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Chapter 1
Introduction

Abstract Neurosemantics is not yet a common term and in current neuroscience
and philosophy it is used with two different sorts of objectives. One deals with the
meaning of the electrical and the chemical activities going on in neural circuits.
This way of using the term regards the project of explaining linguistic meaning
in terms of the computations done by the brain. This book explores this second
sense of neurosemantics, but in doing so, it will address much of the first as well,
for we believe that the capacity of neural circuits to support linguistic meaning,
hinges on their peculiar role in coding entities and facts of the world. It is an
enterprise at the edge of the available state-of-the-art knowledge in neuroscience
and specifically, in the growing understanding of brain computational mechanisms.
We conceive neurosemantics, however, as the natural evolution of a long standing
project that began in the early days of Boole’s logic, the idea that semantics can
be construed and explained in mathematical terms. Classical formal semantics, for
a very long time, excluded from the analysis of language any account of mental
processes, which on the contrary, became the central focus during the cognitive turn.
Cognitive semantics, however, failed to provide a rigorous mathematical framework
for semantic processes. Today, it is possible to begin explaining language by way
of a new mathematical foundation, one that is empirically grounded in how the
brain computes: neurosemantics. The way this book intends to contribute is twofold.
One is to present a series of existing examples of neurosemantics in practice: early
models addressing aspects of linguistic semantics purely in neurocomputational
terms. The other is to try to identify the principles upon which models of this kind
can be constructed, and their corresponding neural bases.

Neurosemantics is a word missing in the Oxford Dictionary for good reasons, it is
not yet a common term, neither in neuroscience nor in philosophy, and its meaning is
not yet well defined. The term was coined by Alfred Korzybski (1933), in his intro-
duction to the second edition of Science and Sanity. Neologisms abound in his huge
and highly controversial book of speculations on neurology and psychiatric therapy.
Another term, that has met with better fortune is “neurolinguistic”, borrowed by
Gregory Bateson, and revived by Richard Bandler and John Grinder in the neuro-
linguistic programming (NLP) therapy. A legacy of Korzybski’s neurosemantics still
survives today in the International Society of Neuro-Semantics lead by Michael

© Springer International Publishing Switzerland 2016
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2 1 Introduction

Hall, a negligible competitor of NLP in psychotherapy. Korzybski already used the
word “semantics” without “neuro” so broadly that it became almost meaningless,
with no way of establishing a comprehensible concept by their conjunction. In this
book, the only concern with neurosemantics as used by Korzybski, is strictly limited
to this brief historical note.

In more recent times, and in more scientific contexts, neurosemantics has been
used with two different sorts of objectives. One deals with the meaning of the
electrical and the chemical activities going on in neural circuits. This is, for example
the usage of neurosemantics by Churchland (2001), Ryder (2004), or Breidbach
(2007). The second, deals with the same type of semantics studied for years in
philosophy: the meaning of language, but trying to offer an explanation in terms of
the neural computations performed when people listen to and understand utterances.
This is the main usage of neurosemantics, for example, in Pulvermüller (2012), and
the project pursued there is not much different from that of Feldman (2006), who
instead does not explicitly use the term.

This book explores this second sense of neurosemantics, but in doing so, it will
address much of the first meaning as well, for we believe that the capacity of
neural circuits in humans to support linguistic meaning, hinges on their peculiar
role, shared by many other animals, of coding entities and facts of the world.
Even if combining sequences of sounds for conveying meaning through words
and sentences is a strategy exploited by humans only, its realization by way of
neural circuits appears to be rooted on their disposition to code for things in the
world, something that is shared in a wide variety of forms, with other animals. This
continuity is attested by famous cases of non human animals being successfully
trained to use simplified or partial forms of language (Savage-Rumbaugh et al. 1998;
Pepperberg 1999).

A different type of continuity is followed in this book, between the sketch given
of the new field of neurosemantics, and that of classical semantics. The idea is that
semantics can be captured and explained, by a sort of computation. Formal logic
has been the extraordinary attempt to mathematicize the composition of meaning by
words. Set forth by Boole (1854) borrowing from algebra, it took its contemporary
form at about the beginning of the last century thanks to the work of Frege (1881),
Russell (1903), and Wittgenstein (1922), among others.

One well known posit in logic was antipsychologism, the view that language
should be analyzed as an abstract entity, in isolation, separated from the minds that
comprehend and use it. Any attempt to shift the analysis inside mental mechanisms
was considered as misleading. While this position had historical motivations and
epistemological merits, it became increasingly unsatisfactory, as the new science
of the mind progressed rapidly in the second half of the past century. Inside the
newly born field of cognitive science, investigation of the mind became the central
focus of a joint effort between philosophers, computer scientists, psychologists
and linguists. Cognitive semantics has been the resulting enterprise, one that has
brought semantics back inside the mind, a project that ranges from Rosch’s (1978)
prototype theory, to the radial categories of Lakoff (1987), to the cognitive grammar
of Langacker (1987), and includes many other theories.



1 Introduction 3

The cognitive turn not only shifted the investigation of semantics towards the
mind, in doing so, it also fostered the exploration of aspects of meaning that until
then had been considered only marginally. The privileged building blocks in the
field of semantics have been propositions, and the greatest efforts have concerned
the study of truth conditions of complex sentences. Not much attention had been
dedicated to the analysis of single word meanings, except for functional terms, like
conjunctions or quantifiers. A new fervor of research on lexical meaning naturally
espoused the psychological search of mental concepts and categories.

While cognitive semantics led to many important innovations such as those
mentioned above, it failed to provide a new mathematical framework comparable
to those furnished by logic. This was certainly not due to a generally skeptical
attitude towards a computational approach, on the contrary. Part of the manifesto
of cognitive science was the adoption of “Computational Theory of Mind”, the
philosophical view that the basic activity of the mind is that of performing
computations over mental states, and that the essential job of cognitive scientists
was that of identifying the abstract functions we all compute, this task however, has
been scarcely practiced within cognitive semantics. In a way, the worries of analytic
philosophy against psychologism were founded: it is difficult to maintain scientific
rigor when adventuring across the meanders of the mind. Cognitive semantics is
rich in deep intuitions, but is also characterized by an extreme vagueness, and
often a naiveté, regarding questions of mathematical modeling, as Seuren (2004)
has remarked.

In our opinion, the main cause of the limited effect of the cognitive turn in
laying down the foundations of a new semantics, is in the gap between the proposed
models, and the empirical evidence of their correspondence with brain processes.
The main concepts in cognitive semantics are inventions of their proposers, without
any reference to the possible computational correlates in the brain.

The situation has changed dramatically in the last half century, during which
much light has been shed on the kind of computation carried out by neural circuits.
The enterprise of setting up the mathematical grounds for modeling neural behavior
is ongoing, in the growing domain of neural computation (Sejnowski et al. 1988),
today included in the broader area of theoretical neuroscience (Dayan and Abbott
2001). In the meantime, the expanding body of knowledge provided by neuroscience
has gained a philosophical foundation, under the umbrella of “neurophilosophy”
(Churchland 1986). Its main assumption is that mental activity is brain activity, and
as such, can be subject to scientific methods of investigation, properly guided by
cognitive science in characterizing the repertoire of phenomena to be explained.
The Golden Fleece in scientific investigation is computational modeling. It clearly
needs to build on other methods, such as empirical neurocognitive studies, but
it has the unique privilege of offering explanations in the rigorous language of
mathematics. There are different opinions on what exactly a neurocomputational
explanation is. A recent influential position is that the explicatory power of a
neurocomputational model depends on how its structure maps well with brain
mechanisms, in the technical sense of system components and functions performing
the studied behavior (Piccinini 2006; Kaplan 2011). According to this criterion, the



4 1 Introduction

virtues of a neurocomputational model is not only in its ability to predict a behavior,
but also in how accurately its main mathematical terms correspond to constituents
of brain processes.

This degree of accuracy has its upper limit in the knowledge of the neurophys-
iological mechanisms, which in the case of cognitive functions such as language
are dense as well as scattered, but in continuous progress. So, the time is ripe for
turning semantics into neurosemantics. The way this book intends to contribute
is twofold. One is to present a series of existing examples of neurosemantics
in practice: early models addressing aspects of linguistic semantics purely in
neurocomputational terms. The other is to try to identify the principles upon
which models of this kind can be constructed, something for which mathematics
is available, and the underlying neural bases. Here is where the book will meet
the other sense of neurosemantics: how neural circuits can carry representations of
the world. It is a widely debated field, which includes positions that simply deny
the notion of representation (van Gelder 1998). Even without a philosophically
defendable definition of representation in hand, we will continue to refer to neural
representation, as the most useful pragmatic concept in describing how brain circuits
capture knowledge of the external world. We are not so alone in this enterprise
(Bechtel 2014), and our sketch of representational mechanisms will privilege those
we deem essential to the semantics of language.

The contribution to neurosemantics, is mainly a collection of models developed
by the authors, where certain specific aspects of the semantics of language are
reproduced, based on an essential reconstruction of relevant cortical and subcortical
areas, each simulated by a mathematical formulation respectful of the main
biological neural processes. These models are presented in the second part of the
book, and discussed as neurosemantic practice. Some of these models target one
of the core problems of semantics, the reference of nouns, and in particular of
nouns with a strong perceptual characterization. Others address the semantics of
predicates, with a detailed analysis of color attributes. This domain has particular
relevance in philosophy of language, as a testbed for the hypothesis of language
relativism. This debate has long been dominated by the view that world languages
follow a universal scheme in naming their basic colors (Berlin and Kay 1969), until
the recent discovery by Roberson et al. (2004) of two counterexamples. Himba,
spoken in Northern Namibia, and Berinmo, spoken in Papua New Guinea, have
their own linguistic color categories organized not only differently from each other,
but also differently from the universals scheme. The emergence of their color term
semantics has been simulated in the neurocomputational model presented in the
book, and compared with the English one.

The search of the neural roots of meaning can also contribute to clarifying the
semantics of certain classes of words that have puzzled traditional semantics for
decades, without any agreed upon solution. This is the case of moral sentences,
which defeat the standard semantic analysis of truth conditions. Several solutions
have been proposed, such as expressivism (Gibbard 1990), the idea that a sentence
like “stealing is wrong” merely express an attitude of disapprobation against
stealing, and therefore eludes truth conditional semantics. This, like other solutions,
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engender a set of logical problems, the most severe being the Frege-Geach (1965)
embedding problem. Since every moral judgment can be embedded in logical
constructs like conditionals, for example in “if stealing is wrong then you should
not teach it”, it is unclear how they can work at the same time as truth-apt and non-
truth-apt components. We will show how neurocomputational models of affective
and decision brain areas are starting to provide a coherent picture of the emergence
of moral meaning.

Neurosemantics has become a reality, and many aspects of language, not covered
by the models developed by the authors, are currently being explored by other
scholars. A general picture will be provided, together with considerations on the
future trends of this challenging enterprise.
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Part I
The Meaning of Neurons

This first part sets the stage for the neurosemantic enterprise undertaken in this book,
the grounding of language meaning in the brain. In doing so, it will also address, in
the second part, different conceptions of neurosemantics: how neurons, with their
axons, dendrites, ion channels, convey meaning. These are the same ingredients
that in humans, allow them to augment the representation of the word through fine-
grained chunks of sound. There is nothing more in our brain with respect to non-
speaking animals. Therefore, much of what is expected from a neural semantics of
language should rely on more general properties of the neural system.

Most likely every bit of the huge body of current neuroscientific knowledge
plays a role in how the brain makes sense of the world. Aware of its leaving out
a great deal, this part is nothing like a broad introduction to basic neuroscience. It
merely focuses on describing a limited number of elements and mechanisms that
are considered to contribute in an essential way to the computational construction
of meaning in the neural system. As stated in the introduction, privileging the
computational approach has a double valence in this book. On one hand, it is
the continuation of the idea that the semantics of language can be captured and
explained in mathematical terms, a concept that has been a cornerstone in the field of
logic. On the other, it is rooted in the evidence that the brain itself computes, and this
is the main aspect covered in this part. It is an approach that is much in line with what
Shagrir (2010) has called the “San Diego style” of computation, with reference to
the mix of philosophers, neuroscientists, and computer scientists, working together
in universities along the western seaboard of the United States these last couple
of decades. This flavor of computation departs from the standard paradigm of the
execution of a digital program, and moves towards mathematical frameworks proper
of neurocomputation, while still preserving the concept of representation.

What it exactly means “to compute”, is a wide open debate, which has flourished
distinctively with respect to brain activity (Piccinini and Scarantino 2010; Piccinini
and Bahar 2013; Fresco 2014; Piccinini 2015), and we will discuss how the account
of neural computation embraced here fares within this debate.

The three chapters of this first part can be conceived as a progression from
neurophysiology to mathematics. The first chapter introduces the elementary com-
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putational devices of the brain, and is of course mainly a celebration of the neuron,
the cell with which nature greatly succeeded in elaborating electricity without the
help of metals and semiconductors. From the properties of the neuron, and of large
assemblies of neurons, it is possible to construct a number of mechanisms, which
can explain how neurons represent, this is the content of the second chapter. The last
chapter will take a further step, that will lead us from mechanisms to algorithmic
principles, more precisely the small set of principles, which will be used in building
the neurosemantic models that will be the content of this part.
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Chapter 2
The Computational Units of the Brain

Abstract Every mathematical framework is developed around some basic
computational item, for example, sets, numbers, and vectors. This is the starting
point for a computational view of the brain as well, the basic units have to be
specified. While in the ethereal world of mathematics the basic components can be
arbitrarily assumed, even invented from scratch, the case of the brain is constrained
by its biophysical structure. The current view today is dominated by the paradigm
constructed by Ramón y Cajal, where the neuronal cell is the basic computational
device of the brain. Enormous progress has been achieved in characterizing the
computational properties of the brain under this paradigm, which will partly be
reviewed in this chapter, limiting ourselves to those aspects that are useful for
understanding the representational power of the brain. However, like any scientific
paradigm, the so called “neuron dogma” might possibly change in the future, there
are scholars for example (London and Häusser, Annu Rev Neurosci 28:503–5032,
2005) that argue that dendrites display autonomous computational capabilities, and
might be a better candidate for the title of basic computational unit.

Despite many attempts, it is still difficult to spell out what the most specific
function of the neuron as a computational device is, and how that makes it so dif-
ferent from other man-made computational devices. We favor an idea advanced by
Turing (1948, Intelligent machinery. Technical report, National Physical Laboratory,
London, reprinted in Ince DC (ed) Collected Works of A. M. Turing: Mechanical
Intelligence, Edinburgh University Press, 1969) long ago: neurons have no special
built in function, but that of being able to learn virtually any function, by experience.
Plasticity is the term in neuroscience that includes the biological mechanisms that
explain how neurons work as extraordinary learning machines.

The last section of this chapter deals with a special organization of neurons, that
has long been held to deserve a specific computational description (Stevens, What
form should a cortical theory take? In: Koch C, Davis J (eds) Large-scale neuronal
theories of the brain. MIT, Cambridge, pp 239–255, 1994), and seems to be the
privileged site of semantic representations: the cortex.
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2.1 The Neuron

The neuron is the fundamental cell of the nervous system, brain included. It is the
key element that sets animals apart from all other living organisms, offering them
the inestimable advantage of voluntary motion, allowing the search for food, and
the escaping of risks. Being based on electricity, it required nature to invent a way
to deal with it. Man made electrical power is conducted by metals, like copper,
the fastest available conductor. Computers, the artifacts managing electricity at a
level of sophistication comparable to the brain, are made of semiconductors, such as
silicon and germanium. Nature opted for the only electrical conductors compatible
with organic materials: ions.

The biophysical breakthrough of exploiting electric power in animals has been
the ion channel, a sort of natural electrical device, whose details have been
discovered only recently (Neher and Sakmann 1976). It allows the flow of a specific
type of ion only, across a cellular membrane, and only under certain exclusive
circumstances, typically being the difference in voltage between the internal and
the external areas of the cell. The first ion channel to appear in evolution was the
potassium KC channel, which appeared about three billion years ago in bacteria.
It evolved into the calcium CaCC-permeable channel in eukariotes, and finally into
the sodium NaC channel, already found 650 million years ago in both ctenophora
(kind of jellies) and early bilateria (animals with bilateral symmetry) (Zakon 2012).
From then on sodium channels developed in all animals, and is currently the most
important neural channel. Its success is explained by the abundant availability of
sodium in the marine environment.

This history is confirmed by comparisons between extant species with non NaC
CaCC only ion channels, such as fungi and animals with simple nervous systems,
such as ctenophora and sea anemone (Liebeskind et al. 2011), but many, if not most,
of the details are still uncertain, and inextricably linked to a better understanding of
the phylogeny of metazoans. Moroz (2009) proposed a hypothesis for the phylogeny
of the neuron independent from the history of ion channels. One shared prerequisite
of all neurons, from a genomic standpoint, is the capacity to express many more
genes and gene products than other cell types. In fact, other cells can also exhibit
massive gene expression, as a result of severe stress responses, and typically before
death. Neurons might have evolved in ancestral metazoans from other types of cells,
as the result of development in the adaptive response to localized injury and stress,
which gradually stabilized in cells supporting and maintaining the expression of
multiple genes and gene products in normal conditions.

It may seem that in the search to understand how the brain supports semantics,
going back to the dawn of animal life is far too long a path to travel. Let
us just mention that recent research is trying to establish the first glimmers of
intelligent behavior thanks to electricity, going even further back. Traces of neural-
like electrical communication has even been found in plants (Balus̆ka et al. 2005).
Not only has a discipline named plant neurobiology recently emerged (Brenner et al.
2006), but even the concept of plant cognition is currently being discussed (Garzón
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and Keijzer 2011). Perhaps plant cognition will reveal itself to be not as extravagant
as is expected, but it certainly cannot involve language. After this brief journey
discussing the origins of the neuron, we can now proceed in describing it as the
chief device found in linguistic animals.

2.1.1 Cajal’s Doctrine

Contrary to the natural history of the neuron, with its beginnings so far away in
evolutionary time, its scientific history is surprisingly recent. There was absolutely
no clue to how the brain worked until the end of the nineteenth century: no idea that
it was composed of neural cells, no idea that it functioned as a complex electrical
engine. Sigmund Freud in his early scientific career did some investigations on the
nervous system (Freud 1885) leading him later to speculate about the exchange of
“energy” between the cell connections (Freud 1895). According to Sulloway (1982)
this idea proved to be fecund, inspiring other themes found in his famous theory of
psychoanalysis, such as the concept of the redirection of psychic energy. He was
not able to provide details, however, on the nature of this “energy”. Decades before,
a Scottish philosopher, Bain (1873), theorized that communication in the nervous
system was based on weak electric currents. After the formulation of cell theory
by Theodor Schwann (1839), stating that all organisms are composed of individual
cells, several biologists, such as Wilhelm His, Auguste Forel, and Fridtjof Nansen,
argued that the same idea could apply to the nervous system as well. However,
the prevalent view at the time was that the nervous system was an exception to
cell theory, because of its being organized in a reticular way, a theory boosted by
the misinterpretation of Deiters (1865) of axons as emerging from dendrites, and
having in Gerlach (1871) its major proponent. The reticularist view was dismissed
by Santiago Ramón y Cajal, one of the founders of contemporary neuroscience. He
was a scientist endowed with an extraordinary capacity to observe and understand
brain structure. In his master work Textura del sistema nervioso del hombre y de los
vertebrados (Ramón y Cajal 1899) he stated, on the basis of hundreds of empirical
observations, and carefully reasoned arguments, that the cell theory fully applied to
the brain. He maintained for the main cell of the nervous system the name “neuron”
given by Waldeyer-Hartz (1891), a German anatomist who had a fortunate lexical
creativity, having also coined the term “chromosome”. What is now known as the
neural doctrine was born.

In being an instance of the cell theory applied to the nervous system, of course
the main tenet of the neural doctrine is that there is a specific cell, the neuron, that
is separate and distinct and not anatomically continuous to other neuronal cells, and
constitutes the structural and functional unit of the nervous system. In addition, the
theory establishes a main division of the neuron in parts: the dendrites, the soma,
and the axon. Cajal kept the names introduced by Kölliker (1893), these elements
are shown schematically in Fig. 2.1. The axon has several terminal arborizations,
which make close contact with dendrites or the soma of other neurons, included in
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Fig. 2.1 Simplified scheme
of a neuron

dendrites
soma
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synapse

the neural doctrine is also the concept of functional polarity, the assumption that the
flow of information between two cells is in one direction only: from the axon to the
dendrites.

Soon after, the picture was completed by another founding father of neuro-
science, Charles Sherrington, who introduced the concept of the synapse, a tiny
space between a transmitting axon and a receiving dendrite. In his Croonian lecture
in 1897, he theoretically postulated the need for such a communication nexus
(Sherrington 1941). As we will report in Sect. 2.2.1, it was impossible to investigate
such small spaces at the time, and so Sherrington’s postulation was based on purely
theoretical grounds.

2.1.2 Ions and Computation

The path opened by Cajal and Sherrington, among others, was soon traveled
by a growing community of scientists, who discovered an increasing amount of
information on the neuron. Initially, research efforts did not include a commitment
to analyzing the neuron as a computational device. This particular characterization
of the neuron was basically impossible during the first decades of the last century,
considering that the use of the notion of “computation” in this domain did not yet
exist. Way before the birth of computers, Max Nordau (1895) had shown foresight
in using the fortunate expression “true computing machines”, with reference to the
eye and the ear, as specific collectors of ondulatory energies. After Turing (1936),
mainstream research on the neuron was scarcely interested in this issue, with the
exception of McCulloch and Pitts (1943) whose contribution will be discussed in
Sect. 5.1, and of course Turing (1948) himself. For what it precisely means for a
neuron to compute, in light of the current philosophy of computation, we defer to
Sect. 3.1.4, an informal notion of computation as signal manipulations describable
in mathematical terms suffices in following the pioneering characterization of the
neuron in this sense.

At that time, it was clear that the function of neurons was essentially electrical,
and thus, the search for a quantitative description of their electronic properties was
necessary in order to fully understand them. Important support in this direction came
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Fig. 2.2 Detail of a dendrite, with some of the main ions contributing to its electrical potential:
Sodium NaC Potassium KC Calcium CaCC Chloride Cl�. The ions marked with “–” are large
organic ions, that cannot travel the membrane, and contribute to the negative potential at rest

by way of the study of man made electricity, because of the extensive mathematical
methods developed early in the twentieth century. At the time, a very particular
business needed to be handled, that of the transatlantic telegraph line, laid in
the early 1850s. Lord Kelvin (1855) himself engaged in formulating the equation
describing the variation of voltage along the cable, a task that was not too difficult
for him, thanks to the analogy with the problem of heat conduction, a topic he knew
quite well. Axons, in the end, are cylinders much like cables, and Hoorweg (1889)
first recognized that much of the mathematical treatment of electric cables could
be used for describing the nervous electrotonus. As noted in the beginning of this
section, a significant difference, however, is that while in cables the carriers are free
electrons, inside the brain they are ions.

In Fig. 2.2 the principal ions involved in the neural potential are shown. As said
before, sodium ions dominate the scene in the brain. There is a typical differential
distribution of ions inside and outside the neuron, with higher concentrations of KC
inside, and NaC, CaCC and Cl� concentrated more in the extracellular space. A
characteristic of almost all neurons is an internal negative potential at rest, typically
of �40 to �90 mV, due to an excess of negative charges with respect to the outside
of the cell. This is due to the presence of organic ions, too large to leak across the
membrane, and because potassium-permeable channels allow a continual resting
efflux of KC.

A step forward towards an understanding of the electricity inside nerves was
accomplished by Goldman (1943), who worked out an equation of the voltage
across a membrane of a generic cell, in terms of ion concentrations and the
permeability of the membrane. Still, the path to a mathematical description of the
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neural electrotonus was long indeed. The axon is not just a passive cable, even
less are the soma and the dendrites. The permeability of the membrane cannot be
expressed by simple parameters as in Goldman’s early formulation, because ion
channels have a wide range of permeability, highly dependent on the voltage, which
in turn depends on the changes in ion concentration gradients. A breakthrough
came in the mid twentieth century, made possible by an extravagance of nature.
Certain types of squid are equipped with extraordinarily large axons, up to 800 �m
of diameter, against the typical 1–2 �m of mammals. Their giant neurons activate
the contraction of the mantle muscle, producing a jet propulsion effect that allows
the squid to react remarkably fast to danger. The section of squid axons are large
enough to allow local measurements that would have been impossible with most
other nerve cells, with the electrode technology available at that time.

Hodgkin and Huxley (1952), after a decade spent experimenting on squid axons,
completed a detailed model, based on a nonlinear system of partial differential
equations, that fully described the electrical signal inside an axon. Note that at that
time there was no direct evidence for the existence of ion-selective channels, and
Hodgkin and Huxley speculatively formulated separate equations for the voltage-
dependence of NaC and KC channels, based on their experiments.

One of the main achievements of the Hodgkin-Huxley model was the reproduc-
tion of the action potential, the characteristic electrical waveform, first described
by du Bois-Reymond (1849), who named it negative Schwankung, today informally
denoted as “spike”. It is an abrupt electrical impulse, that propagates along the axon
with an almost identical shape, shown in Fig. 2.3. The rapid rising of the voltage is
an avalanche effect lead by NaC. As soon as the internal potential reaches a certain
threshold, the NaC conductance increases, causing NaC to enter the neuron, thus
depolarizing the membrane potential, which triggers an even larger increase in the
conductance of the channel. At a slower rate the depolarization activates the KC
conductance as well, causing KC ions to leave the cell, repolarizing the membrane
potential, which becomes briefly more negative than the normal resting potential.

Despite its venerable age, the Hodgkin-Huxley model is still the point of
reference for the axon electrotonus. More recent developments have addressed

Fig. 2.3 Typical waveform
of the action potential
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the contribution of other ions (Golowasch et al. 1992), the integration of detailed
channel mechanisms (Rinzel 1990; Hille 1992), the extension to the soma (Bush
and Douglas 1991), and dendrites (Traub et al. 1991). Not only did the Hodgkin-
Huxley model open the way to a quantitative description of neural signaling, it
has also played an influential role in the birth of computational neuroscience,
and has been used as the paradigmatic example in the debate over the nature of
explanation in neuroscience (Bogen 2005; Kaplan and Craver 2011). According to
Craver (2007), the Hodgkin-Huxley model is a brilliant predictive model, but not a
mechanistic model, and as such, does not give an explanation of the action potential:
“In the HH model, commitments about underlying mechanisms are replaced by
mathematical constructs that save the phenomena of the action potential much as
Ptolemy’s epicycles and deferents save the apparent motion of the planets through
the night sky.”

The Hodgkin-Huxley model describes one of the most important electrical
phenomena in the neuron, the action potential, but it is still far from characterizing
the neuron as a computational unit. First, the axon is just one component of the
whole neuron, furthermore, the firing of a single neuron is meaningless in the
context of the brain. As we will see in Sect. 4.1 a basic trait of brain computation is
the cooperative interaction between a large number of neurons. For even the most
elementary brain task, the activation or the resting of a single isolated neuron is
irrelevant, while, for example, in computers, one single machine instruction, affects
the whole program. Thus, a computational account of the neuron should, first and
foremost, mathematically describe the interaction between more than one neuron.
The neurophysical side of this issue is the theme of Sect. 2.2.1.

Let us add that the Hodgkin-Huxley model has inspired various types of
modeling, oriented to being included in a network of interacting units, making
simplifications on the details of the equations. One of the most common is the
so-called integrate-and-fire model, where the potential is given by a single linear
differential equation (Gerstner 1999):

�
@V

@t
C V.t/ D kI.t/ (2.1)

where V is the potential, I is the current, and � is a time decay constant, k
and equivalent electric resistance. The action potential is produced by adding the
following condition:

V.t/ > � (2.2)

@V

@t
> 0 (2.3)

where � is the threshold for the neuron to fire. Under certain assumptions this model
can approximate the Hodgkin-Huxley model to 90 % (Kistler et al. 1997).
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2.1.3 How the Doctrine Fares Today

For the purposes of this book, independently from the adequacy of description given
by the Hodgkin-Huxley or equivalent models, it is important to confirm whether the
neuron can still be held as the computational unit of the brain, as asserted by Cajal’s
neural doctrine. More than one century has passed, and a recurrent destiny for
scientific doctrines, or paradigms if you like (Kuhn 1962), is that of being replaced
by others. If we were to bet on which emerging paradigm might contend with the
neural doctrine today, dendrites would probably have the best odds.

Not one of the rules constituting the neural doctrine has been immune to scrutiny
in different moments in time (Bullock et al. 2005). Neurons have been found to be
connected not only through conventional synapses, but also by more direct channels
called gap junctions, that provide neurons with cytoplasmic continuity (Connors and
Long 2004; Fukuda 2009), a posthumous consolation for reticularists. It has also
been discovered, that sometimes, action potentials can travel backwards from the
axon and soma regions into the dendrites (Waters et al. 2005). Recent research has
pointed to a role for glial cells in brain computations, influencing axonal conduction
and synaptic transmission (Fields and Stevens-Graham 2002). Remarkably, most
of these aspects were already envisioned by Cajal, and nevertheless, none of the
exceptions to the standard rules in the neural doctrine, just listed, point to a new and
better candidate, other than the neuron as the computational unit of the brain.

Only dendrites may reasonably aspire to such an honor. Being much thinner than
axons, studies exploring them followed much later those of axons. The biophysics
of dendrites and their computational roles, became a focus of direct experimental
research only in the late 1960s, mainly thanks to the work of Wilfrid Rall (1967).
Today London and Häusser (2005) are among the main proposers of dendritic
computation, they advance a speculative argument based on the disproportion
between dendrites and axons in a neuron. Typically, a brain neuron provides just
one output through its axon, based on thousands of synaptic inputs at its dendrites.
This final conversion equates to a mathematical function projecting a huge space
onto a narrow one. Such a complex function would be unrealizable by the simple
summation of dendritic contributions in the soma potential, so dendrites should thus
be warranted with much more computational power. Based on a series of empirical
results, London and Häusser presume a series of computational abilities dendrites
have, from basic logical operations to coincidence detection (see Sect. 3.2) and
lowpass filtering. In a similar vein, Sidiropoulou et al. (2006) contend that the
computation performed by a single neuron is far too complex for it to be used as
a basic computational element. A discussion on the computational autonomy of
dendrites with respect to whole neurons can be found in Cao (2011, 2014), under
the perspective of semantic information.

Unlike the theory of Shannon and Weaver (1949), which focused on the
reproduction of messages from a source to a destination, and the quantitative
measurement of the information in a message, semantic information is concerned
with what a particular message stands for or means (Dretske 1981). Inside the
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theory of semantic information, it is possible to conceive under which circumstances
a message carries meaningful information, taking into account the sender of
the message, the receiver, and the context of the communication. Some specific
requirements to be satisfied by an entity, in order for it to qualify as a genuine sender
or receiver of information, can be specified (Cao 2011, p. 58):

• Signals that differ only a little can result in dramatically different actions from a receiver.
(e.g. “I love you” and “I loathe you” [. . . ]).

• Significant differences in the physical features of a signal might make no difference to
the receiver. (e.g. receiving a party invitation by mail vs. in person).

• The effects of signals will be strongly context-dependent and easily changed. (e.g. phone
ringing when you expect good news vs. when you expect bad news).

Cao scrutinized how brain units stand up to these requirements. The answer is:
poorly. The subunits of a neuron, for example, fail to meet the criteria of flexibility in
responding to a signal on the basis of its meaning. The whole neuron itself, meets the
requirements for being a receiver only in a limited way, it is compared by Cao to the
man inside Searle’s Chinese Room, who keeps taking inputs and producing outputs
in total ignorance of their meaning and of the world outside. Better candidates in the
brain as sender or receiver of information are, for Cao, groups of neurons, where the
contribution of the firing of a single neuron becomes less important. How neurons
group together in purposeful circuits will be widely discussed in the next chapter.

We must add that the neural doctrine continues to have a large number of
supporters. Azmitia et al. (2002) even complain that missing the central role of
the neuron may be detrimental for progress in neuroscience. The specialization of
research into the subcomponents of the neuron has led to an excessive segmentation
of fields, overlooking the unity of the neuron: “This failure to consider the neuron
as a whole is not merely of historical significance, but of potential importance to the
development and direction of clinically relevant strategies”.

The neurosemantics project of this book is grounded on the neural doctrine,
mostly for pragmatic reasons. While neurocomputation built on Cajal’s legacy
is now mature enough to offer tools that are suitable for modeling high level
cognitive functions, which will be the content of Chap. 4, nothing similar exists
today, that is based on or takes different computational bases, such as dendrites,
into consideration. However, we must keep in mind, that all the models presented
in this book, are based on a paradigm that can change drastically, as the result of
better accounts of neurosemantics founded on a mathematics of the brain, yet to be
discovered.

2.2 Plasticity

We have just discussed how the mathematical description of the neuron electrotonus
achieved half a century ago, has been a major step, yet insufficient to fully charac-
terize the computational properties of a neuron. One reason is in the cooperative
behavior of neurons, whose meaningful functions arise only in assemblies of a large
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number of cells. A further, more compelling reason, is that even a formal model
exactly describing all the chemical and electrical interactions of a group of neurons,
with all the necessary parameters for reproducing the ongoing electrical activity
at a given time, would still reveal an incomplete picture. It would be missing the
fundamental aspect of the continuous self-modification of that group of neurons,
driven by the ongoing activity itself. It is the ability of assemblies of neurons
to modify their structural connectivity based on their own neural activity, that
constructs meaningful computational functions. In humans, most of the organization
of the brain at birth is immature, particularly in the cortex, and it is through
the continuous interplay between the experience of patterned electrical signals
and consequent modifications, that cognitive as well as non cognitive functions
mature. Collectively, this process goes under the term of “plasticity”. It embraces a
number of distinct phenomena, such as axon arborization, dendrite rewiring, and the
strengthening or weakening of local connections between two neurons: the synapse.

While in clinical neurology a large interest in plasticity focuses on the massive
rewiring of connectivity in reaction to brain injury (Møller 2006; Fuchs and Flügge
2014), for the study of neurosemantics, synaptic plasticity is by far the most
important. It is also the form of plasticity best known today, and the only one
whose way of working has been schematized in computational terms. Therefore,
this section will deal with this crucial boundary between one neuron and the next,
the synapse. Its eminent role in intelligent behavior has roused curiosity on its origin
and evolution, and motivated explorations even more challenging than those on
ion channels and the neuron (see Sect. 2.1). According to Ryan and Grant (2009)
the ursynapse, a kind of ancestor of all synapses, appeared in choanoflagellates
about one billion years ago, evolving in protosynapse similar to the extant ones
in cnidarian, around 700 millions years ago.

2.2.1 The Elusive Passage

As reported in Sect. 2.1.1 the discovery of the synapse is attributed to Sherrington
(1906), who was well aware of its importance, but had no way, at the time, of
exploring such a tiny space in order to understand its mechanisms. It is the crucial
passage where the traveling action potential in an axon ends, and the dendrite of
another neuron begins. For a long time, what exactly happens in this infinitesimal
gap remained a mystery. In the years following Sherrington’s discovery, two
different hypotheses on the nature of the communication passing through the
synapse gave rise to a vigorous scientific debate. On one side Henry Dale and
Otto Loewi conjectured that the communication across synapses was chemical in
nature. The best evidence was obtained in their experiments on the vagus nerve that
controls heart rate, which led to the recognition that the substance released by the
axon in the synapse is acetylcholine (Dale 1935). On the opposite side, John Eccles
hypothesized that the current produced by an action potential in the axon crosses
the synapse and directly enters the dendrite. His skepticism concerning chemical
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transmission derived from his conviction that signaling between neurons was too
fast to be chemical in nature. This controversy become humorously referred to as
the “soup versus spark” dustup, where clearly “soupers” sided with the chemical
hypothesis, and “sparkers” with the electical one. Despite the increasing evidence
in favor of the chemical theory of synaptic transmission, Eccles (1945) continued
to defend his ideas and to experiment with electrical transmission even further. His
theory was conclusively falsified by new evidence, in particular Katz (1959) went on
to show the existence of ion channels that, unlike the voltage-gated channels of the
axon, change their permeability in response to specific chemical transmitters only.

In Fig. 2.4 a simple scheme of the basic working of the synapse is given. The
upper part, the presynapse, is the termination of an axon, and the lower part, the
postsynapse, is a dendritic spine, a typical protuberance of the dendrite just in
front of the presynapse. The space in between is the synaptic cleft, as thin as 15–
25 nm (Peters et al. 1991). In the presynaptic termination there are small, spherical
membrane-bounded organelles called vesicles, filled with neurotransmitters, the
chemical messengers. The communication process is initiated when an action
potential reaches the terminal of the presynaptic neuron. The change in membrane
potential caused by the arrival of the action potential leads to the opening of

Fig. 2.4 Scheme of an
excitatory synapse. The
termination of the axon is
populated with
neurotransmitters, packaged
into vesicles, small
membrane-enclosed
organelles. When an action
potential enters a presynaptic
terminal, it causes calcium
channels to open, letting
CaCC ions flow into the cell.
The local high density of
CaCC induces the exocytosis
of vesicles (the fusion of their
membrane with the plasma
membrane). The
neurotransmitters diffuse
across the synaptic cleft, and
bind to receptors on the
surface of the postsynaptic
cell, triggering the opening of
the non-selective ion channels
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voltage-gated calcium channels, causing a rapid influx of CaCC ions. The elevation
of CaCC concentration, in turn, favors the fusion of synaptic vesicles with the
plasma membrane of the axon, a process called exocytosis. Since the number of
neurotransmitters in each vesicle is almost constant, the synaptic transmission is
quantal, graduated in discrete amplitude with the minimum step corresponding to a
single vesicle (Katz 1971). This process lasts a couple of milliseconds.

On the opposite side of the synapse, the released neurotransmitters bind to the
receptors placed on the surface of the dendrite spine. The binding induces confor-
mational changes in the receptors that open the channel, normally impermeable,
permitting ions to flow. The channel is not selective, therefore, both KC and NaC
are allowed to flow, but the influx of NaC dominates, since at rest state there is little
driving force on KC. The net effect is a rapid local depolarization of the dendrite.

There are more than 100 types of different known neurotransmitters, even if
the most abundant are of only a few types. We have already mentioned acetyl-
choline, the first discovered neurotransmitter, it is the chief chemical messenger for
peripheral axons projecting in muscle fibers, and less important in the brain, where
glutamate abounds. A first classification of neurotransmitters is based on their effect
on the postsynaptic neuron, that could be excitatory, as in the scheme of Fig. 2.4,
or inhibitory, in that the release of the neurotransmitter in the synapse decreases the
likelihood of a postsynaptic action potential occurring. The most common inhibitory
neurotransmitter in the brain is GABA (gamma-aminobutyric acid), its mechanism
is exactly the same as that of an excitatory neurotransmitter. The difference is that
the GABA receptors typically open channels that are selectively permeable to Cl�,
therefore, the release of GABA in the synaptic cleft has the final effect of negatively
charged Cl� flowing inside the dendrite, producing hyperpolarization.

2.2.2 From Hebb to Kandel

The reason why the synapse is the chief location of plasticity, is due to its
modulatory effect on the action potential, which by itself is a rather stereotypical
signal, with an almost fixed amplitude. The binary value of the action potential can
be finely graded by the synapse, with a quantum given by the size of the presynaptic
vesicles. The amount of depolarization induced in the dendrite by a presynaptic
action potential is known as synaptic efficiency, sometimes also known as synaptic
strength, it can vary over a wide range. The flexibility is given by several factors,
basically the number of synaptic vesicles ready for release, and the likelihood of a
vesicle undergoing exocytosis at the arrival of an action potential. All these factors
can change drastically depending on the previous history of the neurons at both
synaptic sides. This is synaptic plasticity, and it is the key factor that provides
the brain with the astonishing ability to forge the behavior of the organism in
response to the environment, and to improve its performance over time, thanks to
experience. From a mathematical point of view, ideally, sectioning a network of
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neurons in the brain, isolating its input and output connections, would produce a
huge number of possible transfer functions between inputs and outputs, thanks to the
degrees of freedom of the synaptic strengths between all internal neural connections.
Among all the possible functions, the system tends to evolve towards one only, by
automatically adapting the synaptic strengths, in reaction to the experienced patterns
of activity.

How the past events of neurons exactly modify the parameters of the synapse,
or mathematically, how the history of input patterns functionally relate to current
neural function, is still largely unknown, and extremely hard to investigate. Long
before the possibility of empirically investigating synaptic plasticity was made
available, a brilliant intuition was provided, known today as “Hebb’s law”, and is
defined in the following statement:

When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.

(Hebb 1949, p. 62)

It is the coincidence in the timing of the activation of both presynaptic and
postsynaptic neurons that produces an increase in the synaptic efficiency. The rule
predicted by Hebb is of paramount relevance for explaining the capacity of the brain
to represent the world, as will be discussed in Sect. 3.2.

Just as the squid has been uniquely useful in revealing the functioning of the axon
electrotonus, the Aplysia, a small snail, was the animal that first allowed an initial
understanding of synaptic plasticity. In this animal neurons are so large and uniquely
identifiable, that it was feasible, even if extremely laborious, to track changes in
synaptic communication. One behavior in particular, the gill-withdrawal reflex, is
so simple that it engages no more than 24 neurons. The retraction of the gill, the
breathing organ of the Aplysia, can be induced by touching the syphon, which is a
spout that expels waste from the body. This reaction is flexible, and in particular,
can be modified in two ways: habituation and sensitization. The former is the
weakening of the reflex after repeated light touches, that are recognized as harmless.
On the contrary, sensitization arises when the same light touch is associated with a
noxious shock, after learning, a simple light touch produces a strong gill-withdrawal
reflex. Eric Kandel led a group that obtained the first insights into the neural and
molecular mechanisms of plasticity in the Aplysia, which won them the Nobel
Prize in 2000. They found a direct correlation of habituation and sensitization with,
respectively, the weakening and the strengthening of the synaptic connections in
the gill-withdrawal circuit, the duration of this short-term memory is dependent on
the length of time a synapse is weakened or strengthened (Kupfermann et al. 1972;
Carew et al. 1972; Pinsker et al. 1973). Moreover, the two different kinds of learning
differ in the ways the synapses are modified. During habituation the same neurons
involved in the main control loop are active, and the change is homosynaptic, while
in the case of sensitization, the shock is perceived by a neuron that is different from
those of the gill-withdrawal reflex, and in this case, changes are heterosynaptic. Note
that neither case corresponds directly to Hebb’s law.
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Fig. 2.5 Scheme of a
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The most studied physiological model of plasticity resembling what Hebb
predicted is long-term potentiation (LTP) (Bliss and Lømo 1973; Artola and Singer
1987; Bliss and Collingridge 1993; Bear and Kirkwood 1993). The best known
molecular mechanism for LTP relies upon NMDA receptors. NMDA stands for N-
methyl-D-aspartate, an agonist that inactivates a specific subfamily of glutamate
receptors. A convenient way to classify the variety of brain glutamate receptors is
by naming their pharmacological agonists (Hollmann and Heinemann 1994), for
the purpose of studying plasticity a convenient classification is just through NMDA
and non-NMDA receptors. The unique properties of NMDA receptors combine
two features: the receptor must bind glutamate in order to open the channel, but
it is also voltage-gated, like axon NaC ion channels. As shown in Fig. 2.5, the
dependence on the postsynaptic depolarization is due to a MgCC block site. When
the internal potential reaches a threshold, the MgCC is released, and the channel
can open, if there is glutamate to bind in the synaptic cleft. This double constraint
matches Hebb’s condition: the coincidental firing of the presynaptic and the synaptic
neurons. When the NMDA receptor opens, it allows not only NaC and KC to flow,
but also CaCC ions. The increase of intracellular CaCC, as seen in the axon terminal,
activates a variety of chemical processes, whose final effect is a strengthening of
synaptic efficiency. The synaptic changes may involve the presynaptic termination
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Table 2.1 A gallery of synaptic plasticities. The presynaptic termination is at the top, the
postsynaptic in the bottom, both are shown in light gray when active, in dark otherwise. The “C”
or “�” indicate increase or decrease in synaptic strength

Hebbian Anti-Hebbian Homosynaptic Heterosynaptic

++++++++ −−−−−−−−−−− −−−−−−−−−−− −−−−−−−−−−−

as well, thanks to a retrograde messenger, a chemical compound traveling from the
dendrite to the axon. NO (Nitric Oxide) has been one of the first suggested as a
possible candidate, being freely diffusible and generated as a result of high CaCC
concentration. Because of its precious role, it won the “Molecule of the Year” Award
in 1992 (Koshland 1992), but its exact behavior turns out to be quite complex, and
still remains controversial (Susswein et al. 2004).

In summary, Hebb was right, but he envisaged just one among the many ways
of changing synaptic strengths in the brain. Long-term depression (LTD) is the
converse process to LTP and results in a long lasting decrease in synaptic efficacy.
The main cause of synaptic weakening is deprivation of presynaptic or postsynaptic
activities (Ito 1989; Zhuo and Hawkins 1995). LTD has also been observed in
synapses with NMDA receptors (Crozier et al. 2007). LTP and LTD are far from
encompassing the full range of plasticity at the synaptic level, a synopsis of
synaptic modification phenomena is given in Table 2.1. The plot on the left is a
synapse that exactly follows Hebb’s law. Crucially, the opposite phenomena has
been observed as well: synaptic weakening when the two neurons are both active:
anti-Hebbian learning, shown in the next plot from left to right. The choice between
the two behaviors seems to depend on the temporal order of the two firings: if
the presynaptic action potential occurs before postsynaptic activation, within a few
milliseconds, the Hebbian rule applies, if the postsynaptic neuron fires before the
arrival of the action potential in the presynaptic axon, the anti-Hebbian rule takes
over. This overall behavior is known as spike-timing-dependent plasticity, as argued
by Markram et al. (2011), it is prone to interesting philosophical speculations (see
also Sect. 3.2.3). It may appear as the brain correlate of our need to explain facts of
the world in terms of causality. The synapse is induced to reinforce a representation,
whenever a signal is a prediction of some other signal, otherwise it is taken as a false
association to be discarded. The other two forms of synaptic modification shown
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in Table 2.1, homosynaptic and heterosynaptic, do not require the simultaneous
activation of two cells in the synapse, and are those that were discovered by Eric
Kandel, described above.

2.3 The Organization of the Cortex

The neuron has been described as being the basic computational unit of the brain. It
is certainly at the core of the ability to code for meaning, but first and foremost, it
is crucial in the carrying out of any task an organism engages in, from the simplest
movement to the perception of its environment. In this section, we will introduce
a special area and a way in which neurons assemble there, that is highly specific
and efficient in the construction of meaning: the cerebral cortex. In fact, most of
this book will deal with processes that take place in the cortex, and most of the
computations proposed for the modeling of semantic processes will directly refer
to those done by the cortex. This section will provide a preliminary introduction to
what the cortex is and will discuss the kinds of cells and connections that compose it.

An early step in the history of brain evolution, long before the cortex appeared,
was the clustering of a growing number of interneurons in the anterior part of the
body, which lead to the formation of the brain. This is thought to have happened
about 560 millions years ago, probably in the freshwater flatworm of the genus
Planaria (Nakazawa et al. 2003). In the long and varied diversification of the
brain throughout evolution, a major turning point occurred about 200 millions
years ago, with the formation of a uniform superficial fold, composed of six layers
(Striedter 2003). It was populated by a newly shaped neuron with a pyramidal form,
suggestively named psychic cell by Ramón y Cajal (1906), who had already grasped
their key role in constructing the mind.

2.3.1 The Origins of the Cortex

It is well agreed upon that the mammalian neocortex is the site of processes enabling
higher cognition, from consciousness to symbolic reasoning, and, especially rele-
vant here, linguistic meaning (Miller et al. 2002; Farhat 2007; Fuster 2008; Nieder
2009; Noack 2012). There is much less consensus, however, on the reason why
the particular way neurons are combined in the cortex makes such a difference
with respect to the rest of the brain. Possible explanations will be reviewed in
Sect. 3.3. Edinger (1904) was one of the first to rank mammals as the most intelligent
animals, in virtue of the brand new layered brain equipment introduced by nature.
This intellectual superiority remained almost undiscussed for a century (Romer
1967), clearly meeting with a certain amount of anthropocentric self-satisfaction.
The rise of comparative cognition has weakened this certainty, with the discovery
of abilities previously thought to be exclusive to mammals. Flexibility, the ability
to learn new strategies as well as problem solve, have been reported in a wider
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set of animals and not restricted to mammals (Pearce 2008), and would include
reptiles (Davidson 1966) and birds (Pepperberg 1999). Although it is not easy to
precisely define in a sentence or two what it is exactly that distinguishes mammal
intelligence from that of other species, the cortex is certainly considered to be the
crowning achievement of brain evolution, and the quest for an understanding of its
computational properties and its origins, are among the most prominent and yet
unresolved issues in neurobiology.

Broadly speaking the cortex can be seen in continuation with the pallium, which
by definition is the external folding of the brain in all vertebrates. In sauropods as
well, it is the site of higher mental processes (Medina and Abellán 2009). However,
the special six-layered structure is missing in all other classes except mammals, with
no structure present at all in amphibians and a simple three-layered organization in
the pallium of reptiles. More precisely, only a part of the entire cortex presents
the new stratified feature, for this reason it is also called neocortex, or isocortex
for its being highly uniform throughout its extension. There are two remaining
parts that are similar to the old reptilian three-layered pallium: the hippocampus,
involved in spatial localization and long term memory, and the piriform cortex,
which processes olfactory signals. As can be seen in Fig. 2.6, the proportion of
neocortex over the entire cortex varies among mammalian species, and becomes
predominant in humans.

Fig. 2.6 Extension and structure of the pallium in different animal species. In the left column
a general comparison between the principle classes of vertebrates, starting from the top: fish,
amphibian, reptile, mammal. In the central column and in the right column, detail of the coronal
section, of the marsupial Opossum and of a human (Adapted from Fuster 2008)
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The kind of brain reorganization that mutated the pallium into the neocortex
is still unclear and controversial. There is an area in the reptilian brain, the DVR
(Dorsal Ventricular Ridge), which enjoys the most favor as a possible precursor,
due to its having five types of neurons resembling those populating the different
layers of the neocortex (Butler 1994; Karten 1997). Others, like Ulinski (1990)
and Aboitiz (1999), contend that DVR is more likely homologous to internal
areas of mammalian brains, like the amigdala (Bruce and Neary 1995), while
the neocortex is a derivation from the dorsal pallium. The lamination of the
cortex, in this latter hypothesis, is explained by slower development, with some
late-born phylogenetically new neurons, which participated in local processing
circuits, as opposed to older neurons. The gradual migration of neurons from their
proliferative zones towards the cortex is uniquely characterized by the inside-out
neurogenetic gradient, in that each new generation bypasses the previous one in the
cortex. In the expansion of the neocortex, the effect of mutations in some genes
involved in the regulation of cell migration stabilized the distinct development of
layers.

Once the neocortex structure was established in mammals, further evolution
caused its expansion along the brain’s surface. A macaque has a ratio of 100:1 of
cortical surface normalized to the whole brain, compared to the mouse, humans have
a ratio of 1000:1. An outstanding peculiarity of the enlargement of the cortex is that
while it occured mainly through the expansion of the surface area, only a modest
increase took place in its thickness. Apparently an increase in depth would not offer
any substantial additional computational power. The need of enlarging the cortex
by its superficial area only has led to its folding, culminating in the large and deep
convolutions of the human cortex.

The striking parallel between the proportions of cortex and the whole brain
during human development and mammalian evolution, that supports the so-called
“evo-devo” concept (Maienschein 2007), has provided the opportunity of shedding
light on how the cortex evolved in size, by investigating the mechanisms of
corticogenesis. One of the best current explanations of why the cortex expanded
along the surface of the brain without a comparable increase in its thickness is
the radial unit hypothesis (Rakic 2009). In the proliferative embryonic zones, such
as the ventricular zone, neural stem cells grow by symmetrical division before
the onset of neurogenesis, This means that each stem cell divides in two, with
each potentially being a founder cell that gives rise to a radial cortical column,
but before being transformed into a founder cell it can divide again in two. In
this way an exponential number of potential cortical columns is produced. After
the onset of neurogenesis each founder cell will divide asymmetrically, inducing a
linear growth inside a column. By genetic manipulation an increase in the precursor
population has been induced in the mouse, which results in an increased number
of radial columns and consequently a convoluted cortex (Chenn and Walsh 2002)
(Fig. 2.6).
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2.3.2 Circuit Structure

Despite its huge extent, and the range of different functions carried out by its areas,
the cortex is amazingly uniform. The invariance of its basic microstructure was
already known and described by its first historical investigators (Ramón y Cajal
1906; Brodmann 1909). In the cortex the neural density is extremely stable. Rockel
et al. (1980) counted about 110 neurons in sections of 30 �m diameter of cortex,
either in motor, somatosensorial, frontal, parietal, or temporal areas, across animals
such as mice, cats, monkeys, and humans. The only exception is always to be
found in the primary visual cortex, with a count of about 270 neurons. Their
observations have been the subject of fierce debate for over 30 years, with doubts
raised concerning whether their experimental methods were technically flawed
(Rakic 2008), but recently Carlo and Stevens (2013) carefully replicated their
experiments confirming previous results. Moreover, Karbowski (2014) found a
number of additional parameters that are remarkably constant across species and
across regions, like that of adult synaptic density, with a mean of 5�1011 cm�3, and
the ratio of excitatory to inhibitory synapses, around 5:6.

One of the most important and studied uniform aspects of the cortex is its layered
organization, with the overlap of laminae composed by different types of cells,
myelination, and pigmentation. The delineation of the six distinct layers were first
noted by Berlin (1858), the details of the layers, with a blueprint that is still mostly
valid today, were revealed by early neuroscientists such as Ramón y Cajal (1906),
Brodmann (1909), Vogt and Vogt (1919), and von Economo and Koskinas (1925).
The layers are listed in the following table, using Brodmann’s Latin nomenclature
and the one recommended by Vogt and Vogt. Layers identified by cytoarchitecture
are usually marked in Roman numerals, while those with distinct myelin in Arabic
numerals.

Cytoarchitectonics layers Myeloarchitectonics layers

I Lamina zonalis Molecular layer Zonal layer 1

II Lamina granularis externa Corpuscular layer Dysfibrous layer 2

III Lamina pyramidalis Pyramidal layer Suprastriate layer 3

IV Lamina granularis interna Granular layer External stria 4

V Lamina ganglionaris Ganglionic layer Internal stria 5

VI Lamina multiformis Multiform layer Substriate layer 6

The cytoarchitectonic nomenclature typically derives from a layer being preva-
lently populated by one or a number of the many types of cells, which will be
described in some detail below. The first layer actually lacks a specific type, due
to its almost total lack of cells, in fact, they are very few and scattered. It is filled
by terminal ramifications of axons and dendrites of neurons in other layers. The
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corpuscular qualification of the second layer comes from neurons there being quite
small and tightly packed. The pyramidal layer, making up almost one third of the
total thickness of the cortex, is the site of the largest well-formed pyramidal cells.
The fourth layer is similar to the second, in that cells are small and densely packed,
but it is variable in size depending on the cortical region. This layer is the main
target of thalamocortical projections, as well as intra-hemispheric corticocortical
connections, therefore, it is well developed in sensorial areas and reduced in
regions with scarce thalamic inputs, like motor areas. The ganglionic layer is also
region dependent, for the opposite reason: it is mainly populated by pyramidal
cells projecting into the basal ganglia or directly to the corticospinal tract, and is
therefore highly developed in all motor areas. The multiform layer is prevalently
composed of densely collected spindle-shaped cells, with their long axes arranged
perpendicularly to the cortical surface. The different extent of layers IV and V has
been used by von Economo and Koskinas (1925) for a broad classification of the
cortex into granular, typical of sensorial areas, and agranular, such as the motor
areas. Collectively, the two types form the heterotypical cortex, the remaining area
is the homotypical cortex, which is not primarily engaged in sensorial processing or
in motor output. It is the core of higher level cognition, abundant in the frontal lobe.

The principal neuron in the cortex is the pyramidal cell, Cajal’s psychic cell,
accounting for 70 % of the overall neural population in the cortex, prevalent in layers
II, III, and V. Their body is conical with the vertex directed toward the surface,
carrying the apical dendrite, a channel with rich terminal tuft into the superficial
layers and additional synaptic domains placed depending on the level at which the
soma is situated. A second set of dendrites radiates its bouquet from the base of the
soma. All dendrites are covered with spines, bumps of 0:1 �m3 height increasing
the efficiency of synaptic transmission.

Most of the axons of pyramidal cells leave the cortex, and represent the main
cortical output, with targets depending on the layer of the cells. Cells in layers II
and III project to other cortical areas, either ipsilaterally or via the corpus callosum,
in the other hemisphere. As previously mentioned, motor output to basal ganglia
and the spinal cord come from pyramidal cells in layer V. The output of pyramidal
neurons in layer VI is mainly directed to thalamic nuclei (Fig. 2.7).

A prominent feature of pyramidal neurons is the conspicuous number of intracor-
tical collateral branches, constituting by far the largest source of excitatory signals
in the cortex. Lateral connections are well myelinated and spread to distances up
to several millimeters, often in periodically organized groups of synapses (Gilbert
et al. 1990; Hou et al. 2003). There is strong evidence of the relevant computational
role of lateral connections, discussed in detail in Sect. 3.3.2.

There are other excitatory cortical neurons, that can be considered, at least in
part, as modified pyramidal cells. The most important is the spiny stellate, which
is concentrated in layer IV, producing its “granular” aspect, and is abundant in
the visual cortex. The input to spiny stellate neurons is fed primarily by thalamic
fibers, with secondary contributions from pyramidal cells of the deeper layers, or
other spiny stellate. Their main computational contribution seems strongly related
to the propagation of thalamic signals. The bipolar cells are less frequent, and have
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Fig. 2.7 In the figure on the left, an original image of Brodmann (1909), the cellular and myelinic
structure of the cortex is illustrated. The figure on the right shows a series of original drawings
made by Cajal Ramón y Cajal (1906), comparing philogenesis and ontogenesis: from the left, a
human neuroblast with emerging basal dendrites and axon collateral branches, a mature lizard cell,
a mature human cell
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Fig. 2.8 A collection of non pyramidal neurons that populate the cortex: bipolar neurons of the
visual cortex in the rabbit (a); basket cell of monkey rhesus superficial (b); Cajal’s horizontal cell
in the porcupine (c); chandelier cell in the monkey rhesus (d); double bouquet cell in the monkey
rhesus (e); spiny stellate of the visual cortex of the macaque (f)
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a typically narrow and radially elongated shape, which is almost symmetrical to
the soma. Their main function, therefore, seems to be the radial communication of
signals.

Inhibitory interneurons are sharply different from pyramidal neurons, GABA is
their main neurotransmitter, and they almost entirely lack dendritic spines. The
most common is the basket cell, concentrated in layers III and V, with poorly
ramifying dendrites, and axons with very short radial lengths, giving rise to very
long lateral connections. Their targets are pyramidal cells and spiny stellate as
well. The chandelier cell, common in layer II, owe their name to the axonal plexus
carrying a large number of radial axonal swellings, resembling candles. They seem
to be the most influential source of inhibition for pyramidal cells. The double
bouquet cell also earned a suggestive name, from Cajal, due to the shape of its
axons, made up by double, thin and long radial branches, terminating in two distant
tufts. The last cell to be mentioned here is the horizontal cell of Cajal, the only cell
which includes its baptizer in its name. It is the only cell with a displacement that is
entirely parallel to the cortical surface. Confined exclusively to layer I, it is another
component of the strategic lateral interaction in the cortex.

Figure 2.9 shows a diagram of the typical circuital connections of the cortex, that
involve the neurons described as well as other minor ones, giving place to a complex
local cortical circuitry that is periodically replicated parallel to the surface, spaced
between 300 and 800 �m. This gives rise to the so called columnar organization of
the cortex, that will be described in depth in Sect. 3.3.1.

The composition and basic structure of the cortex, here briefly sketched out, is
very likely the best computational organization nature has reached so far. It is the
most plausible explanation of the universality of its design across brain regions and

Fig. 2.9 Diagram of a typical circuit in the cortex, reconstructed from the study of experimental
cortical slices (From Nieuwenhuys 1994)
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species. There are clearly local variations in certain aspects of the cortex, seen for
example in the differences between granular perceptual areas and agranular motor
areas, and the taxonomy has been subtly refined in current neuroanatomy (Braak
1980). But all these variations are marginal with respect to the basic main layered
architecture, made up of the populations of neurons here described. This universal
uniformity has motivated the search for the fundamental neuronal circuit that has
proven to be so successful. It will be the topic of the sections that follow.
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Chapter 3
Representational Mechanisms

Abstract This chapter attempts to move from the fundamental computational
properties of the brain, previously described, into a sketch of how the brain builds
a representation of the world. The next part of the book will deal more specifically
with the linguistic portrayal we humans have of the world, a topic which has also
served as a tentative approach to explaining the neural mechanisms that allow
animals to build knowledge. In a sense, the core question of epistemology. Several
philosophers, like Jerry Fodor (1983, 1990), have denied that an explanation of
representations can be given in terms of neural biophysical properties. Today, such
a radical refusal of the neurocomputational approach has become more and more
marginal, in any case its thorough defense is beyond the scope of this book, and left
to better advocates (Churchland 2002).

On the other hand, any endeavor toward explaining mental representations by
neural mechanisms, has first to acknowledge that the notion of “representation”
itself is problematic, and at the heart of current philsophical controversies. In
addition, there are also positions entirely within a neuroscientific perspective, that
deny the concept of representations completely. The title of this chapter leaves
no doubt that we, instead, appeal to the notion of representations. It is out of the
scope of this book the attempt to settle the philsophical debate on representations,
and to lay down any new theory, our approach is to explore the emergence of
semantic phenomena through the use of neurocomputational models based on a set
of plausible mechanisms, that will be described in this chapter. Before that, we will
offer a short overview of the philsophical issues posed by mental representation in
general, with more detail on neural representation, and on neural computation over
representations.

We will offer a selection of a small number of mechanisms, deemed to be at
the core of the bridge between electrochemical activity and world representation.
The ability of detecting coincidences, at different scale levels of neural circuits,
is regarded as the most general, and probably most effective mechanism. Other
more specific strategies will be discussed such as receptive fields, topological
organizations, and selective processing pathways.
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3.1 Neural Representations

Intuitively, a quest for the existence of mental representations sounds paradoxical.
We live embedded in our representations of the world, and of ourselves. Indeed, the
initial enterprise of cognitive science was entirely dependent on the assumption of
internal representations (Fodor 1975; Newell and Simon 1976), with little concern
of the need to further explain what they were, and whether they exist at all. However,
all attempts to provide a sound philosophical definition of mental representation
turned out to be problematic. For Ramsey (2007) the notion of representation is a
paradigmatic case of the well known Wittgenstein (1953)’s “family-resemblance”
structure. The usage of the term representation among cognitive scientists (and
philosophers as well) is highly variable, with radically different properties, often
clarified with semi-formal, all-encompassing definitions, sometimes tapping into
a general, pre-theoretical understanding of representation. Still, it is possible to
appreciate in the diversity of uses of this term, a shared “family-resemblance”. Even
more drastic was Cummins (1989) in his discouraging the search for a definition of
representation at all, claiming it as unfeasible in principle.

Next, we will discuss some of the most critical issues involved in defining
representations, a comprehensive review is given by Ryder (2009a,b). As we will
see, coming up with a definition of representation often requires formulating a
comprehensive theory on how representations work. For the purpose of neurose-
mantics, the problem of representation is recast in the more precise terms of neural
representations, discussed in Sect. 3.1.2. The close relation between representations
and computations encourages the next theoretical quest, the one regarding the kind
of computation that is performed by neurons. This, in turn, brings to the closing of
this section, where the way biological neurons have of computing is contrasted with
what ordinary computers do ordinarily, setting the stage for the modeling strategies
that will be presented in the next chapter.

3.1.1 Representation and Its Troubles

The troubles posed by mental representations are certainly not new in philosophy,
dating back further than we would expect. According to Slezak (2002), most of
the terms used in current debates were already central in the philosophy of the
seventeenth century. For example, the theory of ideas of Nicolas Malebranche
(1675), if stripped of its theological trappings, is much like a modern tripar-
tite concept of representations, with what is represented, the representation, and
the user of the representation. Likewise, the fierce critique leveled against this
theory by Antoine Arnauld (1683), denying intermediate entities between per-
ception and action, closely parallels the modern day enactivist anti-representation
movement.
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Probably the most serious trouble representations have is that of accounting for
misrepresentations (Dretske 1986), for example, such as when we make mistakes
in categorizing perceptual stimuli. Dretske (1981) articulated one of the most
influential definitions of representation, based on causal relation. A mental concept
can be described as a representation of an external entity, if this entity consistently
causes the mental concept to be elicited. He recognized that this account has
trouble in explaining why different entities may occasionally activate the same
representation. For Slezak (2002) misrepresentation is just a different description of
the well-known classical “Argument from Illusion”, used to support sense-data as
the immediate objects of perception (Ayer 1940): cases in which the correspondence
between representations and the world fail.

Leaving historical recursions aside, misrepresentation is still problematic. The
way out suggested by Dretske is by distinguishing a learning period, during which
a subject learns that a certain representation refers to an entity type, and can make
mistakes. This period fixes the reference, while the post-learning period leaves room
for wild causes. This proposal is exposed to several objections, like the difficulty in
identifying a sharp division between learning and post-learning periods. Even worse,
it is vulnerable to additional troubles that resemble misrepresentations.

One is the classical problem of normativity. We have the clear intuition that in
cases of misrepresentation something has gone “wrong”, and even if a causal theory
is able to describe different levels of accuracy of a representation, it has trouble
in explaining why the misrepresentation is “wrong”. A second, is the so called
“qua problem” (Devitt 1981): a perceived stimulus, a cat for example, can cause
several kinds of representations, in this case a cat but also a pet, or an animal.
It is in the intention of the agent to think of qua as such-and-such. Probably, the
most successful answer to this set of problems is teleosemantics. Millikan (1984)
developed this idea introducing the concept of “proper function” of a biological
trait, as its effect, the having of which is responsible for the continued reproduction
of members of a population endowed with such a trait. In other words, the proper
function of a trait is the property for which it has been selected, in an evolutionary
sense. Applying this idea to representations, the content is now fixed by the class
of stimuli the representational mechanism was selected for. Normativity is secured:
cases of misrepresentation are “wrong” because the mechanism failed to perform
its proper function. The qua problem is solved with the concept of “template”, the
kind of question one asks when tracing an entity, and this selects the appropriate
representation (Millikan 2000). A similar teleological proposal has been developed
by Papineau (1987, 1993), who appeals to the history of evolutionary selection as
well, but assigns a privileged role to the content of desires. Belief contents should be
explained in terms of desire contents, and desires have their content by representing
what they are desires for.

Of course teleosemantics soon encountered its own set of problems, one of the
most famous being the Swampman of Davidson (1987), an imaginary copy of him-
self generated by a really peculiar random aggregation of molecules. Swampman is
physically identical to Davidson, but lacks any evolutionary history, therefore, none
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of his representations have any content, according to teleosemantics. Whether this,
and several other objections succeed is a controversial matter, and beyond the scope
of this section.

There are reasons, detailed in Sect. 3.1.3, that make teleosemantics scarcely
relevant to our project. On the contrary, there are other less popular approaches,
that are more congenial to our purposes. The focus of these approaches is on
developmental history, rather than evolutionary history. We mentioned how Dretske
already used the notion of a learning period in his causal theory, but without an
adequate characterization of this notion. A refined elaboration on this is given by
Prinz (2002) with the idea of “incipient causes”. A representation has as content
the class of entities to which the entities that caused the original creation of that
representation belong. The remarkable difference is that for Dretske, during his
learning-period, every entity that would cause a representation to be tokened gets
included in its content, while for Prinz only those things that actually caused the
first tokening of the representation, its “incipient causes”, will count as content.

A different causal-developmental theory has been defended by Rupert (1999),
based on statistical considerations. The content of a representation is defined as
the class that elements in the past have caused to token that representation instead
of another. Therefore, the actual content of a mental representation is determined
by a substantive developmental process, a result of the physical disposition of the
organism to represent, shaped by the individual’s developmental interaction with the
environment. The solution to the qua problem is inherent to the statistical definition
of representation content: even if a cat is a pet and an animal, the past frequency that
caused to token the representation “cat” is much higher than pets in general.

So far we have covered some of the philosophical problems of mental representa-
tions, and how various theories fare with these problems, under the tacit assumption
that something like mental representations do exist, and have their physical instan-
tiation. There are positions that are radically distant, that deny the existence of
representations at all, or the possibility of their physical instantiation. One of
the most authoritative is Dreyfus (2002), rooted in existential phenomenology,
especially the works of Heidegger and Merleau-Ponty. We are not going to discuss
these sorts of positions, because their attacks concern mainly the classical vision of
representations as logical symbol structures, and tend to dissolve when moving to
current neurocognitive accounts, as pointed by Grush and Mandik (2002). We will
concentrate on challenges specific to neural representations in the next section.

3.1.2 Do Neurons Represent?

Much like the notion of representation in the mind is intuitively accepted, as has
been discussed above, in neuroscience, representational vocabulary is used casually
to characterize various neural processes. We are going to do the same, discussing
in this chapter a series of brain mechanisms we identify as strategies for building
representations. Thus, before examining how representation at the neural level fares
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with the troubles previously listed, a compelling question that arises is whether by
construing certain brain mechanisms as representations, we are using a fictional, or
even worse, a misguiding concept.

Doubts on the genuine nature of neural representations are raised by Ramsey
(2007), who traced a distinction between structural representations, and simpler
receptor representations. While the former maintains a structure of relations of the
target domain being represented, the latter is simply the selectivity of the response
to a class of external stimuli. According to Ramsey only structural representations,
which are exclusive to the classical computational theory of cognition, are genuine
notions of representation. Receptor representations, used in neural computation, fail
to meet his “job description challenge”, i.e. the level of explanation they give when
construed as receptors do not change when construed as representations. However,
as remarked by Sprevak (2011), it is far from clear why a receptor based notion
cannot be explicative as representation, and Shagrir (2012) shows how Ramsey’s
concept of receptors does not meet with the usage of representations in current
neural computation, where structural relations between neural signals and target
patterns are common.

While the criticisms of Ramsey targeted neural computation, in favor of the clas-
sical computational theory of cognition, there is a strand within the field of cognitive
neuroscience, that claims brain processes are best studied using noncomputational
and nonrepresentational ideas and explanatory schemes. The tools of reference are
those of dynamic systems theory, and one of the flagship arguments is the dynamical
description given by Gelder (1995) of a mechanical device, the Watt governor. It is
a clever device, invented by James Watt in 1788, following a suggestion from his
business partner Matthew Boulton. This device controls the speed of an engine by
regulating the amount of fuel, in order to maintain a near-constant speed. In the
words of van Gelder

It consisted of a vertical spindle geared into the main flywheel so that it rotated at a speed
directly dependent on that of the flywheel itself. Attached to the spindle by hinges were
two arms, and on the end of each arm was a metal ball. As the spindle turned, centrifugal
force drove the balls outward and hence upwards. By a clever arrangement, this arm motion
was linked directly to the throttle valve. The result was that as the speed of the main wheel
increased, the arms raised, closing the valve and restricting the flow of steam; as the speed
decreased, the arms fell, opening the valve and allowing more steam to flow. The engine
adopted a constant speed, maintained with extraordinary swiftness and smoothness in the
presence of large fluctuations in pressure and load.

In his essay, van Gelder gave a mathematical description of the Watt governor
by differential equations of the arm angle and the speed of the engine. This
system of equations completes the explanation of the system. An alternative, one
preferred by a cognitive scientist, would be based on taking the arm angle as a
representation for engine speed. Van Gelder argues that this idea is unwarranted for
several reasons, the most compelling is that a description in representational terms
does not explain anything over and above the explanation given by the dynamical
equations. This example has been the focus of a wide debate, for Bechtel (1998)
there are interpretations of the Watt governor, in which the representation analysis
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becomes pertinent, instead, according to Haselager et al. (2003) the current accounts
of representation make it impossible and useless, to establish whether a system is
representational or not.

The most fervent rebuttals of neural representations today, under the flag of
dynamic system theory, come from the proponents of the enactive and embodied
accounts of cognition (Chemero 2009; Hutto and Myin 2013). The most harmful
threat to neural representation, according to Hutto and Myin, is what they call
the “Hard Problem of Content”, the idea that neural signals can only exhibit mere
covariance relations with external sources of information, and covariance does not
suffice for the existence of content, as for example, it cannot provide satisfaction
conditions. By waving this weapon Hutto and Myin (2014) criticized the approach
of Colombo (2014a), who showed how certain social behaviors, in which humans
comply with norms, can rely on neural representations of beliefs and desires. A
wrong conclusion, due to Colombo, falls into the Hard Problem of Content, leading
Hutto and Myin to request “neural representations, no more pleas, please” (see also
the reply of Colombo 2014b). The Hard Problem of Content is not so harmful
for Miłkowski (2015b) who demonstrated how satisfaction conditions of content
can be derived from neural representations in the case of anticipatory mechanisms
of rat maze navigation. Notoriously, this task is supported by place cells in the
hippocampus (O’Keefe and Nadel 1978), a discovery awarded with the Nobel
prize in 2014. In the end, according to (Miłkowski 2015a), the Hard Problem of
Content adds nothing to the list of troubles already analyzed in Sect. 3.1.1 for
representation in general, like misrepresentation and normativity, has therefore
already been solved, at least in part.

This short account does not intend to give justice to the debate on neural
representation, and, as said before, in our book we are not taking up the burden
of proving the philosophical consistency of a neural representation account. Our
stance is to make use of this notion, adopting a weak theoretical commitment.
Bechtel (2014) has shown how describing neural activity in terms of representation
is a useful guiding principle, in the progress toward the mechanistic explanation
of a phenomena, using the same case of place cells in the hippocampus mentioned
by Miłkowski. To further legitimate the use of neural representation, we will now
present several proposals that, unlike us, did take upon themselves the burden of
proving how one can resist the philosophical troubles of representations.

3.1.3 Neural Representation Defended

The applicability of the notion of representation to neurons is defended by Mandik
(2003) designing computer simulations of simple organisms, simulations of a kind
that are very different from those presented in the second part of this book.
The physical structure of the organisms is modeled using Framstick (Komosinski
2000), a collections of connected “sticks”, and the control is based on computing
elements loosely called “neurons”. The simplest simulated behavior in a four
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legged Framstick creature is to coordinate its limbs so to walk in a straight line,
more complex creatures perform vision driven taxis for food. Even if “neurons”
of Framstick creatures have no biological plausibility, they fulfill the role of a
conceptual demonstration of neural representation, since the contents of some of
these elements are numerical values causally related with external objects, as in
certain states of biological neurons. It is the case, for example, of the values
carried by the neurons connected with the sensorial transducers of food location.
Mandik has the further aim of comparing representations in terms of their different
“economy”: perceiving, storing memories, or commanding motors. We will leave
this aspect aside, and take just the case of visual representations. The contents of the
computing elements are genuine representations, according to Mandik, through a
teleological account, in that locating a food source by sensorial neurons is a function
in the survival economy of the creature.

This function is “proper”, in the sense of Millikan, because it is fixed by the
evolutionary history, simulated in Framstick by an evolutionary algorithm, that
adapts the connection weights of the artificial neurons, using as fitness function
the life span of the creature.

A different road is taken by Ryder (2004) in his SINBAD (Set of INteracting
BAckpropagating Dendrites) theory, based on a theoretical speculation, grounded
in neuroscientific evidence. The main claim is that talking about representations
is appropriate for a specific class of brain neurons: cortical pyramidal cells (see
Sect. 2.3.2). The peculiar behavior of these cells is the homeostatic contribution of
their principal dendrites: they tend to contribute equally to the firing of the pyramidal
neuron in the long run, but in order to achieve this stable state each dendrite needs
to adapt its synaptic efficiency taking into account the probability of firing of the
presynaptic cells at every other principal dendrite. It is feasible, notes Ryder, only if
certain correlations hold between all the dendritic afferents, correlations reflecting
regularities in the external world. For example, two dendrites may receive afferents
from different sensorial features of the same object, like color and shape. This
reconstruction of how a neuron becomes tuned to sources of correlation in the world
is similar to our more general account of coincidence detection that will be described
in Sect. 3.2.

Common to Mandik is the appeal to teleosemantics: Ryder claims that the
working of the cells as described by SINBAD theory, work that way because they
have been designed by evolution to fulfill the proper function of yielding reliable
correlations of external sources, whose survival value is given by the predictive
capabilities of what is represented by pyramidal cells.

A third defense of neural representation is offered by Nair-Collins (2013) in
terms of structural preservation, a mathematical specification of class of preserving
relations more strict than isomorphism and homomorphism, that can be applied
to neural signals. The theory has technicalities that are not relevant for our
purposes, in summary, neural activities are able to establish a mapping of relations
of properties in the external world. Despite the difference of this theory to the
proposal of Mandik and Ryder, the strategy for defending structural preservation
as genuine representations is, again, teleosemantics. What makes neurons endowed
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with representations is that their states have the teleofunction of bearing certain
correspondence relations, such that its doing so is adaptive for the organism of which
that state is a part, and this function has been fixed by natural selection.

While we are sympathetic with the three defenses of neural representations just
described, and their contribution to specific aspects of how representations are
constructed, we doubt that the appeal to teleosemantics, in evolutionary terms, is
of any real help. The impression is that since teleosemantics has gained today a
high prestige in philosophical theories of mental content, the safer move in order
to protect any neural representation theory from the long list of troubles listed in
Sect. 3.1.1, is to attach evolutionary teleosemantics to it.

There are two different concerns with adopting evolutive teleosemantics. One is
that it is affected by a serious philosophical weakness. It is based on the idea that
a certain representation mechanism has been “selected for” in evolutionary history.
But, as noted by Fodor (2008, p. 3):

[. . . ] ‘adaptation for . . . ’, ‘selection for . . . ’ and the like are themselves intensional contexts
(just like ‘belief that . . . ’ and ‘intention to . . . ’). [. . . ] So the situation is this: either natural
selection is a type of ‘selection for . . . ’ and is thus itself a kind of intensional process; or
natural selection is a type of selection tout court, and therefore cannot distinguish between
coextensive mental states.

But our major concern is methodological. Unlike synchronic or developmental
accounts of neural representations, entrenched in a rich synergy with an enormous
body of neuroscientific research, teleosemantics did not succeed in connecting with
empirical relevant research. As far as we know, teleosemantics never engaged in
confronting, for example, with current theories of brain or cortical evolution (see
Sect. 2.3.1).

Turning towards a developmental account not only allows us to focus on the
processes we deem more crucial in the construction of neural representation, it also
grants access to a wealth of detailed mechanisms like those described in Chap. 2
(see also de Charms and Zador 2000). Even if our brain is, to a large extent, the
result of evolution, narratives about hypothetical evolution of representations given
by teleosemantics typically take the form Gould and Lewontin (1979) have called
“just so stories”. In addition, developmental-causal theories have their weapons too
for fighting the philosophical troubles of representations, even if not as developed
as the arguments of the teleosemantics community, we have discussed for example
the theory of incipient causes by Prinz (2002) in Sect. 3.1.1.

Turning again to the simulation models of Mandik, a developmental history
seems more appropriate and natural than evolutionary history in fixing the represen-
tational contents of artificial neurons. In fact, the evolutionary algorithm adapts the
system by changing the weights modulating connections between neurons. But in
the brain synaptic efficiency is adapted by development, certainly not by evolution.
This objection does not hold for the SINBAD theory, which dictates that specific
contents of pyramid cells are fixed during development, it is the general power of
predicting by catching correlations that is supposed to be conferred by evolution. As
noted by Usher (2004) the link to evolution appears superfluous, and adds nothing
to the validity of the theory itself.
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Eventually, let us mention a project that makes liberal use of the concept of neural
representations dispensing with evolutionary teleosemantics, the NEF (Neural Engi-
neering Framework) (Eliasmith and Anderson 2003; Eliasmith 2013), in which the
typical representation unit is at the level of a population, rather than single neurons
(see Sect. 4.3). The bridge between signals at the level of neural populations, and
conceptual content, is provided by the idea of a semantic pointer (Blouw et al.
2015), a sort of compressed mathematical transformation of the multidimensional
vector of activity in a population of neurons, into a new mathematical space, whose
dimensions can carry cognitive meaning. The transformation is performed using
circular convolution (Plate 2003).

3.1.4 Do Neurons Compute?

In cognitive science the notion of representation has typically been ancillary to that
of computation. Every manipulation of representations, or derivation of an action
from representations, is a computation. We just reached the conclusion that for
neurons to represent is a useful and plausible construction, but does it immediately
entail that neurons compute?

All throughout the previous chapter, we have not only assumed that the neuron
computes, but also, that it is very likely the basic unit of brain computation. We
did not refer to a precise definition of computation, using the term loosely as
a purposeful manipulation of physical (mainly electrical) signals. It is time now
to examine how correct our account of computation for the neuron is, and more
broadly, the account of computation in our neurosemantic modeling approach, with
respect to a philosophically sound definition of computation.

There are in fact several definitions of computation available, ranging from that
of theoretical computer science (Turing 1936; Kleene 1936; Church 1941; Rice
1954), to that of pancomputation, the idea that the whole universe computes (Wol-
fram 2002). There are several lists of criteria for deciding if something computes or
not, such as that given by von Neumann (1961) or the more recent and longer list
by Smith (2002), an overview is found in Fresco (2014). For our purposes, we draw
on the taxonomy proposed by Piccinini and Scarantino (2010) and Piccinini and
Bahar (2013) of generic, digital, and analog computations. A crucial concept in their
grouping is that of vehicles, on which computation is performed, defined as “entities
or variables that can change state”. A generic computation is a manipulation of
vehicles according to rules that are sensitive to certain vehicle properties and,
specifically, to differences between different portions of the vehicles, including their
temporal changes. A fundamental constraint on vehicles is that they need to be
“medium independent”, their manipulating rules should obey differences between
portions of the vehicles, along specified dimensions, but should be insensitive to
any more concrete physical properties of the vehicles. Piccinini and Bahar give
as counterexamples the processes of cooking and explosions, involving physical
alterations of the medium being processed.
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Thanks to the concept of vehicles, it is possible to give a stringent definition
of digital computation, as a generic computation whose vehicles are strings of
digits, which are defined as macroscopic states whose type can be reliably and
unambiguously distinguished by the systems of other macroscopic types. Digit
types should be finite in number. Strings are just concatenations of digits. We can
immediately recognize that digital computers, as they are defined in theoretical
computer science, fit into this definition, however, it is more general than that of
a Turing-equivalent machine.

In analog computations, the vehicles are variables that can vary continuously over
time, and the manipulating rules are in the format of differential equations. The best
mathematical account of analog computers is that of Pour-El and Richards (1981).
Analog computations depart from digital computation in several respects, one is that
the computed values are always approximations of the exact values expected by the
governing rules.

Where are neurons in this taxonomy? One may expect analog computations,
since all the main neural processes, described in Sects. 2.1.2 and 2.2.2 could in
principle, be described by differential equations on continuous variables. The point
is that in the computational analog account of Pour-El, only a restricted class of
differential equations are effectively computable, too narrow a range for neural
biochemical processes. Note that it cannot be ruled out that neural processes might
be included in a different, and more inclusive, theory of analog computation,
however Pour-El is still the best candidate in the market of theoretical computation
over continuous variables.

Piccinini and Bahar discuss at length the possibility of neurons being digital
computation, clearly this interpretation is invited by the apparent on/off signaling
of the neurons by action potentials, that led McCulloch and Pitts to the logic
interpretation of the brain discussed in Sect. 5.1.3. As concluded there, and from
all that has been presented in Sect. 2.1, it is evident that this is not the case. In
particular, any attempt to reduce trains of action potentials to strings of digits, would
fail to meet the finite constraint on the number of types, due to the continuous time
of the events. One may argue that even if spike events are not synchronized, and thus
placed over a continuous time dimension, their approximation within discrete time
intervals might be valid for cognitive processes. However, as remarked by Piccinini
and Bahar, this objection faces the problem of separating the cognitive level from
the level of implementation, which is improper in principle when the project is to
characterize computation at the implementation level. Thus, the conclusion is that
neurons do compute, and belong to the class of general computation, not digital or
analog computation.

We are not convinced that all vehicles relevant to neural computation can pass
the medium independence criteria, Piccinini and Bahar, mention voltage changes in
dendrites action potentials, neurotransmitters, and hormones, as possible vehicles
manipulated by neural processes, but their analysis is limited to action potentials.
It is the proper candidate: what matters in trains of action potentials for neural
computation rules, is their amplitude in time, which can certainly be characterized
in a medium-independent way.
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Action potentials are clearly the largest overt activity of the brain, but the most
important process for building representations is in the interaction between action
potentials and plasticity. Limiting computation to the rules governing actions poten-
tials on neural circuits with fixed connections, leaves out the entire construction of
neural representations, i.e., the essence of neural intelligence.

Can the basic mechanisms of plasticity be characterized as medium independent
vehicles? By definition, plasticity is a type of physical change of the medium:
arborization, growth of synaptic terminations, changes in the number of channels, in
the average number of vesicles, and so on (see Sect. 2.2.1). One may object that still,
it would be possible to define vehicles able to abstract away the physical changes
occurring during plasticity, preserving the property that all computational rules can
be defined in their parts. We would not discard this possibility, certainly it would be
a much more awkward job than in the case of action potentials, due to the chain of
complex chemistry and genetics on which plasticity relies. Existing computational
models of plasticity typically abstract away from physiological mechanisms, much
more than models of neural electrical activity. In fact, while we have concrete
examples of instantiation of action potential-like vehicles in artificial media, with
the new brain-machine interfaces (Craver 2010; Schouenborg et al. 2011), nothing
similar exists for the vehicles involved in plasticity.

Nevertheless, we would not deny that neurons compute, and belong to a
type of computation that is different from the digital one. We believe that the
processes performed by neurons are properly construed as computations, even
if computations are performed on medium-dependent vehicles. The problem is
philosophical. When relaxing the medium independence constraint, it is difficult
to preserve the definition of generic computation from the risk of including the
so-called “trivial” pancomputationalism. Contrary to the genuine belief of proper
pancomputationalists, like Wolfram (2002), who elevate computation to the level
of pervading the whole universe, the final goal of trivial pancomputationalism is
to discredit computation, as an attribute that can easily be ascribed to any system.
According to Searle (1990) the characterization of a process as computational is
up to the observer, there is nothing intrinsic in the object that makes a physical
process computational. Even more compellingly (Putnam 1988) argues that every
ordinary open system, such as a boiling pan or a falling snowflake, can be proven
to be equivalent to a Turing-equivalent machine. The introduction of the concept of
medium-dependent vehicles was an elegant way to give generality to computation,
behind digital computation, escaping trivial pancomputationalism. Perhaps neurons
have been left out too.

A definition of computation that is appropriate for neurons is still on its way,
much like most of the neurosemantic account given in this book. As stated by
Piccinini and Scarantino (2010) “Unlike ‘digital computation’, which stands for a
mathematical apparatus in search of applications, ‘neural computation’ is a label in
search of a theory”.
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3.1.5 Neural Computation Inside Digital Computers

The previous excursus on different types of computation concerned biological
neurons, and is pertinent for the next sections of this chapter, that deal with
biological mechanisms of neural representation. In the next chapter, computation
will move on, towards ways of modeling the mechanisms here described, by means
of ordinary, concrete computers. There is no discussion on the fact that computers
offer, of course, plain digital computation. What we would like to argue here, is
that there is nothing odd in the divergent type of computation that exists between
biological neurons, and the means used to model them.

The affinity between digital computers and mind computation was a concern
of the traditional perspective on computational explanation in cognitive science,
and has been the stronghold of the Computational Theory of Mind (Fodor 1975;
Pylyshyn 1981; Johnson-Laird 1983). This is not a requirement for neural compu-
tation, however. There is no need to settle what feature of digital computers allows
them to explain what neurons do. The business in which computers are involved,
in this case, is more humble, modeling: to reproduce the behavior of a system of
a different nature, which can also be a computational system itself, of the same or
different computational type.

A crucial distinction now arises between computational models that just repro-
duce a behavior of an external system as an output, and those whose reproduction
is realized in a way that explains the behavior itself (Piccinini 2007). Note that in
a traditional account of scientific explanation, every computational model able to
reproduce with enough accuracy the behavior of an external system under a variety
of initial conditions, would count as an explanation, in that it has predictive abilities
(Hempel 1965). More recently, it has been argued that a scientific explanation also
requires the description of a mechanism, in general (Bechtel and Richardson 1993;
Machamer et al. 2000), and particularly, in neuroscience (Craver 2007). In this
context the term mechanism is used in a technical sense, it requires the identification
of components of the system to be explained, the definition of the functions of
each component, and the relations between functions in producing the set of system
behaviors.

The concept of mechanism can be applied to computational models too, and
becomes a possible criteria for ascertaining which models give explanation of
the modeled system (Piccinini 2006, 2007). More specifically, Kaplan (2011)
and Kaplan and Craver (2011) propose the 3M (model-mechanism-mapping) con-
straint on computational models with explanatory power:

A model of a target phenomenon explains that phenomenon to the extent that (a) the
variables in the model correspond to identifiable components, activities, and organizational
features of the target mechanism that produces, maintains, or underlies the phenomenon,
and (b) the (perhaps mathematical) dependencies posited among these (perhaps mathemat-
ical) variables in the model correspond to causal relations among the components of the
target mechanism.
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This constraint does not work as a logical binary condition, in fact, complete
mechanistic models of neural behavior are unrealistic, it is perfectly compatible with
incomplete models, where details are omitted either for reasons of computational
tractability or because these details are still unknown. It is mostly a guiding princi-
ple: computational models whose design principle does not care about the structural
correspondence between model components and external system components are
merely predictive models, while in the case in which the design is based on
such correspondence, they aim at being explanatory models. Most of the models
developed for neurosemantics, described in the second part of the book, attempt to
meet the 3M criteria, with different degrees of detail, and plausible correspondence
of their components with brain components.

3.2 Coincidence Detection

In order to discuss what we deem to be the most important mechanism in neural
representation, we employ the expression coincidence detection, as a general ability
to detect coincidence in signals, and be affected by them. It is quite likely not
supported by any single physiological mechanism, but is rather a broad brain
phenomenon, that takes place at different scales of both the signals and the neural
circuits involved. With increasing scale, we can break up coincidence detection into
three levels, which are as follows:

1. two connected neurons level;
2. level of a neural population inside a single area;
3. level of two different brain areas.

The first level is precisely the one referred to by the principle of Hebb (1949),
according to which a temporal coincidence in the activation of two connected
neurons, if repeated for enough time, would result in an increase in the synaptic
efficiency between the two neurons. This physiological modification captures
the experience of the coincidence of two events, both in the case of external
events for sensorial neurons, and of internal signals within the organism. In any
case, the level of two neurons is at microscale, and applicable signals do not
correspond directly to events as described in everyday experience (an exception
would be the extreme case of code sparseness, see Sect. 4.3.1). This is the level
where a sound understanding of the main processes has been achieved over the
last 30 years. As discussed in Sect. 2.2.2, changes in synaptic efficacy between
two neurons account for much more than pure Hebbian growth, sustained by a
large amount of cellular and molecular mechanisms, nonetheless, the coincidence
between signals is the main event captured by synaptic change. Note that we are
not assuming that detecting coincidences is the final function to be reached by
the system of two connected neurons, which will be dependent upon the specific
patterns of inputs, the point is that in developing this final function repeated
coincidences inside the two patterns play a crucial role. Moreover, we have seen
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how coincidence detection between two neurons comes in many forms, including
the refined spike-timing-dependent plasticity, where the association is reinforced
only when the presynaptic firing occurs before postsynaptic activation, within a few
milliseconds.

The second level involves neurons at such a number that it allows us to compare
their activity to an elementary cognitive event, such as a perceptual stimulus, and
it was also originally conceived by Hebb, in terms of cell assemblies. This notion,
though rather vague, makes sense in postulating that the coding of macroscopic
experience should involve the coordinated activity of large numbers of neurons.

A good example of the interpretation of coincidence detection at the second
level is the organization of circuits in sensorial cortical maps, those introduced
in Sect. 3.3.3. One of the main features of these maps is the abundant lateral
connectivity, as seen in Sect. 2.3.2, which can always be broken down into single
synapses between two neurons, ruled by Hebbian plasticity, possibly extended by
all its known variants. However, the signals are now characterized by a high degree
of correlation, and the effect of coincidental signals, their self-sustainment, requires
an interpretation at a more global level. A mathematical framework suitable for
this interpretation is the one furnished by the theory of self-organization, which
will be described in more detail in Sect. 4.1, and will be one of the bases in the
neurocomputational approach to semantics here proposed. Here we anticipate just
one particular phenomena, in order to show how well it fits within the general idea of
coincidence detection. One of the first phenomena reproduced with the mathematics
of self-organization has been the selectivity to orientation in the primary visual
cortex (von der Malsburg 1973). It can be regarded as an instance of coincidence
detection, the coincidence of a series of signals, being aligned along a specific
direction in the retina. It is a learned feature, captured by repeated exposure to lines
with similar orientation in the visual field. Different neural populations, inside the
same cortical map, concur in detecting and gradually coding, different orientations,
in various spots in the visual field. The detection of coincidence in the alignment
of other patterns instead, is not arbitrary, in that in most cases lines belong to
shape boundaries, one of the most precious bits of information in the vital task of
segregating objects in the world.

A definition of this second level of coincidence detection is not limited to
sensorial cortical areas. It can comprise the organization of neurons such as those
named neural cliques by Tsien (2007). He identified possible neural cliques in mice
who experienced startling episodes varying from the blowing of a puff of air, a short
vertical freefall, or the shaking of the cage. A kind of “general startle” neural clique
was identified, where cells respond to all types of startling stimuli, whereas more
“specific startle” cliques collect neurons that respond to a combination of two types
of, but not all, startling events.

The spatial scale of the events and the neural assemblies involved are not the
only extended aspects compared to local Hebbian plasticity. The time window
within which two events are perceived as coincident can be bigger than the few
milliseconds proposed in the Hebbian case. In learning the association between
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taste and visceral distress, rats developed conditioned taste aversion even when the
interval between the presentation of the tastant and the malaise-inducing agent was
that of hours (Dudai 2007).

Eventually the third level concerns coincidences between patterns of activation
in distant parts of the brain, not just in the same cortical or subcortical area, at a
large scale dimension of signals, corresponding to events that are representative at
a psychological level. Examples are the associations built between the amygdala
and the visual cortex, or the auditory cortex, studied by LeDoux (2000). It is
uncertain whether distant coincidence detection and coding is supported by the same
local mechanisms, replicated over long chains of connections, or whether there is
something else in addition. It has long been supposed that relations between patterns
of activation of distant groups of neurons are conveyed by the synchronization
between spikes (von der Malsburg 1995a; Singer 1995). It is interesting to note
that it is again a kind of coincidence detection, but distinct and independent from
the coincidence between neural signals interpreted as firing rates, as in classical
Hebbian learning. Not only does it require very precise temporal resolution in
encoding, transmitting and evaluating the temporal structure of stimuli, synchro-
nization also introduces independent information, for example, two cells could be
highly correlated, even if their firing rates are weak. Distant neural communication
is still not confirmed on the whole, and the various hypotheses that have been put
forth are controversial. For example, Fries (2005) holds that phase-locking among
oscillations in distant neuronal groups allows communication between them, and
the absence of neuronal coherence prevents communication, but that the phase
(amount of synchronization) by itself is not a representational code. However,
there is evidence that synchronization between hippocampal and parahippocampal
regions modulates the encoding of events (Axmacher et al. 2006), and the neural
representation of external locations is supplemented by phase information (O’Keefe
and Recce 1993).

3.2.1 The Psychological Side of Coincidence Detection

Coincidence detection, as we have put it forth, is an idea concerning how neural
circuits come to represent facts and events of the world. However, it naturally shares
resemblance with the psychological idea that one fundamental way of acquiring
knowledge is by mental association. More broadly speaking, this idea is certainly
not an innovative proposal of modern psychology, it can be traced back to Greek
philosophy. It was with Aristotele (350BCE) that the concept of mental association
was clearly enunciated. He acknowledged that associating at least two different
experiences in contiguity, for a number of times, would lead to habit-formation
and purposive thinking. Little attention was dedicated to this idea in philosophy,
until the emergence of British empiricism, with Locke (1690), and especially
Hume (1739), elaborating on the concept of association in detail. Among his basic
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principles, mental ideas become associated with one another through the experience
of such things as spatial contiguity, temporal contiguity, similarity, and dissimilarity
of sensations or simple ideas. In figuring out which correlations between two
given events lead us to ascribe a causality relation, he identified the experience
associations of contiguity and contingency. The former is the temporal and spatial
proximity of events, the latter their regular covariation.

With the emergence of psychology as a separate and distinct field from philoso-
phy, associative ideas become a central part of the theories on learning (Ebbinghaus
1885; Thorndike 1892), and find a strong empirical foundation with the studies
of Pavlov (1927) on conditioning. In this form of association the two events are
fully asymmetric: one is the conditioned stimulus (CS), which is neutral for the
organism, the other is the unconditioned stimulus (US), of biological value. After
the repeated experience of coincidental pairing of the two stimuli, the organism
exhibits a conditioned response (CR) to the conditioned stimulus, even when it is
presented alone. Pavlov’s theories of conditioning were hugely influential during
the behaviorist period in psychology, and especially in regards to viewing learning
as a matter of strengthening or weakening connections between environmental
stimuli and the behavioral response they evoked in organisms. Conversely, interest
declined greatly as a result of the cognitive turn in psychology, and because of the
general disregard for stimulus-response based theories that ensued. A new surge
of interest was spawned by the attempt made by Rescorla and Wagner (1972) to
lay the foundations for a mathematical formulation of conditioning. Their model
is chiefly concerned with quantifying the strength V of the connection between
elements representing the two stimuli in Pavlovian conditioning. Assuming there
is a variability of possible conditioned stimuli, belonging to a class C , and a single
unconditioned stimulus, each conditioned stimulus c is associated with a strength
Vc, which is updated at every new experience, by the following equation:

�Vc D ˛c�

 
NV �

X
i2C
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!
(3.1)

where NV is the asymptote of the associative strength, depending on the intrinsic value
of the unconditioned stimulus, ˛c is the specific salience of the conditioned stimulus
c, and � a learning rate. In case a stimulus x is not followed by the unconditioned
stimulus, the value of NV is assumed zero, and from Eq. (3.1) �Vc become negative.

There are several difficulties when the abstract terms of Eq. (3.1) are projected
onto the complexity of real learning experiences. Rarely can the actual stimuli
humans and animals are presented with be understood as atomic entities, more often
than not, they are made up of several distinct components, which can sometimes
but not always share the same unconditioned stimulus. This problem has two
contending proposed solutions: the elemental strategy in which the components can
be perceived as unitary configurations, or the configural, for which the components
maintain their individuality also when appearing in conjunction (Williams et al.
1994).
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However, the Rescorla and Wagner model has become a point of reference for
many later developments in the psychology of associative learning, which are not
addressed here. This field has a strong familiar resemblance with our coincidence
detection proposal, but there are notable theoretical divergences, in addition to the
obvious differences between psychological and neurocomputational levels, men-
tioned before. In psychology, associative learning is mainly considered to be one
among several independent possible forms of learning. Typically, for psychologists,
nonassociative forms of learning include phenomena like habituation, priming,
and perceptual learning (Hall 1991), where no explicit contingencies between the
stimuli to be learned or actions are observed. On the other hand, coincidence
detection is conceived as the more basic mechanism by which a neural system
gains internal representations of events and facts of the external world. It may
be perfectly applicable to phenomena classified in psychology as nonassociative
learning, in which there is no overt definition of more than one stimulus, and all
structural contingencies amidst the elements of a stimulus, that inevitably exist, are
neglected in the relevant psychological theories. Those structural contingencies are
the most likely cues for coincidence detection and subsequent coding. More about
coincidence detection and structures will be discussed in Sect. 3.2.2.

It is not surprising that associative learning finds more than one strong opponent
within psychology and cognitive science. One of the most radical confutations of
associationism in general comes from the Computational Theory of Mind, a project
construed precisely as its alternative, since its foundation (Fodor 1987, p. 18):

Exactly what was wrong with Associationism, for example, was that there proved to be no
way to get a rational mental life to emerge from the sorts of causal relations among thoughts
that the ‘laws of association’ recognized. [. . . ] Here, in barest outline, is how the new story
is supposed to go: You connect the causal properties of a symbol with its semantic properties
via its syntax.

The same position is still held today (Fodor and Pylyshyn 2015, p. 10):

we aren’t associationists; that is, we think that mental processes are typically causal
interactions among mental representations, but not that such interactions are typically
governed by the putative laws of association. To the best of our knowledge, embracing RTM
is the only way that a naturalist in cognitive science can manage to avoid associationism
and/or behaviorism, both of which we take to be patently untenable.

This controversy is a contemporary continuation of the enduring opposition
between a rationalist perspective, taken by Fodor and Pylyshyn, and empiricism,
a debate by large outside the scope of this book. A defense of empiricism, that
shows ways of explaining causal properties of concepts acquired by associative
laws, denied by Fodor, is found for example in Prinz (2002).

One of the most radical and detailed arguments against associative learning is
marshaled by Gallistel (2000, 2010) and Gallistel and Balsam (2014), drawing as
much evidence as possible from the literature of psychology and neuroscience, that
cannot be sufficiently explained by associative learning. His preferred examples
bear on invertebrate navigation, like the ability of desert ants to forage as far as
50 meters away from their nests, in random directions, and then get back along the
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shortest path, or the use of solar ephemeris by bees. Other alleged counterexamples
of associative learning include learning from few isolated experiences,1 or cases
where the timing between the conditioned and the unconditioned stimuli is not
standard.

The conclusion is that instead of a general purpose associative-like learning, our
brain is equipped with a series of innate specialized learning modules, and that
what is learned is in the form of symbols. Several challenges raised by Gallistel
to associative learning in its standard formulation are important and stimulating,
several details have been addressed within an associative account, like the temporal
separation of the stimuli (Dylla et al. 2013), details we cannot get into here. What
we highlight here however, is the resemblance between the psychological theory
of associative learning and our proposed coincidence detection. But the latter, as
we put it forth, is a different notion, it is an idea concerning how neural circuits
come to represent facts and events of the world. Nevertheless, the general dismissal
of associative-like learning by Gallistel, in favor of innate specialized modules
that learn symbols is deadly for coincidence detection too. Our opinion is that the
alternatives suggested by Gallistel fair much worse than the associative accounts in
matching brain processes. He is well aware of this issue (Gallistel and Balsam 2014,
p. 141):

Perhaps the biggest obstacle to neurobiologists’ acceptance of the view that the brain stores
information in symbolic form just as a computer does,is our inability to imagine what this
story might look like at the cellular and molecular level.

We cannot tell whether it is just a matter of lack of imagination. Surely, what
is lacking so far, is evidence for a neural mechanism for storing information in
symbolic form, against a wealth of evidence for mechanisms compatible with
associative learning. As far as innate specialized modules are concerned, while the
examples given for invertebrates are quite compelling, much less is provided by
Gallistel for humans. This is his best example (Gallistel 2010, p. 574):

Chomsky’s suggestion grew out of his recognition that learning was a computational
problem – a view that is foreign to the associative conception of learning Œ: : :� and to
most neurobiological conceptions of learning. Œ: : :� The example Chomsky had foremost
in mind was the learning of a language. Œ: : :� The computational challenge this poses is so
formidable that there is no hope of surmounting it without a task-specific learning organ, a
computational organ with a structure tailored to the demands of this particular domain.

Unfortunately this example, as we will see in Sect. 5.2.1, did not withstand the
scrutiny of neurophysiological plausibility.

On the other hand, it should be said that in psychology we can also find positions
that give credit to a wider and more general role of associative learning (Shanks
1995). More recently Heyes (2012) has disputed the association-blindness that
cognitive science has induced in comparative cognition studies, or the tendency

1One of the models in this book (Sect. 6.2.3) demonstrates the feasibility of learning from a limited
number of experiences, using coincidence detection only.
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of refuting associative explanations, as oversimplifications in explaining complex
intelligent behaviors in animals. Even in social cognition, an area in which the
more sophisticated forms of behavior are studied, there are important examples
that can be explained by associative learning. Wunderlich et al. (2011) using
fMRI studied subjects performing a renewable energy management game. In the
area with the highest correlation with the game parameters, the right midinsula
activation values best fit with a model of simple statistical covariations with the
simulated environmental parameters of the game. In a two-armed bandit game,
Burke et al. (2010) have shown that the main strategy used by gamblers is based on
observational associations. In a similar experiment, with the addition of suggestions
concerning the trust that should be assigned to future advice from an unknown
confederate, Behrens et al. (2008) ascertained the associative learning of the degree
of trustfulness of the confederates.

In understanding our concept of causation, a theory that has gained recent
attention in philosophy is that of constant conjunction, based on the idea that causal
statements are empirical, and are derived from our past experience by observing
recurrent coincidences of conjunction between objects (Liu and Wen 2013). This
view is perfectly in line with the account given by Churchland (2010) on the
Hebbian way of learning causality in the case of prototypes, that is closely related
with our coincidence detection principle.

3.2.2 Coincidences and Structures

Our notion of coincidence detection accords well with certain aspects of structural
theories of neural representation, which in turn share the general idea of founding
mental representation upon similarities between a conceptual structure and the
structural properties of the referents. The appeal to sorts of similarities between
representation and what is represented is certainly not the latest fashion in philos-
ophy and cognitive science. It can be found as early as in the words of Aristotle
(335–323BCE, 16a3):

Now spoken sounds are symbols of affections in the soul, and written marks symbols of
spoken sounds. And just as written marks are not the same for all men, neither are spoken
sounds. But what these are in the first place – affections of the soul – are the same for all;
and what these affections are likenesses of – actual things – are also the same.

On a similar vein, Hume (1748, ch.IX) asserts that

All our reasonings concerning matter of fact are founded on a species of analogy, which
leads us to expect from any cause the same events, which we have observed to result from
similar causes. [. . . ] But where the objects have not so exact a similarity, the analogy is less
perfect, and the inference is less conclusive; though still it has some force, in proportion to
the degree of similarity and resemblance.

The informal accounts of similarity and resemblance gained a first rigorous
formulation in mathematical terms as structural isomorphism in the work of Russell
(1927), and made their entrance in cognitive science with Palmer (1978).
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Despite its advantages, first and foremost the ability to incorporate a theory of
ontogenetic acquisition of concepts, similarity resemblance alone is modest ground
for a theory of mental representations. It easily suffers most of the same troubles
representation theories suffer from as seen in Sect. 3.1.1. More specifically, it fell
prey to the criticisms raised by Goodman (1976), such as the symmetry property of
structural isomorphism, that one does not expect in representations.

However, a different way of conceiving a resemblance has been proposed in
the past decades, which is much more promising and compatible with neural
mechanisms. It was first described by Shepard and Chipman (1970) as “second-
order isomorphism”. According to this view, a representation system does its job
not because of the physical similarities between its vehicles and the properties of the
represented system, but because instead the physical relations between its vehicles
support a structural-preserving mapping between the two. Second-order isomor-
phism was elaborated by Edelman (1999) in a computational framework called
“chorus of prototypes”, as a theory of the visual recognition and representation of
objects. The “chorus” is a high dimensional space of similarity whose orthogonal
basis is a set of prototypical shapes. Swoyer (1991) provided a formal definition of
structural similarities in abstract set-theoretic terms, and introduced the expression
“surrogative reasoning” for the mental ability to process a structural representation
in order to draw inferences about what it represents.

The proposal of a naturalized structuralist theory of representation has been put
forth by O’Brien and Opie (2004, p. 14): “We will say that one system structurally
resembles another when the physical relations among the objects that comprise the
first preserve some aspects of the relational organization of the objects that comprise
the second.” They acknowledge the lack of understanding of the brain that would
make it possible to identify the structural properties and consequent resemblance
relations that might ground mental representation, however, they point at patterns
of neural activities in connectionist networks as abstractions exhibiting structural
resemblance able to ground mental representations. Recently Nair-Collins (2013)
offered a mathematical specification of second-order similarities oriented towards
neural representations, as structural preservation, however, to secure his theory he
adds teleosemantics as well, as seen in Sect. 3.1.3. This is not our concern here, our
commitment to mental representation theories has been discussed in Sect. 3.1.

First, we should note that all characterizations of structural similarity using
mathematical set theory, even if helpful in formalizing theories, are exposed to
the criticism raised by van Fraassen (2008): there’s simply no sense to be made
of the idea that a homomorphism, and even worse an isomorphism, might hold
from one concrete, physical system to another, since the technical notion of this sort
of relations is only well-defined in the domain of abstract, mathematical systems.
O’Brien and Opie (2004) correctly use the notion of “structural resemblance”,
which is weaker than mathematical set theory relations. Similarities may be treated
mathematically in a more plausible way in probabilistic terms, see for example our
characterization of population coding in Sect. 4.3.2. More importantly, independent
of how structural similarities have been formalized, the basic concept is that what is
captured by neural vehicles is some kind of relation between structural elements of
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external objects or facts. It often implies that tokens of an entity present at least pairs
of properties which are consistently part of the same entity. It is this coincidental
relation that is captured by the neural system. For example, common to most tokens
of “bicycle” is the simultaneous presence of two circular equal or nearly equal
elements, with almost parallel axes of rotation. This is a second-order similarity,
corresponding to a coincidence, over other relational similarities at a lower level,
and corresponding coincidences. For that in each of the two circular elements (the
bicycle’s wheels), the structural property of edge points continuously changing their
orientation up to 360ı, holds. Thus, the gap of knowledge on the neural mechanisms
supporting resemblance relations, bewailed by O’Brien and Opie, can be, at least in
part, filled by the coincidence detection mechanism.

3.2.3 Simulative Representations

Coincidence detection is probably one of the most powerful qualities of neural
systems, at different levels, and can therefore assume very different forms and
functions. Some are so peculiar that they deserve a specific and detailed account,
even if they do not entail a completely new mechanism in action. This is the case,
we believe, of simulative representations, where the coding of a perceived action is
a sort of internal simulation of the action itself.

Aspects of neural simulation have been observed for some time (Ito 1984), and
a few speculative theories have been proposed, such as the analogy with emulators
in control systems (Grush 1997). However, only in recent decades have they gained
widespread attention, and in particular, since the discovery of mirror neurons by
Rizzolatti et al. (1988). Notoriously, the discovery sprung up unexpectedly, during
direct measures of motor neurons in monkeys engaged in action tasks. During an
interval of the experiment, it happened that a neuron, still being measured, was
signaling activity, even if the monkey was sitting still, just observing others grasping
food. Looking more deeply into this amazing observation, it turned out that about
20 % of neurons in the rostral part of the monkey ventral premotor cortex, Brodmann
area 6, fired not only during normal action execution, but also when the monkey
observed an action executed by another individual. This area was called F5, and
also includes a different category of visuomotor neurons, called canonical, which
also respond to the presentation of certain objects, which are often objects that are
compatible with the specific action they code.

This discovery gave rise to a number of questions, first, the one concerning what
the origin of the visual information was, since the F5 area lacks direct connections
with the visual processing pathway. The best candidate was STS (Superior Temporal
Sulcus), whose anterior part includes visual sensitive cells. Investigations along this
path succeeded in identifying a second area, inside the infero-parietal cortex, with
a population of neurons similar to those in F5, called PF (Rizzolatti et al. 2001).
Among all visually responsive neurons in PF, 40 % were sensitive to actions, and of
these, 70 % were also active when performing the same actions. Of great interest, of
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course, was establishing whether these peculiar neurons were also found in human
brains as well. The limited possibilities of non invasive methods, compared to
direct electrode measures in monkeys, limited the investigations, which came up
with contradictory results. Studies on imitation using fMRI seem to give indirect
confirmation of the existence of mirror neurons in humans (Iacoboni et al. 1999),
but other studies based on cortical adaptation tend to exclude it (Lingnau et al. 2009).
Currently the amount of positive evidence seems to confirm, almost unambiguously,
the presence of mirror neurons in at least two regions: the inferior section of the
precentral gyrus, plus the posterior part of the inferior frontal gyrus; and the inferior
parietal lobule, including the cortex located inside the intraparietal sulcus (Rizzolatti
and Sinigaglia 2010).

The confidence that mirror neurons exist in the human brain has ignited intense
interest in ascertaining their possible role in a range of higher cognitive functions. It
has been speculated that these neurons not only code elementary motor sequences,
but that they even represent action intentions. Many experiments have been designed
in order to verify a similar idea. For example, mirror neurons do not respond if the
action does not reach an object, however, they fire if the destination point of the
action is hidden, and therefore, an object is presumed (Umiltà et al. 2001), and it has
been found that the intrinsic value of the object modulates their response (Caggiano
et al. 2012). Nevertheless, whether the indirect evidence gathered so far sustains
the conclusions that mirror neurons are really involved in action understanding is
highly controversial (Hickok 2009). One of the most ambitious expectations is for
mirror neurons to reveal the more hidden mysteries of human language (Rizzolatti
and Arbib 1998). The capability of representing other’s actions is held as the initial
trigger for communicating, starting from the speech level: an individual can capture
the phonetic form of an utterance, because she is observing her speaker, and this
observation gets mapped onto her correspondent phonetic motor code. Even further,
Glenberg and Gallese (2012) postulate that mirror neurons can provide the key to
answering almost all aspects of language, from comprehension to production, from
syntax to semantics. Indeed, evidence has been gathered on the involvement of
visuomotor neurons in certain aspects of language. Pulvermüller and Fadiga (2010)
review strong evidence of the interaction between the frontocentral brain action
systems and the comprehension of phonemes, semantic categories and grammar.
However, studies on left-damaged patients reveal a double dissociation between
the ability to imitate pantomimes and the ability to produce and comprehend the
corresponding action verbs, suggesting that processing action words is independent
of the ability to produce the associated object-directed actions (Papeo et al. 2010).
On the phonetic side, Hickok (2010) notes how the mirror neurons hypothesis
corresponds to the old motor theory of speech perception, which was already ruled
out by numerous demonstrations of the relative independence of the motor and
perceptual speech systems. A recent study on patients with lesions involving motor
regions found almost intact speech perception abilities, disrupted instead when
lesions reached auditory regions in the temporal lobe (Rogalsky et al. 2011). On the
pragmatic side, Toni et al. (2008) contend the possibility of bare action recognition
in building up the foundation of communicating. Tettamanti and Moro (2012) call
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for caution in the attempt of relating syntax with mirror neurons, since syntactic
structures are not directly available to visual or acoustic observations.

Independently from these intense discussions, our main point here is that mirror
neurons are just one case – a notable case indeed – of the general coincidence
detection principle for neural representation. As pointed out by Heyes (2010), a
convincing sequence of the ontogeny of mirror effects might be the following:

1. at birth visual responding neurons in STS project weakly and randomly into the
premotor areas;

2. all events during which an executed action is observed at the same time,
for example at the mirror, imitated by parents or siblings, or executed in a
group, induce a coincidental activation of neurons in STS and premotor cortex,
reinforcing the reciprocal connections;

3. gradually the connections become so stable that only activation in STS are
sufficient to elicit responses in mirror areas, whose connections are now coding
for the seen action.

This is not the only possible account of the origin of mirror neurons, and several of
the initial investigators implicitly endorse a specific nature of these type of neurons,
genetically evolved, even if there is no direct evidence so far, a related discussion
can be found in de Klerk et al. (2014). Nevertheless, empirical observations of
imitation events, like those described in the first point, are abundant in infancy (Ray
and Heyes 2011; de Klerk et al. 2014), and mirror neurons have been confirmed
as being plastic to associative learning (Calvo-Merino et al. 2006). A sketch for
a computational model explaining the development of mirror effects by Hebbian
learning between STS, PF, and F5 was given by Keysers and Perrett (2004), a fully
developed model by Cooper et al. (2013) contends the need of a “non-Hebbian”
additional component, to account for the contingency between observed actions and
executions of the same. This distinction is not meaningful for the general mechanism
here proposed. Coincidence detection is not limited to the Hebbian principle, as in
its original proposal, it is the ability of neural circuits to capture coincidental events,
taking into account all relevant covariations. Therefore, it includes the decrease of
connection strength between two close events, in the case of the likelihood of the
second, in absence of the first, and it is all that is required for taking into account
contingency as well as contiguity. As mentioned in Sect. 2.2.2, it is argued that
spike-timing-dependent plasticity can be a valid candidate for this job, by combining
Hebbian or anti-Hebbian effects, depending on which action potential occurs first,
the presynaptic in the first case, the postsynaptic in the second. Despite several
indirect types of evidence, the role of spike-timing-dependent plasticity is still a
matter of debate (Feldman 2012; Koch et al. 2013). In any case, the discrimination
between contingency and contiguity need not be solved at the direct level of a single
synapse. World-level events always involve large circuits of neurons. If the sequence
of two events is not characterized by contingency, the decrease of connection
strength between neurons carrying information between the two events will take
place naturally, due to occurrences of the second event in absence of the first, by
synaptic depotentiation.
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In conclusion, we would like to mention other principles that have been proposed
as the basic workings of the brain, and could therefore be considered as rivals
to coincidence detection. One principle that gained popularity in the last decade
is known as “Bayesian” or “probabilistic” (Griffiths et al. 2010; Tenenbaum
et al. 2011), which, quite obviously, dictates that the brain implements Bayesian
inference. For example, when perceiving a mental representation r, the probability
that it has been caused by an object o is given by the conditional probability p.ojr/.
The best job the brain could do is to believe that the actual object, among the class O
of all possible objects that can cause r, is the one, Qo, that maximizes the conditional
probability:

Qo D arg max
o2O .p.ojr// (3.2)

Unfortunately p.ojr/ are unknown, so here the help of Bayes theorem comes in:

p.ojr/ D p.rjo/p.o/

p.r/
(3.3)

All probabilities on the right of Eq. (3.3) can be learned by experience, or their
approximation.

The radical difference between our coincidence detection and the Bayesian
hypothesis is that the latter is aimed at a purely phenomenological description of
mental/brain behavior. The brain of course does not incorporate Bayes theorem,
and proponents of this view do not claim that it does. On the contrary, coincidence
detection is proposed as a mechanism of how neural circuits work. There have been
a few attempts to derive hypothetical neural computations in a top-down fashion,
that perform something similar to the abstract notion of Bayesian inference, by com-
bining a coincidence detector with a mixture of Markov chains for example (George
and Hawkins 2009), or by combining population coding with a winner-take-all layer
(Nessler et al. 2013). We are taking another path, conceiving coincidence detection
as here described, starting from the basic computational facts of neurobiology, and
how they provide the ground for capturing facts of the external world.

3.3 Columns, Fields, and Maps

Coincidence detection is a common feature of the brain as a whole. In this section
we switch back to a special part of the brain, the cortex, and discuss specific
mechanisms, which may be behind its impressive power and aptness in representing
meaning. The anatomical and cytological properties of this thin layer of neurons
have been described in Sect. 2.3. The next subsection is a kind of bridge between
that view and a more representational oriented perspective. It deals with the cortical
column, which is first and foremost, a vertical organization of neural circuits, but
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also prone to representation interpretations. The other subsections will discuss
more basic representational mechanisms, the concepts of receptive fields, and of
topological maps.

3.3.1 Columns

The word “column” (Säule) was first used by Constantin von Economo and
Koskinas (1925) to describe cords of cells in the cortex oriented radially. The
idea that these tiny cylinders might be the elementary processing unit was instead
initially suggested by Rafael Lorente de Nó (1938). It was Vernon Mountcastle
(1957) however, who discovered and demonstrated the concept of columns, from his
observations of the somatic sensory cortex in cats and monkeys. He pointed out the
double evidence for columns: on one side, the anatomical aspect, with the vertical
cylinders of neurons separated by cell-poor neuropil zones every 30–50 m; on the
other side, the functional relationship with all neurons in the column responding to
stimulation of cutaneous receptors located at a particular site. The diameters of these
cylinders match with that of the uniform neuron counts by Rockel et al. (1980),
already discussed in Sect. 2.3.2. Further evidence came a few years later with the
extensive studies of Hubel and Wiesel (1959), showing columnar organization in
the primary visual cortex.

If the neuron is the basic element of brain computation, the cortex has its own
more powerful computational unit, made up by a collection of cell phenotypes
strongly and reciprocally connected: the column. As the importance of a single
neuron has prompted for the development of computational models of its basic
behavior, similarly, the evidence for the column as the functional element of the
cortex has given rise to the search of a unified model, able to explain the most
essential functional properties of columns, wherever in the many areas of the cortex
they may be.

The first attempt in this direction was made by Marr (1970), who proposed a
“fundamental neural model” of cortical columns. His approach was to start from
a mathematical formulation of the general problem of classifying input signals,
developing an equivalent representation using neuron-like units, and then fitting
the sketched model with the variety of cells in a cortical column. This attempt
was both too ambitious and too distant from empirical reality, and as a result was
almost totally neglected. Nearly two decades later Shepherd (1988) proposed a
model, which was at the same time much simpler but more closely related to the
physiology of the cortex, based on an abstraction of the cortical pyramidal neuron
as an integrator of all excitatory inputs at the spines of its dendritic branches, further
modulated by the excitatory and inhibitory inputs along the apical shaft and into
the soma. Two of these essential pyramidal neurons are arranged as superficial and
deep representatives, together with a spiny stellate excitatory and two inhibitory
essential neurons. Independently, Douglas et al. (1989) proposed a model that was
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Fig. 3.1 Diagrams of possible “canonical” circuits in the cortex. On the left the canonical
neocortical circuit as represented by Shepherd (1988), with P1 and P2 the superficial and deep
pyramidal cells, a spiny stellate cell SS, and two inhibitory interneurons I1 and I2. On the right,
the scheme of Douglas et al. (1989), where P1 and P2 are the superficial and deep pyramidal cells,
and I an inhibitory GABAergic neuron

quite similar to Shepherd’s, and called it the “canonical microcircuit” equivalent
of the column. It is made up by the combination of three abstract neurons, two
excitatory and one inhibitory, with each conceived as the average contribution of a
larger number of cells in the column that belong to the same class of neuron. One of
the two excitatory virtual cells represents the deep pyramidal population (of layers V
and VI), the other represents the superficial pyramidal population (layers II and III)
together with the spiny stellate cells of layer IV. These circuits are shown in Fig. 3.1.

The columnar organization of the cortex has been one of the most influential
concepts in neuroscience, but as Mountcastle (2003) himself underlined, his discov-
ery was met with disbelief by many neuroanatomists, and the ensuing 50 years or
so that had passed since, had by no means shown it to be generally accepted. One
of the most direct challenges raised has been that of Horton and Adams (2005),
based on the argument that there are too many groups of vertical cells that act as
single processing units in various areas of the cortex, with an impressive difference
in diameter. In order to account for the diversity of these vertical cylinders a rather
confusing nomenclature has been created, with “microcolumns” the original unit
30 m wide devised by Mountcastle, “classical columns” the cytochrome oxidase
blobs patterns, with a diameter 10 times larger, observed by Hubel and Wiesel
(1959) in the primary visual cortex, and “hypercolumns”, the units covering a
complete orientation set for a single retinal site in in the primary visual cortex, about
1 mm wide (Hubel and Wiesel 1974a). More recently Rakic (2008) insisted with the
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ambiguity in the criteria used to define a “column” and subsequent incompatible
sizes, arguing that there is only one flavor of columns with a precise definition, his
“ontogenetic column” that refers to the cohorts of cortical neurons that originate
from a single neuronal progenitor (see his radial unit hypothesis in Sect. 2.3.1).
However, the relationship between the ontogenetic column and the functional
definitions of larger columns is not clear.

Details of this ongoing debate are beyond the scope of the present work, but
for an in-depth discussion see Nieuwenhuys et al. (2008, pp. 586–590). For the
purpose of grasping the essential computation common to all areas of the cortex,
we sympathize with Maçarico da Costa and Martin (2010) in reproposing a kind of
canonical circuit, that abstracts from the precise structure of the column. The exact
type of circuit we would prefer in order to understand the semantic processes of the
cortex will be detailed in Sect. 4.2.

3.3.2 Receptive Fields

One of the most powerful concepts in relating activity in the cortex with the
perceived external world is that of “receptive field”. Its first use did not address
the cortex, and was primarily used in the context of vision. It was introduced by
Keffer Hartline (1938) as the area in the retina, which must be illuminated in order
to obtain a response in a given neuron.

Yet, as early as 1928, Hartline was able to exploit the technology of single
cell readings (Adrian and Matthews 1927a,b) in vision, by examining a very
suitable animal, the xiphosuran arachnoid (Limulus polyphemus), commonly called
“horseshoe crab”, which lacks cortex entirely. Its lateral compound eyes are coarsely
faceted, and receptor cells project to the brain by long optic nerves, in which
single axons can be separated rather easily. The relation between the eye stimulus
and the neural discharge is relatively simple, with each ommatidium having its
own single neuron. Illuminating a single ommatidium, therefore, elicits firing of
its connected neuron. The case of the Limulus however, turned out to be not so
simple after all. When neighbor ommatidia are also illuminated, the discharge
decreases, revealing inhibitory interactions, an intriguing effect that Hartline went
back to study further several years later (1967). The need for an idea like that of
receptive fields become necessary when Hartline, in 1938, after his initial success
with the Limulus, undertook the same single axon analysis of the more complex
optic responses of the retina in cold-blooded vertebrates. When recording from
single axons Hartline found other behaviors, in addition to discharges similar to
those in the Limulus, where there was firing for the duration of the light stimulus.
What he found was activity appearing when a light stimulus was withdrawn, as
well as activity correlated to the onset and cessation of illumination. Moreover, he
was able to define the precise configuration of a receptive field, by charting the
boundaries of an area over which a spot of light sets off impulses in a ganglion
cell’s axon.
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His results were replicated in mammals by Stephen Kuffler (1953), who refined
the definition of receptive field, by differentiating its anatomical and functional
meaning. The anatomical configuration of a receptive field is the pathway of all
receptors actually connected to ganglion cells, and is fixed at a certain stage of
maturation of the organism. The functional meaning includes not only the areas
from which responses can actually be elicited by retinal illumination, but also all
those areas which show a functional connection, by an inhibitory or excitatory
effect on a ganglion cell. In this respect, the field size may change depending on the
illumination pattern, involving areas which are not in the immediate neighborhood
of the ganglion cell and that by themselves do not induce discharges.

It is thanks to Hubel and Wiesel (1959) that the concept of receptive fields moved
from neurons in the retina up to columns in the cortex, having discovered the now
well-known selectivity to line orientation in the primary visual area. Their studies
increasingly spread the double use of the receptive field concept: taken to mean the
definition of an area on the retina that excites a column, or the specific properties
of the input pattern that evokes the strongest activity in the column. This last use
of receptive field is, for example, the one relevant for Hubel and Wiesel (1962) in
the differentiation of columns in the striate cortex as “simple” or “complex”, with
the former maximally excited by the largest summation of light in its excitatory
subfield, and no light in its inhibitory subdivision.

The focus on the shape of receptive fields, and the new picture given by Hubel
and Wiesel, stimulated research efforts to find mathematical formulations that could
characterize receptive fields in a concise and readable form. Examples are the
difference of Gaussians for ganglion cells and neurons in LGN (Lateral Geniculate
Nucleus) (Rodieck 1965; Rose 1979), or Gabor functions (Gabor 1946) for simple
cells in V1 (Daugman 1980, 1985). A sort of “evolution” in how the notion of
receptive field has been used and interpreted is given in Fig. 3.2.

It is interesting to point out that the concept of receptive field is not only of
practical use in characterizing the specific behavior of cells in visual systems, it
is first and foremost, a basic bridge between the electrical phenomena of cortical
column firing, and the entity in the external world that caused the firing.

Fig. 3.2 The evolution in the meaning of the expression “receptive field”, illustrated by a sketch of
the retina and a cortical neuron. On the left, the receptive field as originally introduced by Hartline,
in the middle, including lateral connections, on the right, accounting for the shape of the field
function
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When the receptive field concerns ganglion cells, or thalamic cells in LGN,
the relationship becomes relatively simple: the neuronal activity signals a specific
sensorial experience, that takes place in a narrow area of the retina. A direct causal
connection, of a topological nature, between facts in the external world and neural
behavior can be established. Moving into the cortex, the receptive field of columns
in V1 can still be a good explanation of the contents: the peculiar shape of objects
in the external world on which columns are tuned, together with the topological
constraints of where in the retina the stimulus of this object is projected. As soon
as areas in the visual cortex depart from sensorial inputs, however, the shape of
receptive fields becomes highly complex, and the connections with sensorial input
weaker. The receptive field concepts by themselves are not enough to account for
neural contents, and need to be integrated with other coding concepts, as will be
discussed in Sect. 4.3.

The main factor making receptive fields complex and not as easy to identify
as their definition would suggest, was already present in the first studies done by
Hartline on the Limulus: the effect of lateral interactions (Hartline et al. 1961).
In the case of the Limulus each omnatidum has only inhibitory connections with
its immediate neighbors, and still the resulting effects were not straightforward,
for the recurrent property of this interaction. In the cortex, lateral interactions
become dominant for two main reasons. First, there is an overlapping mechanism of
inhibitory and excitatory connections as well, and second, lateral connections from
a cell extend over a long range, reaching for example, in V1, up to 7 mm (Gilbert and
Wiesel 1983; Stettler et al. 2002). Lateral interactions seem to play a fundamental
role in the computational properties of the cortex, in a way that is yet far from being
well understood (Sirosh et al. 1996; Cerreira-Perpiñán and Goodhill 2004; Hunt
et al. 2011). Lateral interactions are constitutive of the mathematics upon which the
models presented in this book are based (see Sect. 4.2.1). Due to lateral interactions
the shape of receptive fields in the cortex is less influenced by the afferent pathway
of thalamic connections and therefore, the relationship between neural firing and
the retinal stimulus might be highly complex. In practice, the recurrent mechanism
of lateral interactions, replicated over multiple layers of processing, makes it almost
impossible to derive mathematical formulations for receptive fields in visual areas
beyond V1.

Chirimuuta and Gold (2009) recall that the original concept of receptive field was
of a static property of neurons, and question its validity today, in the face of all the
evidence on the influence on the response of neurons or columns, given by signals
out of their receptive fields. They list several possible answers, from expanding
the concept of receptive field taking into account most, if not all, the factors that
influence the shape of the response, to changing the kind of stimuli typically used
to assess receptive fields in the case of vision, or shifting into a circuital concept,
where the combined influence of a population of columns is taken into account. A
step in this direction, we believe, is the last key concept of the cortex that will be
presented in the following subsection.
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3.3.3 Topological Maps

In addition to the key concept of columnar organization, Mountcastle (1957)
introduced a second notion, now widespread, concerning the organization of the
cerebral cortex, that of “cortical maps”. The two ideas are related: since the vertical
dimension is traversed by subcomponents of a unique computational unit, it is
along the 2-dimensional surface of the cortex that the firing of neurons signals the
occurrence of a stimulus on a spot in a sensorial area, and the topological mapping
is the first fundamental correlation between sensorial space and cortical space.

Mountcastle obtained these results during his investigations of the cat’s
somatosensory cortex, but he speculated that what he saw before him might be
a more general, possibly fundamental, architectural principle of the mammalian
cortex as a whole. Shortly after, solid confirmation arrived from the above-
mentioned studies of Hubel and Wiesel on the visual cortex, and the term “cortical
maps” made its appearance as a reference notion for most of the studies on the
cortex, and has been used ever since. In fact, cortical maps have been found in
nearly all of the sensory and motor areas of the brain (Felleman and Van Essen
1991), and the difficulty in characterizing other areas as maps as well, lies in
the lack of a direct meaning of the space dimensions in the cortex. A theoretical
advantage in the notion of “cortical maps” is the empirical criteria for identifying a
portion of the cortex, unified functionally as a specific neural circuit: the consistent
responsiveness of the cells in that part to contiguous sensorial stimulation.

The appeal to the spatial correspondence with sensorial periphery has not been
the only criteria for partitioning the cortex into meaningful neural aggregates. At
the beginnings of the enterprise of understanding the functions of cortical areas,
anatomical methods dominated. In some fortunate cases, anatomy was in fact,
sufficient for the precise identification of functional maps to be done. This is the
case of V1, which can easily be identified by its heavy myelination in layer 4C, using
a light microscope in post-mortem material. This was known since the eighteenth
century as lineola albidior (Gennari 1782). The anatomical approach continues to be
extremely useful today supported by sophisticated methods, such as the combination
of connectivity patterns and myeloarchitecture (Maunsell and Van Essen 1983;
Felleman and Van Essen 1991), [2–14C]deoxyglucose tracing (Macko et al. 1982),
computational morphing (Van Essen et al. 2001). But in the recent past, the
identification of cortical maps by direct evidence of the coherent response of
neurons to a contiguous sensorial periphery has become of primary importance,
thanks to non-invasive technologies. In vision science, a probing method first
introduced by Stephen Engel (1997), and widely applied and extended by Brian
Wandell (1999, 2005) allows the substitution of Mountcastle’s electrophysiology
with neuroimaging. In this method the two concepts of cortical maps and receptive
fields meet: special moving patterns are presented, that span the entire retinal area,
while the subject is scanned using fMRI. Patterns are high contrast checkboard
sectors in a contracting ring or spinning wedges. The expanding-contracting ring
measures topological organization of maps with respect to visual eccentricity, while
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Fig. 3.3 Sketch of the
patterns used by Engel and
Wandell in the search for
retinotopic maps in the visual
cortex. On the left, the
expanding ring, on the right,
the spinning wedge

wedges are used to assess topological organization with respect to polar angles. The
two patterns are sketched in Fig. 3.3.

Cortical maps joined with columns and receptive fields, helped complete the
picture of the cortex as a representational device. While the notion of receptive
field helps in ascribing content to the firing of a single column, the same firing in
the context of a cortical map acquires additional meaning by the spatial relationship
the column under investigation has with the columns of the same map. This kind
of organization may qualify as representation by virtue of its structural similarity
property (O’Brien and Opie 2004), discussed in Sect. 3.2.2: a mapping is established
between the topology of the columns, and relations between features of objects in
the world. The most direct kind of mapping is of a spatial nature itself, such as
the concept of retinotopy, where information represented in the map concerns the
topology of the stimulus in the retina. However, as Mountcastle had warned in his
early studies, cortical maps should not be interpreted as modified copies of the array
of receptors in the periphery.

First of all, maps in the cortex are more often overlaps of several different senso-
rial features. In Mountcastle’s experiments, he classified three different peripheral
modalities: stimulation at the skin level, deep pressure stimulation, and that related
with joint position. In the investigated cortical map, he found an overlap of different
modalities projected by the same peripheral area, with neurons responding to skin
stimulation for example, intermingling with those responding to deep pressure in
a mosaic-like fashion. Even if we limit the analysis to a single modality, and
the interpretation to the spatial representation of the stimuli, none of the features
represented in a cortical map appear to be topographically simple. Maps often
contain modular repetitions of small segments of receptor areas, within a global
topography (Krubitzer 1995; Vanduffel et al. 2002). Moreover, inside a module
where topology is preserved, metrics are often distorted, with seemingly purposeful
magnifications and other transformations (Hubel and Wiesel 1974b; Van Essen et al.
1984).

The most intriguing aspect of cortical maps, however, is that the ordering in the
two dimensions of the cortical sheet might represent any feature of interest in the
sensorial stimuli, without any relationship to the spatial topology of the stimulus
itself. This is the case of the tonotopic organization of the auditory cortex (Verkindt
et al. 1995). As in the case of submodalities of the sensorial periphery, also in respect
to features it must be expected that more than one feature will find simultaneous
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representation in the same cortical map. Area V1, for example, is one where an
impressive number of overlapping features have been discovered: ocular dominance
(Wiesel and Hubel 1965; Tootell et al. 1988b), orientation selectivity (Hubel and
Wiesel 1968; Vanduffel et al. 2002), retinotopy (Tootell et al. 1988c), color (Tootell
et al. 1988d), and spatial frequency (Tootell et al. 1988a). The suspicion is that such
a complex mapping might not be unusual in the cortex, and might very well be
common to many cortical maps, just that only few characteristic features have been
discovered so far for other areas.

Questions regarding the extent to which the map architecture is ubiquitous
as the representation strategy of the cortex, and how map contents should be
interpreted, is a matter of open debate, with several opinions contending for
dominance. In the early discussions on brain representation the dominant view
was that topological organization might even be detrimental or incompatible with
the way the cortex functions, which was assumed to be mainly associative (Kaas
1997). Today, on the contrary, the widely held opinion is that cortical maps are
not incidental, but essential to the nature of brain representations. There have
been several suggestions arguing that two dimensional topological maps might
be the most efficient representation coding, given that neurons work by synaptic
connections. Thus, placing connected neurons as close to each other as possible
is an evolutionary strategy to save wiring costs, and cortical maps would thus
be the resulting prevailing architecture in the brain (Swindale 2001; Chklovskii
and Koulakov 2004). A good demonstration is retinotopy, that allows neurons to
represent adjacent parts of the visual field, and to interact over short axonal and
dendritic pathways.

Other authors have argued that cortical maps are the optimal solution, but
with respect to computational properties rather than anatomical constraints. For
example, from an information-theoretic point of view, ordered maps maximize the
mutual information between input and output signals (Linsker 1989), or in terms of
parameter space of the stimuli, cortical maps perform optimal dimension-reducing
mappings (Durbin and Mitchison 1990). However, the solution of ordered maps
as cortical representations is not a universal rule. It was known since the early
investigations of V1 that several rodents, such as hamsters (Tiao and Blakemore
1976) and rabbits (Murphy and Berman 1979) do not have orderly orientation maps
in the primary visual cortex, but do have orientation-selective neurons. The lack
of orientation maps in these rodents was supposed to be related to their poor visual
ability, or their small absolute V1 size. But recently, investigations on a highly visual
rodent, with a large V1, the gray squirrel, confirmed the lack of orientation maps
(Van Hooser et al. 2005). This result of course cannot rule out that rodents may still
have a system of organization in V1 with respect to orientation, that we are not able
to identify and understand.

In addition to sensorial areas, topological mapping has also been found in the
agranular cortex, such as in the posterior parietal cortex, where a mosaic of columns
that evoke small, specific hand-forearm movements for reaching and grasping has
been observed in monkeys (Kaas et al. 2011). The kind of topological order in
the homotypical cortex is clearly hard to investigate, however, it has long been
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supposed to include many small feature ordered maps (Kohonen and Hari 2000).
Thivierge and Marcus (2007) speculate that topographic maps in the homotypical
cortex could be at the basis of abstract reasoning, implementing computations such
as “universally quantified one-to-one mappings”, hard to simulate with artificial
neural models.

The notion of cortical maps may seem related to a dated picture of the brain
as a collection of autonomous modules, that was common in the early years of
cognitive science (Fodor 1983), the modularity of the mind, however, tempting as
it may be at a psychological level, does not fit with the organization of the brain,
and more specifically of the cortex. A module was defined by Fodor with a set of
nine properties, most of which clash dramatically with brain evidence, in particular
their innate determination, inaccessibility from other modules, and encapsulation.
Contrary to innate determination, developmental neurobiology has provided a
substantial amount of evidence of a deep interaction between genetic factors and the
experience of individuals in the formation of mature cortical connectivity (Blumberg
et al. 2010; Braddick et al. 2011; Rubenstein and Rakic 2013a,b). Taking the case
of vision, which was paradigmatic for Fodor, inaccessibility and encapsulation have
been largely disproved by neuroscientific evidence: at almost all levels the visual
system receives top-down projections from the cortex, and interacts with other
perceptual and motor systems (Churchland et al. 1994; Callaway 2005; Paradiso
et al. 2005; Niell and Stryker 2010). The existence of a specific module for language,
the cognitive faculty that is the object of this book, influentially advocated by
Chomsky (1986) and Hauser et al. (2002), has also been glaringly disconfirmed
by empirical brain evidence (Stowe et al. 2004; Osterhout et al. 2007; Pulvermüller
2010). Mind modularity has been recently reproposed with substantial differences
from the view of Fodor (Cosmides and Tooby 1997; Carruthers 2006). On one
hand some of the strongest and most critical requirements of Fodorian modules
are abandoned, with the most significant missing item being encapsulation. On the
other hand, the revised modularity thesis is much stronger than that of Fodor, in
that it includes every higher order cognitive function. For Fodor modularity was
limited to the perceptual systems, but not the way central cognition was organized.
Under the new view modularity is massive, and the repertoire of specialized modules
include, for example, one by which we reason about physical phenomena, one for
doing formal logic, and one for behaving fairly. As pointed out by Prinz (2006b), it
is problematic to defend properties such as inaccessibility in such a modular system.
And, yet again, neuroscientific evidence of modularity at the neural networks level,
has little to do with the partitioning of cognitive functions inside massive modularity
(Bullmore and Sporns 2009; Hagmann et al. 2010).

Despite what we have discussed so far, it is almost impossible to approach a study
of cognition without a criteria for creating a division of tasks and a hierarchy of
their internal components. This division is equally important for theoretical analysis
and for building computational models. The notion of cortical maps offers the
best biologically legitimate partitioning criteria for the cortex (Plebe 2008). This
is a weak notion of “module”, that has the unique advantage of respecting a real
specialization of a bounded portion of the cortex. Computational models are fully
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justified in necessarily resorting to a modular structure for feasibility, if modules are
constrained to correspond to cortical maps, preserving the same hierarchy and basic
connections of the cortex.

3.4 Semantic Processing Pathways

In addition to the possible ways of identifying meaningful components inside the
whole cortex, reviewed in the past section, there is a global criterion according to
which the cortex can be divided into two broad main processing pathways: dorsal
and ventral. It has been postulated that a range of higher-order cognitive functions
are carried out by a division of labor between these two partially segregated parallel
processing streams. The most interesting aspect of this theory for our purposes is
that, while the dorsal stream is difficult to characterize, leading to a number of
controversial hypotheses, a general consensus seems to exist on what the functional
specialization of the ventral stream is: semantics.

According to this perspective, the common purpose of the ventral stream is that
of extracting meaning from what is perceived in several modalities. This section will
begin by discussing details on the ventral visual stream, historically the first to be
conceptualized as having a semantic specialization. Then other domains for which
the same concept has been extended will be reviewed, such as the auditory system,
language, and attention.

3.4.1 The Hierarchy of Cortical Maps in the
Ventral Visual Paths

The first experiments to investigate the existence of two visual systems were carried
out by Schneider (1967) with golden hamsters, finding segregation in the processing
of patterns and space. This result was soon confirmed by Trevarthen and Sperry
(1968), who, working on split-brain monkeys, differentiated between a system for
object vision and an ambient system for guiding behavior and locomotion. A full
conceptualization of the dual stream model is due to Ungerleider and Mishkin
(1982), who proposed the fortunate “what” and “where” dichotomy, in that the
ventral pathway is specialized for object perception, whereas the dorsal pathway is
specialized for spatial perception. They supported their thesis with strong evidence
from careful experiments with lesioned monkeys. When engaged in a pattern-
discrimination task severe impairment was induced by ventral but not dorsal lesions,
while a landmark task was impaired in the case of damage to the dorsal path, and
not in the ventral path.

A few years later, a different theory for independent paths of processing in
vision emerged, Hubel and Livingstone (1987) and Livingstone and Hubel (1987)
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proposed four streams, beginning in the retina, with the division into magno- and
parvo-ganglion cells, that cross LGN and V1, and then proceeding up to higher
areas. The four paths serve the separate processing of form, color, motion and
stereo information. Differently from the dorsal-ventral partition, this hypothesis,
despite important evidence, has been highly controversial. The four pathways do
not have the same sharp functional separation found in the dorsal-ventral case, as
there is significant interaction among them (Nealey and Maunsell 1994; Van Essen
and DeYoe 1994).

The ventral-dorsal distinction has been enormously influential in helping to
interpret the functional organization of the visual cortex. For what concerns the
“what” and “where” dichotomy, while there has been large consensus on the “what”
interpretation of the ventral path, the “where” has been less successful, and has been
subject to a number of newly proposed interpretations. One of these interpretations,
considers the dorsal system as coding visual information for action organization,
therefore, “where” should be read as “how” (Goodale and Milner 1992). A possible
reconciliation of the dorsal interpretation as space perception or action organization
can be achieved by a further division, with a dorso-dorsal stream related to action
and the ventro-dorsal stream playing a role in space perception (Rizzolatti and
Matelli 2003).

In Fig. 3.4 the currently most accepted representations of the ventral paths in
the human and macaque monkey visual systems are sketched. The lowest areas
are common to both the dorsal and ventral parts, starting with V1, the primary
visual cortex, the most studied part of the brain (Hubel and Wiesel 1962, 2004),
and the site of several overlapping functions. The most important for early shape
analysis is the organization into domains of orientation tuned neurons (Blasdel
1992; Vanduffel et al. 2002), other functions include ocularity (Wiesel and Hubel
1965), color (Landisman and Ts’o 2002), contrast and spatial frequency (Tootell
et al. 1988a). Immediately anterior to V1, area V2 has a less understood role in
vision, a general and shared idea is that it is responsible for shape analysis at a level
of complexity and at a scale larger than that of V1 (Kobatake and Tanaka 1994).
This is compatible with findings of V2 cells responding to end-lines and corners
(Heider et al. 2000), and, with shared stronger evidence, angles (Ito and Komatsu
2004; Anzai et al. 2007).

The narrow strip of cortex surrounding V2 anteriorly, often named C3, has been
supposed to be the first separation point between the two streams, with its dorsal part
having a higher incidence of directionally selective neurons but less color selective
neurons (Burkhalter and Van Essen 1986), and it is sometimes referred to as a
group of two areas, with the addition of a ventral/dorsal suffix in the names, such
as “V3v” and “V3d” (Kaas and Lyon 2001; Zeki 2003). What both parts of V3
share functionally, is selectivity in response by a consistent population of neurons
to the direction of motion in the scene, and of some cells in response to stereovisual
disparity, suggesting a role in the processing of motion information (Felleman et al.
1984; Gegenfurtner et al. 1997; Press et al. 2001).

After V3, dorsal and ventral streams clearly depart, and there is no symmetric
correspondence between maps in the upper and lower areas. In the ventral stream,
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Fig. 3.4 Scheme of the division in ventral (darker) and dorsal (lighter) visual paths in the macaque
cortex (above), and in the human cortex (below) (Ventral maps are reported on flat right hemisphere
cortex representations, from http://sumsdb.wustl.edu:8081/sums/, see Van Essen (2005))

an area called “V4” was first identified in monkeys by Zeki (1971), and associated
to color processing. Zeki (1983a,b) made a distinction between cells that respond
selectively to “wavelengths” and those responding to “colors”, where the last term
refers to the perceptual property of seeing a surface as constantly colored despite
the large variation in the composition of the energy and wavelength of the light that
is reflected from it. The conscious experience of color also seems to be supported
by V4, as shown in experiments using the McCollough effect (Barnes et al. 1999;
Morita et al. 2004). It is an illusory effect, in which the color stimuli are constant, but
their perception can be varied gradually, by alternating two orthogonally oriented

http://sumsdb.wustl.edu:8081/sums/
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grated patterns (McCollough 1965). By inducing this effect it is possible to expose
several subjects to the same color, with only some of them consciously perceiving
the color. These studies have demonstrated that V4 was activated only in subjects
aware of the color. Several authors have reported on the role of V4 in other types
of intermediate-level visual processing, like shape (David et al. 2006) and texture
(Arcizet et al. 2008) recognition.

As expected by the semantic interpretation of the visual ventral stream, moving
anteriorly to V4, the computations performed in cortical areas are less affected by
the local features of the scene captured by the retinas, and more sensitive to the
meaning of its content: the recognition of the objects seen. It is well established that
this crucial step in the monkey takes place mainly in the IT area (InferoTemporal)
(Desimone et al. 1984; Tanaka et al. 1991; Kobatake and Tanaka 1994; Tanaka
1996). As is the case for V1 and V2, it has been supposed that a human homologous
must exist, it was therefore surprising to discover, when accurate fMRI become
available, that a different area in the geography of the human cortex is involved in
object recognition. Malach et al. (1995) first identified this region, an area located
anteriorly to Brodmann’s area 19, near the lateral occipital sulcus, and called it LOC
(Lateral Occipital Complex), where the term “complex” denotes the uncertainty
that exists on whether this region is a single visual map or a cluster of several
maps. There is converging evidence for at least two main components of LOC, one
posterior called simply LO, located in the posterior inferior temporal gyrus, and an
anterior part, LOa, extending ventrally into the middle fusiform gyrus (Malach et al.
2002; Denys et al. 2004).

Probably, the most important property needed in order to fulfill the requirement
of being an object-recognition area, is that its cells exhibit several forms of
invariance. Invariance in vision is the ability to recognize known objects despite
large changes in their appearance on the sensory surface. It is one of the features of
the biological vision system most difficult to understand, but it is also a challenging
theoretical problem, because it is related to the philosophical issue of the format of
mental representations (Cummins 1989). For example, invariance has been central
in the debate on whether representations in the brain are 3D object-centered or
image-based (Tarr and Bülthoff 1998; Edelman 1999).

Grill-Spector et al. (1999) investigated invariance using fMR-A (functional
Magnetic Resonance Adaptation), a methodology based on the reduction of neural
activity when visual areas are presented repetitively with the same visual stimulus,
and in studying invariance, by gradually manipulating a single property in the
presented image, and checking if the neural signals recover from adaptation. They
found invariance to translation and size in anterior LOC (LOa or pFs) and not in
posterior LOC (LO), and no invariance to rotation, which instead is found in Kourtzi
et al. (2003) and in Vuilleumier et al. (2002) (but only in the left hemisphere).
Invariance to the overall level of intensity, and the contrast between the recognized
object and the background was also demonstrated in LOC Avidan et al. (2002),
and related to the attention given to the object in order to segregate it from the
background (Murray and He 2001). Invariance to a special class of rotation was
found by Weigelt et al. (2007). The viewpoint rotation that LOC seems to be
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invariant to, is that where different views of an object are linked by apparent motion,
thereby creating the illusion of a smooth rotational object motion.

Grill-Spector et al. (1998) addressed a special kind of invariance, with respect
to “cues”. It is the ability to respond selectively to objects, independently (at least
in part) to the way this object is represented. In the experiment several kinds of
stimuli were presented, in which objects might be identified by a variety of cues:
motion, luminance, and texture. Luminance is the most obvious feature in a scene
for detecting objects, thanks to variations in contrast with respect to the background.
In the motion stimuli, all the values of luminance used were random noise, but by
coherently moving a section of the noise pattern over the stationary background, an
image of a drifting object silhouette was perceived. In the texture stimuli there was
also no significant difference in luminance between objects and background, but the
shape of the objects was derived by wrapping a texture around a three-dimensional
object and filling the background with a flat texture. The results demonstrated that
LOC responds to visual recognition, in a manner largely independent from the visual
cue used to define objects. Other variations of cue are the representations of the
same objects as photographs or as line drawings. Kourtzi and Kanwisher (2000),
using also fMR-A, found that LOC responds invariantly with respect to this cue
variation.

An even more compelling cue for LOC as a first semantic area is its lateralization,
which should be a logical consequence of the fact that objects, in humans,
are categorized by their names, and language processing is strongly lateralized.
Vuilleumier et al. (2002) found hemispheric asymmetry concerning larger rotation
invariance in left LOC, an indication of a more semantic biased representation
in the left hemisphere. Stronger evidence of a linguistic connection of the left
LOC comes from studies applying categorial differentiation in test objects, and
adding linguistic test conditions. For example, the adaptation of a fMR signal is
compared using a series of pictures of the same umbrella, or a series of different
exemplars of umbrellas, or followed by an object of a different category. The left
anterior LOC seems to be more invariant to exemplars of the same category than
its right counterpart (Koutstaal et al. 2001). Moreover, if pictures are presented in
conjunction to the sound of words, left anterior LOC is found to be more sensitive to
the auditory perception of the object names as opposed to nonsense words (Simons
et al. 2003). When the task is to name the recognized object, again, left LOC is more
active than when the subject is just required to check the matching of two pictures
in a sequence (Large et al. 2007).

Despite all this evidence, a clear semantic role for LOC is controversial. For
example Ferber et al. (2005) argue that LOC subserves figure-ground segregation,
something they deem as being a low-level task in the visual processing hierarchy,
and Kim et al. (2009) contend that LOC is actually sensitive to classes of object
shapes, rather than object categories. Orban et al. (2014) hold a different view,
suggesting that LOC is the site, along the ventral stream, where the transition
from visual features to real-world entity representations takes place. Our position
is similar, we hold that semantics is not a clearly cut segregated process that is
sharply located in the brain, it is the result of a chain of processes and interactions.
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The LOC area is very likely a crucial computational step in this chain for the visual
system, lying somewhere in between the processing of higher-level visual features
of segmented objects, and their recognition.

Most of the investigations beyond LOC have searched for areas specialized in
the recognition of specific classes of objects. The first was identified by Kanwisher
et al. (1997) and named FFA (Fusiform Face Area), because of its location in the
fusiform gyrus and because it is more active when viewing faces, compared to
other objects (Grill-Spector 2003; Kanwisher 2003). How FFA could be specifically
dedicated to faces is still controversial, it has been found for example, that if
experts of cars or birds viewed stimuli from their domains of expertise, cars or birds
respectively, the right FFA was significantly more active than for other common
objects (Gauthier et al. 2000; Xu 2005). These results suggested an alternative
hypothesis, that FFA is in fact an area for holistic visual processing automatized
by expertise, and it is not surprising that the object deserving the highest expertise
for our social life is the face, and its process is typically holistic (Tarr and Gauthier
2000; Gauthier and Tarr 2002). The expert hypothesis is not without controversy,
particularly concerning the appropriate task design and analyses used to measure
holistic and configural effects (Robbins and McKone 2007; Gauthier and Bukach
2007). Moreover, face recognition and identification appear to be distributed across
a network of areas much wider than FFA, including the inferior occipital gyrus and
the superior temporal sulcus (Haxby et al. 2001; O’Toole et al. 2005; Nestor et al.
2011).

It is in this area, nevertheless, where proof for specificity for a class of objects
is more convincing. There are clues for a region in the medial temporal lobe, called
PPA (Parahippocampal Place Area), that responds to “places”, that is, scenes where
the overall layout is important (Epstein and Kanwisher 1998), however, this region
seems to be more generally responsive to high spatial frequencies (Rajimehr et al.
2011). Yet another area, in the lateral occipitotemporal cortex on the lower lip of the
posterior temporal sulcus, called EBA (Extrastriate Body Area), seems to respond
to images of parts of the human body (Downing et al. 2001), but is also involved
in perception of emotions and the understanding of actions (Peelen and Downing
2007).

3.4.2 Other Ventral Streams

After having been discovered in the visual system, the division between a ventral
stream, related with the “what”, and a less definable dorsal stream, was reportedly
found in several other cognitive processes, at the point that it is suspected to be a
general feature of cortical organization (Cloutman 2013).

The second system for which a double “what”/“where” path has been proposed
is the auditory system by Romanski et al. (1999), based on evidence in monkeys.
Interestingly, the same controversy on the dorsal visual path immediately arose,
with (Belin and Zatorre 2000) contending that it might more properly concern
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Fig. 3.5 Scheme of the division in ventral (darker) and dorsal (lighter) auditory paths in the
human cortex (below)

the “how”, rather than the “where”, but no critics have come forth instead, for
the “what” classification. A word of caution is necessary in this case, since it is
not at all obvious how one should define a content meaning for a sound. Kubovy
and Valkenburg (2000) argue for the existence of auditory objects, defined as the
entities that generate a sound, with its categorization being the purpose of the
ventral auditory stream. However, as pointed out by Griffiths and Warren (2004),
this definition would miss the event information of the sound, which can be its
actual content. For example in hearing an uttered vowel, it seems obvious that the
interesting content is the vowel category, not just the speaker, or the speaker’s vocal
tract generating that sound.

Despite these difficulties, the existence of a ventral stream that is apt to process
the meaning of a sound, in a loose definition, has been reinforced and confirmed in
humans (Arnott et al. 2004; Rauschecker and Scott 2009). A picture of the two
pathways as currently conceptualized in the human auditory system is given in
Fig. 3.5.

The primary auditory cortex, usually referred to as A1 in analogy to V1, is a
site of several overlapped processes, just like its visual counterpart, but it is much
less understood. There is certainly an organization with respect to spectro-temporal
features of sounds (Miller et al. 2002b; Winer et al. 2005), mixed with acoustic
levels and spectral integration, with neurons responding to stationary components
of the sound, or rapid transients (Atzori et al. 2001). A1 is surrounded by secondary
auditory cortices, the belt areas, which are bordered laterally by a parabelt region.
Its rostral region is involved in the ventral stream, and projects to the ventral part of
the superior temporal gyrus, area STS (Superior Temporal Sulcus), which is known
to be involved in phonological processes (Belin et al. 2004; Liebenthal et al. 2005).
The path proceeds further to the anterior temporal lobe, terminating in multiple
frontal lobe regions including the frontal pole, and ventral prefrontal areas.
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A more audacious extension of the ventral/dorsal concept has been postulated for
language itself. According to Hickok and Poeppel (2007), the first proposers, the
dorsal stream, traveling from the superior temporal gyrus toward inferior parietal
and posterior frontal lobe regions, is responsible for repetition of speech. On
the other hand, the ventral stream, traveling from the superior temporal gyrus
laterally to the middle and inferior temporal cortices, has the purpose of giving
meaning to speech. This hypothesis has met with several confirmations, DeWitt
and Rauschecker (2012) found that the ventral stream is essentially semantic, being
engaged in both the invariant representation of phonetic forms and in the integration
of phonemes into words. Saur et al. (2008) combined fMRI with DTI (Diffusion
Tensor Imaging) to accurately identify the anatomical pathways during a task of
sublexical speech repetition, and of language comprehension. The latter is clearly
subserved by a ventral pathway. Again, the most controversial, is the function
of the dorsal stream, with alternative hypotheses ranging from syntax analysis
(Friederici 2012) to its being linked to the general processing of time-dependent
components (Bornkessel-Schlesewsky and Schlesewsky 2013). Much less disputed
is the attribution of a semantic function of the ventral stream. Of course, while in
sensory domains the meaning of the perceived signal can be better defined, in the
case of language, meaning is tremendously wide-ranging, and cannot be confined to
a specific anatomical processing path. Language comprehension, in its full sense,
involves a multitude of cognitive processes and cortical regions, that this book
aims to contribute in clarifying, at least in part. Nevertheless, it is important to
acknowledge that at least a starting point in the process of assigning meaning to
speech relies on one specific ventral pathway in the cortex.

There are also other non sensorial domains, for which a dorsal/ventral division
have been proposed. Umarova et al. (2010) for example, investigated attention, using
fMRI and DTI, and found that the ventral stream, traveling between the insula and
putamen, parallel to the sylvian fissure, is specialized in recognizing the object of
attention, while the dorsal stream, linking the temporoparietal cortex with the frontal
eye field and the inferior frontal gyrus, is responsible for attention orientation.
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Chapter 4
Modeling Neural Representations

Abstract As the final part of the semantics of neurons, and as a prelude to
the second part, the neurosemantics of language, this chapter seeks mathematical
formulations for the mechanisms that enable the construction of representations in
the brain. It is not a general review of the rich variety of mathematical solutions
proposed so far for simulating neural circuits, currently available on the market. It
is the introduction to the mathematical framework adopted in all the neurosemantic
models that will be described in the second part.

One of the main challenges any endeavor of mathematical formalization of neural
activities must face, is their impressive abundance.

The number of neurons involved in almost all cognitive functions is so large that
it is impossible to give an overall sense of their activity by means of individual
descriptions. Mathematics only offers the great advantage of synthesis, the possi-
bility of capturing in a concise formulation the principles ruling the behavior of
millions of interacting elements. Mathematical formulations can be implemented in
a software, and the simulated results can be analyzed in detail.

In the cortex, neurons are characterized not only by their large number, but
also by properties such as local cooperative and competitive interactions, which
fit well within an established mathematical framework, that of self-organization.
The adopted neural architecture derives from this general framework. In the
interpretation of the activities of many neurons in the same cortical area, resulting
from a simulation, a well established neurocomputational concept will be used, that
of population coding, discussed in the last section of this chapter.

4.1 Self Organizazion in the Cortex

Self-organization is a term that has met with much success, and as a result has
pervaded a range of disciplines that are very different from each other, from biology,
to economy, to sociology. This makes it necessary, after a general introduction of the
concept, to restrict its meaning to a narrow interpretation of it as a computational
principle useful in explaining processes that take place at a certain scale of neural
circuitry.
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As far as we know, the term self-organization was first mentioned by Ashby
(1947), who used it as a basic concept in the newly born field of cybernetics. Its
purpose was to reconcile two apparently clashing facts found in biological systems
or artificial machines, that of being strictly determined in their actions by physical-
chemical processes, and yet able to undergo self-induced internal reorganizations
resulting in changes of behavior. In one of his later papers (Ashby 1962) related
the idea of “organization” to the complexity of the system, such as the dependence
of the system’s behavior upon a usually high number of interacting variables. It
contrasts with a system in which variables can be separated in mathematical forms.
For a system to develop a certain organization, under this definition, is rather trivial,
and does not necessarily qualify as a case of “self-organization”, which, for Ashby,
is the property of changing from a “bad” to a “good” organization. However, there
is no a priori criteria for evaluating the developed organization as being good in any
absolute sense, not only does it depend on each specific system, it is also a property
that is observable only from the outside, that is, only when the organization has been
reached. In the case of a brain, for instance, an organization can be deemed “good”
if it acts so as to provide some kind of advantage to the organism’s survival.

One difficulty in isolating self-organization phenomena, for Ashby, consisted in
the fact that ordinarily, the systems being dealt with were either too simple, such as a
pendulum with very few variables and a single equilibrium, or too complex, such as
a living organism. Suitable examples, however, became rapidly available in physics
and chemistry. A striking case was observed as early as the beginning of the last
century by the French physicist Henri Claude Bénard (1900), that of convective
cells that organize in a fluid. When heating water in a pot, buoyancy produces
the upwelling of lesser dense molecules, which for mass conservation should be
compensated by the downward motion of colder molecules. While initially the
billions of water molecules exhibit a random motion, gradually, a small number
of regular patterns of cells organizes. The cells are formed by an inner cylinder with
a laminar upward flow, bounded by downward flow at the periphery. We usually
miss this amazing phenomena because water is transparent, it can be experimentally
visualized using solid markers, as in the middle image of Fig. 4.1.

Fig. 4.1 Examples of self-organization in physics and chemistry. On the left a scheme of Bénard’s
convective cells, with the heated fluid directed upwards, and the coldest part directed downwards.
In the middle a real image, with heated silicon oil, and the cells made visible thanks to graphite
marker. On the right the B-Z reaction
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Something very similar happens in chemical reactions. The B-Z reaction, for
example, is well known, named by its discoverers Belousov (1959) and Zhabotinsky
(1964). It is a mix of potassium bromate, cerium(IV) sulfate, malonic acid and
citric acid in dilute sulfuric acid. The malonic acid reduces cerium(IV) ions into
cerium(III), which in turn tends to be oxidized back to cerium(IV) ions by the potas-
sium bromate. Here again, the alternate disposition of the two types of cerium ions
is initially random, but gradually tends to organize into macroscopic patterns, like
those shown at the right in Fig. 4.1. In the 1960s Haken (1978) initiated a research
program, called “synergetics”, to construct an unifying mathematical framework
within which quantitative descriptions of self-organizing physical, chemical, and
even biological systems can be made. One of the pivotal equations in this frame-
work is the Fokker-Planck equation, which comes in several formulations, for
example:

@

@t
p.q; t/ D �rq.pk/ (4.1)

describes the evolution in time of the probability density p for a point q in a space,
for example the three geometrical coordinate of the position of a molecule, and k is
a velocity field in the space of q. This equation statistically links the microscopic
level of the motion, or other general characteristics, of the elementary components
of a system, with its mesoscopic level. The field of synergetics is clearly closely
related to the mathematics of dynamic systems in nonequilibrium phase transitions,
and chaos theory.

4.1.1 Relationship with the Concept of Emergence

Even more well known than self-organization is the term “emergence”, which
is often used interchangeably. Emergent properties spring up somehow from the
interactions between the local parts of the system. Emergentism in fact, has a longer
tradition, and was established as a specific stream of thought in philosophy of
science during the late-nineteenth century by a group of British scholars, which
included John Stuart Mill, was mostly represented by Charlie Dunbar Broad (1925).
At that time the idea of emergentism was mainly a compromise in the heated
debate between the mechanistic view, that living organisms were governed by the
same physical-chemical principles of inorganic matter, and the vitalist position, that
instead posited a kind of “vital substance” unique to living organisms. Emergentists
confute the latter position, still retaining that the phenomena of life cannot be
reduced to the effects of the component substances of the organism. According
to Broad, the reason is that matter aggregates at different levels, and each is
characterized by certain irreducible properties that “emerge” from lower-level
properties.

Over the years, the impact of emergence declined in philosophy of science, with
interest waning primarily due to the remarkable success of mechanistic explanations



94 4 Modeling Neural Representations

for many of the properties of life that have been advanced in the last century.
The concept of emergence, however, has found a renewed vigor these past few
decades, in large part thanks to the theoretical and mathematical development of
self-organization, leading to a sort of “re-emergence of emergence” (Clayton and
Davies 2006).

From a mathematical point of view, emergentism is not confined to the self-
organization framework, as developed in synergetics, it embraces different direc-
tions of research, such as the study of dissipative structures at far-from-equilibrium
conditions, started by Ilya Prigogine (1961), or the theory of attractors in chaos
theory, first proposed by Ruelle and Takens (1971). Within the contemporary
scene, two broad positions can be distinguished, between the proposers of an
epistemological emergence, and the supporters of an ontological conception of
emergence, more resilient than the British version of emergentism.

Clearly, the shift from ontological emergence to plain Cartesian dualism is easy,
for example Hasker (1999) plainly tries to defend a kind of dualism, he dubs
“emergent dualism”. Ontological emergentism, therefore, is in danger of falling prey
to the well known difficulties of reconciling dualism with the unity of the physical
world, as known in contemporary science. In addition, it suffers from specific and
serious metaphysical weaknesses, probably the most threatening objection is Kim
(2006)’s downward causation argument. According to emergentism, a property P
observable at mesoscopic level, is always the result of a set B D fB1; B2; � � � g of
basic properties Bi, that take place at a microscopic level. Now suppose property
P causes a different “emerged” property QP. By definition, the theory requires the
existence of a different set QB D f QB1; QB2; � � � g with the low-level properties on which
QP supervenes. The puzzle is that, in order to save the causation from P to QP, it is
necessary to also postulate a “downward” causation from P to the lower set QB,
which is highly problematic. On the other hand, purifying emergentism from claims
of causal effects at a mesoscopic level is not possible, because it is exactly what
emergentists promise to explain. For example, in the case of the brain, consciousness
is the primary exemplar of emergent phenomena, and there is an impressive demand
of causal power to conscious thought, from manipulating the beliefs of others, to that
of producing artifacts.

Our use of self-organization is more in line with epistemological emergence.
For most exponents of epistemological emergence, however, it will encompass all
kinds of phenomena that are striking from a macroscopic point of view. This stance
is defended, for example, by Kauffman (1993, 2008), offering a wide range of
mathematical formulations of self-organization, on which he speculates life to be
based, and possibly the whole universe.

We instead interpret self-organization purely as a methodological tool, that may
offer the benefit of mathematical synthesis, in certain cases were the number of
interacting elements is very large. As reviewed by Willshaw (2006), in the nervous
system many phenomena can be characterized as self-organizing, although there
are very few cases of pure self-organization. In most of the observed phenomena
the final state depends largely on external influences, either from other brain areas,
or from sensory stimulation from the outside world. The most important forms of
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neural self-organization appears during the development of the nervous system. At
the cortical level, there is substantial evidence that both its regionalization, and the
positioning of cells in patterns inside regions, are the effect of several combined
mechanisms, with a fundamental role in the afferent thalamocortical axons and in
the short range interactions between cortical cells.

4.1.2 First Mathematical Descriptions

The first attempts to use the mathematical framework of self-organization to
describe neural phenomena are attributed to von der Malsburg (1973) and Willshaw
and von der Malsburg (1976), who addressed some of the most striking types of
organization found in the cortex: the maps in the visual system (see Sect. 3.3.3).
There are three key mechanisms in cortical circuits that match with the premises of
self-organization:

1. small signal fluctuations might be amplified, this is a direct effect of the non-
linear behavior of neurons;

2. there is cooperation between fluctuations, in that excitatory lateral connections
tend to favor the firing of other connected neurons, and Hebbian law reinforces
synapses of neurons that fire frequently in synchrony;

3. there is competition as well, in that inhibitory connections can lower the firing
rate of groups of cells at the periphery of a dominant active group, and synaptic
homeostasis compensates for the gain in contribution from more active cells, by
lowering the synaptic efficiency of other afferent cells.

In the cortical model devised by von der Malsburg the activity xi of each neuron
i was computed by the following system of differential equations:

@

@t
xi.t/ D �˛ixi.t/ C

X
j2C〉

wijf
�
xj.t/

�C
X
j2A〉

wijaj.t/ (4.2)

f .xi.t// D
(

xi.t/ � �i if xi.t/ > �i

0 otherwise
(4.3)

where C〉 is the set of cortical neurons with lateral connections to the cell i, and
A〉 is the set of all afferent axons, each carrying a signal a.t/. wij are the synaptic
efficiency between cell presynaptic j and postsynaptic i, and are modified by an
amount proportional to the presynaptic and postsynaptic signals, in the case of the
coincidence of activity. Periodically all wij leading to the same cortical cell i are
renormalized, realizing the competition, in that some synapses are increased at the
expense of others.

The source of afferents, leading to the process of self-organization, can be the
external scene seen by the eyes, but also spontaneous activity generated by the
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brain itself (Mastronarde 1983). The organization in the visual system explained by
equations like those of (4.2), range from retinotopy, ocular dominance, to orientation
sensitivity (von der Malsburg 1995b).

4.1.3 The SOM Algorithm

During the 1980s not many scholars were familiar with the early models of von der
Malsburg. It was the period of the connectionist boom in neural computation,and the
much simpler and efficient feedforward neural schemes (Rumelhart and McClelland
1986) became the preferred choice of researchers. The differential equations
in (4.2), on the contrary, had no analytic solution, and required complex numerical
integration, something that was computationally expensive at the time.

Soon a very different proposal arrived, offering self-organizing properties, like
the von der Malsburg models, at a much cheaper price, with the same simplicity and
efficiency of the other models in the connectionist arena. This proposal is known
with the acronym SOM (Self-Organizing features Map), and also as Kohonen (1982,
1984, 1995) Maps, named after their proposer. The first term in the acronym reveals
the ambition of this algorithm, that of implementing some sort of self-organization,
the last term better specifies the form through which the organization is achieved:
topologically, inside a map. As discussed in Sect. 3.3.3, the map arrangement is the
most basic ordering principle of the cortex. In the SOM it becomes more general,
in that there is no specific number of dimensions, although the two-dimensional
case is the most common, and clearly the most suitable for simulating visual
phenomena. Moreover, the SOM has been largely used for applications outside
of brain modeling, and its main benefit is that of reducing high dimensional data
in spaces where the relationship between data can be grasped, and the best final
dimension, for humans, is two-dimensional. In evaluations on how close the SOM
algorithm is to that of the real physiology of the cortex (von der Malsburg 1995b)
the ensuing comments were not kind, defining Kohonen maps as “an algorithmic
caricature of the [self-organization] mechanism”.

The SOM has its mathematical roots in Vector Quantization, a method used in
signal processing to approximate with a small number of vectors, called codebook,
the probability density of a stochastic high dimensional vector (Linde et al. 1980).

Being t 2 R
N the data to analyze, a two dimensional Kohonen map is made

up by M neurons x 2 R
N , with an associated two-dimensional coordinate r 2

f< Œ0; 1�; Œ0; 1� >g � R
2. When data are presented to the network, the same vector

is available to all neurons in the map. The main strategy of the algorithm is the so-
called winner-take-all, the singling out of just one neuron over all M, which best
responds to that specific input. A scheme of this network is provided in Fig. 4.2.

In mathematical terms, for a give input t the winner neuron xc is chosen by the
following equation:

c D arg min
i2f1;:::;Mg

fkt � xikg (4.4)
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Fig. 4.2 Scheme of a two
dimensional Kohonen map.
Every neuron receives the
same vectorial input, as
shown on the right. Only one
neuron is the “winner”, here
marked with withe color

where the metrics for comparing two vectors is arbitrary. The same procedure is
used during the learning phase of the network. At the beginning all neurons start
with random vectors, and all samples t 2 T are presented in random order. After
the selection of a winner neuron c, in response to a sample t, using (4.4), the vectors
associated with the neurons are modified, using this rule:

�xi D �e�
krc�rik2

2�2 .t � xi/ (4.5)

where � is a the learning rate, and � is the width of the influence of the winner c in
adapting its neighbors. In (4.5) there are two components, this one

� .t � xi/ (4.6)

acts in attracting xi to the target t, by an amount weighted by �. Equation (4.6)
coincides with (4.5) in the case of the winner, c D i. For all the other neurons, an
additional modulation is given by the second term of (4.5):

e�
krc�rik2

2�2 (4.7)

limiting the vector update, as long as the neurons are far away from the winner, with
a Gaussian shaped by � . At the end of the learning phase, a relational ordering may
come about in the map, so that the presentation of a t will trigger a winner neuron,
in a spatial location of the map, relevant for some feature of the data.

Initially, this algorithm was only proven to successfully self-organize in several
experiments, without being able to provide a mathematical demonstration. Later
Cottrell and Fort (1987) gave a demonstration of the self-organization capability
in the one-dimensional case. In the two-dimensional arrangement, Erwin et al.
(1992a,b) established conditions that ensure the convergence to an ordered state.
The SOM algorithm has been successfully applied in a range of simulations,
from somatosensorial perception, motor control (Ritter et al. 1992), to abstract
combinatorial optimization (Plebe and Anile 2001; Plebe 2001).
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4.2 Simulating Cortical Maps

In the enterprise of exploring semantics within the framework of the set of essential
neural mechanisms, selected and described in Chap. 3, the SOM algorithm will be
a poor starting point. Even if some models based on SOM have been amazingly
able to reproduce aspects of functional organizations found in neural maps (Yu
et al. 2005), its algorithmic formulation is alien to biological processes. Units in
a SOM map, even if sometimes called “neurons”, cannot be related to any particular
brain structure, neither neurons nor cortical columns. The success SOMs have in
predicting self-organization phenomena in the brain is undoubtedly due – in part –
to similarities between its mathematical formulation, and real brain mechanisms.
The winner-take-all strategy broadly captures the effects of competitive neural
inhibition, and the SOM adaptation rules somehow takes into account local neural
interactions. However, it is a pure predictive model, that departs from the model-
mechanism-mapping criteria discussed in Sect. 3.1.5. Therefore, the SOM is unable
to account for the mechanisms listed in Chap. 3, selected as the basis for modeling
neurosemantics.

Since the late 1990s a number of simulators have been developed, that include
most of the details involved in the electrical behavior of neural cells, mostly
following the Hodgkin-Huxley equations (see Sect. 2.1.2). The best known of
these simulators are GENESIS (Bower and Beeman 1998) and NEURON (Hines
and Carnevale 1997), with the latter having been adopted as the basis of the
Blue Brain Project (Markram 2006), the attempt to reproduce large-scale brain
circuits on massive parallel computers. Although modeling networks of realistic
multi-compartment neurons is currently the best example of mechanistic neural
simulations, and the unprecedented resources invested today, both in the States and
in Europe, in large-scale brain models will certainly play a crucial role in future
neuroscience, it is not necessarily the best solution for the neurosemantic enterprise.
The premise that the more detailed the neural model is, the better the explanation it
will offer, independently from the function to be investigated, is arguable (Eliasmith
and Trujillo 2014).

For what concerns the specific goal here pursued, the details at the single cell
level are not the object of inquiry, even if the studied behavior depends on all such
details. The best strategy, we believe, is to adopt a level of modeling where the
mechanisms at a lower level are included in an integrated way, and the interacting
components of the model keep a plausible relationship with the relevant components
of the neural system. The precise level of grain of analysis required to explain
specific semantic phenomena remains, however, an open question.

Most of the models of semantics that will be described in the second part of this
book have been developed using the Topographica system (Bednar 2009, 2014),
chosen as one of the best compromises between the inclusion of all the essential
mechanisms deemed responsible for neurosemantics, yet still simple enough to
allow a reconstruction of a hierarchy of cortical areas relevant for vision and
language processing. It has been specifically developed for modeling maps in the



4.2 Simulating Cortical Maps 99

cortex, and its units may correspond to cortical columns. Its main features will
be described in the sections that follow, and its mathematical formulations will be
articulated.

4.2.1 Lateral Connections, Competitive Normalization

Topographica is built on a previous model, named LISSOM (Laterally Intercon-
nected Synergetically Self-Organizing Map) (Sirosh and Miikkulainen 1997), which
brings together concepts of self-organization, map topology, and lateral connections,
as the acronym reveals, and includes the mathematical framework of synergetics
(Haken 1978). More precisely, the neural mechanisms included in LISSOM are the
following:

1. the intercortical connections of inhibitory and excitatory types;
2. the afferent connections, of thalamic nature, or incoming from lower cortical

areas;
3. the organization on two dimensions of neural coding;
4. the reinforcement of synaptic efficiency by Hebbian learning;
5. homeostatic compensation of neural excitability.

The first two points are consistent with the main properties of the cortex, as seen
in Sect. 2.3.2, the third point hinges on one of the main organization principles of
the cortex described in Sect. 3.3.3. The fourth point is the implementation of the
coincidence detection principle proposed in Sect. 3.2, as the main mechanism for
coding representations in neural circuits. The last point implements the mechanism
of synaptic homeostasis, already included by von der Malsburg (1973) in his first
mathematical attempt to use the mathematical framework of self-organization for
neural circuits (see Sect. 4.1.2), which increasingly appears to be a prominent factor
in refining synaptic connectivity (Turrigiano and Nelson 2004). Recently, it has
been included as an instance of the more widespread normalization process defined
as “canonical neural computation” (Carandini and Heeger 2012), for its presence
in a diversity of neural systems, from the olfactory system of invertebrates, to the
primary visual cortex, to higher visual and non-visual cortical areas. According to
Chirimuuta (2014), it is an exemplar case of computational explanations peculiar to
neuroscience, which escape the standard criteria of mechanistic explanation, while
still providing compelling insights of a widespread neural process.

The LISSOM, being a simplified model of cortical areas, necessarily departs
from its full-fledged behavior in several respects. Two main reasons of divergence
are the following:

1. the electrical processes in the compartments of a single neuron are neglected, and
there is no explicit generation of spikes in real time;

2. there is no differentiation of neural cell types inside the cortical columns.
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For what concerns the first point, avoiding a model based on Hodgkin-Huxley
equations, brings the considerable advantage of limiting the number of parameters
describing every single neuron, which would have introduced useless degrees of
variation in the overall system. The adopted solution is to use a scalar value,
instead of the generation of action potential trains, in the conventional interval
Œ0 � � � 1�, representing the average frequency of the action potentials. There is a
significant amount of experimental evidence on the high correlation between this
synthetic value and the extant neural activation, in motor control (Milner-Brown
et al. 1973), sensorial perception (Hubel and Wiesel 1962, 1968), and in vitro studies
(de la Rocha et al. 2007). Nevertheless, this is a rather crude simplification, that
unavoidably discards certain aspects of neural coding, such as the binding relations
between distant areas (von der Malsburg 1995a; Singer 1995), discussed in Sect. 3.2.

The second point missing, concerns the differentiation of cell types in the cortex.
As seen in Sect. 2.3, the cerebral cortex is populated by a variety of cells, distributed
along its layers, this detail is missing in the LISSOM. This simplification, again,
relieves the burden of having a large number of additional parameters, which are
not of interest in the present investigation, but would have drastically increased
the degrees of freedom of the system. A LISSOM unit, even if sometimes called
“neuron”, corresponds to a functional cortical aggregation, responding uniformly to
an afferent signal, like the microcolumns seen in Sect. 3.3.1.

The basic equation in the LISSOM describes the activation level xi of the i-th
unit in the map:

x.k/
i D f

�
	A

1 C 	NU � vrA;i
arA;i � vrA;i

C 	EerE;i � x .k�1/
rE;i � 	IirI;i � x .k�1/

rI;i

�
:

(4.8)

Vector vrA;i is composed by afferent to unit i in a circular radius rA, the vectors x .k�1/
rE;i

and x .k�1/
rI;i

are the activation of all neurons in the map, where a lateral connection
exists with neuron i of an excitatory or inhibitory type, respectively. Their fields
are circular areas of radius, respectively, rE, rI. Vectors ei and ii are composed by
all connection strengths of the excitatory or inhibitory neurons projecting to i. The
scalars 	X, 	E, and 	I, are constants modulating the overall contribution of afferents,
excitatory, and inhibitory components.

The scalar 	N controls the setting of a push-pull effect in the afferent weights,
allowing inhibitory effects without negative weight values. Mathematically, it
represents dividing the response from the excitatory weights by the response from a
uniform disc of inhibitory weights over the receptive field of neuron i. In Eq. (4.8)
and all the ones following the operation x � y are the product of vectors x and y.
Vector U is just a vector of 1’s of the same dimension of xi. The function f can be
any monotonic nonlinear continuous growing function limited between 0 and 1, it
is generally a piecewise linear approximation of the sigmoid function.
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Fig. 4.3 Scheme of
connections of a unit in the
LISSOM architecture. The
unit in white color receives
excitatory connections, in
dark grey, inhibitory
connections, in light grey,
with additional afferences
from thalamic maps, on the
left

Equation (4.8) is recursive in time k, with initial condition x.kD0/
i D 0, the final

activation is defined as xi D x.kDK/
i , where K satisfies the following condition:

X
i

ˇ̌̌
x.kDK/

i � x.kDK�1/
i

ˇ̌̌
< 
 (4.9)

with 
 a small defined value. A scheme of connections to a LISSOM unit is
provided in Fig. 4.3. One of the main features that make the LISSOM scheme
suitable for modeling the cortex is its inclusion of the computational contributions
of intracortical lateral connections. A large number of physiological studies have
confirmed anatomically a concentric pattern of excitatory and inhibitory lateral
connectivity, extending densely roughly 500 �m around a center, and more patchy
at longer distances (Gilbert et al. 1990; Grinvald et al. 1994; Sirosh et al. 1996;
Stettler et al. 2002; Hou et al. 2003; Cerreira-Perpiñán and Goodhill 2004; Hunt
et al. 2011).

All connections are plastic, and change in time according to the following rules:

�arA;i D arA;i C �AxivrA;i

karA;i C �AxivrA;ik � arA;i; (4.10)

�erE;i D erE;i C �ExixrE;i

kerE;i C �ExixrE;ik � erE;i; (4.11)

�irI;i D irI;i C �IxixrI;i

kirI;i C �IxixrI;ik
� irI;i; (4.12)

where �fA;E;Ig are the learning rates for the afferent, excitatory, and inhibitory
weights, and k � k is the L1-norm. In all equations the numerator represents the
Hebbian increase of synaptic efficiency due to coincidental activation of presynaptic
and postsynaptic units. The denominator acts as a counterbalancing compensation,
that tends to keep the average excitability of the neuron constant, in the long term,
and implements the synaptic homeostatic mechanism, discussed above.
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The Hebbian component in Eq. (4.12) is a standard mathematical formula-
tion that abstracts the biological mechanisms of Hebbian plasticity described
in Sect. 2.2.2, for a review of variants see Gerstner and Kistler (2002). Early
mathematical implementations of Hebbian learning were known to face a number of
computational problems, in particular the instability of synaptic strengths, that tend
to approach either zero or some maximum strength (Miller and MacKay 1994),
and the lack of synaptic competition (Dayan and Abbott 2001, p.284). Neither
one is an issue for LISSOM. First, the Hebbian component is combined with
homeostasis, the denominator term in (4.12). But mostly, neurons are placed in a
circuit, where they do not act in isolation, but are strongly influenced by lateral
inhibition and excitation. Even though each neuron is adapting its own connections,
the activities of other neurons modulate the learning, within the self-organization
process.

4.2.2 A Mathematical Framework for Hierarchical Cortical
Maps

The LISSOM architecture was originally conceived for simulating visual area V1,
in direct connection with the thalamus (Bednar 2002). It evolved into Topographica,
which has had several extensions, making it a valuable tool for composing complex
hierarchies of cortical maps. One of the extensions to the basic equation, necessary
for simulating multiple cortical areas, is in this equation:

x.k/
i D f

�
	AgA .arA;i � vrA;i/ C 	BgB .brB;i � urB;i/

C 	EerE;i � x .k�1/
rE;i � 	IirI;i � x .k�1/

rI;i

�
:

(4.13)

as the contribution given by vector urB;i, a backprojection from a higher area, it is
the collection of the activities of neurons in that area, that project back to neuron
i, within a receptive field or radius rB;i. Vector brB;i is made up by the synaptic
efficiency of those projections. In addition, the overall normalization is no longer a
single parameter, but can be a generic additional function g.�/.

Moreover, an important variant of the monotonic non-linear saturation function
f has been introduced, as a threshold function, with an adaptive threshold � ,
dependent on the average activity of the unit itself. The threshold is updated as
follows:

�.k/ D �.k/ C � .Nx � �/ (4.14)
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where Nx is a smoothed exponential average in time of the activity, and � and �

fixed parameters. This feature simulates the biological adaptation that allows the
development of stable topographic maps organized by preferred retinal location and
orientation (Stevens et al. 2013).

4.3 Population Coding in the Cortex

In the effort of making progress in the interpretation of contents in higher-level
maps, where a direct relation with peripheral inputs is lost, research these past
few decades has drawn on the idea that the power of representing information in
cortical circuits lies in the combination of the activities of many columnar units.
This concept is usually named “distributed coding” (Hinton et al. 1986), but is also
known as “population coding” , “vector coding” and “state space representation”, in
the formulation by Paul Churchland (1989). The idea has actually been around for
quite some time, but mainly as intuitions without a strong relation to neurological
data, as in Pribram (1971), who suggested that brain representations are distributed
in force of a supposed analogy with holograms. In the current interpretation of
population coding, a higher level map may code for a kind of object or fact, and
it is the concurrent level of firing of a population of cells in that map that represents
a specific instance of the kind. Since the 1990s, several studies have quantified how
distributed the response in higher cortical areas to set of stimuli in a similar class is.
In Sakai et al. (1994), monkeys were trained to remember synthetic pictures, at least
59 cells out of 91 recorded, responded to more than one picture. Other experiments
done with natural faces (Rolls and Tovee 1995; Abbott et al. 1996) confirmed that
not single cells, but populations of cells are necessary to discriminate single stimuli.
Pasupathy and Connor (2002) studied the population coding by 109 cells in area V4
of macaque monkeys, of curvatures and angular positions from 49 simple patterns.
The coding was demonstrated by reconstructing mathematically the 49 patterns
from the population responses. A different stream of research inside distributed
coding, attempts to establish computationally, the reasons and advantages nature
has had for adopting this representational strategy in the cortex (Hinton et al. 1986;
Olshausen and Field 1996; Brunel and Nadal 1998).

Recently, research on population coding has progressed in the statistical tools
used in analyzing responses from distributed cortical areas, such as representational
similarity analysis introduced by Kriegeskorte (2009), and intrinsic methods, where
no predefined labeling of the coded categories is required (Lehky et al. 2013). Using
representational similarity analysis of fMRI signals, Chikazoe et al. (2014) found
a distributed coding of affective valence in the orbitofrontal cortex, supporting a
continuous dimension of positive-to-negative valence. A comprehensive review of
current findings of population coding in the brain is in Quian Quiroga and Panzeri
(2013).
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4.3.1 Code Sparseness

One property that has gained attention, in characterizing the way populations
of neurons code entities, is their sparseness, the fraction of neurons engaged
in representing a token with respect to the overall population. As reviewed by
Olshausen and Field (2004), there is evidence that information is often represented
by a surprisingly small number of simultaneously active neurons out of a large
population, and there are several possible theoretical reasons for that. There are
studies showing that when coding is sparse enough, Hebbian learning becomes
more efficient (Kanerva 1993), an additional rather obvious reason is energy saving.
Lennie (2003) estimated that, for energetic reasons, no more than one over 50
cortical neurons can be active at the same time.

Measuring the actual sparseness of a given neural population turned out not
to be so straightforward, several mathematical formulations have been proposed,
reviewed in Olshausen and Field (2004). There are mainly two mathematical
accounts of sparseness: population sparseness in reference to the activation of a
fraction of neurons in a population during fixed small time windows, and lifetime
sparseness, the measure of how sporadic the activity of a single neuron over time
is. The main experimental difficulty is when sparseness is high: when neurons
fire rarely they are likely to be missed by the investigator. However, there is
convergent evidence that lower sensorial areas have more dense coding, and higher
sparseness is found in higher amodal areas. By using statistical analysis over a pool
of recordings in the inferior temporal and prefrontal cortex of monkeys, Meyers
et al. (2008) assessed the sparseness of the coding for synthetic images of cats and
dogs. They found that the 64 best coding cells provide a classification accuracy
almost indistinguishable from that of the entire population of 256 cells, and even
the best 16 were able to provide a reasonable accuracy.

Note that the extreme upper limit to the sparseness is when in a population
of neurons just one neuron at the time is activated by an individual object or
event. This is the idea famously lampooned as the “grandmother cell”, after a story
invented by Jerry Lettvin in 1969, for a lecture course at MIT (Gross 2002). Akakhi
Akakievitch, an imaginary great neurosurgeon, was able to identify all cells in the
brain carrying information about one’s own mother, and by ablating all such cells
freed Portnoy (the character of Philip Roth’s novel Portnoy’s Complaint) from his
obsession with his mother. After this success, Akakievitch moved on to search for
cells representing one’s grandmother. The term become widespread in neuroscience,
where it often plays the role of straw man for discussions about neural coding. This
idea recently found renewed vigor, after remarkable studies revealed specialized
tuning of very few cells. In particular, in a series of studies in human epilepsy
patients with presurgical implantation of microelectrodes, Quian Quiroga et al.
(2007) demonstrated surprisingly precise tuning of entorhinal neurons to a variety
of familiar images, such as Saddam Hussein. Using results such as these, Bowers
(2009) attempted to resurrect the grandmother cell idea, arguing that it is not so
bizarre after all. However, the same authors of the studies used by Bowers criticized
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his conclusions as unwarranted (Quian Quiroga et al. 2008; Quian Quiroga and
Kreiman 2010). They remarked that, if there is one and only one cell responding to
a person or concept, the chances for the investigator to find such cell, out of a few
hundred million in the medial temporal lobe, would be infinitesimal.

4.3.2 Assessing the Population Coding in Topographica

In this section a general method for analytically assessing the organization of
population coding in Topographica maps will be described.
For this purpose a number of ancillary functions will be introduced.

xi.s/ W S 2 S ! R
CI s 2 S 2 S : (4.15)

This equation computes the activation x of a generic unit i in a Topographica map, in
response to the presentation of the stimulus s from the external world to the system.
Note that compared with the basic equation of Topographica (4.13) the activity x
in Eq. (4.15) has no time subscript: it is the stable activation, after the recurrent
equation (4.13) has settled. Also the stimulus s is treated as static, how to deal with
events in time will be shown in the second part of this book, for the models where it
is required. Note that the stimulus need not be a direct afferent to the map, it should
of course, influence the excitation of the given map, in order to be represented in
the coding. Let us assume the stimulus s to be an instance of a possible sensorial
experience given by an entity of the world, and let S be the set of all such sensorial
experiences. This set will be defined under a given interpretation of the experimental
environment available to the model, and can refer to an individual object of the
world, or a category of objects, or a category of perceptual features. The set S in
turn belongs to the set of all classes of stimuli S available in the experiment. For a
class S 2 S we can define the two sets:

XS;i D ˚
xi.sj/ W sj 2 S

� I XS;i D ˚
xi.sj/ W sj 2 S0 ¤ S 2 S

�
: (4.16)

We can then associate with class S a set of units in the map, by ranking it with the
following function:

r.S; i/ D �XS;i � �XS;ir
�XS;i

jXS;ij C �XS;i

jXS;ij
; (4.17)

where � is the average and � the standard deviation of the values in the two sets,
and j � j is the cardinality of a set. Now the following relation can be established as
the population code of a class S:

p.S/ W S ! fhi1; i2; � � � ; iMi W r.S; i1/ > r.S; i2/ > � � � > r.S; iM/g ; (4.18)
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where M is a given constant, typically one order of magnitude smaller than the
number of units in the map. An alternative is to keep M variable, and to derive
the number of coding neurons by fixing a threshold on their ranking r.S; i/. The
population code p.S/ computed with (4.18) can be used to classify a stimulus s in
an expected category:

c.s/ D arg max
S2S

8<
:
X

jD1���M
˛jxp.S/j.s/

9=
; ; (4.19)

where p.S/j denotes the j-th element in the ordered set p.S/, and ˛ is a constant that
is close, but smaller, than one.

In a typical experiment aimed at studying semantic representations, the set S
of the environmental experiences available to the model is known in advance, and
is partitioned a priori in meaningful categories Si. The settlement of a semantic
representation in a map of the model can be established by testing the discriminatory
power of its population coding:

a.S/ D jfs W s 2 S ^ c.s/ D Sgj
jSj : (4.20)

It should be noted that the use of predefined categories, even if common in
population code analysis, introduces a questionable assumption, known as the
labeling problem (Lehky et al. 2013). An alternative is to derive an intrinsic code,
that takes into consideration the relative activation of the neurons, avoiding to
attach external labels to coding neurons, an example is the multidimensional scaling
approach (Borg and Lingoes 1987; Borg and Groenen 2010). In most of the models
that will be presented in the second part of the book the use of Eq. (4.20) is justified,
because adopting external labels corresponds to the normativity of the language
in naming things. Models exploring the emergence of pre-linguistic concepts will
not use Eq. (4.20), and apply an internal interpretation of the codes instead, as in
Sect. 6.1.4. If a consistent coding has been established, and if this coding can be
assumed to be a genuine representation (see Sects. 3.1.2 and 3.1.3), Eq. (4.20) will
also give the amount of potential misrepresentation of the model: the possibility that
a stimulus si will be taken as caused by an entity that is different from the category
it actually belongs to.

Note that the analysis described so far does not introduce any alteration in the
neural mechanisms of the model: the activation xi evaluated here is the result of
equations of the kind (4.13), within maps developed using Eqs. (4.10), (4.11), and
(4.12). The result of (4.18) is purely a statistical analysis applied to the output of
a developed map, in order to establish the possible coding of external stimuli by a
distributed population of units.
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Part II
Meaning from Neurons

This second part of the book ventures into the core of neurosemantics: the project
of explaining linguistic meaning in terms of computations done by the brain. It is an
enterprise at the edge of the available state-of-the-art knowledge in neuroscience,
and the understanding of brain computational mechanisms, highlighted in the first
part, undoubtedly audacious, and still in its early infancy. However, we conceive
neurosemantics as the natural evolution of a long standing project, started in the
early days of Boole’s logic: the idea that semantics can be construed and explained
in mathematical terms.

The first chapter of this part traces this evolution, highlighting the connections
as well as the discontinuities. The first one is the cognitive turn that brought in
the mind, excluded by classical formal semantics. The second divergence is from
the weak mathematical framework of cognitive semantics, stuck within a much
too abstract concept of computation, towards a sound mathematical foundation,
empirically grounded in how the brain computes: neurosemantics.

The next three chapters present samples of neurosemantics in practice. All the
premises of the first part are taken together, and turned into the implementation
of a series of models, seeking to capture aspects of linguistic meaning at the
neurocomputational level. A unified approach, based essentially on the algorithmic
principles described in Chap. 4, is applied to simulating various areas of the cortex,
involved in three aspects of language understanding: the early building of names
for visual objects, the class of color terms and their use as adjectives, and the
semantics of moral terms. Needless to say, even if these three models explore
important semantic phenomena, their coverage with respect to the complexity of
real languages is modest indeed. Their main aim is exploratory, demonstrations of
how the vertiginous cliff, from the level of a neural signal up to linguistic meaning,
can be climbed, even if with more than a few missing details, by a brain friendly
mathematics.

The last chapter is still a demonstration of neurosemantics, but this time,
covering a selection of models developed by other research groups, that share a
view largely compatible with this book, and that we feel justified in classifying as
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neurosemantics. These models target aspects of language meaning not explored in
our own previously mentioned models, such as word order, compositionality, and
the semantics of numbers.

In conclusion, we should once again remind the reader, that currently the overall
picture on how the brain captures linguistic semantics is sketchy and largely
deficient. Neurosemantics is a research effort that would not have been possible
a few decades ago. Today, we see it as the most appropriate effort in explaining
language, and in this book, try to outline its domain, to describe its methodology,
and to portray its first steps.



Chapter 5
Semantic Theories

Abstract Semantics, in the sense used in this book, seeks to understand the
meaning of words and sentences, explaining the relations between expressions in
a natural language and the world. This chapter intends to give a short account on
semantics as has been developed before neurosemantics, and trace the path that
naturally lead to its neuro form. The link that, in our view, connects the milestones of
semantic theories to neurosemantics, is the aim of constructing precise mathematical
models of the relations between linguistic entities and their referents. Therefore,
much attention will be given to the transition from a descriptive semantics to its
mathematical foundation in modern logic. It will be argued that the unsatisfactory
aspect of this project was to have neglected the mind, which became on the contrary,
the main object of investigation during the cognitive turn. We will describe the
vicissitudes of cognitive semantics, its merits, and the counterside of a serious
weakness in the level and robustness of its mathematical modeling.

5.1 Logic and Meaning

The study of linguistic meaning is not a new endeavor, having interested philoso-
phers from antiquity, but philosophers of the early part of the twentieth century
made it one of their central areas of inquiry. This was the result of the interaction
of a number of disciplines in ferment at the time, one being the renewed interest
in the formal study of reasoning, known as logic, in the pursuit of finding
an epistemological foundation for mathematics. Natural language because of its
fundamental link to human reasoning, thus also became an area of mathematical
investigation, with mathematical logic having a pronounced influence on the study
of semantics in the years that followed. This section will briefly review those
proposals, that in the not so distant past, were put forth to explain linguistic meaning
in mathematical and logical terms, and in some respects are on the same thread of
the story leading to neurosemantics (Plebe 2004).

© Springer International Publishing Switzerland 2016
A. Plebe, V.M. De La Cruz, Neurosemantics,
Studies in Brain and Mind 10, DOI 10.1007/978-3-319-28552-8_5

113



114 5 Semantic Theories

5.1.1 The Mathematics of Thinking

To conceive thinking in mathematical terms is not really new at all, especially for
what concerns rational argumentation. Gottfried Leibniz suggested that a specific
kind of calculus would be the key to settling all human conflicts and disagreements,
in his words:

Quo facto, quando orientur controversiae, non magis disputatione opus erit inter duos
philosophos, quam inter duos computistas. Sufficiet enim calamos in manus sumere
sedereque ad abacos, et sibi mutuo dicere: calculemus! Leibniz (1684)

For this exhortation to be feasible a new mathematics was necessary, a calculus
ratiocinator planned by Leibniz as the last and major effort of his life, but was never
commenced. His desired mathematics of thinking was conceived as an external tool
to accomplish any type of reasoning, and did not explicitly entail that our mental
way of reasoning was mathematical in its essence.

It was, on the contrary, the assumption of Thomas Hobbes, who not much later,
asserted:

For reason Œ: : :� is nothing but reckoning (that is, adding and subtracting) of the conse-
quences of general names agreed upon for the marking and signifying of our thoughts; I
say marking them, when we reckon by ourselves; and signifying, when we demonstrate or
approve our reckonings to other men. (Hobbes 1651, Cap V)

Hobbes did not attempt to elaborate the mathematics behind reasoning either,
it was neither among his intentions nor his possibilities, considering he did not
master mathematics like Leibniz did. Only about two centuries later was the first
mathematics of reasoning laid down, by George Boole (1854b). His great effort was
in using standard algebra, giving variables and operations a new meaning, related to
mental thinking.

Variables, for which Boole used the higher alphabetic letters, such as x; y; z; : : :,
which denote sets of objects satisfying a specific concept, for example x might
be the set of animal and y the set of green entities. The product operation,
whose correspondent symbol is omitted as in ordinary algebra, corresponds to the
intersection set operation \, so that xy, in our example, is the set of green animals
like frogs and lizards. The C operator corresponds to the union [. There are two
possible constant values: 1 corresponding to the universe of objects, and 0 to the
empty set, therefore 1 � x is the set of all non animated objects.

The basic operations are ruled by the following set of basic laws:

xy D yx (5.1)

x C y D y C x (5.2)

z.x C y/ D zx C zy (5.3)

x D y ) zx D zy (5.4)

x D y ) z C x D z C y (5.5)
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x2 D x (5.6)

x C x D x (5.7)

where D is the identity symbol. Equations (5.1) and (5.2) are commutative
properties, Eq. (5.3) is the associative, and (5.4), (5.5) are identity properties.
Equation (5.6) is called the dual property, and it is at the core of the deductive
system proposed by Boole. For example, from (5.6) derives that x.1 � x/ D 0, as in
our example, that nothing can be an animal and not an animal at the same time.

Boole went further in relating algebraic expressions to propositions of natural
language, for this purpose he introduced a special variable, v, the indefinite class.
This was in fact Boole’s expedient to express quantification, which found a much
more elegant solution in Frege (see Sect. 5.1.2). His three “primary” propositions
are those listed in Table 5.1, where fS is an arbitrary expression denoting a subject,
and fP is an arbitrary algebraic predicative expression.

Note in particular propositions the use of v as surrogate for quantification. The
logic system of Boole is completed with an elaborate methodology for actually
“solving” systems of equations, corresponding to propositions. It is divided into
three main phases: elimination, reduction, and development. The first two are
direct extensions of the ordinary methods of algebraic manipulations, such as
identification of superfluous variables and their elimination, and the reduction of
a system of equations to the minimum number. What Boole calls “development” is
instead specific to the meaning of the symbols in his logical system.

Table 5.1 The three primary propositions in Boole’s algebra. The second column from the left is
the general format of the proposition, the third column is an example of the proposition, with its
algebraic translation in the rightmost column

Universal fS D fP Computer scientists are ani-
mals with keyboards not so
keen on gym

p D ab.1� s/

Particular predicate fS D vfP Computer scientists wearing
glasses are nearsighted

op D vm

Particular subject and predicate vfS D vfP Some computer scientists
with age become philosophers

vtpD vf

Symbols used in the examples: aD animals

bD with keyboard

f D philosopher

mD nearsighted

oD with glasses

pD computer scientists

s D gym addict

t D aged

v D the indefinite class
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Analyzing this system in depth is not the goal of this book, but the remarkable
fact we would like to highlight is that one of the main objectives Boole had in
inventing his system was to describe the mental processes of reasoning. This is
the aspect of his work that was completely removed in the ensuing developments of
logic. Bertrand Russell (1918) in declaring his admiration for the pioneering work of
Boole, alluded to his extravagance in connecting logic and mind: “Pure Mathematics
was discovered by Boole in a work he called The Laws of Thought”.

5.1.2 The Mathematics of Meaning

Boole opened the road to logic, but his system was constrained in making use of
symbols and tools inherited from ordinary algebraic calculus, which was invented
for working with numbers, and despite his great efforts, was unmalleable for new
purposes. Contemporary logic is mainly due to Gottlob Frege, and one of his first
ideas was to invent from scratch a way of formally expressing “concept”. In fact,
he named his system “Begriffsschrift” (Frege 1879). We can anticipate right away
to the interested reader that, unfortunately, no one has ever used the Begriffsschrift
after Frege invented it, but this nonetheless, some of the constituents of his system
became the foundation of contemporary logic.

The Begriffsschrift, in its neglected aspect, was a curious and ambitious new
way of writing that breaks the common sequence from left to right and from top
to bottom, of western languages (and mathematical writing too). It develops in two
dimensions. The basic form is the assertion: A , A is true. Unlike in Boole’s
system, variables like A are now propositions, sentences which can be considered as
true or false. The two basic connectives are the negation and the implication, drawn
as in following, with the current notation below:

A

¬A

A

B

B ⊃ A

in every logical system, it is possible to define axiomatically two connectives only,
and all the remaining can be derived, here for example, are the conjunction and the
disjunction in the pictorial Begriffsschrift form:

A

B

A∧B

A

B

B∨A
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The breakthrough ofFrege’s system is in two radical innovations with respect
to Boole: the function and the quantification. He did not simply borrow the idea
of function from calculus, as a mathematician he first rigorously scrutinized the
concept and the use of “function” in ordinary mathematics (Frege 1904), and
then used for semantics his purified rigorous account of function, as an entity
that needed to be saturated, much like chemical ions. Only when saturated by
its argument does the function become a real object (Dummett 1973). Function
and argument in semantics correspond to any possible decomposition of a simple
proposition into two components. Unlike in calculus, functions return only truth
values.

Frege’s project was ambitious, he wanted to base arithmetic upon logic, and
in addition to the Begriffsschrift he developed a full axiomatic system (Frege
1884). It is well known that this system was corrupted by the excess of freedom
in defining functions, as discovered by Bertrand Russell, who posed the famous
question:

You state that a function, too, can act as the indeterminate element. This I formerly believed,
but now this view seems doubtful to me because of the following contradiction. Let w be
the predicate: to be the predicate that cannot predicate of itself. Can w be predicated of
itself? From each answer its opposite follows. Therefore we must conclude that w is not a
predicate. Likewise there is no class (as a totality) of those classes which, each taken as a
totality, do not belong to themselves. From this I conclude that under certain circumstances
a definable collection does not form a totality.

(Russell 1902, pp. 124–125)

The failure of his project broke Frege’s heart, but his inventions inspired the work
of Russell himself, the first work of Ludwig Wittgenstein (1922b), including the
equivalence between meaning and truth conditions, that of Rudolph Carnap (1928)
and dominated the ensuing developments in logic (van Benthem and ter Meulen
1996). It is not useful for this book to delve further into contemporary logic, but
there are just a couple of aspects of Frege’s work that are worth mentioning.

On one side, he has been heralded as the most fierce defender of anti-
psychologism in logic, representing therefore, a drastic discontinuity from Boole,
in purging everything pertaining to the mental sphere from the abstract elucidation
of semantics in formalized logical terms (Baker and Hacker 1989). In criticizing
Husserl’s philosophy of arithmetic, Frege (1894) concludes by saying: “In reading
this work, I was able to gauge the devastation caused by the influx of psychology
into logic; and I have here made it my task to present this damage in a clear light. The
mistakes which I thought it my duty to show reflect less upon the author than they
are the result of a widespread philosophical disease.” Despite such inveighing, the
celebration of Frege as an apologist of the purity of logic against the contamination
from investigations on the mind, in antagonism with Boole, is perhaps a picture that
has been amplified within the analytic philosophy of the mid 1900s, and according
to Vassallo (2000), there is much more Boole and Frege have in common, from the
standpoint of psychologism, than meets the eye.
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In one of the few writings of Frege (1892) exclusively focused on the semantics
of natural language, a new element is suggested, which in our opinion, is a valid
example of the difficulties of a semantics segregated from the mind. The standard
meaning of singular terms should be in their contribution to the truth conditions in
the proposition in which they appear (Russell 1905). According to Frege, there is
something else, which he called Sinn, usually translated as “sense”. The best way
to get convinced of the Sinn component is by comparing co-referential expressions,
i.e. referring to exactly the same object in the world, for example:

1. the best mathematician of the year in 1967 at Michigan University

and lecturer of Analysis at Berkeley University in 1968;
2. the serial murderer who killed 3 people and injured 23 others

between 1978 and 1995;

are two different ways of denoting the same person: Theodore Kaczynski, infa-
mously known as Unabomber. Even if the reference is the same, expressions
found in 1 convey information on his high intellectual achievement and a service
given to the university community. Expression 2, on the contrary, includes sinister
information about his behavior. The two expressions, even if referring to the same
entity, challenge the logical substitutivity principle, for example while equating
expression 1 with itself is trivially true, equating 1 with 2 is informatively true.
Even worse, substitution in belief-contexts may change the truth values: for an
unaware and diligent student of Kaczynski to believe 1 was true, but certainly not to
believe 2.

This is due, according to Frege, to the difference in “mode of presentations”
of the referent, that is what the Sinn component of the expressions is. Its precise
nature was not detailed by Frege, and remained a struggle for generations of
philosophers (Dummett 1973; Peacocke 1992; Biro and Kotatko 1995). The point is
that according to Frege, and the Fregean tradition, all that can explain Sinn should
withhold any reference to the mind, and should be in the elements of the expressions
whether or not anyone ever believed it. As remarked by Margolis and Laurence
(2007, p. 20):

[. . . ] the sense-based solution to the mode of presentation problem says that the reference
of a word or internal representation is mediated by a sense that we grasp. But what exactly
does grasping consist in? Clearly, grasping is a metaphor for a cognitive relation that needs
to be explicated.

It is hard to see how Sinn can ever be explained without a mental account.

5.1.3 Logic in the Brain?

During the most flourishing period of logic, when tainting its study with investiga-
tions on the mind was heresy, an even more extreme affair was proposed, to connect
logic with brain circuits. This bold enterprise was carried out by two scientists with
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excitatory input
inhibitory input
output

3 1 0

Fig. 5.1 Neurons in the model of McCulloch and Pitts: on the left the implementation of logical
conjunction, in the middle the disjunction, on the right the negation operation. The number inside
the neuron is its threshold

complementary competences, on one side Warren McCulloch, neurophysiologist
and psychiatrist, and on the other, Walter Pitts who studied logic with Rudolf
Carnap. They believed that, despite the apparent entanglement of neural signals,
due to the huge difficulty in implementing computations in organic matter, the brain
performs crystalline logical operations (McCulloch and Pitts 1943). The idea was
tossed around in the group with which McCulloch and Pitts worked, led by Nicolas
Rashevsky (1938), a pioneer in the use of mathematical tools in biology. He was
convinced that the best way to abstract mathematically the behavior of the brain
was in assuming binary values for the neurons, furthermore, he sketched a possible
scheme of logical exclusive disjunction based on summation and subtraction of
signals.

McCulloch and Pitts continued the effort, completing a theory of logic based
on neurons, adapting Carnap’s formalism in a rigorous way. There are two types
of synaptic connections only: excitatory and inhibitory, and two types of signals,
corresponding to the logical truth values. An intrinsic feature of all neurons is a
threshold, corresponding to the net number of true values necessary to produce
true as output value. The neuron on the left in Fig. 5.1, implements the logical
conjunction of three inputs, and is true only when all three inputs are true, for
the neuron in the center one single true input is enough, therefore working as a
disjunction logical connective. In addition, neurons can have recurrent connections,
realizing memories of logical states. The neural system, in this abstract model, has
the same semantic power of a logical system: it is able to represent the meaning of
any linguistic proposition in terms of truth conditions.

The brain as a logic machine was a fascinating hypothesis, and galvanized more
than one scholar at that time, from the doctoral thesis of Minsky (1954), to the
finite state automata of Kleene (1956), and the parallel brain-computer made by von
Neumann (1958). Quite soon, Hodgkin and Huxley (1952) began to disclose a very
different picture of how neurons behave, and today we know well that McCulloch
and Pitts’ idea was simply wrong (see Sect. 2.1). They too became well aware of
the different direction the growing neuroscientific evidence was pointing to, while
they were working on the visual system. Already in their paper on the perception
of visual forms in the cortex (Pitts and McCulloch 1947), they used mathematical
formulations that were far from logic (group invariant operators), and in the work
on frog vision the logic approach was completely abandoned (Lettvin et al. 1959).
Nevertheless, the attempts made by McCulloch and Pitts are rich in historical merit
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(Piccinini 2004), in that they launched the idea that the brain performs computations
in the precise sense of Turing computations, a concept that is commonly held today
by scholars in the field.

Their attempts endorse the pertinence of starting the second part of this book
with classic logic. Even if the founders of the first mathematics of semantics fiercely
fought against any relationship with the mental mechanisms of semantics, there have
been scholars that have believed that logic not only should describe something that
goes on in the mind, but that it is exactly how the brain works. Starting however,
from an existing and well defined mathematical framework and expecting the brain
to work that way, is a venturesome move. It is thus, better to leave logic aside, and
gradually move towards a more mind friendly semantics.

5.2 Semantics Meets the Mind

After the cognitive shift in the 1970s, cognitive semantics along with cognitive
approaches to grammar, emerged as one of the main branches of cognitive lin-
guistics, which concentrates on investigating the relationship between language, the
mind and socio-physical experience. Cognitive linguistics, described as a “move-
ment”, by one of its historic proponents, Ronald Langacker (1987), is characterized
by a set of core commitments and guiding principles, which in turn have produced a
number of complimentary, different, overlapping and often competing theories. This
section will delineate the historical development of the field of cognitive semantics,
and its efforts in taking the study of the making of meaning, once again, within the
context of the mind.

5.2.1 The Unfulfilled Promise

It is not possible to talk about explaining natural language in computational terms,
without mentioning the extensive work of Noam Chomsky and his school, even
if semantics was exactly one of their neglected aspects of language, in favor of
syntax, the way words are placed in order in sentences and the rules by which this is
done. One of the greatest initial merits of Chomsky (1956, 1957, 1958) was that of
coming up with a framework for a mathematical account of grammar, overcoming
the limitations of the linguistic approaches that had been employed up until the
1950s, especially structuralism and behaviorism. This new approach provided a
way to apply the intuitions developed by Harris (1951) in linguistics, in connection
with the mathematical theory of formal languages, started by Thue (1906, 1912)
and refined by Post (1921, 1947). At the core of the mathematical description of
language there is the definition of abstract grammar:

G
defD hVN ; VT ; S; Ri (5.8)
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which elements are:

VN set of non terminal elements

VT set of terminal elements, with VN \ VT D ;
S root element, with S 2 VN

R set of rewriting rules, each with the format hP; Qi with

P; Q 2 .VN [ VT/� and P with at least on element 2 VN

(5.9)

A language is defined as follows:

L .G/ D
�

P j S
�H)
G

P

�
\ V�T (5.10)

where the operation
�H)
G

is the application of any rule available in G an arbitrary

number of times. Equation (5.10) tells that a language is the set of all sentences
generated according to a grammar of the vocabulary of terminal elements VT .

This abstract construct was just the basis for building a set of rules corresponding
to the extant combination of words in the sentences of natural languages, and one
of the most serious challenges in this enterprise was the definition of a Universal
Grammar able to explain the great variety of syntactic features in the different
languages of the world. This effort has led to a long evolution of the theory itself,
reflected in a sequence of labels. In the Government and Binding theory (Chomsky
1981) the focus was on the relations between two words, not necessarily adjacent
in the sentence, and the binding with anaphoric elements like pronouns. It was
superseded by the Principles and Parameters (Chomsky and Lasnik 1993) theory,
in which a small number of syntactic constructs, such as the X-bar, are held to be
universal, with “parameters” that adapt their precise format to each language of
the world. Throughout this evolution there has been a progressive relinquishing of
the stringent mathematical formalization, which has become a barely perceivable
background in the most recent elaboration of the theory, the Minimalist Program
(Chomsky 1993, 1995), where the only syntactic operation left is Merge, roughly
working as a rewriting rule.

Universal Grammar has produced nearly as many successful formal descriptions
of syntactic phenomena, as logic did for semantic constructions. Both gained their
powerful descriptive adequacy by using a mathematical formalism that is totally
unrelated with mental processes. The difference is that while logicians defended
their discarding the mental realm as a theoretical position, Chomsky and his
school, on the contrary have put high claims on their mathematics as corresponding
to mental processes of language understanding, and even brain processes. Katz
(1981) was one of the first to call attention to the issue, in ontological terms. The
objects of analysis in linguistics appear to be abstract entities, and especially in
the generative grammar framework, close to mathematical objects. Yet Chomsky
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insisted that they were psychological entities. He did not deny the ambiguity
(Chomsky and Halle 1968): “We use the term ‘grammar’ with a systematic ambi-
guity. On the one hand, the term refers to the explicit theory constructed by the
linguist and proposed as a description of the speaker’s competence. On the other
hand, it refers to this competence itself.” The fallacy, in the words of (Katz and
Postal 1991, p.527), is that:

We may assume that there is a domain of fact, A, instantiated by (1)–(6) [syntactic rules],
studied in field A’ and a domain of fact, B, concerned with human linguistic knowledge,
its development, the biological structures [. . . ] which determine it, etc., studied in field B’.
Evidently, both domains A and B and fields A’ and B’ are characterized a priori in distinct
ways. While A and B could turn out to be identical, they could also turn out to be distinct.
Therefore, they cannot simply be assumed to be identical.

We would like to point out that the contradiction is even more puzzling, in that
Chomskian linguistics departed from psychology programmatically, in disregarding
the connection between syntax and meaning.

Katz characterized the ontological contradiction in Chomskian linguistics as the
clashing between realism (in the sense of logical and mathematical realism) and
conceptualism. Other dichotomies have been used by other authors to describe the
symptoms of the defective Chomskian ontology. Seuren (2004a) uses “realism” in
the opposite sense of Katz, as a theory that “aims at describing and specifying the
workings of the hidden underlying reality that is the object of the theory under
some formula of interpretation.” It is the dual with “instrumentalism”, a theory
that “merely tries to capture observed regularities in terms of an algorithmically
organized system or formal theory, without any causality or reality claim regarding
the theoretical terms employed in the theory.” Generative grammar is clearly
a purely instrumentalist theory, yet their proposers affirm to be committed to
realism, in Seuren’s sense. The ontological contradiction, as put forth by Katz and
Seuren, may be overcome by noting that, in principle, abstract computational or
mathematical objects can be adequate for describing implementation as well, thanks
to a mapping with concrete mechanisms of the implementation (see Sect. 3.1.5).
However, the point is that this kind of mapping is not of concern within Chomskian
linguistics, and this leads us to the epistemological aspect of the contradiction.

It has been focused on by (Stich and Ravenscroft 1994, p.15), who marked a
distinction between “external” and “internal” inquires in the generative grammar
project. A grammar, on the external view, “is nothing more than a useful system-
atization or axiomitation of linguistic intuitions.” On the internal view, instead, “a
grammar should not only capture (or entail) most linguistic intuitions, it should also
be part of the mechanism that is causally responsible for the production of those
intuitions, and for a variety of other linguistic capacities.” The incoherence is that
the focus in the development of generative grammar is in the descriptive adequacy,
the simplicity, and the formal elegance of the theory, with no attention to the mental
processes involved in language. Still, UG theorists have higher aspirations for
grammar, that of magically transforming it into an internal account. But a grammar
constructed on a strict external project could very well have principles that are
quite at odds with anything that is subserved by a specific mental mechanism.
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The gap between the polar ontology and epistemology in linguistics has even
worsened throughout the years, as the aspirations for generative grammar have
grown even higher, from mentalism and psychologism up to the physical level of
brain and biology, in what is called Chomsky’s “biolinguistic” view (Chomsky
2000, 5):

It [the biolinguistic approach] is concerned with mental aspects of the world, which stand
alongside its mechanical, chemical, optical and other aspects. It undertakes to study a real
object in the natural world – the brain, its states, and its functions.

An example of this inner incoherence is the position with respect to one of
the basic guiding principles in biology: Darwinian evolution. For Chomsky (1988,
p.183) this principle in the case of language would be “a complete waste of
time, because language is based on an entirely different principle than any animal
communication system”. The solution is the idea described by Botha (1999) as
the “Fable of Instantaneous Language Evolution”. In facing the impossibility to
harmonize the abstraction of generative grammar with the facts of biological
evolution, Chomsky (2005, p.11–12): insists on the antiscientific suggestion of an
apparent miracle for the origin of language:

With Merge available, we instantly have an unbounded system of hierarchically structured
expressions. The simplest account of the “Great Leap Forward” in the evolution of humans
would be that the brain was rewired, perhaps by some slight mutation, to provide the
operation Merge, at once laying a core part of the basis for what is found at that dramatic
“moment” of human evolution.

Another unproductive consequence of the ambiguity between the ontological
status of generative grammar and neurophysiological reality is the postulate of a
“language organ”, often called the “language faculty”. This entity is the essence of
the ontological ambiguity, thought at the same time as a set of formal linguistic
principles, and as a piece of the brain, tying in nicely with modularism in the
sense of Fodor (1983). According to Chomsky (1995, p.167): “The human brain
provides an array of capacities that enter into the use and understanding of language
(the language faculty)”. We already discussed in Sect. 3.3.3 the serious divergences
between modularity as conceived by Fodor, but also by Carruthers, and what is
known today about the organization of the brain. In the case of language as well,
the hypothesis of a domain-specific, innate module corresponding to Chomsky’s
language faculty has not garnered substantial support from neurobiology. Certainly
many questions regarding language processing in the brain remain open, but at this
stage, the Chomskian picture looks less promising than that of a contribution of
diverse brain regions, including non-specific areas (Stowe et al. 2004; Osterhout
et al. 2007; Prat et al. 2007; Proverbio et al. 2009; Pulvermüller 2010).

In some sense, expecting a correspondence in the brain of the mathematical
constructs of generative grammar, is similar to the attempt made by McCulloch
and Pitts to adapt formal logic to the workings of neurons, but their idea was a
provisional hypothesis, open to being falsified by empirical investigations, which
they themselves were engaged in.
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This brief account on generative grammar is not just the narration of an
unfulfilled promise for a mathematical formalization of language meeting the mind.
This unfulfilled promise, so to speak, has also been historically important in a
number of other ways. The growing dissatisfaction of scholars working within
the Chomskian project, encouraged several of them to move in a totally different
scientific direction.

5.2.2 Cognitive Semantics

Syntactocentricsm was essential to Chomsky’s early success, making the algorith-
mic formalization of linguistic rules relatively easier, it also undermined the mental
reality of its foundation. During the rise of the brand new cognitive science, around
1960, a central idea was to imagine the mind as a computational device, subject
to the theoretical laws discovered by Turing (1936) and Post (1947). The rewriting
computations postulated by linguists for the grammars of natural languages would
obviously be regarded as instances of the kind of mental algorithms envisaged
by psychologists, but this natural merge did not happen, because isolating syntax
required leaving meaning out of the picture, and therefore, most of the mind. In
the same period an alternative project, under the name of “generative semantics”,
made serious and promising advances in rejoining cognitive science. Some linguists
of the group lead by Chomsky, such as Postal, Lakoff, and McCawley, worked on
combining syntactic structures with semantic logical representations. Chomsky was
displeased and mounted a campaign against generative semantics, popularized as
the “linguistics war” (Harris 1993), causing its rapid disappearance.

But the dissatisfaction did not disappear. Cognitive science was growing, offering
simple arguments to overcome the theoretical reasons to reject mental analysis in
traditional semantics. One of the most powerful was the argument against a “private
language” made famous in philosophy by Wittgenstein (1953). In order for language
to be understandable, it must be public, therefore, all that counts in its way of work-
ing cannot just be in the head of a speaker. Surely, the private language argument has
had plenty of different interpretations, as well as consequences (Kripke 1982), like
many passages in the Philosophische Untersuchung, our interpretation corresponds
to the way this argument is typically used as a precaution against projects of
mental semantics. Cognitive science can deflate the argument, finding in the external
world, and in perceptual experience, the common ground for communication. Each
individual mind develops an understanding of language based on its experience of a
shared world, and it is enough to warrant reciprocal understanding.

A different reason for antimentalism had an epistemological basis, and was
rejected by several scholars of logic positivism, such as Hempel and Carnap, and
proponents of behaviorism (Smith 1986). Even if Wittgenstein never admitted affini-
ties, his repeated plea for the observation of external behavior as the only source of
knowledge, such as that found in his linguistic games, are not far from behaviorism.
To confine the study of human phenomena to observable events has the worthy
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benefit of scientific rigor, but at the price of ending the investigation prematurely.
The reaction of cognitive science was to reverse the object of research, putting
the mind at the center. In the case of language, the reaction of cognitive science
manifested itself in a number of approaches, all alternatives to both Chomskian
grammar and logic semantics. They emerged in the 1970s and increasingly in the
1980s, collected under the label of “cognitive linguistics” (Croft and Cruse 2004;
Geeraerts 2006; Brdar et al. 2011).

One of the main directions came from the critique of the autonomy of syntax.
Lakoff (1986) was persuaded to abandon the generative grammar enterprise,
becoming one of the leading exponents of cognitive linguistics, trying hard to
construct rules for separating syntax from semantics, specifically in the coordinate
structure constraint. It is one of the constraints on transformations that allows
elements in phrase structures to be rearranged. For example, the wh-movement
might allow a transformation like this:

Bob gave a book to Bill

what did Bob give to Bill?

but not when an item is coordinated with others, as in this case:

Bob gave a record and a book to Bill

�what did Bob give a record to Bill?

The coordinate structure constraint is purely syntactic, it mentions coordinate
constituents and movement rules. However, Lakoff (1986) and Goldsmith (1985)
found many counter examples, like:

Bob can drink two beers and still stay sober

How much can Bob drink and still stay sober?

Lakoff than went on to offer a semantic description of the conditions for moving
coordinate conjuncts. In this example, the principle is that the constraint can be
violated when the two conjuncts are kinds of natural sequences of events, causing,
enabling or not preventing. Drinking that much does not prevent Bob from staying
sober.

Thirty years later, a vast amount of research has been generated under the
paradigm of cognitive linguistics, a flexible and evolving theoretical framework,
bringing together several different projects. One of the main directions, in a way
similar to the previous Chomskian paradigm, is Construction Grammar, where
the basic unit of language is a conglomerate of syntactical, semantic and prag-
matic information, instead of a schematic syntactic rule. Construction Grammar
itself comprises several variations, from Cognitive Grammar (Langacker 1987),
to Goldberg’s Construction Grammar (Goldberg 2006), to Usage-Based Grammar
(Tomasello 2005), just to mention a few.

Other directions explored aspects of language related to cognition that had been
neglected in both the Chomskian tradition and in logic, such as lexical semantics.
A well known difficulty in logical semantics is that of providing an account for
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the meaning of names, which include what has sometimes been called the extra-
linguistic reference (Kripke 1972; Putnam 1975), or the referential component in
lexical competence (Marconi 1997). Formal semantic models can only establish
relations between symbols, that can build detailed inferences between concepts,
but never attach components of meaning to the external world itself. Marconi
(2000) has shown that even the most advanced model, that of Montague, fails to
express a genuine reference to the world, and attaching labels to symbols does
not solve the problem. From a cognitive perspective, it becomes natural to search
for the referential component of lexical semantics, in the mental structures built
on world experiences. How it works, and how experience relates to language, is a
complex story (Violi 2001), but the road is well marked. Traveling quickly along that
road we meet prototype theory of Rosch (1978), limited collections of exemplars
representative of concepts; Lakoff (1987)’s radial categories around a central
concept; Fillmore (1976)’s frames, conceptual systems where the understanding of
any element requires the grasping of the structure as a whole. Specific phenomena
within lexical semantics have also been analyzed by cognitive linguistics, such
as polysemy (Tyler and Evans 2003), metaphor (Lakoff and Johnson 1980), and
blending (Fauconnier 1997). Even if the cognitive linguistics approach to these
phenomena has the merit of revealing important interactions between language and
cognitive structures, it often remains shallow concerning the relations between both
language and cognition and the external world.

One of the main tenets of cognitive linguistics is that it is a real “cognitive”
theory, that attempts to describe language in connection to the rest of cognition,
consistently with what other disciplines of cognitive science (e.g. neuropsychology,
neural computation, developmental psychology) have revealed about cognition and
the brain. A methodological example is the close connection with empirical studies
on language acquisition (Elman et al. 1996; MacWhinney 1999; Bowerman and
Levinson 2001; Diessel 2004).

Not much mathematics is found within cognitive linguistics, with just a few
exceptions coming from Lakoff’s school (Lakoff and Johnson 1999). Unfortunately,
among the many fragments of semantic investigation, and of general intuitions con-
cerning the concept of mental structures, nothing close to a common mathematical
framework has emerged for a cognitively serious theory of meaning. It looks like the
concerns of several logical semanticists on the lack of rigor of some of the ventures
on the cognitive side of language were not ill posed, when freed from a consolidated
and precise mathematical framework, any proposed subjective intuition can be given
psychological reality without direct empirical verification.

This is one of the reasons for turning towards neurosemantics, as the only pos-
sible mathematical integration of linguistics with cognition, grounded on empirical
bases. The distance to travel in order to reach a level of descriptive adequacy of
logical semantics is huge indeed, but the target, in the long run, is much more
ambitious: that of describing language not as an abstract external object, but rather
as the way our brain represents the world.
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Chapter 6
Neurosemantics of Visual Objects

Abstract Humans, like several other primates, are visual creatures, and almost
half of our neurons are devoted to the processing of visual signals. The excellence
found in our ability to do so, is not just due to our ophthalmological capabilities,
which are outperformed by other species, such as birds, it is instead on the
semantic side, in our ability to classify hundreds of object categories on the basis
of their visual appearance only. Vision has historically been the earliest and most
investigated function in the brain, thanks to its unique correspondence between the
two dimensional organization of the distal stimulus and cortical processing units.
Taken together, these two factors have led us to investigating the semantics of
objects whose essential features are captured by their visual appearance. The first
model presented in this chapter is a sort of prelude to a full blown semantics, with
a simulation of the full visual pathway that brings light signals into recognition
of object categories, together with the auditory pathway, in a simulation of the
emergence of a first lexicon, that in infants begins exactly with visual objects.
Most of the components of this model, and the methods used for its development
and subsequent analyses, will be shared by the models that follow. The second
model presented in this chapter, taps into a range of semantic phenomena typically
observed in the early stages of language development in children, such as the change
in the speed of learning, and the so called “fast-mapping” phenomenon.

6.1 Object Recognition

The first neurosemantic model presented in this section is based on visual objects.
Mammals rely a great deal on their visual system and as a result, one of the primary
sources of information on the external world arrives in the form of visual input. One
of the challenges our visual perception presents in building a representation of the
world in our brain, is that of learning which light sensations belong to the same class
of entities, despite significant changes in appearance. In humans, this effort is soon
intensified when yet another precious but different source of sensory information
is added to the mix, that is, when the mind grasps the idea that often, patterns of
sound are used to identify and categorize visible objects. This event takes place in
the brain at a boundary between the visual system and the language system, and it
is the target of this first model.
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It is not by chance that the initial vocabulary acquired by very young children is
made up to a large extent by nouns referring to visible objects (Bates et al. 1995;
Gershkoff-Stowe and Smith 2004). In a cross-linguistic study from seven different
linguistic communities (Argentina, Belgium, France, Israel, Italy, the Republic of
Korea, and the United States), Bornstein and R.Cote (2004) found that children
with vocabularies of 51–100 and 101–200 words had more nouns than any other
grammatical class. The formation of the ability to segment and recognize objects
on one side, and to segment and recognize words on the other, and the ability to
join the two represented entities in linguistic meaning, takes place in the brain at the
crossroad between the ventral visual and auditory streams of processing. This is the
brain portion simulated in this model.

There have been assorted attempts to investigate how the human mind acquires
the mapping between words and categories of objects, by means of computational
models. Some of them belong to the connectionist computational paradigm. Rogers
and McClelland (2006) explored the building of simple conceptual systems, using
the standard PDP framework (Rumelhart and McClelland 1986b). Their model
learns by backpropagation, categories such as flower, tree, in correlation with
visual features, such as red or branches, together with a fixed set of attributes,
like can walk, is living. Despite the higher level of abstraction, and the lack
of visual features proper, this model simulates important phenomena, for example
the emergence of quite general dimensions of similarity without appealing to
either physiological or cognitive constraints, but simply as the result of a coherent
covariation of features. The conceptual system of Rogers and McClelland by
itself does not imply a lexical semantics, which instead is the target of the LEX
model by Regier (2005). The semantic content in this model, is deprived from any
conceptual constituents, most of the focus of the model is on the association with
the phonological form of the words. This too is a connectionist model and the level
of abstraction is high, with both phonological and semantic features predefined in
a conventional way, without any relation to real utterances. A similar approach is
pursed by Mayor and Plunkett (2010), since their model explores the same specific
aspect of lexical categorization that is the focus of our next model, it will be
discussed in the section pertaining to it (see Sect. 6.2).

Other computational models exist that also aim at understanding visual object
recognition, with some being inspired by realistic brain processes (Edelman and
Duvdevani-Bar 1997; Riesenhuber and Poggio 2000). There are a couple of exam-
ples where, to some extent, the hierarchy of the visual cortex had been reproduced
(Wallis and Rolls 1997; Deco and Rolls 2004; Rolls and Stringer 2006; Taylor et al.
2005). Very few models extend beyond the occipital cortex, but Kashimori et al.
(2007) is an example of one that proposed a neural model that includes ITC (Inferior
Temporal Cortex) and PFC (PreFrontal Cortex), giving an account of their different
roles in categorization. The ITC response is much more influenced by visual features
than PFC, even if only by those features important for categorization, and the
response in PFC is sustained even after the disappearance of the visual stimulus.
Note that the hierarchy of maps of this model reflects the organization of the visual
system in monkeys, which differs from that of humans especially in the higher
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areas, as discussed in Sect. 3.4.1. A recent comparison of several models of purely
visual categorization is in (Khaligh-Razavi and Kriegeskorte 2014). The model here
described derives from previous developments on visual object recognition (Plebe
and Domenella 2005, 2006, 2007).

Not many neural models have been proposed for auditory processes (Näger et al.
2002; Volkmer 2004), and little is yet known about the kind of brain computations
that lead to word recognition there. The linguistic integration inside this model has
been developed in several stages (Plebe 2007b; Plebe et al. 2007, 2010, 2011).

In Sect. 3.2 we introduced the mechanism of coincidence detection as, in our
opinion, the fundamental principle of cortical representation. We take it as the
core mechanism in this model for explaining the emergence of the semantics
of visual objects. Coincidence detection, as argued in Sect. 3.2, is a multilevel
mechanism. At the lower level, it is implemented in local synaptic connections by
their sensitivity to the occurrence of simultaneous activation of neighboring units.
At an intermediate level, it is responsible for building selectivity in units to recurrent
patterns, such as oriented lines in the visual scene, or classes of phonemes. At the
highest level, it captures the coincidence of seeing certain objects while hearing the
same sound, which then becomes associated with the category of similar objects
named by the sound, which is a word. We will certainly concede that in reality,
the formation of object semantics in humans is a complex event, where many
different mechanisms converge. For example, Tomasello (1999) pinpointed the role
of pragmatic and social cues in grasping the association between uttered words and
objects, something that has been confirmed in several studies (Grassman et al. 2009).

An emerging body of new evidence coming from recent developmental studies
takes into consideration the child’s very own visual perspective, using an embodied
approach. These investigations use head cameras mounted on toddlers’ heads, and
their results indicate that word learning in 18 month olds occured more efficiently
when bottom-up visual information was “clean and uncluttered” (Yu and Smith
2012; Pereira et al. 2014). In other words, when objects where in optimal view, from
the child’s perspective, during the naming event. The optimal viewing conditions
were determined by the child’s own interaction with objects and with her parents,
during the naming event. This work has important implications in that while many
theories on word learning invoke the referential ambiguity that is an integral part
of learning a word when it co-occurs with a natural scene, it shows how one
of the mechanisms that might be helping to resolve this ambiguity is the child’s
own sensory-motor behavior and that of her parents in producing “optimal visual
moments”, facilitating not only early object recognition but early word learning.

Our model is not in contrast with these positions, it simply deals with a part of the
overall sequence involved in a naming experience. We can assume that social cues
drive attentional mechanisms, that filter, among all the possible objects presented
in a scene, the one focused on by the speaker. We can further assume that, among
this filtered set of experiences, additional filtering provides a smaller set of samples
by using “optimal visual moments”. At this point the framed object becomes the
input of our model, which is restricted to the primary aspect of learning that a sound
conveys meaning related to a category of similar objects.
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Fig. 6.1 Overall scheme of the object categorization model, the acronyms of all components are
in Table 6.1

Table 6.1 Main parameters of the object categorization model

Map Dimension rA rE rI 	A 	E 	I 	N

LGN Lateral geniculated nucleus 144 � 144 4:7 – – – – – –

MGN Medial geniculated nucleus 32� 32 2:0 – – – – – –

V1 Primary visual cortex 96� 96 8.5 1.5 7.0 1.5 1.0 1.0 0.0

V2 Secondary visual cortex 30� 30 7.5 8.5 3.5 50.0 3.2 2.5 0.7

VO Ventral occipital 30� 30 24.5 4.0 8.0 1.8 1.0 1.0 0.0

A1 Auditory primary cortex 24� 24 6.5 1.5 5.0 1.7 0.9 0.9 0.0

LOC Lateral occipital complex 16� 16 6.5 1.5 3.5 0.5 1.1 1.7 0.0

STS Superior temporal sulcus 16� 16 2.5 1.5 5.5 1.8 1.0 1.2 0.0

PFC Pre-frontal cortex 24� 24 2.5 1.5 5.5 1.5 3.2 4.1 0.0

6.1.1 The Cortical Maps Structure

The model is built upon a number of Topographica maps, simulating several cortical
areas, as well as on a few thalamic maps, shown in Fig. 6.1, the legend of all maps,
together with their main parameters, is provided in Table 6.1. The structure of the
model is based on the accepted perspective that both the visual and the auditory
processing pathways in the brain can be divided into two broad main streams, as
extensively discussed in Sect. 3.4, therefore, for the purpose of exploring semantics,
it suffices to include only the ventral areas.
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Both visual and auditory paths in the model include thalamic nuclei, which
perform their own processing of the signals coming from sensory receptors. Given
that their maturation is already advanced at the age relevant for the emergence of
semantics, and that their detailed functions are not relevant in the scope of this study,
all subcortical processes are hardwired, according to the following equations:
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where x is the activity of a unit. The subscript has been omitted for clarity in all
equations except for (6.7), where � is the time dimension, and ! is the sound
frequency dimension. In Eq. (6.7) w.�/ is a small time window, that performs a
spectrogram-like response, of the type accomplished by the combination of cochlear
and MGN nucleus processes (Brown 2003). In the visual path there are separated
LGN sheets for the achromatic component, described by Eqs. (6.1) and (6.2), and
other sheets for the chromatic components, for the medium and long wavelength,
with equations (6.3), (6.4), (6.5), (6.6). The superscript ˇ marks receptive fields
with the inner part active, while the superscript } makes those with a peripheral
ring active .

The profile of the visual receptive fields is given by differences of two Gaussian
g �N and g �W, with standard deviation �N < �W, approximating the combined
contribution of gangliar cells and LGN (Dowling 1987). The chromatic receptive
fields combine the center/periphery response with the opponency of two colors, as
shown in Fig. 6.1. For example the response of the unit xRCG�ˇ will be maximized
by a central red spot surrounded by green.

The maps corresponding to early cortical processes are V1, V2, VO, and A1,
here follow their equations:
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It can be easily seen that all equations are direct derivations from (4.13), adapted
according to the placement of every map in the overall hierarchy. In the visual
part we meet the same areas described Sect. 3.4.1, here area V3 is not included,
since the experiment deals with static scenes only. A technical simplification is to
segregate the form processing in V1 and V2, using Eqs. (6.8) and (6.9), and the color
processing in VO, with Eq. (6.10).

The higher level of cortical process is simulated by the following equations:
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The LOC Map, as seen in Sect. 3.4.1, plays a crucial role for object recognition in
humans, and it is ruled by Eq. (6.12), where chromatic and early form processing
converge. Equation (6.13) governs the projection from A1 to STS, where basic
phonological recognition takes place, as seen in Sect. 3.4.2. The highest map in the
model, where auditory and visual information meet, is PFC, and follows Eq. (6.14).
Certainly the more dramatic simplification of the model is to bind the final semantic
processing inside a single map. It is well known that the semantic coding of visual
objects is spread throughout the brain. However, there is also ample evidence that
sustains that the PFC area is deeply engaged in the kind of semantic representation
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here investigated (Freedman et al. 2001, 2003; Miller et al. 2002; Wood and
Grafman 2003; Ashby and Spiering 2004; Huey et al. 2006; Fuster 2008; Fairhall
and Caramazza 2013).

6.1.2 Simulation of Experiences

Initially, the model lacks functional processing, with all synaptic connections
initialized to small random values. During the experiments the model is exposed
to a series of stimuli, which reproduce at a small and essential scale, early human
development relevant for its cortical areas.

In a first phase only maps V1, VO, and A1 are plastic, and adapt their synaptic
connections according to Eqs. (4.10), (4.11), and (4.12). The visual stimuli are
synthetic random blobs that mimic waves of spontaneous retinal activity, that are
known to play a fundamental role in the ontogenesis of the visual system (Mas-
tronarde 1983; Katz and Shatz 1996; Thompson 1997; Gödecke and Bonhoeffer
1996; Chapman et al. 1996). Those presented to V1 are elongated along random
directions, to stimulate orientation selectivity, while blobs to VO are circular, with
constant hues, and random size, position, and intensity, in order to induce color
constancy. The A1 map is exposed to short trains of waves sweeping linearly around
a central frequency, with time duration, central frequencies and sweeping intervals
varied randomly.

The second phase involves V2 and STS maps as well. The visual stimuli
comprises pairs of elongated blobs, the same previously used for V1, with a
coinciding end point. These sort of patterns stimulate the selectivity of units to
patterns that are slightly more complex than oriented lines, like corners. The
auditory stimuli are synthesized waves of the 7200 most common English words
with length in range from 3 to 10 characters, generated using Festival (Black and
Taylor 1997), tuned at cepstral order 64 and 2.3 s time window.

In a third phase, that corresponds to the phase just after eye opening in the
newborn, natural images are used. In order to include the identification of an object
under different perspectives, the COIL-100 collection has been used (Nayar and
Murase 1995), where for each of the 100 real childhood related objects, 72 different
views are available.

The last phase corresponds to early language acquisition, and the model is
exposed to events in which an object is viewed and a label corresponding to its basic
category is heard simultaneously. The 100 objects have been grouped manually into
38 categories. Certain categories, such as cup or medicine have five exemplars in
the object collection, while others, such as telephone, have only one exemplar.
Each category word is converted from text to waves using the en1 “Roger” male
voice, and the us1 female American speaker in the Festival software. Both male and
female utterances are duplicated at standard and slower speeds, using the 1.3 value
of the Duration_Stretch parameter in Festival. Examples of all stimuli used in
this model are in Fig. 6.2.
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Fig. 6.2 Samples of the stimuli presented to the model. In the top row, from the left, elongated
blobs input to V1, hue circular blobs for VO, wave trains for A1. In the bottom row, from the left,
couple of blobs for V2, real images for the visual path, and word waves for the auditory path

We would like to comment on the realism of the experiences used in developing
this model, the same considerations hold for most of the further neurosemantic
models that will be presented in this book. All models are composed by a complex,
yet extremely simplified with respect to the real brain, hierarchy of neural sheets.
In each, the emergence of functions consistent with their physiological counterpart
areas is expected, and that it will contribute to the subsequent sheets, up to the
higher level. For this purpose, often the range of stimuli used at the earlier stages
of development are a subset of all the possible stimuli that may achieve similar
functions, in order to simplify the overall experiment. It is clearly beyond the scope
of studies focused on neurosemantics, to analyze in detail the dependency of each
lower level component on the stimuli regimen. However, other studies using the
same Topographica architecture have already addressed these details in depth. For
example, the prenatal experience for V1 in this model includes random elongated
blobs, which are the optimal type of patterns for stimulating the emergence of
orientation selectivity in V1. Previous studies demonstrated that similar results can
be achieved with any set of patterns, provided they are rich enough in variety
of edges: synthetic disks, man-made objects, natural objects (flower and plants),
landscapes, and faces (Bednar and Miikkulainen 2004; Plebe and Domenella 2007).
No orientation develops when using random noise ad high frequency. Skewed data
sets were indeed reflected in the maps, for example with landscapes the orientation
histogram became biased towards horizontal, while using faces more neurons
became tuned to vertical orientations, replicating findings from animals raised in
biased environments. Similarly, in this model experiences for V2 are combinations
of two random oriented elongated blobs, optimal for the development of angle
selectivity. The same responsiveness has been studied using patterns that include
single synthetic blobs, selections of sharp-edged objects, selection of rounded
objects, white noise (Plebe 2007a). Only white noise prevented the development
of angle selectivity.



6.1 Object Recognition 139

6.1.3 Lexical Categorization

At the end of the simulated development, several types of topological organization
can be found in the maps of the model, which are consistent with the known role of
those maps in cortical hierarchy. The V1 map is organized basically with respect to
orientation selectivity, in the VO map most units respond to specific hues, regardless
of intensity, and the V2 map becomes responsive mainly to angles. Further details
on the functions that emerge in the lower areas, not included here, can be found in
(Plebe and Domenella 2007) concerning V1 and VO, and in (Plebe 2007a, 2012)
for V2.

The analysis of the higher maps is carried out under the assumption of population
coding, introduced in Sect. 4.3, using the algorithm described in Sect. 4.3. By
deriving Eq. (4.15) for the LOC map, and using as stimulus the view o of object
O, we obtain the following:

xLOC
i .o/ W O 2 O ! R

CI o 2 O 2 O; (6.15)

where xLOC
i .o/ is computed by (6.12), when the image o is presented as input to

the visual system. In this case, a category S of (4.15) is just an individual object,
whose instances are its possible views, which can be understood as belonging to
the same entity, or mistaken for different objects, in which case a peculiar view
would mislead. It is a type of perceptual error that happens in humans (Farah 1990).
Examples of population coding in LOC are given in Fig. 6.3.

We can see the degree of invariance in the LOC responses to different views of
the same object, with most units responding independently from the specific view of
the individual object. As described in Sect. 3.4.1, the human LOC does not exhibit
absolute invariance to possible transformations of the same object, rather a degree of
tolerance with respect to classes of changes in the appearance of the same object. By
using Eqs. (4.20), adapted to stimuli conditions described in (6.15), the amount of
discrimination performed by the population coding in LOC has been quantitatively
assessed, and is shown in Table 6.2.

The STS map codes words for their phonological form, now the basic Eq. (4.15)
becomes the following:

xSTS
i .n/ W N 2 N ! RI n 2 N 2 N ; (6.16)

where xSTS
i .n/ is computed by (6.13), when the sound n is presented to the auditory

path. There are 38 classes N of sounds. Examples of population coding for some of
the words used as object labels are given in Fig. 6.4, Table 6.3 shows the accuracy
of STS in discriminating between all the different words known by the model.
In developing the functions in the STS map three different sets of stimuli have
been experimented: female voices only, male voices only, or using the full set of
voices. Listening to voices of mixed genders makes the identification of names more
difficult, a phenomenon that has been observed in children.
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Fig. 6.3 Examples of population coding in the LOC map. In each row the map on the far left
displays the coding units. The following images in the row, are samples of views of the same
object, and the corresponding response patterns in LOC

Table 6.2 Ability of LOC map in discriminating individual objects by population coding. As a
comparative figure, discrimination by chance would be 0.01

Discrimination ability

# of view Mean over objects Standard deviation

4 0.624 0.325

8 0.647 0.314

18 0.653 0.323

The derivation from the basic Eq. (4.15) for the PFC map is the following:

xPFC
i .c/ W C 2 C ! RI c D ho; ni 2 C D

0
@f
g [

[
O2OC

O

1
A � .f
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(6.17)

where xPFC
i .c/ is computed by (6.14), when the sound n is presented to the auditory

path, and in coincidence the object o is presented to the visual path. The 38 object
categories introduce a partition in the set of objects O , such that all sets of views in
the partition O 2 OC are of objects of that category C. NC is the set of utterances
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ring

sauce

fruit

Fig. 6.4 Examples of population coding of word sounds in the STS map. In each row the leftmost
map displays the coding units. The other images in the row are samples of sound of the same label,
with corresponding response patterns in STS

Table 6.3 Discrimination
ability of words, heard by
different voices, in map STS.
As a comparative figure,
discrimination by chance
would be 0.026

Discrimination ability

Voices Mean over names Standard deviation

Female 0.882 0.242

Male 0.895 0.234

Both 0.658 0.300

Table 6.4 Accuracy of the
map PFC in lexical
categorization by population
coding. As a comparative
figure, discrimination by
chance would be 0.026

Discrimination ability

Voices Mean over names Standard deviation

Female 0.878 0.220

Male 0.895 0.167

Both 0.695 0.240

naming category C. Note that the empty sample 
 is included, for experiments in
which only a single modality is presented. Therefore, c D ho; 
i is the case of the
visual modality only, and c D h
; ni is the case of linguistic input only.

In Table 6.4 there are the accuracy values obtained in map PFC, in recognizing
objects of a given category. As for STS, the discrimination is quite more accurate
when words are spoken by a person of a single gender, nevertheless, the model
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cup
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Fig. 6.5 Examples of population coding in map PFC. In each row the leftmost map displays the
coding units. Next, are the images that are samples of a sound of the same name, a view of an object
of the relevant class, and the corresponding response patterns in PFC. The first sample always uses
a male voice, and the second sample a female voice

achieves a remarkable ability of categorizing objects taking into account their names
in all possible conditions. It is interesting to note, as shown in these images, that the
coding does not reflect any explicit trace of visual features, which were still present
in the LOC map. At this level retinotopy disappears, and the topological ordering
is at an abstract level. Moreover, we can see how there are important overlaps
between the category coding (the leftmost map) and contingent activation, with
just small differences. The few units that depart from the category coding are those
responding to peculiarities of a specific view of the object, or of the specific voice
heard. Codings shown in Fig. 6.5 are amodal in kind, and associate information of a
visual and acoustic nature. It is possible to analyze the two contributions separately,
testing the model with two sorts of stimuli: c D ho; 
i or c D h
; ni, and always
using Eqs. (4.18) and (4.20).

Some examples resulting from this analysis are shown in Fig. 6.6, where the
separated coding of visual and auditory information is compared with the full
amodal population coding. It is interesting to detect a global partitioning in map
PFC, with linguistic information more clustered on the right side and visual on the
left, still with large overlaps. Often the amodal coding looks like a combination of
the visual and linguistic representations, as in the case of car, fruit, pepper. In
other cases, one modality seems to be prevalent, for example telephone is more
influenced by the linguistic representation, while for plug the visual information
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can car drink fruit hanger jam pepper

piece plug sauce telephone toast tomato truck

Fig. 6.6 Examples in the PFC map of separated coding of visual and auditory information. Images
in the upper row are coding maps for the auditory mode only, in the lower row we find the visual
mode only, and the middle row is the full amodal population coding of the categories

is prevailing. This could be due, in the case of telephone, to a richness of its
phonological form, that distinguishes this word more than others, the converse holds
for plug.

6.1.4 Non Linguistic Categories and Prototypes

Two additional experiments have been performed with this model. The first one was
aimed at comparing linguistic and pre-linguistic categorization. Representations in
PFC are the result of the tension between the normativity in naming things, and the
natural similarities of their appearance. In LOC only the visual features are in place
to inform how to shape categories. The two representations have been compared
using a conventional SOM, the algorithm introduced in Sect. 4.1.3, to cluster the
output of LOC and PFC, for all object samples, in a 7 � 7 space, sufficient for
allocating the 38 categories.
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Fig. 6.7 Comparison between pre-linguistic categorization in LOC and linguistic categorization
in PFC, for some classes of objects

In Fig. 6.7 some classes of objects are compared in the SOM clustering LOC
results and the other clustering PFC results. It is not too surprising that in the case
of PFC there is a close mapping between SOM elements and linguistic classes of
objects, while in the case of LOC they are spread along multiple SOM elements,
with several overlaps. In some cases the LOC “natural” categorization includes
overlaps of linguistic classes, as shown in Fig. 6.8. We can see how the two cells (far
left column) where the linguistic car category is spread share objects of categories
chewing gum (upper cell) and medicine, cigarettes (lower cell), likely due to
the similar color contrast in the labels, in yellow and light green. The sharing of
categories soap e bottle (bottom row) is probably also due to the similarity in
their labels. More surprising is the presence of kitten, possibly by virtue of the
dominant white background and the upright shape.

The additional experiments aimed at simulating types of mental imagery, a
context in which the name corresponding to a known category of objects is uttered,
without any relevant extant visual content. The analysis retrieves which object image
is activated by area PFC. In mathematical terms, the model is presented with an input
of type c D h
; Mni, with Mn the sound corresponding to a given category name. The
image Oo most likely elicited by this event is computed by the following equation:

Oo D arg min
oi2SO; noi2Noi

8<
:
X

jD1���M
˛j
	

xPFC
p.h
;Mni/j

.h
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.hoi; noii/

2

9=
; ; (6.18)

where p.S/j denotes the j-th element in the ordered set p.S/, as in (4.19), the function
xPFC.�/ is that defined by (6.17), and Noi is the set of sounds naming the category of
object oi.
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Fig. 6.8 Examples of objects in the pre-linguistic categories of LOC map, which overlap with
linguistic categories in PFC

Several examples of images elicited in such way are shown in Fig. 6.9. We can
see that often all possible voices elicit the same view of an object, which can
be held to represent a sort of prototype for its class, being – as in the semantic
theory of prototypes (see Sect. 5.2.2) – the visual content most representative of
a category. As in the experiments of pre-linguistic categorization, there are cases
in which misunderstandings take place, like for kitten, and probably due to the
reasons mentioned earlier. The confusion for dog is probably purely phonological,
due to a close similarity with the spectrogram of jug. Let us mention a further
investigation that may better clarify the “imagery” possibility in the model. The
function evaluated for minimization in (6.18) can be used as a measure on how
reliably the selected image is associated with the word. Furthermore, instead of the
minimum, its histogram with respect to objects can be analyzed, in order to assess
to what extent an object prevails over others. This direction of analysis has not been
undertaken yet.
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medicine car cup kitten hanger spoon cigarettes

pig dog toast plug telephone
chewing

gum
jug

Fig. 6.9 Examples of images elicited in PFC by voices of a category name, female voices in the
first row, male voices in the second row

6.2 Early Lexicon Building

This model uses components of the previous one, and the overall architecture is sim-
ilar, but with different purposes: the simulation of specific known psycholinguistics
phenomena that are typical of lexical acquisition.

The transition from a pre-linguistic phase to a linguistic one is an extremely
important moment for scrutinizing the mechanisms at the basis of the construction
of language in the mind. Therefore, it is imperative to address data coming from
developmental psycholinguistics and compare it with the outcomes of a brain
plausible simulation.

Several particular characteristics have been consistently observed in child devel-
opment, some refer to the peculiar trend in the speed with which words are learned.
The most commonly held view in the literature has referred to this rapid pace in the
increase of the child’s vocabulary at around 18 months of age, as the “vocabulary
spurt” (Lifter and Bloom 1989; Plunkett 1993). However, it has been recast over
the years as being more of a gradual linear increase in the child’s vocabulary
development rather than an “explosion”, that can be attributed to a number of
factors, such as the child’s increasing experience with language as well as to the
development of a widening range of cognitive abilities (Elman et al. 1996; Bloom
2000; Ganger and Brent 2004).
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A second phenomena is what is known as “fast mapping” (Carey 1978; Dickin-
son 1984), the ability to grasp aspects of the meaning of a new word on the basis
of only a few incidental exposures, gained at around 2 years of age. There is a
correlation between the two phenomena, in that fast mapping takes place easier
once the threshold of the vocabulary spurt has been reached.

Several of the hypotheses proposed to explain these two phenomena, invoke
a shift toward mental processes other than those involving development driven
by sensorial experience. An idea that spread widely in psychology is rooted in
the philosophical notion of “natural kind” thanks to Kripke (1972) and Putnam
(1975). In the philosophical literature the intent is to separate ontology (category
individuation) and conceptualization, claiming that when we name natural kinds
(animals, chemical substances etc.) we want our names to refer to the very essence
of those things, irrespective of the contingent representations we have formed of
them. While in philosophy this claim regards what the words refer to, in psychology
it has been pushed a step further, in that categories are not just based on a simple
evaluation of perceptual similarity, but it is argued that there must be a deeper
theoretical core, based mainly on causal relationships, that structure the way we
categorize objects (Murphy and Medin 1985; Carey and Spelke 1996). In a later
stage of development children are able to detect hidden causal powers, which would
systematically lead the process of category formation. There is a large debate on
the issue, for example Mandler (2004) denies the need for innate core knowledge,
and suggests a distinction between perceptual and “conceptual” learning, but Eimas
and Quinn (1994) are critical of this distinction. Tomasello (1999, 2003) points in
a different direction, invoking, in addition to inductive generalization of linguistic
categories, the sensitivity to social cues, like eye gaze, which help the child in
understanding the intended reference of the speaker. A comparison of all the
different positions is beyond the current scope, but a deeper discussion is in (Plebe
et al. 2010), the purpose of the model here presented is to try to assess to what extent
sensorial experiences alone can account for the two phenomena at an early stage of
development.

At the risk of being repetitive, we would like to reaffirm here, how the explanation
behind our proposed model hinges on the coincidence detection mechanism, whose
application to word learning has been detailed in Sect. 6.1. An interesting and
similar approach has been recently used by (Mayor and Plunkett 2010), with a
model based on two SOM maps (see Sect. 4.1.3), one for the visual input and
the other for the acoustic input. The units of the two maps are connected, and
their efficiencies are updated by increasing those connecting the winning units, as
well as the neighboring units on each map. Implicitly, it is an implementation at
the top level of the coincidence detection mechanism. The meaning of a word is
coded in the cross-connections between the two maps, and is the result of detecting
repeated coincidental activation of units responding to object forms and sound
forms. The main difference between Mayor and Plunkett’s model and ours is in its
computational grounding: their model belongs to the connectionist paradigm, and
departs from mapping criteria in that the components have no mapping with any
particular brain part.
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Fig. 6.10 Scheme of the model used in experiments of lexical acquisition. All components are the
same as those in the model in Fig. 6.1, except for ACM (Abstract Categorical Map)

The authors argue that this limitation may also be the source of difficulties
encountered within their model, in particular the “inability to learn new words after
the visual and auditory maps have stabilized” (Mayor and Plunkett 2010, p. 20). In
their opinion, this could be overcome by employing “hierarchies (or heterarchies)
of maps in both the visual and auditory pathways of the model, [so as to mimic]
aspects of the organization of the visual and auditory cortex”. This is precisely one
virtue of our model. The overall scheme of the model is shown in Fig. 6.10, the
main difference from the previous model is in the confluence between the visual
and auditory streams: not in a LISSOM type map, like those seen in Sect. 4.2, but
a SOM (see Sect. 4.1.3), called ACM (Abstract Categorical Map). Note that in the
model of Mayor and Plunkett SOM maps were also used. The main difference is in
their placing: in their model the SOM maps act as a substitute to a detailed hierarchy
of visual and auditory cortical processes. In our model the hierarchy is preserved
as much as possible, and the SOM is used as an abstract placeholder of the top
level mechanism only, which is spread too widely in the brain to be realistically
reproduced, as explained in Sect. 6.1.1.

Calling oLOC and oSTS the entire content of maps LOC and STS, the input vectors
to ACM are composed as follows:

vACM D
�

oSTS

oLOC

�
: (6.19)

All such vectors are presented to the ACM map according to Eq. (4.4), and the map
develops using the rule (4.5).
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Table 6.5 The five stages of
development, with the
corresponding number of
objects and words known by
the model

Stage # objects # words

Stage I 30 20.6

Stage II 50 28.3

Stage III 60 31.1

Stage IV 70 33.5

Stage V 80 35.5

6.2.1 Learning Stages

The experiments done with the previous model, in Sect. 6.1, involved a single
artificial “subject”. For the purposes of this model, the experiment is carried out
on 500 “subjects”, which are clones of the same basic model, but with different
experiences. Five stages of lexical learning have been simulated, and in each stage
100 model subjects have been recruited. There is not much difference in the type
of experience the models are exposed to, with respect to that visible in Fig. 6.2,
the only additions are the neutral combinations of sounds and images, without
semantic content, useful to the balancing of the overall number of stimulations.
The visual neutral scene is a random image of the Flowers and Landscape McGill
collection (http://www.tabby.vision.mcgill.ca/), the auditory neutral pattern is a
random fragment from Wagner, Der Fliegende Hollander.

The 500 artificial subject are individualized from the common model, by
generating 500 different subsets from the 100 COIL objects, to which the copies
of the model are exposed during the linguistic development phase. The extracted
subsets of objects are grouped into five different sizes, corresponding to the five
linguistic stages, each with 100 subsets. Although each stage has a fixed number of
known objects, because categories of objects in the COIL collection have an uneven
number of exemplars, and being that the set of stimuli is selected randomly, the
number of known words in a single stage of development varies slightly between
individual models. In Table 6.5 the number of objects at each stage are shown, and
the average number of words.

All subsets lack an entire category of objects, as well as a small number of
other objects, in order to have samples that are unknown to every artificial subject,
to be used as exemplars in the triadic trials. The car category has been chosen
because it is composed by a sufficient number of different samples, seven. The use
of semantically void samples, aggregating music and landscape images, allows the
use of a uniform number of samples for all artificial subjects, avoiding possible
artifacts in the results due to the size of the sample set.

6.2.2 Lexical Organization in ACM

Since the amodal map in this model is a SOM, it is not possible to apply population
coding analysis (see Sect. 4.3), in interpreting its semantic organization, as done
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for the PFC map in the previous model. For the SOM a simple labeling operation
suffices, in accordance with its winner-take-all principle (see Sect. 4.1.3). Being o
an object of the COIL set O , W the set of names of categories, the i-th unit of the
SOM may assume one of the three labels given by the following functions:

l.I;c/.i/ D arg max
o2Onˇ̌̌n

I.o/
j W i D v

	
I.o/
j ; c.o/


oˇ̌̌o
; (6.20)

l.cjI/.i/ D arg max
c2Wnˇ̌̌n

I.o/
j W c D c.o/ ^ i D v

	
I.o/
j ; c


oˇ̌̌o
; (6.21)

l.I/.i/ D arg max
o2O

nˇ̌̌n
I.o/
j W i D v

	
I.o/
j ; 



oˇ̌̌o
; (6.22)

where I.o/
j is an image of the COIL database representing object o at viewpoint j,

c.o/ W O ! W is the function giving the lexical category of the object o, and v.�; �/
the function associating an image and a word given as input to the model with a
winner neuron in the SOM.

We maintain the convention of calling 
 a null argument in v.�; �/, and j�j in this
context is the cardinality of a set. The function l.I;c/.�/ in Eq. (6.20) identifies a
category by joint visual aspect and listening to its name, the object identification
by vision only is l.I/.�/ in Eq. (6.22), labeling of recognized categories of objects is
given by function l.c;I/.�/ in Eq. (6.21).

Applying the labeling functions, it is now possible to verify the correctness of the
identification or the categorization of an object presented to the model, by checking
the label of the winner neuron in the ACM map. For example, the performance of the
model when presented with an object and its name are evaluated using the labeling
from Eq. (6.20). If the winner neuron has the same label of the object, the model
performed correctly. When presenting an object without naming it, the procedure
is the same, but using as labeling function Eq. (6.22). The overall accuracy is given
by the fraction of correct judgments, for example in the case (6.20), recognition of
objects by visual aspect and category, the accuracy is:

a.I;c/.o/ D
ˇ̌̌n

I.o/
i W l

	
v
	

I.o/
i ; c.o/




D o

oˇ̌̌
ˇ̌̌n

I.o/
i

oˇ̌̌ : (6.23)

While functions l.�/.�/ maps from set of objects and/or names to neurons in ACM, it
is also easy to compute the inverse, for example as in the following function:

m.I;c/.o/ D arg max
i2f1;:::;Mg

nˇ̌̌n
I.o/
i W i D v

	
I.o/
i ; c.o/


oˇ̌̌o
; (6.24)
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Fig. 6.11 The standard exemplar used in fast-mapping experiments, object car, #23 of the COIL-
100 collection

maps from object o into a neuron i over all M neurons in the ACM SOM map, the
neuron that is the most likely to win on that object, when its category c.o/, is also
named.

6.2.3 Experiments of Fast-Mapping

The experiments presented here simulate the protocol typically used in psycholin-
guistic experiments for assessing fast-mapping. In the training stage an unknown
object is presented to the child, labeled with a non-existing word, the typical
utterance is this is a DAX. In the test stage a small set of objects is presented, and the
child is asked to identify the new one: give me a DAX (Smith 2001; Regier 2005).

The standard used in the experiment is object #23 of the COIL-100 collection,
displayed in Fig. 6.11. During the training stage it is shown to the model under 3
different views, very briefly, for 40 training epochs only, as in the fast-mapping
experiment with children.

In the next stage, that of testing, how do we go about making the model “point”
to the chosen object? Mathematically, of course. The ACM map is not evaluated for
the winner neuron, as in the ordinary SOM equation (4.4). The responses of both
new objects at the target unit of the standard object #23, given by Eq. (6.20), are
compared. Let i#23 D m.I;c/.o#23/ be this target unit, Lo the test object of the same
category, and Qo the test object of a different category. Let us call v.o/ the input
to ACM, as given by Eq. (6.19), in response to the presentation of an object o in
its frontal view, when the corresponding category is named. The model makes the
correct choice if the following inequality holds:

kv.Lo/ � xi#23k < kv.Qo/ � xi#23k (6.25)

For most of the objects in COIL-100, taken in turn as the strange object in the
tests, all 500 artificial subjects made the correct choice, therefore the analysis has
been made by concentrating exclusively on the few objects that confounded the
models, the results are reported in Table 6.6.
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Table 6.6 Results of the fast-mapping experiments. Numbers are a fraction of correct responses
when presenting the object of the same category (column) and an object of a different category
(row)

#6 #8 #15 #69 #76 #91

#38 Stage I 0.25 0.23 0.58 0.25 0.96 0.69

Stage II 0.18 0.17 0.58 0.19 0.93 0.67

Stage III 0.14 0.14 0.63 0.18 0.94 0.71

Stage IV 0.26 0.24 0.76 0.27 0.96 0.81

Stage V 0.25 0.25 0.90 0.26 0.92 0.91
#46 Stage I 0.78 0.87 1.00 0.87 1.00 1.00

Stage II 0.84 0.92 1.00 0.93 1.00 1.00

Stage III 0.80 0.91 1.00 0.91 1.00 1.00

Stage IV 0.92 0.95 1.00 0.95 1.00 1.00

Stage V 0.94 0.96 1.00 0.98 1.00 1.00
#47 Stage I 0.60 0.63 0.88 0.64 0.98 0.90

Stage II 0.63 0.65 0.92 0.67 0.96 0.93

Stage III 0.63 0.70 0.93 0.69 0.97 0.96

Stage IV 0.80 0.83 0.96 0.81 1.00 0.97

Stage V 0.84 0.84 0.98 0.85 1.00 0.99

#100 Stage I 0.35 0.39 0.79 0.35 0.96 0.87

Stage II 0.41 0.41 0.82 0.34 0.97 0.88

Stage III 0.40 0.45 0.85 0.37 0.98 0.90

Stage IV 0.54 0.55 0.91 0.41 1.00 0.94

Stage V 0.67 0.67 0.91 0.43 1.00 0.95

It is immediately apparent that all models attested fast-mapping capabilities, as
well as fast categorization: the models did not have a previous category car, they
rapidly acquired it, and the new name behaved as glue for connecting coherent
perceptual features of other new objects to this category. The only four objects
that sometimes confounded the model are, at least partially, red. However, we can
quickly rule out the hypothesis of color being the dominant feature in establishing
a new category, since there are 13 more red objects in the COIL-100 collection
that were never chosen as the standard by the model. The object that induced the
most errors is #38, of category boat, its shape is quite similar to that of the target,
especially under certain views. On the contrary, in the case of object #100, of
category truck, the shape is quite different, but there is a structural similarity, it
has similar components, such as the wheels, and is in a similar position with respect
to the main body. The choice of this wrong object, especially during the first age
groups, may indicate an initial tendency to categorize by taking into account object
components, as in Biederman (1987).
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An important result of the experiments is the progressive improvement in
the ability to grasp new categories, at later stages of development. This is far
from being a trivial fact for a model, for which “development” just means the
dimension of its vocabulary, without any difference in its neural architecture.
This trend can be appreciated in its graphic form in Fig. 6.12, and with a statis-
tical assessment given in Table 6.7. Further details of these experiments are in
Plebe et al. (2010).
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Fig. 6.12 Success in fast-mapping episodes, at different stages of development. In the top plot
curves of success for each object of the same category of the standard car, in the bottom plot the
curves for each object of category other than the standard, and the mean trend

Table 6.7 Statistical analysis
of the progress in
fast-mapping with increasing
stages of development

Groups f.�;�/ p

Car objects f.4;20/ D 20:0 < 0:001

Non-car objects f.4;12/ D 16:4 < 0:001
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Chapter 7
First Syntax, Adjectives and Colors

Abstract A long-standing question in language development research concerns the
contrast between early word learning and the learning of adjectives. The difficulty
children experience early on in the acquisition of color terms, for example, led
Darwin to speculate that children are initially color blind. Adjectives, in fact, are
almost entirely missing in early productive vocabularies across languages. Despite
the accounts proposed to explain the phenomena the debate continues to be far from
being resolved. We believe adjective learning requires the development of two basic
abilities. The first one is at a syntactic level: the comprehension of utterances with
adjectives entails a proto-syntactic ability in discriminating the different roles of
two words, by virtue of their sequence. The second is at a semantic level, which
entails understanding the predicative function of the adjective, against the more
basic mapping of sounds with whole objects. Both abilities develop as a result of the
synergy between learning from progressive exposure to a language rich environment
and the maturation of neural structures. The “visual diet” also influences the type of
adjectives learned, this being particularly pertinent to what color terms are learned.

This chapter will discuss neurocomputational models that have in part simulated
neural processes behind the learning of adjectives in linguistic development; how
an initial sensitivity to word-order (leading to early syntactic learning or what we
call proto-syntactic ability) might develop through linguistic exposure and brain
maturational processes; and how both exposure to language as well as the range of
colors dominant in a particular natural environment might influence not only how
color terms are learned, but how colors are perceived, a topic that is right at the
center of the historic linguistic relativity debate.

7.1 The First Syntax

Adjectives are normally heard by children together with other linguistic items and
are one of the first syntactic challenges novice language learners face. Utterances
with the sequence [Adj Noun] are what we refer to as, “embryonic-syntax”, and
this pattern departs from the single sound pattern to reference scheme initially
experienced by infants. This explanation fits well with developmental evidence that
the learning of adjectives, while difficult at first, then gets easier, once children have
acquired more knowledge about their language.

© Springer International Publishing Switzerland 2016
A. Plebe, V.M. De La Cruz, Neurosemantics,
Studies in Brain and Mind 10, DOI 10.1007/978-3-319-28552-8_7

157



158 7 First Syntax, Adjectives and Colors

The ability to acquire adjectives very likely also depends on the maturation of
brain circuits, especially in the prefrontal cortex. Language development crucially
depends on the development of an expanding working memory capacity. The
emergence of syntactic processes, such as being sensitive to the order in which
words appear, would depend on these enhanced memory circuits found in the
temporal-parietal and prefrontal areas, known to develop slowly in ontogeny.
This would account for why more complex grammatical forms are acquired later
in development: they depend on an expanded memory capacity that is just not
available in early infancy. In this section, we discuss evidence for this and present
a neurosemantic model that provides predictions further supporting this hypothesis.
Less memory is necessary for learning nouns initially, but adjective learning is made
possible and subsequently easier, only once memory circuits have been enhanced.

7.1.1 The Difficulties of Adjectives

In contrast to the remarkable rate at which young children learn new nouns,
especially during the stage often referred to as the vocabulary spurt, simulated in
Sect. 6.2, the acquisition of adjectives is sluggish and their use is prone to errors.
Even color adjectives, whose meaning seems easily and unambiguously related to
perceptual features, seem to be particularly challenging early on in development, so
much so that Darwin (1877), himself, noting the lack of color terms used by his own
child, mistakenly speculated that children are initially born color blind.

Literature on this phenomenon was reviewed by Gasser and Smith (1998), which
points to three kinds of evidence. First, nouns dominate early productive vocab-
ularies of children, while adjectives are rare or nonexistent; second, experimental
studies of word learning show that the application of a novel adjective appears more
slowly and is more variably determined than the application of names for things;
third, there is some evidence that children are more prone to errors with adjectival
rather than with nominal meanings.

There are several alternative explanations for what seems to be an advantage in
learning nouns as opposed to adjectives. According to Gentner (1978) there is a
purely logical explanation behind this, for nouns refer to entities, and not relations
between entities. For Mintz and Gleitman (2002) the difficulty is in the predicative
function of adjectives, in modifying the properties of a concept their learning is
necessarily grounded on the acquisition of nouns first. For further details on the
discussion see Plebe et al. (2013).

The kind of explanation we propose is instead directly derived from the general
mechanism of coincidence detection (see Sect. 3.2). Often an adjective refers to a
single dimension in the space of perceptual features, it is the case of color, size, and
shape adjectives. For this reason the adjective hooks onto a temporal coincidence
that is very weak, poorly correlated with a large number of other dimensions in
perceptual feature space. It is known that children have difficulty in dealing with
more than one perceptual dimension at a time. This kind of difficulty vanishes
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when learning names of objects, since in this case the sound of the noun of the
object category is associated consistently with a rich set of perceptual features.
Gradually, with the maturation of the child, mechanisms of selective attention will
refine the detection of coincidence between the sound of an adjective, and the
single perceptual feature it is regularly correlated with, despite variations in all other
dimensions.

There is an additional important aspect of co-occurrence or coincidence, and
that is that adjectives are rarely heard in isolation. They are most often heard in
conjunction with other linguistic items, and therefore represent one of the first
experiences with syntax, or where the young listener is called upon to deal with
word order. Sequences of the type [Adj Noun] are constituents of what could be
considered an “embryonic syntax”, which departs from the scheme of a holistic
relation between a sound sequence and a referenced object in the world. In sum,
coincidence detection appears to be an important variable in the process of coming
up with a sound trace of the trajectory found in empirical studies on adjective
learning (Sandhofer and Smith 2001).

7.1.2 Simulation of Working Memory Maturation

From a neurocomputational point of view, the function decoding what we refer
to as embryonic syntax, as in the understanding of the sequence [Adj Noun],
requires a specific circuital maturation, not available in the early months of life.
The prefrontal cortex is involved in this kind of semantic process, and exhibits a
trend of development that matches well with the trajectory of adjective learning in
children (Aboitiz et al. 2006; Fuster 2001). It is well agreed upon that the prefrontal
cortex is involved in recursive connections with temperoparietal areas supporting
the short-term memory theorized by Baddeley (1992) and which would also support
phonological decoding. Because in time the sequence of sounds to be understood
increasingly become longer, there is also the increased need to temporarily retain
them in memory (Vallar and Shallice 2007). The same requirements hold, at a higher
level, for syntactic units. The specialization of this model, with respect to the basic
model of name semantics seen in Sect. 6.1, is in accounting for the maturation of
working memory between the prefrontal cortex and the superior temporal sulcus. It
will be implemented by recursively computing twice the contribution of the auditory
pathway in time.

The basic version of the model, without working memory, is shown in Fig. 7.1.
There is a minor variation with respect to the model seen in Fig. 6.1, in the modeling
of the primary auditory cortex. Instead of a single Topographica map, it is split
into two distinct maps, to account for the double population of neurons in this
area (Atzori et al. 2001) (see Sect. 3.4.2). This refinement is useful in this model,
since the addition of adjectives has enlarged the repertoire of sounds to be encoded
phonologically.
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Fig. 7.1 Basic scheme of the model without working memory. The components are the same of the
model in Fig. 6.1, except for A1-LPC (Auditory Primary Cortex – Low-Probability Connections)
and A1-HPC (Auditory Primary Cortex – High-Probability Connections)

Consequently, the equations of the auditory stream of processing are changed to
the following:
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Fig. 7.2 Complete scheme of the model, including working memory. Compared with the basic
version of Fig. 7.1, there is the additional recursive connection of STS’, that is STS delayed in
time, to PFC

For clarity Eq. (6.7) has been rewritten here as (7.1), using the same superscript �

for the spectrotemporal representation of the sound waves. Equation (7.4) collects
the two projections from the auditory cortex into the STS, where the phonological
representations are organized.

The complete model, shown in Fig. 7.2, includes a virtual replication of STS into
STS’, that is a recursive contribution of the same auditory signal delayed in time,
acting as working memory. The equation for PFC changes from (6.14) assuming the
following form:
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where  are discrete temporal delays, corresponding to the presentation of spec-
trogram of progressive words in the sequence of the utterance. In this experiment
N D 2, since the sentence is the sequence [Adj Noun]. The basic form of
the model is used as corresponding to early stages in development, at the onset
of language acquisition, around 9–12 months of age, and the complete model at a
more mature stage of development, corresponding to about 14–20 months of age.
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Table 7.1 Parameters for all
neural maps of the model

Layer Size rA rE rH 	X 	E 	H 	N

LGN 112 2:6 – – – – – –

MGN 32 – – – – – – –

V1 96 8:5 1:5 7:0 1:5 1:0 1:0 0

A1 24 3:5 2:5 5:5 5:0 5:0 6:7 0:8

V2 30 7:5 8:5 3:5 50:0 3:2 2:5 0:7

VO 30 24:5 4:0 8:0 1:8 1:0 1:0 0

LOC 16 6:5 1:5 3:5 1:8 1:0 1:5 0

STS 16 3:5 2:5 2:5 2:0 1:6 2:0 0

PFC 24 6:5 4:5 6:5 1:5 3:5 4:1 0

The Table 7.1 summarizes the values of the main parameters in the equations for
all the maps in the model.

7.1.3 Representation of Nouns and Adjectives

The two models have been developed in a manner similar to previous models, as
described in Sect. 6.1.2, running through prenatal, pre-linguistic, and a linguistic
phases. During the latter, in addition to the naming of categories of objects in
coincidence with their view, color adjectives are heard too. From the COIL-100
object collection (Nayar and Murase 1995), partitioned into 38 categories like in
Sect. 6.1, a further partitioning has been applied with respect to color, only to objects
sufficiently uniform in hue, and using the seven basic color categories. In the less
mature model, the adjective is heard in isolation, in coincidence with the vision of
one of the objects with the named color. In the complete model, the full sentence
with the sequence [Adj Noun] is heard, when seeing an object of category Noun

and color Adj.
The analysis of noun and adjective representation is carried out, as usual,

with population coding, the methodology described in Sect. 4.3, and in particular
Eq. (4.18) for establishing the population coding of a category, Eqs. (4.19) and (4.20)
for evaluating the semantic performance of the model. The sets of categories in the
equations have two different formulations, depending on the type of model under
examination:
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Fig. 7.3 Comparison between population coding of object names and adjectives in the semantic
map of the model. In the top rows PCF without working memory, in the bottom rows PFC� with
working memory
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� (7.9)

where ON is the set of all images of objects that correspond to the lexical category
under the noun N, OA is the set of objects with the property consistent with the
adjective A, UN is the set of all utterances of noun N, and UN.�/ is the set of
all utterances of the noun referring to object �, similarly for adjective utterances.
In testing the immature model by Eqs. (7.6) and (7.7), the model is presented
with either a simultaneous visual appearance of an object and the utterance of
its name, or the simultaneous visual appearance of the object and the utterance
of its adjective. Tests of the mature model by Eqs. (7.8) and (7.9) require the
simultaneous presentation of a visual object and its noun utterance, followed by
the delayed adjective utterance. In the first case the class collects all objects and
possible adjectives pertaining to a single noun, while in the second case the class
collects all objects and names pertaining to a single adjective. As an alternative to
Eq. (7.9), stimuli of the form ho; n; ai will be used to test ungrammatical sentences
[Noun Adj]�.

Figure 7.3 shows several cases of population coding for both nouns and
adjectives, in the PFC and in the PFC� maps of the two models. In the case of
nouns the spread and the amount of coding neurons is similar for the two models.
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Table 7.2 Accuracy of the
two models in discriminating
adjectives, in the case of the
model with working memory
the accuracy for
ungrammatical sentences is
tested as well

PFC�

Color PFC [Adj Noun] [Noun Adj]�

Yellow 0.269 0.845 0.241

Red 0.518 0.789 0.743

Green 0.297 0.988 0.671

White 0.184 0.922 0.893

Brown 0.378 0.997 0.678

Pink 0.528 0.789 0.853

Blue 0.246 1.000 0.863

Mean 0:368˙ 0:19 0:903˙ 0:081 0:715˙ 0:226

The situation is different in the case of adjectives, the weakness of the coding in
PFC compared to PFC� can be appreciated visually. For example in yellow and
blue the amount of coding neurons is tiny, and is very small also for white. In
the PFC�, on the contrary, the amount and the distribution of the coding neuron is
even for all adjectives.

To complement the visual impression given by Fig. 6.5 in a few cases, all
numerical evaluations of the two models, gathered using Eq. (4.20), are reported
in Table 7.2.

Both models show a good degree of recognition of color adjectives, however,
there is a significant improvement when working memory is in place. In the less
developed or immature model, accuracy is greater for nouns than for adjectives,
which may sound odd, since there are 38 nouns as opposed to 9 adjectives, and
noun categories easily cross boundaries of perceptual traits. This confirms that it
is the stage of the model that hampers adjective learning with respect to nouns.
It is interesting to note that presenting the ungrammatical sentence [Noun Adj]�,
the advantage of working memory in the comprehension of adjectives is reduced
by half. Therefore, the model in the PFC� version shows a syntactic selectivity, in
that it responds better to sentences where words respect their roles, however, this
behavior is not in the form of a norm, in that the violation of the syntax makes the
adjective more difficult, but not impossible, to recognize.

7.1.4 Binding Perception, Nouns and Adjectives

The configuration of connections and receptive fields in the mature model are
the mechanical consequences of the basic processes discussed in Chap. 3, from
which the semantic link between perceptual stimuli and the external world is
constructed. Moving in the anterior direction of the cortex, the connectivity to
sensorial input in the maps becomes more and more indirect and vague. We carried
out an investigation on the two different semantic classes, nouns and adjectives, to
check whether their representations in the anterior maps differ significantly in their
connection with the posterior maps, which are directly related with the perceptual
stimuli.
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Fig. 7.4 Examples of connectivity patterns for the noun truck (right) and the adjective red
(left), tracked back from map PFC, following the receptive field of the most active coding neuron.
The amount of connectivity is shown as gray level

The way to examine this is opened by the modeling strategy of segregating shape
processing in V2 and color processing in VO (see Sect. 6.1.1): a discrepancy in
connectivity between nouns and adjectives should be reflected in a difference with
respect to those two lower areas, since objects are mainly characterized by their
shape, and we used color adjectives only.

Figure 7.4 provides an example of the analysis, for a specific noun, truck, and an
adjective red. Both have their own representation as population coding in the PFC
map, the most active of the coding units is selected, and its connectivity tracked back
to the previous map, LOC. Between all the units in LOC projecting in the receptive
field of the selected PFC unit, a single one is selected again, the one with the highest
synaptic efficiency. These units are again traced back, this time towards the two
projecting areas: V2 and VO, each with its own receptive field. In the example of
Fig. 7.4 clearly in the case of truck the connectivity from V2 is larger than that
from VO, the other way round in the case of red.

While Fig. 7.4 is just a single example, the analysis has been carried over to all
available nouns and adjectives in a quantitative way. For this purpose a parameter
�C has been introduced, that measures the different amount of connections from the
shape processing stream with respect to the color stream, for the population of units
coding a category C. It is based on a preliminary parameter �C defined as:
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Fig. 7.5 Distribution of � connectivity parameter for all nouns (left) and all adjectives (right).
Negative values are for larger connectivity with VO, positive values for larger connectivity with V2

where receptive fields a are those of Eq. (6.12), the function �� .�/ returns the
number of connections in the receptive field � whose synaptic strength is larger
than � , and X

.LOC/
C is the set of units in map LOC projecting maximally into the

population of units in PFC, coding for category C. Now the parameter � is just
the normalization of � with respect to all the set of categories (both adjectives and
nouns), and takes into account a natural discrepancy in projections from V2 and VO
due to the differences in size and architecture of the two maps:

�C D �C � �

�
(7.11)

Positive values of � indicate a pattern of connectivity that is stronger towards
shape processing areas, while negative towards color processing ones. Figure 7.5
shows the distribution of � traced back from the PFC population of neurons coding
for all nouns, compared with the same distribution for all color adjectives. There is
a significant difference in the distributions, in that color adjectives seem to recruit
more from afferents coming from the color processing pathway than those coming
from the shape processing pathway, compared to nouns. This can be interpreted as
evidence of a physical grounding of the different meanings of the two linguistic
classes, in the neural circuitry.

7.2 Color Terms and the Relativism Debate

How much of what we perceive is influenced by the terms taught to us by
our linguistic community? A mechanism proposed to explain how the categories
humans make may influence, or alter, how the perceived world appears is called
categorical perception (CP). Research in the categorical perception of color has
served as an important test bed for hypotheses on CP and for those that link
language to cognition, with the domain of color terms being traditionally a
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privileged terrain. Color terms have been taken as evidence in favor of the linguistic
relativism thesis, whose best-known formulation is the Sapir-Whorf hypothesis. The
reaction of universalists has been that of searching for the underlying regularities
beneath apparent lexical variation, where such regularities are mainly thought of as
consequences of physiological constraints in the process of vision. Berlin and Kay
(1969), in particular, proposed the well-known and influential hypothesis, according
to which basic color terms follow a rigid evolutionary pattern, that is, that there
would be precise rules governing how color terminology expands from the minimal
repertoire of two terms to eight or more terms. Moreover, each of the languages
examined would select virtually identical focal hues for the same basic colors. What
this means is that putting aside minor variations, languages would differ from each
other just in the number of colors they give a name to, while universal preferences
would dictate the sequence of lexicalized color categories and the focal hue for each
category.

Not long after Berlin and Kay published their paper on color universals, Rosch
Heider and her colleagues (Heider and Olivier 1972), put their proposal to the
test in a series of experiments comparing: English speaking college students with
non native English speaking foreign students; speakers of a number of different
languages; and English speakers with New Guinea Dani speakers (whose language
was reported to possess only two basic color terms). They found evidence that
focal colors were in fact, given the shortest names and remembered quicker across
languages, were recognized better by both English and Dani speakers, and could
be paired with names with the fewest amount of errors. They interpreted these
results as being consistent with Berlin and Kay’s hypothesis, including that the
emergence of color lexicons followed a predetermined evolutionary course. Berlin
and Kay’s conclusions, however, have been called into question throughout the
years from the relativist side, with a number of arguments, among which, that
their findings were never objectively tested, that their assumptions and methodology
led them to discard data that conflicted with their over-regularized picture, and
that their data was obtained from primarily written languages and so possibly not
representative of all languages (Saunders and Van Brakel 1997; Lucy 1997). In
recent years, studies have attempted to reproduce Rosch Heider’s results, looking
for their own confirmation of the evolutionary nature of color terms. In this section
we propose a model that aims to contribute to this debate, in the computational
neurosemantic style. First, we will review recent findings and developments on this
issue.

7.2.1 Exceptions from Himba and Berinmo

Examining linguistic relativity further, but using another method, Roberson et al.
(2000, 2004, 2005), considered the question of whether two languages at the
same supposed “evolutionary” stage could have similar cognitive representations
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of color despite having different environments. If what Kay et al. (1991) proposed,
concerning the regular evolutionary pattern in which color terms would emerge in
languages was correct, then this would be the case. Another aspect investigated,
was the possible difference in cognitive organization between speakers of different
languages, despite the similar sets of color terms. The objects of investigation were
the color terms used by the Himba people of northern Namibia, a semi nomadic
culturally isolated tribe, living in an arid desert-like environment, but that like the
Berinmo of Papua New Guinea, have five basic color terms. Those of Himba were
studied and compared with the previously studied Berinmo and with English. When
recognition memory for color was examined in both Himba and Berinmo, results
were consistent with Rosch Heider’s results, as long as the arrays were ordered
according to hue and brightness. When the arrays where randomized and the number
of close competitors were instead likened to poor or best examples, neither the
Himba nor the Berinmo showed memory advantages for the English best examples.
What they did recognize, were the good examples of their own respective linguistic
color categories, in a way that disregarded the status of these items in English color
categories. A paired associate learning task (colors to pictures of familiar objects)
showed the same lack of advantage for supposedly universal examples in either
Berinmo or Himba speakers. Results were interpreted as showing that no single
set of prototypical colors are universally cognitively privileged. The color stimuli
speakers seem to remember best are those that are the best exemplars of their own
named categories.

Universalist theories are further challenged by data on the acquisition of color
terms, which, as remarked in Sect. 7.1.1, are particularly challenging for children to
learn. Roberson et al. (2004), in fact, when comparing color naming and memory
of young children learning English in the UK and children from Namibia learning
Himba, found that generally, the children from both cultures appeared to acquire
the color terms of their language in the same gradual manner. Results presented no
indication of any advantage English-speaking children might be having in learning
their color terms compared to Himba children, even though English terms map
directly onto the hypothesized innate set. Furthermore, no evidence was found to
indicate that children of either group had pre-partitioned representation of color
at 3 years of age, before the learning of color terms. The authors argue that this
evidence thus suggests that:

if there is an innate set of cognitive categories present in young infants, then a) they are
species specific and thus do not result from some property of the visual system that is
shared with other primates and, b) they are not retained once adult linguistic categorization
is in place.

One thing seems clear from the accumulating evidence mentioned above, learning
color terms is a difficult task for children, more difficult than we might expect if
what they are doing is just learning labels for innately determined universal color
categories (Roberson and Hanley 2010).
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7.2.2 Categorial Perception

Roberson et al. (2005), also investigated whether the Himba would show categorical
perception at the English boundaries of green and blue, once again comparing them
to speakers of Berinmo and English, and whether Himba (like the Berinmo) would
show CP at boundaries within their own language that instead, do not exist in
English. Subjects were shown a colored target and asked to choose, which one
of two stimuli was the same as the target. Performance was facilitated in each
language, when the target and the distractor had different color names (e.g. in
English, a blue target with a purple distractor) as opposed to when they shared the
same name (e.g. in English, two different shades of blue). All three groups showed
CP, but significantly, only at the color boundaries that were clearly marked in their
respective languages. Importantly, results indicated that no effect took place at the
proposed universal boundary between green and blue for the Himba and Berinmo
speakers, whose languages do not make this distinction. Several interesting studies
that focus on a variety of aspects in color CP are worth mentioning. Anna Franklin
developed methodologies for testing color perception in pre-linguistic infants, based
on the oddball paradigm. Infants were first familiarized with frequent presentations
of one color, and later a different color was presented. Looking time is proportional
to the amount of novelty in the unfamiliar color. Interestingly, pre-linguistic infants
showed categorical effects in the green/blue boundary, but in the left visual field
only (Franklin et al. 2008). The results were confirmed measuring event-related
potentials instead of eye movements, again for the green/blue categorical effect
(Clifford et al. 2009). Franklin and her colleagues are conducting further research in
order to investigate whether the change in lateralization of CP later in development,
is related to the child’s subsequent acquisition of color terms. This is something
she does not rule out, considering there is evidence that suggests that color CP and
language-mediated CP can exist alongside each other. There might even be two
forms of CP: a non-lexicalized and right lateralized one in infants, and a lexicalized
and left lateralized one in adults (Franklin et al. 2009).

Other experiments, have investigated the flexibility of categorical effects, and the
possibility of learning new categories, inside the blue and the green regions, with
just a few days of training (Özgen and Davies 2002), a result that clashes with the
universality of color perception. In addition, Zhou et al. (2010) tested subjects that
learned four new invented colors inside green and blue, named ang, song, duan,
and ken, for lateralization, finding stronger categorical effects in the right visual
field.

7.2.3 Tackling the Problem by Computation

While the model here presented is currently the only attempt to investigate the color
relativism issue from a neurocomputational perspective, computational models of
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other kinds have been extensively proposed, to explore aspects of the relationship
between the physical phenomenon of light and the linguistic categories of colors.
One stream of research, started by Yendrikhovskij (2001) postulates that the peculiar
way in which the color spectrum is split in categories by humans, simply reflects
the chromatic statistics in the natural environment. He used the simple k-means
clustering algorithm to cluster the color information of pixels drawn from images
of natural scenes. All pixels have been projected in the L�u�v� CIE 1976 standard
color space, using 11 clusters, their resulting position in the color space is not too far
from the English color focal points. Studies on the statistical distribution of colors
in natural images are highly relevant, and could indeed inform about the bias in
categorization due to the natural distribution of colors in the environment. However,
they clearly touch only one aspect of the matter, leaving aside all that concerns the
physiology of vision and its relationship with language.

Regier et al. (2007) also used a simple abstract mathematical algorithm for
partitioning the color spectra, but directly applied it to the Munsell Color Chart
used in the World Color Survey. They introduced an arbitrary “well-formedness”
measure of a partition in the chart, that takes into account how close together all
the points in the chart under the same category are, and how far all the points
of the other categories are. Using this measure as the optimizing function, they
found theoretical optimal partitioning in a number of categories that looks quite
similar to real partitions in selected languages with the same number of colors.
The same measure has been applied to verifying that the partition in the Berinmo
language turns out to be “worst”, if the color chart is artificially rotated among the
hue axis. For the authors, this indicates that the color naming used by Berinmo
is more consistent with the universal structure of the perceptual color space, than
all the other (artificial) ones. It is not clear how these results have advanced the
debate since the model not only neglects any account of the physiology of vision,
and its relationship with language, but also with the statistics of colors in the
world. A different stream of research is trying to model communicative interactions,
from which color categories are established, using artificial agents. One of the best
examples of this approach is the work of Steels and Belpaeme (2005), where virtual
agents engage in two types of tasks. In the discrimination game, that does not
involve language, one topic has to be discriminated from several distractor colors,
and the agent in isolation develops categories in order to maximize the chance that
each time, the topic belongs to a category different from all the other distractors.
In the guessing game, the speaker wants to get something from the listener and
identifies it through language. In this task, the agent uses categories learned during
the discrimination game, modifying them and developing a lexicon at the same time.
Their experiments have demonstrated that linguistic interaction is able to yield a
finite number of categories in a population of evolving agents. While being very
interesting, particularly due to the aspect of simulated interaction, this research
lacks an account of human color physiology and uses an oversimplified account
of the interaction between perceptual categories and language. Recent extensions of
this approach have tried to introduce elements of the human perceptual system, in a
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very simplified way. An example is Komarova and Jameson (2008)’s work, which
simulates the presence of dichromats in a population of virtual agents.

7.2.4 Brains Raised in Different Cultures

In line with our neurosemantic approach, and differently from all the modeling
efforts just reviewed, we propose a neurocomputational model of the semantics
of color terms, based on the relevant brain areas, simulated with Topographica.
We adapted the basic architecture of our model as already described in Sect. 7.1.1
to attempt a simplified, yet biologically plausible simulation of human color
processing, and a reasonable account of the interaction between color perception
and language. It is based on an earlier simpler version, developed in (Plebe et al.
2011). The scheme of the model is shown in Fig. 7.6. It has simplifications and
additions with respect to the model presented in Sect. 7.1.1. It lacks areas V2 and
LOC, since in this experiment it is not necessary to include shape processing. On the
other side, in this model it is not possible to simplify the chromatic processing by
using red, green, and intensity components, as done in all previous neurosemantic
models. The precise reconstruction of human color physiology is essential for
this simulation, therefore, all visual inputs have been converted into the three
components according to the spectral responses of the short, medium, and long
wavelength retinal receptors. The conversion has been performed using empirical
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color termlong

short

medium

Fig. 7.6 Scheme of the model simulating the semantics of color terms. The components are mostly
the same as those in the model in Fig. 7.1, except for the subcortical color components, which here
correspond to the short, medium, and long wavelength retinal receptors
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data of spectral sensitivities of cone receptors gathered by Stockman and Sharpe
(2000). The set of opponent receptive fields collected in the model under the label
LGN is more complex than in previous models as well, accounting for all color
opponent combinations in human vision (Stockman and Brainard 2010).

As in previous experiments, the model is exposed to a variety of stimuli, in
different stages of its development that to some extent parallel periods of human
development, from the pre-natal stage to the initial language acquisition stage.
While the early developmental phase is common to all the models, in the linguistic
phase three different models are developed, corresponding to the separate effects of
three different environments, Berinmo, Himba, as well as the typical, more varied
yet undifferentiated visual world of western cultures. The rationale behind these
experiments is that we believe that the ability humans have of seeing colors is
not only strongly influenced by the biological constraints acting upon the visual
system of our species, by the language spoken by our linguistic community, or more
precisely, by the color terms it teaches us to use, but also by our experiences with
the natural world, or the “visual diet” provided to us by our natural environment. We
therefore, thought it interesting to investigate the possible impact the environment
might have in the cases of Berinmo and Himba, since the landscapes in which the
two groups live are drastically different. In the pre-linguistic phase of development
of the model, natural images are used as stimuli for the visual pathway, with
three variations. A neutral one lacks dominant hues, and is typical of many urban
environments in modern cultures, where the most common objects and scenes seen
by newborns are man made, with a wide range of colors, prevailing over the natural
hue biases of the natural environment, if any.

It has been built by taking random pictures from the Flowers and Landscape
collections of the McGill Calibrated Color Image Database (Olmos and Kingdom
2004).

The other two environments are those typical of Berinmo and Himba that
contrary to the neutral urban environment, are dominated by specific ranges of hues.
The Berinmo environment is the luxurious vegetation of Papua New Guinea, along
the large Sepik river, with villages found under the shadow of tall trees. The Himba
people live in the open rocky desert lands of Northern Namibia, dominated by warm
earth-colored hues.

The contrast between the three sets of visual stimuli can be appreciated by the
examples given in Fig. 7.7. All pictures of the Berinmo and Himba environments
are courtesy of Debi Roberson, and are shots she took during her color terms
investigations of these people. The analysis of the spectral differences between the
three sets is in (Plebe and De la Cruz 2014). For the linguistic development we used,
as in Sect. 6.1, a large set of the most common English terms for the western-born
model, and the same set of words in Spanish for the other two models. Of course
there is no available synthetic speaking software for Himba and Berinmo, and it is
not essential for the experiment. In this phase there is no interaction between the
linguistic and the visual inputs. At the end of this stage, types of organization are
found in the lower maps that enable the performance of processes that are essential
to vision, with complete mapping of hues in the VO area, for all environment grown
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Fig. 7.7 Examples of the pictures used to train three different versions of the model, adapted for
different environments. On the left, neutral pictures from the Flowers and Landscape collections,
in the middle, the New Guinea – Sepik river environment (Courtesy of Debi Roberson), on the
right, the Namibia – Kunene district environment (Courtesy of Debi Roberson)

models, with a slight lack of blue, and a marginal increase of red-sensitive areas
for the Namibia environment. More details on the lower maps are in (Plebe and
De la Cruz 2014).

The third phase of development reproduces events reminiscent of the World
Color Survey protocol (Cook et al. 2005) used in testing color perception across
cultures. There is a standard collection of rectangular chips, colored according to
the Munsell (1912) color space, one chip at the time is shown to the subject, asking
him to name the color. The model is presented with one chip at a time, but the color
name in this case is heard, and the utterance corresponding to the known color term
in the chosen language, associated with the Munsell color identifier of the patch.
Figure 7.8 shows the regions in Munsell color space, where all the hues of the chips
used in the experiments belong. For each sample hue, three variations in saturation,
and three retinal poses of the colored chip are used. The developed models are then
tested using our standard population analysis (see Sect. 4.3), applied to the model
map PFC, the results are in Fig. 7.9. We can see that for each language, the basic
colors span the entire PFC map evenly, crossing the multiple hue domains in which
the color is represented. All units that are not showing any coding of single basic
colors, will be activated by more than one, and therefore contribute to percepts at
a finer level than basic categories. The share of PFC map coding units for basic
colors is highly different between languages, even for colors that share part of the
Munsell space. Finally, the same basic model was used in simulating a psychological
discrimination task, to check for an effect like that of human categorical perception.
The Berinmo, Himba, and English versions have been exposed to sets of triads of
color stimuli, where two of the stimuli lie within one linguistic category, while
the third belongs to a different category.The boundary categories are blue-green
for English, nol-wor for Berinmo, and dumbu-burou for Himba. The exact values
of the colors used match those used by Roberson et al. (2005). In evaluating
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Fig. 7.8 The basic colors of the three environments (on the left), and the localization in the
Munsell charts, of all samples used in the model. On the top the English color terms, Berinmo
in the middle, and Himba at the bottom

the triadic tests, the activities in the model PFC map are compared for similarity
using all nodes, without taking into account their partition in population coding for
categories. Being w1; w2 the two hues of triad within the same linguistic category,
and o the hue outside the boundaries of that category, the similarity judgment is
computed as follows:

j .hw1; w2; oi/ D
8<
:

1 if hw1; w2i D arg min
hi2fw1;w2;og;j2fw1;w2;og;i¤ji

xPFC.i/ � xPFC.j/


0 otherwise
(7.12)
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blue brown green orange

pink purple red yellow

kel mehi nol wap wor

burou dumbu serandu vapa zoozu

Fig. 7.9 Population coding of the basic colors in the PFC map, for the three culture in which the
models have been trained: English (top two rows), Berinmo (middle) and Himba (bottom)

where xPFC.c/ is the vector composed by all the activation in the PFC map,
in response to the color stimulus c. Equation (7.12) values as 1 a response in
agreement with the prediction that the two color stimuli within category are
judged more similar than that crossing the category boundary, and values as 0
a different response. The average response for a single triad of colors is given
by the mean value of Eq. (7.12) repeated for all combinations of samples of the
same hues. The summary of the average similarity judgments for all triads and for
all the three culturally-grown models, is given in Table 7.3. Results show a clear
categorical perception effect for all languages, with the blue-green boundary, in
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Table 7.3 Results of the mean similarity judgments in the categorical perception tests. The three
columns are the responses of the different models, grown according to the Himba, Berinmo, and
English cultures

Himba Berinmo English

Blue-green 0.443 0.505 0.781

nol-wor 0.266 0.790 0.550

dumbu-burou 0.777 0.604 0.532

particular, strongly affecting the English model, while having an indifferent effect
on Himba and Berinmo.

Summing up, the neurosemantics of color terms simulated by the models here
discussed, seem to corroborate the relativist view. We certainly believe that the
neural mechanisms of human vision, place important constraints on the construction
of a lexical system of color terms, but these constraints would allow a large variety
of color categories, which would depend on the history of our languages as well as
our cultures, and perhaps partly, on our physical environments.
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Chapter 8
Toward a Neurosemantics of Moral Terms

Abstract In all the aspects of semantics explored in the previous chapters, neural
computation is today a fairly well established approach, with the models discussed
not being the only ones. On the other hand, a neurocomputational approach has
not been yet established for terms related to morality. The main reason is that
empirical brain information on moral processing is still in its early infancy. As
has been found with other aspects of word meaning, neuroscientific investigations
such as those undertaken by Greene et al. (2001), have shown that there is a
relatively consistent set of brain areas that are engaged during moral reasoning, as
well as during emotional reactions and decision making in general (Casebeer and
Churchland 2003; Moll et al. 2005).

The models presented in this chapter can, therefore, be considered as pioneering
works, or first steps in the enterprise of the neurosemantics of morality. The first
model lacks linguistic capabilities and is a collection of a series of brain areas
that learn the emotional component that contributes to the evaluation of potential
actions, and then makes decisions. The second model combines the morally relevant
areas of the first, with the auditory pathway that processes linguistic utterances, and
simulates the emergence of the meaning of moral terms.

8.1 Ethics, Semantics, and Computation

Not only does the study of human morality appear distant from computational
issues, it comes out looking as if not a semantic problem at all. It is not just
a matter of common sense, there are outstanding philosophical positions that
warn that morality resists formalization within semantic theories. The famous
“open-question argument” put forward by Moore (1903) allegedly dismissed any
proposition that inferred moral value from natural properties, as a logical fallacy.
Even if his argument was basically flawed (Frankena 1939), Moore’s non-naturalism
profoundly shaped moral philosophy in his century. Even more compelling is an
older similar claim made by Hume (1740), that no “ought” can be derived by an
“is”. Scientific facts are descriptive, while moral facts are prescriptive, and since it
is impossible to deduce a statement that has obligatory force from statements that
are purely descriptive, moral theories cannot be pursued within semantic theories.
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The first attempts to break with such positions came with the analytic tradition.
For Hare (1952, p. III) “Ethics, as I conceive it, is the logical study of the language
of morals”, and he was one of the first to engage in the project of including morality
within formal logic. In his view, moral sentences share similarities with imperatives,
with the difference of being more universal. Both belong to the general class of
prescriptive languages, for which meaning comes in two components: the phrastic
which captures the state to be the case, or command to be made the case, and the
neustic part, that determines the way the sentence is put together by the speaker.
While Hare did not provide technical details of his idea for prescriptive languages,
in the same years Von Wright (1951) developed deontic logic, the logical study
of normative concepts in language, with the introduction of the monadic operators
O.�/, F.�/, and P.�/ for expressing obligation, prohibition and permission. It is well
known that the many attempts in this direction engender a set of logical and semantic
problems, with the most severe being the Frege-Geach (1965) embedding problem.
Since the semantics of moral sentences is determined by a non-truth-apt component,
like Hare’s neustic, it is unclear how they can be embedded into more complex
propositions, such as conditionals for example.

8.1.1 Logic, Morality and the Mind

Not surprisingly, the line of research on morality within logic was detached from
real mental processes required for moral cognition, as has been discussed in
Sect. 5.1, but details of this research are not of interest here. An interesting exception
can be found among the contemporary proponents of expressivism, the theory that
moral judgments express attitudes of approval or disapproval. Since this sort of
attitude pertains to the mental world, and are driven by emotional motivations,
attempts to provide a more precise account of the meaning of moral sentences
should require a step further, towards what Wedgwood (2007) calls a psychologistic
semantics.

A quick glance will be given at the two best available attempts. Blackburn (1988)
introduced variants of the deontic operators, like HŠ.�/ and BŠ.�/, that merely express
attitudes regarding their argument: “Hooray!” or “Boo!”. Every expressive operator
has its descriptive equivalent, given formally by the j�j operation, for example

HŠ .jBŠ.X/j ! jBŠ.teach toX/j/ (8.1)

conveys the approbation that action X deserves disapprobation, and therefore it is
disapproved to teach it. This step is a tentative response to the Frege-Geach problem.

Gibbard (1990) frames his proposal in possible worlds semantics rather than
deontic logic, and defines an equivalent expressivist friendly concept, that of factual-
normative world:

hW; Ni (8.2)
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where W is an ordinary Kripke-Stalnaker possible world, while N, the system of
norms, is characterized by a family of predicates like N-forbidden, N-required. If
a moral sentence S is N-permitted in hW; Ni then it is said to hold in that factual-
normative world.

Both proponents acknowledge the need of moving towards a mental inquiry, for
Blackburn (1998, p. 59) “Expressivism requires a naturalistic story of the state of
mind of valuing something.” Gibbard (1990) is well aware that “talk of a set of
factual-normative worlds seems psychologically farfetched. How could that be what
anyone has in mind when he thinks normatively?” (p. 97). “These are versions of
wider questions of what logic has to do with meaning, and what meaning has to do
with things that go on in the mind.” (p. 100). However, their aim never did translate
into an effective attempt to embed genuine mental processes in a logic system.

8.1.2 The Linguistic Analogy

A recent computational approach to morality is worth mentioning, one that put
high claims on being, unlike deontic logic, a faithful reconstruction, even if
approximated, of mental mechanisms. It has been proposed by Mikhail (2000),
and is based on a Chomskian-like grammar (see Sect. 5.2.1). This modeling effort
draws attention to what is called the “linguistic analogy”, and become known as
the Universal Moral Grammar (UMG). It is focused on a single moral dilemma,
the famous “trolley” (Foot 1967; Greene et al. 2001), in which a decision has to
be made to save people in danger of death, with the possible side effect of killing
others. It implements a case of the so-called doctrine of the double effect, which
differentiates between harm caused as means and harm caused as a side effect
(Thompson 1985). Mikhail takes as fixed the main structure and circumstances of
the standard trolley paradigm, and contrived several subtle variations, in order to
extend the two classical cases to twelve subcases (Mikhail 2009). He submitted
all the variations of the dilemmas to subjects in a series of experiments, collecting
their responses with terms like “permissible”, “forbidden”, “obligatory”. The model
he developed has the purpose of giving the same response as that most commonly
given by the subjects. Much of his model is based on an old theory, again inspired
by generative grammar, that of Goldman (1970) of describing human actions by a
sort of syntactic tree. A complex act is “generated” by more basic act constituents
according to a set of rewriting-like rules. This formatted structural description of
the situation and of the potential action is the input to a sort of grammatical parser
(Dowty 1985), which takes as input a formal grammar and a sentence, and gives as
output the decision about the grammaticality of the sentence. In this case the output
is the decision if the potential action is permissible, forbidden, or obligatory.

Unlike the case of Universal Grammar in linguistics, where hundreds of scholars
have contributed equally to developments of the theory as applied to specific
aspects of language, and to theoretical discussions, the situation inside UMG is
quite peculiar. There have been no other researchers who have attempted to further
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develop Mikhail’s approach, but many have theorized about it, in particular Hauser
(2006a,b), but see also Harman (1999), Dwyer (2008), and Roedder and Harman
(2010). The idea that morality works as a universal grammar has met with several
critics as well, such as Nichols (2005), Dupoux and Jacob (2007b), Mallon (2008),
Prinz (2008), and Sterelny (2010). There are reasons for sympathizing with the
model proposed by Mikhail, first of all, for being a computational account of how
morality works, second, it could be a possible competitor with classic and deontic
logic in the modeling of legal rules (Holton 2011). Unfortunately, this is not his
aim, and even less is it Hauser’s or of any of the other proposers of UMG, who
aspire to use it as a description of the mental processes in human morality: “The
moral grammar hypothesis holds that ordinary individuals are intuitive lawyers, who
possess tacit or unconscious knowledge of a rich variety of legal rules, concepts,
and principles, along with a natural readiness to compute mental representations
of human acts and omissions in legally cognizable terms” (Mikhail 2009, p. 29).
There are several reasons that make the idea of morality like a syntactic grammar
untenable. A first order of arguments are the weaknesses of the analogy between
morality and language in itself (Dupoux and Jacob 2007a,b). A second, possibly
even more serious, is that moral grammar suffers from the same drawback that has
affected generative linguistics since its beginnings, the contradiction concerning the
abstract mathematical nature of the entities inside grammatical theory, and their
assumed psychological valence. It is the failure of generative grammar as a cognitive
theory, that prompted cognitive semantics, discussed in Sect. 5.2. Unfortunately,
this serious problem seems to have being ignored by UMG proponents. Even
conceding to defenders of UMG a validity of the linguistic analogy, their choice
among linguistic theories has been that of generative grammar, which has failed to
match with cognition. In addition, the modeling approach taken by UMG is sorely
missing some of the most important aspects of morality recent empirical studies
have brought to attention, such as the emotional component, which will be addressed
in Sect. 8.2.

Needless to say, Mikhail’s computational model fails entirely in passing the
model-mechanism-mapping criteria for an explanation of brain functioning in
morality.

8.1.3 Neurocomputational Pieces

In trying to embed the domain of moral terms within our unified neurosemantic con-
ception, we are not starting from scratch. Even if neurocomputational approaches to
morality are still lacking, there are a number of pieces that exist, whose purpose is
that of modeling brain functions, which are in close relation to morality. The most
relevant are the neurocomputational models of decisions and emotions.

For both aspects, an important framework of reference is the same found when
argumenting our main principle of coincidence detection: reinforcement learning
(see Sect. 3.2.1). Solutions to theoretical reinforcement learning using neuronlike
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elements were first proposed by Barto and Sutton (1982) and Barto et al. (1983),
and have been gradually fitted into the biology of neuromodulation and forebrain
circuits implicated in decision making (Daw et al. 2002; Doya 2002; Dayan 2008;
Bullock et al. 2009). The brain continuously faces making decisions in everyday life,
from simple motor control up to long term planning, and few of them specifically
involve moral judgments, but a small class of reinforcement learning models verge
on components of moral behavior. The GAGE model proposed by Wagar and
Thagard (2004), named with reference to the historical case of Phineas Gage,
assembles groups of artificial neurons corresponding to the ventromedial prefrontal
cortex, the hippocampus, the amygdala, and the nucleus accumbens. It hinges on
the somatic-marker idea of Damasio (1994), feelings that have become associated
through experience with the predicted long-term outcomes of certain responses to a
given situation. GAGE was tested in a simplified version of the Iowa Gambling Task
(Bechara et al. 1994), selecting cards from two decks. One can give larger immediate
rewards, but a long term overall loss, the other gives smaller rewards but a gain in
the long term. The model was able to learn to decide for the long term reward, by
virtue of the associations made between the ventromedial prefrontal cortex and the
amygdala, of the experienced loss.

GAGE implementation of somatic-markers was based on Hebbian learning
only, without reinforcement learning, which was adopted instead in ANDREA
(Litt et al. 2006, 2008), a model where the orbitofrontal cortex, the dorsolateral
prefrontal cortex and the anterior cingulate cortex, interact with basal ganglia and
the amygdala. This model was designed to reproduce a well known phenomenon in
economics: the common hypersensitivity to losses over equivalent gains, analyzed
in the prospect theory of Kahneman and Tversky (1979). The asymmetric evaluation
of gains and losses is simulated in ANDREA at the output of the orbitofrontal
cortex, under the effect of the amygdala, conveying emotional arousal. Thagard and
Aubie (2008) announced EMOCON, a sophisticated model that incorporates ideas
from ANDREA and GAGE, along with simulations of sensorial inputs that were
lacking in both previous models. One challenging target of this future model, is the
simulation of emotional consciousness.

The overall architecture of the models of Thagard and his group has several
similarities with those of Frank and Claus (2006) and Frank et al. (2007), in
which the orbitofrontal cortex interacts with the basal ganglia, but more oriented
to dichotomic on/off decisions.

8.2 The Emotional Coding of Norms

Before coming up with a neurocomputational model of morality, one is faced with
the problem of establishing a working definition of what morality is. Coming up
with a precise definition of morality is exactly one of the main endeavors of moral
philosophy. Establishing a clear cut division between moral decisions and everyday
social problem-solving in nonmoral decisions, or between moral norms and social
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conventions, is neither a simple nor straightforward task. The road undertaken in our
neurosemantics model of morality, in addition to being based as much as possible
on relevant brain facts, is also necessarily rooted in a number of theoretical positions
that will be spelled out now.

8.2.1 Moral Behavior Is Learned Emotion

First, at the core of the model are the emotion brain centers involved in values
and decisions, because we embrace the idea that moral cognition is emotional
in nature. It is a view, that is part of a philosophical tradition that goes back
to Hume (1740). Among its most authoritative contemporary defenders we have
Prinz (2006a, 2008) and Nichols (2004), whose detailed analyses dispenses us
from discussing the full set of supporting motivations. The emotional basis of
morality has been ascertained in a large number of neuroscientific studies. Moll
et al. (2005) reported the remarkable correlation between damage causing deficient
emotional engagement, and impairments in moral judgments, as in the case of
the ventromedial prefrontal cortex. Dysfunction in these areas is also typical in
psychopathy, characterized by poor moral behavior, together with dysfunction in the
amygdala (Blair 2007) and in the orbitofrontal cortex (Blair 2010). Moral judgments
and emotions seem to coincide in the brain, with structures in addition to those just
mentioned, including the insula, anterior cingulate cortex, the temporal pole, and
the medial frontal gyrus (Moll et al. 2008). Additional evidence comes from studies
showing that manipulating emotions can influence moral judgments (Schnall et al.
2008). Cameron et al. (2013) demonstrate that it is even possible, with specific
training, to make fine-grained distinctions between emotions that are incidental
to the actions being judged versus emotions that are integral to them, discounting
inappropriate emotions while making moral judgments.

The second fundamental essence of morality is that it is learned emotion. Even if
emotion is grounded in the same neural equipment evolved in humans for sociality
and cognition, evolutionary theory falls short of explaining any of our specific
moral values. Current neurobiological evidence does not indicate that something
like a set of moral rules exists in the brain, but there is certainly a set of strong
biological biases towards sociality and the care taking of others that we associate
with morality, but they are too general and unconstrained to guide the variety of
specific behaviors that are involved and displayed in human morality (Casebeer and
Churchland 2003; Moll et al. 2008; Suhler and Churchland 2011; Churchland 2011;
Young and Dungan 2012). In addition, all the areas involved in morality are highly
plastic. The frontal structures belong to the most critical region for learning, storing,
and binding social knowledge to contextual elements. In a study with participants
aged between 4 and 37 years Decety et al. (2012) found an age-related increase
in activity in the ventromedial prefrontal cortex, as well as increased functional
connectivity between this region and the amygdala, in response to dynamic visual
stimuli depicting moral transgressions.
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8.2.2 Morality Is Not a Single Mechanism

What comes under the label of morality, when examined closely, looks much more
like a collection of different patterns of behavior, rather than a monolithic set of
beliefs. It comes as a natural consequence of the essence of morals as emotions.
There are distinct basic emotions, in which several classes of moral situations find
their place. Stich (2006) has cogently proposed the idea of how dissociated the
cognitive pieces that make up morality are, interpreting morality as being more like
a kludge than an elegant machine.

One of the first taxonomies attempted on an empirical basis, was the psychologi-
cal study of Rozin et al. (1999), in which subjects were presented with vignettes that
depicted either a clear harm, an instance of disrespect, or a case of something we
tend to regard as polluting the body. Subjects were asked to identify the appropriate
emotional response. Rozin et al. proposed a model to explain the results, called CAD
for the three emotions: contempt, anger, and disgust, but also for the three related
classes of moral codes: community, autonomy, and divinity. The CAD model is an
important achievement, still very influential in moral cognition, despite the fact that
the exact definition of the classes of emotions and the related moral codes have
been debated. Prinz (2008, pp. 73–75) proposes a first main classification in other-
and self-directed moral emotions, with only two basic emotions in the first: anger
and disgust. Rozin’s contempt is a blending of those two. The reflexive basic moral
emotions are guilt and shame.

Recent neurocognitive experiments have confirmed that morality is not a wholly
unified faculty, but rather, instantiated in partially dissociable neural systems, that
are engaged differentially depending on the kind of emotion elicited by the moral
transgression (Parkinson et al. 2011). Guilt, which is likely to follow when inflicting
physical harm or taking something from a member of the group, is the type of
emotion on which the models here described are based. The context, in which the
moral violation takes place is the attempt by the model to steal someone’s food. This
action will provoke the angry facial expressions of the victim, seen by the model,
and to which it will react with an emotion of guilt.

8.2.3 The Moral Neural Engine

The overall architecture of the first model aimed at simulating the acquisition of
a single moral norm on emotional basis, is shown in Fig. 8.1. It is composed
by a minimum set of maps equivalent, in a highly simplified form, to the brain
areas making up the “moral neural engine”, limited to a violation inducing a guilt
emotion. A word of caution concerning the adherence of the components of the
model, with respect to the brain areas with the same lables, already mentioned
in previous experiments, has to be repeated with emphasis here. Areas like OFC,
Amyg, vmPFC, VS are engaged in the brain in a wide range of processes, that are
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retina’
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taste
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Fig. 8.1 Overall scheme of the moral emotional model, composed by LGN (Lateral Geniculate
Nucleus), V1 (Primary Visual Area), OFC (OrbitoFrontal Cortex), VS (Ventral Striatum), MD
(Medial Dorsal nucleus of the thalamus), Amyg (Amygdala), vmPFC (ventromedial PreFrontal
Cortex). LGN and Retina are replicated in LGN’ and Retina’ as a delayed visual scene, which may
contain the angry face

ignored in this model. All that is preserved in the model is the hierarchy and the
reciprocal connectivity, together with the limited functions performed in the model
which, as will be discussed next, have been demonstrated in the brain.

There are two main circuits that learn the emotional component that contributes
to the evaluation of potential actions. The first, comprises the orbitofrontal cortex,
with its processing of sensorial information, reinforced with positive perspective
values by the loop with the ventral striatum and the dopaminergic neurons. The
second, shares the representations of values from the orbitofrontal cortex, which are
evaluated by the ventromedial prefrontal cortex against conflicting negative values,
encoded by the closed loop with the amygdala. Now all the components will be
described, with a justification of their role in morality, from neurophysiological
evidence and their mathematical representation in the model. In the equations,
for the sake of readability, the following symbols will be used for the subcortical
signals:

ˇ the output of the LGN at the time when seeing the main scene;
} the output of the LGN deferred in time, when a possibly angry face will appear;
� the taste signals;
~ the output of the medial dorsal nucleus of the thalamus.



8.2 The Emotional Coding of Norms 187

A key map in the model is the orbitofrontal cortex, which in the brain receives
a varied assortment of sensorial information from the visual stream, taste, olfac-
tory, auditory, and somatosensory inputs (Rolls 2004). There are neurons in the
orbitofrontal cortex that respond differently to visual objects depending on their
reward association, and one of the primary reinforcements is taste (Rolls et al.
1996). In addition, there is a population of orbitofrontal neurons which respond
to faces (Rolls et al. 2006), and some respond specifically to facial expressions.
The crucial role played by the orbitofrontal cortex in social decision making was
discovered through the observation of patients with lesions (Damasio 1994; Bechara
et al. 1994). Its specific relevance for morality is controversial. According to Greene
and Haidt (2002) this area might perform a general regulative function, in which
affective information guides approach and avoidance behavior in both social and
non-social contexts. However, the orbitofrontal cortex is almost always involved in
moral cognition (Moll et al. 2005). For Prehn and Heekeren (2009) the role of the
orbitofrontal cortex in moral judgment is the representation of the expected value
of possible outcomes of a behavior in regards to rewards and punishments. The
equation of the activation of a unit in the OFC layer of the model is the following:
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There are three sensorial afferents: v.V1/
rA from the visual cortex V1, v.ˇ/

rA from the
lateral geniculate nucleus of the thalamus, and the taste sensorial input v.�/

rA , each in
a sensorial area rA corresponding to the receptive field of the unit in OFC. A fourth
afferent, v.~/

rB , is the diffuse projection from MD, carrying dopamine signaling from
the loop that will be described next, its equation will be given in (8.6).

In this model the visual pathway is not as detailed as in Sect. 6.1, where the
semantics were closely related with visual features. In this case it is simplified in a
single area, V1, with the following equation:
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(8.4)

The output of LGN is the same given by Eqs. (6.1) and (6.2). Note that the visual
input Retina, and the LGN content, are duplicated, as a way to process two visual
scenes shifted in time, it is necessary in the case when the action of the model is
causing the appearance of the angry face, as will be explained in Sect. 8.2.4.

The Ventral Striatum, VS, in the brain includes the nucleus accumbens and the
broad continuity in the basal ganglia between the caudate nucleus and putamen,
and plays a major role in various aspects of reward processes and motivation.
Cortico-striatal terminals have a topographic organization, with distinct terminal
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fields from the orbitofrontal cortex, the ventromedial prefrontal cortex, and the
anterior cingulate cortex. VS has a direct and reciprocal connection with the
dopaminergic neurons located in the substantia nigra pars compacta and the ventral
segmental area, which project back to MD, the medial dorsal nucleus of the
thalamus, which in turn, close the reward circuit by projecting to the prefrontal
cortex (Haber 2011). This circuit is implemented in the model by the following two
equations:

x.VS/ D f
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The afferent signals v.OFC/ come from Eq. (8.3), v.�/ is the taste signal. The output
x.~/ computed in (8.6) will close the loop into the prefrontal cortex with Eq. (8.3).
In this equation there is a parameter, 	

.OFC ~/
B , which will be used in a special way

during the experiments. It is a global modulatory factor of the amount of dopamine
signaling for gustatory reward, and therefore, is the most suitable parameter for
simulating hunger states.

The top map in the model corresponds to the ventromedial prefrontal cortex,
vmPFC, this region has been shown to play a crucial role in emotion regulation
and social decision making (Bechara et al. 1994; Damasio 1994). According to
Hernandez et al. (2009) vmPFC stands out as the heart of neural machinery involved
in emotional intelligence, the ability to reliably regulate and utilize emotional
information in evaluating choices. The vmPFC has been proposed as encoding a
kind of common currency enabling consistent value based choices between actions
and goods of various types (Gläscher et al. 2009; Boorman and Noonan 2011). In
this model vmPFC is implemented by the following equations:
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The afferent signals v.OFC/ come from Eq. (8.3), while v.Amy/, is the connection from
Amygdala, the core of the negative emotional reaction in this model. It will convey
to vmPFC the coded negative effect of having seen the angry face in a given context,
a role corresponding to well documented brain evidence. Blair (2007) alleges that
learning the basics of care-based morality relies on the crucial role of the amygdala
in stimulus-reinforcement learning, and in turn this learning enables representations
of conditioned stimuli within vmPFC to be linked to emotional responses. The
involvement of the amygdala in the recognition of facial expressions is also well
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established, with different kinds of expressions clustered in different subregions,
and with the strongest activation in response to direct-gazing angry faces (Boll et al.
2011).

The activation of units in the artificial amygdala component is given by:
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The afferent signals v.OFC/ come from Eq. (8.3), while v.}/ is a direct reading of
the face from the visual afferents in the thalamus, delayed in time with respect to
the ordinary visual scene. The activation given from Eq. (8.8) will loop inside the
vmPFC by Eq. (8.7).

8.2.4 Stealing Is (Conceptually) Wrong

The artificial moral brain architecture that has just been described is exposed to a
series of situations that simulate highly simplified contexts, and can choose between
different actions. Some actions are charged with an important survival reward, but
in some cases, may cause detriment to others, whose angry reaction will lead to
learning that that action is “wrong”.

The main input to the model is a visual scene, where three types of objects can
appear, at random positions. There is a kind of object with an X shape, and another
with a C shape, which are neutral for the individual fitted with the model mini-brain.
Only one object is edible, the one with a spherical shape, it might be an apple, an
example of a renowned prohibition. Examples are shown in Fig. 8.2. Our artificial
subject is unfamiliar with the objects, it can realize how pleasant fruits are to eat,
thanks to its taste perception. This sensorial input is simply a matrix 2 � 2, in which
the ratio of the upper row to the lower row signals how pleasant the taste is. To
follow the biblical resemblance, there is an Eden, in this case, simply one quadrant
of the overall scene. It is forbidden to eat apples in the bottom right quadrant. In a
more profane context, fruits in this quadrant may belong to a member of the social
group, and to collect these fruits would be a violation of her property, and would
trigger an immediate reaction of sadness or anger. This reaction is perceived in the
form of a face with a marked emotion, as the one in the rightmost position, in the
bottom row, in Fig. 8.2

After a preliminary phase of maturation of the visual system, like that described
in Sect. 6.1.2, the model learns that in the world there are useless objects, like
the X shaped and C shaped, but also apples that are delicious to eat. This
knowledge becomes coded in the OFC, VS, MD, and vmPFC connections, given in
Eqs. (8.3), (8.5), (8.6), and (8.7). This set of equations is an implicit reinforcement
learning, where the reward is not imposed externally, but acquired by the OFC map,
through its taste sensorial input. No moral norm is yet introduced.
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Fig. 8.2 The visual inputs of the model. In the top row, from the left to the right: synthetic
elongated blobs, aC shaped and a X shaped neutral objects, an edible object, possibly an apple in a
free area. In the bottom row on the left the edible object is located in the forbidden area (the bottom
right quadrant of the scene), corresponding to a sort of Eden where apples cannot be collected
(middle figure), otherwise a sad and angry schematic face (right picture) will appear

Fig. 8.3 Fraction of grasping
actions selected by the
vmPFC model map,
depending on the object seen.
There is no moral
conditioning yet, and the
model is tested with three
different levels of simulated
hunger
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The coding in the vmPFC model map corresponds to the decision to grasp or not
to grasp the object, and is analyzed with population coding (see Sect. 4.3), further
mathematical details are in Plebe (2016). The percentage of decisions to grasp, for
each type of object, at three different levels of the parameter 	

.OFC ~/
B of Eq. (8.3),

is shown in Fig. 8.3. When the object is an apple, grasping is always the prevailing
choice, that drops to 60 % only in the satiated condition. Occurrence of grasping is
instead meaningless for the other objects, except when starving. In this situation,
the model decides to grasp X shaped objects about 30 % times, and the C shaped
objects about 10 % times, even if these objects do not reward.



8.2 The Emotional Coding of Norms 191

Fig. 8.4 Fraction of grasping
actions selected by the
vmPFC model map,
depending on the location of
the edible object: free or in
the forbidden area, after
moral conditioning. The
model is tested with three
different levels of simulated
hunger
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Soon the model will experience new situations that lead to moral emotion
learning, with the objects as stimuli, followed by an image in which there could be
an angry face. This face will pop up only when an object of the first kind, the apple,
appears in the right bottom quadrant in the scene, the Eden world. This is a sort
of private property, and the owner reacts with sadness and anger when his fruit has
been grasped. Now the amygdala gets inputs from both the OFC map and directly
from the thalamus, when the angry face appears, as from Eq. (8.8), and learns its
connections. In this case, there is an implicit reinforcement learning as well, with
the negative reward embedded in the input projections to the amygdala.

In Fig. 8.4 there are the percentages of decisions to grasp an object, decoded as
before from the vmPFC map. In this case, the samples of the edible object have
been divided in two groups, depending on the position in the scene. We can see how
strong the inhibition to grasp the edible objects is when placed in the forbidden
sector. In both the conditions of normal hunger or satiation, not one grasping
decision is made for forbidden apples, while the same fruit in the free territory
is grasped 96 % of the times when satiated, and 100 % when hungry. Only under
the extreme starving condition are there limited cases of transgression, 0.6 % of the
times. It can be claimed that the model has learned a moral rule, as an imperative
inhibition to perform certain actions.

One may object that refraining from stealing fruits is nothing more than acting
in such a way as to avoid a social negative reaction, learned by reinforcement,
which is different from the concept of “wrong”. One one hand, we maintain that
social reprobation is the standard way of learning moral norms. We agree that
there is difference between a pure evaluation of positive and negative rewards,
and a moral norm, but this difference, we deem, is in the emotional correlate
of the social negative reaction. It should be added that the traditional distinction
conventional/moral transgression, has proven to be controversial (Kelly et al. 2007).
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On the other hand, we admit that even if the inhibition of stealing in this model
can be construed as moral, it is a modest content for the concept of “wrong”. The
challenge would be to design a model that learns several moral behaviors, and to
check if there is a common representation in the maps, that can be a candidate for
a general concept of “wrong”. We suspect that, in cases of moral violation across
very different domains, we would not find a unifying concept, and that what makes
morality a single domain for us, is language. But this leads us to the next section.

8.3 A Model of the Emergence of “Wrong” in the Brain

This model is a first attempt to derive a possible semantics of moral terms,
and in particular, of terms expressing disapproval of a certain action, from the
brain representation of the moral violation given by that action. In addition to
the theoretical positions on which the model stands, concerning the relationship
between moral norms, decisions, and emotions, seen in Sect. 8.2, there is an
additional issue concerning the way a term such as “wrong” relates with the mental
representations of the individual moral system.

8.3.1 The Context of “Wrong”

As disclosed in Sect. 8.1.1, all the many efforts of including morality within formal
semantics, engender a number of problems, most of them related to the need to
reconcile the apparent objectivity of a moral statement, with the strong dependency
of its truth value on the speaker, his culture, and his individual moral assets. There
have been interesting attempts to address this problem by framing it within the more
general analysis of words whose meaning is compellingly dependent on the context
(Wilson and Carston 2007). Several other classes of terms are affected by similar
phenomena, and several of them have been taken as an analogy for moral terms, one
is the class of color adjectives, the other, indexicals.

The comparison between moral and color terms can be traced back to Hume
(1751), for whom moral values were the “staining of natural objects with the
colors borrowed from internal sentiments”. This view has been renewed by Wiggins
(1987), among others, but dismissed by Blackburn (1985), with a series of objec-
tions that apparently settled the color analogy issue. Currently, the analogy with
indexicals seems to enjoy more success. It is spelled out more thoroughly by Dreier
(1990), and draws on Kaplan (1989)’s standard account of indexicals, according to
which part of meaning is dependent on context. In the case of morals, “context”
can be defined by the speaker’s moral system. This interpretation may fall prey
to the more general attack waged against context-dependent semantics put forth
by Cappelen and Lepore (2005), but Prinz (2008) argues that moral sentences can
survive all their objections.
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Our impression is that there is a fundamental agreement in the way both moral
and color terms relate with context, which is different from that of indexicals.
Speakers, by using indexicals, overtly signal the fact that a significant part of what
they want to communicate in a given sentence needs to be gathered from the context.
On the contrary, the speaker’s assumption in the common usage of color and moral
terms is a naive objectivity, and the contextual effect, even if largely in place,
is implicitly denied. In addition, we will contend that several of the disanalogies
between color and moral terms, found by critics like Blackburn, are based on a
universalistic view of color terms, whose weaknesses have been extensively exam-
ined in Sect. 7. However, while in the case of color terms there is enough ground
upon which to build models reflecting different cultural influences, like for Berinmo,
Himba, and English native speakers (see Sect. 7.2), moral modeling is still at a far
too sketchy and immature stage to account for such a detailed simulation of cultural
variations. Therefore, we will not look to further extend the controversial analogy
with other classes of context-dependent linguistic terms. Suffice it to say, that words
like “wrong” have the double face of appearing as objective for the speaker, while
their semantics is grounded on the context defined by the speaker’s moral system,
which in turn, in our modeling, derives from emotionally learned norms of behavior.
Moral objectivism can still be saved, in case all learned norms in every culture can
be shown to derive from shared moral universals, sure not an easy job.

8.3.2 Stealing Is (Semantically) Wrong

We presented in Sect. 8.2.4 a neurocomputational simulation of how, in a highly
simplified world, the concept that stealing is a moral violation can be acquired.
Now the same model is extended with a linguistic component, simulating the
emergence of the meaning of “wrong”, whose content points to the emotional
reaction associated to the possibility of performing the action of stealing. The overall
architecture of the model is shown in Fig. 8.5. The components LGN, V1, OFC,
VS, MD, Amyg, and vmPFC, are exactly the same as those shown in Fig. 8.1, and
described in Sect. 8.2.3. The additional linguistic component is based on the same
auditory pathway through Cochlea, MGN, A1, and STS, used in the model visible
in Fig. 6.1, and described in Sect. 6.1.1.

The two maps vmPFC and STS project to a single map called PFC (Pre-Frontal
Cortex), which, exactly as in Eq. (6.14), is a dramatic simplification of binding
semantic coding, which likely spreads throughout large parts of the brain, in a single
map. The equation of this map is the following:
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Fig. 8.5 Overall scheme of the moral semantic model. See Fig. 8.1 for the moral components, on
the left of the scheme, and Fig. 6.1 for the linguistic components, on the right

This model, like the previous one, progresses through all the world experiences,
and comes to know that among the existing objects there is one that tastes good,
but also that stealing it in private orchards has bad consequences. At the same time,
its linguistic component will also develop, using as auditory stimuli synthesized
waves of the 7200 most common English words with length in range from 3 to 10
characters, like those already used in other models (see Sect. 6.1.2).

At this point a final stage of development occurs, during which every occurrence
of a tempting apple in the private sector is associated with hearing the word wrong.
When the apple is presented in a location where grasping is allowed, the word good

is associated. Two different conditions of development have been experimented
for this last stage: including the appearance of the angry face when the apple is
in the private sector, and without the angry face. The former replicates the same
condition applied during the moral concept acquisition, based on the emotional
negative reinforcement, while the latter only relies on the already established link
between negative emotion and the possible moral violation.

The analysis of the content of PFC, and the possible achievement of a semantic
coding of “wrong”, is performed, as previously, by using population coding, using
the algorithm described in Sect. 4.3. The specialization of (4.15) in this case is the
following:
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Fig. 8.6 Population coding of “wrong” in the model PFC map, for several conditions of
experiences and development. From left to right: experiences including seeing the angry face and
hearing the word “wrong”; without seeing the angry face; without seeing the angry face but hearing
the word; including seeing the angry face and hearing the word on a model developed without
seeing the angry face. The gray circles mark the common semantic code. The rightmost plot is the
model PFC map in which are shown all units that are active in the allowed cases, shown to verify
that the alleged units for “wrong” get never active in the contrasted situations

where xPFC
i .c/ is computed by (8.9), when the sound n is presented to the auditory

path, and in coincidence the scene s is presented to the visual path, followed by
face f . The kind of objects and, in the case of apples, their position in the scene,
introduce a partition in the set of the scene S , such that all sets of variations in the
partition S 2 SC are of that moral category C, with C D fgood;wrongg. NC is
the set of utterance naming category C. Note that the empty sample 
 is included,
for experiments in which less stimuli are presented. More precisely, c D hs; 
; ni is
the case when no face will appear, and c D hs; 
; 
i is the case of visual input only,
without naming and face reaction.

Figure 8.6 reports the coding found in PFC, for the category wrong, under
different conditions. The three plots on the left are all obtained with the model
developed in the last phase using angry faces as well, the differences are give by the
ways of testing. The leftmost picture corresponds to the tests including angry faces,
as well as the wrong utterance, in the case of apples in the forbidden locations.
The next picture moving to the right is the coding testing without faces, with
c D hs; 
; ni. Next to the right is the PFC coding when tested with visual input
only, without naming and face, using c D hs; 
; 
i. The rightmost picture is the
comparison with the model developed without ever seeing an angry face reaction,
but tested with the full set of stimuli.

A first comment is the strong similarity between the leftmost and the fourth
(from left) pictures, which means that for learning the semantic coding the extant
stimulus that originally induced a negative emotion is not necessary. The disposition
to the same emotion is enough. This fact is confirmed by the similarity between
the two pictures on the left. In this case the development phase of the model is
the same, but the analysis of the coding is done testing with or without angry
faces. The third picture from the left, shows the units in PFC that are activated
just by looking at a scene that is reminiscent of a potential violation, that of
stealing, without the intervention of a voice saying “wrong”, or a face expressing
sadness or anger. Still, the coding is provided by a large portion of the same
units activated in all the other cases. What is missed is the small number of
units segregated in the top left, in all the other cases. Very likely, those units



196 8 Toward a Neurosemantics of Moral Terms

reflect the phonological form of the word wrong. It follows that it is possible
to consistently identify a region in the model PFC, corresponding to a semantic
coding of the term wrong, this region has been marked with a gray circle in
Fig. 8.6.
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Chapter 9
Semantics: What Else?

Abstract The previous chapters have given samples of neurosemantics addressing
specific semantic phenomena, using a unified neurocomputational approach. Much
of the complexity of real language has been neglected, and in this chapter other
developments will be presented, which fill in some of gaps that remain. The
models presented in this chapter are not original developments of the authors,
their selection is due to their theoretical grounds and their motivations, which are
perfectly in line with the neurosemantics enterprise, as we have defined it here. In
particular, Friedemann Pulvermüller and his associates have attempted to answer
questions in semantics by developing neurocomputational models, based on brain
representational mechanisms, as those here described in Chap. 3, and compatible
with the organization of brain areas involved in language processing.

Section 7.1 has shown how naturally the first instance of syntax emerges from
sequences of adjectives and nouns. From that first step into a complete management
of syntax, the brain needs to organize circuits to handle higher order combinatorial
information, something simulated by Pulvermüller and called discrete combinatorial
neuronal assemblies. With this computational architecture it is possible to explain
main syntactic structure, such as that of verbal phrases.

Much more is needed, but what has been achieved so far, the mathematical
frameworks laid down, the definition of the research project, strongly suggest that
neurosemantics today is feasible, and is one of the deeper and most appropriate
efforts in explaining linguistic meaning.

9.1 Neurons, Word Order and Verbs

Most of the neurosemantic models discussed in the previous chapters simulated
phenomena at a lexical level. The only exception was the model of nouns and
adjectives (see Sect. 7.1), a step towards what we called an “embryonic-syntax”.
From there to full blown language there is clearly a long way to go. Even if
the cognitive semantics enterprise (see Sect. 5.2) has drastically mitigated the role
assumed by syntax in early days of cognitive science, there is no doubt that the
rules and principles that govern the sentence structure of any given language are a
fundamental component of language meaning. Moreover, our simulations did not
cover all grammatical categories, with verbs, one of the most important, not having
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been addressed. This section will concentrate on the research and results of a group
that, in our opinion, is currently offering the most advanced insights on syntax using
a perspective that is in line with our neurosemantics view.

9.1.1 The Brain Bases of Syntax: Exploring the Mechanics

Friedemann Pulvermüller and his associates have proposed a mechanism called
discrete neuronal binding or discrete combinatorial neuronal assemblies (DCNAs)
to explain how syntax theories, might be grounded in neuronal circuits and synaptic
learning. They use brain inspired artificial network models with strong auto-
associative links, to show that through Hebbian learning, their model can learn
discrete neuronal-representations that can function as a basis for syntactic rule
applications and generalization (Pulvermüller and Knoblauch 2009).

The approach adopted by this group, lies in the middle, or perhaps more
accurately “bridges”, the views and research practices often adopted by a large
number of neural network modelers investigating natural language processing, and
that of a consistent group of formal linguists. The view held by the former, is
that there is no need to invoke rules in the processing of language in the brain,
since probability mapping in simple artificial recurrent networks is enough for
simulating the emergence of syntax in artificial models (Rumelhart and McClelland
1986a; Elman 1990). This would be due to the fact that the brain is an organ that
is extremely sensitive to regularities in the environment, and thus, the brain of a
typical language learner would naturally also pick up on the syntactic regularities in
the linguistic input and learn the statistical regularities with which words appear
together in her language. The well-known view of the latter, is that syntactic
representations are the fruit of the processes of dedicated innate mental machinery
(Chomsky 1964, 1966). For one, learning is of paramount importance, and in
particular associative learning processes, for the other, it is only a secondary
phenomenon.

Building on a vast amount of evidence made available by contemporary neuro-
science, the concept of discrete neuronal binding or discrete combinatorial neuronal
assemblies (DCNAs) proposes a new take on the debate that targets recent evidence
on neural wiring in the brain, and the role that the associative learning of combina-
torial information that is inherent to word strings, might play. DCNAs are artificial
networks that incorporate auto- and hetero-associative connections for regulating
excitation that simulate those found in the cortex. The networks also have neuronal
devices for sequence detection built in, justified by evidence of the existence of
neurons that respond to input patterns (or sequences) found in a variety of animals.
These researchers thus consider it likely that sequence detectors are also found in the
human brain and might be involved in the processing of combinatorial information
in sentences (Pulvermüller 2002a,b). The most elementary circuit implementig this
detector is composed by two input units ˛ and ˇ connected to a third unit 	 , that
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becomes active only if the activation of ˛ is followed by that of ˇ, within a certain
time windows. The inverted sequence of activation ˇ ! ˛ will not activate 	 .

These detectors would provide the mechanism for dynamically linking con-
stituents, realizing syntactic links. The linkage would include, for example, “the
previous activation of the first and the second word in a string (e.g. noun-verb), the
resultant ignition of the order-sensitive DCNA and a binding process functionally
linking the latter with the active lexical representations” (Pulvermüller 2010).
The binding mechanism here is conceptualized as being synchronized oscillatory
neuronal activity at high frequencies. These oscillatory dynamics are considered
by a number of researchers to reflect lexical and sentence processing. The authors
report that “as the networks map coincident neuronal activation driven by the co-
occurrence and substitution patterns of string segments in sentences, they ‘grow’
putative network equivalents of discrete rules or discrete combinatorial neuronal
assemblies” (Pulvermüller and Knoblauch 2009).

The proposed mechanism by which combinatorial neuronal assemblies would
emerge are the following (Pulvermüller 2010).

a. Elementary sequence detectors sensitive to ordered pairings (e.g. words/mor-
phemes), through reciprocal connections and synchronization, would function-
ally link or merge with two lexical circuits, thus building a higher-order syntactic
unit. Important here, is that a range of binding units for word pairs become linked
among each other.

b. This emerging group of aggregates of sequence detectors, as a result, becomes
sensitive to any lexical element that is part of a particular syntactic class or lexical
category followed by any other element belonging to a different lexical category.

Below, is a brief summary of the neurocomputational simulation experiments this
group has done and the results obtained. In their simulation experiments on syntactic
learning Pulvermüller and Knoblauch (2009) used a pre-structured auto-associative
memory with built in sequence detectors for every possible pair sequence of words.
The grammar area of the network included pre-wired sequence detectors, as well
as initially weak links between all pairs of sequence detectors, in keeping with an
important feature of the cortex. In the model, the availability of sequence detectors
and the auto-associative links between them resulted in the binding of the sequence
detectors into circuits operating on classes of lexical items.

In Fig. 9.1 we can see how the sequence detectors found in the grammar
area of the network formed strong connections to their corresponding lexical
representations (red lines to gray dots at left and top), and among each other as
well (black lines). The connections between the elementary sequence detectors
that were sensitive to word couplings were selectively strengthened. This was
due to the regular co-activation of sequence detectors during the process of
string learning and word substitutions between strings. It was this co-activation of
sequence detectors that led to the development of neuronal aggregates including
sequence detectors sensitive to similar contexts. According to the authors it is
thanks to these strong internal connections within neuronal aggregates, that they
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Fig. 9.1 Combinatorial information found in noun-verb sequences and network result of learning
this information in an auto-associative memory including sequence detectors for word pairs. On
the left: matrix of co-occurrences and substitutions of 20 nouns and verbs from British National
Corpus. On the right: network of lexical circuits and sequence detectors and the connections
strengthened by learning the string set from BNC. Gray circles are neural units corresponding to
words in diagram on the left. Central matrix shows sequence detectors corresponding to word pair
sequences. Black circles indicate sequence detectors whose associated word pair was in the input,
leading to strengthening of connections between sequence detector and word representations (light
lines). Dark lines show strengthened auto-associative links between pairs of sequence detectors.
At top left and bottom right, discrete combinatorial neuronal assemblies, DCNAs, have formed.
Depending on the threshold of activation, these DCNAs either bind all nouns to verbs, or provide
specific syntactic-semantic linkage of action verbs and nouns related to living entities, and of flight-
related verbs and flying-object nouns (Adapted from Pulvermüller and Knoblauch 2009)

were able to act as a higher-order discrete functional unit for syntactic binding. In
addition, generalization in the network is explained through the use of a very basic
mechanism. A possible first word is bound into the syntactic binding circuit, just as
any possible second word is. As a result, activity spreads from any active neuronal
unit that is part of the first lexical class to all the items that are part of the second
class, even if the sequence has not been encountered before. The authors argue that,
“after learning, syntactic binding units formed in the network provide a mechanistic
correlate of an abstract binary rule” (Pulvermüller 2010).

What makes this model different? According to these authors, it is the neuro-
physiological and neuroanatomical features of the brain they have incorporated in
their model, that makes their model stand apart from many of the artificial neural
networks most commonly used to investigate language. These are the following:

1. Reciprocal auto-associative connectivity
2. Built-in elementary sequence detectors
3. Unsupervised Hebbian-learning
4. Sparse coding
5. Inhibitory circuits
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Using these features, their model simulates the learning processes brought about
by strings with multiple mutual substitutions between them and the emergence of
possible neuronal correlates of the binary rules proposed by a number of grammar
theories.

We would like to comment here on how the achievements of Pulvermüller and
his collaborators relate to our models. The commitment, in principle, is much
the same, that of explaining crucial phenomena of human linguistic performance
neuromechanistically. Several of the brain mechanisms they use are the same:
Hebbian learning, reciprocal excitatory and inhibitory connections, sparse coding.
For what concerns the linguistic phenomena they target, Pulvermüller and his
collaborators venture into territories we have not: noun-verb sequences, the only
syntactic structure we explore is the more limited adjective-verb (see Sect. 7.1).
However, there has been a price they have necessarily paid for such a bold
enterprise. We have been able to simulate, even in a very simplified way, the
entire path from the external world to internal neural representations of linguistic
entities, avoiding any arbitrary coding of linguistic elements of object features as
neural inputs. All the external exchanges of our models are through their sensorial
pathways, simulated as closely as possible according to what is known regarding
brain organization. On the contrary, the DCNAs structures that realize noun-verb
comprehension are stand-alone models, detached from the rest of the brain, and
their inputs are pre-coded linguistic elements. This move has several advantages,
for example, the model can learn directly from large text corpora (Pulvermüller
2010), and use words like start or hate, which would be extremely difficult to
teach a model using simulated perceptual experiences. We think a great challenge
for the future development of neurosemantics from a mechanistic perspective, will
be the integration of models that rely purely on sensorial experience, with neural
components able to manage complex syntactic structures, like DCNAs.

9.1.2 Words and Action Perception Circuits

As the section above illustrates, words are not isolated entities, and our attribution
of meaning to them does not take place in a vacuum. Words are used in relation
with other words, and their meaning is influenced and modified by the way these
words are combined in language. This combination is governed by the rules that
regulate how they can be combined in a particular language. This “word-word”
combinatorial knowledge is essential to the construction of our semantic system.
We use words in a world, however, and how the words we use, refer to and are
grounded in our experiences and interactions with the world, or “word-world”
knowledge, also needs to be incorporated in the meaning we attribute to at least
a portion of the words we learn (Cangelosi et al. 2001; Pulvermüller 2013). For
this to be possible, links between words, objects, their sensorimotor features and
actions need to be established. To address how different aspects of “word-word”
as well as “word-world” knowledge is acquired, and how it is “brain-embodied”,
Pulvermüller has also proposed the Action Perception Theory of Semantic Circuits
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(APT). It is a cognitive model with a strong biological basis, that is related to the
one discussed in the previous section. It integrates the combinatorial mechanisms
described above, and helps to account for how both contribute jointly to semantic
learning. It is supported by a body of neuroscientific evidence that indicates that
words are organized in the brain as distributed cell assemblies and their meaning is
reflected by these cortical distributions. How the meaning of words is represented in
the brain depends on how these words are encountered and learned, the correlated
motor activity and the interactions the body has with objects, other bodies, and
the world. In one neurophysiological and behavioral study, different types of verbs,
for example, were found to be processed at different speeds, and to have different
cortical topographies (Pulvermüller et al. 2001).

A key concept here, is that “correlated activity in both sensory as well as
motor brain systems, and particularly in the cortex, as well as already established
neuroanatomical connections drive the creation of significant building blocks of
cognition, language and meaning” (Pulvermüller 2013). The formation of functional
units, neuronal assemblies or action perception circuits (APCs), would take place
thanks to this correlation and would have specific functional properties. Primary
motor, sensory areas and visual areas, are not linked directly but rather indirectly
in the brain, with reciprocal local connections as well as long-distance connections
providing the in-between area connections.

Thanks to learning, sensory and motor circuits can become connected to each
other. The mechanisms of the linkage between action and perception circuits,
have been explored by this group also with neurocomputational modeling. For
example Garagnani et al. (2008) simulated the left-perisylvian language cortex
and targeted how the creation of APCs for spoken word forms are created. This
model realized important features of connectivity between primary motor and
auditory areas and highlighted the role these mechanisms might play in language
comprehension and attention processes. In a similar vein, a very recent study using
the cell assemblies paradigm, explored the learning of associations between visual
and motor modalities in neurorobotic experiments using the iCub cognitive robot
(Adams et al. 2014). Results indicate that the learning of robust cell assemblies
allows the robot to select a correct motor response based on visual input alone.
Further fine tuning of the neural model for learning cell assemblies, showed its
potential in being used as a controller for the robot in visuo-motor association tasks.
This work extends the exploration of brain embodied aspects of cognition, strongly
based on neuroscientific data, also to the artificial agents and robotics domain, which
by their very essence are the ideal test beds for embodied cognition theories.

9.2 Building a Semantics of Numbers

This section will address the semantics of a peculiar class of words: Number words.
How do children learn number words and the concepts related to them? How do they
learn what number words mean? How do children interpret them? The questions
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may seem quite similar, but they concern very different aspects of what is involved
in the acquisition of number vocabulary. Psychologists have been interested for quite
some time in finding answers to the first question (Gelman and Gallistel 1978; Fuson
1988; Wynn 1992; Dehaene 1997; Carey 2001, 2004). Theoretical linguists have
been pondering the second and third issues, in particular, for perhaps even longer,
using a variety of theoretical models, and more recently, experimental methods,
to arrive at the answer (Horn 1972; Levinson 2000; Geurts 2003; Musolino 2004,
2009). In the last decade, an effort has been made by a small group of scholars from
each of the respective fields to integrate some of the evidence that has emerged
from their respective studies on how children learn to use number words and arrive
at understanding their meaning, as well as how their understanding differs from that
of adults (Papafragou and Musolino 2003; Musolino 2004, 2009; Hurewitz et al.
2006; Huang et al. 2012).

Quite recently, embodied cognition researchers have also begun to investigate
aspects of these issues, with some very recent attempts employing neurocompu-
tational and developmental robotic models to study how these processes might
be bootstrapped in very young children, but based on evidence emerging almost
exclusively from developmental psychology. A detailed discussion of all three
approaches is beyond the scope of this work, but this section will provide brief
sketches of these approaches and in particular, on research investigating the
connection between learning the count system along with number words and the
implications this learning might have on the child’s building an understanding of
what number words mean.

9.2.1 Learning Number Words: Does Counting Count?

Though children as young as 6 months have been found to be able to discriminate
between set sizes, and children 1 and 2 years of age have demonstrated to be good at
reciting the count sequence (Gelman and Gallistel 1978; Fuson 1988; Wynn 1992),
as well as capable of recognizing number words as designators of quantity (Wynn
and Bloom 1997), their difficulty seems to lie in understanding how specific words
match to specific quantities.

The pathway by which children acquire number words can be considered as
highly indicative of how they learn to associate meaning to these words. Number
words are highly frequent in child directed speech, but their meanings are acquired
slowly, with effort and in stages. The child’s first “hands on” encounter with number
words, however, most often comes through learning the counting routine. Gelman
and Gallistel (1978) proposed that the representation of integers is part of our innate
cognitive endowment and put forth a number of innate principles that would be
guiding the child’s acquisition of the number vocabulary leading to the transition
from being rote repeaters of a verbal sequence to understanding what those number
words really mean.
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These principles are: (1) the one-one principle (involves the assignment of one
and only one distinct counting word to each of the items to be counted), (2)
the stable-order principle (when counting, number words are always assigned in
the same order), (3) the cardinality principle (the last number word uttered when
counting is the total number of objects in a set) (4) the abstraction principle (the
preceding principles can be applied to any set of objects in a set, tangible or not,
animate or inanimate, etc.), (5) the order irrelevance principle (knowledge that the
order in which objects are counted is irrelevant, so long as every item in the set is
counted only once).

While there is wide consensus on what may be the guiding principles behind the
child’s acquisition of a mature counting system, there is less consensus on the extent
to which these principles can explain other aspects of development in the number
learning domain (Musolino 2009). One view, the “principles before skills” (Gilbert
and Wiesel 1983), or the “continuity hypothesis” (Corre and Carey 2007) endorses
the nativist thread running through G&G’s account concerning the representation of
integers and the implicit knowledge of the counting principles.

An alternative view, would be the “skills before principles” view or the “dis-
continuity hypothesis”, which instead sees the representation of integers and the
knowledge of the counting principles as an emergent phenomenon, deriving from
experience, at least in part (Fuson 1988; Karmiloff-Smith 1992; Wynn 1992; Spelke
and Tsivkin 2001). What these scholars propose is that children identify number
words and arrive at their meaning thanks to their sensitivity to verbal input, as well
as through knowledge of the principles (such as those proposed by Gelman and
Gallistel) but they would arrive at this knowledge inductively and relatively late
during the pre-school years.

While learning to count might represent an initiation to the use of number words,
and to the understanding that numbers are often used to express cardinality, how
children in time come to fully understand and interpret these number words is quite
another story, a linguistic one. We must not forget that number words are acquired
through language and are embedded in and used, in the context of language.

9.2.2 Learning About Number Words: What Else Counts?

Investigations in linguistic theory at the interface between (lexical) semantics
and pragmatics have also addressed the question of how the understanding and
interpretation of number words might unfold in development.

An important argument behind this research, as stated by one of the primary
actors involved, the linguist Julien Musolino (2009), is that “linguistic behavior of
number words extends far beyond counting and into the realm of syntax, semantics
and pragmatics”. In psychological studies, it has been generally assumed that
number words have exact meanings (e.g. three means EXACTLY THREE), and that
subjects in these studies interpret number words as such (Wynn 1992). Linguistic
accounts of number semantics, however, argue that number words not only have
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lower-bounded meanings (e.g. AT LEAST THREE), but that they can also be inter-
preted in several different ways, depending on the linguistic context. According to
these accounts, speakers would restrict their reference through pragmatic inference
or scalar implicatures.

Notwithstanding the recent forays of developmental psychology researchers
into the linguistic theoretical arena (Hurewitz et al. 2006; Huang et al. 2012),
demonstrate the one having gained awarness of the utility of theoretical models and
experimentation of the other, and vice versa, the debate on issues like the one above
continues. In fact, Huang et al. (2012) found that under their experimental task con-
ditions using a novel paradigm, which teased apart semantic and pragmatic aspects
of interpretation, both children and adults consistently gave exact interpretations for
number words. They interpret their results as “unambiguous evidence demostrating
that number words have exact semantics”.

9.2.3 The Case of Numerical Quantified Expressions

According to Musolino (2004, 2009), however, any account of how children learn to
interpret numerical relations through language is incomplete without consideration
of the logico-syntactic properties of number words, for example. On this view, as
demonstrated by the example of numerical quantified expressions (NQE), numerals
do not only interact with each other (e.g. three boys are holding two balloons)
but with other quantified expressions as well (e.g. three boys are holding each
balloon). The linguistic complexity underlying the interpretation of NQE, as a case
in point, makes understanding how children acquire the facts necessary to their
proper interpretation of crucial importance to developmental accounts of language
and number cognition. Theoretical linguistic accounts had already posited that NQE
could be interpreted in at least four ways. In psycholinguistic experiments with both
children and adults, Musolino tested this hypothesis, and in particular, his belief that
the various readings or interpretations possible of NQE, are not learned by young
children, but are instead implicitly deduced thanks to the combinatorial power of
language, and in this particular case, the compositional aspects of semantics. That
is, the way that the meaning of a sentence can be systematically deduced from
the meaning of its parts. What he predicted was that once children had acquired
the meaning of expressions like two N, three N, etc); and had a basic command
of the core grammatical principles of their language, as well as understand the
compositional aspect of word meanings, they should then be able to implicitly
deduce the range of meanings arising from the interaction of multiple NQE.

On a side note, another proposal on how children might be arriving at the
knowledge of such complex properties of language, sustains that it might be
derived by experience thanks to their sensitivity to the distributional properties in
their linguistic experience, rather than by a grammatical or pragmatic competence
(Gennari and MacDonald 2005), for a recent related view and review pertaining to
infant numerical abilities see Cantrell and Smith (2013).
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As has been mentioned above, not all number word learning situations are the
same. Numbers and number words appear in linguistic expressions, have multiple
senses: they can be arithmetic entities (e.g. indicating exact cardinality of a set)
or they can be used as quantifiers (e.g. as in NQE such as two girls, three balloons)
and as such are subject to a range of interpretations, and they also interact with other
lexical items that are similar syntactically as well as semantically (Syrett et al. 2012).
How children master all the different uses and meanings of number words remains
an open and challenging research question. Studies such as the ones mentioned
above (Musolino 2004, 2009) and examples of more recent work in this direction
(Huang et al. 2012; Syrett et al. 2012) have begun to show how the integration of
work in theoretical linguistics and developmental psychology addressing questions
on the acquisition of number vocabulary, could have significant implications for
developmental accounts of how it occurs.

In the section below, we present another relatively new approach to the study of
how number words get their meaning, which applies the frameworks of embodied
number cognition and developmental cognitive robotics, and targets the role of
finger counting as a bootstrapping technique.

9.2.4 Embodied Cognition Accounts: The Case of Finger
Counting

As we have already mentioned, the pathway by which children acquire number
words can be highly indicative of how they learn to associate meaning to these
words. Early finger counting is an example of an important strategy children use that
might be assisting them in mapping number words onto their meanings. Whether it
is an essential stage in the development of this process is highly debated, however,
but there is strong evidence on the positive contribution of sensorimotor skills and
representation in the development of numerical cognition. A growing number of
researchers, claim that finger counting is an important tool children as well as adults
use across a variety of cultures in the development of numerical cognition (Andres
et al. 2008).

The topic of finger based number knowledge has, in fact, seen a surge of new
interest, especially from embodied cognition perspectives, for a special issue on the
topic see Fischer et al. (2012). Finger counting has generally been assumed to be
important to the acquisition of a mature counting system as well as instrumental to
the development of children’s arithmetic abilities. It would help children acquire
the previously mentioned principles put forth by Gelman and Gallistel (1978),
considered to be fundamental to the child’s understanding of the counting system.
Recent studies have reported an association between finger gnosis (the ability to
mentally represent one’s fingers) and mathematical abilities (Costa et al. 2011), and
found finger training helpful in improving the performance of children with weak
numerical skills (Gracia-Bafalluy and Noël 2008). Evidence such as this supports
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the view that finger representations play a special role in number cognition, and
might serve as a basic building block in the child’s unfolding capacity to mentally
manipulate abstract numerical information.

A close link between finger counting strategies and patterns, and how they may
influence the mental representation and processing of number, has also been sug-
gested by evidence coming from neuroimaging studies. Studies using fMRI on adult
subjects have found intrinsic functional links between finger counting and number
processing. Cortical motor activity is evoked both by Arabic digits and number
words, which reflect particular individual finger counting habits (i.e. whether when
counting small digits subjects started with their right or left hand) (Tschentscher
et al. 2012). One interpretation of these results invokes a shared neural network for
number processing and planning of finger movements, which would include parietal
cortical areas, the precentral gyrus and the primary motor cortex, in which number
perception might very well elicit the sub-threshold tendency to move associated
fingers. These authors, explain that the association between numbers, number words
and individual finger counting movements might have come about in their subjects
during their individual development of numerical skills in childhood, and would
be predicted by a Hebbian learning approach to semantic circuits (Pulvermüller
1999). The prediction is, that due to the fact that children often use their fingers
when counting and solving simple counting problems, a correlation between the
neuronal activation for the processing of numbers and the movement of fingers is
established. What Pülvermuller and his collaborators propose here, is compatible
with the general approach embraced in this book and in particular, with our account
of coincidence detection (see Sect. 3.2).

Developmental as well as neurocognitive studies, in keeping with what has
been found in neuroimaging studies, suggest that finger counting activity, helps
build motor-based representations of number that continue to influence number
processing well into adulthood, suggesting that abstract cognition may be rooted in
bodily experience (Domahs et al. 2010). In fact, these motor-based representations
have been argued to facilitate the emergence of number concepts from sensorimotor
experience through a bottom-up process (Andres et al. 2008).

According to De La Cruz et al. (2014) and Di Nuovo et al. (2014a,b), finger
counting, can also be seen as a means by which direct sensory experience with the
body can serve the purpose of grounding number as well as number words initially
as low level labels, that later serve as the basis for the acquisition of new higher
level symbols from the combination of already grounded ones, something known
as grounding transfer (Harnad 1990). The grounding approach has also been useful
for the modeling of the acquisition of words for objects (Witzel and Gegenfurtner
2011) and for actions as well as for numbers (Rucinski et al. 2012).

As we have discussed in previous sections, learning to count also involves the
acquisition and use of a number word system. One of the major questions regarding
the acquisition of a number word system is how children come to understand how
specific words refer to specific quantities. One proposal already touched upon above,
is that the syntax of number words as well as the contexts in which they appear,
might be serving as cues that help children bootstrap this process early. According
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to one group of researchers, syntactic bootstrapping could also be operating in
tandem with the counting principles in helping children pick out number words
in the linguistic context and arrive at their meaning (Syrett et al. 2012). From a
brain point of view, finger counting experience coupled with that of number words
may also be serving as an early entry point to this understanding, via the storing of
number word meaning through the interlinking of action-perception circuits in the
brain, in what is known as correlational learning (Pulvermüller 2013), or what we
have referred to in other sections as coincidence learning.

In sum, while finger counting may not be strictly necessary for children to get
on their way to the cognition of number, there is evidence that it does seem to
help the learning process, serving as a bridge between possibly innate abilities to
perceive and respond to numerosity (Butterworth 2005) and the development of
the capacity to mentally represent and process number as well as linguistic number
related concepts (Lafay et al. 2013).

9.2.5 Modeling Finger Counting and Number Word Learning

A number of connectionist models have simulated different aspects of number
learning. Ma and Hirai (1989) for example, studied how children learn to count
using an associative memory network model, which mimicked three phenomena
proposed by Fuson (1988), to be present in the acquisition of counting by children
(i.e., number word sequence produced by children dividable into three distinct
portions: conventional, stable nonconventional, and unstable; irregular number
words (e.g. “fifteen”) omitted more often than regular ones (“fourteen”, “sixteen”);
initially number word sequence is in recitation form). Ahmad et al. (2002), explored
quantification abilities and how they might arise in development, using a multi
neural net approach, that combined supervised and un-supervised nets and learning
techniques in order to simulate subitization (i.e., phenomenon by which subjects
appear to produce immediate quantification judgments, usually involving up to 4
objects, without the need to count them) and counting. They used a combined
and modular approach, providing a simulation of different cognitive abilities that
might be involved in the cognition of number, (each of which would have their
own evolutionary history in the brain). Rajapakse et al. (2005), targeted aspects of
language related to number such as linguistic quantifiers. Using a hybrid artificial
vision connectionist architecture, they ground linguistic quantifiers such as few,
several, many, in perception, taking into consideration contextual factors. Their
model, after being trained and tested with experimental data using a dual-route
neural network, is able to count objects (fish) in visual scenes and select the
quantifier that best describes the scene.

Note that all these models belong to the predictive category seen in Sect. 3.1.5,
their components often have no direct correspondence with brain components,
and therefore, cannot meet the model-mechanism-mapping criteria (Kaplan 2011;
Kaplan and Craver 2011). Not many models, to our knowledge, have attempted
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to simulate number learning with neurocomputational models, as those used in
the neurosemantic simulations of the previous chapters. Recently, an advance in
simulating the semantics of numbers has been the use of models that, even if
missing a strict correspondence with the brain, are embedded in a physical body,
that of robots. Rucinski et al. (2012), using a cognitive robotics paradigm explored
embodied aspects of counting, and in particular, the contribution of counting
gestures such as pointing. This model, however, did not consider the role of finger
counting and the acquisition of number words in numerical abilities.

A very recent approach using a cognitive developmental robotics paradigm
(Asada et al. 2009; Cangelosi and Schlesinger 2015) explored whether finger
counting and the association of number words (used as tags) to the fingers, could
serve to bootstrap the representation of number in a cognitive robot enabling it
to perform basic numerical operations, such as addition (De La Cruz et al. 2014;
Di Nuovo et al. 2014a,b). The robotic model used for the experiments was a
computer simulation model of the iCub humanoid robot (Tikhanoff et al. 2011).
The iCub is an open-source humanoid robot platform designed to facilitate cognitive
developmental robotics research as described in Metta et al. (2010). At its current
state the iCub platform is a child-like humanoid robot 1,05 m tall, with 53 degrees of
freedom (DoF) distributed in the head, arms, hands and legs. The simulated iCub has
been designed to reproduce, as accurately as possible, the physics and the dynamics
of the physical iCub. The simulator allows the creation of realistic physical scenarios
in which the robot can interact with a virtual environment. Physical constraints
and interactions that occur between the environment and the robot are simulated
using a software library that provides an accurate simulation of rigid body dynamics
and collisions. The study focuses on the fingers of the robot that has 7 degrees of
freedom for each hand. Figure 9.2 shows the finger representations of numbers one
through five with the right hand of the robot (numbers from six to ten are represented
by adding left hand fingers with all the right hand fingers open).

Figure 9.3 instead, shows the architecture of the robot’s cognitive system, in
which the different units and their connections are presented in a schematic form.
The lower part of the implemented neural system is directly connected with the
robotic platform, and can be summarized in: (i) the motor controller/memory (Motor
System and Right/Left Layers), that is able to plan finger movements by setting
the finger joints’ angles and to memorize the finger number sequence; (ii) an

Fig. 9.2 Number representation with the right hand fingers of the iCub. From left to right: one,
two, three, four and five
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Fig. 9.3 Schematic of the Robot’s Cognitive System. In the lower part are the units of the motor
controller/memory and of the auditory sub-systems, they are directly connected with the robotic
platform. In the upper part there are the units with abstract functions that are the switch/associative
network and the competitive layer classifier. Bold links indicate a full (one-to-all) connection
between each layer, while dotted links are direct (one-to-one) connections. Note that the system’s
external inputs coincide with the outputs, indeed proprioceptive information from motor and
auditory systems is an input for the system during the training phase, while it is the control output
when the system is operating

auditory memory (auditory system and auditory layer), that is able to memorize
the number words sequence. The upper part of Fig. 9.3 presents the inner units
that are responsible for abstract functions (i.e. not directly connected with the
robot), they are the switch/associative layer, that allows the two lower systems to
cooperate in order to perform other functions, and the competitive layer classifier we
implemented to test the quality of the number learning. After supervised training,
it is able to represent the correspondence between numbers from 1 to 10 and the
internal representations (i.e. hidden layer activations and/or cepstral coefficients).

The role of the competitive layer classifier is to simulate the final processing
of the numbers, after a number is correctly classified into its class, the appropriate
action can be started, e.g. the production of the corresponding word, of a symbol,
the manipulation of an object and so on. The motor controller/memory is based on
the idea of recurrent networks (RNN), introduced by Pearlmutter (1989) and refined
by Elman (1991), which is an artificial connectionist network, able to incorporate
temporal dynamics in a simple, symbolic way, thanks to feedback connections in
the hidden layer units. This controller uses two different RNNs in order to model
lateralization when processing numbers, and the network that controls the left hand
will be switched off when low numbers (1–5) are processed. The two RNNs that
compose the motor controller/memory were trained separately, i.e. with different
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random weight initialization. The motor controller is implemented by two different
RNNs, trained separately, but are referred to as a single unit. The use of RNNs to
learn to count was investigated in the recent past by Rodriguez et al. (1999). They
explored the capabilities of recurrent networks in the task of learning to predict the
next character in a simple deterministic context-free language, in order to provide a
more detailed understanding of how dynamics could be harnessed to solve language
problems.

The artificial neural networks were implemented using the Matlab Neural
Network Toolbox 8.0, the supervised training algorithm for all networks was the
Levenberg-Marquardt algorithm (LMA), one of the most widely used optimization
algorithms that can be applied to feed-forward neural networks (Marquardt 1963).
The derivative function of the RNN networks was the backpropagation through time
(Rumelhart and McClelland 1986a), that is a gradient based technique that begins
by unfolding the recurrent neural network through time into feed-forward neural
networks, so that the training then proceeds in a manner similar to training a feed-
forward neural network with classic backpropagation, except that each epoch must
run through the observations in sequential order. The competitive layer classifier
is implemented using the softmax transfer function that gives as output the
probability/likelihood of each classification. It ensured all of the output values were
between 0 and 1, and that their sum was 1.
The softmax function & used is:

&.qi/ D eqiPn
jD1 eqj

(9.1)

where the vector q is the net input to a softmax node, and n is the number of nodes
in the softmax layer.

The architecture of the hidden layers of RNNs was chosen after a performance
test, in which after 100 runs with varying number of hidden neurons, the best
trade-off solutions were selected in terms of minimization of the error and number
of iterations needed to converge. It was found that 10 neurons were not the
ideal solution, this because 10 is also the number of different states to represent.
Furthermore, in the preliminary experiments the authors of the study also found
that the pure linear transfer functions for the hidden layers were more effective than
the usual sigmoid. They thus chose not to use a bias or set them to zero for the
RNN. Due to these choices, when the networks were not active, all activations were
zero, but subsequently could be activated by incepting the activation values to the
respective neurons in order to start counting from a specific number.

In addition to the main blocks, an associative network was included in the system
to initiate the computation of the system and to implement the number manipulation.
After the RNNs learned the number sequence, the switch was needed to stop the
counting and to redirect the signals to the competitive classifier for the processing
of the result.

Figure 9.4 shows the details of the switch/associative layer that, once the two
systems had learned to count, allowed them to operate and communicate with each
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Fig. 9.4 Details of the Switch/Associative Layer. The the table on the right summarizes the
outputs according to the different states. In practice the layer operates as a recursive feedback
with the possibility to start and reset the motor/auditory layers and to derive the activations of
one layer from the ones of the other. Bold lines indicate a full weighted connection, while normal
lines are single connections. For simplicity hidden units of the two RNNs of the motor system are
represented with one block (Adapted from De La Cruz et al. (2014))

other. In particular, the unit was responsible for starting the counting by initializing
all the hidden units to 1, and redirecting the hidden unit activation to the competitive
classifier when the counting was finished. Furthermore, this unit was crucial in
the development of the acquisition of the ability to add numbers, because it could
reset one of the two networks to make it count the new operand, and let the other
continue as a buffer memory. Finally, thanks to the associative connections between
the two layers (with weights w1 and w2 in Fig. 9.4) there were another two states
that allowed inputting a specific number representation starting from another: from
fingers to words and vice versa. These states were studied in more detail in the
subsequent number manipulation experiments. All states are reported in the table
on the left of Fig. 9.4.

As can be seen from the switch/state table in Fig. 9.4 the initial state of all the
neurons of the hidden layers were set to 1 in order to start the sequence. Vice versa
if the initial state was set to 0, there was no activation because RNNs do not have
bias in the hidden layer.

Using the material and methods presented above, the authors of this study first
investigated the part of the cognitive system that learned to count. As second
step, they built on this by developing the capacity of the associative network to
control basic operations like the addition of two operands and derive the number
representation of one of the networks from the other (i.e., from fingers to words and
vice versa).

In the first experiment which focused on the model’s number learning, the main
goal of these researchers was to test the ability of the proposed cognitive system
to learn numbers by comparing the performance of different ways of training the
number knowledge of the robot with:

1. the internal representation (hidden units activation) of a given finger sequence;
2. the Mel-Frequency Cepstral Coefficients (MFCC) coefficients of number words

out of sequence;
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3. the internal representation of the number words sequence;
4. the internal representation of finger sequences plus the MFCC of number words

out of sequence (i.e., learning words while counting);
5. internal representations of the sequences of both fingers and number words

together (i.e., learning to count with fingers and words).

To this end, they set up the experiment with the following steps:

i. the motor controller learned the opening of the fingers in a given sequence;
in order to later establish a finger counting routine, and create an internal
representation for each step in the sequence by means of the hidden units
activations;

ii. MFCCs were extracted from number words;
iii. the auditory memory learned the verbal number words in order from 1 to 10 and

created an internal representation for each word in the sequence.

From each learning step, relevant data was collected and stored as datasets for
the experimentation, these sequences are summarized as follows:

1. Internal representations of the finger sequence: 10 values corresponding to the
activation values of the hidden units of motor controller/memory network;

2. MFCCs from number words: 13 values, not as part of a sequence;
3. Internal representations of the words sequence: 10 values from hidden units’

activations of auditory memory network;
4. Internal motor representations of the finger sequence and MFCCs: a total of 23

values obtained by merging 1 and 2;
5. Internal motor and auditory representations: a total of 20 inputs obtained by

merging 1 and 3.

Data sets were built to model the learning when both fingers and number words
were presented together as training input to the cognitive system.

Figure 9.5 shows the activation values of hidden layers of RNNs: Finger
sequences on the left and word sequences on the right. The activations of the two
RNNs that compose the motor controller/memory network are presented together.
Motor activations show lateralization because the network that controls the left hand

Fig. 9.5 Activation of the hidden units with the number sequences from 1 to 10. (a) RNN trained
with finger sequence. (b) RNN trained with word sequences
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Fig. 9.6 Optimal leaf-order of the activations of the hidden units

(neurons 6–10) is switched off, furthermore the units from 1 to 5 remain fixed from
the number five on, because it was supposed that the right hand was open (reasoning
as if the robot was right handed).

In Fig. 9.6, we see a dendogram after the optimal leaf order. It shows how the
internal finger representation is more similar to the number sequence, with numbers
that were close in the actual sequence closely linked together. On the other hand,
the grouping of number words (learned in or out of sequence) is more random, and
affects the learning as shown in the classification experiment.

All datasets were used to train the competitive layer classifier to be classified
in the ten classes that represent the numbers from 1 to 10. Classification results
already after 10 epochs of training are enough for the LMA to converge. After 100
runs for each classification training dataset, the only misclassification observed was
for the number three. All the other datasets were good. When fingers and words
were presented together, the cognitive system learned numbers quickly and with a
very good likelihood, greater than 90 % for all numbers.

Pairwise t-test were also used to evaluate the statistical significance of the
results, confirming that all the differences were statistically significant except for
the number three, when finger sequences were compared with word sequences,
and two when finger sequences only were compared with finger sequences and
number words. The “finger sequence and number words”, showed that associating
the number words with the fingers sequence helped to drastically improve the
classification performance without needing to learn number words in a sequence.
However, to learn number words in sequence helped to additionally improve the
classification performance to the highest likelihood, if internal representations were
associated to motor ones.

In order to study in more detail the development of learning in the model,
the classification of performance over the 10 epochs was also measured for the
competitive layer trained with the different datasets. In this case, performance was
evaluated by means of the average likelihood of classification (Fig. 9.7, top graph)
and median number of misclassifications (Fig. 9.7, bottom graph)

Looking at the developmental results, it was once again observed that number
words learned out of sequence were the less efficient to learn as there were no
misclassification only after 10 epochs, and the average likelihood was still low
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Fig. 9.7 Development of the model at different epochs of learning: in the top graph the average
likelihood with number classes, in the bottom graph median number misclassification

(0.256) after ten epochs. Conversely, if number words were learned in sequence
and internal representations were used as inputs, the learning was faster in terms
of the precision of classification (i.e., no errors after just 2 epochs) but the
maximum average likelihood, that converged at 0.688, was not as strong as when the
learning also involved fingers. Indeed, the finger sequence reached a higher average
likelihood (0.765), but best results were obtained when internal representation of
words and fingers were used together as input, in fact, the average median likelihood
was 0.94 just after 8 epochs.

Once the number sequences were learned, the authors of this study, decided to
investigate the possibility of having the model build up the ability to manipulate
numbers with the development of the switch-associative network. They did this by
extending the capabilities of the associative network from the simple start and stop,
to its transferring and mapping, to the basic operation of addition. By transferring,
they intended the new mapping of the network’s representation derived from the
number counted by the other network, when the robot heard the number word
“three”, to the correlated finger representation. This can be considered, in a sense,
an associative mapping between internal representations. This is implemented by
activating a weighted connection between the two networks, which can be learned
by applying the LMA to the two-layer network that comprises the hidden units of
both networks.

The operation of addition can be seen, according to the authors of this study, as a
direct development of the concurrent learning of the two recurrent units (motor and
auditory). If one of the two does the actual counting of the operands, the other can
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be used as a buffer memory to add the result, when it is done, the final number can
then be transferred from the buffer to the other unit and then inputted to the final
processor (the classifier in the system).

As an example they consider 2 C 2, and describe the steps their model takes to
compute the result:

1. The first operand is heard by the auditory system and both networks count until
the corresponding activation of number 2 is reached. This step corresponds to the
states of the associative network.

2. The sum operator is recognized so the auditory network is reset, while the first
operand remains stored in the motor memory.

3. The second operand is heard, both networks restart to count as in step 1, until the
auditory network reaches the activation corresponding to the number 2. In the
meantime, the motor network reaches the activation of the number 4.

4. After the auditory network stops, the associative network recognizes that the
work is done so the total (4) is incepted from the fingers network to the auditory
network thanks to the associative connection.

5. Finally, the output of the resulting number (4) is produced for final processing
(in this case the classifier).

The results obtained in the number learning and number manipulation exper-
iments with the iCub child-like robotic platform, briefly described above, show
that learning the number words in sequence along with finger configurations helps
the fast building of the initial representation of number in the robot. Number
knowledge is instead, not as efficiently developed when number words are learned
out of sequence without finger counting. Furthermore, the internal representations
of the finger configurations themselves, developed by the robot as a result of
the experiments, sustain the execution of basic arithmetic operations, something
consistent with evidence coming from developmental research with children. For
further details on the cognitive architecture of the developmental cognitive robot
model discussed above and the results of the experiments, please see De La Cruz
et al. (2014).

The work mentioned above does not intend to suggest that just learning the
counting sequence from one to ten, is enough for children (or the particular
robot model discussed), to understand number concepts. What it does suggest is
something in keeping with what has been proposed by Sarnecka and Carey (2008),
that it is the repeated experience using the number word sequence when counting
sets of things that might very well be a driving force in the development of numerical
understanding .

It has been argued in the literature that the use of fingers does not necessarily
precede the use of language in the acquisition of a symbolic numerical system (e.g.
Nicoladis et al. 2010). What many children seem to be doing initially, is learning
small number word sequences by rote, and later, associations between these small
number words and objects in the world (first among which, their readily available
fingers). Later on in development, with the child’s early schooling experience,
this mapping will also include written representations (or numerals). These written
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representations, eventually take on the meaning of the spoken number word (Fuson
1988). It is this kind of associative multi-modal learning that in a sense is reproduced
in the robotic model discussed above.

A number of proposals have been put forth here to address how children learn
numbers, number words, the concepts related to them, and the different meanings
number words can have. They reflect the results of studies from the domains
of developmental psychology as well as theoretical linguistics, with recent work
showing an increasing reciprocal awareness of the contributions made by each.
This in turn, has lead to more collaborative efforts in addressing what continue
to be fascinating yet vexing questions. Very recent work on the development
of number cognition in other areas, such as those working within an embodied
cognition paradigm, using computational and robotic modeling in particular, have
also been discussed in an effort to show how this body of research might also be
useful in shedding additional light on these issues. The maturity of the domains
involved in investigating the semantic question of number word meaning, the
growing knowledge on all the brain components involved in number representation,
the experience being gathered with the models here described, are reasons to be
persuaded that in the not too distant future, a neurosemantic approach might be
feasible in tackling this question as well.

9.3 What Next?

How our mind constructs meaning is an age-old question. How our brain constructs
meaning, and in particular, linguistic meaning, is a relatively recent one. The advent
of sophisticated neuroscientific research methods and instruments, has provided the
possibility of not only asking this question, but of realistically hoping to find the
answers. In the different fields of study briefly discussed in this book, that have each
endeavored to find an answer to how meaning is acquired and used in language,
such as philosophy, developmental psychology, linguistics, and last but not least,
computational modeling, one common thread can be found, or perhaps it would be
more accurate to say, not found, in varying degrees. This missing thread, is a serious
reflection and/or realistic hypothesis on how the particular phenomenon discussed
might be based on brain structure and function, as is they are today understood.

The neurosemantic enterprise, while still in its infancy so to speak, can be
considered as a child of our neuroscientific era. It tackles questions that have
vexed scholars throughout the centuries that were committed to understanding the
relationship between language and the mind, but it does so, not only in a brain-
inspired but brain-informed manner. Only in the last couple of years has it become
feasible to construct neurocomputational models that reflect brain representational
mechanisms, as those described in Chap. 3, with components corresponding, at least
in part, to relevant cortical and subcortical areas of the brain. There is no going back.

Future progress in the field will have to further address the neuromechanics
of the brain and provide explanations on the why and how different areas of the
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brain (as well as the body through sensorimotor processes) are involved in the
acquisition of linguistic meaning and the representation and processing of that
meaning (Pulvermüller 2010). Of course, a number of challenges are already present
and even more await.

One challenge is that of further grounding word meanings in sensory processes
and neuroscientifically confirmed neuronal learning strategies employed in the
brain, such as coincidental or correlational learning, using neurocomputational
modeling, something being tackled by the work done by the authors of this book,
as well as others, and discussed throughout the book. Attempts at grounding
linguistic theories, and in particular, those regarding syntax in brain processes, and
in particular, in the combinatorial capacities of neurons, is another of the significant
challenges currently engaged in by researchers in the neurosemantics domain, as
discussed in Sect. 9.1. Another yet, is that of grounding in brain function, the
learning of abstract word meanings, such as those pertaining to color, number and
morality, also addressed in this book in Chaps. 7, 8, and in Sect. 9.2. A particular
challenge for the neurosemantics paradigm, that is considered of utmost importance
by the authors of this book, is that of implementing a life span approach, or one that
takes into consideration how brain organization and function change throughout the
life span, incorporating data on linguistic and conceptual processing at different
stages of the development of the brain and of the body (Smith 2013; Wellsby and
Pexman 2014). A further challenge, is presented by other types of developments,
in the sense of research fields that are themselves also changing and evolving, like
those currently using artificial agents in the study of different kinds of cognition.
The field of developmental cognitive robotics, for example, working within the
embodied cognition paradigm, presents a challenge for the neurosemantics enter-
prise as well. In fact, the design and creation of brain inspired, brain based neural
architectures produced by research in the neurosemantics domain, would find their
ideal implementation and verification as controllers in these agents.

Though much remains to be done, work in many of these directions is already
under way. The future for a consolidated and mature neurosemantics looks
promising.
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