence” simply consists of data that, in the way described,
confirm or disconfirm hypotheses.

“Glymour Bootstrapping” and Statistical Bootstrapping

Before embarking on an appraisal of his position, we should say how bootstrapping,
to be called “Glymour bootstrapping” hereafter, is different from the notion of
bootstrapping pioneered by Bradley Efron in statistics17 since the two are some-
times confused. Glymour’s account is called the “bootstrap” account because it
exploits the idea of “pulling ourselves up by our bootstraps”, i.e., using only
resources that individual hypotheses and general theories themselves provide.18 For
his type of bootstrapping, we use a hypothesis of a theory to confirm other
hypotheses of the same theory with the help of data, and then use the other
hypotheses to confirm the first hypothesis of the same theory. So his account is
hypothesis-specific, whereas statistical bootstrapping is data-centric. More explic-
itly, statistical bootstrapping is a method of generating more data out of the data
already collected, to make reliable inferences about a parameter of interest. If the
collected data are bad, then obviously one’s inference based on bootstrapping those
data won’t turn out to be good.19 However, there is no such problem or proviso in
Glymour bootstrapping. Since it does not distinguish between “data” and “evi-
dence”, if some datum is evidence for a hypothesis relative to a theory, then it will
count as evidence for the theory, even though the datum might be bad. Now to
focus on statistical bootstrapping. Suppose we have collected a data set from a

16This is a common complaint, that Bayesian theories have not been employed, even implicitly, to
any great degree in the history of science and that therefore they have little to do with actual
practices. Our reply, very briefly, is that probabilistic methods were not generally available or very
well understood until the 20th century, that traditional methodologies have difficulty in coping
with the more recent discovery that a large range of phenomena can only be adequately described
in statistical terms, and that many past paradigms of scientific achievement can be more deeply
explained if probabilistic concepts are employed to reconstruct them.
17See Efron and Tibshirani (1994).
18Apparently both “bootstraps” take their names independently from the same American folklore.
The folklore has some protagonist doing impossible things by applying his own force to himself. It
was the bright idea of Glymour and Efron to extract large philosophical and statistical lessons from
turning the entity of interest in on itself.
19This issue is not peculiar to statistical bootstrapping. Any statistical inference uses observed data
(good or bad) to make inferences about unobserved data.
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population. We can generate new “data sets” (called “bootstrap samples”) of the
same size as the original data set, to mimic repeated sampling of the entire popu-
lation. This is achieved by re-sampling with replacement from the original data set.
The number of bootstrap samples (B) generated is usually 1000 or more, depending
on the researcher’s choice. Once we have all the bootstrap samples, we can proceed
to gather some information about the parameter (i.e., hypothesis) in question. The
variability observed in the bootstrap samples is important because this variability
mimics the variability that we would see in repeated random samples from the same
population (the type of variability we need to construct distributions of test
statistics). In statistical bootstrapping, although we make an inference about a
parameter (hypothesis), we won’t be able to make a reliable inference unless “new
data” can somehow be generated from the existing sample. This is why we call
statistical bootstrapping data- rather than hypothesis-centric.20

Consider an example of Simpson’s paradox to show how statistical bootstrap-
ping works. Simpson’s Paradox involves the cessation of an association or the
reversal of the direction of a comparison when data from several groups are
combined to form a single whole. The data in the following table represent
acceptance and rejection rates of males and female applicants for graduate school in
two departments of an imaginary university in some year.

Table 7.1 shows one formulation of Simpson’s paradox where the association
between “gender” and “acceptance rates” in the subgroups ceases to exist in the
combined group. Although the acceptance rates for females are higher in each
department, in the combined department’s statistics, those rates cease to be dif-
ferent. The data in Table 7.1 are treated as proportions of an infinite population and
random samples of size n = 1800 are taken from this population. Tables 7.2 and 7.3
show the results of two such random samples from Table 7.1 based on the idea of
statistical bootstrapping. They illustrate how a population that exhibits Simpson’s
paradox can generate random samples that either do or do not exhibit the paradox.
This sampling variability and the variability it causes in the estimated proportions is
something that must be accounted for while making inferences from a sample to the
population. The statistical test procedure must also be able to assess the strength of
the evidence for or against H0 (i.e., there is no Simpson’s paradox) based on a
single observed sample.

This simple example demonstrates how the bootstrapping technique of gener-
ating random samples from a single observed data set works. As we see, those two
bootstrapped samples (Tables 7.2 and 7.3) are generated from Table 7.1 as if by
pulling oneself up by one’s bootstraps, but not by using bits of the same theory to
test the other bits of the theory and conversely, as in the case of Glymour’s
bootstrapping.

20We owe some insights about statistical bootstrapping to Mark Greenwood.
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Confounding

Glymour’s account has much to recommend it, and has rightfully loomed large in
subsequent discussion of scientific inference and hypothesis testing. Unlike many
such accounts, it contains detailed reconstructions of paradigm real-world scientific
arguments, from physics to Freud. But it also harbors some difficulties, the ultimate
source of which is a failure to distinguish evidence from confirmation in the way
that we have.21

To begin with, Glymour’s “bootstrap account” is not an adequately general
account of selective confirmation. It does not deal with statistical hypotheses or
techniques and, in particular, with the problem which arises when one hypothesis is
mixed up or confounded with another in such a way that the selection of one or the
other is problematic. Since the problem is important, perhaps especially in epi-
demiological studies, an adequately general account of hypothesis testing should
deal with it. A rather extended example illustrates both why it is a problem and how
our own account accommodates it.

Table 7.3 Random sample 2 from population (i.e., Table 7.1) exhibiting the paradox

Two
groups

Department 1 Department 2 Acceptance rates Overall
acceptance rates
(%)

Accept Reject Accept Reject Department
1 (%)

Department
2 (%)

Females 24 445 26 118 5.1 18.1 8.2

Males 6 296 111 774 2 12.5 9.9

Table 7.2 Random sample 1 from population (i.e., Table 7.1) failing to exhibit Simpson’s
paradox

Two
groups

Department 1 Department 2 Acceptance rates Overall
acceptance rates
(%)

Accept Reject Accept Reject Department
1 (%)

Department
2 (%)

Females 31 431 42 122 6.7 25.6 11.7

Males 2 284 107 781 0.7 12 9.3

Table 7.1 Simpson’s paradox

Two
groups

Department 1 Department 2 Acceptance rates Overall
acceptance rates
(%)

Accept Reject Accept Reject Depaetment
1 (%)

Department
2 (%)

Females 90 1410 110 390 6 22 10

Males 20 980 380 2620 2 12 10

21For example, Glymour (1980, p. 110): “Confirmation or support is a relation among a body of
evidence, a hypothesis, and a theory …: the evidence confirms or disconfirms the hypothesis with
respect to the theory.”
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Although a causal connection between smoking and lung cancer was tentatively
accepted after the publication of the Surgeon General’s 1964 report, Smoking and
Health, attempts were made to identify other risk factors, particularly given vari-
ance in the distribution of the disease.22 Perhaps the most prominent of these is that
drinking alcohol, particularly beer, is causally linked to lung cancer. Beginning
with Porter and McMichael’s 1984 hypothesis to this effect,23 a number of studies
indicated that the risk of lung cancer increases as a result of drinking. Data do
confirm, that is, raise the probability of, the hypothesis that the risk of lung cancer
increases as a result of drinking.24 The problem is that drinking and smoking are
very highly correlated, which is to say that smoking confounds the association
between drinking and lung cancer. One way to screen for a confounding effect is to
collect data on non-smokers. As soon as the drinking/lung-cancer population is
segregated into smoker and non-smoker sub-populations, a distinct correlation (and
with it a possible causal connection) between drinking and lung cancer virtually
disappears.

To conclude that drinking causes or is a determinative risk factor for lung cancer
depends on assuming that it is not mixed up with or confounded with another vari-
able. This is the chief auxiliary hypothesis that must be invoked. But it is confounded
by/mixed up with smoking. Therefore, the auxiliary assumption is most likely false.
As importantly, selective disconfirmation of it is possible without reaching down for
bootstraps. Indeed, it is difficult to see how bootstrapping would help. Showing that
the auxiliary assumption in this case is likely false does not depend on appealing to
other hypotheses or additional data, but on making a distinction which Glymour does
not, between evidence and confirmation. Among non-smokers, the likelihood ratio of
developing lung cancer among those who drink as against those who do not is less
than 2. This is to say that the evidence for the hypothesis that drinking is a deter-
minative risk factor for lung cancer is very weak compared to the hypothesis that it is
not. It should be compared with the likelihood ratio of dying from lung cancer among
smokers to dying of lung cancer among non-smokers between the ages of 35 and 84.
This ratio is, from one study to the next, 10 or more, very strong evidence for the
smoking-lung cancer hypothesis.25

The moral of the story is that there are problems of selective confirmation with
which the “bootstrap” account does not deal and cannot solve. Glymour is not
interested in these problems because they are at stake in few if any of the arguments
advanced for generally accepted scientific theories. It is, in Glymour’s view, the

22See, for example, Cochran (1964, pp. 134-55).
23Porter and McMichael (1984, pp. 24–42).
24See, for example, Chun Chao (2007), for more detail and references.
25Bagnaardi et al. (2011).
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task of confirmation theory to make both perspicuous and persuasive the inferential
structure of such arguments. That our own account of hypothesis testing can do so
in the case of observational studies is a mark in its favor.

Circularity

Duhem explicitly exempted observational studies from his thesis that confirmation
always required auxiliaries and so too, at least implicitly, does Glymour.26 Their
focus is on the testing of theoretical hypotheses, and on the need for auxiliary
hypotheses to derive observational implications from them. In the case of Glymour,
the need for “bootstraps” is more specifically focused on the need to determine
values for constants which theoretical hypotheses often contain and which do not
submit to direct measurement. As we have seen, he proposes a way to do so that
does not require recourse to “auxiliaries” drawn from other theoretical contexts. But
even in the case of testing theoretical hypotheses, in particular of determining the
value of the theoretical constants in them, there are difficulties with the “boot-
strapping” account.

The most significant of these difficulties would seem to be that the “bootstrap-
ping” account is circular, or, if not, would seem to avoid circularity only by way of
appealing, against Glymour’s stated intention, to probabilities.

We can borrow another of his examples to make the point clear. To test the
correctness of the law of universal gravitation, F = Gm1m2/R

2, we need to determine
F (force). To do so we can use the second law of motion, F = ma.We can measure the
mass and the acceleration of a body in motion, and using Cavendish’s estimate of the
constant of gravitation, G, determine whether the values for F in the two laws are
congruent. The difficulty is that it is possible that the two values are congruent but that
each of the laws is false; it might just so happen that the measured values of the other
variables together with the constant produce the same number in the case of the
experiments carried out, but that this is simply a coincidence or the result of
self-canceling errors. As Glymour himself points out, in the 17th century confirma-
tions of Kepler’s First Law of Planetary Motion required assuming the correctness of
the Second Law, and confirmation of the Second Law required assuming the First
Law. In fact, many astronomers were unclear whether errors in one were compen-
sated by errors in the other. It was not until the invention of the micrometer and
Flamsteed’s observations of Jupiter and its satellites that the Second Law could be
confirmed (in some general sense of the word) without using the First Law. Of course,
the probability of the coincidental or mutually-compensated congruence of the two

26In Theory and Evidence, Glymour assumed (in part for the sake of argument) that Hempel’s
“positive instance” account of confirmation correctly characterized the evidential relation between
data and hypothesis in observational studies and that bootstraps were necessary only when the
hypotheses tested contained theoretical terms whose values could not be directly measured but
were inferred.
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inferred values for force is very small, and becomes smaller as a function of the
number and variety of the experiments. But to say this is to admit that an adequate
account of testing must include probabilities.27

A Worry not Dispelled

Glymour acknowledges the circularity, but does not think that it is vicious. It would
be vicious if “whatever the evidence the hypothesis would be confirmed…”.28 But
as we have seen, bootstrap testing is so characterized as to require the possibility of
evidence that tells against as well as for the target hypothesis. There is nothing in
any of the arguments that Newton used to derive testable instances of the law of
universal gravitation which guaranteed its success in advance. The instances had
first to be derived and then matched with observation. “Still”, Glymour continues,

“one is troubled by the following kind of worry. Suppose that … A is used together with
evidence E to justify B; and suppose that … B is used with evidence E’ to justify … A; then
might it not be the case that E and E’ determine neither a real instance of A nor a real
instance of B but provide instead spurious instances, which appear to be correct because the
errors in A are compensated for in these cases by errors in B and vice versa? Indeed, it
might be the case, but it would be wrong to infer straight out from this that E and E’ provide
no grounds at all for A and B.29

This makes surface sense, but from our perspective there are two underlying
confusions. One is between “real” and “spurious” instances. An instance is char-
acterized in terms of its syntactical form and deductive relationship to a hypothesis,
quite independently of whether it is “real” or not. The addition of the adjectives
seems to be driven by a “true-model” assumption, that a “real” instance would, if
verified, give us good reason to believe that the hypothesis is true, an implication
further reinforced by the word “justify”. The other confusion is that while E and E′
in the case imagined seem to confirm A and B, they do not really do so because
(Glymour implies) at least one of the premises of each inference to an instance was
false. But the intuition that they provide some “grounds” can be preserved once we
recognize that E and E′ constitute evidence for the hypotheses tested (against
alternatives) even though the hypotheses might be false. As we have said more than
once, evidence unlike confirmation does not incorporate a “true-model” assump-
tion. It is only when the two concepts are mixed together that a retreat to language
which unsuccessfully tries to steer a course between both is forced. When at the end
of the discussion, Glymour says that certain philosophers were afraid of circularity

27“Perhaps we should infer instead that there are better and worse justifications, and that arguments
or confirmations (or, as I prefer, tests) which guard against compensating errors provide better
grounds than those which do not” (Glymour 1980, p. 108).
28Ibid.
29Ibid.
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“because of a commitment to a particular and unnecessary conception of justifi-
cation,” he could have added that part of this commitment involved the idea that
data could provide evidence for a hypothesis only if they also confirmed it.

Variety of Evidence

Glymour tries to turn the appearance of circularity to his benefit by arguing that it
underlines the necessity of many and varied tests for each of the hypotheses
employed to determine measurable values for the theoretical constants in the
instances that confirm or falsify the hypotheses we eventually accept. The greater
the number of and the more varied such tests, the better,30 among other reasons
because they then serve to separate hypotheses. As he notes, with the micrometer
and Flamsteed’s observations of Jupiter and its satellites, confirmation of Kepler’s
second law could at last be obtained without any assumptions concerning the
planet’s orbit. Again we agree with him “that the development of any complex
modern theory can[not] be understood without some appreciation of the way a
variety of evidence serves to separate hypotheses”.31 We have stressed the point.
Whereas it is for Glymour a way of mitigating the possibility of off-setting errors in
hypotheses both used to derive potentially confirming instances of a theory, it is for
us definitive of what counts as evidence. Two corollaries follow immediately. One
is that is that it makes little sense from our point of view to say, as he does, that
“part of what makes one piece of evidence relevantly different from another piece of
evidence is that some test is possible from the first that is not possible from the
second…” (Ibid., p. 140). But this does not cohere very well with the view just
stated that a variety of evidence serves to separate hypotheses. Moreover, it is clear
that Glymour is running “evidence” and “data” together here, the inevitable result
of conflating evidence with confirmation; “pieces of evidence” cannot be identified
apart from particular testing contexts, although data can. Data are relevantly dif-
ferent from one another in that they can be used to provide different tests of the
same hypothesis, and if positive increase the degree of its confirmation. On the
positive instance account that Glymour favors, the more such data the better. But
evidence, which is the means whereby we contrast hypotheses with one another,
can (in context) itself be weighed. We say this is “better evidence” than we had
before, and mean that the data are more likely on the hypothesis than on its relevant
alternatives. “Better data,” on the other hand, means that the data are less con-
taminated, less subject to bias, and so on.

30Once again, Glymour would seem to depart from his purely qualitative account in underlining an
ordinal intuition.
31Ibid., p. 141.
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The other corollary of the fact that for us, but not for Glymour, separation of
hypotheses is definitive of evidence also has to do with its variety. “If,” he has
argued,

a given piece of evidence may be evidence for some hypotheses in a theory even while it is
irrelevant to other hypotheses in that theory, then we surely want our pieces of evidence to
be various enough to provide tests of as many different hypotheses as possible, regardless
of what, in historical context, the competing theories may be” (Ibid.).

We have already argued that “pieces of evidence,” however they might be indi-
viduated on the “bootstrap” account, are not context-free. Data constitute evidence
for/against a hypothesis (in context) only to the degree that they “fit” the hypoth-
esis; it is possible for data to be irrelevant, not for evidence. But more to the
immediate point is that “variety” here is understood in terms of the confirmatory
isolated tests of individual hypotheses, the more the better. Whereas on our view,
“variety” is understood, more plausibly we believe, as a function of what allows us
to weigh and measure competing hypotheses with respect to the available data. That
Kepler did not simply determine elliptical orbits for the planets as the best fit for the
data but gave a physical argument for the area rule, his second law, has to do with
its confirmation. That the orbits so determined were ellipses provided evidence for
Newton’s theory against its contemporary alternatives. Glymour’s claim that we
provide evidence for hypotheses regardless of what the competing theories may be
is mistaken, we believe, as a matter of history, but also as a guide to how scientists
should proceed.

The Importance of Determining the Value of Theoretical
Constants

Lest there be any doubt about it, we agree with Glymour that the determination of
theoretical constants and the obtaining of congruent values for them as a result of
testing a variety of different hypotheses is an indispensable component of theory
acceptance. Although he does not mention it in Theory and Evidence, Jean Perrin’s
obtaining a consistent value for what he termed Avogadro’s Constant in a number
of different hypotheses as a result of some very sophisticated experiments, among
them Einstein’s regarding Brownian motion, was the single most significant indi-
cation of the empirical success of the atomic theory of matter.32

“Selectivity” as Glymour understands it has a role to play: it allows for the testing
of hypotheses that contain theoretical constants. So too does “severity” when it is
possible to assess the statistical adequacy of individual models. But in our view the
separability of hypotheses that evidence makes possible is much more both general
and fundamental. One way to bring this out in the case of Glymour is to note that he,

32See Nye (1972).
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like Duhem, thinks the main problem in theory testing is to “bridge the gap”
between observational generalizations and theoretical laws. “Bootstraps” are
designed to limit the resort to bridging “auxiliaries,” and thus to calm philosophical
worries that such auxiliaries might eventually include all of science. But as we
pointed out in this chapter, the “auxiliaries’ problem” arises equally at the level of
observational hypotheses and impacts the day-to-day practice of science generally.
In our paradigm case, it is how to distinguish between the alcohol-lung cancer and
smoking-lung-cancer hypotheses. In an earlier case, it was how to separate the
anthropogenic and natural-rhythm global warming hypotheses. In our view, the
main (although certainly not the only) aim of experimentation is to discriminate
between hypotheses. This is the necessary first step in testing them. Jupiter’s moons
discriminated between the Copernican and Ptolemaic hypotheses in a way that no
previous experimental data were able to. Darwin’s problem was similarly not to find
data which confirmed the theory of Natural Selection, but to find data which allowed
other biologists to distinguish between his theory and Lamarck’s.33 The big and
even more difficult problem was to find data that could discriminate between the
General Theory of Relativity and Newton’s gravitational theory. Glymour has part
of this right when he focuses on “selectivity,” but he seizes on the wrong reasons
(“irrelevant conjunctions” and other philosophical conundrums), misleadingly limits
his account to theoretical constants, and has no principled way in which to separate
hypotheses, still less to quantify the way in which data provide evidence for and
against them without at the same time being called upon to confirm them.
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Chapter 8
Veridical and Misleading Evidence

Abstract Like the error-statisticians, Glymour, and us, Peter Achinstein rejects an
account of evidence in traditional Bayesian terms. Like the error-statisticians and
Glymour, but unlike us, his own account of evidence incorporates what we have
called the “true-model” assumption, that there is a conceptual connection between
the existence of evidence for a hypothesis and having a good reason to believe that
the hypothesis is true. In this connection, and unlike any of the other views sur-
veyed, Achinstein does not so much analyze the concept of evidence per se as
provide a taxonomy of conceptions of evidence—subjective, objective, potential,
“epistemic-situational,” and “veridical.” He then both argues that only “veridical
evidence” captures exemplary scientific practice and explains why this should be
the case. In the first half of this chapter, we set out Achinstein’s criticisms of the
Bayesian account, then develop and in turn criticize his own account of “veridical
evidence.” In the second half of the chapter, we contrast “veridical” with “mis-
leading” evidence and show how two key theorems concerning the probability of
misleading evidence allow us to measure it.

Keywords Veridical evidence � Misleading evidence � “Good reasons for
believing” � Accumulation of evidence � Probability of misleading evidence

The Bayesian Account of Evidence Rejected

In Achinstein’s view, developed over time in (1983), (2001), and (2005), but in its
essential features unchanged, the traditional Bayesian account of evidence, that D is
evidence for and thus confirms H just in case Pr(H│D) > Pr(H), is both too weak
and in a certain sense too strong. It is too weak since counter-examples are easily
generated which show the intuitive gap between providing evidence for and raising
the posterior probability of a hypothesis. Typical of the counter-examples is that a
passenger increases the probability that she will die in a crash when she boards an
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airplane, but boarding an airplane is not evidence that she will die in this way.
Similar, albeit somewhat more complicated, examples show that D can provide
evidence for H without thereby raising the probability of H1 Indeed, on occasion
they can lower it.

But the Bayesian conception of evidence is also in a sense too strong, for it
incorporates the idea that what counts as evidence is relative to the subjective
beliefs of particular individuals before and after data have been gathered. As such, it
runs afoul of what Achinstein styles A Principle of Reasonable Belief, to wit, that
“If in the light of background information b, e is evidence that h, then, given b, e is
at least some good reason for believing h.” In a Kantian vein, if e is a good reason
for an agent a to believe that h, it must be equally a good reason for everyone else to
believe that h whether or not it is the reason why a believes that h. It is only in this
way that the objectivity of evidence, and hence of the claims which it is invoked to
support, can be safeguarded.

Veridical Evidence

As his description of it suggests, Achinstein requires that evidence is “veridical”
only if it is true and the hypothesis for which it is evidence is true as well. As we
have already seen, a third requirement, in his view necessitating the first two, is that
“e provides a good reason to believe that h” (Achinstein 2001, p. 24). In turn, “if e
is a good reason to believe h, then e cannot be a good reason to believe the negation
of h” (Achinstein 2001, p. 116), which comes to saying that “e is a good reason to
believe h only if Pr(h│e) > ½” (Achinstein 2001, p. 150).2 But these conditions for
veridical evidence, though necessary, are not also sufficient. “Let e be the infor-
mation that a man eats Wheaties for breakfast and h the hypothesis that this man
will not become pregnant. The probability of h given e is extremely high…But e is
not evidence for h.” (Achinstein 1983, p. 154). To claim otherwise would be to
make a bad joke. To bar this sort of counter-example to his first three requirements,
Achinstein adds a fourth, that there is an “explanatory connection” between the
truth of h and e.

Before criticizing this conception of evidence, two brief comments should be
made about the resort to the notion of an “explanatory connection.” Although
Achinstein provides various definitions of it, all are problematic, as is the notion
itself. Indeed, for Hume and many of his positivist followers, an “explanatory

1Achinstein does not make our distinction between data and evidence. In what follows, we have
collapsed the distinction between them and used his “e” to stand for both. It is, of course, our
position that a distinction between them should be observed.
2Achinstein is working here with the notion of an objective epistemic probability, independent of
what people happen to believe. Our criticisms of his position, and the examples on which they
sometimes depend, do not turn on questions concerning the correct interpretation of the probability
operator. See Achinstein (2010) on this topic where he discusses Mayo’s work.
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connection” is itself no more than probabilistic; to say that A (an event, say)
explains B (another event) is to say that A raises the probability, hence the pre-
dictability, of B. Of course, this is not the end of the matter; the positivist gloss has
itself been much criticized. But at the very least it is fair to say that the notion of an
“explanatory connection” is not more basic than the notion of evidence which it is
intended to clarify. The other comment is that our own account of evidence dis-
poses of the counter-example and others like it without further ado. The likelihood
of eating Wheaties on the hypothesis that a man is pregnant is neither greater nor
less than the likelihood of eating Wheaties on the hypothesis that a man is not
pregnant, and therefore eating Wheaties does not constitute evidence for either
hypothesis. Further analysis of such otherwise murky notions as “explanatory
connection” is not necessary.

In any case, Achinstein thinks that scientists seek veridical evidence in his sense
because they seek the truth, and they want good reasons for believing that particular
hypotheses are true. Veridical evidence as characterized both guarantees truth and
provides such good reasons. This is a particularly clear example of what we earlier
referred to as the “true model” assumption. It is at the root of the criticisms to follow.

Good Reasons for Believing

The main difference between potential and veridical (read: “genuine”) evidence is
that the second but not the first requires the truth of the hypothesis for which it is
evidence. Only in this way can it provide good reasons for believing that the
hypothesis is true. But the insistence on truth is problematic.3 Take Newton’s
derivation of Kepler’s laws from his gravitational theory as a familiar example.
Kepler’s Laws are not, strictly speaking, true, that is, they furnish us with slightly
idealized models which rather closely approximate the observed motions of the
planets around the sun. Nor is Newton’s gravitational theory “true” in any usual
sense of the word. Observed deviations from it are small when the ratios of the
gravitational potential and of the velocity of planets to the speed of light are small;
when the ratios are large, Einstein’s general theory of relativity must be invoked.
The derivation of Kepler’s laws goes through only if a number of assumptions are
made—that the Sun and the planets can be treated as uniformly spherical
point-masses, that the net gravitational force on a planet is toward the Sun (in which
case the mathematically-intractable attraction of other planets may be ignored), that
electromagnetic and other forces acting on planets do not need to be considered—
which are in fact false. And so on. Yet the derivation of Kepler’s Laws was taken
by Newton and his followers as the principal piece of evidence in behalf of the

3While we take issue with some of its main themes, Cartwright (1983) has a detailed and very
influential discussion of the respects in which physical laws are not true, and the implications
thereof.
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gravitational theory. The analysis of concepts in the philosophy of science is both
descriptive and normative;4 we cannot very plausibly contend that neither Newton
nor succeeding generations of scientists for whom his “proof” was taken as an
evidential standard of empirical success were misguided. It won’t do to say that the
derivation was evidence and is so no longer (for example in the light of the general
theory of relativity), for Achinstein rightly maintains that evidence is agent- (and
thus era-) independent; evidence is evidence.5 Nor does it help to weaken the truth
requirement, as Achinstein does on occasion (e.g., Achinstein 1983, p. 169), to
probability-of-truth, for it isn’t that either Kepler’s or Newton’s Laws are “probably
true,” but that they are idealized approximations (and therefore “false”) of what we

4In her highly readable and very influential book, Science as Social Knowledge, Helen Longino
disagrees with our dual emphasis on the normative and descriptive aspects of philosophy of
science. She addresses descriptively the evidential issues in which she is interested in a “non-
philosophical discussion of evidence.” She chides philosophers for their use of formal and nor-
mative models “that are never realized in practice” (Longino 1990, emphasis ours). We differ
from her in at least two ways. First, we think that without formal and normative accounts, it is
difficult to assess a variety of scientific and philosophical issues. It is only against the background
of such an account, for example, that we have been able to contend that across the board appli-
cation of the collapsibility principle leads to the apparent paradoxical nature of Simpson’s Paradox
(Bandyopadhyay et al. 2011). Second, there are many, many counter-examples to her claim,
among which the enormously influential work of Lewis and Sally Binford on the theory and
practice of archeology. See Binford and Binford (1968). In the Appendix to the last chapter of this
monograph, one of the authors of the monograph, a working ecologist, shows how our
formal/normative accounts of confirmation and evidence play a role in current ecological science
and beyond.
5Longino takes issue with the claim, which we share with Achinstein, that evidence is independent
of any agent’s beliefs and thus objective. According to her, all evidential relations are “always
determined by background assumptions” (ibid., p. 60, emphasis ours) and therefore the same data
can provide different evidential support for two competing theories simply in virtue of the fact that
they make different background assumptions. This leads her to brand her account as “a contex-
tualist analysis of evidence.” Three points are worth mentioning. First, our account is also con-
textualist, but in a very different and more minimal way: data provide evidence for one hypothesis
(and its auxiliaries) against a rival hypothesis (and its auxiliaries) if and only if the likelihood of the
data on one hypothesis as against the other is greater than one. Our account of evidence is local,
precise, and comparative. Her account is general, rather open-ended as to what counts as a
“background assumption,” and (at least not explicitly) non-comparative. There is a clear sense in
which our account, unlike hers, is objective and agent-independent. Second, even though many of
the auxiliary assumptions (a.k.a. background assumptions) of Newtonian and Einsteinian theory
differ, the derivation of Mercury’s observed perihelion shift is nonetheless considered evidence for
the latter as against the former (see our discussion of the “old evidence” problem in Chap. 9). If we
were to take her account seriously, a serious shift in scientific practice and the assessment of the
evidential support for theories would result. Third, in company with most other philosophical
analyses of them, she tends to identify the concepts of “evidence” and “confirmation.” After
subjecting the Hempelian account of confirmation to severe criticisms for its syntactic character,
she goes on to write that the right question to ask is: “[c]an this definition of the confirmation
relation be the source of the relation between evidence and hypothesis?” (ibid. p. 24). But as the
tuberculosis example makes clear, the definition of “confirmation” is not the source of the
(properly understood) relation between “evidence” and hypothesis; “confirmation” and “evidence”
can vary dramatically.
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in fact observe (itself idealized and formatted in certain ways). Indeed, it is common
practice for physicists (and perhaps even more common for scientists working in
disciplines where universal as against statistical generalizations are rare) to use a
number of different mathematical models to describe the same phenomena as a
function of the particular questions they want answered, even when the models are
incompatible and hence cannot all be “true.” What is crucial is not that the models
are true, but that they can be tested, perhaps most often by deriving predictions from
them and, as we mentioned earlier, the values of the parameters in them estimated.
On our view, such testing is where the concept of evidence takes hold, and always
involves a comparison between models.

Achinstein links the truth requirement to having good reasons to believe a theory
and both of them to evidence. But we have argued that evidence moves in a
different direction. This can be brought out by a brief re-consideration of the
tuberculosis-testing paradigm. Chest X-rays are still the standard test for the
presence of tuberculosis in the lungs. A positive test indicates the presence of TB,
which is to say that it is taken as evidence that the person who tests positive has
tuberculosis. As we pointed out earlier, the likelihood of testing positive on the
hypothesis that TB is present is 26 times greater than the likelihood of testing
positive on the hypothesis that it is not. Yet as we also pointed out, the posterior
probability of a positive test result on the hypothesis that TB is present is low, well
below the 0.5 threshold that Achinstein posits. There is a conflict of intuitions here.6

On the one hand, a positive result from a chest X-ray is generally taken as evidence
of the presence of TB, and thus on Achinstein’s account should provide a good
reason for believing that an individual is infected (and appropriate further measures
taken). But the posterior probability of being infected given a positive result is
nonetheless low, in which case and again on his account, the individual tested does
not have a good reason to believe that she is infected. Rather than arbitrarily say
that on the basis of armchair reflections there is no evidence of TB and therefore
there is no good reason to believe that there is, we think it much better to separate
the having of good reasons from the question of what constitutes evidence. If one
were then to ask, “but why is evidence desirable if not to provide such reasons?” we
would answer, to measure the comparative weight of the data gathered in deter-
mining which one of a pair of hypotheses is better supported by it. Weighing and
measuring the data is a crucial part of scientific testing, quite independent of pro-
viding good reasons to believe that the hypotheses being tested are true or false.

6Suppose what could be the case, that the test has been improved so that its sensitivity and
specificity are now both 0.999. Pr(H│D & B) is now 0.085, whereas the Pr(H) is as before
0.000093. The posterior probability is very low, and yet the LR is 999. Confirmation and evidence
pull us in very different directions. In fact, the probability of misleading evidence this strong is
only 0.001 (Taper and Lele 2011). At this point, a doctor and patient might wonder whether we
need to know more about the patient. Has she recently been abroad? If so, then it might not be wise
to identify her with the general population in which the prior probability of TB for an individual
randomly selected is 0.000093. A wedge between confirmation and evidence is easily driven.

Good Reasons for Believing 113



Good reasons to believe have to do with beliefs, however generalized they might
be. Evidence does not. In conflating them, Achinstein would have us say of par-
ticular cases that we both have and do not have good reasons to believe that a
hypothesis is true on the basis of the same data.

It should help to illustrate our differences in the above respect if we focus more
specifically albeit briefly on the example Achinstein takes as paradigm in
(Achinstein 1983). Alan’s skin has yellowed, on the basis of which the examining
doctor tells him on Monday that he has jaundice. Additional tests are run, as a result
of which the doctor says four days later that Alan does not have jaundice, but that
his yellow skin was caused by a yellow dye with which he had been working.
Achinstein proceeds to ask three questions concerning what the doctor should
affirm on Friday:

1. Alan’s yellow skin was evidence of jaundice and still is.
2. Alan’s yellow skin was but no longer is evidence of jaundice.
3. Alan’s yellow skin is not and never was evidence of jaundice.

As we might expect, his answer is 3; 1 is ruled out since the hypothesis is false
and does not explain why Alan’s skin yellowed and 2 is true of the doctor (it was
evidence for him on Monday but not Friday) but not generally or objectively. But
this answer is seriously counter-intuitive. Yellow skin is evidence of jaundice in the
precise sense that it warrants further tests for the underlying increased concentration
of bilirubin in the blood. If the blood workup came back negative for bilirubin we
would not say that the yellow skin was not evidence after all, but that it was
misleading evidence. In courts of law, circumstantial evidence that the accused did
it which is eventually trumped by the discovery of a more likely suspect is
nonetheless evidence, although far from conclusive, that the accused did it. There
are two ways in which to shore up this intuition and make it more precise. Both
have to do with the mistaken character of the questions asked. First, the question to
be asked is not whether data constitute evidence, potential or veridical, but whether
they constitute evidence to what degree. Evidence is a qualitative concept, but in
specific cases its strength can also be measured. It is by the same token a com-
parative concept. Yellow skin is evidence for the hypothesis that Alan has jaundice
as against the hypothesis that he does not. But it is not evidence, other things being
equal, that he has jaundice as against the hypothesis that he has come into contact
with yellow dye. In any sort of plausible scenario, the doctor would begin by going
through available alternative hypotheses and ask Alan, among other things, whether
he had been working with dyes recently. Then he would order additional tests to
discriminate or what we called in Chap. 6, “separate” between these hypotheses,
that is, to evaluate the strength of the evidence for each. Even then the doctor might
misdiagnose the case. But a misdiagnosis does not entail, as Achinstein would have
it, that what the doctor thought was evidence in fact was not. It was just incon-
clusive evidence.
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Quantitative Thresholds, the Accumulation of Evidence,
and “Good Reasons to Believe”

As we noted, Achinstein’s account of evidence has a quantitative, as well as a truth
and explanation, component, that the probability of the hypothesis given the data is
>0.5. In the section “Absolute and Incremental Confirmation” in Chap. 2, we set out
our objections to any account of evidence in terms of thresholds of the probability
of hypotheses on the data. Among other things, it mixes together questions con-
cerning evidence and confirmation, does not allow for the comparison of the evi-
dential strength of data relative to different hypotheses, and, perhaps most
importantly, rules out the possibility that the posterior probabilities of incompatible
hypotheses can meet the threshold when more than two hypotheses are at stake. But
our criticism here is that in disallowing evidence that fails to meet the threshold as
even potential evidence, it bars the door to the accumulation of such evidence in a
way that eventually provides us, in the Achinsteinian terms that we reject, with
“good reasons” to believe a hypothesis.

Suppose a coin is tossed five times and comes up with heads four times. We
consider two models: a “biased coin model” with the probability of heads equal to
0.8, and a “fair coin model” with the probability of heads equal to 0.5. The
sequence of four heads and one tail is intuitively evidence for the biased coin model
relative to the fair coin. However, and again intuitively, it is weak evidence because
there is a reasonable chance that a fair coin might also give such a sequence. But it
should not for that reason be discounted as potential evidence. As we keep insisting,
whether data constitute potential evidence depends on context just as does their
relative strength, a point that tells against qualitative accounts generally.

One reason why it is important to consider weak evidence is that while a single
small piece of evidence by itself need not be compelling, many small pieces of
evidence could be accumulated so as to result in strong evidence. Consider a
scenario in which four people drawing at random from an urn which may contain
either biased (probability of heads = 0.8 as in the previous example) or fair coins.
Their first task is to flip each coin five times after drawing each of them at random
from that urn, and then to infer from those data whether the urn contains an equal
number of unbiased and biased coins. Since none of them knows which coin is
biased or fair when each draws coins from the urn, the appropriate prior probability
for each coin to be biased or fair on each draw should be 0.5 Since each draw of a
coin as fair has been assumed to have a prior probability of 0.5, it follows that the
prior probability of that urn having an equal number of fair and biased coins should
also be 0.5. Suppose that each draws five coins at random and when they flip each
of them one time, all end up with the same result: four heads out of five flips. The
evidence for a biased coin in each person’s sequence of tosses is weak from the
perspective of our account of evidence since the biased/fair LR = 2.62. However,
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the combination of their evidence is very strong, i.e., LR (biased/fair) = 123.4.7

Moreover, when the data are pooled, each person’s degree of confirmation that the
urn contains an equal number of biased and fair coins has changed from a prior
probability of 0.5 to an a posterior probability of 0.9919, which provides a very
good reason to believe that the urn is filled with more biased coins than fair ones.
As many pieces of weak evidence combine to produce strong evidence against a
hypothesis, different agents’ degrees of belief that a hypothesis is weak could also
be up-dated to produce a strong confirmation amounting to “a good reason to
believe” that the hypothesis is false.

In the preceding paragraph, we touched on the concepts of accumulation of
evidence and updating an agent’s degree of belief. The accumulation of evidence is
a powerful tool, to be distinguished from the idea that an agent updates her degree
of belief in light of new data. In an up-dating account of confirmation, the agent’s
degree of belief change, as already stated, must conform to the principle of con-
ditionalization which relies, among many other factors, on her subjective prior
distribution of degrees of belief over alternative hypotheses. In contrast, the con-
ception of accumulation captured in our account of evidence does not depend on
any agent’s prior distribution of degrees of belief over alternative hypotheses or in
the certainty of the data themselves. Objectivity is preserved.

Achinstein emphasizes “veridicality” because he wants evidence for a hypoth-
esis to furnish good reasons for believing that the hypothesis is true. But in
requiring as part of his account that the hypothesis be true, he departs rather sharply
from the exemplary scientific practice he wants to describe. Moreover, in not
allowing as “potential” evidence data which fail to meet a threshold requirement, he
rules out the way in which bits of evidence are accumulated to make the case for
particular hypotheses. Finally, from our point of view he misses the fundamentally
comparative and contextual character of evidence, the basis of the
virtually-universal intuition that some evidence is better than others. But the
“true-model” assumption that guides his and some other accounts of evidence is
also incapable of coping with what might be called “misleading evidence.”

Misleading Evidence

Achinstein insists that genuine evidence has to be error-proof in this sense, that if
e is to be evidence for h, then h as well as e must be true. His main reason for doing
so is that otherwise evidence could not provide good reasons for believing that h is
true. Our account of evidence is weaker in the same sense, that e can be evidence
for h even though none of them—e, h, or its alternative h’—is true. That is, the data

7Notice this evidence is the same regardless if one computes the LR for the two models on the
basis of 25 throws, or as the product of the LR’s for the five sequences.
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can constitute evidence for a false hypothesis. We can call such evidence “mis-
leading.”8 Achinstein rules out its possibility in principle, but in so doing he turns
his back on legal and scientific practice, not to mention ordinary language, in which
what is construed as evidence has been assembled for a great number of claims and
hypotheses which turn out to be false (however much they seemed to be true at the
time). In almost all of these cases (to generalize rather blithely), the evidence
assembled was not the result of misperception or fraud;9 rather, it was eventually
supplanted by better, stronger evidence for competing claims and hypotheses.
Given what we take to be this generally-shared supposition, that in context even
“strong evidence” can be misleading, it is necessary to ask whether a more precise
account of misleading evidence can be given. We think that it can, and that any
adequate epistemology must do so (just as, we argued in Chap. 2, that any adequate
account of scientific evidence must include a theory of error).

But before providing our own probabilistic account of misleading evidence,10

we want to make three preliminary comments.
First, although the notion of truth plays an indispensable role in a broad array of

human activities, it is of limited use in contemporary mainstream science. In this
respect (although not in all others) we follow Popper, for whom the most we can
say about scientific hypotheses is that some have held up better than others when
subjected to repeated and, ideally, rigorous tests. Once burned, twice afraid. One
hypothesis after another in the history of science has been taken to be “true,” only to
be rejected in the light of new data or alternative hypotheses which better accounted
for the old. Much the same sort of thing can be said about the helpfulness, or lack
thereof, of the concept of “knowledge” in science. It is not simply that we are
fallible creatures, but that indeterminacy of various kinds is built into the fabric of
the universe.

Second, there is no point in denying that the assertion that snow is white is true
or that I know that the earth is (virtually) round. But scientific hypotheses and the
data enlisted in their support are much more complex. As we have already argued,
all universal generalizations necessarily outrun the finite evidence for them and are
therefore always potentially false, those scientific generalizations which are taken as
laws and customarily invoked to explain the phenomena are idealizations and
approximations and therefore not strictly true, and data are inevitably subject to

8See Royall (1997, 2004): “The positive result on our diagnostic test, with a likelihood ratio
(LR) of 0.94/).02 = 47, constitutes strong evidence that the subject has the disease. This inter-
pretation of the test result is correct, regardless of that subject’s actual disease status. If she does
not have the disease, then the evidence is misleading. We have not made an error—we have
interpreted the evidence correctly. It is the evidence itself that is misleading”.
9A famous case of the former involved the French physicist Pierre Blondlot’s continued perception
of “N-rays” in his experimental set-up even after the American physicist Robert Wood had
surreptitiously removed parts of the apparatus necessary to see them. See Nye (1980). Cases of
fraud which occasionally come to light involve the deliberate fabrication of data.
10One of the few philosophers to take misleading evidence seriously is Earl Conee (2004),
although his account (and what he styles an “evidentialist” approach to epistemological issues)
very much differs from our own.
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error and must be corrected by extensive statistical analysis before they can be of
any real use. It would be unhelpful to say that all scientific hypotheses and complex
data sets against which they are tested are “false,” and therefore that all scientific
evidence is misleading. For one thing, it would wrongly open the door to those who
claim that scientific hypotheses such as the theory of evolution or quantum theory
have very little credibility. Our point is that though some scientific evidence is
“misleading,” this fact does not preclude our being able to weigh and measure it in
such a way that some hypotheses are (much) better supported, their parameters
more exactly determined, than others. In Chap. 2, we characterized evidence as a
data-based estimate of the relative divergence of two models from the truth. On this
characterization, evidence is misleading if it mistakes which model is closer to the
truth.

Third, given what has been just said, an adequate account of misleading evi-
dence would quite naturally be probabilistic in character. Not only does probability
theory provide the tools to shape, sharpen, and reformulate an important epistemic
concept, it also allows the derivation of theorems which bring the apparent way-
wardness of misleading evidence under some formal control.

The Probability of Misleading Evidence

On a probabilistic account, it is always possible that the evidence for a hypothesis is
misleading in the twofold sense that the evidence, no matter how strong, is con-
sistent with the falsity of the hypothesis, and that the data constituting the evidence
are more probable on a competing hypothesis than on the hypothesis most similar to
the mechanism actually generating the data. Once again, consider the tuberculosis
example from Table 8.1.

The datum, that a particular individual has a positive result from a chest X-ray is
strong evidence on our account that the subject has TB, i.e., the ratio of the like-
lihoods of the datum on the hypothesis that she does as against the hypothesis that
she doesn’t = 0.7333/0.0285 ≈ 26, strong evidence indeed. As we noted earlier, this
data-based inference is correct regardless of whether she really has the disease.
However, the observation of the positive test result could itself be misleading
regardless of the fact that it provides strong evidence for the hypothesis. If the
disease is absent, the Table 8.1 shows that the probability of a misleading positive
test is only 0.0285, i.e., the probability of a positive test result when the disease is in
fact absent is very low.

Table 8.1 A summary of TB
X-ray test results

Positive Negative

Disease present 0.7333 0.2667

Disease is absent 0.0285 0.9715
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This point can be reinforced in connection with a slightly more developed
example. Consider two hypotheses, “the fair coin” hypothesis, that the probability
of heads equals 0.5, and “the biased coin” hypothesis, that the probability of heads
equals 0.8, to see how the account incorporates accumulated evidence which could
at the same time be misleading. The first sequence of coin tosses with four heads
and a tail is taken to be evidence for the biased coin hypothesis over the fair coin
hypothesis. The LR of the biased/fair = 0.4096/0.1562 = 2.62 provides evidence for
the biased coin hypothesis, but it is weak. If we take positive test results in tossing a
coin to provide evidence that the coin is biased and negative test results to provide
evidence that the coin is unbiased, then we get Table 8.2.

However, if the biased coin hypothesis is false, then the probability of mis-
leading evidence is 0.1562. After receiving 4 heads out 5 tosses, suppose we have
received the following sequences of heads in each of 5 tosses by five people; 2, 3, 2,
and 1 heads yielding 12 heads out of 25 tosses. After we have gathered more
evidence, we have now received very strong evidence for the fair coin hypothesis
over its biased coin alternative. The LR (Fair/Biased) = 0.155/0.000298 = 529.396
times. In the first sequence of 4 heads out of 5 heads, there is weak evidence for the
biased coin hypothesis. However, as we gather more evidence, we have very strong
evidence for the fair coin hypothesis as against its alternative. If the fair coin
hypothesis is in fact false, but we have strong evidence for it, then the probability of
misleading positive evidence is only 0.000298 which is appreciably smaller than
0.1562 when we have weak evidence for the biased coin hypothesis. This shows
that as evidence becomes strong the probability of misleading evidence goes down
subject to some constraints, as in the tuberculosis case, from 0.1562 to 0.000298.

Examples like these show how, within our framework, the probability of mis-
leading evidence can be made precise. In that framework, even though there is
strong evidence for the presence of tuberculosis against its alternative and the
inference is correct, it is possible that the disease is absent, in which case the
positive test result is misleading.

There are two key theorems regarding the probability of misleading evidence
that deserve mention. The first theorem states that in scenarios like this (comparison
of simple hypotheses involving the tuberculosis example, the coin tossing example
and the like), the probability of observing misleading evidence can never exceed
1/k, where k indicates the strength of evidence represented by LR (Royall 1997,
2004). In the tuberculosis case, it is 1/26 ≈ 0.038 which is slightly higher than
0.0285. When sample size is sufficiently large, as the evidence becomes stronger,
the probability of misleading evidence becomes lower subject to certain

Table 8.2 A summary of
fair/biased coin flip results

Positive Negative

The coin is biased 0.4096 0.5904

The coin is unbiased 0.1562 0.8438
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constraints11 (Royall 1997, 2004). This bound, 1/k, on the probability of observing
misleading evidence is a “universal bound” derived deductively from the proba-
bilities of the data under these two competing models.

These results concur with Royall’s general conclusion that when the sample size
is very large, as evidence becomes strong the probability of misleading evidence
decreases.12 To be more precise, a second theorem concerning the probability of
misleading evidence is that when the sample is very large, the probability of strong
evidence for the correct hypothesis approaches one, whereas the probability for
observing misleading evidence approaches zero (subject to certain constraints).

Summary

Our aim in this chapter was not to show that Achinstein’s account of evidence is
mistaken, no more than it was our aim in the preceding chapters to show that the
subjective Bayesian, error-statistical, and selective confirmation accounts of evi-
dence were wrong. More to our point is the fact that we differ in important ways and
that, in particular, an account of evidence which is quantitative and comparative,
provides in an intuitive way for misleading evidence, and for the reasons mentioned
rejects the “true-model” assumption common to all of the other accounts discussed,
provides, in our view, a more accurate and insightful description of current sci-
entific practice.

It now remains to set out the ways in which the several accounts of evidence deal
with the celebrated “paradoxes of confirmation,” and then to apply our own account
to a classical epistemological puzzle.

11There is a distinction not discussed here between a pre-data (1/k) and post-data (1/LR) proba-
bility of misleading evidence, (see Taper and Lele 2011). While acknowledging that the pre-data
probability of misleading evidence was useful in conceptualization and study design, Royall
rejected the use of the probability of misleading post-data. Post data, the evidence is either
misleading or it is not; there is no probability involved. We modestly disagree with Royall on the
utility of post data misleading evidence. First, there is no established scale for presenting evidence.
The medical field often uses log10(LR), ecology often uses ln(LR), and there are other formats.
A post-data probability of misleading evidence, recognized as a counterfactual probability, not a
belief-probability, can be useful in communicating the strength of evidence to scientists trained in
classical error statistics. Second, as we have pointed out in Chap. 6, recognizing the implicit
post-data error probability makes the relationship between evidential statistics and severe testing
easier to understand. Finally, in some situations, such as evidence in the presence of nuisance
parameters, or multiple comparisons, the post-data probability of misleading evidence may to
some extent become uncoupled from the likelihood realization.
12Royall (2004).
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Chapter 9
The Paradoxes of Confirmation

Abstract It is easy to resolve a contradiction. All you have to do is reject or
reconfigure one of the premises of the argument that leads to it. What makes
paradoxes so difficult to resolve is that the assumptions that generate them are so
intuitive that they resist rejection or reconfiguration. The “paradoxes of confirma-
tion” have been especially difficult to resolve. As much is indicated by the vast
literature to which they have given rise. The “raven” and “grue” paradoxes are
associated with, and often thought to cause problems for, the so-called “positive
instance” account of confirmation. The “old evidence” paradox arises in connection
with traditional Bayesian accounts of confirmation and, in the minds of some, is a
decisive objection to it. These two accounts differ in a number of important ways.
What they share is the assumption that the notions of confirmation and evidence are
inter-definable, an assumption so deeply embedded that it has altogether escaped
notice. Our object in this chapter is to show, once again, why confirmation and
evidence should be distinguished, this time because their conflation is one root of
the paradoxes. The work done by many others on the paradoxes, much of it
technical, has thrown a great deal of light on our inductive practices. In providing a
unified, if admittedly rather general treatment of them, we hope to indicate a new
direction for this work.

Keywords Positive instance account of confirmation � Raven paradox � Grue
paradox � Old evidence paradox
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The Positive Instance Account of Confirmation

On the positive instance account of confirmation,1 the direct evidence for a
hypothesis consists of its positive and negative instances. If an object o is A and also
B, that is, satisfies the description “is A and B,” then o is a positive instance of the
generalized conditional “All A are B” (which is taken as representative of scientific
hypotheses2). If an object o is A but not also B, then o is a negative instance of the
hypothesis, H. To put this in the intended vocabulary, o confirms H just in case it is
a positive instance of H.3 In contrast, on the traditional Bayesian account, to
confirm a hypothesis is to increase its posterior over its prior probability with
respect to a set of data, to disconfirm a hypothesis is to lower it.

There are a variety of differences between these accounts. But what is crucial
here is their similarity. For both assume that the evidence in favor of a hypothesis
confirms it. Indeed, on both accounts, “confirmation” and “evidence” are
inter-definable. On the one, a positive instance is simultaneously evidence and
confirmatory, on the other, evidence is any data that raise the posterior probability
of the hypothesis above its prior and hence confirm it. Confirmation of hypotheses
takes place whenever we have rounded up enough evidence—positive instances or
probability-raising data (whose description is often a consequence of the
hypotheses)—for them.

The intuition underlying the positive instance account of confirmation is this: we
test a generalization by looking at samples of it since, in the very nature of the case,
it is impossible to deduce from the observations we might make that the general-
ization is true. Other things being equal, positive instances or samples confirm it;
the more such samples we have observed, the more highly confirmed it is. This
seems to be as much common sense as science. The point of paradox is to call
common sense into question. The “raven paradox” suggests that we always have
too much evidence on the positive instance account, the “grue paradox” that we
have too much confirmation. Again, both paradoxes rest on a conflation of the two
notions.

1The classic account is in Carl Hempel, “Studies in the Logic of Confirmation,” in Hempel (1965).
2And thereby fails to include hypotheses that do not take this form, including the individual
diagnostic hypotheses on which we have focused attention and, more generally and importantly,
all statistical hypotheses.
3In Hempel’s words, these are “the conditions under which a body of evidence can be said to
confirm or disconfirm a hypothesis of empirical character.” (Hempel 1965), p. 9 (our italics).
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The Raven Paradox4

Suppose one seeks to confirm the hypothesis, H, that all ravens are black. On the
positive instance account, one at least initially looks around for ravens; they con-
stitute appropriate instances of the hypothesis and are positive if also black. But
H is also logically equivalent to H’, that all non-black things are non-ravens. So
anything which is neither black nor a raven is a positive instance of, hence confirms
H’. If it is required, as seems entirely reasonable, that objects confirming a
hypothesis confirm all hypotheses logically equivalent to it—the “equivalence
condition”—there emerges the paradoxical result that whatever is not black and not
a raven, from white shoes to red herrings, also confirms the hypothesis that all
ravens are black.

The feeling of discomfiture that these examples and others like them provoke is
well expressed by Nelson Goodman. “The prospect of being able to investigate
ornithological theories without going out in the rain is so attractive that we know
there must be a catch in it.”5 Yet the implausible result that just about anything
confirms the hypothesis that all ravens are black arises from some very natural
assumptions.

Many different attempts have been made to resolve the raven paradox. It is not
necessary to catalogue them here. In our view, a white shoe does not constitute
evidence for the hypothesis that all ravens are black as against such logically
equivalent generalizations that all non-black things are non-ravens since it fails to
distinguish between the original generalization and any of its logical equivalents.
But by the very same token, black ravens do not serve as evidence for the
hypothesis that all ravens are black as against the hypothesis that all non-black
objects are non-ravens. Since the two hypotheses are logically equivalent, they are
equally likely on all and only the same data. In which case, no data can constitute
“evidence” for the one and against the other.

Since this resolution of the paradox might seem both counter-intuitive and
question-begging, not to say rushed, a word or two more is in order. Two conditions
were taken to generate the Raven Paradox: that a generalization is confirmed by its
positive instances and that a positive instance that confirms a generalization at the
same time confirms any logically equivalent generalization. We think, in part for
reasons already given, that the positive instance account of confirmation is not
nearly so satisfactory as our own, typically Bayesian, positive relevance account,
but our point now is not to dismiss or amend it as an account of confirmation. Nor
do we want to reject the equivalence condition as Hempel states it; data that confirm
a hypothesis should, on reasonable rationality requirements, confirm all of its
logical equivalents. Logically equivalent propositions must always have the same
probability. Moreover, these two conditions do not entail a formal contradiction, in
which case we would have to reject at least one of them. The problem is, rather, to

4See Hempel (1965, pp. 14ff.)
5Goodman (1983, p. 70).
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locate the source of the aura of paradox. We think that it lies in the conflation of
confirmation with evidence,6 that is, to identify data that confirm a hypothesis with
evidence for it. The fact that an object is a positive instance of a hypothesis does not
by itself entail that it is evidence for it.7 Evidence as we have insisted from the
outset should be understood as a comparative and contextual notion, in terms of the
ratios of the data on competing hypotheses and not in terms of the positive instances
of individual hypotheses. On this understanding, it is therefore misleading to assert
that if D constitute evidence for a hypothesis H, then they constitute evidence for
any logically equivalent hypothesis H’. For D constitute evidence for H only in a
comparative context, when the likelihood of D on H is greater than the likelihood of
D on another hypothesis. This is possible only if the two hypotheses being com-
pared are not logically equivalent. Black ravens (or observations thereof) constitute
evidence for the hypothesis that all ravens are black as against the hypothesis that
some ravens are not black and many others, e.g., that ravens are red. If there is a
problem with taking white shoes as evidence for the hypothesis that some ravens
are not black, it is not so much that they can be ruled out on precise and principled
grounds as that it is very difficult to know how to estimate the likelihood of their
observation on the hypothesis that some ravens are not black.8

6Hempel’s original discussion of the Raven Paradox in Sect. 5 of Hempel (1965) both makes
explicit and depends on running confirmation and evidence together. “This implies that any
non-raven represents confirming evidence for the hypothesis that all ravens are black” (p. 15, our
italics).
7Like us, error-statisticians reject the idea that non-black non-ravens are evidence for the raven
hypothesis, but for a very different reason: examining non-black non-ravens would not constitute a
severe test of the raven hypothesis. The probability of finding non-black non-ravens on the raven
hypothesis is very low. The test would have the same result if ravens came in a variety of colors.
Error-statisticians would presumably also discount finding black ravens for the hypothesis that all
ravens are black unless the testing procedures would be likely to turn up non-black non-ravens if
the raven hypothesis were false. Among other things, this might take the form of gathering data
adjusted for gender and geography. On our approach, black ravens do constitute evidence for the
hypothesis that all ravens are black as against the hypothesis that they come in different colors.
How strong this evidence might be is measured in terms of their respective likelihoods (which in a
real-world test would include background information concerning gender and geography. See
Giere (1970, p. 354).
8Royall in his commentary on the Raven Paradox (in an Appendix to his 1997) observes that how
one got the white shoes is inferentially important. If you grabbed a non-raven object at random,
then it does not bear on the question of whether all ravens are black. If on the other hand you
grabbed a random non-black object, and it turned out to be a pair of shoes, then it provides a very
tiny amount of evidence for the hypothesis that all ravens are black because the first sample
estimates the proportion of non-black objects that are ravens as 0. Quantifying that evidence would
be difficult without knowing how many non-black objects there are. In other words, the problem is
one of confusing sample spaces. If you divide the world into two bins, ravens and non-ravens, no
amount of sampling in the non-raven bin will give you any information about colors in the raven
bin. However, if you divide the world into a bin of black things and a bin of non-black things, then
finding a shoe in the non-black bin is evidence that all ravens are black (although fantastically
weak evidence). The white shoe has increased the likelihood (albeit infinitesimally) that the
proportion of items in the non-bland bin that are ravens is 0.
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It is instructive, we believe, to look at Hempel’s own way of understanding the
aura of paradox generated by his account of confirmation. According to him, the
trouble lies neither in taking samples nor in the equivalence condition, but in
thinking that the result to which they lead is paradoxical. In his well-known words,
“The impression of a paradoxical situation is not objectively founded; it is a psy-
chological illusion.”9 He tries to wave it away.

In Hempel’s opinion, this “illusion” has two sources. One is the mistaken ten-
dency to think that hypotheses of the form “All R’s are B’s” are about R’s only, that
R’s constitute their subject matter. When this hypothesis is paraphrased into a
language more perspicuous than English, in particular into the language of
first-order quantification theory, as (x)(Rx → Bx), it becomes clear that such
hypotheses are really about all objects whatsoever within the range of the universal
quantifier (x). But in his mistaken assumption that evidence can be identified with
“positive instances,” in terms of its syntactic character alone and as such, Hempel
misses the point: it is not whether hypotheses are, on logical analysis, (really)
“about” all objects whatsoever, but whether there is a statistically-relevant way in
which to estimate the likelihood of data on them.10 Without any further informa-
tion, their observation is equally likely on the hypotheses that all ravens are black
and that no ravens are black.

The other source of the “illusion” that his account of confirmation has para-
doxical consequences is, Hempel says, the mistaken tendency to take so-called
“background information” into account. What leads one to rule out red herrings as
acceptable instances of the raven hypothesis is the fact that one already knows that
they are neither ravens nor black. Hence they do not provide added support for it.
But if any given object were referred to simply as “object x,” and specified no
further, then the discovery that it was neither a raven nor black would confirm the
hypothesis that all ravens are black, although perhaps not to the same degree as a
black raven would, even if the test object happens to be a red herring.

Hempel’s first point has to do with “evidence,” the second with “confirmation.”
The first does not at all accord with scientific practice, nor is any reason given why
practice should in this case bow to a very abstract theory. More than consistency is
required for the data to “fit” or be relevant to a hypothesis. As for the second, there
is no reason to deny that our confidence in particular hypotheses will vary as a
function of background information; on the Bayesian account, for example,11 since

9(Hempel 1965, p. 18).
10It needs to be emphasized that our characterization of evidence, quite apart from the requisite
distinction from confirmation that it makes possible, rules out ab initio any attempt to characterize
“evidence” as such, for example in terms of the form of the sentences which represent it (as in
Hempel) or its alleged incorrigibility or its “givenness” (as in Lewis), and on. Evidence has no
intrinsic characteristic which identifies it, but is constituted by context-relative data whose strength
is measured by the likelihood ratio (or something comparable).
11See Good (1960, pp. 149ff.) for the classic “Bayesian analysis,” but also Chihara (1987), who
makes the case for a variety of “Bayesian” analyses. For a more recent and very insightful
discussion, see Fitelson and Hawthorne (2006).
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the size of the black raven reference class is much smaller than the size of the
non-black non-raven reference class, the observation of a black raven should raise
the probability of the “all ravens are black” generalization to a much greater degree
than will the observation of a white shoe, and, for similar reasons, the likelihood of
spotting a raven which is also black on this generalization is much greater than the
likelihood of finding a red herring on the denial of this hypothesis, viz. “some
ravens are not black.”12 No one excludes background information in practice, and
again no reason is given why she should do so. More to our point is that the claim
that white shoes in the absence of background information add to the confirmation
of the raven hypothesis, even if true, does not entail that the paradox is a “psy-
chological illusion.” The illusion has a conceptual source, the confusion of con-
firmation with evidence.13

The Grue Paradox

The “grue paradox.” is at least as well known as the “raven.” But it is worth setting
up in the usual way before proceeding.

Suppose that all emeralds examined before a certain time t (say, the year 2020)
are green. On the positive instance account of confirmation, positive instances of
the hypothesis that all emeralds are green, in this case green emeralds, confirm it. Or
as the inventor of the paradox, Nelson Goodman, puts it more precisely: “Our
evidence statements assert that emerald a is green, that emerald b is green, and so
on; and each confirms the general hypothesis that all emeralds are green. So far, so
good.”14

Goodman then introduces a new predicate, “grue,” which “applies to all things
examined before t just in case they are green or to others just in case they are blue.”
Now consider the two hypotheses:

1. H1: All emeralds are green.
2. H2: All emeralds are grue.

It should be clear from the way in which the predicate “grue” was introduced
that at time t all the apparent evidence for H1 is also evidence for H2, and vice versa.
They are equally well confirmed; for at time t, the two hypotheses have exactly the
same positive instances. But this is paradoxical.

12We earlier indicated the necessity of including background information in our calculation of
posterior probabilities and likelihoods, but since it had little bearing on the main theme of the
monograph, have not made much of it. When one gets to the details of the applications of most of
the main theories of confirmation and evidence to particular cases, background information is very
important, although difficult to delimit in a principled way.
13Again see Royal (1997).
14(Goodman 1983), p. 74 (our italics).
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In the first place, although equally well confirmed by their positive instances,
they license incompatible predictions about emeralds examined after t. This by
itself is not paradoxical; at least since Leibniz, it has been generally known that
through a finite number of (data-) points, an infinite number of curves could be
drawn. But the fact that all the emeralds examined so far have been green—hence
also grue—seems not in the least to support the prediction by way of H2 that the
next emerald examined after t will be blue, although it does seem to support the
prediction via H1 that it will be blue. One way to put the intuition here is to say that
we have no plausibility argument available that would provide grounds on the basis
of which we could expect that it will be blue after t, no statistical distribution that
would countenance its possibility or provide for a perceptual error of this
magnitude.

In the second place, “grue” is an arbitrary predicate; there is no more reason for
thinking that emeralds examined after time t will be blue than for thinking that they
will be red. So there is no more reason for asserting “All emeralds are grue” than
there is for asserting “All emeralds are gred.” We can cook up any number of
“grue-type” predicates. All will be true of emeralds to the same extent that “green”
is, for the hypotheses in which they figure would seem to be supported by precisely
the same evidence. The evidence supports just about any hypothesis we wish to
frame about the colors of emeralds over time. And this result is, in Goodman’s
word, “intolerable.”

It is tempting to object immediately that “grue” and “green” are unlike in a
crucial respect. The meaning of “grue” but not “green” includes reference to a
particular time t, and hence the hypotheses in which it figures lack the generality
characteristic of physical laws. This objection can be dismissed, however. Suppose
we have the predicate “bleen;” an object is bleen just in case it is blue before time
t and otherwise green. In which case, the meaning of “green” just as much as that of
“grue” includes a reference to a particular time, grue before t, otherwise bleen. If the
apparently uncaused change from green to blue at t seems adventitious, so too must
a similar change from grue to bleen.

Any number of attempts have been made to solve the grue paradox. Most of
them focus on apparent asymmetries between the hypotheses in which “green” and
“grue” figure with respect to the evidence.15 For the moment it is enough to assert
without providing arguments that whether they invoke “natural kinds,” or the law of
large numbers, or an innate ordering of hypotheses, or ostensive definability, all
fail. There simply are no fundamental differences—syntactic, semantic, even

15In his “Forward” to Goodman (1983, p. ix), Hilary Putnam simply lays it down that “in order to
‘solve’ Goodman’s problem one has therefore to provide some principle capable of selecting
among inferences that do not differ in logical form, that is, on the basis of certain predicates those
inferences contain.” It is revealing that Putnam himself rejects the leading solutions along these
lines, is wary of Goodman’s own, and has nothing better to suggest. Our solution, in sharp
contrast, is not to look at the predicates, but at the structure of the inferences.
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pragmatic—on the basis of which we can distinguish “grue” from “green” with
respect to their confirmability.16

Another popular tack is to reconfigure or abandon the “positive instance”
account of confirmation that figures as an important premise in Goodman’s argu-
ment. Thus it is maintained that if we put constraints on what is to count as a
“positive instance,” or take consequences rather than positive instances of
hypotheses as confirming them, or develop a quantitative account of confirmation,
then the paradox will be blocked. But the “positive instance” account is itself not to
blame; we know of no otherwise plausible confirmation theory in which, on the
present assumptions, some version of the grue paradox cannot be formulated.

These failures, and others like them, provide inductive evidence that the paradox
has no effective resolution, a claim that several philosophers have been ready to
accept.17 In their view, in fact, the attempt to rule “grue” inadmissible on a priori

16Achinstein’s attempted resolution of the paradox (Achinstein 2001) is both typical and
instructive. His argument proceeds in three steps:

1. If D is to provide evidence for H, then the posterior probability of H given D must be high;
2. If the probability of D given H is high, then D must be appropriately varied;
3. In the case of the grue hypothesis, the green emerald data are not appropriately varied.

Therefore, …
…There are problems with the second premise, that high posterior probability requires

appropriately varied evidence. This requirement does not follow from the rules of probability
theory, nor is it easy to see how variety of evidence (as we emphasized in the preceding chapter),
however laudable a methodological goal, is to be included in a formal account except in terms of
something like a pair-wise comparison of hypotheses. But the third premise is for present purposes
more problematic. Achinstein argues for it as follows. “Grue” is a disjunctive predicate; it applies
to emeralds examined before some arbitrary date if they are green and after said date if they are
blue. “Appropriately varied” data would therefore include observation of emeralds both before and
after. But it is a premise of the argument that “before” data only are taken into consideration.
Hence they cannot constitute “evidence” in Achinstein’s sense for the hypothesis that all emeralds
are grue. The same line of argument would apply to all similarly disjunctive predicates, but not to
such atomic predicates as “green,” the explanation of why the latter but not the former are
entrenched in our verbal and experimental practice. Goodman would undoubtedly reply that
“green” can also be construed as a disjunctive predicate, grue before t, bleen after it. If we were to
protest that this way of speaking does not register the fact that a change from green to blue would
have to be caused, whereas a “change” from grue to bleen would require no cause, Goodman could
point to Hume’s analysis, on which “causes” are no more than habits and up-date it to linguistic
habits. Moreover, we follow Rosenkrantz (see Footnote 11, Chap.8) in thinking that there are no
good reasons for excluding disjunctive or “bent” predicates other than to avoid the Grue Paradox,
an ad hoc and unnecessarily conservative move.
17At least at one point in his career, and as expressed in correspondence with one of the authors,
Glymour drew the conclusion, as did Goodman, that confirmation is relative to a particular
interpretation of the syntax in which hypotheses and data are formalized, or, equivalently, to a
particular language. On his view at one time, this conclusion can be extended to any formal
confirmation theory, whether it be positive instance, Bayesian, or “bootstrap.” The moral,
apparently, was that the Grue Paradox cannot be used to decide between existing confirmation
theories. None of them can solve it without adding certain presuppositions about meaning, a view
which echoes that of Carnap.
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grounds is inimical to the “no holds barred” sort of inquiry characteristic of science,
the most important presupposition of its progress.18

We agree that there are no grounds on which “grue” can be ruled out in advance.
But this laudable pragmatism is consistent with maintaining that there is,
nonetheless, something problematic about the paradox in which “grue” figures.
What is problematic, in our view, is the idea that, whatever the hypothesis, there is
an arbitrary and incompatible alternative to it that is confirmed by precisely the
same evidence.

It is precisely this last phrase, “confirmed by the same evidence,” that is the
source of the problem. It isn’t the weirdness of “grue.” It isn’t the use of a particular
confirmation theory. Rather, the source of the problem has to do with the way in
which virtually all confirmation theories are stated, that a hypothesis’ positive
instances or consequences or what have you are evidence for and hence confirm it,
or the other way around, that what confirms a hypothesis is hence evidence for it.
The source of the problem is a well-nigh irresistible tendency to run “confirmation”
and “evidence” together.

On certain plausible assumptions, the observation of green emeralds raises the
probability of both the “grue” and “green” hypotheses about emeralds on the
Bayesian account, and in this sense confirms them.19 But since green emeralds do
not serve for now to distinguish the two hypotheses, then green emeralds do not
provide “evidence” for either of them in what we have argued is a basic and
intuitive sense of the term. In our statements of the paradox to this point, we have
said that the two hypotheses were supported by exactly the same (actual)

18See Rosenkrantz (1981), Chap. 7, Sect. 1. It has been proposed several times, for example, that
Newton’s law of universal gravitation be amended; the force between two objects varies inversely
as the square of the distance between them, up to some distance d. But for distances greater than d,
the force varies inversely as the cube of the distance between them. Such proposals to “correct”
Newton’s law were made by the Royal Astronomer G.B. Airy (1801–1892) in the attempt to
explain observed irregularities in the motion of the planet Uranus, and again in the 20th century by
the physicist Hugo von Seeliger (1849–1924) in the attempt to make the mean density of the
university everywhere constant (the inverse square law implies a concentration of matter around
centers of maximum density).
19As soon as the background information that emeralds don’t undergo sudden (and otherwise
uncaused) color changes is factored in, then the posterior probability of the green emerald
hypothesis is much higher. This background information is easily incorporated into the relevant
priors; we accord the green emerald hypothesis a higher degree of belief on our knowledge of how
the world works (i.e., acceptance of the grue emerald hypothesis would very much complicate our
current scientific picture). According to Goodman, on the green emerald hypothesis, too, emeralds
undergo sudden (and otherwise unexplained) color changes, from “grue” to “bleen.” So we can’t
allow our views about color “changes” to figure in our confirmatory accounts. But (a) the
green/grue change implicates changes in many other parts of physical theory than does the
grue/bleen “change,” and (b) Goodman’s own view suggests that our relative familiarity with
“green,” its greater degree of “entrenchment” in our verbal and other practices, will lead people to
accord the green emerald hypothesis a higher degree of initial belief. In either case, the green
emerald case is more highly confirmed. But the two hypotheses have, at least before t, the same
evidence class. If one assumes that a hypothesis is confirmed to the extent that there is evidence for
it, then paradox ensues. To avoid the paradox, we simply drop the assumption.
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evidence.20 But although discovery of green emeralds does, we might grant,
increase the probability of one or the other of the two hypotheses, it does not
constitute evidence for one or the other. But if it does not constitute evidence, then
the paradoxical idea that exactly the same evidence could support incompatible
theses is undermined from the outset.21

We could put the point the other way around. The grue hypothesis is “arbitrary”
in just this sense, that it is so framed that no available evidence could distinguish it
from its green partner. But where no distinction on the basis of the data is possible,
we have no evidence, for evidence tells for and against particular hypotheses.22

Likelihood ratios are introduced to make this idea explicit: if the ratio of the
likelihoods of the data on two hypotheses is no greater than 1, then the data adduced
for either do not constitute evidence for it.

It is often held that Goodman’s paradox shows conclusively that (as against
Hempel and others) one cannot give a purely syntactical account of confirmation.
This claim does not cohere with Goodman’s own statement of its “residual prob-
lem:” which (among the innumerable “grue” type variations on them) hypotheses
are (really) confirmed by their positive instances, since “positive instance” is itself a
syntactic notion. It also misleads. For it suggests that we must press on to find a
semantic or, eventually, “pragmatic” account of confirmation. The fact of the
matter, as we have tried to make both clear and persuasive, is that the notion of
evidence cannot be captured by positive instances or consequences of hypotheses,
or any other general and non-contextual attribute, regardless of how it is charac-
terized. Evidence does not have some intrinsic characteristic which identifies it as

20See Goodman (1983), p. 74: “Then at time t we have, for each evidence statement asserting that a
given emerald is green a parallel evidence statement asserting that the emerald is grue” (our
italics).
21It might be objected that our way with the paradox is ad hominem. That is, although Goodman
conflates confirmation and evidence, we could restate the paradox in terms of confirmation alone:
incompatible hypotheses are confirmed by the same data, observations of green emeralds, whether
or not these data are said to constitute “evidence” for either one. This objection presupposes, what
both we and Goodman deny, that the two hypotheses have the same priors; indeed, it goes through
only if we assume that the “positive instance” account is correct. At the same time, it is hardly
surprising, much less paradoxical, that incompatible hypotheses might be confirmed by the same
data. This fact has long been known and gives rise to the very difficult “curve-fitting problem” at
the foundations of statistical inference. The real bite comes when we begin, as with Goodman, to
speak of “evidence,” for this suggests a way of distinguishing between other indistinguishable
hypotheses.
22Thus green emeralds constitute evidence for the hypothesis that all emeralds are green vis-à-vis
the hypothesis that all emeralds are bleen, but do not constitute evidence for the green hypothesis
vis-à-vis the hypothesis that all emeralds are grue. The likelihood of green emeralds (examined
before some arbitrary time t) on the green hypothesis is vastly greater than the likelihood of green
emeralds on the bleen hypothesis, whereas it is the same on both green and grue hypotheses.
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such. Rather, it is to be understood in functional terms, as that which allows us to
distinguish between hypotheses on the basis of our data.23

The Old Evidence Paradox

The “old evidence” paradox raises problems not for positive instance, but for
Bayesian accounts of confirmation.24

The classic formulation of the old evidence problem is due to Glymour.25 Many
theories come to be accepted not only because they yield novel predictions that are
subsequently verified, but because they also account more successfully than their
competitors for observations long since made. Copernicus, for example, supported
his heliocentric theory in part with observations dating back to Ptolemy. A principal
support of Newton’s theory of universal gravitation was his derivation of the laws
of planetary motion already established by Kepler. But on the Bayesian account,
this sort of “old” evidence apparently does not confirm new hypotheses, a fact that
makes hash of the history of science. For suppose that data D are already known
when hypothesis H is introduced at time t. If D are known, according to the old
evidence problem formulation, then Pr(D) = 1. If D is a logical consequence of H,
then the likelihood of D given H, Pr(D│H), is also 1. Thus by Bayes Theorem,
Pr(H│D) = Pr(H) × 1/1 = Pr(H). That is, the posterior probability of H given D is
the same as the prior probability of H; D does not raise its posterior probability,
hence, contrary to practice and intuition, does not confirm it.26

It should be clear how the old evidence paradox rests on a conflation of “evi-
dence” with “confirmation” typical of philosophical work on the topic of confir-
mation generally, and more particularly work done by Hempelians and subjective
Bayesians. Thus we are told by Bayesians that D is evidence for H if and only if
Pr(H│D) > Pr(H), where the latter probability is just an ideal agent’s current belief
probability distribution. Once this conflation is undone, by distinguishing sharply
between evidence and confirmation, then so too is the paradox. For Glymour argues
from the fact that in cases of “old” data “the conditional probability of T [i.e., the
hypothesis] on e [the datum] is therefore the same as the prior probability of T” to

23That the intuition involved in our account, data count as evidence just in case they serve to
distinguish hypotheses, has a long history is indicated by William Caxton, in his Deser Eng. of
1480: “He maketh no evidence for in neyther side he telleth what moveth him for to saye.”
24Although some prominent Bayesians, particularly those of an “objectivist” orientation, maintain
that the air of paradox is illusory. See, for example, Roger Rosenkrantz, “Why Glymour is a
Bayesian,” in Earman (1983), especially pp. 85-6. In the same volume, Daniel Garber, “Old
Evidence and New,” essays a “subjectivist” attempt to disarm the problem. See Bandyopadhyay
(2002) for reasons why the Bayesian account of confirmation cannot, on either of its standard
variants, solve the old evidence problem.
25See Glymour (1980), Chap. III.
26The argument can be re-cast in such a way that it does not depend on Pr(D) = 1.
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the conclusion that “e cannot constitute evidence for T,”27 and this conclusion can
now be seen to be a non-sequitur. “Old” or “new” evidence, evidence is evidence,
an intuition that our non-Bayesian conception of it captures. On our account, data
provide evidence for one hypothesis against its alternative if the likelihood ratio is
greater than one. If the latter condition holds then data do provide evidence for one
hypothesis against its alternative irrespective of whether they are old or new. We
will revisit this point at the end of our discussion of the old evidence problem.

It follows as a corollary of this account that evidence is agent-independent. On
Glymour’s formulation of the old evidence problem, whenever D confirm H, they
become evidence for H relative to an agent A, in which case whether D is evidence
for H depends on whether A knows or believes D to be the case. But as we have
insisted from the outset, whether D is evidence for H has nothing to do with
whatever A believes about either D or H. As our paradigm tuberculosis diagnostic
example also illustrates, D can provide evidence for H independent of what an
agent knows or believes about D or H.

Perhaps the most celebrated case in the history of science in which old data have
been used to justify a new theory concerns the perihelion shift of the planet Mercury
(M) and the General Theory of Relativity. Of the three classical tests of GTR,28 M is
regarded as providing the best evidence.29 According to Glymour, however, a
Bayesian account fails to explain why M should be regarded as evidence for GTR.
For Einstein, Pr(M) = 1, since M was known to be an anomaly for Newton’s theory
long before GTR came into being.30 Einstein derived M from GTR; therefore,
Pr(M│GTR) = 1. Once again, since the conditional probability of GTR given M is
the same as the prior probability of GTR, it follows on the Bayesian account that
M cannot constitute evidence for GTR. But given the crucial importance of M in the
acceptance of GTR, this is at the very least paradoxical. It is known, moreover, that
the old evidence problem continues to haunt the Bayesian account of evidence even
if the probability of the data is not equal to, but is close to one. This fact, however,
does not bear on our resolution, that is, whether or not the problem is premised on
the probability of data equal to or close to one, it still conflates in a Bayesian way
the concepts of “evidence” and “confirmation” that we have gone to great lengths to
distinguish. This is the core of our solution.

27Ibid., p. 86.
28Summarized in Chap. 6.
29See Brush, “Prediction and Theory Evaluation: the Case of Light Bending,” Science, 246 (1989),
pp. 1124-129; Earman and Janssen, “Einstein’s Explanation of the Motion of Mercury’s
Perihelion,” in Earman, et al., eds., The Attraction of Gravitation (Cambridge, MA: MIT Press
1993); Roseveare, Mercury’s Perihelion from LeVerrier to Einstein (Oxford: Oxford University
Press 1982). We are especially indebted to Earman’s account of the tests of the GTR.
30For our purposes it is not necessary to decide any of the historically delicate questions con-
cerning what Einstein knew and when he knew it; what he knew or didn’t know at the time of his
discovery of GTR has nothing to do, as against Glymour’s paradox, with the evidential signifi-
cance of M. In trying to determine what constitutes “new” evidence, Imre Lakatos and Eli Zahar
make a rather desperate appeal to what the scientist “consciously” knew when he came up with
GTR. See their (1975).
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Another way of approaching the problem is to claim that the old evidence
problem should not really arise. According to this approach, its canonization in the
philosophical literature results from a failure to note the difference between a
random variable and its realization. A random variable can be defined “as a variable
that takes on its values by chance.”31 A realization is an observation of one of those
chance values. From a philosophical perspective, the confusion embodied in the old
evidence problem stems from mistakenly identifying “knowing or observing the
data” with “the probability of the data”. These are indeed two different beasts.
Consider the example of throwing a die. A roll may be mathematized as a random
variable which can take on integer values from 1 to 6. Random variables are
generally denoted by Roman capital letters, e.g. X, and their realizations by lower
case Roman letters, e.g. x. If one throws a fair die and sees that a face with three
pips is up, it is true that the probability is one that the throw scored a three. This is
what we mean by “knowing or observing the data.” However, the probability of
seeing three pips on the next roll is still just one sixth. Observing a realization does
not change the probability distribution of the random variable. The term Pr(D|Hi) in
the numerator of Bayes’ rule does not represent the scientist’s belief that an
observation of type d has occurred, but is instead the inherent propensity of the data
generating mechanism embodied in the hypothesis, Hi, to produce data of type d
(see Chap. 2, section on “Our Two Accounts and Interpretations of Probability” for
more on interpretational issues). Technically, the term should be written as Pr(D =
d|Hi), that is, the probability that the random variable D would take the observed
value of d given the hypothesis Hi.

32 The notation Pr(d|Hi) is a shorthand used by
statisticians on the assumption that no misunderstanding will be generated.
Unfortunately, in this case, that assumption has been violated. Similarly Pr(d) in the
denominator is also not the scientist’s belief that she has observed data d, but is
instead the marginal probability of data of type d being generated by the set of
alternative models, PrðD ¼ dÞ ¼ P

i PrðD ¼ djHiÞ � Pr Hið Þð Þ. The prior probabili-
ties, PrðHiÞ, are subjective belief measures. Again, observing data d does not drag
this probability, Pr(d), to one. So the old evidence paradox on this reading is simply
an artifact of misconstruing knowing or observing the data as the probability of the
data, but, as we have argued, they are two different concepts. So, we are able to
dissolve the old evidence problem by making “a random/realized variable” dis-
tinction as well as by making one between “evidence” and “confirmation.”

Some readers might wonder whether we have yet addressed the underlying and
genuinely significant question, “do old data provide evidence for a new theory”?
We will now address this more-focused question with the help of our account of
evidence, leaving out further discussion of the distinction between random and
realized variables.

On our evidentialist account M (i.e., the observed shift of Mercury) does con-
stitute evidence, indeed, very significant evidence for the GTR. Consider GTR and

31See Taylor and Karlin (1998, p. 7).
32See Pawitan (2001, p. 427).
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Newton’s theory, NT, relative to M with different auxiliary assumptions for the two
theories. Two reasonable background assumptions for GTR are (i) the mass of the
Earth is small in comparison with that of the Sun, so that the Earth can be treated as
a test body in the Sun’s gravitational field, and (ii) the effects of the other planets on
the Earth’s orbit are negligible.33 Let AE represent those assumptions.

For Newton, the auxiliary assumption is that there are no masses other than the
known planets that could account for the perihelion shift. Let AN stand for Newton’s
assumption. We now apply our evidential criterion, the Likelihood Ratio, to a
comparison of the two theories, albeit in a very schematic way. Pr(M│GTR &
AE) ≈ 1, whereas Pr(M│NT & AN) ≈ 0. The LR between the two theories on the
data approaches infinity, which is to say that M provides a very great deal of
evidence indeed for GTR and virtually none for Newton’s theory.34 It is often held
that, whatever the evidential situation, theories once accepted are not rejected
except insofar as a better theory is available. But our way with “evidence” makes
precise why this should be the case. Perturbations in the orbit of Mercury could not
count as evidence against Newton’s theory until there was a rival theory on which
these perturbations were more likely. It is not that we do not want to leave a ship,
however much it might be sinking, unless another is there to take us on board, but
that in the absence of a comparison between competing hypotheses, we cannot
know that we are sinking. Of course, there was a good deal of evidence for
Newton’s theory vis-à-vis its Aristotelian and Cartesian rivals.

The “old evidence paradox” can be dissolved; it rests on the mistaken
assumption that evidence and confirmation are to be understood in exactly the same
Bayesian terms. But there are two residual and very genuine problems concerning
“old evidence” that might be mentioned since both have important implications for
the development of an adequate theory of statistical inference.

The first problem has to do with post hoc data fitting. On our view, evidence is a
deductive relationship between the data and the models under comparison; it is of
no consequence when the data were collected or the models constructed. But on a
finer-grained analysis, statistical evidence acts to inform scientific inference in some
ways that are intuitively more credible than others. Notably, it is always possible to
construct theories and models that provide a good fit to any given data set. It is just
a matter of adding more and more parameters to the model.35 No one would claim
that data that had been fabricated to match a theory constitute evidence for the
theory even though on the basis of the fabricated data the statistical evidence for
that theory (over another) may be quite high. But to craft a theory to fit data
after-the-fact is to engage in a roughly similar activity.36

33We owe this formulation of the background assumptions for both GTR and Newton’s theory to
John Earman in an email communication.
34See also Lange (1999) for a different approach to the “old evidence” problem..
35In the limit case, adding as many parameters as there are data points.
36Careful statisticians do post hoc data analysis all the time, but they label it as such and consider
their results more as hypothesis-generating than as evidence-supporting.
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Because of the complexities of ecological and evolutionary processes and the
extreme difficulty of collecting data, ecologists and evolutionists have a tendency to
explain whatever data are available in adaptionist terms, without any further con-
straints on the explanations than they conform generally to a Darwinian template. In
a famous paper, “The Spandrels of San Marco and the Panglossian Paradigm: A
Critique of the Adaptionist Program”37 Stephen J, Gould and Richard Lewontin
identified this as a tendency to tell Kipling-style “just so” stories, stories designed to
explain the known facts but with little methodological or theoretical constraint on
the explanations.38 The stories are not worthless; for one thing, they may suggest
new lines of inquiry or the search for additional data. But a commonly-held intu-
ition is that data have more epistemic value with respect to hypotheses that were not
designed to capture or cannot explain more than a given set of data than those that
were and can.

Although Einstein’s GTR was developed after Mercury’s perihelion was known,
it was not designed to predict the arc shift and, more importantly, it could explain
and be tested with respect to a variety of new data. It is just that although the arc
shift constituted “evidence,” on our account as well as in the scientific community,
new data constituted “better” evidence for it. We have not yet developed an account
of the way in which this intuition is precisely to be captured.

The second, related, and so far unresolved “old evidence” problem is that the
accommodation of a theory by the data might run the risk of over-fitting error
(Hitchcock and Sober 2004). In model selection, over-fitting error occurs when a
model describes random errors or noise instead of the underlying relationship
between variables. This error arises when a model possibly contains to many
parameters relative to number of observations. This over-fitting could arise in our
evidential framework which can be handled by information criteria such as the
Akaike Information Criterion (see the Appendix at the end of the monograph for
how this over-fitting can be addressed using a real world example from ecology).

Our resolution of the old evidence problem turns on twin distinctions between
evidence and confirmation, on the one hand, and randomness and realization, on the
other. Conflating evidence and confirmation leads to the classical, or “Bayesian”
form of the problem. Conflating randomness and realization leads to an ambiguity
in the interpretation of likelihood that will infect any theory of statistical inference
that makes use of them. Once likelihoods are correctly interpreted, and evidence
understood in terms of a ratio between them, then the more-specific form of the
evidence problem, “when do old data provide evidence for new theories?” can be
answered without ambiguity and in a straightforward way: not when they further
“confirm” a theory but when they discriminate between a new theory and an older
rival and pronounce in favor of the former. But, our way with Glymour’s paradox

37Gould and Lewontin (1979).
38This was not the end of the matter. Among the most interesting of the many papers critical of the
Gould-Lewontin thesis is Dennett (1983).
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does not yet provide a fully adequate account of the inferential force that old data
provide new theories or of the over-fitting problem, issues that arise for every
account of statistical inference.

Summary

We can summarize the situation as follows. In the raven and grue paradoxes, data
intuitively fail to confirm some hypotheses, yet on the positive instance account
must apparently be taken as evidence for them, while in the old evidence paradox,
data intuitively succeed in supporting some hypotheses, yet on the Bayesian
account must apparently not count as evidence for them. It undoubtedly seems
naïve and unbecomingly immodest to resolve all three paradoxes with no more than
a simple and straightforward distinction between evidence and confirmation or
justification.Understood. But if our reading of the situation is correct, the paradoxes
have a common thread, the confusion of evidence and confirmation/justification,
and a single sharp stroke of the sword suffices to undo at least one of the knots into
which they have become entangled over the years. Our hope is that all of the patient
work devoted to picking them apart will now be seen in a new and we trust
revealing light.
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Chapter 10
Descartes’ Argument from Dreaming
and the Problem of Underdetermination

Abstract Very possibly the most famously intractable epistemological conundrum
in the history ofmodern western philosophy is Descartes’ argument from dreaming. It
seems to support in an irrefutable way a radical scepticism about the existence of a
physical world existing independent of our sense-experience. But this argument as
well as those we discussed in the last chapter andmany others of the same kind rest on
a conflation of evidence and confirmation: since the paradoxical or sceptical
hypothesis has as much “evidence” going for it as the conventional or commonly
accepted hypothesis, it is equally well supported by the data and there is nothing to
choose between them. By this time, however, we understand very well that data that
fail to discriminate hypotheses do not constitute “evidence” for any of them, i.e., that
“data” and “evidence” are not interchangeable notions, that it does not follow from the
fact that there is strong evidence for a hypothesis against one ormore of its competitors
that it is therefore highly confirmed, and that it does not follow from the fact that a
hypothesis is highly confirmed that there is strong evidence for it against its rivals.

Keywords Argument from dreaming � Plausibility arguments �
Thought-experiments � Under-determination

The Argument from Dreaming

Descartes sets the Dreaming Argument out very briefly in the first Meditation:

How often, asleep at night, am I convinced of just such similar events—that I am here in
my dressing gown, sitting by the fire—when in fact I am lying undressed in bed! Yet at the
moment my eyes are certainly wide awake when I look at the piece of paper; I shake my
head and it is not asleep; as I stretch out and feel my hand I do so deliberately, and I know
what I am doing. All this would not happen with such distinctness to some asleep. Indeed!
As if I did not remember other occasions when I have been tricked by exactly similar
thoughts while asleep! As I think about this more carefully, I see plainly that there are never
any sure signs by means of which being awake can be distinguished from being asleep.1

1Descartes (1984, p. 14).
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But if, Descartes goes on to suggest, “there are never any sure signs by means of
which being awake can be distinguished from being asleep”, then there is no way in
which we can be assured that any of the claims he makes about the world are true,
since the only evidence on the basis of which he could make them is as much
available asleep as awake, and asleep the claims are false.2 Thus radical skepticism.

A great variety of attempts to undermine this argument have been made, none of
them generally acknowledged as successful. Indeed, in the course of an extended
treatment of it, Barry Stroud comes to the conclusion that the argument is sound; it
cannot be undermined, only better understood.3 We disagree.

There Is No Evidence that We Are Awake or Asleep

The first thing to note is that the dream argument rules out the possibility of
“evidence” that we are awake. That is, the data in question, the various “sensible
experiences” that we have, are equally likely whether we are awake or asleep. The
ratio of their likelihoods is 1, in which case, on our characterization, the data do not
provide evidence for one hypothesis or the other, that we are awake or asleep. It is
in this sense, “proof” being supposed interchangeable with “evidence”, that we
cannot prove that we are awake.4

For many commentators on the dreaming argument, this is the end of the matter.
As Stroud puts it, in light of the possibility that from one moment to the next we are
dreaming, “our sensory experience gives us no basis for believing one thing about
the world rather than its opposite, but our sensory experience is all we have to go
on”.5

2Or if not false, then groundless. The widely reported (and however implausible) case of the Duke
of Devonshire, who dreamt that he was giving a speech in the House of Lords when he was in fact
giving a speech in the House of Lords, shows that a belief may be true yet without the right sorts of
reasons to support it.
3Stroud (1984), passim.
4Descartes puts the point in just this way in the Sixth Meditation: “The first [general reason for
doubting] was that every sensory experience I ever thought I was having while awake I can also
think of myself as sometimes having while asleep; and since I do not believe that what I seem to
perceive in sleep comes from things located outside me, I did not see why I should be more
inclined to believe this of what I think while awake” (Descartes 1984, p. 53).
5Stroud (1984, p. 32), our italics. Similarly, Williams (2001, p. 75), says: “To get to radical
skepticism [‘the thesis that our beliefs are completely unjustified’], the sceptic must not concede
that his possibilities are remote. He must argue that they are as likely to be true as what we
ordinarily believe. This is what he does. His point is that his bizarre stories about Evil Deceivers
and brains-in-vats are just as likely to be true as our ordinary beliefs given all the evidence we will
ever have. In the case of the external world, all the evidence we will ever have comes from our
sensory experience; … in every case, he will claim, all the evidence we will ever have radically
undermines what it would be true or even justifiable to believe” (his italics). It follows, Williams
thinks, that we have no reason to believe that we are awake, given that we might be dreaming. This
is a non-sequitur. It turns on the near-universal conflation of “evidence” with “justification”.
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But We Have Good Reasons to Believe
that We Are Often Awake

But of course sensory experience is not “all we have to go on”. In the absence of
much evidence, we might still have good grounds for belief. Such grounds could
very well include the fact that most of us are awake much more often than we are
asleep, and that even when asleep, we do not always dream.6 Which is to say that
while the sensory-experience data do not provide much evidence that we are, at any
given time, conscious (or dreaming), the posterior probability that we are conscious
is much higher than the posterior probability that we are dreaming asleep, a function
of the higher probability that physiological theory accords to the hypothesis that we
are conscious. Hence we have good reason to believe, at any given time, that we are
conscious (even on those occasions when we are, in fact, dreaming).7 It is only if
we run “justification” and “evidence” together, as Stroud in company with all of the
other skeptics does, that we can conclude (given the possibility that we might at any
moment be dreaming) that “we have no basis for believing one thing about the
world rather than its opposite”.

Our reason for believing that we are conscious rather than dreaming must be
distinguished carefully from another, very different, criticism that is sometimes
made of the argument from dreaming. This criticism is to the effect that a premise of
Descartes’ argument is that he remembers “other occasions when [he has] been
tricked by exactly similar thoughts [to those he is now having while asleep]!” If
Descartes remembers this, then it must be taken for a fact. But his knowledge of this
fact is incompatible with the intended conclusion of the dreaming argument, that he
knows nothing of the kind.

Stroud rightly points out that the argument does not depend on Descartes’
knowledge of any facts. All that is necessary is that it be possible that he is asleep at
any given time, and this “possibility” can be invoked quite independently of any
presumed knowledge on his part that he has often dreamt that he was awake.

(Footnote 5 continued)

Granted that although there is little evidence properly so-called in the radical skeptical cases, we
might still have very good reasons for belief.
6In fact, we are asleep roughly a third of the time, and dream roughly a fifth. While the role of
sleep, still less that of dreams, is not yet fully understood, it is nonetheless clear that in the ordinary
course of events, nutrition, among other bodily requirements, can (except when hooked to a
feeding tube) be met only when we are awake. Not all of us can sleep, hence dream, all of the time
(though some friends of ours make a very good pretense). The general contingencies of survival
demand that we be more often awake. Indeed, horses and goats sleep only two to four hours a day,
apparently to maximize their foraging time and minimize their vulnerability to predators. See Anch
et al. (1988).
7In our view we are “tricked” into believing we are awake when in fact we are asleep, not so much
by the fact that our dreaming experiences are “qualitatively indistinguishable” from our conscious
experiences, for often they are not, as by the fact that we understandably tend, other things being
equal, to believe that we are awake (even when we are not) as a heuristic rule.
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It is necessary to be as clear as possible on this point so as to avoid misun-
derstanding, for it might otherwise appear that we have begged the question. If we
take the presumptive fact that we are awake more often than not to justify our belief
that we are awake, then, a critic might say, we have to justify that it is a fact. But
this, of course, just pushes the question back to whatever grounds are cited as
justifying the claim that we are awake more often than not. If we have no evidence
for those grounds (as we claim), then how can they justify us? The regress con-
tinues, in which case we have not shown that the sceptic is mistaken.

It should be clear, first, that this sort of criticism trades on the very conflation
between evidence and justification that it is our purpose to combat. That is, it
simply assumes that if we have little evidence for a claim then it cannot possibly be
justified.8 But it does not follow from the claim, granted for the purposes of
argument, that the likelihood of sequences of sense-experiences on the waking and
dreaming hypothesis is virtually the same that we have no more reason to believe
that we are awake than we are asleep.9 The second key to the dissolution of the
skeptical argument is to show that we do have more reason to believe that we are
awake than asleep. On the Bayesian model of confirmation that we have adopted for
reasons already given, this comes to showing that the waking hypothesis has a
higher prior probability.

The Prior Probability that We Are Conscious Rather
Than Dreaming Is Higher

Although all Bayesian probabilities are characterized in terms of belief and degrees
thereof, and in this sense are “subjective”, there is disagreement among Bayesians
concerning the extent to which their determination is “objective” or “subjective”.
We have already commented on the issue briefly. It suffices for our purposes at the
moment to make the following three points.

8The move is standard in the Cartesian secondary literature. Thomson (2000, p. 33), for example.
Descartes’ point “…is rather that we have no internal evidence or criteria which surely distin-
guishes dreaming and waking experience”. From which it follows that “Any particular experience
could be a dream”, i.e., we would have no reason to believe of any particular experience that it was
not a dream.
9It is explicit in Descartes, implicit in the arguments of many of those who think that the argument
from dreaming is sound, that the reasons for our belief that we are awake must be “conclusive”,
i.e., cannot themselves be doubted. In the traditional vocabulary, whatever qualifies as a “reason”
must be able to serve as a foundation for the rest of our knowledge. But as we indicated in Chap. 1,
an important premise of this monograph is that what we believe on the basis of what we experience
has no “foundation” in this sense. It is invariably uncertain. The task is not to evade this fact, but to
provide a way of distinguishing between well- and poorly-grounded beliefs, even to the point of
quantifying the degree to which they are well- and poorly-grounded. Whether it qualifies as
“knowledge” or not, it is more than enough to support the claim that science provides us with very
well-grounded beliefs about the physical world.
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First, the way in which the disagreement is often settled is not open to us here
(although it was in Chap. 6 when we discussed TB and PAP diagnostic cases).
Wesley Salmon, for example, wisely says that

The moral I would draw concerning prior probabilities is that they can be understood as our
best estimates of the frequencies with which certain kinds of hypotheses succeed … If …
one wants to construe them as personal probabilities, there is no harm in it, as long as we
attribute to the subject who has them the aim of bringing to bear all his or her experience
that is relevant to the success or failure of hypotheses similar to that being considered.10

We think there is something to this line of argument, and have already suggested
that the relative frequency with which we are conscious as against dreaming can be
considered a reason why we are justified in believing, other things being equal, that
we are awake (even when we are asleep).

Still, the skeptic might very well object that to invoke the subject’s “best esti-
mates of the frequencies with which certain kinds of hypotheses succeed” is, in this
case, to beg the question against her. For it is precisely one purpose of the argument
from dreaming to open up the possibility that the waking hypothesis has never
“succeeded”, i.e., been justified by the subject’s past “experience”. The whole
notion of “empirical success” has itself been undermined, and with it any talk of
(objective) “frequencies”.

In order to deal with this objection, we could argue along another line. Salmon
points us in a usable direction. It is his more general position that

the prior probabilities in Bayes Theorem can best be seen as embodying the kinds of
plausibility judgments that scientists regularly make regarding the hypotheses with which
they are concerned …. Plausibility arguments serve to enhance or diminish the probability
of a given hypothesis prior to—that is, without reference to—the outcome of a particular
observation or experiment.11

We have already used a “plausibility argument” to show why the greater relative
frequency of our being awake than asleep is to be expected. It is among the
requirements of human survival and therefore explains why we are more often
awake. Salmon himself goes on to suggest various general criteria—formal,
material, and pragmatic—that can be brought to bear in assessing the plausibility of
particular hypotheses and thus of determining their prior probabilities.

In the case at hand, simplicity is perhaps the most important of these criteria. The
waking hypothesis is, on the face of it, so much simpler than the dreaming
hypothesis. One way in which to bring this out is to note how much machinery is
needed to instantiate that beloved realization of the possibility that all of our
experience is merely virtual, the classic science fiction movie The Matrix. We may
be perpetually deceived, but it takes some real doing on the part of the deceiver!
Think of all the hooking up that has to be done to bring us to believe that we are not
brains in vats on the hypothesis that we are. Why not more simply believe that at

10Salmon (1990, p. 270).
11Ibid., p. 264.
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least most of the time we are not deceived in thinking that we are awake? This
consideration is reinforced by another: the Darwinian theory to which we appealed
earlier to explain the ostensible fact that we are more often awake than asleep is
itself the simplest of those currently available which have a scientific character, e.g.,
are testable in principle, and so on.12 Put another way, we can have a priori reasons
for distinguishing between “empirically equivalent” theories. Copernicus and some
of his successors urged the superiority of his theory at least in part for such
reasons.13

Thought-Experiments

Third, although Salmon does not mention this, plausibility arguments, in science
and without, often take the form of thought-experiments. Consider the case that
Galileo makes for his claim that objects fall at the same rate, regardless of their
weight.14 Assume, with Aristotle, that heavy bodies fall faster than light ones. If we
were to attach a heavy object to a light one, then the compound object, being
heavier, would have to fall faster than either of its components. But since the light
object, falling more slowly, would act as a drag on it, the compound object would
fall more slowly than the heavy object. Having derived this contradiction, we can
infer that its Aristotelian premise is false. Insofar as our “data” in this case have to
do with the visual observations we might make, it does little to support his view;
indeed, Galileo’s opponents sometimes appealed to them. It is clear that Galileo
arrived at this law, not by way of sense-experience, but on the basis of a
thought-experiment.15 That is, he argued in an a priori way that objects fall [in a
vacuum] at the same rate, which is to say in our terms that he assigned his gen-
eralization a very high-valued prior probability. Although the observational data for
his claim vis-à-vis Aristotle’s were negligible, it was nonetheless highly justified.

12In this case, as in many others, formal must be distinguished from causal simplicity. As Miller
(1987, p. 247), reminds us, “by adding a variety of novel propositions…evolutionary theory
reduces the formal simplicity of science. [But] an enormous gain in causal simplicity results. For a
variety of regularities which ought, according to all rival frameworks, to have causes only have
causes once the evolutionary principles are added”.
13Although again, his argument is more persuasive on causal than on formal grounds. See Kuhn
(1959, pp. 169–171). We are following the conventional wisdom, of course, in claiming that they
are empirically equivalent, for in fact they are not.
14See Brown (1991) for an account of this and other apparently data-independent plausibility
arguments.
15See Galileo (1974, pp. 66–67). In preparation for his thought-experiment, Galileo had already
noted (p. 64) that “where we lack sensory observations, their place may be supplied by reasoning
which is no less capable of understanding the change of solids by rarefaction and resolution than
[the change of] tenuous and rare substances by condensation”.
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A very large literature has grown up around the concept of a thought-experiment,
and many different analyses of it have been given. The only dimension which
concerns us here has to do with whether or not the use of thought-experiments, at
least on occasion, “transcends” experience”, as the Galilean example suggests. John
Norton, for example, argues that “in so far as they tell us about the world, thought
experiments draw upon what we already know of it, either explicitly or tacitly; they
then transform that knowledge by disguised argumentation”.16 From this it might
seem to follow that the use of thought-experiments, drawing on our “knowledge of
the world” to establish prior probabilities, once again begs the question against the
sceptic.

It is enough to point out, however, that the argument from dreaming is itself a
thought-experiment. If it “draws upon what we already know”, then there is
something incoherent about the conclusion that the skeptic draws from it.17 If there
is nothing incoherent about the skeptic’s reasoning, then it does not draw upon what
we already know. To put it briefly, the use of thought-experiments to determine
prior probabilities in this particular context cannot beg any questions.

We must be clear about this point. To say that it is plausible that at least some of
our experience is waking, on the basis of something like a thought-experiment, is
not to deny that it is possible (in some sense of the word) that we are always asleep,
that we are in a “Matrix” scenario, that we are brains in vats, and so on. Plausibility
arguments do not establish certainty, still less infallibility. But that fact does not
entail that we do not have good reason to believe that at least some of our expe-
rience is waking.18 On our understanding of it, the dreaming argument is not the
simple-minded challenge, “but can you be sure that any empirical claim you might
make might not be false, given the possibility that you are dreaming?” Since this
question is tantamount to the question, “can you be sure that you are not in a
situation which has been set up in such a way that you cannot be sure that you are in

16Norton (2002, p. 44).
17A point apparently not lost on Descartes, for on his account dream images could only have been
derived from prior waking experience (see the following footnote and, and for an earlier reference
in the First Meditation—“it must surely be admitted that the visions which come in sleep are like
paintings, which must have been fashioned in the likeness of things that are real”—Descartes
(1984, p. 13). He has several reasons for moving rather quickly to the supposition of an Evil
Demon; this is one of them.
18As part of his eventual response to skepticism concerning the existence of objects independent of
our ideas of them, Descartes essays his own plausibility argument for assigning the “object
hypothesis” a higher prior. On this hypothesis, “I can … easily understand that this is how
imagination comes about … and since there is no other equally suitable way of explaining
imagination that comes to mind, I can make a probable conjecture that the body exists”. He goes
on, of course, to say that “this is only a probability” and “not the basis for a necessary inference
that somebody exists”, but continuing interest in the argument from dreaming does not derive from
his insistence on certainty, but rather from the more general claim that we can have no reason not
to believe that we are dreaming. See Descartes (1984, p. 51).
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that situation?” it verges on incoherency. The argument rests, rather, on the com-
plex inference from the premise that there is no way to distinguish waking and
dreaming experiences to the lemma that there is no evidence that we are awake to
the theorem that we can have no good reasons for believing that we are awake. As
we have tried to demonstrate in this monograph generally, and more particularly
with respect to the present instance of it, this inference is faulty.19

The Problem of Under-Determination

The reader will have noted a pattern in many of the skeptical arguments we have
discussed. They go from the under-determination of hypotheses by the evidence
available for them—scientific measurements, black ravens, green emeralds,
sense-experience—to paradoxical, eventually skeptical, conclusions—that
hypotheses are not confirmed or disconfirmed selectively but only as part of a
global constellation of theories, that white shoes as well as black ravens confirm the
hypothesis that all ravens are black, that the hypothesis that all emeralds are grue is
as well supported by the same evidence as the hypothesis that they are all green,
that for all we know (or are capable of knowing) we live in a dream world. We have
argued that all of these arguments (and there are many more that fit the same
pattern) rest on a conflation of evidence with confirmation: since the paradoxical or
skeptical hypothesis has as much “evidence” going for it as the conventional or
commonly accepted hypothesis, it is equally well supported by the data and there is
nothing to choose between them. What needs to be emphasized is, first, that data
that fail to discriminate hypotheses do not constitute (in particular contexts) “evi-
dence” for any of them, i.e., that “data” and “evidence” are not interchangeable
notions, second, that it does not follow from the fact that there is strong evidence for
a hypothesis as against one or more of its competitors that it is therefore highly
confirmed, third, that it does not follow from the fact that a hypothesis is highly
confirmed that there is strong evidence for it against its competitors. As a result,
there is little need to invoke such desperate expedients as God’s goodness,
Descartes’ own solution to the otherwise irremediable solipsism to which the
argument from dreaming appears to condemn us, to rescue us.

19However deeply ingrained it is. J.L. Austin, among many others, thinks that the only way to
avoid the conclusion is to deny the premise. In his view, there are all kinds of important differences
between waking and sleeping experiences. Thus he writes in Austin (1962, p. 48): “I may have the
experience … of dreaming that I am being presented to the Pope. Could it be seriously suggested
that having this dream is ‘qualitatively indistinguishable’ from actually being presented to the
Pope? Quite obviously not”. End of discussion! Here as so often in philosophy and elsewhere, it is
not the premise that is to blame but the inferential pattern, use of which is subsequently made. Our
aim is to enlarge the usual kit-bag to include patterns of uncertain inference that are not typically
combined.
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Chapter 11
Concluding Reflections

Abstract Our object in this monograph has been to offer analyses of confirmation
and evidence that will set the bar for what is to count as each and at the same time
provide guidance for working scientists and statisticians. Philosophy does not sit in
judgment on other disciplines nor can it dictate methodology. Instead, it forces
reflection on the aims and methods of these disciplines in the hope that such
reflection will lead to a critical testing of these aims and methods, in the same way
that the methods themselves are used to test empirical hypotheses with certain aims
in view. In the Appendix we discuss an application of the confirmation/evidence
distinction to an important problem in current ecological research and in the process
suggest ways of settling some outstanding problems at the intersection of statistics
and the philosophy of science.

Keywords Curve-fitting problem � “True-model” assumption

The curve-fitting problem is well known.1 It has to do with somehow reconciling
two conflicting desiderata, goodness-of-fit and simplicity. On the one hand, the
more closely a family of curves fits the available data, the more complex and
unwieldy it will be, the larger the probability of making erroneous predictions with
respect to future data. On the other hand, the simpler a family of curves (as mea-
sured, say, by the paucity of parameters) on the basis of which to predict future
data, the greater the probability of being at some distance from the “true” family of
curves. The problem is to avoid both over-fitting and over-simplifying, in an
intuitively plausible way. This involves providing and justifying criteria on the
basis of which a choice of a family of curves to represent the data available should
be made. It raises a number of complex statistical issues and does not have an easy
or generally-accepted solution.

Philosophers of science have their own version of the curve-fitting problem. It
has to do with reconciling something like the same two desiderata, goodness-of-fit

1See Forster and Sober’s classic paper on the subject (1994) followed by its evaluation in Howson
and Urbach’s standard reference work (2006), Bandyopadhyay et al. (1996) and Bandyopadhyay
and Boik (1999).
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with paradigms of classical and contemporary scientific practice and simplicity of
analyses of this practice which are for this very reason both insightful and
explanatory. Again the problem is to avoid both over-fitting and over-simplifying.

As we indicated in Chap. 4, there are a variety of critics who think that the
problem has no solution. The closer we get to an accurate description of scientific
practice, even over the past three or four hundred years, the more difficult it is to
find any sort of usable pattern in it, certainly nothing on the basis of which we could
give guidance to future scientists. If philosophers of science see a pattern, it is only
by taking currently-accepted ways of proceeding and imposing them on the past. In
the process, they do not simply idealize, but radically distort the data, understanding
Kepler and Newton, for instance, in ways in which Kepler and Newton did not
understand themselves.

There is something to this criticism, of course. But, it derives its force from three
assumptions traditionally made by philosophers of science from which we have
tried to distance ourselves in this monograph.

The first assumption is that there is one pattern which is at the same time both
descriptive and explanatory. Thus we have rather monolithic accounts collapsing the
concepts of evidence and confirmation and applying them across the board. This is not
a naïve assumption. It is made by many scientists and statisticians. It is also rooted in
the fact that the simpler the pattern, the more easily accessible and explanatory it is.
What has in fact happened in the case of almost all of the major accounts of confir-
mation and evidence set out in the 20th century is that in the attempt to handle
counter-examples, many of them fanciful, they have becomemore andmore complex
and arcane, adding new conditions as further equants and epicycles to their patterns,
and in the process losing much of their value to provide insight. Simplicity has many
virtues. The mistake is to limit the options to two: either hold on to the pattern,
endlessly complicating it, or abandon the search for any pattern as a waste of time. On
both options, the attempt to provide some sort of understanding of what is at stake
when scientists carry out experiments to test hypotheses is given up.

Here as elsewherewe followKant’s advice noted at the outset inChap. 1 to examine
carefully the shared premise in an on-going debate. Both sides to the particular
debate about the possibility of a helpful philosophical analysis of confirmation/
evidence agree that there is one pattern or there is none. On our view, to the contrary,
there are at least two—confirmation, which we have characterized in a Bayesian way
in terms of up-dating belief-probabilities in the light of new or re-considered data, and
evidence, characterized in terms of likelihoods and their ratios. As we have tried to
demonstrate, combining the two into some sort of unified account has led to a great
deal of confusion. There is nothing wrongwith unification: in philosophy as well as in
science it has a great deal of explanatory power. But pace those who continue to look
for “a theory of everything,” the desire for it can sometimes lead us astray. We have
argued that although the words “evidence” and “confirmation” are often used inter-
changeably, they in fact draw attention to two very different aspects of hypothesis
testing. It won’t do to substitute a great variety of accounts for one very complicated
single account. But a small number of relatively simple accounts should be capable of
providing genuine insight into at least some of the signal, but at bottom rather different,
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aspects of experimental science. In particular, we have tried to make some of Richard
Royall’s ideas concerning evidence known to a wider public in non-technical terms.
As we said at the outset, our aim was not to add to existing paradigms, but to redeploy
them and extend their applications. This is the aim of the first part of the monograph.

We have already dealt at length with the second assumption, that finding evi-
dence for a theory at the same time provides us with good reasons for believing that
the theory is true. Once again this “true-model” assumption opens the door to
critics, most often of the attempt to gain insight into the structure of scientific
inference, sometimes of science itself as an especially credible activity. The argu-
ment is that one “good reason” after another has been offered for theories that
turned out to be false. Once burned, twice afraid. The historical evidence provides
us with “good reasons” to believe that every theory that we now hold dear will one
day be overturned, and perhaps that there is no such thing as truth. It won’t do to
argue either that this time we have the truth-obtaining methodology straight and we
now have good reasons to believe that our theories are true or to rig the analysis in
such a way that the possession of “evidence” rightly so call guarantees their truth.
Better, we have claimed, to say that one theory is a better approximation to the truth
than another, admit the in-principle possibility that all of our theories are false, and
show how, in an objective way, some data constitute stronger evidence for a
hypothesis than other data. A main, although not the only aim of the second part of
the monograph, is to show how the “true-model” assumption operates in
well-known conceptions of evidence other than ours and why it should be rejected.

Once the true model assumption has been rejected, and we assume instead that
all of our models are but approximations, it might be wondered whether the concept
of confirmation, and more narrowly the Bayesian conception of it, has much work
to do. For however it is further analyzed, confirmation has to do with finding good
reasons for believing that certain of our hypotheses are true. Moreover, the
Bayesian conception that these “good reasons” are in some fundamental sense
personal undermines both the objective and the communal character of science. On
the one hand, objectivity is secured by agent-independent evidence. It does not rest
on individual belief, however strongly held. On the other hand, the formation and
testing of models is inter-personal and cumulative. Bayesianism identifies the
learning “agent” as an individual, albeit ideally rational, person. But the truth is that
the scientific community has learned much more than any individual scientist. This
knowledge has accumulated over thousands of years through a complex web of
transmission, colleague to colleague and teacher to student. It is this process that
should be the fundamental object of a philosopher of science’s attention.

We could put the point another way. We all learn from experience, some more
than others, re-distributing probabilities over hypotheses. But such learning
depends strongly on cultural background, physical state, and a host of other factors.
It is not well suited to be a model of scientific investigation or large-scale scientific
progress. Evidence is independent of these factors, it imposes norms, and it can

11 Concluding Reflections 155



accumulate over time. It is in these respects much better suited to form the basis of
what might be called “public” epistemology.2

Obviously enough, the conduct and the growth of scientific knowledge cannot be
entirely divorced from considerations of personal belief. Scientists are people, and
create their research programs informed by these beliefs. One cannot very well
describe scientific practice or lay an appropriate educational foundation for it,
without also including a “personal” epistemology within the description. So, to
provide a more comprehensive account of personal and public epistemology, the
distinction between belief-related notions, in which confirmation and the true-model
assumption play a role, and impersonal evidence is crucial. What is now needed is a
deeper understanding of how bridges linking one to the other are best built.

The third assumption is closely linked to the second. It is that a philosophical
analysis of the concepts of evidence and confirmation will set the bar for what is to
count as each and provide guidance for working scientists and statisticians.
Philosophy does not sit in judgment on other disciplines nor can it dictate methods.
Instead, it forces reflection on the aims and methods of these disciplines in the hope
that such reflection will lead to a critical testing of their aims and methods, in the
same sort of way that the methods themselves are used to test empirical hypotheses.
At the same time, we have tried to show how issues that might seem initially to be
of interest only to philosophers of science have a much wider bearing. This is the
point of the third part of our monograph: analyses of the concepts of evidence and
confirmation, at least insofar as conducted in our way, are capable of not only
resolving key paradoxes in the philosophy of science, but of shedding important
light on the sorts of fundamental questions that all human beings raise about the
world and our knowledge of it.

The hope is that our account has enough goodness-of-fit to scientific practice and
enough simplicity and clarity to provide insight, and to put some of the issues
mulled over by generations of philosophers in a new and larger context.
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Appendix
Projections in Model Space: Multi-model
Inference Beyond Model Averaging

Mark L. Taper and José M. Ponciano

A reviewer of the manuscript challenged us to do two things. First, to move beyond
simple likelihood ratio examples and show how evidential ideas are used in the
practice of science. And, second to solve some deep problem in ecology using this
framework. To answer the first challenge, we discuss information criteria differ-
ences as a natural extension of the likelihood ratio that overcomes many of the
complexities of real data analysis. To answer the second more substantive chal-
lenge, we then extend the information criterion model comparison framework to
much more effectively utilize the information in multiple models, and contrast this
approach with model averaging, the currently dominant method of incorporating
information from multiple models (Burnham and Anderson 2002). Model averag-
ing is a confirmation-based-approach.

Because of limitations in both time and allowable word count, this will be a
sketch of a solution.1 We deeply appreciate the reviewer’s challenge because the
work it has forced us to do has been very rewarding.

Comparing Models Forms that are not Fully Specified

The evidential theory developed so far in this monograph has concerned fully
specified models, that is, models with given parameter values. As such, they
completely describe the probability distribution for data consistent with those
models. Scientists, on the other hand, generally do not have that much fore-
knowledge. Instead, they commonly propose model forms, that is, models known
up to the functional form of their elements, but without specific parameter values.
Parameter values are estimated by fitting the model forms to data, and comparisons
of these now fully-specified models made using the same data. As both estimated
models do have likelihoods, it would seem straightforward to compare them with
likelihood ratios, the measure which has been invoked in the body of this mono-
graph to capture the evidential strength for one model against its rival.

1Technical statistical details will follow in other fora, beginning with a symposium at the Japanese
Institute of Mathematical Statistical Mathematics in January of 2016.
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Unfortunately, important problems do arise. The estimation of parameters cre-
ates a bias in the calculation of the probability of the data under the model and
therefore it also creates a bias in the estimated likelihood of the model. This bias is
related to the number of parameters in the model; the more parameters a model has,
the greater the (positive) bias there is in the estimated likelihood. Carried to the
extreme, if a model has as many parameters as there are data points, it can fit the
data exactly, and its likelihood will become infinite. This despite having no pre-
dictive power.

Classically this problem has been handled (at least in the context of nested
models) with the use of likelihood ratio tests. But, what about non-nested models?
Constraining your models to be nested imposes a severe limitation on the ability of
scientists to explore nature through models. Further, the likelihood ratio test is an
error-statistical approach where the bias due to parameterization is accounted for in
the critical value of the test. This book (Chap. 6) and Taper and Ponciano (2015)
argue for the greater utility of an evidential approach compared to an
error-statistical approach.

In 1973, Hirotogu Akaike wrote a brilliant paper developing the AIC, and
thereby solving, in large part, the estimation bias problem of the likelihood ratio,
allowing for a huge expansion in the scope of evidential analysis. Although Akaike
referred to the AIC as “an Information Criterion,” the AIC is universally termed the
“Akaike Information Criterion.”

Akaike with Tears

Technical accounts deriving Akaike’s Information Criterion (AIC) exist in the lit-
erature (see for instance the general derivation of Burnham and Anderson 2002,
Chap. 7), but few have attempted to clarify Akaike’s (1973) paper, step by step.
A notable exception is deLeeuw’s (1992) introduction to Akaike (1973)
Information Theory, which made it clear that more than a technical mathematical
statistics paper, Akaike’s seminal contribution was a paper about ideas: “…This is
an ‘ideas’ paper, promoting a new approach to statistics, not a mathematics paper
concerned with the detailed properties of a particular technique…”2 deLeeuw then
takes on the task of expunging the ideas from the technical probabilistic details and
coming up with a unified account clarifying both the math and the ideas involved.
His account is important because it makes evident that at the very heart of the
derivation Akaike was using Pythagoras’ theorem. It will be seen later that our
contribution is to take this derivation one step further by using Pythagoras’ theorem

2If this is their initial encounter with information criteria, we suggest that readers first familiarize
themselves with a gentler introduction such as Malcolm Forster and Elliott Sober’s “How to Tell
When Simple, More Unified, or Less Ad Hoc Theories Will Provide More Accurate Predictions,”
which explains, develops, and applies Aikaike’s ideas to central problems in the philosophy of
science. British Journal for the Philosophy of Science 45: 1–35, 1994. A comparison between
different standard information criteria can be found in Bandyopadhyay and Brittan (2002).
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again. In what follows we will set the stage to explain our contribution using
Akaike (1973, 1974) and deLeeuw (1992). Given this monograph’s context, our
account will focus more on the ideas than on the technical, measure theoretic details
for the sake of readability and also because this approach will allow us to shift
directly to the core of our contribution.

A central objective in scientific practice is trying to come up with some measure
of comparison between an approximating model and the generating model.
Following Akaike, we shall be concerned for the time being with the parametric
situation where the probability densities are specified by a set of parameters h ¼
ðh1; h2; . . .; hLÞ0 in the form f ðx; hÞ. The true, generating model will be specified by
setting h ¼ h0 in the density f . Setting aside the fact that truth is unknown, under
this setting the comparison between a general model and the true model can be

done, as in the rest of the monograph, via the likelihood ratio sðx; h; h0Þ ¼ f ðx;hÞ
f ðx;h0Þ

without loss of efficiency. This well-known statistical fact suggests using some
discrimination function Uðsðx; h; h0ÞÞ of the likelihood ratio between θ and the true
model h0. The data, x, are random and so the average discrimination over all
possible data would better represent the distance between a model and the truth.
Such an average would then be written as

Dðh; h0;UÞ ¼
Z

f ðx; h0ÞUðsðx; h; h0ÞÞdx ¼ Ex Uðsðx; h; h0ÞÞ½ �;

where the expectation is over the sampled stochastic process of interest X. Akaike
then suggested study of the sensitivity of this quantity to the deviation of θ from h0.
Two questions of interest immediately arise: can such an average discrimination be
minimized and if so, can its minimization be estimated from realized observations
of the process?

To get at this quantity, Akaike thought of expanding it via a Taylor series around
h0 and keeping a second order approximation, which we write here for a univariate θ:

Dðh; h0;UÞ � Dðh0; h0;UÞþ ðh
� h0Þ@Dðh; h0;UÞ

@h

����
h¼h0

þ ðh� h0Þ2
2!

@2Dðh; h0;UÞ
@h2

����
h¼h0

þ � � �

To write this approximation explicitly, note that sðx; h; h0Þjh¼h0 ¼ 1: Also, note that
since f is a probability density

R
f ðx; hÞdx ¼ 1, which together with the regularity

conditions that allow differentiation under the integral sign results inR @f ðx;hÞ
@h dx ¼ R @2f ðx;hÞ

@h2
dx ¼ 0. Then, @Dðh;h0;UÞ

@h

���
h¼h0

¼ 0 and
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@2Dðh; h0;UÞ
@h2

����
h¼h0

¼
Z

@

@h
@UðsÞ
@s

@s
@h

� �
f ðx; h0Þdx

����
h¼h0

¼
Z

@2UðsÞ
@s2

@s
@h

� �2

f ðx; h0Þdx
�����
h¼h0

þ
Z

@2s

@h2
@UðsÞ
@s

f ðx; h0Þdx
����
h¼h0

¼ U00ð1ÞZ 1
f ðx; h0Þ

@f ðx; hÞ
@h

� �2

f ðx; h0Þdx
�����
h¼h0

¼ U00ð1ÞZ @ log f ðx; hÞ
@h

� �2

f ðx; hÞdx
�����
h¼h0

¼ U00ð1ÞIðh0Þ;

where Iðh0Þ is Fisher’s information. In going from the first line to the second line, a
combination of the product rule and chain rule is employed. In going from the
second line to the third, it is noted that the results given immediately above indicate
that the right hand integral is 0. This preliminary result is non-trivial because it
demonstrates that the resulting approximation of the average discrimination function

Dðh; h0Þ � Uð1Þþ 1
2
U00ð1Þðh� h0Þ2Iðh0Þ

is directly scaled by the theoretical variance of the Maximum Likelihood Esti-
mator (MLE). Next, Akaike proposed using the functional form UðtÞ ¼ �2 logðtÞ so
thatD behaves like a distance, i.e., is always non-negative andDðh0; h0Þ ¼ Uð1Þ ¼ 0.
The factor of 2 is conventional. Conveniently, the approximation, from here on
denoted as Wðh; h0Þ then becomes Dðh; h0Þ � Wðh; h0Þ ¼ ðh� h0Þ2Iðh0Þ. It is
straightforward to show that in the multivariate case, the approximation is written as
the quadratic form Wðh; h0Þ ¼ ðh� h0Þ0Iðh0Þðh� h0Þ, where Iðh0Þ is Fisher’s
information matrix. On the other hand, inserting Akaike’s choice of a functional form
into the original definition of the average discrepancy gives

Dðh; h0Þ ¼ �2
Z

f ðx; h0Þ log f ðx; hÞ
f ðx; h0Þ

� �
dx

¼ �2EX log
f ðX; hÞ
f ðX; h0Þ

� �
¼ �2 EX log f ðX; hÞð Þ � EX log f ðX; h0ð Þ½ �
¼ 2EX log f ðX; h0Þð Þ � 2EX log f ðX; hÞð Þ:

This form of the average discrimination function is known as the negentropy, or the
Kullback–Leibler (KL) divergence. So from the start, Akaike was able to make two
crucial connections between his choice measure of discrepancy between the true
generating model and an approximating model. One, directly bringing the theory of
ML estimation into the scaling of such discrepancy, and the other, linking these
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concepts with a wealth of results in Information Theory. Thus, it was natural for
Akaike to call Dðĥ; h0Þ the probabilistic entropy. If X1 ¼ x1;X2 ¼ x2; . . .;Xn ¼ xn
observations from the process X are available, then using the law of large numbers
the KL divergence (or probabilistic entropy) could be estimated consistently with the
average likelihood ratio

bDnðĥ; h0Þ ¼ �2� 1
n

Xn
i¼1

log
f ðxi; ĥÞ
f ðxi; h0Þ ;

where ĥ is the MLE. In reality, one cannot compute this likelihood ratio because the
true model h0 in the denominator is unknown. However, because for every data point
xi the denominator in this average log-likelihood ratio is the same constant, Akaike
pointed out that even if truth is unknown, we do know that maximizing the (log-)
likelihood also minimizes the KL divergence between the estimated density and the
true density. This is why Akaike called his contribution an “extension of the principle
of maximum likelihood”. Not content with this result, and in a remarkable display of
the reaches of frequentist thinking, Akaike pointed out that because multiple real-
izations of the array of data points X1;X2; . . .;Xn yield multiple estimates of h0, one
should in fact think of the average discrepancy as a random variable, where the
randomness is with respect to the probability distribution of theMLE ĥ. Therefore one
may in fact be able to minimize the KL divergence between the true generating model
and the approximating model by minimizing the average ofDðĥ; h0Þ—averaged over
the distribution of ĥ. The problem ofminimization of theKLdivergence then becomes
a problem of approximation of an average, something that statisticians are (suppos-

edly) good at. LetRðh0Þ ¼ Eĥ Dðĥ; h0Þ
h i

denote our target average. Substituting the

probabilistic entropy by its definition using the expectations over the process we get

Rðh0Þ ¼ EĥDðĥ; h0Þ ¼ 2Eĥ EX log f ðX; h0Þð Þ � EX log f ðX; ĥÞjĥ
� �h i

¼ 2EX log f ðX; h0Þð Þ � 2Eĥ EX log f ðX; ĥÞjĥ
� �h i

:

The first term in this expression is an unknown constant whereas the second term is
a double expectation. Instead of working directly with these expectations, Akaike
thought of substituting for the probabilistic entropy Dðĥ; h0Þ by its quadratic
approximation Wðĥ; h0Þ via a Taylor series expansion and a very creative and
useful way to re-write this expression. Akaike noted that the quadratic form

Wðh; h0Þ ¼ ðĥ� h0Þ0Iðh0Þðĥ� h0Þ

used to approximate bDnðĥ; h0Þ can be seen (as any quadratic form involving a
positive definite matrix and a fixed point) as the squared statistical distance between
ĥ and h0. This is the square of a statistical distance because proximity between
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points is weighted by the dispersion of the points in the multivariate space, which is
in turn proportional to the eigenvalues of the positive definite matrix Iðh0Þ (see
plots explaining the geometric interpretation of quadratic forms in Johnson and
Wichern 2002, Chaps. 1 and 2). Expressing the average discrepancy as the squared
of a distance was a crucial step in Akaike’s derivation because it opened the door
for its decomposition using Pythagoras’ theorem. By doing such decomposition,
one can immediately visualize through a simple sketch the ideas in his proof (see
Fig. 1). The first vertex of Akaike’s right-angle’s triangle is the truth h0 of
dimension L (unknown). The second vertex is the estimator ĥ of dimension k� L,
as it comes from an approximating model. We will denote this estimator as ĥk to
emphasize its smaller dimension. The third vertex is h0k which is the orthogonal
projection of the truth in the plane where all estimators of dimension k lie, that we
will denote Hk. A fourth point crucial to derive the AIC is given by the estimator of
h0 from the data using an approximating model with the same dimension as h0. To
distinguish it from ĥk we will denote it as ĥ0. This estimator can be thought of lying
in the same plane as h0. In the sketch in Fig. 1, we have labeled all the edges with a
lowercase letter. To make the derivation as simple as possible, we will do the
algebraic manipulations with these letters. In so doing, we run the unavoidable risk
of trivializing one of the greatest findings of modern statistical science, all for the
sake of transmitting the main idea behind the proof. The reader, however, should be
well aware that these edges (lower case letters) denote, by necessity, random

Fig. 1 The geometry of Akaike information criteria. h0 is the generating model. h0k is the closest
projection of the generating model onto the plane, Hk , defined by the approximating models. ĥk is
the maximum likelihood estimate of an approximating model, which can be though of as the
orthogonal projection of the estimator of θ0 by an approximating model with the same dimension
as the generating model, that lies in the same surface as θ0 (the upper right vertex of (h,a,e,c)). The
diagonal b is the discrepancy between the MLE of an approximating model and the generating
model. The vertical h is the discrepancy between the generating model and its best possible
projection to the plane. Edge h is fixed but edges a, e and c are random. Akaike showed that d2 =
h2 + c2 - q, where q is the inner product between c and h, and is much smaller than the other
(quadratic) terms. Akaike then used the expected value of the approximation d2 = h2 + c2 to derive
his statistic. Depicted is such approximate configuration.
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variables and that in the real derivation, more complex arguments including limits
in probability and fundamental probability facts are needed.

Given the law of large numbers approximation of the average discrepancy using
the average log-likelihood ratio, Akaike’s initial idea was to use, as estimate of

Wðĥ; h0Þ;bDnðĥk; ĥ0Þ ¼ �2� 1
n

Pn
i¼1

log f ðxi;ĥkÞ
f ðxi;ĥ0Þ (=e2 in the sketch below) and let

n ! 1. However, the Pythagorean decomposition illustrated below shows that the

estimated discrepancy bDnðĥk; ĥ0Þ will be a biased estimate of the target discrepancy
because of the substitution of the ML estimators. One point in favor of the usage ofbDnðĥk; ĥ0Þ, however, is that ML theory tells us that nbDnðĥk; ĥ0Þ is chi-square
distributed with degrees of freedom L� k. With this result at hand, and using
simple geometry, Akaike sought to re-write the Pythagorean decomposition usingbDnðĥk; ĥ0Þ. The last piece of the puzzle needed to be able to do that was to
demonstrate via convergence in probability calculations that the edge a ¼ ðĥk; h0kÞ
was the stochastic projection of the edge c ¼ ðĥ0; h0Þ in the Hk plane. Below is the
sketch aforementioned:

In simple terms, the objective is to solve for the edge length b using what we can

estimate (e2 through the log-likelihood ratio nbDnðĥk; ĥ0Þ). Using Pythagoras’ the-
orem we get that

b2 ¼ h2 þ a2: ð1Þ

Note also that d2 ¼ e2 þ a2 so that

e2 ¼ d2 � a2: ð2Þ

However, arguing that the third term of the squared distance d2 ¼ c2 þ h2

�2c:h: cos/ remained insignificant compared with the other squared terms, Akaike
re-wrote it as d2 � c2 þ h2; which upon substituting into (2) gives

e2 ¼ h2 þ c2 � a2: ð3Þ

Now, doing (1–3) gives b2 � e2 ¼ h2 þ a2 � h2 � c2 þ a2. Hence, it follows that

b2 ¼ e2 þ 2a2 � c2: ð4Þ

Expressing the square distances in Eqs. (1–3), expanding them using Taylor Series
expansions, estimating Fisher’s Information in each case with the observed infor-
mation and using convergence in probability results, Akaike was able to show that

nc2 � na2 � v2L�k;
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and that

na2 � v2k ;

so that Eq. (4) multiplied by n can be re-written as

nb2 ¼ nWðĥk; h0Þ � nDnðĥk; ĥ0Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼log�likelihood ratio

þ na2|{z}
� v2k

� nðc2 � a2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
� v2L�k

:

The double expectation from the original average discrepancy definition is then
implemented by simply replacing the chi-squares by their expectations, which
immediately gives

nEĥk
Wðĥk; h0Þ
h i

� nDnðĥk; ĥ0Þþ 2k � L; or

Eĥk
Wðĥk; h0Þ
h i

� �2
n

Xn
i¼1

log f ðxi; ĥkÞþ 2k
n
� L

n
þ 2

n

Xn
i¼1

log f ðxi; ĥ0Þ:
ð5Þ

Recall that what Eq. (5) is approximating is in fact

Rðh0Þ ¼ EĥDðĥk; h0Þ ¼ �2Eĥ EX log f ðX; ĥkÞjĥk
� �h i

þ 2EX log f ðX; h0Þð Þ; ð6Þ

which is the expected value (with respect to ĥk) of

�2
Z

f ðx; h0Þ log f ðx; ĥkÞf ðx; h0Þ dx ¼ �2
Z

f ðx; h0Þ log f ðx; ĥkÞdxþ 2
Z

f ðx; h0Þ log f ðx; hÞdx:

ð7Þ

Using Eq. (5) where the first two terms are known and the next two terms include
the unknown dimension, and the law of large numbers approximation of the first
integral, Akaike concluded that an unbiased estimation of the expected value over
the distribution of ĥk of the first integral would be given by the average of the first
two terms in Eq. (5).

The first term in Eq. (5) is (−2/n) times the log likelihood with the approximating
model. The last two terms cannot be known, but because upon comparing various
models they will remain the same can be ignored in practice. Because n also
remains the same across models, in order to compare an array of models one only

has to compute AIC ¼ �2
Pn
i¼1

log f ðxi; ĥkÞþ 2k and choose the model with the

lowest score as the one with the smallest discrepancy to the generating model. The
logic can be graphically represented by Fig. 2 (drawn from Burnham et al. 2011)

In the popular literature (e.g. Burnham andAnderson 2002, p. 61, or Burnham et al.

2011) it is often asserted that the −AIC/2 is an estimator ofEĥ EX log f ðX; ĥkÞjĥk
� �h i

.
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It is not, as Akaike (1974) states, the estimator of this quantity is –AIC/2n. For the
qualitative comparison of models, this distinction makes no difference, but factoring
the sample size (n) into the AIC allows a comparer of models to assess not only which
model appears best, but what is the strength of evidence for that statement.

The Problem of Multiple Models

A model-centric view of science coupled with a disavowal of the absolute truth of
any model pushes the scientist to the use of many models. Once this stance is taken,
the question of how to use multiple models in inference naturally arises. Inference
by the best model is not adequate as many models may be indistinguishable on the
basis of pairwise comparison (see Chap. 2).

Currently, the dominant method for incorporating information from multiple
models is model averaging. This comes in several flavors. In all cases model
averaging is inherently, and generally explicitly, a Bayesian approach. Most
common in ecology is averaging model parameter estimates or model predictions
using Akaike weights. The Akaike weight for the ith model is given as:

wi ¼ exp �Di=2ð ÞPR
r¼1

exp �Dr=2ð Þ
;

where Di is the difference between a model’s AIC value and the lowest AIC value
from the model set of R models indexed by r. Although it is not always pointed out,
wi is a posterior probability based on subjective priors of the form

Fig. 2 The generating model is indicated by g, and the ith approximating models by fi. Kullback–
Leibler information discrepancies (di) are shown on the left as the distance between approximating
models and the generating model. The Δ AIC shown on the right measure the distance from
approximating models to the best approximating model. All distances are on the information scale
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qi ¼ C � exp 1
2
ki log nð Þ � ki

� �

where qi is the prior for model i, C is a normalization constant, ki is the number of
parameters in the model, and n is the number of observations. The use of this prior
makes model averaging a confirmation approach.

Two difficulties with model averaging for an evidentialist are: (1) the weights are
based on beliefs, and are thus counter to an evidential approach. And (2) as a
practical matter, model averaging does not take into account model redundancy.
The more effort put into building models in a region of model space, the more
heavily that region gets weighted in the average. We propose the alternative of
estimating the properties of the best projection of truth, or a generating model, to
the hyper-plane containing the model set. This mathematical development extends
Akaike’s insight by using the known KL distances among models as a scaffolding
to aid in the estimation of the location of the generating model.

For convenience, we follow Akaike’s (1974) notation and denote Sgf ¼R
f ðx; h0Þ log f ðx; ĥkÞdx and Sgg ¼ R

f ðx; h0Þ log f ðx; hÞdx, where the g refers to the
‘generating’ model and the f to the approximating model. Akaike’s observation is
then written as:

cSgf ¼ 1
n

Xn
i¼1

log f ðxi; ĥkÞ � k
n
¼ �AIC

2n
: ð8Þ

Accordingly, the KL divergence between a generating model g and an approxi-
mating model f can simply be written as KLðg; f Þ ¼ Sgg� Sgf : From now on we
will stick to this short-hand notation. One last detail that we have not mentioned so
far is the fact that Akaike’s approximation works provided ĥk is close to h0 for any k.
In fact, this is precisely why the Pythagorean decomposition works. The staggering
and successful use of the AIC in the scientific literature shows that such approxi-
mation is in many cases reliable. Under the same considerations, we now extend
these ideas to the case where we want to draw inferences from the spatial configu-
ration of f1; f2. . . approximating models to the generating model g.

The fundamental idea of our contribution is to use the architecture of model
space to try to estimate the projection of truth onto a (hyper)plane where all the
approximating models lie. Having estimated the location of truth, even without
estimating it per se would anchor the AIC statistics in a measure of overall
goodness of fit, as well as provide invaluable insights into the appropriateness of
model averaging. The intuition of the feasibility of such a task comes from the
realization that approximating models have similarities and dissimilarities.
A modeler is drawn naturally to speak of the space of models. All that remains is to
realize that that language is not metaphor, but fact. KL divergences can be calcu-
lated between any distributions and are not restricted to between generating pro-
cesses and approximating models. A set of models has an internal geometrical
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relationship which constrains it and therefore has information about the relationship
of approximating models and the generating process.

Computational advances have rendered straightforward algorithmic steps that
while conceptually feasible would have been computationally intractable at the time
that Akaike was developing the AIC. First, it is now easy to calculate the KL
divergence between any two models. For instance, for the Normal distribution, the
KL discrepancy can be computed exactly using the package gaussDiff in the sta-
tistical software R. Other packages will estimate the KL divergences of arbitrary
distributions. Thus for a large set of approximating models, a matrix of estimated
KL divergences among the set of models can be constructed. Second, parallel
processing has tamed the computer intensive Non-Metric Multidimensional
(NMDS) scaling algorithm which can take an estimated matrix of KL divergences
and estimate the best Euclidean representation of model space in a (hyper)plane
with coordinates y1; y2; . . .ð Þ. Nothing in our development restricts model space to
be restricted to R

2. To emphasize this we speak of a (hyper)plane, but to have any
hope of visualizing we stay in R

2 for this paper.
Suppose then that one can place the approximating models f1, f2; . . . , on a

Euclidean plane, as in the sketch below. For simplicity we have placed only two
models in the sketch. Our derivation is not constrained to their particular config-
uration in the plane, relative to the generating model (truth), as the Fig. 3a, b show.
Define m with coordinates ðyH1 ; yH2 Þ as the projection of the generating model (truth)
in the Euclidean plane of models. This projection is separated by the length h to the
generating model. Define dðfi;mÞ as the distance in the hyper(plane) of model
i from m. Of course, the edges and nodes in this plane are random variables,
associated with a sampling error. But, for the sake of simplicity and just as we did
above to explain Akaike’s derivation of the AIC, we conceive them for the time
being as simple fixed nodes and edges.

Fig. 3 The geometry of model space. f2 and f3 are approximating models residing in a
(hyper)plane. g is the generating model. m is the projection of g onto the (hyper)plane. d(.,.) are
distances between models in the plane. d(f2,f3) ≈ KL(f2,f3) with deviations due to the dimension
reduction in NMDS and non-Euclidian behavior of KL divergences. As KL divergences decrease,
they become increasingly Euclidian. Panel a shows a projection when m is within the convex hull
of the approximating models, and Panel b shows a projection when m is outside of the convex hull

Appendix: Projections in Model Space … 167



Then, using Pythagoras and thinking of the KL divergences as squared dis-
tances, the following equations have to hold simultaneously:

KLðg; f1Þ ¼ dðf1;mÞ2 þ h21
KLðg; f2Þ ¼ dðf2;mÞ2 þ h22

..

.

8><
>:

where necessarily h1 ¼ h2 ¼ hi ¼ � � � ¼ h . In practice, one can decompose the KL
divergence into an estimable component, Sgfi and a fixed unknown component Sgg.
Given that the Sgfi are estimable as in Eq. (8), one can re-write the above system of
equations including the unknown constants Sgg; yH1 ; y

H
2 as follows:

Sgg� dSgf1 � dðf1;mðyH1 ; yH2 ÞÞ2 ¼ h21;
Sgg� dSgf2 � dðf2;mðyH1 ; yH2 ÞÞ2 ¼ h22;

..

.

8><
>: ð9Þ

Then, operationally, in order to estimate the location of the orthogonal projection of
the generating model in the plane of approximating models, one can easily program
the system of Eq. (9) into an objective function that, for a given set of values of the
unknown parameters Sgg; yH1 ; y

H
2 ; computes the left hand sides of Eq. (9) and

returns the sum of the squared differences between all the h2i . Then, a simple
minimization of this sum of squared differences leads to an optimization of the
unknown quantities (Fig. 4).

hyperplane axis 1 

hyperplane axis 2

Z

f1 f4

f2 m

g

f3

f5

Fig. 4 The models of Fig. 2 visualized by our new methodology. As before, g is the generating
model and {f1,…,f5}, are the approximating models. The dashed lines are KL distances between
approximating models, which can be calculated. The solid black lines are the KL distances from
approximating models to the generating model, which now can be estimated. The model labeled m
is the projection of the generating model to the plane of the approximating models. The solid gray
line shows h, the discrepancy between the generating model and its best approximation in the
NMDS plane
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We demonstrate this approach with a simulation based on the published eco-
logical work of Grace and Keely (2006). Analyzing community composition data at
90 sites over 5 years, they studied the generation of plant community diversity after
wildfire using structural equation models. Structural equation modeling is a pow-
erful suite of methods facilitating the incorporation of causal hypotheses and
general theoretical constructs directly into a formal statistical analysis (Grace and
Bollen 2006, 2008; Grace 2008; Grace et al. 2010). The final model that Grace and
Keely arrived at is shown in Fig. 5.

The figure should be read to mean that species richness is directly influenced by
heterogeneity, local abiotic conditions, and plant cover. Heterogeneity and local
abiotic conditions are themselves both directly influenced by landscape position,
while plant cover is influenced by fire severity, which is influenced by stand age,
which is itself influenced by landscape position. Numbers on the arrows are path
coefficients and represent the strength of influence.

Our purpose in presenting this model is not to critique it or the model identifi-
cation process by which it was found, but to use it as a reasonably realistic biological
scenario from which to simulate. In short, we play god using this as a known true
generating process. We consider in this analysis 41 models of varying complexity
fitted to the simulated data. They cover a spectrum from underfitted to overfitted.

Fig. 5 The final model of plant diversity generation from Grace and Keely (2006) simplified by
ignoring measurement error. Arrows indicate causal influences. The standardized coefficients are
indicated by path labels and by path widths
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We calculated the NMDS 2-dimensional model space as described above. The
stress for this NMDS is extremely low (0.006 %) indicating the model space fits
almost perfectly into an R

2plane. We have plotted the fitted models in this space,
grey-scale coded by the AIC categories. We have also plotted in Fig. 6 the location
of our methods estimated projection of the generating model to the NMDS plane,
the model averaged location using Akaike weights, and the true projection of the
generating model to the NMDS plane (we know this because we are acting as God).
We can see in Fig. 6 that the estimated projection is slightly closer to the true
projection than is the model-averaged location.

In Fig. 7 we plot the effect on the estimated projection and model average of
deleting models from consideration. We sequentially delete the left-most model
remaining in the set, recalculating locations with each deletion. We see that the
model-averaged location shifts systematically rightward with deletion, and that the
location of the estimated projection is in this example more stable than the model
averaged location. It remains in the vicinity of its original estimate even after all
models in the vicinity of that location have been removed from consideration. If we
delete from the right, the model average moves systematically leftward. The model
projection location is, in this sequence, less stable than under deletion from the left.
These deletion exercises highlight several interesting facts about the two types of
location estimates that are implicit in the mathematics, but easily overlooked. First,
the model average is constrained to lie within the convex hull3 of the approximating
model set. If you shift the model set, you will shift the average. Second, the
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Fig. 6 NMDS space of 41
near approximating modes.
The true projection, M, of the
generating model to the
NMDS plane. The estimated
location of the projection, m,
and the location, a, of the
model average

3The convex hull of a set of points in a plane is easily visualized as the space contained by a rubber
band placed around all of the points.
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estimated generating model projection as a projection can lie outside of the convex
hull. Third, because of the geometrical nature of the projection estimate, dis-
tant models can contribute information to the location of the best projection. This is
the difference between rightward and leftward deletion. There are several models
with high influence on the right hand side of the plot which are retained until the
end in rightward deletion, but removed early in leftward deletion.

Unlike model averaging, the model projection methodology also produces
estimates of two more quantities. The Sgg, the neg-selfentropy of the generating
process, is estimated as −9.881. As God, we know that the true value is −9.877.
These two agree to three significant figures. Also estimated is the distance of the
generating process from the (hyper)plane of the NMDS model space. This is very
important, because if the generating process is far from the (hyper)plane then any
property estimate based on information from the model set should be suspect. The
estimate for this discrepancy is 0.00018, indicating that is very close the (hyper)-
plane. The true discrepancy is 5.8 e−08.

Discussion

This is just a brief sketch of an approach. Much statistical development, extension
and validation are needed. These will be reported in other venues. Topics for
development include:

Response surface methods to predict the properties of models near the generating
model. The model average does weight models with low AIC more heavily than
models with higher AIC, but does not take into consideration the rate of change of
properties across the space. Thus a response surface approach should yield more
accurate estimates.
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Extensions beyond the near model constraint. As the KL distance between
approximating models and the generating model increases, −AIC/2n becomes an
increasingly biased and variable estimate of the Sgf component of the KL distance
between the approximating model and the generating model. This effect is strong
enough that sometimes very bad models can have low delta AIC values, even
sometimes appearing as the best model. It seems reasonable to think that using
heteroskedastic nonlinear regressions such as described by Carroll and Ruppert
(1988) and Carroll et al. (1995) will allow for incorporating information from much
more distant models into the estimated projection. If this does not prove effective, at
least the region in which the projection of the generating model resides can be
found by plotting the density of AIC good models in the NMDS space. The pro-
jection methodology can be applied in the high density region.

As described above, one of the expectations taken in calculating the AIC is over
parameter estimates. Estimation of the location and properties of the estimated
projection can likely be improved using the reduced variance bias corrected
bootstrap information criterion of Kitagawa and Konishi (2010). A benefit of this is
that confidence intervals on the estimated projection can be simultaneously calcu-
lated. These intervals are based in frequentist probability and can be expressed
either as error statistical confidence intervals or as evidential support intervals. This
contrasts with intervals produced by model averaging, which despite their sometime
presentation as error statistics are actually posterior probability intervals (under a
cryptic assumption that the posterior distribution is normal).

Despite the substantial work that still needs to be done, the approach laid out
here already has shown a number of clear and substantial advantages over the
Bayesian-based model averaging. First, heuristically, the simple ability of being
able to visualize model space will aid in the development of new models. Second,
the estimated generating model projection is less constrained by the configuration
of the model set than is the model average. Third, Sgg, the neg-selfentropy of the
generating process itself is estimable. It has long been assumed that this is
unknowable, but it can be estimated and is estimated as part of our procedure. In the
example it is estimated quite precisely. Sgg as a measure of the dispersion of the
generating process is itself of great interest. Fourth, the distance of the generating
process from the (hyper)plane of the estimated model space can be estimated. It has
long been a complaint of scientific practitioners of model identification through
information criteria that they can tell which of their models is closest to the gen-
erating process, but they can’t tell if any of the models in their model set are any
good. Now discrepancy is statistically estimable. Fifth, the strain between a priori
and post hoc inference is vacated. The study of the structure of model space corrects
for misleading evidence (chance good results), accommodation (over-fitting), and
cooking the models. Theoretically, the more models are considered the more robust
the scaffolding from which to project the location of the generating process.
Currently, the model set for the model projection approach is limited by the near
model requirement common to all information criteria analysis. However, as
indicated above, non-linear modeling should allow the analyst to bootstrap

172 Appendix: Projections in Model Space …



(Glymour sense) the structure of model space to validly include in the projection
information from models more distant than is valid for model averaging.

Model projection is an evidential alternative to Bayesian model averaging for
incorporating information from many models in a single analysis. Model projection,
because it more fully utilizes the information in the structure of model space, is able to
estimate several very important quantities that are not estimated by model averaging.
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Afterword

We began the monograph with an African Proverb for working together to go
farther. It applies in particular to deepening our understanding of scientific
methodology. We end with a quote from Stephen Hawking that highlights our
approach in an especially significant way: “[N]ot only does God play dice, but…he
sometimes throws them where they cannot be seen.” At the level of practice, we
believe scientists are bent on finding those hidden dice, whether broken, biased, or
unfair. They do so with better and better models to approximate reality, although in
the nature of the case those models are strictly false. Methodology is in this general
sense probabilistic. But it is more specifically probabilistic as well. Even physics,
that traditional paradigm of exactitude, should be construed stochastically with
parameters to estimate making room for errors in measurements. The possibility of
misleading evidence captures our approach to those model-building at still another
level. Statisticians who “get to play in everybody’s backyard” help build those
models often aimed at estimating parameters as part of probing natural phenomena.
At a meta-level, philosophers also have distinctive roles to play. For example, to
make scientists and scientifically-minded philosophers aware of their assumptions
“where they cannot be seen” especially in their model-building endeavors in which
conflating “evidence” and “confirmation” is likely to occur. Developing a credible
philosophy of science that escapes this conflation is indispensable. The position we
have advanced in this Monograph is based on a multi-disciplinary approach. In our
view it is required for a present day multi-disciplinary audience as it has become the
“new normal” in both the practice and theory of science.
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