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Foreword

This book is an authoritative addition to the literature on measurement error and
misclassification. I like to think of the field more broadly as statistical analysis when
variables are subject to uncertainty of measurement, although the context of measure-
ment error and misclassification is different from the context of uncertainty quantifi-
cation in applied mathematics and computer modeling.

This book differs considerably from previous books by Fuller (1987), Carroll
et al. (1995, 2006), Gustafson (2004), and Buonaccorsi (2010) because of its com-
prehensive overview of topics in lifetime data analysis, often called survival analysis.
If they touch at all on this important topic, which has quite a large literature, they
touch it only very lightly. Grace Yi’s book covers proportional hazard/Cox regres-
sion, additive hazard survival models, and recurrent event data and is the first text to
cover these important topics in detail. Of course, the fact that the author is an expert
on these topics is very important, and anyone wanting to know about uncertainty of
measurement in lifetime data analysis will want this text as their guide.

Three other chapters are also unique: (a) longitudinal data analysis, (b) multistate
and Markov models, and (c) case—control studies. Again, these topics are touched
upon only lightly by the other books, but Grace Yi has given us a terrific overview of
the literature, one not available elsewhere. I happen to know quite a lot about case—
control and other retrospective studies, and I am impressed by the book’s coverage
of the area, and the important warnings that go with this form of sampling.

Not only are new topics covered in this book, but in addition they are covered
extremely well. Not just authoritatively, but also Grace Yi has made great efforts to
communicate the important ideas well. The book can be used in teaching courses, at
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VIII Foreword

all levels ranging all the way up to advanced seminars. I though treasure the book
because I know that I have a resource for understanding issues in lifetime data anal-
ysis, not an area I am comfortable with, but one I confront on a regular basis.

Department of Statistics Raymond J. Carroll
Texas A&M University

College Station, TX 77843-3143, USA

and

School of Mathematical and Physical Sciences

University of Technology Sydney

Broadway, NSW 2007, Australia



Preface

Measurement error and misclassification arise ubiquitously and have been a long-
standing concern in statistical analysis. The effects of measurement error and mis-
classification have been well documented for many settings such as linear regression
and nonlinear regression models. Consequences of ignoring measurement error or
misclassification vary from problem to problem; sometimes the effects are negligible
while other times they can be drastic. A general consensus is to conduct a case-by-
case examination in order to reach a valid statistical analysis for error-contaminated
data.

Over the past few decades, extensive research has been directed to various fields
concerning such problems. Research interest in measurement error and misclassifi-
cation problems has been rapidly spurred in a wide spectrum of data, including event
history data (such as survival data and recurrent event data), correlated data (such as
longitudinal data and clustered data), multi-state event data, and data arising from
case—control studies. The literature on this topic is enormous with many methods
scattered diversely. The goal of this monograph is to bring together assorted meth-
ods under the same umbrella and to provide an update on the recent development
for a variety of settings. Measurement error effects and strategies of handling mis-
measurement for different models are to be closely examined in combination with
applications to specific problems.

A number of books concerning measurement error and misclassification have
been published with distinct focuses. An early book by Fuller (1987) summarizes
the development of linear regression models with errors-in-variables. Focusing on
nonlinear measurement error models, Carroll, Ruppert and Stefanski (1995) pro-
vide analysis strategies for regression problems in which covariates are measured
with error; the second edition, Carroll et al. (2006), further documents up-to-date
methods with a comprehensive discussion on many topics on nonlinear measure-
ment error models, including Bayesian analysis methods. With the emphasis on the
use of relatively simple methods, Buonaccorsi (2010) describes methods to correct
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X Preface

for measurement error and misclassification effects for regression models. Under the
Bayesian paradigm, Gustafson (2004) provides a dual treatment of mismeasurement
in both continuous and categorical variables. Other relevant books on this topic
include Biemer et al. (1991), Cheng and Van Ness (1999), Wansbeek and Meijer
(2000), and Dunn (2004).

This monograph covers the material that complements those books, although
there is overlap in some of the topics. While general principles and strategies may
share certain similarities, this book emphasizes unique features in modeling and
analyzing measurement error and misclassification problems arising from medical
research and epidemiological studies. The emphasis is on gaining insight into prob-
lems coming from a wide range of fields. This book aims to present both statistical
theory and applications in a self-contained and coherent manner. To increase read-
ability and ease the access for the readers, necessary background and basic inference
frameworks for error-free contexts are presented at the beginning of Chapters 3-8, in
addition to the discussion in Chapter 1. Each chapter is concluded with bibliographic
notes and discussion, supplemented with exercise problems which may be used for
graduate course teaching. Extensive references to recent development are given for
the readers interested in research on various measurement error and misclassification
problems. Applications and numerical illustrations are supplied.

This monograph is designed for multiple purposes. It can serve as a reference
book for researchers who are interested in statistical methodology for handling data
with measurement error or misclassification. It may be used as a textbook for grad-
uate students, especially for those majoring in Statistics and Biostatistics. This book
may also be used by applied statisticians whose interest focuses on analysis of error-
contaminated data.

This monograph is intended to be read by readers with diverse backgrounds.
Familiarity with inference methods (such as likelihood and estimating function the-
ory) or modeling schemes in varying settings (such as survival analysis and longitu-
dinal data analysis) can result in a full appreciation of the text, but this is not essential.
Readers who are not familiar with those topics may enjoy reading the book by going
through relevant topics. Chapters 1-2 and the first section of each following chapter
provide basic inference frameworks and background material which are useful for
unfamiliar readers. The book does not have to be read according to the sequential or-
der of the chapters. Readers may directly read a chapter of interest by skipping prior
chapters. The exercises at the end of each chapter supplement the development in the
text. Some problems are organized to provide justification of the results discussed in
the text; some problems are modified from research papers or monographs to serve as
applications of the methods discussed in the text; and some problems are designed to
be potential research topics which are worth further explorations. References at the
end of the problems indicate the sources from which the problems are modified.



Preface X1

The book is laid out as three parts: Chapters 1 and 2, Chapters 3-8, and Chapter 9.
Chapter 1 provides a broad overview of general statistical theory on modeling and
inferences for the error-free context, followed by an introductory chapter, Chapter 2,
on measurement error and misclassification. Chapter 2 introduces examples and
issues on mismeasurement, and outlines a number of measurement error models.
This chapter also describes the scope of the coverage of this book and lays out gen-
eral strategies of handling measurement error models.

The second part is the central body of the book with six chapters, each devoted
to a particular field. Chapter 3 concerns the basic ideas and methods for survival
analysis with covariate measurement error, where proportional hazards models and
additive hazards models are the main emphases. Chapter 4 shares some similarity
in theme, but focuses on recurrent event data analysis with error-prone covariates.
Chapter 5 discusses various strategies for handling longitudinal data with covari-
ate measurement error. In particular, methods of dealing with covariate measure-
ment error in combination with other features of longitudinal data, such as missing
observations and joint modeling with survival data, are described in detail. Chapter 6
concerns multi-state models with error-contaminated variables where Markov mod-
els are particularly considered in many cases. Unlike the previous chapters which
pertain to prospective studies, Chapter 7 considers issues on measurement error and
misclassification which arise from retrospective studies. In this chapter, measure-
ment error effects and inference techniques of accounting for mismeasurement are
specifically given for case—control studies. Most of the discussion in Chapters 2—7
addresses measurement error and misclassification related to covariate variables,
although some sections in Chapter 7 touch on error-prone response variables (i.e.,
state misclassification). To complement those topics, Chapter 8§ takes up the topic
on mismeasurement in response variables. Both univariate and multivariate response
variables are considered for settings where measurement error or misclassification
may arise. Finally, Chapter 9 is designed to supply an outline of miscellaneous top-
ics which are not touched on in the previous chapters.

I aim to include the main themes and typical methods that have emerged on
the subject of measurement error and misclassification. However, just like any other
monograph, this book is impossible to comprehensively include all relevant research.
The selection of topics, methods, and references is a reflection of my own research
interest. I apologize to those authors whose work was missed being cited or should
have been better presented in this book. Incompleteness in citations is not a sign
of under-appreciation of relevant work but is just an outcome of limited space and
inexhaustive access to the daunting amount of the literature on this subject.

I am indebted to many people who, directly or indirectly, helped with the birth of
this book. I greatly acknowledge collaboration with Wenqing He, Raymond Carroll,
Yanyuan Ma, Donna Spiegelman, Jerry Lawless, Richard Cook, and Lang Wu on
measurement error problems. I thank my students, Ying Yan, Zhijian Chen, Feng
He, and Di Shu, for their interest in working in this direction for their Ph.D. thesis
research. I am extremely thankful to Raymond Carroll, Donna Spiegelman, Nancy



XII Preface

Reid, and Len Stefanski for their useful comments and discussion during the course
of the book writing. In particular, I would like to thank Raymond Carroll for reading
the manuscript and writing a foreword to this book. I am deeply grateful to Jerry
Lawless, Mary Thompson, Ross Prentice, and J.N.K. Rao for reading through the
manuscript; [ can’t thank them enough for providing detailed and constructive sug-
gestions. This book came as an outcome of teaching a research topic course for grad-
uate students in the Department of Statistics and Actuarial Science at the University
of Waterloo over the past 10 years, and the students who took this course deserve
thanks as well. I would also like to acknowledge the Department of Statistics and
Actuarial Science at the University of Waterloo for providing a stimulating research
environment and the Natural Sciences and Engineering Research Council of Canada
(NSERC) for funding my research.

Above all, I owe my family big thanks for their tremendous support. My parents
have been maintaining a great interest in seeing a hard copy of this book at its ear-
liest date. I am particularly grateful to my husband, Wenging He, my son, Morgan
He, and my daughter, Joy He, for their strongest ever-lasting support during the long
process of this book writing as well as my career. My husband, who deserves the
most credit and has been my close collaborator on many research projects, is always
critical and has carefully read through this book by providing numerous constructive
suggestions, criticisms, and corrections. My son, who just entered a Master’s pro-
gram in Engineering, has always been supportive and has offered his best to help.
He assisted me with typing and formatting the material to comply with the required
template, reading through the book draft as an amateur reader with little background
in Statistics, and providing comments as a general reader. The development of this
book also accompanies my daughter’s growth from Grade 4 to her current year in
Grade 10. She started constantly asking me why I was so slow in my book writing
and then became eager to learn to edit with LaTeX in order to help me with some
exercise problem typing. My family is my inspiration and momentum that constantly
push me forward to many new exciting destinations. Without their support, criticism,
encouragement, and appreciation, this book would not have been possible.

University of Waterloo
Waterloo, Canada Grace Y. Yi
June 8, 2016



Guide to Notation and Terminology

Parameters are represented by Greek letters. Random variables and their real-
izations are usually denoted by upper case letters and the corresponding lower
case letters, respectively, except that 7; and #; represent different quantities in
Chapter 3.

Usually we differentiate random variables and their realizations by respectively
using upper and lower case letters, but sometimes we simply use upper case
letters to highlight the presence of the variables, especially when discussing the
probability behavior of estimators.

A binary random variable assumes value O or 1 unless otherwise stated.

In the context of mismeasurement in covariates alone, the response variable is
often denoted by Y'; X and Z are used to differentiate error-prone and error-free
covariates, respectively. The surrogate measurement of X is denoted by X *.

In the context of measurement error in response alone, covariates are simply
expressed as Z; the true response variable is denoted by Y and its surrogate
version is written as ¥ *.

In the case where both response and covariate variables are subject to mismea-
surement, ¥ and X represent the true, error-prone response and covariate vari-
ables, respectively; and Y * and X* represent the corresponding surrogate mea-
surements. Error-free covariates are denoted by Z.

The subscript i is often used with random variables to label measurements for
individuals or units; occasionally, we dispense with the subscript from the nota-
tion for ease of exposition. For example, if ¥; represents the response variable for
the i th subject, then ¥ would represent the same type of random variable whose
distribution is identical to that of Y;.

The dependence on time of a random variable may be indicated by the attached
argument of ¢ or a subscript. For example, Y (¢) represents the response measure-
ment at time ¢ and Y;; may stand for the response measurement for subject i at
time point ;.

Vectors are written in column form; the superscript = is used to denote the trans-
pose of a vector or matrix.

9 <

The terms “distribution”, “conditional distribution”, and “marginal distribution”
are liberally used to refer to “probability density or mass function”, “conditional
probability density or mass function”, “marginal probability density or mass
function”, respectively.

When referring to “estimating function(s)”, “parameter(s)”’, and “random vari-
able (vector)”, we usually describe them in the singular form for simplicity.
Notation Ey{g(U)} or E{g(U)} represents the expectation of g(U) taken with
respect to the model for the distribution of U; Eyy{g(U)} or E{g(U)|V} stands
for the conditional expectation of g(U) taken with respect to the model of the
conditional distribution of U given V. Similar usage of notation applies to the
variance or conditional variance of g(U).



X1V Guide to Notation and Terminology

The following list provides quick access to the key notation used in the book.
Precise definitions should be referred to the text.

Key Notation Throughout the Book

Orxq
0 (or zero)

a®?

h(:) or h(:[-)
SC)or fC])

1()
M()
()
dn()

g7
J—l
X

X*

Z

Bx

B

Description

The set of all real numbers

r X 1 unit vector

r X r unit matrix

r x 1 zero vector

F X ¢ zero matrix

Depending on the context, it may represent real number zero, a
Zero vector, or a zero matrix without confusion

a®? = aa” for column vector a

True (conditional) probability mechanism for the random vari-
able(s) indicated by the argument(s)

Statistical (conditional) model that represents a (conditional)
probability density or mass function for the random variable(s)
indicated by the argument(s)

Indicator function

Moment generating function

Cumulative distribution function of distribution N (0, 1)
Lebesque or counting measure featuring a continuous or discrete
variable (vector)

Inverse function of g(-)

Inverse matrix of nonsingular matrix J

Error-prone covariate (vector) of dimension py

Surrogate version of X

Precisely measured covariate (vector) of dimension p,

Effects of error-prone covariates X

Effects of precisely measured covaraites Z

Parameter (vector) of interest which includes S and B,
Variance or covariance matrix for measurement error terms
Sample size

Random effects fori = 1,...,n

Subject index set for the main study

Subject index set for the validation sample

A time that is infinitesimally smaller or larger than ¢

Convergence in probability

Convergence in distribution
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Chapter 1

Symbol Description

Y Random variable (or vector)

0 Parameter (vector) that takes values in the parameter space

(¢ Parameter space which is a subset of Euclidean space R?;
p is the dimension of 0

6o True value of parameter 6

0= (@, « is a nuisance parameter subvector;
B is a subvector of interest

Y Random sample {Y7,...,Y,} with each Y; independently
chosen from the same population

y(n) Measurements {y1, ..., y,} of Y

9 or /0\,1 Estimator (or estimate) of 6

L(9) Likelihood function

S(9) Likelihood score function

U@;y) Estimating function (or a vector of estimating functions) for
parameter 6

Chapter 2

Symbol Description

Y Response variable (or vector)

e Measurement error variable (vector)

@ Observed data {(y;, x;,z;) :i =1,...,n}

Ly(9) Likelihood for the observed data

L.(0) Likelihood for the complete data

U() Estimating function (or a vector of estimating functions)
expressed in terms of {Y, X, Z} or their realizations

U*() Estimating function (or a vector of estimating functions)
expressed in terms of {Y, X*, Z} or their realizations

ik (Mis)classification probabilities

P(X*=k|X =j,Z)for j,k=0,1
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Chapter 3

Symbol Description

T; Survival time for subject i

C; Censoring time for subject i

ti Observed time min(7;, C;)

8i Censoring indicator for subject

At) or A(t|X, Z) (Conditional) hazard function

Ao(?) Baseline hazard function

S(t)or S(t|X,Z) (Conditional) survivor function

HE, History {X;(v) : 0 < v < ¢} for subject i up to time ¢

dN;(t) Indicator variable I{T; € [t,t + At);; = 1}

R; (1) At risk indicator I(t; > t)

un Indicator variable 1(i € V)

@ Observed data {(#;,8;, x,z;) :i =1,...,n}

T Collection of {T1,...,T,}

C Collection of {C1,...,Cp}

X Collection of { X1, ..., X}

X* Collection of { X7, ..., X/}

Z Collection of {Z1,...,Zy}

Chapter 4

Symbol Description

T;; Time of the jth event for individual i

W Waiting (or gap) time between events (j — 1) and j for in-
dividual i

N; (1) Number of events over [0, ¢] experienced by subject i

HY, Event history {N; (v) : 0 < v < t} until (not including) time
t for subject i

HiT Covariate history {(X;(v), Z;(v)) : 0 < v < t} up to and

wi(t) or u(t|X;i, Z;)
Ti
R;(t)

*

including time ¢ for subject i

(Conditional) mean function E{N;(¢)|X;, Z;} at time ¢
Stopping time for individual i

At risk indicator /(¢ < 1;)

(Mis)classification probabilities

P(X =k|X*=j,Z)for j,k=0,1
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Chapter 5

Symbol Description
Y Response variable at time j for individual i
(or for subject j in cluster i)
Xij Error-prone covariates at time j for individual
(or for subject j in cluster i)
X5 Surrorage measurement for X;;
Zij Precisely measured covariates at time j for individual i
(or for subject j in cluster i)
m; or m The number of repeated measurements for subject
(or the number of subjects in cluster i)
i Conditional mean response given covariates
R;; Missing data indicator for subject i at time j
Chapter 6
Symbol Description
Y1) State occupied at time ¢
YJ Surrogate measurement of ¥;; = Y; (%)
K The number of states
X i’; Surrogate measurement of X
H History of states {¥Y(v) : 0 < v < t} up to but not including
time ¢
HF History of covariates X, {X(v) : 0 < v < t}, up to and
including time #
H; History of covariates Z, {Z(v) : 0 < v < t}, up to and
including time ¢
H}? Union of H} and H7
H* History of surrogate measurements

Pk (s, tIHY)

Ak (| Hy)
Yiljk

{Y*(v):0<v <t}

Transition probability

P(Y(t) = k|Y(s) = j. Hy)

Transition intensity at time ¢ from state j to state k
(Mis)classification probability for subject i at time point /
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Chapter 7

Symbol Description
Y Binary response variable for disease status
v Odds ratio
7'[;;. X (Mis)classification probability
PX =klY =i, X*=))
Tijk (Mis)classification probability
P(X*=klY =i, X =)
pl.*j Conditional probability P(X* = j|Y =1i)
Dij Conditional probability P(Z = j|Y =1i)
or P(X =j|Y =1i)
qij Conditional probability P(Y = j|Z =1i)
or P(Y = j|X =1i)
S1-C1) Conditional model for the random variables indicated by
the arguments
f |(.v) | Conditional model of the random variables indicated by the
arguments for subjects in the validation sample or the main
study (i.e., v = 1 or 0)
Chapter 8
Symbol Description
Y Random variable (or vector)
Y* Proxy version of ¥
Vii—j(Z;) (Mis)classification probability
P(Y; =1-j|Y; = j.Z)for j = 0,1
Yin—j(X*, Z;) (Mis)classification probability
PY*=1—-jlY;=j X" Z;)forj=0,1
% Parameter (vector) for the model of the response misclassi-
fication process
R;; Misclassification indicator I(Y;; = Yi;)
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Key Acronyms Throughout the Book

Symbol

AFT
AH

CI

CR

EEE

EM

EST

EV

GEE
GLM(s)
GLMM(s)
GMM
iid.
IPTW
IPWGEE

KLIC
MAR
MCAR
MCEM
MLE
MM
MNAR
MSE
MVE
PH

PO

RC
ROC
SE
SIMEX
UMVU

Description

Accelerated failure time (model)
Additive hazards (model)

Confidence interval

Coverage rate (of 95% Cls)

Expected estimating equation(s)
Expectation-maximization

Estimate

Empirical variance

Generalized estimating equations
Generalized linear model(s)

Generalized linear mixed model(s)
Generalized method of moments
Independently and identically distributed
Inverse probability-of-treatment weighting
Inverse probability weighted generalized estimating equa-
tion(s)

Kullback-Leibler information criterion
Missing at random

Missing completely at random

Monte Carlo EM

Maximum likelihood estimator (estimate)
Method of moments

Missing not at random

Mean squared error

Model-based variance estimate
Proportional hazards (model)
Proportional odds (model)

Regression calibration

Receiver operating characteristic
Standard error

Simulation-extrapolation

Uniformly minimum variance unbiased
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1

Inference Framework and Method

This chapter sets the stage for the development of the book. The discussion in this
chapter concerns the standard context in which mismeasurement is absent. This
chapter lays out a broad framework for parametric inferences where estimation is
of central interest. §1.1 outlines the inference framework and the objectives. Impor-
tant issues concerning modeling and inferences are discussed in §1.2. Representative
and useful estimation methodology is reviewed in §1.3. Strategies of handling model
misspecification are described in §1.4, and the extension to the regression setting is
included in §1.5. Brief bibliographic notes are presented in §1.6.

1.1 Framework and Objective

Statistical inference draws conclusions from data about the mechanism giving rise
to the data. As data are often obtained from planned experiments and observational
studies, a typical feature in conducting inference is to address the uncertainty that
is induced from sampling variability, observational error, and chance variation or
randomness. To this end, statistical models are employed to portray the data as real-
izations of certain random variables through probability distributions.

Throughout the book, we do not try to distinguish between a scalar random vari-
able or a multidimensional random vector, but liberally use the term “a random vari-
able” to refer to both cases unless otherwise stated. We use capital letters (e.g., Y)
to represent random variables and corresponding lower case letters (e.g., y) for their
realizations. Suppose we have the data, or a set of measurements {y1,...,y,} of a
random variable ¥ whose probability density or mass function, denoted as h(y), is
unknown, where 7 is the size of the data. We want to gain an understanding of /(y)
using the measurements {y1, ..., y, }. A strategy is to specify a family of probability
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2 1 Inference Framework and Method

density or mass functions and hope this family would capture %(y), or at least, con-
tain a function which reasonably approximates A (y). That is, we specify a family of
models, written as

f(y:0),

where () is called the model function, or model as a short form; it is a function
of y and 0. The argument y represents a realization of random variable Y whose
values fall in a sample space, denoted by Y; and 0 is called a parameter which takes
values in the parameter space, denoted by ©®, where ) C R™ with m representing
the dimension of ¥ and R being the set of all real numbers. In parametric modeling,
6 usually involves only a vector of finite number, say p, of unknown parameters
0 = (61....,0,)", and O is a subset of the Euclidean space R”. In a semiparametric
setting, the dimension of # may be infinite, and may depend on the sample size n. In
this book, we do not attempt to precisely differentiate a parameter vector or a scalar
parameter, and loosely use “a parameter” to refer to both situations. It is our hope
that one of the functions in the class { f(y; 0) : 0 € @} would catch h(y), i.e., there
exists 0g € @ such that f(y;80) = h(y). This 0 is called the true value of 6.

Our aim in performing inferences is to use the data inductively to narrow down
which distribution is likely to occur and obtain information about the true value of
6. This is the opposite of the deductive approach of probability theory where we are
often interested in evaluating the chance of observing particular outcomes based on
a specified distribution. In the probability theory, parameter 6 in the model f(y;6)
is treated as known, and we stress that f(y; ) is a function of the variable Y. On
the contrary, in conducting statistical inference, we emphasize that data are given and
view f(y;6) as a function of parameter 6. Throughout the book, for convenience, we
loosely use the terms “probability density function”, “probability distribution”, “dis-
tribution”, or “probability mass function” interchangeably for function f(-) or A(-).

In parametric statistical inference, f(-) is completely specified as a known ana-
lytic form, such as a probability density or mass function from the exponential family
(e.g., Lehmann and Casella 1998, §1.5). When f(-) is partially specified, resulting
inferential procedures are usually termed as semiparametric inference. A third type
of inference pertains to nonparametric inference for which data are not described by
a parametric or semiparametric representation.

In this book, we are mostly concerned with parametric or semiparametric infer-
ence. Our objective is, on the basis of the observed data

D1 yn)s

to make inference about the entire parameter vector 6, or a subvector of 6 that is
of particular interest. In this regard, several types of inference procedures may pro-
ceed: (i) estimation, (i) hypothesis testing, (iii) prediction, and (iv) model assess-
ment. While these topics are related, in this book, we mainly concentrate on the
estimation problem. Our central goal is to develop various estimation methods and
establish asymptotic distributions for the resulting estimators. Statistical inference,
such as constructing confidence intervals or performing hypothesis testing, may be
carried out using those asymptotic results.
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1.2 Modeling and Estimator

1.2.1 Parameter and Identifiability

Statistical modeling is the basis for parametric or semiparametric inference. In
reality, it is rare or almost impossible that the distribution /(y) for the true data
generation mechanism can be pinned down exactly. In parametric modeling, a viable
routine is to specify a class of distributions, or a model, { f(y;0) : 6 € @}, so that
one of the distributions identifies or well approximates the true distribution A(y). By
the term “model”, we mean a specification of the variables and parameters of inter-
est, the relationships among the variables, and the assumptions about the stochastic
properties of the random variables (e.g., Thompson and Carter 2007).

A function f(-) is specified or partially specified to feature basic structures of
the data. It may be chosen as a particular model form, such as a generalized linear
model, or may be given by a distributional form with certain assumptions, such as in-
dependently and identically normally distributed. A feasible functional form of f(-)
may be suggested by the data, while in some situations, the selection of the func-
tion form f'(-) may be driven by the mathematical flexibility and tractability. On the
other hand, an appropriate value of 6 is unknown and needs to be estimated. The
introduction of parameter 6 in a statistical model initially serves to index probabil-
ity distributions, and we wish to find the one that best approximates the true data
generation mechanism /(y) (e.g., Draper 1995). Mathematically, any one-to-one
transformation of 6 would serve equally well for this purpose. But in application,
the parameter form often comes together with the specification of the analytic form
of f(:). In some circumstances, a reparameterization of 6 is useful to simplify in-
ferential procedures (e.g., Problem 1.22). In settings including regression analysis,
model parameters usually have a practically meaningful interpretation (e.g., Bickel
and Doksum 1977; Cox 2006).

Although there may not be a unique principle to specify a suitable model, a fun-
damental requirement applies universally. To make inferences meaningful, a spec-
ified model f(y;0) must be identifiable. Specifically, if there are two parameter
values 6 and 0, € ® such that

f(y;01) = f(y;0>) for all possibly observed y (in a set of probability 1),

then
01 = 05.

This identifiability requirement ensures that each parameter value would uniquely
correspond to a distribution of a random variable. It implies that the true value 6,
defined in §1.1 is unique.

Sometimes, one may simply say the model parameter 6 is identifiable (or
unidentifiable) if the model f(y;6) is identifiable (or unidentifiable). The following
example gives a quick illustration of the identifiability or nonidentifiability of
models.
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Example 1.1. Let f(y; ) denote a probability density function for the random vec-
tor Y = (Y1, Y2)", where 6 = (61, 62)" is a vector of parameters taking values in the
parameter space @ = (0, co) x (0, 0o). If the probability density function of ¥ takes
the form

0 o

S(y:0) =exp (——1)’1 - —2)’2) for y; > Oand y> > 0,
6> 01

then 6 = (61, 6>)" is not identifiable. However, if the probability density function of

Y is given by

0? 0
f(r:6) = Lexp|——y1 —61y2) fory; > 0and y, > 0,
0> 0,

then 6 = (61, 62)" is identifiable.

While nonidentifiability may arise from ill-specified model structures or param-
eter forms, it can also occur from a well-defined model that has a practical meaning.
In this case, a common strategy is to impose additional constraints or assumptions on
either the model structure or the parameters to achieve the model identifiability. In
other situations, an identifiable model may become unidentifiable due to the degrad-
ing quality of the data. For example, a linear regression model can be well-defined
when the response and covariate variables are precisely measured, but in the pres-
ence of measurement error, nonidentifiability may become an issue because of the
lack of precise measurements for the variables involved in the model. This issue is
to be further discussed in subsequent chapters.

1.2.2 Parameter Estimator

We wish to use measurements {y, ..., y,} of a random variable Y to infer the true
data generation mechanism /4 (y). Suppose we have a well defined model { f(y;6) :
6 € ©} and this model fortunately includes 2 (y) as a member with f(y;60p) = h(y)
for some 6y € ©. Our objective is to estimate 8y using the collected measurements
{ylv"'vyn}‘ .

To this end, we use a function, say 8(-), of the observations to summarize the
information carried by the data. We develop an estimation procedure in order to
come up with a sensible function 5(-) and then guess the true value of 6 by applying
the function /9\(-) tothedata{y, ..., yn}. In many applications, data {yy, ..., y,} are
independently collected as n replicated measurements of Y'; equivalently, they are
regarded as a realization of a sequence of independently and identically distributed
(i.i.d) random variables Y1, ..., Yy, each having the same distribution as Y. We write
Y = {Y1,...,Y,} and simply say that Y = {Y1,...,Y,} is a random sample from
the distribution A(y).

To derive a sensible function ,9\(-), it is important to understand the probability
behavior of the random variable /9\(Y), called an estimator of 6, which is obtained
by applying function /9\() to hypothetical repetitions Y of the data generation under
the same conditions (Young and Smith 2005).
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Given the data, there are many ways to form an estimator of 6y. How does one
select a good or even the best estimator? What criteria are useful for this purpose?
Because the true value 6 is unknown, it is not possible to evaluate /9\(Y) relative to
the true underlying distribution A(y), or f(y; 6). Instead, we extend our attention
from evaluating /G\(Y) for a single sequence Y to assessing /9\(Y9) for a class {Yg :
0 € ©®} of all possible sequences, where Yg = {Yy1,..., Yg,} is a random sample
drawn from model f(y;0) for all 6 € ©. To adequately assess the performance of
an estimation procedure, we thus evaluate the probability behavior of the random
variable /é(Yg) for all 6 € © (rather than a single value or some values of ).

In the following development, unless otherwise stated, all the discussion is in-
tended for all the parameter values in the parameter space even though this is not
explicitly pointed out everywhere. Thus, we do not emphasize the difference in
notation but just use Y = {Y1,...,Y,} to refer to all possible sequences Yg =
{Yo1,...,Yon}, and let y(n) = {y1,..., yn} denote the corresponding realizations
or sample measurements of Y. Estimation of the true parameter value 6, is liberally
phrased as estimation of parameter 0”.

In contrast to Q(Y) belng called an estimator of 6, Q(y (n)) is called an estimate
of 6. Sometimes, Q(Y) and 9( y(n)) are simply denoted as 8 for ease of exposition. In
the rest of this section, our discussion is directed to the case where 8 is a scalar unless
otherwise stated; extensions to multidimensional parameter 6 are straightforward
with proper notation of matrices or vectors required.

To describe the probability behavior of an estimator /9\ of 0, one often uses the
mean squared error (MSE) of 9 which is defined as

MSE(0:0) = E{(6 — 0)*}.

where the expectation is evaluated with respect to the joint distribution of the associ-
ated variables Y which typically depends on 6; in the case where Y7, ..., Y, arei.i.d
random variables having the distribution f(y; 6), the joint distribution of Y is given
by [Ti=, f (i3 0).

The MSE measure is a function of parameter 6§ and is well-defined if the
first two moments of the estimator 0 exist. This measure emphasizes joint
evaluation of the first two moments of an estimator, as suggested by its alterna-
tive expression

MSE(8; 8) = BIAS?(6; 8) + var(d),

where

BIAS(6:0) = E(6) — 6

is the bias of the estimator 6, which quantifies how far and in what direction the
expected value of 6 is away from the target 6. The variance var(0) of 6 is evaluated
with respect to the joint distribution of Y; it measures how tightly the distribution of

9 clusters about its expectation, or the variability of 0. The dependence of E (/0\) and
var(6) on 6 is suppressed in the notation.
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Ideally, we wish to have an estimator which has the smallest bias and the smallest
variance. However, this is rarely possible except for trivial cases. One strategy to get
around this difficulty is to minimize one aspect of the estimator with the other held to
be the smallest (such as zero). Dually, one may look at either the class of estimators
with zero variance or the class of estimators with zero bias, and then try to find an
estimator with the smallest bias or the smallest variance from each class.

It is not feasible, however, to focus on the class of estimators with zero Vg\riance
because useless estimators would arise. For instance, if we set an estimator 6 to be
a constant 61 for some 6; € O, then this estimator has variance zero, but its bias
could be substantial when 6 is not close to 6. On the other hand, it is possible to find
useful estimators by confining attention to the family of the estimators whose bias is
zero, and then from this claﬁs we choose an estimator with the smallest variance.

Requiring an estimator 6 to have zero bias in estimating 6 is the same as requiring

E®) = 6 forall 0 € O, (1.1)

where the expectation is evaluated with respect to the joint distribution of Y. An
estimator satisfying the requirement (1.1) is called an unbiased estimator of 6. In
contrast, if there exists an estimator & satisfying (1.1) for amodel { f(y; 0) : 6 € O},
then parameter 6 is called U-estimable (Lehmann and Casella 1998). Some authors
call such a parameter 0 estimable (e.g., Freedman 2009; Shao 2003), but we do
not use this term in this book to avoid a possibly misleading indication that any
6 not possessing this property cannot be well estimated. If model parameters are
U-estimable, they are identifiable (e.g., Problem 1.2); but the converse is not true: a
parameter can be identifiable without being U-estimable (e.g., Problem 1.1).

For some models, for instance, a model coming from the exponential family, it
is possible to restrict attention to the class of all unbiased estimators and then to
identify the best estimator such that its MSE is the smallest. This is equivalent to
finding an unbiased estimator with the smallest variance. An estimator 9 for 0 is
called uniformly minimum variance unbiased (UMVU)), if it is an unbiased estimator
with £ (’9\) = 0 and var(/G\*) - var(/G\) is nonnegative for any unbiased estimator 0
of 6. In general, a UMVU estimator does not necessarily exist; but if it does, then
it is unique. A detailed discussion on UMVU estimators can be found in Bickel and
Doksum (1977), Lehmann and Casella (1998) and Shao (2003), among many others.

Although unbiased estimators are useful for some models, several limitations
prevent their universal applicability. Unbiased estimators do not always exist for any
statistical model. Unbiasedness is not invariant under a one-to-one transformation. In
other words, a parameter 6 can be U-estimable, but its reparameterization, say ¢ (8),
may not be U-estimable for a one-to-one function ¢(-) (e.g., Problem 1.1). Moreover,
many estimation methods, such as the method of moments or the maximum likeli-
hood method, do not necessarily produce unbiased estimators (e.g., Problem 1.3).

Even in the situation where the parameter 6 is U-estimable, there is no guarantee
that any of its unbiased estimators are always desirable; an estimator with some bias
might be preferred due to its minimum MSE (e.g., Problem 1.3). This does not, of
course, suggest that one should not care about the magnitude of bias. A large bias
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is usually considered as a drawback; bias reduction may be considered. See, for
example, the jackknife method which is outlined in Problem 1.4.

Given the foregoing discussion, one might then attempt to discard the require-
ment of unbiasedness of an estimator, but directly to compare MSE for two esti-
mators in order to decide which estimator is better. However, there is a difficulty in
doing so. Because the MSE depends on the value of 6, the ratio between the MSE
of any two estimators may not be uniformly smaller or greater than 1 for all 8 € ®,
hence failing to provide a clear indication of which estimator is better. This difficulty
is present if we stick to finding a preferable estimator by treating the size of data,
n, as fixed. If we are, however, willing to allow n to vary, meaningful criteria for
selecting a sensible estimator may be developed for a much wider class of practical
models. In the next subsection, we discuss this in detail.

1.2.3 Concepts in Asymptotic Sense

To emphasize the dependence of an estimator 9= g(Y) on the sample size n, in
this subsection we write 9 as @n. An estimator gn is called a consistent estimator of
6 if 8, converges to 6 in probability as n approaches infinity. Mathematically, this
requires that for any € > 0,

P{|§n—9|>e}—>0 asn — oo,

where the probability is evaluated with respect to the joint distribution of Y. Intu-
itively, a consistent estimator is close to 6 with probability tending to 1 as the size of
the data is getting large (e.g., Bickel and Doksum 1977).

The notion of consistency is not defined for an estimator with a fixed data size
n. It is only meaningful for a sequence of estimators {/9\,, :n =1,2,...}, obtained
from applying a common method to a sequence of data that are usually indexed by
the sample size n. This definition is more used to describe an estimation method
in terms of its long run probability behavior than to describe a concrete estimate
calculated for a particular data set itself. For simplicity, however, we often liberally
say an estimator /9\,, is consistent, although we actually mean that a sequence of
estimators, produced by the same method, has this property.

Consistency is a very important requirement for finding a sensible estimator
(strictly speaking, a sensible estimation method). It becomes essential in many appli-
cations so that any inconsistent estimators are not even considered. The consistency
property of estimators pertains to the nature of model parameters as well. Unidentifi-
able model parameters cannot be consistently estimated (see Problem 1.6; Gabrielsen
1978).

A consistent estimator is not necessarily unbiased. In application, a naturally
constructed estimator may not even have a well-defined expectation. The measure
of BIAS or MSE would thereby become meaningless for such an estimator. To get
around this issue, we introduce asymptotic measures, parallel to the measures of
BIAS and MSE which are defined for estimators with a fixed size of data (Shao
2003, Ch. 2).
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Definition 1.2. Let {6, : n = 1,2,...} be a sequence of random variables, and
{ay : n = 1,2,...} be a sequence of positive numbers satisfying a, — 00 or
a, — a for somea > 0, asn — oo.

(a) If there exists a random variable V with E(|V|) < oo such that

~

d
ant, — Vasn — oo,

then E(V)/ay, is called an “asymptotic expectation” of /0\,,
(b) If 6, is an estimator of 0 for every n, then an asymptotic expectation of 60, — 6
is called an “asymptotic bias” of 0, provided it exists.

Let ABIAS(6; /0\,,) denote this asymptotic bias. If ABIAS(6; /9\,,) approaches 0 as
n — oo, then the sequence of estimators 0, is said “asymptotically unbiased”,
or 0, is “asymptotically unbiased” for simplicity.

At first sight, this definition is flawed because combinations of different scale
factors a, with a different sequence of random variables 5,, might yield different
ratios E(V')/a,. However, the results in Problem 1.7 essentially show the uniqueness
of the asymptotic expectation of /9\,1, thus the notion of asymptotic expectation is well
defined. It is immediate that a consistent estimator is asymptotically unbiased. The
following definition extends the discussion of the usual second moment of /9\,, to the
asymptotic context (Shao 2003, Ch. 2).

Definition 1.3. Let {/9\,, :n = 1,2,...} be a sequence of estimators of
0, V be a random variable, and {a, : n = 1,2,...} be a sequence of

positive numbers satisfying a, — 00 or a, — a for some a > 0, as

~ d
n — oo. Assume that a, (0, —80) — V asn — oo and E(V?) < co.

(a) The asymptotic expectation of (/G\n — 0)? is defined as the “asymptotic mean
squared error” of 5,, :
E(V?)
a

AMSE(8: 0,,) =

)

and the “asymptotic variance” of 0, is defined to be

var(V)

R
ay

Avar(/Q\n) =

(b) Suppose {/9\;’; :n = 1,2,...} is another sequence of estimators of 0. “The asymp-
totic relative efficiency” of 03 to 0, is defined to be

AMSE(®: 8,)

ARE(6%,0,) = iy
AMSE(6; 6%)
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5: is said to be “asymptotically more efficient” than 5,, if
ARE(6*.6,) = 1 forall 6,
and

ARE(/Q\Z,/@\,,) > 1 for some 0.

These asymptotic measures are basically introduced to delineate the limiting
behavior in the probability sense for those estimators whose moments are not well
defined or difficult to calculate. A natural concern is: what if an estimator has the
moments, do its asymptotic measures differ from its usual measures defined for a
given size of data? The answer is yes. When the MSE of 5,, exists, MSE(@;@,,) is
not smaller than AMSE (9;/9\,,); under certain conditions, these two measures may
be equal (see Problem 1.8).

As discussed previously, consistency is often imposed as a basic condition for
finding a sensible estimator. The consistency property of 5,, yields that the difference
between ’9\,, and the parameter 6 converges in distribution to zero. If solely looking at
such a difference, we are not able to differentiate different types of consistent estima-
tors in their asymptotic distributions, because they all degenerate to zero. To compare
these differences, we need to view them more closely using a “magnifier”. For this
purpose, we scale the differences between estimators and the parameter 6 by a se-
quence of positive numbers {a, : n = 1,2, ...} so that the resulting variables have
nondegenerate asymptotic distributions. For most applications, we are interested in
finding those estimators /9\,1 such that the limiting distribution of their transformed
versions, d, (/9\,, — 0), is a normal distribution, i.e., V' is a random variable with a
normal distribution with mean zero if using the symbols in Definition 1.3. Often, the
sequence {a, : n = 1,2,...} is of an order of the sample size, such as a, = O(n°)
for a positive constant c. In parametric inference, a, is often taken as /7, and the
corresponding consistent estimator /G\n is sometimes called /n—consistent (Newey
and McFadden 1994, p. 2114).

In some applications, we are not only interested in estimating the parameter 6
itself but also a function, say ¢(8), of the parameter 8. The following theorem offers
a convenient tool to calculate asymptotic measures of the estimator for ¢(6) using
the measures for the original estimator of 6.

Theorem 1.4. Let {/9\,1 :n = 1,2,...} be a sequence of estimators for 0 satisfying

~ d
an(0, —0) — Vasn — oo,

where V is a random variable with 0 < E(V?) < co and {a, : n = 1,2,...} is
a sequence of positive numbers satisfying a, — o0 or a, — a for some a > 0 as
n— oQ. R R
Suppose q(0) is differentiable with the derivative q'(6), and let %, = q(0,) be
an estimator of q(6), where n = 1,2, .... Then the asymptotic mean squared error
of /z?\n is
E[lq' (0)V}’]
a

’

AMSE(q(6): 9,,) =
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and the asymptotic variance of 5,, is

I 2

Avar(gn) = —{q (G)ilzvar(V).
n

The asymptotic analysis (i.e., with a varying sample size approaching infinity) pro-
vides a useful tool to handle problems for which an exact analysis method is unavail-
able for a given sample size. Often, the asymptotic method requires less stringent
mathematical assumptions than the exact approach does, and it has a broader range
of applicability. A major drawback of the asymptotic method is the lack of a good
sense of what specific value of the sample size is adequate for reasonable inference
results, although in principle, the larger the better. Due to this difficulty, in applica-
tion of asymptotic theory it is a common routine to perform numerical studies, such
as simulations, to assess the finite sample performance of a method that is theoreti-
cally justified using asymptotic properties. Discussion on this can be found in Shao
(2003), among others.

1.3 Estimation Methods

In this section, we describe estimation methods which are commonly used to produce
estimators with desirable properties from the large sample viewpoint. Typically, these
estimators are consistent and have asymptotically normal distributions under suitable
regularity conditions.

1.3.1 Likelihood Method

We start with the maximum likelihood method, a method that has become a center-
piece of statistical inference since it was advocated by Fisher (1922). To illustrate
the idea, we begin with a simple case where Y is a discrete variable and f(y;0) is
the probability mass function P(Y = y) with parameter 6. If the data generation
mechanism were known (i.e., the true value of parameter 6 is known), then the prob-
ability of obtaining a given sample y(n) is determined by the joint probability mass
function

n
fo@):0) =[] f0r0).
i=1
This function, although dependent on the input from both the data and the parameter
value, can be stressed as a function of data alone with parameter 6 fixed, and can be,
hence, used to evaluate the probability of generating any specific sample of interest.
From the opposite perspective, if a particular sample is given but we do not know
which model f(y;#) generates such data, we treat f(y(n);6) as a function of 6
while holding y(n) fixed at the observed sample measurements. In this case, we
use an inductive approach to find a value of 6 so that the probability of obtaining
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the given sample is the highest. With y(n) fixed at the observed sample values, we
maximize the function f(y(n); #) with respect to 6 where 6 varies in the parameter
space ©. For this purpose, we define the likelihood function of 6, given the data y (1),
to be

n
L) =[] s0i:0).
i=1
This function is basically viewed as a function of 8 for the fixed y(n), so its depen-
dence on y(n) is often suppressed in the notation L (). This definition extends to the
case with a continuous random variable Y, where f(y;;6) represents a probability
density function evaluated at measurement y; fori = 1,...,n.

If there is a value of 8 which maximizes L(6), this value is called a maximum
likelihood estimate (MLE), usually denoted by 9= /9\(y (n)), or 9 for simplicity.
Unlike explicitly expressing the dependence on the sample size of the estimators
in §1.2.3, in the rest of the book, we suppress the dependence on n in the notation
of estimators. A maximum likelihood estimate does not necessarily exist for every
model parameter nor is necessarily unique (e.g., Problems 1.10 and 1.11). However,
in many regular applications, it exists and is unique. In this case, we use “the” to
describe such an estimate.

It is known that applying any strictly increasing transformation to the likelihood
function does not change its maximizer. Since many distributions we work with
come from the exponential family, it is mathematically simpler to work with the
log-likelihood than the likelihood itself to find the MLE:

£(0) = log L(6).

In situations where £(6) is differentiable, finding the MLE is frequently proceeded
by solving the likelihood equation

S(0;y(n)) =0, (1.2)

where S(6; y(n)) = 0€(0)/90, called the vector of score functions, or simply the
score function (e.g., Young and Smith 2005).

Generally speaking, the solutions to the likelihood equation (1.2) are not nec-
essarily the maximizers of L(6); they can be local maximizers, local minimizers,
global minimizers, or even just stationary points of L(#). But under the circum-
stances where the MLE exists and is unique, solving the likelihood equation gives us
the MLE.

The likelihood method is conceptually clear, especially for handling irregular
problems, such as multiple solutions that arise from solving equations (e.g., Heyde
and Morton 1998) and the boundary issue when the equations have no interior solu-
tions (e.g., Self and Liang 1987). The MLE enjoys the parameterization invariance
(or invariance property): for a one-to-one function ¢(-), the MLE of ¢(0) is given by
q(/é\), where @ is the MLE of 0. The invariance principle is valuable and may be used
to choose one inferential procedure over another; it ensures that the conclusions of a
statistical analysis do not change with reparameterization of 6.
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To study the performance of the MLE, it is useful to position ourselves in the
sampling framework. We replace the concrete observations y(n) in (= 9(y (n))
with random vector Y and form a random vector 6 = Q(Y) We call § = G(Y) the
maximum likelihood estimator (MLE) of 6. Without confusion, we use the same sym-
bol 8 to denote both the maximum likelihood estimator and the maximum likelihood
estimate. In the same manner, we view the likelihood function and score functions
as random variables by replacing the concrete observations y(n) with random vector
Y, and write

dlog L(0;Y)

L©:Y) = [T (¥i:6) and S(6:Y) = ===

i=1

where the definition of the derivatives of a function with respect to a vector is given
in Appendix A.1.

With regular problems where the order of differentiation with respect to 6 and
integration over the sample space can be exchanged, we obtain that the mean of the
score functions is zero:

E{S(;Y)} =0,
and the covariance matrix of S(6;Y) is
02L(0:;Y)
0:Y)} = Eq — ———= 1.3
var{S(6;Y)} 30907 ( (1.3)

where the expectations are evaluated under the distribution of Y. Matrix (1.3),
defined in Appendix A.1, is called the expected (or Fisher) information matrix and
is denoted by J(6).

For an i.i.d. sequence of random variables {Y7, ..., Y,}, it is often convenient to
use entries for a single random variable to express the corresponding entries for the
entire sequence of random variables. Let £; (6; y;) = log f(y;; 0). Then based on a
single random variable Y;, we define

516 = S0 ana 0y = £ {20
where the expectation is evaluated with respect to the distribution of Y;. Then the
score function and the expected information matrix based on the sequence of random
variables are

S(0:y(n) =Y Si(0:y;) and J(6) = nJy(6).

i=1

respectively.

Although the MLE does not necessarily exist nor is unique for every parametric
model, the maximum likelihood method has proven useful for many settings due to
its nice asymptotic properties, given in the following theorem.
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Theorem 1.5. Under regularity conditions, the following results hold for the MLE 0:

(a) aieasn%oo;

(b) i@ —8) L5 N0, J71(0)) as n — oo.

This theorem has important implications. Regardless of any specific model form
which derives the MLE /9\ a normal distribution can serve, in the asymptotic sense,
as a basis for statistical inference, such as constructing confidence intervals or hy-
pothesis testing. The precision of this procedure, however, depends on the size of the
sample as well as the underlying distribution which generates the data. The theorem
says that the MLE 9 is a consistent estimator for parameter 0 and is approximately
normally distributed with mean 6 and covariance matrix [nJ1(0)]~'. The asymp-
totic covariance matrix [nJ;(0)]7! is identical to the Cramér—Rao Lower Bound
(see Problem 1.13), a quantity which is not necessarily attained by any estimator
with a given sample size. The MLE is thereby taken to be asymptotically efficient
(e.g., Young and Smith 2005; van der Vaart 1998, Ch. 8).

The proof of Theorem 1.5 is available in many references; for instance, see
Lehmann and Casella (1998, §6.3) and Serfling (1980, §4.2.2). With the establish-
ment of Theorem 1.5 (a), a key idea of showing Theorem 1.5 (b) is to apply the
Taylor series expansion to the score function around the MLE to spell out the differ-
ence 5—9 and then scale this difference with the factor 1/7; the result of Theorem 1.5
(b) can then be derived using the Weak Law of Large Numbers and the Central Limit
Theorem in combination with suitable regularity conditions. Basically, with regular-
ity conditions, the consistency of the MLE is ensured by the zero mean of the score

function:
0¢;(0:Y;)
E{——=¢ = 1.4
{ 50 } 0, (1.4)

and the asymptotic covariance matrix of the MLE comes as a result of the property
0 (0:Y)) g ) 0iO:Y) 04 (0:Yi)
3090 | 30 0T

Regularity conditions required in Theorem 1.5 are not unique. A set of conditions
is listed in Lehmann (1999, pp. 499-501). We comment that suitable regularity con-
ditions are often imposed in order to yield good properties, such as consistency and
asymptotic normality, for a derived estimator. These conditions usually vary from
problem to problem and are often identified as sufficient, but not necessarily the
weakest, conditions which lead to the desired asymptotic properties.

In addition to the basic requirement for the model parameter in f(y;8) to be
identifiable, regularity conditions commonly include the assumption that the sup-
port of f(y;0) is parameter free. Regularity conditions are often pertinent to the
assumptions about both the parameter space and the model structures, and they can
compensate for each other. If more stringent conditions are imposed on the parame-
ter space, then the model form may be subject to fewer requirements, and vice versa.
For instance, if the parameter space ® is assumed to be finite, then the existence and

(1.5)
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consistency of the MLE can hold even if no strict condition, such as smoothness, is
imposed on the model form f(-); see, for example, Corollary 3.5 of Lehmann and
Casella (1998, p. 445). On the other hand, if the parameter space is not finite but con-
tains an open set in which the true value of 8 is an interior point, the existence and
consistency of the MLE can be established if certain conditions, such as smoothness,
are imposed on probability models; see, for example, Theorem 3.7 of Lehmann and
Casella (1998, p. 447). A comprehensive discussion on regularity conditions can be
found in Newey and McFadden (1994), Lehmann and Casella (1998, Ch. 6), Shao
(2003, §4.4, §4.5) and the references therein. Problem 1.14 illustrates that the MLE
may not possess asymptotic normality if the true parameter is not interior to the pa-
rameter space.

1.3.2 Estimating Equations

The likelihood method relies on correct specification of the distribution form, which
may be difficult in application. Various methods are developed to relax some require-
ments of the likelihood method. These approaches include guasi-likelihood (Wedder-
burn 1974; McCullagh 1983), pseudo-likelihood (Gourieroux, Monfort and Trognon
1984) and composite likelihood methods (Lindsay 1988; Lindsay, Yi and Sun 2011;
Varin, Reid and Firth 2011). All these methods can be umbrellaed under a broad
framework of estimating functions (Godambe 1991).

In this section, we outline some basics of estimating function theory, originating
from Godambe (1960) and Durbin (1960). The idea is to find a set of functions that
link the parameter 0 and the data so that the functions mimic certain properties of the
score functions. In particular, the zero mean property (1.4) is critical to be preserved
when developing estimating function theory. The following theorem provides the
theoretical basis for this.

Suppose that random variable Y has a probability model f(y;8) where the di-
mension of 6 is p, and that U(6; y) is a p x 1 vector of functions of parameter 6 for
a given y. Define

aU@b;Y)

FU(G)zE{ T

}, Tu(0) = E{UG:VUG:Y)),  (L6)
and
J7'0) = g 0) 2y O) g (0),

where the expectations are taken with respect to f(y; #) and the inverse matrices are
assumed to exist.

Theorem 1.6. Assume that
E{U@G;Y)} =0, (1.7)

where the expectation is taken with respect to f(y;0).
Suppose {Y1, ..., Yy} is a random sample having the same distribution as Y. If

Y U@:Y) =0 (1.8)

i=1
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has a unique solution, say 5 for 0, then under regularity conditions, the following
results hold:

(a) 02 0asn — 00,
(b) i@ —0) > N(0. 15" (8)) as n — oo.

We call U(6;y) an estimating function for 6 (or more precisely, a vector of
estimating functions when 6 is multidimensional), and (1.8) estimating equations.
Sometimes, the sum of the estimating functions in (1.8) is equivalently written as
a sample average, n=1 Y "'_, U(0;Y;), to indicate its connection with (1.7). When
estimating function U(6; y) is applied to random sample Y or sample measurements
y(n), the solution to (1.8) is, respectively, called an estimator or an estimate of 6;
without confusion we use the same notation, 5, to denote them.

Theorem 1.6 (a) says that 6 is a consistent estimator of 6, while Theorem 1.6 (b)
can be used to perform inferences such as calculating confidence intervals. Condition
(1.7), or its approximate version for some settings, is important for ensuring the
consistency of the estimator 5, and is often used as a prerequisite for finding useful
estimating functions (e.g., Liang 1987). If estimating function U(6; y) satisfies

E{U@6;Y)} =0forall 6 € O,

where the expectation is evaluated with respect to f(y;0), then U(8; y) is called
unbiased. The role of unbiasedness of estimating functions was discussed by Yanagi-
moto and Yamamoto (1991) who related it to conditional likelihood inference for the
exponential family. More discussion on estimating functions can be found in Heyde
(1997) and Shao (2003, §5.4).

The asymptotic covariance matrix Jy; () is called the sandwich covariance ma-
trix, and matrix Jy7 (0) is called the Godambe information matrix of estimating func-
tion U(8; y). The asymptotic covariance matrix may be used to compare the perfor-
mance of different estimating functions. In particular, for two unbiased estimating
functions U(0; y) and U*(6; y), if Jgi 0) — Jljl () is nonnegative definite for all
0 € O, then U(0; y) is said to be more efficient than U *(8; y), or more precisely, at
least as efficient as U*(0; y) (Heyde 1997, p. 12).

A rigorous proof of Theorem 1.6 and discussion on required regularity conditions
were presented in Chapter 12 of Heyde (1997). The following theorem provides the
connection between the likelihood method and general estimating function theory
(Godambe 1960; Bhapkar 1972).

Theorem 1.7. Let S(0;y) = dlog f(y; 6)/06. Under regularity conditions, the fol-
lowing results hold:

(a) Score function S(0; y) is unbiased;

(b) Js(0) = J1(0). That is, the Godambe information is identical to the Fisher
information for the score function;

(c) For any unbiased estimating function U(0; y), J; L@o)y—J S 1(0) is nonnegative
definite for all 0 € ©. That is, the score function is the most efficient.
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This theorem says that the score functions are optimal among regular unbiased
estimating functions. In application, however, it is often impossible or insensible to
consider the class of all regular unbiased estimating functions. Commonly, we con-
fine our attention to a class of estimating functions which does not include the score
function; optimal estimating functions are then searched within this class, which
turn out to be closely related to the score function (see Problem 1.16). A strategy
of formulating a useful class is to identify elementary estimating functions which
are unbiased and readily constructed, and then combine them linearly. The following
theorem provides the detail on this scheme and the formulation of optimal estimating
functions (Morton 1981).

Theorem 1.8. Suppose there is a class of elementary unbiased estimating functions
for 0, {U;(0;y) 1 j = 1,...,d}, where U;(0;y) is a p x 1 vector of estimating
functions, p is the dimension of 0, and d is a positive integer. Define U(0;y) =
U{(0;y)... U (0; y))". Let

L={CO)UB;y):C()is a p x pd matrix consisting of constants
that may depend on 6 but not on variable y}

be the collection of linear combinations of {U1(0; y), ..., Ug(0;y)}. Let I'y(0) and
Yy (0) be defined as in (1.6). If Xy (0) is nonsingular, define

U*(0:y) = Ig(0) 5" (O)U®: y).

Then U*(0; y) is an optimal estimating function for 0 in L, i.e., U*(6;y) is more
efficient than any estimating function in L.

The following example is an application of Theorem 1.8 and presents two esti-
mation methods that are widely used in practice.

Example 1.9. Suppose Y is a univariate random variable with mean pu(6) = E(Y)
and variance v(6) = var(Y'), where 0 is the associated parameter. Then, by Theo-
rem 1.8, setting d = 1 and U(0; y) = y — () leads to an estimating function:

3#(9)) y — ()
90 v(O)

We apply this result to a sequence of univariate random variable {Y; : i =
1,...,n}, each Y; having mean u;(#) = E(Y;) and variance v; () = var(Y;). For
each observation, y;, of ¥;, we define

i \ yi — pi(6
U* (0 y:) = (i>y—“()

U*(0: y) = (

a0 v; (0)
Then estimating equations
n
D UTB:yi) =0
i=1

may be used to estimate 6. This approach is called a quasi-likelihood method (Shao
2003, p. 361).
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If Y; is a random vector with ¥; = (Yj1, ..., Yim)" where m is a positive integer,
then the preceding formulation is generalized as follows. Let u;(6) = E(Y;) and
Vi (0) = var(Y;) be the mean vector and covariance matrix of Y;, respectively. Then
estimation of 6 can proceed with solving

n
i (0)\
2 (T) Vil O - 1 0)} =0 (19)
i=1
for 6, where {y;,...,y,} are sample measurements and the inverse matrices are

assumed to exist. Such equations are called generalized estimating equations (GEE)
(Liang and Zeger 1986).

We conclude this subsection with a comment on roots of estimating functions. The
existence and uniqueness of solutions to estimating equations are not automatic with-
out conditions. A well-defined estimating function may have multiple roots. When
multiple roots occur for likelihood score functions, evaluation of the likelihood func-
tion at those multiple roots allows us to identify the maximum likelihood estimator.
However, when multiple roots arise from solving estimating equations, it is not ob-
vious how to choose a suitable estimator from those roots. In such a situation, one
may follow the criteria by Heyde and Morton (1998) to discriminate a consistent
estimator from multiple roots of estimating functions. More discussion on this issue
can be found in Hanfelt and Liang (1995) and (Heyde 1997, §13.2, §13.3).

1.3.3 Generalized Method of Moments

Estimating function theory generalizes the likelihood method and provides a useful
and flexible estimation method that covers a wide class of applications. Unbiased-
ness (of estimating functions) is frequently imposed when using this method (e.g.
Liang 1987). As discussed in §1.3.2 for the quasi-likelihood or GEE methods, unbi-
ased estimating functions may be constructed based on using the assumed mean and
variance structures for the outcome variables. More generally, higher order moments
(if existing) may be invoked to meet the unbiasedness requirement for constructing
useful estimating functions. This route is related to the method of moments (MM), a
method that is intuitive and easy to implement for many problems.

The method of moments is basically to equate the sample moments to the corre-
sponding population moments and then solve them for the associated parameters. To
be specific, suppose random variable Y has the probability density or mass function
f(y;0) where 6 is the parameter vector of dimension p. Suppose that the popula-
tion moment py = E(Y¥) exists (or E(|Y¥|) < o0) fork = 1,..., p, and that the
Wi are functions of parameter 6, so we write ux = gx(0) for some functions g (-)
defined on R”.

LetY = {Y1,...,Y,} be arandom sample drawn from f(y;6). Define

PO R
/’Lk:;;yl‘
1=
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to be the kth sample moment, which is an unbiased estimator of the population mo-
ment g, i.e., E(ly) = ur fork = 1,..., p, where the expectation is evaluated with
respect to the joint distribution of Y. Then we use the sample moments to estimate
the population moments and obtain estimating equations for 8, given by

1 n
=Y vF =g (®) for k=1.....p. (1.10)
n

i=1

~

Under suitable conditions, solving these equations leads to a moment estimator, 9,
of 0.

Example 1.10. Suppose random variable Y has the N (i, 0'2?) distribution with mean
w and variance o2. Let Y = {Y;,....Y,} be a random sample chosen from
N(jt,02). Then the first two moments u; = E(Y) and us = E(Y?) of Y are
given by

H1 = [
o = 0%+ p?.

Equating the first two population and sample moments gives

1 n
;;Yi =W

1 n
SO Y =0t 4

i=1

leading to the moment estimator of 6 = (i, 02)":

p=Y

and

o 1< e —
D PP S I 1
s i
where Y = n~!Y"_, V;. This estimator is identical to the MLE of § under the
normality assumption for random variable Y, but its derivation does not require the
normality assumption of Y.

The method of moments is easy to implement but has a weakness. The choice of
order of moments is not unique, which generates somewhat ambiguity. In the preced-
ing example, any higher moments depend on both mean . and variance o2, and the
method of moments may be equally applied to any two moments of the normal dis-
tribution, thus leading to different estimators of 6. A question then arises: which set
of moments should be used? Such a question always comes up in situations where a
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number of moments are available but there are no apparent reasons to choose one set
of moments over others. To address this issue, it is convenient to position us within
a broader framework and develop the so-called generalized method of moments.

The generalized method of moments was first introduced into the econometrics
literature by Hansen (1982). This method may be regarded as a general estimation
principle which derives estimators from the (population) moment conditions. A mo-
ment condition is broadly defined in terms of a zero expectation statement for func-
tions of the data and parameters. Specifically, suppose U(6; y) is a ¢ x 1 vector of
functions (simply said a function) satisfying a moment condition:

E{U(80:Y)} =0,

where ¢ is a positive integer, and 6 is the true value of 8. Then under suitable
conditions for function U(f; y), we can produce sensible estimators by applying
function U(6; y) to sample measurements.

To ensure function U(6; y) to be useful, it is important that model parameter 6
must be identified from using such a function. If function U(6; y) satisfies

E{U(0;Y)} =0 if and only if 6 = 0,

then 6 is identified by using function U(6; y). Because it is difficult to find necessary
and sufficient conditions for checking the identification property for any function,
one has to examine the suitability of estimating functions case by case.

As a quick start, checking the dimensionality may give us an immediate indi-
cation of the feasibility of function U(8; y). If ¢ is smaller than p, then function
U(6;y) cannot yield a consistent estimator of 6 since 6 is not identifiable from
U(0; y). When ¢ equals p, then solving the equation based on the sample moment

> U ) =0 (L11)

i=1

may give us a sensible estimator of 6, provided suitable regularity conditions; such
an estimator is broadly called the method of moments estimator, extending the dis-
cussion on (1.10).

In situations with ¢ > p, trying to solve (1.11) may be fruitless because the equa-
tion number is bigger than the parameter dimension; solutions may not even exist. In
this case, instead of attempting to find a parameter value to make the sample moment
n~13"_ U(0;Y;) equal zero, we look for the parameter value that would minimize
a certain type of distance of the sample moment from its mean, zero. A sensible way
of expressing such a distance defines a quadratic measure

0.4(6) = {%ZU(@:Y,-)§ W, {%ZU(O;E)§ ,

i=1 i=1
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where W}, is a ¢ x g weight matrix that is symmetric and nonnegative definite, and
may depend on size n as well as the random sample Y. Then the minimizer of Q, (0)
with respect to 6, given the data, is called the generalized method of moments (GMM)
estimator: R

0 = argming g Ox(0).

GMM estimators are useful in conducting inferences; their asymptotic properties are
summarized in the following theorem.

, . p
Theorem 1.11. With the preceding setup, assume that W,, — W as n — oo, where
W is a nonnegative definite matrix. Let

G- g)U@:Y) we ) 0UE:T) ,
0 g, 90" lo=s,
and
=pg) U EY) WE (U(6o: Y)U" (60: ¥)} WE | L0 ~
a6 0=0, a0 0=09

Then under regularity conditions, the following results hold for the GMM estimator
0:

(a) 72 Oo as n — oo;
(b) V(@ = 00) 5 N©,G'HG ") as n — oo.

Regularity conditions required by Theorem 1.11, the existence and the unique-
ness of the GMM estimator are discussed by Newey and McFadden (1994) in detail.
When using the GMM, one needs to specify a proper weight matrix W,,. Ideally, W,
should be set as a matrix so that the resulting GMM estimator is the most efficient.
When W is the inverse matrix of the covariance matrix E{U(0¢;Y)U"(6¢;Y)}, we
have H = G and that the GMM estimator with the corresponding asymptotic covari-
ance matrix is asymptotically most efficient (Hansen 1982). As the evaluation of the
covariance matrix E{U(8¢;Y)U"(0¢;Y)} is not possible in many circumstances,
approximate algorithms are often introduced in actual implementation. For example,
a two-stage procedure is used in practice. At the first step, set W, to be a unit matrix
and obtain an estimate § by mlmmlzmg Qn(9) at the second step, set W, to be the
empirical counterpart n=! Y7, U (9 yi)u T(G ¥i), and then find the estimate 9 that
minimizes Q,(6).

We conclude this subsection with brief comments on the foregoing esti-
mation methods. The GMM may be viewed as a generalization of the likeli-
hood method in that the score functions, derived from the likelihood functions,
satisfy the moment condition required by the GMM. The GMM also gener-
alizes the estimating equations method as well as the MM. The GMM dif-
fers from the estimating equations approach in that the dimension of function
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U(6;y) may be equal or larger than that of parameter 6, whereas the estimat-
ing equations approach requires the equality for the dimension of U(6;y) and of
parameter 6. The GMM extends the MM in that function U(8; y) does not have to
be constructed from the difference between the population and sample moments,
and the dimension of U(8; y) does not have to equal the dimension of the parameter
either.

1.3.4 Profiling Method

The foregoing estimation methods are directed to the entire parameter vector where
all components are of the same interest and, thus, treated equally. In application,
however, this is not always the case. To reflect this, we write 6 = («*, 87)", where j
denotes the subvector of parameters at which our inference aims, and « denotes the
subvector of those parameters which are not of interest but necessary to be coupled
with § in order to make the model complete or meaningful. Often, components of «
are called nuisance parameters. In this subsection, we discuss estimation procedures
which handle parameters 8 and « differently.

Profile Likelihood

As discussed in §1.3.1, maximizing the likelihood function L(6) with respect
to O gives estimates of both 8 and «. Sometimes, it is difficult to do so simultane-
ously with respect to both 8 and «. An alternative strategy is to break the one-step
maximization into two steps, each relative to one type of parameters of a smaller di-
mension. To show the idea clearly, we now refer L(0) as to L(«, B). At the first step,
we fix a value for § and maximize L(«, ) with respect to «, yielding an estimate
g for parameter «; at the second step, we fix o as &g and then maximize L(ag, B)
with respect to B, producing an estimate of §.

Specifically, for any given B, let £2g = {o : («", 8)" € @} be the collection
of all values of @ so that & = (aT, 87)" falls in the parameter space @. For a fixed
value of 8, maximizing L(«, ) with respect to o over §2g gives an estimate of .
The resulting estimator, denoted by &g, is called a restricted maximum likelihood
estimator (restricted MLE) of «. Define

Ly(p) = sup L(a.p),

Ole.Qﬁ

or identically,
Ly(B) = L(@g. B).

to be the profile likelihood function of B. Then maximizing the profile likelihood
L,(B) with respect to  gives an estimate of 8. The resulting estimator, denoted by
,EP, is called the profile likelihood estimator of .

The profile likelihood is not a genuine likelihood because it does not necessarily
represent the probability density or mass function for a random variable. However,
when « is treated as a nuisance, using the profile likelihood to infer 8 seems natural
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and tempting. The profile likelihood L,(8) has some properties similar to those of
the likelihood function. For example, the maximum profile likelihood estimator BP of
B equals ;3\, the component of the MLE 0= @, /,B\T)T corresponding to parameter .
The log profile likelihood ratio statistic 2{{, (B) — £,(B,)} equals the log-likelihood
ratio statistic for the hypothesis H, : B = B, where §; is a given value to be tested.
Namely,

200,(B) — Lo(B,)} = 20L(@, B) — L@, Br)}-

While the profile likelihood function is sometimes used as if it were a true likeli-
hood (Young and Smith 2005, p. 135), it may give misleading inference for parameter
B in certain situations, especially when the dimension of « is of the same magnitude
as the sample size. A profile likelihood estimator may not be consistent, as illustrated
in the following example.

Example 1.12. Suppose that Y7, ..., Y, are independent, and that fori = 1,...,n,
Y; = (Yi1, ..., Yim)" where m is a given positive integer, and the Y;; are independent
random variables, each following the normal distribution N(e;, 8) with 8 > 0 and
—00 < @ < 0.

Leto = (o1,...,0,)" and 8 = (a", B7)". The log-likelihood of 6 is then given
by £(0) = Zi,j {;;(8) where with a constant omitted,

(Yij —ai)?
28 ’

Calculation shows that the restricted MLE of ; is @;jg = Y+, and thus, the log
profile likelihood for B is

1
tij () = —7logf —

V.. )2
6B =3 —élogﬂ—% ,
i,j

where Y, = m™! >_; Yij. Maximizing £,(B) with respect to B gives the profile
likelihood estimator of f:

~ 1 —
ﬂP = % Z(Yi_/ - Yi+)2~
i,j

This estimator converges in probability to (m — 1)B/m as n — oo, suggesting that
B» is not a consistent estimator for j.

This is the well-known Neyman—Scott problem (Neyman and Scott 1948) which
concerns the maximum likelihood estimator for the situation where only a parame-
ter subvector is of interest while the dimension of nuisance parameters has the same
magnitude as the sample size. The inconsistency of EP is pertinent to the inconsis-
tency of the estimators of nuisance parameters c; .
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In addition, inconsistency of BP may be explained by the lack of unbiasedness of
the profile likelihood score function:
34, (B) 1 (Y —Yiy)?
Sp(BY) = —— = -+ ——— ",
BV === =D gt

where Y = {Y1,..., Y, }. In fact, the expectation of S;(8;Y) is —n/(28).
A direct way of modifying the profile likelihood score functions is to work with
the difference

U(B:Y) = Su(B:Y) — E{S:(B: V)],

which is unbiased, where the expectation is evaluated with respect to the distribution
of Y. Thus, under regularity conditions, solving U(8;Y) = 0 for § gives a consistent
estimator of 8. For Example 1.12, this approach gives a consistent estimator

a__ 1 —Y)?
B= D ;m] Yis)?.

In the literature, various modifications to profile likelihood functions have been
proposed. For instance, Cox and Reid (1987) suggested a modified profile likelihood
function for settings where the nuisance parameter « is orthogonal to 8 in the sense
that the expectation of the mixed second partial derivatives of the log-likelihood with
respect to « and B is zero:

P log f(¥i:60)] _
E{ do ;0B } =0

for any elements «; of o and B of B. Other modifications were discussed by
Barndorff-Nielsen (1983, 1986), Liang (1987), and McCullagh and Tibshirani
(1990), among others.

In the presence of nuisance parameters, inference about the parameters of in-
terest may also be carried out using other strategies, including methods based on
conditional or marginal likelihoods. Succinct discussion on this can be found in
Kalbfleisch and Sprott (1970), McCullagh and Nelder (1989, §7.2), and Ferguson,
Reid and Cox (1991).

Joint Estimation

In many settings, the likelihood function for parameter § = («", 87)" is not avail-
able, but suitable estimating functions may be constructed for estimating 6, where 6
is of a finite dimension. Suppose U, (8; ) and Ug (0; y) are two unbiased estimating
functions, where Uy (0; y) is used to estimate « if 8 were known, and Ug(0; y) is
used to estimate f if the value of & were given. Define

U(0; ) = {Uy(0; ), Ug (0 y)}".
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As discussed in §1.3.2, for given sample measurements y(n) = {y1,..., Vn},
solving

> U@ =0 (1.12)

i=1

for 6 yields an estimate of 6.

Let§ = @, ET)T denote the resultant estimator of 6. Under regularity conditions
(e.g., those of Theorem 3.4 of Newey and McFadden 1994) and the assumption of a
unique solution for (1.12), 0 is consistent, and its asymptotic distribution is derived
as follows. R

For a given random sample Y = {Y;,...,Y,}, we expand n=1 Y""_ U(6;Y;)
around 6 using the Taylor series expansion:

—ZU(G Y;) = — ZU(G Y;) + {Zm§(e 0) + 0,(1).

. 0"
i=1 1—1 i=1

By definition of 9 and the identity

U(9: Y, UG Y
Ly v _ £ {2+ op

where Y is a random variable having the same distribution as Y;, we obtain

i=1

au(e;Y)

Vi@ -0 =~ £ |

]} 1ZU(9Y)+OP(1) (1.13)

1—1

Applying the Central Limit Theorem to the right-hand side of (1.13) establishes the

asymptotic distribution of 4/n(6 — 6), as stated in Theorem 1.6 (b).
In circumstances where § is of interest while « is a nuisance, it is desirable to

explicitly express the asymptotic distribution of the estimator E which is immediate
by calculating the product of the corresponding block matrices. Let

s (E { aU%S)T;Y)} e { anéfgoT;Y)} [E { BU%;GT; Y)}]—l . { aU%geT; Y)})—l’

Ape = —E % aUﬁaifT; Y) } -1 . { aUﬁa(a@T; Y)} Ao
Ags = (E { aU%fgeT;Y)} 5 { BU%E)!OT;Y)} [E { 8U08519T; Y)”_' £ { aU(BfBeT; Y)}>_l’
and

G(y;0) = AgpUp(0:y) + AgaUa(0: y).



1.3 Estimation Methods 25

Then under regularity conditions,

~ d

Vn(B—pB) — N(0,Xg) asn — oo, (1.14)
where X = E{G(Y;0)G"(Y;0)}.
Profiling Estimating Equations/Two-Stage Estimation

Simultaneously estimating 8 and « by solving (1.12) may be computationally
intensive sometimes. An alternative is to divide the estimation procedure into two
stages. At the first stage, we fix § at a given value and then calculate an estimate of
« by solving the equation

1 n
— 2 Uale, Biyi) =0

i=1

for o using the Newton—Raphson algorithm. At the second stage, we solve

1 n
. Z Ug(dg,B;yi) =0
i=1
for B, where &g is the estimate of « obtained at the first stage. Keep iterating these
steps until convergence of the estimates. We call the resulting estimator of § the two-
stage or the profile estimator of B, and Ug(aig, B: y) the profile estimating function
for B.

The two-stage estimation algorithm has been widely used, especially when
Uy(0; y) is free of § and dependent on « only. Specifically, suppose Uy (; y) is an
unbiased estimating function of «, and Ug(«, B; y) is an unbiased estimating func-
tion of B if @ were known. With given sample measurements y(n) = {y1,..., Vn},
at the first stage, we solve

1 n
— Y Ul yi) =0
n i=1

for a, and obtain an estimate of «, say &. At the second stage, we solve

1 n
~> Up@ piyi) =0
i=1
for B.
Let /ﬁ\ denote the resulting estimator of 8. This two-stage estimator ,:3\ is identical
to the estimator of 8 obtained from joint estimation by solving (1.12) for 6. The
asymptotic distribution of B, given by (1.14), becomes

JIB = B) -5 NO, T 1) asn — oo, (1.15)
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where
AUR(6:Y)

r-p| e

},xzmm&mQWﬂ»

and

H_l Ua(: y).

Q(0:y) = Up(0:y) — E % Wp 0 Y)} |:E { Ola(@: )

do” do”

Inference about 8 can be conducted by using the asymptotic distribution (1.15)
with I" and X replaced by their empirical estimates, respectively, given by

o1& AU(0: ) N R N
pzzzﬁ— Aand E=;ZQ(9;yi)Q(9§J’i)v

i=1 9P 6=6 i=1
where 0 = (aT, BT)T and
0(8:y) = Up(6:y)
1 o 0UR(6; i) Lem Ua(iy) | |, -
_{;Z o’ —~ ;Z o’ ~ Ua(@: ).
i=1 6=0 i=1 0=a

The formulation of ¥ in (1.15) reflects how estimation of nuisance parameter o
at the first stage affects the asymptotic covariance of the estimator E obtained from
the second stage. Ignoring variability induced from the first stage often distorts the
variance estimate of the estimator E hence leading to invalid inference results for §.
To see this more clearly, we consider a hypothetical situation where the true value o
of « is known and we estimate 8 by solving

1 n
—~ Y Upleo. fiyi) =0

i=1

for B; let E denote the resultant estimator of 3.

The performance of B and E is generally different, which is suggested by their co-
variance estimates. The covariance estimate of ,8 is given by n “IP=1S =17 while
by Theorem 1.6 (b), the covariance estimate of B is n~! T~ 3 T"~17, where
~ 1 U (o, B3 yi)
r=- ; T B:F, (1.16)

1 ~ ~
;Xjﬂw&wwwm&m. (1.17)
In the instance where o must be estimated, ignoring variability induced from esti-

mating o at the first stage but just replacing oo with its estimate for (1.16) and (1.17)
would usually give rise to invalid variance estimate for the estimator of 8, unless in
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special situations, such as E{0Ug(0;Y)/0a"} = 0, or equivalently, estimating func-
tion Ug(a, B;Y) is uncorrelated with the score function for the nuisance parameter
o (see Problem 1.15).

It is interesting and counterintuitive that ignoring variability induced from the
estimation of & can sometimes produce a larger variance estimate for the estimator
of B than taking into account of the variation caused from the first stage estimation
of «. This phenomenon was observed by many authors, including Robins, Rotnitzky
and Zhao (1994) and Ning, Yi and Reid (2017), among many others. This paradox
does not appear when estimation is based on a likelihood method but may occur
when using estimating functions to conduct parameter estimation. A geometric ex-
planation was provided by Henmi and Eguchi (2004). Newey and McFadden (1994,
§6) discussed this issue in detail.

1.4 Model Misspecification

In parametric modeling, we specify a working model {f(y;0) : 0 € O} with
the hope to capture or well approximate the true data generation mechanism /%(y).
In reality, however, there is no way to know whether or not a specified working
model can reach this goal. It is, therefore, important to understand the consequences
when a working model deviates from the true data generation mechanism, a scenario
that is called model misspecification. In this section, we describe some principal
strategies for characterizing asymptotic biases caused from model misspecification.
We begin with the likelihood framework for which a number of authors, including
Huber (1967), White (1982), Kent (1982), and Royall (1986), have contributed basic
setup and tools for handling misspecification issues. Extensions to handling model
misspecification with marginal analysis then follow with the discussion concentrated
on relevant asymptotic properties.

Let y(n) = {y1,...,yn} be the measurements of a random sample Y =
{Y1,...,Y,} generated by the true mechanism A(y), where h(y) is defined on a
measurable Euclidean space. Suppose f*(y;0) is a working probability density or
mass function that is user-specified and is measurable in y for every 6 € &, where &
is the parameter space. Here we use f*(-) rather than f(-) for the model form to in-
dicate the possibility of model misspecification. We write the working log-likelihood
of the sample as

n
€ (6:y(n)) = > _log f*(yi: 6).
i=1
With certain conditions on the working model, as given in the following theorem,
there exists a value of 6 that maximizes the working log-likelihood, and we let 6*
denote this “working” estimator of 6.

Theorem 1.13. Assume that ® is a compact subset of a Euclidean space, and
f*(y:0) is continuous in 6 for every y in the sample space. Then for all n and
the given sample measurements y(n), there exists a value 0 € © that maximizes
(8 y (m): R

0 = arg maxyenl™(0; y(n)).
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To describe the discrepancy of the working model from the true data generation
mechanism, we define the Kullback—Leibler Information Criterion (KLIC):

h

where the expectation is taken with respect to the true distribution A(y), and Y rep-
resents a random variable with distribution 4 (y).

When h(y) falls in the class { f*(y;0) : 8 € O}, there exists 8y € O such
that h(y) = f*(y;6p), hence I(h : f*;6p) = 0. The magnitude of I(h : f*;0)
reflects the ignorance about the true distribution structure /(-) when using a working
distribution f*(-).

Theorem 1.14. Assume that the conditions of Theorem 1.13 hold and that

(a) E{logh(Y)} exists and |log f*(y;0)| < m(y) for all 0 € O, where m(y) is
integrable with respect to h(y) and the expectation is taken with respect to the
distribution h(y);

(b) I(h: f*;0) has a unique minimum at 6* in ©.

Then we have that

~ p
0 — 0* asn — oo.

In the case where the probability model is correctly specified with h(y) =
f*(y;0p) for some By € O, then I(h : f*;0) attains its unique minimum (i.e.,
zero) at * = 6. Therefore, the resulting working estimator 9 is consistent for the
true parameter value 6.

Theorem 1.15. Under regularity conditions on f*(y; 6) presented by White (1982),
including the assumptions in Theorems 1.13 and 1.14, we have that as n — 00,

@ = 0%) L N, T*L(0%) S* (01 10,
where

9%log f*(Y;0)
00007

dlog f*(Y;0) dlog f*(Y;6)
30 96T ’

F*(G):E{ },2*(9):15{

and the expectations are taken with respect to the true distribution h(y).

Theorems 1.13 and 1.15 suggest the existence and the asymptotic distribution
for the estimator obtained from a working model while Theorem 1.14 can be used to
characterize the asymptotic bias induced from using a working model. The induced
asymptotic bias may be quantified by the difference § —0*. By definition, it is readily
seen that under regularity conditions, 8 may be found by solving the equation

E{w§=o,

o (1.18)

where the expectation is under the true distribution 4(y).
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These results were discussed in detail by White (1982). They are useful for study-
ing the effects of various types of model misspecification under the likelihood frame-
work. In many applications, however, we do not work with a full distributional setup
but rather focus on marginal structures such as mean and variance of the distribu-
tion. In this case, working with estimating functions may be a useful and necessary
alternative. As discussed in §1.3.2, to result in consistent estimators, unbiasedness of
estimating functions is often a prerequisite. This condition cannot, however, always
be satisfied. Many naturally and easily constructed estimating functions are not unbi-
ased. Yi and Reid (2010) investigated asymptotic biases resulted from using biased
estimating functions and established associated asymptotic properties.

Theorem 1.16. Suppose that U(0;y) is a vector of estimating functions for a
p-dimensional parameter 6 which may not be unbiased. Suppose that Y is a random
variable having the cumulative distribution F = F(y; 0y) or the probability density
or mass function f(y;0) for a value 6y € ©. Assume that O is a convex compact
set and that

U;(0;y)| <m;(y)

forall y and 0, where m ; (°) is integrable with respect to F, and U;(0; y) is the jth
element of U(0;y) for j = 1,..., p. Assume that

Egy{U(0;Y)} =0

has a unique solution 8§, where the expectation Eg, is evaluated with respect to
f(y;6p). For a sequence of independent random variables Y = {Y1,...,Yy} each
having distribution F, suppose that

1 n
~Y U@:Y) =0
n

i=1
has a solution 0*. Then under regularity conditions,
% P *
0" — 6, as n— oo.

This theorem characterizes the convergence of the estimator 9* obtained from a
working estimating function U(6; y) that is not necessarily unbiased. The difference
85 — Bo is the asymptotic bias induced from using a biased estimating function to
estimate 6p. If function U(6; y) is unbiased, then 65 = 6p and 9* is consistent
for 6y. Theorem 1.16 can be used for some applications to find consistent estimators
by adjusting for inconsistent working estimators. The idea is illustrated as follows.

Suppose that i(y) is correctly or reasonably modeled by { f(y;0) : 6 € ®}, and
U(y; 0) is a vector of estimating functions of 6 which may be biased. Assume that
for any 6 € O, there exists a 0* € © such that

Eo{U(0™:Y)} =0, (1.19)
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where the expectation Ej is taken with respect to the model f(y:6). That is, 6*
is defined as a function of 6, say, 8* = k() for a p x 1 vector of functions k()
Assuming the inverse function vector

0 = k(6%) (1.20)
exists, then we use this to define an estimator of 6y as
0 = k(0.

If k(-) is continuous, then k(/Q\*) converges to k() in probability, thus, the adjusted
estimator ’9\ is consistent for 6. .

Inference on 6 may be carried out based on the asymptotic distribution of 9,
established as follows. Let

AUB: Y))
Z—

1 & N
20 — Y UO:Y)U'(0:Y)

i=1

I'*(0) = Eg, . XH(0) = Ejy,

i=1
and

C*(0) = Ir*=1O) T O (0),
where I"*(0) is assumed to be nonsingular.
Theorem 1.17. Suppose that the conditions in Theorem 1.16 are satisfied and that
U;(0;y) is a continuously differentiable function of 6 for each y, where j =

1,..., p. Under regularity conditions on U;(0;y) and the model F, the following
results hold as n — oo,

~ d
(a) /n(0" —65) — N{0,.C*(65)};
(b) assuming k(-), defined at (1.20), exists and is differentiable,

@ —80) L N (o, { 8"8(:“} Cc*(6) { 81;(99“}) . a2y

Result (1.21) provides us a means to conduct inference on 6, such as constructing
confidence intervals or testing hypotheses. In doing so, one replaces the relevant
quantities with their empirical counterparts to obtain a consistent estimate for the
asymptotic covariance matrix of 0. The regularity conditions for Theorems 1.16 and
1.17 are similar to those outlined in Ch. 5 of van der Vaart (1998); see in particular
the discussion following his Theorems 5.9 and 5.21 and the discussion by Yi and
Reid (2010).

Finally, we comment that (1.18) or (1.19) is sometimes called the bridge function;
this function is commonly used to characterize the asymptotic bias induced from a
working model (e.g., Jiang and Turnbull 2004). See discussions in §4.3 and §7.3 for
details.
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1.5 Covariates and Regression Models

Our discussion in the previous sections is laid out for a single random variable.
Examining a single variable is rarely the case in application. Measurements for mul-
tiple variables from either planned experiments or observational studies are usually
collected. To formulate viable models for statistical inference, we often split data
into two parts: y, and {x, z}, where y is the observed measurement of a random
variable Y, regarded as the outcome, response, or dependent variable; and {x, 7} are
the measurements of variables { X, Z}, called covariates, predictors, risk factors, ex-
planatory variables or independent variables, in application. In this book, we use the
terms response and covariate variables for Y and {X, Z}, respectively.

The book focuses on delineating the relationship between a response variable
and covariates using various modeling techniques that are tailored for individual ap-
plications. We are interested in describing the distribution of a response variable
conditional on covariates, often denoted by a conditional probability density or mass
function h(y|x, z). However, it is barely the case that the form /(y|x, z) can be
identified exactly.

In parametric statistical inference, we consider a family of conditional probabil-
ity density or mass functions and hope %(y|x, z) would be contained by this family.
In other words, statistical modeling is commonly done by specifying a model, called
a regression model,

flx,z:B).

where f(-|-) represents structural assumptions and is usually specified (or partially
specified) as a known analytic form but involves a vector of unknown parameters
B = (B1....,Bp)" with a finite dimension, say p; the dimension of 8 can be infinite
in semiparametric regression models. All possible values of B form a subset of the
Euclidean space R”, and we call this the parameter space and denote it by ©g. Hav-
ing B vary in @p reflects the lack of knowledge to pin down which f(y|x,z:pB)
would actually capture or well approximate the true conditional probability den-
sity or mass function i (y|x, z). It is our hope that one of the functions in the class
{f(y]|x,z;B) : B € Op} would catch A(y|x, z), i.e., there exists Bp € @ such that
f|x, z; Bo) = h(y|x, z). This By is called the true value of B.

The function f(-|-) is called the model function or regression model. Specifying
the function form of f(|), together with associated assumptions, is called model-
ing. Statistical modeling is, to some extent, an art. There are no definite rules on how
to determine a suitable model rigorously, although certain principles may be useful.
The general consensus is that no models are correct, but some may be useful (Box
1979). Sometimes, the form of f(:|-) is merely chosen due to its mathematically
convenient properties. For example, generalized linear models (GLMs) are popu-
larly used for independent univariate data (McCullagh and Nelder 1989), while in
contrast, generalized linear mixed models (GLMMs) are often employed for clus-
tered or longitudinal data where random effects are introduced to feature association
structures (e.g., Fitzmaurice et al. 2009). Sometimes, the nature of response variables
or the research interest suggests a modeling scheme. But often, the combination of
these considerations drives us to choose a model form.
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Selecting a regression model is usually not separable from the way we use data.
When modeling, we commonly face a number of questions, such as, do we need to
include all the covariates in the model? In what form should the covariates appear?
Do we need to include interaction terms among the covariates? In the presence of
multiple candidate models, model selection may be invoked to choose a suitable one.
In principle, good model selection methods are struck to balance between goodness-
of-fit and parsimony. Adding an extra term to the model may improve the fit to the
observed data, but this would usually induce additional estimation variability and
degrade the inference results. In addition, this would make the model more complex
and reduce the interpretability of model parameters. Normally, it is recommended to
assess the adequacy of a model form using the goodness-of-fit or model diagnosis
techniques whenever possible. Some model checking techniques were discussed by
McCullagh and Nelder (1989, Ch. 12) and the references therein.

With a regression model, the treatment of the model function f(-|-) and parameter
B may, in principle, follow the same lines outlined as in §1.2 for model parameter 6.
Estimation and inference methods described in the previous sections may carry over
with proper modifications, which require our care of covariate variables. For exam-
ple, issues concerning model misspecification can be more subtle in the presence
of covariates. In particular, we need to recognize that with model misspecification,
the limit, say 8*, to which ;3\ converges in probability, depends on the joint distri-
bution of {Y, X, Z}. In this situation, investigation of model misspecification may
be carried out by conditioning on {X, Z}, which allows us to not consider the joint
distribution of {Y, X, Z} but just the conditional distribution of Y given {X, Z}.

In standard regression analysis, the conditional analysis is commonly employed
with covariates {X, Z} kept fixed. For instance, in planned experiments, covariate
variables are frequently used to specify certain aspects of the system or design
features, and it is often plausible to take them as fixed without being assigned a
distribution. In some observational studies, however, it may be more feasible and
convenient to treat covariate measurements or some of them as the observed values
of certain random variables. To allow for a flexible presentation, in this book we use
X to denote covariates that may be a random vector with a certain distribution, and Z
is reserved for covariates that are taken as fixed without being assigned a distribution.

1.6 Bibliographic Notes and Discussion

This note does not attempt to provide a comprehensive discussion (in fact, it is far
from that) of the research and history of statistical inference. Only a few points are
highlighted here. Model identifiability is a fundamental requirement to ensure mean-
ingful inferences. Discussion on this aspect was provided by Koopmans (1949),
Koopmans and Reiersgl (1950), Rothenberg (1971), Roehrig (1988), Rao (1992),
Gustafson (2005), Allman, Matias and Rhodes (2009), Chen (2011), and the refer-
ences therein, among many others. Because the distribution of a useful estimator for
the model parameter is often difficult to derive, large sample theory plays a corner-
stone role in conducting inferences for which examining the consistency and asymp-
totic normality is usually the focus.
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The consistency of estimators is often a result of making suitable conditions for
objective functions or estimating functions. A general set of conditions can be found
in Newey and McFadden (1994, Theorems 2.1 and 2.7) and specific conditions for
the consistency of the MLE and the GMM estimator are, respectively, given in The-
orems 2.5 and 2.6 of Newey and McFadden (1994). Establishment of the asymptotic
normality of an estimator may be carried out according to the smoothness of the
objective functions or estimating functions. Discussion on this was given by Bickel
and Doksum (1977), Pollard (1985), Pakes and Pollard (1989), Newey and McFad-
den (1994), Lehmann and Casella (1998), van der Vaart (1998), Shao (2003) and the
references therein.

The asymptotic distribution of an estimator provides the basis for performing in-
ferences, where a consistent estimate of the asymptotic covariance matrix is required.
A common way for doing so is to substitute the point estimate into the asymptotic co-
variance matrix. Newey and McFadden (1994) provided a detailed discussion on this
method. For complex models, this strategy may become computationally cumber-
some. The bootstrap technique or the jackknife method may be employed by using
repeated sampling procedures to work out an asymptotic covariance estimate. Dis-
cussion on these algorithms is available in Efron and Tibshirani (1993) and sketched
in Appendix A.4.

Two-stage estimators, discussed in §1.3.4, may be generalized to the case
where the finite-dimensional parameter « is replaced by a function or an infinite-
dimensional parameter. Resulting estimators for 8 may be termed as semiparametric
two-stage estimators. Discussion on such estimators was given by Serfling (1980),
Hirdle and Linton (1994), and Newey and McFadden (1994, §8), among others.

1.7 Supplementary Problems

1.1. Suppose Y is a binomial random variable with the probability mass function
PY=1)=0and P(Y =0)=1-6, (1.22)

where 0 is a parameter with 0 < 6 < 1.
(@ (i) Write f(y;0) = 67(1 — 0)!™Y with y = 0, 1. Is 9 identifiable?
U-estimable?

(i1) Consider a reparameterization % = V0, then the model becomes
f(y:) = 027 (1-92)177 with y = 0, 1. Show that ¥ is identifiable
but not U-estimable.

(iii) Consider a reparameterization ¥ = 6> for model (1.22). Is ¢ identi-
fiable? U-estimable?

(b) Suppose Yq,...,Y, are independently and identically distributed with the

same distribution as Y .

(i) LetY =n=1 3" | ¥;. Show that ¥ is a UMVU estimator of 6.

(ii) Letg(0) = 6/(1—0) be the odds ratio. Show that the odds ratio q(0)
is not U-estimable whatever # is.

(Freedman 2009, §7.2; Bickel and Doksum 1977, Ch. 4)
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1.2.

1.3.

1.4.

1 Inference Framework and Method

(a) Prove the results of Example 1.1 in §1.2.1.
(b) Prove that if model parameters are U-estimable, then they are identifiable.

(Freedman 2009, §7.2)

Suppose {Y1, ..., Y,} is a random sample chosen from the N(u, o?) distribu-
tion, where p is a real number and o is a positive constant. Let

1 < -
V= Y, —Y)?
— > (i =)

i=1

be the sample variance, where Y = n=1 Y"_, ¥;. Let 0 = (u,0?) and ¢(9)

be a function of @ given by ¢(8) = o2.

(a) Find the maximum likelihood estimator of ¢(8). Is this estimator unbi-
ased?

(b) Show that V' is an unbiased estimator ¢ (8).

(c) Show that the MSE of (n — 1)n~!V is smaller than the MSE of V.

(d) Can you find an estimator of the form ¢V with a constant ¢ such that its
MSE is smaller than that of (n — D)n='V 2

(Shao 2003, §2.6)

(The jackknife method for bias reduction). Suppose Y = {Y;,...,Y,}is a
random sample chosen from the probability model f(y;0). Let

0=0Y1,....Y)

be an estimator of parameter 6 based on the sample Y. Fori = 1,...,n,
let Y(—;) be the subset of Y = {Y1,...,Y,} with Y; excluded, and 6 ;) be
the corresponding estimator of 6 based on the subsample Y(_;y. Define the

Jackknife version of 9 to be

~ ~ n—]n/\
0, =nt — — > 0.

i=1

Suppose that the expectation of B can be written as
E@) =06+ —,
Q) ,; pr-

where for k = 1,2, ..., constants a; may depend on 6 but not on n. Hence,
E®) =6+ 0(1/n).

(a) Show that the expectation of the jackknife estimator 6, is

-~ an 1
E@J:G—;5+O(E).
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(b) Show that if Var(/é) = O(1/n), then var(gj) = O(1/n). Thus, the jack-
knife reduces bias but not increases variance.
(Lehmann and Casella 1998, Ch. 2)

(a) Show that a UMVU estimator is always consistent.
(b) Is an unbiased estimator always consistent?
(c) Is a consistent estimator always unbiased?
(Bickel and Doksum 1977, §4.4)

Suppose Y is a random variable following distribution N(6, 1), where 6 is a

parameter taking values in R. Let Y7, ..., Y, be independently and identically

distributed having the same distribution as Y. Define V = |Y|, and V; = |Y;|

fori =1,...,n.

(a) Find the distribution of V.

(b) Show that 6 is unidentifiable in the distribution of V in (a).

(c) Show that 8 cannot be estimated consistently if we have only the observa-
tions of the V;.

(Lehmann 1999, §7.1)

Let{Y, : n = 1,2,...} be a sequence of random variables, and {a, : n =
1,2,...,}and {b, : n = 1,2,...,} be two sequences of positive constants,
respectively, satisfying that as n — oo,

a, — oo ora, — a forsomea > 0

and
b, — oo or b, — b for some b > 0.

If there exist random variables Y, and Y with E(|Y,]) < coand E(|Y3]) < oo
such that

d d
a,Y, — Y, and b, Y,, — Y, asn — oo,

then one of the following four statements must hold:

(@) E(Yq) = E(Yp) = 0;

(b) E(Yy) #0, E(Yp) =0,and b, /a, — 0asn — oo;

(¢c) E(Yy) =0, E(Yp) #0,and a, /b, — 0asn — o0;

(d) E(Yy) #0, E(Yp) #0,and {E(Y,)/an}/{E(Yp)/by} — 1 asn — oo.
(Shao 2003, §2.5)

Let {/9\,1 :n = 1,2,...} be a sequence of estimators of 6, V be a random
variable, and {a, : n = 1,2, ...} be a sequence of positive numbers satisfying
that as n — oo,

a, — oo or a, — a forsomea > 0.

~ d
Assume that a, (0, —0) — V asn — oo, and E(V?) < oo. Show the
following results:
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1.9.

1.10.

1 Inference Framework and Method

(@) E(V?) < liminfy o0 E{a2 (0, — 6)%};
(b) E(V?) = limy_o0oE{a2(6, — 6)2} if and only if {a2(6, — 6)*> : n =
1,2,---} is uniformly integrable.
(Shao 2003, §2.5)

Let {Y;,...,Y,} be a random sample chosen from the Poisson distribution
with the probability mass function

f(y:0) =

6 exp(—0
$ fory =0,1,..., (1.23)

where 6 is a positive constant. Consider the reparameterization
¥ = exp(—0)

which represents P(Y; = 0) fori = 1,2,....
(a) Define

1 n
Vi == ) 1{Yi € (—00,0]},
2=
where /(-) is the indicator function.
(i) Show that V}, is an unbiased estimator of .
(i1)) Find MSE(%; V;,).
(iii) Show that the MSE and asymptotic MSE of V,, are equal.

(b) Define
1 n
v,k = exp (—; ZY,) .

i=1
(i) Find the MSE of V.
(i) Find the asymptotic MSE of V,*.
(iii) Show that V,* is asymptotically more efficient than V.
(Shao 2003, §2.5)

Suppose y(n) = {y1,..., yn} are measurements of a random sample chosen
from the Cauchy probability density function

f(y:0) =

1
0+ =02 for —oo <y < o0,
where 6 is a real number.
(a) Find the likelihood equation.
(b) With n = 2, discuss the existence and uniqueness of the maximizers of
the likelihood function.
(c) Asn — 00, discuss the problems in (b).
(Ferguson 1978; Bai and Fu 1987; Lehmann 1999, §7.3)
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Let{X; :i =1,...,n}and {Y¥; : i = 1,...,n} be independently and nor-
mally distributed random variables with means

E(X;) = p; and E(Y;) = B,

and variances o2 and 03, respectively. Let 6 = (8,02, UJ%, Wis. .., in)" be
the vector of parameters, where the first three components are called structural
parameters and the u; are called incidental parameters.
(a) Construct the likelihood function for 6.
(b) Show that the likelihood is unbounded.
(¢) Show that an MLE of 6 does not exist.
(d) If the constraint 0% = oy2 is imposed, show that the MLE of j exists and
is consistent.
(Lehmann and Casella 1998, §6.7)

Suppose that {1, ..., Y, } is a random sample chosen from the uniform distri-
bution UNIF [0, 6] with the probability density function

1
f(y;0)=51(05y§9) for —oo <y < o0,

where 6 is a positive parameter.

(a) Find the MLE 6 of 6.
(b) Is 6 unbiased? consistent?
(c) Is /n(6 — 0) asymptotically normal?
(Lehmann 1999, §7.2)

Suppose that ¥ is a random variable having a probability density or mass func-
tion f(y;6).
(a) Show that

£ 3% log f(Y;0) _r dlog f(Y:6)) (dlog f(Y;6))"
{_ 36907 }_ H 30 H 30 H

provided certain regularity conditions. What conditions do you need?
(b) Suppose V = V(Y) is a function of Y that is used as an estimator of 6.

Let m(@) = E(V) and J(0) = E{—%}. If 6 is a scalar, show

that
{m'(6)}?
J(©O) -

The right-hand side is known as the Cramér—Rao Lower Bound.

(c) Show that any unbiased estimator which attains the Cramér—Rao Lower
Bound is a UMVU estimator, but there is no guarantee the Cramér—Rao
Lower Bound would be achieved exactly by any estimator.

(d) Can the inequality in (b) be generalized to the case where 6 is a vector?

(Young and Smith 2005, §8.2)

var(V) >
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1.14.

1.15.

1.16.

1.17.

1 Inference Framework and Method

Suppose that {Y7,...,Y,} is a random sample chosen from the distribution
with the probability density function

=
202

f(y:0) =

1
ex for —oco <y < o0,
V2mo P Y
where 8 = (1, 0%)" € @ and @ = [0, 00) x (0, 00).

(a) Find the MLE 8 = (1,52)" of 6.
(b) If the true value of w is o = 0, show that «/n (it — o) does not have an
asymptotic normal distribution.

(Newey and McFadden 1994, §3)

Suppose Y is a random variable having a probability density or mass

function f(y;6), where 86 = (af,B")" is the parameter vector. Let

Sq(0;y) = dlog f(y;0)/da be the score function corresponding to «.

Suppose U(a, B;y) is a vector of functions whose partial derivatives with

respect to o exist.

(a) Assume that the operations of expectation and differentiation are ex-
changeable. Show that if E{U(«, 8;Y)} = 0, then

E{GU(a,ﬂ;Y)

do”

} =—E{U(x,B;Y)S,(0;Y)}.

(b) Is the converse statement of (a) true?

Let Y be a random variable with a probability density or mass function

f(y;0), and S(0;y) = dlog f(y;6)/90 be the score function, where 0 is

a scalar parameter. Suppose U(6; y) is an unbiased estimating function for 6,

and U is a class of estimating functions which contains U(8; y).

(a) Show thatif U(#; y) is an optimal estimating function in U/, then U(0;Y)
has maximal correlation (in absolute value) with the score function
S(0;Y). That is, for any U*(0; y) € U, we have

lcorr{U™(0;Y), S(0;Y)}| < [corr{U(8;Y), S(6; Y)}|.
(b) Is the converse statement of (a) true? Can you identify a useful class I/?

Let y(n) = {y1,...,Yn} be the measurements of a random sample Y =
{Y1,...,Y,} drawn from the probability density or mass function f(y;6) with
the support of all nonnegative real values, where 6 = (u,0), u is the mean,
and o is the standard deviation of the distribution. Let ¥ = ¢(6), given by
q(0) = (0/p)?. This is called the squared coefficient of variation. Define

I - 1 & B ]
y:ZZy"’szzn_lZ(yi—Y)z» and U(9;y(n)) = s> —93%.

i=1 i=1
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(a) Show that the conventional moment estimate of ¢ is obtained by solving
U@:yn) =0.

(b) Show that U(¢; y(n)) is not an unbiased estimating function for 9.
(c) Define
U*(@:y(n) = s> = 9(5% = s%/n).
Show that U*(¢; y(n)) is an unbiased estimating function for ¥, and the
resulting estimate of ¥ is:

S2

[ —
72 —s2/n
(d) Compare the estimators obtained from (a) and (c).
(Yanagimoto and Yamamoto 1991)

Suppose {Y1,..., Y} is a random sample chosen from a Poisson distribution
with the probability mass function (1.23).

(a) Find the MLE of 6.

(b) Find a moment estimator of 6 using the first moment of Y;, where i =

1,...,n.
(c) Find a moment estimator of 8 using the second moment of Y;, where i =
1,...,n.

(d) Derive a GMM estimator of 6 by combining the estimating functions in
(b) and (¢).
(e) Compare the estimators obtained from (a), (b) and (c).

Suppose {Y1,..., Y, }is arandom sample chosen from the normal distribution

_ n
N(u,0?) with mean y and variance 6. Let § = (n,0%)and Y =n~! ) ¥;.
i=1
(a) Find the MLE 8 of 6. R
(b) Let ¢(6) = o/u denote the coefficient of variation. Show that ¢(0) =
\/n_l S (Y; —Y)2/Y, and that q(/G\) is a consistent estimator of ¢ ().

(c) Find the asymptotic distribution of /n {q(/e\) — ¢(6)}. Can you find the
exact distribution of ¢(0)?

Suppose Y = {Y1,...,Y,} is a random sample chosen from the probability
density or mass function f(y;8), and U(0; y) is an unbiased estimating func-
tion for 6 which is of the same dimension as 6. Suppose that for given Y,

Y UG:Y) =0
i=1

has a unique solution 6.
(a) Under certain regularity conditions, show that

~ p
0 — 6 as n — oo.
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1.21.

1.22.

1 Inference Framework and Method

(b) Discuss regularity conditions in (a).
(c) Do unbiased estimating functions always give unbiased estimators?
(Newey and McFadden 1994, §2)

(a) Suppose y(n) = {y1,...,Yn} are the measurements of a random sam-
ple {Y1,...,Y,} chosen from the probability density or mass function
f(y;0), where 8 = (¢, B7)". Let

- dlog L(9;
L(O;y(m) = [ | f(i:6) and Sg(B,a:y(n)) = w.
i=1

Suppose that there exists a unique MLE 9 = @, ET)T and that for each
B there is a unique restricted MLE G/g of «. Assume certain regularity
conditions. R
(i) Show that B is the solution of Sg (&g, B; y(n)) = 0.
(ii) Show that & = o~
(iii) Discuss what regularity conditions are required for (i) and (ii).
(b) Let f(y;a, B) be the probability density function of a Weibull distribu-
tion:
f(yia. B) = BayP ' exp(—ay?) fory >0,

where parameters « and § are positive.
(1) Verify the conclusions in (a).
(i1) Show that the profile likelihood score function for § is not unbiased.

(Liang and Zeger 1995)
Suppose the Y;; are independent each following a Poisson distribution
Poisson(u;;), where w;; is the mean of Y;; for j = 1,...,m; and

i =1,...,n. Consider the log-linear regression model
IOg[,L,'j =o; + ﬂXl'j,

where X;; is a fixed covariate, and 8 and «; are regression coefficients. Let

a = (og,...,0,),and 6 = (", B)". Here B is the parameter of interest, and

« is a nuisance.

(a) Find the profile likelihood L, () for parameter §.

(b) Let ,BP be the maximizer of the profile likelihood L.(8). Is ,BP a consistent
estimator of ;3"

(c) Define W = 3., XYy, Vi = 3 Yy, and V. = (Vi,..., V)"
Consider a reparameterlzatlon of 6, given by ¢ = (£7,6)" , where
E=(5,....5)" and & = exp(a;) D ; exp(BX;;) fori = 1,....n

(i) Find the joint probability mass function for W and V' indexed by
parameter ¥J.
(i1) Find the conditional probability mass function of W, given V.
(iii) Find an estimator of § using the result in (c)(ii).
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1.23. Suppose the Y;; are independent following a Bernoulli distribution Ber(y;;)
forj =1,...,m;andi = 1,...,n, where y;; is the mean of ¥;;. We consider
a logistic regression model

logit uij = a; + BXij,

where X;; is a fixed covariate, and 8 and «; are regression coefficients. Can
the development in Problem 1.22 be repeated?
(Cox and Hinkley 1974, §5.7)

1.24. Verity the expressions in (1.14) and (1.15).



2

Measurement Error and Misclassification:
Introduction

In Chapter 1, we provide an overview of statistical modeling and inference methods.
There is a critical condition underlying the development: variables included in the
models must be measured precisely. This condition is, however, frequently violated.
Imprecise measurements, or mismeasurements, have long been a concern in various
fields, including medical, health and epidemiological studies. They arise commonly
in a broad range of applications including analysis of survival data, longitudinal stud-
ies, case—control studies and survey sampling. Measurement error and misclassifica-
tion often degrade the quality of inference and should be avoided whenever possible.
However, these features are inevitable in practice.

This chapter provides an overview of issues concerning measurement error and
misclassification. Preliminary discussion on the impact of ignoring measurement
error is presented. Inference objectives and the scope of analysis of error-prone
data are outlined. General strategies of accounting for mismeasurement effects are
discussed. Models which are often used to characterize measurement error or mis-
classification are described. The chapter is concluded with examples of measurement
error or misclassification under different settings. This layout serves as a prelude of
the book to introduce the problems to be considered in subsequent chapters.

2.1 Measurement Error and Misclassification

The terminology “measurement error” may not be consistently used in the litera-
ture. By name, it may be used for situations of an incorrect recording of a precise
measurement of a variable, for circumstances of the correct recording of an inac-
curate measurement of a variable, or even for both. Sometimes this term is used to
contrast systematic error to random error, while other times it may be used to re-
fer to sampling error as opposed to nonsampling error. Systematic error, also called
statistical bias by some researchers, may occur from imperfections in measuring in-
struments or measuring procedures; it is usually viewed as repeatable and does not

© Springer Science+Business Media, LLC 2017 43
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change over time. Systematic error may be controlled or reduced by carefully plan-
ning the measurement procedure and using a better measurement device. Random
error, or random variation, on the other hand, is an inherent feature associated with
the variables being measured for which we cannot control; it is unreproducible and
varies from observation to observation and/or from time to time. Sampling error,
sometimes called estimation error, is caused by the uncertainty or variability of us-
ing only a portion (i.e., a sample) of measurements from a population rather than the
measurements from the whole population to estimate the target values.

Regardless of varying definitions of “measurement error” by different authors,
in this book we use the term “measurement error” or “mismeasurement” to refer
broadly to any setting where the ideal measurement (if available) of a variable in the
model may differ from the actual value obtained by a data collection procedure.

Measurement error may arise with different reasons and from various sources
(e.g., Yi and Cook 2005; Carroll et al. 2006). In addition to the reading error in-
duced from machine and reader variability, a variable may be difficult to be observed
precisely due to physical location or cost. For example, the degree of narrowing of
coronary arteries may reflect the risk of heart failure, but physicians may measure
the degree of narrowing in carotid arteries instead, due to the less invasive nature of
this assessment method. Sometimes it is impossible to measure a variable accurately
due to the nature of the variable. For example, the level of exposure to potential risk
factors for cancer, such as radiation, can never be measured accurately. A variable
may represent an average of a certain quantity over time, and any practical way of
measuring such a quantity necessarily involves biological variability and temporal
variation. In certain situations, data may be intentionally manipulated for ethical rea-
sons. For instance, to preserve confidentiality of participants in survey studies, we
may alter the measurements of those variables X which may reveal the identity of
the participants and report only their surrogate measurements X *, where X * is gen-
erated from X with a known mechanism, such as X* = Xe for a random value e
simulated from a given distribution (e.g., Hwang 1986).

In application, measurement error in a variable may include any of these variabil-
ities or be a mix of them. Although the reasons and sources for imprecise measure-
ments are diverse, there are common features that may be sorted out to form valid
statistical inference. Measurement error problems may be phrased as covariate mea-
surement error or response measurement error according to error-prone variables be-
ing covariates or responses. Sometimes, one may distinguish misclassification from
measurement error where the former term is used for discrete error-prone variables
and the latter for continuous error-prone variables.

In this and subsequent chapters (except for Chapters 3 and 4), we reserve symbol
Y for the true response variable that may be subject to measurement error or misclas-
sification, and the letter X for the vector of the true covariates that are subject to mea-
surement error or misclassification. We add the asterisk to the variables to indicate
their corresponding measurements, Y * and X*, which are imprecisely measured,
and we call Y* and X™* surrogate versions of Y and X, respectively. The terminol-
ogy “surrogacy” has been used differently by other authors (e.g., Buzas, Stefanski
and Tosteson 2007; Prentice 1989) with certain conditions imposed. Here we loosely



2.2 An Illustration of Measurement Error Effects 45

use this term to show that the actual measurement of a variable may differ from the
measurement of the variable we intend to put in the model. Some authors call Y * and
X* proxy variables. The notation Z is reserved for the vector of error-free covariates.

2.2 An Illustration of Measurement Error Effects

We consider a simple but illustrative example to demonstrate measurement error
effects. Let {(¥;, X;) : i = 1,...,n} be a sequence of i.i.d random variables, where
Y; is a response variable, and X; is a covariate for i = 1,...,n. Consider simple
linear regression
Yi = Po+ BxXi + € (2.1)
fori = 1,...,n, where By and B are regression parameters, and ¢; is independent
of X; with mean zero and a constant variance o2.
Without a full distributional assumption for ¢;, the estimating function approach
outlined in Example 1.9 or the least squares regression method is a natural option for
estimation of the regression parameter 8 = (B¢, Bx)" if covariate X; were precisely

measured. The resulting estimator 8, of S is given by

Yioi(Xi —X)(¥i = Y)
Yo (Xi —X)?

where X =n~1Y 7" X;,andY =n' Y 7_, Vi

In the presence of covariate measurement error, X; is often not observed, but a
surrogate measurement X is available fori = 1,...,n. One may attempt to replace

Bx:

X; with X* in estimation procedures. Let B; denote the resulting estimator of the
slope By, given by
— —
pr = Lim X7 - X )i - )
x = —%
Y (X -X)?

where X = n~' }7_, X;*; this estimator is called a naive estimator of By. The

naive estimator 8* may be a consistent or inconsistent estimator of 8, depending
on the relationship between X; and X*.
If X; and X" are linked through the model

X; = X" +e (2.2)

fori = 1,...,n, where ¢; is independent of {X*,¢;} and has mean zero and a

constant variance O'ez, then the naive estimator 83 for the slope is consistent, i.e., 8
converges to B in probability as n — oo.
On the other hand, if X; and X l.* are connected via the model

Xi* =X; +e (2.3)
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fori = 1,...,n, where ¢; is independent of {X;, ¢;} and has zero mean and a con-

stant variance 62, then the naive estimator 8% is not a consistent estimator for the
slope By (Fuller 1987). In fact,

B; LN B asn — oo, 2.4)

where B = wfx withw = 02 /(02 +02) and 02 is the variance of X;. The factor w,
called the reliability ratio, may be alternatively viewed as the ratio of the variability
of X; to that of X:
var(X;)
~ var(X})’

Since w is no greater than 1, covariate measurement error, in this case, has an atten-
uated effect on the estimation of covariate effect .

Now we explain why naive estimators behave differently under different mea-
surement error models. If expressing (2.3) as X; = X" —e; and plugging itinto (2.1),
we obtain

Y, = ,30 + ﬂxX,'* + 6?(, (2.5)

where € = €; — Bxe;. At first sight, model (2.5) seems to suggest that the naive
analysis using model (2.1) with X; replaced by X" is valid, because such an analysis
adopts the same model structure as (2.5) where the mean of € is identical to the
mean of ¢; in (2.1) (i.e., both are zero). However, routine methods, such as the least
squares method, cannot be blindly applied to model (2.5) for the estimation of S,
even though the mean of 6;" is zero. The reason is that the error term 6;" in (2.5) is not
uncorrelated with the predictor X;*. In addition to different predictors, (2.5) differs
from (2.1) in two aspects: (1) € and X" are correlated in (2.5) while ¢; and X; are
uncorrelated in (2.1); (2) the variance of € in (2.5) is 0% 4+ B2072, greater than the
variance of ¢; in (2.1) (unless 8, = 0 or 062 =0).

On the other hand, if the measurement error model is given by (2.2), then plug-
ging (2.2) into (2.1) gives an expression similar to (2.5):

Yi = Bo+ Bx X[ + €', (2.6)

where €* = €; + Bye;. Itis noted that error term €* does not only have mean zero
but also is uncorrelated with the predictor X/*. In this instance, the model employed
by the naive analysis differs from (2.6) only in the variance of the noise term. Thus,
the least squares method can still legitimately apply to the model adopted by the
naive analysis, yielding a consistent estimator of .

Next, we comment on the variability associated with ,/Bx and ﬁ; where the mea-
surement error model is given by (2.3). Because the data {(¥;, X*) :i = 1,...,n}
are more scattered than the data {(¥;, X;) : i = 1,...,n} (if X; were observed),
one might intuitively expect that the naive estimator E; would incur more variation

than B, does. However, this surmise is not necessarily true. Buzas, Stefanski and
Tosteson (2007) identified circumstances where a naive estimator of the slope can
asymptotically have less variability than the true data estimator does.



2.2 An Illustration of Measurement Error Effects 47

Fig. 2.1. Effects of Measurement Error Model (2.3) on Simple Linear Regression

Example 2.1. We conduct a simulation study to demonstrate measurement error
effects on fitting linear regression models, where two measurement error models are
considered. Set n = 100 and generate response measurements independently from
model (2.1) fori = 1,...,n, where we set 8o = 0.5, Bx = 1.0, and ¢; ~ N(0, 1).

In the first case, generate the true covariate X; from the standard normal dis-
tribution N (0, 1) and then surrogate measurements X;* from model (2.3) indepen-
dently fori = 1,...,n, where ¢; ~ N(0, 1). In the second case, generate surrogate
measurements X;* from distribution N(0, 1) and then the true covariate X; from
model (2.2) independently fori = 1,...,n, where e; ~ N(0, 1).

The results for the first and second cases are displayed in Figs.2.1 and 2.2,
respectively, where the scatter plots of {(X;,Y;) : i = 1,...,n} and {(Xl-*, Y :
i = 1,...,n} and fitted least squares regression lines are included.

In Fig. 2.1, the slope on the right panel is smaller than that of the left panel, and
this confirms the attenuation effect established in (2.4). The variability difference for
the data is also visualized in Fig. 2.1. On the other hand, the consistency of the naive
estimator is demonstrated from the parallel lines of Fig. 2.2 if the measurement error
model is given by (2.2).

In terms of evaluating the joint effect of covariate measurement error on the point
estimator and the associated variance, one may examine how hypothesis testing pro-
cedures may be affected. Some details are included in Problem 2.4 and discussed
by Fuller (1987, §1.3). Here we make a quick observation for a special test for no
covariate effect under measurement error model (2.3). Because “H, : By = 07 is
the same as “H, : wfx = 07, the naive test for H, : B, = 0, based on the observed
measurements on {(¥;, X) :i = 1,...,n}, can still lead to a correct calculation of
the Type I error rate when measurement error in X; is ignored. However, the power
would decrease due to the increased residual variance. Measurement error effects are
more complex when the null value of the hypothesis is nonzero.
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A typical phenomenon occurring in many applications, although not universal,
is that naive estimators incur larger biases than estimators obtained from valid meth-
ods but the latter ones entail more variation than naive estimators do. This naturally
prompts a concern: is it worthwhile to make efforts to develop new analysis methods
in order to correct for biases contained in naive estimators? There might be cases
where an estimator with a smaller variance, even though incurring some biases, is
preferred to a consistent estimator that involves a larger variability; attempting to
adjust for measurement error effects might end up with worse inference results than
ignoring measurement error. To look into these issues, Carroll et al. (2006, §3.5) used
the mean squared error criterion and illustrated that in sufficiently large samples, it
is beneficial to correct for measurement error effects. This aspect is also discussed
in §9.1.

The discussion here is merely based on a simple linear regression model for the
response variable Y; and the true covariate X;, but sheds some light on measurement
error effects on inference results. When the response model is complex with multiple
covariates or nonlinear structures, measurement error effects become more dimen-
sional and complicated. Measurement error may not only attenuate point estimates,
but also inflate or even reverse signs of the estimates as well.

Generally speaking, the nature and degree of measurement error effects are gov-
erned by many factors, including the form of the response and measurement error
models, the variability of the variables, and their association structures. It is gener-
ally agreed that a problem by problem study needs to be invoked if measurement
error or misclassification is a concern in the analysis. In the following chapters, we
explore a variety of problems with measurement error or misclassification in detail.

Fig. 2.2. Effects of Measurement Error Model (2.2) on Simple Linear Regression
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2.3 The Scope of Analysis with Mismeasured Data

Although the reasons for imprecise measurement are diverse and measurement error
effects are complex, inference objectives and scopes for error-present settings are
not different than those for error-free contexts. Estimation, hypothesis testing, pre-
diction, and model selection are often of central interest. Many inference methods for
addressing measurement error share common principles and strategies. In this book,
we focus on estimation procedures for a variety of models arising from different
fields.

Based on the observed data, our goal is to understand the relationship between a
response variable, Y, and associated covariates, { X, Z}. Suppose the true probability
density or mass function of {Y, X, Z} is h(y, x, z). This function is unknown but can
be written as

h(y,x,z) = h(y|x,2)h(x,z), 2.7

where h(y|x, z) is the conditional probability density or mass function of Y given
{X,Z}, and h(x, z) is the probability density or mass function of X and Z. Fac-
torization (2.7) provides a convenient framework to show specific features of many
studies, such as cohort or observational studies, for which response measurements
are collected when or after covariates are measured.

Although factorization (2.7) does not really help us gain knowledge of the
true data generation mechanism A (y, x, z) (because both i(y|x, z) and h(x, z) are
equally unknown), (2.7) offers us a way of modeling and developing inference meth-
ods. In the absence of measurement error, we usually leave /(x, z) unattended to and
solely modulate 4 (y|x, z) using a model, say { f(y|x, z; B) : B € @g}, where model
function f(-|-) is fully or partially specified, and parameter § is unknown, taking val-
ues in the parameter space ®g. The conditional analysis is commonly employed for
inference about parameter S.

However, in the presence of measurement error, do we still stand at the same
point? Do we need to concern ourselves about the distributional form of covari-
ates? To highlight the ideas, we consider the case where only covariates are subject
to measurement error; discussion on measurement error in response is deferred to
Chapter 8.

Suppose X is subject to mismeasurement. An additional variable, X*, comes
along to represent the actual measurement of X . In principle, valid inference comes
from jointly evaluating the stochastic changes in all the relevant variables. Unlike
the error-free context which involves A (y, x, z), the joint probability density or mass
function A(y, x, z,x*) for {Y, X, Z} and X* serves as the basis for inferences in
the presence of measurement error in X. Because it is difficult to come up with a
meaningful and transparent model to describe simultaneous stochastic changes in
{Y,X,Z} and X*, we often take a viable means by factorizing the joint distribu-
tion A (y, x, z, x*) into the product of a sequence of conditional distributions (and a
marginal distribution), each for a single type of variables. This factorization allows
us to examine those conditional distributions separately, each distribution being han-
dled with a usual modeling scheme.
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Technically, there is no unique way to factorize the joint distribution
h(y,x,z,x*), hence different modeling strategies may be used to facilitate dif-
ferent applications. Broadly speaking, modeling and inference should be carried out
in light of the study objectives and the nature of the data. We elaborate on this in the
next section. Here and elsewhere, we use /(-) and A(:|-), respectively, to represent
the true marginal and conditional probability density or mass functions for the ran-
dom variables indicated by the arguments and f(-) and f(-|-) for the corresponding
models.

2.4 Issues in the Presence of Measurement Error

In this section, we outline several basic issues concerning analysis for settings with
covariate measurement error or misclassification.

Measurement Error/Misclassification Mechanism

Measurement error mechanisms are classified according to the relationship be-
tween Y and X *: whether or not ¥ and X * are conditionally independent, given the
true covariates {X, Z}. If

h(y|x*,x.2) = h(y|x, 2), (2.8)

then the measurement error process is called to possess the nondifferential measure-
ment error mechanism (if X is continuous) or the nondifferential misclassification
mechanism (if X is discrete). Sometimes, the term “nondifferential (measurement)
error mechanism” is loosely used for both cases. This mechanism says that ¥ and
X* are conditionally independent, given the true covariates X and Z; the surrogate
X* carries no information on inference about the response process if the true covari-
ates are given. Assumption (2.8) is ubiquitously adopted, explicitly or implicitly, for
analysis of error-contaminated data arising from observational studies, or prospective
studies, where covariate measurements occur at a fixed point in time, and a response
is measured at a later time.

In retrospective studies, such as case—control studies, the nondifferential error
mechanism may be infeasible. In such studies, the response variable is obtained first,
then antecedent exposures and other covariates are measured. In this case, controlling
the true covariates may not completely remove the dependence between X * and Y.
For example, in nutrition studies, a true predictor is taken as long-term dietary intake
before diagnosis, but the dietary interview data are obtained only after diagnosis. A
woman who was diagnosed having breast cancer may tend to exaggerate her esti-
mated fat intake. In such circumstances, estimated fat intake may still be associated
with disease status even after conditioning on the true long-term diet intake (Carroll
et al. 2006, p. 36).

If

h(y|x*, x.2) # h(y|x. 2), (2.9)
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then the corresponding mechanism is called the differential measurement error mech-
anism (if X is continuous) or the differential misclassification mechanism (if X is
discrete). Occasionally, one may simply use the differential (measurement) error
mechanism to refer to both scenarios.

Classification of measurement error using (2.8) and (2.9) is meaningful only for
settings with covariate measurement error alone. If other features are present in the
data, such a classification may become useless. In §5.5, we discuss this issue for set-
tings with co-existing missing observations and covariate measurement error. With
censored data, we describe a modified definition of measurement error mechanisms
in §3.2.2. In contrast to error-prone responses, to be discussed in §8.1, one may refer
to (2.8) and (2.9) as nondifferential covariate measurement error and differential
covariate measurement error, respectively, to stress that only covariates are subject
to error.

Inference and Modeling

Different measurement error mechanisms may suggest different modeling strate-
gies. Under the nondifferential error mechanism, it is natural to conduct inference
based on the factorization

h(y,x,x*,z) = h(y|x,x*, 2)h(x,x*, z)
= h(y|x,2)h(x,x*, 2),

whereas, with a differential error mechanism, one may alternatively proceed with
h(y,x,x*,2) = h(x*|x, y. 2)h(y|x, 2)h(x, 2).

These decompositions offer us convenient ways to explicitly spell out the distribu-
tion 4 (y|x, z), a quantity of prime interest. The distribution & (y|x, z) is then char-
acterized by standard modeling techniques that are developed for error-free settings.
In particular, we assume a model { f(y|x,z;B) : B € @g} and hope there exists
Bo € Og such that h(y|x,z) = f(¥|x, z; Bo).

Distinguished from the usual statistical analysis for error-free contexts, addi-
tional modeling is the unique feature for the analysis of data with measurement error.
Under a differential error mechanism, modeling i (x*|y, x, z) and h(x, z) is gener-
ally needed unless certain assumptions are imposed. For settings with nondifferential
measurement error, we need to examine i(x, x*, z) by further factorizing it as

h(x,x*,z) = h(x*|x,2)h(x,z2) (2.10)

or
h(x,x*,z) = h(x|x*, 2)h(x*,2) (2.11)

to accommodate different modeling schemes for the measurement error process.

In error-free contexts, covariates {X, Z} are usually treated as fixed or are
regarded as random but their distributions are left unspecified. In contrast, in the pres-
ence of covariate error in X, covariates {X, Z} can be handled with two methods.
In some circumstances, we treat {X, Z} as fixed and base inference on conditioning
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on {X, Z}, thus the distribution /(x, z) of {X, Z} is left unmodeled. This strategy is
called a functional method. In other situations, we regard {X, Z} as random variables
whose distribution (i.e., 2(x, z)) is needed, and this leads to the so-called structural
modeling strategy. When using this strategy, modeling A (x, z) is often realized using
the factorization

h(x,z) = h(x|2)h(z).

where the conditional probability density or mass function A(x|z) for X given Z
is modeled, but the marginal probability density or mass function /(z) for Z is left
unmodeled.

There are no definite rules on deciding which strategy should be used. Generally
speaking, functional modeling is distribution-robust while structural modeling can
be more efficient when there is good knowledge about the distribution of the true
covariates. In addition, structural modeling is basically required when inference is
conducted within the Bayesian paradigm.

A tacit assumption is commonly made in parametric modeling: parameters
governing different models are assumed to be distinct. With the full distributional
assumptions available for modeling all the relevant processes, inference about the
response parameter f may be conducted by applying the maximum likelihood
method in a straightforward manner. In situations where a full distributional model
is difficult to specify or is not of primary interest, we often confine our attention
to certain aspects of the associated variables and focus on modeling those features
only. In this case, the principle of breaking a joint model for all the relevant variables
into several “smaller” models, each being a conditional model for a single variable,
can still guide us to develop marginal or semiparametric inferential procedures for
various settings.

Identifiability and Additional Data

As discussed previously, analysis of error-prone data often requires additional
modeling of measurement error and/or covariate processes, besides modeling the
response process which links Y and {X, Z}. This extra layer of modeling adds com-
plications to inferential procedures. Parameter identifiability becomes a particular
concern. This pertains to the enlargement of the initial parameter space ®g to a new
parameter space which also includes the parameters arising from additional mod-
eling of measurement error and/or covariate processes. Although the initial sample
space for the variables {Y, X, Z} is expanded to include an extra variable X*, the
sample space for the observed data may not be rich enough to differentiate the joint
model for h(y, x, z, x*) (e.g., Problem 2.12).

A strategy to overcome model nonidentifiability is, as described briefly in §1.2.1,
to impose suitable constraints on the parameter space to make it smaller. However, it
is often unclear what constraints should be used so that the resultant smaller parame-
ter space can work equally well as the original parameter space in order to capture or
well approximate the true distribution A(y, x, z, x*). This strategy basically reduces
our choices of possible models, which is unappealing in that we are more likely to
be placed in a situation of model misspecification.
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An alternative approach is to call for additional data to help us delineate the
measurement error process. Depending on the measurement error mechanism, the
requirement of additional data may be different. With nondifferential measurement
error, it is possible to estimate parameter 8 in the response model f(y|x, z; 8) even
when the true covariates X are not observable. This is, however, usually not true for
differential measurement error (except for special cases, such as with linear models).
In this case, measurements of X are often required for a subsample of subjects.

Here we describe several types of data sources that are used in the analysis of
error-contaminated data. In many applications, our analysis is directed to the data
collected from the main study which consists of measurements of Y, Z and X*. We
let M denote the index set of subjects who are in the main study. The measurements
{Yi, X l.*, Z;} are available if i € M. For an additional data set, let } denote the
set of subject indices, and D = {W; : i € V} be the collection of various types of
measurements W; we now describe. The data D are called internal if V is a subset of
M, while the data D are called external if V has no overlap with M. Three types of
data D commonly arise from applications (Carroll et al. 2006, Ch. 2).

e Validation Subsample

A validation subsample often contains measurements for both the true and sur-
rogate covariate variables. Response measurements may or may not be available
for those subjects in V. Often, in an internal validation subsample, W; contains
{Y;, X;, Xi*, Z;} while for an external validation subsample, W; may include
only {Xl', Xi*’ Z,’}.

An internal validation data set permits direct examination of the measurement
error structure and usually leads to a good precision of estimation and inference.
When external validation data are used to assess the measurement error model,
it is assumed that the measurement error model, based on the external data, is
transportable to the data for the main study (Carroll et al. 2006, §2.3; Yi et al.
2015).

e Repeated Measurements

In settings where replicate surrogate measurements of X; are available, W; may
have the form (X}, Z;) or (Y;, X}, Z;), where the X/ are repeated measure-
ments of X; for j = 1,...,n; and n; is an integer greater than 1. In this case,
index set V may be a subset of M, or has no overlap with M. Usually, one
would make replicate measurements of X; if there were good reasons to believe
that the average of replicates is a better estimate of X; than a single observation.
If a classical additive error model is assumed (to be discussed in §2.6), then
replication data can be used to estimate the variance of the measurement error
model.
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o [nstrumental Data

In addition to the primary surrogate measurement X;* of X;, a second measure-
ment V; is available sometimes. Variable V; is correlated with X; with a weaker
relationship than that of X l-* to X;, and is often called an instrumental variable.
In this case, W; = {X*, Z;,V;} or W; ={Y;, X}, Z;, V;}. If V; is external (i.e.,
V has no overlap with M), it can be useful if it is unbiased for X; in the sense
that E(V;|X;) = X;; in this case, V; may be used in a regression calibration
analysis (to be discussed in §2.5.2). If V; is internal (i.e., V is a subset of M), it
does not need to be unbiased to be useful (Carroll et al. 2006, §2.3). A discus-
sion of instrumental variables was provided by Carroll et al. (2006, Ch. 6) and
Buonaccorsi (2010, Ch. 5).

Choosing an instrumental variable may be somewhat subjective, although the
mathematical definition is possible. For instance, Fuller (1987, §1.4) provided
a formal definition of an instrumental variable under simple regression models.
An overview of the role of instrumental variables in epidemiological studies was
provided by Greenland (2000).

In situations where model identifiability is an issue and no additional data D are
available to facilitate estimation of parameters associated with the measurement er-
ror process, conducting sensitivity analyses is a viable way to address measurement
error effects. We take a number of candidate models for the measurement error pro-
cess together with representative values specified for the model parameters, and then
apply a valid method which accommodates measurement error effects to perform in-
ference about the response parameters. It is then interesting to assess how sensitive
the results are to different degrees of measurement error or misclassification.

2.5 General Strategy of Handling Measurement Error

In the presence of measurement error, several strategies are commonly invoked to
correct for measurement error effects for various applications. In this section, we
outline those schemes in broad terms; elaboration on genuine application to specific
problems is to be presented in subsequent chapters.

Suppose response variable Y and covariates { X, Z} are linked by the conditional
probability density or mass function /(y|x, z), and the class { f(y|x,z;8) : B €
©pg} of conditional probability density or mass functions is specified in the hopes
of capturing or well approximating A(y|x, z). Assume that the precise value of X
is not observed, but its surrogate version X* is measured. Suppose the available
data, denoted by O = {(y;,x,z;) : i = 1,...,n}, are realizations of a random
sample {(Y;, X, Z;) : i = 1,...,n} drawn from the distribution of {¥, X*, Z}.
Our objective is to infer parameter 8 (of dimension p) using the observed data O.

Many strategies may be developed for this purpose. These strategies are gen-
erally classified into three categories, according to the way of introducing adjust-
ments for the measurement error effects. The first category contains likelihood-
based correction methods; the second category includes adjustment methods based
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on unbiased estimating functions; and the third class of methods focuses on directly
correcting estimators obtained from usual analysis with the difference between X
and X* ignored.

In the formulation of the first strategy, parameter 8 is paired with the nuisance
parameter so notation 6 for the full vector of model parameters appears in the expres-
sions; in the second and third strategies, only parameter § appears explicitly with the
nuisance parameters suppressed in the relevant notation.

2.5.1 Likelihood-Based Correction Methods

A likelihood-based method is viewed as a structural modeling strategy which
requires the specification of the distribution of the true covariate X. For illustra-
tions, we examine the case where nondifferential measurement error is assumed and
the true covariate X is not available.

Induced Model Method/Observed Likelihood Method

An analysis method for error-contaminated data is to directly work on the
induced model for the observed data. First, we derive the relationship between the
response Y and the observed covariates { X *, Z} using the given response model for
h(y|x,z) and the measurement error model which links the variables {X*, X, Z}.
Secondly, we apply a standard analysis method to the induced model which asso-
ciates Y and {X™*, Z}. We call this strategy the induced model method, or the ob-
served likelihood method.

Depending on the way of modeling the relationship between the true covariate
X and its surrogate version X*, the model for the conditional distribution of the
outcome variable given the observed covariate variables may be formulated as

FOlx*.2:0) / FOl 2 B) f (& x.2) f(x]2)dn(x)
or

FOIx*.2:60) / FOlx. 2 B) f(xlx*, 2)dn(x),

where dn(x) represents the dominating measure which is either Lebesgue or the
counting measure, corresponding to continuous or discrete random variables; 6 =
(a7, B7)7 is the vector of all associated model parameters; and « is the parameter as-
sociated with the measurement error and/or covariate processes which is suppressed
in the notation. Parameter 8 is of prime interest whereas « is regarded as a nuisance;
B and « are often assumed to be functionally independent.

With the available data O, the likelihood for the observed data is given by

n
Lo(0) = [ | filx}.2i:6). 2.12)
i=1
Maximizing the observed likelihood function L,(6) with respect to 6 gives the MLE
of 6.
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Likelihood-based methods are conceptually simple and efficient in dealing with
error-prone problems. However, model robustness is a major concern. Typically, the
specification of the distribution of X is difficult since X is often not observable. Due
to the integrals involved, likelihood methods are often computationally demanding.
To ease these issues, modified versions, often phrased as pseudo-likelihood methods,
are developed for various contexts.

The induced model methods and their modified versions are discussed in §3.4,
§5.4.1,85.4.2,85.6.1, §6.2, §6.3, §6.4, §6.5, §6.6, §7.3, §7.4, §8.3, §8.4, and §8.6.

Expectation-Maximization Algorithm

In some applications, the observed likelihood (2.12) based on the measurements
of {(Y;, Zi,Xi*) : i = 1,...,n} may be difficult to maximize whereas the com-
plete likelihood based on all the variables {(Y;, X;, Z;, X l.*) :i=1,...,n} may be
relatively easy to maximize. In such instances, the expectation-maximization (EM)
algorithm comes into play.

We decompose the model for the joint distribution of {Y, X, X *} given Z as:

f.x.x*z:0) = f(x]y, x*,2:0) f(y, x¥|z:0).

Then taking the logarithm and applying the result to random variables {Y, X, Z, X *}
gives

log f(Y,X*|Z;0) =1log f(Y,X,X*|Z;0)—log f(X|Y,X*, Z:0).

For a given value 6* of the parameter, taking conditional expectation on both sides
with respect to f(x|y, x*, z; 6*), we obtain

/ log £ (y.x*|2: 8) / (xly. x*. 2: 6%)dn(x)
- / log /(v x.x*|2: 0) f(x]y. x*, 2: 0%)dn(x)
- [ log £ (xly. x*.2:8) f (xly. x*, 2: 0)dn().

Applying this identity to the random sample {(¥;, X;,Z;, X*) :i = 1,...,n} and
its measurements, we obtain

lo(0) = Q(6:6%) — H(6:6%), (2.13)
where
€o(0) =) log f(yi,x]|zi: 0);
i=1

0(0:0%) = Z Ex, v, x7 26+ {log f(Yi. Xi, X['|Zi:0)}: (2.14)

i=1



2.5 General Strategy of Handling Measurement Error 57

n
H(0:6%) = Y Ex, v, xr.z;0m {og f(Xi|Yi, X', Zi30)} ;. (2.15)

i=1

with the expectations evaluated with respect to f(x;|y;, x*, z;:0*) and {Y;, X, Z;}
in Q(6;6*) and H(0:0) assuming their observations {y;, x, z;}.

Interestingly, for the given data O, formulation (2.13) expresses a function of
0 (i.e., £,(9)) as the difference of two functions which depend not only on 6 but
also on an additional parameter 6*. The introduction of this additional parameter 6*
offers us an extra dimension to examine £,(6). Specifically, considering two possible
values of 0, say 0% and & +1), we set 0* as 6% for the right-hand side of (2.13)
and then evaluate the difference of £,(6) at those two values:

£o(6“1D) = £6(6)
=100 ;00 — 00D 69 — (HEFTY;09) — HED:0)).

By that H(01;60,) < H(62;05>) for any 6, 6, in ®, we obtain that
_{H(g(k'f'l); Q(k)) _ H(Q(k); g(k))} > 0.
Thus, if we can choose 9*+1 guch that
Q(@(k-i'l); e(k)) _ Q(@(k); Q(k)) >0,

then we can ensure the increment of £,(6) from 8% to #%*+1 to be nonnegative,
leading to
Lo(@* 1) = £,(6D).

This argument prompts an algorithm of finding the maximizer of the observed
log-likelihood (2.13). For the given data O, the algorithm essentially iterates among
the two operations of expectation and maximization, respectively called the E-step
and M-step, until convergence of 8%, where §®*) stands for the estimate of 6 ob-
tained at the kth iteration fork = 0,1,2,....

This procedure is called the EM algorithm. To be more specific, let

n
Le(0) =[] f(¥i. Xi. X1 Z::0) (2.16)
i=1
be the complete data likelihood formulated for {(Y;, X;, X, Z;) :i = 1,...,n}. At

iteration (k + 1) of the E-step, using (2.14) we calculate Q(9; O(k)) for the condi-
tional expectation of the logarithm of the complete data likelihood (2.16), where the
expectation is evaluated with respect to the model for the conditional distribution of
the unobserved variable X given the observed variables {Y, X*, Z} with 6 taken as
6% and the variables {Y;, X', Z;}in Q(0: Q(k)) are assessed at their observations
{yi,x], zi}. At the M-Step, we maximize Q(6: O(k)) with respect to 6 and obtain the

estimate %1, Cycle through these steps until convergence of {#%) 1 k = 0,1,...}
ask — oo.
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The EM algorithm was initially developed by Dempster, Laird and Rubin (1977)
to perform likelihood analysis with missing data. It has been remarkably used for a
wide variety of situations which are pertinent to incomplete data problems. Modifi-
cations and extensions of the EM algorithm have been extensively proposed in the
literature (e.g., Meng and Van Dyk 1998; Booth and Hobert 1999). Comprehensive
explorations of this algorithm may be found in McLachlan and Krishnan (1997) and
the references therein.

Application of the EM algorithm to handle measurement error problems is dis-
cussed in §3.8.3, §5.4.3, §5.5.4, §5.6.1, §6.3, §6.6, and §8.6.

We note that both the EM algorithm and the induced likelihood method
base the estimation of 6 on the observed data . The formulation of the ob-
served likelihood, however, is somewhat different. The EM algorithm works with
f(yi.xF|z;:0), suggested by (2.13), while the induced likelihood method focuses
onusing f(y;|x",z;;6), as shown in (2.12).

Conditional Score Method

At the E-step of the EM algorithm, calculating the conditional expectation of the
logarithm of L.(0) allows us to have a function (i.e., the Q(:) function) free of the
unobserved X; variables, thus giving us a computable function for the next step (i.e.,
the M-step). To have a computable function, one might alternatively attempt to view
the complete data likelihood L.(0) with the X; regarded as parameters, and then
maximize the complete data likelihood L () with respect to parameter 6 together
with “parameters” {X1, ..., X; }. This method is conceptually straightforward. How-
ever, this procedure does not necessarily ensure the resulting estimator for 8 to be
consistent due to the infinite dimension of parameters { X1, ..., X,}, as discussed in
§1.3.4.

A modified scheme is to treat nuisance “parameters” {X,..., X, } differently
from 6 in the complete data likelihood L(6). First, we examine L.(f) to find a
“sufficient statistic”, say §2(6), for {X1, ..., X, } by taking 0 as fixed. Secondly, we
use such a statistic to construct a conditional distribution of Y = {Y7, ..., Y, }, given
£2(0), such that this distribution depends only on the observed data and 6 and not
on {X1, ..., X,}. Thirdly, using this conditional distribution we carry out inference
about f. For certain problems, this method yields valid inference results about 8.

This strategy, related to Lindsay (1982), was elaborated by Stefanski and Carroll
(1987) for generalized linear measurement error models. It is called the conditional
score method. This method is implemented in §5.6.2, §6.5, and §7.5.

2.5.2 Unbiased Estimating Functions Methods

The preceding strategies basically apply to settings where a full distributional form
for the response process is assumed. In application, specifying the full distribution of
the response variable may be difficult, or our interest is merely in marginal features
of the response process. In such instances, inferences are often based on estimat-
ing functions. Suppose U(B:; y, x, z) is a user-specified estimating function for j;
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it can be the score function (d/df8) log f(y|x, z; B) when a full distributional model
f(y|x, z; B) is available. Such a function is usually required to be unbiased (more
precisely, conditionally unbiased) in the sense that

E{UMB:Y. X, Z)|X.Z} =0, (2.17)

where the expectation is taken with respect to the conditional model f(y|x, z; 8) for
all ,3 € @ﬂ.

In this subsection, we describe several schemes of accommodating measurement
error effects using estimating function theory. The basic idea is to construct a valid
estimating function for parameter § which is of principal interest. Being valid, this
estimating function needs to have two basic properties: (1) the function should be
computable in a sense of being expressed in terms of X *, rather than X, along with
other observable variables and the model parameters; and (2) this function should
be able to produce an estimator of B which has good statistical properties such as
consistency and asymptotic normality, provided suitable regularity conditions. By
the discussion in §1.3.2, the unbiasedness is commonly imposed when constructing
an estimating function to meet the requirement (2).

Subtraction Correction Method

Replacing X with X* in U(B; Y, X, Z) and calculating the conditional expecta-
tion E{U(B;Y, X*, Z)}, we define

U*(B:y,x*,2) =U(B:y.x*,2) — E{UB: Y. X*.2)},

where the expectation is evaluated with respect to the model for the joint distribution
of {Y, Z, X*}. Such an estimating function is unbiased and computable in the sense
that the arguments (y, x*, z) can be evaluated with the availability of the observed
data O.

This scheme is called the subtraction correction strategy. It is implemented
to obtain (3.54) in §3.6.3 and was discussed by Yi and Reid (2010), Yan and Yi
(2016b), and Yi et al. (2016). If E{U(B;Y, X*, Z)} cannot be computed exactly,
then some approximation may be used. For example, one may employ the bootstrap
algorithm to approximate E{U(B;Y, X*, Z)} by adapting the idea of McCullagh
and Tibshirani (1990) who used a bootstrap estimate of the mean to correct the bias
of score functions derived from the log profile likelihood.

Expectation Correction Method

Another approach is called the expectation correction strategy. Define
U*B.Y.X*,Z2)=E{UQB.Y.X,2)|Y.X*,Z},

where the expectation is taken with respect to the model for the conditional distribu-
tion of X given {Y, X*, Z}.
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Function U*(8;Y, X*, Z) is workable due to its noninvolvement of the unob-
served X, and its unbiasedness follows from that of U(B8;Y, X, Z), as indicated
below:

Evxx*z{U"B: Y, X", Z)}
= Ewxx*z) [E{UB:Y. X, 2)|Y, X", Z}]
= Ew,x+z) (Ex|v,x*,2) [E{UB: Y. X. 2)|Y,. X*, Z}])
= Ey.x+2) [Exiv.x+2) {U(B: Y. X. 2)}]
= Eyxx+z){UPB:Y. X, Z)}
= Exyxz){UB:Y. X, Z)}
=0,

where the expectations are evaluated with respect to the models for the correspond-
ing distributions indicated by the associated random variables. Here and through-
out the book, for ease of exposition, we interchangeably use E{g(U, V)|V} and
Eyv{g(U,V)} torefer to the conditional expectation of g(U, V') taken with respect
to the model for the conditional distribution of U given V', where g(U, V) is a func-
tion of any random variables U and V.

The expectation correction strategy has some similarities to the EM algorithm
in that the operation of the conditional expectation of the unobserved quantities
given the observed variables is needed, but these two methods are not the same.
The EM algorithm centers around the likelihood formulation while the expectation
correction approach applies to estimating functions. The EM algorithm requires the
evaluation of the conditional expectation of the log-likelihood for the complete data
{Y, X, X*, Z}, but the expectation correction method needs an evaluation of estimat-
ing functions involving {Y, X, Z} but not X *. The expectation correction strategy is
relevant to the expected estimating equation (EEE) method exploited by Wang and
Pepe (2000), where the nondifferential measurement error mechanism is assumed
and estimation of nuisance parameters is coupled with that of §.

Modified versions of the expectation correction strategy are available in
the literature. For instance, instead of evaluating the conditional expectation
E{UB;Y, X, Z2)|Y,X*, Z} for a function U(B;Y, X,Z) in order to produce a
computable estimating function, one may directly replace X in U(B;Y, X, Z) with
a workable version E(X|X*, Z). This is the widely used regression calibration
(RC) method (Prentice 1982; Thurston, Spiegelman and Ruppert 2003; Carroll et al.
2006). If estimating function U(B;7Y, X, Z) is linear in X, then the regression cali-
bration and the expectation correction strategies yield the same unbiased estimating
function; otherwise, the regression calibration method often produces inconsistent
estimators, because estimating function U{B; Y, E(X|X*, Z), Z} is not necessarily
unbiased. Consequently, the expectation correction method may be regarded as a
valid extension to nonlinear models of the regression calibration algorithm (which is
valid for linear models).

To reduce the bias for the estimator obtained from the regression calibration
method for nonlinear models, Freedman et al. (2004) proposed the moment recon-
struction method, which replaces X with a variance-preserving estimate X,* , where,
under the condition E(X*|Y, Z) = E(X|Y, Z), X, is given by
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Xp =EX|Y.Z)Ip, —G)+ X*G (2.18)

with G = {var(X*|Y, Z)}~"/2{var(X|Y, Z)}'/2. Here notation A'/? represents the
Cholesky decomposition of matrix A, defined by (4'/2)T41/2 = A, notation I,
stands for the p, X px unit matrix, and p, is the dimension of X. Conditional on
{Y,Z}, X;[‘R has the same mean and covariance as the unobserved true covariate X
(see Problem 2.9).

The expectation correction method is implemented in §3.3.1, §3.5.2, and §5.3.1.

Insertion Correction Method

As opposed to the expectation correction method, we introduce the insertion cor-
rection method. The idea is to find a computable estimating function, denoted by
U*(B;y,x*, z), so that its conditional expectation recovers an unbiased estimating
function U(B; y, x, z) which is derived from the original model for i(y|x, z). As
long as

E{U*B;Y,X*,2)|Y,X,Z}=U(B;Y, X, Z) (2.19)

where the expectation is evaluated with respect to the model for the conditional dis-
tribution of X*, given {Y, X, Z}, working with U*(8; y, x*, z) would produce a
consistent estimator for 8 under regularity conditions.

With generalized linear models, Nakamura (1990) used the insertion correc-
tion strategy to develop the so-called “corrected” likelihood or “corrected” score
method. If estimating function U(B; y, x, z) is the score function computed from the
model for /(y|x, z), then this method is phrased as the “corrected” score method.
When the insertion correction strategy applies to the log-likelihood function for the
model of i(y|x, z), this method is also called the “corrected” likelihood method.

These two methods are closely related. Let £(f8;y,x,z) denote the log-
likelihood function derived from the model for /(y|x, z). Suppose there is a function
£*(B; y, x*, z) of the observed data and the model parameter such that

E{*B;Y, X* 2)|Y, X, ZY = U(B;Y, X, Z). (2.20)

Let U*(B;y,x*,z) = 0L*(B;y,x* z)/0B. If integration and differentiation
are interchangeable, then by identity (2.20), the conditional expectation of
U*(B;Y, X*,Z), given {Y, X, Z}, recovers the score function for the model of
h(ylx,z).

The insertion correction method has been used successfully for regression mod-
els, such as Normal, Poisson and Gamma regression models (Carroll et al. 2006,
Ch. 7), for which covariates typically appear in a form of exponential, polynomial or
their product functions. Extensions of this strategy to various settings were discussed
by several authors, including Huang and Wang (2001), Yi (2005), Yi, Ma and Carroll
(2012), and Yi and Lawless (2012).

When the form of U(B; y, x,z) is complex, it is difficult or even impossible
to find functions U*(8; y, x*, z) to satisfy (2.19). An alternative is to work with a
weighted version of U(B; v, x, 2):

Uy(B:y.x,2) = w(B;x,2)U(B: y, x,2),
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where w(B; x, z) is an arbitrary weight function of the parameter and the covariates
but free of the response variable. Properly choosing a weight function w(8; x, z)
may enable us to readily find a computable estimating function, say U*(8; v, x*, z),
which satisfies

E{U*(B:Y. X*. )Y, X.Z} = Uy(B;Y. X, Z).
Such an estimating function is unbiased, justified as follows:

Ewxx+z2 U (B:Y, X", Z)}
= Ewx.z [Ex-i0.x.0{U*(B: Y. X*, 2)}]
= Ewyx.z){Us(B:Y,. X, 2)}
= Ex.z) [Ev\x.z2) {w(B: X. Z2)U(B: Y. X. Z)}]
= Ex.z) [wB: X. 2) - Eyjx.2) {UB: Y. X. 2)}]
=0,
where the last equation is due to the unbiasedness (2.17) of U(B; y, x, 2).

The insertion correction method is implemented in §3.5.1, §3.6, §3.7, §4.4, §4.5,
§4.6, §5.3.2, §5.5.3, and §8.7.1.

2.5.3 Methods of Correcting Naive Estimators

The third class of correction methods for mismeasurement effects is to directly ad-
just for naive estimators obtained from usual analysis procedures which ignore the
difference between X * and X .

Naive Estimator Correction Method

One scheme starts with producing a working estimator by directly applying es-
timating function U(B; y, x, z) to the data O with argument (y, x, z) evaluated at
(i, x],z;). Solving

n

D UB:yi,x,zi) =0

i=1
for § yields a naive estimate of 8. Let ,E* denote the corresponding estimator of f.
At the next step, we examine the relationship between the naive estimator B* and
a valid estimator obtained from using U(B; y, x, z) by treating X; as if available.
This is often carried out by evaluating the asymptotic bias for B* using the bridge
function discussed in §1.4. Finally, we correct the naive estimator B* by using the
relationship established in the previous step. We call this three-step procedure the
naive estimator correction strategy.

This strategy is implemented in §4.3 and §7.3 and was also discussed by Stefan-
ski and Carroll (1985), Yi and Reid (2010), and Yan and Yi (2016a), among others.
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Simulation-Extrapolation Method

Another approach for reducing bias involved in the naive estimator is
simulation based. The basic idea is to first establish the trend of measurement
error-induced bias as a function of the variance of the added measurement error,
and then extrapolate this trend back to the case without measurement error. This is
the simulation-extrapolation (SIMEX) approach proposed by Cook and Stefanski
(1994) for the measurement error model

X} =X +e 2.21)

fori = 1,...,n, where ¢; is independent of {X;, Z;} and the response variable, and
e; follows a N(0, X,) distribution with known covariance matrix X,.

Given an integer B (say, B = 200) and a sequence of increasingly ordered values
{c1,...,cn} taken from [0, cy] (say, cy = 1 and N = 20) with ¢; = 0, we carry
out the SIMEX method as follows.

e Step 1: Simulation.
Givenb = 1,..., B, foreach ¢ = cy,...,cy, generate e;;, from the distribution
N(0, ¥,) and set

xl(c) = xF + Jeepp. (2.22)

e Step 2: Estimation.
Replace x; in the estimating function U(B; y;, X;, z;) with x}; (c) and solve

S UB:yi.xfy(0).2i) =0
i=1

for B to obtain an estimate /,B\(b, ¢). Define ;3\(c) = B! Zz?=1 B(b, c).
e Step 3: Extrapolation.

For each component Bk (c) of E(c) where k = 1,..., p, fit a regression model
to the sequence {(c, Bx(c)) : ¢ = c1,...,cn} and extrapolate it to ¢ = —1; let
B denote the corresponding predicted value at c = —1. Then B = (81,...,Bp)

is called the SIMEX estimate of B.

The SIMEX method is implemented in §3.3.2 and §5.5.3. Its theoretical justifi-
cation was given by Carroll et al. (1996) for parametric regression under the assump-
tion that the exact extrapolation function is known together with suitable regularity
conditions.

The idea of the SIMEX method can be intuitively illustrated by the discussion
in §2.2 for simple linear regression (2.1) with the measurement error model (2.3).
If replacing X; with its observed measurement X *, then the resulting least squares

estimator 85 converges in probability to the limit

var(X;) B o2
{Var(X,.*)} P = (m) Bx asn — oo.
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Analogously, if replacing X; with simulated surrogate value X5 (c) = X + /ce;p,
then the resultant estimator 73\; (b, ¢), and hence E; (c), converges in probability to

var(X;) 8 oz 8
[ N — = as n — oQ.
var{ X} (c)} * 024+ (1 +c)o2f "™
Ifc =0, E; (0) is just the naive estimator E; However, if we set ¢ = —1, the

corresponding limit is identical to the true parameter Sy.

The SIMEX approach is attractive because it does not require the modeling of the
covariate process, and hence the resultant estimators are robust to possible misspec-
ification of the distribution of the true covariates. Although being time-consuming,
implementation of the SIMEX method can be readily realized by adapting existing
statistical software.

Implementation of the SIMEX method pertains to several aspects. The specifica-
tion of B, N and cy is not unique. Quantity cy is often set as 1 or 2. In principle,
larger values of B and N may improve the performance of a SIMEX estimator in the
sense that Monte Carlo sampling error in the simulation step may be reduced. A main
source of uncertainty is induced in the selection of a suitable regression function in
the extrapolation step. As the exact extrapolation function form is unknown, a user-
specified regression function has to be used to approximate the exact extrapolation
function. Such an approximation distorts the consistency of the resultant estimators
(established by Carroll et al. 1996), therefore, the SIMEX estimators are only ap-
proximately consistent. Many numerical studies suggest that a quadratic regression
function may serve as a fairly reasonable approximation to the extrapolation func-
tion. Although the SIMEX method is robust in the sense that the distribution of the
true covariates is left unspecified, it is sensitive to the distributional assumption of
the measurement error model. SIMEX estimators can incur larger bias than naive
estimators do when the measurement error model involves misspecification (Yi and
He 2012).

The foregoing SIMEX procedure is described for the scenario where an additive
normal error model with known covariance matrix X, is available. In the case where
covariance matrix Y, is unknown but replicate surrogate measurements are avail-
able, a modified version of the SIMEX procedure was described by Devanarayan
and Stefanski (2002), and is to be given in §3.3.2. With misclassified covariates in
regression models, Kiichenhoff et al. (2006) proposed the MC-SIMEX algorithm us-
ing the same principle of the SIMEX method. Stefanski and Cook (1995) provided
theoretical support for the SIMEX procedure and established a relationship between
SIMEX estimation and jackknife estimation. Apanasovich, Carroll and Maity (2009)
investigated the basic theory for the SIMEX method in semiparametric problems in
which the error-prone variable X; is modeled parametrically, nonparametrically or a
combination of both. Yi et al. (2015) developed the augmented-SIMEX approach to
extend the scope of the SIMEX method to handling data with the mix of misclassified
discrete covariates and mismeasured continuous covariates.
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2.5.4 Discussion

The aforementioned strategies focus on producing a point estimate for the param-
eter B which associates with the response model and is of interest. Variance esti-
mates may be obtained using the accompanying theory with each specific method.
For instance, when using the induced model method in §2.5.1, the inverse of the
negative second partial derivatives of the logarithm of the observed likelihood can
be used to calculate the variance estimate for the corresponding estimator. The Go-
dambe information matrix, described in §1.3.2, may be applied to derive variance
estimates for the estimators of 8 if schemes outlined in §2.5.2 are invoked. In cir-
cumstances where a variance estimate is not easy to produce, the bootstrap method
may presumably be used.

The sketched methods require different model assumptions, thus may be used
differently. The methods in §2.5.1 are basically derived from jointly examining the
response and measurement error models, whereas the approaches in §2.5.2 empha-
size on constructing valid estimating functions of the response model parameter
alone. Tacitly, estimating functions described in §2.5.2 involve nuisance parame-
ters associated with measurement error models (and sometimes covariate models as
well). To estimate parameter § from those estimating functions, nuisance parameters
need to be specified or replaced with their estimates. Often, an extra set of estimating
functions is constructed for estimation of the nuisance parameters using additional
data sources and then coupled with the estimating functions for 8 to perform param-
eter estimation. Discussion in §1.3.4 may be applied for this purpose. Similarly, to
use the methods in §2.5.3, we often need the knowledge of the measurement error
process.

The procedures described in this section mainly serve as a template to han-
dle problems with mismeasured covariates. It does not mean that those methods
can be directly used without being tailored to fit individual situations. Depending
on the characteristics of individual problems and the availability of additional data
sources, the methods outlined in this section often require proper modifications to
reflect meaningful estimation and inference procedures. Furthermore, the methods
discussed here are not the only possible tools to handle measurement error problems;
other options are available in the literature, see, for example, Carroll and Stefanski
(1985), Carroll, Gallo and Gleser (1985), Whittemore and Keller (1988), Carroll and
Stefanski (1990), Woodhouse et al. (1996), Nummi (2000), He and Liang (2000),
Schafer (2001), Novick and Stefanski (2002), Kuha and Temple (2003), Thore-
sen and Laake (2003), Pierce and Kellerer (2004), Staudenmayer and Buonaccorsi
(2005), Yucel and Zaslavsky (2005), Huang and Wang (2006), Carroll et al. (2006),
Carroll and Wang (2008), Thomas, Stefanski and Davidian (2011), and many others.

2.6 Measurement Error and Misclassification Models

In this section, we describe measurement error and misclassification models which
are frequently used in the literature. Symbol e or e with a subscript is usually used
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to represent the error term in a measurement error model. We consider models for
scenarios with nondifferential measurement error or misclassification. For settings
with differential measurement error or misclassification, a validation sample is often
required, which may then suggest a natural way for postulating the measurement
error or misclassification process.

In terms of notation in (2.10), to model the probability density or mass func-
tion h(x*|x,z), we specify a family of probability density or mass functions
f(x*|x,z;0,) with parameter o, varying in the parameter space ®,, and hope
that h(x*|x,z) = f(x*|x,z;00) for some 0.9 in ©,. A simple scenario is that
given the true covariate X, surrogate X * is independent of error-free covariate Z.

Dually, if using (2.11), we would specify a family { f(x|x*, z;0.) : 0, € O} of
probability density or mass functions, hoping that 2(x|x*,z) = f(x|x*, z; 0e0) for
some 0, in ®,. A simple scenario corresponds to that, given the surrogate covariate
X*, the true covariate X is independent of error-free covariate Z.

Classical Additive Error Model

A classical additive error model is of the form
X*=X+e, (2.23)

where the error term e is often assumed to be independent of the true covariates
{X, Z}, and has mean zero and a covariance matrix X,.

This model implies that the observed surrogate X * is more variable than the true
covariates X. When the surrogate X* is thought of as fluctuating around the true
covariate X, this model may be a feasible option to link X* and X. An equivalent
form

X* =X+ 3%

is sometimes used, where e has zero mean and an identity covariance matrix and
is independent of the true covariates {X, Z}. The degree of measurement error is
reflected by the magnitude of the elements in covariance matrix Y.

Model (2.23) may be modified to accommodate situations with replicate mea-
surements. Suppose X is being independently measured m times, contributing repli-
cated surrogate measurements X J* A classical additive model is then specified as

X;=X~|—€j

for j = 1,...,m, where the e; are assumed to be independent of each other and
of {X, Z} and have mean zero and covariance matrix X,. The requirement of mean
zero for e; indicates that the replicates X7 are unbiased measurements of X in the
sense that E(X|X) = X. The independence assumption for the e; may be relaxed
when the replicates X j* are not independently collected. The error structure of e;
may be homoscedastic where the covariance matrix X, is the same for all subjects,
or heteroscedastic where the covariance matrix varies from subject to subject.
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Berkson Model

A Berkson model takes an opposite perspective to facilitate the relationship
between X and X *. Instead of viewing X * as a function of X as in (2.23), a Berkson
model treats the true covariate X as varying around the surrogate X *:

X =X*te, (2.24)

where the error term e is often assumed to be independent of the surrogate X* as
well as covariate Z, and has mean zero and covariance matrix X,.

This model delineates a situation where the true covariate X is more variable
than the surrogate X *. For example, in herbicide studies, the amount of herbicide
applied to a plant is measurable, denoted by X *, but the actual amount X absorbed
by the plant cannot be precisely measured, and it usually differs from the applied
amount X *. In this case, it is more reasonable to treat X as a function of X* than
to think of X™* varying around X. In radiation epidemiology, the Berkson model is
useful to characterize radiation exposure of a patient. It says that the true, absorbed
dose is equal to the prescribed or estimated dose plus measurement error, and thereby
the true, absorbed dose has more variability than the estimated dose.

Remark

The classical additive error model and the Berkson model are perhaps the most
popular models used in the subject of measurement error. When using these models,
the error term e is usually assumed to have zero mean so that the surrogate X* is an
unbiased version of the true covariate X, hence E(X*) = E(X). These two models
differ in the perspective of viewing the relationship between X * and X, where one is
treated as a dependent variable and the other is regarded as an independent variable.
The choice of a suitable model is largely dependent on specific contexts (Carroll
et al. 2006, §2.2). In many applications, the usage of these models is coupled with
a specified distributional form for the error term e. Constantly, e is assumed to have
a normal distribution N(0, X,) where X, is the covariance matrix with possibly un-
known parameters, denoted by o.. More flexibly, a mixture of normal distributions
may be assumed for e, as discussed by Carroll, Roeder and Wasserman (1999).

Latent Variable Model

In some applications, simply using a classical additive error model or a Berkson
model may be too restrictive, but a mixture of these two models offers flexibility in
modeling measurement error processes. In this case, using a latent variable may be
helpful to express the relationship between X and X *:

X=u+eand X* =u+ ey, (2.25)

where u is a latent variable having mean p, and covariance matrix X, and e. and
ey are error terms both having mean zero and respective covariance matrices X
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and Y. Often, conditional on Z, mutual independence is assumed among u, e. and
e;; together with a marginal distribution for each variable.

An extreme form of model (2.25) corresponds to a classical additive model or
a Berkson model. Setting Y. = 0 for model (2.25) gives model (2.23), and con-
straining Xy = 0 for model (2.25) yields model (2.24). In situations where X and
X, are nonzero matrices, model (2.25) is viewed as a mixture of a classical additive
model and a Berkson model (Reeves et al. 1998). Model (2.25) may also be used
to feature transformed variables. For example, Mallick, Hoffman and Carroll (2002)
considered model (2.25) with the logarithm transformation applied to X and X*.

Other forms of latent variables may be employed to delineate more complex re-
lationship between X and X *. For example, Li, Shao and Palta (2005) considered a
latent model to analyze data arising from a Sleep Cohort Study. The true covariate X
represents the severity of sleep-disordered breathing (SDB), and the observed surro-
gate X * is the apnea-hypopnea index (AHI) which records the number of breathing
pauses per unit time of sleep. If SDB is positive, the observed AHI can be larger or
smaller than SDB, but cannot be negative; if SDB is zero, the AHI can only be larger
than or equal to the true value of SDB. To feature this kind of measurement error, the
following model is adopted:

X* = max(0,u + ¢) and X = max(0, u),

where u is a latent variable and assumes a normal distribution; e is the measurement
error on the latent variable, independent of u, and follows the distribution N (0, 062)
with variance o2.

Multiplicative Model

Classical additive error and Berkson models characterize measurement error by
facilitating the difference between the surrogate covariate X* and the true covari-
ate X. The magnitude of measurement error in the true covariate X may also be
quantified through other forms; multiplicative models are among such instances (Itur-
ria, Carroll and Firth 1999). To illustrate this, we consider the case where X and X *
are scalar; extensions to accommodating multidimensional covariates are straightfor-
ward with proper modifications of the presentation.

A multiplicative model is given by

X* = Xe, (2.26)

where the error term e is independent of {X, Z}. To ensure X* to have the same
mean as X, the mean of e is assumed to be 1.

Model (2.26) implies that the observed X™* must be zero if the true covariate
X is zero. This feature is, for instance, used by Pierce et al. (1992) to describe the
relationship between the true but unobservable radiation dose X and the available
estimate X *.

Another example of using model (2.26) comes from survey sampling. Hwang
(1986) discussed a household survey study for which releasing measurements of
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some variables may reveal the identity of household owners. To preserve the privacy
of participants, the measurements for those variables, denoted by X, are artificially
manipulated by using model (2.26), where the error term is generated from a spec-
ified distribution. Resultant surrogate measurements X * then replace the actual
measurements of the variables X and are being reported.

Transformed Additive Model

Mathematically, a multiplicative model may become an additive error model if
applied a logarithm transformation. For positive variables, taking logarithm on both
sides of the multiplicative model (2.26) yields an additive error model. More gener-
ally, Eckert, Carroll and Wang (1997) proposed a transformed additive error model

g(X™*) =g(X) +e, (2.27)

where g(-) is a monotone transformation function, and error term e is assumed to be
independent of {X, Z}.

Taking g(v) = log(v) gives a multiplicative error model, while setting g(v) = v
recovers an additive error model. To accommodate complex measurement error
structures, g(-) may assume a form from the Box—Cox transformations or piecewise-
polynomial spline functions. More generally, model (2.27) may be extended by
allowing different transformations, say, g*(-) and g(-) on X * and X, respectively:

g (X)) =g(X) +e.

The inclusion of parameters in the specification of function g(-) is also possible. For
instance, setting g*(v) = v and g(v) = yo + y1v + 2% + ...+ y,v" for a positive
integer r gives a polynomial measurement error model where Yy, y1, ¥2, ..., and y,
are parameters.

Regression Model

The foregoing models are often useful for settings where the surrogate X* is
independent of error-free covariate Z, given the error-prone covariate X. In some
applications, however, the surrogate covariate X * depends on not only error-prone
covariate X but also error-free covariate Z. A regression model may be used to
reflect this dependence:

X*=ayg+ I X +T,Z +e, (2.28)

where the error term e is independent of {X, Z} and has mean zero and covariance
matrix Y., g is a px X 1 vector, I'y is a py X py, matrix, [ is a py X p, matrix,
and p; is the dimension of Z. Different specifications of the matrices characterize
various measurement error models. For instance, setting o9 = 0,,, I’y = I, and
I'; = 0p,.xp, gives a classical additive model, where 04 represents a d x 1 zero
vector for a positive integer d, and 04, x4, Stands for a dy x d zero matrix for
positive integers d; and d,.
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Dually, switching X and X* in model (2.28) gives a different model
X =ag+ X"+ 1,7 +e, (2.29)

where e is assumed to be independent of {X*, Z}. This model generalizes the Berk-
son model and facilitates the correlation between the true covariate X and Z.

The elements of matrices X, I'y and I in (2.28) and (2.29) are often unknown
and need to be estimated. A normal distribution is commonly assumed for the error
term e in (2.28) or (2.29).

Misclassification Model

The preceding models concern cases where continuous covariate X is subject
to measurement error. In settings where X is a vector of discrete variables subject
to misclassification, two methods may be employed to characterize misclassifica-
tion processes. The difference between those two methods is reflected by choos-
ing conditioning variables when modeling; they are somewhat analogous to those
differences between a classical additive model and a Berkson model for continu-
ous error-prone covariates. Conditional on error-free covariate Z, one method is
to model the conditional probability P(X* = x*|X = x, Z) by treating X* to
depend on X while the other approach modulates X to be conditional on X* via
the conditional probability P(X = x|X* = x*, Z). Sometimes the probabilities
P(X* = x*|X = x, Z) are called the misclassification probabilities (e.g., Buonac-
corsi, Laake and Veiergd 2005) to distinguish from the reclassification probabilities
P(X = x|X* = x*, Z) termed by Spiegelman, Rosner and Logan (2000). With
a binary variable X, P(X* = 1|X = 1) and P(X* = 0|X = 0) are also called
sensitivity and specificity, respectively. In this book, we loosely call these conditional
probabilities (mis)classification probabilities.

As an example, we consider a special but commonly occurring situation where
X is a binary scalar variable. Let 110 = P(X* =0|X = 1,Z)and 7o; = P(X* =
11X = 0, Z). Regression models for binary data, such as logistic regression models,
are often employed to describe the dependence of (mis)classification probabilities
through their dependence on covariates, bearing in mind that other parametric mod-
eling may be employed for individual problems:

logit 19 = ago + g, Z and logit o1 = a1 + 1, Z,

where agg, 0oz, @10, and a1, are the regression parameters.
General Modeling Strategy

The aforementioned models portray scenarios of either measurement error or
misclassification, but not both. When error-contaminated variables involve both
discrete and continuous variables, modeling of measurement error and misclassi-
fication processes becomes more complicated. Here we discuss two strategies for
handling the conditional probability density or mass function i(x*|x, z); dealing
with i(x|x*, z) may proceed in the same principle.
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The first strategy emphasizes the different nature of continuous and discrete
covariates. Write X = (X7, X])" so that X. and X, represent subvectors con-
taining continuous and discrete covariate components, respectively. Let X* and X
denote the observed surrogate measurements of X and Xp,, respectively, and write
X* = (XX, X;")". To model measurement error and misclassification processes,
we would not attempt to directly modulate the entire conditional distribution func-
tion h(xX, x)|x, z), instead, we separately postulate the measurement error process
and the misclassification process by using the factorization

Bt xt e 2) = B g6 2R |x. 2).

It is often reasonable to assume that s (x}|x),x,z) = h(x}|x,z), saying that the
surrogate X is independent of the surrogate X, given the true covariates {X, Z}.
Therefore, to model A(x}, x¥|x, z), it suffices to separately model a measurement
error process for (x}|x, z) and a misclassification process for /(x> |x, z), using the
foregoing modeling strategies. An example of using this strategy was given by Yi
et al. (2015).

Alternatively, one may ignore the nature of discreteness or continuousness of
covariates and use the factorization strategy to obtain a sequence of conditional prob-
ability density or mass functions for a univariate variable. To do so, we spell out all
components of X* individually by writing X* = (X7,..., X, ). Then the factor-
ization

Px
h(x*|x,z) = h(xflx.2) [T hGeglxt. . xf_y.x.2) (2.30)
k=2

offers a way to characterize h(x*|x, z) via modeling a sequence of probability den-
sity or mass functions of the right-hand side of (2.30), which is easily implemented
by standard model techniques for a univariate variable. An application of this strat-
egy was provided by Spiegelman, Rosner and Logan (2000).

Although a number of measurement error and misclassification models are out-
lined here, one must be reminded that those models are not exhaustive. In fact, they
are far from adequate to handle all practical problems. Other treatments of mea-
surement error and misclassification processes are possible. For instance, to protect
us against misspecification of measurement error models, Carroll and Wand (1991)
developed an estimation method for logistic regression parameters where the mea-
surement error model is not explicitly specified and is handled with the kernel regres-
sion techniques. The nonclassical measurement error model considered by Prentice
et al. (2002) is not explicitly discussed in the book, but it may be useful for a range
of settings, especially in situations where the “instrument” used in the study involves
self-report information. Discussion on this aspect also appears in §9.1.

The preceding discussion is directed towards the case where covariates are sub-
ject to measurement error or misclassification. Although the same principles may
be broadly applied to other error-contaminated situations, technical details may be
quite different from problem to problem. Generally speaking, measurement error
and misclassification problems are divided into three categories: (1) only covariates
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are subject to measurement error, misclassification, or both, (2) only the response
variable is subject to measurement error (if it is continuous) or misclassification (if
it is discrete), and (3) the response variable and covariates are subject to measure-
ment error or misclassification. In this book, we mainly look at inference methods for
problems falling into the first category. Discussion on the second category is deferred
to Chapter 8, where a brief discussion on the third category is also provided.

2.7 Measurement Error and Misclassification Examples

In the foregoing sections, we outline the issues on dealing with measurement error
and misclassification problems. Modeling and inference strategies are sketched
in general terms to reflect common features or similarities for analysis of error-
contaminated data. With different application settings, those procedures need to be
further elaborated and modified in order to fully incorporate problem-specific char-
acteristics. In subsequent chapters, we present modeling and inference methods for a
variety of areas in greater details. We conclude this chapter with several examples of
measurement error or misclassification, each related to the development of a chapter
followed. More mismeasurement examples were discussed by Carroll et al. (2006,
Ch. 1) and the references therein.

2.7.1 Survival Data Example: Busselton Health Study

Survival data concern time to events, which are encountered frequently in medical
research, epidemiological studies and industrial application. Survival times may be
defined as times to death, times to occurrence of a disease or a complication, or times
from changing one condition to another. It is common that survival data contain error-
contaminated covariate measurements.

Here we discuss the data arising from the Busselton Health Study which were
collected by a repeated cross-sectional survey in the community of Busselton in
Western Australia from 1966 to 1981. Health surveys gathered data for couples on
demographic variables and general health and lifestyle variables as well as survival
information. Detailed descriptions of this study were provided by Knuiman et al.
(1994).

Table 2.1 displays a sample data set, where “PAIR” labels the identification
number of spouse pairs; “AGE” records the age of a study subject at survey (in year);
“SEX” reports the gender of each study subject; “SBP” and “DBP”, respectively,
refer to systolic blood pressure and diastolic blood pressure (in mmHg); “BMI”
displays body mass index (in kg/m?); “CHOL” is totalcholesterol level (in mmol/l);
“DIAB” records the history of diabetes (1 if diabetes, and O otherwise); “SURV”
stands for survival time from survey date to date last known alive (in year); and
“CENS” indexes whether or not a study subject died (1 for death, and O other-
wise). Variable “SMOKE” shows the smoking status, coded as 1, 2, 3, 4, and 5, to

9% ¢

respectively correspond to “never smoked”, “ex-smoker”, “current smoker with less
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Table 2.1. Sample Data of the Busselton Health Study

PAIR AGE SEX SBP DBP BMI CHOL DIAB SMOKE DRINK SURV CENS

1 504 F 127 82 2461 632 O 2 3 259 1
1 523 M 145 92 27.37 6.13 0 4 1 28.1 0
2 403 F 132 98 2639 5.13 0 1 1 25.1 0
2 405 M 156 76 29.54 5.79 0 2 4 25.1 0
3 565 F 141 82 39.66 692 0 1 2 234 1
3 66.8 M 97 56 23.63 7.11 0 4 3 11.7 1
4 389 F 169 102 23.10 4.87 0 2 1 17.1 0
4 66.5 M 171 96 20.24 416 O 4 1 2.8 1
5 497 F 185 90 22.67 7.71 0 1 3 28.1 0
5 524 M 131 92 27.16 6.05 0 1 3 28.1 0

99 <

than 15 cigarettes/day”, “current smoker with no less than 15 cigarettes/day”, and
“smokes pipe or cigars only”; and variable “DRINK” represents alcohol consump-
tion, coded as 1, 2, 3, 4, and 35, to respectively feature “non-drinker”, “ex-drinker”,
“light drinker”, “moderate drinker”, and “heavy drinker”.

An objective of the study was to evaluate the effect of cardiovascular risk fac-
tors on the risk of death due to coronary heart disease (Knuiman et al. 1994). The
data set considered by Yi and Lawless (2007) includes survival information for 2306
spouse pairs. Of these, 2266 pairs have at least one censored response (i.e., at least
one member of the couple was still alive at the final observation time). It is known
that measurements of the risk factors, such as blood pressure and cholesterol level,
are subject to measurement error due to the inherent nature of those variables. In the
analysis of data with those error-prone covariates, it is important to take the mea-
surement error effects into account.

2.7.2 Recurrent Event Example: rhDNase Data

Recurrent event data arise frequently from biomedical sciences, demographical stud-
ies, and industrial research. Examples include seizures of epileptic patients, succes-
sive tumors in cancer patients, multiple births in a woman’s lifetime, and times to
warranty claims for a manufactured item. Mismeasurements may occur in data col-
lection of recurrent events.

As an example, we discuss a data set arising from a study of pulmonary exac-
erbations and rhDNase. Fuchs et al. (1994) reported on a double-blind randomized
multicenter clinical trial designed to assess the effect of rhDNase, a recombinant
deoxyribonuclease I enzyme, versus placebo on the occurrence of respiratory exac-
erbations among patients with cystic fibrosis. The rhDNase operates by digesting the
extracellular DNA released by leukocytes that accumulate in the lung as a result of
bacterial infection and, thus, aerosol administration of thDNase would be expected
to reduce the incidence of exacerbations (Cook and Lawless 2007, p. 365).
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Six hundred and forty-five patients were recruited in this trial. Each subject was
followed up for about 169 days. Data on the occurrence and resolution of all exac-
erbations were recorded. Treatment assignment and two baseline measurements of
forced expiratory volume (FEV) reflecting lung capacity were available for each pa-
tient. In addition, the number of days from randomization to the beginning of the
exacerbations was recorded, as well as the day on which treatment for each exacer-
bation ended and patients became at risk of a new exacerbation. It is of interest to
evaluate whether the treatment has the desired effect on reducing the incidence of
exacerbations and how covariate FEV is associated with exacerbations. Here FEV
refers to the long-term average of forced expiratory volume for a patient, however,
available baseline replicate measurements are bound to be subject to variability from
this long-term average.

Table 2.2 displays a sample of the data, where “ID” shows the patient identifica-
tion number, “TRT” is the treatment indicator (1 if treated and O otherwise), “FEV1”
and “FEV2” record two baseline measurements of FEV, “EVENT” shows the num-
ber of respiratory exacerbations, Column B reports on the number of days from
randomization to the beginning of the jth exacerbation, and column Ej displays the
day on which treatment for the jth exacerbation ended and patients became at risk
for a new exacerbation for j = 1,2, .... A complete data set is available from Cook
and Lawless (2007).

Table 2.2. Sample Data of the Study of Pulmonary Exacerbations and rhDNase

ID TRT FEV1 FEV2 EVENT B1 E1 B2 E2 ...

493301 1 28.8 28.1 0

493305 0 672 68.7 1 65 75
589303 0 112.0 110.7 2 60 74 83 124
589307 1 96.0 945 O

589310 1 704 70.1 2 3564 71 108

2.7.3 Longitudinal Data Example: Framingham Heart Study

The Framingham Heart Study is a longitudinal prospective study of risk factors for
cardiovascular disease (CVD). The objective of the study was to identify common
factors or characteristics that contribute to CVD by following its development over a
long period of time. The study followed up a large group of participants who had not
yet developed overt symptoms of CVD or suffered a heart attack or stroke (Kannel
et al. 1986).

Among potential risk factors, age at the study entry, body mass index, and smok-
ing status are error-free variables, while systolic blood pressure and serum choles-
terol are variables measured with error. As discussed by Carroll et al. (2006, p. 12),
systolic blood pressure is the main predictor of interest, but its long-term average
X is impossible to measure. Instead, a specific measurement X * at a clinic visit
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is available. The long-term measurement X and a single-visit measurement X * are
generally different due to daily and seasonal variation, and confounding factors.

2.7.4 Multi-State Model Example: HL Data

Hairy leukoplakia (HL) is an oral lesion that is thought to have prognostic signif-
icance for the progression of HIV disease. HL appears as a whitish lesion on the
lateral border of the tongue and is usually diagnosed by visual oral examination.
Routine oral examinations, however, often overlook HL lesions. For instance, in a
study of comparing diagnoses made by oral medicine specialists and trained medical
assistants, Hilton et al. (2001) found that the medical assistants detected HL in only
12 of the 40 patients diagnosed with HL by oral medicine clinicians. In the study of
Bureau, Shiboski and Hughes (2003), it was estimated that the probability of a posi-
tive diagnosis of HL for a HL free individual (i.e., a false positive rate) is 3.4% with
standard error 0.006, and the probability of a negative diagnosis of HL for a subject
with HL (i.e., a false negative rate) is 24.2% with standard error 0.025.

Misdiagnosis of HL lesions comes from different sources. Although HL lesions
tend to be fairly persistent, spontaneous remission and reappearance may occur in
some patients. In addition, HL lesions respond to treatment with antiviral drugs (for
example, Acyclovir). Other oral lesions may be misdiagnosed as HL or co-occur with
HL (for example, oral candidiasis), thus leading to false positive or false negative
diagnoses. To study potential risk factors for development and remission of HL, it is
important to accommodate misdiagnosis (i.e., misclassified outcome) in the analysis.

Bureau, Shiboski and Hughes (2003) presented a data set of those subjects who
were assessed at most 4 times with intervals between visits being approximately 6
months. For subject 7 let Y;x and Y;; represent the true HL status and the diagnostic
value at time point #x, respectively, where taking value 1 or 0, respectively, corre-
sponds to having HL or HL free for k = 1,2, 3,4; and Z; represents CD4 counts
for subject i that were categorized to assume three values, 1, 2, and 3, respectively,
corresponding to the range: CD4 count < 200, 200 < CD4 count < 500, and CD4
count > 500.

It is interesting to study how the transition among the Y;; is associated with
covariate Z;. However, the Y;; are not precisely measured, and their observed values
Y3 may differ from Y;;. Table 2.3 records the frequencies of the observed value of
HL for the individuals classified by the CD4 counts, together with the frequencies of
the observed diagnostic HL for those individuals whose CD4 counts are unknown.

2.7.5 Case—Control Study Example: HSV Data

The data discussed by Carroll, Gail and Lubin (1993) were collected from a case—
control study for which the primary objective was to examine the association between
invasive cervical cancer and exposure to herpes simplex virus type 2 (HSV-2). The
biological background was provided by Hildesheim et al. (1991).

Exposure to HSV-2 was assessed by a refined western blot procedure, denoted as
X, or a less accurate western blot procedure, denoted as X *, for cases (Y = 1) and
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Table 2.3. HL Data (Bureau, Shiboski and Hughes 2003)

Observed HL CD4 count No stratification

YiTYi;YiagYiz Zi=12;,=227;=3

1 0 10 6 5 18
1 1 17 23 6 39
0 45 101 100 207
0 1 7 9 4 18
1 1 2 4 6
1 1 1 6 12 26
1 0 0 7 12
1 0 1 2 4
0 1 8
0 1 1 6
0 0 0 23 59 76 184
0 0 1 5 2 2 8
1 1 1 0 8
1 1 1 1 18
0 0o 0 O 153
0 0 0 1 6

Table 2.4. HSV Data from a Case—Control Study (Carroll, Gail and Lubin 1993)

Y X X* FREQ
Validationdata 1 0 O 13
10 1 3
110 5
11 1 18
00 0 33
00 1 11
01 0 16
01 1 16
Main study data 1 0 318
1 1 375
0 0 701
0 1 535
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controls (¥ = 0). Less than 6% of the subjects were observed with the test result X .
Measurements X * based on the less accurate western blot test were available for all
subjects. The complete data are reported in Table 2.4, where “FREQ” records the
frequency for each category.

To study the relationship between Y and X, one may use the validation data
alone, since measurements of both ¥ and X are available. But this usage of the
data would incur considerable efficiency loss as data from about 94% subjects with
measurements of (Y, X*) were thrown away. If also using all the measurements X *
in the main study to examine the relationship between Y and X, misclassification in
X needs to be incorporated in inferential procedures.

2.8 Bibliographic Notes and Discussion

Research on measurement error and misclassification problems has not been just
restricted to the statistics community; it has also been active in many other fields,
including medical, health and epidemiological studies as well as econometrics. Sev-
eral synonyms for “measurement error” or “misclassification” are commonly used

LEINNT3

in the literature, including “predictors measured with error”, “errors-in-variables”,

LEINNT3 LLINNT3

“covariate measurement error’, “measurement error models”, “mismeasurement”,
“response error”, “error-prone data”, and “error-contaminated data”, etc.

Many researchers examined measurement error effects in varying settings
and proposed correction methods to account for these effects. To name a few,
see Berkson (1950), Richardson and Wu (1970), Carroll and Gallo (1982), Car-
roll et al. (1984), Stefanski (1985), Stefanski and Carroll (1985), Selén (1986),
Prentice (1986), Gleser, Carroll and Gallo (1987), Chesher (1991), Pepe and
Fleming (1991), Carroll and Stefanski (1994), Wang, Carroll and Liang (1996),
Carroll and Ruppert (1996), Carroll (1997), Dagenais and Dagenais (1997),
Coffin and Sukhatme (1997), Reeves et al. (1998), Cheng, Schneeweiss and
Thamerus (2000), Gustafson (2002), Hong and Tamer (2003), Wang (2003,
2007), Kim and Saleh (2005), Thiébaut et al. (2007), Gorfine et al. (2007),
Li and Greene (2008), Wei and Carroll (2009), Huang and Tebbs (2009),
Carroll, Chen and Hu (2010), Prentice and Huang (2011), and Kipnis et al. (2016),
among many others.

It is known that measurement error and misclassification may seriously degrade
the quality of inference and should be avoided whenever possible. Improving mea-
surement procedures and designs of data collection may sometimes reduce or elim-
inate measurement error or misclassification. For example, in designing question-
naires for survey sampling, properly wording the questions and involving more ex-
perienced interviewers may help collect more accurate measurements. But in many
situations, it is inevitable that collected measurements contain error due to the na-
ture of the variables themselves. It is necessary and important to develop statistical
strategies to cope with this issue.

There are instances where ignoring measurement error in data analysis does
not really matter, but the problem is that we are not sure when this happens. Un-
derstanding measurement error effects and developing valid inference methods to
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accommodating them enable us to deal with various error-prone data more compre-
hensively. The study of measurement error problems offers us opportunities to unveil
the truth that is obscured by the presence of measurement error or misclassification.

Concerns on measurement error effects date back at least to Adcock (1878). Early
work includes the investigations of the effects of mismeasurements on inferences.
For instance, Stouffer (1936) observed that estimates of partial correlations can be
biased when the variables are measured with error. Aigner (1973) showed that with
misclassification in a binary covariate, the least squares estimator is biased down-
ward. Modelling of measurement error has a long history, see, for instance, Wald
(1940), Madansky (1959) and the references therein for early work. Research on
measurement error models has been increasingly growing over the past few decades.
It is difficult to supply a complete list of work in this area (e.g., Yi 2009). Many
interesting references on diverse topics can be found in the books by Fuller (1987),
Gustafson (2004), Carroll et al. (2006), and Buonaccorsi (2010), as well as the ref-
erence list of this book.

As commented by Carroll et al. (2006, pp. 23-24), the lack of conventional not-
ation makes it difficult to read papers in this area. Unfortunately, we are not able
to use the notation adopted by Carroll et al. (2006) but have to create a new set of
key symbols for a coherent presentation of this book. We use X and Z to represent
the true covariate vectors, where X is reserved for error-prone covariates and Z for
error-free ones. Following the convention, we let Y denote the response variable in
this book except for Chapters 3 and 4 where, instead, we use T to denote the survival
time, and N(¢) the number of events occurring over time period [0, ¢]. The Greek
letter B is reserved for the parameter vector associated with the response process
that is of primary interest, and 6 is often adopted to denote the vector of all associ-
ated variables in the model, including nuisance parameters which are often written
as «, y, ¥, 0, etc. Notation U(B; y, x, z) is usually used to denote an unbiased esti-
mating function of 8 derived from the model for {Y, X, Z}.

Intending to provide an easy way to match connected quantities, we use super-
scripts and subscripts as well. To correspond surrogate variables to their true error-
prone variables, we add asterisks to the true variables to denote the corresponding
surrogate measurements. For example, X * stands for a surrogate version of X, and
Y* stands for a surrogate version of Y. As opposed to B representing a parameter
vector under the model for {Y, X, Z}, 8* is used to denote a corresponding parame-
ter vector for the naive analysis which disregards the difference between X * and X,
or/and the difference between Y * and Y. Corresponding to the estimating function
U(B;y,x,z), we usually use U*(B; y, x™, z) to represent an unbiased estimating
function for B which is expressed in terms of the observable variables {Y, X*, Z}.

Superscripts v, x and z, or subscripts y, x and z, are used to indicate the associ-
ation of certain quantities with the processes, respectively, corresponding to ¥, X
and Z. Subscripts i and j are used to index subjects and replicated measurements,
respectively.

Although great effort is paid to make different quantities be expressed by differ-
ent symbols, it is unavoidable that the same symbol may be used to refer to different
meanings at different places. For precise meaning of each symbol, we should look
up the chapter in which the symbol appears.
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2.9 Supplementary Problems

2.1.

2.2.

Suppose {(Y;, X;) : i = 1,...,n} is a sequence of independently and identi-
cally distributed random variables. Consider a simple regression model

Yi=PBo+BxXi+e (2.31)

fori = 1,...,n, where o and B, are regression parameters, and the ¢; are
mutually independent and independent of the X; and have mean zero and vari-
ance 02. Suppose covariate X; is subject to measurement error and X Fis an
observed version of X;. Assume that X; has variance of.

(a) Assume that the measurement error model is

Xi* =X +e (2.32)

fori = 1,...,n, where the ¢; are mutually independent and independent
of the {¢;, X;} and have mean zero and variance 062.

(i) Let B; denote the least squares estimator of 8, obtained from fitting
model (2.31) with X; replaced by X*. Show that

S P
Bx — wBx asn — o0,

where = 02/(02 + 02).
(i) Can you work out the asymptotic variance of B\;" Do you need to
make any assumptions?

(iii) Let Bx denote the least squares estimator obtained from fitting
model (2.31) if X; were available. Work out the asymptotic variance
of Bx. Do you need to make any assumptions?

(iv) Compare the asymptotic variances of B;’; and Bx.

(v) Further assume that ¢; and e; follow normal distributions. Can you
work out the conditional distribution of ¥; given X*?
(b) Suppose the measurement error model is instead given by

X = Xi* + e; (2.33)

fori = 1,...,n, where the e; are mutually independent and independent
of the {¢;, X;*} and have mean zero and variance o2. Repeat the discussion
on the similar questions in (a). Comment on the differences between the
results of (a) and (b).

Consider model (2.31). Suppose response Y; is subject to measurement error
and Y;* is an observed version of Y;. Let Bx denote the least squares estimator
of By obtained from fitting model (2.31) with Y; replaced by Yi*, and Bx be
the least squares estimator of 8, obtained from fitting model (2.31) assuming
Y; were available.
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2.3.
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(a) Assume that the measurement error model is
Y=Y +e

fori = 1,...,n, where the e; are mutually independent and independent
of the {Y;, €;} and have mean zero and variance o2. Repeat the discussion
on the similar questions in Problem 2.1 (a).

(b) Suppose the measurement error model is instead given by

Yi =Y +e

fori = 1,...,n, where the e; are mutually independent and independent
of the {¥;*, ¢; } and have mean zero and variance o2. Repeat the discussion
on the questions similar to (a). Comment on the differences between the
results of (a) and (b).

Consider model (2.31). Suppose both X; and Y; are subject to measurement

error and their observed versions are X and Y;*, respectively. Let E; denote
the least squares estimator obtained from fitting model (2.31) with X; replaced
by X;* and Y; replaced by Y;*.

Suppose covariate measurement error is described by model
X" =axo+aaX; +ex

with e,; assumed independent of {¢;, X; }, or model
Xi = axo + @1 X + exi

with e,; assumed independent of {¢;, Xl-*}, wherei = 1,...,n; ey; has mean
zero and variance oezx; and oy and oy are regression coefficients.
Suppose response error is described by model

Yi* = ayo + Otylyi + ey
with e,; assumed independent of {Y;, ey; }, or model

*
Y; = Uyo +ay1Y,' + eyi

with ey; assumed independent of {Yl*, exi},wherei =1,...,n;ey; has mean
zero and variance O'ezy; and oy and o are regression coefficients.

For each combination of the measurement error models, work out the follow-
ing problems.

(a) Repeat the discussion on the similar questions in Problem 2.1 (a).

(b) Discuss identifiability issues for the model parameters.
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2.5.

2.6.
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(¢) The measurement error mechanisms discussed in §2.4 are classified for
the situation with covariate measurement error only. Are those classifica-
tion mechanisms still meaningful for the case with measurement error in
both response and covariate variables? What modifications may be done
in order to feature useful measurement error mechanisms?

Consider model (2.31). We are interested in testing the null hypothesis H, :

Bx = ¢ where c is a given value of interest. Suppose covariate X; is subject

to measurement error and X i* is an observed version of X;. Assume that the

measurement error model is given by (2.32) or (2.33).

(a) Construct a test statistic for testing H,, using the observed data {(Y;, X;*) :
i=1,...,n}.

(b) If the true covariate X; were available, construct a test statistic for testing
H, using the true measurements {(Y;, X;) :i = 1,...,n}.

(c) Compare the two test procedures in terms of the Type I error and the power
for the hypothesis with zero ¢ or nonzero c.

(a) Can you repeat the discussion in Problem 2.4 for the case where the re-
sponse variable Y; is subject to measurement error?

(b) What if both X; and Y; are subject to measurement error? Does the issue
of model identifiability become a concern?

Suppose {(Yi, Xi,Z;) : i = 1,...,n} is a sequence of independently and
identically distributed random variables, where Y; is the response variable and
X; and Z; are covariates. Consider a multiple regression model

Yi=Bo+ B Xi + B, Zi +e (2.34)
fori = 1,...n, where the ¢; are mutually independent and independent of

{X;, Z;} and have mean zero and variance 2.

Suppose covariate X; is subject to measurement error and X/* is an observed
version of X;. Assume that the covariance matrix of {X;, Z;} is

Xi Z:x Z:xz
ar =
with Ty, = X7 ..

(a) Assume that the measurement error model is
Xi* =X; + e (2.35)
fori = 1,...,n, where the e; are mutually independent and independent
of the {Y;, X;, Z;} and have mean zero and covariance matrix Y.

(i) Let E* = (E;T E;T)T be the least squares estimator obtained from
fitting model (2.34) with X; replaced by X*. When n — oo, what

does E* converge to in probability?
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(i) Can you work out the asymptotic covariance matrix of E;" Do you
need to make any assumptions?

(iii) Let ;3\)‘ denote the least squares estimator obtained from fitting
model (2.34) assuming that X; were available. Can you work out the
asymptotic covariance of Bx ? Do you need to make any assumptions?

(iv) Compare the asymptotic covariances of B; and Bx-

(v) Assume that €; and e; follow normal distributions. Can you find the
conditional distribution of ¥; given {X*, Z;}?

(vi) We are interested in testing H, : Bx = 0. Construct two test
statistics each using variables {(Y;, X*,Z;) : i = 1,...,n} and
{(Yi,X;,Z;) i = 1,...,n}. Compare the performance of those
two test statistics in terms of the Type I error and the power.

(vii) We are interested in testing H, : B, = 0. Construct two test
statistics each using variables {(Y,-,Xi*,Zl-) i = 1,...,n} and
{(Y;,Xi,Z;) :i = 1,...,n}. Compare the performance of those
two test statistics in terms of the Type I error and the power.

(b) Suppose the measurement error model is instead given by

Xi =X +e (2.36)

fori = 1,...,n, where the e; are mutually independent and independent
of the {X l-*, Z;,Y;} and have mean zero and covariance matrix X,. Repeat
the discussion on the questions similar to those in (a).

2.7. Consider a different version of model (2.34) where X; is a scalar binary covari-
ate subject to misclassification. Suppose X* is an observed version of X;, and
the nondifferential misclassification mechanism holds. Repeat the discussion
in Problem 2.6 for the following misclassification models.

(a) The misclassification probabilities are given by

o1 = P(X[ = 1|X; =0)and 719 = P(X] = 0|X; = 1).
(b) The misclassification probabilities are given by
7y = P(X; = 1|X =0)and n{y = P(X; = 0|X] = 1).
(Buonaccorsi, Laake and Veiergd 2005)
2.8. Let H(0;0%) be defined by (2.15). Show that for any 6,6, € ©,
H(01;02) < H(02;0,).
2.9. Let X, be defined as (2.18). Show that
@ E(XL|Y.Z) = E(X|Y,Z);
(b) var(X} 1Y, Z) = var(XY, Z);

(c) var(X».Y|Z) = var(X,Y|2).
(Freedman et al. 2004)
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2.10.
(a) Consider a simple case where X is a scalar binary variable with a surrogate
measurement X *. Let

701 = P(X*=1|X =0) and 710 = P(X* =0|X = 1)

be the misclassification probabilities. Suppose g(X; ) is a real valued
function of X and 8. Show that function

g(0; B)Y(1 — m10) — g(1: B)mor — X*{g(0; B) — g(1: B)}

1 — o1 — 710

grX":p) =
satisfies the requirement that

E{g"(X™:B)IX} = g(X:B),

where the conditional expectation is evaluated with respect to the condi-
tional probability mass function of X* given X.

(b) Generalize the result in (a) to the case where X is a categorical variable
with more than two levels.

(c) Generalize the result in (a) to the case where X is a vector of binary vari-
ables.

2.11. Suppose {(Y;, X;,Z;) : i = 1,...,n} is a sequence of independently and
identically distributed random variables, where Y; is the binary response vari-
able and X; and Z; are covariates. Consider a logistic regression model

logit P(Y; = 1|X;. Z;) = o + BLX: + BLZ; (2.37)

fori = 1,...,n, where By, Bx and B, are parameters. Suppose covariate X;
is subject to measurement error and X * is an observed version of X;.
(a) Assume that the measurement error model is (2.35).

(1) Is the structure of the logistic regression model (2.37) preserved by
the conditional probability function P(Y; = 1|X/, Z;)?

(i) We are interested in testing H, : By = 0. Construct two test
statistics each using variables {(¥;,X*,Z;) : i = 1,...,n} and
{(Yi,X;,Z;) : i = 1,...,n}. Compare the performance of these
two test statistics in terms of the Type I error and the power.

(iii) We are interested in testing H, : B, = 0. Construct two test
statistics each using variables {(Y,-,Xi*,Zi) i = 1,...,n} and
{(Y;,X;,Z;) :i = 1,...,n}. Compare the performance of these
two test statistics in terms of the Type I error and the power.

(b) Suppose the measurement error model is given by (2.36). Repeat the dis-

cussion on the questions in (a).

(c) If the link function logit in model (2.37) is replaced by a probit link. How
would the discussions for (a) and (b) change?

(Carroll 1989)
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2.12. Suppose {(¥;, X;) : i = 1,...,n} is a sequence of independently and identi-
cally distributed random variables, where Y; is the response variable and X; is
a scalar covariate. Consider a simple regression model

Yi =Bo+ BxXi + e (2.38)

fori = 1,...,n, where the ¢; are mutually independent and have distribution
N(0, 0¢¢) with variance Oee.

Suppose X/ is an observed version of X; and follows the model
X'=Xi+e (2.39)

fori = 1,...,n, where the ¢; are mutually independent and have distribution
N(0, 0¢e) With variance .

Assume that the (X;, €;, ¢;) are independently and identically distributed and

follow
X; Mx Oxx Oxe Oxe
€ | ~N 0 |,]| Oxe Oce Oce , (2.40)
€j 0 Oxe Oce Oce

where 1, and oy, are the mean and variance of X;, respectively; o is the
covariance of X; and €;; oy, is the covariance of X; and ¢;; and o, is the
covariance of ¢; and e;. Suppose that the nondifferential measurement error
mechanism holds.
(a) Assume that 0y = 0xe = 0ce = 0in model (2.40).

(i) Show that (¥;, X;*) follows a bivariate normal distribution

(@) i) e
M“x Ox*y Ox*x*

[ty = Bo + Bxitx; Oyy = B30xx + Oce;
Ox*y = BxOxx: Ox*x* = Oxx + Oee-
(ii) Let 8 = (Bo, Bx, Mx»Oxx,Oce, Oce)" be the parameter vector asso-
ciated with models (2.38) and (2.39). Show that parameter 6 is not
identifiable from model (2.41) for the observed data {(Y;, X*) : i =

where

1,...,n}
(iii)) Model parameters of (2.38) and (2.39) may be identifiable from
the observed data {(Y;, X;*) : i = 1,...,n} if certain conditions

are imposed. Show that if o,. or the reliability coefficient v =
Oxx/ (Oxx 4 0ee) is given, then @ is identifiable from the model (2.41)
for the observed data {(Y;, X*) : i = 1,...,n}.
(b) Assume that there is an instrumental variable V; that is uncorrelated with
{€i, e; } but correlated with X;. In particular, we have a model

Xl' =CU()+C(UV[ + 1,
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where error r; is independent of {V;,¢;,e;}. Assume that both r; and
V; follow normal distributions with E(r;) = 0, E(V;) = p, and

var(V;) = oyy.
(i) Show that ¢ and B, in model (2.38) may be estimated by

*

~

Bo=Y —BxX and B, =3;$voyv,

respectively, where
/U\yv = (” - l)_l Z?:](I/I _7)(Yl _7);
vy = (1= DTV (X =X )(Vi = V);
V=n! Z?:l Vi; ¥ =n~! Z?:l Yi;
X =n! Y X

(ii) Find the asymptotic distribution of /1 (,/3 —fB), where E = (Bo, BX)T

and B = (Bo. Bx)".

(iii)) Thompson and Carter (2007) discussed the data, presented in

Table 2.5, which are measurements of blood glucose taken from
three different measurement techniques on 16 “normal” patients.
Of the three measurement techniques, one is a manual method and
the other two are done by machines, labeled as machine A and ma-
chine B.

Let Y; be the measurement on the ith patient taken by machine B,
and X be the measurement on the ith patient taken by the man-
ual method. Let V; be the measurement on the ith patient taken by
machine A, which is treated as an instrumental variable for the true
blood glucose X;. True blood glucose is a variable contaminated
with measurement error.

Perform the naive least squares regression analysis using the data
{(Yi, X7) i =1,...,n}. In contrast, use the instrumental variable,
perform estimation of parameter f using the data {(Y;, X", V;) :i =
1,...,n} by following the lines of (i) and (ii) in (b).

(Fuller 1987, Ch. 1; Thompson and Carter 2007)

Table 2.5. Three Measures of Blood Glucose (Thompson and Carter 2007)

Patient Manual Machine A Machine B |Patient Manual Machine A Machine B
99 100 94 9 137 132 127
118 118 111 10 99 100 96
94 92 90 11 153 150 140
98 102 96 12 116 116 112
71 70 67 13 74 80 78
96 96 92 14 108 108 102
133 132 125 15 88 90 85
86 88 86 16 117 116 110

0N N WN =
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Survival Data with Measurement Error

Survival analysis is commonly challenged by the presence of covariate measurement
error. Biomarkers, such as blood pressure, cholesterol level, and CD4 counts, are
subject to measurement error due to biological variability and other sources of varia-
tion. It is known that standard inferential procedures often produce seriously biased
estimation if measurement error is not properly taken into account. Since the seminal
paper by Prentice (1982), there has been a large number of research papers devoted
to handling covariate measurement error for survival data.

In this chapter, we direct our attention to this area and discuss analysis methods
for dealing with error-contaminated survival data. We begin with an overview of
survival analysis in the error-free context. In subsequent sections we explore various
inference schemes to account for covariate measurement error and misclassification
associated with survival data.

In the discussion of this chapter, we differentiate the notation for the distribution
of survival times from its model, but we use the same symbols for the hazard function
and its model (i.e., A(t) or A(t| X, Z)), and for the survivor function and its model
(i.e., S(t) or S(t|X, Z)) for ease of exposition. Letters #; and T; represent different
quantities as defined in §3.1.5. Other variables, such as X; and Z;, are loosely used;
sometimes we differentiate random variables and their realizations by using upper
case and lower case letters, respectively; sometimes we just use upper case letters for
both random variables and their realizations to highlight the presence of the variables,
especially when discussing the probability behavior of estimators. In addition, in
the arguments of the likelihood functions or distributions, we interchangeably use
(T;, C;) and (2, 8;) to refer to the same quantities.

© Springer Science+Business Media, LLC 2017 87
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3.1 Framework of Survival Analysis: Models and Methods

In survival analysis, the response measurement often concerns time to an event. An
event of interest may take on different types, such as death of a patient, occurrence of
a disease, or failure of a manufactured product, etc. Terms of survival time, lifetime,
failure time, time-to-event, or event time, are commonly used to refer to a response
variable in survival analysis.

Survival analysis deals with the probability behavior of time to an event. With a
single population, research interests usually center around characterizing the distri-
bution or marginal features (such as mean or median) of survival times. In the pres-
ence of multiple populations, comparing differences among survival distributions
may be of primary interest. More generally, understanding the association between
survival times and relevant covariates attracts major research efforts.

A comprehensive discussion on survival analysis is available in a number of
monographs, including Kalbfleisch and Prentice (2002) and Lawless (2003). In this
section, we provide only a brief review of models and methods used for survival anal-
ysis in the error-free context. In the first two subsections, we discuss basic concepts
and strategies that are useful for characterizing a single survival process. Extensions
to accommodating covariates are briefly described in the third subsection. Special
features of survival data are discussed in the fourth subsection. This section is ended
with discussion on inference methods.

3.1.1 Basic Measures

Let T denote the nonnegative random variable representing the lifetime of an indi-
vidual. To describe the stochastic change of 7', we may directly examine the proba-
bility density function, say /(¢), of T. An alternative scheme is to specify the hazard
function, defined as

Pt <T<t+ At|IT >t
Ay = lim LUST<i+ANT =20

fort > 0.
At—0+ At -

The hazard function A(¢) describes the instantaneous failure rate at time ¢, given
that the individual survives up to time ¢. Roughly, in a tiny time period of length Az,
A(t)At provides an approximate probability of failure or death during time period
[t, 1+ At), given that the subject is alive prior to time ¢. Unlike the probability density
function, which must satisfy nonnegativity (i.e., #(¢) > 0) and the unit integral over
the interval of all positive real numbers (i.e., fooo h(v) dv = 1), the hazard function
is constrained by a single condition of nonnegativity A(z) > 0.

In contrast to the cumulative distribution of 7', H(t) = P (T < t), we often use
a survivor function to represent the probability that a subject’s survival time exceeds
a time point. A survivor function is defined as

S(t)= P(T >t) fort > 0.
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The four measures are uniquely determined each other via

H(t) = /_t h(v)dv.

S@t) = /tooh(v)dv = exp{ — /Ot /\(v)dv§ ,

h
At) = %

Mathematically, characterization of distributions of survival times may be based on
one of those four measures alone. But in application, a particular measure may be
preferred because it has the most direct relevance to the questions we want to answer.

In addition to these four measures, the cumulative hazard function is sometimes
useful. It is defined as

or

3.1)

A(r) = /Ot A(v)dv.

This measure uniquely determines the distribution of 7' through, for instance, the
relationship S(z) = exp{—A(?)}.

Response variable T is constantly taken as a continuous variable. Occasionally,
it is treated as a discrete variable with mass taken at fixed time points. In this chapter,
our discussion is directed to continuous response variable 7 unless stated otherwise.

3.1.2 Some Parametric Modeling Strategies

Parametric modeling is commonly invoked to characterize a survival distribution.
This modeling scheme has several advantages. Implementation of inferential proce-
dures is simple and the interpretation of the model parameters is usually transpar-
ent. Moreover, the likelihood theory can often be applied directly to characterize the
asymptotic properties of the resulting estimators.

One approach for parametrically modeling survival times is to specify a class
of distributions for survival times, usually with unknown parameters involved. For
instance, a Gamma distribution may be used to describe survival time 7" where the
probability density function of 7" is modeled as

B1
f(@:B1.B2) = %tﬂl_l exp(—pat) fort > 0

with parameters 1 > 0 and 8, > 0.

In principle, any distribution of a nonnegative random variable may be employed
to model the stochastic process for 7. In practice, however, some distributions are
more commonly used than others. Exponential, Weibull, log-normal, log-logistic and
Gamma distributions are widely used.

More generally, we apply a transformation to survival times to remove their
nonnegativity constraint. Any distributions may then be legitimately employed to
delineate the transformed survival times. To be specific, let Y = log T, then for the
transformed variable Y, assuming a location-scale probability density function
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f(y:pL,O):(lrfo( )for—oo<y<oo

Y- K
o
gives a model for the distribution of the original survival time 7', where fy(y) is a
specified probability density function on (—o0, 00), i is a location parameter with

—00 < U < 00, and o is a scale parameter with o > 0.

Varying the form of function fo(-) characterizes different survival distributions.
For example, we write Y = (Y — p)/0, then setting the survivor function of Y to
correspond to the standard extreme value, normal and logistic distributions, respec-
tively, given by

So(y) = exp{—exp(})}.
So(y) = 1-2(y),
So(¥) = {1 +exp()} ",

yields the Weibull, log-normal, and log-logistic distributions for T, respectively,
where @(-) is the cumulative distribution for the standard normal distribution.
Extensions may also be done, for instance, by letting fo(¥) or So(¥) include some
“shape” parameters (Lawless 2003, p. 27).

An alternative strategy for parametrically modeling survival times is to charac-
terize the hazard function A(¢) by specifying its function form. For instance, setting

A(t) = 12 (Bit)P!

for positive parameters 81 and B, characterizes a survival process which has a
Weibull distribution. Further constraining 8, = 1 gives an exponential distribu-
tion, which corresponds to the simplest scenario of survival processes featured by
a constant hazard function.

A more flexible way of describing the hazard function A(¢) is to use a sequence
of specified functions, instead of a single given function. A simple scheme for this is
to use the piecewise-constant approach to model A(z). Let

A(t) = pr fort € Ag, (3.2)

where the p; are nonnegative parameters; Ay = (ax—1,ax]; kK = 1,..., K; and
0=ag<a; <...<ag—1 <ag = oo is a sequence of pre-determined constants
for a given positive integer K.

Fork = 1,..., K, let ux(t) = max{0, min(ag,?) — ax—1} be the length of the
intersection of interval (0, ¢] with interval Az. Then, the hazard function and the
cumulative hazard function are, respectively, written as

K K
At) =) pel(t € Ap) and A1) = ) pruie(0).

k=1 k=1
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Consequently, the probability density function /(¢) is piecewise exponential, and the
survivor function is given by

K
S() = exp% - Zpkuk(r>§ :
k=1

With suitable choices of K and cut points ay, this modeling can provide reason-
able approximations to arbitrary shape of lifetime distributions. This approach allows
for conducting inferences in a straightforward manner and offers a convenient tool
to bridge parametric and nonparametric methods. A somewhat unappealing aspect
of this modeling is the discontinuity of A(¢) and S(¢) at cut points ag. To get around
this, one may model A(¢) by using spline functions, such as cubic spline functions,
which consist of polynomial pieces joined smoothly at cut points a; (Lawless 2003,
§1.3).

While the models we discuss here are frequently used in survival analysis, many
other flexible or complex distributions may be employed for individual applications.
We refer the readers to Lawless (2003) and Kalbfleisch and Prentice (2002) for more
detailed discussion on many other parametric models.

3.1.3 Regression Models

The foregoing discussion applies to settings with a single population or multiple
populations that are stratified by certain “obvious” discrete characteristics such as
gender or the treatment indicator. When populations are heterogeneous according to
different values of covariates, regression analysis provides a useful tool to facilitate
the association between survival times and covariates. While there are many ways to
formulate regression models, we focus on some models that are in common use.

Let X and Z be the covariates that are associated with survival time 7. To under-
stand the dependence of survival time T on covariates { X, Z}, we may, in principle,
apply the same strategies outlined in §3.1.2. However, there is an important dif-
ference where the formulation here must be directed to the conditional probability
density function h(t| X, Z) of the survival time 7', given covariates { X, Z} while the
discussion in §3.1.2 is addressed to the marginal distribution of 7. Here we describe
two modeling strategies: modeling conditional survivor functions and modeling con-
ditional hazard functions. We use the notation f(-|-) for the model of the condi-
tional probability density function A (¢| X, Z) of the survival time 7', given covariates
{X, Z}, where model parameters may or may not be explicitly indicated. For ease
of exposition, given covariates {X, Z}, we use the same notation S(¢|X, Z) for the
conditional survivor function for 7' and its model and A(¢| X, Z) for the conditional
hazard function for 7" and its model.

We first outline the transformation-location-scale modeling scheme, a useful
technique for modeling conditional survivor functions. To remove the constraint that
survival time 7" must be nonnegative, we apply a monotone transformation on 7' so
that the transformed survival time assumes values in R. Often, a logarithm transfor-
mation is applied. Let Y = logT and S(y|X, Z) = P(Y > y|X, Z).
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A class of location-scale models is commonly used to portray the distribution

of Y:
-m(X, Z;
SO|X, Z) = SO(M), (3.3)

where Sy (-) is a survivor function and ¢ is a scale parameter. The dependence of
response Y on the covariates is featured in m (X, Z; B) via a specified function form
m(-) and associated parameter 8. In many applications, m(-) assumes a linear struc-
ture in X and Z with m(X,Z;B) = Bo + B, X + B, Z and B = (Bo.B}. B1)",
where By, Bx and B, are regression parameters.

The interpretation of model (3.3) is more transparent if written in terms of the
original survival time 7':

1

:| 34)

fort > 0, where S; () = So(log?) and m* (X, Z; B) = exp{m(X, Z; §)}. Through
function m*(-), covariates {X, Z} alter the time scale in an accelerating or decel-
erating manner. Such a model is called the accelerated failure time (AFT) model.
Common choices of the survivor function Sy (-) include the standard normal, extreme
value and logistic distributions (Lawless 2003, §6.1).

Equivalently, model (3.3) is expressed as an alternative form

Y =m(X,Z; B) + oe, (3.5)

t

where € is a random variable with survivor function Sy (-). Model (3.5) may be further
extended for greater flexibility. Two ways are apparent. The first one is to leave the
survivor function Sy (-) unspecified, yielding semiparametric models in the sense that
the dependence of T on {X, Z} is parametric in a specified form for function m(-)
but the actual distribution of 7 is left arbitrary.

A second extension is to relax the transformation form applied to 7. Instead of
applying the decisive logarithm transformation to 7', we apply a function g(-) that
is increasing but its form is unspecified. Then model (3.5) for Y = g(T) gives a
wider class of models than (3.5) with ¥ = log 7. In particular, model (3.5) with
Y = g(T)and m(X, Z: ) = o + B'X + B Z defines the semiparametric linear
transformation model (Dabrowska and Doksum 1988; Cheng, Wei and Ying 1995).
Furthermore, set ¢ = 1, then specifying So(:) to be the survivor function of the
standard logistic distribution gives the proportional odds (PO) model, and setting
So(+) to correspond to the extreme value distribution yields the proportional hazards
(PH) model.

In contrast to the transformation-location-scale modeling scheme, we discuss an-
other strategy which focuses on directly modeling the conditional hazard function.
Given covariates {X, Z}, let S(¢|X, Z) = P(T > t|X, Z) be the (conditional) sur-
vivor function of survival time 7", and

Pt <T<t At|T >t,X,Z
A¢|X.Z) = tim DUS + AT = )
At—0+ At

be the (conditional) hazard function of 7.
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If, for instance, the hazard function A(¢| X, Z) is time-invariant and dependent on
covariates only, i.e., A(¢|X, Z) = A(X, Z) for a nonnegative function A(-), then the
survivor function becomes

St X, Z) = exp{—A(X, Z2)t},

which implies that survival time 7 follows an exponential distribution with rate
AX, Z).

Often, the hazard function is both covariate dependent and time-varying, so the
hazard function A(¢|X, Z) should be specified as a function of both covariates and
time. Although any nonnegative function may be used for this purpose, a multiplica-
tive or additive form is usually taken. For instance, we may set

AtlX. Z) = do()g(X. Z)

or
AtlX. Z) = do(r) + g(X, Z),

where A¢(¢) is the baseline hazard function that features the temporal effect, and
g(X, Z) reflects the covariate effects for a nonnegative function g(-). These models
are widely used in survival analysis and are, respectively, called proportional hazards
(PH) models and additive hazards (AH) models.

Equivalently, in terms of survivor functions, these models are, respectively,
expressed as

S(t1X.Z) = {So(t)}¥*? (3.6)
and
S(t1X,Z) = So(t)lexpi—g(X. Z)}]",

where So(f) = exp{— fot Ao(v)dv}.

The preceding model formulation enables us to separate the dependence of
A(t|X, Z) on time and covariates, which allows a more transparent interpretation
of covariate effects. Since it is rarely possible to identify the exact function form for
Ao(+) and g(-), common practice is to model these functions, parametrically, semi-
parametrically or even nonparametrically. When both A¢(-) and g(-) are modeled
parametrically, an assumption is constantly made that these two models are governed
by distinct parameters.

In many applications, the baseline hazard function A¢(-) is treated nonparamet-
rically and, thus, left unspecified; only function g(-) is modeled with a parametric
form. A common specification is

g(X.Z:B) = exp(B X + B32)
for the proportional hazards model (Cox 1972, 1975) and
gX.Z:B) =B X+ B2
for the additive hazards model, where 8 = (B}, 8)" is the vector of parameters.

The interpretation of the covariate effects is different for these two models. In the
proportional hazards model, the relative hazard for different covariate values
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AtIX, Z) . ~ . ~
TGIT 2 = S =)+ Lz - Z))
is time-free, which suggests the name proportional hazards because any two individ-
uals have hazard functions that are constant multiples of one another (Lawless 2003,
p-272). On the other hand, in the additive hazards model, regression parameters are
related to the risk difference which represents the expected number of events occur-
ring during a unit time interval caused by a unit change in the covariates. This model
was considered by many authors, including Breslow and Day (1980), Cox and Oakes
(1984), and Lin and Ying (1994).

The discussion assumes tacitly that covariates X and Z are time-independent. In
situations where some covariates vary with time, the involvement of covariates with
modeling becomes more complicated. Let X (¢) represent a covariate vector at time
t and Z be a time-independent covariate vector. Rather than a single measurement
at a time point, an entire covariate process H* = {X(¢) : t > 0}, together with
time-invariant covariate Z, may or may not come into play when building a model
to facilitate the dependence of survival times on covariates. Kalbfleisch and Prentice
(2002, §6.3) discussed this issue in detail.

Modeling with time-varying covariates is constantly carried out via the depen-
dence on the covariate history under the assumption

S(t|HY, Z) = S(t|HY, Z),

where H} = {X(v) : 0 < v <t} represents the covariate history up to and including
time ¢. Equivalently, this assumption says that

AIHS, Z) = At Z).

which allows us to model A(t|H*, Z), or A(t|H}, Z), as a function of time ¢ and
some specific form of the covariate history H}. For instance, a multiplicative form
may be specified for the conditional hazard function

A(tIH. Z) = do(1) exp{B W (1) + B, Z},

where W () is a vector that represents special features of the history HJ}, A¢(¢) is the
baseline hazard function, and B and B, are parameters (Lawless 2003, §1.4).

3.1.4 Special Features of Survival Data

A key feature that distinguishes survival analysis from usual regression analysis is
censoring. Censoring is prevalent with survival data; it occurs when the survival time
for an individual is not completely observed. Censoring may be classified as right
censoring, left censoring and interval censoring. Right censoring arises if the sur-
vival time 7" of an individual is not observed but is known to be greater than a given
time, while left censoring refers to the case where the survival time 7 is less than a
certain duration. When the exact value of T is not observed but we know that T has
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a value falling in a certain finite time interval, then this is called interval censoring.
In survival analysis, right censoring has perhaps received the most attention.

Censoring occurs for many reasons. Censoring may be caused by design. For
example, survival times for study subjects cannot be observed if they are still alive
when the study terminates. Censoring can happen due to the lost to follow-up by
reasons which may be related or unrelated to the study. Sometimes, participants drop
out of the study due to the observed effects on survival. For instance, when compar-
ing survival of cancer patients, the control arm may be ineffective, leading to more
recurrences and patients becoming too sick to follow-up. On the other hand, patients
on the intervention arm may be completely cured by an effective treatment and no
longer feel the need to follow-up.

Many studies are designed to randomly select individuals from the population.
In some studies, however, not every individual can be selected; certain selection con-
ditions are imposed to screen or exclude subjects from the study population: only
subjects who experience certain prerequisite events or meet the required conditions
are to be observed by the investigator. This creates truncation of data, which may be
further refined as left truncation or right truncation.

In standard designs, survival times of individuals are defined to be the duration
at selection or the entry of the study to failure, where the lifetime at the entry is
set as 0. But in practice, this is not always true. Often, selection of an individual at
time w (> 0) requires that T > w; otherwise, this subject cannot be included in the
study. For example, if T represents death times of elderly residents of a retirement
community, then only those elderly people can be observed if they live to a certain
age (say, w) so they can be admitted to the community. People who died before this
age cannot be observed. In this case, we say that the lifetime 7 is left truncated (at
w). Left truncation is also called delayed entry.

While many studies are designed prospectively by following individuals until
failure time or censoring time occurs, some observational plans may be retrospective
to some degree. Such plans are useful when it is not feasible to follow individuals
long enough prospectively to obtain desired information. For example, Kalbfleisch
and Lawless (1989) discussed the data on people infected with HIV, where the study
group consisted of individuals who had a diagnosis of AIDS prior to July 1, 1986,
and failure time 7 is defined to be the duration between HIV infection and AIDS
diagnosis for a patient. If v represents the time between an individual’s HIV infection
and July 1, 1986, then only those individuals with 7 < v can be included in the
study. That is, the data were collected retrospectively by the condition that 7 < v.
This creates a scenario of right truncation of the lifetime 7T'.

Truncation and censoring are typical features for survival analysis, and they are
quite different. Truncation is applied when the study group has not been formed
yet; whereas censoring occurs only for those subjects included in the study group,
namely, the study group has been formed already. Censoring is addressed at the
subject-level and is used to characterize the availability or completeness of a sub-
ject’s survival time. Truncation is, however, about selection conditions for the for-
mulation of the study group. With certain selection criteria imposed, survival times
of the study subjects may be constrained by lower or upper bounds, that is, survival
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times are truncated by those bounds. Involvement of truncation generally changes the
scope of the target population for which we infer analysis results; sampling bias (or
selection bias) is often an issue to be addressed via conditional analysis in this case.
In this chapter, we do not specifically discuss inference with truncation involved un-
less otherwise stated. For more details, we refer the readers to Lawless (2003, §2.4).

To develop valid statistical analysis for censored data, we need to, at least in
principle, consider the two processes which generate survival times and censoring
times in order to feature their possibly complicated association. Different from usual
regression analysis, the censoring process generally requires our care although it is
not of our interest. Fortunately, for a wide variety of practical settings, convenient
censoring mechanisms may be assumed so that only modeling of survival processes
is required for conducting inferences. In this case, statistical procedures can be es-
tablished based on the likelihood for the observed data and the associated model
parameters. In the next subsection, we discuss a likelihood formulation.

3.1.5 Likelihood Method

Suppose that n individuals in the study are followed from ¢ = 0 until they fail or
are right censored. For individual i = 1,...,n, let T; be the lifetime, C; be the
censoring time, §; be the censoring indicator variable with §; = I(T; < C;), and
t; = min(T;, C;) denote the observed time. Let (X;, Z;)" be the p x 1 covariate
vector for subject 7, where X; = (Xj1,..., X;p,)" 1S a px x 1 vector of covariates,
Z; is a p; x 1 vector of covariates, and px + p; = p.

For a variety of censoring mechanisms, statistical inference is based on the obs-
erved likelihood function L = []_; L; where

Li = {f(ti|X:, Z)Yi{S | X;, Zo)y' % (3.7)

This formulation is derived by Lawless (2003, §2.2) under various censoring mech-
anisms, including the independent censoring for which all survival times and cen-
soring times are mutually independent, given covariates. In this chapter, we focus
the discussion on independent right censoring unless otherwise indicated. Under this
censoring assumption, we examine the formulation (3.7) for two useful models.

Example 3.1. (Proportional Hazards Model)

Suppose that failure time 7; and covariates {X;, Z;} are related by the Cox
proportional hazards model. Namely, the conditional hazard function for 7; given
{X;, Z;} is modeled as

At|Xi, Zi) = Ao(t) exp(B, Xi + B, Zi), (3.8)

where Ao(¢) is the baseline hazard function and B = (BY, ;)" is the vector of
regression parameters to be estimated.
By (3.1), the logarithm of the observed likelihood (3.7) is

z:iei,

i=1
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where

t
0 = 8 {log Ao(ty) + BLX: + BLZi) — exp(BLX; + BLZ1) / ro()dv. (3.9)
0

Example 3.2. (Additive Hazards Model)

Suppose that failure time 7; and covariates {X;, Z;} are related by the additive
hazards model, where the conditional hazard function of 73, given {X;, Z;}, is mod-
ulated as

At Xi, Zi) = do(t) + B Xi + B, Zi (3.10)

with A¢(¢) being the baseline hazard function and = (B, ;)" the vector of un-
known regression parameters.
Under this model, the logarithm of the observed likelihood function (3.7) is

n

b=y [& log {Ao(t:) + By Xi + B Zi}

i=1
- {(ﬂ;xi LB Zon + / i Ao(v)dvﬂ |
0

Inference about the model parameter 8 may be based on the log-likelihood func-
tion £, following the same procedure as for the standard maximum likelihood method
(Lawless 2003, §2.2.3). Large sample theory for maximum likelihood estimators
may be applied as usual. This likelihood approach is straightforward to implement,
but basically, requires modeling the baseline hazards function A¢(¢).

3.1.6 Model-Dependent Inference Methods

The likelihood method based on the formulation (3.7) is applicable to a wide class
of survival models, and it is not just restricted to proportional hazards and additive
hazards models. Detailed implementation procedures were given by Lawless (2003,
Ch. 6).

With specific model features available, special methods may be developed. We
discuss two inference methods; one is applicable to the proportional hazards model
while the other applies to the additive hazards model. These methods differ from
the likelihood method described in §3.1.5 in that the baseline hazard function is left
unattended to, thus viewed as semiparametric regression methods.

In addition to the notation in §3.1.5, fori = 1,...,n, let

Ri(t) =1(ti = 1)
be the at risk indicator at time ¢ for subject i, and
dN;(t) = I{T; € [t,t + At); §; = 1}

be the indicator variable for subject i who is alive and not censored before time ¢
and has failure occurring right after time ¢, where At represents a infinitesimally
small time. Write T = {T1,...,T,}, C = {Cyq,...,Cp}, X = {X1,..., X, }, and
7Z=4{Z1,..., 2y}
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Proportional Hazards Model

Treating the baseline hazard function A¢(¢) in the proportional hazards model as a
nuisance, Cox (1975) factorized the likelihood function as a product of a sequence of
conditional probabilities for which some involve the regression parameters 8 alone.
To conduct inference about parameter S in the absence of knowledge of the baseline
hazard function A¢(¢), Cox (1975) discarded those probabilities in the factorization
that involve A¢(¢) and used the product of the remaining pieces to conduct inference
about f. This is the key idea of formulating the partial likelihood which has been
extensively used in survival analysis (Kalbfleisch and Prentice 2002, §4.2).

Specifically, under model (3.8), the partial likelihood is given by

8

. At Xi. Z;)
L, = -
? £[1 { Do Ri)A WX, Z;)

_ ﬁ exp(BXXi + BLZi)
Yo Ri(@)exp(ByX; + BLZ))

(3.11)

i=1

Although L;(B) is not an authentic likelihood, it has properties similar to an ordi-
nary likelihood. The score function, information matrix and likelihood ratio statistics
based on L,(f) behave as if they were obtained from a usual likelihood. Estimation
of B may proceed by maximizing the log partial likelihood, and the resulting estima-
tor is consistent and is, after a transformation, asymptotically normal under suitable
conditions (Andersen et al. 1993).

Alternatively, define

1 n
SOWXZ:B) = — 3 R () exp(BLX; + BZ;)
j=1

1 & .
SOt X,2: p) = - Z R;(1) ()Z(j ) exp(BX; + BLZ)), (3.12)
j=1

and
X; SW(t,X,Z; B)
Syi (1, X,Z; B) = ) - ", 3.13
wxzp =(3) - Soiros (3.13)
then the partial score function U(B) = (3/9B) log L:(B) is expressed as
n
UB) =Y 8 Su(ti. X. Z: B). (3.14)

i=1

Solving U(B) = 0 for B leads to an estimator, say E, of B. Under suit-
able conditions, /7 (8 — B) has an asymptotic normal distribution with mean zero
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and a covariance matrix that is estimated by nJ _1(’3), where matrix J(B8) =
—02log L,(B)/0B0B" is easily calculated to be

- Yot Ri) exp(BLX ) + BLZ S, (11, X, Z; B)}®2
J(B) = ;81‘ =1 S(O)J(ti,X,Z;J,B) ’

and the operation ®2 is defined as a®? = aa" for a column vector a. Detailed
discussions on these expressions were given by Lawless (2003, §7.1).

The formulation of the partial likelihood is attractive because it allows us to
leave the baseline hazard function A¢(¢) unspecified. The partial likelihood is widely
used to perform estimation of parameter f, especially when central interest lies in
the covariate effects. Its implementation is available in standard statistical software
packages, such as coxph and survreg in R and PROC PHREG in SAS.

Additive Hazards Model

In contrast to the proportional hazards model, the additive hazards model speci-
fies the hazard function to be associated with covariates through the sum, rather than
the product, of the baseline hazard function and the regression function of covariates.
Analogous to the partial likelihood for the Cox proportional hazards model, estima-
tion of the regression coefficients can be carried out with the baseline hazard function
ignored. Lin and Ying (1994) proposed to use a pseudo-score function for inference
about 8.

Let W; = (X7, Z])" and

Z;l'zl Rj(1) ()Z(j)
Z;:l R;(1)

Under model (3.10), the pseudo-score function for parameter j is defined as

W) =

Ui(B) = /0 (Wi = W(OHAN; (1) — Ri (1) (B"W;)dt}. (3.15)

Solving the estimating equation Y ;_, U; (B) = 0 for B gives the estimator, say B,
of B, which is given by

n oo e, y
B = W (N®2 R - |
B = [;/0 W, =W (@)}°°R; (l)dt] [;/0 (Wi — W (1)}dN; (t):|

Lin and Ying (1994) showed that under suitable conditions, /7 (,E — B) asymptot-
ically has a normal distribution with mean zero and a sandwich covariance matrix
that is consistently estimated by I" ¥ " ™!, where

r

1 : OO . - _ W ®2
;g /0 Ri() (W, — W (1)1
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and

£=2% [T -Worano,

n
i=1

3.2 Measurement Error Effects and Inference Framework

3.2.1 Induced Hazard Function

We discuss measurement error effects on changing the structures of survival mod-
els. Our discussion concentrates on two survival models: Cox proportional hazards
and additive hazards models. This examination helps us understand the differences
between the conditional distributions of survival times under the true and surrogate
covariates, and also sheds light on developing valid inference approaches to accom-
modating measurement error effects.

Let X* denote an observed version, or surrogate, of covariate X. We are inter-
ested in understanding how measurement error in X may affect the structure of the
survival process of T. By the connections discussed in §3.1.1, we need only to in-
vestigate how replacing X with X* may change the structure of the hazard function.
In contrast to the conditional hazard function or its model, A(¢|X, Z), of T given
{X,Z}, we let A*(t|X*, Z) denote the conditional hazard function or its model,
of T, given {X*, Z}. We call A(t| X, Z) the true (conditional) hazard function and
A*(t|X*, Z) the induced (conditional) hazard function.

Let A**(¢|X™*, X, Z) stand for the conditional hazard function or its model of T,
given {X*, X, Z}, defined by

Pt <T<t+A|T>t,X*X,Z
AEIX* X Z) = tim LUST<t+ AT =2 )
At—0T At

Then the induced hazard function is given by
M| X*,Z) = E{QA™@| X5, X, D)|T >1,X*,7)}, (3.16)

where the expectation is taken with respect to the conditional distribution, or its
model, of X, given {T >, X™*, Z}.
Consider the assumption

A*(t1X*, X, Z) = A(t|X. Z).

which suggests that given the true covariates {X, Z}, the observed covariate X * has
no predictive value for the hazard rate of survival time 7. This assumption is related
to the nondifferential measurement error mechanism to be discussed in §3.2.2 (see
Problem 3.5). Under this assumption, the induced hazard function is identical to a
conditional expectation of the true hazard function

A (t1|X*.Z) = E{A(|X, Z2)|T > t,X*, Z}. (3.17)
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The expectation (3.17) is generally not equal to the true hazard function
A(t|X, Z;) with X replaced by X*, which is attributed to its dependence on the
distribution of survival time 7' through the conditioning requirement 77 > ¢ and
the possible nonlinearity of A(z|X, Z). The function form A*(¢|X™*, Z) is usually
more complex than the true hazard function A(¢|X, Z) which often assumes an
interpretable structure. For instance, under the proportional hazards model (3.8), the
induced hazard function (3.17) is given by

A*(t|X*, Z) = Ao(t) exp(BLZ)E{exp(B . X)IT = t, X", Z}, (3.18)

while under the additive hazards model (3.10), the induced hazard function is
given by

A (t1X*,Z) = Ao(6) + BLZ + E(BLX|T > 1,X*, Z). (3.19)

None of these forms share the same structure as the original true hazard function
A(t|X, Z) unless under some restrictive conditions, such as B, = 0. The condi-
tional expectations in (3.18) and (3.19) generally depend on the unknown baseline
hazard function Ag(-) due to the conditioning on (7" > t). Consequently, naively
applying standard analysis procedures with X replaced by the observed version X *
would normally yield biased results because the structure of the hazard function
is distorted. The degree of incurred biases is different from model to model. For
instance, naive estimation of B based on the additive hazards model can be less
biased than that for the proportional hazards model, because the former case mis-
specifies the conditional first moment E(B. X|T > 1, X*, Z) to be X * while the
latter case misuses exp(f; X *) for the entire conditional moment generating function
El{exp(B.X)|T > 1, X*, Z}.

To visualize the differences in the structure between the induced and true hazard
functions, we further examine a special situation where the failures are rare: the
probability of survival beyond a time ¢, P(T > t|X, Z), is close to 1 (Prentice 1982;
Problem 3.5). Then the induced hazard function for the proportional and additive
hazards models is approximated by

AT (t1X7*, Z) =~ Ao(t) exp(B;Z) E{exp(B, X)X ™. Z},

and
AIX*.Z) = do(t) + B2 Z + E(BLX|X™. Z).
respectively.

To determine the induced hazard function, we need the conditional moment gen-
erating function of X, M(B,) = E{exp(8,X)|X™*, Z}, or the conditional expecta-
tion E(BX|X*,Z), given the observed covariates {X*, Z}. For example, if the
measurement error process is characterized by a conditional normal distribution,
Nm(X*,Z;y), X*), for X given {X*, Z}, where m(X*, Z; y) is a function of X*
and Z which may depend on parameter y, and X* is a nonnegative definite matrix,
then the approximate induced hazard function for the proportional hazards model
and the additive hazards model is given by

X*(Z|X*,Z)%k;(t)exp{ﬂ;m(X*,Z;y)—i—ﬂ;Z} (3.20)
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and
A*(t|1X*, Z) %)Lo(t)+/3;m(X*,Z;y)+,3;Z, (3.21)

respectively, where A5 (1) = Ao(7) exp(B, X" B, /2) is free of the covariates just as
Ao(2) is.

We examine more specifically the structure of the induced hazard function under
two measurement error models discussed in §2.6. First, we consider the Berkson er-
ror model (2.24) where the error term e is assumed to be normally distributed. By
model (3.21), the induced hazard function for the additive hazards model is approx-
imately identical to the true hazard function with X replaced by X *. With the pro-
portional hazards model, (3.20) indicates that the induced hazard function approxi-
mately has the same form as the true hazard function A(¢| X, Z) with X replaced by
X*, but the baseline hazard function differs by a factor that depends on the degree
of measurement error and the error-prone covariate effects .

Next, we consider the classical additive error model (2.23) where e ~ N(0, X,)
with covariance matrix X,. Assume that conditional on Z, X has the distribution
N(y, Xx), where i, = yo+ I Z, y, is a column vector, I is a matrix of regres-
sion coefficients, and X is a nonnegative definite matrix. Define

2= Z:x(zx + Z:e)_l

to be the reliability matrix. Then conditional on {X*, Z}, X follows normal distri-
bution N(m(X*, Z),(Ip, — 2)X), where m(X*,Z) = (Ip, — 2)yo + 2X* +
(Ip, — $2)I; Z (see Problem 5.5(b) in Ch. 5).

By model (3.20), the approximate induced hazard function for the proportional
hazards model is given by

A5(t|X*, Z) ~ AL () exp [BL2X* + (B — )L + BI} Z]  (3.22)

with A3* (1) = Ao(t) exp{Bi(Ip, — 2)(XxB,/2 + yo)}, whereas (3.21) yields the
approximate induced hazard function for the additive hazards model:

AX*Z) = A5 () + BLRX* + {BrUp, — DI+ B} Z  (3.23)

with A3* (1) = Ao(t) + BL(Up, — £2)Yp-

Comparing these approximate structures to the corresponding true hazard func-
tion reveals the impact of measurement error on changing the structure of the survival
process. Examining the differences of the coefficients in (3.8) and (3.10), respec-
tively, from those of (3.22) and (3.23) shows that measurement error in X would
approximately attenuate estimation of B by the factor §£2 and that measurement er-
ror effects on estimation of 8, may depend on the association between X and Z as
well as covariate effect B,. The induced baseline hazard function differs from the
true baseline hazard function in general.

3.2.2 Discussion and Assumptions

The preceding discussion examines measurement error effects on the structure of the
hazard function for the survival process alone. Special features, such as censoring,
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of survival data are not accommodated in the discussion. To understand measure-
ment error effects in conjunction with censoring effects, one may directly examine
the impact of measurement error on the estimation of the parameter governing the
survival process. This can be, in principle, carried out using the strategies outlined in
§1.4 to quantify asymptotic biases of estimation induced by the naive analysis with
the difference between X * and X ignored. Under special situations, discussion on
this issue is available in the literature. For instance, under the proportional hazards
model with a scalar error-prone covariate, Hughes (1993) and Kiichenhoff, Bender
and Langner (2007), respectively, investigated this problem for classical additive and
Berkson error models. For multiple error-prone covariates under the proportional
hazards model, Kong (1999) and Li and Ryan (2004) studied asymptotic biases un-
der additive measurement error models. With the additive hazards model, Sun and
Zhou (2008) discussed the asymptotic bias along the same line as Kong (1999).

In general, it is difficult to analytically quantify the nature and magnitude of
asymptotic biases involved in the naive analysis which ignores measurement error.
Asymptotic biases pertain to many factors, including the model forms for the survival
and measurement error processes as well as the censoring mechanism and other fea-
tures of survival data such as truncation. Other elements, including the dependence
structure among covariates and the variability of covariates, may also affect asymp-
totic biases. Moreover, measurement error may have different impact on estimation
of the same model parameters if different estimation procedures are employed (Yi
and He 2006; Yi, Liu and Wu 2011).

It is sensible to conduct a case-by-case study in order to adequately accommodate
measurement error effects. Although general strategies are outlined in §2.5, they are
not directly applicable to deal with error-contaminated survival data due to their
special features such as censoring or truncation. Usual mechanisms and assumptions
imposed on either the measurement error process or survival analysis alone may
become meaningless unless proper modifications are introduced. In principle, a valid
inference method should be developed to reflect specific characteristics pertaining to
mismeasurement and survival data processes as well as the observational scheme,
which basically depends on the way we examine the data.

As an illustration, we consider right censored survival data with covariate X
subject to measurement error. There are multiple ways of examining the joint distri-
bution of {7, C, X*, X, Z} from which different model assumptions may arise. For
example, one may consider any of the following factorizations:

h(t,c,x*,x,2) = h(t,c,x*|x,2)h(x, 2); (3.24)
h(t, e, x*,x,2) = h(t,c|]x*, x, 2)h(x*, x, 2); (3.25)
h(t,c,x*,x,z) = h(clt,x*, x,2)h(t,x*, x, 2); (3.26)

among others.
These factorizations have different emphases on variables 7', C and X*. If we
impose the conditional independence assumption

h(t,c,x*|x,z) = h(t,c|x,z)h(x*|x, 2), (3.27)
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or equivalently,
h(t,clx*, x,z) = h(t,c|x, 2), (3.28)
then factorizations (3.24) and (3.25) reduce to the same expression:
h(t,c,x*,x,z) = h(t,c|x,2)h(x*, x, 2). (3.29)

This expression is advantageous in that the mismeasurement variable X* is sepa-
rated from the survival and censoring processes, thereby, measurement error models
outlined in §2.6 may apply to describe 2(x*, x, z) and modeling strategies in §3.1
may be directly employed to characterize i(t, c|x, z) in conjunction with some sim-
plistic assumptions. For example, 7 and C are often assumed to be conditionally
independent, given {X, Z}:

h(t,clx,z) = h(t|x,2)h(c|x, 2). (3.30)

This assumption allows us to not postulate the censoring time but to direct atten-
tion to describing /(z|x, z) using the modeling strategies in §3.1. Many available
inference methods in the literature are developed along these lines.

Conducting inferences based on factorization (3.26), on the other hand, may
prompt different assumptions. For instance, when the distributions A(c|t, x*, x, z)
and h(t, x*, x, z) are modeled parametrically, the associated model parameters are
assumed to be distinct. If marginal analysis is conducted for the model parameter for
h(t,x*, x, z), such as based on unbiased estimating functions, a specification of the
model form of A(c|t, x*, x, z) may be needed. However, if the likelihood method is
used for inference about the model parameter for 4(z, x*, x, z), then modeling form
of h(c|t, x*, x, z) can be left unattended to. In this case, the factorization

h(t,x*,x,z) = h(t|x*, x, 2)h(x*, x,2)
is usually employed and the assumption
h(t|x*,x,z) = h(t|x, z) (3.31)

is imposed so that models in §3.1 and §2.6 may be applied to portray the survival
and measurement error processes.

In the following sections, we describe several methods to account for covariate
measurement error effects under the framework based on (3.29), in combina-
tion with the independence censoring mechanism (3.30). Noting that the identi-
ties (3.27), (3.29) and (3.28) are all equivalent: assuming one identity yields the
other two, we call a measurement error process satisfying any of these conditions
nondifferential. This definition differs from that in §2.4, or the assumption (3.31).
Identity (3.28) implies (3.31), but not vise versa. The nondifferential measurement
error mechanism here says that the observed surrogate measurement X* has no
predictive value for either the survival or the censoring process if the true covariates
{X, Z} are controlled.

For the development of the rest of this chapter, we use the same notation or
symbols defined in §3.1-§3.2 unless otherwise defined.



3.3 Approximate Methods for Measurement Error Correction 105

3.3 Approximate Methods for Measurement Error
Correction

In §3.2.1, we demonstrate that ignoring measurement error in covariates may distort
the structure of the hazard function and often produce biased inference results. In
this section, we describe two methods that are frequently used in practice to reduce
biases caused by measurement error in covariates.

3.3.1 Regression Calibration Method

The first approach is the regression calibration method, which is motivated by the
similarity of the approximate structure of the induced hazard function (3.20) or (3.21)
to the corresponding true hazard function. As opposed to the naive analysis by
replacing X in the true hazard function with its observed surrogate X* directly, the
regression calibration method replaces unobserved X with its conditional expecta-
tion E(X | X*, Z).

Suppose the observed data consist of O = {(#;,6;, Xi*, Z) i =1,...,n}
where the (#;,8;, X;*, Z;) are described in §3.1.5 and the measurements X" are the
surrogate versions of X;. The regression calibration method comprises three steps:

Step 1: Estimate E(X;| X/, Z;).
Step 2: Run a standard survival analysis for the model f(#;|X;, Z;; B) with X;
replaced by the estimate of E(X;|X, Z;) and obtain a point estimate of 8. Let

B denote the resulting estimator of S.

e Step 3: Adjust the standard error associated with B to account for the variability
induced from estimation in Step 1.

Step 3 may be implemented using the bootstrap method and Step 2 is usually
realized using existing statistical software packages, such as coxph or survreg in
R, or PROC PHREG in SAS. At Step 1, estimation of E(X;| X/, Z;), the so-called
calibration function, is determined by additional data that are used to characterize the
measurement error process. With repeated surrogate measurements for X; available,
Xie, Wang and Prentice (2001) described a way to estimate the calibration function
for the proportional hazards model. Under the classical additive error model, Carroll
et al. (2006, §4.4) described methods of estimating the calibration function.

Here we examine a situation where an internal validation sample is avail-
able. Using the notation in §2.4, suppose that a validation subsample D =
{(ti,Si,X,-,Xi*, Z;) : i € V} is available, in addition to the main study data
1,6, X, Z;i) 1 i € M}, where V is a subset of M. Let n; = I(i € V) be the
indicator variable whether or not subject i belongs to the validation subsample V.
To estimate the calibration function, we invoke standard regression analysis, such
as linear regression, generalized linear regression or nonlinear regression, to the
validation data D.

For instance, we consider a regression model

Xi =my(X,Zi3y) + ey fori eV,



106 3 Survival Data with Measurement Error

where error term €; has mean zero and is independent of {X*, Z;, T;,C;}, y is a
vector of unknown parameters, and m(+) is a specified function. Let 7 denote the
resultant estimate of y obtained from using the validation data D. The calibration
function E(X;|X[, Z;) is then estimated by m(X*, Z;: ).

For every subjecti € M = {1,...,n} in the main study, define the calibration
measurement for covariate X; as

XM =X + (1 =n)mx (X[, Zi37),

which is used in the standard survival analysis of Step 2. Calibration measurement
X* takes value X; or my (X[, Z;;7), depending on whether or not subject i is
included in the validation subsample. Write X** = {X[™*, ... X**}.

Example 3.3. Under the proportional hazards model (3.8), an estimating function
for B is obtained from the partial score function by replacing X; with X**. Then
solving

U*(B) =4

i=1

for B results in an estimator, denoted E, of B, where S *) (t,X**,Z; B) is defined
as (3.12) with X replaced by X** fork =0, 1.

Using the techniques of Andersen and Gill (1982), we can show that E converges
to B* in probability as n — oo, where 8* is a root of E{U*(8)} = 0, and the expec-
tation is taken with respect to the model for the joint distribution of {T, C, X, Z, X*}
with X* = {X[,..., X;;}. As discussed in §2.5.2, the estimator /,3 is not exactly a
consistent estimator of 8 and is just an approximately consistent estimator. From the
numerical experience, it appears that * is often very close to f when my (X, Z;; y)
is reasonably estimated. A ./n-consistent estimate of y may be obtained using the
validation data if the size n, of the validation subsample satisfies n,/n — p as
n — 00, where p is a constant greater than 0 (Wang et al. 1997).

(X.**) SW(t;, X**, Z; B)
Z =0

CSO@ X7 8)(

Remark

The regression calibration algorithm is easy to implement by modifying existing
software packages for survival data analysis. This procedure is attractive in that the
distribution of the true covariates is left unspecified. Although the regression calibra-
tion method is initiated by Prentice (1982) for the proportional hazards model with
error-prone covariates under the rare event assumption, as discussed in §3.2.1, this
method has now been frequently employed for many parametric and semiparametric
models with covariate measurement error. However, a major drawback makes this
method less appealing, especially from the theoretical point of view. The regression
calibration method cannot entirely correct for biases induced from measurement er-
ror; it can only produce approximately consistent estimators for general settings.
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3.3.2 Simulation Extrapolation Method

The SIMEX method described in §2.5.3 may be used to reduce bias involved in the
naive analysis which ignores measurement error in survival data. This method is used
when the covariance matrix X, in the error model (2.21) is known or estimated from
a priori study or an additional data source.

In the presence of replicate surrogate measurements, the SIMEX method is ap-
plied with a modified simulation step. For j = 1,...,m;,let X i’; denote the repeated
measurements for the true covariate X; which are linked with X; by the model

X5 = Xi +eij,

where the e;; are independent of {X;, Z;, T;, C;} and follow a normal distribution
N(0, X';) with an unknown covariance matrix X, and m; is a positive integer which
may depend on i.

Instead of using (2.22) to generate x7, (c), we set, for given b and c,

m;
_ c
Xip(@ =T 4 [ 7 ey (b,
1 j=l

where X} = m;! Z;"’Zl x}; and the ¢; (b) = (ci1(b), ..., Cim, (b))" are normalized
cfui m; mj
contrast.s satisfying ijl ¢ij(b) = 0and ijl cizj (b) =1. .

A simple way to generate such a contrast ¢; (b) is to use a normal variate gen-
eration. For each » and i = 1,...,n, independently generate m; normal random
variables d;; (b) for j = 1,...,m; from a standard normal distribution N (0, 1), then
setting

dij(b) —d;(b
o) = )~ dib)

I i (b) — di (b))
results in the required contrasts ¢;(b) (Devanarayan and Stefanski 2002), where
di(b) =m;" Y11, dij(b).

Like the regression calibration method, the second step of the SIMEX approach
is often carried out using statistical software packages for survival analysis, such as
coxph or survreg in R, or PROC PHREG in SAS. The extrapolation step is realized
by usual regression analysis. The SIMEX method has been applied to analyze error-
contaminated survival data under various models. A discussion on applications of
this method is given in §3.9.

3.4 Methods Based on the Induced Hazard Function

The discussion in §3.2 shows that the induced hazard function A*(¢|X*, Z) of
T given the observed covariates {X*, Z} differs from the true hazard function
A(t|X, Z) in structure or function form. The two functional methods described in
§3.3, regression calibration and simulation extrapolation, are easy to implement but
in many settings, they only partially correct for the bias induced from the naive anal-
ysis which disregards the difference between X * and X. The performance of those
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approaches is fairly satisfactory when measurement error is not severe. If there is
substantial measurement error involved, the performance may decay dramatically.

Alternatively, by capitalizing on the specific model features for survival data, we
may develop valid inference methods to adjust for measurement error effects using
the strategies sketched in §2.5. Here we describe the induced model strategy and
defer other tactics to subsequent sections.

Our discussion is based on the methods developed by Zucker (2005) for the pro-
portional hazards model (3.6), given by

S(t|X.Z) = exp{—Ao(t)g(X. Z: p)}.

where Ag(-) is an increasing, differentiable baseline cumulative hazard function
whose form is unspecified, g(X, Z; 8) defines the covariate effects, and B is a vector
of unknown parameters. Function g(X, Z; ) is assumed to satisfy certain technical
conditions such as g(X, Z;0) = 1 for all covariates so that § = 0 corresponds to no
covariate effect. Often, g(X, Z; ) is taken to be a function that is monotone in each
component of {X, Z} for all B. A classical choice is g(X, Z; B) = exp(By X + B Z)
asin (3.8) with B = (8%, B})".

To feature the measurement error model, we consider the conditional distribu-
tion of X given {X™*, Z} and let f(x|X™*, Z) denote the model for this conditional
probability density or mass function with the parameter suppressed in the notation.
To highlight estimation on 8, we assume that f(x|X™*, Z) and the associated pa-
rameter are known. In addition, the nondifferential measurement error mechanism is
assumed.

3.4.1 Induced Likelihood Method

With the given model assumptions, the induced conditional survivor function of 7'
given the observed covariates {X*, Z} is

S*(t|X*, Z) = P(T > t|X*, Z)
— [ expi=Ao(0g(x. Z: B3 £ (X" Z)dn),
Then applying identity (3.1) gives the induced hazard function
A*EIX7, Z) = Ao(t) expld (X ™, Z: B, Ao},
where Ao(r) = (d/dt)Ao(1),
(X", Z: B, Aol1))
~ log [ [ expi=towrste. Z: Bt 2: ) xIx Z>dn<x>}

~log [ [ ext-otogte. 22 3 a1 Z)dn(X)} , (3.32)

and integration and differentiation are assumed to be exchangeable. This induced
hazard function equals Ao (2) E{g(X, Z;B)|T > t, X*, Z}, as discussed in §3.2.1.
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As aresult, the model for the induced conditional probability density function of
T given the observed covariates {X™*, Z} is

FEEIX*,Z) = M*(t|X*, Z)S* (1|1 X*, Z),

which leads to the induced likelihood when used to the observed data O described in
§3.3.1:

n
L*(B) = [ [ @)X, Z)Y S* (6| X[, Z).
i=1

This likelihood, however, cannot be directly used for inference about 8 because
of the involvement of the unknown baseline cumulative hazard function A¢(¢). To
handle A¢(?), one may employ a scheme outlined in §3.1.2. Alternatively, we may
estimate A (¢) nonparametrically, following the description by Zucker (2005) where
the Breslow cumulative hazard function estimator is used (Breslow 1974).

First, order all the observed survival times as s fork = 1,..., K, where K is
the number of distinct observed survival times. Let dj represent the number of events
at time s, and AAg(sg) = Ao(sr) — Ao(sx—1) denote the difference, or the jump,
of the baseline cumulative hazard function at adjacent observed times s and sx—1,
where so = 0 and Ag(so) = 0. Then for a given value of 8, we approximate A¢(?)
iteratively by a step function with jumps at the ordered observed event times s:

Ao(s) = AAo(sk) + Aolsk—1),
where Zo(so) is set as 0 and
dy
Y1 Ri(si) expl (X7 Ziz B. Ao(sk-1))}

Ado(sy) =

fork=1,...,K.

With continuous survival times T, all the dj would be 1; in actual implemen-
tation, some dj may be greater than 1 to allow for tied event times. Inference on
B proceeds with the maximization of the induced likelihood L*(f) for which the
Ay(2) are replaced with their estimates f/l\o(sk) fort € (sg—1, k]

3.4.2 Induced Partial Likelihood Method

Along the same line as for developing the partial likelihood (3.11) for the Cox pro-
portional hazards model (Kalbfleisch and Prentice 2002, §4.2), we consider an ana-
logue for the observed data O using the induced hazard function A*(¢|X*, Z):

n 8

N A*(ti|X,'*»Zi)
L ,A . = n *
P(ﬁ 0()) ll:ll Zj:l Rj(t,-)k*(ti|X~,Zj)
1 explp (X7, Zi: B, Ao(t;))} K
i=1 Z;l'=1 R (1) exp{p(XT. Z;: B, Ao(1i))} ’
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leading to the log induced partial likelihood function

CE(B, Ao () = Y L5 (B, Ao(12)),

i=1

where

(B, Ao(1i)

=& | d(X[. Zis B, Ao(11) —log | Y R, (1) explp (X}, Z: B, Ao(11))}

Jj=1

Unlike the standard partial likelihood (3.11) which is free of the baseline hazard
function, L} (B) depends on the cumulative baseline hazard function, in addition to
the dependence on parameter 8 and the covariates. Therefore, estimation of parame-
ter B based on L (8, Ao(-)) cannot be carried through unless Aq(:) is available. For
a given value of 8, let ZO/Q; B) be an estimate of Ag(?) (e.g., the Breslow estimator
in §3.4.1). Define L} (8, Ao(-; B)) to be the function L} (B, Ao(-)) with the estimate
20(1; B) in place of Ag(t), which we call a pseudo-partial likelihood. Estimation of
B is then based on this pseudo-partial likelihood.

Define
0 d
V(X[ Zi:B.c) = @‘P(Xi*’zi;/gvc)’ V(X[ Zi:B.c) = a—¢(Xi*’Zi3ﬂ7€)’
c
o p) = %ZO(I;,BL and §(X[*, Zi; B.t) = %¢(Xi*’zi;ﬂv20(t§lg))~

By the Chain Rule for derivatives, these functions are connected as follows:

S(Xi*’ Z;,ﬂ,t)
= Y (X[ Zii B, Ao(t; B) + v(X[, Zis B. Ao(t: ) Q(1: B).  (3.33)

Let U; (,B,Zo(t,-;ﬁ)) = (8/8,3)&1'(/3,20(1,-;/3)) be the pseudo-partial score
function contributed from subject i, given by

Ui (B, Ao(1i; B)) = & [é(Xi*, Zi;B.ti)

Xt RiEXF. Zy: Boti) explg (X Z;: B Ao ﬂ))}}
Yy Rj(t) expl(X 3. Z;: B. Ao(ti: B))}

where function £(-) is given by (3.33) and function ¢ (-) is defined by (3.32).
Let

~ 1 & -
U(B. Ao(: B) = ~ 3 Ui(B. Ao(ti; B)).
i=1
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then solving

U(B, Ao( ) =0

for B leads to an estimate of 8. Let ,3 denote the resultant estimator. Under T regu-
larity conditions of Zucker (2005), /3 is a consistent estimator of 8 and /i (,3 B)
is asymptotically normally distributed with mean 0. Inference about § is then con-
ducted using this asymptotic result.

To see why the induced pseudo-partial likelihood method works, we sketch the
lines of establishing this asymptotic result. As usual, we start with the identity
U(E, ZO(-; E)) = 0 that leads to the estimator E We examine how U(E, Zo(-; B))
depends on the true values of 8 and Ag(-). Instead of looking at this dependence
simultaneously on all the arguments, we examine it piece by piece with just one
argument changing at a time. Specifically, we write

UB. Ao(: B)) = U(B, Ao () + {U(B, Ao(: ) — U(B, Ao(-))}
+H{UB. Ao( B)) — U(B. Ao (i B))}. (3.34)

which allows us to examine the difference induced by changing one argument with
the others fixed. The first term is the function obtained by differentiating £ (8, Ao (-))
with respect to 8; the second bracketed term indicates the variation induced from the
estimation of the baseline cumulative hazard function Ag(-) for a given 8; and the last
bracketed term expresses the difference caused by estimator /,3\ for a given estimate
Ao(). R

The asymptotic distribution of estimator f is established by examining the lim-
iting distribution of a scaled version of U (E, ZO(-; E)), i.e., scaled by /n, which is
done term by term for the expression (3.34). Applying the Taylor series expansion to

the last bracketed term, scaled by +/n, leads to its approximation V. Jn (73 - B),
where

5_1 i&' |:Z’;=l R;(t)E(XT, Zj; B, 1:)®? CXP{¢(X2 Z;iB. Ao(ti: )}
n = Sy R (1) expld(X T, Z;: B. Ao(ti: )}
) { 1 RyE(X]. Z3 B.1) expld (X}, Zy: B. Aol ﬂ))}§ ®2}
Yo Rj(t) exp{¢(X 3. Z;: B Ao(tiz B))}

B=p

Regarding the first and second bracketed terms, Zucker (2005) showed that
they are asymptotically independent, and the scaled second bracketed term
Jn{U(B, Zo(-; B)) — U(B, Aop(-))} is asymptotically normally distributed with
mean 0 and a covariance matrix that is consistently estimated, say, by H. The scaled
first term /nU(B, Ao(+)) is shown, using the martingale arguments of Andersen
and Gill (1982), to asymptotically follow a normal distribution with mean 0 and a
covariance that is consistently estimated by V.

As aresult, /7 (,/5 p) is asymptotically normally distributed with mean 0 and a
covariance matrlx that is consistently estimated by the matrix V-t 4 YoIRY I
Matrix V! is similar to that arising from the classical Cox proportional hazards
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model and tends to be the dominant term (Zucker 2005). Extra variation pertaining
to the estimation of Ag(+) is reflected in two places: the additional term V-lHy It
and the involvement of the quantity Q(-; 8) in V1.

Remark

Compared to the likelihood-based method in §3.4.1, the pseudo-partial likelihood
approach seems likely to be less sensitive to the estimation of Ay(-). Some numeri-
cal experience suggests that the likelihood-based method tends to have convergence
problems and yields estimates with higher variance than the pseudo-partial likelihood
procedure does (Zucker 2005). In the aforementioned development, the distribution
f(x]|X™*, Z) for the measurement error process is treated as known. This treatment
is often not realistic, however. One must estimate f(x|X™*, Z) using an additional
source of data, such as a validation sample. It is necessary to modify the preceding
development to account for the induced variability. With f(x|X*, Z) handled under
the parametric framework, the principle outlined in §1.3.4 may be applied. Detailed
discussion on this issue was given by Zucker (2005).

3.5 Likelihood-Based Methods

In contrast to the induced model strategy discussed in the previous section, we de-
scribe two strategies outlined in §2.5.2: the insertion correction and expectation cor-
rection methods. These methods root from using the true likelihood or the score
function derived from the conditional distribution of 7; given {X;, Z;}. We illustrate
the ideas by working with the proportion hazards model (3.8) for the observed data
O described in §3.3.1.

3.5.1 Insertion Correction: Piecewise-Constant Method

In this subsection, we discuss the insertion correction strategy. Given the log-
likelihood (3.9), we want to find a workable function, expressed in terms of the
observed data O and the model parameters, so that it is connected with the true
log-likelihood through (2.20). Since in (3.9), error-prone covariate X; appears in
polynomial, exponential or their product forms, we proceed with the use of the mo-
ment generating function of the measurement error model.

Suppose that the measurement error model assumes an additive form

Xi* = X; + e
fori = 1,...,n, where conditional on {X;, Z;, T;, C;}, ¢; has mean zero and the

conditional moment generating function M (v) = E{exp(v'e¢;)|X;, Z;, T;, C;}. Un-
der the nondifferential measurement error assumption in §3.2.2, we obtain that

E(ei|Xi,Z;) =0 and M(v) = E{exp(v'e;)|X;, Z;},

where the expectation is evaluated under the model for the distribution of e; given
{Xi, Z;}.
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Fori =1,...,n, define
0 = 8i{logho(t;) + B X[ + BLZ:}
—{(M(B,)} " exp(BLX] + BLZi) Ao(1i). (3.35)
Then

n

D EWIX Zi Ti. Gy = ¢,

i=1
where £ is the log-likelihood determined by (3.9), and the conditional expectation
is taken with respect to the model for the conditional distribution of X given
{X;, Z;,T;,C;}. Function £7 is different from the naive log-likelihood obtained
from (3.9) with X; replaced by X*. An additional term {M(f,)} 'is included in
£} to reflect the adjustment of measurement error effects.

To use function E;‘ for estimation of parameter 8, we need to deal with the un-
known baseline hazard function A¢(¢). As discussed in §3.1.2, various schemes may
be used to model (7). Here we consider a weakly parametric scheme for mod-
eling the baseline hazard function A¢(¢), where Aq(¢) is modeled by (3.2) and let
p = (p1,-...,pk)" denote the resulting parameter.

Let 8 = (p",B")" be the parameter associated with the survival model. We
describe estimation procedures discussed by Augustin (2004) and Yi and Lawless
(2007). To highlight the idea, we assume that the moment generating function M (v)
is known. Fori = 1,...,n, define U;*(8) = 9£7/00. Solving

n
> UMO) =0 (3.36)
i=1
for 6 leads to an estimate of parameter 6.

Let 6 denote the resultant estimator of parameter 6. Under regularity conditions,
Jn (@ — 6) has an asymptotic normal distribution with mean 0 and covariance ma-
trix [*~12**717 where I'* = E{0U(0)/36"}, ¥* = E{U*(0)U"(#)}, and
the expectations are taken with respect to the model for the joint distribution of
{T;,C;, X, X;, Z;} which pertains to the response and measurement error models as
well as the censoring process. As n — oo, I'* and X'* are consistently estimated by
F* =07 Y000 (0)/067)y 5. and Z* = n™' T {UFOUF O} 5.
respectively.

The piecewise-constant modeling scheme offers flexibility to facilitate various
types of baseline hazard functions. With an estimate E for § available, an estimate
of the baseline cumulative hazard function A¢(#) is immediately derived as

K
Ao(t) = Y Pre (1)
k=1

— M3y i _ 27:/\1 &1y iAk)
=1 2o1=18Xp(BL X[ + BLZ)uk (1)

cug ().
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A variance estimate for Zo(t) at specified values of # may be obtained by applying
the delta method to the estimated covariance matrix for 6. Alternatively, the bootstrap
algorithm may be employed to produce variance estimates.

Solving (3.36) gives, for fixed B, and B,, an estimator of p similar to that ob-
tained from the profile likelihood:

Z?:l (Sil(li S Ak)

fork =1,...,K;
Yoo exp(Br X + B Zi) - ur (4i)

ﬁk = M(:Bx) .

while /ﬁ\ can be solved from

n n
2. Ui (0.8)=0and 3 Ufy (p.B) =0.

i=1 i=1

where Uy (o, B) = 067 /0B, Ujy_(p. B) = 96 /9B, and B = (B k)"

The asymptotic distribution of /1 (/9\ — 6) described here does not take into ac-
count the cut point selection for modeling A¢(z) and treats them as fixed. Therefore,
the inference method discussed here is regarded as a “conditional” analysis for given
K and the ay. Although it is expected that a larger K allows the ability to capture a
more refined shape of the baseline hazard function, empirical evidence suggests that
choosing K to be 4 to 6 would be adequate for many practical problems. A common
strategy in selecting cut points ay is to retain roughly equal numbers of observed fail-
ure times in each time interval (ax_1, ax] (Lawless and Zhan 1998; He and Lawless
2003).

Let ag—; be fixed at some large value beyond which failure times are essentially
impossible. Using the same argument as in Lawless (2003, §7.4), we show that as
K — oo with the values @y —ax_; — Ofork = 1,..., K — 1, for the given data,
U by (p, B) approaches

. . o Yi=i Ri) X[ exp(BLX) + BLZ1)
U = 8i Xi - n T v T
’BX (ﬂ) IZ:; |: Zl:l Rl(tl')exp(ﬂxXl +13zZl)

+{M(ﬁx)}1§ %} } (3.37)

and U 5. (B, ) approaches

B Si—1 Rit)Zexp(BLX]) + BLZ))

e
L Yo Riw) exp(By X + BLZ1)

Usr(B) = )6 , (3.38)

i=1

where the constant factor accounting for the decreasing interval widths is omitted.
The limit form (3.38) is the same as the naive Cox partial score function for 8,
but the limit function (3.37) differs from the naive Cox partial score function for g,
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by the term {M(B,)} 1{dM(B,)/dB,}. Functions (3.37) and (3.38) were proposed
heuristically by Nakamura (1992) to estimate 8 and justified by Kong and Gu (1999),
where the measurement error process was modeled by (2.21).

We close this subsection with comments. In the case where the moment gen-
erating function M(v) is unknown, one may use additional data sources, such as
replicates or validation data, to estimate M (v). The induced variation must then be
taken into account; the procedures outlined in §1.3.4 may be applied for this purpose.

To illustrate this, we consider a situation where the moment generating function
M (v) has a known function form and involves an unknown vector of parameters,
say «. In this case, function £; depends on not only ¢ but also «. Suppose for
i = 1,...,n, an unbiased estimating function of «, denoted by v; (), is available.
Define U*(a, 8) = 9£} /00, then solving

Z:l=1 Vi(a) -0
Z?:l Ui*(ave) N

for  and 6 gives estimates for o and 6. Let @ and 0 denote the resulting estimators.
Define

* X -1
07 0.0) = Up(@.0) - £ | D [ 2N |y o),

do” do”

and -
2% = E{Qf (@, 0) Q" (a. 0)},

Applying (1.15) gives that /n (/9\ — 6) has an asymptotic normal distribution with
mean 0 and covariance matrix I'*~1X*"*~1" where I'* = E{0U (e, 0)/36"}.
Finally, the inference scheme described here is likelihood-based and easy to be
modified to handle other types of survival data. For instance, this approach is readily
extended to deal with left truncation data when subjects are not followed up from the
same entry points (Yi and Lawless 2007). Let v; be the time for subject i to enter the
study fori = 1,...,n. Then the likelihood function contribution from subject i is

Lo — {f @ Xi, Z)YiH{S | X, Zi)y' o
e SilXi, Zi) '

Set

€ (B 2o) = £ (B do) +{M(B)} ™ Ao (vi) exp(BL X" + B Z:).

Then the conditional expectation E{{* (B, A0)|T;,C;, X;, Z;} recovers the true
log-likelihood function log L, ;, where the conditional expectation is evaluated with
respect to the model for the conditional distribution of X l-* given {T;,C;, X;, Z;}.
Inferential procedures are thus derived analogously to the foregoing development by

using £* . (8, Ag) fori = 1,...,n.

LTi
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3.5.2 Expectation Correction: Two-Stage Method

In contrast to the insertion correction strategy discussed in §3.5.1, we employ the
expectation correction strategy, outlined in §2.5.2, to handle error-prone survival
data where the nondifferential measurement error mechanism is assumed. We begin
with a general description of the main idea and then elaborate on the details for the
setup in §3.1.5 with the proportional hazards model (3.8).

Expectation Correction Strategy

For subject i, let L; denote the likelihood function (3.7) and
Sei(0:T;,Ci, X, Zi) = (3/00) log L;

be the score function, where 6 is the associated model parameter. The expectation
correction strategy yields that the conditional expectation

UM (0:T;,Ci, X[, Z;) = E{S¢;i(0: T;.Ci, Xi . Z)|T;. Ci, X[*. Z;}

is unbiased and computable in the sense that it does not involve unobserved variables.
The conditional expectation is taken with respect to the model F(X;|X l-*, Zi,T;, Cy)
for the conditional cumulative distribution of X;, given {X i*, Z;, T;, C;}, where the
dependence on the model parameters is suppressed in the notation. Specifically,

ST, Cil X, Z;) f(X[| Xi, Zi)d Fx 1 z(Xi | Z;)
[ f(T, Cilxi, Zi) f(XF|xi, Zi)dFx 1z (xi|Z;)’

where f(T;,Ci|x, Z;) is determined by L; = exp(¥;), £; is given by (3.9),
f(X*|Xi, Z;) is the model for the conditional probability density or mass function
of X given {X;, Z;}, and Fx|z(x;|Z;) is the model for the conditional cumulative
distribution of X; given Z;.

Under regularity conditions, solving

dF (X;|X[, Z;, T;.C;) =

n
S UFO: T CL X Zi) =0 (3.39)

i=1

for 6 yields a consistent estimator of 6 which, after being subtracted 6 and then
re-scaled the difference by /7, has an asymptotic normal distribution.

This method requires modeling the full distribution form for all the three
processes: the survival process, the measurement error process, and the covariate
process of X; given Z;. The inference results are thus vulnerable to misspecifica-
tion of any of the three models. In addition, this estimation procedure treats all the
components of 6 equally. However, in many applications, the parameters reflecting
covariate effects associated with the survival model are of prime interest while the
parameters associated with the baseline function are of secondary interest or even
treated as a nuisance.
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To alleviate the sensitivity of estimation to model misspecification, we use dif-
ferent ways to formulate estimating functions for different types of parameters. To
highlight the idea, we assume that models f(X*|X;, Z;) and F,,(X;|Z;) are known
with the values of the associated parameters given, and concentrate on developing
an estimation method for parameters of interest which is less sensitive to model
misspecification than the method based on (3.39) is. Specifically, we divide the pa-
rameter vector # into two subvectors, respectively, containing nuisance parameters
and parameters of interest, and then develop a two-stage procedure with different
ways directed to estimation of different types of parameters. In particular, we use a
full set of model assumptions to estimate nuisance parameters and then use a robust
approach to handle parameters of primary interest.

Two-Stage Estimation

To flesh out this idea explicitly, we look at the development of Li and Ryan
(2006). The survival process is characterized by the Cox proportional hazards
model (3.8), where the log baseline hazard function is posited by a piecewise-linear
spline model

logAo(t) = p1 + pat + p3(t —a1) + ...+ px(t —ak—2)+

with knots fixed at 0 = a9 < a; < ... < agx—, for a given K, where v, represents
max(v,0) and p = (p1, ..., px)" is the parameter.

Let 6 = (p", B7)", where B is of prime interest. The observed likelihood function
contributed from individual i is

Li(Ti, Ci, X[ | Zisp, B) = /f(Ti,Cilx,Zi)f(X,-*lx,Zi)de\z(XIZi),

where the dependence of f(7T;, Ci|x, Z;) on 6 is suppressed in the notation.
Define

n a .
Up(p. B) = Z%Iogu(n,a,xi Zizp,B) =0
i=1
and
n a .
Up(p:f) = 3 55108 Li(Ti. Ciu X |Zii p. p) = 0.
i=1

Joint estimation of p and f is carried out by simultaneously solving

Up(p. ) = 0 and Ug(p. ) = 0 (3.40)

for p and .

This method is straightforward to implement. However, estimation of f is at
the risk of being seriously affected by incorrect modeling of the baseline hazard
function. To achieve robustness, we wish to employ a function that is less sensitive to
misspecification of the baseline hazard function. This motivates us to use the partial
likelihood function for estimation of S.
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Let )
T
ST.CHZB) =Y [ Sit X2 BN ).
0

i=1
where Sy; (¢, X, Z; ) is given by (3.13); and 7 is a constant satisfying P(C; > 1) >
0, which is often taken as the study duration. Define

US(0:T,C.X*, Z) = Exr,cxx piSe(T, C. X, Z; B)}.

where the expectation is taken with respect to the conditional distribution
FX|T,C,X*,Z), which equals H:‘l:l F(X;|X*,Z;,T;,C;) under the assump-
tion that the {7;, C;, X;, Zi,X,.*} are independent. Then estimation of p and B is
performed based on (3.40) with Ug(p, B) replaced by U (0; T, C,X*, Z). That is,

solving ;
Us(p, B) _
(U,,*(@;T,(C,X*,Z) =0

for p and B gives an estimator 0= (p", ,/éT)T of 6.

If the baseline hazard function A¢(¢) is correctly specified, then this set of esti-
mating functions is unbiased, and consequently, yields a consistent estimator for 9,
provided regularity conditions. When A¢(¢) is misspecified, it is expected that the
estimate of parameter 8 resulted from this scheme is much less affected than that
directly obtained from solving (3.40). This estimation procedure requires evaluation
of U*(0;T,C,X*, Z), which typically involves intractable integrals. Li and Ryan
(2006) discussed using a sampling importance resampling technique (McLachlan
and Krishnan 1997, Ch. 6) to handle the integrals.

Under regularity conditions, /7 (/0\ — 6) has an asymptotic normal distribution
with mean O and a sandwich covariance matrix. Direct estimation of this asymp-
totic covariance matrix is complicated. Li and Ryan (2006) suggested employing the
bootstrap method to produce the standard errors for the estimator 0.

3.6 Methods Based on Estimating Functions

In §3.5, we focus on correcting measurement error effects based on the likelihood
function for the proportional hazards model. The likelihood-based methods are con-
ceptually simple and the development of asymptotic properties is a straightforward
application of standard estimating function theory. However, a major drawback of
these methods involves modeling the baseline hazard function A¢(¢), which is often
of secondary or little interest for many applications. Model misspecification of A¢(¢)
places us at risk of producing biased inference results for parameter 8. To adjust
for measurement error effects, it is thereby desirable to directly introduce correction
terms to the partial likelihood or unbiased estimating functions which are free of the
baseline hazard function.

In this section, we explore inference methods for this purpose. Our discussion is
directed to proportional hazards and additive hazards models under different mea-
surement eIror scenarios.
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3.6.1 Proportional Hazards Model

In this subsection, we consider the proportional hazards model (3.8) where the X;
are subject to measurement error. Three correction methods for measurement error
effects are developed based on the true partial likelihood score function (3.14). These
methods are described in conjunction with the availability of additional data sources
for characterizing the measurement error process.

Extended Insertion Approach

The first strategy, called the extended insertion method, is similar in principal to
the insertion correction strategy but different from that method in the way of specify-
ing the conditioning variables. Rather than considering an expectation with respect
to the measurement error model f(x|7;,C;, X;, Z;) as in §3.5.1, we calculate an
expectation with respect to the conditional distribution /(x| H;7, X, Z) of X" given
{H:, X, Z}, where H;“ is the history of failures and censorings prior to ¢ and the
information of a failure occurring at r. We now elaborate on this method which mod-
ifies that of Buzas (1998).

Suppose that for any ¢, conditional on {#;°, X, Z}, the observed surrogate X" is
associated with the true covariate X; by the model:

Xi* =X; + Eel/zei

fori = 1,...,n, where the ¢; have mean zero and an identity variance matrix, and
are independent of each other and of the {X;, T;, C;}. Assume that ¥, is a nonneg-
ative definite matrix which is known and that the moment generating function M (-)
of e; exists with a known form.

This measurement error model gives the conditional moment identities. For j #
i and a time point ¢,

E{XFIH] X, Z} = X;;
E{exp(B,X7)|H; X, Z} = M(Z}?B,) exp(By X ):
E{X] exp(BLX DM, X, Z} = M(Z}?B,) X; exp(BLX)):
E{X} exp(By X)X, Z} = M(Z}/?B,) X exp(BLX ;)
m(z*B)
0B

where the conditional expectation is evaluated with respect to the model for the con-
ditional distribution of X* given {#;, X, Z}.

Using these moment identities, we wish to construct an unbiased estimating func-
tion of B in terms of the observed variables. First, we examine the partial likelihood
score function whose conditional expectation is zero (Kalbfleisch and Prentice 2002,
§4.2):

} exp(BX;); (3.41)

E {8 Sei (1, X, Z; B)[H; X, 2} = 0, (3.42)
where Sy; (¢;, X, Z; B) is given by (3.13).
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As opposed to the quantities S® (¢, X, Z:; B)(k = 0, 1) defined by (3.12), we
define :
SP WKL) = - 3 R exp(BLX; + 7))
J#i
and :
X.
Si(l)(t,X, Z;B) = - Z R;(1) (Zj ) exp(BX; + BLZ))
J#i !
fori = 1,...,n. Then S;; (¢, X, Z; B) is re-written as
) 5O x.2:8) - sVt X, 2:
7 ) sQwx.2:8) - 5P x.7: p)

1

S (1, X,Z; B) = ( (3.43)

SO, X, Z: B)
Let X* = E(X;|Z;) and X** = {X}*, ..., X}**}. Define

X* +

2 7 ) s 2 - 5005, 2i)
1

UX(B: 1, X*,Z) = SO, X**, 7: B) ’

where D = (0/0B,){log M (Eel / zﬂ +)}. We now show that estimating function
n
Z §iUM(B: i, X", Z)
i=1

is unbiased.
Noting that S © (t;, X**,Z; B) is a constant relative to the conditioning variables
{H}f, X, Z}, we obtain that

E{8;UF(B:1i, X", )| My X, 2} =

P [ai{( )50z - 50w 7 ) ‘H,f,X,Z}

i

El

SO (1, X** Z; B)
which equals, by (3.41) and (3.43),

M(ZY?B)8: Sui (1, X, Z: B)SO(1;. X, Z: B)
N (t;, X**,Z; B) ’

Further evaluating the conditional expectation of this term, given {H;, X, Z}, gives

M(Eel/zﬂx)E{&‘ Sei (17, X, Z: B) | My X, 7SO, X, Z; B)
S(O)(Ii,X**,Z;ﬂ) ’

which equals zero by (3.42). Thus, we obtain that §; U* (8; t;, X*, Z) has zero expec-
tation (see Problem 3.7).
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Touse U (B:t;, X*, Z), we need to calculate X;**. Noting that £ (X;|Z;) is iden-
tical to E(X|Z;), we then regress X;* on Z; using the observed data to calculate
X*. Let o be the vector of parameters that are associated with the determination of
E(X[|Z;), and ¥; (a; X", Z;) be an associated unbiased estimating function of «
contributed from subject i.

Define 6 = (a7, B7)" and

Ui(0) ={yi(e; X, Z:),8: U (e, B 1, X", Z)},

where the dependence of U;* (t;, X*, Z; ) on « through X** is now explicitly spelled
out. Under suitable regularity conditions, solving

> owi0) =0

i=1

for 6 yields a consistent estimator 9, and \/ﬁ(’é — 0) has an asymptotic nor-

mal distribution with mean zero and a covariance matrix that may be consis-

tently estimated by the sandwich formula - 1(9)2 (9)1" _”(9) where T’ (9)
n=t -1 (9/06")%;(0)],_5 and O =n"t Y wiOW0).

The unbiasedness of §; U;*(B;1;, X*,Z) basically comes from the zero expec-
tation of its numerator. Any function of Z and B may replace its denominator
S (O)(ti,X**,Z; B) to retain the unbiasedness. In this sense, the denominator is
viewed as a weight function. Buzas (1998) discussed the feasibility of setting the
weight function to be Sl-(o) t;, X**,Z; B).

We note that, as discussed in §3.5.1, the insertion correction method can be
applied to the likelihood score function to produce an unbiased estimating function
that is expressed in terms of the observed data, but this strategy cannot be directly
applied to the partial likelihood score function to produce a workable unbiased esti-
mating function. Stefanski (1989) and Nakamura (1990) discussed this issue. A main
reason is due to the involvement of the fraction for which both the numerator and the
denominator contain exponential functions of error-prone covariate X;. However,
by modifying the conditioning variables of the insertion correction method, the ex-
tended insertion method allows us to separately evaluate the conditional expectation
for the numerator and the denominator which are involved in the fraction of the par-
tial likelihood score. The difference in these two conditional expectation methods
lies in the set of conditioning variables. In the insertion correction approach, the
conditioning variables are only the subject-level covariates; whereas in the extended
insertion method, the set of conditioning variables involves the entire sample infor-
mation of the covariates and the history of survival and observation processes.

The extended insertion method assumes that the moment generating function
M(-) for the measurement error model is known. This can be the case when con-
ducting sensitivity analyses to evaluate the impact of different types of measure-
ment error on the estimation of the response parameter, where one would specify
a series of measurement error models with varying degrees of measurement error.
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In the presence of additional data sources, such as a validation sample, M (-) may
be estimated from using these additional data, where the principle to be discussed in
§3.6.3 may be applied for this purpose.

3.6.2 Simulation Study

We conduct a simulation study to investigate the impact of ignoring measurement
error on estimation and compare the performance of the methods which account for
measurement error effects (Yi and Lawless 2007).

We set n = 200 and generate 1000 simulations for each parameter configuration.
We consider a simple case where only a scalar covariate X; is subject to error. The
true covariate X; is independently simulated from the standard normal distribution
fori = 1,...,n. Failure times are independently generated from the Cox propor-
tional hazards model with the hazard function

A(ti1Xi) = p1p2t” "' exp(BX;)

fori =1,...,n, where p; and p, are taken as 1.5 and 1.0, respectively; and param-
eter B is set as 0, 0.4, and 0.8 to represent unit, moderate, and high hazard ratios,
respectively. A fixed censoring time C is generated for each subject so that about
70% of subjects are censored. For each generated X;, its observed value X is gen-
erated from the normal distribution N (X ,-,Uez) fori = 1,...,n, where 062 is the
variance.

First, we report on the performance of the naive method which disregards mea-
surement error in X;. Fig. 3.1 displays the average of the naive estimates for 8 against
o.. When there is no covariate effect (i.e., 8 = 0), the naive method yields reason-
able estimates regardless of the magnitude of measurement error. As expected, when
B # 0, the naive method produces biased results. The resulting finite sample biases
increase as measurement error becomes more severe as well as the covariate effect
becomes more substantial.

Next, we compare the performance of the three methods which account for mea-
surement error effects. Different configurations of o, are considered with o, =
0.15,0.25,0.75, featuring minor, moderate, and large measurement error, respec-
tively. Method 1 is based on an unbiased partial likelihood score function discussed
by Buzas (1998), Method 2 is the piecewise-constant approach discussed in §3.5.1,
Method 3 is the same as Method 2 except for letting K approach oo, where (3.37)
and (3.38) are used in combination with a sandwich variance estimator for E, given
by Nakamura (1992). For Method 2 we set K = 5. Cut points ay are determined by
the equations exp{—Ag(ax)} = 0.8,0.6,0.4,0.2, respectively, fork = 1,2, 3, 4.

We report on the results of the average of the estimates (EST), the empirical vari-
ance (EV), the average of the model-based variance estimates (MVE), and the cover-
age rate (CR) for 95% confidence intervals obtained by B + 1.96se(§), where se(ﬁ)
is the standard error of the estimate B Table 3.1 presents the results for the case with
B = 0.4. Estimates obtained from these three methods all appear to be consistent

with small finite sample biases, though the magnitudes increase as the variance 062
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Fig. 3.1. A Simulation Study of the Naive Method Which Ignores Measurement Error: Finite
Sample Bias of the Naive Estimator for B Versus the Degree of Measurement Error o,

increases. In spite of using only an approximately correct (piecewise constant) model
for Ag(?), Method 2 appears to have slightly smaller biases than Methods 1 and 3.
Model-based variance estimates obtained from all three methods agree well with the
empirical variances, and Method 2 seems to yield smallest empirical variances. The
three methods provide reasonable coverage rates that are close to the nominal level.

Table 3.1. Simulation Results for Comparing the Performance of the Three Methods Accom-
modating Measurement Error Effects (Yi and Lawless 2007)

oe Method EST EV MVE CR (%)

015 1 0.407 0.018 0.018 94.0
2 0.399 0.017 0.017 93.9
3 0.406 0.018 0.018 94.0

025 1 0.407 0.019 0.019 94.2
2 0.399 0.018 0.018 94.6
3 0.406 0.019 0.018 94.2
075 1 0.420 0.034 0.033 93.9
2 0.412 0.032 0.033 95.1

3 0.421 0.035 0.034 94.2

3.6.3 Additive Hazards Model

In this section, we describe inference methods which account for measurement error
effects under the additive hazards model (3.10), where covariate Z; may be time-
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dependent and is now denoted as Z; (¢). Specifically, we write the additive hazards
model as

At Xi, Zi(t)) = o(t) + By Xi + B Zi(1), (3.44)

where A¢(7) is an unspecified baseline hazard function and B = (B}, B;)" is the
vector of unknown regression parameters.

The discussion is directed to each of the three circumstances which are often
encountered in practice: (1) parameters of the measurement error model are known
from a priori studies or merely assumed to be given for conducting sensitivity anal-
yses; (2) an internal validation sample is available; and (3) replicated measurements
for X; are collected.

In §3.6.1, we describe the extended insertion method for the Cox proportional
hazards model with error-prone covariates. The principal idea there can also be
applied to the additive hazards model with measurement error in covariates. Here we
elaborate on the details.

Measurement Error Parameters Are Known

We consider the measurement error process for which there exist vectors of func-
tions, denoted as gi (-) for k = 1,2, 3, such that for any i and j # i,

E{g1(X{)| Tz} = X
E{g2(X[a)| Fo} = (@' Xi) Xi;
E{gs(X[". X1a)| Fe} = (@' X)X
where F7 is the o-field generated by the history of the failure, censoring, and the
true covariates of all the subjects prior to the end of study time 7, and a is a vector

of constants which is of the same dimension as X;.
Let

v = (%))

. a 82(X[": Bx) ;
Wi (Bxit) = ({,3;821 X} Zi (’))7

« . _ g3(XI*,X*»ﬂx)
V3ij (Bxit) = ({ﬂ}g1(Xi*)j}Zj(f)) '

By the forms of X; appearing in the pseudo-score function U; () given by (3.15),
we construct an estimating function for g:

o[ L ROV (1)
UF (B) = /0 T
-

Wi (1) — {dN;(t) — Ri(1)B2 Zi(1)d1}

Zj;éi Rj(t)lp;j(ﬂx§t) + Ri (1)¥5; (Bx: 1)

R;(t)dt.
Z?:le(f) (e

l’pz*i(ﬁx;l‘) -
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Straightforward calculation shows that E{U*(B)|Fz} = U;(B), provided that
integration and expectation are exchangeable. Because E{U;(B)} = 0, U (B) is
then an unbiased estimating function. When the function form of g (-) is known for
k =1,2,3, solving

Y UMB) =0 (3.45)

i=1

for B gives an estimate of §. Let B denote the resulting estimator. Following the
arguments of Kulich and Lin (2000), it can be shown that under regularity condi-
tions, /3 is a consistent estimator of 8 and /i (,3 B) has an asymptotically normal
distribution with mean zero and a sandwich type covariance.

Construction of U;*(B) basically hinges on identifying the correction functions
gr(-)(k = 1,2,3), which relegates to the form of the measurement error model. If
the measurement error process satisfies the condition

E{g(X[". X[ Fe} = E{g(X[", X)) Xi, X;} (3.46)

for any real-valued function g(-) and i # j, then finding functions g (-)(k = 1,2, 3)
is often straightforward. The condition (3.46) implies that given {X;, X}, { X, X j’.‘}
are independent of N;(¢) and R;(¢) for any ¢; it is pertinent to the nondifferential
measurement error mechanism discussed in §3.2.2.

For example, assume that (3.46) holds. If the X; are continuous covariates and
linked with their surrogates by an additive error model

Xi* =X; +e; (3.47)

fori = 1,...,n, where ¢; is independent of {X;, 7;, C;} and has mean zero and
covariance matrix X,. Then g1(-), g2(-) and g3(-) are, respectively, taken as

gl(X,‘*) =X/
gz(X,-*;a) = (aTXi*)Xi* -
g3(Xl-*,X;;a) = (aTXi*)X;. (3.48)

If X; is, on the other hand, a scalar binary covariate with the (mis)classification
probabilities mgp = P(X; = 0|X; = 0) and my; = P(X; = 1|X; = 1), then
functions g1 (), g2(-) and g3(-) are set as

a1 (X7) = X — (1 —moo0)
moo + i1 — 17
gZ(X[*;,Bx) = ﬂxgl(Xi ):
23X, X7 Bx) = Br&1(X)g1(X7). (3.49)
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Validation Sample Is Available

In the presence of an internal validation subsample considered in §3.3.1, estimat-
ing function U;*(B) in (3.45) is refined to accommodate the true measurements of X;
from the validation sample.

Let

W) = (an + (12—81))6081()( ))
W3 (Bxit) = ( ni (B Xi) Xi + (1 = ni)wga(X["; ) )
2 ni(BxXi)Zi(t) + (1 —n)wifrg1(X)}Zi (1)
Wi (1) = ( niaij(Bx) + (1 —ni)wbi; (Bx) ) .
3ij A ni(ByXi)Z;(t) + (1 —ni)w{Brg1(X[)}Z;(t)

where

aij(Bx) = (BxXi){n; X; + (1 —n;)g1 (X))}
bij(Bx) = nj{Br&1 (X)X + (1 —n;)gs (X[, XT3 Bx);

and w is a weight specified to adjust for or downweigh the contribution from the
subjects in the nonvalidation sample, taking a value between 0 and 1. Commonly,
o is set to be 1, reflecting equal contribution of the subjects from the validation
subsample or the main study. If w takes 0, then only the validation data are used for
estimation.

Estimating function U*(B) in (3.45) is then modified to be

Ui**(ﬂ):/o Z_l JOW(@)

Z-=1R(t)
_/0""

5 i RAOWEBes 1) + Ri W57 (B 1)
Yo Ri@)

so that E{U;**(B)|F=,n;} = U;(B). Hence, U;*(B) is an unbiased estimating func-

tion of .

Furthermore, the validation subsample is used to characterize the measurement
error information. Suppose we model the measurement error process parametrically
and let o denote the vector of the associated parameters. Let v; (o) be an unbiased
estimating function of « contributed from subject i . Then estimation of & and § may
proceed by using, respectively, the data from the validation subsample ) and the
main study sample M (i.e.,i € {1,...,n}). Solving

( nX:iEV Wi ((X) ) — 0
Zi=1 Ul-**(ot, B)
for & and B gives estimates of & and B, where the dependence on o of U;**(B) is

explicitly spelled out. Asymptotic distributions of the resulting estimators may be
established following the guideline of §1.3.4.

w7 () - {dNi (1) = Ri(1)B2 Zi(1)d1}

W3 (Bxit) — R;(t)dt
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As examples of formulating v; (), we consider two scenarios where only a
scalar covariate X; is subject to measurement error or misclassification. First, sup-
pose that X; is continuous and that the measurement error model is given by (3.47)
with the variance of e; denoted as «. Then for subject i € V, estimating function
V¥ (e) is constructed as, by using the method of moments,

vile) = (X[ — Xi)* —

Next, if X; is a binary covariate with the (mis)classification probabilities oo =
P(X! =0[X; =0)and m1; = P(X = 1|X; = 1), then mqo and 71 are naturally
estimated by empirical frequencies

v Moo | == 11
00=—"—""—; W1 = ——}
noo + no1 nio +n11

where njx = Y i_y niI(X; = j: X = k) is the counts in the validation sample
V for j,k = 0, 1. Obviously, this is equivalent to solving the unbiased estimating
equation:

> Yil@) =0 (3.50)

iev
for o, where ¥ (o) = {(1 — X;)(1 — X)) — moo(1 — X;), X; X" — w11 X;}" and
o = (o0, T11)"

Replicates Are Available

Finally, we consider the case where the model parameter for the measurement
error process is unknown and replicated surrogate measurements {X/, : k =
1,...,m;} are collected for X;, where the number m; of replicates may be subject-
dependent. Different from the aforementioned extended insertion correction meth-
ods, we discuss another inference method to accommodating covariate measurement
error.

Let F; be the o-field generated by the history of the failure, censoring and the
true covariates of all the subjects prior to time ¢. Given J; for any time 7, we assume
that the surrogates X, and the true covariate X; are linked by an additive model:

X = Xi+en (3.51)

for k = 1,...,m;, where the ¢;; are independent of {X;, T;, C;} and have mean
zero and covariance matrix X, fori = 1,...,nandk = 1,...,m;. This assumption
says that given F; (which include the true covariates {X;, Z;(¢)} at any time ¢), T;
and C; are independent of surrogate measurements { X ;}c k=1,...,m;}.

With the replicates, X, is empirically estimated by

—%
Zz—l Zk—l Xi+)®2

S.= ,
Zi:] (ml -1

v o_ -1 m; *
where X;, =m; >, X
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Let ¥ = diag{X.,0, xp.} be the block diagonal matrix and T =

diag{g‘e,ople,z}. Because E(Y;‘+|Ft) = X; and E(Y;‘fﬂ}}) = X;X’2 —i—mi_lEe,

we obtain

E(Z|F;) = X forany time 7. (3.52)

To estimate 8, one might be tempted to use the pseudo-score function (3.15) by
substituting X; with Y: .. However, as shown in §3.2.1, this substitution does not
ensure a consistent estimator of B because the resulting estimating function Uy, ()
is not unbiased anymore, where Uy (B) = Y i_; Uni(B), and Uy (B) is identical
to the pseudo-scored function U; (B) of (3.15) except that X; is replaced by 7; L

A remedy for this is to apply the subtraction correction strategy discussed in
§2.5.2. We modify Uy (B) by subtracting its expectation E{Uy,(B)} so that the re-
sulting estimating function, Uy, (B) — E{Ux(B)}, is unbiased. However, evaluation
of the marginal expectation E{Uy (B)} is generally complicated due to the involve-
ment of the joint distribution of the survival and censoring processes, thus making
the modified estimating function Uy (8) — E{Ux(B)} unappealing.

To get around this problem, we alternatively evaluate the conditional expectation
of Uy (B), given F;. As indicated by Problem 3.9,

E{Uw(B)|F<}

=_’_;”w}d
‘W)L§12me£2{nu Lo G

i=1

n
where U(B) = Y U;(B) and U; (B) is given by (3.15). This identity motivates us to
i=

consider the estimating function

1
Zj‘:l R; (1)
which satisfy E{U*(f)} = 0 by (3.53) and the unbiasedness of U(8). Thus, U*(B)
is an unbiased estimating function.

__ Touse U*(B) to estimate B, we need to replace X with its consistent estimate
X, let U**(B) denote the resultant estimating function. One might expect that the

substitution of ¥ for X would break down the unbiasedness of U* (B), but this is not
the case with this method. Interchanging the conditional expectation and integration,

we obtain that by (3.52),
E{U™(B)} = E{Un(B)}
1 "\ Ri()ZB
Fi | d
s 5|7
£

=E{UNV(,3)}+E{/O gl—m
j=11
= E{U*(B)},

suggesting that U** () is still an unbiased estimating function.

Ut @) = Ua®)+ [ f1- )

- %Ri(t)zﬂ}dt
i=1

1-—
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Since U**(B) is unbiased, then under regularity conditions, solving
U™(g)=0

for f leads to a consistent estimator 8 of 8, given by

B= [Z [ w0}

i=1
T 1 -1
_/0 {1_ Zj‘:le(f) dt:|
- [; /0 t HAGEA0) dNi(t)] , (3.54)

where W (1) = {X;,. ZI(O)} and W (1) = Y1 Ri(OWF()/ Yi—y R, (1).
The inverse matrix in (3.54) converges almost surely to a positive definite matrix

n

2.

i=1

Ri(1)X

mi

under regularity conditions, thus when numerically calculating B singularity does
not occur in the asymptotic sense. Under certain regularity conditions, /7 (E— B) has
the asymptotic normal distribution with mean zero and a sandwich-type covariance
matrix. Details were provided by Yan and Yi (2016b).

3.6.4 An Example: Analysis of ACTG175 Data

To illustrate the method discussed in §3.6.3, we discuss the analysis results of Yan
and Yi (2016Db) for the data arising from the AIDS Clinical Trials Group (ACTG) 175
study (Hammer et al. 1996). The ACTG 175 study was a double-blind randomized
clinical trial which evaluated the HIV treatment effects. It is of interest to understand
how the survival time is associated with the treatment. Here the survival time 7;
for subject i is defined to be the time to the occurrence of one of the events that
CD4 counts decrease at least 50%, or disease progression to AIDS, or death, as
considered by Hammer et al. (1996). Excluding the subjects who had missing values
or unrecorded relevant information, we consider a subset of 2139 subjects in which
about 75.6% of the outcome values are censored.

Let Z; be the treatment assignment indicator for subject i, where Z; = 1 if a
subject received the treatment, and O otherwise. In the ACTG 175 study, the baseline
measurements on CD4 were collected before randomization, ranging from 200 to
500 per cubic millimeter. Let X; be a transformed version, log(CD4 counts + 1),
of the true baseline CD4 counts which was not observed in the study. Forty-four
subjects were measured once for the CD4 counts at the baseline, and 2095 subjects
had two replicated baseline measurements of CD4 counts, denoted by X} and X},
after the same transformation as for X;.

The additive measurement error model (3.51) is specified to link the underlying
transformed CD4 counts with the surrogate measurements. With the replicates, we
estimate the variance of the measurement error model as e = 0.035.
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The additive hazards model (3.44) is used to describe the dependence of T;
on covariates X; and Z;. For comparison, four methods are considered: the naive
method (Naive) which uses the average of X} and X, (and the observed surrogate
measurements for subjects who were measured once) to replace X; in the standard
analysis, the regression calibration method (RC), the method (SZS) by Sun, Zhang
and Sun (2006), and the method (SUBTR) discussed in §3.6.3. Since the method by
Sun, Zhang and Sun (2006) requires that every subject has replicates of surrogate
measurements, for comparability we use two ways to look at the data: the subset of
all the subjects with replicates (Subset) and the entire data set (Full). The analysis
results are shown in Table 3.2.

The naive estimate of B is smaller than those obtained from the other methods,
while the naive estimate of 8, is similar to those produced by the other methods.
Although estimates of 8y and 8, differ from method to method, all the results sug-
gest that both CD4 counts and treatment are statistically significant.

Table 3.2. Analyses of the ACTG 175 Data Using Different Methods

Data Method log(CD4 counts + 1) Treatment

EST MVE 95% CI EST MVE 95% CI

Subset Naive —4.67 2.15 (—5.58,—-3.77) —2.12 1.18 (—2.80, —1.45)
SZS —5.76 3.36 (—6.90,—4.63) —2.16 1.19 (—2.84, —1.49)

RC —5.71 3.20 (—6.82,—4.60) —2.14 1.18 (—2.81,—1.47)

SUBTR —5.78 3.40 (—6.93,—4.64) —2.16 1.19 (—2.84, —1.49)

Full Naive —4.72 2.13 (—5.62,-3.81) —2.15 1.16 (—2.81,—1.48)
RC —-577 3.19 (—6.88,—4.67) —2.16 1.16 (—2.83,—1.50)
SUBTR —5.85 3.41 (-7.00,—4.71) —2.18 1.17 (-2.86,—1.51)

EST: estimates x10%; MVE: model-based variance estimates x10°; CI: confidence intervals
x10*

3.7 Misclassification of Discrete Covariates

The correction methods in the preceding sections are described for error-prone con-
tinuous covariates. These strategies are also applicable to discrete covariates which
are subject to misclassification. In particular, the strategies discussed in §3.6 ex-
emplify the fact that the estimating functions under the true model depend on X;
through polynomial or exponent forms. In this section, we develop correction meth-
ods for misclassified discrete covariates whose form can be arbitrary. For ease of
exposition, we focus the discussion on a scalar discrete covariate X; which is subject
to misclassification. The development for multiple covariate X; proceeds in the same
manner though the notation would be more involved.



3.7 Misclassification of Discrete Covariates 131

Suppose X; is a discrete random variable with possible values x(1), ..., X(),
where r is a finite positive integer. Assume that X; is not precisely observed; in-
stead, X i* is the observed version of X; so that P(XI.* = X;) < 1. Analogous to
inferences with error-contaminated continuous covariates, a misclassification model
is usually needed to supplement modeling of the response process in order to con-
duct valid inference about the response parameter. Similar to the structure of the
classical additive and Berkson models for continuous covariates discussed in §2.6,
the specification of misclassification probabilities may be done in two ways by using
different conditioning variables. Given error-free covariate Z;, one may characterize
the dependence of X* on X; through the conditional distribution

P(Xl' = x(k)|X,'* = X()» Z,‘),

or alternatively,
P(X] = x| Xi = x@), Zi),
where k,l =1,...,r.
The former scheme was adopted by some authors (e.g., Zucker and Spiegelman
2004); here we use the latter modeling method. Let

II; = [”ikl]rxr

be the r x r misclassification matrix, where m;x; = P(X = x)|X; = x@). Zi)
fori =1,...,nandk,l =1,...,r.

We discuss how to use the insertion correction strategy to correct for misclassifi-
cation effects. Unlike the case where the insertion correction strategy cannot directly
apply for some forms of continuous error-prone covariates, the insertion correction
method works for any form of error-prone discrete covariates with a finite num-
ber of possible values. To see this, we begin with a universal device considered by
Akazawa, Kinukawa and Nakamura (1998) and Zucker and Spiegelman (2008).

Suppose g(X;, Z;) is a function of the true covariates. We wish to find a func-
tion, say g*(-), which is expressed in terms of the observed covariates {X*, Z;} and
pertains to function g(X;, Z;) via

E{g™ (X[, Z)|Fe} = g(Xi, Zy).

If the measurement error process satisfies the condition

E{W (X[, Z)|Fe} = E{Y(X[, Z)|X:, Z;}, (3.55)
for any function v (-), then it is sufficient to find a function g*(-) to meet the follow-
ing condition

E{g" (X[, Z)|Xi, Zi} = g(Xi, Z). (3.56)

Similar to the discussion for (3.46), condition (3.55) is ensured if misclassification is
nondifferential.

Often, g*(-) and g(-) assume different function forms due to the difference be-
tween X and X;. In the case with continuous X;, function g*(-) may not exist if

g(-) has a complex form (e.g., Stefanski 1989); when the existence of function g*(-)
is ensured, identification of its form is often done case by case, mainly based on
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examining the form of g(-) as well as the measurement error model. For the case
with error-prone discrete covariates, however, things become much simpler. For any
given function g(-), function g*(-) always exists and is determined by

,
g X} =xq). Z) =Y 7' e(Xi = xa). Zi) (3.57)

k=1
for/ = 1,...,r, where ‘¥ is the (I, k) element of the inverse matrix 1'[1._1 whose

existence is assumed. We express X = x(;) and X; = x(), respectively, for the
arguments of g*(-) and g(-) to stress individual values taken by the variables.

To illustrate the ideas, in the following development we focus on the proportional
hazards model (3.8) although the procedure can also apply to other survival models.

3.7.1 Methods with Known Misclassification Probabilities

For this subsection, assume the misclassification matrix [1; is known. Let x(; de-
note the measured value of X*. We describe two ways to apply the insertion cor-
rection strategy to handle estimation of parameter § for the proportional hazards
model (3.8). Specifically, we examine how to introduce the error correction terms to
the log-likelihood function (3.9) or the partial likelihood score function in (3.14).

Let g1(X;. Zi: B) = B3 Xi + BLZ; and g2(X;. Z;: B) = exp(ByXi + BLZ:).
By (3.57), the corresponding g7 (-) and g5 (-) are given by

,
(X =xy, Zi ) = Y 7 (Brxw) + B2 Z0),
k=1

and
,
S X =xy. Zi: p) = Z 7 * exp(BLxgy + B2Zi).
k=1
Then corresponding to the log-likelihood function (3.9), we take

n ti
€ = - 8illogdo(t) + €1 (X7 = 5, Zii PN = 3 XF = 5. Z23B) [ Aoy,

i=1
Under the condition (3.55), we have

EW;|F) = EX|X;. Z;)
={;,

suggesting that the conditional expectation of £}, E(£*|X;, Z;), recovers the log-
likelihood (3.9).

Comparing this £7 to function (3.35) for the case with continuous X;, we see
the difference in correcting effects induced from continuous measurement error and
misclassification. Estimation 8 proceeds in the same manner as that in §3.5.1, and
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the asymptotic distribution of the resulting estimator is established accordingly. This
approach basically requires attention to the baseline hazard function, which may be
modeled parametrically or nonparametrically.

Alternatively, to leave the baseline function unattended to, one may work with the
partial likelihood or partial likelihood score function to adjust for misclassification
effects following the same procedure as in §3.6.1.

Let go(X;) = X; and g3(X;, Z;: B) = X, exp(ByXi + B Z;). Then (3.57) gives
that

,
8o (X = x(p) = ) 7 xgo,
k=1
and
,
N . o ijk T T
G (X = x(). Zii B) = ) w7 xq exp(Brxy + BLZ)).
k=1
Let
1 n
SO X" ZiB) = — Y RO (X = x(), Zii B),

i=1

1 ¢ S(XF = x(), Zi: B)
SO, X*Z:8) = = Y Rt ( 834, ) Zi' )

wopeser oy [C) (& (X =x(,))) SO X B |
U™ (B: X*,Z) —fo { ( Z, SO X2 f) dN; (1),
and

U*(B:X*,2) = ) &UMNB: X, 2). (3.58)

i=1

Then solving
U*(B;X*,Z) =0

for B gives an estimate of 8. Let E be the resulting estimator.

Requirement (3.57) indicates that for k = 1,2,3, individual expecta-
tion E{g; (X[, Z;i;B)|X;,Z;} recovers the corresponding term g (X;, Z;:B)
in the partial score function S,;(X,Z;f) defined by (3.13), in addition to
E{gs(X)|Xi,Z;} = go(X;). Nevertheless, for the entire estimating function
U*(B:X*,Z), the conditional expectation E{d;U(B;X* Z)|X,Z} does not
coincide to 8; Sy (X, Z; B). On the other hand, following the same arguments as
in Andersen and Gill (1982), U*(8; X*, Z) can be shown to be asymptotically unbi-
ased. Under regularity conditions, n'/ Z(E— B) is asymptotically normally distributed
with mean zero and a sandwich-type covariance (Zucker and Spiegelman 2008).

The preceding procedure works if the misclassification probabilities are known.
When these probabilities are unknown, one needs to estimate them using additional
data information, which introduces two extra issues. The first one is to develop an
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estimation method for handling the (mis)classification probabilities, and the second
issue is to accommodate the induced variability into the asymptotic distribution of
the estimator B In the following two subsections, we discuss methods of estimating
the misclassification probabilities. For ease of exposition, we focus the discussion
on the case where X; is a binary covariate subject to misclassification. Extensions to
accommodating multiple discrete covariates proceed in a similar manner.

3.7.2 Method with a Validation Sample

Suppose an internal validation sample ) is available as described in §3.3.1. Let
mior = P(X) = 1|1X; = 0,Z;) and ;10 = P(X] = 0|X; = 1,Z;) be the
misclassification probabilities, which may depend on error-free covariate Z;. Then
the (mis)classification probability matrix is given by

I — I —mio1 mio
i = } 1 ) ,
TTi10 — 710

yielding the inverse matrix
1 7.[100 ntOl
I = 710 pitt ]

where /% = (1 — 7j10) /(1 = mio1 — 7i10), 7' = (1 = 7io1)/(1 = 7io1 — 7ir0),
701 — | _ 00 a0 £i10 _ | _ pill

A regression model is often used to facilitate the dependence of misclassification
probabilities on the covariates. For instance, consider logistic regression models

i00

: T . . — T .
logit i1 = agwjo; logit mij0 = ajwir;

where ay is the vector of regression parameters and w; is a subset of covariates
{X; = k., Z;} that reflects different misclassification mechanisms for £k = 0, 1. In
two extreme situations, w;x is specified as the entire covariate vector {X; = k, Z;}
and constant 1, respectively; the latter scenario corresponds to homogeneous mis-
classification across all subjects, which was considered by Zucker and Spiegelman
(2008). Let ¢ = (agy, })".

Estimation of « and B proceeds with a two-stage procedure. At the first stage, we
apply the likelihood method to the validation sample to estimate «. For i € V, let

—X; Xi

X* ) | 1-X* *
L@ = {mgy (1 =mio)' X 5 (1 = ming)¥7 |

be the likelihood contributed from subject i and Sy; () = dlog Ly;(«)/0a be the
score function. Then solving
> Sui(@) =0

iey
for « yields the maximum likelihood estimate & of «. This step is easily carried out
using existing software such as SAS or R.
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At the second stage, we estimate S by modifying the partial likelihood score
function with misclassification effects accounted for. Let

8o (X[ =x(j)) = (1 —ni)ge (X[ = x¢jy) + ni Xi,

1 n
SO (0. p) = = 3 RO = n)g3 (X7 = x(). Zi: B) + ni exp(BXi + BLZi)}.

i=1

and
(D)% (. :l “ . % . ( ggk(Xi*=x(j)’Zi;:3) )
SGEN) n;R,(t) =)\ g ke = xon. 722 B)
+ XieXp(,B;Xi+ﬂ;Zi)
"\Ziexp(B Xi +B,Z) )|~
Define
x T g**(Xl* = x ) S(l)**(t;a,ﬁ)
o = [} (505 - S v

Then estimation of § is obtained by solving

n
Y o sUM @ B) =0
i=1
for B, where U*(@, B) is U*(a, B) with « replaced by @. Let E be the resultant
estimator of .
Because the score function Sy; (@) is free of B, this two-stage estimation algo-
rithm is equivalent to the joint estimation procedure by solving

( ;:;1 ’/ii/i(a) ) -0
Zi:l 8 U,' (cx, ,3)

for & and . If the size n, of the validation sample and sample size n of the main
study are of the same order, i.e., ny/n approaches a nonzero constant when n — oo,

the asymptotic distribution of 8 can be established following the same lines for the
result (1.15).

3.7.3 Method with Replicates

We discuss an estimation method in the presence of replicated measurements for the
misclassified binary covariate. Suppose binary X; is measured m; times with repli-
cate measurements X ;; that are not necessarily identical to X;, where j = 1,...,m;.
We assume that the (mis)classification probabilities are homogeneous among all sub-
jects, which is often feasible when a risk factor is assessed repeatedly using the same
device.

Let mwijk,1—x = P(X]; = 1 —k|X; = k) be the misclassification probabilities
fork =0,1and/ = 1,...,m;. Conditional on X;, the X/, are assumed to be inde-
pendent and identically distributed so that 7k 1 = 7k,1—k foralll = 1,...,m;
andi = 1,...,n, where 7y 1 is a constant between 0 and 1 for k = 0, 1.
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Consider the total X", = ;":’1 X;. Then conditional on X; = k, the total X
follows a binomial distribution BIN(m;, py ), where py equals 1 — 7o if Kk = 1 and
o1 if k = 0. Let T = P(X; = 1) be the marginal probability of X;. Then the
marginal probability of the total X/, is

P(X}, =x)= > PX} =x/|Xi=k)P(X; =k)

k=0,1
~ [ M x* _mi—x} [ m; x; mi—x*
=T * (1—]‘[10)17'[10 +(1—7T) * 7'[01(1—77.'01) LN
1 1
where x* = 0,...,m;.
Let @« = (7, mo1, w10)" be the associated parameter, and L.; = P(Xl-*+ = x])

be the likelihood function contributed from subject i, and Sy; () = dlog L; /da™ be
the score function. Solving
n
Z Sri (O[) =0

i=1
for a gives the maximum likelihood estimate & of «. Then estimation of § is obtained
by solving R

U*(B;X*,Z) =0

for B, where U* (B;X*,Z) is determined by (3.58) with the (mis)classification prob-
abilities replaced by the corresponding estimates.

The discussion here is addressed to a binary covariate X;. Extensions to accom-
modating more general settings are possible by using a similar idea. For instance, if
X; assumes r values with r > 3, then the preceding argument applies with the condi-
tional binomial distribution replaced by a conditional multinomial distribution. The
independence assumption for the replicates X;; may also be relaxed to allow some
dependence structures by following the discussions of Torrance-Rynard and Walter
(1997) and Zucker and Spiegelman (2008).

3.8 Multivariate Survival Data with Covariate Measurement
Error

Relative to extensive attention on univariate error-prone survival data, research on
multivariate or clustered survival data with covariate measurement error is limited.
In this section, we briefly describe issues concerning covariate measurement error
for multivariate or clustered survival data, focusing on three modeling and inference
frameworks.

Suppose the sample includes n units each experiencing m types of failure. For
i=1,...,nandj =1,...,m,let T;; be the jth failure time of unit7 and C;; be the
corresponding censoring time. Denote t;; = min(7;;, C;;) and §;; = I(T;; < Cjj).
Let R;;(t) = I(t;; > t) be the indicator that the jth failure for unit i remains at
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risk at time ¢, and {X;;, Z;;} be the covariates corresponding to the jth failure for
unit i. Covariate X;; is time-independent but Z;; may be time-independent or time-
varying. Sometimes we write Z;; (¢) to emphasize that the Z;; are time-dependent.
Suppose that X;; is measured with error, and Z;; is accurately measured. Let X i’;- be
the surrogate measurement of Xj;.

Write ; = (tit,....tim)"> & = Gt 8im)s Ti = (Tin,.... Tim)",
Ci = (Ci....Ciw)", Xi = (X[, X005 XF = (XYL .... X0, Zi =
(Z},.....Z},)" and Z;(t) = (Z],(t),...,Z],(t))" for any time f. Within each
unit i, the 7;; may be correlated for j = 1,...,m;butthe {T;, C;, X;, Z;(¢) : t > 0}
are independent for i = 1,...,n. For each i, conditional on the true covariates, 7;,
C; and X* are assumed to be independent.

3.8.1 Marginal Approach

Here we discuss a marginal modeling approach and consider the case where error-

free covariate Z;(¢) is time-dependent. For i = 1,...,n and j = 1,...,m, the
failure time 7;; follows a marginal model with the hazard function determined by
Aij (X1 Xij, Zij (1)) = Aoj (1) exp{ By Xij + B, Zij (1)}, (3.59)

where A¢; (¢) is the baseline hazard function for the jth type of failure and B, and
B are the regression coefficients. Write 8 = (8%, B})".

If X;; were precisely measured, estimation of parameter 8 may be realized using
the marginal partial likelihood by ignoring possible association of the failure times
within the same unit (Wei, Lin and Weissfeld 1989; Cai and Prentice 1995). Let

1 “ T T
S (@13 p) = o > Rij (1)) explBy Xaj + BLZkj (1)}
k=1

and

1 ¢ ,
UNGHIE n kZ_; Ryj(tij) (Zk)f'gij)) expiBfy Xkj + B Zkj(ti))}.

1
( X,’j )_S[(j)(ti_/;ﬂ)§
2 ) Py p)
to be the pseudo-partial likelihood score function. In the instance where for any
unit i, all the failure times 7;; are independent for j = 1,...,m, function U(f) is

identical to the usual partial likelihood score function. Under regularity conditions
of Wei, Lin and Weissfeld (1989), solving

Define

Up) =Yy > &

i=1j=1

UB) =0 (3.60)

for B leads to a consistent estimator of j.
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When Xj; is subject to measurement error, directly replacing X;; with its surro-
gate measurement X l-*;- in (3.60) usually results in a biased estimator of §. Depending
on the form of measurement error models or the availability of data sources, vari-
ous bias correction methods may be developed along the same lines as discussed in
§3.3, §3.6.1 or §3.7. For example, Greene and Cai (2004) explored the simulation-
extrapolation method for the case where measurement error model is given by X ;; =
X;j+eij; the e;; are independent of each other and of {X;, T;, C;, Z;(t) : t > 0}, and
the e;; follow a normal distribution N(0, X, ) with a known covariance matrix X,.

These marginal methods are easy modifications of their univariate counterparts,
and their implementation is fairly straightforward. These approaches are useful when
our primary interest lies in inference about the marginal model parameter . The
association strength among the T;; is typically ignored in these methods. In the next
two subsections, we discuss methods which accommodate the association among
the T; ).

3.8.2 Dependence Parameter Estimation of Copula Models

We consider a modeling framework which explicitly facilitates the clustering effects
among the failure times 7;; via copula models (Nelsen 2006). This modeling allows
us to explicitly express the marginal survivor functions as well as the association
parameter. We consider the case with m = 2. Let S (-) be the model for the marginal
survivor function of 7;;, and C(-,-; ¢) be a copula function indexed by parameter ¢
which may be a scalar or a vector. Then the model for the joint survivor function of
(Tix, Ti2) is given by

S(t1,12) = C(S1(t1), S2(t2); $). (3.61)
As a result, the model for the joint probability density function of (7;1, T;3) is

f(t1.12) = c(S1(11), S2(12); @) f1(11) f2(22),

where c(-; ¢) is the density function corresponding to the distribution C(-;¢), and
£ () is the model for the marginal density function of 7;; for j = 1,2.

Assume that given covariates {X;;, Z;;} for the jth type of failure, covariates
{Xik, Zir} with k # j have no predictive value for the failure time Tj;, i.e.,
h;(t|Xi,Z;) = h;(t|X;j,Zi;), where h;(t|-) is the conditional probability den-
sity function of T;; given the covariates indicated by the arguments. To facilitate the
covariate information, we postulate the marginal survivor functions of the 7;; using
the regression strategies discussed in §3.1, and let 8 denote the associated parame-
ter vector of the marginal models S (-) for j = 1,2. Let 0 = (8", ¢")" denote the
parameter for the joint survival model.

If X;; were precisely measured, inference on 6 is carried out using the likelihood
method. The likelihood function of 8 contributed from unit 7 is

8i1(1-68;2)
_ 3S(l‘i1,ll‘2)§ ! : { _ aS(tilatﬂ)

(1-8;1)8i2
dti1 0tin }

Li(0) = {f(t, liz)}ailsiz{

{8 (t11. 12)y 10 =8i2)
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where the dependence on the parameter 6 is suppressed in the symbols of the right-
hand side.
Define

dlog L;(6) oy 0logLi()

¢
Under regularity conditions, solving

(Z?=1 Uﬁz‘(9)) —0
i1 Usi(0)

for 6 gives a consistent estimator of 6.

The likelihood method is straightforward in principle. However, it can be compu-
tationally demanding. Alternatively, a two-stage estimation algorithm is used with
and ¢ being separately estimated at each step (Hougaard 1986; Shih and Louis 1995).
At the first stage, we ignore the dependence structure among the 7;; and merely use
the marginal models to estimate f; at the second stage, we estimate parameter ¢
using the joint model with 8 replaced by the estimate obtained from the first stage.

Specifically, let

Upi (6) =

—BSJ' (l‘l‘j)
8[,’j

Sij
L) = | | sy

be the marginal likelihood pertinent to T;; for j = 1, 2. Define

Ll*(ﬁ) = L;kl (,B)L?‘z(ﬂ)

to be the pseudo-likelihood contributed from unit i for which 7;; and 7;, are pre-
tended to be independent. Let U /;‘l. (B) = dlog L7 (B)/dB. At the first stage, solving

D UsB) =0 (3.63)

i=1

for B gives an estimate, say 3, of B. At the second stage, we solve

> Upi(B.d) =0 (3.64)

i=1

for ¢ to obtain an estimate of ¢, where U@(B, ¢) is determined by (3.62) with
replaced by E

Glidden (2000) applied this approach to the Clayton—Oakes model and showed
that the two-stage estimator is consistent and has the asymptotic normality property
under regularity conditions. Andersen (2005) generalized the discussion to copula
models where marginal survivor functions are modeled parametrically or semipara-
metrically.
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In the presence of measurement error in Xj;;, naively applying existing ap-
proaches with X;; replaced by X i’; may lead to seriously biased results. It is neces-
sary to take into account the measurement error effects when developing estimation
procedures for 8. Relative to the univariate case, adjusting for the impact of covari-
ate measurement error on analysis of multivariate error-prone survival data is more
complex. Although copula model (3.61) separates the marginal structures from the
association parameter, correction for measurement error effects cannot necessarily
be done separately, even when a two-stage estimation procedure is performed to sep-
arately estimate the marginal model parameter 8 and the dependence parameter ¢.

To see this, we consider the setting discussed by Gorfine, Hsu and Prentice (2003)
with replicated surrogate measurements X ;';. X taken for X;;, where k = 1,..., K,
and K is an integer no smaller than 2. Suppose marginal models S (-) for failure
times 7;; are specified as (3.59) with Ag;(-) = Ao(-) for j = 1,2 and the joint
survivor model is given by the Clayton—Oakes model

S(t1,12) = {S1(t1) ™% + Sa(t2)™? — 1,712,

where ¢ is the dependence parameter which is positive (Clayton 1978; Cox and
Oakes 1984, Ch. 10; He 2014).

The dependence parameter ¢ is interpreted as the ratio of the conditional hazard
functions evaluated under different conditions:

Ay, (U Ti2 = 1) = Ariylryy @ Tin = 11) _
Az (1Ti2 = 12) Arialry @ Tin = 1)

where Ar;;|r;, (|)) represents the model for the hazard function of the conditional
distribution of T;;, given Tjx; j # k and j, k = 1,2.

If we use the two-stage procedure to estimate § and ¢, it is possible to produce
a consistent estimator for the marginal model parameter by modifying estimating
function U Ei (B) in (3.63) using the schemes developed in the previous sections for
univariate error-contaminated data. For instance, one may introduce correction terms
of measurement error effects individually to each of the marginal score functions
of Tj; and T;i,. The resulting estimating function of B at the first stage can still
be unbiased or asymptotically unbiased, hence yielding a consistent estimator of
B under regularity conditions. However, the measurement error correction terms at
the first stage may not fully accommodate measurement error effects on using the
score function Uy; (B, ¢) in (3.64) for estimation of the dependence parameter ¢,
thus the estimator of ¢ obtained at the second stage is not necessarily consistent.
The induced bias in estimating ¢ may be examined using the strategy outlined in
§1.4. To reduce the induced bias in estimating ¢ at the second stage, Gorfine, Hsu
and Prentice (2003) proposed to use the second-order Taylor series expansion of the
score function Uy, (B, ¢). For details, see Gorfine, Hsu and Prentice (2003).

¢ = L,

3.8.3 EM Algorithm with Frailty Measurement Error Model

Another useful tool for modeling multivariate failure times is frailty models. Associ-
ation among failure times within units is facilitated by frailties (or random effects).
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Here we describe a frailty measurement error model to illustrate how error-prone
multivariate survival data may be analyzed.

Conditional on the unit-specific frailty u; and the covariates, the failure times
T;; are assumed to be independent and have the conditional proportional hazards
functions modeled as

Aij(tlui, Xij, Zij) = Ao(t) exp(u; Bij + By Xij + B Zij), (3.65)

where A¢(¢) is the (conditional) baseline hazard function that is common for all the
units, B, and B, are fixed effects associated with covariates {X;;, Z;;}, and the B;;
are covariates associated with the frailty and measured without error. The frailties
u; are assumed to be independent of each other and of the covariates and censoring
times; and the distribution of u; is modeled by f(u;; ¢) with the associated param-
eter ¢. Common choices of f(u;;¢) include log-Gamma and multivariate normal
distributions (e.g., Clayton and Cuzick 1985).

Let Ag(t) = fot Ao(v)dv be the cumulative baseline hazard function. Under
model (3.65), the likelihood contributed from the i th unit is

m

T T T 8ij

Li(ti,8i1X:, Z;) = / I1 [{lo(lij)exp(uiBij + B Xij + B Zip)}
j=1

-exp {—Ao(tij)exp(u}B,-j + B Xij + ﬂ;Z,-j)}]
S (i @)dn(u;). (3.66)

Inference on the model parameter cannot be directly based on (3.66) because
the covariates X;; are not observed. Instead, it must be conducted based on the ob-
served surrogate measurements X i’;-, along with the observed failure times or cen-
soring times, and the observed covariates {Z;;, B;; }. Under the nondifferential mea-
surement error mechanism, the likelihood based on the observed data is given by

Li(t;,8:1X.Z;) =/Li(tia8i|xi,Zi)f(xi|X,'*»Zi)d77(xi)7 (3.67)
or
Li(t;,8;. X" Z;) = /Li(thailxiaZi)f(Xi*|xi’Zi)f(xi|Zi)d77(xi)v(3-68)

depending on the form of the measurement error model, where L;(#;,§;|X;, Z;) is
determined by (3.66), and f(-|-) represents the model for the conditional probability
density or mass function of the corresponding variables.

If conditional model f(x;|X/, Z;) is given, then inferences may be conducted
using (3.67). In contrast, if conditional model f(x/|X;, Z;) is specified, then in-
ferences are based on (3.68) which further requires specification of the conditional
distribution of X;, given Z;. In either case, it is necessary to have knowledge of the
conditional distribution of X; given {X*, Z;} or of X; given Z;.
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Given that the models are all posited, each with a full distributional form speci-
fied, inferences are then carried out by maximizing the observed likelihood

n
L, = HLi(fi,5i|X,-*,Zz)
i=1
with respect to the model parameter, where L; (#;, §;| X", Z;) is determined by (3.67)
or (3.68).

Alternatively, estimation of the model parameter may proceed by using the EM
algorithm. To see this, we discuss a case where X;; and Z;; are scalar for ease
of exposition, and the classical additive error model is assumed. X and X;; are
linked by

X;;- = X;j + e,
where the ¢;; are independent of {7}, C;, Z;} and follow the distribution N(0,c2)
with an unknown variance o2.
For the unit-level covariate vector X; we consider a linear regression model:

Xi =yl +p,Zi +€xi

where the €; are independent of {7;, C;, Z;} as well as the ¢;; and follow distribu-
tion N(0,021,,), and ., jt, and o2 are scalar parameters.

In (3.65), we assume that u; follows a normal distribution N(0, X)) where
covariance matrix X, contains a vector of parameters ¢. Let 0 = (Bx, B, hx, Uz,
02,62,¢")". With the preceding distributional assumptions, the log-likelihood for
the complete data is, omitting an additive constant,

n
C(0) = i (0:i.8;. X[ Zi Xiuy),
i=1
where
Lei (05,8, X", Zi, Xiup)

m

[8i {log Ao(ti) + u; Bij + BxXij + Bz Zij} — Aij(11))]

j=1
m
— log(og 2 > - X)'(X{ = Xi)
m 2 T
5 log(oy ) — (X Mxlm — uxZi)' (Xi — px lin — x Z;)
1 Ty —1
—3 log | Xy —u; X u; (3.69)

and A;;(t) = Ao(t) exp(u] Bij + BxXij + BzZij).

In implementing the E-step at iteration (k 4 1), the terms involving unobserved
X; and u; are replaced with their conditional expectations taken with respect to
the model, f(X;,u;|t;.8;, X}, Z;: 6%, for the conditional distribution of {Xi,u;}
given the observable variables {¢;,§;, X i*, Z;}, where 0® is the estimate of § ob-
tained at the kth iteration. This evaluation typically involves integrals that have no
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analytical forms. An option is to use Monte Carlo simulations to approximate the
expectations by generating variables from the conditional distribution

explei (0W; 1,8, XX Zi, Xi u;)

X uilt, 8, X*, Zi;00) = ,
S Xy il 8, X7 24 ) Jexplei (0% ;. 8;, X, Z;, X ui)dn(X;)dn(u;)

where Zci(O(k);ti,Si,Xi*,Zi,X,-,ui) is determined by (3.69) with 8 replaced
by 6.
The M-step updates 6 by maximizing the resultant expectation

n
ZE{ZCI'(9§Z[78[,X,'*, Zi, Xiu)|ti, 8, X5, Z;;0®)

i=1

with respect to 6, which may be realized by using, for instance, the algorithm of Liu
and Rubin (1994). R

Let 6 be the resulting estimator of 8. The associated variance estimate of 6
may be calculated using the formula of Louis (1982), which partitions the com-
plete data information into two parts: the information associated with the observed
data and the information associated with the missing data. Alternatively, one may
employ the approximate formula discussed by Liu and Wu (2007). Let S; =
0€ci(0:t;,8:, X*, Z;, Xi,u;)/00, then an approximation of the covariance matrix
of 0 is given by

n —1
|:Z E(Scilti, 8, X", ZiOE(Salti, 8, X7, Zi;g)}T] ,

i=1

where the expectation is evaluated with respect to f(X;,u;|t;,8;, X l.*, Z,-;@), the
model for the conditional distribution of {X;,u;} given {#;,8;, X i*, Z;}, with 0 re-
placed by 0. The expectation may again be handled with the Monte Carlo method.

To implement the Monte Carlo EM (MCEM) algorithm, one needs to deal with
the baseline hazards function A¢(¢). This baseline hazards function may be mod-
eled parametrically, semiparametrically or nonparametrically. Different modeling
schemes may induce varying difficulties in implementation and establishment of
asymptotic properties. If A1¢(¢) is modeled parametrically or weakly parametrically
as discussed in §3.5.1, then the preceding discussion carries through with parame-
ter # modified to include the associated parameter of modeling A¢(¢). However, if
Ao(?) is treated nonparametrically, as discussed by Li and Lin (2000), developing
asymptotic results can be challenging.

Finally, we note that the method described here requires modeling the distribu-
tion of the error-prone covariate X;. To relax this assumption, Li and Lin (2003a)
explored the SIMEX method. The results are robust to potential misspecification of
the distribution of X;. This method, however, can only partially correct for measure-
ment error effects on inferential procedures, which is the price paid for achieving the
robustness.
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3.9 Bibliographic Notes and Discussion

Since Prentice (1982) proposed the regression calibration approach for the propor-
tional hazards model with covariate measurement error, there has been increasing in-
terest in accommodating measurement error effects into inferential procedures when
analyzing error-prone survival data. Many authors investigated the impact of ignor-
ing measurement error on inferential procedures, and a large number of methods have
been developed to correct for measurement error effects. For instance, see Hughes
(1993), Pepe, Self and Prentice (1989), Gong, Whittemore and Grosser (1990), Wang
et al. (1997), Augustin and Schwarz (2002), Gorfine, Hsu and Prentice (2004), Wang
(2008), Kiichenhoff, Bender and Langner (2007), Zucker and Spiegelman (2004,
2008), Cheng and Crainiceanu (2009), Zhang, He and Li (2014), and Yan (2014),
among many others.

Although the regression calibration method can only partially remove the bias in-
duced from covariate measurement error, generality and easy implementation make
this strategy popular. In the literature, extensions of this method are available. With
a single covariate subject to measurement error, Thurston et al. (2005) compared the
asymptotic relative efficiency of several regression calibration methods for studies
with internal validation data. Kipnis et al. (2012) investigated the performance of
the regression calibration method for settings with more surrogates than mismea-
sured variables. Xie, Wang and Prentice (2001) proposed the risk set regression cal-
ibration approach for time-invariant covariates subject to measurement error. Liao
et al. (2011) extended the risk set regression calibration approach to settings with
time-varying covariates subject to measurement error. Shaw and Prentice (2012) de-
veloped the risk set calibration approach under a general measurement error model
considered by Prentice et al. (2002).

The SIMEX method is another useful approach which has been widely used in
practice. In survival analysis with error-prone covariates, a number of authors ex-
plored the use of this approach for various survival models. For instance, He, Yi
and Xiong (2007) and Yi and He (2012) explored the SIMEX method for analysis
of error-prone survival data under AFT models and proportional odds models, re-
spectively. An R package of implementing the SIMEX method for AFT models was
developed by He, Xiong and Yi (2012). The use of the SIMEX approach appears
in other contexts as well. For example, Kim and Gleser (2000) discussed using the
SIMEX method for estimation of the area under the receiver operating character-
istic (ROC) curve in the presence of measurement error in variables. Delaigle and
Hall (2008) explored using the SIMEX method for selecting smoothing parameters
when applying nonparametric methods to errors-in-variables regression. Other appli-
cations of the SIMEX procedure have been reported by Lin and Carroll (1999), Stau-
denmayer and Ruppert (2004) and Luo, Stefanski and Boos (2006), among others.

Regarding the expectation correction strategies, there are a number of different
versions. Huang and Wang (2000), Hu and Lin (2002, 2004), Augustin (2004), and
Song and Huang (2005) extended the “corrected” score methods, initially discussed
by Nakamura (1990, 1992), to settings with various types of measurement error mod-
els. Under the additive hazards model, Kulich and Lin (2000), Sun, Zhang and Sun
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(2006), and Sun and Zhou (2008) developed inference algorithms using the expec-
tation correction strategy. Yan and Yi (2015) proposed a corrected profile likelihood
approach for the Cox model with error-contaminated covariates, and their approach
unifies several existing methods under the same framework. Ma and Yin (2008) de-
veloped corrected score based approaches for cure rate models with mismeasured
covariates. Other work related to the expectation correction scheme can be found in
Zhou and Pepe (1995), Zhou and Wang (2000), Wang and Pepe (2000), and Li and
Ryan (2006), among many others.

In terms of the likelihood-based methods which typically require distributional
specification for the true covariates X;, many authors, including Hu, Tsiatis and Da-
vidian (1998), Dupuy (2005), and Wen (2010), explored inferential procedures for
the proportional hazards model. He, Xiong and Yi (2011) considered the propor-
tional odds model for error-prone survival data, and compared the performance of
the likelihood method and the regression calibration approach. Sun, Song and Mu
(2012) extended the induced partial likelihood method by Zucker (2005) from the
proportional hazards model to the additive hazards model. Cheng and Wang (2001)
developed inference procedures under linear transformation models (Dabrowska and
Doksum 1988) using the generalized estimating equation approach. Wang and Song
(2013) investigated an approximate induced hazard estimator and proposed an ex-
pected estimating equation estimator via the EM algorithm.

Relative to extensive attention on univariate survival data with covariate mea-
surement error, research on multivariate or clustered survival data with covariate
measurement error is limited. Li and Lin (2000) proposed a structural approach to
correct the bias induced by covariate measurement error. They subsequently devel-
oped a functional approach using the SIMEX algorithm (Li and Lin 2003a). Greene
and Cai (2004) considered a marginal model setup and explored the SIMEX method
for inferences. Hu and Lin (2004) analyzed multivariate survival data with measure-
ment error under shared frailty models. Gorfine, Hsu and Prentice (2003) proposed a
bias reduction technique for error-prone bivariate survival data under copula models.
Under accelerated lifetime regression models with mismeasured covariates, Choi,
Yi and Matthews (2006) developed a functional method, and Yi and He (2006) pro-
posed structural marginal methods. Kim, Li and Spiegelman (2016) proposed a semi-
parametric copula approach for consistent estimation of the effect of an error-prone
covariate.

The discussion on measurement error is directed to the case where only covari-
ates are subject to mismeasurement and the survival times are precisely measured.
For some practical problems, measurement of survival times may also be subject
to error. In this instance, it is necessary to investigate such error effects and de-
velop valid inference methods accordingly. Research on this topic, however, is rather
scarce, although some authors investigated this problem (e.g., Meier, Richardson and
Hughes 2003).
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3.10 Supplementary Problems

3.1.

3.2

(a) In §3.1.3, we describe that proportional hazards and proportional odds
models are defined using the structure of (3.5). Now we look at an alter-
native structure that accommodates both types of models. Show that both
proportional hazards and proportional odds models can be written as

U{SE|X. Z)} = y{So ()} + ¢(X. Z: B)

for some monotone function v (-) and function ¢(-), where f is the asso-
ciated parameter. Clearly define the meaning of functions S(¢|X, Z) and
So(?). Identify function forms of ¥ (-) and ¢ (-) for proportional hazards
and proportional odds models.

(b) Show that the only models for the distribution of 7" given {X, Z} that fall
in both the proportional hazards family (3.6) and the accelerated failure
time family (3.4) must follow a Weibull distribution.

(c) Show that the survivor function of the log-logistic regression model for
the distribution of 7" given {X, Z} may be written in the form

StX,Z)=[1+{t/v(X, 2! (3.70)

for some function ¥ (-) and parameter . Show that this is both a pro-
portional odds (PO) model and an accelerated failure time (AFT) model.
Show that any regression model that is in both the PO and AFT families
must be of the form (3.70).

(Lawless 2003, Ch. 6)

Suppose that a censored random sample consists of data {(y;, 8;, X;, Z;):i =
1,...,n}, where fori = 1,...,n, y; = logt;, t; = min(7;, C;), T; is the
lifetime, C; is the censoring time, and {X;, Z;} are covariates. Assume that
the survivor function of T; given {X;, Z;} is postulated by a location-scale
model discussed in §3.1.3:

y—m(X;.Z;:B)

S|Xi.Zi) = So (
o

) for —o0o <y < o0,

where 8 and o are unknown parameters, m(-) is a function, and Sq(-) is a sur-
vivor function of a given form, such as the one for a standard normal, extreme
value or logistic distribution. Assume that

m(Xi, Zi; B) = Bo + By Xi + BLZi,

where B = (Bo,B}.B;)" is the vector of regression parameters. Let

0=(B"0)".
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(a) Let fo(¢) be the probability density function corresponding to the survivor
function S (¢). Show that if log f(?) is concave, i.e.,

d2

— o t) < Oforallz,

772 108 So(®)
then log Sy (¢) is also concave.

(b) Identify assumptions for the censoring mechanism so that the following
likelihood formulation can be used for inference about 6:

o [l [ (A ZD ) g (st

A o o
i=1

(c) Show that the MLE does not necessarily exist for all location-scale mod-
els.

(d) Discuss conditions for which the MLE exists for location-scale models.
Using the result in (b), show that if So(¢) takes the form of the standard
extreme value, normal or logistic distribution, and that if the MLE exists,
then the MLE is unique.

(e) When the MLE exists, determine the asymptotic distribution of the maxi-
mum likelihood estimator 6.

(f) Perform a statistical test for the null hypothesis H, : B, = 0.

(Lawless 2003, Ch. 6)

For the data in Problem 3.2, assume that the hazard function of survival times
is modeled as

AtXi, Zi) = Ao(t: p) exp(By Xi + B;Z:),

where Ag(7; p) is the baseline hazard function that is indexed by a parameter

vector p, and B = (B}, B7)". Let 6 = (B, p")".

(a) Find the likelihood function of 6 and specify the associated
assumptions.

(b) Assume that A¢(¢; p) is specified as Ao(t; p) = p1p2(p1t)?2~ 1, where p;
and p, are positive parameters and p = (p1, p2)". Find the asymptotic
distribution of the maximum likelihood estimator 6.

(c) Assume that A¢(z; p) is specified by the piecewise-constant method de-
scribed in §3.1.2. Find the asymptotic distribution of the maximum likeli-
hood estimator 6.

(d) Let K be the number of the cut points of modeling A¢(#; p) in (c). Find
the likelihood score function for § when K — oo. Compare this function
with the partial score function for S.

(Lawless 2003, §6.5, §7.4)
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3.4. Verify (3.16) in §3.2.1.

3.5. Suppose T is the failure time of an individual and X is the vector of associated

3.6.
3.7.

3.8.

3.9.

covariates which are subject to measurement error. Let X * be the observed

measurement of X.

(a) Let A(:|-), A(:|-) and S(:|-) denote the conditional probability density func-
tion, hazard function and survivor function for the corresponding vari-
ables, respectively. Show that

h(t|X, X*) = h(1]X)
if and only if A(f|X,X*) = A(t|X)
if and only if S(z|X,X™) = S(t|X).

(b) Suppose g(-) is a real-valued function.
(i) Show that E{g(X) | X*,T >t} = E{g(X) | X*}if

P(T>t|X.X")=Exix{P(T>1t|X,X")}.
(ii) Show that E{g(X) | X*,T >t} = E{g(X) | X*}if
PT=t|X,X*)=P(T >t|X").
(iii) Show that E{g(X) | X*,T >t} ~ E{g(X) | X*}if
PT=>r] X, X" ~ 1.
Verify (3.22) and (3.23) in §3.2.1.
(a) Verify (3.41).

(b) Suppose that U,V and W are random variables and that g(u, v, w) is a
real-valued function. Show that

E(U,v)lw{g(Uv V.,W)} = Evlw [EU\(V,W) {g(U, v, W)}] .

(c) Show in detail that 6; U*(8;¢;, X*, Z) in §3.6.1 has zero expectation.

(a) Show that E{U*(B)|F-} = U;(B), where U;*(B) and U;(B) are defined
by (3.45) and (3.15), respectively.

(b) Verify the validity of (3.48).

(c) Verify the validity of (3.49).

(d) Show the equivalence in (3.50).

(a) Verify (3.52) in §3.6.3.
(b) Prove the identity (3.53) in §3.6.3.
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Verify that in §3.7, (3.57) satisfies (3.56).

Suppose the observed data consist of {(#;,8;, X", Z;) : i = 1,...,n}, as
described in §3.3.1, where the measurements X i* are the surrogate versions
of X;. Consider the semiparametric linear transformation model for survival
times 7;:

g(T}) = —Po— By Xi — B, Zi + i, (3.71)

where B = (Bo. By.B;)" is the vector of regression parameters of interest,
g(+) is an unspecified strictly increasing function, and ¢; has a given distribu-
tion function F(-).

Assume that the measurement error mechanism is nondifferential and the mea-
surement error model is given by

Xi* =X; +e, (3.72)

where e¢; is independent of {7;, C;, X;, Z;} and follows a normal distribution

with mean 0 and covariance matrix X,.

(a) Analogous to the development in §3.6, construct an unbiased estimating
function which is expressed in terms of the observed data to perform esti-
mation of parameter 5.

(b) Work out the asymptotic distribution of the resultant estimators under suit-
able regularity conditions.

Suppose the observed data consist of {(ti,Si,Xi*, Zi) i =1,...,n}, as
described in §3.3.1, where Xl-* is the surrogate version of X;. Assume that
T; and the true covariates {X;, Z;} are related by the proportional hazards
model (3.8).

Assume that measurement error is nondifferential and the measurement error
model is given by a Berkson model

Xi = Xi* + e;, (3.73)

where e; is independent of {X*, Z;, T;, C; } and follows distribution N (0, X)

with covariance matrix Y.

(a) What might be the effects of ignoring measurement error in covariate X;
on estimation of 8?

(b) To conduct estimation of 8, can you construct a likelihood function ex-
pressed in terms of the observed data? What conditions do you need?

(c) What is the asymptotic distribution of the resultant estimator for §?

(d) How many possible ways can you think of to perform inference about 8?
Elaborate on them.

(e) How would you handle the baseline hazard function A¢(¢)?
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3.13. Suppose the observed data consist of {(#;,6;, X, Z;) : i = 1,...,n}, as de-
scribed in §3.3.1, where X is the surrogate version of X;. Response variable
Y; = logT; is characterized by the model

Yi = Bo+ By Xi +BLZi +ae;,

where = (Bo, B, B;)" is the vector of regression parameters, « is a scale
parameter, and ¢; is independent of {X;, Z;, T;, C;} and has a standard normal
distribution N (0, 1).

Assume that the measurement error model is given by (3.72).

(a) Analogously to the estimating function approaches discussed in §3.6, de-
velop unbiased estimating functions that are expressed by the observed
data to perform estimation of parameter 8. What assumptions do you need
to make?

(b) Develop asymptotic distributions of the resultant estimators under suitable
regularity conditions.

(c) If the measurement error model is, instead, given by (3.73), repeat the
discussion in (a) and (b).
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Recurrent Event
Data with Measurement Error

Recurrent event data arise commonly in public health and medical studies. While
analysis of such data has similarities to that of survival data for many settings, recur-
rent event data have their own special features. Compared to the extensive attention
given to survival data with covariate measurement error, there are relatively limited
discussions on analysis of error-prone recurrent event data. In this chapter, we dis-
cuss several models and methods to shed light on this topic.

The layout of this chapter is similar to the previous chapter. The framework and
modeling strategies are first set up for the error-free context, and analysis methods
then follow to address measurement error problems. The chapter is closed with bib-
liographic notes and supplementary exercises.

4.1 Analysis Framework for Recurrent Events

A recurrent event process is a process which repeatedly generates events over time;
data arising from such a process are called recurrent event data. Examples include
repeated seizures of epileptic patients, successive tumors in cancer patients, and mul-
tiple births in women’s lifetimes, etc.

Interests in analyzing such data vary from problem to problem. Sometimes we
are interested in understanding individual event processes themselves, while other
times we may focus on determining the relationship between risk factors (or co-
variates) and event occurrence. A broad variety of models and methods have been
developed to address different scientific questions. The analysis of recurrent event
data has been covered by a number of monographs, such as Cox and Lewis (1966),
Hougaard (2000), Kalbfleisch and Prentice (2002), Martinussen and Scheike (2006),
and Sun (2006). A comprehensive discussion of this topic was given by Cook and
Lawless (2007).

Following Cook and Lawless (2007), here we briefly outline some standard mod-
eling strategies for recurrent event data in the absence of measurement error.
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4.1.1 Notation and Framework

Recurrent events may occur in either continuous time or discrete time. For events
occurring in continuous time, a mathematically convenient assumption is commonly
adopted: more than one events cannot occur simultaneously. Methods for handling
processes that do not satisfy this assumption were discussed by Cook and Lawless
(2007). In this chapter, we mainly concentrate on continuous time models, while
discrete time models are considered occasionally.

Modeling of recurrent events may be approached from multiple perspectives,
but the strategies basically pertain to two fundamental approaches: modeling event
counts or modeling waiting times between successive events. While the choice of a
particular modeling scheme is often driven by the objective of analysis, a clear frame-
work may be immediately evident from the nature of the event process itself, such
as the scale of the event frequency. When individuals frequently experience events,
modeling of event counts is usually useful, whereas modeling gap times between
successive events may be preferred if the event occurs infrequently.

Fori = 1,...,n, suppose individual i experiences an event process starting at
time origin ¢t = 0. For j = 1,2,..., let T;; denote the time of the jth event for
individual i, and the difference W;; = T;; — T; ;1 be defined as the waiting time,
also called gap time or elapsed time, between events (j — 1) and j for individual 7,
where T;9 = 0.

Alternatively, we let N; (¢) denote the number of events experienced by subject i
over time interval [0, ], leading to a counting process {N;(t) : t > 0} which records
the cumulative number of events generated by the process for subject i . Often, count-
ing processes are defined to be right-continuous, i.e., N;(tT) = N;(¢) fort > 0,
where ¢ denotes a time that is infinitesimally bigger than ¢. This is illustrated in
Fig.4.1. The number of events occurring over an interval, say (s, ¢], is then given by
N;(s,t) = N;(t) — N;(s), where 0 < 5 < ¢.

For convenience we often assume that 7;; > 0 or N;(0) = 0. The event times,
the frequencies and the waiting times are linked by the identities

o0
Ni(ty = I(Ti; <1)
j=1
and
T’l’niz i1+---+I/I/l'niv

where n; is the number of events experienced by subject i . Moreover, the probability
connection
P{Ni(t) z ni} = P(Tin; <1)

suggests the equivalence between modeling event counts and modeling event times.
Define dN;(t) = N;(t) — N;(t7), where ¢t~ denotes a time that is infinitesimally
smaller than ¢. Sometimes, we write

AN; (1) = Ni{(t + A)"} = Ni(17)
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N; (t)
4<,
31 —_—
2" *r—
1+ 5
0=t tin tio tiz t

Fig. 4.1. lllustration of a Counting Process

for the number of events experienced by subject i over the time interval [¢,¢ + At),
where At represents a positive (often small) time increment. Let H}, = {N;(v) :
0 < v < t} denote the history of the event process until (but not including) time ¢
for subject i.

There are multiple objectives for analyzing recurrent event data. Sometimes
our interest centers around special characteristics of the process, such as expected
event counts; sometimes it is compelling to delineate the distribution of the entire
event process. Analyses of recurrent events may be distinguished by the nature of
the modeling assumption - whether or not the modeling assumption can fully or
partially determine the event process. Two important concepts, intensity function
and mean function, are frequently used to describe recurrent event processes. The
intensity function completely determines an event process, whereas the mean func-
tion facilitates only marginal features of a process.

Intensity Function

Conditional on the process history, the event intensity function gives the instan-
taneous probability of an event occurring at a time point. For each subject i with
history H,, the (conditional) intensity function is defined as

it
. P{ANi (1) = 1|1},
AAIHY) = 1 i
(tH;, e A7

for t > 0.

Conventionally, an intensity function is assumed to be bounded and continuous
except for a finite number of points over a finite time interval. With the intensity func-
tion available, statistical inference may be carried out using the likelihood method.
The following results describe how the intensity function is related to probability
calculations.

Theorem 4.1. Suppose subject i experiences recurrent events over a given time in-
terval [0, 7;]. Let O < tj; < ... < t;; denote the observed event times. Assume that
the intensity function A(t|H},) is integrable. Then the following results hold.
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(a) The probability density function for the outcome that n; events occur over time
interval [0, 7;] is

n; 7
[T 217, { exp {_/ )L(v|7-l§’v)dv} .
j=1 0

(b) For the waiting times, we have the conditional probability

P(Wij>w

ti j—1tw
Tij—1= [l"jfl,%?ti.j_l) =exp —/ A(|H)dvy

L j—1

where w is a given positive values, tig = 0, and j = 1,2,....
Mean Function

In principle, the intensity function completely determines the characteristics of
an event process. Knowledge of the intensity function allows us to readily work out
the probabilities or conditional probabilities for an event process or inter-event times,
as described in Theorem 4.1. Some features, such as mean and variance functions, of
the event process, however, may not be straightforward enough to be derived from
the intensity function of the process. Directly modeling those features would be suffi-
cient and more transparent when our objective centers around the marginal analysis.

In contrast to using the likelihood for inferences when intensity functions are
modeled, unbiased estimating functions are commonly used to perform inferences
when mean functions are postulated. A notable advantage for using marginal features
over fully modeling the processes is the minimal model assumption, which allows the
inference results to be more robust to model misspecification. The marginal method,
however, requires the observation process and the event process to be independent.

Suppose there is a random sample of # individuals who are each under observa-
tion from time ¢ = 0 to a stopping or censoring time. Fori = 1,...,n, let r; denote
the stopping time for subject i, and R;(t) = I(¢t < t;) be the at risk indicator show-
ing whether or not subject i is observed at time ¢. By convention, R;(¢) is assumed
to be left-continuous with R; (¢7) = R;(¢) for any time ¢. We define

p(t) = E{N;(1)}
to be the mean function at time ¢t and
/ dpu(t)
W =—
to be the rate function at time ¢. The mean function gives the expected cumulative
number of events at time 7, while the rate function indicates the marginal instanta-
neous probability of an event at time ¢.

For subject i, assume that the observation process {R;(¢) : ¢ > 0} and the event
process {N;(t) : t > 0} are independent, i.e., for any ¢t > 0 and a nonnegative
integer k,

P{N;(t) = k|R;(t) = 1} = P{N;(t) = k}.
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Given a time ¢, then we have that for v € [0, 7],
E[R; (v){dN;(v) —du(v)}] =

fori = 1,...,n. Hence with the entire sample information included, an unbiased
estimating equation for du(v) is set as

D Ri(){dNi(v) — dp(v)} = 0,

i=1
which gives the estimator
dN4(v)
Ry(v)
where dN4(v) = >/, Ri(v)dN;(v) is the total number of the observed events,
and Ry (v) = Y /_; Ri(v) is the total number of subjects at risk at time v.
Provided that E{dN; (v)|R1(v),..., Ry(v)} = E{dN;(v)|R;(v)} foreach i, the
estimator is unbiased with

dp(v) =

E{dpi(v)} = du(v). “.1)

Assume that R4 (v) > 0 for 0 < v < ¢. Then by the identity u(¢) = f(; du(v),
we obtain an estimator for u(t) as

R t —~ ! dN+(v) dN+(Z(k))
= d = _— = _,
w(t) /(; w(v) /(; Ry (v) k:t(Xk;st Ry (tw))

where #() represents the kth distinct event time across all the individuals in the
sample. The variance of [i(¢) is given by

'd
var[VI{E() — p()}] = n -Var{ /0 Ii;(m

— R (U])R (UZ) . .
n;/ / R+(v1)R+(v2) OV{le(Ul), dN,(Uz)},

For all v € [0, ¢], if R+ (v)/n — g(v) for some function g(-) > 0 as n — oo, then
the variance var[/n{1(t) — n(¢)}] may be estimated by the sample counterpart

R; (v1)R; (v2) N ~
8 Z./ f R4 (v1)Ry(v2) ——— % tdN;(v1) — d(v1) {dN; (v2)) — d ji(v2)}.

4.1.2 Poisson Process and Renewal Process

Recurrent event data may be described through two standard processes: Poisson and
renewal processes. The Poisson process focuses on modeling the event frequency
over a given sequence of time intervals, whereas the renewal process emphasizes



156 4 Recurrent Event Data with Measurement Error

describing the elapsed time between events. Both processes require certain types of
independence assumptions. For the Poisson process, we assume that events occur
randomly in such a way that the event counts over nonoverlapping time intervals
are independent. The renewal process, on the other hand, requires the elapsed times
between successive events to be independent. These two processes are relatively easy
to handle mathematically, and they can be defined in different but equivalent ways.
They are, of course, not tenable for many applications due to the restrictive indepen-
dence assumptions. Various extensions have been developed to enhance the flexibil-
ity and generality. For more details, see Cook and Lawless (2007). Here we confine
our attention to these two processes only.

Poisson processes can be described by requiring the intensity function to be in-
dependent of the process history:

where p(¢) is a function of time ¢ alone. For this process the mean function is writ-
ten as

ut) = [o p(v)dv,

or equivalently,
du(r)

p(?) 7

is the marginal rate function.

The Poisson process is the only process for which the mean rate function p(¢)
equals the conditional intensity function A{¢|#},}. The following properties for the
Poisson process may be derived by definition and Theorem 4.1. They are useful for
conducting statistical inference.

Theorem 4.2. Suppose {N;(t) : t > 0} is a Poisson process with the mean function
u(t). Then

(a) mean and variance functions are identical, i.e.,
E{N;(t)} = var{N;(t)};
(b) Nj(s,t) has a Poisson distribution with mean
pls 1) = p(t) — pls) for0 <s <t;
(c) if (s1,t1] and (s, t2] are nonoverlapping intervals, then Nj(s1,t1) and N;(s2,12)

are independent random variables;
(d) the conditional probability for the waiting times is given by

P(Wij > w|T; j—1 = ti,j—1) = exp[—{pu(ti,j—1 + w) — pn(ti,j—1)}]

for j =1,2,..., where w is a given positive value.
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The results imply that for a Poisson process, event counts over nonoverlapping
intervals are independent, but the gap times between successive events are not neces-
sarily independent. Therefore, a Poisson process is generally not a renewal process.
However, in a special situation with the rate function p(¢) being a constant, say p,
the gap times are independent, and also identically distributed with the survivor func-
tion P(W;; > w) = exp(—pw) for w > 0. A Poisson process with a constant rate
function p(t) = p is called a homogeneous Poisson process.

As opposed to a Poisson process whose gap times are generally not independent,
a renewal process is defined to be the one for which the gap times W;; are indepen-
dent and identically distributed. Renewal processes can also be contrasted with Pois-
son processes from another perspective based on the characteristic of the intensity
function. The intensity function of a Poisson process is independent of the process
history, but the intensity function of a renewal process depends on the process history
via the most recent time. That is,

AtIH,) =gt — Tin,—))

for some function g(-) and ¢ > 0.

This says that the intensity function A(¢|#},) for a renewal process is a function
of the elapsed time since the most recent event before 7. Function g(-) is the hazard
function for the variables W;;. That is, if f(-) and S(-) are the probability density and
survivor functions for W;;, respectively, then

. P(Wj <w+ Aw|W; >w)  f(w)
gw)= lim = S’
Aw—071 Aw S(w)

Finally, a homogeneous Poisson process links Poisson and renewal processes
because it possesses the features from both types of processes. Such a process, how-
ever, may be too restrictive for application. A quick extension is to relax the constant
rate function required by a homogeneous Poisson process. For instance, using the
piecewise-constant approach discussed in §3.1.2, we define a model to be the Pois-
son model with piecewise-constant rates if its intensity function is given by

A1) = pe (42)

fort € (ag—1,ar], where 0 = ag <a; <...<ag—1 < ag = o0 is a pre-specified
sequence of constants for a given K.

4.1.3 Covariates and Extensions

In application, event processes are often analyzed in conjunction with covariates that
are fixed or time-varying. It is customary to use X; or Z; to denote fixed covari-
ates, and X; (¢) or Z;(t) for time-varying covariates for i = 1,...,n. Time-varying
covariates may be distinguished to be external or internal, as in Cook and Lawless
(2007, §2.5). Fixed covariates are regarded as external. Methods developed for ex-
ternal covariates are usually more tractable than those for internal covariates. In this
chapter, we consider fixed or external covariates only.
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Let HY = {(X;(v),Z;(v)) : 0 < v < t} denote the history of the covariate
process up to and including time ¢ for subject i. It is often assumed that

PIAN;(t) = 1|H},, {H]; v =0}] = P{AN;(¢) = 1| H},, Hi7 ),

which says that given the history of events and covariates, the number of events
experienced by subject i over time interval [t,¢ 4+ At) is independent of covariate
values after time 7.

The definition of intensity and mean functions, A(¢|H},) and j(¢) in §4.1.1, is
now modified as

P{AN; (1) = 1M}, 12

it

MM M) = tim =
and

p(|Hi7) = E{N; ()| Hi/ 3.

where the covariate history is included as conditioning variables.

To facilitate the dependence on covariates, regression models are employed to
postulate the (conditional) intensity function A(t|H},, H]7) or the (conditional) mean
function pi(¢|H}7). For example, multiplicative models may be, respectively, used to
describe the intensity and mean functions for a process:

MM HiY) = Aot [Hi )8 (M B)

and

n(t|Hi7) = pno(g(Hit: B).
where Ao (z|H},) is the baseline intensity function that may depend on the event
history, j1o(#) represents the baseline mean function, g(#}7; B) is a nonnegative
function that contains information of covariates, and B is the vector of regression

coefficients which are often of prime interest. For more detailed modeling schemes,
see Cook and Lawless (2007).

Gap Times and Covariates

Because gap times are positive values just like survival times, models used for
survival analysis may be employed to describe various types of relationship between
gap times and covariates. Two useful regression models are the proportional hazards
model and the accelerated failure time model. For example, with fixed covariates,
the hazard function of the elapsed times W;; is marginally modeled as

Awl|X;, Zi) = do(w) exp(B Xi + B Zi)
for the proportional hazards model and
Awl|Xi, Z;i) = hotwexp(By Xi + B Zi)}exp(By Xi + B, Zi)

for the accelerated failure time model, where A¢(-) is the baseline hazard function
that is positive-valued and B, and 8, are parameters.
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In application, gap times are usually dependent, even after associated covariates
are being controlled. Several strategies are useful to feature dependence structures of
gap times. One way is to form models by conditioning on the history of gap times,
together with the covariates. Hence the dependence among gap times is accommo-
dated by the conditional structure. For instance, one may specify the conditional
distribution of W;;, given prior gap times Wy, ..., W; ;_1 and the covariates, to be
of a given form, such as a log-normal distribution for j = 2,3,....

An alternative strategy of facilitating associations among gap times is to intro-
duce random effects at the subject-level, say u;, for i = 1,...,n. Conditional on
random effects u; and the covariates, the gap times {W;; : j = 1,2,...} are as-
sumed to be independent with a conditional hazard function, say, given by

Awlui, Xi, Zi) = uiro(w) exp(By Xi + BLZi).

where A¢(-) is the baseline hazard function that is positive-valued and S, and 8, are
parameters. Because random effects are not observed, the u; are usually assumed to
be independent and identically distributed with a given distribution. Inferences are
then based on the observed likelihood obtained by integrating out the u; from the
model for the joint conditional distribution of W;; and u; for each i, given {X;, Z;}.

A third approach to describing correlated gap times is to invoke multivariate
survival models, such as copula models, for a specified set of gap times. Discussion
of this method was provided by Cook and Lawless (2007, Ch. 4).

Poisson Processes with Covariates

A useful model for describing Poisson processes with associated covariates is the
multiplicative model, given by

A@HG HGT) = Ao(1) exp{BTVi(0)},

where V; () is a covariate vector that is based on the covariate history H}7 and A (f)
is the baseline intensity function that is free of the event history. A simple form of
Vi(z) is taken as V; () = {X/(t), Z](t)}".

In practice, recurrent events often exhibit heterogeneity among subjects. A com-
mon treatment on this feature is to introduce random effects into the model (e.g.,
Lawless 1987; Therneau and Grambsch 2000). In particular, mixed Poisson processes
are a convenient framework for handling nonhomogeneous processes.

For illustrations, we consider the case with fixed covariates. Conditional on a
nonnegative random effect u; and the covariates, {N;(¢) : ¢t > 0} is assumed to
follow a nonhomogeneous Poisson process with the intensity function modeled as

Atlui, Xi, Zi) = uiro(t) exp(B, Xi + B, Zi), 4.3)

where f, and 8, are parameters, A¢(?) is the baseline intensity function, and the u;
are assumed to be independent of {X;, Z;} and identically distributed. Since A¢(¢)
may include an arbitrary scale parameter, without loss of generality, the mean of u;
is assumed to be 1.



160 4 Recurrent Event Data with Measurement Error

The random effect u;, also called “frailty”, is introduced to facilitate the subject-
specific heterogeneity that is not explained by the covariates. Inclusion of this frailty,
however, breaks down the identity between the mean and variance for the Poisson
process (Cook and Lawless 2007, §2.2.3).

To see this, we write w; (z) = fOt Ao(v) exp(By Xi + B Zi)dv, then the condi-
tional mean and variance of N; (t), given {u;, X;, Z;}, are

E{N;(t)|u;i, Xi, Z;} = var{N; (t)|u;, X;, Z;} = u;pu; (t).

Since the marginal mean and variance of N;(¢) are related to the conditional mean
and variance via

E{N;()|Xi. Zi} = E[E{N;(0)|u;, Xi, Zi}] (4.4)
and
var{N; ()| X;, Z;} = E[var{N;(t)|u;, X;, Z;}] + var[E{N; (t)|u;, X;, Z;}]. (4.5)

therefore,
E{N;()|Xi, Zi} = pni(t)

and
var{N; ()| X;, Zi} = pi(t) + i (1),

suggesting that the mean and variance of N; (¢) are not equal unless ¢ = 0, where ¢
represents the variance of u;.

In some settings, count data exhibit patterns that may be better explained by two
distinct subpopulations in which one includes individuals with no events. A special
mixed Poisson model, called the zero-inflated Poisson model, may be used. This
model is defined as follows.

Let u; be a binary latent (unobserved) random variable with

Pu;=1)=7and Pu; =0)=1-7

fori = 1,...,n, where 7 is between 0 and 1. Then conditional on u; = 1, {N; () :
t > 0} is assumed to be a Poisson process with mean function p; (¢); and conditional
onu; = 0, N;(t) is zero for any time ¢, i.e.,

P{N[(OO) = O|ul~ = 0} =1.

Consequently, the model for the marginal distribution of N;(¢) is a mixed Poisson
process which accommodates an excessive number of zeros, and the mean and vari-
ance of N;(¢) are

E{Ni(t)} = i ()7
var{N; (1)} = p; ()T + p} ()T (1 = 7). (4.6)
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Interval Count Data

In many studies, exact event times are not observed; subjects are only examined
periodically and interval count data are thereby collected. Suppose that subject i is
observed over a sequence of time intervals B;; = (b; j—1.b;;] for j = 1,..., K;,
with N;; = N;(b;;)— N;(b;, j—1) events being observed in interval j, where b;o = 0,
bix, = 7, and K; is a positive integer. The sequence of intervals B;; = (b;, j—1, b;j]
may be pre-specified or random but has to satisfy certain conditions as discussed in
the sequel.

In principle, modeling and inference typically depend on the relationship
between the observation times b;; and the event processes. For j = 1,...,K;,
let ’Hf’j“ = {bi1,Ni1;...:bij—1, N;,j—1} be the history of both recurrent events
and observation times up to (but not including) the jth assessment. Then the joint
distribution of the observations times and event counts for subject i is given by

K;
Li = [] P, Nij I H),
i=1
which is factorized as
K;
Li = [] P(Nilbi; . HE) P (bij | HEY). (4.7)
j=1

where P (:|-) is the conditional probability function for the corresponding variables.

When the inspection times are independent of the event process, inference may be
performed by ignoring the terms P (b;; |7-[f;’) in (4.7). This reflects scenarios where
subjects are scheduled to be examined at pre-specified assessment times. It is often
useful to assume that

P(Nijlbij. HDY) = P(Nij|Nix..... Ni.j—1).

which says that given the event history, the occurrence of the next event is indepen-
dent of the inspection times. This assumption allows us to conduct inferences based

only on
n K;

[TTT]PWylNa.....Nij-1). (4.8)

i=1j=1
For settings where inspection times depend on the observed events, the condi-
tional probabilities P (b;; |7—llb]”) may be omitted if they do not contain the parameter

associated with the conditional probabilities P (N;;|b;;, Hf’j“ ). Detailed discussion on
dependent observation times was provided by Gruger, Kay and Schumacher (1991),
Lawless and Zhan (1998), Sun and Wei (2000), Wang, Qin and Chiang (2001), Zeng
and Cai (2010), Chen, Yi and Cook (2010a, 2011), and others.

In analysis, modeling the event process is frequently the emphasis, whereas the
observation process is left unmodeled with certain assumptions imposed. Following
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the same ideas outlined in the previous subsections, modeling strategies on count data
may be applied to analyze interval count data. Technical details for various settings
were presented by Cook and Lawless (2007, Ch. 7).

We close this section with an example for which count data are generated from a
mixed Poisson process, and the observation process satisfies the conditions outlined
by Lawless and Zhan (1998) so that inference about the regression parameters is
merely based on the conditional distribution P(N;;|N;1, ..., N; j—1) for the count-
ing process, as shown in (4.8).

Conditional on a nonnegative random effect u; and the covariates, {N; (¢) : t > 0}
is assumed to follow a nonhomogeneous Poisson process with the intensity function
modeled as

Atlui, Xi, Zi) = uido(t) exp(BL Xi + BLZi), 4.9

where 8, and 8, are parameters, A¢(?) is the baseline intensity function, and the u;
are independent of {X;, Z;} and identically distributed with a probability density or
mass function modeled by f(u; ¢) with parameter ¢. As explained previously, it is
a convention to assume E(u;) = 1.

Consequently, the count data N;; follow Poisson distributions with

N;j ~ Poisson(u; ;).

bij
where (;; = poij exp(ByXi + B;Z;) and po;; = fb’_.j/__l Ao(v)dn(v). Thus, the
likelihood contributed from subject i is '

[ee] K;
Li :/0 1_[ exp(—u; pij ) i i N7 f (uis )dn(us). (4.10)
=1

As a result, inferences proceed with the likelihood method by maximizing the likeli-
hood ]_[;’:1 L; with respect to the model parameters.

In a special but useful case, the distribution of u; is modeled by a gamma dis-
tribution, Gamma(¢, ¢ 1), with scale parameter ¢! and shape parameter ¢ so that
the mean of u; is 1. With this distributional assumption, L; in (4.10) is simplified as

) I'(Niy + ¢~ HpNi+
F(@=){1 + ppoir exp(ByXi + BLZ;)yNi+Fe7"

toij exp(BXi + BLZi)

K;
Ll' X |:l_[
j=1

@.11)

where N;+ = Zjil Nij, poi+ = Zflzl Moij, and I'(:) is the Gamma function
defined as I'(a) = fooo v*~lexp(—v)dv for a > 0 (Lawless and Zhan 1998).
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4.2 Measurement Error Effects on Poisson Process

We discuss how covariate measurement error may affect the structure of the process
and point estimation. In addition to the notation defined in §4.1, let X* be a surrogate
measurement of X;. In subsequent development we consider the case where covari-
ates X; and Z; are fixed and the nondifferential measurement error mechanism is
assumed:

P{N;(O)|X:i, X[*, Zi} = P{N;()|X;. Z;} fort > 0.

Overdispersion Effect

Conditional on the true covariates, {N;(¢) : ¢t > 0} is assumed to follow a Poisson
process with the mean function

wi(t) = E{N; ()| Xi. Z}

for + > 0. A unique property for the Poisson process is the equality of mean and

variance:
E{N;(D)|X;, Zi} = var{N; ()| X;, Z;}

for any time ¢. This property, however, does not necessarily hold if X; is replaced
with its surrogate X*. In fact, the conditional variance of N;(¢), given the observed
covariate measurements {X*, Z;}, is
var{N; (1)| X", Z;}

= Ex;\(xr,zpvar{Ni (D1 Xi, X[, Zi}] + vary, xz zp) [EAN;: (D1 Xi, X, Z;}]

= EX,'I(X?‘,Z,')[Var{Ni X, Zi}] + varXiKX;f’Zi)[E{Ni 0\Xi, Z;}]

= Ex; x>,z [EXNi ()| Xi, Zi}] + varx, (x>, z;) [EXNi ()| Xi. Zi }],
where the second step comes from the nondifferential error assumption and the third
step is due to the equality between mean and variance for the Poisson process. Here
we use both vary |y {g(U, V)} and var{g(U, V)|V} to refer to the conditional vari-
ance of g(U, V') taken with respect to the model for the conditional distribution of

U, given V, where g(U, V) is a function of any random variables U and V.
Since

Ex,\xr znEXNi (DX, Zi}] = E{N; (0)|X[". Zi}, (4.12)
we obtain
var{N; ()| X[, Zi} = E{Ni (D|X[", Zi} + vary, xz, zp) [EAN;: (D] Xi, Zi},

suggesting that
var{N; ()| X", Zi} = E{N; ()| X[, Z;}.

Therefore, over-dispersion may exist in the relationship between the response and the
observed covariates {X*, Z;} even if the process linking the response and the true
covariates { X;, Z; } is a Poisson process. The degree of over-dispersion is determined
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by the quantity vary, |( X7, z)LEAN; ()| X, Z;}], which depends on the event process
as well as the measurement error process.

To further see this, consider an example with a log-linear model for the (condi-
tional) mean function (| X;, Z;), or denoted as p; (¢) for simplicity,

wi(t) = po(t) exp(By Xi + B, Zi), (4.13)

where [1o(?) is the baseline mean function that possibly depends on time and 8 and
B are regression coefficients.
Assume that the surrogate X* is linked with X; through a Berkson error model

Xi = X' +e (4.14)

fori = 1,...,n, where ¢; is independent of {X*, Z;, N;(t) : t > 0} and has
a distribution N (0, X,) with covariance matrix X,. Then the variance and mean for
the observed process, var{N; (t)|X;*, Z;} and E{N;(t)| X, Z;}, differ by the amount

vary,|(xx,z) [E{Ni ()| Xi. Zi}]
= po(t) exp(2B, X[ + B, Zi) exp(By Ze ) exp(By ZeBy) — 1},

thus, leading to

var{N; ()| X", Z;} = E{N;(0)| X[, Z:}
exp(BL X[ + B ZeBr/Diexp(By Tefy) — 1} (4.15)

Expression (4.15) shows that the degree of over-dispersion, contained in the relation-
ship between the event process and the observed covariate measurements {X i*, Zi},
depends on the degree of measurement error, the magnitude of the covariate effect
Bx associated with X; as well as measurement X* itself.

Effect on Point Estimate

To illustrate the possible impact of measurement error on point estimation, we
consider an event process {N;(¢) : t > 0} with the mean function specified by
model (4.13).

Suppose we ignore measurement error in X; and replace it with X" in the data
analysis. That is, we take the same model structure as (4.13) for the conditional
process of N; () given { X, Z;}:

E{N:(OIX{". Zi} = pg(t) exp(BY X[ + BZ' Zi). (4.16)

where () represents the baseline mean function and B3 and B represent the
covariate effects for which the naive analysis aims to estimate. These quantities po-
tentially differ from {1to(¢), Bx, B} in the true model (4.13) due to the difference
between X" and X;.

On the other hand, E{N;(t)| X, Z;} pertains to the true model (4.13) via the
conditional expectation (4.12), so
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E{N;(O)|X}". Zi} = po(t) exp(BLZi) Ex,|(xr,z;){exp(B5 Xi)}- (4.17)
Equating (4.16) and (4.17) gives

po () exp(By'Zi + By X[)
= po(1) exp(B;Zi) Ex,|(x,z;)texp(By Xi)}. (4.18)

Identity (4.18) quantifies the relationship between {ug(t), B%, B2} and {uo (),
Bx. B}, which is determined by the conditional moment generating function of X;
given {X*, Z;}. We look at two examples to further examine (4.18).

Example 4.3. If the surrogate X;* is linked with X; through the Berkson
model (4.14), then the conditional moment generating function of X; given {X*, Z;}
is

Ex;xz,zolexp(By Xi)} = exp(By X, + By ZeBx/2).
Consequently, (4.18) gives that
ﬁ; = ﬁxv /3; = lgz

and

MS(I) = o(?) exp(By XeBx/2).
Therefore, under the Berkson model (4.14), the naive analysis with the difference
between X and X; ignored still yields consistent estimates for the covariate ef-
fects By and B, but the estimate of the baseline function is inflated by the factor

exp(By Xefx/2).
Example 4.4. Suppose that X; is a binary variable, and let

mi = P(X; = 1|X} =0,Z;) and 7}y = P(X; = 0|X* =1, %))

be the (mis)classification probabilities. Then the conditional moment generating of
X; given {X*,Z;}is

Exj(xxznlexp(BxXi)} = P(X; = 01X/, Z;) + exp(Bx) P(X; = 1|X[". Z)).
Therefore, corresponding to X* = 0 and X = 1, applying identity (4.18) leads to
1o (1) exp(BZ Zi) = po(t) exp(B; Zi){(1 — 7gy) + gy exp(Bx)}

and
1o (1) exp(BY + BZ'Zi) = po(t) exp(B; Zi){mfo + (1 — i) exp(Bx)}-

As a result, we obtain

1o + (1 = 7jy) exp(Bx)

By = log
* (1- 773(1) + 77(?1 exp(Bx)

. Bz = B2

and
o (1) = po(){(1 — 7gy) + gy exp(Bx)}
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These examples illustrate that covariate measurement error may or may not affect
point estimates for the response model parameters; this basically depends on the
relationship between the surrogate measurement X;* and the true covariates {X;, Z; }.
Estimation of the baseline mean function p¢(#) is affected in general if measurement
error is ignored. Furthermore, comparison between (4.17) and (4.13) shows that the
mean structure for the process linking N; (z) with the true covariates {X;, Z;} differs
from that for the process linking N;(t) with the observed covariate measurements
{X/*, Z;}, because the conditional expectation E;, | X7, z)texp(B Xi)} is generally
not equal to exp(B} X;).

In subsequent sections, we describe inference methods to account for measure-
ment error effects for different circumstances.

4.3 Directly Correcting Naive Estimators When
Assessment Times are Discrete

Consider settings where n subjects are observed at discrete observation time points:
l,....,K.Fori = 1,...,nand k = 1,..., K, let N;; be the number of events
for subject i observed at time point k, and R;; be the indicator that subject i is
at risk prior to time point k. Let X;; and Z;; be vectors of covariates for subject
i at time point k. Define N; = (Nj1,...,Nig)", Ri = (Ri1,...,Rig)", Xi =
(X, X)) and Z = (Z],, ..., Z]g)".

Suppose the counting process {N;x : k = 1,..., K} follows a random effects
model with the conditional multiplicative mean structure

E(Nik|Ri. Xi, Zi u;) = Rixujxrix exp(BxXix + B, Zik) (4.19)
for k = 1,...,K, where u;; represents a positive random effect, u; =
(i1,...,uig)", B = (ﬂ;ﬂ;)T is the vector of regression coefficients, and Ax

represents the discrete baseline intensity at time point k. Moreover, given u; and
{R;, X;, Z;}, the N} are assumed to be conditionally independent.

Conditional mean model (4.19) and its analogue in the continuous time scale
are commonly used in practice. There are two roles of random effects in the model.
Those random effects not only facilitate the dependence among the event counts N,
but also feature additional heterogeneity among subjects that is not explained by the
covariates.

Model (4.19) involves a tacit assumption

E(Nik|R;, Xi, Zi,u;) = E(Nig|Rik, Xik» Zik, Uik),

which says that, given the information of the covariates, random effects and
the at risk indicator at time k, the mean count of N;; is not affected by
{Rix', Xikr, Zigr, ujpe § for k" # k.
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A conventional assumption
E(uik|Ri, Xi, Zi) = 1

is often made for i = 1,...,n and k = 1,..., K. Without this assumption,
random effects would be arbitrary, which would lead to unrestricted conditional
mean responses. Combining this assumption with model (4.19) gives the convenient
marginal log-linear model

E(Nik|Ri, Xi, Zi) = RixAk exp(Bx Xik + B; Zik)- (4.20)

Suppose covariate X;i is error-contaminated and is measured with surrogate
measurement X . Let X;* = (X A X *T)T For the measurement error process,
we assume that forl =1,...,nand k =1,...,K,

E(Nig|Ri, Xi, Zi, X[, u;) = E(Nig|Ri, Xi, Zi, u;)

and
E(i|Ri. Xi, Zi, X[") = E(ui|R;. Xi, Z;).

To estimate parameter f, it is ideal to base estimation on the true model that
generates the data. But in reality, this model is unknown. One has to adopt a working
model that is thought to well approximate the true data generation process. However,
specifying a sensible working model is difficult due to the lack of knowledge of the
true distribution for generating the data. Convenience and tractability may then drive
us to choose a particular working model.

In the problem we consider here, we might blindly choose a working model by
imposing convenient assumptions on the data. Specifically, we consider a working
model by ignoring the existence of random effects and naively assuming that condi-
tional on {R;, X;, Z;}, the N;j are independent, and further imposing Poisson distri-
butions as the marginal distributions for the N;;. Moreover, we ignore the differences
between X;* and X; when specifying the working model.

This working model is simple to implement and can yield a quick estimation of
B by using the likelihood method, but the results are expected to incur considerable
biases. To obtain valid estimation results, proper care is required to adjust for the
estimator derived from this working model, as elaborated next.

The working model assumes that given {R;, X;, Z;}, the N;; are independent
and N ~ Poisson(u}; ) with the marginal mean

Wi = RixAg exp(BY' X + BE Zik)

for k = 1,..., K, where the asterisks indicate that the symbols potentially differ
from their counterparts in the true model (4.20).

Let 0* = (A™", B*")" with 8* = (B}, ;T)T and A* = (A%, ... ,A%)". Then the
likelihood resulted from the working model for subject i is

K
LY (%) ]‘[

Rjx
* exp(—uf)
zk' '
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yielding the working score functions

aly N *T *T
%zR {/\* —ep(ﬂxX +ﬁZZ,-k)} fork=1,...,.K
and
— Ri Ni A, *TX *TZl ,
il kJ v () =3 ( Gk ) exvB X + 57 210 ]

where £} = log L7 (0%).
Solving Y"7_; 8£F /90 = 0 for 6* leads to a naive estimate of 6. Let o* =

(X*T, B*T)T denote the resultant estimator of 6. The naive estimator 6* potentially
incurs biases in estimating 6. To see how to remove such biases, we invoke the theory
in §1.4 by evaluating the expectation of the working score functions under the true
model.

Let E, represent the expectation taken with respect to the model for the joint
distribution of {R;, u;, N;, X;, Z;, X}"}. Then set

LF
E, Ll=0fork=1,....K
OAY

E 94 _ 0
J aﬁ* - .
These identities are simplified as

A E{R;k exp(By Xik + BLZik)} = AR E{Rix exp(BY X[ + B2 Zik)}

and

and
K
2 ik
K
= LME
where the expectations are evaluated with respect to the model for the joint distribu-
tion of {R;, X;, Z;, Xi*}'

These identities link the naive estimator with the estimator derived from the true
model. For general situations, it is difficult to obtain analytical connections between

lk( )CXP(,Bx ik +ﬂz Zik)

le ()Z(l];) eXP(IB*TX#;g + IB*TZlk) 4.21)

the naive estimator 6* and the estimator obtained from the true model. But under
special circumstances, closed-form results are possible, suggested as follows.

Theorem 4.5. In addition to the preceding assumptions, we assume the following

conditions:

(a) the follow-up process R; is independent of {X;, Z;, X'} and E(R;i) is a com-
mon positive constant fork = 1,...,K;
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(b) the true covariates and their surrogate measurements are time-independent with
Xik = Xio: X[ = Xio: Zik = Zio

forallk = 1,...,K, where X;o, Z;jo and X;;) represent the baseline measure-
ments;
(c) the baseline covariate X;o follows a conditional normal distribution

10|(X,()7 10) ~ N(CO + C X + C Zio, Ee)

where Cy is a vector, Cyx and C, are matrices, and X, is a positive definite
matrix.

Then we have

Ay = Aeexp(CoBx + BrZefy/2) fork =1,...,K;
:3; = CxBy;
:3: = :31 + CZ:Bx'

An immediate result is that 8, = 7 if Z; is independent of X; (hence, C; = 0),
which is practically useful. For example, if Z; is a treatment assignment variable in
a randomized trial and is, by design, independent of covariate X; and the follow-
up process, then the treatment effect can still be consistently estimated by the naive
estimator which is derived from neglecting measurement error and random effects.
Regarding error-prone covariates, we note that 8, = B if X; and X;* follow a
Berkson error model for which Cy = 0, C; = 0, and C, is the identity matrix. It
is interesting to compare this result with the conclusion in §4.2. Although the mean
structure of the true model is not preserved by the model linking the outcome to
the observed covariate measurements {X*, Z; }, the point estimates produced by the
naive analysis are sometimes still identical to those obtained from using the true
model.

Fmally, using the relationship established in Theorem 4. 5 we adjust for the native
estimator 0* to obtain a consistent estimator § = (Al, - K> ,8 ,BT )", given by

Ak = Arexp(—ClCT B — B CI ' 2,C7 B /2) fork = 1,..., K;
/,B\X = Cx_IE;;
Bz = ﬂ; - Csz_l,B;;

where Cy, is assumed to be invertible.

This is an example of using the naive estimator correction strategy, outlined in
§2.5.3, to correct for covariate measurement error effects on point estimation. This
approach is easy to implement, but it does not provide us with variance estimates
for the adjusted estimators. To complete inferential procedures, one may employ
the bootstrap method to calculate associated standard errors for estimators jt\k k =
1,....K), Ex and Ez- The details were given by Jiang, Turnbull and Clark (1999).
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4.4 Counting Processes with Observed Event Times

In contrast to discrete counting processes in the previous section, we discuss counting
processes which may be continuous or discrete. Assume that the follow-up process
is independent of the event process, given the covariate process (Cook and Lawless
2007, §2.6). Using the notation in §4.1, for t > 0, we consider a multiplicative model

E[dN;(0)[{Ri(v) : 0 = v <t} Hj,, Hif] = Ri(©)A{|Xi (1), Z: () }dn(1)
with
Mt|Xi(2), Zi()} = Ao(t|H},) exp{ B, Xi (t) + B Zi (1)}, (4.22)

where A{t|X;(t), Z;(¢)} is the intensity function for subject i, B = (B, B7)" is the
regression parameter that is of interest, Ao (¢|#},) is the baseline intensity function
which may depend on the event history (e.g., the renewal process discussed in Cook
and Lawless (2007, §2.3, §5.4)), and dn(t) is the measure featuring a continuous or
a discrete time process. This multiplication model allows us to separate the covariate
effects from the event history.

We consider settings where the event times for each subject are observed. Let N;
be the number of events experienced by subjecti,and 0 < #;; < ... <y, < 7; be
the observed event times for subject i, where 7; is the length of the study period for
subject i.

It is straightforward to express the likelihood function contributed from subject
i as

N;
L; = l_[ Mtij| Xi(tij), Zi (i)}

j=1
- exp [—fo Ri(v)l{lei(v),Zi(v)}dn(v)}~ (4.23)

Assume that the baseline intensity function A¢(¢|#H},) in (4.22) is postulated as a
parametric model A¢(z; p), where p is the associated parameter vector.

Time-Independent Covariates

First, we consider the case where the true covariates and their surrogate mea-
surements are time-independent; they are, respectively, denoted as {X;, Z;} and

XI-*, where Xl-* is an observed measurement for X;. With covariates being time-

independent, the log-likelihood, resulted from (4.23), is given by
N;
6 =Y {logAo(tij:p) + B Xi + BLZ:}
j=1

—exp(BLX; + BLZ)) fo Ri(0)ho(v: p)dn(v),

which resembles the log-likelihood (3.9) for the proportional hazards model.
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To incorporate measurement error effects into inferential procedures, we consider
the insertion correction strategy discussed in §2.5.2 and §3.5.1. In light of the form
of £;, which depends on X; through linear or exponent terms, we need only to find
functions g (X*: B,) for k = 1,2 such that

E{g1(X: B)IXi. Zi, Ni} = By Xi;
E{g2(X[": B)IXi, Zi, Ni} = exp(B Xi): (4.24)
where the expectations are taken with respect to the model for the conditional distri-

bution of X* given {X;, Z;, N;}.
Define

Ni
¢ = {logAo(tij: p) + g1(X[: B,) + BLZi}
=1

g2 (X B,) exp(BLZ:) /0 Ri()ho(v; p)dn(v).

then it is immediate that £({|X;, Z;, N;) = {;.
Let 6 = (p", B7)". Estimation of parameter 0 is performed by solving

SN
00

i=1

for 6. Let 6 denote the resulting estimator of 6. The asymptotic normality of 9 is
readily established by applying the standard theory of estimating functions, provided
regularity conditions.

This estimation method relies on the availability of functions g1(-) and g, (-).
As discussed in Chapter 3, determination of functions g;(-) and g»(-) calls for
knowledge of the mismeasurement process. In addition, functions g;(-) and g, ()
may involve parameters associated with the model of the mismeasurement process.
Estimation of such parameters normally requires additional data sources, such as a
validation sample or replicates. The induced variability in estimation of such pa-
rameters needs to be accounted for in establishing the asymptotic distribution of the
estimator . This may be done using the procedures outlined in §1.3.4.

To illustrate the choice of function gi(-) for k = 1,2, we consider a simple
case where X; is a scalar binary variable. Let mo; = P(X; = 1|X; = 0,Z;) and
w0 = P(X} = 0|X; = 1, Z;) be the (mis)classification probabilities. By the result
in Problem 2.10, we take

s gy Pxlmor — X7)
S Px) = o1 + w10 — 1
" X1 (Bx)} B 1
o py = X0 = exp(B)} + o1 exp(B) — (1= 710)

o1 + 10— 1
so that (4.24) is satisfied.



172 4 Recurrent Event Data with Measurement Error

Time-Varying Covariates

When error-prone covariates are time varying, correcting measurement error ef-
fects is usually difficult, and certain assumptions are often imposed to ease develop-
ment. To see this, we consider a special case with time-varying covariates.

Let X;(¢) denote the vector of error-prone covariates and Z; (¢) be the vector of
precisely measured covariates. Suppose that X; (¢) takes constant values between two

consecutive observation times, i.e., for j = 1,..., N;,
Xi(t) = Xi(ti,j—1) fort € [t;j—1.1;;), (4.25)
where t;0 = 0. Suppose X, (¢) is only assessed at time points ¢;; for j = 1,..., N;

and X (t;;) is the corresponding surrogate measurement.
The log-likelihood, resulted from (4.23), becomes

N;
b = Z {log Ao (tij: p) + B Xi (1) + B Zi (1))}
j=1
N; ti;
— > exp{BLX; (ti,j—l)}/ R;i(v)Ao(v; p)exp{B; Z; (v)}dn(v).
j=1 i

Applying the same strategy as for the case with time-independent covariates, we
define

N;
6 =" [logho(tij: p) + g1{X[ (tij): B} + BLZi(1))]

j=1
N; i)
=3 gl X7 l1jm1): By / Ri(v)ho(v: ) exp{BLZi (v)}dn(v).
j=1 L j—1
where functions g1{X(¢); B} and g2{X*(¢); B} satisfy
E[gi{X; (1); By} Xi (1), Zi (1), Ni] = By X: (1)

and

Elg20 X[ (1): B} Xi (1), Zi (1), Ni] = exp{B, Xi (1)} (4.26)

The expectations here are evaluated with respect to the model for the conditional
distribution of X*(¢) given {X;(¢), Z;(¢), N;} for time point 7.

It is easily seen that E{{*|X;(¢), Z;(t), N;} = {;. Then by the insertion correc-
tion scheme discussed in §2.5.2, estimation of 6 proceeds by solving

YL
00

i=1

for 6.
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As an example of choosing functions gx(-)(k = 1,2), we consider an additive
measurement error model. Given time ¢, we model X/ (¢) as

XF(1) = Xi(t) + e (1),

where e; (¢) is independent of {X; (¢), Z; (), N; } and has mean zero and the moment
generating function M (-). Then setting

SUX(1); By} = BLXF (1)

and
gAX(): B} = MTH(B,) exp{BL X[ (1)}

makes (4.26) be satisfied.

If X;(¢) varies with time in a more complex dynamic form than (4.25), the pre-
ceding procedure based on moments correction usually breaks down. In this case, a
possible strategy for correcting measurement error effects is to employ the likelihood
method for the joint modeling analysis, which is to be discussed in §5.6.

4.5 Poisson Models for Interval Counts

The insertion correction scheme discussed in the previous section can be modified to
handle error-contaminated interval count data. Using the notation in §4.1.3, we as-
sume that the sequence of time intervals {B;; : B;; = (b; j—1,b;;]:j = 1,...,K;}
satisfies the conditions outlined by Lawless and Zhan (1998). Consider the setting
where covariates are time-independent. Assume that the counting process {N;(¢) :
t > 0} is a Poisson process with the intensity function modeled as

At|Xi, Zi) = Ao(t) exp(BL Xi + BLZ:), (4.27)

where 4¢() is the baseline intensity function, 8 = (B, B7)" is the vector of regres-
sion coefficients, X; is the vector of error-prone covariates, and Z; is the vector of
precisely observed covariates.

By Theorem 4.2, the counts N;; over time intervals B;; are independent and
follow Poisson distributions:

Nijj ~ Poisson(fi;),

bij
where 1;; = oij exp(B3X; + BLZ;) and po;; = fbi,jjq Ao (v)dn(v). Therefore,

the likelihood contributed from subject i is given by, with the factor (]_[511 N;ihH™t
omitted, '

K;

N;;

L; = l—[ eXP(_ﬂij)lLij 7,
j=1
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giving the log-likelihood function contributed from subject i

K;
£ = Z Nijlog(poij) + Ni+ (BXXi + B, Z:) — poi+ exp(ByXi + B, Zi),
i=1

K; K;
where Niy =3 ;L Nij and poi+ = 351, poij-
Suppose X; is not directly observed and its surrogate measurement X is avail-
able. Noting that X; appears in linear or exponent form in £;, we use the same strat-
egy as in §4.4 and define

K;

€ =" Nijlog(uoij) + Nit{g1(X[: B1) + BLZi} — poi+&2(X[': By) exp(BLZi),
=1

where g1(-) and g,(:) are determined by (4.24) with conditioning variable N;
replaced by {N;1, ..., Nik; }. That s,

Elg1(X[: Bx)|Xi, Zi . {Ni1. ..., Nig;}] = By Xi:
E[g2(X}: Bx)|Xi, Zi, {Ni1. ..., Nix,}] = exp(BL X;). (4.28)

It is easily seen that
E({}|Xi,Z;i,Ni1,...,Nix;) = {;, (4.29)

where the expectation is taken with respect to the model for the conditional distribu-
tion of Xi*’ given {X,‘, Zi,Ni1,..., NiKi}~

As {7 is computable and satisfies (4.29), then by the arguments in §2.5.2, working
with £} produces a consistent estimator of § if suitable regularity conditions are
satisfied. But since the baseline mean function fto;; is unknown, we cannot directly
use the function £; to estimate parameter . To circumvent this, we need to deal
with the baseline mean function po;;, or equivalently, the baseline intensity function
Ao(2).

To avoid strong parametric assumptions about the baseline intensity function
Ao(t), we use the flexible piecewise-constant approach, as discussed in §4.1.2. Let
the baseline intensity function be modeled as

Ao(t) = pk (4.30)
fort € Ax = (ag—1,ar], where 0 = a9 < a; < ... < ag—1 < ag = 00 is
a pre-specified sequence of constants for a given K and p = (p1,...,pk)" is the

parameter. Then, as demonstrated in Fig. 4.2, the baseline mean function is given by

K
woij = Y, pratk (i, j), (4.31)
k=1

where u (i, j) = max{0, min(ag,b;;) — max(ag—_1.b; j—1)} is the length of the
intersection of interval B;; with interval A.
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Fig. 4.2. Piecewise-Constant Model for the Baseline Intensity Function and Observation
Times for Interval Count Data

As aresult, the partial derivatives of £ are given by

e 9g1 (X7 By) 0g2(X7; By) r

= N; - i+ Zi ;
0B, T op, poit—5p, U2
aer

B NivZi — j00i+8&2(X[: B) Zi exp(BLZ;):
Z

€7 Zi Ny .. .
L — _— — X* TZ‘
apk s [oij Uk(l,]) Mk(l, +)g2( i ,ﬂx)exp(ﬂz l)

fork =1,...,K; whereuy (i, +) = Zf’zl ur (i, j).
Write 9¢7 /0p = (0L} /0p1,...,0L} /0pk)", then solving

Z =0; Z =0; Z o _ (4.32)

i=1 i=1 i=1

for B and p gives their estimates. Let E and p denote the resultant estimators of
and p, respectively.

Assuming that the differentiation and expectation operations can change the or-
der, then the property (4.29) implies that the functions in (4.32) are unbiased esti-
mating functions. Applying the standard theory of estimating functions outlined in
§1.3.2, we can readily establish the asymptotic normality for estimator (ET,F)T.
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4.6 Marginal Methods for Interval Count Data
with Measurement Error

The method discussed in §4.5 is likelihood-based and assumes the underlying pro-
cess of generating interval counts is a Poisson process. Likelihood-based inference
is generally useful for handling error-contaminated interval count data because of
its efficiency and well-established asymptotic properties. However, this approach
may suffer from sensitivity to model misspecification. In this section, we discuss
a marginal inference procedure which requires modeling mean functions only and
leaves the underlying distribution unspecified.

Suppose that the observation scheme is the same as that of §4.5. Using the same
notation as in §4.5, we assume that the conditional mean, u;; = E(N;j|X;, Z;), of
Ni; given {X;, Z;}, is given by

Wij = 1oij exp(By Xi + B Zi), (4.33)
where f19;; is modeled as (4.31).
LetN; = (Nit, ..., Nik;)". Assume that the conditional covariance matrix V; =
var(N;|X;, Z;) for the interval count vector N; is given by
Vi = Ci + g1}, (4.34)

where C; = diag{ui1,..., mik; }» i = (Wi1,..., ik;)", and ¢ is a dispersion
parameter.

Models (4.33) and (4.34) provide a class of useful models for interval count data.
For instance, interval count data generated from a mixed Poisson process, say the
one modeled by (4.9), have the mean structure (4.33) and covariance matrix (4.34),
which is easily seen using (4.4) and (4.5). Interval count data generated from the
Poisson process modeled by (4.27) are accommodated by (4.33) and (4.34) as well
where dispersion parameter ¢ = 0.

Let 6 = (p", B7)". Given the mean and covariance structures of N, estimation
of 6 is naturally performed using the GEE method, as formulated in (1.9),

n
U = ZDinl(Ni —pi) =0,
i=1

where D; = duj/06. More specifically, this formulation gives three sets of estimat-
ing functions (Lawless and Zhan 1998):

ZZ:I Utpi
U, = Zéfl Uixi 4.35)
> iz Utz
with
Urpi = exp(ByXi + B, Zi)
K.
SNl - PN i)
Wi 1+ ¢pis

J=1



4.6 Marginal Methods for Interval Count Data with Measurement Error 177

N. — .
Uy = it — Rty
L+ ppit
N. — .
Ulzi — l+—'u/l+ i
I+ it
where u(i, j) = {u1(i,j),...,ux@ j)}"u@i,+) = Zf’zl u(i,j), and p;4 =

Zﬁl Hij -

Interestingly, estimating function (4.35) coincides with the score function derived
from the likelihood function (4.11) in §4.1.3. However, the validity of (4.35) does
not require the recurrent event process to be a mixed Poisson process from which
likelihood (4.11) is derived. The unbiasedness of estimating function (4.35) requires
only the correct specification of (4.33).

When the X; are subject to measurement error with surrogate measurements X
available, estimation based on estimating function U; with X; replaced by X com-
monly incurs bias. One strategy to correct for the induced bias is to employ the in-
sertion correction method, as described in §2.5.2. In particular, we consider a weight
version of Uj.

Fori =1,....n,letUy; = (Uj,;,Uj,;. Uj,;)". Define

Urwi = w1 (9,0; X, Z;)Uy;,

where wy; (P, 0; X;, Z;) is the weight taken as 1 + ¢u; 4. Let g1(-) and g2 () be the
functions satisfying (4.28), and g3(-) be a function satisfying

E{gs(X" B)IXi, Zi, Ni} = X; exp(BLX;).
Define

K;

Ny
Ul = 32 5 L ) + 2K ) exp(BLZ)
j=1"7%

KA

~ N :
Ghoir ) s tuli ) = (1 + Nppuli+) ¢
ij

Jj=1
Uli = Nitg1(X;: 1) — poi+83(X;": By) exp(B2 Zi):
Ulyi = NitZi — &2(X[5 B) Zi exp(BL Zi).
Let U = (U UL, U Tt is readily verified that

1pi’ ~1xi’ ~1zi
E(U|Xi, Zi,N;i) = Unyi. (4.36)
If ¢ is known, then solving
n
D Ui=0 (4.37)
i=1

for 0 yields an estimate for 6.
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When ¢ is unknown, it must be estimated. Here we invoke the method of mo-
ments to estimate ¢. Let ol-2+ = var(N;4), then by (4.34), 01-2+ = Ui+ + ¢/L1-2+.
Define

Uzi = wai (¢, 0: Xi. Zi){(Nit — pig)* — 07},

where wo; (¢, 0; X;, Z;) is a weight free of N;;. Particular choices of weight function
wo; (¢, 0; X;, Z;) are 1, 1/01.2+, and /Ll~2+/0i4+, as considered by Lawless and Zhan
(1998). Let

n
U= Uy. (4.38)
i=1
then U, is unbiased and used for estimation of ¢.

Since (4.38) is expressed in terms of the unobserved covariates X;, we need to
find a function Uy that is workable. In the same manner as the preceding discussion,
we use the moment generating function for the measurement error to construct U
such that it is expressed as a function of ¢ and the observed data. As long as

E(U3;|X;, Zi, N;) = Ua;, (4.39)

working with }"7_; U leads to a consistent estimator for ¢ under regularity condi-
tions.
As an example, we take wy; (¢, 0; X;, Z;) as 1. Then setting

Uj; = N7y — Niy + Dpoi+&2(X: B,) exp(BL Zi)
+(1 = )i 82(X[32B,) exp(2B Z:)

makes (4.39) be met. Then pairing

n
YUz =0 (4.40)

i=1

with (4.37) and solving them for the parameters gives estimates of ¢ and 6. Let a
and @ be the resulting estimators of ¢ and 6, respectively. Identities (4.36) and (4.39)
ensure that $ and 0 are consistent estimators, provided suitable regularity conditions.
To complete estimation steps, we need to work out the expressions for functions
g1(-), g2(-) and g3(-), which generally depend on the measurement error process. We
illustrate this by considering a scenario where replicate measurements for the X; are
available.
Example 4.6. Fori = 1,...,n, let Xi*l = (Xi*ll’ e Xl.’})xl)T be m; independent
surrogate measurements of X;, where [ = 1,...,m; and p; is the dimension of X;.
Suppose that X} and X; are linked by the model

X=X +ei (4.41)

for/ = 1,...,m;, where the e¢;; have mean zero and are independent of each other
and of {X;, Z;} and the event process.
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Let ¢j4 = m;! Z;":’I ei1, and M;(v) = E{exp(v'e;+)} be the moment gener-
ating function for ¢; . For j = 1,..., px, let 7;+ = m;l 27':’1 Xl?;.l, and write
X' = (Y?H, ... ,Y;x+)T. Then functions g; (+), g2(-) and g3(-) are given as

g1(X[:By) = BL X[
§2(X["; By) = exp(ByX){M; (B,)}
g3(X[: By) = X[ exp(Br X[ )M (B,)) !
IM;i (B)

—ep g g0y |

If the error terms e;; in model (4.41) follow a normal distribution N (0, X,),
where X, is the covariance matrix with unknown (J, k) element o jk» then

M;(Bx) = exp (%m_ﬂ} Eeﬂx) ;

and the parameters « j are estimated empirically from the replicates:

, (4.42)

. 1< 1 — —
Tk = > { po— DX = X)Xy — X))
=1

i=1
where j,k =1,..., py.

When developing asymptotic properties for estimators 9 and a, variability in-
duced in estimating measurement error model parameters should be taken into ac-
count. Suppose « is the vector of parameters associated with the measurement error
model and v; () is a set of unbiased estimating functions of « contributed from sub-
ject i. For instance, in Example 4.6, o represents (ajx : 1 < j < k < p,)", and
Vi (e) is taken as {;jx (o) : 1 < j <k < p,}" where

1 - — —
Viji (@) = ok — po— DX = X)Xy — Xy
=1
forl <j <k < py.

Let ¢ = (¢,0"" and E = @,,Q\T)T. Define U*(a,) = (U(«,0),
Uy (a, )" and

8 * , ; —1
07 (@.0) = Up(@.0) — E (M) {E (a‘” @) )} Vi @),

do™ do”

where the dependence on « is explicitly spelled out in the notation. Applying the
strategy outlined in §1.3.4 yields that, under regularity conditions, 1/ (E — ) has
an asymptotic multivariate normal distribution with mean 0 and covariance ma-
trix I~ Yo, &) X(ee, )T (e, £), where I'(,{) = E@QU (e, $)/3C"), X(a,§) =
E{Q; (2, ) Q] (a0, )}, and the expectation is taken with respect to the model for
the joint distribution of {N;, X, Z;}.
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4.7 An Example: rhDNase Data

In this section, we illustrate some of the preceding methods with the rhDNase data
described in §2.7.2. We are interested in evaluating whether the treatment has the
desired effect on reducing the incidence of exacerbations and how error-prone co-
variate FEV is associated with exacerbations. In the first analysis, we cast the data
as coming from an event process whose event times are observed, i.e., we use the
framework discussed in §4.4, where column B in Table 2.2 records the event times
for the j th exacerbation. Fig. 4.3 displays histograms of the number of exacerbations
for the treatment and placebo groups. The “corrected” likelihood formulation in §4.4
is employed to conduct inference.

Next, we treat the data as interval count data where columns B and E; in Ta-
ble 2.2 represent the cut points b;; for interval count data as defined in §4.1.3. We
consider two model assumptions. First, we assume that the underlying process for
the interval count data is a Poisson process, as in §4.5; estimating equations (4.32)
are used for estimation. Second, we relax the Poisson distribution assumption and
incorporate possible heterogeneity among subjects by introducing random effects, as
modeled by (4.9); estimating equations (4.37) and (4.40) in §4.6 are used for estima-
tion.

250
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The Number of Exacerbation Periods

Fig. 4.3. Back-to-Back Histogram of the Number of Exacerbations for the Treatment and
Placebo Groups

In all these analyses, we model the baseline intensity function with the piecewise-
constant approach as described by (4.30). Specifically, we cut the study period into
six pieces, yielding the subintervals (in days): (0, 28], (28, 56], (56, 84], (84, 112],
(112, 140], and (140, 00).
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The measurement error for covariate FEV is specified by model (4.41) with
e;; ~ N(O, 032) for [ = 1,2, where parameter o, is estimated from the repeated
measurements FEV1 and FEV2 according to (4.42).

Table 4.1 reports the analysis results presented by Yi and Lawless (2012). Under
different modeling strategies, all the analyses lead to very similar results regarding
both point estimates and standard errors. Both the error-prone covariate FEV and
the error-free covariate TRT are statistically significant, having anticipated effects
on reducing the incidence of exacerbations. There is evidence that ¢ is statistically
significant, suggesting the existence of heterogeneity among subjects.

Table 4.1. Analyses of the rhDNase Data with Various Methods

Method Parameter =~ EST SE 95% C1 p-value

Method of §4.4 FEV (Bx) —0.017 0.003 (—0.022, —0.011) <0.001
TRT (87) —0.274 0.121 (—0.511, —0.036)  0.024

Method of §4.5 FEV (Bx) —0.016 0.004 (—0.024, —0.009) <0.001
TRT (B8z7) —0.266 0.126 (—0.514, —0.019) 0.035

Method of §4.6 FEV () —0.016 0.003 (—0.022, —0.011) <0.001
TRT (B;) —0.266 0.120 (—0.501, —0.031) 0.026
¢ 0.401 0.130 ( 0.145, 0.656) 0.002

4.8 Bibliographic Notes and Discussion

Research concerning error-contaminated recurrent event data has been limited. Dis-
cussion of recurrent event data with covariate measurement error mostly focuses
on count data. Little research has been directed to analysis of waiting times with
error-prone covariates, although techniques of handling survival data with covariate
measurement error can shed light on or even be directly applied.

Turnbull, Jiang and Clark (1997) considered the mixed Poisson process for count
data subject to measurement error. They proposed a method of correcting measure-
ment error effects by directly adjusting for the naive estimator obtained from ignoring
measurement error. Jiang, Turnbull and Clark (1999) explored inference methods for
events occurring in discrete time where covariates are subject to measurement error.
Their approaches are developed under semiparametric Poisson and mixed Poisson
models, which are summarized in §4.3.

Yi and Lawless (2012) explored methods which account for measurement error
in covariates under a class of models, including general counting processes with mul-
tiplicative intensity functions and mixed Poisson models. They discussed likelihood-
based inference and robust inference based on estimating equations and considered
both continuous and interval-count data. Those methods are summarized in this
chapter.
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Other relevant work is available but limited. For instance, Veiergd and Laake
(2001) and Guo and Li (2002) investigated misclassification and covariate mea-
surement error effects on Poisson regression. Zeger and Edelstein (1989) discussed
a likelihood method for handling the Poisson regression model with covariate
measurement error. Fung and Krewski (1999) empirically studied two adjustment
methods, SIMEX and regression calibration algorithms, for Poisson regression with
replicates of surrogate measurements for X;. Assuming the availability of a valida-
tion subsample, Kim (2007) considered a mean model for the event count data and
discussed a correction method using kernel estimates for the case with categorical
surrogate measurements. Numerical studies were provided to assess the performance
of this method whereas asymptotic properties for the resultant estimator were not
explored.

4.9 Supplementary Problems

4.1. Prove the identity (4.1) and discuss associated conditions.

4.2. Prove Theorems 4.1 and 4.2.
(Cook and Lawless 2007, Ch. 2)

4.3. Suppose there is a random sample of n subjects who are observed over time
intervals [0, 7;] fori = 1,...,n. Conditional on a nonnegative random effect
u;, {N;(t) : t > 0} is assumed to follow a nonhomogeneous Poisson process
with mean function
pi(t) = uip(t),
where j(¢) is a nonnegative function.

(a) Suppose that the u; follow a Gamma distribution with the probability den-
sity function

1 o—1-1
f(u) ¢¢—1 F(¢>—1)u exp(—u/¢) foru > 0, (4.43)
where ¢ is a positive parameter. Show that the marginal distribution of
N;(t) is a negative binomial distribution.
(b) Show that the marginal distribution of N;(¢) becomes a Poisson distribu-
tion as ¢ — 0.
(c) Develop a procedure for testing the hypothesis H, : ¢ = 0.

(Cook and Lawless 2007, §2.2, §3.7)

4.4. (Test for homogeneity or trend for Poisson models) Suppose there is a ran-
dom sample of n subjects who are observed over time intervals [0, ;] for
i=1,...,n.

(a) Suppose that {N;(¢) : t > 0} is characterized as the Poisson model with
piecewise-constant rates, given by (4.2). We are interested in testing the
null hypothesis
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H,:pp=p fork=1,...,K,

which corresponds to a homogeneous Poisson model. Here p is a given
positive constant. Derive a test procedure for testing H,.

(b) Suppose that {N;(¢) : t > 0} is a Poisson process with a rate function

A1) = exp(po + p11),

where pg and p; are parameters. Derive a test procedure for testing the
null hypothesis H, : p; = 0.

(Cook and Lawless 2007, Ch. 3)

4.5. (Test for trend or homogeneity for Poisson models in the presence of measure-
ment error) Suppose there is a random sample of n subjects who are observed
over time intervals [0, 7;] for i = 1,...,n and subject i is observed at event
times 0 < #j; < ... <t fori = 1,...,n.Let N;(t) be the number of events
experienced by subject i over interval [0,7], and {X;, Z;} be the associated
covariates. Suppose that conditional on {X;, Z;}, {N;(¢) : t > 0} follows a
Poisson process with intensity function

At Xi, Zi) = Ao(t) exp(BL X + B, Z:).

where Ao(¢) is the baseline intensity function and 8, and B, are regression

coefficients.

(a) Suppose that for subject i = 1,...,n, the observed data consist of
{(Ni(t).X;. Z;) 1 t = tj1,....tn;;i = 1,...,n}. Using these observed
data, derive a test procedure for the following hypothesis.

(i) Consider that A¢(¢) is modeled as piecewise-constant rates, defined
as (4.30). We are interested in testing the null hypothesis

H,: pr=p fork=1,... K,

where p is a given positive constant.
(ii) Consider that A¢(¢) is modeled as

Ao(t) = exp(po + p11),

where pg and p; are parameters. We are interested in testing the null
hypothesis H, : p; = 0.

(b) Assume that the X; are measured with error, and let X l.* be the actual
measurement of X;. Based on the observed data {(N;(¢), X", Z;) : t =
tit,....tn;31 = 1,...,n}, derive a test procedure for each null hypothesis
in (a). What additional assumptions are needed in the development?

(c) Compare the test procedures between (a) and (b).
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4.6.

4.7.
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Let u;(t) = E{N;(t)|X;, Z;} be the conditional mean function of the event
process {N;(t) : t > 0}, given covariates {X;, Z;}. Suppose that the mean
function p; (¢) is specified as a log-linear model:

wi(t) = po(t) exp(ByXi + B, Z:),
where po(t) is the baseline mean function and B, and pf, are
parameters.

Suppose that X; is subject to measurement error and X/ is the observed ver-

sion of X;. For the following situations, discuss the bias induced from the

naive analysis where the difference between X; and X/ is ignored.

(a) Assume that X; is a binary covariate and the (mis)classification probabil-
1ties are

o1 = P(X[ =1|X; =0,Z;) and w19 = P(X; = 0|X; =1, Z;).
(b) Assume that X; is a scalar categorical covariate with K levels where K >
3 and that the (mis)classification probabilities are
wik =PX =k|X; =}, Z;) forjk=1,.... K.
(c) Assume that X; is a scalar categorical covariate with K levels where K >
3 and that the (mis)classification probabilities are
e =PXi =k|X] =j,Z;) forjk=1,....K.
(d) Generalize the discussion in (a)-(c) to the case where X; is a vector of
multiple binary or categorical variables.
(e) Discuss misclassification effects on the variance of the naive estimators in

(a)-(d).

Suppose (X1, Z1, N1),...,(Xy, Zy, Ny) are independently and identically
distributed. Let u; = E(N;|X;, Z;) be the conditional mean of N; given co-
variates X; and Z;. Consider a Poisson regression model with

Ni|(Xi, Z;) ~ Poisson(p;)

where the mean is modeled as

logpu; = By Xi +BLZ; (4.44)
with the vector of regression parameters § = (8, B;)".
Suppose that X; is subject to measurement error with a surrogate variable X*.
The measurement error is given as

X=X + e (4.45)

where ¢; is independent of {X;, Z;, N;}.
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(a) Let £;(B;Xi,Z;,N;) be the log-likelihood function for B under
model (4.44) contributed by subject i. Assume the error terms e;
in (4.45) follow a normal distribution N(0, Y,) with covariance
matrix X,.

(i) Find a function £7(B; X, Z;,N;) of B and the observed data
{X,Z;, N} such that

E{ (B X', Zi, N\ Xi, Zi, Ni} = Li (B; Xi, Zi, N;).
(ii) Let E be the estimator of 8 obtained by maximizing
n
D LBXT ZiNy)
i=1

with respect to 8. Find the asymptotic distribution of the estimator E
What assumptions are needed?
(b) Assume that e¢; ~ Gamma(k,t) with the probability density
function

fe) = F(/:)r" e Lexp{—e/t} fore > 0,

and X; ~ Gamma(§, t) with the probability density function

-1 exp{—x/t} forx > 0,

1
X) = ———=X
o) =+ &)
where «k,§ and 7 are positive parameters. Can you develop an estima-
tion procedure for 8 using the likelihood method? What assumptions are
needed?
(c) Suppose the measurement error model is not given by (4.45), but instead,
is characterized by
Xl == Xl* + é;,
where e; is independent of {X l-*, Z;, N;}. Can the discussion in (a) and (b)
be repeated?

4.8.
(a) Verify the identity (4.15).
(b) Verify the identities in (4.21).
(c) Prove Theorem 4.5.

4.9. Consider the model setup in §4.3. As opposed to the working model in §4.3,
we consider another working model which is less naive in a sense that hetero-
geneity among subjects is not ignored. Specifically, we assume that conditional
on random effects u; and {R;, X;, X*, Z;}, the N;j are independent and fol-
low a Poisson distribution with mean /,L;ik = E(Nik|R;, X}, Z;, u;) which is
modeled as

Wik = Rixui Ay exp(BY Xix + BL Zik). (4.46)
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Here, adding an asterisk to each parameter indicates that the symbols may be

possibly different from their counterparts in the true model (4.20). Further-

more, we assume that the u; follow a Gamma distribution with the probability

density function (4.43).

(a) Find the likelihood function obtained from this working model.

(b) Discuss the relationship between the estimators derived from the working
model (4.46) and the true model (4.19).

(c) In contrast to the development in §4.3, can you use the naive estimator
correction strategy to construct a consistent estimator of 8 by adjusting
for the working estimator obtained from the working likelihood function
in (a)?

4.10. In contrast to the interval count data which follow model (4.27) in §4.5, we
consider the situation where interval count data are generated from an under-
lying nonhomogeneous Poisson process. Conditional on a nonnegative random
effect u; and the covariates, {N;(¢) : t > 0} is assumed to follow a nonhomo-
geneous Poisson process with intensity function

Aitlui, Xi, Zi) = uido(t) exp(BLXi + BLZi),

where the u; are assumed to follow a Gamma distribution with the proba-
bility density function (4.43), A¢(¢) is the baseline intensity function, and
B = (B}, B;)" is the vector of regression parameters.

Suppose that X; is subject to measurement error with repeatedly measured
surrogate measurements X i’; for j = 1,...,m;, where m; is a positive integer
greater than 1. Assume that the X fj‘- are linked with the X; by the model

X5 =X +eij,

where the e;; are independent of each other and of {X;, Z;, N;(t) : t > 0} and

eij ~ N(0, X,) with covariance matrix X,.

(a) Develop the SIMEX procedure for conducting estimation of S.

(b) Develop an inferential procedure for 8 using the regression calibration
method.

(c) Develop the EM algorithm for conducting estimation of §.

(d) Compare these inference procedures.

(e) Is it possible to develop an estimation procedure for § using the inser-
tion correction method or the expectation correction method described in
§2.5.2?

(f) Develop a test procedure for testing the null hypothesis

H()I,BXZO.

4.11. Verify (4.36).



4.12.

4.13.

4.14.

4.9 Supplementary Problems 187

(a) Verify that U, in (4.38) is an unbiased estimating function.
(b) Verify that U} in (4.40) is an unbiased estimating function.

Consider the setup in §4.6.

(a) If the weight wy; (¢, 0, X;, Z;) in the estimating function (4.38) is set as
one of the following forms, can you develop an estimating function for
parameter ¢ ?

(i) woi(h.0.X;. Zi) = 1/07,;
(i) w2 (.0, X;i. Zi) = puiy /o,

(b) Relative to the estimating function in (4.40), discuss the asymptotic effi-
ciency of each estimating function in (a).

(c) Pairing each estimating function in (a) with estimating function (4.37) for
B, develop inference procedures for parameters 8 and ¢. Compare the
efficiency of the resultant estimators of S.

Asin §4.1.1,fori = 1,...,nand j = 2,3,...,let W;; = T;; —T; ;1 be
defined as the gap time between events (j — 1) and j for subject i. For subject
i, let Z; be a vector of precisely measured covariates, and X; be a vector of
error-prone covariates with an observed surrogate measurement X .

Let ¥;; = log W;;. Conditional on random effects u; and covariates {X;, Z;},
the Y;; are independent and follow the model

Yij = Bo+ By Xi + BLZi +ui + €. (4.47)

where B = (Bo. By, ;)" is the parameter vector of interest; u; has mean zero
and variance o,f; the ¢;; are independent of each other and of {X;, Z;,u;} and

are identically distributed with mean 0 and variance 2.

Assume the nondifferential measurement error mechanism. Suppose the mea-
surement error model is given by

XF=Xi +ei, (4.48)

where the e; are independent of {X;, Z;, u;, €] =23,.. .} and have mean

zero and covariance matrix X,.

(a) Compute E(Y;;|X;, Z;), var(Y;;|X;, Z;) and cov(Y;;, Y; j—k|X;i, Z;) for
k=1,...,j—1;j =2,...,n;, where n; is the number of events expe-
rienced by subject i.

(b) Assume that €;;,u; and e; all follow normal distributions and that the
conditional distribution of X;, given Z;, is a normal distribution with
mean i, and covariance matrix Y. Conduct likelihood inference about
parameter f3.

(c) Without the distributional assumptions in (b), can you construct unbiased
estimating functions for estimation of parameter §?
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In Problem 4.14, suppose measurement error model (4.48) is not true, but X;
is a scalar binary variable with a surrogate measurement X*. Let

mo1 = P(X =1|X; =0,Z;) and 710 = P(X} =0|X; = 1,Z;)

be the (mis)classification probabilities.

(a) Can you construct unbiased estimating functions for estimation of param-
eter 87

(b) McGilchrist and Aisbett (1991) and Cook and Lawless (2007, p. 157) dis-
cussed the recurrent event data, given in Table 4.2. The data consist of the
recurrence times to infection at point of insertion of the catheter for kidney
patients using a portable dialysis equipment. For each patient the first two
gap times to infection are given; either of them may be censored (1=infec-
tion occurs; O=censored) because catheters were sometimes removed for
reasons other than infection. Precisely measured covariates Z include age
(in year) and sex (1=male; 2=female); and misclassification-prone covari-
ate X is the type of kidney disease, coded as 0 if GN or AN and 1 oth-
erwise. Assuming a sequence of plausible values of the misclassification
probabilities, conduct sensitivity analyses of the data using the method
developed in (a).

In Problem 4.14, suppose the response model is not (4.47), but is given as
follows. Conditional on {X;, Z;},

Yiin = Po+ By Xi +BLZi +€in:

and for j = 2,...,n;, conditional on {Hl-vj,Xi, Z:},

Yij = Bo+ BxXi + B, Zi + ByYi -1 + €

where H; = {Yi1,....Y; -1} for j = 2,....n;, B = (Bo. By, B By)" is
the parameter vector of interest, and the ¢;; are independent and identically
distributed with mean 0 and variance o2 for j = 1,...,n;.

Assume that the nondifferential measurement error mechanism holds, and that
the measurement error model is specified as (4.48).

(a) Can you compute E(Y;;|X;, Z;), var(Y;;|X;, Z;) and cov(Y;;,Y; j—kl
Xi,Zi)fork=1,...,j—land j =2,...,n;?

(b) Assume that ¢;; follows a normal distribution N (0, 0?) with variance
02, e; has a normal distribution N (0, X¥,) with covariance matrix X,
and the conditional distribution of X; given Z; is a normal distribution
with mean w, and covariance matrix X'. Conduct likelihood inference on
parameter f3.

(c) Without distributional assumptions in (b), can you construct an unbiased
estimating function for estimation of parameter 8?
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(d) Can the development in (b) or (c) be extended to the case with time-
dependent covariates X; (¢)? Discuss potential issues.

(e) Use the developed methods to analyze the rhDNase data described in
§2.7.2.

Consider the zero-inflated Poisson model defined in §4.1.3 (on page 160).

(a) Verify (4.6).

(b) Suppose that X; is subject to measurement error, and let X;* be its observed
measurement. Assume that the nondifferential measurement error mecha-
nism holds. Suppose that the measurement error model assumes the same
form as (4.48), where ¢; is independent of {X;, Z;, u;, N;(t) : t > 0} and
follows a normal distribution with mean zero and covariance matrix X,.

(i) Develop an EM algorithm for estimation of parameters 8, 8, and 7.
(i) Can you develop an estimation procedure using the estimating equa-
tions approach?
(iii) Repeat the development in (i) and (ii) for the case where X; is a binary
covariate.

For i = 1,...,n, suppose individual i experiences two event processes
{Nl‘l(l) = 0} and {Niz(l) = O}. Let 0 < lij1 < ltijp < ... < tijn,-j
denote the event times for process N;;(t) where j = 1,2. Let X; and Z; be
the covariates for subject i wherei = 1,...,n.

Suppose that conditional on a nonnegative random effect u;, processes
{Nj1(t) : t = 0} and {N;2(¢) : t > 0} are independent and, respectively,
follow nonhomogeneous Poisson processes with the mean functions

wir(t) = uipo1(t) exp(Bx Xi + 11 Zi)
and
Wi2(t) = u;ipro2(t) exp(Br, Xi + B, Zi),

where for j = 1,2, 8; = (B5;, B;;)" is the vector of coefficients, and j19; (7)
is the baseline mean function which is modeled with the piecewise-constant
approach. Suppose that u; follows a Gamma distribution with the probability
density function (4.43).

Suppose that X; is subject to measurement error with a surrogate variable X*.
Assume that the nondifferential measurement error mechanism holds. Suppose
that the measurement error model assumes the same form as (4.48), where ¢; is
independent of {X;, Z;, u;, Ni1(t), Ni2(t) : t > 0} and follows a normal dis-
tribution with mean zero and covariance matrix X,. Assume that X, is known.

(a) Find the likelihood function of 8 = (87, B5)", using the measurements of
{X,‘, Z,‘} and {N,'j(l‘) : ] =1,2;t= Lij1s-- -5 tijn,-_,- }

(b) Can you use the likelihood function in (a) to develop a “corrected” like-
lihood for B based on the measurements of {X*, Z;} and {N;;(t) : j =
1,2;t = Lij1s--- ’Zijnjj}?
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(c) Applying the induced likelihood method outlined in §2.5.1, derive the
likelihood function based on the observed measurements of {X i*, Z;} and
INij (@) : j = 1,2t = tjj1,. .., tijn,;; }- What assumptions do you need?

(d) Can you develop a robust estimation method for 8?

(e) Can you proceed with (a)—(d) by treating the baseline functions nonpara-
metrically?

(f) Repeat the foregoing discussion for the case where X, is unknown and a
validation sample is available.
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Table 4.2. Infection Data of Kidney Patients

Patient Gap Event Disease
number times  types Age Sex type

1 816 1,1 28 1 1
2 23,13 1,0 48 2 0
3 22,28 1,1 32 1 1
4 447,318 1,1 31-32 2 1
5 30,12 1,1 10 1 1
6 24,245 1,1 16-17 2 1
7 7,9 1,1 51 1 0
8 511,30 1,1 55-56 2 0
9 53,196 1,1 69 2 0
10 15,154 1,1 51-52 1 0
11 7,333 1,1 44 2 0
12 141, 8 1,0 34 2 1
13 96,38 1,1 35 2 0
14 149,70 0,0 42 2 0
15 536,25 1,0 17 2 1
16 17,4 1,0 60 1 0
17 185,177 1,1 60 2 1
18 292,114 1,1 43-44 2 1
19 22,159 0,0 53 2 0
20 15,108 1,0 44 2 1
21 152,562 1,1 4647 1 1
22 402,24 1,0 30 2 1
23 13,66 1,1 62-63 2 0
24 39,46 1,0 42-43 2 0
25 12,40 1,1 43 1 0
26 113,201 0,1 57-58 2 0
27 132,156 1,1 10 2 0
28 34,30 1,1 52 2 0
29 2,25 1,1 53 1 0
30 130,26 1,1 54 2 0
31 27,58 1,1 56 2 0
32 5,43 0,1 50-51 2 0
33 152,30 1,1 57 2 1
34 190, 5 1,0 4445 2 0
35 119, 8 1,1 22 2 1
36 54,16 0,0 42 2 1
37 6,78 0,1 52 2 1
38 63,8 1,0 60 1 1




5

Longitudinal Data with Covariate
Measurement Error

Longitudinal studies are routinely conducted in various fields, including epide-
miology, health research, and clinical trials. A variety of modeling and inference
approaches are available for longitudinal data analysis. The validity of these meth-
ods relies on an important requirement that variables are precisely measured. This
assumption is, however, often violated in practice.

This chapter highlights methods for handling longitudinal data with covariate
measurement error. We begin this chapter with a brief review of the modeling frame-
work and analysis schemes which are used in the error-free context for longitudinal
data analysis. Illustrations of measurement error effects are then presented to stress
the necessity and importance of accommodating measurement error in the analysis.
Inference methods dealing with error-prone longitudinal data are described in sub-
sequent sections. Bibliographic notes and discussion, together with supplementary
problems, conclude this chapter.

5.1 Error-Free Inference Frameworks

Longitudinal studies are useful for examining the change of time-dependent response
variables and their relationships with relevant covariates. They are often designed
to collect measurements for subjects in the study repeatedly over a time period.
Two features make longitudinal data analysis different from the analysis of univari-
ate independent data. As each individual in the study contributes a set of repeated
measurements on the outcome variable (together with possibly repeated covariate
measurements), addressing the association among response components may be-
come necessary. On the other hand, observation times may be associated with the
response process, thus may come into play when formulating models and estimation
procedures.

Suppose subject i is assessed at time points 0 < #;; < ... < [l for
i = 1,...,n. Let Y;(#;) be the response measurement for subject i at time ¢;;,
© Springer Science+Business Media, LLC 2017 193
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and X;(t;;) and Z;(t;;) be the associated covariates. Let A; = (fi1,...,tim;)",
Yi = {Yit).....Yitim)}"s Xi = X{@)..... X[ (tim;)}', and Z; =
(Z](). ... Z](tim)Y

Covariates may be time-dependent or time-independent. If covariates, say
X;(t;j), are time-independent, we write X;(#;;) = X;. The number m; of obser-
vation times may be the same or different across subjects. Both equally spaced
and irregularly occurring observation times are allowed. If time gaps are not an
issue, we often use simplified notation, such as Y;; = Y;(t;;), X;; = X;(t;;), and
Z;j = Z(t;;), to indicate the longitudinal response and covariates; otherwise,
explicit dependence on time point, i.e., Y; (#;;), X; (#;;), and Z; (t;;), is preferred.

We now briefly outline some modeling frameworks in regard to the treatment of
the observation process and defer elaboration on accounting for the association of
response components to the following subsections.

In principle, valid inferences should originate from the consideration of all
the relevant variables involved. Let h(y;, x;, Z;,a;) be the joint distribution of
{Y;, X;, Z;, A;} that governs the data collection and observation processes. One may
view h(y;, Xi, Zi,a;) by separating the observation process from the response and
covariate processes using the factorization

h(yi, xi,zi,a;) = h(a;|yi, xi, 2i)h(yi, xi, 2i),

where h(y;, x;, z;) stands for the joint distribution for the data generation process
of {Y;, X;, Z;}, and h(a;|y;i, x;, z;) represents the conditional distribution for the
observation process given the data.

This decomposition enables the joint distribution A(y;, x;,Z;) to be explicitly
spelled out, and allows us to make assumptions about the observation process to sim-
plify modeling and inference procedures. In many settings, the observation process
is assumed to be noninformative in the sense that it is independent of the response
and covariate processes without carrying information about /(y;, x;, z;). Under this
inspection scheme, inference procedures is developed by modeling the response and
covariate processes while ignoring the observation process.

Specifically, inference on h(y;,x;,z;) can be carried out based on the
factorization

Sixi zii Boa) = f(yilxinzii B) f(xinzisa), (5.1

where f(y;,x;,zi; B, a) represents the model for h(y;, x;,z;) which is formu-
lated through the conditional model f(y;|x;,z;;pB) for Y; given {X;, Z;}, and
the marginal model f(x;,z;;a) for {X;, Z;}. Conventionally, the models for the
response and covariate processes are assumed to be governed by distinct parameters,
say, B and . As aresult, if interest centers on 8, conditional analysis based on model
f(yilxi, zi; B) alone is performed.

The noninformative observational process assumption is reasonable in many
applications. For example, in observational studies, observation times of individual
measurements are often not determined by the outcome of patients’ measurements.
In many longitudinal studies, assessment times are pre-specified for all subjects in
the study, thus, they are independent of the response and covariate processes.
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In other circumstances, assessment times may be related to the measurements
of the variables. To examine the joint stochastic process h(y;, x;, Z;,a;), alterna-
tive perspectives of (5.1) are required and modeling of the inspection times is often
needed. For example, if Z; is a vector of time-invariant covariates which determines
the observation process, one may consider the factorization

h(yi, xi, zi,ai) = h(yi, xilzi, ai)h(ailzi)h(z;), (5.2)

where h(y;,x;|z;i,a;) represents the conditional distribution of {Y;, X;} given
{Z;, A;}, h(a;|z;) is the conditional distribution of A; given Z;, and h(z;) is the
marginal distribution of Z;. Based on (5.2), modeling of the response and covariate
processes may be introduced together with modeling of the inspection process.

Formulations (5.1) and (5.2) provide two examples of frameworks for handling
longitudinal data. In this chapter, our development is embedded in the framework
(5.1) where the observation process is not modeled and the conditional model
f(ilxi, zi; B) is employed to describe the conditional distribution of Y; given
{Xi, Zi}.

When introducing conditional model f(y;|x;,z;;B), one needs to deal with
the association among the components of ¥;. While a multivariate distribution may
be directly specified as f(y;|x;, z;; B) (e.g., a multivariate normal distribution may
be employed for continuous random vector Y;), three modeling strategies are com-
monly used in the literature, leading to the three class of models, called marginal
models, random effects models, and transition models, respectively. The first two
types of models are discussed in this section, whereas transition models are deferred
to Chapter 6. Comprehensive discussions on modeling and analysis of longitudinal
data can be found in Davidian and Giltinan (1995), Diggle et al. (2002), Skrondal and
Rabe-Hesketh (2004), Molenberghs and Verbeke (2005), Fitzmaurice et al. (2009),
and the references therein.

5.1.1 Estimating Functions Based on Mean Structure

Marginal models are useful when we are interested in inference on quantities at
the population-level, such as population mean or variance. For i = 1,...,n and
j=1,...,m;let Kij = E(Yl'j|Xij, Zij) and Vij = VaI'(Yij|Xij, Zi/‘) be the con-
ditional expectation and variance of Y;;, respectively, given the subject-time-specific
covariates X;; and Z;;.

We model the influence of the covariates on the marginal response mean using a

regression model

g(wij) = Bo + B Xij + B2 Zij. (53)
where B = (Bo.BY.pB;)" is the vector of regression parameters which is of prime
interest, and g(-) is a specified monotone function.

Frequently, the conditional variance v;; is assumed to be a function of w;; with
vij = k(u;j;¢), where k(:) is a specified function and ¢ is the dispersion or scale
parameter that is known or to be estimated. For instance, with binary data, ¢ is taken
as 1 and v;; = py; (1 — pyj).
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Model (5.3) is called a marginal mean or population-average model. The regres-
sion parameter § is interpreted as the changes in the transformed mean response of
the study population as the covariates change by a unit vector.

With the only assumptions on mean and variance structures, the GEE method
is the most natural to be used to perform estimation of f, as outlined in §1.3.2.
Fori = 1,...,n,let u; = (Wi1,...,Mim;)", and D; = du]/dB be the matrix of
the derivatives of the mean vector w; with respect to 8. Let V; be the conditional
covariance matrix of Y;, given {X;, Z;}.

Define

Ui(B) = DiVi ' (Yi — ). (5.4)

Then solve

> Ui(p) =0 (55)

i=1

for B. Let ,B denote the resulting estimator. By the unbiasedness of U; (8), estimator

,3 is a consistent estimator of 8 and /1 (,3 B) is asymptotically normally distributed
with mean 0 and covariance matrix

e (PN prwpurn e (P2

provided regularity conditions. In implementation of solving (5.5), covariance matrix

V; is often decomposed as V; = Bil/ 2C,- Bl.l/ 2, where C; is the correlation matrix of
Y; given {X;, Z;}, and B; = diag{v;; : j = 1,...,m;} for which

var(Y;;|X;, Z;) = var(Y;; | Xij, Zij) (5.6)

is implicitly assumed. In application, correlation matrix C; is often replaced with a
working matrix.

Although there is no universal agreement on choosing a suitable working matrix
for C;, common choices are roughly classified into several categories by their tempo-
ral features. For example, setting C; as an identity matrix leads to the independence
working matrix; specifying all the diagonal elements to be 1 and off-diagonal ele-
ments to be a common constant for C; results in the exchangeable working matrix.
In both matrices, the association among repeated response components is regarded as
time-invariant. To feature time-dependent association among response components,
an autoregressive working matrix may be used for C;, where for instance, the (j, k)
element of C; is set as ,oU —k ‘, and p is a parameter. Sometimes, an unstructured
working matrix is adopted for C; where the elements of C; are treated as distinct
parameters. Cautious notes on the specification of the working matrix were provided
by Crowder (1995). Statistical software packages, such as PROC GENMOD in SAS
and gee in R, are available for the implementation of the GEE method.

It is important to note that the validity of the GEE method is ensured by the
two conditions: (1) the correct specification of the mean structure (5.3), and (2) the
“independence” assumption that
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E(Yij1Xi, Zi) = B(Yi;|Xij, Zij)

if the working matrix for C; is not diagonal.

Condition (2) may be viewed as the price paid for not fully specifying the distri-
bution of the response vector when performing inference about the model parameter.
This assumption implies that at a time point, the dependence of the response mean
on the subject-level covariates {X;, Z;} is completely reflected by the subject-time-
specific covariates {X;;, Z;; }, which is effectively the same as that given {X;;, Z;; },
the mean of Y;; is independent of {X;x, Z;x} for j # k. This assumption was dis-
cussed by Pepe and Anderson (1994), Pepe and Couper (1997), and Lai and Small
(2007) (e.g., see Problem 5.1).

When the feasibility of condition (2) is in doubt, two strategies may help. One
scheme is to use the working independence matrix to replace V; in (5.4), which al-
ways ensures consistent estimation as stated in Problem 5.1 (although this does not
guarantee ideal efficiency). Alternatively, one may directly model E(Y;;|X;, Z;) and
var(Y;;|X;, Z;), rather than E(Y;;|X;;, Z;;) and var(Y;;|X;;, Z;;). That is, we rede-
fine p;; to be E(Y;;|X;, Z;) and v;; to be var(Y;;|X;, Z;), then we modify model
(5.3) by extending subject-time-specific covariates to the subject-specific covariates
over the entire observation course. Formulation (5.4) then carries through.

The GEE approach is attractive because modeling the full distribution of the re-
sponse vector Y; is not needed; only the first two moments of the response vector are
required to be modeled. When Y; follows a multivariate normal distribution, U; ()
formulated by (5.4) is identical to the score function derived from the likelihood
formulation, hence we have the identities

E{U;(B)} =0 (5.7)

and

EW )0 (B)) = |- 58
which are analogous to (1.4) and (1.5) in §1.3.1.

For general cases, estimating function U; () formulated by (5.4) still satisfies
these two identities if V; is the true covariance matrix of ¥; given {X;, Z;}. When V;
is misspecified or replaced by a working matrix, say V;*, then the resulting estimat-
ing function, say U;*(B), does not satisfy the second identity (5.8), and efficiency
loss may incur for estimation of the mean parameter. To improve the efficiency in
this instance, Qu, Lindsay and Li (2000) proposed a method based on quadratic
inference functions; their method does not involve direct estimation of the correla-
tion parameter and retains certain optimality even if the working correlation structure
is misspecified.

When V; is replaced by a working matrix V;* in the formulation of (5.4) (regard-
less of the assumption (5.6)), as long as Conditions (1) and (2) for the GEE method
are satisfied, the first identity (5.7) still holds for U*(B) with E{U;*(B)} = 0. This
implies that under regularity conditions, the consistency of the resulting estimator
is retained regardless of the validity of (5.8); this property has been widely used in
application.

aU; (/3)}
ap" ’
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Although primary interest frequently lies in making inference about the parame-
ters in regression models for marginal means, sometimes we are interested in infer-
ence about association parameters as well. In this instance, second-order GEEs are
usually constructed for estimation of association parameters. Many authors exploited
using two sets of GEEs for inference about the mean and association parameters; see
Prentice (1988), Liang, Zeger and Qagqish (1992), Yi and Cook (2002), Hardin and
Hilbe (2012), and the references therein. A brief account of this method is covered
in §8.7.1.

5.1.2 Generalized Linear Mixed Models

In contrast to the average change at the population-level described by (5.3) for each
time point, one may be interested in specific features at the subject-level. Hetero-
geneity among subjects is a concern. This feature is commonly described by means
of introducing random effects into usually specified population-level models, such
as generalized linear models (GLMs) (McCullagh and Nelder 1989) or nonlinear
regression models (Wu 2009). Consequently, this, respectively, leads to generalized
linear mixed models (GLMMs) and nonlinear mixed models, the two useful classes
of random effects models. We discuss GLMM s in this subsection and defer nonlinear
mixed models to the next subsection.

GLMMs are formulated via a two-stage modeling procedure. At Stage 1, assume
that conditional on random effects u; as well as covariates {X;, Z; }, the Y;; are inde-
pendent and modeled by a distribution of the exponential family with the probability
density or mass function

Vii§ij — b(ij)
a(¢)

where a(-), b(-), and c(-) are known functions and ¢ is the dispersion parameter.
It is noted that

Sijlui, xi zis &j, @) = exp +cijs )¢ (5.9)

E(Yijlui, Xi, Z;) = b'(&;;) and var(Y;j[u;, X;, Z;) = a(p)b" (§ij).

where b’(-) and b” () represent the first and second derivatives of b(-), respectively.
Parameter &;;, sometimes called the canonical or natural parameter, is further mod-
eled to facilitate within-subject variability via covariates, as described at the next
stage.

At Stage 2, postulate the conditional mean py;; = E(Y;j|ui, Xi, Z;) by

g(puij) = Bo + By Xij + BLZij + ujFij, (5.10)

where g(-) is a link function and B = (Bo, B, B;)" is the vector of regression
parameters. Quantity F;; takes a certain form to reflect the study design or is a covari-
ate vector that may be part of {X;, Z;}. Random effects u; are assumed to be inde-
pendent of {X;, Z;} and their distributions are modeled as f(u;; y) with y denoting
the associated parameters. Often, a multivariate normal distribution N(0, D(y)) is
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assumed for random effects u;, where D(y) is the covariance matrix with a vector y
of parameters; the elements of y are sometimes called variance components.

As opposed to the name of random effects for u;, components of 8 are called fixed
effects or fixed covariate effects. This B has a different interpretation from § in the
marginal mean model (5.3). Parameter f in the conditional model (5.10) describes
the transformed mean response change for an individual as covariates change by a
unit vector, while § in the marginal mean model (5.3) represents the average change
of the transformed population mean as covariates change by a unit vector. These two
changes are generally different, as mathematically suggested by the inequality

E(Yijlui, X;, Zi) # E(Yij|Xi, Z;).

Let 8 = (B",y")". Inference on parameter € proceeds based on the marginal
likelihood with random effects integrated out. The marginal likelihood contributed
from subject 7 is

Li = / [T /@il xi,z) fiydn (), (5.11)
j=1

where f(u;) is the model for the probability density or mass function of u;,
S(yijlui, xi,z;) is determined by (5.9) in conjunction with (5.10), and the model
parameter is supposed in the notation.

In special situations, such as when both the conditional distribution of the
response components and the marginal distribution of random effects are normal,
the marginal likelihood (5.11) may have a closed form. The maximum likelihood
method is then directly implemented. In situations where the integrals in (5.11) have
no analytical expressions, numerical algorithms, such as the Monte Carlo method,
Gaussian quadratures, or Laplace approximations, are routinely used to handle the
integrals in (5.11). For details, see Jiang (2007), Wu (2009), Halimi (2009), and
Stroup (2012).

We conclude this subsection with comments on the role of random effects u;. In
postulating model (5.10), the assumption that

E(Yijlui, Xi, Zi) = E(Yijlui, Xij, Zij)

is implicitly made.
In the formulation of (5.11), the conditional independence of the Y;; given u;
and {X;, Z;} allows us to simply use the product

mji
Sijluis xi, zi)

J=1

to compute the conditional probability density or mass function f(y;|u;, x;, z;) for

the entire response vector Y;, given u; and { X;, Z; }. This assumption implies that the

association among repeated response components Y;; is fully responsible by subject-
level random effects u; when covariates {X;, Z;} are controlled.
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Other ways of using random effects to characterize the response and covariate
processes and their association are also possible. For instance, one may introduce
random effects, say v;, to facilitate the dependence among the {Y;;, X;;, Z;;}.
Conditional on random effects v;, the {Y;;, X;;, Z;;} are assumed to be indepen-
dent for j = 1,...,m;. Then the marginal likelihood contributed from subject i is
written as

mi
L; = f l_[ Sijxij, zijlvi) f(ui)dn(vi),
j=1
where f(v;) is the model for the probability density or mass function of v;, and
S(yij.xij.zij|vi) is the model for the conditional distribution of {Y;;, X;;, Z;;}
given v;. Quantity f(y;;,x;j, Zij|v;) is further factorized as

Sijs xijszijglvi) = figlxigs zij» vi) f(xij, Zij[vi)

so that available models may be used for f(y;;|x;;,zij, v;) and f(x;;, 2ij|vi).

5.1.3 Nonlinear Mixed Models

When the objective aims at making inference about individuals rather than the tar-
get population, GLMMs offer a useful modeling framework in which the regres-
sion parameters typically appear in a linear form in the transformed response mean
model. With more liberal specification of function forms, nonlinear mixed models
provide a flexible venue to accommodate more complex nonlinearity relationships.
Aligning with the formulation of GLMMs, nonlinear mixed models are developed
through two stages, featuring intra-individual variability and inter-individual vari-
ability, respectively.

At Stage 1, an intra-individual model, often formed as a nonlinear regression
model, is used to characterize the mean and covariance structure of the response over
time for each individual. Let & represent individual-specific regression parameters
fori =1,...,n. Given §;, the response components Y;; assume the model

Yij = g(Xij. Zij: &) + ok{g(Xij. Zij: §i): Oeij (5.12)
where error terms ¢;; are independent of {X;;, Z;;} and have mean 0 and variance
1. Functions g(-) and k() are smooth functions which are user-specified to feature
different types of data. Although functions g(-) and k(-) are common for all individ-
ual responses, differences among individual longitudinal trajectories are facilitated
by different regression parameters &; and the covariates at the subject-time-specific
level. Constant parameters o and 60, called intra-individual variance parameters, are
assumed to reflect the belief that the pattern of within-individual variation is compa-
rable across individuals (Wang and Davidian 1996).

Model (5.12) implies that the intra-individual mean and variance are

EWYijl&, Xij. Zij) = g(Xij, Zij: &)

and
var(Y;|&, X, Zij) = 0°k*{g(Xij. Zij: £); 0}
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for j = 1,...,m;. Common models for the intra-individual variance include
k(g:0) = 1 and the power model k(g; 0) = g°.
Let

G(Xi,Zi; &) ={g(Xi1. Zi:&),....8Xim;» Zim;: &)},
K{X;,Z;; &0} = diag(k{g(Xi1, Zi1:§:); 0}, ... . k{ig(Xim;, Zim;: §i); 0}),
and €; = (€;1,...,€im;)". Model (5.12) is then expressed in the vector form

Yi = G(Xi, Zi; &) + oK{X;. Z;; & 0}e;, (5.13)

Random vectors ¢; are frequently assumed to have a multivariate normal distribu-
tion N(0, V;) with covariance matrix V;. Although the dimension of V; is m; x m;,
which is subject-dependent, covariance matrices V; are often assumed to contain
common parameters for i = 1, ..., n. Unlike the first stage of formulating GLMMs
which imposes conditional independence on response components Y;;, here covari-
ance matrix V; does not have to be diagonal; the ¢;; in (5.12) are not necessarily
assumed to be independent of each other (Fitzmaurice et al. 2009, Ch. 2).

At Stage 2, an inter-individual model is postulated to describe individual-specific
regression parameters £; via

& =d(X;i, Zi,ui; B), (5.14)

where d () is a specified vector-valued function, § is the parameter representing fixed
effects, and the u; represent random effects which are assumed to be independent
of the ¢;, X; and Z;. Often, the u; are assumed to follow a multivariate normal
distribution with mean 0 and covariance matrix ,, although other ramifications of
this choice are available (e.g., Fitzmaurice et al. 2009, Ch. 6).

In addition to inference about parameters o and 6, it is of principal interest
to carry out inference about 8 and X,. Inference on X, addresses random inter-
individual variation, while parameter § facilitates variation in &; explained by the
covariates. Interpretation of § is subject-specific, just like that of the fixed effects in
GLMMs. Subject-specific parameters &; are allowed to be either linear or nonlinear
functions of fixed effects B as well as the covariates. The marginal mean response
does not have a closed-form expression in general.

Inference about the model parameters is based on the marginal distribution for
the response vector Y;:

Pl z) = / POl za0u0) f ) dnGun),

where i = 1,...,n; f(yi|xi,zi,u;) is the model for the conditional distribution
of Y;, given {X;, Z;,u;}, determined by models (5.13) and (5.14); and f(u;) is the
model for the distribution of random effects u;. The dependence on the parameters
is suppressed in the notation.

Although inference about the model parameters is often of central interest, pred-
ications or estimates of random effects may be needed, especially when there is in-
terest in predication of subject-specific evolutions. Inference for the random effects
is usually based on their posterior distribution
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Silxiszioug) f(u;)
J filxi, ziowi) fui)dn(u;)’

where the mean of the posterior distribution of u; is used as estimates for u;. Such
estimates are called empirical Bayes estimates of random effects u;.

Silyi xi,zi) =

5.2 Measurement Error Effects

Measurement error has multiple effects on statistical inference. It may alter the es-
timates of the response model parameters, distort the association structure among
response components, change the dependence nature between response and covari-
ate variables, and more generally, vary the distributional form of the response vector.
Broadly speaking, the impact of measurement error varies with a number of factors,
including the model form for the response and measurement error processes, and it
depends on the nature of an inference method as well. In this section, we investigate
these issues under different situations to unveil the complex nature of measurement
error effects.

5.2.1 Marginal Analysis Based on GEE with Independence Working
Matrix

We examine the marginal setup given in §5.1.1 with the assessment times taken as
common. That is, the sample includes n individuals who are scheduled to have m vis-
its. At visit j, measurements on the variables {Y;;, X;;, Z;;} are collected, where Y;;
is the response variable, Z;; is the vector of precisely observed covariates, and X;; is
the vector of covariates which are not exactly measured but their surrogates X i’; are
gathered. Let Y; = (Y;1,....Yiw)", X; = (X[}, ..., X} )" Z; = (Z],,.... Z],)",
and X = (X', .... X"

Consider regression model (5.3) which postulates the population mean at each
time point as a function of subject-time-specific covariates.

As discussed in §5.1.1, in the absence of measurement error, it is conventional
to assume that E(Y;;|X;. Z;) = E(Y;;|Xi;. Zi;), which is ensured if Y;; is inde-
pendent of {X;x, Z;} for j # k, given {X;;, Z;; }; such covariates are called Type
I covariates by Lai and Small (2007). However, in the presence of measurement
error, the property of Type I covariates may be lost for the observed covariates, as
illustrated in the following example.

Example 5.1. Suppose that the response model is given by
Yij = BXij + €ij

for j = 1,...,m, where ¢; = (€;1,...,€m)" follows a normal distribution N (0, X')
with a diagonal covariance matrix X and ¢; is independent of X;. Then the Type I
assumption holds for the regression mean of ¥;; on X;:

E(Yl,|X,) = E(Y,,|X,j) forj = l,...,m.
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Suppose further that X; ~ N(0, /,,,) and that
Xi* =X; +e;,

where e¢; ~ N(0, X',) with covariance matrix X, and e; is independent of X; and ¢;.
Then, as long as X, is not diagonal and 8 # 0, the Type I covariates property
fails for the observed data (see Problem 5.2), i.e.,

E(Y;|X[) # E(Yij1X[).

This example demonstrates that the Type I independence structure of the response on
the true covariates can be destroyed when the true covariates are replaced with their
surrogate measurements.

Next, we examine measurement error effects on estimation of the response param-
eters. When X is subject to measurement error and unobservable, naively applying
estimating equation (5.5) with X; replaced by surrogates X;* often leads to biased
estimates. To quantify asymptotic biases of the naive method, one may apply the
arguments discussed in §1.4.

Let U*(B*) be the surrogate version of estimating function U; (8) in (5.4) with
X; replaced by X* and B replaced by B*, where symbol B* is used to show
regression coefficients are possibly different from the original parameter 8 in model
(5.3) when using the replacement X* for X;.

Solving

Y URB =0

i=1

for B* gives a naive estimator, denoted by 8*, of the model parameter 8. Estimator
B* is not necessarily a consistent estimator of 8. Instead, 8* converges in probability
to a limit which is the solution to

E{U(B*)} =0, (5.15)

where the expectation, typically depending on B, is taken under the response model
together with the measurement error model.

The relationship between B* and B, portrayed by (5.15), is generally not
expressed in an analytically closed-form. Under special situations, however, working
with (5.15) can shed light on the measurement error effects on estimation.

As discussed in §5.1.1, to ensure the validity of the GEE method, the Type I
covariates assumption is required if the working matrix for V; is not an independence
working matrix. The Type I covariates assumption, as illustrated by Example 5.1,
may break down for the model linking ¥; and {X/*, Z; }. To narrow down the discus-
sion on measurement error effects on estimation, we then consider a simple estima-
tion scenario where the Type I covariates assumption is not needed, and we estimate
the response parameters using estimating equation (5.5) with covariance matrix V;
replaced by the independence working matrix diag{v;; : j = 1,...,m}. The details
are given in the following example.
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Example 5.2. Suppose that the response model is given by model (5.3) with g(-) set
as an identity function and that X;; and Z;; are scalar:

Yii = Bo+ BxXij + Bz Zij + €ij (5.16)

for j = 1,...,m, where the ¢;; are independent of each other and of {X;;, Z;;} and
have mean 0 and a constant variance o2.

Under this model and using the independence working matrix to replace V;,
estimating function (5.4) becomes

i\ po1 iy
(aﬁ )Bi Yi — ),

where B; = diag{o?,...,0?%} is an m x m matrix, wi = (Kits.-., Him)", and
wij = Bo+ BxXij + BzZijforj =1,...,m.

Since B; is a diagonal matrix with diagonal elements being a common constant,
then solving equation (5.15) is equivalent to solving

Z E (8,3:> (Yij — 1i7)

J=1
where the expectation is taken with respect to the model f(y;;, x;;, i), xl-*j) for the
joint distribution of {Y;;, X;;, Z;;, X;j‘.}, and ,u?‘j is the surrogate version of y;; with
X;; replaced by X i’; and B replaced by B*.
Assume that the measurement error model is given by

=0, (5.17)

X5 = Xij +eyj (5.18)

for j = 1,...,m, where the e;; are independent of each other and of {X;;, Z;;,€;;}
and have mean 0 and a common variance 062.

By the given modeling format, we evaluate the expectation in (5.17) by a seq-
uence of expectations with respect to the conditional models f (x| yi;, xij, zij) and

J(yij|xij, zij) together with the marginal model f(x;;, z;;). As aresult, (5.17) gives

B =B D EXij)+ (B-—B2) D E(Zij) + (Bo— B) = 0;

Jj=1 Jj=1

Be—B) Y EXZ)+ B —B) Y EXi; Zij) + (Bo—B) D E(Xij) —mBioZ =0;

Jj=1 Jj=1 j=1
Bx—BD) Y EXi;Zij)+ B — B D EZ})+ Bo—B) Y E(Zij) =0;
Jj=1 =1 j=1

where the expectations are evaluated under the marginal model f(x;;,z;;) for the
distribution of covariates {X;;, Z;; }.

For ease of notation, let fty, = ZT:l E(XijZij), bxk = 2721 E(XZ;), and
Mok = Y=y E(ZF) for k = 1,2. Define
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Ao = Uxaflz2 — /’L32cz - /Lx2//«§1 - /L)2c1/1~12 + 2fdxz fhx1 225
L+ moZ (1z2 — u2)/ Ao

Ry = mog (ixz — fx1fiz1)/ Ao

Ro = moZ(ix1 fz2 — HxzHz1)/ Ao

=
=
I

then solving the preceding equations yields
BE = R;'Bx. BE = B + R.R;'Bx. and B§ = Bo + RoR;'Bx. (5.19)

Identities in (5.19) quantify the difference between f* and f and demonstrate
that asymptotic biases incurred in the naive estimator B* depend on the magnitude
crez of measurement error and the mean and variance of X;; and Z;; as well as the
correlation between X;; and Z;;. The number of longitudinal assessments also af-
fects the asymptotic biases. In a special situation where X; and Z; are uncorrelated
and both X;; and Z;; have zero mean, we have

>y var(Xij)

P = Yy var(Xi;) + mo? P
,3; = Bz
B = Po.

When the relationship between the surrogate measurement X l-*]‘- and the true covariate
X;; is modeled differently, asymptotic biases induced in the naive estimation may be
different (see Problem 5.4).

5.2.2 Mixed Effects Models

Bias analysis is complex when the response process is characterized via a multiple
stage of modeling. For instance, if the response process is determined by a random
effects model, then measurement error effects induced by replacing X; with X* may
not be as transparent as those in the marginal analysis discussed in §5.2.1.

To understand how measurement error may alter structures of mixed effects mod-
els, we consider the response model which is formulated by a two-stage model-
ing procedure outlined in §5.1.2. Conditional on random effects u; and covariates
{X;,Z;}, the Y;; are assumed to be independent. This conditional independence al-
lows us to use the product of the f(y;;|x;,z;,u;) to express the conditional model
for Y; given {u;, X;, Z;}, thus leading to the conditional model (5.11) for Y; given
X, Zi}.

In §5.2.1, we examine measurement error effects on point estimation when a
marginal method is employed. Here we are concerned about the impact of ig-
noring the difference between X;* and X; on changing the model structures. Let
S (yij|xi,z;) be the model for the conditional distribution of Y;; given {X;, Z;},
where the dependence on parameters is suppressed in the notation. We are inter-
ested in the following questions which are pertinent to the marginal and association
features of the response components:
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e Does replacing X; with X* alter the mean structure of f(y;;|x;,z;)? Thatis, do
E(Yij|X/, Z;) and E(Y;;|X;, Z;) have the same structure?

e Does replacing X; with X;* change the variance structure of f(y;;|x;,z;)? That
is, do var(Y;;| X, Z;) and var(Y;;|X;, Z;) have the same structure?

e Given random effects u;, does replacing X; with X* change the conditional
independence among the Y;;? That is, conditioning on the observed covariates
{X/, Z;} and random effects u;, are the Y;; still independent?

e More generally, can the conditional distribution of ¥; given {X*, Z; } be modeled
through the same two-stage procedure as that of Y; given {X;, Z;} with certain
random effects introduced?

To answer these questions, we consider a linear mixed model where X;;, Z;;
and random effects u; all are scalar. Conditional on random effects #; and covariates
{X;, Z;}, the Y;; are independent and modeled as

Yij = Bo+ By Xij + B, Zij +ui Fij + €5, (5.20)

where the ¢;; are independent of each other and of the {X;;, Z;,u;} and normally
distributed with mean 0 and variance o2; the u; are random effects with mean 0 and
variance o2 and are independent of the {X;;, Z;;, €;;}; and F;; is an error-free scalar
which features different types of random effects.

This model implicitly assumes that f(yi;|x;i,zi u;) = f(yijlxij. zij, ui),
where f(y;j|x;i;,zij,u;) represents the model for the conditional distribution of Y;;
given {X;;, Z;;, u; }. Equivalently, model (5.20) is written in the vector form

Yi = Bo+ BxXi + B;Z; +u; F; + €;, 5.21)

where By = Bolm;» Bx = Bxlm;» Bz = Bzlm;» Fi = (Fi1,..., Fim;)", and
€ = (€i1,...,€im;)". Conditional independence of the Y;;, given {X;, Z;, u;}, is
reflected by the diagonal form of the covariance matrix var(e;) = 021, ;-
By model (5.21), we obtain the conditional mean and variance of Y;, given
{Xi. Zi}:
EYi|Xi, Z;) = Bolm, + BxXi +B,Z; (5.22)

and
var(Y;|X;, Z;) = 02 F; F} + 0% L, . (5.23)

Assume that the measurement error process is featured by an additive model
X i* =X; +e;,

where e; has mean 0 and covariance matrix X,; and is independent of random vari-
ables in model (5.20). Assume that X; has covariance matrix X;.

Quantities X,; and X; depend on i through the dimension m; while unknown
parameters in those quantities are assumed free of 7. Let

Qi = Exi{zxi + Eei}_l»

where the inverse matrix is assumed to exist. Matrix §2; is sometimes called the
reliability matrix.
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If we further impose a normality assumption for ¢;, X; and u;, then by the result
in Problem 5.5 (c)(iii), the conditional model of Y;, given the observed covariates
{X/, Z;} and random effects u;, is

Y; =By + B X+ B}Z; +u;F; +¢;, (5.24)
where { B§, B, B} } and {Bo. Bx. B} are connected by

Bg = ﬂOlm,- + IBX(Im,‘ - ‘Qi)l‘Lx[;
B: = ﬂx‘Qi;
BY =B I, (5.25)

and el?" has mean zero and covariance matrix
var(e}) = 0% I, + BE(Im; — $2i) Zxi. (5.26)

To compare the mean structure between models f(y;|x,z;) and f(yi|x;.2;),
we use the property

E(Y;|X[, Z;)) = E{E(Y;|X[", Zi, u;)}
and the assumption £ (1;) = 0, and then obtain that
E(Yi|X},Zi) = Bf + BXX} + B} Z;. (5.27)

Comparing (5.27) to (5.22) and (5.25) shows that the changes in the conditional mean
structure of Y;, given {X*, Z;}, are reflected by the intercept By and coefficient B
of the X;* but not by the coefficient of Z;. The coefficients in model (5.21) are
common for all the components of X;, but the coefficients in model (5.24) vary with
the components of X*, which is affected by reliability matrix £2;.

Regarding the comparison of the variance structure between models f(y;|x;", z;)
and f(yilxi, z;i), we apply the fact

var(Y; | X[, Z;) = E{var(Y;|X[", Zi, u;)} + var{E(Y; | X[, Z;, u;)},

in combination with (5.24) and (5.26), and then comparing to (5.23) shows that
var(Y;| X, Z;) and var(Y;|X;, Z;) have different structures.

Comparing the covariance matrices of the error terms in (5.21) and (5.24) uncov-
ers that the conditional independence property would disappear when X; is replaced
by its surrogate X;*, because the off-diagonal elements of var(e;") in (5.26) are not
necessarily zero. The precise effect of the measurement error on the between- and
within-subject variance structures is, however, not entirely clear by this comparison,
because the same random effects u; for the formulation of f(y;|x;,z;) are used as
an intermediate step to examine model f(y;|x/", z;). In general, we are interested in
whether or not there exist some random effects, say %;, which can, along with the
observed covariates {X*, Z;}, completely capture the association among response
components Y;;.
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To answer this question we further assume that X; is modeled as
X = 7-901m,' + 0. Z; + exi,

where ¥y and ¥}, are scalar parameters, the €,; are independent of each other and of
{Zi,uj,€i,e;i},and €x; ~ N(0, X'x;) with covariance matrix X ,; which is identical
to that of X;.

By the normality assumption for both €,; and e;, we obtain that

EXi|X", Zi) = (Im; — 2i)Dolm; +9:Zi) + 2 X"
Define
ui = X; — E(X;i|X[, Z),
then
Xi = (Im; — 2)m; 00 + (Im; — 2)9:Z; + 2: X[ + uj. (5.28)
Furthermore, it can be shown that

uj = (Im; — 2i)exi — Qie;,
uf ~ N, (Im; — 2:) X xi),

and u is independent of {X*, Z;} and u; (see Problem 5.7). Expression (5.28) in-

dicates that for each j, the jth component of X; can be written as

where «g; is the jth element of (1,,; — £2;) 1, Do, oz;/. is the jth row of (1, — §2;),

ol j is the jth row of £2;, and C}); is the jth row of the identity matrix 7, .
Substituting (5.29) into (5.20) yields the conditional model of Y;; given

{Xl*’ 217 uls ul*}’

Yij = (Bo + aojBx) + Bxttsn ; X[ + (B, Zij + BxVz0y; Zi)
+(ui Fij + BxCijuf) + €ij. (5.30)

As noted earlier, (5.24) shows that the conditional independence of the Y;; breaks
down if merely conditioning on the initial random effects u; along with the observed
covariates { X", Z; }, because the covariance matrix of €/ is not diagonal. This phe-
nomenon is actually explained by the structure of (5.30). Expression (5.30) reveals
that when replacing X; with X, association among the Y;; is not fully captured
by the random effects u;, the quantities which suffice for describing the association
among the Y;; when conditioned on {X;, Z;}; the residual u} facilitates the asso-
ciation between X; and X/, thus containing the dependence structure of repeated
response components Y;; via covariates X;. It is seen that if taking

’17,' = (M,' . MTT)T

as new random effects, then the conditional independence of the Y;; can be pre-
served, if conditioned on %; and {X, Z;}.
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Moreover, comparison of (5.30) to (5.20) shows that ignoring the difference
between X; and X;* would result in misspecification of both the fixed-effects and
random-effects structures. Model (5.20) shows that the conditional expectation
E(Y;j|Xi, Z;,u;) merely depends on subject-time-specific covariates, while model
(5.30) suggests that the expectation of Y;;, conditional on {X*, Z;} and random
effects u;, does depend not only on subject-time-specific covariates X l?; and Z;;,
but also on subject-specific observations X;* and Z;. If X; and Z; are independent
(hence ©#; = 0), then the naive analysis with X" replacing X; does not change
the point estimates of the fixed effects for the Z;; covariates. Random effects u; in
model (5.30) are determined by

~ 0 o2 or,
| ™ N ’ " i ’
i ((Om, ) (Omi (Im[ - Qi)zxi ))

where variance components differ from variance component 2 for model (5.20). In
addition, the cluster size m; also plays a role in the change of the model structures
when X; is replaced with X*.

5.3 Estimating Function Methods

Marginal analysis based on unbiased estimating functions is often conducted when
inference interest lies in the population-average. The choice of a marginal analysis
over a likelihood method may also be driven by the concerns of robustness to mis-
specification of a full distributional model and computational simplicity. Marginal
analysis under measurement error models commonly comprises two basic steps. At
the first step, an estimating function (frequently, unbiased) is built under the model
linking the responses and the true covariates. At the second step, proper adjustments
based on the measurement error model are introduced to modify the estimating func-
tion to be workable and valid.

While the first step is usually realized using standard marginal modeling schemes
for error-free contexts, the second step embraces variability of different strategies of
incorporating measurement error effects, which typically depends on the form of a
measurement error model. In this section, we discuss two approaches concerning the
second step, which are elaborations on the expectation correction strategy and the
insertion correction method outlined in §2.5.2.

Suppose at the first step, the response model is given by the marginal model
(5.3), and we construct an unbiased estimating function U; (8; Y;, X;, Z;) using (5.4)
where the dependence on {Y;, X;, Z;} is explicitly spelled out. The expectation cor-
rection strategy is to evaluate

E{Ui(B:Yi, Xi. Z)|Yi, X[, Z;}, (5.31)
while the insertion correction method is to find a function, say U*(B;Y;, X", Z;),

which is expressed in terms of the observed covariates {X;*, Z; } as well as response
variable Y; and parameter §, so that

E{UF(B: Y. X} Z)|Y;, Xi. Zi} = Ui (B: Yi. Xi, Zi). (5.32)
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Then estimation of the response parameter 8 proceeds with solving

n
S UK Y X Zi) =0
i=1
for B, where U*(B: Y;, X, Z;) is either set as (5.31) or is determined by (5.32).

This procedure generally requires the knowledge of model f(x;|y;,x’,z;) (or
S (x]1yi.xi,z;)) for the distribution of the entire covariate vector X; (or X;*), given
other random variables. This information is, however, often not available when con-
ducting a marginal analysis.

To get around this problem, we consider an alternative way to construct esti-
mating functions. Instead of finding an unbiased estimating function at the subject-
specific level jointly for {Y;, X;, Z;}, we construct an estimating function, say
Uij (B; yij. xij, zij), at the subject-time-specific level for each time point j and each
subject i. For example, with the marginal mean p;; = E(Y;;|X;;, Z;;) and variance
v;; = var(Y;;|X;;, Z;;) given, it is natural to work with the estimating function of 8:

o\ _
Uiy (B: Yy Xij. Zij) = (3%’) v (Y — i) (5.33)
for j = 1,...,m; and i = 1,...,n. Then we use the expectation correc-

tion strategy or the insertion correction method to identify an estimating func-
tion Ul.jf (B; y,-j,x;"j,z_,-j) at the subject-time-specific level for each time point j
and each subject i. These methods normally require the knowledge of model
f(xij|)’ij,x;"j,zij) (or f(x;|)’ij,x,-j,z,-j)) for the distribution of X;; (or Xl.’;),
given other random variables at time ;.

Consequently, estimation of f is based on the sequence of these functions
U; (B; yi j,xl-*j, zij). The generalized method of moments, described in §1.3.3, is
employed to combine those estimating functions to enhance efficiency. Let

Ul*(ﬁ) = (Ule(ﬁ; Yl]7 lev Zl])’ ceey U;‘;'Il‘l (IB’ YiMi ) Xltﬂ, ) ZiMj))T’
and
1 n
Us(B) =~ > U7 (B).
i=1
Then a GMM estimator of § is obtained by minimizing U*"(8)W U *(8), where
W is a weight matrix. The asymptotically optimal weight matrix W is given by the

inverse matrix of the covariance matrix of U*(f).
Alternatively, let I' = E{(3/dp")U*(B)}, ¥ = E{UX(B)U;*(B)} and

U™ (B) =T"S7'U*(B).

Under regular situations, the GMM estimator solves the estimating equation

n

U =0 (534)

i=1

for B.
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It is noted that the form of U;**(B) is also justified by Theorem 1.8. For the
implementation of (5.34), I" and X are usually replaced by their consistent esti-
mates, given by I' = n~' Y7 (3/0")U(B) and & = n~' 37_, UX(B)U"(B),
respectively. Set (7;‘*(/3) = foJ_lUi* (B)- Then solving Y7, ﬁ;‘*(ﬁ) = 0 for 8
leads to an estimator of S.

When applying the preceding strategies, unknown parameter, say o, associated
with the measurement error model, is normally involved. To complete estimation
of the response model parameter 8 that is of primary interest, we need to estimate
parameter « using additional available data sources, such as validation data or repli-
cates; the principles discussed in Chapter 3 may be applied for this purpose.

Depending on the nature of the modeling setup, one strategy might be easier
to implement than the other. Generally speaking, the expectation correction strat-
egy is implemented if there is a conditional distributional assumption on X;; given
{Yi;, X i’;-, Z;;}. The insertion correction method, on the other hand, has the appeal in
that the distribution of X;; is often not modeled. This approach, however, does not
necessarily suggest an easy scheme to construct U;*(f), and in some situations, an
analytical form for such an estimating function does not even exist.

In the following subsections, we elaborate on the construction of estimating func-
tion U,-j- B:Yij, X l-”j‘», Z;;) using the expectation correction or the insertion correction
strategy.

5.3.1 Expected Estimating Equations
For each time point j and estimating function U;; (B8; Y;;, X;;, Z;;), define
U = E{U;; (B: Yij. Xij, Zip)|Yij, X5, Zij ).

Evaluation of Ul.j. only requires model f'(x;;|yi;, x;*j, z;ij) for the conditional distri-

bution of X;;, given {Y;;, X l’; Z;;}. This considerably weakens the model assump-
tions, as opposed to calculating the conditional expectation in (5.31) which generally
needs model f(x;|y;, x;, z;) for the distribution of X;, given {¥;, X*, Z;}.

Under suitable conditions, the GMM estimator of § obtained by setting the
weight matrix W to be X! is equivalent to solving (5.34). In a special case where
W is set to be the unit matrix, the GMM estimator of 8 may be obtained by solving

a modified version of (5.34) with E (9 Ui}‘- /dB") dropped:

n m;
O EUG(B:Yiy Xy, Zip)Yij. X5 Zigh = O (5.35)
i=1j=1

equation (5.35) was discussed by Wang and Pepe (2000).
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Under the nondifferential measurement error mechanism, the kth element of
Ul-j-(/gJ Yij. Xi;, Z;;) is given by

E{Uij(B:Yij, Xij, Zip)|Yij. X5, Zij}
S UijicB:Yij xig. Zig) f (Yiglxig Zig) f iy, X531 Zig)dn(xig)
[ FXijlxijs Zij) f(xij X351 Zi)dn(xip) ’
where U (B; Yij, xij, Zij) is the kth element of Uj;(B; Yij, xij, Zi;) and k =
1,..., p with p being the dimension of S.
Depending on the form of the measurement error model, the model f(x;;, x;"j |zij)
in (5.36) for the joint distribution of {X;;, X i’; }, given Z;;, is further factorized as

g xilzip) = fCjlx, zip) £ 1zip) (5.37)

(5.36)

or
f(xijoxijlzig) = fOIxig. zi) f(xijlzip). (5.38)

Evaluation of (5.36) requires knowledge of the conditional distribution of the re-
sponse component Y;;, given the true covariates {X;;, Z;;}, and the measurement
error process at each time point j. In special situations, this requirement may be re-
laxed to weaker conditions that are merely pertinent to the marginal structures of the
response and measurement error processes, as illustrated by the following example.

Example 5.3. Suppose Y;; is a binary variable and X;; is scalar. Assume that each
response component is marginally modeled by a logistic regression model

logit wi; = Bo + BxXij + B, Zij,

where p;; = E(Y;;|X;j,Z;;) and B = (Bo,Bx,B})" is the vector of regression
coefficients.

Consequently, the conditional variance v;; = var(¥;;|X;;.Z;;) equals
wij (1 — p;ij), and the conditional model of Y;;, given {X;;, Z;;}, is given by
V(1 — u;;)@=%i7), For each time point j, unbiased estimating

fOijlxij zip) = w3
function (5.33) becomes

1

Uij(B:Yij. Xij. Zij) = | Xij | (Yij — pij)- (5.39)

We consider two scenarios of measurement error in covariate X;;. First, we

examine the case where X;; is continuous and the measurement error model is
given by

*
Xij = Xij + eij
for j = 1,...,m;, where the ¢;; are independent of each other and of {X;;., Zii, Y}
and e;; ~ N(0,02) with variance 2. In this instance, using (5.36) in combination

with (5.37), we may determine U} (B: Yij, X[, Zij).
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Next, we consider the case where X;; is a binary covariate with the misclassifi-
cation probabilities

mo1 = P(X[; = 1|X;; = 0,Z;j); mo = P(X]; =0X;; = 1, Zy);

and the marginal probability 7 = P(X;; = 1|Z;;). In this case, using (5.36) in
combination with (5.38) yields the construction of Uij B: Y, X l’; Zij).

5.3.2 Corrected Estimating Functions

The expectation correction approach discussed in §5.3.1 generally calls for distri-
butional assumptions for the X;;, which may be difficult to specify in application.
Alternatively, we proceed with a correction approach which is functional-oriented in
terms of its way of treating the X;;. The idea is to construct an estimating function,
say Ul-;‘- B:Yij, X l"j‘ Z;;), using the observed surrogate measurements X l-*]‘- together
with other observed variables, such that

E{US(B: Yy, X5 Zip)Yij, Xijs Zijy = Uij (B3 Yij, Xij, Zij)- (5.40)
The unbiasedness of U;;(B;Y;;, Xij, Z;;) under the initial model setup ensures
unbiasedness of workable estimating function Uij. B: Y, X i’;, Zij).

This strategy is often used when the nondifferential measurement error mecha-
nism is adopted and the conditional model f (x;‘;- |xij.zij) of X l.’;., given {X;;, Z;;},
is specified to characterize the measurement error process. For instance, suppose that
surrogate X i’; is given by

Xi);' :Xij —|—e,-j (541)
for j =1,...,m;, where the error terms e;; have mean 0 and covariance matrix X,
and are independent of each other and of the {X;;, Z;;, ¥;;}.

If e;; has a moment generating function M(v) = E{exp(v'e;;)} where v is a
vector of real numbers, then the moment identities may be used to construct estimat-
ing function U; B:Yi;, X i’;, Z;j) so that (5.40) is satisfied. In particular, for regres-
sion models where X;; appears in an exponential or polynomial form, the following
identities are useful:

EX5X[ — Ze|Xij, Zij) = Xij Xj;,
E[{M )}~ exp(v" X)|Xij. Zij] = exp(v" X;)),
and
dM(v)
v

£ ({M(v)}—l [ - o {FE2 e

Xij,Zij)

where M(v) is assumed differentiable over a certain region. We illustrate this
approach with the following examples where the measurement error model is given
by (5.41).

= X,‘j exp(vTX,-j),
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Example 5.4. (Linear Regression Models)
Suppose a continuous response component Y;; is modeled by the linear regres-
sion model
Yij = wij + €ij
with
wij = Bo + BxXij + B, Zij, (5.42)
where ¢;; is a random error with mean 0 and variance 02 and 8 = (B0, B2, B2)" is

the vector of regression parameters.
For each time point j, taking (5.33) as an estimating function for 8 gives

1
1
Uj = 3 | Xij | Fij = pij)-

Let

o = @)Yy — Bo — BLX[ — BLZij):
= 0 XYy — X o — (XX — S0 — X1 Zi )

Up, = (071 Zi;(Yij — Bo — B X[ — B2 Zi)):
then Uij = U i;ﬂo’ U i;;Tﬂv’ U iﬁz )T satisfies (5.40) and, thus, is an unbiased estimating
function for B. '

In constructing U l-j for linear regression models, we employ only the model for
the conditional mean and variance of X l”]‘ given {X;;, Z;;}; no model assumption
for the full distribution of X ;;- given {X;;, Z;;} is needed. In addition, this marginal
method does not require specific distributional assumption for the error term ¢;; in
the response model (5.42).

Example 5.5. (Log-Linear Models)
Suppose the response component Y;; records counts with the mean given by a
log-linear model

log pij = Bo + By Xij + B2 Zij
and variance var(Y;;|X;;, Z;;) = p;j, where B = (B, By, B;)" is the parameter
vector. This framework accommodates Poisson distributions as a special case.
For each time point j, setting (5.33) as an estimating function gives

1
Uy = | Xij | (Vij = i)
yA

ij

Let

0 = Yii =AM (B2} exp(Bo + Bi X + B2 Zi)):
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e = Yi X5 —{M(B)} " exp(Bo + BrXij + BLZij)

aM By _
x-S |

. = Yii Zij —{M(=Bx)} " exp(Bo + B Xij + B Zi));

then U; = (Uijﬁo, U;;EX, U;;EZ )" satisfies (5.40) and, thus, is an unbiased estimating
function for 8.

5.4 Likelihood-Based Inference

In longitudinal data analysis, models are often built for the response Y;(¢) and
covariate measurements {X; (¢), Z;(¢)} that are measured at the same time points. In
application, however, some covariates, say X; (¢), may be measured at times different
from the response (e.g., Lin, Scharfstein and Rosenheck 2004). To reflect this differ-
ence, for subject i let 0 < #;1 < ... < t;n; be the observation times for response
Y;(t) and covariates Z;(¢),and 0 < ] < ... < tl.*ni be the observation times for
covariates X; (¢), where time points {#1, ..., fim, } can be identical or different from
time points {7},....¢, }. In situations where some observation times for the co-
variates differ from those for the response variable and m; and n; are reasonably
comparable, we may cast the problem as a covariate measurement error problem.

For a given observation time #;; for the response variable (and covariates Z; ()
as well), let ¢} be the nearest assessment time point for covariates X; (), then
take the observed measurement X; (¢/,) as a surrogate version for covariate X; (7;;)
whose measurement is unavailable. We set X;*(t;;) = X;(t}), and admit that
X (t;;) may not be exactly identical to X;(#;) and is just a surrogate measure-
ment of X; (#;;). Using the notation consistent with that in §5.2 and §5.3, we write
Y,'j = Yl‘(lij),Xij = Xi(lij), and X{; = Xl»*(l,'j) for j = 1,...,m;. We as-
sume n; < m; so that every observed covariate measurement X; (¢ ) can potentially
serve as a surrogate covariate measurement for (at least) one observed response mea-
surement. When n; > m;, some observed covariate measurements X; (tl.”}c) cannot be
matched with any of the observed response measurements. In this case, the problem
may be embedded into the setting where the response variable is subject to missing-
ness and covariates are error-contaminated. This topic is to be discussed in §5.5.

We describe inference procedures using likelihood-based methods where the res-
ponse model is postulated by a nonlinear mixed model following the modeling steps
for (5.12) and (5.14). For ease of exposition, we consider the following model where
X;; is a scalar covariate.

Forj =1,...,m;,

Yij = g(Xij. Zij: &) + o€yj (5.43)

and
& =d(Bi,u;; B), (5.44)
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where &; is a vector (say, of dimension r) which describes the subject-specific tra-
jectory for subject i, the ¢;; are independent of each other and of the {X;;, Z;;} as
well as of the §;, €;; ~ N(0, 1), g(-) is a nonlinear function, o is a scale parameter,
d(-) is an r-dimensional function which characterizes the relationship of &; and the
subject-level covariates B; based on a vector of regression parameters 3, the u; are
random effects whose distribution is modeled as N(0, X,) with covariance matrix
%y, and the u; are independent of each other and of the {X;;, Z;;, ¢;; } (Fitzmaurice
et al. 2009, Ch. 5).

Assume that the measurement error mechanism is nondifferential. Suppose that
X/, is modeled as a function of X;; with an additive form

X;;- = Xij + eij, (5.45)

where the ¢;; are independent of each other and of {X;;,Z;;,€;;,u;}, and e;; ~
N(0, 62) with variance 02
Furthermore, we employ a polynomial random effects model to portray the

covariate process. Conditional on Z;; and random effects v;, X;; is given as
Xij = ﬁTTij + viTS,-j, (5.46)

where T;; and S;; include error-free covariate Z;; or its subset and possibly other
quantities such as functions of time ¢/, . Here ¢ is the regression parameter, the v;
are random effects whose distribution is modeled by normal distribution N (0, X))
with covariance matrix Y, and the v; are assumed to be independent of each other
and of the {Z;;, €;;,u; }.

Let 0 denote the parameter associated with the response model, which includes
{B", 02} and those in X,,; and let o denote the parameter related to the measurement
error and covariate processes, which includes 1, 062 and those in X,,.

5.4.1 Observed Likelihood

Combining the response models (5.43) and (5.44) with the covariate model (5.46),
we set

m:

i 1 — (X, Ziit & 2

Ll(yl|ulavl»zl»09a) = | | exp[_{yu g( - J EZ)} }
j=1

V2ro? 202

with & replaced by (5.44) and X;; replaced by (5.46), which gives a model for the
conditional distribution of response vector Y;, given random effects u; and v; as well
as precisely observed covariates Z;.

Write

. _ 1 1 Ty—1
Lz(ul‘, Eu) = W exXp (—zu, Eu u[) .
Plugging (5.46) into (5.45) gives

X;; = l?TTij + U,TSU + eij, 5.47)
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we then define

m * 2
P (X =0T —v!'Si))
* . L. 2y — - K l
L3(X;'|vi, Zii0,05) = /'|=|1 om0, exp 202 .

Let
T

1 1.
La(vi; Xy) = Wexp (—zvz 2, Ui) ~

Then the likelihood of the observed data contributed from subject i is given by

L(yi, X' Zi:0,a) ://Ll(yilu,-,vi,Zi;G,a)Lz(ui;Eu)
L3(X[|vi, Zi; 0, 02) La(vi; Zyp)du;dv;.

Inference about 6 and « is, in principle, carried out by maximizing the observed
likelihood for the sample data

n
LO.o)=[]LGi.X"1Zi:6.0) (5.48)

i=1

with respect to 6 and «. The integrals involved in (5.48) usually do not have closed
forms, partially due to nonlinearity in the response model. Maximization of L(6, «)
often has to rely on numerical methods, such as the Monte Carlo simulation approach
or the Gibbs sampling method.

5.4.2 Three-Stage Estimation Method

Due to the high dimensionality and nonlinearity in the integrals, directly maximizing
likelihood (5.48) with respect to all the model parameters 6 and « can be compu-
tationally intensive. To circumvent this difficulty, multiple stage estimation methods
may be employed to simplify computation. Here we outline a three-stage algorithm
for parameter estimation by approximating the observed likelihood (5.48).

We use a matrix representation to describe this procedure. Let Y; =
Yit, oo Y)Y = (Y{,....Y) & = (€i1,....€im)"s € = (],....€x),
ej = (ej1,...,eim;)",and e = (e],...,e;)". Similar symbols are defined for Z;,
Xi, X 1;, 8,2, X,X*,B, T, and S.

Leté = (&].....&) " andu = (uj,...,u})". Define

Gi(Xi.Zis&) ={g(Xir, Zin;: &) ... .8 Kim;» Zim; 3 €}
GX,Z;§) ={G (X1, Z1:81)..... G (Xn, Zn:6n)}":
dB,u; B) = {d{(B1,u1;B),...,d,(Bn,un; p)}".
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Then models (5.43), (5.44), (5.45), and (5.46) are written as

Y =GX,Z;§) + o¢; (5.49)
& =dB,u;p); (5.50)
X* =X +e; (5.51)
X=V+W, (5.52)

respectively, where

€ ~ N(,diag(l,; :i =1,...,n));

u ~ N(0, [diag(Zy)]n):

e ~ N(0,diag(02 1, :i = 1,...,n));

V= ... V) with Vi = O Tir,.... 0 Tim,)":
W= (W,...,WH" with W, = (ISi1,..., 0 Sim,)";

and [diag{ X, }], is the diagonal block matrix with n identical block matrix X,.
Using a presentation slightly different from the observed likelihood (5.48), we
consider the following observed likelihood, expressed in terms of the entire data set,

L(Y|X*,Z:0, )
— [/LI(Y|u,X,Z; 0)Lo(u; 0) L3 (X|X*, Z; a)d Xdu, (5.53)

where L1 (Y|u, X, Z; 0) is determined by (5.49) and (5.50); L, (u; 6) is determined
by the model N(0, [diag(Xy,)],) for u; and L3(X|X*,Z; «) characterizes the condi-
tional model of X, given {X*, Z}, which can be worked out using the conditional
model (5.51) of X*, given {X, Z}, and the conditional model (5.52) of X, given Z.

To estimate the model parameter using (5.53), Li et al. (2004) proposed an est-
imation procedure based on multiple steps of approximations to (5.53). The proce-
dure consists of three steps. The first step estimates « in L3(X|X*, Z; o). A regular
algorithm is utilized to fit the linear mixed model (5.47) to obtain the maximum
likelihood estimator @ for parameter «. Conditional mean E(X|X*,Z;«) is then
evaluated with « replaced by @, and let E(X|X*, Z; @) denote the resulting value.
The second step handles the inner integral of (5.53); this integral is approximated
using the Solomon—Cox approximation (Solomon and Cox 1992), where the inte-
grand is taken as a function of X and a quadratic expansion of the integrand about
the conditional mean E (X|X*, Z; @) is used. At the third step, we approximate the
outer integral of (5.53) using the Laplace approximation by treating the integrand
as a function of u (Wolfinger 1993; Wolfinger and Lin 1997). The implementation
details can be found in Li et al. (2004).

5.4.3 EM Algorithm

As an alternative to the three-stage estimation outlined in §5.4.2, the EM algo-
rithm is employed for parameter estimation. The log-likelihood for the complete data
(Y, X, X ui,v) ti = 1,...,n}, given Z;, is
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n
le =Y log{f(yilui.x;.2i) + log f(x]|x;.2i) + log f(xi|zi. v;)

i=1
+log f(u;) + log f(vi)},

where f(yi|u;,x;,z;) is given by model (5.43) with & replaced by (5.44),
S(x]|xi,z;) is determined by (5.45), f(x;|z;,v;) is determined by (5.46), f(u;)
and f(v;) represent the density functions of distributions N(0, X,) and N(0, X),
respectively, and the dependence on parameters is suppressed in the notation.

For iteration (k + 1) at the E-step, we need to evaluate the conditional exp-
ectation of £, E(Lc|Y;, X[, Z;: g ,a%) where the conditional expectation is
evaluated with respect to the model, f(u,-,vi,xi|Y,-,Xl-*,Zi;O(k),a(k)), for the
“missing” data {u;, v;, X;}, given the observed data {Y;, X, Z;}, with the param-
eters evaluated at the estimates {G(k),a(k)} of the model parameters at iteration
k. At the M-step, one proceeds with maximization of the conditional expectation
E:|Y;i, X l-*, Z;i: Q(k), a(k)) with respect to 6 and «. However, this may be compu-
tationally difficult due to the nonlinear structure of function g(-).

To get around this problem, we use an approximation to simplify the condi-
tional expectation E({c|Y;, X, Z;: Q(k),a(k)). The idea is to iteratively apply the
EM algorithm to a /inear mixed model which approximates the initial nonlinear
mixed model. For the next iteration of the EM procedure, a first-order Taylor series
expansion around the current estimates of the parameters and random effects esti-
mates is used to approximate the initial nonlinear mixed model.

First, we write the two-step modeling of nonlinear mixed models (5.43) and
(5.44), together with model (5.46), as a single equation

Yij = gij (B, %, ui, v;i) + o€
for some nonlinear function g;; (-) with the dependence on covariate Z;; suppressed.
Let gi = (gi1.---.&im;) and { = (B", V)"
Let ¢ denote the current estimate of { obtained from the EM algorithm, and
(u;,v;) be the resulting empirical Bayesian estimates of (u;, v;). Calculate
0gi g ~ g

?i; = a_é'T; giu = m; giv = m§
1 I

where {{, u;, v; } is replaced by the estimates {E u;,V;}. Then around the current est-
imates {¢,u;,V; }, we apply a Taylor series expansion to linearize nonlinear function
gi (¢, u;, v;) approximately:
gi(Cui vi) ~ g (A0 07) + Zie (0= 0) + T (i — ) + Fro(vi — 7).
Define a pseudo-response as
Y=Y —{g(C0.7;) — Giel — Toulli — T Vi ).

Then we obtain an approximate linear mixed model

~

Yi ~gieC+giuui + givvi + 0€. (5.54)



220 5 Longitudinal Data with Covariate Measurement Error

At the E-step of the next iteration, we calculate the conditional expectation of the
complete log-likelihood obtained from the approximate response model (5.54) and
measurement error model (5.45). Then this conditional expectation is maximized
with respect to the model parameters at the M-step of the next iteration. Due to the
assumption of normal distributions for all the relevant random variables, the updated
estimates of the parameters for the next iteration are readily obtained. Detailed dis-
cussion and extension of this procedure were given by Wu (2002) and Liu and Wu
(2007).

5.4.4 Remarks

In this section, we discuss likelihood-based methods for estimation of model parame-
ters under nonlinear mixed measurement error models. Computation is a central issue
for the implementation of the inferential procedures. There is a trade-off between
computational feasibility and statistical validity when choosing a specific implemen-
tation algorithm. In §5.4.2 and §5.4.3, we describe two approximation schemes to
ease computational difficulties which arise from handling high dimensional integrals
with nonlinear integrands.

The discussion emphasizes how to find the point estimates for the model param-
eters. Variance estimates for the resulting estimators may be obtained based on the
approximate models accordingly. For instance, for the EM algorithm employed for
the approximate linear mixed model (5.54), one may apply the formula by Louis
(1982) to calculate variance estimates for the resulting estimators, or alternatively,
use the approximate formula discussed by McLachlan and Krishnan (1997) and Wu
(2002).

Given a model setup, there may be multiple ways to introduce approximations
to ease computation. Davidian and Giltinan (1995), Wolfinger and Lin (1997), and
Wu (2009) provided some details on the comparisons of several approximate meth-
ods. No matter what method is used, it is important to recognize an issue: without
additional sources of data (such as a validation subsample) being available to char-
acterize the measurement error process, there is always the potential of running into
the problem of nonidentifiability of model parameters. Discussion on this point is
provided in §5.5.5.

5.5 Inference Methods in the Presence of Both
Measurement Error and Missingness

Analysis of longitudinal error-prone data is often further complicated by the pres-
ence of missing observations. Although longitudinal studies are commonly designed
to collect data at each assessment for every individual in the studies, missing ob-
servations occur. It is well known that indiscriminately ignoring missingness in the
data analysis can result in seriously misleading results (e.g., Little and Rubin 2002;
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Daniels and Hogan 2008). On the other hand, in §5.2, we show that ignoring mea-
surement error can produce biased results. When both measurement error and miss-
ing values exist, the impact on inferences become even more complex due to the
interplay of their effects. These effects depend on many factors, typically pertaining
to the model structures of the response as well as the measurement error and missing
data processes.

In this section, we discuss issues and methods for handling longitudinal data
when both covariate measurement error and missing response observations exist. We
start with a discussion on handling longitudinal data merely with missing response
observations and then discuss longitudinal data with both features.

5.5.1 Missing Data and Inference Methods

We consider the situation where only the response variable Y;; is subject to miss-
ingness. Fori = 1,...,nand j = 1,...,m;, let R;; be the missing data indicator,
taking value 1 if Y;; is observed, and O otherwise. Write R; = (Ri1,..., Rim;)".

In handling longitudinal data with missing responses, several inference frame-
works are available; differences in these frameworks are reflected in the way of
modeling the response and missing data processes. In principle, valid inferences
for data with missing values would involve modeling the joint distribution of the
response and missing data indicator variables. Two general strategies may be consid-
ered: either a parallel or a sequential approach may be employed to characterize the
relationship between the response and missing data processes.

The former method equally treats the response and missing data processes and
uses a parallel manner to model both processes. In particular, Little (1995) discussed
a unified framework for modeling the response and missing data processes simulta-
neously where random effects are shared by both processes and conditional inde-
pendence, given random effects, is assumed for both processes. Vandenhende and
Lambert (2002) described a method which postulates the response and missing data
processes through a copula model.

Alternatively, modeling of the joint distribution of the response and missing data
indicator variables may be realized using a sequential scheme. Little (1993) and
Little and Rubin (2002) distinguished two classes of models with missing data:
selection models and pattern-mixture models, based on the factorization form of
the joint distribution /(y;, r;|x;, z;) of the response vector Y; and the missingness
indicator vector R;, given covariates X; and Z;.

In our discussion here, we consider the selection model which factorizes out the
conditional model for the hypothetically complete responses, given the covariates,
and then appends a model for the missing data indicators conditional on the responses
and covariates:

h(yi.rilxi.zi) = h(yilxi, zi)h(rilyi, xi, 2i), (5.55)
where h(y;|x;, z;) and h(r;|y;, x;, z; ) are the conditional probability density or mass
functions of ¥; given {X;, Z;} and of R; given {Y;, X;, Z;}, respectively.

Factorization (5.55) explicitly spells out the response process 4 (y;|x;, z;) which
is of primary interest. It also suggests a way to distinguish different missing data
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processes. Three missing data mechanisms are often classified for analysis of longi-
tudinal data with missing responses. Given covariates {X;, Z;},

e if h(ri|yi,xi,z;) does not depend on the responses, i.e., h(ri|yi, x;i,z;) =
h(ri|x;, z;), then the missing data mechanism is called missing completely at
random (MCAR);

o if h(ri|yi,xi,zi) = h(ri|yl-(o),x,-,zi), then the mechanism is called missing
at random (MAR), where yl-(o) represents the subvector of realizations for the
observed components of ¥;;

o the missing not at random (MNAR) mechanism arises when h(r;|y;, Xi, 2;)
depends on the unobserved response components.

Such a classification is useful in differentiating varying effects of missingness on
inferential procedures. Most statistical analyses, developed for scenarios with com-
plete data, may be directly applied to the observed data and still yield consistent
estimates under the MCAR mechanism; but they often give biased result if MNAR
holds. With an MAR mechanism, however, missingness effects may be more related
to the nature of the inference method. For example, usual likelihood methods, when
applied to the observed data with the missing data process left unmodeled, can still
lead to valid inference; whereas marginal methods, such as the GEE approach, may
yield inconsistent estimates.

To see this, we consider a parametric model {f(yi|x;,zi;B) : B € ©Og} for
h(yilxi,zi) and {f(rilyi,xi,zi;0) @ O € Oy} for h(ri|yi,xi,zi), where the
parameters B and ¥ are assumed to be distinct, or functionally independent, re-
spectively, taking values in the parameter space ®g and ®y. We are interested in
inference about B, which is, in principle, carried out based on the likelihood of the
observed data. To be specific, we partition y; into the observed response subvector

yl.(o) and the subvector yi(m) of missing components, then inference on f is conducted

by integrating out yl-(m) from the joint model f(yi(o), yl.(m), rilxi, zi; B, ) for (5.55).
The observed likelihood contributed from the ith subject is

Loi = fO rilxi, zis B, 9)
= / ey ™ xi 2 ) FOP, v xi zis Bdn(y™). (5.56)

Under the MCAR and MAR mechanisms, f(r; |yi(0), yl.(m), X;, ;1) is assumed

(m)

to be free of y;”, thus, yielding the log-likelihood for the observed data contributed

from the i th subject

log Lo; = log f(ry|x;. 213 9) +log f (v xi. 23 B)
and
log Loi = log f(ri]y\” xi.2::9) + log (3 |xi. 21 B).
respectively. Since parameters ¢ and 8 are distinct, inference on response parameter
B is then directly performed using the logarithm of the observed likelihood

log £ (v xi, zi; B),
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which is obtained from the response model alone with modeling of the missing data
process ignored. Maximizing > ;_, log f (yi(o) |x;, z;; B) with respect to parameter
B leads to the maximum likelihood estimate of §.

With MNAR, log f (yi(”) |xi, zi; B) is not obviously separated from the informa-
tion on the missing data process by using (5.56), so modeling of the missing data
process may be generally required. However, under the composite likelihood infer-
ence framework (Lindsay 1988; Lindsay, Yi and Sun 2011), the way of handling
missing data processes or mechanisms may be different. These issues were discussed
by Yi, Zeng and Cook (2011), He and Yi (2011), Li and Yi (2013a,b), and Li and Yi
(2016).

If inference about S is not derived from the likelihood method but is based on
the GEE method, the impact of ignoring the missing data process is different. With
MCAR, applying the GEE method to the observed data still leads to a consistent esti-
mator of B under regularity conditions, but biased results may arise if the missingness
mechanism is MAR or MNAR. This is evident from the following illustrations.

Consider the GEE setup (5.4) which is developed for analysis of complete lon-
gitudinal data. When missing response measurements are present and if we directly
apply this GEE formulation to the observed measurements, we would form the esti-
mating function

U= D;V; 'diag(Rij - j = 1,....m;) (Y; — ;)

fori =1,...,n.
However, such an estimating function does not guarantee to yield a consistent
estimator for f since it is not unbiased. In fact,

E(U;) = Ey,\(x;,z) ER;1(v; x;,2z) (Ui}
= Ev,\(x;.z) [ER;1v;. X,z {Di V7 \diag (Rij = j = 1,....m;) (Y; — )} ]

= EYI.|(XI,,ZI.)|:D,-Vi_1diag{P(R,-j =1V X, Z) 1 j=1,....omi} (i _/Li):|

# Ev;ix;.z0 ADiVi (Vi — i)}

=0,
where the second last step is due to that under MAR or MNAR, the probability of
missingness, P(R;; = 1|Y;, X;, Z;), cannot be ignored when evaluating the expec-
tation with respect to the model for the conditional distribution of Y;, given {X;, Z;}.

Furthermore, this derivation suggests a way to adjust for missingness effects:
inverse probability weighting. Let
P(Rij = 1|Y;, Xi, Z;)
then U* is an unbiased estimating function. As a result, inference about 8 may be
carried out by solving
n
2 Ur=0

i=1
for B, where the missingness probabilities are replaced with their consistent esti-
mates.

Ur = D,-Vl-_ldiag% cj=1,miy (Yi—py), (5.57)
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This inverse probability weighting strategy is often used in marginal analysis for
longitudinal data with missing response measurements; it was initiated by Robins,
Rotnitzky and Zhao (1995) for longitudinal data settings. Extensions were consid-
ered by Robins and Rotnitzky (2001), Yi and Cook (2002), Carpenter, Kenward and
Vansteelandt (2006), Shardell and Miller (2008), Yi and He (2009), Yi, Cook and
Chen (2010), Chen, Yi and Cook (2010b), and Chen et al. (2012), among many
others.

In implementing the inverse probability weighting scheme, MAR is usually
assumed for the sake of identifiability and estimability of the parameter associated
with the missing data model. With MNAR, the inverse probability weighting method
may be employed for sensitivity analysis (e.g., Yi, Ma and Carroll 2012). The valid-
ity of choosing suitable weights was discussed by Qu et al. (2011).

In summary, ignoring missing data has disparate effects on estimation of the
response parameter for different inference methods. Using the likelihood method for
the observed data is valid if MCAR or MAR holds while applying the GEE method
to the observed data is only valid for the MCAR scenario. When MNAR arises,
developing valid inferential procedures often calls for modeling of the missing data
process, as evident from a large body of available work in the literature, although
different perspectives may be taken as discussed by Yi, Zeng and Cook (2011) and
He and Yi (2011).

These conclusions, however, do not hold when measurement error is involved.
The preceding classification of missingness mechanisms is no longer useful to dis-
tinguish impacts of missingness on different inference methods. For instance, when
X; is error-prone and not observable, then the mechanism with h(r;|y;, x;,2;) =
h(ri|xi,z;) (or h(rilyi, xi, z;) = h(ri|yi0),x,-,z,')), initially termed MCAR (or
MAR) for an error-free context, does not necessarily ensure the same advantage of
the likelihood method over the GEE approach for which modeling of the missing
data process can be ignored. Even when h(r;|y;, x;,z;) = h(ri|x;, z;), if there is
measurement error in X;, the missing data process cannot be left unattended to for
the likelihood or GEE methods. Problem 5.12 sketches bias analysis for some set-
tings where both missingness in responses and measurement error in covariates are
present.

5.5.2 Strategy of Correcting Measurement Error and Missingness
Effects

In addition to Y;; being subject to missingness, suppose covariate X; is error-
contaminated and X/* is an observed version of X;. Valid inference generally requires
examining all the involved variables, {Y;, X;, Z;, X, R;}, jointly to untangle com-
plex relationships among different processes. Frequently, this requirement is sim-
plified to examining the joint distribution /(y;, x;, x*, r;|z;) by conditioning on the
precisely measured covariate Z;, where the distribution of Z; is left unspecified.
Such a strategy agrees with the common treatment in usual regression analysis where
conditional analysis is used for inference about the response process with covariates
fixed.
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Because it is difficult to come up with a meaningful and realistic joint model
for {Y;, X;, X/, R;}, we break modeling of the joint distribution of {¥;, X;, X*, R;}
(with Z; kept fixed) into a sequence of conditional modeling steps by the probability
multiplication rule. There is no unique way to do this, however. The choice of a
particular method is mainly driven by the feature of data, the nature of questions,
and the tractability and mathematical convenience of models as well as computation
cost.

A useful scheme is to decompose the conditional distribution of {Y;, X;, X i*, R;},
given Z;, as follows:

h(yi,xi, x]orilzi) = h(yilxi, zi)h (e, x]zi)h(ri|yio xi, X7 zi), (5.58)

where nondifferential measurement error is assumed. This factorization is com-
pelling. It offers an explicit way to spell out the relationship between the response
and the true covariates, which is of prime interest, and to separate measurement er-
ror and missingness processes, which are treated as a nuisance. Factorization (5.58)
allows us to use modeling strategies for covariate measurement error to delineate the
relationship between surrogate X;* and the true covariate X;.

The only possible complication here is to handle the conditional probability
h(ri|yi, xi, x;" , z;) for the missing data indicators. In the presence of covariate mea-
surement error, usual classification of missing data mechanisms, defined in §5.5.1,
no longer provides clear insights into the missingness impact on inference methods.
Therefore, we abandon the definition of missing data mechanisms classified for the
error-free context, but take new perspectives to examine the nature of missingness.

The new perspectives place the emphasis on directly examining the relationship
between the missing data indicator and error-prone covariate X; and its surrogate X .
We discuss two approaches to characterizing a(r;|y;, x;i, x7, ;).

With the first approach, we take a measurement error viewpoint and feature the
missing data process in terms of the underlying unobserved X;. We differentiate
missing data processes using the criterion whether or not

h(rilyi.xi, x;[, zi) = h(rilyi. xi, 2;) (5.59)

holds. This classification for the missing data indicator is somewhat analogous to the
definition of the nondifferential or differential measurement error mechanism defined
in §2.4. It says that the missingness probabilities do not depend on the surrogate value
if the true covariates are controlled along with the response measurements.

For the second approach, we bypass a measurement error development entirely
and simply characterize missing data processes directly in terms of the observed
covariates together with the response measurements. In this case, we differentiate
missing data processes according to whether or not the identity

h(rilyi, xi, x;", zi) = h(rilyi, X}, zi) (5.60)

holds. Identity (5.60) reflects that the missingness probabilities do not depend on
the underlying true error-prone covariate X;, once the surrogate X* is controlled
together with Y; and Z;.
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These two strategies will be applied in the next two subsections. Identities (5.59)
and (5.60) provide different ways to describe missing data processes. The mechanism
of a missing data process is called the true-covariate-driven missingness if missing
data satisfy (5.59). With true-covariate-driven missing data processes, we further
divide those processes into three categories according to MCAR, MAR and MNAR
mechanisms defined in §5.5.1, which gives the following mechanisms:

o If h(rilyi,xi,zi) = h(ri|x;i, z;) and (5.59) is true, then the missing data mecha-
nism is called the true-covariate-driven MCAR mechanism.

o If h(ri|yi,xi,2i) = h(r; |yl-(0), X;i,Z;) and (5.59) is true, then the missing data
mechanism is called the true-covariate-driven MAR mechanism.

e Ifh(ri|yi,xi,z;) depends on unobserved yl-(m) and (5.59) is true, then the missing
data mechanism is called the true-covariate-driven MNAR mechanism.

If a missing data possesses (5.60), then the missingness is called the observed-
covariate-driven missingness. Among missing data with such a property, we further
differentiate those processes according to their relationship with the response vari-
ables, which is done in a similar way to what is described in §5.5.1. Specifically, we
describe h(r;|y;, x;, z;) by the following three properties:

o Ifh(ri|yi,x,zi) = h(ri|x],z;) and (5.60) is true, then the missing data mech-
anism is called the observed-covariate-driven MCAR mechanism.

o If h(rilyi,x}.z;) = h(r; |yl.(0), x},z;) and (5.60) is true, then the missing data
mechanism is called the observed-covariate-driven MAR mechanism.

o If h(rilyi, xl-* , Z;) depends on unobserved yl-(m) and (5.60) is true, then the miss-
ing data mechanism is called the observed-covariate-driven MNAR mechanism.

Under the framework (5.58), inference methods may be classified as either
sequential or simultaneous approaches, mainly determined by the model assump-
tions. If full distributional assumptions are made for the response, missing data and
measurement error processes, then likelihood-based inference is naturally performed
with measurement error and missingness effects simultaneously addressed. If interest
centers around marginal features of the response process where only marginal mod-
els are assumed for responses, then sequentially accounting for measurement error
effects and missingness effects is often possible. We elaborate on these methods in
the next two subsections, which are mainly based on the development of Yi (2005,
2008), Yi, Ma and Carroll (2012) and Yi, Liu and Wu (2011).

5.5.3 Sequential Corrections

We discuss the marginal analysis of longitudinal data with response missing obs-
ervations and covariate measurement error. The basic idea is to develop multiple
steps for constructing an unbiased estimating function for estimation of the response
model parameter, in which each step uses the available measurements to sequentially
facilitate a particular feature of the data.
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At the first step, we construct a set of unbiased estimating functions for the res-
ponse model parameter under the ideal situation where neither missing responses nor
covariate measurement error are present. This is accomplished by applying standard
methods for the error-free and missingness-free context. For the next two steps, we
modify the estimating functions obtained from the first step by sequentially incor-
porating the measurement error effects and missingness effects, where the order of
correction mainly depends on the nature of the missing data process.

We elaborate on these ideas using subject-time-specific models. Suppose the
response model is given as (5.3) and the measurement error model is given by

X;; = Xjj + ejj, 5.61)
where the e;; are independent of each other and of {X;;, Z;;.Y;;} fori = 1,...,n
and j = 1,...,m;. We assume that e;; follows a normal distribution N (0, X.) with

known covariance matrix X, for ease of discussion; however, this assumption may
be relaxed.

In the error-free and missingness-free context, U;; (8; Y;;, Xi;, Z;;), defined as
(5.33), is used for estimation of parameter . Depending on the property of the
missing data process, one may choose different orders to correct for measurement
error and missingness effects step by step. We discuss two scenarios of missing
data processes: (1) missingness is observed-covariate-driven, and (2) missingness is
true-covariate-driven.

Observed-Covariate-Driven MAR/MCAR

First, we consider missing data with the observed-covariate-driven MAR miss-
ingness. To reflect the dynamic nature of the observation process over time, we write

mj
h(rilyi.xt.zi) = ] Gy M. vinxF 20,
j=2

where the conditional probability, h(ri1|y;,x], z;), of R;1 given {Y;, X, Z;} is
assumed to be 1; ’H}‘j = {Ri1....,R; j—1} is the history of the missing data
indicator before time point j; A (rij[H};. yi, x;", zi) is the conditional probability
P(R;; = r,-_;lH}‘j,Yi,Xi*,Z,-) for j =2,....my;and r; = (ri1,....7im;)" is a
realization of R;.

Assume that

P(R;; = 1|7—l?j,Y,~,Xi*,Z,~) = P(Rij = 1|Y;, X[, Z)

for j = 2,...,m;, which says that given the responses and the observed covariates,
the probability of being missing at a time point does not depend on missingness
at previous assessment times. Since subjects are assessed sequentially over time, it
is natural to consider missing data processes with the following type of observed-
covariate-driven MAR (or MCAR) missingness:
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P(Rij = 111, X7 Zi) = P(Ryj = 1|H}\O HTHE)).
where HI-Y]-(O) is the history of the observed response components before time j for
subject i, HiF ={X}|,.... X L H ={Zi1,.... Zij},and j =2,....m

Let r;; = P(R;; = 1|’HY(0) Hj‘J*,HZ ) for j = 2,...,m;. We use a logistic
regression model to posit this condltlonal probability:

. oot
logit 7;; = ¥ wj;,
where 1 is the regression parameter and wj; is a vector consisting of the information

on the histories {HY(O) HEHE )

Estimation of parameter s proceeds using a likelihood-based method. Let
Li(®) = 1‘[ o (1= 1)

be the likelihood contributed from subject i and S;(¢) = dlog L;(¥)/d¢. Then
solving

D OSi®) =0 (5.62)

i=1

for ¥ leads to an estimate of &. Let ¢ denote the corresponding estimator, which is a
consistent estimator of ¥ under regularity conditions.

Next, we describe a sequential correction procedure to account for effects in-
duced from measurement error and missingness. First, we use a strategy described in
§5.3 to correct for measurement error effects, and let Uijf (B: Yij, X} i Z;;) denote the
resulting unbiased estimating function expressed in terms of the observed surrogate
Xi); and {Z,’j, Y,’j}.

At the next step, we further modify function Uijf (B:Yij, X; ;, ij) to correct for
the effects caused from the missingness of the response measurements using the
inverse probability weighting method. Let

R..
@i (B,9) = —= U (B: Yy, X5, Z4j), (5.63)
ij

then @;; (B, 9) is unbiased by the definition of z;;.

As a side comment, we note that the unbiasedness of @;; (B, ¢t) allows us to create
a class of unbiased estimating functions for 8 by an additive form

" R:: —1:;

’{U (B:Yij. X5, Zij) + %D(YU,X;,ZU;,B) (5.64)
ij

for some function D(:) which is free of the missing data indicator R;;. When

Ui (B:Yij, X[5. Zij) is linear in Y;; with the form

z](ﬂ le]’X;;» l‘j)zA(X;;vzljvﬂ)Yl]+B(le’Zij;ﬂ)
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for some functions A(-) and B(-), then setting
shows that estimating function (5.64) is algebraically equivalent to replacing argu-
ment Y;; with (R;;/7;;)Y;; in U; (B:Yi;, X;;., Z;;) and, hence, function
@5 (B.9) = UAB: (Rij /1)) Yij. X[, Zij}
may be used for inference about 8 as well.
Finally, following the GMM method outlined in §5.3, we obtain an estimating

equation for 8 by combining all the functions @;; (8, ¢) in the same manner as that
of formulating (5.34). Let U;** (B, ) denote the resultant estimating function for j,

and B denote the corresponding estimator of 8 by solving Y ;_; U**(B,9) = 0 for
B with 9 replaced by its consistent estimate.

Under regularity conditions, /n (E — B) has an asymptotic multivariate nor-
mal distribution with mean 0 and covariance matrix "' X** [ _IT, where I' =
E{JUS*(B.0)/3B"}. Z** = E{Q:(B.9)Q}(B.9)}.and Qi (B.9) = U (B. D)~
E{QQU*(B.0)/00"}[E{3S; ()/30"}]7'S; (). Thus, inference on B is conducted
based on replacing the asymptotic covariance matrix with its consistent estimate in
the asymptotic distribution of E

The following example illustrates the construction of function @;; (-).

Example 5.6. (Logistic Regression with Missingness and Measurement Error)

Suppose Y;; is a binary response variable and {X;;, Z;; } are the associated cov-
ariates where i = 1,...,nand j = 1,...,m;. The mean w;; = E(Y;;|X;;, Zi;) is
described by the logistic regression model

logit ju;; = Bo + B Xij + B, Zij, (5.65)

where B = (Bo, B}, B;)" is the vector of regression parameters.

Suppose that X;; is mismeasured as X i’; and they are linked by the model (5.61).
Suppose that response variable Y;; is subject to missingness and estimation of the
parameter associated with the missing data model is based on (5.62).

First, we construct an estimating function for § merely using the response model
assumptions. Specifically, we use the formulation of (5.33), which is an unbiased
estimating function of 8 in the absence of measurement error or missingness:

1
exp (Bo + BrXij + B2 Zij) X
tj

L+exp (Bo+ A1 Xy + B 2i) § \ 7,

Uij (B Yij. Xij. Zij) = § Yij —

Next, we modify U;; (B; Yi;. Xi;, Z;;) to incorporate measurement error effects.
If using the insertion correction strategy to adjust for measurement error effects, we

need to find an estimating function U; B: Y. X i’;, Z;;) such that

E{US (B Yij, X[, Zip\Yij, Xij, Zij} = Uij (B: Yij, Xij» Zij), (5.66)
where the expectation is taken with respect to the model for the conditional distribu-
tion of X}, given {Y;;, Xi;, Zij}.
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However, there is no analytical function U’ ( ) to match Uj; (-) such that (5.66) is
met (Stefanski 1989). To get around this barrler we modify U;; (B; Yij, Xij, Zi;) by
attaching it a weight function

w(B: Xij. Zij) = 1 +exp(Bo + By Xij + BLZij).

Define
Uvij (B Yij, Xij, Zij) = w(B; Xij, Zij)Uij (B; Yij, Xij. Zij).
Then taking
1 1
UG (B Y. Xij. Zij) = Yig | X5 | + (Y = D | X5 — ZeBs
Zij Zij
oxp (o= B2 4 x4 iz

gives us the identity
E{US(B: Yij, X[ ZipYij, Xij. Zij} = Usij (B Yij, Xij, Zij),

which ensures U (,3 Yij, X; ;';, Z;;) to be an unbiased estimating function.
Finally, to accommodate missingness effects, we follow (5.63) to construct func-

tion @;; ).
True-Covariate-Driven MAR/MCAR

In contrast to the foregoing modeling strategy for the missing data process which
is observed-covariate-driven, we examine the case where missing data processes are
true-covariate-driven.

Suppose each subject may drop out before the study ends. That is, for i =
I,....,n, R;;j = 0 implies R;x = 0 for all k > j. Let D; be the random drop-
out time for subject i and d; be a realization. Let t;; = P(R;; = 1|Y;, X;, Z;) for
j = 2,...,m;. Suppose that the drop-out process is true-covariate-driven MAR (or
MCAR). Then

Tij = P(le = l|}]l(0)7 XiaZi)

P(R;; = 1|R; -1 = 1,)’,-(0),)(1',21'),

|
:I\

~
Il

2
where we assume P(R;; = 1|Y;, X, Z;) = 1.

Let vij = P(Rij = l|Rijo1 = 1,Y“ . X;,Z;) for j = 2,...,m;. Since
logistic regression models are commonly used to model drop-out processes (e.g.,
Diggle and Kenward 1994; Robins, Rotnitzky and Zhao 1995), here we modulate
Vij as
logit Vij = 19Tw,-j, (5.67)
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where w;; is the vector consisting of the information of the covariates {X;, Z;} and

the observed responses YI-(O), and 9 is the regression parameter.
Then the likelihood contributed from subject i is

di—1

Li(®) = (1—vig) [] vir-

=2

Let S;(¥) = dlogL;(¥)/09 be the score function contributed from subject i.
Denote 6 = (8", 9")".

Now we describe a sequential method to incorporate measurement error and
missingness effects into estimation procedures. We first account for missingness
effects by modifying estimating functions U;; (8; Y;;, X;;, Z;;), where the inverse
probability weighted generalized estimating equation (IPWGEE) method, discussed
in §5.5.1, is employed. Similar to the construction of (5.57), for each time point j,

define 3
(i (Rij
Uij(ﬁ,ﬁ) = (W) Vi (; (Yij — wjj)-
Let U/ (B, ) be the combined estimating function of the U;;(f,?) using the
GMM method as described for formulating (5.34). Define

H;(8) = (U(B. 7). S{ ()",

which satisfies E{H;(6)} = 0 in the absence of measurement error.

Next, we correct for measurement error effects by working with H(6). Strate-
gies discussed in §5.3 may, in principle, be employed. However, depending on the
complexity of the related models, those schemes may not be easily implemented in
general. In such instances, we may use an approximate correction method, such as
the SIMEX method or the regression calibration approach, to reduce measurement
error effects following the implementation steps described in §2.5.3.

5.5.4 Simultaneous Inference to Accommodating Missingness and
Measurement Error Effects

We discuss a strategy that simultaneously adjusts for effects induced from measure-
ment error and missingness, which is accomplished using the likelihood-based meth-
ods. We consider the case where the response process is modeled as (5.9) and (5.10),
which is denoted as f(y;|x;, z;i, u;; B) together with the model f(u;;y) for random
effects u;. Here B and y are the associated model parameters, and the dispersion
parameter ¢ is treated as known for ease exposition.

For missing data processes, we consider the scenario where the process is true-
covariate-driven and the missing data indicator R; is independent of random effects
u; when {Y;, X;, X, Z;} is given, i.e.,

h(rilyi.xi, x[, ziowi) = h(rilyi, x[ xi, 2i) = h(ri|yi, xi. 2i)- (5.68)
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We utilize the decomposition

m;
h(rilyisxiozi) = [ ] A 1My, yioxi 20) (5.69)
j=2

so that the missing data process can be determined by modeling a sequence of condi-
tional distributions /(r;; IH}*j , i, X, z;) for univariate variables R;; given the history
H?j and {Y;, X;.Z;}, where h(r;i1|y;, x;, z;) is assumed to be 1.

For example, let v;; = P(R;; = 1|’H}‘j, Yi, Xi, Z;), then a logistic regression
model may be employed:

logit Vij = z?Twl-j, (5.70)

where w;; includes the information of the covariates and responses together with the
history of the missing data indicator, and ¥ is the associated parameter.
To feature measurement error, we employ multiple regression model (2.29):

Xi =g+ X +T.Z; +e, (5.71)

where the e; are independent of {X*, Z; } and the responses as well as random effects
u;; e; has zero mean and follows a distribution f(e;; ce) with parameter vector o,;
and o, 'y and I"; are defined as for (2.28). Let o be the vector including all the
parameters for model (5.71).

Let 0 = (87, y", 9", &")" be the vector of all the parameters associated with the
response, missing data and measurement error models. To conduct inference for 6,
we employ an extended version of the EM algorithm, discussed in §2.5.1.

We assume that

h(yilxi.x;, zioui) = h(yilxi, zi, u;)
and
h(uil|xi, x', zi) = h(u;), (5.72)

where /(-|-) and A(-) represent the conditional and marginal distributions for the
variables indicated by the corresponding arguments.

Under the assumptions for the missing data process as well as (5.72), the loga-
rithm of the complete data likelihood contributed from subject i is

Lei =log f (rilyi,xi,zi: ) +log f (yilxi,zi ui: B)
+log f(uizy) +log f (xilx/. zis ), (5.73)

where f (ri|yi, xi,zi;0) is the model for (5.69), determined by (5.70); and
f (xilx}, zi: @) is determined by (5.71).
The E-step for iteration (k + 1) gives

Qi (9;9(")) =F {fci|Yi(0),Ri,Xi*,Z,';e(k)}



5.5 Inference Methods in the Presence of Both Measurement Error and Missingness 233

= /// {logf(ri|yl'(0)’y['(m)axf’zi;l9) + logf(yl-(O),yi(m)|xl‘,Zi,ul’;ﬂ)

+log f (uisy) + log f (xi|x], zi: )

-f (yl-(m),xi,uily;o), ri, X5, zis 0(")) dn(yi(’")) dx; dn(u;),

where f(yl.(m), X, U |yl.(

(’),ri,x;k ,zi;G(k)) is the model for the conditional dis-
tribution of the “missing” components {Yl-(m),X,-,u,-}, given the observed data
{Yl-(o), R, X l.*, Z;}, evaluated at parameter value 0®) obtained from the kth iteration.

It is difficult to directly evaluate expectation Q(6;0%)) because the associated
multiple integrals do not yield an analytically closed-form. Instead, we employ the
Monte Carlo EM algorithm to encompass this problem. For each i, we generate a
large number of samples from the distribution f (yl.(m), Xi Ui yl.(o), ri, X}, zi:6®)
and use the sample information to approximate the integrals. Specifically, the
Gibbs sampler technique is invoked to generate samples, where we iteratively

sample from f(yl-(m)|xi,ui,yl§0), rixr,zis 0®), f(xilui, yisrioxF, zi;0%), and
Silyi, xi,ri, x5,z 0@, using the decompositions:
Friyilxi, xF zioui; 6®)
L,y xi xF 2 ui; 0R))
o< f(rilxi, yinzi: 0%) f(ilxiui. 260
Flrioyioxilx} zioui: 6%)
frisyilxft zioui: 0®)
o f(rilxi, yir2i: 09 f (ilxisuin 2i:6®) f (xilx?, 203 0W);
Filxi, yiorioxtzi:0%) = fQulyixi xf zi:0®)
o f(yilxioug,zi:00) £ ui; 690);

where the assumptions for the missing data process and (5.72) are used.
At the kth iteration, for each i let

k 1.k
B _ gm0

f(yl(m)|xl,ul,yl(0)7rl,xl*7zl;9(k)) —

FCiluiyiori xtzi0®) =

1,k 1,k
v X w0y

3

denote the /th sample generated from distribution

FO iy xf 21 0®),

1

where [ = 1,..., Ny and Ni is a given positive integer which may increase with
the iteration number k to speed up the algorithm. Then we approximate Q; (9; 9("))
with

0, (8:0) = L %g (w®: g
i > Ny P ci\V;1 s s

where £; (vl.(;(); 6% is determined by (5.73) with {y", x;, u;} replaced by vl.(f).



234 5 Longitudinal Data with Covariate Measurement Error

At the M-step, we maximize Y ;_; @ i (9; G(k)) with respect to 6 using an opt-
imization procedure and obtain an updated estimate §%*1 for 6. Repeat through
the E and M steps until convergence of #%+1_ Let 9 denote the limit of estimates
(0F) k=1,2,..}

An estimate of the covariance matrix of & may be obtained using the formula
of Louis (1982) which requires computation of the second derivatives of ;. Alter-
natively, one may employ the approximation formula of McLachlan and Krishnan
(1997), as discussed by Liu and Wu (2007) and Yi, Liu and Wu (2011).

The preceding development is directed to true-covariate-driven missing data
processes. It can be easily modified to accommodate missing data with the observed-
covariate-driven mechanism. Our discussion here assumes a GLMM for the response
process. Extensions to other response models, such as nonlinear mixed effects mod-
els, are carried out along the same lines.

5.5.5 Discussion

In the development of §5.5.3 and §5.5.4, we consider missing data with the true-
covariate-driven or the observed-covariate-driven mechanism. With either mecha-
nism, the sequential correction procedures can, at each step, fully adjust for one type
of effects arising from measurement error in covariates or missingness in responses.

For general situations where missing data are neither true-covariate-driven nor
observed-covariate-driven, it is difficult to completely sort out measurement error ef-
fects or missingness effects within a single step, although it is still possible to sequen-
tially develop a valid inference method. In such instances, simultaneously addressing
both measurement error effects and missingness effects may be more natural; factor-
ization (5.58) provides a convenient way to develop likelihood-based methods.

The sequential methods, discussed in §5.5.3, are attractive in that the response
model does not have to be fully specified; only the mean and variance structures
are assumed for the response process. These methods usually require missing data
to be MAR or MCAR together with (5.59) or (5.60) so that parameters associated
with the missing data model are identifiable. If missing data are MNAR under (5.59)
or (5.60), then these methods may only be employed for sensitivity analyses. On
the other hand, the simultaneous procedures, discussed in §5.5.4, require full model
assumptions, but they are flexible for accommodation of various types of missing
data processes.

In this section, missingness arises from responses while measurement error
comes from covariates. Other types of “imperfect” data, such as data with incomplete
covariates or error-prone responses, may be handled following the same principles,
although technical details are different. No matter what the specific technical details
are, several important aspects need to be recognized.

In analyzing “imperfect” data which involve both missing observations and
measurement error, usual classification of measurement error mechanisms for the
missingness-free context and classification of missing data mechanisms for the error-
free setting become less insightful. In a broad sense, when both missingness and
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measurement error are present, modeling of their processes, even though being a
nuisance, is generally required. The feasibility of nuisance models is, however, often
difficult to assess using standard model diagnostic techniques due to the unavailabil-
ity of “perfect” data. To resolve this concern, sensitivity analyses serve as a viable
strategy to evaluate inference results.

A second aspect is that model identifiability can be a serious concern when deal-
ing with “imperfect” data. In analyzing data with measurement error alone, noniden-
tifiability is often an issue, which is normally overcome with use of an additional data
source, such as a validation subsample, replicates, or instrumental variables (Carroll
et al. 2006). On the other hand, in the error-free setting with MNAR incomplete data,
model identifiability is commonly questionable due to the lack of information on the
values of those unobserved variables (Verbeke and Molenberghs 2000).

The identifiability issue becomes more challenging when both missingness and
measurement error are present. Empirically, if parameters are not identifiable, fast
divergence occurs in numerical iterative procedures. For instance, the EM algo-
rithm would diverge quickly if there is a nonidentifiability problem (Stubbendick
and Ibrahim 2003). When model nonidentifiability arises, it is useful to conduct sen-
sitivity analyses to evaluate how inference results may change for a series of given
models and specified parameter values.

With sufficiently many repeated measurements of error-prone covariates, model
parameters are more likely to be identified, especially when those within individual
repeated measurements are conditionally independent, given other measurements.
Parameter identification may also be possible for some highly structured models
(Carroll et al. 2006, p. 189).

5.5.6 Simulation and Example

We conduct numerical studies to illustrate a sequential method discussed in
Example 5.6. First, we run a simulation study where we set n = 500 and m; = 5
fori = 1,...,n, and generate 1000 simulated data sets for each parameter config-
uration. Response measurements Y;; are generated independently from the logistic
regression model (5.65) where the Z;; are time-independent binary variables, de-
noted as Z;, and take values 0 and 1 each with probability 0.5. Error-prone covariate
Xij = (Xij1,X;j2)" is, independent of Z;, generated from N(u,, ¥'y) where
My = (Ux1, tx2)", and X'y has diagonal elements {031 , 032} and off-diagonal ele-
ments Py 0102, With iy = 0.5and o = 1 fork = 1,2, and p, = 0.5. We set
,60 = —0.1, ,Bxl = 0.3, ,Bx2 = 0.6, and /31 =0.5.

Surrogate X;; = (X/};, X,)" and the true covariate X;; are linked by the mea-
surement error model (5.61), where covariance matrix X', has diagonal elements
{0621, 0622} and off-diagonal elements p,0.10.>. We consider the cases with p, = 0.5
and 0,1 = 0., = 0.15,0.5,0.75, featuring minor, moderate and severe marginal
measurement error; let o, denote common values of 0.; and o,>.

Consider a drop-out scenario where the missing data indicator is generated from
the model

loglt le = 190 + l?y),[,j—l + ﬁx*Xifj_l’l + ﬁzzl
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for j =2,...,m;, where we set 99 = —0.3,8, = 0.5, 9+ = 0.2, and ¥, = 0.2.
This yields approximately 47% missingness when Y; ;1 = 0,X; ;—1,1 = 1, and
Z;i =0.

Four analyses are conducted. Analysis 1 is the naive analysis which ignores both
covariate measurement error and response missingness, where the usual GEE method
with an independence working matrix is employed; Analysis 2 modifies Analysis 1
with response missingness taken into account but covariate measurement error ig-
nored; Analysis 3 modifies Analysis 1 with measurement error effects accommo-
dated but missingness effects ignored; and Analysis 4 is carried out using the method
described in Example 5.6 which corrects for the effects induced from both covariate
measurement error and response missingness.

Fig. 5.1 plots the finite sample biases against the value of o, for the four anal-
yses. As expected, the three analyses that do not accommodate measurement error
or missingness produce strikingly biased results. The method accounting for both
measurement error and missingness produces much smaller finite sample biases.

Next, we illustrate the method described in Example 5.6 by considering the data
analyzed by Yi, Ma and Carroll (2012). The data set consists of repeated measure-
ments for 1737 individuals with 24-hour recall food intake interviews taken on four
different days. Information on age, vitamin A intake, vitamin C intake, total fat intake
and total calorie intake is collected at each interview.

Let Y;; be the binary response variable indicating whether or not the reported
percentage of calories for individual i exceeds 35% at time point j. About 4% of the
Y;; measurements are missing. We study how the fat intake changes with age and
how it is associated with the intake of vitamin A and vitamin C.
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Fig. 5.1. A Simulation Study for the Comparison of the Four Methods
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For subject i at interview j, let Xi’;.l be the logarithm of 0.005 plus the stan-
dardized reported vitamin A intake, X i’; , be similarly defined for reported vitamin C
intake, and Z; be the baseline age in years divided by 100. Yi, Ma and Carroll (2012)
commented that such transformations allow us to reasonably use a normal distribu-
tion to approximate the measurement error process. Consider the logistic regression
model

logit P(Yi; = 11X, Zi) = Bo + Bx1 Xij1 + Bx2Xijo + B Zi

forj = 1,...,4andi = 1,...,1737, where Bo, Bx1, Bx2 and B, are regression
parameters.

Vitamins A and C are measured with substantial random error. However, the
study does not have sufficient information for estimation of the covariance matrix of
the measurement error directly. To obtain an approximate assessment, we first treat
the four measurements of the vitamins A and C intake as repeated measurements
of the long-term average intake value and obtain the sample variances, respectively,
given by 0.90 and 0.84, and the sample correlation coefficient 0.36. Noticing that two
sources of variability, the variability of the true vitamin intake near the time of the
visits and the measurement error variability, are involved, and that no information
is available for us to separate these two variabilities, we allocate half to each, so
that the estimates of the measurement error variances are taken as 62, = 0.45 and
02, = 0.42.

Similar to the preceding simulation study, four analyses are performed. The
results are reported in Table 5.1. The analyses show a significantly positive corre-
lation between vitamin A intake and over-consumption of fat, while this association
is negative for vitamin C. Considering that common sources of vitamin A are meat
and animal organs while those of vitamin C are vegetables and fruits, these results are
perhaps plausible. The consequence of ignoring the measurement error is attenuation
towards zero while ignoring the missingness seems to result in slight overestimation
of the covariate effects. A more detailed study on this data set was reported by Yi,
Ma and Carroll (2012) where sensitivity analyses were performed to address differ-
ent degrees of measurement error in the intake of vitamins A and C.

Table 5.1. Analysis Results Reported by Yi, Ma and Carroll (2012)

Analysis 1 Analysis 2 Analysis 3 Analysis 4
EST SE p-value EST SE p-value EST SE p-value EST SE p-value

Bo 0.210.14 0.14 021 0.15 0.14 0.310.15 0.04 0.26 0.16 0.09
Bx1 0.17 0.03 0.00 0.12 0.03 0.00 0.39 0.07 0.00 0.28 0.07 0.00
Bx2 —0.120.03 0.00 —0.130.03 0.00 —0.310.06 0.00 —0.310.07 0.00
Bz 041039 0.29 042 0.39 0.29 0.60 0.40 0.13 0.57 041 0.16
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5.6 Joint Modeling of Longitudinal and Survival
Data with Measurement Error

In addition to collecting repeated measurements over a time period, many longitudi-
nal studies also gather information on time-to-event of interest (often termed “‘sur-
vival time”), such as infection or death. As longitudinal and time-to-event outcomes
are usually associated, marginal methods, which separately postulate the longitudinal
and survival processes, become incapable of conducting inferences. In addition, lon-
gitudinal measurements cannot be observed after the event time, marginal methods
often fail to incorporate this feature in the analysis.

A remedy to overcome the drawbacks of marginal methods is to combine the sur-
vival and longitudinal components and carry out inferences simultaneously within a
likelihood-based framework. This approach enables us to mutually borrow informa-
tion from each process and gain efficiency in estimation, besides correcting potential
bias involved in the marginal analysis.

There has been increasing interest in joint modeling of longitudinal and survival
data. Depending on research interest, longitudinal outcomes and the event time are
handled with different schemes. Three categories divide the methods on joint mod-
eling analysis, analogously to those for handling missing data outlined in §5.5.1.
Selection models postulate the marginal distribution of the longitudinal measure-
ments and the conditional distribution of the event time, given the longitudinal mea-
surements (Diggle and Kenward 1994), while pattern-mixture models factorize the
joint distribution into the marginal distribution of the event time and the distribution
of the longitudinal measurements conditional on the event time (Little 1993). Latent
models, on the other hand, assume an underlying latent process, and conditional on
latent variables, repeated measurements and the event time are assumed independent
(Wu and Carroll 1988; Wulfsohn and Tsiatis 1997).

In this section, we discuss some joint modeling methods with the focus on the
selection model framework. To highlight the essence without being distracted by
complex technical exposition, we consider the case where only a scalar covari-
ate X;(¢) contributes longitudinal measurements and other covariates Z; are time-
invariant. For the time-to-event process, we consider the same setup as in §3.1.5.

Consider the Cox proportional hazards model

AtIH;, Zi) = do(t) exp{Bx Xi (t) + B, Zi}, (5.74)

wherei = 1,...,n, H}, = {X;(v) : 0 < v <t} is the history of the time-dependent
covariate up to and including time # for subject i, as defined on page 94; A (¢|H},, Z;)
is the hazard function at time ¢ conditional on the covariate history; A¢(?) is the
baseline hazard function; and B = (B, B7)" is the regression parameter.

The longitudinal process is usually not fully observed; it is measured intermit-
tently at certain time points and with measurement error. In addition, in many studies,
longitudinal covariate measurements terminate at censoring or the event time. Let
0 <11 < ... <lim; be the observation times for subject i, where m; is the number
of longitudinal measurements for subject i, and the last observation time #;5,; is no
bigger than ¢;, the minimum of 7; and C;.
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It is customary to express the observed longitudinal measurements X (;;) for
subject i at time f;; as

X,'*([ij) = Xi(tij) + eij for j = 1,...,m; with tim; <1, (5.75)

where the ¢;; are independent of each other and of {7;,C;, Z;, X;(t) : t > 0} and
follow a normal distribution N(0, 02) with variance o2.

To complete the model setup, we describe modeling of the true covariate X;(¢)
process. To accommodate possible heterogeneity existing in different subjects, ran-

dom effects models are used to describe the X; (¢) process:
Xi (1) = ulp(t). (5.76)

where u; is a vector of random effects that are independent of the e;; and
{T;,C;, Z;}, and p(t) is a vector of functions in . We write X; = {X;(t1),...,
Xi(tim;)} and X* ={X (t;1),..., X[ (tim;)}".

The linear structure of (5.76) is motivated from a viewpoint of functional data
analysis, as discussed by Ding and Wang (2008). Model (5.76) is flexible to cover a
broad class of random effects models by different specifications of p(¢). For example,
setting p(t) = (1,¢,...,t"~1)" leads to the polynomial growth-curve model that is
often discussed in the literature (e.g., Wulfsohn and Tsiatis 1997; Tseng, Hsieh and
Wang 2005), where r is a positive integer. If the trajectory of the X; () has a complex
nonlinear form over time, other functional form of the p(t) may be assumed. For
instance, Tseng, Hsieh and Wang (2005) adopted the form of p(t) = (log¢,t — 1)"
in their example for the egg-laying trajectories of the medfly data. Relaxation of
model (5.76) to include fixed effects of covariates can be done readily; see Li, Hu
and Greene (2009) for example. If there is little knowledge of choosing a suitable
parametric form for p(¢), one may completely treat the elements of p(¢) as unknown
smooth functions (Ding and Wang 2008).

For inferences, one needs to untangle the impact of the censoring and
assessment processes on the response and covariate processes as well. As
discussed in §3.1.4 and §4.1.3, modeling of the censoring and assessment pro-
cesses is generally needed unless simplistic assumptions are made. To leave
both processes unmodeled, we assume that the censoring and assessment pro-
cesses are noninformative and independent of the future covariates and random
effects u;.

5.6.1 Likelihood-Based Methods

Assume that f,;(u;0,) is the model for the distribution of random effects
u;, where o, is the parameter and the function form f,;(-) is given. Let
0 = (B", Ao("), o,,0,)" be the vector containing all the model parameters, where
Ao(+) is a function of time that involves additional parameters if modeled parametri-
cally.

We assume that measurement error is nondifferential, as discussed in §3.2.2.
Then the joint likelihood for the observed data is
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L=]] [ Jai fii Furdn(us)., (5.77)

i=1

where f;; denotes the probability density function which postulates the survival pro-
cess, given by

fi = o) exp{BxXi (1) + BLZi %

-exp |:— /0 i Lo(v) exp{BxX;(v) + ,BzZi}dv:|

with X;(?) replaced by model (5.76), f,; represents the model for the longitudinal
components

(IR
3 = Gz P | ~307 L7 )~ Xiw)F
Jj=1

with X; (#;;) replaced by model (5.76), and the dependence on the parameter is sup-
posed in the notation.

To use (5.77) for estimation, one needs to deal with the baseline hazard function
Ao(?) in the survival model. One way is to take a nonparametric viewpoint by as-
suming that A¢(#) has masses at the observed survival times and regard these values
as unknown parameters (e.g., Wulfsohn and Tsiatis 1997). Another approach is to
assume that A¢(¢) is a constant between two consecutive estimated baseline survival
times, as considered by Tseng, Hsieh and Wang (2005). These methods create a set
of additional parameters whose dimension is of the same order as the sample size
n. While this growing dimension may not necessarily generate considerable com-
putational complications, it does pose theoretical challenges which are pertinent to
situations of infinitely many nuisance parameters, briefly described in §1.3.4.

As an alternative, one may handle A(¢) using a weakly parametric approach,
as described by (3.2), and apply standard likelihood theory to establish asymptotic
properties of the resulting estimators. It should be noted, however, that this method
essentially ignores variability induced from the specification of cut points for the
pre-specified intervals, so it is viewed as a conditional analysis on a given set of cut
points for modulating A¢(?).

With the baseline hazard function modeled, one may proceed with maximizing
(5.77) with respect to the model parameter 6. As (5.77) does not have a closed-form,
numerical approximations, such as the Monte Carlo algorithm, may be used to handle
the integrals. When the dimension of random effects u; is high, this method becomes
infeasible.

Alternatively, one may employ the Monte Carlo EM algorithm which directly
makes use of the joint likelihood for the complete data:

Lo(0) = [ ] fai fui fui-

i=1
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At the E-step for iteration (k + 1), we need to evaluate the conditional
expectation
E{log LC(9)|tl ’ Si’ Xl'*y Zlv Q(k)},

where the expectation is taken with respect to the model for the conditional distribu-
tion of unobserved u;, given the observed data {#;, §;, X;*, Z;}, which is evaluated at

the parameter estimate §%) obtained at the kth iteration. Specifically, this conditional
model is determined by

Sfui 1, 8i1x], zi:0)
S, 8ilx}),zi:0)
_ Ssi(uis 0) f(ui|x], zi; 0)
S S i 0) fQuilxf Lz 0)dn(ui)’

where f;(u;;60) is fy with X;(¢) replaced by model (5.76), and the conditional
model f(u;|x},z;;0)is given by

Suilti, 8;,x7,2;:0) =

(5.78)

fl.ifui
[ fui fuidn(ui)

(5.79) assumes a simple form in some situations; it is a normal distribution if both
fui for random effects u; and f;; for longitudinal measurements are assumed to be
normal.

To evaluate E{log L.(0)|t;, d;, Xl.*, Zi; 9(")}, it suffices to calculate

fuilxf.zi:0) = (5.79)

E{guiz )|t 8;, X[, Zi:0)
for those functions g(-) of u; which are involved in log L.(0). By (5.78), we write
J 8(i; 0) fu (uiz 0P) f(ui|x}, zi3 0®)dn(ui)

I £ (i 0®) fui|x}, zis 6®)dn(u;)
_ E{g(uiz0) fii (ui: 00| XF, 7,000}
T E{faui0®)|XF Zise®y T

E{g(ui; 0,8, X", Z;; @(k)} _

(5.80)

where the expectations are evaluated with respect to (5.79) with parameter value %),
Consequently, (5.80) may be handled using the Monte Carlo method. For a
large positive integer N, generate a sequence of values, say {ul-l, ey ulN }, from the

conditional distribution (5.79) where @ is evaluated as 8, then we approximate
E{g(u;;0)t;. 6. X[, Z;: A by

YN gl:0) fii(u]:0®)
YN Sl 0@y

At the M-step, we maximize the resulting approximation of

Eflog Le(0)[1;, 8, X}, Z;: 0%}
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with respect to 6 and obtain an updated estimate %1 of parameter 6. Repeat these

steps until convergence of 8+ the estimate at convergence is taken as the point
estimate, say /9\, of 6.

To calculate the variance estimate associated with g we may utilize the formula
of Louis (1982) based on the observed Fisher information matrix for parameter 6.
However, this approach may become infeasible when the dimension of 6 is huge.
In this case, one may revert to the bootstrap procedure (Efron and Tibshirani 1993;
Efron 1994) for an estimate of covariance matrix of 0.

5.6.2 Conditional Score Method

In conducting likelihood-based methods outlined in §5.6.1, we impose a distribu-
tional assumption for random effects, which is not verifiable because random effects
are never being observed. When distributional misspecification occurs in a likelihood
formulation, biased results usually arise. In this section, we discuss an estimation
method that requires no distributional assumption on random effects; this is the con-
ditional score method explored by Tsiatis and Davidian (2001) and Song, Davidian
and Tsiatis (2002); an outline of this method is given in §2.5.1.

First, for each subject i and a given time ¢, we derive an “estimator” of X; (¢) by
treating u; in (5.76) to be a vector of parameters. This is carried out by combining
(5.76) with (5.75) and using all the longitudinal measurements up to and including
time point ¢ from subject i.

Specifically, let A;(t) = {t;; : ¢;; <t for j = 1,...,m;} be the longitudinal
assessment times for subject i up to and including time point ¢, and m; (¢) be the
number of measurements in 4;(¢). In order to estimate X;(¢) at time ¢, we must
have m;(t) > r,i.e., subject i must have at least r measurements up to time ¢, where
r is the dimension of u;. Define the at risk process

Ri(l) ES ]{l‘i >1, m,-(t) > r}.

Let ¥ (t) = [p(i1) - - - p(tim, (1))]" be the m; (¢) X r matrix recording the changes
for X;(¢) by time ¢. Combining (5.75) and (5.76) yields

XF(t) = Wi (tu; + e (1) (5.81)

where X (1) = (X (ti1), ..., X (tim; (1)) and e; (1) = (€j1, ..., €im; ()"

Let C;(¢) denote the collection {R;(t) = 1,u;, Z;, A;(¢)}. Then conditional on
Ci(t), we treat X’*(f) as a response vector with independent components, ¥; (¢) as
the covariate matrix, and u; as the parameter vector. Applying the least squares re-
gression method to (5.81), we obtain an estimator, denoted by #; (¢), of u;, based on
the measurements by time ¢:

HOESUAOI G AGEA G}

where the inverse matrix is assumed to exist.
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Linear regression theory implies that conditional on C; (), u%;(¢) has a normal
distribution with mean u; and covariance matrix X (¢), given by

Zi(0) = oW (Wi (1))

Let X; (1) = u}(t)p(t) be an “estimator” of X; (¢). Then conditional on C; (), X; ()
follows a normal distribution

Xi(0)Ci(t) ~ N(X;(1), Zxi (1)), (5.82)

where Xy; () = p"(¢) X (¢)p(¢). As the estimation procedure is carried out for each
subject separately, we further see that the X;(¢) fori = 1,...,n are independent.
Define the counting process increment

dNi(t) =1t <t; <t +dt; & =1, mi(t) > r)

for a small time increment dz. Conditional on C;(¢), dN; () and X i(t) are inde-
pendent. Therefore, the conditional distribution of {dN;(t) = I, X;(t) = x}, given
Ci (1), is the product

P{AN; (1) = 1|Ci ()} PAX (1) = x|Ci (1)},

where the first term is determined by a Bernoulli distribution with the probability
determined by the proportional hazards model (5.74), given by

[Ro(t) exp{BxXi (1) + B3 Zi}d1) [ — Ao(1) exp{Bx X; (1) + B Ziyd1]'™!
for / = 0 or 1, and the second term is, by (5.82), the probability density function

L[ eexop
V2725 (1) P 2@ |

Thus, the conditional distribution of {d N; (¢), X; ()}, given C; (¢), up to order dt, is

1 _{fi(f)—Xi(l)}2
V272 (1) P 2% (1)

[Ao(t) exp{Bx X; (1) + BLZ;}d1]*Ni®

Xi(1)
ﬂdei(t) + Exi(l) } j|

{Ao(1) exp(By Zi)d1}*Ni®
V21 Xy ()

Temporarily treating parameters 02 and B as known, replacing X;(¢) with the

multiplicative form (5.76) and then treating u; as the parameters, we obtain that,

by applying the property of the exponential family distribution to the representation
(5.83),

= exp |:Xi (t)

X2(1) + X2(1)
O 234()

(5.83)

Xi(r)

:Bdei (t) + Exi (Z)
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or equivalently,
2i(t;07, Bx) = Bx Zxi ()dN; (1) + X (1) (5.84)

is a “sufficient statistic” for u;, at each time ¢. This suggests that conditioning on
£2;(t; 02, Bx) would remove the dependence on random effects u; of the conditional
distribution of {dN; (¢), X; (1)}, given C; (¢).

This result offers us a simple way to perform inference about parameter f.
Instead of directly working on the initial hazard function A(t|H},, Z;), given by
(5.74), we may consider an alternative process by conditioning on £2; (; 62, Bx) and

{Ri(t)=1,Z;, A;(t)}. Let

M| (02, Be). Ri(1) = 1. Z; A (1)}
. P{le(t): llgi(t;aez’ﬁx)vRi(t): ]invAi(t)}
= lim .
dt—0+ dt

This conditional hazard function is equal, up to the order 0, (d?), to

Ao(t) exp{BxRi(1:07. Bx) — B2 Zxi(1)/2 + BLZi}. (5.85)

Let

Goi(t; 062’ ,Bx) = R;(?) exp{ﬂxgi (; 0327 ﬂx) - ﬂ;zczxi (l‘)/2 + ﬂ;zi};
Gli(t;oeza IBX?IBZ) = {‘Ql(thZ’ ﬁXa ,Bz)’ Z;}TGOZ(I70527 ﬁ)ﬁ ﬂz)
Then by analogy with the derivation of the partial likelihood score function for the

error-free setting (Tsiatis and Davidian 2001, §3), we obtain the estimating equation
for parameter §:

ZUfﬂ =0, (5.86)
i=1
where
Y21 Gij(t:02. Bx. B)
Zi}zl GOj(t;Oezvﬁx’ﬁz)

Combining the conditional hazard function (5.85) with (5.84) gives

Vis :/[{Qi(’;"f’ﬁx»ﬁz),zi}T— :|dNi(l).

Ao(1) expiBxX; (1) + BLZ;}
= M2 (102, Bx), Ri (1) = 1, Z;, Ai (£)} - exp[—B2 Zx (){dN; (t) — 1/2}] + 0, (d1).

This identity reflects the difference of the hazard functions between the conditional
method using\ (5.86) and the naive analysis based on the model (5.74) with X;(¢)
replaced by X; (7). It is clear that the difference is affected by the magnitude o2 of
measurement error as well as the covariate effect 8. The difference also depends on
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covariate X;(¢) via function p(-). Under the extreme situation where 62 = 0 (i.e.,
there is no measurement error), (5.86) recovers the usual partial likelihood score
function for the proportional hazards model.

Equation (5.86) may be used to estimate the response parameter § when the
parameter o2 for the measurement error is known. If 02 is unknown, it must be
estimated and the induced variability should be accounted for when developing
the asymptotic distribution of the estimator B of B.

We now describe a strategy of estimating 62 by applying the least squares fit to
all the covariate measurements for those subjects i with m; > r. This is different
from the estimation of X;(¢#) where only the covariate measurements by time ¢ for
subject i are used.

Let ¥; = [p(ti1) ... p(tim,;)]" be the m; x r matrix. Assume that ¥; has the
rank r. Combining models (5.75) and (5.76) gives

Xi* =Yu; +e¢;, (5.87)

where e; = (ej1,...,€im;)"

Conditional on C;(#;), we think of X as a response vector with independent
components, ¥; as the covariate matrix, and u; as the parameter vector. Applying
the least squares estimation procedure to (5.87) gives an estimator of u;:

= (V)X (5.88)
Lete; = X* — W;u;. By (5.87) and (5.88), we obtain that
E{I(m; > r)ele;|Ci(t;))} = I(m; > r) - (m; —r)o?. (5.89)
Consequently, an unbiased estimating function of 07 is set as
Uie = I(m; > n){(X] — Wity (X — Will;) — (mi — r)og}.
Let 6 = (B",02)" and U; (0) = (Ul Ue)", then solving
n
> UiB) =0
i=1

for 6 yields an estimate of . Let E = (Ex, E;)T and 62, respectively, denote the
corresponding estimators of 8 and 062.

Under regularity conditions, 1/n (B — B) is asymptotically normally distributed
with mean 0 and covariance matrix Fﬂ_l g Fﬂ_“, where

I'g = E{(3/3p")Uig}. Tp = E(Q; Q).
and 1
Qi = Uip — E{0U;p/3(02)} [E {0Ui./0(0))}] ~ Ute.

Empirical counterparts are employed to estimate I's and Xy for inference of the
parameters S.
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The key idea of the conditional score method described here is to find “suf-
ficient statistics” for random effects u; first and then work on a new process
by conditioning on the “sufficient statistics”. The dependence of the original
process on random effects is completely featured by the “sufficient statistics”.
This development uses the linearity form of (5.76) when deriving the “sufficient
statistics” for random effects u;. If there is a nonlinear relationship in (5.76), one
may adapt the foregoing derivation by invoking a linear approximation of (5.76) first
and then applying the delta method to obtain an asymptotic normal distribution of
X i (t) (Song, Davidian and Tsiatis 2002). In the same lines, the preceding devel-
opment may be extended to the case with multiple covariates as well. Details were
provided by Song, Davidian and Tsiatis (2002).

5.7 Bibliographic Notes and Discussion

Measurement error in longitudinal studies has attracted substantial research interest
(Carroll et al. 2006, Ch. 11; Wu 2009, Ch. 5). It is known that mismeasurement often
distorts usual analysis methods for longitudinal data. With covariate measurement
error, Chesher (1991) examined measurement error effects on changing the distribu-
tions of the responses and covariates. Wang et al. (1998) conducted bias analysis un-
der generalized linear mixed models. Wang and Davidian (1996), Tosteson, Buonac-
corsi and Demidenko (1998), and Ko and Davidian (2000) examined measurement
error effects under nonlinear mixed effects models. With error in responses, Neuhaus
(2002) investigated effects of misclassified binary response variables on analysis of
longitudinal or clustered data.

To address measurement error effects, many authors explored inference meth-
ods under a variety of settings. To name a few, Higgins, Davidian and Giltinan
(1997) proposed a two-stage estimation method for nonlinear mixed measurement
error models. Zidek et al. (1998) discussed a nonlinear regression analysis method
for clustered data. Assuming covariates are the regression parameters of random ef-
fects models, Wang, Wang and Wang (2000) compared estimators obtained from the
pseudo-expected estimating equations, the regression calibration and the refined re-
gression calibration approaches. Lin and Carroll (2000) used the SIMEX approach
to correct for covariate measurement error effects under nonparametric regression
models. Buonaccorsi, Demidenko and Tosteson (2000) discussed likelihood-based
methods for estimation of both regression parameters and variance components in
linear mixed models when a time-dependent covariate is subject to measurement er-
ror. Other work includes Palta and Lin (1999), Liang (2009), Zhou and Liang (2009),
Xiao, Shao and Palta (2010), Yi, Chen and Wu (2017), and the references therein.

Analysis of longitudinal error-prone data is further challenged by the presence
of other features, such as survival data with censoring or missing observations
(Tsiatis, Degruttola and Wulfsohn 1995; Wulfsohn and Tsiatis 1997). An overview
of joint modeling of survival and longitudinal data is available in Tsiatis and Da-
vidian (2004), Wu (2009, Ch. 8), Rizopoulos (2012), Wu et al. (2012), and Gould
et al. (2015). To jointly handle survival and longitudinal error-prone data, Tsiatis
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and Davidian (2001) developed an inference method by adapting the conditioning
method on sufficient statistics discussed by Stefanski and Carroll (1987). Wu (2002)
developed estimation methods to address censored data and error-prone covariates
that are postulated by nonlinear mixed models. Tseng, Hsieh and Wang (2005) ex-
plored a joint modelling approach under the accelerated failure time model when
covariates are assumed to follow a linear mixed effects model with measurement er-
ror. Ye, Lin and Taylor (2008) examined regression calibration methods to jointly
model longitudinal and survival data using a semiparametric longitudinal model and
a proportional hazards model. Xiong, He and Yi (2014) investigated joint modeling
of survival and longitudinal data where the proportional odds model is employed to
feature survival data and longitudinal covariates are postulated using measurement
error models. Chen and Huang (2015) explored a Bayesian inferential procedure
for semiparametric mixed effects joint models where skewed distributions are used
to describe longitudinal measurements and the Cox proportional hazards model is
adopted for modeling the event time process.

When both measurement error and missing observations are present, marginal
and likelihood-based methods were developed by various authors. For example,
Liang, Wang and Carroll (2007) explored estimation procedures for partially linear
models where the response is subject to missingness and covariates are error-
contaminated. Wang et al. (2008), Yi (2005, 2008), and Yi, Ma and Carroll (2012)
proposed marginal methods to incorporate measurement error and missingness
effects. Liu and Wu (2007) and Yi, Liu and Wu (2011) took a mixed model frame-
work for the response process and developed likelihood-based inferential procedures.
Other work can be found in the references therein.

5.8 Supplementary Problems

5.1. Consider the setup in §5.1.1.
(a) Assume that
EYij|Xi, Zi) = E(Yij|Xij, Zij) (5.90)

holds for any j = 1,...,m; andi = 1,...,n. Show that estimating
function U; (B) given by (5.4) is unbiased.

(b) Give a counterexample to show that the unbiasedness of U; () given by
(5.4) breaks down if condition (5.90) does not hold.

(c) Assume that condition (5.90) is met and that there is a unique solution to
the equation

n
2DVt (Yi = i) = 0. (5.91)
i=1

Let ﬁ denote the corresponding estimator of B by solving (5.91) for 8.

Show that under certain regularity conditions, § is a consistent estimator
of B. Discuss associated conditions.
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(d) For the estimator obtained in (c), develop its asymptotic distribution.

(e) Let V;* = Bi1/2Cl.* Bil/z, where C* is a user-specified m; x m; matrix.
Assume that the equation

n
2DV Y= ) = 0

i=1

has a unique solution, and let E* denote the resulting estimator of . Show
that under condition (5.90) and certain regularity conditions, B\* is a con-
sistent estimator of . Compare the efficiency between /ﬂ\* and E

(f) Let C;** be a diagonal m; x m; matrix, V;** = Bil/ZCi**Bil/z, and

U* = D Vi 1 (Y — ).

Show that U;* is unbiased even if condition (5.90) is not true.
(Pepe and Anderson 1994, Yi, Ma and Carroll 2012)

5.2. Consider the setting of Example 5.1.
(a) Show that
E(Yij|Xi) = E(Y;j]Xij)
forj =1,...,m.

(b) If X, is not diagonal and 8 # 0, show that the identity in (a) does not
hold for the observed data. That is, E(Y;;|X[) # E(Yij|Xi’;-) for j =
1,...,m.

(Yi, Ma and Carroll 2012)

5.3. Prove the identities (5.19) in §5.2.1.

54.
(a) Repeat the discussion in Example 5.2 by replacing measurement error
model (5.18) with

Xij = vo +vxX[; +v2Zij + eij.

where the ¢;; are independent of {X;;

regression coefficients.

Zij,€ij} and Yo, yx and y, are

Show that the relationship between 8* and B is

ﬂ; = yxBx; ﬂ; = Bz + vzBx: /3; = Bo + yoPBx-

(b) In the development in (a), suppose V; in (5.4) is replaced by a working
matrix that is not diagonal. Discuss the relationship between $* and §.
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5.5. (Multivariate Normal Distributions)

(a)

(b)

(©)

Suppose that Y is an n x 1 random vector which follows distribution
N(u, X'), where p is the mean vector and X is the covariance matrix.
Partition Y into two subvectors ¥ = (Y], Y;)", where Y; has dimen-
sion r and Y, has dimension (n — r). Partition y and X' similarly so that

p = (uy, u3)", and
2 2
5= :
(221 222)

where 1 has dimension r, u, has dimension (n — r), Xj; isanr x r
matrix, X, is an (n — r) X (n — r) matrix, X1, is an r X (n — r) matrix,
and 221 = 2}2.

Show that the conditional distribution of Y7 given Y, = y; is

N(MM [y2° EJ’I |YZ)’

where
Hylys = M1+ 1255 (y2 = 1),

and
yilyz = 11— T1255 ot

Let X and X* be random vectors of the same dimension. Suppose that the
marginal distribution of X is N(u,, Xx) and that the conditional distribu-
tion of X*, given X = x,is N(x, X,«|y). Show that

(i) the joint distribution of X and X* is

N Mx Xy Xy .
1525 ’ Ex Ex + Ex*lx ’

(ii) the conditional distribution of X, given X ™ = x*,is N(ty|x*, Zx|x*)s
where

Hoxjxx = My + EX(EX + 2X*|X)_1(x* - /'Lx)v
and

Exlx* =Xy — Z‘x(z‘x + Z‘x"‘lx)_lz‘x~

Suppose that Y is an n x 1 random vector, X and X * are p x 1 random
vectors, and u is a ¢ X 1 random vector. Assume that the conditional model
of Y, given X and u, is

Y = fyyy + AX + Bu + ¢,

where ()|, is an n x 1 vector of parameters, A is an n X p matrix of
design characteristics, B is an n X g matrix featuring random effects wu,
and € is an n x 1 random vector.
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Suppose that
X*=X +e,

where e is a p x 1 random vector. Further assume that
(1) random vectors X, u, € and e are all independent of each other;
(2) they all have a normal distribution, given by

X ~ N(y, Xx); u~ NQO, X2y);

€ ~ N(0, Eylxu); e~ N(0, Ex*lx)§
(3) given {X,u}, Y and X* are independent.

Prove the following results:
(i) The marginal distributions of ¥ and X * are given by

Y ~ N(uy, Xy) and X* ~ Ny, Txx),
respectively, where

Ky = Hylxy + Ay
Yy =BYyB"+ AX A" + X cus

Poxx = My
Ex* = Ex + Z‘x*lx-

(i1) The joint distribution of ¥ and X * is given by
My Xy Xy
/J/x* ’ Zyx* Zx* ’

where X+ = AX.
(iii) Conditional on {X*, u}, Y can be expressed as

Y = @, + ATX* + Bu + €,
where
/L;Ix*u = Hylxu + ALy — T (Zxxx + Ex)_l}“x;

A" = AXy(Zx + Ex*\x)_l;

the error term €* is normally distributed with mean 0 and covariance
matrix

var(e*) = Zyjxy + ATy A" — ATy (Zx + T )x) T AT

and €* is independent of X * and u.
(Tosteson, Buonaccorsi and Demidenko 1998)
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5.6.
(a) Suppose that X and € are independent continuous random variables with
support (—oo, 00) and that the marginal probability density function of €
is f(e).
(i) Let

Y = Bo+BX +e. (5.92)

where B¢ and B, are parameters. Show that the conditional proba-
bility density function of Y given X = x is f(y — Bo — Bxx) for
—00 <y < 00.

(i) If Y is not necessarily linear in X as given by (5.92), but
Y =g(X:B) +e

where f is a parameter, and g(-) is a real-valued function. Is the
conditional probability density function of Y, given X = x, identical

to f(y —g(x:p))?

(b) Suppose that X and Z are random variables and their joint distribution is
a bivariate normal distribution.
(1) Let

Y =Bo+BxX + B2, (5.93)

where ¢, Bx and 8, are parameters. Show that X and Y are indepen-
dent if and only if
cov(X,Y) =0.

(i) If Y is not linear in X as given by (5.93), is the result in (b)(i) still
true?

5.7. Consider the model setup in §5.2.2, where we define
ul* = X,’ — E(Xl' |Xi*’ Z,’)

on page 208. Prove that
(@) E(X;i|X[ Zi) = (Im; — $20)(Dolm; + 0. Z;) + 2; X[
(b) uf = (I;m; — $2;)exi — $2;e;;
(©) uf ~ N, (Im; — $2i) Xxi);
(d) Show that u is independent of u;, X;* and Z;.
(Wang et al. 1998)
5.8. Suppose the conditional probability density or mass function A (y;|x;, z;) of

Y;, given {X;, Z;}, is formulated through a two-stage modeling procedure as
outlined in §5.1.2. That is, conditional on random effects u; and {X;, Z;}, the
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Y;; are independent with the conditional distribution /(y;;|u;, X;, Z;). Then
the distribution of ¥;, given {X;, Z;}, is given by

h(yilxi zi) =[] /h(yij|Mi,xi,Zi)h(ui)d77(ui),

Jj=1

where i (u;) is the probability density or mass function of u;.

Suppose X; is measured with error and X" is its surrogate measurement.
Discuss the conditional distribution of Y;, given {X l.*, Z;}. In particular, an-
swer the following questions.

(a)

(b)

©

Conditional on random effects u; and {X*, Z;}, are the Y;; independent?
Can the conditional probability density or mass function A(y;|x/,z;) of
Y;, given {X[*, Z;}, be written as

h(yilxt.zi) =] /h*(yz'j|ui,X;,Zi)h(ui)dﬁ(ui)?
=1

Here h*(y;j|u;, x}, z;) is obtained from A (y;; [u;, x;, z;) with x; replaced
by x;".

Do there exist random effects u; such that given %; and {X 5. Zi}, the Yy;
are conditionally independent, hence, yielding the conditional probability
density or mass function of Y; given {X*, Z;}

hul? 20 = [ [T 00w 17 20 Th@dn @2

j=1

Here h(u;) represents the marginal probability density or mass function
foru;, and h(y;;|x}, z;, u;) is the probability density or mass function of
Y;; givenu; and {X*, Z;}.

If the answer in (b) is yes, are the random effects %; unique? That is, sup-
pose there exists another set of random effects %} such that the Y;; are
conditionally independent, given {u, X;*, Z;}, hence leading to the con-
ditional probability density or mass function Y; given {X*, Z;}, given by

mj
houl? .z = [ [T 00w 1 20 TR,
J=1
where /(i) represents the marginal probability density or mass function
foru}, and h(y;;|x}, z;, u}) is the probability density or mass function of
Y;; givenu? and {X*, Z;}.

Do the random effects 'LT;" have the same distribution as that of the random
effects u;?



5.8 Supplementary Problems 253

5.9. Suppose that fori = 1,...,n and j = 1,...,m;, the marginal distribution

of the response component Y;; is a Gamma distribution with the probability
density function

6
FOu) = Figs v exp(—0;yij).

where ¢ is known, and 6;; is the canonical parameter which links the mean
and variance of Y;; via

wij = ¢0;;" and vij = 7 /.
Consider the log-linear model with
log juij = o + BrXij + B Zij.

where X;; and Z;; are covariates for subject i at time point j and B =
(Bo. B, ,BE)T is the vector of regression coefficients.

(a) If both X;; and Z;; are precisely measured, discuss estimation of 8 by
applying the GMM method to the estimating function (5.33):

Ipij -
Uij = (a_ﬂj) v (Yij = pif)

fori =1,...,nand j =1,...,m;.

(b) Suppose that X;; is mismeasured as X i’;- and that X;; and X i’;- are linked by
the model (5.41) where the ¢;; have the moment generating function M(-).
Applying the corrected estimating functions method outlined in §5.3.2,
construct an unbiased estimating function Ul-j based on the observed data
{Yij, X[j. Zi;} such that

EUYij, Xij, Zi) = Uy,

where the expectation is evaluated with respect to the model for the con-
ditional distribution of X/ given {Y;, Xij, Zi;}.

(c) Discuss estimation of 8 by applying the GMM method, or using Theorem
1.8, to the estimating functions Uijf constructed in (b).

(d) Assume that e;; in the model (5.41) is normally distributed and that con-
ditional on Z;, X;; follows a normal distribution N(uy, X) with mean
Uy and variance X'. Applying the expected estimating equations method
outlined in §5.3.1, construct unbiased estimating functions U;' which are
obtained as U} = E{Uj;|Yi;, X[;. Zij}.

(f) Discuss estimation of 8 by applying the GMM method, or using Theorem
1.8, to the estimating functions Ui}‘. constructed in (d).

(g) Suppose that the Y;; are mutually independent. Under the assumptions of
(d), develop an estimation procedure for 8 using the likelihood method.

(h) Compare the estimation methods developed in (c), (f) and (g).
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5.10. Consider the following scenarios for §5.4:

(a) n; = 1 and m; is much bigger than 1 fori = 1,...,n;
d) nj =m; fori =1,...,n.

Discuss how the inference procedures may be affected by the relationship
between the observation times {#;1,...,%m,;} for the response variable Y; (¢)
and the observation times {¢]], ... ,ti*ni} for the covariate X;(¢). When do the
procedures break down? When do the procedures work?

5.11.
(a) Verify that estimating function (5.63) is unbiased.
(b) Show that the estimating function (5.64) is unbiased regardless of whether
or not D(Y;, Xl"; Z;j; B) is unbiased.
(Robins, Rotnitzky and Zhao 1994)

5.12. Consider the setup in §5.2.2. Suppose that conditional on random effects u;
and covariates {X;, Z; }, the responses Y;; are independent and follow a linear
mixed model

Yij = Bo+ BxXij + BzZij +ui +¢€;

for j = 1,...,m; andi = 1,...,n, where By, Bx and B, are regression
coefficients; the u; are random effects; and the ¢;; are independent of each
other and of {X;;, Z;;,u;} and have distribution N(0, 0%) with variance 2.

(a) Assume that u; follows a normal distribution N(0,02) with variance o2

Show that the probability density function of ¥; given {X;, Z;} is
1

(V2m)ymigmi=l /m;jo2 + o2

(m; — o2 + 02 &
eXPY — s - Z(yij — wij)?
j=1

filxi zi) =

B 202(m;o} + 02)

2
O,
> > ij = i) ik — pik)( -

+—.
a2(miof +0%) =

where p;; = Bo + BxXij + Bz Zi; is the marginal mean of Y;;.

(b) Consider the case where the response variable Y;; is subject to miss-
ingness, as described in §5.5. Let t;; = P(R;; = 1|Y;,X;,Z;) for
Jj =1,...,m;. Suppose that given {Y;, X;, Z;}, the R;; are independent,
and the missing data process is modeled by

logit 7;; = ¥o + 1 Y; ;-1 + 02 Y + U3Xi;,

where & = (Jo, 91, U2, 93)" is the vector of regression parameters.
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If we ignore the missingness feature and naively apply the result in (a) to
the observed data to form a likelihood function L, then maximizing L,
with respect to the model parameters gives an estimator E* of B. Let B*
denote the limit to which B* converges in probability. Discuss the rela-
tionship between * and S.

(c) We further assume that X;; is subject to measurement error with surrogate
measurement X ;;' and that (5.68) holds. Suppose the measurement error
model is

Xij = yo + VxX;;' + v Zij + eij,

where y = (Yo, ¥x, Yz)" is the vector of parameters, and the ¢;; are ind-
ependent of each other and of {X i’;-, Z;;,Yij,e;;} and have distribution
N(0, 02) with variance o2.
If we perform a naive analysis with missingness and measurement error
ignored, discuss the asymptotic bias for the resulting naive estimator of j.

(d) Develop an estimation method for § with missingness and measurement
error incorporated. Discuss associated conditions.

(Yi, Liu and Wu 2011)

5.13. In contrast to the missing data scenarios (5.59) and (5.60) discussed in §5.5.2,
we consider a special situation where

h(rilyi, xi,x[, zi) = h(rilyi, 2;).

Assume that the measurement error model is given by (5.61). Discuss and
compare the two sequential strategies of §5.5.3 for estimation of 8 of the fol-
lowing models.
(a) (Inverse Gaussian Regression)
Suppose that the marginal distribution of ¥;; is the inverse Gaussian dis-
tribution / G(u;;, 1) with the probability density function

for y;; > 0,

(Vi — 11::)2
S Wijs i) = exp { =i = pij)”

2147, vij

27 yl.'_”/-

where p;; is the mean of Y;;. In this case, the variance of Y;; is given by
v = H?, Consider the regression model

-2
Wi = Bo+ By Xij + B Zij,
where 8 = (Bo, B}, B1)" is the vector of regression parameters.

(b) (Poisson Regression Models)
Suppose that the response component Y;; is a count variable following
a Poisson distribution with mean p;;. In this case, the variance of Y;; is
given by v;; = ;;. Consider the log-linear model
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log pij = Po + BxXij + B Zij.

where 8 = (Bo, By, B7)" is the vector of regression parameters.
(Yi 2005)
5.14. Consider the setup in §5.6.2.

(a) Show that conditional on C;(t), d N;(t) and X i (¢) are independent. Spec-
ify what assumptions made in §5.6 are used for this result.

(b) Prove the statement of (5.85).

(c) Verify (5.89).

(Tsiatis and Davidian 2001 )
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Multi-State Models with Error-Prone
Data

Multi-state stochastic models are closely related to survival and longitudinal data
analysis. They may be used to describe survival data from a perspective different
from what is discussed in Chapter 3. They also provide a useful framework for an-
alyzing longitudinal data when interest lies in dynamic aspects of the underlying
process.

Often, multi-state event data may be distinguished according to the availability
of state transition times. When subjects are observed continuously over a period of
time, transitions between states can be observed. In contrast, when subjects are seen
at discrete time points, exact transition times normally cannot be observed; only
the state occupied at each assessment time is observed. An inference framework
for analyzing multi-state data is formulated with the focus centered on either the
transition intensity or transition probability among the states. A great number of
methods, including parametric, semiparametric, and nonparametric ones, have been
developed for analysis of such data in the error-free context.

Existing methods are, however, frequently distorted by error-contaminated data.
Commonly, two types of error may arise from the analysis of data delineated by
multi-state models: (1) covariates are subject to measurement error or misclassifi-
cation, and (2) states are misclassified. This chapter discusses issues and inference
procedures concerning multi-state model analysis with either type of measurement
error. Similar to the preceding chapters, we begin with the discussion of the inference
framework for the error-free situation, and then move on to various topics on error-
related scenarios. We conclude this chapter with bibliographic notes and exercise
problems.

© Springer Science+Business Media, LLC 2017 257
G. Y. Yi, Statistical Analysis with Measurement Error or Misclassification,
Springer Series in Statistics, DOI 10.1007/978-1-4939-6640-0_6
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6.1 Framework of Multi-State Models

6.1.1 Notation and Setup

A multi-state process is a stochastic process {Y(¢) : ¢ € T} with a finite state space
S ={l,..., K} and right-continuous sample paths: Y(: ) = Y(¢), where Y(t*) =
limy,_,o+ Y (¢t + At), Y(¢) represents the state occupied at time ¢ that takes value
from the state space S, and 7 = [0, t] with t < 400 or 7 = [0, +00) (Andersen
and Keiding 2002). A multi-state model is often displayed using a diagram with
boxes representing the states and arrows between the states representing possible
transitions.

StaFe 1: | State 2:
alive dead

Fig. 6.1. The Twvo-State Survival Model

State 2:
dead by cause 1

State 3:
dead by cause 2

State 1:
alive

State K:
dead by cause K- 1

/1N

State K+ 1:
dead by cause K

Fig. 6.2. A Competing Risk Model with K Causes

Fig. 6.1 presents the simplest multi-state model where only two states and a one-
way transition are involved. Such a model may be used to describe survival data
for which interest lies in describing the transition from the status of being alive to
death. In some situations, one may be further interested in sorting out the causes of
death; competing risk models are useful for this purpose (Kalbfleisch and Prentice
2002, §8.2). Fig. 6.2 displays such a model which shows K different causes related
to the death of individuals. Another useful model for survival data is the illness-death
model which has three states, indicated in Fig. 6.3.
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State 1: p| State 2:
disease-free |4 diseases

State 3:
dead

Fig. 6.3. An Iliness-Death Model

These three examples show scenarios with at least one state from which transition
out of it is impossible; such a state is called an absorbing state, discussed as follows.
In application, not all models have an absorbing state as illustrated by Fig. 6.4.

State 1: | rititl(;j: — P State 3:
never smoke & Vo le——— stop smoking
smoke

Fig. 6.4. A Three-State Smoker Nonsmoker Model

To portray a multi-state process, one often describes its transition probabilities
or transition intensities, in conjunction with the initial distribution

7;j(0) = P(Y(0) =j) forj €S.

Let
H ={Y(v):0<v <t}

be the history consisting of the observations of the process up to but not including
time ¢. Relative to the process history, for j,k € S and s,¢ € T withs < ¢, we
define the transition probability between time points s and ¢ as

pjk(s.11Hg) = P(Y(1) = k[Y(s) = j. Hy).

At a given time point ¢ € T, the transition intensity is defined as

. Pkttt + At|HY)
Aig@H) = 1
]k(| 2 Ati%"‘ At

for which we assume the limit exists. It is conventional to define
Ay ==Y Ajt|Hy)
k#j

forj =1,..., K, as discussed in §6.1.2.
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A state j is called absorbing if for allt € 7 and k € S with k # j, we have
Ajk(t|H) = 0;

otherwise it is called transient. The state probability mw;(t) = P(Y(t) = j) is
given by
mi(0) = m;(0)px(0.1).
kes
where px(0,1) = P(Y(¢) = k|Y(0) = j).

The transition probabilities and transition intensities generally depend on the
history of the process. In application, certain model assumptions are imposed to
simplify the dependence on the process history. The following three scenarios are
often considered in the literature.

e Time Homogeneous Models:
For any states j and k, the transition intensities A ;i (¢f|#;) are constant over
time:

AjeIH) = Ajk

for any time ¢, where A ;i is a constant that may be state-dependent but is free of
time.

o  Markov Models:
For any states j and k, the intensities A jx(¢|H)) depend on the history only
through the state Y () = j occupied at time ¢. In other words, transition proba-
bilities have the property

Pjk(s,t|Hy) = P(Y(t) =k|Y(s) = j)fors <t and j k € S.

In this case the transition intensities and probabilities are denoted as A jx (¢) and
Pk (s, t), respectively.

o Semi-Markov Models:
For any states j and k, future evolution not only depends on the current state
Jj, but also on the entry time into state j. Therefore, the intensity function is
written as

PY A Zk Y = " Y
Ap(t|H) = lim (Yt + A1) =k|Y(@) = j. H)

At—0t At
L PO AD =KYO) = i)
N At—07+ At

to reflect such dependence, where ¢; is the entry time into state j. We use
Ak (t]t;) to denote such an intensity.
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The Markov process is memoryless in that only the currently occupied state is
relevant in specifying the transition intensities (Kalbfleisch and Prentice 2002, §8.3).
Markov models are, perhaps, the most frequently used multi-state models due to their
simplicity. Semi-Markov models are, sometimes, alternatively defined to be that the
future of the process does not depend on the current time but rather on the duration
in the current state, hence one may alternatively denote the transition intensities as
Ak (t]t —t;) (Meira-Machado et al. 2009).

In application, different time scales, clock forward and clock reset, may be used
to highlight distinct features of a process. By clock forward, time ¢t refers to the
time since the subject enters the initial state, and the clock keeps moving forward for
the subject. For the clock reset scale, time ¢ in A j (¢|H;) refers to the time since the
entry in state j, and the clock is reset to 0 each time when the subject enters a new
state. Discussion on the choice of a suitable time scale was given by Putter, Fiocco
and Geskus (2007), among others. In this book, we use the clock-forward time scale
unless otherwise indicated.

6.1.2 Continuous-Time Homogeneous Markov Processes

Under continuous-time homogeneous Markov processes, transition probabilities
pjk(s,t) = P(Y(t) = k|Y(s) = j) are often written as p;x(f — s) to emphasize
that the probabilities are independent of the starting time s but dependent on the
elapsed time (¢ — s). Over a small time interval with length A¢, transition probabili-
ties and transition intensities are connected via

pjk(At) = XjkAl + 0(At);
pjj(AZ) =1+ ljjAl + 0(At) 6.1

forany j = 1,...,K and k # j, where 0(At) represents a term that is of smaller
magnitude than At, i.e., lima; 9 0(At)/ At = 0.

Suppose that one of the states must be occupied at time ¢ + A¢, given that a
state j is occupied at time ¢. Since for each j, Z,le pjk(At) = 1, so identity (6.1)

leads to
Ajj + Z Ak =0
k#j
for j = 1,..., K, which are the constraints commonly applied in modeling transi-

tion intensities (Kalbfleisch and Lawless 1985).
Relationship of Transition Intensity and Transition Probability

By definition and the probability property, we obtain that for any time points
s < t and states j and k,

K
Pik(®) =D pju () pir(t —s):

=1
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this is called the Chapman—Kolmogorov equation (Cox and Miller 1965). Applying
this equation and (6.1) yields that

K
Plic@® =" pjt(OAi. (6.2)
=1

where p; (1) is the derivative of p i (7) taken with respect to .

Let P(z) be the K x K transition probability matrix with (j, k) element p jz (¢)
and Q be the K x K transition intensity matrix with (j, k) element A ;i for j, k € S.
Then (6.2) is presented in the matrix form

P'(t) = P(1)0Q, (6.3)

where P’(¢) is the K x K matrix with (/, k) element p’; (¢).
Analogously, working with

K
Pik(®) =" pji(t =) pu(s)

=1

gives

P'(t) = QP(1). (6.4)
Identities (6.3) and (6.4) are called the forward equation and the backward equation,
respectively.

With an initial condition that P(0) = Ik, the solution to the forward or the
backward equation (Cox and Miller 1965, Ch. 4) is given by

P(1) = exp(Q1), (6.5)

where exp(Qt) is defined to be

o0 err
exp(QN) =) =

r=0
with Q0 = Ik.

To compute P(¢) using (6.5), one may use the matrix decomposition to re-write
P(t). Suppose Q has distinct eigenvalues d;, . . ., dg, and let A be the K x K matrix
whose jth column is a right eigenvector corresponding to d;, then Q = ADA™!,
where D = diag{d, ..., dk}. As aresult, the transition probability matrix is

P(t) = A-diag{exp(dyt),....exp(dgt)}- A7 L. (6.6)

Expression (6.6) offers us a convenient way to calculate partial derivatives of
P(¢) which are needed in inferential procedures (Kalbfleisch and Lawless 1985).
Suppose that the transition intensity matrix Q contains parameter 6 = (6;,...,0,)",
which, for example, arises from modeling the transition intensities A jx as discussed
in §6.1.5.
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Let GO = A~1(30Q/36;)A and g% be the (j, k) entry of GO forl =1,..., p.
Define V) = [vﬁlk)] to be the K x K matrix with (j, k) entry

)
g e texpd,)—exp(dit)} .. .
vﬁlk) =7 @ A # ks
g§jtexp(d;n). i j =k,

then the partial derivatives of the transition probabilities are given by

AP (1)

= AV 41 6.7
50, (6.7)

forl =1,...,p.
Progressive Markov Model
A progressive continuous-time homogeneous Markov process is a continuous-

time homogeneous Markov process for which individuals progress in one direction
through K ordered states and the transition is irreversible, as shown in Fig. 6.5.

State 1 ——| State2 —p - —Pp| State K

Fig. 6.5. A K-State Progressive Model

Since, under the progressive model, A;x = 0if k # j + 1, we simplify the
notation and let A ; denote the transition intensity from state j to state (j +1) for j =
1,..., K — 1. Assume that Aq,...,Ag_; are distinct and let A = (A1,...,Ax—1)".
Then the transition probabilities are analytically expressed by transition intensities
(Longini et al. 1989; Satten 1999):

S CUL Lk Ay exp(=Apn), if j < k.

6.8
0, if j >k, 6.8)

Pjk(t) =

where the coefficients are given by

k—1

i=j M
[1j<izici i =21
forj <l <k,andC(l,l,l;A)=1forl=1,...,K—1.

C(j,lk;A) =

6.1.3 Continuous-Time Nonhomogeneous Markov Processes

Homogeneous Markov models are easy to use but may be too restrictive to describe
many processes in application. It is necessary to develop models that are flexible
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while also preserving simplicity. A useful method is to partition the entire time pe-
riod under the study into smaller intervals and to assume a constant intensity over
each time interval. This gives Markov models with piecewise-constant intensities,
defined by

Ajk(t) = Ajp fort € A = (aj—1, aq],

where 0 = ag < a1 < ... < ag1 < ag = oo is a pre-specified sequence of
constants for a given ¢, and the A jz; are positive constants for j,k = 1,...,K
and/ = 1,...,q. This class of models can be viewed as nonhomogeneous models

that are weakly parametrically postulated; detailed discussion on nonhomogeneous
Markov processes was provided by Meira-Machado et al. (2009) and the references
therein.

With a nonhomogeneous continuous-time Markov process, the relationship
between transition probabilities and transition intensities cannot be expressed by
(6.5) anymore. Instead, they are featured by the product-integral.

For0 < s <t,let P(s,t) be the K x K transition probability matrix with entries
pjk(s,t), and A(u) = [A;r(u)] be the cumulative transition intensity matrix with
(J, k) element

u
Ajic(u) :/ Aix(v)dv for j.k € S.
0

Then the transition probability matrix is expressed by the cumulative transition
intensity matrix using the product-integral:

M
P(s,t) = lim 1 A(up) — A(u;—
( ) M —o00;Au;—051=1,..., Mlljll{ K+ ( l) ( ! 1)}
withs = ug <uy <...<upy =t,Auy =u; —uj_yforl =1,...,M,and M is

a positive integer which approaches infinity.

The cumulative transition intensity functions Az (1) and the related transition
probabilities p ;x (s, ) can be empirically estimated using the sample data. Detailed
discussion is available in Kalbfleisch and Prentice (2002, §8.3).

6.1.4 Discrete-Time Markov Models

For the discrete-time Markov model, there exists a set of ordered times 7 = {t; : [ =
1,2,...} at which transitions occur, where 0 < t; < t, < ....For/ =1,2,..., let
P; be the K x K matrix whose (j, k) element is the one-step transition probability,
PY () = k|Y(t;—1) = j), from time #;_; to time #;, where t¢ = 0 and j, k =
1,..., K. Let

Pl = P(Y(t) = k|Y(0) = j)

be the /-step transition probability and P{) = | pﬁ.lk)] be the K x K matrix with (J, k)

element pﬁlk)
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Under Markov models, the /-step transition probabilities are expressed as the
product of a sequence of one-step transition probabilities at different time points:

PO =pp.. P

for/ = 1,2,.... The order of multiplication matters since the matrices do not com-
mute in general. If the chain, however, is homogeneous, then P; = P for a time-
invariant matrix P, thus leading to

p® = p!
forl =1,2,....

6.1.5 Regression Models

Multi-state processes are usually correlated with covariates. It is interesting to des-
cribe the multi-state process by conditioning on the associated covariates. In this
case, transition intensities and transition probabilities, discussed in the previous sub-
sections, are modified by replacing the history H; of states with an extended history
which also includes the history of covariates.

Let X(¢) and Z(¢) be the covariates at time ¢, H} = {X(v) : 0 < v < ¢} and
H; = {Z(v) : 0 < v < t} be the respective history of X(¢) and Z(¢) up to and
including time ¢, and H}” be the union of H} and H7.

To accommodate the dependence on covariates of transition intensities or transi-
tion probabilities, we focus on the case with endogenous covariates where the covari-
ates can be time-independent, or time-dependent so that the random development of
the covariates is fully determined by the history of the process itself (e.g., Andersen
and Keiding 2002). Typically, for s < ¢, we assume that

PY(1) = y(OIY(s) = y(s). Hg. H™)
= P(Y (1) = yOIY(s) = y(s). Hg. H). (6.9)

where H* is the union of H}* for t > 0.

With endogenous covariates, inferences may be based only on modeling the con-
ditional transition probabilities or transition intensities with the covariate process left
unmodeled. If the model contains time-dependent covariates that are not endoge-
nous, then a joint model for the multi-state process and the covariate process is often
required, which is analogous to the discussion in §3.1.3 and §4.1.3.

For time points s and # with s < ¢, the transition probability and transition inten-
sity are defined to be

Pik(s t|Hy, H) = P(Y(t) = k|Y(s) = j, Hy. H))
and
. Pkt t + At|H{ H)
Aig(|H, H) = lim ,
(] 0 At—0+ At
respectively. The relationship between transition intensities A ;¢ (¢|H}, H}*) and tran-

sition probabilities p jx (s, #|H}, H}*) may be established following the same lines of
the previous subsections.
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Parsimonious regression models are constantly used to characterize the depen-
dence on covariates of transition intensities or transition probabilities. Here we
briefly describe modeling of transition intensities but defer the discussion of tran-
sition probabilities to §6.1.7.

Assuming that

(e HHE) = dn (e |H),

one may postulate transition intensities as

At Hy HE) = g(X (@), Z(t); Aok (1), Bjk)

for j,k =1,..., K, where g(-) is a given nonnegative function, A¢;x (¢) represents
the baseline transition intensity from state j to state k, and 8  is the associated par-
ameter which may be state-dependent. Here the dependence of transition intensities
on the covariate history is indicated by the involvement of X (¢) and Z(¢) at current
time point .

A frequently used model is of a multiplicative form:

Ak IHL ) = Aojic(0) exp{BL X (1) + BL 1 Z(D)},

where Ag;x(?) is the baseline intensity function and B, = (,B;jk, ﬂ;jk)T is the
vector of regression coefficients related to the transition from state j to state k. The
baseline intensity A (f) may be left completely unspecified as in the Cox propor-
tional hazards model for survival analysis, or modeled parametrically or weakly para-
metrically, as discussed in §3.1.2. A more parsimonious model may be considered
by assuming, for example, a common baseline transition intensity A« (f) = Ao(?)
or common covariate effects among states with ;r = B, where A¢(¢) is a positive
function and B is a vector of parameters.

Alternatively, an additive structure or time-dependent regression coefficients may
be used to describe transition intensities. For instance, a nonparametric additive
model may be considered:

D IHL ) = Ao () + BL (OX() + BL (DZ (1),

where we leave the baseline intensities Agjr(f) and the regression functions
{Bxjk (1), Bk (1)} unspecified.

A detailed discussion on modeling of transition intensities was provided by
Andersen et al. (1993), Andersen and Keiding (2002), and many others.

6.1.6 Likelihood Inference

Suppose that there is a random sample of n individuals and that subject i in the
sample is observed at times 0 < #;; < ... < l;jy; fori = 1,...,n, where m; is a
positive integer which may depend on i. In this subsection and the rest of this chapter,
we add subscript i to show the dependence on a subject of the symbols corresponding
to those defined in the previous subsections. For subject i = 1,...,n, we observe
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the states Y;(t;;) = y;; occupied at these time points ¢;; for [ = 1,...,m;; but the
exact transition times are not available and they are interval censored.

The maximum likelihood method is a natural tool to conduct inference about
regression parameters for multi-state models. Suppose the dependence of transition
probabilities on covariates is described by regression models with parameter 6, and
let L;(6) denote the product of conditional transition probabilities for the observed
states of the i th individual. Assuming that being in the initial state at time #;; carries
no information about 6 and that (6.9) holds, we may write L;(0) as

m;
Li(0) = [ ] pyesryn CGiamrs tul ™y, M3, ),

1=2
where
pJ’i.l—IYil([i,l—l’til|H2{,§.1_l’ ?tzi_l_l)
= P(Yi(ti) = yirYi(tiy—1) = yig—1. Mg - Hig )
for! = 2,...,m; and the dependence of the transition probabilities on the regression

parameter 6 is suppressed in the notation.
Conditional on individual i being in the initial state at time #;;, the likelihood of
0 is given as

n
L) =]]Li®).
i=1
Maximizing L(60) with respect to 6 yields the maximum likelihood estimator of 9,
provided regularity conditions.

If interest is not in modeling transition probabilities but in modeling transition in-
tensities via regression models with parameter 6, then inference about the regression
parameter 6 may follow the same procedures but with an additional step included. In
this case, working out the relationship between transition probabilities and transition
intensities is needed. With a time-homogeneous Markov model, this may be done
based on the discussion in §6.1.2.

Under certain scenarios, the maximum likelihood estimation procedure may
be simplified. With time-homogeneous Markov models, Kalbfleisch and Lawless
(1985) proposed a simple estimation procedure for transition intensity parameters.
To highlight the idea, we consider a homogeneous population without covariates.

Suppose that the transition intensity matrix Q depends on parameter vector
6 = (01,...,0,)" and that all the individuals are observed at the same time points
withm; = mandt; = tyfori = 1,...,nand [ = 1,...,m. Let n j;; denote
the number of individuals in state j at time #;_; and in state k at time #;. Write
pik(ti—1, 1)) = P(Y;i(t;) = k|Yi(ti—1) = ijz'Yzl_l) for /[ = 2,...,m. Conditional
on the individuals being in their initial states at #;, the likelihood function for 6 is
written as

m K
L@ =1]| [ {pix—r.)}"* |. (6.10)

=2 jk=1
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For time-homogeneous processes, (6.10) gives the log-likelihood function:

m K
log L(0) = Z Z n g log pjr(vy),

=2 jk=1

where pix(v;) = pjx(ti—1, 1) and vy =t; —ty_y forl =2,...,m.
Maximization of the log-likelihood with respect to 8 may be carried out using
a Newton—Raphson algorithm, which requires the evaluation of the first and second
partial derivatives of the transition probabilities. To have a computationally efficient
procedure, Kalbfleisch and Lawless (1985) developed a quasi Newton—Raphson pro-
cedure which requires evaluation of the first partial derivatives of log L(6) only.
Foru,v=1,...,p,let

log L 21oe L
Su(6) = LBLO) g Mu,,(e):E( 0" log )

00 90,00,
then )
Su(6) —i Yy M {"’ij(vz)}
L (0) =
1=2 jk=1 pjk(vr) a0,
and .
m E{N;(t;—1)} ( Opjr(v;) 9 i (v)
My, () = J { j H ; }
) ;]‘,kzzl pjk(vr) 20, 36,

where N;(t;—1) = Zle n jx; represents the number of individuals in state j at
time #;_; forl =2,...,m.

Let ﬁuv(e) be an estimate of My, (6) where the expectation E{N;(¢;—1)} is
replaced by the raw count N; (#;—1). Let S(8) = (S1(0),...,S,(8))" and M\(Q) be
the p x p matrix with (u, v) entry M\uv (0). Then an updated estimate of 0 is obtained
by the iterative equation

g+ — gk) [ﬁ(g(k))]—ls(g(k))

fork = 1,2, ..., where 8% is an estimate of @ at iteration k and K/I\(G(k)) is assumed
nonsingular. The estimate of 6 is then obtained as the limit of {9(k+1) k=1,2,..}
as k — oo.

6.1.7 Transition Models

In this subsection, we discuss a useful extension of discrete-time Markov models:
transition models. Suppose that there is a random sample of 7 individuals and that

subject i in the sample is observed at times 0 < #;; < ... < i, fori = 1,...,n,
where m; is a positive integer which may depend on i. Let Y;; = Y;(#;;) denote the
response variable for subject i at time 7;; fori = 1,...,nand j = 1,...,m;. Unlike

usual discrete-time multi-state models for which the Y;; assume discrete values, here
Y;; can be either discrete or continuous. In addition to describing how the transition
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is associated with the response history, we are also interested in the dependence of
transition on covariates which may be time-varying. Let X;; and Z;; be vectors of
covariates for subject i at time ¢;;. Here the components in X;; are all time-dependent
while Z;; may include both time dependent and time- independent covariates.

Write X; = (X}, .. )T and Z; = (Z],,.. )T For posmve integers
¢ and r which are often much smaller the m;, let Hl/(q) {Y,J 1, Yij—q} for
] >(q, Hl](r) = {Xl]’ . Xz,j—r+1}’ Hij(r) = {ZU’ . Zl = ,-+1} and HX“

lj(r)
the union of HY, \ and H?, . for j > r.Letd = max(r —1, q). We call the 1dent1ty

ij(r) ij(r)

h(yijlyij—1s - yins Xis Zi) = h(yij|H}j ), Hijr)) for j > d - (6.11)

the (g, r)-order Markov property, where h(y;;|C) refers to the conditional probabil-
ity density or mass function of Y;;, given the set C of conditioning variables, and C
iS{Yi,j_l,... Y,],XI,Z}OI‘{,HU(q), ll(r)}

In transition models, the conditional distribution of Y;;, given the outcome and
covariate histories, is commonly modulated as a distribution from the exponential
family with a (g, r)-order Markov property imposed for some positive integers g and
r (Diggle et al. 2002, Ch. 10). To be specific, we define a (g, r)-order transition
model to be the one for which the conditional probability density or mass function

of Y;;, given H), | and H}%

ij(q) ijry 18

vij&ij — b(ij)
a(e)

where &;; is a canonical parameter, ¢ is a dispersion parameter, and a(-), b(-) and
c(-) are specific functions associated with the exponential family distributions.
Since the conditional mean

wij = EQij M) Hijer)

equals b'(£;;), a generalized linear model (McCullagh and Nelder 1989) is further
employed to link the conditional mean j;; with the outcome and covariate histories:

T3 MY M) = exp + MY D) (6.12)

g(ij) = &i;j

q r
=Bo+ Y BykVij—k + Y_BuXijr+1+ B Zij—141). (6.13)

k=1 I=1

where g(-) is the canonical link function satisfying g~'(-) = b'(-) and o, Byk (k =
1,...,q9),Bxi, and B (I = 1,...,r) are regression coefficients. When the Z co-
variates do not change with time, we would tacitly keep only one Z term in the
regression model. Let B = (Bo, Byk. ,B;I,B;l ck=1,....,q¢;1=1,...,r)".

If the conditional distribution of (Y1, ..., Y;q), given {X;, Z;}, is modeled, then
inference about 8 may be based on the model for the conditional distribution of
Y; = (Yi1, ..., Yim,;)" given covariates {X;, Z;}:

m;

fOilxiz) = [ SfOulHgy Hie) S Oits - yialxi 2,
j=d+1
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where f(yi;|H} H}%)) 18 determined by (6.12) together with (6.13) and

i)’
fity -y Via |le(,qz)l) is the model for the conditional distribution of (Y;1, ..., Yiq),
given {X;, Z;}.

Alternatively, one may leave the conditional distribution of (¥;q,..., Y;g) un-
specified by treating (Yi1,...,Y;q) as initial states and then conduct conditional

analysis for parameter 8 using the conditional distribution

1_[ T M) Hijr)-
j=d+1

A useful transition model is the one with a normality assumptionand r = g = 1
imposed:

Yij = Bo+ ByYij—1 + By Xij + BrZij + € (6.14)

for j = 2,...,m;, where random errors ¢;; are assumed to be independent of each
other and of the {X;;, Z;; } and follow a common distribution N (0, 02) with variance
o2. At the baseline visit, the outcome may be solely modeled as a function of the
covariates at the entry:

Yir = Bo + BLXi + BLZin + €, (6.15)

where 611 is independent of {X;1, Z;1} and follows distribution N(0,c 72) with vari-
ance 2. Here By, Bo and B, are regression parameters, and By, By, B, and ,B 2 are
parameter vectors.

Transition models are also called state dependence models, state-space mod-
els (Anderson and Hsiao 1982), or conditional autoregressive models (Rosner et al.
1985; Rosner and Munoz 1992).

In addition to being an extension of discrete-time Markov models, transition
models are also useful in modeling longitudinal data. As discussed in Chapter 5,
featuring association structures for repeated outcome measurements is typical for
longitudinal data analysis, as opposed to univariate data analysis. As a complement
to the modeling strategies discussed in §5.1, transition models offer a convenient
way to describe the dependence structure of the longitudinal response process. The
interpretation of covariate effects in transition models, however, does not possess
the marginal feature, such as that described in §5.1.1, because the covariate effects
would change as the order g or r changes.

Some modified versions of transition models are available. For instance, one may
replace the covariate history H;‘f(r) with the entire covariate vectors {X;, Z;} when
setting up (6.12) and (6.13); this modeling relaxes assumption (6.11) and emphasizes
the dependence of the time-specific response on its own history. Azzalini (1994) in-
troduced a Markov chain model which incorporates serial dependence and facilitates
expression of covariate effects on marginal features. Heagerty and Zeger (2000) and
Heagerty (2002) extended this work to the gth-order marginalized transition models.
These models are formulated for analysis of binary data and do not deal with general
categorical data. Chen, Yi and Cook (2009) described a method for modeling longi-
tudinal categorical data based on a Markov model which accommodates regression
modeling on marginal moments as well as on association structures.
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6.2 Two-State Markov Models with Misclassified States

For subject i in a random sample of n individuals, suppose {Y;(¢) : t > O} is a
two-state continuous-time Markov process, taking value 1 or 2. Assume that fori =
1,....n, subject i is assessed at times 0 < #;; < ... < fj,;, and the true state
Y;(ti1), denoted as Yy, is subject to misclassification with ¥;*(z;;) = Y, denoting
the observed state for / = 2,...,m;. Let

Pik(tig—1.ti)) = PYy =k|Yi ;1 = j}

be the transition probabilities for the underlying true process, where j, k = 1,2;
i=1,...,n;and ! = 2,...,m;. Such a two-state model, shown in Fig. 6.6, is use-
ful in describing problems with binary outcomes, such as diseased or disease-free,
employed or unemployed, etc.

—

¢ State 2

State 1

Fig. 6.6. A Two-State Model

Observed Transition Probability

Although the underlying true process has the Markov property, the observed pro-
cess{Y;; : 1 =1,...,m;} does not necessarily retain this property. In fact, transition
probabilities for the observed states may assume complex forms even when simplic-
ity conditions are imposed. To see this, fori = 1,...,nand/ =1,...,m;, let

Yijk = P(Y[] =k|Yiy = j)

be the (mis)classification probabilities for subject i, where j,k = 1,2; and we as-
sume that (mis)classification probabilities are only state-dependent and are indepen-
dent of time.

Forl = 2,....m;, let H}} = {Y7,..., Yi’fl_l} denote the history of the ob-
served states by time up to but not including #;;. Then the conditional probabilities
for the observed states, given the history, is expressed in connection with the infor-
mation of the true states, given by

P(Y;] = 1H;])
= P(Yj = LYy = M) + P(Y;; = 1Yy = 2|H}})
= Y P = 1Yy = s H)P(Yi = s|H), (6.16)

s=1,2

wherel =2,...,m;.
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The first conditional probability in each term of (6.16) is a (mis)classification
probability if assuming

Py =1Yy =sH)=PX]=1Yy=5) (6.17)

for/ = 2,...,m; and s = 1,2. This assumption is feasible for situations where
misclassification of a state is merely governed by the state itself and not the history
of the observed states.

The second conditional probability of each term in (6.16) can be expressed by
spelling out its dependence on the history of the true state process:

Py = sIHj)
=Py =s5.Yi—1 = UH]) + P(Yu = 5, Y121 = 2|H])
D Py =sYiy = v, M) P Vi1 = v[H))
v=1,2

> P =s|Yio1 = v)P(Yiy—1 = v[H)), (6.18)

v=1,2

where we assume that
P(Yy =1Yj -y =v, 1) =Py = 1|Y;—1 =) (6.19)

for/ = 2,...,m; and v = 1,2. This assumption says that the transition probabil-
ity from one state to another for the underlying true process depends only on that
occupied state and not on the history of the observed surrogate states.

Define yifl—l = P(Yi—1 = lH)fori =1,...,nand [ = 2,...,m;, then
combining (6.16) and (6.18) gives

P = 1H))
= yirrl(l =y ) parig—1. i) + vy pra(tig—1, tin)}
+yiat (L = v ) P22 (=, ti) + iy pra(tio—1, tin)}s (6.20)

where assumptions (6.17) and (6.19) are used. This expression shows how the con-
ditional probability P(Yl.* = 1|7-[;{l*), [ =2,...,m;,for the observed states depends
on the misclassification probabilities and the transition probabilities of the underly-
ing true process.

The conditional probability Vi*l’ | =1,...,m; — 1, is difficult to calculate di-
rectly, but can be recursively expressed in terms of the transition probabilities of
the underlying true states and misclassification probabilities. For j = 1,2 and
Il =2,...,m;i —1,let

aij(yj) = Q—=yDvin + O — Dvij2

and
dij(tij—1,ti1) = prj(tii—1.ti) — p2j(tig—1.ti)-
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Then

P(Yu = LY} =y Hif
P(Yl); = yi*l’,HiY}*

P = yhYy = LI Py = 1K)

B 2 =12 P =y Y = v. i) P(Yir = o1

_ anOppn i i) + v din (- fi)} (6.21)
> =121 V]PIp2j Wig—1.ti) + v}y dij (tig—1. ti)]

with the starting value

* —_—
Vit =

ait(y)P(Yir =1)
ai (Y1 =Py =)} +an(y)P(Yin =1)

The recursive identity (6.21) suggests that y;; generally depends on the obs-
erved states y/|,..., yl?"l for time point ¢;; with [ = 1,...,m; — 1. As a result,
(6.20) implies that the Markov property does not hold for the observed process
{Y;7 : 1 =1,...,m;}, even though the underlying true process {¥;(¢) : ¢ > 0} is a
Markov process.

* —
Vit =

Regression Model and Identifiability

Next, we examine how misclassification of states may affect estimation of re-
gression parameters. We still consider a two-state Markov process but impose the
time-homogeneous assumption for ease of discussion.

Fori = 1,...,n, let A;;; be the transition intensity from state j to state k for
the process experienced by individual i. Then the transition probabilities may be
analytically expressed as functions of the transition intensities:

Pjk(tig—1.ti1) = (

Aijk
Aijk + Aikj
for j #kand j,k =1,2, wherev;; =t;; —t;;—1and/ =2,...,m;.

Suppose that transition intensities A;;x are associated with the subject-specific
covariate vector, say Z;, via regression models:

Aijk = &ik(Zii Bjk) (6.23)

for j # k and j,k = 1,2, where g () is a given positive function, and S i is the
vector of regression coefficients corresponding to the transition from state j to state
k.Let B = (B],, B31)" denote the vector of all the associated regression parameters.

Suppose the misclassification probabilities are reparameterized as regression
functions of covariates:

) [1—exp{—vii(Aijk + Aixj)}]  (6.22)

Yijk = 8(Zii v jk) (6.24)
for j # k and j,k = 1,2, where g(-) is a regression function and y; denotes the
associated parameter. Let y = (y],,y5,)" and 6 = (y", B")".
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Let P(Y;; = y}}|H)[. Zi; 0) be a modified version of (6.16) by including Z; as
an extra conditioning variable, which is determined by modifying (6.20) and (6.21)
with covariate Z; included as an additional conditioning variable, in combination
with (6.22) and (6.23). We impose the assumptions which modify (6.17) and (6.19)
by including Z; as an additional conditioning variable.

Define

m;
Loi(0) = P(Y} = yi|Zi:0) [ [ PO = v 1My Zi:6)
=2

to be the conditional probability of Y;*, given covariates Z;, where Y* =
(Y;;Y;’;nl)T yl.*l is the observed state for subject i at time ¢; for
I = 1,....,m;, and P(Y;] = y}|Z;;0) is the probability at the initial state.

Then the likelihood function of 8 for the observed data is

Lo(8) = [ ] Lot (6). (6.25)

i=1

Inference about 6 is usually performed by maximizing likelihood function L ()
with respect to 6. Standard likelihood theory gives the asymptotic properties of the
resulting estimator under regular situations. In special instances, however, likelihood
function L,(6) may not be suitable for inference about 8. For instance, in a misclas-
sification case with y;15 + Yi21 = 1, we have that, by the modified version of (6.20),
P(Y;; = 1[H]], Zi) = g(Z;; y21), which is a constant for any time point #;;. Hence,
likelihood (6.25) is flat relative to the regression parameters 6, thus not suitable for
estimation of 6.

The presence of state misclassification may not only alter the shape of the initial
likelihood function obtained under the error-free setting but also change the nature
of the model structure. Since modeling of the misclassification process is usually re-
quired for carrying out valid inferences, the parameter space is then enlarged with
the parameter dimension increased, as opposed to the initial space for the response
model parameters. Even if the original response model is well defined and identifi-
able, the inclusion of the misclassification model into the inference procedures may
create nonidentifiability issues.

To see this, consider the case where model (6.23) for state transition
intensities is given by

gik(Zi: Bjk) = exp(BxZi) (6.26)
for j # k and j, k = 1,2; and model (6.24) for the misclassification probabilities is
the logistic regression model

logit Yijk = Vjko + )/jT-kzZi, (6.27)

where Bk, yjko and y i, are regression parameters for j # k and j,k = 1,2.
Write f = (B1,.B3;)" and y = (y1,.¥3,)", where y i = (yjko.Vjy,)" for j # k
and j, k = 1,2.
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Taking
0 = (Y12 V21 B12. B21)" and 0% = (=y31. —V12. B21. B12)"

gives
Loi (9) = Lo (9*)»

which suggests that the model parameters are not identifiable. These parameter val-
ues reflect the model symmetry in the sense that the state labels are interchangeable.
The permutation of state labels is a typical reason of nonidentifiability of hidden
Markov models (MacDonald and Zucchini 1997; Rosychuk and Thompson 2004). In
addition, it can be shown that these two sets of parameter values are the only distinct
sets which yield the same distribution of Y;*, given Z; (see Problem 6.6).

When nonindentifiability seems to be an issue, one may consider to change the
model structure to attain model identifiability (e.g., Titman and Sharples 2010b).
More common practice is, however, not to change the initial model structure but to
reduce the parameter space by setting suitable constraints on the model parameters
so that some parameter values are inadmissible. For example, to make L.;(f) be
identifiable, we usually impose constraints that both y;15 and y;»; are smaller than
0.5, a reasonable assumption for misclassification probabilities.

Another approach is to call for additional data sources, as discussed in §2.4, to
gain an understanding of the misclassification process so that the identifiability of
the response model, which is established for the error-free setting, is preserved. In
the lack of additional data sources, a general strategy for overcoming nonidentifiabil-
ity is to conduct sensitivity analyses. This is normally done by specifying nuisance
parameters to be certain representative values and then carrying out inference for pa-
rameters of interest to uncover how sensitive the results are to different magnitudes
of nuisance parameters.

Essentially, these approaches reserve the initial response model structures but
handle nuisance parameters differently. No matter what strategy is employed to over-
come nonidentifiability caused by additional modeling of the mismeasurement pro-
cess, a general principle is to reduce the entire parameter space to a subspace of the
response model parameters (because its identifiability is well established for the con-
text without mismeasurement) and to treat nuisance parameters in a way of reflecting
a priori knowledge of mismeasurement or the availability of additional data sources.

6.3 Multi-State Models with Misclassified States

For subject i in a random sample of 7 individuals, suppose {Y;(¢) : ¢t > 0} is the
true unobservable continuous-time process with K states and {Y;*(t) : t > 0} is
its observed process. Let A;; (t|H},) be the transition intensities for the underlying
true process {Y;(¢) : t > 0}, as defined in §6.1.1 with subject index i added. If the
Markov property is imposed on the process {Y; (¢) : ¢ > 0}, then A;; (¢|H],) is inde-
pendent of the history H), but dependent on the state at time ¢; and {Y;(¢) : t > 0}
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is called a hidden Markov process or a hidden Markov model to reflect its unobserv-
able feature (Cappé, Moulines and Rydén 2005). If the process {Y;(¢) : t > 0} is
assumed to be time-homogeneous, then A, (£|#},) is independent of # and #?,, a

it is thereby denoted as A, .

Strategies and Assumptions
Transitions of the underlying process {Y; (¢) : t > 0} are usually associated with

certain covariates. Let Z; (¢) denote the associated covariate vector for subject i at
time ¢. It is of interest to understand the relationship between Y;(¢) and Z;(¢). For

i = 1,...,n, assume that subject i is assessed at times 0 < f;; < ... < lim;,
and let Y, 1 = Yi(tiy) and Y;7 = Y;*(#;;) denote the true and the observed states
for subject i at time #;;, respectively, and Z;; = Z;(t;;) forl = 1,...,m;. Write
Yi=i 0 Yim)" Y = ( ll,...,Yi’;ni and Z; = (Zi1,.... Zim;)".

Since the surrogate version Yl* of Y; is available, inference about the relationship
between Y; and Z; typically roots from the joint distribution of all the associated
random variables {Y;,Y;*, Z;}. Directly modeling this joint distribution is difficult
to provide a transparent and meaningful description for each process, especially for
the underlying true process which is of primary interest. Common practice is to first
factorize the joint distribution as a product of a sequence of conditional distributions
and a marginal distribution and then model the resulting distributions separately.
This strategy has been constantly applied and illustrated in the previous chapters. It
is known that such a factorization is not unique. Depending on the research focus,
different formulations may be worked out to reflect varying modeling objectives. To
elaborate on this, we describe two modeling schemes

Forl =2,....m;,let H}} ={Y7],..., zl gand HYy = {Yi, ..., Y1} be
the histories of Y, (¢) and Y;(¢) up to but not including time ¢;;, respectively, and
Hi, ={Zi1,..., Zi 11, Zi1} be the covariate history up to and including time 7;;.

A strategy of modelling the joint distribution of {Y;, Y;*, Z;} is to first separate
the covariates from the response processes Y; () and Y;*(¢) using the conditioning
principle, and then use the time order to form a sequence of models for the univariate
conditional distributions, suggested as follows:

Siylzi)
= fi. 120 f (@)
o f(yi, yilzi)
= f((yimf,yfm,.); o i2s Y1)y iy yiD1zi)

H FORYiH 1T 20 fulHY 1 2i)

[1=2
SNy, zi) f(inlzi)s (6.28)

where f(:|-) represents the model for the conditional distribution of the correspond-
ing variables with the parameters suppressed in the notation, and we assume that the
model for the marginal distribution of covariates Z; carries no information about the
parameter associated with the model of interest.
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Alternatively, to describe the model for the joint distribution of {¥;, Y;*, Z; }, we
treat all the variables Y;, Y;* and Z; equally and group them by the time points;
then we use the time order to formulate a sequence of conditional models for each

univariate variable, demonstrated as follows:

fiyizi)
= f((y;kmi,yimi»Zimi)' e 05 vins zin): Vins Y. zin))

{ nf(yllb’zl H), Hip) f il M1y 1T Hip)

1=2

Sl M 1 1) SOy zi) f(alzin) f(zin)

{nf(yllb’zl Hj), Hip) f il M1y 1T HEp)

1=2
SO yinziD) filzi), (6.29)

where the product of the conditional models for time-specific covariates and the
marginal model for Z;; are assumed to carry no useful information about the para-
meter associated with the model of interest.

Factorization (6.28) focuses on the dynamic changes in the true and observed
state processes by conditioning on the entire covariate vector over the course, while
modeling scheme of (6.29) incorporates the dynamic change in covariates, in addi-
tion to those in the true and observed state processes, by conditioning on the time-
specific covariate information.

To ease modeling, convenient assumptions are frequently made. With decompo-

sition (6.28), it is often assumed that for/ = 2,...,m;,
S il H;. z2i) = filH. zi) (6.30)
and
FOalyi Hi 1l zi) = FOalyi Hi 2z (6.31)
while for factorization (6.29), one may assume
FOilHy HT 1) = fOulHy 1) (6.32)
and
FOOya 1y 1T H) = fOh i i 1) (6.33)

In application, certain simplistic assumptions may be further imposed. For
instance, a combined assumption of the Markov property and nondifferential mis-
classification:

FOulr "' zi) = fOirlyig-1.20)
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or

f(yll|HlY]a ;(l*’ lel) = f(J’zIIYz,I—l»H,ZI)a (634)

may be imposed to replace (6.30) or (6.32), respectively.

Regarding the (mis)classification probabilities f(y};|yi;, H}}', zi) in (6.31) or
SOy, T HYp) in (6.33), we sometimes assume that (mis)classification proba-
bilities are homogeneous for all the subjects and time points and are independent of
the misclassification history. In this case, the (mis)classification information may be
simply summarized by a matrix with elements

P =klYi=))

forj,k=1,....K;l=1,...,mj;andi = 1,...,n.

With a factorization, such as (6.28) or (6.29), together with certain model ass-
umptions, one can then proceed with modeling the true transition process and the
misclassification process using standard techniques, followed by the development
of estimation of associated model parameters. As illustrations, we next consider the
decomposition (6.29) and discuss inferential procedures.

Regression Models

Under assumptions (6.33) and (6.34), fori = 1,...,n and j # k, we define
Yiljk = P(Y;; = k|Yll = ],’H;(I*,HIZI) forl = 1,...,m;

and

pitjk = P(Yiy = k|Yi;—y = j.H;) forl =2,....m;,
where HT is null. To reflect the influence of the conditioning variables on these
probabilities, we employ regression models. Fori = 1,...,n;[ = 1,...,m;; and
j =1,..., K, we consider multinomial logistic regression models for the misclas-
sification probabilities y;;x:

exp(y wir)
14> s exp(yjswir)

where y;r represents the associated parameter vector for j # k and j,k =
1,..., K; and w;; is a subset of H7; and 1}

Lety = (V]T‘k 1 j # k;j,k = 1,...,K)". In certain applications, some of
the y;;jx are constrained to be a fixed constant or zero to reflect special features
or a priori knowledge of data collection procedures. For example, the probability
of misclassification may be negligibly small or even zero for nonadjacent states of
certain disease and is then accommodated by choosing an appropriate form of w;;
(e.g., Jackson et al. 2003).

On modeling the true state process {Y;(z) : ¢ > 0}, two approaches are often
used. As discussed in §6.1, one may direct modeling attention to the transition in-
tensities to describe the covariate effects on the process {Y;(¢) : ¢ > 0}, and then
express the transition probabilities p;;;x in terms of the transition intensities in order
to formulate the likelihood function for inferences.

Yiljk = for k # j;
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Alternatively, by analogy to the regression model for the misclassification pro-
cess, one may directly model the transition probability p;;;r. Specifically, for i =
I,...,n;1=2,...,mj;and j = 1,..., K, we consider the model

exp(Blzit)
L+ sy exp(Blzis)
where B jx is the vector of regression parameters related to the transition from states
jtok.Letf = (ﬂ;k jFEkjk=1,...,K)".

To complete modeling, we express the model f(y;1|z;1) for the initial probability
P(Yi1 = yi1lZi1 = zi1) as logistic regression

Diljk = for k # j,

exp(p}zi1)
1+ YK Pexp(pizis)
1 .
1+ 25 exp(otzig)

where p = (p},...,pk_q)" is the vector of regression parameters and
yvi=1,...,K—1K.

As aresult, corresponding to the factorization (6.29), the likelihood function for
the complete data {y;, y*, z; } contributed from subject i is

P(Yn =jlZii =zi1) =

forj=1,...,K—1;

PYn=K|Zi=zi1) =

mi
Lei (9) = ( l_[ yily,-/y;"l pily,'.]_1y”) yily“yi*] f(J’il |Z~i1)’ (6.35)
=2
leading to the observed likelihood function for the data {y*, z;}:
K K
L) = > ... Y La(8) (6.36)

yir=1  yim; =1

where 6 = (y", BT, p")" and the marginal distribution of Z;; is assumed to carry no
information about 6.

In principle, inference about & may be based on the observed likelihood function
for the entire sample:

n
Lo(0) = 1_[ Loi (0)
i=1
by maximizing L,(f) with respect to parameter 6. It is often necessary, however,
to examine model identifiability before proceeding with estimation, as discussed in
§6.2 and Problem 6.9. It is obvious that L. (0) in (6.35) is not identifiable if the
number of parameters exceeds the dimension of the minimal sufficient statistic. For
many applications, when the number of states or the number of assessment times is
large or covariate Z; assumes a large number of different values, model identifiabil-
ity may likely be achieved.
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EM Algorithm

An alternative approach to direct maximization of the observed likelihood is the
EM algorithm, which places estimation of 8 in the context with missing data, with
the underlying true states Y; regarded as “missing” data. Let

Lc(e) = l_[ L (9)

i=1

be the complete data likelihood. Then the logarithm of the complete data likelihood
is the sum of three separate terms, each involving only one set of parameters corre-
sponding to one process:

Zc(e) = 10g Lc(e) = ZM()’) + ZT(IB) + Es(p)s

where

n

La(y) = YD 108(Vity, p%);

i=11=1
n m;
(B) = ZZIOg(pilJ’i,I—IYiI);
i=1]=2
n
by(p) = Y log f(yinlzin);
i=1

corresponding to the misclassification, the state transition, and the beginning infor-
mation of the true state process, respectively.

At iteration (k + 1) of the E-step, we evaluate the conditional expectation,
E{€:(0); 0%}, of £.(0) with respect to the model, f(y;|y*,zi;0®), for the con-
ditional distribution of Y; given {Y;*, Z;}, where realization y; in £.(6) is replaced
by random variable ¥; when evaluating conditional expectations, %) represents the
estimate of ¢ at iteration k, and f(y;|y/, z;; 6®)) is determined by

{H;”:tl Vily,-;y;"l 1_[;";2 pily,-./_ly” f(yil|zl'l)} |9:9(k)

K K m; m; ’
2 yi=1 Ly =1 {Hl=ll Vity vty T2 p”J’i.l—lyl'lf(yil|Zil)} oo

To evaluate E {£.(9); 0%}, it suffices to work out the conditional expectations
wl! (y:6%) = E(log yity,,,7:0©) for I =1,....m;;
il .9(1{) = E( . .e(k) for [ =2 .
Wy (ﬁ’ ) (ngll%}/flyl‘l’ ) or yeees Mg
wy! (p:6%) = E{log f(Yinlzi1):6©)};

which are calculated using the conditional model f(y;|y;, z;; 6y,
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Consequently, the conditional expectation E{£.(6); 8%} is given by
E{lc(6):0%) = E{tu(r): 69} + E{t:(8): 090} + E{u(0): 09},

where

E{tu(y); 60} = Ziw;’w; 6®):;

i=11=1

E((B):00) = 303 wil (800,

i=1]=2

E{a(p): 09} = 3wyl (0:09).

i=1

The M-step then follows with E {£.(6); 9%} maximized with respect to 6, yielding
an updated value §%+D for iteration (k + 1). Repeat this process until convergence
of{e(k) k=1,2,...}ask — oo.

Implementation Note

A type of EM algorithm, known as the Baum—Welch or forward-backward
algorithm, may be used for analysis of hidden Markov models in discrete-time
(e.g., Albert 1999). A generalization of this algorithm for continuous-time mod-
els was described by Bureau, Hughes and Shiboski (2000). Implementation issues
were briefly discussed by Jackson et al. (2003). An R package, msm, was written
to fit continuous-time multi-state Markov models with or without misclassification
in states. Details can be found in Jackson et al. (2003). Other discussions on soft-
ware packages of handling multi-state data with or without measurement error were
provided by Meira-Machado et al. (2009), and the references therein.

6.4 Markov Models with States Defined by Discretizing
an Error-Prone Variable

In some applications, the state value is not directly measured; it is determined by
the measurement of a biomarker or a covariate which is error-contaminated. For
example, consider the human immunodeficiency virus (HIV) data analyzed by Satten
and Longini (1996). Infection with HIV type-I (HIV-1), the virus that causes acquired
immune deficiency syndrome (AIDS), is accompanied by a progressive decline in the
CD4 cell count (the number of CD4 cells per microlitre), a type of white blood cell
that plays a key role in the functioning of the immune system. To describe the HIV
progression, CD4 cell counts are used as a covariate to determine the state status.
Satten and Longini (1996) used a seven-state model to describe the progression to
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AIDS in HIV-infected individuals. Six CD4-based states are defined using cut points
00, 900, 700, 500, 350, 200, 0, and a seventh (absorbing) state is added for clinical
AIDS. The progression to AIDS and transitions are displayed in Fig. 6.7.

Due to imperfectness of measurement procedures and biological variability of
the variable, the collected measurements of CD4 counts are error-prone. If this as-
pect is ignored, then the inference results about the state process involve substantial
biases, as illustrated by Satten and Longini (1996). Here we describe valid inference
methods pertaining to such an error-involved situation.

State 3:
500 <CD4 < 700

v 1

State 4:
350 < CD4 < 500

I -

State 1: > State 2:
CD4 > 900 |¢ 700 < CD4< 900

v

A

State 5:
200 < CD4 < 350

v 1

State 6:
CD4 < 200

Fig. 6.7. An AIDS Progression Model

Suppose there is a sample of n individuals. Fori = 1,...,n, let X;(¢) be the
covariate for subject i at time ¢ which defines the value of state Y;(¢). Specifically,
for any time ¢, covariate X;(¢) is discretized into a finite number of nonoverlapped
pre-specified intervals [/;,u ;) for j = 1,..., K, and the state variable is defined to
facilitate those categories:

Yi(t) = jif X;(t) € [lj,uj), (6.37)

where j = 1,..., K. Suppose subject 7 is observed at times 0 < #;1 < ... < lipm;.
However, the true value of X;(¢) is not available, but a surrogate value X*(¢) is
observed. Write Y;; = Y(t;1), Xy = X (t;7), and X; = X (t;;) forl =1,...,m;.
LetY; = (Yir..... Yim,)", Xi = (X1, ..., Xim,;)", and X" = (X7, ... X7, )"

To develop valid inferences with measurement error accounted for, we begin with
examining the joint distribution of all the relevant variables X*, X; and Y;. Instead
of directly modeling such a joint distribution, we employ a factorization to divide
modeling into several steps using hierarchical structures:

h(xf. xi, yi) = h(x]|xi, yi)h(xi|yi)h(yi),
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where the notation A(:|-) or h(-) stands for the conditional or marginal probabil-
ity density or mass functions for the corresponding random variables. This de-
composition explicitly spells out the distribution &(y;) of the response process
{Yi(t) -1 = 0}

It is often reasonable to assume the conditional independence between X* and
Y;, given X;:

h(x|xi, i) = h(x]|x;).

This assumption says that the measurement error in X; is nondifferentiable; the
state value is solely determined by the true covariate value and not by its surro-
gate value. Therefore, we need only to model the conditional distributions /(x| x;)
and h(x;|y;), in addition to modeling of (y;). To do so, we consider a hierarchical
modeling strategy.

Forl = 1,...,m;, let H}; = {Yi1,...,Y;;—1} be the history for the ¥;(z) up
to but not including time #;;. Let 1Y, = {X;1,..., Xy} and HY = {X7,.... X[}
be the history for the X;(¢) and X;*(¢) up to and including time #;;, respectively.
We break the modeling of the distribution of X; given ¥; (or of X given X;) into
a sequence of conditional models specified at each time point with Y; (or X;) held
fixed:

m;
XilY; ~ [T Gl My Yis ) (6.38)
=1
or
mi
XFIXi ~ [ FORIHS -y Xz ), (6.39)

=1

where H}, and 7-[;‘; are null; ¥ is the parameter associated with the models
Sf(xir|HY,_;, Yi; 9) for the conditional distribution of X;;, given {#},_,, Y;}; and o
is the parameter associated with the models f(x};|H}]_;,Y;; ) for the conditional
distribution of X, given {HX]_ . Y:}.

To ease complexity of modeling and gain intuitive interpretation, additional as-
sumptions are usually imposed:

SOl Hy_y, Yisd) = f(xalYi 9)
= fxiulYi: 9),

which says that given the ¥;, X;; is independent of its history HY;_,, and that given
Y;;, X;; is independent of Y;;, for I’ # . Analogously, model (6.39) may proceed
under the assumptions

FORIHT X)) = f(xy1Xis )
= f(x)1 X ).

Detailed discussion on these assumptions was provided by Satten and Longini (1996)
and Lai and Small (2007).
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Let B denote the vector of parameters which are involved in the transition prob-
ability matrix and p represent the parameter associated with the initial probability of
the process. Then the joint distribution of ¥; is modeled by the product

fGiip.B) = fGip) [ [ fOulH: ). (6.40)

=2

where f(-) and f(:|-), respectively, represent models for the marginal and conditional
distributions for the corresponding variables.

To ease the presentation, in the following discussion we assume that the state
process {Y(¢) : t > 0} is a homogeneous Markov process with

P(Yy = yilHj) = P(Yi = yirlYii—1 = yig—1)

forl =2,...,m;.
Marginal Analysis

Let 0 = (8", 97, a7, p")" be the vector of all the associated model parameters.
Because the state information about Y; and the true covariate value of X; are not
observed, inference about 6 can only proceed based on the marginal likelihood for
the observed measurement X .

One way of obtaining such a marginal likelihood is to marginalize the joint dis-
tribution of X and X; with respect to X;. In this case, the marginal likelihood con-
tributed from subject i is given by

FOE B D p) = [ PO a) £ (s p. B ) o). (6.41)

where the conditional model f(x|x;, ) is given by (6.39), and the marginal model
f(xi; p, B,9) for X; is determined by (6.38) and (6.40):

f(xiQﬂaﬁaP)=Z~~Z§l_[f(xil|7'l?’1_17yi”})f(yi;:ovﬂ) . (642)

Yil Yim; \I=1

Inference about parameter 6 is then performed by the maximum likelihood
method, i.e., maximizing

n
[ Jlog f(xf:8. 9., p)
i=1
with respect to 0 yields the maximum likelihood estimator of 6.

This approach is conceptually straightforward but may be computationally in-
tractable in some circumstances. The sum in (6.41) is evaluated over K™ product
terms, and such a summation needs to be calculated for each individual when con-
structing the likelihood for the entire cohort. When the number of states and the
number of observation times become large, computation burdens may become a cen-
tral problem.
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Alternatively, the marginal likelihood for the observed data X* can be marginal-
ized through the joint model for X* and Y;. Satten and Longini (1996) described a
method under certain independence assumptions between X;* and Y;. The marginal
model for X* is derived as follows:

f(&xF5B.0,a,p)
= ...Z{f(x,-*lyi;z?,a)f(yi;p,ﬂ)§

Yi1 Yim;
m; m;
=> ... { [1rGh 0[] f(yi1|yi,1—1;ﬁ)f(yi1;0)}
Yi1 Yim; =1 =2

=) > {f(x,-*llyn; 9.@) f(yin: p) - f (x5 yins . 0) f(yialyin: B)

il Yim;
s f('xi*m,- |yimi ; 19’ O‘)f(yl'm,- |)’i,m,-—1§ ,8)} s (643)

where the second equality is due to the Markov assumption for the state process, and
the independence assumption that

m;
FOF i) = [T /Gy 9. e
=1
and the last step comes from the assumption that
fOGlyisd ) = f(lyida) forl =1,....m;.
This formulation leads to a matrix presentation:
F&F B0 p) = VICEIHT P )T () . T7 (xf, )Mk, (6.44)

where V(x7)) is the K x 1 column vector with the jth component V; = f(x7|Y;1 =
jiva)f(Yi1 = jip), and T(l)(xl?“l) is the K x K matrix with (J, k) element

! .
TQ(f) = fO5 1Y = k9. ) P(Yiy = k|Yiy—1 = j:B)
forl =2,...,m;.
To complete the discussion, we present the conditional probability density or

mass function f(x};|Y;; = k; 1, @). Under the preceding assumptions, by the defini-
tion (6.37) of states, we obtain that

FGG Y = kb o)

uk
= /1 FOHXi = xisa) f(Xi = x| Y = k;9)dn(xig),  (6.45)
k
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where the conditional probability density or mass functions in the integral are models
which are specified for determination of (6.39) and (6.38). Then inference about
the parameter 6 is again performed by maximizing [];_, log f(x7: B, 9, &, p) with
respect to 6.

Both strategies of formulating (6.41) and (6.43) center around using the marginal
likelihood for the observed measurements X*. Although the formulations differ,
both methods require modeling the conditional distributions of X; given Y; and
of X given X;, indicated by (6.38) and (6.39), respectively. For example, Satten
and Longini (1996) used a uniform or log-normal distribution to feature the condi-
tional probability density function of X;;, given Y;;, and an additive measurement
error model to describe the conditional probability density function of X/, given
X;1. When using (6.43) for estimation of 6, the relationship (6.37) is explicitly re-
flected in the formulation (6.45); when using (6.41), however, the constraint (6.37)
is implicitly imposed for the formulation (6.42).

6.5 Transition Models with Covariate Measurement Error

In this section, we consider inference methods for correcting covariate measurement
error under transition models outlined in §6.1.7. Suppose that the response com-
ponents are modulated by a (g, r)-order transition model (6.12) together with the
regression model (6.13). Let 6 = (B", ¢)" be the associated parameter. Suppose X;;
is an error-prone covariate with an observed measurement X ,"J‘ For ease of exposi-

tion, we consider the case where X i’; and X;; are scalar. Let X" = (X,..., X itn,- T
Suppose that the measurement error model is assumed to be additive:

Xi* = X; +e;, (6.46)

where ¢; = (e;1,...,€im;)7, and the e;; are assumed to be independent of each

other and of {X;, Z;, Y;} and marginally follow a normal distribution N (0, 062) with
variance 2. To focus on estimation of parameter 6, we assume that o2 is known.

We discuss two methods of adjusting for the effects incurred by the difference
between the true covariate measurement X; and surrogate version X;*. These meth-
ods mainly differ in the way of handling the true covariate X;.

Structural Inference

The structural transition measurement error model is completed by specifying a
conditional distribution of the unobserved covariate X;, given the precisely observed
covariate Z;. One way for doing this parallels the modeling strategy for the response
process. That is, we employ a transition model to portray the covariates X;; with their
serial correlation and the dependence on Z; being reflected via a regression model.
Specifically, consider the linear transition model with an (s, 1)-order dependence
structure:

s
Xij =00+ Y PuXij_i + 01 Zij + exij forj >s. (6.47)
=1
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where ¢ = (Fo, Fx1, ..., Uxs, 97)" is the vector of parameters; the €;; are indepen-
dent of each other and of {e;, Z,, Y;} as well as of the history 7—[1 i_1;> and the €y;;
are assumed to follow a distribution, say, a distribution from the exponential family.
A normal distribution for €,;; was considered by Pan, Lin and Zeng (2006).

To perform the likelihood inference, one may further specify a conditional dis-
tribution of {X;1,..., X;s}, given Z;, and let ¥; denote the associated parameter.
Combining this with model (6.47) gives the conditional model, f(x;|z;;®, ¥3), for
Xi, given Z;. Consequently, the joint likelihood for the observed data contributed
from the ith subject is

Loi(8.9,9,) = [ FOilis 211 0) FOT 1, 22) £ Gxi 202 9. B)dn(xa),

where the nondifferential measurement error mechanism is assumed, as suggested
by the independence of e; and {X;, Z;,Y:}; f(x'|x;,z;) is given by (6.46); and
f(yilxi, zi; 0) is the transition model determined by (6.12) and (6.13).

One may attempt to directly maximize the observed likelihood contributed from
the sample, []'_; Loi (0, 9, ), to perform estimation of the parameters. This strat-
egy works well for some models, such as linear transition models. Alternatively, one
may use the EM algorithm for estimation of the parameters, as described by Pan,
Lin and Zeng (2006).

Pseudo Conditional Score Method

The structural method is conceptually easy to use but may be computationally
intensive. Moreover, inference results are vulnerable to misspecification of the dis-
tribution of the X;, even when the response and measurement error models are cor-
rectly specified. It is desirable to develop a functional method which does not require
the distributional specification for the X;.

Here we describe a pseudo conditional score method for estimation of 6, the
method developed by Pan, Zeng and Lin (2009). The basic idea consists of two parts.
First, assuming 6 to be known and treating the X;; as parameters, we derive “suffi-
cient statistics” for the X;;; secondly, using the “sufficient statistics”, we construct a
conditional distribution to get rid of the unobserved X;;. This scheme parallels the
classical conditional score approach proposed by Stefanski and Carroll (1987) with
different technical details.

With the transition structure and possible nonlinearity of the link function g(-)
in (6.13), it is difficult to use the joint model for {Y;, X;, X l.*, Z;} to find “sufficient
statistics” for the X;;. Instead, we work with a sequence of conditional submodels,
each specified for a time point. For j > r, let HX*( = {Xu’ .. X*] 417> and
assume that measurement error is nondifferential W1th

f(ylj’H”(r)|H1]»Xl’Z ) - f(yu|7'll]sz, Z )f(HlJ(r)|H1]in’Zi)

and
f(HU(r)|H1j7Xlﬂ Z ) - f(HU(r)|Xi,Zi).
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Combining these assumptions with the (g, r)-order transition models (6.12) and
(6.13), we obtain the conditional model for {Y;;, H7 .}, given H}; and {X;, Z; }:

ij(r)}’
f(yl]’sz(r)|Hl]’Xi’Z')
= f(yl/|HU’XIVZ )f(Hlj(r)lxivzi)

i ij b l
- [ng(fgj) B {i((g)j)} + (i )
X, —1+1)°
B Z z/ l+1 J=1+1) —rlog 2710'22] . (6.48)

Noting that (6.48) belongs to an exponential family and that the X; ;_;4; ap-
pear in the linear form in the regression model (6.13) for g(u;;), we focus on the
multiplication terms of the X; ;_;4 times other variables and then take

*
() _ BxtYij . Xi i
il 2
' a($) 0;
as “sufficient statistics” for the X; ;_;4; with/ = 1,...,r. By the quotation marks

attached to sufficient statistic, we mean to indicate the difference of this terminol-
ogy from the usual definition of sufficient statistics. Here we temporally treat the
authentic parameter € as known and pretend the unobserved random variables X;;
are parameters.

The .Ql.(lj ) are taken as “sufficient statistics” for the X i,j—1+1 in the sense that by
conditioning on the .Q(j ) , one can come up with a distribution which is free of the
Xi j—1+1. Let Sjjpy) = {.Ql(lj), ... 29% and V;; () be the collection of Hyis Sijor)
and {X;, Z;}. Define
Vij (Bo + 2k BykYij—k + 2X1=1 B Zij—1+1)

a()

a2 ( () ﬁxlyij}z
_y % ) Uy _ Pxtdi
; 2 { i a(e)

Then the conditional distribution of Y;;, given V;;(8), is modeled by

Bij(yij) =

Bij (yij)
FijVij (6):6) = ’ , (6.49)
vy J Bij (yij)dn(yij)
which does not depend on X;.
For d = min(q + 1,r), let
m; a
Ui(0) = Y 55108 £ (3ijVij (0): 0),
j=d

where calculations for the partial derivative (3/060) log f(yi;|Vij(0): 0) are done by
viewing V;; (6) as fixed, say at v;;, rather than as a function of 6. At the true value
B9 of 8, U; (9) has zero mean in the sense that
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0
Eq ([39 log (¥, Vi 4o 9}L=90)
Vij(%)}i|

0
= Eq, |:E90 ELICANCT
=6

=0, (6.50)

where the inner expectation is evaluated with respect to the model for the conditional

distribution of Y;; given V;;(6p), and the outer expectation stands for the marginal

expectation taken with respect to the model for the marginal distribution of V;; (6p).
Then estimation of 6 is carried out by solving

> UiB) =0 6.51)

i=1

for 0. Under regularity conditions, including those in Pan, Zeng and Lin (2009),
there exists a solution, say 9, to (6.51) such that /n (/0\ — 6p) has the asymptotic
normal distribution with mean zero and covariance matrix I' !X I"~17, where
I' = Eg,{(3/00M)U; (0)]g=g,}, ¥ = Eg,1Ui(60)U;"(6)}, and the expectation E¢q,
is evaluated in the sense of (6.50). Matrices I" and X' are consistently estimated by
I =n"t Y7, (3/06)U;(0)],_sand & = n' Y/, U; (0)U;(B), respectively.

Example 6.1. Consider a logistic transition model with r = g = 1 for binary re-
sponses Y;; which assumes value O or 1:

loglt P(Yj = 1|H”(q), 1](r)) = ﬂo +,8y i,j—1 +,3xXU +ﬂT ij»

where 6 = (Bo. By, Bx.Bz)" is the vector of regression coefficients and Y;¢ is null.
Applying the formulation (6.48) gives that

2§ = Yy + X} /o?

is a “sufficient statistic” for X;;.
Let

Ayj = 1+ exp{(1/2 = Y;j)BZ07 — Bx X[ — (Bo + BLZij + ByYij-1)}:
Bij(viy) = expt—(2" = yi; Bx)202 /2 + yij (Bo + By¥i,j—1 + BLZi)}.
Then the conditional probability mass function of Y;;, given V;; (), is modeled as
Bij(yij)
Bij(yij = 1) + Bij(yij = 0)’
where B;;(y;; = 1) and B;;(y;; = 0) represent the expressions of B;;(y;;) with

vij replaced by 1 and 0, respectively. Consequently, the pseudo conditional score
equations for 6 are given by
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Z Z Yij—1 | (Yij —1/Aij) = 0; (6.52)
i=1, =2 Zij
DO X = (Vi Be + X5 /02 — Bx)oZ/Aij} = 0. (6.53)

i=1j=2

In the preceding development, we assume that 62 is known. When o2 is
estimated from an additional source of data, such as replications or a valida-
tion subsample, the induced variability needs to be accounted for, as indicated
by (1.14) or (1.15). The discussion here focuses on the case with a scalar X;;.
Extensions to accommodating multiple covariates X;; follow the same principle.
Finally, one issue related to the developed methods is selection of transition orders
¢q and r. When using the structural scheme for inference, usual model selection
criteria, such as AIC or BIC, may be used to select suitable values of ¢ and r
because of the availability of the likelihood function. With the distribution of X;
unspecified, Pan, Zeng and Lin (2009) proposed heuristically to select ¢ and r using
the pseudo-likelihood function. For details, the readers are referred to Pan, Zeng and
Lin (2009).

6.6 Transition Models with Measurement Error in
Response and Covariates

In this section, we consider a problem which is related to, but different from,
the one in §6.5. Here, both responses and covariates are subject to measure-
ment error. We use the same notation as that in §6.5 with an additional sym-
bol Y* to represent an observed measurement of Y;; for j = 1,...,m; and
i =1,...,n, where the X;; may be a vector.

Conmder the (1, 1)-order linear transition model

Yij = Bo+ ByYij—1 + B Xij + B2 Zij + €ij (6.54)

for j =2,...,m;, where the ¢;; are independent of each other and of {X;;, Z;;} and
follow a normal distribution N(0,?) with variance 02; B¢ and By are regression
parameters; B, and B, are py x 1 and p, x 1 vectors of regression parameters,
respectively; and py and p, represent the dimension of S8, and B, respectively. At
the baseline visit, the outcome is modeled as a function of the covariates at the entry:

Yi1 = Bo +E;Xi1 +E§Zi1 + €1, (6.55)

where the €; are random errors independent of each other and of the { X;1, Z; 1} and
follow the distribution N(0,5?) with variance 52; and ,B 05 ,3 x and ,3 7 are regression
parameters, respectively, of the dimension of 8¢, B and f;.
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Error-prone covariates X;; are treated as stochastic quantities and modeled by

Xl'j = + ﬂxXi,j—l + 19ZZ,~J- + €xij for j =2,...,m;;

Xin=Do+0:Zi1 + €xins (6.56)
where for j = 2,...,m;, the errors €y;; and €, are independent ofj:ach other and
of {H} -1 Zi}; €xij ~ N(0, Xx); exi1 ~ N(0, Yx); and ¥y and Xy are positive

definite matrices. The model parameters are either vectors or matrices. Specifically,
P and ¥¢ are pyx x 1 vectors, ¥y is a py X pyx matrix, and ¥, and ¥, are p, X p;
matrices.

Under the assumptions

Seij[Hy jq i) = f(xijlxi -1, 2i7)

and
Sf(xinlzi) = f(xilzin),

(6.56) determines the model for the conditional distribution of error-prone covariate
X;, given precisely observed covariate Z;:

Silzi) = 3 TT fijlxi o1 zi) ¢ fxinlzin)-
j=2

The preceding models for the response and covariate processes rnay be unified
using the vector or matrix notation. Let ¥ ij = (Y,,,XU)T and'€;; = (eij,€;;)"

for j = 2,...,m;; Y,l = Yiis €1 = (€1.€5;)"s and Z,, =(,7] )T for j =
1,...,m,~,then (6.54), (6.55), and (6.56) are unified as

7,7' = ny)\;i,j—l + Pz,Zij + Pe?ij forj =2,...,m;; (6.57)

Yo =P, Zn+ PZu; (6.58)

where €;; ~ N(O14p,, 2) for j =2,....m; ;%1 ~ NOi4p,. Z1);

~ o2 0" ) ~ (’52 o ) (,B BLO )

Yy = Px ). ¥ = Lx ). P Y ;
(OI’x Ex ! Opx Ex > Pr 19)5

pom (PABRI B (B,

Yo Uz px Ipexpy
Py = (Bo+BIdo L0, +BL); and Pe = (18%).
As a result, the model for the conditional distribution of ?i , given Z;, is given by

fGilzo) = T[] G0 Fij-1020) ¢ FGinlzin), (6.59)

j=2
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where 3; is a realization of ¥; = (Yle"“’?sz,-) , SO i, =1, zij) is de-
termined by (6.57), and f(Ji1|z;1) is determined by (6.58), with the parameters
suppressed.

To complete modeling, we specify measurement error models for the response
and covariate processes. Let Y L= i’ X *T)T denote the surrogate version of Yi 5

forj = 1,...,m;, ¥;; = (Y,-I,X“) and Y} = (Y}1.....Y}5 )" Conditional
on ?,- and Z;, the distributions of 7;*] are modeled as

71*1 = Ainj + Azle‘j +ej forj =2,...,m;

YH =AY+ A, Zn +en; (6.60)
Where for j = 2,...,m;, the ¢;; and e;; are independent of each other and of
{Y,,,Z,,} and {Y,l ,1} e;j ~ N(0, X,) with covariance matrix Ye; and ej1 ~
N(0, Ee) with variance E Here we assume that matrices Ay, Az, Ay, Az, P

and Z‘ are known.
Model (6.60) implicitly assumes

FO5 Vi zi) = FO7 i) zig)s
saying that the probability information of the surrogate measurements at time j
depends only on the true measurements of response and covariate variables at that

time point and not on those at other time points. Consequently, the model for the
conditional distribution of Y* given Y; and Z;, is given by

fO7 i zi) = l_[ FO5 Vi zip),s (6.61)

J=1

where the assumption f(V}; V7 ;_y..... V{1 Vi zi) = f(V};[Vi.zi) is made for
j=2,....,m

Estimation Procedure

Let 6 be the vector of parameters associated with the conditional model (6.59).
Given the foregoing hierarchical modeling structures, the model for the conditional
distribution of the observed data Y ;‘, given Z;, is

167120 = [ ¥ S G Fikendnen = [ FGTF 20 Gilzodne)
Vi Vi

where f(3ilz;) and f(3F[Vi.zi) are determined by (6.59) and (6.61),
respectively.
Inference about @ is then based on maximizing the observed likelihood

Lo0) = [ [ £ G712

i=1

with respect to parameter 6. Details were given by Schmid, Segal and Rosner (1994).
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Alternatively, estimation of ¢ may be carried out using the EM algorithm, as
developed by Schmid (1996). Given Z;, the complete data likelihood for {Y;, Y[} is

LC(G) = 1_[ L (9)7

i=1

where
Li(0) = fO7 Vi .zi) filzi).

Given the formulation of (6.59) and (6.61), the log-likelihood £.(8) = log L.(6) for
the complete data is thus

I | & =
le(0) = —§Z§ > [log|PezP:| +log | T |
i=1 (j=2
+Gij — PyYij—1 — PZi) (PeX P (5ij — PyYij—1 — PZij)
+(73 — A)5ij — AZi) BT 5 — AT - Az?ij)]
+(in — zZzl) (P 2 P! &) (~11_ zZzl)

+(y11 yyll_ zZil)TEel (yll yyll_ zzil)

+log|PcX1PL| + log| Zeil. (6.62)

where the constant is omitted.

At iteration (k + 1) of the E-step, we calculate the conditional expectation
E{L.(0)] Y Z;;0®)} where the expectation is taken with respect to the conditional
model, f(~l [VF,zis 6%, of the “missing” data Y; given the observed data {Y Zi}
with parameter 6 evaluated at 0@ the estimate of 6 obtained from iteration k. The
conditional model f(¥;[y},z;:0) is determined by:

Lci (9)
J 2y, Lai(@)dn(x;)”

With the form (6.62), to evaluate £ {ZC(QQJ?Z, Z;:0%)}, we need only to calcu-
late the conditional expectations of Y';; and Y, Y;; for j = land of Y; ;_,Y; for
J = 2.Noting that f(¥; [y}, z;) is the product of the conditional models at individual
time points, we evaluate E {7}1 715 ] |7;", Z;: 0% sequentially using the conditional
expectation at each time point, where s = 0,1;/ = j —1,j;and j = 1,...,m;
with Y io | taken as 1 null. " "

Let H,] = {Yll, Yo YP Ziy for j = 2,...,m;, then the conditional
expectation is sequentially evaluated as

fOilyi zi:0) =
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EYY|YF. Zi:60%)

= By, (B i - (B, Fo, (V75,0003
= By, (Ey G5, - [E UIHU{Y ll’g(k)}])
By By oy - B, 7, OV Vi 093D, (6.63)
where for I = 2,...,m;, E7”|7{” and Ey Vi , Tepresent the conditional

expectations taken with respect to tl}g condlglonal model of Yﬂ, given 7’:21-1, and
the conditional model of Y;;, given {Y; ;_;,Y l* Z;}, respectively; and E;*H repre-
sents the conditional expectation taken with respect to the conditional model of Yii
given {Y7, Z;}. The last identity is due to the structure of the response and covariate
models.

The underlying conditional models in (6.63) are normal distributions, hence the
conditional expectations in (6.63) are the first or second conditional moments of
normal distributions, which have closgg-forms (Schmid 1996). At the M step, we
maximize the expected value E{{.(0)|Y [, Z;: 6%\ with respect to 6 using standard
techniques for Gaussian data to obtain an updated value §%**1) for iteration (k +
1). Repeat the E and M steps for k = 1,2, ... until convergence of gk+D) et 9
denote the resultant estimator of . Variance estimates of & may be obtained using
the formula of Louis (1982) or the bootstrap method.

In the preceding development we assume that the parameters of measurement
error models (6.60) are known. This assumption allows us to confine attention to
estimating the parameters associated with the response and covariate processes and
prevents us from confronting potential problems of model nonidentifiability. The
estimation procedures are useful for performing sensitivity analyses to assess the
effects of different measurement error models on inferences about the parameters
of interest (Schmid and Rosner 1993), where various model forms and associated
parameters for the measurement error processes are specified by the user. In the
instance where external data sources, such as a priori similar study or validation data,
are available, the parameters for the measurement error models are estimated from
these data, and the induced variability needs to be accounted for when describing the
asymptotic properties of 0.

6.7 Bibliographic Notes and Discussion

Continuous-time multi-state models are widely used to describe progression of
chronic diseases. However, inference is difficult when the process is only observed
at discrete time points where no information about the process between observation
times is available, unless certain assumptions are made. The Markov assumption has
been widely adopted in the literature (e.g., Kalbfleisch and Prentice 2002, §8.3), and
goodness-of-fit for Markov models was developed by various authors. For instance,
Aguirre-Herndndez and Farewell (2002) proposed a Pearson-type test. Titman and
Sharples (2008) generalized this test to the case with an absorbing state, and they
extended the discussion to allow for hidden Markov models. A review of methods
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for diagnosing model fit for panel-observed continuous-time Markov models was
given by Titman and Sharples (2010a). In the case where the Markov assumption
is infeasible, alternative models have been proposed. These models include finite
mixture models (e.g., Frydman 1984; Cook, Kalbfleisch and Yi 2002; Cook et al.
2004), semi-Markov models (e.g., Titman and Sharples 2010b), hidden Markov mod-
els (e.g., Bureau, Shiboski and Hughes 2003), random effects models (e.g., Satten
1999), and general regression models. A review of multi-state models was provided
by Hougaard (1999), Andersen and Keiding (2002), Meira-Machado et al. (2009),
and Cook and Lawless (2014), among many others.

The methods in this chapter mainly focus on addressing effects induced from
misclassified states and mismeasured covariates, assuming that the underlying model
assumptions for the multi-state models are plausible. The likelihood-based methods
discussed in §6.4 modify the development by Satten and Longini (1996) and Sypsa
et al. (2001). The EM algorithm discussed in §6.3 was employed by Pfeffermann,
Skinner and Humphreys (1998) to handle problems in the context of survey sam-
pling, where the modeling scheme (6.29) was used in combination with a proper
incorporation of sampling weights. The EM algorithm was also employed by Albert,
Hunsberger and Biro (1997) to address longitudinal ordinal data with diagnostic er-
ror under a latent Markov chain model. Using the EM algorithm, Hu and de Gruttola
(2007) proposed a joint modeling method to incorporate the error-prone covariate
process into the Cox proportional hazards model for failure times.

Other work on measurement error and misclassification problems under multi-
state models includes Wolfe, Carlin and Patton (2003), Bureau, Shiboski and Hughes
(2003), Jackson et al. (2003), Smith and Vounatsou (2003), Rosychuk and Thompson
(2003, 2004), Chen and Sen (2007), Rosychuk and Islam (2009), He (2015), Yi, He
and He (2017), and the references therein.

6.8 Supplementary Problems

6.1.
(a) Prove the identities (6.3) and (6.4).
(b) Consider a continuous-time Markov process. For 0 < s < ¢ let P(s,t) be
the K x K transition probability matrix with entries p (s, ) and Q(r)
be the K x K transition intensity matrix with entries A ;¢ (t) for j, k € S.
Show that the identities (6.3) and (6.4) for homogeneous models can be
extended as

0P(s,1)
o L Q)

t
and 0P(s.1)

s, t

- 9 = Q(S)P(S,[),

N
respectively. These equations are called the Kolmogorov differential equa-
tions.

(Cox and Miller 1965, §4.5)
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6.2.

6.3.

6.4.

6.5.
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Consider a continuous-time homogeneous Markov process discussed in

§6.1.2.

(a) Suppose that the transition matrix Q has K distinct eigenvalues. Prove the
identity (6.7).

(b) If the transition matrix Q has repeated eigenvalues, derive a procedure to
calculate the partial derivative matrix dP(¢)/d6; of the transition proba-
bilities for/ = 1,..., p.

(Kalbfleisch and Lawless 1985)

Consider the progressive homogeneous Markov model discussed in §6.1.2.

(a) Suppose the transition intensities A,...,Ax—1 are distinct. Prove the
identity (6.8).

(b) Suppose some of the transition intensities A1, ..., Ax_1 are equal. Derive
the expressions of the transition probabilities in terms of the transition
intensities.

(Satten 1999; Longini et al. 1989)

(a) Verify the recursive equation (6.21).

(b) Discuss the assumptions (6.17) and (6.19) which are made for the recur-
sive equation (6.21).

(c) Derive a similar expression to (6.21) for a general case where the number
of states, K, is larger than 2.

Suppose {Y(t) : ¢t > 0} is a continuous-time Markov process with K

states. Let A jx(¢) be the transition intensity at time ¢ from states j to k and

pjk(s,t) = P(Y(t) =k|Y(s) = j)fors <tand j,k =1,..., K.

(a) Suppose K = 2 and {Y(¢) : ¢ > 0} is homogeneous with A () = A
fort > 0,j # k,and j,k = 1,2. Show that the transition probabilities
are

A’.
pi(sr) = (ﬁ) [1 = expl{—(t — $)(h1z + Aa1)}]

for j #kand j,k =1,2.

(b) Consider a Markov model with three states as indicated by the illness-
death model, shown by Fig. 6.3 in §6.1.1 except that the transition from
states 2 to 1 is impossible, i.e., Ao;(t) = 0 for ¢ > 0. Show that the
transition probabilities have explicit expressions

p11(s. 1) = exp[—{A12(s.1) + A13(s, D)}];
pzz(S,t) = eXp{_A23(59t)}§

t
prals.t) = / P11 (5. VA 12 () pra (. 1)l

where A i (s, 1) = fst A jx (v)dv is the cumulative intensity from states j
to k between time points s and 7.
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(c) Derive the expressions of the transition probabilities in terms of the tran-
sition intensities for the illness-death model of Fig. 6.3 in §6.1.1.

(Rosychuk and Thompson 2003; Meira-Machado et al. 2009)

Consider the transition intensity model (6.26) and the misclassification
model (6.27) in §6.2. Let L,; () be defined as in (6.25). Let 6, =

(yirza V;l» 13{25 ﬁ;])T and 02 = (_y-zrls _pr ﬁ;]» ﬂ{Z)T'

(a) Show that Ly;(601) = Loi(62).
(b) If there are two parameter values 6;° and 65 such that L; (6]) = Lo (65),
then {6}, 65} = {61.0,}.
(Rosychuk and Thompson 2004)

Consider a two-state continuous-time homogeneous Markov process in §6.2.
For subject i, let Z; be a discrete covariate assuming N different values and
Aijx be the transition intensities from states j to k for the underlying true
process {Y;(z) : t > 0}, where j # k and j, k = 1, 2. Consider the regression
model

log Aijk = Bojx + BzZi, (6.64)

where Bojx is the intercept that may be dependent on the transition from
states j to k; B, is the regression coefficient; j # k; and j,k = 1,2. Let

B = (Bo12. Bo21. Bz)"

Assume that the (mis)classification probabilities P(Y;; = k|Y;; = j,Z;)
depend only on the true underlying states and not on others, and let y;z =
P(Y] =k|Y; = j,Z;)foralli, j,k,and /.

(a) Assume that the (mis)classification probabilities y jx are known. Derive an
estimation procedure for 8 by respectively modifying

(i) the observed likelihood formulation (6.25) in §6.2.
(i1) the observed likelihood formulation (6.36) in §6.3.
(iii) the EM algorithm in §6.3.

(b) Compare the formulations of (i) and (ii) in (a).

(c) If the (mis)classification probabilities y;; are unknown, can the proce-
dures in (a) be carried through for estimation of §?

(d) Hairy leukoplakia (HL) is an oral lesion that is thought to have prognostic
significance for the progression of HIV disease. Bureau, Shiboski and
Hughes (2003) analyzed a data set concerning diagnosis of HL. Here we
consider a modified subset with n = 1254 subjects who were assessed
at most four times. Let Y;; denote the HL status, taking value 1 or O,
respectively, corresponding to having HL or HL free, at time point #; for
I =1,2,3,4andi = 1,...,n. Let Z; represent CD4 counts for subject i
that were categorized to be three levels, 1,2, and 3, corresponding to the
range: CD4 count < 200, 200 < CD4 count < 500, and CD4 count > 500.
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It is known that diagnosis of HL is subject to measurement error, and the
false positive and false negative rates are about 3.40% and 24.2%, respec-
tively. That is, P(Y;; = 1|Y;; = 0) = 3.40% and P(Y;] = O|Y;; =
1) =242% fori =1,...,nand [ = 1,2, 3,4, where Yl*; represents the
diagnostic value of HL. Table 6.1 records the frequencies of the observed
value of HL for a subset of individuals classified by the CD4 counts, to-
gether with the frequencies of the observed diagnostic HL for a subset of
individuals whose CD4 counts are unknown.
(i) Analyze this data set by modifying the methods in (a).
(i) If the misclassification in HL is ignored by treating Y.} as Y;;, analyze
this data set and compare the results to those obtained in (d) (i).
(Bureau, Shiboski and Hughes 2003)

Table 6.1. HL Data (Bureau, Shiboski and Hughes 2003)

HL status CD4 count No stratification

VAYSYAYS Zi=12=27=3

1 0 10 6 5 18
1 1 17 23 6 39
0 45 101 100 207
0 1 7 9 4 18
1 1 0 2 4 6
1 1 1 6 12 26
1 0 0 7 12
1 0 1 2 4
0 1 8
0 1 1 6
0O 0 O 23 59 76 184
0o 0 1 5 2 2 8
1 1 1 0 8
1 1 1 1 18
0O 0 0 O 153
0O 0 o0 1 6

6.8. Repeat the analysis in Problem 6.7 by replacing the regression model (6.64)

for the transition intensities with

logit pijx = Bojk + BzZi.
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where p;ji is the transition probability from states j to k for subject i, B
is the intercept that may be dependent on the transition from states j to k, and
B is the regression coefficient.

(Bureau, Shiboski and Hughes 2003)

Consider the complete data likelihood function L¢; (6) in (6.35) and the ob-
served data likelihood function L; (6) in (6.36) discussed in §6.3.
(a) Is L (0) identifiable when m; = 2 and K = 2?
(b) Is L¢;(9) identifiable if Z; is a binary covariate?
(c) If L. (0) is identifiable, is L; (€) also identifiable?
(d) If L;(0) is identifiable, is L¢; (6, «) also identifiable?
(Pfeffermann, Skinner and Humphreys 1998)

Consider the two sets of assumptions in §6.3.

(a) Show that the assumptions (6.30) and (6.31) for the factorization (6.28) are
compatible. That is, there exists a joint model (6.28) so that the require-
ments (6.30) and (6.31) are satisfied for the response and misclassification
models.

(b) Show that the assumptions (6.32) and (6.33) for the factorization (6.29) are
compatible. That is, there exists a joint model (6.29) so that the require-
ments (6.32) and (6.33) are satisfied for the response and misclassification
models.

Verify the matrix expression (6.44).

Assume the model assumptions in §6.5.

(a) Find the joint probability density or mass function for {Y;, X;,
Z;, X[}. Show that this distribution does not necessarily belong to an
exponential family.

(b) Prove (6.49).

(c) Verify the expressions (6.52) and (6.53) in Example 6.1.

(d) Can the development of the pseudo conditional score method in §6.5 go
through if the measurement error model (6.46) is changed? Specifically,
consider each of the following scenarios:

(i) the independence assumption of the e;; for (6.46) is not true;
(ii) the normality assumption of the e; for (6.46) is not true;
(iii) the measurement error model is not (6.46) but a Berkson model.

(Pan, Zeng and Lin 2009)

Consider the (1, 1)-order transition model (6.14) with (6.15) in §6.1.7 where
X;j is ascalar covariate. Let & = (Bo, By, Bx. B, o2)". Suppose that covariate
Xij is subject to measurement error with observed version X;. Assume that
the measurement error model is given by (6.46), and that the X;; are modulated
by (6.47) with s = 1 and €x;; ~ N(0,02). Assume that the parameters 62 and

o2 are known.
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6.14.

6 Multi-State Models with Error-Prone Data

(a) Discuss the asymptotic bias of the naive estimator for the response
parameter vector & which is obtained by replacing X;; with X i’; in the
linear transition model (6.14) and (6.15).

(b) Develop procedures for estimating 6 using the pseudo conditional score
method discussed in §6.5.

(c) Develop procedures for estimating 6 using the EM algorithm discussed in
§6.6.

(d) If the parameters 02 and o2 are unknown, can the EM algorithm be
employed to estimate the parameter 6? Are there any potential issues that
may be of concern?

(Pan, Lin and Zeng 2006; Pan, Zeng and Lin 2009)

(a) Verify the matrix expressions (6.57) and (6.58) in §6.6.

(b) By analogy with (6.57) and (6.58), find the matrix expressions by ext-
ending the response model (6.54) to a (g, 1)-order linear model, and the
covariate model (6.56) to an (r, 1)-order linear model, where ¢ and r are
positive integers greater than 1.

(c) Assume that the response, covariate and measurement error models are
given as in §6.6. Find the model for the conditional distribution of Yl*
given {X, Z;}. Are there any assumptions for the measurement error
process that you may make in order to find a simplified expression?

(d) Assume that the response, covariate and measurement error models are
given as in §6.6. Can you develop an estimation method similar to the
pseudo conditional score method discussed in §6.5?

(Schmid 1996)
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Case—Control Studies with Measurement
Error or Misclassification

In epidemiological research case—control studies provide an important method to
investigate factors contributing to certain medical conditions, such as disease sta-
tuses. Case—control studies are quick and cheap to conduct. They enable us to study
rare health outcomes without having to follow up a large number of subjects over a
long period of time. Analysis of case—control studies dates back to Broders (1920)
and Lane-Claypon (1926). Various statistical analysis methods for case—control data
have been developed since the landmark paper by Cornfield (1951). Those methods
are, however, vulnerable to measurement error and misclassification that commonly
accompany case—control studies. This chapter deals with this topic and discusses
inference methods for handling error-prone data arising from case—control studies.

This chapter differs from the foregoing development mainly in two aspects:
measurement error mechanisms and sampling schemes. For observational or
prospective studies, the nondifferential measurement error mechanism is almost
ubiquitously assumed, but for case—control studies the differential measurement
error or misclassification mechanism may be more feasible. In the discussion of the
preceding chapters, the way of collecting data is often not regarded as an issue; a
random sample is tacitly assumed to have been collected prospectively from the
same framework that is used for the data analysis. On the other hand, when dealing
with case—control data, the disparity between the disease development model and
the retrospective sampling scheme becomes a concern.

The layout of this chapter aligns with the foregoing chapters. The first section
outlines the basics of case—control studies in the error-free context. Misclassification
effects are illustrated in the second section, followed by the sections which describe
various inference methods of accounting for measurement error or misclassification
effects. The chapter is closed with bibliographic notes and supplementary exercises.

© Springer Science+Business Media, LLC 2017 301
G. Y. Yi, Statistical Analysis with Measurement Error or Misclassification,
Springer Series in Statistics, DOI 10.1007/978-1-4939-6640-0_7
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7.1 Introduction of Case—Control Studies

7.1.1 Basic Concepts

The primary purpose of a case—control study is to study how risk factors are associ-
ated with the disease incidence. The study involves the comparison of cases (i.e., dis-
eased individuals) with controls (i.e., disease-free individuals). Questions of interest
usually include: (1) the degree of association between risk for developing a disease
and the factors under study; (2) the extent to which the observed association may
result from bias, confounding and/or chance; and (3) the extent to which the associ-
ation may be described as causal (Breslow and Day 1980, Ch. 3).

A number of features make case—control studies different from usual prospective
or observational studies discussed in the foregoing chapters. In subsequent subsec-
tions, we set forth a basic stage for case—control studies with basic issues briefly
touched on. For comprehensive discussions, we refer the reader to Breslow and Day
(1980) and Schlesselman (1982).

7.1.2 Unstratified Studies

Consider a simple case—control study with a single exposure variable and a binary
disease status. Let Y = 1 if a subject is a case, and ¥ = 0 otherwise. Let Z = 1 if
the subject is exposed to a condition of interest, and Z = 0 otherwise.

To describe the association between disease and exposure, the relative risk or risk
ratio, defined to be

PY=1Z=1
T P(Y =1Z=0)

is often used. This measure represents how many times more (or less) likely disease
occurs in the presence of exposure versus unexposed. A difference of ¢y, from unity
indicates that the exposure variable is associated with the risk of disease.

An alternative measure of associations is given by the ratio of the odds of disease
in the exposed individuals relative to the unexposed subjects. The odds ratio, or
relative odds, is defined as

¢RR

_PY =1Z=1)/P(Y =0|Z=1)
T P(Y =1Z=0)/P(Y =0|Z=0)

14

With a rare disease, the odds ratio v is nearly identical to the relative risk @yy.
Although either a deviation of ¢, from unity or a deviation of ¥ from unity may
suggest an association between exposure and disease, the odds ratio ¥ is used more
often than the relative risk ¢y, to describe the relation between exposure and dis-
ease. While the relative risk ¢, is determined only from a prospective study, the
odds ratio may be calculated from either a prospective study or a retrospective
case—control study. In fact, the odds ratio calculated from the exposure probabili-
ties (i.e., P(Z = z|Y = y)) is identical to the odds ratio of the disease probabilities
(.e., P(Y = y|Z = 2)):
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_P(Z=1Y=1/P(Z=0]Y =1)
P(Z = 1Y =0)/P(Z =0]Y =0)
PY =11Z=1)/PY =0|Z =1)

T PY =1Z=0)/P(Y =0[Z=0) (7.1)

Now we turn to discussing how the odds ratio is estimated from measurements of
a sample. Suppose there are n patients in a case—control study. A 2x2 table, displayed
by Table 7.1, summarizes the information of such a study, where fori, j =0, 1, n;;
records the observed counts of individuals withY =iand Z = j,andn;4 andny ;
are the row and column totals, respectively.

Table 7.1. A 2 x 2 Display for a Case—Control Study with a Binary Exposure Variable

Exposure status
Z =1 Z =0|Total

Disease Y =1 n1q nio |[n1+
status Y =0 ngp noo |no+
Total n41 nyo | n

An estimate of v is given by the sample odds ratio

ni11noo

V= .
noinio

To avoid the constraint that ¢ > 0, sometimes the log odds ratio, log v, is used as
a measure of association between exposure and disease. An estimate of the variance
of log ¥ is given by

With a large sample, log {ﬂ\ has an asymptotic normal distribution, and an approx-
imate (1 — «)100% confidence interval for v is given by (¥, V), where

¥, = Yexp { —Za/2y/ Var(log @)} :
To=Texp {zam/vAaraog a)} ,

Zq/2 1s the critical value for the standard normal distribution such that the probabil-
ity of exceeding this point is /2, and « is a value between 0 and 1 (Woolf 1955;
Schlesselman 1982, Ch. 7).

Similar discussion may be carried out for unstratified studies displayed by 2 x K
tables, where K represents the levels of the discrete exposure variable Z and K > 2.
Details were given by Breslow and Day (1980, §4.5).
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We conclude this subsection with several comments. The sample odds ratio &
may be derived as a maximum likelihood estimate from different likelihood formu-
lations. For i, j = 1,0, let N;; denote the number of individuals with ¥ = i and
Z = j.Ifregarding the cell counts { Ng1, Noo, N11, N1o} as coming from a multino-
mial distribution with a total sample size fixed at n, we derive that the sample odds
ratio @ is a maximum likelihood estimate of .

Alternatively, 1}\ may be obtained from the likelihood method by assuming that
the sample sizes for cases and controls are fixed at n14+ and n¢4, respectively, and
that simple random samples have been taken from theoretically infinite populations
of cases and controls (or that random samples have been taken from finite popu-
lations with replacement). This method reflects the retrospective sampling scheme
for case—control data for which study subjects are selected in light of the presence
or absence of the disease under study. Under this sampling scheme, it is feasible to
treat the marginal row totals n4 and no4 fixed by design, and hence the sampling
distribution of the data {N;; : i, j = 0,1} is the product of two binomial distri-
butions, BIN(#1+, p11) and BIN(n¢+, po1), where p1; = P(Z = 1|Y = 1) and
po1 = P(Z = 1|Y = 0) are the conditional exposure probabilities for cases and
controls, respectively.

In comparison, we contrast a different perspective taken for analysis of prospec-
tive studies. The major difference between a prospective study and a retrospective
study is the selection of study subjects. In a case—control study, individuals with the
disease are selected for comparison with disease-free individuals; the comparison fo-
cuses on existing or past attributes of exposures that are thought to be relevant to the
development of the disease. A prospective study, however, selects individuals who
are initially free of the disease and follows them over time (at least conceptually) to
monitor the development of the disease in the presence or absence of exposure.

In the analysis of prospectively selected data, it is often assumed that study
subjects are sampled at random from the exposed and unexposed subpopulations.
Thus, the marginal column totals of n; exposed and 14y unexposed subjects are
regarded as fixed numbers, which are determined by the sample size requirements
of the study design, and the sampling distribution of the data {N;; : i, j = 0,1} is
the product of two binomial distributions BIN(n 41, ¢11) and BIN(n4¢, go1) , Where
g1 = P(Y = 1|Z = 1) and go1 = P(Y = 1|Z = 0) are the probabilities of
developing the disease for exposed and unexposed individuals, respectively.

7.1.3 Matching and Stratification

In this subsection, we outline strategies of matching and stratification to eliminate
confounding effects on estimation of the odds ratio in case—control studies. Match-
ing or stratifying the data provides an easy way to control for complex effects of
confounding factors which would otherwise be difficult to perform because of their
indeterminate nature. A comprehensive discussion on the issues of design, sampling,
and analysis pertaining to various sources of bias was provided by Breslow and Day
(1980, §3.4) and Schlesselman (1982, Ch. 4, Ch.5).
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Matched Design

Uncontrolled confounding may account for spurious effects of the exposure
variable on the disease or mask the true underlying association. A confounding
variable, or a confounder, refers to an extraneous variable that is correlated with
both the disease and exposure variables and its association with the disease is causal.
The exposure variable may, by its association with confounders, appear to elevate or
reduce the risk of disease when in fact it has no effect, or oppositely, when it is
actually associated with the disease, but such an association is not detected due to
failing to control confounding effects. Marching the data provides a direct method to
reduce the biased effect resulting from confounding. One or more controls are often
paired or matched with each case according to their similarity or likeness in some
characteristics, such as age, sex, race, marital status, occupation, weight, history of
the disease, and so on.

Matched designs have an advantage of “balancing” the numbers of cases and
controls on the basis of the matching variables. It is advisable that a matched design
is accompanied by an analysis which accounts for the matching features. This avoids
inefficiencies resulting from possibly a substantial imbalance of cases and controls,
and more importantly, it retains the validity of the analysis. The estimate of the rela-
tive risk of disease associated with exposure may be biased for a matched design if
an unmatched analysis is performed.

The simplest example of matched data occurs with a single binary exposure
where there is 1:1 pair matching of cases with controls. One-to-one pair matching
provides the most cost-effective design when cases and controls are equally “scarce”.
However, when control subjects are more readily obtained than cases, which is often
true for studies of rare diseases, it may make sense to select two or more controls
to match with each case. According to Ury (1975), the theoretical efficiency of a
1:M case—control ratio for estimating a relative risk, relative to having complete
information on the control population (M = 00), is M /(M + 1). Thus, one control
per case is 50% efficient, while four per case is 80% efficient. However, increasing
the number of controls beyond a large number, say 5 or bigger, brings rapidly dimin-
ishing returns.

Stratification

In addition to matching, stratification is another useful strategy for control of
confounding. This method is to group the data into a series of subgroups or strata
so that individuals within each stratum are relatively homogeneous with respect to
the stratification factors. It is anticipated that separate calculations of the relative risk
using the data from each stratum are free of bias arising from confounding.

We consider a case—control study with K strata. Let Y be the disease status and
Z be the exposure variable; both are binary variables, taking value O or 1. Let pg;q =
P(Z = 1]Y = 1, stratum k) be the probability of exposure among cases in stratum
k,and pro; = P(Z = 1|Y = 0, stratum k) be the exposure probability for controls
in stratum k. For each stratum k = 1, ..., K, the odds ratio is defined to be
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_ pknn(1 = pro1)
= 0.
Pro1(1 — pr11)

The odds ratios v are estimated from the data in the corresponding stratum. Let
ng;; denote the observed number of subjects with ¥ =i and Z = j in stratum k.
Let ng14+ and ngo4 be the number of cases and controls in stratum k, respectively;
and ng 1 and ng o be the number of exposed and unexposed individuals in stratum
k, respectively. The data for stratum k are displayed in Table 7.2. The odds ratio for

stratum k is estimated as
Nk11Mko00

Nk10Mko1

Vi =

Table 7.2. Data Layout for Stratum k

Exposure (Z = 1) Nonexposure (Z = 0)| Total
Case (Y = 1) ng11 nk10 Nk1+
Control (Y = 0) nko1 koo ngo+
Total k41 Nk 40

Although the odds ratios, for each stratum can be estimated separately using the
data from the corresponding stratum, it is of interest to know whether the association
between exposure and disease is constant from stratum to stratum. If iy varies with
k, it is important to understand how the ¥ change with the levels of the factors used
for stratification.

If the v are stratum-independent, a summary odds ratio is necessary. Mantel
and Haenszel (1959) proposed an estimate of the common odds ratio, denoted as v,
on the basis of adjusting for stratification effects. The estimate is a weighted average
of the stratum-specific odds ratios, given by

7 Zf:] wk@k
= AL TEVE (7.2)
D k=1 Wk
where Wy = ng1oMko1/Rk++s Nk++ = Hk1+ + Hro+,and k = 1,..., K. With the

numbers of cases and controls in each stratum being large, Hauck (1979) proposed
an estimate of the variance of log ¥y, given by

K e ~
D k=1 wivar(log Vi)

A(l IZMH) =
var(log (Zf=l wk)z

where
1 1 1

Nk11 Nki10 nko1 nkoo

var(log ) =

fork=1,..., K.
Alternatively, inference about the common odds ratio ¥ may be based on the
conditional distributions of the Ng;1, given that all the marginal row totals are fixed at
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the observed outcomes for the strata, where Ni1; represents the numbers of exposed
cases in stratum k fork = 1,..., K. Let rg; = max(ng4+1 — Hro+,0), and rgp =
min(ng 41, g1+ ). Assuming that the marginal row totals are fixed at the observed
outcomes, the conditional probability of Ni;; = ngq; is given by

= Gl

2 (NG

Assuming independence among the data across the strata, the likelihood function of

Y is

K
L) =[] &)
k=1

Maximizing L(y) with respect to ¥ gives an estimate of v, which is called the
exact conditional estimate and denoted as V. In application, the Mantel-Haenszel
estimate ¥, and the estimate . are often close in values (Schlesselman 1982,
§7.2).

7.1.4 Regression Model

The preceding discussion focuses on the scenario where only a single exposure vari-
able is available to characterize the disease information. In epidemiological studies,
there are often multiple risk factors which may be either qualitative or quantitative
or both. Using a table with odds ratios becomes inadequate to conduct inferences.
It is necessary to assume a model to relate the disease incidence to risk factors or
covariates. Let Z = (Z1, ..., Zp)" denote the covariate vector of dimension p.

To describe an individual developing the disease during the study period, we
frequently employ the logistic regression model

logit P(Y = 1|Z) = Bo + B, Z, (7.3)
where By and B, = (B1.....Bp)" are regression coefficients. This formulation
implies that the odds ratio for individuals having two different sets of values,
z2=(21.....2p) " andZ = (Z1.....Zp)", of risk variables Z is

PY =1Z=2z)/P(Y =0|Z =2)
Y(z.2) = — —
PY =1Z=72)/P(Y =0|Z =72)
P
=expi > Biz; =7y (7.4)
Jj=1

Clearly, the intercept B¢ represents the log odds of disease risk for a person with a
standard (i.e., Z = 0) set of regression variables, while exp(f;) is the fraction by
which this risk is increased (or decreased) for every unit change in Z; with other
components in Z held fixed,and j = 1,..., p.
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In case—control designs, an implicit assumption is commonly made that the sam-
pling probabilities depend only on disease status and not on the risk factors, i.e.,
PR =1|Y,Z) = P(R = 1|Y), where R is the indicator variable whether or not
an individual is sampled, i.e., R = I(an individual is sampled). Let 711 = P(R =
1|Y = 1) be the probability that a diseased person is included in the study as a case
and g = P(R = 1|Y = 0) be the probability of including a disease-free person in
the study as a control. Then in combination with model (7.3), the conditional prob-
ability that an individual is diseased, given that this person has risk variables Z and
that he/she is sampled for the study, is

P(Y=1R=1,2)
P(R=1|Y =1, 2)P(Y =1|2)
P(R=1]Y =0,Z)P(Y =0|Z)+ P(R=1|Y =1,Z)P(Y = 1|Z)
_exp(By + B Z)
~ l4exp(Bg +BLZ)

(7.5)

where B; = Bo + log(m1 /7).

Comparing model (7.5) to model (7.3) says that the risk factors Z have the same
effects on the probability of developing the disease for subjects sampled into the
study and subjects in the entire population, albeit a different value for the intercept
in the model.

Finally, we comment that model (7.3) may be extended to accommodate stratified
designs. For example, for each stratum k = 1,..., K, consider the model

logit P(Y = 1|Z, stratum k) = Bro + B Z,

where the intercept B¢ may be stratum-dependent and the regression vector 8, is
common for all the strata. If none of the regression variables in Z are interaction
terms involving the factors used for stratification, then this model implies that the
odds ratios associated with the risk factors under study are constant over strata. By in-
cluding interaction terms among the Z; with j =1, ..., p, one may model changes
in the relative risk which accompany changes in the stratification variables (Breslow
and Day 1980, §6.2).

7.1.5 Retrospective Sampling and Inference Strategy

When building the logistic regression model (7.3), covariates Z are regarded as fixed
quantities while the response variable Y is random. This model reflects the nature
of prospective studies where the disease status of the study subjects is unknown in
advance, and the study subjects are selected based on their risk factors and then
are followed up prospectively to monitor the development of the disease. To high-
light this prospective sampling aspect, model (7.3) is called the prospective logistic
regression model.

In contrast, in case—control studies, subjects are selected on the basis of their
disease status, and their history of risk factors or exposures are determined by a
retrospective interview or other means. Since case—control studies typically involve
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separate samples of fixed sizes from the diseased and disease-free populations, it is
fairly reasonable to treat the disease status as fixed while regarding the risk factors
as random. Consequently, it may be tempting to perform analysis of case—control
data by specifying and fitting a statistical model, say f,(z|y), for the conditional
distribution of Z given Y; this model is called a retrospective model.

However, starting with a retrospective model for inferences is not always plau-
sible. When Z contains multiple continuous variables, such retrospective modeling
often involves a large number of parameters and is unduly cumbersome, whereas a
prospective model for the conditional distribution of Y given Z is much easier to
handle. Furthermore, interpretation of risk factors’ effects on the disease develop-
ment is more transparent by using a prospective model. It is more intuitive to think
of covariates as changing the disease status than to think of disease as altering the
distribution of covariates or risk factors.

As aresult, analysis of case—control data is typically pertinent to two aspects: (1)
the model formulation is directed to a prospective regression model f,,(y|z) for the
conditional distribution of Y given Z, which clearly indicates the influence of risk
factors on the disease development; and (2) inferential procedures are developed by
using the retrospective model f,(z|y) for the conditional distribution of Z given Y,
which naturally features the retrospectiveness of the data collection for case—control
studies.

To relate these two aspects, it is necessary to express f,,(z|y) in terms of the
prospective model fy,(y|z):

Sz2(12) f2(2)
A

which says that in addition to the prospective model f,|,(|z) of interest, inferences
based on the retrospective model f,},(z|y) typically involve the models, f,(z) and
fv(»), for the marginal distribution of Z and of Y, respectively. Since Y is a binary
variable, it is natural to take the probability P(Y = 1) as a model parameter and
then estimate this parameter together with the parameter, say S, of the prospective
model f,,(y|z). Probability P(Y = 1) is called the prevalence or point prevalence.

To estimate 8 and P(Y = 1) using the retrospective model (7.6), it remains to
deal with the model f,(z) for the marginal distribution of Z. One strategy is to treat
f>(z) as a nuisance and derive a suitable conditional likelihood by eliminating f,(z),
and then base estimation of the model parameters on this conditional likelihood. This
strategy is used when the marginal distribution of Z is thought of as containing no
information about parameter j, the quantity of prime interest. Examples were given
by Prentice and Breslow (1978) and Breslow et al. (1978).

On the other hand, estimation of 8 may be obtained based on the joint likelihood
by using the full form of (7.6). To this end, modeling the marginal distribution of Z is
necessary, either parametrically or nonparametrically. If f,(z) is specified parametri-
cally, say, with parameter «, then it is straightforward to apply the parametric maxi-
mum likelihood method to (7.6) to jointly estimate 8, @ and P(Y = 1). This method
entails the most efficient estimate of 8, provided that the model assumptions for
f»(z) are valid; otherwise, biased results may arise. An alternative to handling pos-
sible model misspecification is to treat f,(z) nonparametrically. That is, we assume

Sy (zly) = (7.6)
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f2(2) to remain completely arbitrary, then proceed with a pseudo-likelihood method
for estimation of parameter B. Details on this method are described in the next
subsection.

7.1.6 Analysis of Case—Control Data with Prospective Logistic Model

The connection (7.6) shows that the prospective model f,,(y|z) and the retrospec-
tive model f,,(z|y) cannot be uniquely determined by each other. Identity (7.6)
also suggests that the parameters of a prospective model may not be estimable from
case—control data alone if no suitable model assumptions are made. However, if
the prospective model f,,(y|z) assumes a logistic regression form, this concern
diminishes when the primary interest centers on the estimation of the odds ratio
parameters. In this subsection, we elaborate on this point and discuss estimation
issues of using the prospective logistic regression model for case—control data.

Model Connection

Although the prospective model fy|,(y|z) and the retrospective model f,},(z|y)
cannot determine each other, they can produce identical ratios in certain form. For
any two values z and Z of Z and two values y and y of Y, the conditional probability
density or mass functions are linked by

lez(y|Z)/fY|267|Z) _ lev(z|y)/lev(z|y)
KR/ f O Lo @D/ L @)

This identity generalizes (7.1) to accommodating the scenario where Z can be a
vector of discrete or continuous covariates. The measure on the left-hand side is
called the prospective odds ratio and the one on the right-hand side is called the
retrospective odds ratio.

Assuming the prospective logistic regression model (7.3), we derive the ret-
rospective model using the identity (7.7). Let Z be a reference value of Z, then
model (7.3) gives the odds ratio (7.4) for individuals having the risk value Z = z
relative to the reference value Z = 7. Let

y(2) = log{ f;v(210)/ f1x(Z10)}

for all z. Then combining (7.3), (7.4) and (7.7) gives the retrospective model

fav(@|1) = crexp{y(z) + B,z):
fox(2]0) = coexpiy(2)}: (7.8)

(7.7)

where ¢ and ¢y are the normalizing constants, given by

1 = leYGll) eXp{—,B;Z};
Co = leY(Zlo)
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Conversely, if a retrospective model, such as given by (7.8), gives the odds ratio
of the form (7.4) for individuals having the risk value Z = z relative to the reference
value Z = Z, then we can recover the prospective logistic model (7.3) upon defining

/30 = log{ﬂ|z(1|’z)/f\{|z(0|’z)} - ,BZ’Z

The prospective logistic model (7.3) and the retrospective model (7.8) are equiv-
alent in the sense that one model can derive the other, provided that 8, in (7.3)
and the function y(z) in (7.8) are left unrestricted (Prentice and Pyke 1979). Both
models produce the same odds ratio parameter 8, and differ only in the intercept.

Point Estimator

Suppose that ;4 cases and ng4+ controls are randomly selected from their res-
pective subpopulations. We are interested in using the data of those individuals to
estimate parameter B, of the prospective logistic model (7.3). Let {Y;;, Z;; } denote
the random variables for subject j in the group of cases with Y;; = 1 or the group
of controls with Yp; = 0, where Y;; = i is the disease outcome and Z;; is the vector
of risk factors for subject j;i = 0,1;and j = 1,...,n;+. Here we note a slightly
different usage of subscripts from those in Chapters 5 and 6. The first subscript i of
Y;; appears somewhat unnecessary; attaching i to Y;; merely makes clear the actual
disease status of subject j when referring to the measurements of such a subject.

By the independence of selecting cases and controls, the retrospective likelihood
function for the case—control data is

ni4

l_[ 1_[ o (zijli), (7.9)

i=0,1j=1

where the conditional model f;},(z;;|i) is determined by (7.8).
We re-express (7.8) in combination with the data in order to contrast the prospec-
tive logistic model (7.3). Letn = no4+ + n1+, ¢ = log{cini+/(cono+)}, and

q(z) = exp{y(2)H{(no+/n)co + (n14/n)ciexp(B2)}. (7.10)
Define
@) = exp(o + f;2)
priz) =7 + exp(a + BLz)
and
po(2) = : (7.11)

1 +exp(a + B12)

Then the retrospective model (7.8) becomes

S (2li) = pi(2)q(2) ( ) (7.12)

n
nit
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with the constraint
7
"~ [ p@a@dn) (.13

fori =0,1.

We note that g(z) is the marginal probability density or mass function for Z if
the prevalence P(Y = 1) = ny4/n, and that p;(z) differs from the prospective
model (7.3) in the intercept only. Let 0 = (o, B7)". If g(z) and 0 are treated arbitrar-
ily without being constrained by (7.13), then by (7.9), estimation of § may be carried
out using (7.12) with p;(z) given by (7.11) fori =0, 1.

Let L1 =[]0 ]_[:L’jl pi(zij) and Ly = [[;—o, ]_[7:1 q(zij). Then the like-
lihood function (7.9) is proportional to

L=LL,,

and the likelihood score functions for 0 are

dlog L, X
il S Z ZPI(ZU’);

i=0,1=1
dlog L - &
8§ L=z = Y0 Y ziman): (7.14)
z j=1 i=0,1 j=1
Solving
dlog L, — 0 and dlog Ly _
do 9B

for a and B, gives the unconstrained maximum likelihood estimate, 9= (@, E;)T,
of 6. The corresponding unconstrained maximum likelihood estimate of the distri-
bution ¢ (-) is the empirical probability function, g(-), which assigns mass s/n to any
value of z that is observed with multiplicity s and value zero elsewhere.

The likelihood function constrained by (7.13) can be at most as large as that
evaluated at the unconstrained maximum likelihood estimates, 9 and 4 (). It happens
that the constraint (7.13) is satisfied by 9 and 4 (), so the unconstrained maximum
likelihood estimators for 6 and ¢ () are also the desired constrained maximum like-
lihood estimators. Therefore, if the prospective logistic model (7.3) were applied to
the case—control data as if the data were collected with the prospective sampling,
the likelihood score functions would be (7.14), leading to the maximum likelihood
estimator of the odds ratio parameter 8, albeit the estimate of the intercept has a
different meaning (Prentice and Pyke 1979).

Asymptotic Variance
We conclude this subsection with a comparison of the asymptotic variances in-

duced from the prospective and retrospective models; the discussion here modifies
that of Carroll, Wang and Wang (1995).
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First, we examine estimation of 6 using the retrospective model (7.12). To see
the contribution from each individual, we define

SijaYij. Zij: 0) = Yij — p1(Zij),
Sijp(Yij. Zij: 0) = {Yi; — p1(Zij)} Zij.,
and
Sij(Yij, Zij; 0) = {Sija(Yij. Zij; 0), S} ;5 (Yij. Zij; 0)}"
fori =0,1and j =1,....n;4. LetZ ={Z;; : i =0,1;j =1,....n;4} and

Y={Y;:i=01j=1....n4}.
Using (7.12), we obtain that

nj+
E Z Z Sij(Yij, Zij; 9)‘Y =0,
i=0,1 =1
where the conditional expectation is evaluated with respect to the retrospective model
for the conditional distribution of Z given Y. Consequently,

nj4
E Z ZSU(YU’ZU;Q) =0, (7.15)
i=0,1j=1
where the expectation is taken with respect to the model for the joint distribution of
Z and Y.

It is important to note that, although the zero-expectation (or unbiasedness) prop-
erty (7.15) is true for all the case—control data, the zero-expectation property does
not necessarily hold for each individual. That is, E{S;; (Y;;, Z;;;0)} = 0 is not nec-
essarily true fori = 0,1 and j = 1,...,n;4, where the expectation is taken with
respect to the model for the joint distribution of Z and Y, or equivalently, the model
for the joint distribution of Z;; and Y;;.

With the unbiasedness for the summation ) ;; _ Z;l
rive an estimator of 6 by solving

S (Yij, Zij; 0), we de-

it

Z Zsij(yij,zu;e) =0

i=0,1j=1

for 0, and let 9 denote the resulting estimator. Applying the Taylor series expansion
0 o1 Z:’:“l Sij (Yij, Zi;; 6) around the true value of 8, we can show that under
regularity conditions and that n;+ /n — a; for some constants a; > 0 as n — oo for
i=0,1,
-~ d

n'2(6 —6) S N{0, I "1(0) 2 (0)~1(6)}, (7.16)

where
1 s
2(O) = lim | —vard Y0 > Si(¥yj, Zij: 0)

i=0,1j=1
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and

nj4

BSlj(Ylj7le79)
r@)=1 —_—
0) = Jim | % DIDN: %

i=0,1j =1

which are assumed to exist; the expectation and covariance are taken with respect to
the model for the joint distribution of Z and Y.

By the independence among the {(Y;;,Z;;) : i = 0,1;j = 1,...,n;4}, we
express X'(0) as C(0) — D(6), where

nij4
Cc(9) :nli?go Z ZE Slj(Ylj’le79)S (Yljazljvg)}
i=0,1j=1
and
1 iy
D(O) = lim |~ 3 Y E{S;(Yy, Zij: OVELS (Y, Zij: )} |
i=0,1,=1

which are assumed to exist; the expectations are taken with respect to the model for
the joint distribution of Z and Y.

As a result, the asymptotic covariance matrix of \/ﬁ(’é — 0) in (7.16) is also
written as

r~16){C () — DO T'(0). (7.17)

On the other hand, if we pretend the data {(Y;;, Z;;) :i =0,1;j =1,...,n;4+}
were collected from the prospective sampling scheme and we fit the prospective
logistic model (7.3), then the asymptotic covariance matrix would change.

To see this, let 6* = (B, B;)" denote the parameter of the prospective logistic
model (7.3), then the prospective likelihood score function, calculated from (7.3),
is Si;j (Yij, Z;j; 0*) for the contribution from the subject with {Y;;, Z;;}. These
prospective likelihood scores are identical to the retrospective likelihood scores
in (7.15) except for the difference in the intercept. By the property for the likelihood
score functions, we know that the unbiasedness property holds for the summation of
the prospective likelihood score functions:

nj4

2D Sy

i=0,1 =1

=0,

ijs» 4ijs

where the conditional expectation is taken with respect to the prospective model for
the conditional distribution of Y given Z. As a result, we obtain that

iy

Z ZSij(Yij»Ziﬁe*) =0,

i=0,1 j=1

where the expectation is evaluated with respect to the model for the joint distribution
of Y and Z.
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Furthermore, unlike the retrospective setting, here the unbiasedness property
holds at the individual-level as well:

E{Sij(Yij, Zij;0")} =0
fori =0,1and j = 1,...,n;4. This key difference implies
X(0%) = C(6").

Let 6* correspond to the estimator of 8* by solving the score equations obtained
from the prospective logistic model (7.3)

nj+

Z Z Sij(yij.zij:0%) =0

i=0,1 /=1
for 6*. Analogous to (7.16), the asymptotic covariance of /1 (/9\* — 0%*) is given by
r~Ye*»ce*r-7e*, (7.18)

which equals I"~!(6*). Since D(6) is nonnegative definite, the comparison be-
tween (7.17) and (7.18) indicates that in finite sample calculations, applying the
prospective logistic model to fit case—control data tends to produce conservative vari-
ance estimates for the estimator of .

7.2 Measurement Error Effects

To gain intuitive insights into measurement error effects on the analysis of case—
control data, we consider a simplest situation where a binary exposure variable is
subject to misclassification while the binary disease outcome is free of error. Let ¥
be the disease status with 1 indicating having the disease and 0 otherwise. Let X
be the true exposure indicator with 1 being exposed and 0 otherwise, and X * be an
observed version of X.

Let p11 = P(X = 1]Y = 1) be the true probability of exposure among cases,
and po; = P(X = 1|Y = 0) be the exposure probability for controls. Then the true
odds ratio is given by

_ p11(1 — po1)
po1(1—p11)’

On the other hand, based on the observed exposure measurement X *, one may cal-
culate the “observed” odds ratio:

v = P11 (1 — pgy)

P(’;l (11— Pik 1) '
where pf; = P(X* = 1|Y = 1) is the probability of observed exposure among
cases, and p5; = P(X* = 1|Y = 0) is the observed exposure probability for
controls.
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In general, the “observed” odds ratio ¥ * differs from the true odds ratio . Sup-
pose the exposure status has the same chance to be misclassified for diseased and
disease-free subjects, i.e., the misclassification mechanism is nondifferential with

PX*=x*Y =y, X =x)=P(X* =x*|X =x)

for any given values x*, x and y. Let 71; be the probability of (mis)classifying
an exposed individual and oo be the probability of (mis)classifying an unexposed
person:

T = P(X* = 1|X= 1);
TToo = P(X*:0|X:0)

Then the “observed” odds ratio is given by

x _ (P11 + (1 = m00)/T){(1 — po1) + (1 — 711)/7}
(po1 + (1 — m00) /{1 — p11) + (1 —711)/7}

where T = mgo + 11 — 1.

It is clear that y* is not identical to { except for extreme situations, such as both
oo and mq; equal 1, i.e., no misclassification incurs in X. In the presence of mis-
classification, the “observed” odds ratio ¥ * may be bigger or smaller than the true
odds ratio ¥, depending on the exposure probabilities p;; and pg; as well as the mis-
classification probabilities. Fig. 7.1 plots the ratio ¥* /v versus (mis)classification
probability g for different values of wq; and (pi1, po1), where 1 is set as 1.0,
0.8 and 0.6; and (p11, po1) is taken as (0.9, 0.1) and (0.1, 0.9), respectively, corre-
sponding to the left and right panels. Interestingly, misclassification effects may be,
in some situations, counterintuitive, as shown in the left panel of Fig. 7.1, where the
differences between ¥ * and v decrease as the misclassification probability 1 — gg
or 1 — mry; increases.

(7.19)

Stratified Designs

Effects of measurement error and misclassification are multiple. For instance, un-
der stratified designs without mismeasurement, a common odds ratio may be shared
for all strata, i.e., the odds ratio is stratum-independent. However, in the presence of
measurement error or misclassification in covariates, the stratum-invariant odds ratio
property often breaks down for the “observed” odds ratios.

With a stratified design with K strata, let

P11 = P(X =1]Y = 1, stratum k)

and
Pro1 = P(X = 1|Y = 0, stratum k)
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Fig. 7.1. Comparison of the True Odds Ratio v and the Observed Odds Ratio ¥ *

be the true probability of exposure for cases and controls in stratum k, respectively.
Let ¥ denote the true odds ratio constructed from stratum k:

_ pr1r(1 = pro1)
= 0.
Pro1(l — pr11)

We assume that the ¥ are identical for k = 1,..., K, and let ¥ denote such a
common odds ratio.

When X is not available and only its surrogate value X * is available, one may
attempt to calculate the odds ratio using the observed data. Let

Prn = P(X* =1]Y = 1, stratum k)
be the probability of observed exposure among cases in stratum k, and
Pror = P(X* = 1|Y = 0, stratum k)

be the observed exposure probability for controls in stratum k. Then the “observed”
odds ratio constructed from the observed data of stratum k is given by
yr = P = Proy)

Pror(1 = Pyy)

Consider the setting where the misclassification probabilities are stratum-free but
may be differential between cases and controls. That is, we assume that

P(X* = x*|Y = y, X = x, stratum k)
=PX*=x"Y =y,X =x)
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fork=1,...,Kandx,y =0, 1. Let
Ty11 = PX*=1Y =y, X=1)

and
T[yoo:P(X*:O|Y:y,X:0)

be the (mis)classification probabilities for y = 0, 1. Then

Pri1 = Prinminn + (1= pri)(1 = m100):
Pro1 = Pko17o11 + (1 = pro1) (1 — mo00)-
Let ag; = (1 — pr11)/ pr11 be the odds of nonexposure for cases in stratum k,

then the “observed” odds ratio defined by stratum k is connected with the true odds
ratio ¥ via the identity

v = {111 + agi (1 — w100) } (1 — wo11 + ak17o000Y)
K7 (1= i + agamioo){mort + axr (1 — mo00) ¥}

(7.20)

This implies that even if the true odds ratios are identical for all the strata, this does
not guarantee identical “observed” odds ratio for all the strata. The “observed” odds
ratio for each stratum may attenuate or inflate the true odds ratio ¥, and this depends
on the odds ag; of nonexposure for cases in that stratum, misclassification rates as
well as the value of . In particular, if mgo0 = 7111 = w100 = 1 but 0 < w11 < 1,
then v is always bigger than 1. Problem 7.6 discusses the details.

7.3 Interacting Covariates Subject to Misclassification

Among many applications, case—control studies can also be used to study the syn-
ergism of gene and the environment in the etiology of rare and complex diseases
(Zhang et al. 2008). It is of interest to understand how the gene-environment inter-
action may be associated with a disease. Such studies are often hampered by the
presence of measurement error in gene expressions and environmental factors.

To shed light on this issue, we consider unmatched case—control studies with two
binary covariates. Let X, denote the environment exposure variable, with X, = 1
for exposure and X, = 0 for nonexposure; and X denote the binary genetic factor,
with X, = 1 and Xz = O for susceptible and nonsusceptible subjects, respectively.
Both X, and X, are subject to misclassification, and they may interactively affect
the disease status Y, where Y = 1 for a case, and Y = O for a control.

We start with discussion on inference methods for the error-free situation, and
then describe methods which account for misclassification in covariates. The dis-
cussion here complements the foregoing development for which interactions among
error-prone covariates are not being focused.
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Unmatched Design without Misclassification

Fori, j,k =0or1,let
Pijk = P(Xe = j, Xg = k|Y =)
and
pi = (Pioo, Pi1os Piots Pil1)-

Taking the level (X, = 0, Xy = 0) as the baseline category, we let v/ ;x denote the
odds ratio for cases versus controls with (X, = j, X, = k):

P(Xe = I,Xg =0|Y = 1)/P(Xe :07Xg =0|Y: 1)

Vio = P(Xe=1Xg =0]Y =0)/P(Xe =0,Xg =0]Y =0)
Jor = P(Xe=0,Xg =1]Y = 1)/P(X, = 0,X, =0]Y = 1)
T P(Xe=0.Xg =1|Y =0)/P(X, =0,X, =0]Y =0)
’ P(Xe=1Xg=1]Y =1)/P(Xe =0,Xg =0]Y = 1)
1 = ;

P(Xe = 1,Xg = 1|Y :0)/P(Xe :O’Xg =0|Y :0)7
where (j, k) # (0,0). Namely,

_ PoooP1jk
P1ooPojk

Yk for (7. k) # (0,0).

Define
_ Yn
Voi1¥io

This measure may be used to reflect the association between the two binary covari-
ates, such as the gene-environment association, which is classified by the subpopu-
lations of cases and controls. It can be alternatively written as

_N
V=g

where for y = 0, 1, ¢, is defined as

_ P(Xe=0,Xg =0]Y =y)P(Xe=1.Xy =1]Y = y)
T PXe=0,Xg=1Y = y)P(Xe =1, X, =0]Y = y)’

by

The measure ¥ is defined from the retrospective sampling viewpoint which
directly reflects the nature of case—control designs. Equivalently, this measure has
an equally interpretive feature in a prospective regression model.

Consider the logistic regression model with an interaction term between X,
and X :

PY =1|X., X
10g§ ( |e ) =,30+,38Xe+,3ng+/3egXeng (7.21)

P(Y =0|X,. X¢)
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where Bo, B¢, Bg and B.g are the regression parameters. These parameters can be
expressed in terms of the odds ratios defined for the retrospective sampling frame-
work:

Be = log Y10, Bg = log o1, and By = log . (7.22)

As pointed out in §7.1.5 and §7.1.6, the baseline parameter B¢ is not estimable
from retrospectively collected data unless the prevalence P(Y = 1) is known; but
the coefficients (B, By, Beg), or the odds ratios ¥, are possible to be estimated
from case—control data, which are collected retrospectively.

Fori, j,k = Oor 1, let n;;; represent the number of subjects with (Y =i, X, =
J,Xg = k), and N; = (njo0.ni10,Mi01,ni11). Table 7.3 displays the layout of
data. Let n;4++ and no4++ be the number of cases and controls, respectively. With
the retrospective sampling scheme for case—control studies, these totals are treated
as fixed, and multinomial distributions are often used to independently characterize
the cell counts for the case and control subpopulations. Namely, Ny and N; are
assumed to be independent, marginally following a multinomial distribution with
N; ~ Multinomial(n; 44, p;) fori =0or 1.

Table 7.3. Unmatched Case—Control Data with Binary Covariates X and Xg

Xg =0 Xg =1
Xe=0Xe=1 X¢=0X, =1 Total

Case (Y = 1) n1p0 1110 M101 P11l Mi++
Control (Y =0) ngoo 7010 7001 7011 No++

These distributional assumptions allow us to write the likelihood function for the
cell probabilities p;;x as

1 1 1
L=TITT [T 4 029
i=0j=0k=0

where the normalizing constant is omitted. In combination with the constraint
> .k Pijk = 1 for a given i, maximizing (7.23) with respect to the cell probabil-
ities leads to the maximum likelihood estimator for the cell probabilities:

for i, j,k = 0 or 1. Then using the invariance of maximum likelihood estimators
gives an estimate of v/ ji:
-~ no00M 1k
lﬁ jk = ——————

n100nojk

for j,k =0or 1.
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To calculate the asymptotic variance of the estimator @ jk (@s ni4+ and noy4
both approach infinity), we equivalently consider the asymptotic variance of log @ k-
Fori = 0 or 1, the multinomial distribution N; ~ Multinomial(n; 4+, p;) yields the
asymptotic distribution of (P;00, Pio1. Pit0, Pi11)" (Serfling 1980, pp. 108-109):

Dioo Pioo
B . d
Vi | B = [T S N .5 (7.24)
Pi1o Pi1o
pi1 pi1
as njy4+ — 00, where
pioo(1 — pioo) —PpiocoPiot —PpiooPito  —PiooPill
¥ —pio1pioo  pio1(1 = pio1) —pio1pito —Ppio1 Pill
' —Pi1toPioo —pitopior  pito(l — pito)  —pitopinn
—Di11Di0o —Dpi11Dio1 —pittpito  pitn(l — pi1n)

with the constraints Zj,k Dijk = 1 and Zj’k pijk = 1 imposed.
Using the delta method, we obtain estimates of the asymptotic variances

1 1
Var%log(puk)} =— 4+ —
Pioo Nijk nioo

and
1 1 1 1
Var{log(w)} =—+ —+—+ —.
Pio1Pi1o ni11 njto  Njo1 nj00
Noticing that
log ¥ ji = log (p”k) log (—fO’k) :
P100 P00o

hence

loga — IOg (51112100) —IOg (50112000) ’

P1o1P110 Poo1Po1o

and that the ratios P1x/P10o0 and Pgjk/Pooo are independent, we obtain that

var(log ¥ jx) = Var{log (p”k)§ +Var{10g (p(”k)} ;

P1oo Pooo
var(log 1,//) = var { log (M)} + var{log (M)} .
P1o1P110 Poo1Po1o
Hence, estimates of the asymptotic variances are
e ~ 1 1 1
var(log ¥ jx) =

Nijk nojk ni1o00 nooo

for j,k = 0or 1, and

1
var(logy) =Y > Y L (7.25)
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Covariates with Misclassification

In the presence of misclassification of the binary covariates, let X" and X; be
the observed values of X, and X, respectively. Let

Tien1 = P(X) =1|X. = 1,Y =)
and
Tieoo = P(X; =0|X, =0,Y =1i)
be, respectively, the sensitivity and specificity of X, for the subpopulation with
Y =i, and
Tigll = P(X; = 1|Xg = 1,Y = l)
and
T[igOO = P(X; = 0|Xg = O,Y = l)

be, respectively, the sensitivity and specificity of X, for the subpopulation with

Y = . Define
. — Tieoo 1 — Tie1n
ie — 1 . .
— Tie00 Tiell

M. — Tigoo 1 — Tigoo
e = .
£ I —migi1  Tign1

and

Fori, j,k =0or1,let
P = PO = X} = kIY =)

be the “observed” probabilities for the observed measurements of the exposure and
genetic variables corresponding to the control or case subpopulation. Write p/ =

(Pioo> Piros Pior» Piyy) fori = 0or 1.
‘We assume that

P(X}=j.X};=klXe,Xg.Y) = P(X} = jl|Xe. Xg.Y)P(X} = k|Xe. X, Y):
P(X: = j|XengsY) = P(Xe* = j|Xe,Y)§
P(X; = jlXe. Xg.Y) = P(X; = j|Xg.Y).

The first assumption says that the observed measurements X and X are condi-
tionally independent, given the true values X, and X, and the disease status. The
second and third conditions require that the misclassification probability of one vari-
able does not depend on the true value of the other variable, given the true value of
the variable itself and the disease status. Under these assumptions, we express the
“observed” probabilities pi*j & using the true probabilities p;j:

P?oo Pior =T Pioo Pio1 I 726
(Pi*lo p?ll) “\pivo pin ) (7:20
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The identity (7.26) allows us to estimate the probability p;;x using the estimates
of pl.*j & Which are obtained from the observed counts. Let nl*j « represent the num-
ber of cases or controls with the observed measurement (X, = j, X; = k) for
i, j,k = 0or 1. Table 7.4 displays the data format.

Table 7.4. Observed Counts Parallel to Table 7.3

* —
Xg =0 X;_l

X¥=0X*=1 X}=0X}=1 Total

_ * * *
Case (Y =1) ”}ﬂoo ”;10 ”101 n}<11 ni4+
Control (Y = 0) ngg, n910 ”001 N1 Mo++

Using the same reasoning as for (7.23), we obtain the likelihood based on the

observed data L1
=T1T1 [ 1w (7.27)

i=0j=0k=0

Maximizing the likelihood (7.27) with respect to the “observed” cell probabilities
pi*j &> under the constraint

11
ZZpi*jkzl fori =0orl,
j=0k=0

gives their estimators

n*

P = ijk

e = ——
YE nigg

for i, j,k = 0 or 1. Then applying (7.26) gives the estimators for p;:

(E"OO 2"01) =} (P,oo plOl)n,— : (7.28)
Pi1o Pi1l Piio Pin g
where the matrices I1, and I1, are assumed invertible.

To describe the asymptotic variance P;jr, we apply the delta method to the
asymptotic distribution of (P}, plo1 leo lel) in combination of (7.28), where
the asymptotic distribution of (ploo, Pro1s pllo, Pm) is of the same form as (7.24)

except for replacing p;jx and p;jx with pu  and p*., , respectively, for i, j,k = 0

ijk>
or 1.
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Example 7.1. Duffy, Rohan and Day (1989) described a case—control study of breast
cancer. In the study, 451 breast cancer cases (coded as ¥ = 1) were compared
with the same number of controls (coded as ¥ = 0) with respect to the risk fac-
tors: alcohol consumption and smoking, where alcohol consumption is defined as a
binary variable by a threshold of 9.3 g ethanol/day, and the smoking variable is di-
chotomized by comparing the product of the number of cigarettes smoked per day
and years of smoking to 300.

For any subject, let X, be a binary variable indicating whether or not the product
of the number of cigarettes smoked per day and years of smoking is more than 300,
and X, be a binary variable indicating whether or not alcohol consumption is more
than 9.3 g ethanol/day (“yes” is coded as 1 and “no” is coded as 0). Table 7.5 records
the data of the main study where one breast cancer case had missing values.

Since smoking and alcohol use are likely to be related to each other, and may
each be associated with breast cancer risk, we use the logistic model (7.21) to analyze
the data where the interaction term between X, and X, is included in the model in
addition to individual terms X, and Xj.

Table 7.5. A Case—Control Study on Alcohol Consumption and Lifetime Cigarette-Years in a
Study of Breast Cancer (Duffy, Rohan and Day 1989)

X;=0 Xp=1

XX=0X =1 X*=0X*=1 Total
Y =0 305 70 56 20 451
Y =1 268 82 61 39 450

Total 573 152 117 59 901

To understand how misclassification might affect the estimation of the response
parameters, we perform a sensitivity analysis where the sensitivity and the speci-
ficity for X, and X, are set to be identical. Fig. 7.2 shows how estimation of co-
variate effects and their interaction, ., 8¢ and .., may change with the different
combinations of the sensitivity and the specificity.

The foregoing method assumes that the misclassification probabilities are known,
hence is useful for conducting sensitivity analyses, as illustrated by Example 7.1,
where plausible values of the sensitivity and specificity are specified to evaluate the
misclassification effects on estimation of quantities of interest, such as odds ratios
Y jk or cell probabilities p; .

In some instances, the misclassification probabilities are unknown, and additional
data sources are available for their estimation. Zhang et al. (2008) described an ex-
tension of the preceding method to accommodating the setting where an indepen-
dent validation sample is available to feature the misclassification process. Yi and
He (2017) considered the situation where an independent sample with two repeated
covariate measurements is available and developed estimation methods to accommo-
date misclassification effects.
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Fig. 7.2. Sensitivity Analysis of Misclassification on Parameter Estimation: the First Graph
Is for Estimation of Be, the Second One Is for Estimation of Bg, and the Third One Is for
Estimation of Beg

7.4 Retrospective Pseudo-Likelihood Method
for Unmatched Designs

In this section, we describe an inference strategy for analyzing unmatched designs
where covariates are error-prone and the disease status is error-free. For subject i, let
Y; be the binary disease status, taking value 1 if having the disease and 0 otherwise;
let X be the surrogate measurement of the true covariate vector, X;, which may
have discrete or continuous components. We consider the scenario where an external
validation sample is available in addition to the main study.

Let R; be the indicator of selecting subject i into the study with value 1 being
selected and O otherwise. Let V; be the indicator whether or not subject i is included
in the validation sample. Let V = {i : V; = 1} be the index set for subjects in the
validation sample and M = {i : V; = 0} be the index set of subjects in the main
study. That is, {¥;, X;, X;*} is measured if i € V, and only {Y;, X"} is observed if
i € M. Suppose that the validation study consists of a random sample of 7, cases
and nyo controls, and that the main study has n,; cases and nyg controls, where
PY;=ylR =1V; =0,X;) = P(Y; = y|R; = 1,V; = 1, X;) is assumed for
y = 0or 1. Define ny4+ = nyo + ny1, By+ = Nyo + A1, and n = ny4+ + ny4. The
counts of cases and controls are displayed in Table 7.6.

Assume that selection of a subject into the validation sample is completely at ran-
dom, and that the distribution of surrogates is the same for subjects in the validation
sample and the main study, i.e.,

hOFIX: = x, Y =y, Vi = v) = h(x}|X; = x. Y = y), (7.29)

where /1(x|) represents the conditional distribution of X* given the corresponding

variables. Let fixxy(x/|x;, y;) denote the model for the conditional distribution of
X' given X; = x; and Y; = y;.
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Table 7.6. Counts of Cases and Controls in the Validation Sample /Main Study
Vi=1V; =0

Yi=1| nn nm1

Yi =0| nyo w0

Total | ny+ Byt

As discussed in §7.1.4, we use the prospective model (7.3) to feature the rela-
tionship between Y; and X;:
exp(Bo + B Xi)
1 +exp(Bo + By Xi)

where B¢ and B are the regression parameters. Analogous to (7.5), this model yields
the prospective logistic model

P(Y; =1|X;) =

(v) T
X;
P(Yl=1|Xl,Vl=v)— eXp('BO +/3x l)

= R (7.30)
L+exp(By + B Xi)

where by the argument similar to (7.5), the intercepts /3((,0) and ,3((,1) are related via

0)__(1)
B = B0 g T
néo)nfl)

with 7"’ = P(R; = 1]Y; = y. X;.V; = v) for y,v = Oor 1. Let 8 = (8", BT)".
For v = 0 or 1, define

exply (B + B0}
1+ exp(B)” + BLx)

HO(x,y:p) =

Let§, = P(Y; = 1|V; = v) and § = (81, 8¢)". Parameter &, may be empirically
estimated using the data in Table 7.6:

ny1 nu1

and 8o =
Ny Ny

3=

Forv =0or1,let ¢ (y) = P(Y; = y|V; = v). Then ¢\* () is estimated by
a0 =805, (7.31)

For v = O or 1, let fx(|1;) (xi|yi) represent the retrospective model for the con-
ditional distribution of X; given ¥; = y; and V; = v, which may be expressed by

means of the prospective response model:

FO ) = HO 02 Bg” x)
x|y XilYi) = @,
av (i)

(7.32)
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where as illustrated for (7.6), the model qﬁv) (x;) for the conditional distribution of
X; given V; = v is involved.

To accommodate the sampling scheme for case—control studies, inferences are
commonly based on the retrospective model. For the validation data with V; = 1,
the likelihood is proportional to

fx(x13|y(xi,xf|)’i) = fxﬁi)(xi|yi)fx*\xv(x;<|xiayi)§ (7.33)

while for the main study data with V; = 0, the likelihood is proportional to

Dt = [ A0 e 6 i), (7.34)

where the assumption (7.29) is imposed, and 7(x) is the measure defined on page 55.
Consequently, inferences are performed using the retrospective likelihood

{]‘[ XSQIY(xi,x;‘|yi)§ %1‘[ X‘fl(x;‘|y,-)§, (7.35)

i€y ieM

where the terms are determined by (7.33) or (7.34). Therefore, in addition to the
primarily interesting prospective model (7.30), using (7.35) to carry out inferences
requires modeling the measurement error process as well as the covariate process.
We discuss this in more details according to whether the X; are discrete or continu-
ous. To highlight the idea with a simple presentation, we focus the discussion on the
case where the X; are scalar.

Misclassified Discrete Covariate

First, we consider that X; is a binary variable. Let
Tyxx = P(X) =x|Yi =y, Xi = x) (7.36)

be the (mis)classification probabilities for y,x = 0,1, and T = (7000, 7011, 7100,
]t]]l)T. Let
Ay = P(X; =1|V; =v) forv=0,1,

and A = (A1, Ap)".
Let 6 = (B",7",A")". Define the pseudo-likelihood of 6 to be the likeli-
hood (7.35) with §, replaced by the empirical estimate 6, for v = 0, 1:

Lu® =]] {fx‘l?(xi|y,~)fx*|xy(x:‘|xi,yl-)}
iey

11 [Z{fxﬁﬂ’(xwi)fx*XY(x;‘|xi,yi>}} (7.37)

ieEM x
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where
fx*|xv(x;k|xi7yi)
= {7 (1 = m100) T i (17D (1 — ggp) TN

i vi - (1=x;)y; (1—y;) _(A=x))A=y;)y1—x*
'{(1—ﬂ111)x’y’7'[1(00x )y (1_7-[011)351(1 yl)n(gOOx )( Y)}l X; i

and f () (x;|y;) is the retrospective conditional probability (7.32), given by

x|y

HY(xi, i B) - Ay (1 — Ay)t =i
St (1 — §y)1-vi '

Maximizing the pseudo-likelihood L,s(0) with respect to 6 gives the estimator
9 of 0. If ny+/n and ny4/n approach nonzero constants as n — oo, then under
regularity conditions, /n (§ — 0) has an asymptotic normal distribution with mean
zero and a covariance matrix which is estimated by J ! (/9\), where

92 log Ls(0)
JO) = - 36007

Pseudo-Likelihood Estimation

When the X; are discrete, the misclassification process and the covariate process
of X; can be directly indicated by a finite number of conditional probabilities which
are treated as parameters, and maximizing (7.37) with respect to 6 is computation-
ally manageable. With continuous X;, however, directly maximizing (7.35) becomes
infeasible due to the involvement of integrals in (7.34); this is particularly trouble-
some when X; has a high dimension. To handle this problem, Carroll, Gail and Lubin
(1993) proposed a pseudo-likelihood method which aims to reduce the dimension of
integrals with the marginal distribution of X; replaced by its empirical estimate.

Suppose the measurement error process is modeled parametrically. Let

?f(x*lx,y;a) = fx*lxy(X*|Xi =x,Y; = Y)

denote a parametric model for the conditional distribution of X* given X; = x and
Y; = y, where « is the associated parameter. The dependence of this distribution on
Y; shows that measurement error may be differential. Nondifferential measurement
error can also be accommodated by imposing certain constraints on the parameters.
For instance, consider the measurement error model

X' =0+ oxXi +,Y; + e,

where the e; are independent of each other and of {X;, Y;}; and o, oty and o are
regression parameters. This model features both differential and nondifferential mea-
surement error mechanisms by the value of «: o, = 0 gives nondifferential error
while «,, 7# 0 permits differential error.



7.4 Retrospective Pseudo-Likelihood Method for Unmatched Designs 329
Forv =0or 1, let Qf(v)(x) = P(X; < x|V; = v) be the conditional distribution

function of X;, given V; = v. Then using (7.32), we express the likelihood (7.33)
contributed from subject i in the validation sample as

g ) HO (x;, yiz BT (xF |xi, i)

(1) _
Soer 1y (Xis x'lyi) = T ’ 738)
gy (i)
and the likelihood (7.34) contributed from subject i in the main study as
(0) * fH(O)(x,yi;ﬂ)'ﬁ:(x;wx,yi;a)dQ)((O)(x)
fx*|Y(xi lyi) = . (739)

9

Letf = (8", a")". If q,gl)(-) and q\({l)(-) were known, then merely applying (7.38)
to the validation sample may yield valid inference results about 8. However, the re-
sulting estimator does not enjoy the efficiency as much as it can, because the main
study data are not used at all. To use the measurements from the main study, we in-
corporate (7.39) into the estimation procedure and describe a two-stage estimation
procedure. At the first stage, we use the validation data to estimate Q)((O) ), q,El)(-),
q$0) (-) and qﬁl)(-), the quantities which are not of our interest but are relevant to
estimation of 6. At the second stage, we estimate 6 using the data from both the val-
idation sample and the main study, and this is based on maximization of the pseudo-
likelihood calculated from (7.38) and (7.39) by replacing Qf(o) ), q,gl) ), q\((o) (-) and
q\((l) (-) with their estimates.

Forv = 0,1, let F)f|1;)(x|y) = P(X; < x|Y; = y,V; = v) be the retrospective
conditional distribution function of X;, given ¥; = y and V; = v. Assuming that
F (1)(x| y)=F © (x|y), then the validation data may be used to estimate F @) (x]y)

x|y x|y x|y

empirically forv = 0, 1. Let F v (x|y) denote such a common estimate of Fx(‘i) (x]y)

and F© (x|y), given by

x|y

ZI(Xi <x,Yi=y)

Fxlv(xly) = n
vy

iey

Noting that for v = 0, 1,

0 (x) = Y F &y ().

y=0,1

and that q\((v)( y) is empirically estimated based on (7.31), we empirically estimate
01" (x) and O (x) by

0V =3 { (1) o =t =
i€y

=0 ny+ nyy
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and

00 (x) = ZI:{(M)ZIUG =x.Y =y)§ ’

y=0 ut/ ey Mvy

respectively.
Then combining (7.38) and (7.39) gives the pseudo-likelihood function:

~1) /..
L(6) =1‘[§‘“ (X’; H<“(x,~,y,-;ﬁﬁ(xmx,-,yi;a)%

iey ZI\\({I)(yi

1 . .
11 [A@ / HO(x,yis HT (] lx,y,-;a)dQ,E")(x)] (7.40)
iem L9y (yl)

where Zj)((l)(xi) is the empirical estimate of q,gl)(xi), or d /Q\,El)(xi).

The pseudo-likelihood score function is obtained by differentiating Lys(6) with
respect to parameter 6, and the Newton—Raphson approach may be invoked to solve
the resulting equation to obtain the estimator for 6. This method is applicable to
both discrete and continuous covariate X;. Under regularity conditions, Carroll, Gail
and Lubin (1993) showed that the pseudo-likelihood score function is asymptotically
unbiased, leading to a consistent estimator 0 for 0 which, after a transformation, has

an asymptotic normal distribution. As covariance estimates for 9 require extensive
computations, standard errors and confidence intervals may be alternatively obtained
from bootstrap sampling. In particular, for the data with ¥; = y in the validation
sample, a bootstrap sample of size nyy is obtained by sampling with replacement
from the set {(X;, X*) :i € V,Y; = y}. For the data with ¥; = y in the main study,
a bootstrap sample of size n,, is obtained by sampling with replacement from the
set { X :i € M,Y; = y}. Details are referred to Carroll, Gail and Lubin (1993).

Example 7.2. Carroll, Gail and Lubin (1993) analyzed the HSV data of §2.7.5, re-
spectively, using the formulations (7.37) and (7.40), called Analysis 1 and Analysis
2, respectively, where the prospective model (7.30) is used and differential and non-
differential misclassification mechanisms are compared.

Table 7.7 summarizes parameter estimates (EST), standard errors (SE) and 95%
confidence intervals (CI), where 77,y = P(X = 1|X; = x) is defined for x = 0 or
1 when misclassification is assumed to be nondifferntial, and 7 . is given by (7.36)
when the differential misclassification mechanism is considered.

Interestingly, estimation results for B, are quite different under different assump-
tions of the misclassification mechanism, but are fairly comparable between different
estimation methods (i.e., Analysis 1 and Analysis 2). It is unsurprising that standard
errors associated with estimation of 8 are larger for both analyses when differential
misclassification is employed than those obtained under the nondifferential misclas-
sification mechanism, since the former case has two more parameters to estimate
than the latter one. Under the same misclassification mechanism, variability asso-
ciated with the two analyses does not seem to indicate one method is better than
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Table 7.7. Analysis Results of the HSV Data Using the Likelihood and Pseudo-Likelihood
Methods (Carroll, Gail and Lubin 1993)

Analysis 1 Analysis 2
EST SE 95% CI EST SE 95% CI

Differential

Bx 0.609 0.350 (—0.077,1.295) 0.622 0.355 (—0.074, 1.318)
1 — 7000 0.311 0.055 (0.203,0.419) 0.317 0.057 (0.205, 0.429)
1—7mo11 0.189 0.085 (0.022,0.356) 0.195 0.089 (0.021, 0.369)
111 0.784 0.068 (0.651,0.917) 0.790 0.067 (0.741, 0.839)
7100 0.578 0.067 (0.447,0.709) 0.577 0.067 (0.446, 0.708)
Nondifferential

Bx 0.958 0.237 (0.493, 1.423) 0.959 0.226 (0.516, 1.402)
701 0.257 0.043 (0.173,0.341) 0.266 0.042 (0.184, 0.348)
11 0.679 0.041 (0.599,0.759) 0.686 0.041 (0.606, 0.766)

the other. Finally, the analyses show evidence that misclassification probabilities are
statistically significant, no matter what misclassification mechanism is adopted.

As a side note, if the true misclassification mechanism is differential but the non-
differential mechanism is assumed in the data analysis, then the resulting estimators
for the model parameters are usually inconsistent. Some authors empirically inves-
tigated this problem, see, for instance, Carroll, Gail and Lubin (1993) and Yi and
Cook (2005). Generally speaking, studies of impacts of misspecifying the misclassi-
fication or measurement error mechanism under various settings may be carried out
using the theory of model misspecification discussed in §1.4.

7.5 Correction Method for Matched Designs

In this section, we describe a method of handling measurement error arising from
matched case—control studies. Suppose the design is a 1: M matched case—control
study with n strata. For subject j in stratum i, let X;; be the error-prone covariate
vector and Z;; be the vector of error-free covariates; let Y;; denote the binary disease
outcome taking value 1 if subject j is a case and O otherwise, where j = 0,1,..., M
and i = 1,...,n. This definition differs from that on page 311. Write ¥; =
Yio, Yit,.... Yise)", Xi = (X[, X[y, ... X)) and Z; = (2], Z],,.... Z]},)"
Let y; = (Jio, Vi1»--.,Vim)" be arealized value of Y;. For ease of notation, we let
J = 0 be the subject index foracase and j = 1,..., M correspond to M controls.
Namely, for the observed value y;; of the outcome variable Y;;, y;o = 1and y;; =0
forj=1,...,M.
For stratum i, a prospective logistic regression model

logit P(Yij = 1|Xi;, Zij) = Bio + BLXi; + BLZij
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isused for j = 0,..., M, where f; is the intercept for stratum i, and g = (8, ;)"
is the vector of regression coefficients which is of dimension p. We are interested in
estimation of 8.

In the absence of covariate measurement error, we may, by analogy with the
arguments in §7.1.6 or for (8.48) of Schlesselman (1982, p. 270), conduct estimation
of B based on the prospective likelihood for 1 : M matching

n M -1
L(B) = H |:1 + ZCXP{IBQ(XU — Xio) + B,(Zij — ZiO)}:| . (741

i=1 j=1

In the presence of measurement error in X;;, directly using (7.41) by replac-
ing X;; with its observed measurement may lead to biased results. It is necessary
to account for measurement error effects in inferential procedures. Let X i‘; be the

observed version of X;;. Assume that the measurement error model is
X;;- = Xij +ejj (7.42)

fori =1,...,nand j = 0,1,..., M, where the ¢;; have a normal distribution
with mean zero and covariance matrix X', and they are assumed to be independent of
each other and of the {Y;;, X;;, Z;;}. The independence assumption implies that the
surrogate X l"; satisfy the nondifferential measurement error mechanism. We assume
that X' is known to highlight the discussion on the estimation of §.

To focus on the difference between a case and a matched control, fori = 1,...,n
andj = ], ey M,wedeﬁne dijx = X,‘j—Xi(), dijz = Zl'j—Zi(), dijx* = X;;—X;B,
and d,'je = €jj — €jo. Write dix = (d~T e ,diTMx)T, diz = (d-T N ,dl-TMz)T,

ilx’ i1z’

dix = (d]|«,....d}yy )" and die = (d},.....d}};,)". Then the measurement

error model (7.42) leads to
dixx = dix + dje. (7.43)

Let X, = var(d;.) be the covariance matrix of d;.. Then X, is a block matrix with
block (j, k) being the covariance matrix X, = var(e;; — e;o, e;k — €;o), given by

- X, j#k
ek =2y, j=k"

Now we describe the method discussed by McShane et al. (2001). This is the
conditional score method whose general idea is outlined in §2.5.1. By treating un-
observed X; as an unknown parameter and finding a “sufficient statistic” for X;, we
construct a conditional likelihood by conditioning on such a “sufficient statistic”,
and accordingly, obtain an unbiased score function which is expressed in terms of
the parameters and the observed variables only.

Define T; = 2?4:0 Y;; to be the total number of cases in stratum i. If 7; = 1,
then by the definition where the observed case is designated as the subject indexed
as 0 and controls are indexed from 1 to M, we have

M
> yitBL(Xij — Xio) + BL(Zij — Zio)} = 0.
j=1
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Thus (7.41) is written as

n
L) =[] P =yilXi. 2. T, = ).
i=1
where fori = 1,...,n,
P(Y; = yilXi, Zi,T; = 1)

_ exp[Y1L, yii {BY (Xij — Xio) + BL(Zij — Zio)}]

= = : - : (7.44)
1+ > oy expiBy (Xij — Xio) + Bz (Zij — Zio)}
Define
Bix = (YuBy. ... YimBy)'s Biz = YuPy.....YimB)",
and
M
{S1(dix, dig; B)Y " =1+ ) explBidijx + Bidijz}-
j=1
Let

Bix = (yi1By-- - yimBy)" and Bz = (yirBgs ..., yimBy)"
for a realization y; of Y;. Then the conditional model (7.44) becomes
P(Y; = yildix.diz. T; = 1) = S1(dix. diz: B) exp(B; dix + B;,diz).

Therefore, under the Gaussian nondifferential measurement error model (7.43), the
conditional model for the joint distribution of the surrogate d;,+ and outcome Y;,
given {diX5 diZ7 7—‘l = 1}7 ls

P(Y; = yildix,diz, T; = 1) f(dix*|dix. diz, T; = 1)

= S2(dix.diz: B)
_ 1 _

cexp{(dix* + ZeBix) X, dix + Bl diz — Ed,-Tx* Z i,
where S>(dix,diz;B) is S1(dix,diz; B) exp(—%dl-TxZ‘e_ldix) times a constant, and
f(dix*|dix,diz, T; = 1) represents the model for the conditional distribution of
dix* given {d,‘x, dizy Tl = 1}.

Define
Qi = dl’x* + ZeBix

and let w; be its realization. Then given {d;, d;;, T; = 1}, the conditional model for
the joint distribution of Y; and £2; becomes

fi wildix,diz, T; = 1)

N S
= Sa(dix, diz; B) exp(] Z¢ ' dix — S0} T 1)

1
. exp(BlTxa)i + Bgzdiz — EB,TerBix)~
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Therefore, by canceling the first two terms which do not involve y;, we
obtain the model for the conditional probability function of Y;, given {£2; =
wl'vdl‘Xsdl'ZvT‘l' = 1}:

P(Y: = yil2i = wi,dix,diz. T = 1)
_ exp(Bj w; + B, diz; — ZB,TXE Bix} . (7.45)
Z}}:Zﬁio;}j—l exp(B w; + B d jBierBix}
where in the denominator, ¥; = (Jio, ..., im)" represents any vector of p0551ble
binary values of ¥; which are constrained by Z =0 yij = 1, and B, x and B iz are,
respectively, By and B;, with y;; replaced by y;;.
For j =1,..., M, let w;; denote the jth p, x 1 subvector of w;, where py is
the dimension of 8. Then the numerator of (7.45) equals

M M M
1
expi Y yij(Broi +,8;dijz)_§§ > vijyikBy ZejkBx p -
j=1 Jj=1lk=1

which reduces to

M
oxp | Y yij{Br(wij — TBy) + Bidijz}
j=1
because y;;yix = 0 for j # k and y;;yix = yi; for j = k. Analogously, the
denominator of (7.45) equals

M

L+ ) explBi(wij — ZBy) + Bidijz )

J=1

Therefore, the conditional probability (7.45) simplifies to

P(Yi = yi|2i = wi, dix,diz, Ti = 1)

M
_oexpd =y yijiBy (wij — XBy) + Brdijz )] (7.46)

1+ L1 explBr(@ij — DB + BLdijz)

This conditional probability function does not depend on d;y, so we may treat
£2; as a “sufficient statistic” for d; if the d;, are pretended to be parameters and J is
regarded as known. The conditional probability (7.46) may be further simplified for
the observed data: y;o = 1 and y;; = Ofor j = 1,..., M. At the observed values
of ¥;, £2; takes value d, =, hence w;; = d;jx+. Then applying (7.46) to the entire
sample gives the conditional likelihood:

PYr =y, Yy = yul{(Q2i = 01, X;. Z;. T, = 1) 1i = 1,....n})
n M -1
=[T{1+ 2 exp(Bity + Brdija)p (7.47)

i=1 j=1

where {;; = w;j — X B,.
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With {§2; : i = 1,...,n} held fixed, or equivalently, treating the {;; as if they
were data, maximizing (7.47) with respect to 8 leads to a consistent estimator of
under regularity conditions. However, the {;; involve the unknown parameter 8, dir-
ectly maximizing (7.47) with respect to 8, with {;; substituted by d;jx» — ¥ B,, may
not lead to the desired solution, as noted by Stefanski and Carroll (1987). Instead,
iterative steps are recommended to find the solution.

Given an initial value ,3(0) of B, calculate ¢ E/(.)) =djjx+ — X :3;(:))’ then take {;; =
O

ij
B; let ,3(1) denote the resulting maximizer. Repeat these steps and obtain a sequence
of estimates, {,B(k) :k = 1,2,...}. Stop iterations until convergence of ,B(k as k
becomes large, and let B denote the resultant estimator of 8. This implementation
may be realized using standard logistic regression software.

to be the “data” (together with the d;;;) and maximize (7.47) with respect to

To obtain variance estimates of the components of estimator E, one may use the
bootstrap or jackknife method. For instance, McShane et al. (2001) outlined the step
based on the jackknife method. Let B(;) denote the estimate of 8 computed from the

full data set minus the ith stratum. Then the jackknife covariance estimate for § is
calculated by

n

n

@@ = () Lo BB B 749
i=1
where By =n"1 Y7, Boy-

We conclude this section with comments. Introducing the difference-covariate
vectors d;, and d;, to formulate the likelihood enables us to focus inferences on
parameter B and ignore the nuisance intercepts f;¢. Building “sufficient statistics”
£2; allows us to overpass the unavailability of the X; when constructing an inference
function. The foregoing development treats the measurement error covariance X' as
known; this is true when conducting sensitivity analyses to evaluate the impact of
different degrees of measurement error on inference results for parameter S.

If the measurement error covariance X is estimated from other data sources,
then the induced variability needs to be accommodated when developing variance

estimates for estimator 8. The following formula may be used for this purpose:
var(B ) = varlE(B ;| 2)} + E {var(B;| )} (7.49)

where ’/'3\‘,- is the jth element of B and represents an estimator of the measurement
error variance X.

Specifically, McShane et al. (2001) discussed a re-sampling procedure. Suppose
that measurement error covariance matrix X' is estimated from additional sources
of data and that the asymptotic distribution of the resulting estimator is available.
One may implement three steps to obtain variance estimates for the B\ j- At Step 1,
set a sufficiently large integer N, and then simulate N sets of measurement error
covariance estimates from such an asymptotic distribution, Let X®) denote these
simulated versions for X', where k = 1,..., N.
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At Step2,fork =1,..., N, set X to be E‘(k); then run the foregoing estimation
method for the data to obtain an estimate of 8, denoted as B(k); and then apply the
jackknife procedure (7.48) to obtain a covariance estimate var, (B(k)).

At Step 3, let ,B\(/.k) be the jth component of /B(k) and @J(Eﬁk)) be the jth di-

agonal element of var, (B(k)). Then calculate a standard error of B ;j using the square
root of N (k) _ () N 2 (k)
Zk:l{ﬂj _,Bj }2 Zk:l @J(ﬂj )
N —1 N '
as suggested by (7.49), where BSJF) =N"! Z,?’:l E&k) forj =1,...,p.

7.6 Two-Phase Design with Misclassified
Exposure Variable

When studying the relationship between the disease status Y and the exposure vari-
able X, it is ideal to have error-free measurements of X . But in practice, measuring X
may be expensive or time-consuming; instead, cheap, error-prone measurements X *
are readily obtained. Given a fixed budget or a constrained timeline, striving to ob-
tain the precise measurement of X for every subject can be infeasible for us to recruit
a sufficient number of individuals into the study, which is required for achieving a
desirable statistical power. On the other hand, if attempting to include more subjects
into the study and simply measure X * to establish the disease-exposure relationship,
biased results may be produced if naively disregarding the difference between X*
as X in the analysis. To deal with these issues, a two-phase study may be employed
as a trade-off to balance the effectiveness of the data collection and the validity of
inference results.

At the first phase, surrogate X*, along with the disease status Y, is measured
for all the individuals in the sample, while at the second phase, X is measured on
the individuals in a subsample chosen from the first phase. Given a fixed budget, it
is important to set a design so that statistical efficiency in estimation of interesting
quantities, such as the log odds ratio linking ¥ and the exposure variable X, can be
maximized from such a design.

In this section, we describe design issues, discussed by McNamee (2005), for
two-phase case—control studies in which a binary exposure variable variable X is
subject to misclassification. Let X = 1 if a subject is exposed and X = 0 otherwise,
and X* be a surrogate measurement of X.

Design Setup
We consider a two-phase case—control study with n subjects in total and the ratio

of controls to cases being wg. At the first phase, suppose 14 cases with ¥ = 1 and
no+ controls with Y = 0 are sampled independently of each other; and the surrogate
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measurement X * is collected for every individual, giving nl*] subjects with (Y =
i, X* = j);whereniy =n/(wo+1),no4+ = nwo/(wo + 1), and n}y +n}fy = n;4
fori =0,1.

At the second phase of the study, a subsample of those n subjects from the first
phase is randomly selected from each category of {(Y =i, X* = j):i,j =0, 1}.
Let w;; be the sampling fraction in the stratum with (Y = i,X* = j), and
m;j = n;ywj; be the corresponding number of subjects sampled for 7, j = 0, 1.
The total second-phase size is then m = Zi, jMijs which is smaller than 7; in costly
studies, m is substantially smaller than n. Among those m subjects, the true exposure
variable X is measured for everybody; let n;; denote the number of truly exposed
subjects (i.e., with X = 1) for the stratum with (Y =i, X* = j).

Variance Estimate

Fori = Oor 1, let pj;y = P(X = 1Y = i) be the (conditional) exposure
probability for controls or cases. We are interested in estimating the log odds ratio of
the relationship between Y and X, given by

B = log P11 —log Po1 .
1 —pn I — po1

Although using the second-phase data may give us a reasonable estimate of f, this
approach incurs efficiency loss. Especially when m is a lot smaller than #n, the effi-
ciency loss may be quite substantial. To increase statistical efficiency, it is viable to
incorporate the measurements from the first-phase into the estimation of .

Fori,j =0or1,let p/; = P(X* = j|Y = i) be the “observed” exposure or
nonexposure probability for controls or cases, and ni*}l =PX=1Y=i,X*"=
j) be the (mis)classification probabilities. Then fori = 0, 1, the exposure probability

is written as
_ * %
pin = E PijTij1-
j=0,1

where pf + p/; = 1. Since the probabilities p;’; and 7", are, respectively, estimated
by the data collected from the first and second phases:

J=0,1
hence, leading to an estimate of S:
B\ = log pl,l\ —1 poi
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The variance of P; is given by (Cochran 1977; McNamee 2005):

*2 % *
-~ P (L —my) 1 «_%2 2
var(pi1) = E o +o— E PijTij1 — Pi1
j=0,1 i i+ \j=0,1

When misclassification of X is differential, estimators P11 and Po; are indepen-
dent, and the variance of § is, therefore, the sum of the variances of estimators for
the two log odds. By the delta method,

{ (?n
var { log | ———

1
£ = ————var(p;;) fori =0,1,
1 —pn)} pr(l—pi)?

hence, we obtain

*2 % * * %2 2
R prrmk (1-=n%) o1 P — pi
var(,B) — Z Z ij ijl ij1 + Z Z] 0,1 £ij7ij1 ll'

S0 e miiph (L= pi)? S ik p (1= pin)?

This variance may also be expressed in terms of the sampling proportions:

2.k * 2
wo +1 Z P?kj ”ijl(l_”ijl) 0;

var(B)= /A
w;iw;j p?,(1—pi1)? L @ipin(1=pin)

, (1.50)

i=0,1,=0,1

where w1 = 1, and fori =0, 1,

p-2 — Z p?j”iﬁ _pi21
! fary pir(1 = pi1)

Alternatively, the variance of ;3\ may be expressed by using a dual way of de-
scribing the misclassification process. Let 7;;; = P(X* = 1|Y =i, X = j) for
i, j = 0, 1. These probabilities may replace 7’;}1 to describe the variance var(f),
leading to an alternative expression of (7.50), where we assume that j1; — mi91 > 0
for the following development.

Optimal Design with Fixed Budget

Let the total budget for the study be B, and the costs of measuring X * and X for
each subject be ¢* and c, respectively, with ¢* < ¢. Assume that there are no other
costs. Then the total cost of a two-phase study is ¢* ), nj4 + ¢ Zi,j m;;, which is
constrained to be B. Consequently, as discussed by McNamee (2005), the choices of
n, wo and w;; must satisfy the budget constraint

*(wo+ 1)+ ¢ Z wi Z plwij ¢ =B. (7.51)

n
w, 1
o+ i=0,1  j=0,1
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Therefore, with a given total budget B, an optimal two-phase design may be con-
structed by minimizing var(,/g) under the constraint (7.51).

McNamee (2005) showed that the optimal values of wgy and w;; for a two-phase
design are given by

C()OPT _ fOPO

o fip1

and

L ifj =0,

2k
Pi Pio

TiQ17i11 o A p—

/ lf] =1
2 %2 ’
Pi Piy

where f; = 1/+/pi1(1 — pi1) fori = 0, 1. Consequently, the optimal value of n is
determined by substituting wg™ and ;" into (7.51).

In many case—control studies, additional constraints are imposed. For instance,
the ratio wg of controls to cases is fixed in advance. Commonly, w takes a value in
the range of [2, 8] to reflect the relative difficulty of finding cases. With this addi-
tional constraint together with (7.51), minimizing Var(ﬁ) gives the constrained opti-
mal sampling fractions

c* [(=mio)A=m;11)
g 2

o _ gon |__JiPi (@0 + 1)

Y YN @ Yoo SRR 0k

for i, j = 0, 1. Other optimal designs under different constraints were discussed by
McNamee (2005) in detail.

7.7 Bibliographic Notes and Discussion

Measurement error and misclassification have long been a concern in epidemiolog-
ical studies. Early work includes Bross (1954) and Goldberg (1975) who discussed
misclassification effects for 2 x 2 tables. It has been well documented that odds ratio
estimates can be seriously biased if misclassification and measurement error effects
are not properly accounted for in the analysis (e.g., Barron 1977).

This chapter includes only a few methods of handling case—control data with
measurement error or misclassification. More inference methods of correcting for
measurement error or misclassification are available in the literature. For example,
Breslow and Cain (1988) described a two-stage method for which misclassification
probabilities are estimated from a validation subsample obtained from a second-stage
design. Armstrong, Whittemore and Howe (1989) proposed a method for estimat-
ing odds ratios from case—control data with covariate measurement error, where the
measurement error may contain both a random component and a systematic differ-
ence between cases and controls. Elton and Duffy (1983) and Drews, Flanders and
Kosinski (1993) examined estimation methods when data are classified using two
measurement schemes. Schill et al. (1993) suggested to jointly fit logistic models to
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both the main and validation samples. Wang and Carroll (1994) explored robust esti-
mation for case—control studies with measurement error in covariates. Carroll, Wang
and Wang (1995) proposed to ignore the design study aspect and base inference on
a prospective formulation of estimating equations to handle case—control data with
measurement error. Marinos, Tzonou and Karantzas (1995) studied epidemiological
indices in case—control studies with nondifferential misclassification. With the ret-
rospective logistic regression model, Forbes and Santner (1995) explored estimation
procedures for the odds ratio and regression parameters for matched case—control
studies. They considered the scenario where subject-specific covariates are subject to
measurement error and covariance structures of the measurement error process may
be different for cases and controls. Roeder, Carroll and Lindsay (1996) discussed
a semiparametric approach under the prospective logistic model with a validation
subsample. In their approach, they assumed a parametric model to characterize the
measurement error process and imposed a nonparametric mixture model to describe
the marginal distribution of the true covariates.

Morrissey and Spiegelman (1999) and Lyles (2002) discussed adjustment meth-
ods for exposure misclassification in case—control studies where a validation sample
is available. Stiirmer et al. (2002) carried out a simulation study to assess the per-
formance of the regression calibration method in contrast to a semiparametric ap-
proach for case—control studies with internal validation data. Rice (2003) developed
likelihood methods for analyzing case—control studies where a binary exposure is
potentially misclassified and a variety of matching ratios may be present. Zheng and
Tian (2005) studied the impact of diagnostic error on testing genetic association in
case—control studies. Guolo (2008a) used prospective likelihood methods to analyze
retrospective case—control data with error-contaminated covariates which are mod-
eled with skew normal distributions. Chu et al. (2009) presented a likelihood-based
approach for case—control studies with multiple non-gold standard exposure assess-
ments. Lobach et al. (2008) explored a pseudo-score method to handle the data where
some covariates are subject to measurement error and some covariates are subject to
missingness.

Under the Bayesian framework, Miiller and Roeder (1997) developed a nonpara-
metric Bayes approach for case—control studies with measurement error. Gustafson,
Le and Saskin (2001) studied the impact of misspecification of classification proba-
bilities and demonstrated that even slight discrepancies between assumed and actual
classification probabilities can result in seriously erroneous results. They suggested
a Bayesian analysis by attaching a prior distribution to the classification probabilities
to allow for uncertainty. Prescott and Garthwaite (2005) proposed methods for ana-
lyzing matched case—control studies in which a binary exposure variable is subject
to misclassification. Mak, Best and Rushton (2015) studied sensitivity analysis for
case—control studies subject to exposure misclassification. In terms of sample size
determination, Stamey and Gerlach (2007) discussed a Bayesian simulation-based
approach for case—control studies with misclassification.

Certain methods developed for observational studies may be readily adapted to
handle case—control data, especially when nondifferential measurement error is as-
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sumed (e.g., Rosner, Willett and Spiegelman 1989). Thiirigen et al. (2000) and Guolo
(2008b) reviewed correction methods that are applicable to case—control studies and
briefly discussed implementation procedures using available software packages.

7.8

7.1.

7.2

Supplementary Problems

Let Y be a binary variable indicating the disease status with value 1 and O
otherwise, and Z be a vector of covariates. Let ¢ = P(Y = 1) and g(z) be the
marginal probability density or mass function of Z. Suppose the conditional
probability function of Y, given Z, is modeled as

_ . exp(Bo + B;2)
PU=llz=9=17 exp(Bo + Biz)’

where ¢ and B, are regression coefficients.

Suppose (Bo. Bz, ¢.g) and (B, B3, ¢*, g*) are two sets of associated values
for the conditional probability density or mass function, f;,(z|y), of Z given
Y. Let

_ I +exp(By + B;2)

b(z) = .
=1 + exp(Bo + BL2)
and oo
Z : .
| = if the Z are discrete,
R e if the Z t
Toedz i the Z are continuous.
Show that
fav@lyiBo. Bz #.8) = fin(zly: By Bz 9™, &)
if and only if
(@) Bz = ﬂ;,

(b) B5 = o +log {4700
(©) g%(z) = c(2)g(2).

This result implies that from the retrospective sample, only the parameter 3, is
fully identifiable, while the marginal distribution of Z can be determined only
up to an equivalence class of functions. But if the true population probability
of disease, ¢, is otherwise known, then By and g are identifiable as well.
(Roeder, Carroll and Lindsay 1996)

Discuss the misclassification effect on the Mantel-Haenszel estimator (7.2) of
Y in §7.1.3 for stratified designs.
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7.3.

74.

7

(a)
(b)
©
(d)

(e)

(a)

(d)

Case—Control Studies with Measurement Error or Misclassification

Verify the identity (7.12).

Verify the identity (7.14).

Verify the identity (7.15). Show that foreachi = 0,land j = 1,...,n;4,

the expectation of S;; (Y;;, Z;;; 6) is not necessarily zero.

Generalize the development in §7.1.6 to the case where the disease out-

come variable Y;; assumes K different values, where K is an integer

greater than 2.

If the prospective model (7.3) is replaced by a probit model or a comple-

mentary log-log model, can the development in §7.1.6 go through?
(Prentice and Pyke 1979; Carroll, Wang and Wang 1995)

Suppose case—control data are collected from two clinics. Let Y denote
a binary disease status, and X denote the presence (X = 1) or absence
(X = 0) of a risk factor. In Clinic A, a sample of n; diseased patients
(cases with Y = 1) includes n1; individuals who report X = 1, while in
clinic B, a sample of no+ asymptomatic patients (controls with ¥ = 0)
includes 79 subjects who have X = 1.

In addition, a third group of y patients are interviewed in both clinics. In
Clinic B, y; patients report X = 1 and y, patients report X = 0. Among
those y; patients who report X = 1 in Clinic B, there are x; patients
reporting X = 1 in Clinic A; and among those yq patients who report
X = 0 in Clinic B, there are x¢ patients reporting X = 0 in Clinic A.

Assume that the measurements on the risk factor obtained in Clinic B are
precise and the results reported in Clinic A are subject to misclassification.
Let X* denote a reported value of the risk factor from Clinic A. Define
p11 = P(X =1Y = 1)and po1 = P(X = 1Y = 0). Let ¥ be the
odds ratio
_ pu(1 — po1)
por(1 —p11)’
Suppose the nondifferential misclassification mechanism

PX*=1X=x.Y=1)=PX*=1|X=x.Y =0)

holds for x = 0,1. Find a consistent estimator of . Construct a
(1 — ) x 100% confidence interval for v, where « is a constant be-
tween O and 1.

Elton and Duffy (1983) reported the data coming from an epidemiological
study of risk on breast cancer, where measurements were taken from two
clinics. A diagnostic clinic, called Clinic A, had 236 confirmed cases
while a screening clinic, called Clinic B, had 2962 asymptomatic con-
trols. The records were also available for 167 women (mostly with benign
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Table 7.8. Case—Control Data on Breast Cancer (Elton and Duffy 1983)

Case—control study data Women attending both clinics
Clinic A Clinic B | Clinic A Clinic B
Cases Controls |Response Response
Married Unmarried
Married 205 2288 yes 120 18
Unmarried 31 674 no 4 25

breast disease and therefore not qualifying for either the case or control
groups), who had attended both clinics within a 6-month period.

It is interesting to assess the effect of the marital status on the development
of breast cancer. The measurements for married individuals are given in
Table 7.8. Measurements on marital status collected from Clinic A were
regarded as error-prone whereas measurements from Clinic B were treated
as correct. Apply the results obtained in (a) to analyze the data.

(Elton and Duffy 1983)

7.5. Consider the setup of §7.2.
(a) Suppose that X is subject to misclassification and that X* is an observed
value of X.
(i) Under the nondifferential misclassification mechanism, show that the
“observed” odds ratio based on X * and Y is given by (7.19).
(i1) Find an expression of the “observed” odds ratio based on X* and Y
for the setting where the misclassification mechanism is differential.
(i) Let nj,, = P(X = x[Y = y,X* = 1) and 7}, = P(X =
x|Y = y, X* = 0) be (mis)classification probabilities for y = 0, 1
and x = 0, 1. Using n;‘lx and n;()x together with py; and pgy, derive
the “observed” odds ratio for X* and Y.

(b) If X is precisely classified, but Y is subject to misclassification with an
observed surrogate Y *. Derive the “observed” odds ratio based on X and
Y*.

(c) If both X and Y are subject to misclassification, and let X* and Y * be the
observed value of X and Y, respectively. Derive the “observed” odds ratio
based on X* and Y *.

7.6. Consider the setup of stratified designs in §7.2.
(a) Verify (7.20).
(b) Let Ax = 7111 + ag1(1 — m100), Bx = 1 — w111 + g1 7100, and
Dy = (Axak1moo0 — Bror1)? + 4Ax (1 — mo11) Brag (1 — moo0).
Assume that Brayi (1 — mggp) > 0. Define

_ (Axarimooo — Brmo11) + /D

Ck
2Bjap (1 — moo0)
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Show that
(1) if the true odds ratio v takes a value smaller than Cy, then the “ob-
served” odds ratio

Ve > Y
for every stratum k;

(i) if the true odds ratio ¥ takes a value bigger than Cy, then the “ob-
served” odds ratio

Ve <V

for every stratum k.

7.7.
(a) Verify the identity (7.22).
(b) Verify the identity (7.25).
(c) Verify the identity (7.26).
(Zhang et al. 2008)

7.8. Verity (7.30).

7.9. In a case—control study, let ¥ be the binary outcome variable taking values 0
and 1 and {X, Z} be the risk factors. Suppose that Y is subject to misclassifi-
cation and Y'* is its observed version. Assume that

PY*=y*Y =y.X.Z)=P(Y" =y"|Y =y)
for y*,y =0, 1. Let
Yor =P *=1Y =0)andyj;o= P(Y* =0]Y =1)
be the misclassification probabilities. Consider a logistic regression model

exp(Bo + Bi X + B Z)
I +exp(Bo + BLX + BLZ)

PY =1|X.2) =

where B, B, and B are regression coefficients.
(a) Show that the model for the misclassified outcome is

P(Y* = 1|X, Z)
_ Yo+ —yio)exp(Bo + B3 X + B Z)
- 1 +exp(Bo + BLX + B1Z) .

(b) Show that model (7.52) is unidentifiable if y; + Y10 = 1.

(c) If model (7.52) is unidentifiable, is yo; + Y10 = 1 true?

(d) Find the retrospective model for the conditional distribution of {X, Z}
given Y *. Discuss identifiability issues and relevant assumptions.

(e) Suppose that X is also subject to measurement error and X * is an observed
value of X. Derive a model for the conditional distribution of Y * given
{X*, Z}. Discuss associated conditions and identifiability issues.

(7.52)
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7.10. For any real value x, let

(a)

(b)

(©)

(@
(e)

exp (—ﬁ) and @(x) = /x ¢(v)dv.

p(x) = .

1
V21

Show that

/oo1q>(+ 16 (=) d cb( a )
—Pa+x)p(—)dx = —,
0 O o V1402
where a and o are positive constants.

Let Y be a binary response variable and X be a scalar covariate. Suppose
Y and X are modulated by the probit regression model

P(Y =1|X) = ®(Bo + B X).
where B¢ and B are regression coefficients.

Assume that X is subject to measurement error, and let X * be its observed
value. The measurement error model is given by

X=X*+e, (7.53)

where e is independent of {X*, Y} and normally distributed with mean 0
and variance o2.

Show that the model for the conditional distribution of Y given X* is
also a probit regression model. That is, the conditional probability P(Y =
1]X*) can be written as

P(Y =1|X") = ®(B5 + LX)

for some parameters B85 and B}. Determine the relationship between the
parameters (S, B5) and (Bo. Bx).

Suppose {(x,y;) : i = 1,...,n} is a sample of realizations of (X*,Y).
Are By and B estimable using the observations of the sample? What con-
ditions do you need in order to estimate By and S using the observations
of the sample?

Can you generalize the result in (b) to the setting where X is a vector of
covariates? What assumptions do you need?

If the measurement error model is not given by (7.53) but given by

X*=X+e,

where e is independent of {X, Y} and normally distributed with mean O
and variance 062. Does the result in (b) still hold?
(Burr 1988)
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7.11. Table 7.9 displays the layout of the data arising from a case—control study with
n subjects, where Y is a binary outcome variable, X is a misclassification-
prone binary exposure variable, and X* is an observed version of X. In the
validation sample V, the counts for {Y = i, X* = j, X = k} are denoted
as n;ji for i, j,k = 0, 1; in the sample M of the main study, the counts for
{Y =i, X* = j} are denoted as n;“] fori, j = 0,1;and V is a subset of M.

Table 7.9. Data Layout for Study with Misclassified Exposure Data

Validation study Main study

X*X=1X=0X=1X=0YX*=1X*"=0

1 ni11 nio nmorr noio 1 niy nio
0 n101 n1o0  oo1 Mooo O 1y %o
Fori = 0,1, let

min = P(X*=1Y =i, X = 1);
Tioo = P(X* = 0|Y =i, X = 0);
i, =P(X =1Y =i X*=1);
mhe = P(X =0]Y =i, X* = 0);
ph=PX" =1Y =i);

pit = P(X = 1|Y =1i).

Define the log odds ratio of having the disease as

B = log pu = po) ( (7.54)
(I = p11)po1

Using the main study data alone, or both the validation and main studies, we
estimate p/, respectively, by

* *
B = niy = Mo1
11 — % *x 01 — _ x *
ny +njg gy + g
and . .
ko _ Mpptnuy o Mg T o1+
P = Po1 =

* * ’ * * ’
nip +nij + 014+ gy + Noo + No++

where n;; 1 = n;j1 +nijjoand n; 44 = n;14 +njo4 fori, j =0, 1.
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(a) Show that

P11 w111 1=m0 O 0 - P
l—=pu | _| I=mi1 oo 0 0 1-pi;

Do1 0 0 mo11  1—mo00 Por |’
1 = po1 0 0  1-mo11 moo0 1-pgy

where the inverse matrix is assumed to exist.

(b) Using the validation study, we estimate ;11 and ;0 by
~ ni1 o~ nioo
i1l = and 75, = —,

Nit+1 nit+o

respectively, where n; x = n;1x + n;ox fork =0, 1.

Let EM and BM denote an estimator of 8, determined by (7.54) in combi-
nation with the expression in (a) where p/| is estimated by P, and D7,
respectively. In both /SM and /SM, mi11 1is estimated by 711 and mjigp is

estimated by 7;00. Find the variance of ﬂ w and ﬂ M-
(¢) Show that

P11 nfyy l=mlp O 0 P
L—pu | _ | 1=7f11 oo 0 0 1—ph
Do1 B 0 0 o1 1=7g00 Po1
1= por 0 0 1=7g11 TG00 1= pgi

(d) Using the validation study, we estimate 7}, and 7, by

nioo

T = and Ty = ,
' ni1+ ' njo+
respectively. Let E]M and B\IM denote an estimator of ,3, determined by
(7.54) in combination with the expression in (C) where p| is estimated by
P}, and p7|, respectively. In both ,BIM and ,BIM, 1*11 is estimated by 77,
and 71,00 is estimated by 7 100 Find the variance of ,31M and /31M
(e) Let 6 = (p1y. Po1> T111> To11+ T1oos Tooo) - Construct a likelihood func-
tion of 8 and derive the maximum likelihood estimator of 6. Develop an
estimator of 8 accordingly.
(f) Consider that the conditional probabilities are parameterized as

PX =1Y =0) = a;
aexp(B)
l—a+aexp(B)’
P(X* = 1Y = 0) = mo11a + (1 — m000)(1 — );
exp(B)minia + (1 — m00)(1 — @)
1 —a + aexp(B) ’

PX=1Y=1) =

PX*=1Y =1) =



348 7 Case—Control Studies with Measurement Error or Misclassification

P(X*=x*IX =x,Y =k) = 755 (1 — mj1)* =)
”i%o_xm_x*)(l — Tig0) 1 TH¥

Let 6 = (B, a, mo11, 111, 7000, T100)" be the parameter vector, and

L) = [[{P(X} = x}1X; = x1.Y; = y) P(X; = x1|Y; = y1)}
ley
[ Px;=xfvi=w)
le M\V

be the “observed” retrospective likelihood, where {Y;, X;. X"} represents
a copy of {Y, X, X*} for individual /. Develop an estimation procedure
for 6.

(g) Discuss the efficiency among the estimators of 8 which are obtained in
(b), (d), (e) and (f).

(h) Using the foregoing development, analyze the data arising from a case—
control study on sudden infant death syndrome (SIDS) which were dis-
cussed by Chu, Gustafson and Le (2010). During investigation of a po-
tential impact of maternal use of antibiotics during pregnancy on the oc-
currence of SIDS, surrogate exposure X* was obtained from an inter-
view question (yes=1, no=0). Information on antibiotic use from medi-
cal records, taken to be the actual exposure status X, was extracted for a
subset of study patients. The data are displayed in Table 7.10.

Table 7.10. Validation Study and Main Study of SIDS (Chu, Gustafson and Le 2010)

Validation sample Main study

XX*=1X*=0X*"=1X*=0Y X*=1X*=0

1 29 17 21 16 1 122 442
0 22 143 12 168 0 101 479

(Morrissey and Spiegelman 1999; Lyles 2002)
(Chu, Gustafson and Le 2010)

7.12. We consider data from a case—control study in which each subject has an
underlying true, but unobserved, exposure X, coded as 1 for exposure and 0
for nonexposure. Exposure is assessed by applying two tests (standard and
new tests) to each individual. Let X and X denote the measurements ob-
tained from the two tests, which are coded as 1 for a positive result and O for
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a negative result. Let ¥ be the disease status, coded as 1 for a case and O for
a control. Assume that each test nondifferentially misclassifies exposure. The
data are summarized in Table 7.11.

Table 7.11. Layout of Case—Control Data Obtained from Two Tests

Cases Controls
X;=1X;=0 X;=1X5=0
X{=1 nin nio X{=1 noi1r noro

X{=0 nio1 niwoo X{=0 ngo1 nooo

For j = 0, 1, define
aj =P(X; =jIX =jX{=))

and
Bj=PX;=jlX=jX{=1-)).

To reflect the difference between «; and 8 ;, we reparameterize them as

aj = B;¢; forj =0,1,

where ¢ and ¢ both taking value 1 represent that the two tests independently
give measurements. Let 0 = (ag, @1, Bo, B1)"-

(a) Construct a retrospective likelihood for parameters 6, ¢ and ¢;.

(b) Are parameters 0, ¢9 and ¢; estimable by applying the formulation of (a)
to the data in Table 7.11 ?

(c) Assuming that ¢p¢ and ¢; are known, can you perform inference about 6
using the EM algorithm?

(d) Assuming that ¢ and ¢; are known, can you perform inference about the
odds ratio

_PX=1Y=1)P(X =0]Y = 0)9

V= PX=1Y =0)P(X =0]Y =1)

(e) Drews, Flanders and Kosinski (1993) considered data arising from a case—
control study of sudden infant death syndrome (SIDS). The data include
213 SIDS victims (cases) and 216 controls. The exposure variable is de-
fined to be the status of “maternal anemia during pregnancy”. Exposure
data are obtained from two sources: medical records and maternal inter-
views. Taking the interview data to represent test 1 results and medical
records as test 2 measurements, we display the data in Table 7.12. Let-
ting ¢o and ¢; assume various values between 0 and 1, conduct sensitivity
analyses for this data set.
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Table 7.12. Case—Control Data of Sudden Infant Death Syndrome Collected from Medical
Records and Interviews (Drews, Flanders and Kosinski 1993)

Cases Controls
X;:lX;:O X2*=1X§=0
Xi" =1 24 49 Xi* =1 20 34

|
o

Xf=0 15 125 X;= 15 147

(Drews, Flanders and Kosinski 1993)

7.13. Prescott and Garthwaite (2005) discussed case—control data arising from a
study of smoking and myocardial infarct. A case (disease present) is indicated
by Y = 1 and a control (disease absent) by ¥ = 0. The information of smok-
ing was obtained from the doctor’s record and the patient’s recall. The doctor’s
record (denoted as X) is treated as a gold standard measure and a patient’s re-
call (denoted as X ™*) is supposed to be potentially misclassified. The data are
summarized in Tables 7.13 and 7.14, where the main study include 153 sub-
jects and the internal validation subsample contains 100 subjects. Analyze this
data set using a method discussed in this chapter.

Table 7.13. Counts for the Validation Subsample Classified by the Smoking Exposure of the
Doctor’s Record and Patient’s Recall (Prescott and Garthwaite 2005)

Cases (Y = 1) Controls (Y = 0)
X* X=1X=0X=1 X=0

1 27 1 14 4
0 220 3 29

(Prescott and Garthwaite 2005)

Table 7.14. Counts for the Main Study Sample Classified by the Smoking Exposure of the
Patient’s Recall (Prescott and Garthwaite 2005)

Controls (Y = 0)
X*=1X*=0

Cases X*=1 12 26
Y =DHDX*=0 5 10
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7.14. Analyze the case—control data displayed in Table 2.4. Specifically, apply the
regression calibration method, discussed in §2.5.2, to the retrospective model
derived from one of the following prospective models for the relationship be-
tween Y and X; and compare the results:

(a) The logistic regression model

logit P(Y = 1|X) = Bo + Bx X, (7.55)

where S and B are regression coefficients;

(b) Replace the logit link in (7.55) with the probit link function;

(c) Replace the logit link in (7.55) with the complementary log-log link func-
tion.



8

Analysis with Mismeasured Responses

In many settings, precise measurements of variables are difficult or expensive to
obtain. Both response and covariate variables are equally likely to be mismeasured.
Measurement error in covariates has received extensive research interest. A large
body of analysis methods, as discussed in the aforementioned chapters, has been
developed in the literature. Issues on mismeasured responses, on the other hand,
have been relatively less explored.

With a continuous response variable described by a linear regression model,
response measurement error, if assuming a linear form, may be ignored because
this error may be featured in combination with the noise term in the model. Igno-
rance of measurement error in response is, however, not always reasonable. With
nonlinear regression models for response processes or nonlinear error in response
variables, error in response basically needs to be accounted for in order to conduct
valid inferences. This chapter covers several inference procedures for handling res-
ponse measurement error in different contexts. Both univariate and correlated data
with error-prone responses are discussed. Methods of handling measurement error in
both response and covariates are also explored briefly in this chapter.

8.1 Introduction

Let Y be the true response variable which may not be observed, and let Y * be its
observed measurement or surrogate version. As in the aforementioned chapters, we
let Z denote error-free covariate vector and /4 (+|-) denote the conditional distribution
for the corresponding variables.

© Springer Science+Business Media, LLC 2017 353
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Surrogate variables are defined distinctively in different contexts. For instance,
in the context without covariate measurement error, Prentice (1989) suggested a cri-
terion for outcome surrogacy which requires that

h(yly*.z) = h(y|y"). (8.1)

This definition implies that the covariate effect of Z on the outcome Y would act
solely through surrogate Y *, hence allowing us to base inferences totally on surro-
gate outcome data.

This requirement is, however, restrictive and often difficult to verify in applica-
tion (Pepe 1992). Our discussion on surrogate outcome data is somewhat different.
We consider settings where Y * and Y are correlated in the sense that

h(y*ly.z) # h(y™|z).

i.e., given covariate Z, Y* and Y are not independent. To avoid confusion with the
surrogacy defined by Prentice (1989), we use the proxy rather than the surrogate
outcome to refer to Y * throughout this chapter.

The discussion in this chapter includes two types of measurement error problems:
(1) response measurement error only, and (2) both response and covariate variables
are subject to measurement error. Such a development complements and extends the
discussion in the preceding chapters.

In the instance where only the response variable is subject to measurement error
or misclassification, inferences may proceed with the joint distribution of Y, Y*
and Z, which is factorized as

h(y.y*.z) = h(y*, y|2)h(2).

To study the relationship between Y and Z, we often focus on the conditional dis-
tribution 2(y*, y|z) without modeling the distribution /4(z) of Z. The conditional
distribution A (y*, y|z) is factorized as

h(y.y*|z) = h(y*|y.2)h(y|2).

where /(y|z) is of interest to be modeled and 4 (y*|y, z) characterizes the response
measurement error process.
If

h(y*|y.z) = h(y*|2),

or equivalently,

h(yly*.z) = h(yl2), 8.2)

we call this nondifferential response measurement error, otherwise differential res-
ponse measurement error. When Y is a discrete variable or vector, one may also
refer to (8.2) as a nondifferential response misclassification, otherwise differential
response misclassification. This definition is analogous to the covariate measurement
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error mechanisms described in §2.4. It says that if response measurement error is
nondifferential, proxy Y* does not carry additional information on explaining the
relationship between Y and Z.

When both the response and covariate variables are subject to measurement
error, inferences are more complicated. In addition to response variable Y, its
proxy Y*, and error-free covariate Z, we use symbol X to represent an error-
contaminated covariate vector and X * to be its observed version. The joint distri-
butionof Y, Y *, X, X* and Z is written as

h(y,y*.x,x*,2) = h(y,y*, x, x*|2)h(2),

where the marginal distribution /(z) of Z is often left unspecified.

Inferences are then carried out based on the conditional distribution A(y, y*,
X, x*|z). Although there are multiple ways to examine h(y, y*, x, x*|z), it is con-
venient to write i(y, y*, x, x*|z) as

h(y,y*,x,x*|z) = h(y|y*. x,x*, 2)h(y*, x, x*|2) (8.3)
or
h(y.y*. x,x*|z) = h(y*|y. x. x*. 2)h(y. x, x*|z). (8.4)

These factorizations give us a basis to study the relationship between the res-
ponse Y and true covariates {X, Z}. The choice of (8.3) or (8.4) is driven by the
characteristics of measurement error. In the situation where

h(yly*. x,x*,z) = h(y|x, 2), (8.5)

using factorization (8.3) enables us to directly perform inference on A (y|x, z), where
h(y*, x, x*|z) is further factorized into conditional distributions pertinent to the res-
ponse and covariate measurement error processes. Errors satisfying (8.5) are called
nondifferential errors-in-variables, otherwise differential errors-in-variables.

On the other hand, factorization (8.4) allows us to invoke the strategies of
handling covariate measurement error discussed in the previous chapters. In this
instance, inference about A(y|x, z) is conducted based on examining 4 (y, x, x*|z)
which involves the covariate measurement error process, whereas h(y*|y, x, x*, z)
facilitates the response measurement error process. An example of using factoriza-
tion (8.4) is provided in §8.2.2.

8.2 Effects of Misclassified Responses on Model Structures

In this section, we consider the situation where the response variable or vector is
binary and subject to misclassification. The discussion focuses on how misclassifi-
cation may change the model structure for response variables. Both cross-sectional
data and correlated data are discussed.
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8.2.1 Univariate Binary Response with Misclassification

For individual 7, let ¥; be the univariate binary response, taking values 0 and 1; and
Z; be the vector of precisely measured covariates. We assume that conditional on
Z;, Y; is postulated by a binary regression model falling in the class of generalized
linear models with the probability mass function

SWilzii i) = exp[{yi&i — b))} + c(yi)], (8.6)

where &; is the canonical parameter and b(-) and c¢(-) are known functions. This
probability mass function immediately gives that the mean and variance of ¥;, given
Z;, are, respectively, the first and second derivatives of b(&;) with

E(Y;|Z;) = b'(§;) and var(Yi|Z;) = b"(&).

To explicitly show the relationship between the response and covariate variables,
we model the conditional mean response given covariates, i; = E(Y;|Z;), viaalink
function g(-):

g(Wi) = Mzis
where
Nzi = Bo + B Zi
is the linear predictor, B¢ is the intercept, and the parameter vector 8, measures the
covariate effects of Z;. The link function is assumed to be strictly monotone and
differentiable. Common choices of g(-) for binary data include the logistic, probit
and complementary log-log functions (McCullagh and Nelder 1989, p.31).

Suppose that ¥; is subject to misclassification and Y;* is an observed value of Y;.

Let

yo1(Zj) = P(Y;" =1]Y; =0,Z;) and y1o(Z;) = P(Y;* =0|Y; =1,Z;)

denote the response misclassification probabilities. The probability 1 — y19(Z;) is
often called the sensitivity of the measurement Y;*, and 1 — yo1(Z;) is called the
specificity. The conditional probability of the observed measurement Y;*, given Z;,
is linked with the conditional probability of the true response Y;, given Z;, via

P =11Zi) = yor (Zi) + {1 — yo1(Zi) — y10(Zi)} P(Y; = 1|Z;).  (8.7)

To see the structure difference between P(Y; = 1|Z;) and P(Y* = 1|Z;),
we begin with a simple case where the misclassification probabilities are free of
covariates:

Y01(Zi) = yo1 and y10(Z;) = 1o,
where yg; and y;¢ are nonnegative constants no greater than 1. This assumption

in lines with the outcome surrogacy condition (8.1) discussed by Prentice (1989).
Define uf = P(Y;* = 1|Z;). Then (8.7) gives

_ W —vo1
Nzi = & —1 )
— Yo1 — Y10
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implying that 7,; may be viewed as a function of 11}, given the constancy assumption
about o1 and y1¢. Let g*(-) denote such a function that

nzi = & (1)
Differentiating the identity

Wi = Yo1
o =22 )
—Yo1 — Y10

with respect to 7, we obtain

do* (u* * 1
S _ ot =0 ( ) (8.8)
) I —yor —vi0 ) \1—Yo1 — Y10

By the monotonicity of g(-) and the constancy assumption for yo; and y19, g*(-) is
monotone. In particular, if yo; + y10 < 1, then g*(-) and g(-) are both increasing
or decreasing at the same time; otherwise, the monotonicity of g*(-) and g(-) is
opposite. The assumption yp; + y10 < 1 is often feasible, since both values of yp;
and of y;¢ being larger than 0.5 would indicate that the measurement procedure of
Y; is useless: a chance operation, say, flipping a fair coin, would more likely yield a
better measurement of ¥; than the actually measured value Y;*.

This derivation says that u; is linked with the linear predictor 1;; through a
monotone, differential link function g*(-):

g (i) = nzi.
thus the observed response Y;* still follows a generalized linear model. The only
difference between the models of P(Y; = 1|Z;) and P(Y;* = 1|Z;) is reflected by
the difference in the link functions g(-) and g*(-). Consequently, ignoring the feature
of response misclassification in the analysis has the same effects as misspecifying
the link function in the analysis for generalized linear models. These results are valid
under the condition that the misclassification probabilities are constants.

For general situations where misclassification probability yo1(Z;) or y10(Z;)
depends on covariate Z;, (8.8) does not hold anymore. The derivative dg™*(u})/0u}
has a more complicated dependence on yi;:

a0g*(uf)

oy

w; —vo1(Z;)
1 —yo01(Zi) — y10(Zi)

{ 1 —D(Z;) %
1—y01(Zi) —y10(Zi) )’

where

D(Z) =

dyo1(Zi) % i —vo1(Zi) } % dy01(Z;) n 3V10(Zi)}
o} 1 —yo1(Z;i) — y10(Zi) o} au; .

Since the factor D(Z;) generally varies with the covariate values, the derivative
0g*(j})/0u; is not necessarily uniformly positive or negative, indicating that g*(-)
is not monotone anymore and that the model for P(Y;* = 1|Z;) does not necessarily
fall in the family of the generalized linear models. A detailed discussion on this point
was provided by Neuhaus (1999).
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In summary, misclassification in the response variable may change the structure
of the response model, and the change degree depends on the nature of the misclas-
sification probabilities. If the model for Y; given Z; is a generalized linear model,
then the model for the surrogate Y;* given Z; can or cannot be a generalized linear
model, depending on whether or not the misclassification probabilities are constants.
In the case where the misclassification probabilities are constants, models for both
P(Y; = 11Z;) and P(Y;* = 1|Z;) are generalized linear models, but the models
may differ in the link function form.

8.2.2 Univariate Binary Data with Misclassification in Response
and Measurement Error in Covariates

In addition to misclassification in response variable Y; considered in §8.2.1, suppose
some covariates are subject to measurement error. Let X; denote the vector of error-
prone covariates for individual i, X i* be the observed version of X;, and Z; be the
vector of precisely measured covariates.

The conditional probability for the observed data may be written as

P(Y =1X}.Z;) = P(Y) = 1.Y; = 01X, Z;)
+P(Y =1,Y; = 1|X/, Z)), (8.9)

where for y = 0,1, the probability P(Y* = 1,Y; = y|X,Z;) may be
expressed as

/P(Y,* =1Y =y|X; =x, X" =xZ)f(x|x], Z)dn(x)  (8.10)

to reflect the role of the covariate measurement error process, featured by the model
f(x|x}, Z;) for the conditional distribution of X;, given {X*, Z;}. Aligning with
(8.4), one may further consider the factorization

P(Yl* = lel = y|Xi7X[*5Zi)
= P(Yi* = 1|Y,‘ = y,X,‘,Xl-*,Z,')P(Yi = y|X,~,Xl~*,Zl-). (8.11)

If assuming the nondifferential covariate measurement error mechanism:
PY; =y|X", X;.Z;) = P(Y; = y|X;, Z;) fory =0,1, (8.12)

then combining (8.10) and (8.11) with (8.9) gives us a link between the conditional
probability P(Y;* = 1|X/, Z;) for the observed data and the conditional probability
P(Y; = 1]|X;, Z;) of interest. Moreover, these derivations show how models for
the measurement error processes of the covariate and response variables, f(x|x*, z)
and P(Y;* = 1|Y;, X;, Z;, X;"), may come into play when using the observed data
to carry out inferences about P(Y; = 1|X;, Z;).
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If P(Y* =11Y; = y, X}, X;, Z;) does not depend on X;, then combining (8.10)
and (8.11) with (8.9) gives that

P =11X".Z) = ya(X{". Z;)
H1—yor(X[". Zi) — yio(X[". ZDYE{P(Y; = 1|X;. Z)|X[. Z;}, (8.13)

where
vou(X{. Z;) = P(Y" = 11Y; =0, X[, Z;),

yio( X, Zi) = P(Y; =0Y; = 1, X/, Z)),

and the expectation is evaluated with respect to the model for the conditional distri-
bution of X; given {X*, Z;}.

Expression (8.13) illustrates that even under certain simplified assumptions, the
conditional distribution P(Y;* = 1|X*, Z;) for the observed data generally does not
possess the same regression form as the conditional distribution P(Y; = 1|X;, Z;),
the quantity of prime interest. In an extreme situation with

P =0Yi =1.X* Z)=1- P} =1]Y; =0, X", Z)),

modeling the observed data {Y;*, X*, Z;} is not helpful in conducting inference
about the parameter associated with the model for P(Y; = 1|X;, Z;).

Comparing (8.13) to (8.7) in §8.2.1, we see that covariate measurement error
adds through a conditional expectation of P(Y; = 1|X;, Z;),

E{P(Y; = 1|X;. Z)| X[, Z;},

whose structure is often quite different from that of P(Y; = 1|X;, Z;). This illu-
strates that in general, measurement error in both response and covariate vari-
ables has more complex effects on altering the model structure than measurement
error in the response variable alone. This finding is not unexpected. However, in
some special situations, as illustrated in the following example, the expectation
E{P(Y; = 1|X;,Z;)|X},Z;} and the probability P(Y; = 1|X;, Z;) share some
similarity in the structure. In this case, the presence of covariate measurement error
does not necessarily introduce additional complexity in contrast to the case where
only the response variable is subject to measurement error.

Example 8.1. Suppose that the binary outcome is associated with the covariates
through a regression model

P(Y; =11X;, Zi) = @ (Bo + Bx Xi + BLZ)),

where X; is scalar and B = (Bo, Bx, B;)" is the vector of regression coefficients.

Suppose the (mis)classification probabilities for the response variable P(Y,* =
11Y; =y, Xi*, X;, Z;) do not depend on X; and (8.12) holds. Assume that the condi-
tional distribution of X;, given {X*, Z;}, is the normal distribution N (X, X) with
variance X',. Then
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E{P(Y: = 11X;. Z)IX[". Zi} = ®(B; + B X[ + B Zi). (8.14)

where B3 = Axfo, BX = AxBx. B = Axfz,and Ay = {1 + p2X,}7V2,
Model (8.13) for the observed data then reduces to

P =11X[.Z;) = yo(X[". Z))
= y01 (X7 Z0) = yio (X[, ZOYP(BG + BIX] + B7' Z0),

showing that the conditional probability for the observed data does not retain
the same probit regression structure as that for the conditional probability
P(Y = 1]X,Z). However, if the misclassification probabilities yo1 (X, Z;)
and yio(X,Z;) are constants, repeating the argument in §8.2.1 shows that
ignoring measurement error in both response and covariate variables in the anal-
ysis can be regarded as misspecifying the probit link function of the model for
P(Y; = 1|X;, Z;), the same effect as ignoring measurement error in the response
variable alone.

8.2.3 Clustered Binary Data with Error in Responses

For individual i, let ¥; = (¥;j1,..., Yim;)" be the binary response vector where m;
may be common or vary withi andi = 1,...,n. Withcommon m;, ¥; may represent
amultivariate response or a regularly assessed longitudinal vector for subject i, while
a variable size m; allows us to record clustered data or irregularly spaced longitudinal
data by using Y;. In the following discussion, we phase i as an index for a cluster and
J for a subject for ease of terminology. Let Z;; denote the covariate vector for cluster
i and subject j for j =1,...,m;andi = 1,...,n;and Z; = (ZI.TI,...,ZZ-Tmi)T.

Suppose that we do not observe Y;; but instead, observe an error-corrupted ver-
sion Yl;‘ In principle, misclassification probabilities may depend on all the true res-
ponses and covariates in a cluster. For ease of modeling, however, we assume that
for all i and j,

P(Y; =1Y:,Z;) = P(Y;; = 1Yy, Zi) = P(Y}] = 1Yy, Zij).  (8.15)

These assumptions are reasonable in describing situations, such as applying a com-
mon diagnostic test procedure to patients, where error-prone results for one subject
do not depend on the results of others.

Fori =1,...,nand j =1,...,m;,let

vo1(Zi) = P(Y;; = 1|Yy; = 0,Z;) and y10(Z;) = P(Y;; = 0|Y;; = 1, Z;)

denote the misclassification probabilities. Following the discussion of Neuhaus
(2002), we examine misclassification effects on two estimation approaches based on
model settings discussed in §5.1.
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Population-Average Approach: GEE

The population-average approach stresses modeling the first two moments for
the response components Y;;. Marginally, the probability mass function of Y;; is
described by (8.6); the conditional mean of Y;; relates to the covariate vector Z;;
through the link function g(-) with

SEWYij1Zij)} = nzij» (8.16)

where 1;;; = Bo + B Zi; is the linear predictor, the parameter vector 8, measures
the covariate effects of Z;;, and By is the intercept. Let 8 = (B0, B})".

Define ij = P(Yi}“. = 1|Z;;). As shown in §8.2.1, if misclassification prob-
abilities y01(Z;) and y19(Z;) are constants, then ;Ll*j is connected with the linear
predictor 7,;; via a monotone, differential link function g*(-):

g (155) = nzij- (8.17)

This suggests that the marginal structure of the Yl}" can still be featured using a gen-
eralized linear model with a link different from (8.16).
To examine the covariance structure among the observed components of Y;*, we
make assumptions for paired components of the misclassification process:
P(YE = LY} = 1Yy, Y, Z)
= P(Y;; = 1|3, Yix, Z)) P(Y;p = 1Yi;, Yig, Z;)
= P(Y;; = 1Yy, Zi) P(Y; = 1Yix, Z)).

Under these assumptions, we obtain that
cov(Y;3, Y1 Zi) = {1 = yo1(Zi) — yio(Z)Yeov(Yyj, Yie | Zi),  (8.18)

which says that the conditional covariance structures of the surrogate vector Y;* and
the true response vector Y;, given Z;, differ only by a multiplicative factor {1 —
Yo1(Zi) = y1o(Zi)}>.

Given these comparisons for the mean and covariance structures between Y; and
Y;*, we now examine estimation procedures of applying the GEE approach to Y;
or Y;*. Specifically, we employ the GEE formulation (5.4) to ¥; or Y¥;* for estimation
of B, where

P(Yi; = yij|Z:) = P(Yij = yij|Zij) (8.19)

is assumed, as discussed in §5.1.1, for j = 1,...,m; and y;; = 0, 1. Itis easily seen
that assumptions (8.15) and (8.19) yield that

P(Y; =y1Zi) = P(Yj; = yj;1Zij)

forj =1,...,m; andy;"j =0,1.
Consequently, comparing the structures of /Ll*/ and E(Y;;|Z;;) based on (8.16)
and (8.17), and using (8.18), we obtain an interesting property of the GEE approach.
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When the misclassification probabilities y1(Z;) and y19(Z;) are constants, apply-
ing the precise measurements Y;; to the GEE formulation (5.4) with link function
g(+) and covariance matrix V; is equivalent to using the surrogate responses Yl;‘ for
the GEE approach with a different link function but the same covariance matrix V;,
because the constant factor {1 — yp1(Z;) — y10(Z;)} in (8.18) can be ignored when
solving the resulting equations.

Generalized Linear Mixed Model (GLMM)

In contrast to the marginal approach based on the GEE formulation, we discuss
the modeling of ¥; by a GLMM outlined in §5.1.2. Conditional on random effects
u; and covariate Z;, the Y;; are assumed to be independent, each following a model

glP(Yij = Wu;, Zi)} = Bo + BLZij + u;Sij. (8.20)

where B = (Bo. ;)" is the parameter vector, g(-) is a link function, and S;; is a
covariate vector which may be a subset of Z;.

We consider the case where the misclassification probabilities do not depend on
the random effects u; and are free of covariates:

P(Y;; = 1|Y;j = 0,u;, Z;) = yo1 and P(Y;; = 0|Yi;; = L,u;, Z;) = y1o0,

where Y01 and y;o are nonnegative constants no greater than 1. Then the conditional
model for the observed responses is

P} = 1Zi,uij) = yor + (1 = yo1 — y10)g " (Bo + BLZij + ulSij).

Following the arguments in §8.2.1, we can show that if conditional on random
effects u; and covariate Z;, the marginal model of Y;; follows the GLMM (8.20)
with link function g(:), then conditional on the same random effects u; and covariate
Z;, the observed responses Yl’/" may also be featured by a GLMM with a different
link function g*(-).

Assuming that conditional on random effects u; and covariate Z;, the misclassi-
fication process possesses the property

Py = LY} = 1Yy, Yig, ui, Z;)
= P(Y;; = 1|Yij, Yk, ui, Zi) P(Y; = 1Yij, Yig, ui, Zi)
= P(Y;; = 1Yi;, Zi) P(Y;} = WYix. Zi),
we obtain that
cov(Y Yilui, Zi) = (1 = yor = y10) cov(Yij, Yilui, Zi). (8.21)
Since given u; and Z;, the Y;; are conditionally independent, identity (8.21) implies

that conditional on u; and Z;, Yl and Y are uncorrelated. Because Y* and Yl}"C

are binary, we conclude that Y;‘ and Y, ";c condltlonally independent, glven u; and
Z; (see Problem 8.2). These derivations show that given the random effects u; and

covariate Z;, the conditional pairwise independence of the response components Y;;
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is not changed when the Y;; are replaced by their proxy measurements Yl;‘ However,
the conditional independence among all the response components Y;; is not neces-
sarily retained when the Y;; are replaced by their observed measurements Yl;‘ (see
Problem 8.2). Finally, compared to the discussion in §5.2.2, we see that response
measurement error has different effects on altering the structure of GLMMs than
covariate measure error does.

8.3 Methods for Univariate Error-Prone Response

Let Y be the response variable which is subject to measurement error, and Z be an
associated covariate vector which is precisely measured. Let Y * be an observed ver-
sion of Y. The interest here is focused on estimation of parameter § in the regression
model f(y|z; B) which postulates the relationship between the response variable Y
and covariate Z.

We consider settings where an internal validation sample, indexed by V), is ran-
domly selected from the main study subjects, indexed by M. Let n be the number
of subjects in M and {Y;,Y;*, Z;} denote independent and identically distributed
copies of {Y,Y*, Z} fori = 1,...,n. When i € V, measurements of {Y;,Y*, Z;}
are available whereas when i € M \ V, only measurements for {Y;*,Z;} are
available.

Likelihood Method

When parametric modeling is used to describe the associated processes, infer-
ences may be based on the likelihood function for the observed data:

L={1‘[f(yl-,y,-*|zi)} [T 70z (8.22)

i€y ieEM\V

where the contributions of the subjects in the validation sample are reflected by
model f(y;, y}|z;) for the conditional distribution of {Y;, Y;*} given Z;, while the
subjects in the main study contribute via model f(y|z;) for the conditional distri-
bution of ¥;* given Z;. The dependence on the associated parameter is suppressed in
the notation.

In addition to the conditional distribution of Y given Z being postulated by
model f(y|z; B), suppose the conditional distribution of Y * given {Y, Z} is modeled
by f(y*|y,z;y), where y is the associated parameter. Then the likelihood (8.22)
may be further expressed as

L(B.y) = { Hf(yi|z,~;ﬁ)f(y;*|y,~,zl-;y>}

iey

{ I1 /f(Y|Zi;,3)f(YEk|Y»Zi§V)dU(Y)§v (8.23)

ieM\V
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where similar to measure d7(x) defined on page 55, measure dn(y) facilitates the
two cases for the Y;: dn(y) = dy if the ¥; are continuous, and the integral is replaced
with the summation if the Y; are discrete.

Maximization of the likelihood (8.23) with respect to 8 and y gives us consis-
tent estimators of 8 and y under regularity conditions. The implementation of the
maximum likelihood method is conceptually straightforward and is computationally
manageable in certain situations. For instance, with discrete Y;, the terms in (8.23)
are often tractable; when Y; is continuous with a convenient distributional form such
as a normal distribution, the evaluation of the integrals in (8.23) is possible with
standard numerical integration techniques (e.g., Problem 8.3).

Mean Score Method

When directly calculating or approximating the integrals in (8.23) is difficult, one
may consider an alternative, such as the EM algorithm, to get around the problem.
In these instances, we write the log-likelihood for complete data based on the model
for {Y,Y*} given Z:

Kc(ﬂ’ )’) = Ecv(,B» V) + ECM(ﬁ’ V)
Where Ecv(ﬁ’ Y) = Zie\) eCi (:31 y)s ZCM(ﬂv )/) = ZiGM\V ECI' (ﬁ’ )/)? and

Li(B,y) = log f(yilzis B) +log f (¥ |yi.ziiy).

Since the measurements involved in £, (8, y) are all available from the validation
sample, when implementing the E-step for the log-likelihood £.(8, y), it is only nec-
essary to evaluate the conditional expectation of £ (8, y) with respect to the model
for the “missing” data, Y;, given the observed data {Y l-*, Z;}, evaluated at the esti-
mated parameter values of the previous iteration.

To be specific, for k = 0, 1, ..., at iteration (k + 1) of the E-step, we calculate

0B.y:BO y®)=teB.V)+ D E{laB.IY*. Zi: P y®},

ieM\V

where the conditional expectation is taken with respect to the model

SO yizizy) filzii B)
[ SOy zisy) flzi: B)dn(y)

for the conditional distribution of Y; given {Yi*, Z;}, with B and y, respectively,
replaced by their estimates at the kth iteration, B*) and y®.

The M-step is consequently invoked to maximize Q(B,y; %, y®)) with res-
pect to B and y to produce their updated values for iteration (k 4 1). Under suitable
regularity conditions, including the exchangeability between the operations of exp-
ectation and differentiation, the maximization is equivalent to finding the solution of
the partial derivatives of Q (B, y; B%, y®)) with respect to B and y.

fily.ziiBy) = (8.24)
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This equivalence motivates the so-called mean score method proposed by Pepe,
Reilly and Fleming (1994). If parameters f and y are functionally independent,
estimation of § may proceed with finding the solution of the partial derivative of

Q(B, y: B, y) with respect to :
dlog f(yilzi; B) dlog f(Y;|Zi: B)
2; 9P "L E% op

Yi*,Z,-} =0, (8.25)
ieM\V

where the conditional expectation is evaluated with respect to the model,
F(ily?.zi), for ¥; given ¥,* and Z;.

The validity of this method may be justified from the viewpoint of estimating
function theory. It is easily seen that the estimating functions in (8.25) have zero
mean, i.e., are unbiased, thus under regularity conditions, solving (8.25) for § yields
a consistent estimator of 8 (see §1.3.2).

The evaluation of the expectation in (8.25) generally requires the knowledge of
model f(y;|y},z;) for the conditional distribution of Y;, given ¥;* and Z;. This
may be done based on using (8.24) if one is willing to use a parametric model
for f(y}|yi,zi). On the other hand, one may replace the conditional expectation
E{dlog f(Y;|Z;;B)/dB|Y;*, Z;} with a nonparametric estimate and then proceed
with estimation of § using (8.25).

With low dimensional and discrete Y;* and Z;, Pepe, Reilly and Flem-

1
ing (1994) suggested using the validation data to estimate the expectation

E{dlog f(Yi|Zi; B)/0BIY;". Zi} by

Z dlog f(yklzk: ) 1

* 0
keV O i) ap nv(yi 2 2i)
where V(y*, z;) denotes the index set for the subjects in the validation sample whose
values of (Y'*, Z) equal (y,z;), and ny(y;",z;) denotes the number of subjects in
V(y}.zi)- Then substitute this estimate into (8.25), and solve

dlog f(yi|zi; B)
2w

S 5 dlog f(yelze:B) 1 —0 (826

* .
e\ | kev(rr .z I ny(y¥.zi)

for B.
Let B denote the resultant estimator of 5. Under suitable regularity conditions, 8

is a consistent estimator for 8 and \/n (B— B) has the asymptotic normal distribution
with mean zero. Details may be found in Pepe, Reilly and Fleming (1994).
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Semiparametric Method

The mean score method based on (8.26) is a semiparametric approach where the
conditional distribution of ¥; given Z; is modeled parametrically, but no structure is
placed on the model f(y;|y;,z;) for the measurement error process. Although this
method typically applies when Y;* and Z; are discrete and their dimensions are low,
it can be extended to more general settings, as discussed by Pepe (1992). We now
elaborate on the extensions.

To facilitate various dependence of proxy Y;* on the covariates, we let S; denote
the subvector of Z; which is thought to be informative with respect to the association
between Y;* and Y;. That is,

O i zi) = fO] i si),

where f(:|-) represents the model for the conditional distribution of the correspond-

ing variables. In extreme situations, if ¥;* is conditionally independent of the covari-

ates, given Y;, S; is null; taking S; to be Z; gives an opposite scenario where the

entire covariate vector is related to the surrogate Y;* even after conditioning on Y;.
Write

107128 = [ F012 9 1071y 50dn0) (8.27)
where f(y]|y;,si) is given by
* f(yl*v yi’si)
C\ViySi) = ————, 8.28
SO yiysi) 0150 (8.28)

S}, yi.si) is the model for the joint distribution of {¥;*,Y;, S;}, and f(y;,s;) is
the model for the joint distribution of {Y;, S;}.

The idea here is to place no specific model structure on f(y;|yi, s;) to avoid
potential misspecification of the measurement error process. This is virtually equiv-
alent to regarding f(y|y;,s;) as an infinite-dimensional parameter. Without loss
of generality, it is plausible to assume that f(y;"|y;,s;) is functionally independent
of B. Consequently, inference about 8 is based on the likelihood

L(m:g]"[f(y,wzi;ﬂ)}g I1 f(y,-*|zi;ﬁ)}, (8.29)

iey ieM\V

which comes from (8.22) with the terms f(y/|y;,s;) dropped from the first prod-
uct. Thereby, it suffices to characterize f(y;|z;:B) for the main study data, which
is, by (8.27) and (8.28), determined by f(y, y;,s;) and f(y;,s;), together with
flziz B).

To avoid strong modeling assumptions, we estimate function forms f(y*, y,s)
and f(y,s) nonparametrically using the validation sample. Let ?(y*, y,s) and
?(y,s) denote their estimates, respectively. Then (8.28) leads to an estimate of

SOy, s):
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Tk ?(y* )
FOy.s) = —=——,
f(y.s)
hence by (8.29), yielding the estimated likelihood
Zw>=§{]ﬂnm5m}{]j 7@ﬂaﬁ&, (8.30)
iey ieM\V

where f(y7|zi:B) = [ f(¥lzi: B) f (3] |y, si)dn(y) fori € M\ V. R

An estimate of 8 may be obtained by maximizing the estimated likelihood L(f)
with respect to 8. This is often implemented by using the Newton—Raphson iteration
scheme. Let E(k ) denote the estimate of S at the kth iteration, then at iteration (k+1),
the estimate is given by

BEHD = B0 L T (BW)S(BW),
where S(8) = dlog L(8)/B, T(B) = —9*log L(B)/d BIB™, and k = 0,1, ... Let
B denote the estimate of §, which is taken as the limit of {8 ® .k =01,.. .} as
k — oc.
The procedure applies to situations with either discrete or continuous variables.
With different types of variables, estimates of f(y*, y,s) and f(y,s) may assume

varying forms. For instance, when Yl* Y;, and S; are all discrete, f(y*,y,s) and
f(y,s) are, respectively, estimated by the empirical counterparts:

-~ 1
SOTys) ==Y A =y Yi =y, S =);

Viey

f(y.s) = niZI(Yi =y.8i =s);
Viey
where n, is the number of subjects in the validation sample V.
If some components of Y;*, Y;, and S; are continuous, then kernel functions may
be used to replace the empirical counts. For instance, if Y;* is continuous and {Y;, S;}
are discrete, then function f(y*, y, s) may be estimated by

o+ s)_iz 1(Y; = S,_)lKu

Yy, = - l_y’l_sb b )
i€V

where K(-) is a kernel function and b is a bandwidth.

Under regularity conditions on the models and the bandwidth, if the validation
sample fraction 7, /n has a nonzero limit as n — oo, then, asymptotically, /7 (E— B)
has a normal distribution with mean zero and a covariance matrix whose expres-
sion was given by Pepe (1992). Discussions on using this asymptotic distribution to
perform inference about f, such as calculating confidence intervals or conducting
hypothesis testing, were provided by Pepe (1992) in detail.
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8.4 Logistic Regression Model with Measurement
Error in Response and Covariates

For subject i, let ¥; be a misclassification-prone binary response variable taking
value O or 1, X; be a vector of error-prone covariates, and Z; be a vector of error-
free covariates. Let

wi =P =1|X;, Z;)

be the mean of the response variable Y;, given covariates {X;, Z; }. Assume that the
binary outcome is associated with the covariates through the regression model:

g(ui) = Po+ B Xi + BLZi, (8.31)

where g(-) is a link function, such as the logit, probit or complementary log-log
function, and B = (B, B}, B;)" is the vector of regression coefficients.

Let Y;* and X be the observed measurements of Y; and X;, respectively.
Assume that

h(yilxi, x;, zi) = h(yilxi. 2i) (8.32)
and
h(y! i, xi, x,zi) = h(y]|yio x7F, zi), (8.33)

where the symbol /(-|-) represents the conditional probability mass function for the
random variables corresponding to the arguments. These assumptions require that Y;
and X/ are conditionally independent, given the true covariates {X;, Z;}; and that
Y* and X; are conditionally independent, given {¥;, X, Z;}. Let

Yio(X*. Z)) = P(Y;* =0|Y; = 1. X", Z;)

and
you(X. Zi) = P(Y;* = 1|Y; =0, X[, Z;)

be the misclassification probabilities for the response variable.

We consider settings where an internal validation sample, indexed by V, is ran-
domly selected from the main study subjects, indexed by M. When i € V, mea-
surements of {¥;,Y.*, X;, X*, Z;} are available whereas when i € M \ V, only
measurements for {Y;*, X;*, Z;} are available. Let n and n, be the size of M and V,
respectively.

Our primary interest is in inference about response parameter 8. A simple way
is to directly base estimation of B on the validation sample because this sample
contains the measurements of ¥; and X; in addition to those of Z;. This scheme
is easy to implement using a standard analysis method but incurs efficiency loss,
especially when the size of the validation sample is small. To improve estimation
efficiency, a common method is to capitalize on the available information from
both the validation sample and the main study. Here we describe two strategies for
estimation of §.
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Likelihood Method

First, we describe likelihood-based methods for estimating . For this purpose,
we postulate the misclassification and measurement error processes. Misclassifica-
tion for the response variable is modeled by, say, logistic regression models:

logit yo1 (X[, Zi) = go(X[". Zizyy):
logit y10(X;". Zi) = g1(X[", Zi: yy):

where go(+) and g (-) are specified functions, such as the linear and quadratic func-
tions, and y, is a vector of unknown regression coefficients.

Regarding the covariate measurement error process, we employ a modeling
scheme discussed in Chapter 2. Let fy (x;|x], z;;yx) denote the model for the
conditional distribution of X;, given {X*, Z;}, where the function form of f(-|-) is
specified but parameter yy is left unknown. Let y = (yy, ¥y)"

Let 8 = (8", y")" denote the vector of all involved parameters. Then inference
about # may be based on the likelihood function for the observed data

L*(0) = l_[f(yz',y;klxi,vazi)” [1 f(y;ﬁ|xfk’zi)§,

iey ieM\V

where the contributions of the subjects in the validation sample are reflected
by the model f(y;,y/|x;,x",z;) for the conditional distribution of {¥;, Y},
given {X;, X, Z;}; and the subjects in the main study contribute via the model,
f(FIx}.z;), for the conditional distribution of Y,*, given {X, Z;}. The depen-
dence on 0 is suppressed in the notation.

Let uf = P(Y = 1|X/,Z;) be the mean for the observed data, which is
determined by (8.13). Then the likelihood for L*(0) becomes

L*0) = [ [{ud" (1 = ) ™ ar (0F XD P {ao (vl XY F(xilxf 2 v}
iey

T -}, w31

ieEM\V

where for k = 0 and 1, ax(y/,x}) = P(Y" = y!|Y; = k, X}, Z;), which is
given by

ao(yF, xF) = yor (X7, Zi)¥ {1 — yor (X7, Z)}' 727 ;
a1 (v}, x}) = yio(XF, Z)' ™ {1 — yio(XF, Zi))7

Let

oy ) YT i\
5= {Mz’(l —ui)} ( op ) (639
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dlog f(xilx/, zisvx)
2 ’
Vi } %3a1(y,~*,X,*)$ { 1—y; } {aao(yi*,x;‘)§.
* * + * * ’
al(yl' » X ) 3)/y aO(yi » X ) 8)’)/

Si(yx) =

Si(yy) = {

and S; (0; yi, xi, y*.x¥,2;) = (S](B). S/ (yx). S/ (yy))". Then the likelihood score
function dlog L*(#)/0d6 gives the likelihood score equation

D oSi@yioxiyi Xz + Y SEO:y X z) =0, (836)

i€y ieM\V
where
y.*—/j,’." a/,(,’."
S*O:yF x¥z)=]—<L "1 i) 8.37
it | S (0 -

We now examine the expression (8.37) in terms of the misclassification proba-
bilities and the model for the response process. For ease of exposition, let

d(x[,zi:B) = Eui| X = x[', Zi = z;);
1
rOfxfiB) = e e . :
ar(y}F, x)d(xF, zi; B) + ao(yF, x){1 — d(x},zi; B)}
ar(y/, x7) —ao(y;, x;") '
ar (v, x)d(xf, zi; B) + ao(y), x))1 —d(x}, zis B}

where the expectation is evaluated with respect to the model for the conditional dis-
tribution of X;, given {X*, Z;}; and the dependence on parameters y, and yy is
suppressed in the notation.

Assuming that the operations of integration and differentiation are exchangeable
and using model (8.13), we express S;*(0; y*, x, z;) as

R(y; . x[:B) =

SOyl xfzi) = (ST Byl x zi) ST (e v xS 2 ST vy v xS z))T

where

* * * * % od xlf“,z,,-;
STy X zi) = RO x5 B) ((Tﬂ)) (8.38)
* * * * * ad x;k,zi;
S7 (v ¥ x]) = ROT. x5 ) (%)

and

Sl*(}/_Y’ yl*"xl*) = r(yl*,xl*, ﬁ)(_l)yl*'i‘l
: [3V01(x;“,z,,-) _ % Iy10(x;" 2i) 4 dyo1(x/, 2;)
dyy dyy 3y,

} d(x;k,Zi;,B)j| . (8.39)
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Consequently, maximizing (8.34) with respect to 6, or under regularity condi-
tions, solving (8.36) for 6, leads to the maximum likelihood estimate for 6. Let
(= (ET,/)?T)T denote the resulting estimator for 8. Under regularity conditions,
Jn (@ — 0) has an asymptotic normal distribution with mean zero.

This estimation procedure simultaneously estimates nuisance parameter y and
parameter S of interest and typically requires numerical approximations to integrals.
Depending on the complexity of models for the covariate measurement error and the
response misclassification processes, computation intensity may vary considerably.
In many situations, simultaneously estimating y and 8 is rather challenging. To get
around this, one may alternatively employ a two-stage algorithm which treats esti-
mation of B and y differently. At the first stage, the maximum likelihood method is
applied to estimate nuisance parameter y merely using the validation sample. At the
second stage, estimation of § is carried out by solving (8.36) for 8 where nuisance
parameter y is replaced by the estimate obtained from the first stage.

Semiparametric Method

Likelihood-based methods require modeling the response process as well as
the misclassification and measurement error processes. If a model is misspecified,
the results may incur biases and be misleading. To produce robust results, we
describe a semiparametric approach based on a two-stage procedure. The idea is
to treat the response process differently from the misclassification and measurement
error processes; the response process is modeled parametrically by (8.31) while the
misclassification and measurement error processes are handled nonparametrically.

At the first stage, we utilize the validation sample to estimate relevant quantities
nonparametrically using the kernel method. Let K(v) be a dth order kernel function
and b = b, be a bandwidth satisfying b — 0, nb?? — oo and nb?*? — 0 as
n — oo, where p is the dimension of (X, Z})", d is an integer greater than p, and
the bandwidth b,, depends on n. Write K (v) = b~ K(v/b).

Let W* = (X", Z])". Using the measurements in the validation sample, we
estimate the misclassification probabilities by

Ziev Kp(w* — w?))’i(l - y,*)
Yiev Kp(w* —w/)y;

5/\10(?0*) =

and
Diey Ko™ —wi)(1 - yi)yf
Yiey Kp(w* —wi)(1 —y;)

Let ¥(x,z: B) denote g~ ' (Bo + BLx + BLz) or (3/9B)g (Bo + BLx + PLz), the
conditional expectation E{W¥ (X, Z; B)|W™* = w*} is estimated by

Yicy Kp(w* —wH)W¥(x*, z; B)
Ziev Kp(w* _w;k) 7

5’\01(11)*) =

W(w*; p) =

where w* = (x*", z*")".
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At the second stage, we construct the pseudo-likelihood score function by modi-
fying the likelihood score function (8.36) as:

Y SiBiyixiz)+ Y SEBy xS zi) =0, (8.40)

% ieM\V

where S; (B; yi, xi, zi) is given by (8.35); §*(B: ¥, x}. z;) has the form of (8.38) in
which the y 1 (x], z;) contained in a (y7, x/) are replaced by their nonparamet-
ric estimates Vi 1—x (w/) for k = 0,1; and E{¥ (X, Z; B)|W™* = w*} is replaced
by fl;(w*; B). Then estimation of § is carried out by solving (8.40) for 8. Let BPS
denote the resulting estimator of .

Under the conditions of Cheng and Hsueh (2003), \/n (BPS— B) has an asymptotic

normal distribution with mean zero and a covariance matrix whose expression was
given by Cheng and Hsueh (2003).

8.5 Least Squares Methods with Measurement
Error in Response and Covariates

In contrast to a discrete response variable being considered in §8.4, we discuss the

case where a continuous response variable is error-contaminated together with error-

prone covariates. Let Y be the response variable and X be an associated p x 1 covari-

ate vector. Let Y* and X™* be the observed measurements of Y and X, respectively.
Suppose that ¥ and X are postulated by the regression model

Y =g(X:B) +e, (8.41)

where g(-) is a linear or nonlinear function whose form is known, f is a vector of reg-
ression parameters, and the error term € has E(¢|X) = 0 and a constant conditional
variance 02 = var(e| X).

For subject 7, let {Y;, X;,Y;*, X} denote a copy of {¥, X,Y™, X*}. We con-
sider settings where the study subjects are divided into three disjoint groups. In
the main study group, denoted by M = {i : (Y;*, X]) are available}, sub-
jects are only measured with response and covariate surrogates; the other two
groups consist of subjects with precise measurements on X; or Y;, and are ran-
dom validation subsamples, denoted by Vx = {i : (X;, X;") are available} and
Vy = {i : (X[, Y;, Y ) are available}. Let n, ny and ny be the size of M, Vx, and
Vs, respectively.

Least Squares Projection without Measurement Error
To develop estimation procedures for 8, we start with an ideal situation where

X and Y were error-free. In this case, we have only the main study data {(Y;, X;) :
i € M} where Y* =Y; and X = X; fori € M.
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To ease the exposition of the following development, we use the matrix form
analogous to what is often adopted in regression analysis. Let Y = (¥; : i € M)"
denote the n x 1 vector of the true response variables, and X = (X; : i € M)"
stand for the n X p matrix of the true covariate variables. Let G(X; 8) = {g(X;; B) :
i € M}"beann x 1 vector.

In the absence of measurement error in X and Y, the usual least squares method
can be used to estimate 8 by minimizing

{Y - GEX: Y - G(X: B)}

with respect to . However, in the presence of measurement error, not all X; and Y;
are observed, and we need to modify the least squares method in order to properly
use available surrogate measurements X or Y;*.

Least Squares Projection with Covariate Error Only

To highlight the idea, we first look at a simplified case where only covariates are
subject to measurement error and the response variable is treated as error-free. In this
instance, the data include the measurements {(X;, X*) : i € V} of the validation
sample and the measurements {(Y;, X;*) : i € M} of the main study where Y;* = Y;.

Since X in model (8.41) is not observed, directly working on model (8.41) is
not possible for estimating 8. A natural way is to work with a modified version of
model (8.41) by evaluating the conditional expectation of g(X; ) with respect to
the observed surrogate variable X *:

E(Y|X") = E{g(X:B)IX"} + E(e|X™).
Letting €** =Y — E(Y|X™), we write
Y = E{g(X;B)| X"} + €, (8.42)

where €* = E(e|X™*) + €**.

Under the nondifferential measurement error mechanism with a(y|x,x*) =
h(y|x),itis seen that E(e*|X™*) = 0 and €* is uncorrelated with any function of X *.
Estimation of 8 is then carried out by applying the nonlinear least squares method to
model (8.42). Namely, using the main study data, we minimize

D I — E{g(Xi: BIXHP

ieEM

with respect to .

This algorithm is feasible only if the function form E{g(X;8)|X*} is known
except for the value of 8. When E{g(X;8)|X*} is unknown, one may follow the
lines of §8.4 and use the nonparametric kernel regression estimate based on the
validation data to estimate it. Let m(X*; B) be the kernel regression estimate of
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E{g(X;:B)|X]}; discussion on such an estimate may be found in Carroll and Wand
(1991), Sepanski and Carroll (1993), and Sepanski, Knickerbocker and Carroll (1994).
Then minimizing

> i —m(X )Y

iem
with respect to B gives an estimate of S.

Those nonparametric methods are generally computationally demanding and
involve the issue of bandwidth selection. Here we discuss an alternative which is
computationally simpler; this method originates from the projection idea and was
explored by Lee and Sepanski (1995).

The idea is to view E{g(X;B)|X*} as an element in an infinite-dimensional
functional space, and then approximate it by an element of a finite-dimensional sub-
space spanned by some functions of X*, such as linear, quadratic or other polynomi-
als of X*. Let X* denote the ¢ x 1 vector of those functions of X *, where g denotes
the dimension of X™*. Suppose E(X*X*") is nonsingular and E{g(X;pB)|X*} is
square integrable.

Within the finite-dimensional subspace spanned by X* E {g(X;B)|X*} is app-
roximated by the least squares projection

T(B)X*,

where ¥(B) = {E(f*f*T)}_lE{f*g(X; B)} (Tsiatis 2006, §2.4) and the expec-
tations are evaluated with respect to the model for the joint distribution of {X, X *}.
Let
Rx(X™:B) = E{g(X:B)IX"} ¥ (B X"

denote the corresponding residual. Then Ry ()7 *; B) has mean zero and is orthogonal
to ¥T(B)X* with
E[W'(HX"}- R (X*:p)] = 0. (8:43)
Therefore, E{g(X; B)|X*} is decomposed as the sum of two orthogonal terms:
Eg(X:B)IX*} = U (B)X* + Re(X*: ).
Consequently, model (8.42) is decomposed as
Y =¥ (B)X* + € (8.44)

so that the error term € = €* + Ry (f*; B) has mean zero and is orthogonal to
YT (B)X* with E[{¥"(B)X ™} - €3] = 0.

Form (8.44) suggests the feasibility of using the least squares method to estimate
B with the suitable use of the validation sample Vi and the main study data: the
data in the validation sample Vx is used to estimate the function form ¥(-), and
the main study data are used to fit the model for estimation of B. Specifically, for
subject i, let X7 denote the ith copy of X*, X% = (X} : i € V)" denote the
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ny X ¢ matrix for the validation sample V, and X* = (Y;“ : 1 € M)" denote the
n X ¢ matrix for all the main study subjects. Let H, (8) = (Xffg;‘ )_IX;"TG(XV; B)
where G(Xy; ) = {g(X;;B) : i € Vy}is an ny x 1 vector, then § is estimated by
minimizing " _

{Y — X*Hy (B)}'{Y — X*Hy(B)}

with respect to S.
Measurement Error in Response and Covariate Variables

We extend the preceding method to further accommodate measurement error in
response. The idea again stems from the least squares projection method. Using the
working model (8.44), we first assess the difference of the proxy response variable
from the true response:

Y*=Y+(Y"-Y)
= (U BX* +e 4+ (X -Y). (8.45)

Because the difference Y* — Y may be correlated with the regressor X* as well as
Y*, we further decompose it as the sum of orthogonal terms. Let W = (Y*, X*")".
Then write Y* — Y as

Y*—Y =EXY*—Y|W)+e, (8.46)

where the error term e = (Y*—Y)— E(Y* —Y|W) has mean zero and is orthogonal
to EY* —=Y|W).

We further project E(Y* — Y |W) onto the subspace spanned by linear functions
of W and obtain the decomposition

EQY*—Y|W)=WIW + Ry(W), (8.47)

where ¥y, = {E(WW")} LE{W(Y*—Y)}and R,(W) = E(Y*-Y|W)— W is
the residual. It is known that the residual R, (W) has mean zero and is orthogonal to
the projection lI’; W,ie., R,(W) and llf; W are uncorrelated. Therefore, combining
(8.45), (8.46) and (8.47) gives

Y* oW =¥ (B)X™ + €, (8.48)
where €] = €5 + Ry(W) + e. It is easily seen that E(e}) = 0 and that €} is
orthogonal to J/T(,B)f* due to the orthogonality of l1/T(ﬂ)f)\('*to individual terms

inel.

};\s a result, (8.48) may be regarded as a usual nonlinear regression model by
treating Y* — W/ W as the response and X ™ as covariates. Thus, the nonlinear least
squares method is used to estimate B after ¥, and ¥ (:) are estimated using the vali-
dation data.

Let Xy = (X; : i € V)" denote the ny x p matrix of the true covariate variables
from the validation sample Vy. Let Y, = (¥; :i € V)"and Y = (¥Y[* :i € V)"
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be the ny x 1 vectors of the measurements from the validation sample Vy, and Y* =
(Y;* i € M) be the n x 1 vector of the measurements from the main study. Let
W, = {(¥;", X{)" : i € W}" be the ny x (1 + ¢) matrix corresponding to the
measurements in the validation sample Vy, and W = {(¥;*, X[")" : i € M]" be the
n X (1 4 g) matrix corresponding to the measurements of all the main study subjects.
Define
Py, = (WI/WV)_IWT/(Y: -Yy)

and
Hy(B) = (XX TIXIG(X: B),

then minimizing
(Y — WPy) — X*H, (B)}{(Y* — WP,) — X*H,(8)}

with respect to B gives an estimate of . Let E denote the resulting estimator of §.

Under the regularity conditions of Lee and Sepanski (1995), the estimator ,/3 is
consistent for 8. The asymptotic distribution of /n (E — B) has a complicated form
and can be found in Lee and Sepanski (1995).

We comment that one may replace Y* by its function when forming W for
the projection space. The choice of functions of X* or Y * for the projection space
remains arbitrary. Under relevant identification conditions, all of them provide con-
sistent estimators. Limited numerical studies suggest that polynomials with small
orders are good enough even for highly nonlinear functions (Lee and Sepanski 1995).
The least squares projection methods are computationally and analytically simpler
than a nonparametric or semiparametric method. This method relies on neither dis-
tributional assumptions nor the specification of the model relating the measured
variables with the true variables.

8.6 Correlated Binary Data with Diagnostic Error

In biomedical studies, measurement error in response arises often in a form of dia-
gnostic error (e.g., Hui and Zhou 1998). For example, a binary disease outcome
may be measured repeatedly in time or space or be assessed by multiple raters, and
misclassification may occur. Unlike univariate data, repeated measurements are as-
sociated and their analysis typically requires care of handling association structures.
In this section, we discuss a modeling scheme for correlated binary data measured
with diagnostic error.

Fori = 1,...,nand j = 1,...,m;, let Y;; be the true binary response
for subject i at time j, and Z;; be the associated vector of covariates. Write
Yi = (Yi,....Yim;)" and Z; = (Z],,..., Zszi)T' To facilitate the correlation
among the measurements within subjects and the dependence of the observed out-
comes on the true underlying responses, we use a shared random effect framework to
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unify the response and misclassification processes (e.g., Shih and Albert 1999). We
consider the random effects framework outlined in §8.2.3 with a slightly different
exposition.

Given random effects u; and the covariates, we assume that the Y;; are condi-
tionally independent and

Py =1Z;,u;)) = P(Yy; = 11Z;;,u;)

forj =1,....m;andi = 1,...,n. Let y;; = P(Yi; = 1|Z;;,u;) be the condi-
tional mean which is modeled as

g(puij) = Bo + By Zij + u;,

where g(-) is a given link function and B = (Bo, 8;)" is the vector of parameters.
We assume that random effects u; are modeled by f(u;; ¥) with parameter 9.
Suppose at each visit a study subject is assessed by m raters; let Yl’j"k
denote the measurement of Y;; assessed by rater k, where k = 1,...,m,
i=1,...,n,and j = 1,...,m;. Given random effects u; and the true response and

covariates, the Yzjk are assumed to be independent and satisfy
P(Yi;k = 1|Yl~,ZZ~,u,~) = P(Yijk = 1|Y,’j, Z,’j,ui).

Assume that given {Y;;, Z;;,u;}, all the raters have the same (mis)classification
probability, and let yu;; = P (Y7, = 1Y, Zij, u;) denote the (mis)classification
probability with the dependence on the values of {Y;;, Z;;} suppressed in the nota-
tion py;j.

Consider the regression model

8uuij) = Yo+ vyYij + )/ZTZ,'j + u;,

where g, (:) is a given link function that may or may not differ from g(-) and
¥ = (Yo, Yy, ;)" is the vector of parameters.

Let 6 = (B7,y",¥")". Estimation of 6 may be carried out using the likelihood
approach. The observed likelihood contributed from subject i is given by

Loi (0) = [Zf(yz'|ui,Zi)f(yf|yz',Mi,Zi)f(ui)dﬂ(ui)
Yi

i * "

- / > [Twmia —l/«uij)(l_y""))/;,lfr(l —yui)) VP fui)dn (u),
Vilseens) Yim; \j=1

th.ere Viig = Iy ylf’;. « and f(-|-) and f(-) represent models for the corresponding

variables.

Maximizing likelihood Lo(0) = []'_, Loi () with respect to 6 results in the
maximum likelihood estimator, 6. Under regularity conditions, /n(6 — ) has the
asymptotic normal distribution with mean zero and the covariance matrix that is
determined by the inverse of the information matrix.
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Alternatively, estimation of 8 may be carried out using the EM algorithm. Specif-
ically, the log-likelihood for the complete data contributed from subject i is

m;
bi(0) = Z{)’ij log pyi; + (1 — yij)log(1 — puij)
j=1
+y75 4 1og yuij + (m — yii ) log(1 — yuip)} + log f ().

At the E-step of iteration (k 4+ 1), we calculate the conditional expectation of
L (8) where y;; is replaced by random variable Y;;:

m;
0i(0;0%) = E. g0 Z Y;; | log ( Mu: ) + Z log(1 — tyij)
— Muij =1

m; mi
+ Y ¥ Ecomw(logyui) + Y (m =y ) Ec gao {log(1 — yuij)}

Jj=1 Jj=1
+E g tlog f(ui)},
where %) is the estimated value of @ at iteration k for k = 0,1,..., and

the conditional expectation Ec’e(k) is evaluated with respect to the model,
f(yi,ui|yl-*,z,~;0(k)), for the conditional distribution of {Y;,u;} given the ob-
served data {Y,*,Z;} with the parameter value 6®) . The conditional model
S (i, uily’, zi; 0) is determined by

exp{lei (0)} _

puilyl zis0) =
S isuily ) L)

At the M-step of iteration (k + 1), maximizing Y _; Q;(6; 6%y with respect to
6 gives an updated value % +1) Repeat the E and M steps until convergence of
(0K+D  k =0,1,...Yas k — oco.

The EM algorithm may be carried out directly if the conditional expectations
are easy to compute or approximate. In many cases, it is necessary to employ the
Monte Carlo EM algorithm to update values of 6 and approximate the associated
expectations involved in Q;(6; #%®)). Variance estimates for the resulting estimator
of # may be obtained by using the method of Louis (1982) or the bootstrap procedure.

8.7 Marginal Method for Clustered Binary Data
with Misclassification in Responses

8.7.1 Models and Method

In contrast to the likelihood-based methods described in §8.6, we discuss marginal
methods developed by Chen, Yi and Wu (2011) for clustered binary data with mis-
classification in responses. Fori = 1,...,nand j = 1,...,m;,letY;;, Z;;,Y;, and
Z; be defined as in §8.6. Let
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Hij = E(KJ|ZI) and Vjj = Va-r(Ylj|Zl)

which are related via v;; = w;; (1 — pij).
A generalized linear regression model is used to link j;; to the covariates:

g(uij) = Po + BLZij.

where 8 = (Bo. B})" is a vector of regression parameters, and g(-) is a monotone link
function, such as the logit, probit, or complementary log-log function. An implicit
assumption

E(Yj|Zi) = E(Yij|Zij) (8.49)

is made here (e.g., Pepe and Anderson 1994); see §5.1.1 for discussion on this as-
sumption.

We assume that ¥;; and Y;/ are independent when i # i’ but Y;; and Y;; may be
correlated for j # k. To facilitate inference for association parameters that may be
of interest in clustered data analysis, we use odds ratios to reflect correlation among
binary data within clusters. For j < k andi = 1,...,n, the odds ratio for Y;; and
Y, is defined as

P(Yy; = 1,Y =1|Z;)P(Y;; =0,Yi = 0|Z;)

Viik = .
o P(Yi; = 1,Y; =0[Z;))P(Y;; =0,Yy = 1|Z;)

The odds ratios are customarily modeled as
log Yiji = ¢"uijk. (8.50)

where ¢ is the vector of regression coefficients, and u;;x is a set of pair-specific
covariates featuring various association structures, such as autoregressive or
exchangeable structure between Y;; and Y;x. As opposed to the assumption (8.49), a
pairwise assumption

P(Yij = yij. Yik = yirlZi) = P(Yy; = yij, Yik = Yik|Zij, Zix)

is often implicitly made.

Fori =1,...,nand j <k,letf;jx = E(Yi;Yix|Z;). The relationship between
Mijk and ¥k is given by (e.g., Lipsitz, Laird and Harrington 1991; Yi and Cook
2002):

_ ai_;‘k—\/d,»zjk—“(i#ijk—l)%jkmjMik .
Hijk = Wik > i # 1, 8.51)
Hij Kik> if Y =1,

where a;jr = 1 — (1 — Vi) (ij + Mik)-
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Estimating Equations in the Absence of Error

Given the model setup for the mean and association structures, it is natural to
employ two sets of generalized estimating equations to perform estimation of the
mean and association parameters 8 = (87, ¢")".

When the response variable is free of misclassification, an estimate of mean par-
ameter 8 may be obtained by solving a first-order estimating equation, as discussed
in §5.1.1. Let u; = (i1, ..., fim;)", D1i = ou} /0B, By = diag(vir, ..., Vim;)s
and Vy; = cov(Y;|Z;) = Blll./ZCIiBlli/2 where Cy; is the correlation matrix of Y;
with diagonal entries 1 and off-diagonal entries (14;;x — ij ik )/ /Vij Vik for j # k.
Define

Uri(0) = Dy Vi; ' (Yi — i),

then estimation of 8 may be based on the first-order estimating equation

n
> Ui (6) =o. (8.52)
i=1
To estimate the association parameter ¢, using the same idea of formulating
U, (0), we construct a second-order estimating equation (Prentice 1988). For j < k
andi = 1,...,n, define "
Yijk =Yi;Yik
to be the pairwise products for components of Y;. Let Y, = (7,- ik 1] < k)N,
i = (Wijx = j < k)", and Dy; = dpt} /d¢. Define

Ui (0) = Dy Vﬂl(?i — i),

where V5, is the conditional covariance matrix of Y; given the covariates. Then esti-
mation of association parameter ¢ is based on the second-order estimating equation

n
> Uai(6) = 0. (8.53)
i=1
Working with (8.53) requires care of V5;. Matrix V5; involves the conditional
third and fourth moments of Y;, given Z;, which are often not modeled in appli-
cation. Common practice is to replace V,; with a working covariance matrix, for
example, an independence matrix diag {'ﬁijk(l —Wijk) 1 j < k}, when using (8.53).
Although choosing an independence working matrix for (8.53) may incur efficiency
loss, this method has the appeal of not modeling the conditional third and fourth
moments of the response variables, given Z;; and it still retains the unbiasedness of
estimating functions Uy; (0) and U,; (6), which ensures a consistent estimator of 6
under regularity conditions (Prentice 1988; Yi and Cook 2002).
Let U; (8) = {Uy;(0), Uy;(6)}". Solving

> UiB) =0
i=1

for O gives an estimate of 6. Let 0 denote the resulting estimator of 6.
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Under regularity conditions, 9 is a consistent estimator of 6 and Jn (’9\—9) has an
asymptotic distribution with mean zero and covariance matrix I'~1(0) X (6) " ~'"(6),
where I'(0) = E{dU;(0)/d0} and X (0) = E{U;(0)U;(0)}.

Misclassification Model

Suppose Y;; is subject to misclassification and a proxy for Y;;, denoted as YJ, is
observed. Write Y;* = (Y;7,.... Y}, )" Instead of imposing certain independence
assumptions to simplify the modeling of the misclassification process as in the previ-
ous sections, here we consider a modeling scheme for the misclassification process
to feature possible pairwise dependence among the components of Y;*. We use a
slightly different way to indicate misclassification in response. Instead of directly
modeling the conditional probability of measurement Yl}‘ given the true response
variable Y;; and covariates as before, we use a binary indicator to display the dis-
crepancy between the true and observed variables. Let R;; = [ (YJ = Y;;) be the
misclassification indicator variable and R; = (R;1,..., Rim,)".

The marginal probability of misclassifying Y;; is assumed to depend only on the
true outcome Y;; itself, given the covariates in cluster i:

P(Rij = 11Y;,Z;) = P(Rij = 1Yy, Z;).

Let Yoij = P(Rij = 1|Yl] =0, Zi) and Y1ij = P(Rij = 1|Yl] =1, Z,‘), where the
dependence on Z; is suppressed in the notation y;;; for/ =0, 1.
The marginal (mis)classification probabilities are postulated by logistic regres-
sion models
logit yoi; = yowoij: logit yii; = yiwiij; (8.54)

where yo and y; are vectors of regression parameters, and wo;; and wi;; are cova-
riates that reflect various misclassification mechanisms and may contain constant 1.
Covariates wop;; and wy;; may contain the entire covariate vector Z; in some sit-
uations; while in extreme cases, they can be 1 so that two parameters y¢ and y;
are sufficient to describe the misclassification mechanism. The latter scenario cor-
responds to homogeneous misclassification across all observations and clusters,
with (mis)classification probabilities independent of covariates and outcomes. Let
y = e 11)"

To describe possible dependence between R;; and R;i forany j < k andi =
1,...,n, we invoke the odds ratios

P(Rjj =1, Rjx = 1|1Y; = ;. Z;)P(R;j = 0, Ry = 0|Y; = y;. Z;)
P(Rjj = 1,R;; =01Y; = y;, Z;)P(Rij =0, Ry = 11Y; = y;, Z;)’

W;;k(YijaYik) =
where

P(Rij = rij, Rix = rig|Yi = yi. Z;)
= P(Rij = rij, Rix = rix|Yij = yij. Yik = Yik. Zi)
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is assumed for r;;, rig, yij, ik = 0,1 and any realization y; of ¥;. The odds ratio
wl.’;. « Vij» yik) is described by the log-linear model

log {V’ij’k(yija Yik)} =™ U, (8.55)

where u;"j « 1s a vector of covariates which may contain constant 1, and ¢™ is a vector
of regression coefficients.

_ Let ,12, = (" ¢*)" Fori = 1,... ,n_and j < k, let ?é,-jk = RijRik,
Ri = (Riji.j < k), §54(bij. yik) = E(RiklYij = yij.Yik = yik. Zi), and
£ = E(R;|Y:, Z;). Analogous to (8.51), &%« (vij. yix) may be expressed in terms
of gﬁi”}k (ij. yik) together with (8.54).

Estimating Equations for Misclassified Responses

Let ufy = E(Y3|Z), Y}y = Y35, and Iy, = E(Y [, |Zi). Following the

discussion in §8.2, it can be shown that

Wi # pij and [ # Wijk-

As a consequence, the naive analysis with ¥;; and ?,- k- respectively, replaced by Y’ i;f

and 71*/ 10 (8.52) and (8.53) distorts the unbiasedness of the estimating functions,
hence the resulting estimators of 8 and ¢ may no longer be consistent (Yi and Reid
2010).

To conduct valid inference, one must correct the bias due to misclassification.
There are several strategies to do so. One scheme is to replace the true estimating
functions Uy; (0) and U,; (0) with their conditional expectations E{Uy; (0)|Y;*, Z;}
and E{U,;(0)|Y;*, Z;}, which are unbiased and expressed in terms of the parameters
and the observed data. This is the expectation correction strategy discussed in §2.5.2,
which basically requires the knowledge of the conditional distribution of Y;, given
Y. Z}.

Alternatively, we consider the insertion correction strategy, outlined in §2.5.2.
We construct estimating functions, say U} and U);, using the observed data
{Y;*.Z;} so that their conditional expectations recover the estimating functions
in (8.52) and (8.53):

E{UGNY:, Zi} = Ui (0); E{Uy|Yi, Zi} = Usi(0); (8.56)

where the expectations are evaluated with respect to the model for the conditional
distribution of Y;* given {Y;, Z;}. The unbiasedness of U} follows from that of
Uji(0) forl =1,2.

Recognizing that response components in Uy;(6) and Us;(6) appear merely
through the linear term Y;; and pairwise product Y';;x, the construction of Uy and
Uy is possible merely based on the marginal and association models (8.54) and
(8.55), with the full conditional distribution of Y;* given {Y;, Z;} left unspecified.
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We construct unbiased proxy variables for Y;; and 7,- jk» given by

1+ yoij ao + (Y7 —a)(Y; —az)

w0 d 7™ =

> = ,
YT yoij 4 v — 1 Y as

respectively, where

ao = (1 —a)yoix + (1 —02))/01'/ —£1(0,0) = (1 —a1)(1 —az);

Yoij + Yoik + yiik — 1 — £, (0, 1) — §%,(0,0)
ay = N
Y1ik + Yoix — 1
Yoik + Yoij + yiij — 1 —§7,(1,0) = §%,(0,0)
ay = 5
Y1ij + Yoij — 1
as= Y Y E 0= D vi— Y vk + 1.
§=0,11=0,1 1=0,1 1=0,1

It is readily shown that
EY5 Y, Zi) = Y andE(YUk|Yl,Z)— ijk (8.57)

forj <kandi =1,. _
Let Y** = (1@*;*,...,1/,*; yrand Y;* = (Y75 j < k)" Define
U (0.9) = Dy Vi ' (Y — i),
Ui (0.9) = Doy V3 (Y% — ),

and U (0,0) = {U5(0,9), U, (0,0)}", where parameter © comes into play
through the 1nvolvement in ¥;** and Y .

Because Y;** and Y** are, respectlvely, unbiased proxy variables of ¥; and Y;
satisfying (8. 57) estlmatmg functions U} (6,1) and Uy (0, 1) satisfy (8.56), thus
are unbiased.

If the value of parameter ¢ is known, then solving

> UA.9) =0 (8.58)

i=1

for 6 leads to an estimate of 6. Let 8 be the resulting estimator for 6. Under suitable
regularity conditions, 9 is a consistent estimator of 6 and Jn (/9\ — 60) has an asymp-
totic normal distribution with mean 0 and covariance matrix I'*~!X*(I*~1)T,
where I'* = E{0U;*"(0,9)/30} and X* = E{U(0,9)U;"(0,19)}.

When # is unknown, it may be estimated if there is an additional data source,
such as a validation sample or replicate observed measurements of Y;;. Estimation
of ¥ is often based on constructing an unbiased estimating function for ¥ using the
additional data information. Then combining this estimating function with Ul.* 6,9),
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we perform inference about 6 following the discussion in §1.3.4. The details of esti-
mation procedures for these scenarios were given by Chen, Yi and Wu (2011).

In situations where no knowledge of the misclassification process is avaiable,
estimating equation (8.58) may be employed for conducting sensitivity analyses. In
this instance, a sequence of values are specified for # to reflect different misclassi-
fication scenarios, and (8.58) is used to estimate 6 to assess how the estimates are
affected by different values of ¢.

8.7.2 An Example: CCHS Data

Chen, Yi and Wu (2011) applied the method described in §8.7.1 to analyze a data set
arising from the Canadian Community Health Survey (CCHS) cycle 3.1 which was
conducted in 2005. This is a large scale on-going survey targeting individuals aged
12 and older in the Canadian population. The design of the survey is fairly complex,
with three sampling frames being used to sample households: an area frame, a list
frame of telephone numbers, and a random digit dialing sampling frame. For each
sampled household, an individual aged 12 and older was randomly chosen for the
interview.

It is of interest to study the relationship between obesity and certain risk factors,
including age, sex, and physical activity index. There are three levels of physical
activity index: active, moderate (taken as a reference category), and inactive.

A sample of 2699 respondents aged 18 and older in Toronto health region was
analyzed. These respondents were from 435 clusters based on postal codes with size
varying from 2 to 15. Among them, 150 were included by randomization as a val-
idation subsample for which body mass index was accurately measured, and the
resultant obesity status was regarded as the precise response value for each subject
in this subsample. For other individuals, the obesity status was determined by the
self-reported information, and therefore was subject to misclassification.

Let Y;; denote the binary obesity status for subject j in cluster i. We assume Y;;
follows the logistic model

logit ;; = Bo + B1Xij1 + B2Xij2 + B3Xijz + BaXija,

where for subject j in cluster i, X;j; is the subject’s age, X;;> is 1 if the subject is
male and O otherwise, X;;3 is 1 if physical activity index is active and O otherwise,
and X;;4 is 1 if physical activity index is inactive and O otherwise. The association
between Y;; and Yy, measured by odds ratio v;;x, is modelled by (8.50) where u; ;1
is specified as 1. Because the proxy responses are obtained from self-reporting, mis-
classification in obesity is treated independent for different individuals and clusters.

Assuming that misclassification probabilities are covariate-independent and
common for all subjects in all clusters, i.e., yo;; = yo and y1;; = y; for some con-
stants Yo and y1, Chen, Yi and Wu (2011) applied the method in §8.7.1 to analyze
the data in contrast to the naive analysis which ignores misclassification. The results
are displayed in Table 8.1. Although the two methods yield different estimates and
standard errors, they reveal the same nature of the covariate effects. There is evidence
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that age is statistically significant; people tend to be more likely to develop obesity
as they get older. The probability of developing obesity is not significantly different
between males and females. There is some evidence that active individuals have a
smaller chance of developing obesity than individuals who are moderately active.
In contrast, individuals in the inactive group are more likely to develop obesity than
those in the other two groups. Association parameter ¢ is not statistically significant.
While there is no evidence to show significance of misclassification probability
Yo, there is strong evidence that (mis)classification probability y; is statistically
significant. More detailed analyses were provided by Chen, Yi and Wu (2011) with
different models being assumed for the misclassification process.

Table 8.1. Analyses of the CCHS Data (Chen, Yi and Wu 2011)

Naive method Method of §8.7.1

EST SE p-value EST SE p-value

Response model

Intercept —2.798 0.225 <0.001 —2.652 0.372 <0.001
Age 0.014 0.003 <0.001  0.016 0.005 <0.001
Sex 0.006 0.124 0.958 0.003 0.152 0.982
Activity Active —0.421 0.191 0.027 —0.550 0.265 0.038
Inactive 0.345 0.153 0.025 0.427 0.189 0.024
Association (¢) 0.073 0.114 0.521  0.106 0.170 0.532
Misclassification model
Y0 - - - 0.9840.712 0.076
Y1 - - - 0.667 0.408 <0.001

8.8 Bibliographic Notes and Discussion

While covariate mismeasurement has attracted extensive research interest, response
measurement error has received much less attention in the statistical literature. In
addition to the references discussed in this chapter, here we briefly review some
recent work on measurement error in response.

Existing work on measurement error in response may be classified according
to whether the response variable is discrete or continuous. While misclassifica-
tion of discrete response variables may arise from case—control studies (discussed
in Chapter 7) and multi-state models (discussed in Chapter 6), misclassified res-
ponse models are also considered for regression analysis. Under generalized linear
models or generalized linear mixed models, Neuhaus (1999, 2002) studied the bias
and efficiency issues for misclassified binary response variables. Luan et al. (2005)
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conducted simulation studies to assess the trade-off between the reduced biases and
increased mean squared errors when misclassification is taken into account for the
logistic regression model. Hausman, Abrevaya and Scott-Morton (1998) proposed a
semiparametric approach to handle misclassified response models.

With continuous response variables subject to measurement error, Yanez, Kron-
mal and Shemanski (1998) discussed a moment method for estimation and hypothe-
sis testing for the linear regression model, and Sepanski (2001) described a method of
moments for repeated response variable under a linear mixed model. With the linear
model, Buonaccorsi (1996) explored estimation methods for a class of measurement
error models, including linear and nonlinear response error models.

For the case where both the response and covariate variables are subject to
mismeasurement, Ganse, Amemiya and Fuller (1983) discussed prediction for the
situation where the parameters of the estimation population differ from those of
the prediction population. Spiegelman (1986) illustrated that standard regression
diagnostics may fail to detect model departures for the measurement error model.
Reilman and Gunst (1985) and Reilman, Gunst and Lakshminarayanan (1986) com-
pared the asymptotic properties for the maximum likelihood estimators and the least
squares estimators for linear structural models. Cheng and Van Ness (1994) dis-
cussed construction of confidence regions for the linear regression models when
both response and covariate variables are observed with measurement error. Wong
(1989) explored likelihood estimation for the simple linear regression model, while
Roy, Banerjee and Maiti (2005) and Roy and Banerjee (2009) discussed a likeli-
hood method for binary data. McGlothlin, Stamey and Seaman (2008) considered a
Bayesian analysis for modeling a binary response that is subject to misclassification
and covariates that involve measurement error. Chen, Yi and Wu (2014) proposed a
marginal analysis method for handling longitudinal ordinal data with misclassifica-
tion in both the response and covariate variables.

Early work on errors-in-variables includes Wald (1940), Reiersgl (1950), and
Madansky (1959), among many others. Other relevant work on response measure-
ment error includes Breslow and Day (1980), Green (1983), Lakshminarayanan and
Gunst (1984), Chua and Fuller (1987), Cheng and Van Ness (1994), Palta and Lin
(1999), Bollinger and David (1997, 2001), Chen (2010), and the references therein.

8.9 Supplementary Problems

8.1. Verity (8.14).
(Roy, Banerjee and Maiti 2005)

8.2.
(a) Verify the covariance identity (8.18).
(b) Suppose U and V are two binary variables. If U and V' are uncorrelated,
show that U and V are independent.
(c) Suppose U, V and W are three binary variables. If they are pairwise inde-
pendent, are they necessarily independent?
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(d) Suppose U, V and W are three random variables.
(1) If U and V are conditionally independent, given W, is it true that U
and V are unconditionally independent?
(i) If U and V are independent, is it true that U and V' are also condi-
tionally independent, given W?

Consider the setting in §8.3 where Z; is scalar. Suppose response Y; and
covariate Z; are linked by the simple linear regression model

Yi=B0o+B:Zi +€i

fori =1,...,n, where B = (B¢, Bz)" is the vector of regression coefficients,
¢; is independent of Z;, and €; ~ N(0, 0?) with variance o2.

Assume that conditional on {Y;, Z;}, Y;* follows the model
V' =0 +oyYi + oz Zi +ei.

where o = («g, oy, z)" is the vector of regression coefficients, e; is indepen-
dentof {Y;, Z;}, and ¢; ~ N(0,02) with variance o2.
(a) Show that conditional on Z;, Y¥;* follows a simple linear regression model

= (o + CUy,BO) + (IBZ(Xy +az)Z; + e;k»

where e/ is independent of Z; and e} ~ N(0,0; + a}0?).
(b) Work out the expression of the likelihood (8.23).
(¢) Perform inference about § using the result in (b).

For the setup of Problem 8.3, we assume that o2 and oe2 are known, and that

Yi, Z; and Yl* are centered so that 8o = a9 = 0.

(a) Using the validation subsample V' alone, perform the likelihood method
for estimation of ;.

(b) Using both the validation and the main study data, perform estimation of
B using the estimated likelihood function described in §8.3.

(c) Let /3 . and ,3 - denote the estimators obtained from (a) and (b), respec-
tively. Find the conditions that ﬂ z 1s more efficient than ﬂ z-
(Pepe 1992)

Consider the setting in §8.4, and suppose that assumptions (8.32) and (8.33)
hold. Prove the following results.
(a) Forany y;, y = 0,1,

P =y |Yi = yi. X[ ZHE{P(Y; = yilXi. Z)|X[. Zi}
=P =y Y = yilX". Zi).
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(b)
Y = pH —yor (X[, Zi) — y10(X[. Zi)}
wi(1=pi)
_EWYS X Zi) — E(wil X[ Zi)
 EWilXF ZOE( — wil XX Zi)
(c) Prove (8.38) and (8.39).

(Cheng and Hsueh 2003)

Suppose (X1, Y1), ..., (Xn, Yy) are independently and identically distributed.
Consider the simple linear regression model

Y, = Bo + BxXi + €, (8.59)

where B = (Bo, Bx)" is the vector of regression coefficients, the €; are inde-
pendent of each other and of the X;, ¢, ~ N(O, 02) with variance o2, and
i=1,...,n.

Suppose that both ¥; and X; cannot be observed directly. Instead, we observe
Y.* and X;* which are related to ¥; and X; as follows:

Y=Y +ey; X=X +ex:
where the e,; and the ey; are independent of each other and of the {X;,Y;};
eyi ~ N(0,07,) with variance 0,,; ex; ~ N(0,07,) with variance o7,

xe;
Xi ~ N(/Lx,O)%) with mean ., and variance o*f; andi =1,...,n.

In the following questions (b)-(f), assume that oﬁe and ofe are known and

identical, and let 03 denote this common variance.

(a) If both 07, and 03, are unknown, is B identifiable?

(b) Run the least squares regression analysis by naively replacing ¥; with ¥*
and X; with X* in model (8.59), and let * = (B%, B%)" be the result-
ing estimator for 8. Determine the limit to which the naive estimator B*
converges in probability as n — co.

(c) Show that (X, Y;*) has a bivariate normal distribution. Identify the mean
vector and the covariance matrix.

(d) Let 0 = (ux,02,02, Bo, Bx)". Can you estimate 6 using the likelihood
method?

(e) Consider the following reparameterization

@0 = fhxi @1 = Po + Bxitx: @2 = 02(B2 + 1) + .

Let @ = (oo, 01,2, 02, Bx)T. Can you estimate « using the likelihood
method?
(f) Compare the estimators of 8, obtained in (d) and (e).
Wong (1989)
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8.7. Sposto et al. (1992) and Roy, Banerjee and Maiti (2005) discussed a cohort
study which assesses the effect of radiation exposure on cancer mortality.
Individual radiation exposures were estimated by using DS86 dosimetry; let
X* denote the resulting dose measurement. The true dose for a person is
represented by the absorbed radiation, X, measured in Gray (Gy), to his/her
intestine at the time of exposure. Assume that given the surrogate X*, the
distribution of the true dose X is normal with mean X * and variance 0.5X *2.

The autopsy program reported that the cause of death recorded on the death
certificate was subject to misclassification. Let Y be the binary variable indi-
cating the true death cause, with ¥ = 1 for true cancer death and 0 otherwise;
and Y* be the cause based on death certificate diagnosis. Sposto et al. (1992)
found that the overall crude misclassification rate of cancer deaths is 22%
and of noncancer deaths is 3.5%, i.e., P(Y* = 0|Y = 1) = 22% and
P(Y* = 1|Y = 0) = 3.5%. Assume these are the common misclassification
rates among different dose categories.

Table 8.2. Radiation Doses X™* and Death Counts for Cancer and Noncancer Individuals
Based on Death Certificate Diagnosis (Sposto et al. 1992)

Dose X* Cancer deaths Noncancer deaths

0.000 2784 10,201
0.018 2105 7451
0.072 439 1509
0.137 523 1701
0.324 586 1785
0.693 339 826
1.350 204 369
2.350 57 86
3.520 21 51
4.430 13 23

Table 8.2 shows the number of cancer and noncancer deaths grouped by
the death certificate corresponding to different dose values X *. The data are
viewed as contaminated with both measurement error in covariate and mis-
classification error in response. Analyze the data to uncover how cancer-death
is associated with the true radiation exposure amount X by the following four
schemes and compare the analysis results:
(a) Ignoring both measurement error in X and misclassification in ¥
(b) Ignoring measurement error in X but accounting for misclassification
inY;

(c) Ignoring misclassification in ¥ but accounting for error in X;
(d) Accounting for both error in X and misclassification in Y.

(Roy, Banerjee and Maiti 2005)
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(a) For model (8.42) in §8.5, assume the nondifferential measurement error
mechanism with 4(y|x, x*) = h(y|x), where h(-|-) represents the condi-
tional distribution for the corresponding variables. Prove that E (¢*| X™*) =
0 and that €* is uncorrelated with any function of X *.

(b) Prove (8.43).

(c) Prove that in (8.46), e is orthogonal to E(Y* — Y |W).

(Lee and Sepanski 1995)

Consider the nonlinear model (8.41) in §8.5 where Y is the response variable
and X is the covariate vector.

(a) Suppose Y is subject to measurement error and X is precisely observed.
Assume the validation sample Vy, is available where X = X;, along with
the main study data {(¥;*,X;) : i = 1,...,n}. Develop an estimation
procedure for B using the least squares projection method.

(b) Suppose both Y and X are subject to measurement error. Instead of hav-
ing two independent validation samples V, and V), available as in §8.5,
there is a common validation sample V for which {(X;,Y;, X*,Y) :
i € V} is available, in addition to the availability of the main study data
{(X/,Y*) :i =1,...,n}. Develop an estimation procedure for 8 using
the least squares projection method. Comment on the differences between
this procedure and that described in §8.5?

(a) Verify (8.57).

(b) Instead of using (8.58) for estimation of 8, can you construct new sets of
estimating functions for 6 by replacing Vy; and V5; respectively with the
covariance matrices for the Yl’;* and the 7:}2 in (8.57)?

(c) Instead of using the indictors R;; to describe the pairwise association for
the components of ¥;* in §8.7.1, can you directly use components Y} to
describe modeling of the misclassification process by following the dis-
cussion of modeling for the response components Y;;?

(d) How does the development of (b) and (c) differ from that of §8.7.1?

(e) Can you apply the expectation correction strategy, described in §2.5.2, to
develop an estimation procedure for 6 that is associated with the models
in §8.7.17

(Chen, Yi and Wu 2011)

When there is no gold standard of a diagnostic test for a disease, repeated
measurements may be used to assess the reliability of the test. Let ¥; be the
true binary status for subject i, taking value 1 if subject i is diseased and O
otherwise. Let Yl;‘ be the binary result of the jth test for individual i, where
Y/ = 1forapositive result and ¥;; = 0 for a negative result, j = 1,...,m;,
and i = 1,...,n. Assume that each test is independently applied and the
probability of having a false-positive or false-negative is constant. Let
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yor = P(Y;; = 1|Y; = 0), y1o = P(Y;} = 0]Y; = 1),

and 7 = P(Y; = 1). Let 6 = (Y01, Y10, 7)".

(a) Construct the likelihood for parameter 6.

(b) Show that parameter 6 is not identifiable in (a).

(c) If we assume that o1 + y19 < 1 and m; > 3 for some i, then 0 in (a) is
identifiable.

(d) We wish to test the hypothesis H, : yo1 = 0. Can the likelihood ratio test
be applied for this purpose? What might be the problem?

(e) To getrid of associated constraints for 8, we reparameterize 6 as:

ap = logit yo1; @1 = logit y19; B = logit 7;

and let ¥ = (a1, g, B)T. With the conditions in (c), can you apply the
likelihood method to conduct inference about ?

(f) Fujisawa and Izumi (2000) discussed a serological data set which was obt-
ained from Hiroshima and Nagasaki city residents. Table 8.3 displays the
frequency of outcomes observed in repeated serological tests for the MNSs
blood system by location of laboratory. Analyze the data by incorporating
that misclassification may be affected by the laboratory equipment at dif-
ferent locations and different occasions for the MNSs system.

Table 8.3. Frequency of Observed Positive Responses ( Z?=1 Y ij ) among Repeated Serolog-
ical Tests (m;) for the MNSs Blood System by Location of Laboratory (Fujisawa and Izumi
2000)

Yo Yimi=2) Y Y mi=3) Y Yimi=4

Antigen  City 0 1 2 0o 1 2 3 01 2 3 4

M Hiroshima 419 8 1918 77 4 1 279 4 1 0 0 29
Nagasaki 257 13 958 26 2 1 127 30 0 0 13

N Hiroshima 714 23 1587 117 5 10 225 13 0 0 2 19
Nagasaki 324 70 799 40 3 27 85 4 1 0 4 7

S Hiroshima 1823 29 208 260 1 10 33 241 0 2 1
Nagasaki 868 52 43 8 1 7 4 8 0 0 O

S Hiroshima 19 1 2316 9 0 0 349 0 0 0 1 33
Nagasaki 5 5 1065 1 1 3133 0 0 0 015

(Fujisawa and Izumi 2000)
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8.12.

8

(a)

(b)
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Suppose there are K covariate patterns {Z; : k = 1,...,K}. For
each Z; with k = 1,..., K, run a Bernoulli trial independently
times, and let Yy; and Y*;, respectively, be the unobserved true outcome
and the observed outcome of the ith trial where i = 1,...,ng. Define
Ny, = Z:’ilYk*l. fork=1,..., K.

Fork =1,...,Kandi = 1,...,ng, assume that the conditional prob-
abilities P(Yy; = 1|Zy) are free of i, and let uy = P(Yx; = 1|Zy).
Consider a generalized linear model

g(pr) = B Zk,
where g(-) is a link function, § is the parameter vector,and k = 1,..., K.
Fork = 1,...,Kandi = 1,...,ng, assume that the misclassification

probabilities P(Y,". = y;;|Yk;, Zy) are free of Z; and i, and then define
yor = P(Y; = 1|Yx; = 0) and y19 = P(Yy; = 0[Yy; = 1).
Let 6 = (B", Y01, Y10)"

(1) Find the distribution of N ,:‘ v fork=1,...,K.
(ii) Construct the likelihood function of 6.
(iii) Discuss the identifiability of model parameter 6.

Paulino, Soares and Neuhaus (2003) analyzed the data on a study of hu-
man papilloma virus (HPV) infection. The study screened 104 women.
The data recorded for each woman her infection status (HPVS) at the end
of the study, whether she had a history of vulvar warts (VW), whether
she had any new sexual partner in the last 2 months at baseline (NSP),
and whether she had a history of herpes simplex (HS). HPV is a family
of viruses responsible for various epithelial lesions of which over 90 sub-
types have been described. However, any test for HPV infection is limited
to one subtype or a group of subtypes, thus, the response variable HPV is
bound to be affected by misclassification.

Let Zj be the covariate vector (VW, NSP, HS) with the kth pattern, and
ny be the number of women with covariate vector Zy. Let Yi; be the
true HPV infection status of woman i with Zy, Yk*l. be the correspond-
ing observed infection status, and N I: 4+ be defined as in (a). The data are
presented in Table 8.4.
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Table 8.4. HPV Infection Data (Paulino, Soares and Neuhaus 2003)

Zy Né:_ ng

0,00) 12 44
001 1 2
0,1,00 29 40
o1 3 3
(1,000 6 9
(1L,1,o) 1 4
L) 2 2

Total 54 104

Conduct sensitivity analyses for this data set using the results in (a) where
yo1 and y; are specified as various values. Compare the results by choos-
ing different link functions:

(i) the logit link g(v) = log (%%U),

(ii) the probit link g(v) = @7 (v);
(iii) the complementary log-log link g(v) = log{—log(1 — v)}.



9

Miscellaneous Topics

Many methods discussed in this book are motivated by research problems arising
from various fields, including nutrition studies, cancer research and environmental
studies. Methods and application of measurement error models are vast in the epi-
demiology literature. Although the book discusses some research in this field, the
coverage is far from complete. Measurement error and misclassification have been a
long-standing concern in many other fields such as econometrics and have attracted
extensive research. This book has, however, not looked into the details in those areas.

The book focuses on the development of measurement error models in the statis-
tics literature. While the methods developed for other fields are of equal importance
and usefulness, it is difficult to summarize all the available work in this book; even
for the research appearing in the statistical journals, many methods have not been
touched upon in this book. For example, measurement error is a common issue in sur-
vey science but this book does not cover this topic. Research of measurement error
in surveys has been extensive in the literature. A document in this area was provided
by Biemer et al. (1991).

The inference objective of this book centers around estimation of model param-
eters, which intrinsically position us in the frequentist framework. Placing measure-
ment error and misclassification problems in the Bayesian paradigm, many authors
explored methods and strategies for dealing with effects arising from mismeasure-
ment. A book treatment on this topic is available in Gustafson (2004) and Carroll
et al. (2006, Ch. 9).

To close the book, in this chapter we outline several topics that are available in
the literature but are not described in the book. Interested readers may find the details
from the references mentioned and the references therein.

© Springer Science+Business Media, LLC 2017 395
G. Y. Yi, Statistical Analysis with Measurement Error or Misclassification,
Springer Series in Statistics, DOI 10.1007/978-1-4939-6640-0_9
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9.1 General Issues on Measurement Error Models

In this book, we concentrate on discussing models and methods for handling mis-
measurement in variables for a number of application areas. The development is
derived under the assumption that the assumed models used for inferences are feasi-
ble. Although a variety of inferential methods, especially estimation procedures, are
described to account for effects induced from measurement error and misclassifica-
tion, many questions and issues remain unanswered or untouched upon in this book.
These questions include

e For given models, if there are multiple ways to develop inference methods to
account for measurement error or misclassification effects, how do we choose
the most suitable or the best method among those candidates?

e With error-contaminated data, how do we even start with a model building? How
do we decide what variables should be included in the model and what variables
should not?

e When reasonable candidate models are available, how do we ensure the model
parameters to be identifiable and estimable?

e In the presence of measurement error or misclassification in the variables, how
do we perform goodness-of-fit to assess the feasibility of the response model,
the measurement error or misclassification model, and even the model for the
covariates?

What is the impact on inferential procedures if model misspecification arises?
To reduce the risk of model misspecification, how do we proceed with semipara-
metric or nonparametric approaches? Compared with parametric modeling, what
may be the loss of using semiparametric or nonparametric approaches?

e Do measurement error and misclassification always have to be taken into
account? Are there situations where attempting to account for mismeasure-
ment effects is not worthy but ignoring mismeasurement is more beneficial than
taking care of it?

e We concentrate on developing estimation procedures to incorporate measurement
error and misclassification effects. How does measurement error effects influence
hypothesis testing and prediction?

e How does the featrue of measurement error affect the design of a study?

While these questions do not exhaust all the problems on measurement error
models, they are important to study. However, we are unable to provide precise
answers to them to uncover all possible circumstances. To give the readers a brief
idea, here we skim on these issues by mentioning some work in the literature.

Use of a Plausible Method

In §2.5 we present general strategies, although incomprehensive, for dealing with
error-contaminated data. Applications, modifications, and extensions of those strate-
gies are developed throughout Chapters 3—8 for a broad range of problems. A natural
question arises: with the given data and the same model assumptions, if there are
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multiple methods to accommodate mismeasurement effects, is there a best method
among them? If yes, how do we know which method is the best?

While some authors studied and compared the performance of certain methods
of adjusting measurement error effects (see Freedman et al. (2008) for instance), it
is generally difficult to provide analytical comparisons among different candidate
methods for general situations. Numerical experiences, however, may sometimes
help us understand the performance of various methods. For instance, in nutrition
and physical activity epidemiology, measurement error in covariates may be domi-
nant and the failure time outcome may occur for only a small fraction of the study
cohort. In this context, with a biomarker subsample that plausibly adheres to a classi-
cal measurement model, Shaw and Prentice (2012) found that simple regression cal-
ibration tends to be much more efficient than nonparametric correction procedures
and produces negligible bias in analysis results. In a personal correspondence, Ross
Prentice suggested that nonparametric correction procedures that simply replace the
elements of an estimating function by unbiased estimates thereof may be too ad hoc
to have good efficiency in such settings. Stated another way, these nonparametric
procedures may be too far from any suitable likelihood.

In other simulation settings, Ross Prentice and his collaborators noted that the
conditional scores procedure lacks robustness to departures from normality for mea-
surement error. This phenomenon has also been observed for other methods, such
as the SIMEX method. Yi and He (2012) demonstrated, using simulation studies,
that the performance of the SIMEX approach is sensitive to misspecification of the
normality assumption for the measurement error model.

It is difficult to offer universal guidance for the readers as to what measure-
ment error approaches are to be preferred over others. This depends on many
factors, including, but not limited to, the form of the response and measurement
error/misclassification models, the association structures among the variables, the
magnitude of mismeasurement in variables, and the availability of computing facili-
ties. Even for a very simple case where an error-prone covariate is binary, the answer
is not obvious. Yi et al. (2016) provided a detailed discussion on this issue.

Measurement Error Models

Models for delineating mismeasurement processes are outlined in §2.6. However,
they are far from complete for dealing with various practical problems. Many types of
measurement error models have been considered in the literature. To name a few, see
Rosner (1996), Carroll et al. (1998), Black, Berger and Scott (2000), Arellano-Valle,
Bolfarine and Gasco (2002), Kukush, Markovsky and Huffel (2002), Arellano-Valle
et al. (2005), and Midthune et al. (2016), among others.

Much of the development in this book is directed to measurement error and mis-
classification for time-invariant variables. For example, the regression calibration
method, presented in §2.5.2 and §3.3.1, is for error-prone covariates which are time-
independent. However, time-varying covariates may also be error-contaminated; in
this case, proper modifications should be introduced to factor in temporal effects.
Xie, Wang and Prentice (2001), Liao et al. (2011) and Shaw and Prentice (2012)
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developed the risk set calibration approaches which extend the standard regression
calibration method with the time factor taken into account.

Measurement error in time-varying covariates is an important and practical topic.
Although we discuss this aspect at various places, such as §4.3, §4.4, and Chapters 5
and 6, new issues on time-evolving covariates with mismeasurement emerge and
need to be substantially addressed for individual applications.

Identification and Estimation

As discussed throughout the book, in the presence of measurement error, non-
identifiability becomes a concern which is primarily caused by additional model-
ing of the measurement error process. Many authors studied the issues concerning
identification and estimation under individual circumstances (e.g., Paulino and de
Braganga Pereira 1994). For instance, under linear regression models with a binary
covariate subject to misclassification, Bollinger (1996) established lower and upper
bounds for the model parameters. The approach by Bollinger (1996) reveals max-
imum amount of misclassification which may feasibly be present in order to make
meaningful inferences. Klepper (1988) examined the same problem but considered
different models where multiple dichotomous variables are subject to misclassifica-
tion and multiple continuous variables are subject to classical measurement error.
Klepper and Leamer (1984) and Krasker and Pratt (1986) considered the situation
where mismeasured covariates are continuous variables. Hu (2006) discussed a lin-
ear regression model with a mismeasured regressor where the measurement error is
correlated with both the latent variable and the regression error. He showed that if the
mismeasured regressor contains enough information on the latent variable, the finite
bounds on the parameters can be found using the variance of the latent variable, reg-
ardless of the correlation between the measurement error and the regression error.
While unidentification arises frequently from linear measurement error models, this
feature is not necessarily retained by models for repeated observation data. This point
was discussed by Griliches and Hausman (1986) and Wansbeek and Koning (1991).

In the presence of measurement error in continuous covariates under nonlinear
models, Hausman et al. (1991) considered identification and estimation of the coef-
ficients of a polynomial regression function. Lewbel (1998) discussed conditions for
semiparametric identification for general latent variable models using instruments
uncorrelated with measurement errors. Carroll, Chen and Hu (2010) considered the
setting with two samples which share the same conditional distribution of the res-
ponse given the true covariates, but the distributions of the latent true covariates are
different. Their discussion concerns issues of identification and estimation in the
absence of knowledge about the measurement error distribution, of an instrumen-
tal variable and of validation data as well as of replicated surrogate measurements.
Assuming that the conditional distribution of the response given the true covariates is
modeled parametrically, they developed a sieve quasi-MLE approach to estimation,
with the measurement error distribution and the distribution of the latent variable
featured nonparametrically.
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Most methods for correcting for measurement error effects require additional
information, such as validation data, measurement error distributions to be known,
repeated measurements, or instrumental variables. In contrast, Schennach and Hu
(2013) established that the fully nonparametric classical errors-in-variables model is
identifiable from data on the regressor and the dependent variable alone. Their result
basically relies on regularity conditions taking the form of smoothness constraints
and nonvanishing characteristic functions. Their discussion offers a new perspective
on handling measurement error in nonlinear and nonparametric models.

Instrumental Variables

Wang (2004) suggested that a nonlinear model with Berkson error is usually
identifiable without extra information under certain model assumptions. However, in
order for a classical measurement error model to be identifiable, extra information,
such as validation data or replicate data, is often needed, as discussed throughout the
book. In the event that validation data or replicate data are unavailable, information
from instrumental data may be useful to undertake inferences under measurement
error models. Many authors studied estimation for measurement error models using
instrumental variables, and much work may be found in the econometrics literature.
To give the readers an idea, we briefly review several methods, bearing in mind this
is far from complete.

Feldstein (1974) proposed an estimation method using a weighted average of the
instrumental variable estimator and the ordinary least squares estimator. Carter and
Fuller (1980) discussed alternative instrumental variable estimators for the slope in
the simple errors-in-variables model using the likelihood-based method. For linear
measurement error models, Fuller (1987, Ch. 2) discussed estimation methods using
instrumental variables, among many other authors.

Amemiya (1985, 1990) studied instrumental methods for general nonlinear
regression models. Stefanski and Buzas (1995) considered generalized linear mea-
surement error models with instrumental variables. Buzas and Stefanski (1996a)
discussed estimation for a parametric structural probit model with measurement
error, while Buzas and Stefanski (1996b) exploited functional methods for general-
ized linear measurement error models with instrumental variables which are assumed
to follow a conditional normal distribution. Using the information from instrumental
variables, Abarin and Wang (2012) explored a method of moments for estimation of
parameters associated with generalized linear measurement error models.

Carroll et al. (2004) discussed the use of instrumental variables for covariate mea-
surement error problems for a general class of regression models in which regression
functions may be modeled linearly, nonlinearly, and nonparametrically. They showed
that the regression function and all parameters in the measurement error model are
identified under weak conditions. Their results extend the applicability of instrumen-
tal variable estimation to many interesting situations.

With the availability of instrumental variables, Hu and Schennach (2008) est-
ablished the identification for a class of nonclassical nonlinear errors-in-variables
models with continuously distributed variables. They showed that the identification
problem may be cast into the form of an operator diagonalization problem in which
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the operator to be diagonalized is defined in terms of observable densities, while the
resulting eigenvalues and eigenfunctions provide the unobserved joint densities of
the variables of interest.

Under the Bayesian inference framework, Gustafson (2007) considered mea-
surement error modeling using an approximate instrumental variable. He contrasted
inferences arising from the approximate instrumental variable assumption with
their exact instrumental variable counterparts and uncovered the benefit of basing
inferences on a more realistic model versus the cost of basing inferences on an
unidentified model.

Model Selection and Dimension Reduction

In application, we may collect a large number of covariates, and some of them
have no predictive value on the response variable. Including such covariates in mod-
elling and inferential procedures would greatly degrade the quality of the results.
Variable selection thus becomes necessary and critical for valid inferences. There is
a large body of variable selection methods for settings which are free of measure-
ment error (e.g., Tibshirani 1996; Fan and Li 2001; Miller 2002). In the presence
of measurement error, however, research on this topic is relatively limited but not
unavailable.

For linear measurement error models, Huang and Zhang (2013) proposed
variable selection procedures based on penalized score functions. With cross-
sectional error-contaminated data, Liang and Li (2009) and Ma and Li (2010)
exploited variable selection methods based on the SCAD penalty function (Fan and
Li 2001). In contrast, for longitudinal data with covariate measurement error, Shen
and Chen (2015) considered marginal regression analysis and proposed a model
selection criterion. Their method is based on the expected quadratic error measuring
the discrepancy between the true and the considered model for the marginal mean.
Yi, Tan and Li (2015) developed a simulation-based procedure to conduct model
selection and parameter estimation simultaneously; they also considered the feature
of missing data in the development. Other relevant work includes Wang, Zou and
Wan (2012) and the references therein.

From a different but closely related perspective, measurement error effects have
been investigated for dimension reduction in regression models. Dimension reduc-
tion has attracted extensive interest for settings without mismeasurement. (e.g., Cook
2007). In the presence of measurement error, research is sparse but suggestive. With
covariate measurement error, Carroll and Li (1992) and Lue (2004) discovered that
the usual dimension reduction techniques, such as ordinary least squares, sliced
inverse regression and principle Hessian directions methods, still apply to the obs-
erved surrogate measurements with a suitable adjustment; and the modified methods
can produce consistent estimates for the original regression problem involving the
unobserved true covariates. More generally, Li and Yin (2007) established a general
invariance law between the surrogate and the original dimension reduction spaces,
which implies that at the population level, the two dimension reduction problems are
in fact equivalent.
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Model Checking and Semiparametric Methods

In this book, our discussion focuses on the parametric and semiparametric set-
tings, where the measurement error process is typically modeled parametrically,
and the response process is modulated by a parametric or semiparametric regres-
sion model. With this setup, concerns of model misspecification naturally arise. The
discussion on model misspecification in the presence of measurement error may be
classified into three categories: (1) only the response model f(y|x,z) is misspeci-
fied, (2) only the nuisance models, including measurement error model f(x, x*|z)
and the covariate model f(x|z), are misspecified, and (3) both the response and
nuisance models are misspecified.

It is well demonstrated that biased results are often derived if model misspec-
ification is present. For example, with scenario (2), Reddy (1992) illustrated the
impact of ignoring correlated measurement error under some simple structural equa-
tion models. Schneeweiss and Cheng (2006) studied the bias of structural quasi-score
estimators when the distribution of X is misspecified.

Model diagnosing is thus very important for assessing the validity of the results
obtained from the assumed models. Huang, Stefanski and Davidian (2006) proposed
methods for diagnosing misspecification of the distribution of the true covariates for
structural measurement error models. For group testing data which involve covariate
measurement error, Huang (2009) proposed a method for detecting latent-variable
model misspecification in structural measurement error models. Regarding fitting
a parametric mean regression model, Koul and Song (2008) discussed test proce-
dures for covariate measurement error which follows the Berkson measurement error
model.

To reduce the impact induced from model misspecification, it is tempting to make
minimal model assumptions. Regarding the treatment of the true covariates, the func-
tional modeling strategy, discussed in §2.4, is desirable to invoke and many methods
have been available in the literature. On the other hand, if the structural modeling
strategy has to be struck, it is useful to develop inference methods that are robust or
less insensitive to misspecification of the distribution of the true covariates. Many
authors explored in this direction. For instance, Lachos et al. (2009) used skew-
normal distributions to model the unobserved error-prone covariates. For nonlinear
errors-in-variables models, Li (2002) developed a two-stage estimation procedure by
assuming randomness for the true, unobserved regressors but making no parametric
assumption for the distribution of these regressors. The first stage involves nonpara-
metric estimation of the conditional density of these regressors, given the measure-
ments; and at the second stage, a semiparametric nonlinear least-squares estimator is
developed for the response model parameters.

Using the semiparametric efficient score derived under a possibly incor-
rect distributional assumption for the unobserved error-prone covariates, Tsiatis
and Ma (2004) developed estimating equations methods and proposed a class
of locally efficient semiparametric estimators. Implementing the technique of
Tsiatis and Ma (2004) to generalized linear models with normal measurement error,
Ma and Tsiatis (2006) showed the equivalence of the resulting estimator to the
efficient score estimator derived by Stefanski and Carroll (1987).
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Ma and Carroll (2006) constructed locally efficient estimators under semipara-
metric measurement error models where the error-free variables Z are nonparametri-
cally modeled through the local kernel and a parametric specification is assumed for
the measurement error and error-prone covariate X . They established semiparamet-
ric efficiency for the resulting estimators. Using repeated surrogate measurements
of the unobserved true covariates, Sinha and Ma (2014) applied a semiparametric
approach to fitting a linear transformation model for analysis of right censored data
with error-prone covariates.

To address the consequences of model misspecification, another strategy is to
relax assumptions on modeling the measurement error process. Flexible parametric
models are developed to characterize measurement error, see Carroll, Roeder and
Wasserman (1999), for instance. Semiparametric or nonparametric modeling may
also be applied to handle the measurement error process. For example, using the
technique by Li (2002), Li and Hsiao (2004) developed robust estimation for gener-
alized linear models without specifying distributional assumptions on measurement
errors and the true covariate X. Carroll, Knickerbocker and Wang (1995) consid-
ered a semiparametric estimation method for general regression model when some
covariates are measured with error. Using the dimension reduction techniques, they
assumed that the true covariates depend only on a linear combination of the observed
covariates and surrogates, which allows them to avoid using higher-order kernels for
estimation.

Other robust inference methods for measurement error models are available
as well. For example, Wang and Rao (2002) and Cui and Chen (2003) employed
the empirical likelihood method to account for measurement error effects. Huang
(2011) considered the application of the empirical likelihood method to a partially
linear single-index measure error model with right censored data. Sinha et al. (2010)
developed a Bayesian method where semiparametric modeling is employed to de-
scribe the relationship between the disease and exposure variables as well as the
relationship between the surrogate and the true exposure measurements. Sarkar,
Mallick and Carroll (2014) described a Bayesian semiparametric method based on
mixtures of B-splines and mixtures induced by Dirichlet processes.

Influential Observations and Robust Inference

In contrast to robustness to model misspecification, it is also useful to develop
methods which are robust to influential observations, or outliers. In the absence of
measurement error, research on this topic has received a great deal of attention since
the paper by Cook (1977). In the context with measurement error, many authors
studied the problems of identifying outliers or influential observations. For instance,
with linear regression models with measurement error in both response and covari-
ate variables, Kelly (1984) proposed diagnostic procedures for the detection of influ-
ential observations. Wellman and Gunst (1991) developed influence diagnostics to
assess the influence of extreme observations on estimators of linear measurement er-
ror models. Zhao, Lee and Hui (1994) derived influence functions and case-deletion
diagnostics for generalized linear measurement error models while Zhao and Lee
(1995) considered the problem for nonlinear measurement error models. For the



9.1 General Issues on Measurement Error Models 403

simple linear regression model with an additive error in the covariate, Abdullah
(1995) explored the detection of influential observations using influence diagnostics
based on leverage values, influence curve, and case-deletion methods. For linear and
generalized linear models with measurement error, Lee and Zhao (1996) performed
local influence analysis, which extends the development of Cook (1986) and Thomas
and Cook (1989) that are only applicable to settings without measurement error.

For the simple structural errors-in-variables model, Kim (2000) considered the
outlier detection problem using the likelihood displacement approach. Assuming
that the observed variables follow a bivariate Student-¢ distribution, Galea, Bolgar-
ine and Vilcalabra (2002) discussed local influence and diagnostics for the struc-
tural errors-in-variables models. Discussion on this topic can also be found in
Fuller (1987, Ch. 3).

Using the corrected likelihood of Nakamura (1990), Zare and Rasekh (2011)
developed case-deletion diagnostics for detecting influential points for linear mixed
measurement error models. Lachos, Montenegro and Bolfarine (2008) considered
issues concerning inference and influence diagnostic for measurement error regres-
sion models; they adopted the structural modeling scheme with the true covariate
X assumed a univariate skew-normal distribution. Taking the Bayesian perspective,
Vidal, Iglesias and Galea (2007) discussed detection of influential observations for
the simple linear regression model with an additive error in the covariate.

Nonparametric Inference and Measurement Error

Research on nonparametric estimation in the presence of measurement error
has attracted much attention in the literature. Many authors studied nonparametric
methods from multiple angles. Delaigle (2014) provided a review on this topic and
summarized the main techniques related to kernel estimators, which are the most
popular nonparametric errors-in-variables methods. Here we briefly mention a few
papers in this direction to give the readers a brief idea.

Density estimation from a sample contaminated with classical errors, often ref-
erred to as a deconvolution problem, has been extensively studied in the literature,
see, for example, Fan and Truong (1993), Li and Vuong (1998), and Meister (2006).
Among many nonparametric density estimators, the deconvolution kernel estimator,
developed by Carroll and Hall (1988) and Stefanski and Carroll (1990b), is the one
that has perhaps received the most attention.

In contrast to the extensive study of density estimation from a sample contam-
inated with classical measurement error, Delaigle, Hall and Qiu (2006) discussed
nonparametric techniques for analyzing data that are generated by the Berkson mea-
surement error model. Delaigle (2007) discussed density estimation for the situation
where the data contain two types of measurement error: incurred before and after
the experiment. She proposed two nonparametric estimators of a density function
that account for classical errors, Berkson errors, or a mixture of the two. Carroll,
Delaigle and Hall (2007) explored nonparametric estimation of a regression function
when the covariate is observed with a mixture of Berkson and classical measure-
ment errors. They established consistency of the resulting estimator, derived rates of
convergence, and described a data-driven implementation procedure.
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With sample units being measured with error, Stefanski and Bay (1996) stud-
ied estimation of a cumulative distribution function and proposed a bias-adjusted
estimator. Carroll, Maca and Ruppert (1999) considered the problem of nonparamet-
ric regression function estimation in the presence of measurement error in the pre-
dictor. They used the SIMEX method and established asymptotic results for kernel
regression, which requires no assumption about the distribution of the unobserved
error-prone predictor. They also developed an approach using regression spline un-
der the assumption that the error-prone predictor has a distribution of a mixture of
normals with an unknown number of components. Delaigle and Gijbels (2002) pro-
posed kernel estimators for integrated squared density derivatives from a sample that
is contaminated with random noise. They derived asymptotic expressions for the bias
and the variance of the estimator. Staudenmayer, Ruppert and Buonaccorsi (2008)
considered density estimation when the variable is subject to heteroscedastic mea-
surement error. They studied the effects of heteroscedastic measurement error and
presented an equivalent kernel for a spline-based density estimator.

Contrasting to the broad use of local polynomial estimators for nonparametric
regression estimation for error-free settings, Delaigle, Fan and Carroll (2009) pro-
posed a local polynomial estimator of any order in the errors-in-variables context
and derived its design-adaptive asymptotic properties. For nonparametric inference,
Carroll and Hall (2004) suggested kernel and orthogonal series methods that are app-
licable to both deconvolution and regression with errors in explanatory variables.

Within the Bayesian framework, Berry, Carroll and Ruppert (2002) considered
the problem of nonparametric regression when the independent variables are mea-
sured with error, where the regression function is modeled with smoothing splines
and regression P-splines. Sarkar et al. (2014) proposed Bayesian semiparametric
approaches for estimating the density of a random variable when precise measure-
ments on the variable are not available but replicated proxies contaminated with
measurement error are available.

Hypothesis Test

Research on measurement error models largely concentrates on estimation rather
than hypothesis testing, as reflected by the contents of this book. It is known that
ignoring measurement error can cause misleading results, such as bias in point esti-
mates and variance estimates for parameter estimation. The impact of mismeasure-
ment on hypothesis testing, however, has been much less studied (Carroll et al. 2006,
Ch. 10). As briefly discussed in §2.2, hypothesis testing may be less sensitive to mis-
measurement, or may even remain unchanged in some situations. Under linear reg-
ression models, Cheng and Tsai (2004) investigated the invariance property of score
tests for assessing heteroscedasticity, first-order autoregressive disturbance, and the
need for a Box—Cox power transformation. Under certain constraints, they showed
that the score tests for measurement error models are identical to the corresponding
well-established tests derived from standard regression models.
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Kim and Goldberg (2001) studied the effects of outcome misclassification and
measurement error on the type I error rate and the power of equivalence trials.
Lagakos (1988) and Begg and Lagakos (1992, 1993) studied the consequences of
measurement error for different test procedures. Brunner and Austin (2009) focused
on how the Type I error rate may be inflated for multiple regression with error-prone
covariates.

Under generalized linear models with covariate measurement error, Stefanski and
Carroll (1990a) and Sepanski (1992) investigated score tests, and Stefanski and Car-
roll (1991) discussed deconvolution-based score tests. For generalized linear models
with covariate measurement error, Tosteson and Tsiatis (1988) derived a score test
for association in the presence of nuisance parameters.

Hanfelt and Liang (1997) studied an approximate likelihood test based on the
conditional score method of Stefanski and Carroll (1987). Gimenez, Colosimo and
Bolfarine (2000) and Gimenez, Bolfarine and Colosimo (2000) examined test pro-
cedures based on a corrected score method proposed by Nakamura (1990). Using
the score tests for the variance components in random effects models, Li and Lin
(2003b) proposed procedures for testing the within-cluster correlation and extended
the results to clustered censored discrete failure time data. With logistic measurement
error models, Thoresen and Laake (2007) conducted simulation studies to compare
the performance of the likelihood ratio test, a Wald-type test and the score test. Using
the maximum likelihood approach and the method of moments, Galea and Giménez
(2010) discussed test procedures for linear regression models with an additive error
in covariates.

de Castro, Galea and Bolfarine (2008) proposed test statistics for the case where
the observations follow a bivariate normal distribution and the measurement errors
are normally distributed. With functional measurement error models, Ma et al. (2011)
studied a score-type local test and an orthogonal series-based goodness-of-fit test for
the semiparametric framework where no likelihood function is available.

Commented by Murad and Freedman (2007), analysis of models with interaction
effects in the presence of measurement error was initially investigated by behavioral
researchers, such as Kenny and Judd (1984), Jaccard and Wan (1995) and Joreskog
and Yang (1996), who considered structural equation models with nonlinear effects
such as interaction and quadratic terms. Kenny and Judd (1984) proposed a method
for removing the bias from the interaction effect based on latent variable modelling.
Using the method of moments and the regression calibration approach, Murad and
Freedman (2007) discussed procedures for testing interactions in a linear regression
model when normally distributed explanatory variables are subject to classical mea-
surement error. With both continuous and categorical variables involved in linear
measurement error models, Huang, Wang and Cox (2005) discussed issues concern-
ing the assessment of slope-by-factor interactions.

Prediction

Mismeasurement may or may not have effects on prediction (e.g., Schaalje and
Butts 1993). Lindley (1947) showed that in the presence of measurement error in
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covariate X, the simple regression of response Y on X is still appropriate for pre-
diction of Y from X, provided that the population parameters from which the new
X is drawn are identical to those of the data to which the regression was fitted.
Ganse, Amemiya and Fuller (1983) presented the prediction equation for the sit-
uation where the parameters of the estimation population differ from those of the
prediction population.

Under the linear measurement error model, if the objective is prediction, it is
generally not necessary to adjust for measurement errors (Fuller 1987, §1.6) in many
cases. Buonaccorsi (1995) discussed when correction of measurement error effects is
needed for predication, and proposed a method of estimating the prediction standard
deviation. Carroll, Delaigle and Hall (2009) considered nonparametric prediction
in measurement error models. They showed how to predict in errors-in-variables
regression by combining the information from different sources for the setting where
the errors have different distributions.

In contrast to estimation in the presence of measurement error, which often
requires additional information in order to overcome model nonidentifiability issues,
unidentifiable measurement error models can even be useful if the goal is prediction,
and in some situations additional information is not needed for prediction. Huwang
and Hwang (2002) identified such cases with two nonlinear measurement error mod-
els: exponential and log-linear models. They applied pseudo-likelihood estimation of
variance functions involved with the weighted least squares method and constructed
prediction and confidence intervals for these two models.

Design

In §7.6, we discuss two-phase designs with an exposure variable subject to
misclassification. There has been limited investigation on optimal designs of collect-
ing data for providing the necessary information to conduct valid inferences when
some variables are anticipated to be inevitably error-prone, though some work has
been available (Spiegelman 1994). Tosteson and Ware (1990) considered designing
a logistic regression study using surrogate measurements for the exposure and out-
come variables. Spiegelman and Gary (1991) discussed reasonably inexpensive but
statistically powerful cohort study designs for epidemiologic research when a single
continuous covariate is measured with error. Carroll, Freedman and Pee (1997) inves-
tigated design and analysis aspects for linear measurement error models with miss-
ing surrogate data. Lyles, Lin and Williamson (2004) proposed a study design for
repeated binary outcomes which are subject to misclassification. Under the estimat-
ing functions framework, Spiegelman, Zhao and Kim (2005) proposed several study
designs with correlated measurement errors taken into account. Covariate measure-
ment error has the impact on the calculation of the power and sample sizes. Ignor-
ing covariate measurement error tends to overestimate the power and underestimate
the actual sample size required to achieve the desired power. Using a generalized
score test, Tosteson et al. (2003) discussed the power and sample size calculations
for generalized linear measurement error models. With differential measurement er-
ror considered, White (2003) provided an approximate expression to characterize



9.2 Causal Inference with Measurement Error 407

measurement error effects on the odds ratio arising from a continuous error-prone
exposure and discussed how to design a validity/reliability study in order to address
measurement error effects.

9.2 Causal Inference with Measurement Error

This book focuses on addressing measurement error effects for association studies
where relationships between response variables and covariates are described in the
manner of association rather than causal-effects. This is mainly driven by the abun-
dance of the literature on measurement error models on association studies. Research
on measurement error is quite sparse in the framework of causal inference, although
the interest in this topic has been growing in recent years.

In this section, we outline limited work on causal inference with measurement
error problems. Causal inferences about the effect of an exposure on an outcome
can be seriously biased by errors in the measurement of the exposure, the outcome,
and confounders. For instance, Zidek et al. (1996) illustrated that measurement error
may conspire with multicollinearity among confounders to mislead the investiga-
tor, and a causal variable measured with error may be overlooked. Goetghebeur and
Vansteelandt (2005) reviewed the literature on structural mean models for the anal-
ysis of exposures resulting from partial compliance in randomized clinical trials and
discussed the impact of measurement error on inferences. Regier, Moodie and Platt
(2014) conducted simulation studies to assess the effect of mismeasured continuous
confounders on the estimation of the causal parameter when using marginal struc-
tural models and inverse probability-of-treatment weighting (IPTW). They observed
counterintuitive effects of confounder measurement error on the estimation of the
causal parameter.

Herndn and Cole (2009) described the use of causal diagrams to represent
various types of measurement error, which are classified as independent nondiffer-
ential, dependent nondifferential, independent differential, and dependent differen-
tial errors. Assuming the nondifferential measurement error mechanism, Pierce and
VanderWeele (2012) studied the effects of exposure and outcome measurement error
for Mendelian randomization (Bochud and Rousson 2010), a useful approach for de-
termining whether or not there is a causal relationship between an exposure and a
disease.

With treatment or exposure being subject to misclassification, Lewbel (2007)
provided conditions for identification and estimation of the average effect in
nonparametric and semiparametric regression. Assuming there are no unmea-
sured confounders, Babanezhad, Vansteelandt and Goetghebeur (2010) investigated
asymptotic biases of causal effect estimators that are induced from misclassification
in exposure. They considered various estimators of the average causal effect of
exposure on the outcome, including the IPTW estimators, doubly robust estimators
for the exposure effect in linear marginal structural mean models, and G-estimators.
With classical additive measurement error in covariates, McCaffrey, Lockwood
and Setod;ji (2013) and Shu and Yi (2017a) developed inverse-probability-weighted
estimation approaches for estimation of causal effects from observational studies
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with error-prone covariates. When the outcome is subject to measurement error or
misclassification, Shu and Yi (2017b) examined bias analysis and developed valid
estimation methods for the average treatment effect.

For causal inference with differential measurement error, Imai and Yamamoto
(2010) investigated identification issues of the average treatment effect when a binary
treatment variable is subject to misclassification and offered a sensitivity analysis
to assess the robustness of the results to different magnitudes of misclassification.
In circumstances where model parameters are unidentifiable or not estimable from
the observed data, Diaz and van der Laan (2013) explored a sensitivity analysis for
inferences about causal parameters.

In the context of graph-based causal inference, Pearl (2010) discussed compu-
tational and representational problems related to estimation of causal effects when
confounders are mismeasured or misclassified.

With mediation analysis, several authors, including VanderWeele, Valeri and Og-
burn (2012), Ogburn and VanderWeele (2012), and Blakely, McKenzie and Carter
(2013), studied the impact of mismeasurement and investigated how measurement
error may bias estimates of direct and indirect effects.

9.3 Statistical Software on Measurement Error
and Misclassification Models

This section includes the information on statistical software and implementation
algorithms of measurement error and misclassification models.

R Software

R packages simex and mcsimex, developed by W. Ledere and H. Kiichenhoff,
implement the SIMEX algorithm initiated by Cook and Stefanski (1994) and the
MCSIMEX algorithm proposed by Kiichenhoff, Mwalili and Lesaffre (2006). Jack-
knife and asymptotic variance estimation are implemented. Details were documented
by Lederer and Kiichenhoff (2006) and the packages were posted at R-CRAN at the
link:

https://cran.r-project.org/web/packages/simex/index.html.

simexaft, developed by J. Xiong, W. He and G. Y. Yi, is an R package which
implements the SIMEX method for accelerated failure time models with covariates
subject to additive measurement error. Detailed procedures were documented by He,
Xiong and Yi (2012) and the package was posted at R-CRAN at the link:

https://cran.r-project.org/web/packages/simexaft/index.html.

NPsimex is an R software package for performing nonparametric estimation for
error-contaminated data using the SIMEX method. This package contains a collec-
tion of functions to perform nonparametric deconvolution. The estimator adopts the
SIMEX idea but bypasses the simulation step in the original SIMEX algorithm. The
package was posted at R-CRAN by X.-F. Wang at the link:

https://cran.r-project.org/web/packages/NPsimex/index.html.
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GLSME, developed by K. Bartoszek, is an R package which fits the general linear
model with correlated data and observation error in both dependent and independent
variables. The package was discussed by Hansen and Bartoszek (2012) and posted
at R-CRAN at the link:

https://cran.r-project.org/web/packages/GLSME/index.html.

eivi, developed by M. H. Satman and E. Diyarbakirliogl, is an R package which
implements an algorithm for reducing errors-in-variables bias in simple linear reg-
ression. The function was posted at R-CRAN at the link:

https://cran.r-project.org/web/packages/eive/index.html.

msm, developed by C. Jackson, is an R package which deals with multi-state
Markov and hidden Markov models. It is designed for processes observed at ar-
bitrary times in the continuous-time scale. Both Markov transition rates and the
hidden Markov output process may be modelled in terms of covariates, which may
be constant or piecewise-constant in time (Jackson 2011). This package was posted
at R-CRAN at the link:

https://cran.r-project.org/web/packages/msm/index.html.

decon is an R software package for nonparametric measurement error problems.
This package contains a collection of functions for dealing with nonparametric mea-
surement error problems using deconvolution kernel methods. The details were doc-
umented by Wang and Wang (2011) and discussed by Delaigle (2014) who pointed
out some issues of the package. The package was posted at R-CRAN by X.-F. Wang
and B. Wang at the link:

https://cran.r-project.org/web/packages/decon/index.html.

deamer, developed by J. Stirnemann, A. Samson and F. Comte (with contribution
from Claire Lacou), provides deconvolution algorithms for nonparametric estimation
of the density of an error-prone variable with an additive error. Estimation may be
performed for one of the situations with (1) a known density of the error, (2) an aux-
iliary sample of pure noise, and (3) an auxiliary sample of replicate measurements.
Estimation is performed using adaptive model selection and penalized contrasts. The
package was posted at R-CRAN at the link:

https://cran.r-project.org/web/packages/deamer/index.html.

Pérez et al. (2012) developed an R function, called Intake_epis_food, to imple-
ment a bivariate nonlinear measurement error model in order to estimate usual and
energy intake for episodically consumed foods. They considered a Bayesian anal-
ysis using WinBUGS to estimate the distribution of usual intake for episodically
consumed foods and energy.

Muff et al. (2013) discussed a Bayesian approach to account for measurement
error in covariates. They extended the integrated nested Laplace approximation app-
roach to formulating generalized linear mixed models with Gaussian measurement
error models. An R code of the implementation was provided by Muff et al. (2013).
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Other implementation R packages on error-prone data may be found at R-CRAN

at the following links:
https://cran.r-project.org/web/packages/svapls/index.html
https://cran.r-project.org/web/packages/detect/index.html
https://cran.r-project.org/web/packages/obs.agree/index.html
https://cran.r-project.org/web/packages/hsmm/index.html
https://cran.r-project.org/web/packages/obsSens/index.html
https://cran.r-project.org/web/packages/CVcalibration/index.html.

STATA Software

A general purpose STATA software package for the implementation of the regres-
sion calibration and the SIMEX methods was developed by R. J. Carroll, J. Hardin,
and H. Schmiediche. The package, including STATA commands gvf, rcal, simex,
and simexplot, deals with generalized linear models with one or more covariates
which are measured with error. The use of the software and related measurement er-
ror issues were documented by Hardin, Schmiediche and Carroll (2003a,b). Details
are available at the link:

http://www.stata.com/merror/.

Rabe-Hesketh, Skrondal and Pickles (2003) described a command, cme, that calls
gllamm for estimation associated with generalized linear measurement error mod-
els. A single covariate is subject to measurement error and a classical measurement
model is assumed.

Other Information

Other than the foregoing packages, other software packages and implementation
procedures on measurement error models were developed by different people and
research groups for various settings. For example, S. Mwalili prepared a program
for fitting a Bayesian ordinal logistic regression model to correct for inter-observer
measurement error in a geographical oral health study, which is available at the link:

https://ibiostat.be/online-resources/online-resources/measurement.

D. Spiegelman and her research group, and R. Carroll and his research group
posted software information, respectively, at

http://www.hsph.harvard.edu/faculty/donna-spiegelman/software

http://www.stat.tamu.edu/~carroll/matlab_programs/software.php.

Other software packages concerning measurement error models include ODR-
PACK, a software package for weighted orthogonal distance regression. ODRPACK
is to find the parameters that minimize the sum of the squared weighted orthogonal
distances from a set of observations to the curve or surface determined by the param-
eters; this package may be used to handle measurement error models (Boggs et al.
1992).



Appendix

This appendix includes some basic mathematics and statistics material that is used in
the book, along with some computational techniques or algorithms which are often
used in the standard statistical analysis when measurement error is not present. The
material in this appendix may have dispersed in various reference books. The purpose
of including this appendix is to provide readers a quick access to the material used
throughout the book.

A.1 Matrix Algebra: Some Notation and Facts
Notation Related to Vectors and Matrices

In the book, we use the following format to present an operation of a vector or

a matrix. Let § = (01,...,0,)" be a p x 1 vector where p is a positive integer.
Suppose k() is a differentiable function of 8 and U(0) = (U;(0),...,U,;(0))" isa
q x 1 vector, where U (0) is a differentiable function of 6 for j =1,...,¢q, and g is

a positive integer greater than 1. Then the derivatives of k(0) and U(0) with respect
to 0 are defined to be

ok(6) (8k(9) ak(e))T

a0 a0, 06,
and
U1 (6) U1 (6)
wiley  a0le)
ue) | T - e,
L a
dU4(6) 3U4(9)
30, 30,
respectively.
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If k(0) is also a function of a random variable (or vector), and U(6) is also a vec-
tor of a random variable (or vector), then the expectation of dk(8)/0d6 is defined as

kO (. (0k(O) KO)\\"
E( 9 )‘(E( 9, )E( 9, )) ’

and the expectation of dU(0) /90" is defined as a ¢ x p matrix whose (j, k) element is

(200
00k
forj=1,...,qandk =1,...,p.
If A(v) = (A1(v),...,A4(v))"is a g x 1 vector where A4 (v) is an integrable

function for j = 1,...,q, then notation | A(v)dv represents the g x 1 vector whose
Jjth componentis [ A;j(v)dvfor j =1,...,q.

Inverse Block Matrix
Suppose that A4 is an invertible block matrix
A1 Ar2
A= ,
(AZI Az

where A1 is a p X p matrix, A,; is a ¢ X ¢ matrix, A1, is a p X ¢ matrix, and A,
is a ¢ X p matrix. Assume that the following inverse matrices exist, then the inverse

matrix of A is given by
P A1l 12
- A21 A22 ’

where
A = (Ay — Ap At An)
A21 = _AEZIAZI(AU — A12A2_21A21)_1;
A2 = —A7] A1 (A2 — A2 AT A1)

A% = (Agp — Ay AT} A1) 7L

In particular, if

A Az —1 (A_l —A A A5y
A= , then A7 = 11 i
(OqXp A22) Ogxp Azz1
if
A= (A“ Opxq) , then 47! =

A7l Opxq)
Az Az — Ay An Ayl Az )
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Positive Definite and Nonnegative Definite Matrices

Let A be an m x m symmetric matrix. If
x"Ax > 0 for any m x 1 nonzero vector x,
then A is called positive definite. If
x"Ax > 0forany m x 1 vector x,

then A is called nonnegative definite.

Properties:

(a) Suppose A an n x m matrix, then AA™ and A" A are nonnegative definite.

(b) Suppose m x m matrix A is positive definite and m x m matrix B is nonnegative
definite. Then A + B is positive definite and A~! — (A4 + B)~! is nonnegative
definite.

(c) If matrix A is positive definite, then A is nonsingular and A~! is positive definite.

(d) If m x m matrices A and B both are positive definite. Then A — B is positive
definite if and only if B~! — A~! is positive definite.

A.2 Definitions and Facts

This appendix records some basic definitions, notation, and the properties which are
frequently used in the book.

Convergence Rate of Real-Valued Functions

When dealing with two real-valued functions, we may be interested in compar-
ing their growth rate as the argument approaches infinity or a given constant. It is
convenient to use big O(-) or small o(-) to express their relationship. Suppose g(v)
and k(v) are two real-valued functions defined on a set of real numbers. We write

g(w) = 0(k()) as v > (A.1)
if and only if there exists real numbers v and M > 0 such that
lg(v)| < M|k(v)| for all v with v > 7. (A.2)

We write
g() = 0(k(v)) as v — vy

if and only if there exist positive numbers w and M such that

lg(v)| < M|k(v)| forall v with |[v — vo| < w,
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where vy is a value of interest. In many cases where the limit of the argument is clear
by the context, we use a simpler way

g() = O(k(v))

to express (A.1) or (A.2).
If k(v) is nonzero or at least becomes nonzero beyond a certain point or in a
neighborhood of a point v,, then we write

g() = o(k(v))

if
gv)
A k) O
or
glv) 0

vovo k()

Convergence Rate in Probability Sense

The order in probability notation is useful in establishing asymptotic results. Let
{X, :n =1,2,...} be a sequence of random variables and {a, : n = 1,2,...} be
a sequence of constants. If X}, /a, converges to zero in probability as n — oo, we
write

Xp =o0p(an) or Xy/a, =o0p(1).

Precisely, X,/a, = 0,(1) is defined as
nll)rgo P(|X,/a,| =€) =0 forevery € > 0.
If for any € > 0, there exists a finite positive number M such that for any n,
P(|Xn/an| > M) <,
i.e., the X}, /a, are stochastically bounded, then we write
Xn = Oplan).
Conditional Moments and Moment Generating Function

Suppose U and V are random variables. Let k (V') be a function of V and g (U, V')
be a function of U and V. Then

E[E{g(U.V)|IV}] = E{g(U.V)}:
E{k(V)g(U MV} =k(V)E{gU. V)|V}:
var(U) = E{var(U|V)} + var{ E(U|V)}.
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Suppose V' follows a multivariate normal distribution with mean p and covari-
ance matrix Y. Then the moment generating function of V is

M) =exp(v'u +v"Xv/2),

where v is a vector of any real numbers.

A.3 Newton—Raphson and Fisher—Scoring Algorithms

Suppose random variable Y has a probability density or mass function f(y;#)
and y(n) = {y1,..., yn} are the measurements of a random sample chosen from

f(y;0). Let
L(0) =) log f(yi:6) and £(0) = log L(9)

i=1
be the likelihood and log-likelihood functions of 6 for the given sample measure-
ments y(n), respectively.

Suppose that the likelihood is differentiable, unimodal and bounded above, and
the maximum likelihood estimate, denoted by /9\, of 6 is unique. Then the maximum
likelihood estimate & can be found by solving the likelihood equations

aL(9)
8 = 0 (A.3)
for 6.

For the distributions whose score functions are linear or quadratic in 6, the
solutions to (A.3) are readily found with analytic forms. In general situations, find-
ing a solution of (A.3) has to call for a numerical approximation approach which
often requires iterations. The Newton—Raphson algorithm is a useful procedure for
this purpose.

The idea is to first approximate the log-likelihood £(6) with a quadratic func-
tion using the Taylor series expansion and then iteratively update an estimate of 6
until convergence. Specifically, let #() denote an initial guess of 6 and %) be the
updated estimate of 6 at the kth iteration. At iteration (k + 1), for the given sample
measurements y (1), applying the Taylor series expansion to £(6) about 0% gives

9L(0) ) (k)
— 0—6
90" |g—gwo ( )

1 320(6)
Lo _ ptoyr
3l ) (aeaeT

When 6 is close to #%) in the sense that the norm of (6 — %) is small, the rem-
ainder is negligible. In this case, we approximate £(6) using the quadratic function

aL(0) )
967 ) (6=6")

awzzw“h+(

) (0 — 6®)) + remainder.
9=0(k)

ew)zew“5+(

9=0k)
92L(6)
00007

1
2(6 — gl
+2(9 0% (

) 0 — 0%, (A4)
=0
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As aresult, finding the maximizer of £(0) becomes finding the stationary point of the
quadratic approximation. Calculating the derivative of the right-hand side of (A.4)
with respective to 8 and setting it to be zero gives

(86(9) ) N (826(6)
9=9(k) 8939T
or equivalently,

a0
o= 4 (_ P40) )_1 (M
=00 a0

, A.S
00007 9=k ) (A-3)
assuming the existence of the inverse matrix.

Motivated by (A.5), we apply the following iterative equation to find the estimate

of @ for iteration (k 4 1):
-1
14
) )
9=0&k) a6 9=0(%k)
where kK =1,2,....

gl — k) (_ 9%4(0)
060007

If the log-likelihood £(0) is a quadratic function of 6, then convergence is
reached after one iteration. If the log-likelihood £(€) is concave and unimodal, then
with a good starting value 0O {Q(k) :k =0,1,2,...} converge to the maximum
likelihood estimate 8 of @ as k — oo (Tanner 1996).

The Fisher—scoring method is an alternative algorithm which replaces the obs-
erved information matrix in (A.6) with the expected information matrix evaluated at

6®)_ That is, the iterative equation is given by
-1
) (8@(9) )
=6k 96 g=guw

gE+D _ g ( E [_82{22’21 log f(Yl-;e)}}
00007

fork = 0,1,2,..., where Y1,...,Y, are independent and identically distributed

random variables having the same distribution as Y.

The Newton—Raphson and Fisher—scoring algorithms are not just restricted to
finding the maximum likelihood estimates. They are also applicable to general situa-
tions of solving estimating equations. For example, the Newton—Raphson algorithm
may be modified with 3£(6)/30 and 92£(6)/3006™ in (A.6), respectively, replaced
by estimating functions and their partial derivatives which are applied to the sam-
ple measurements. Specifically, let U(6;y) be an estimating function of 6 and
y(n) = {y1,..., yn} be the measurements of a random sample chosen from f(y; ).
To solve

) 0 —0®) =o,
9=0(k)

Y U@B:y) =0 (A7)

i=1
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-1
9:9(1«)}

to obtain a sequence of estimates {§%) : k = 0,1,2,...} until convergence. The

limit is taken as the estimate, denoted by /9\, of 6 obtained from solving the estimating
equation (A.7).

for 6, we apply the iterative equation

= U(6; yi)
pk+1) — glk) _ > )
Z 89T

> U(e““):yf)}

i=1 i=1

A.4 The Bootstrap and Jackknife Methods

The bootstrap algorithm was introduced by Efron (1979) as a computer-based
method for estimating the standard error of an estimator for a model parameter. This
algorithm is easy to implement and applicable to broad settings no matter how math-
ematically complicated the estimator is.

Suppose y(n) = {y1, ..., yn} are the observed measurements of a random sam-
ple chosen from an unknown probability distribution F and 6 is a parameter related
to F which is to be estimated. Suppose H = /9\(y (n)) is an estimate of 6 obtained
from applying a method to data y(n). To assess the accuracy of 5 the bootstrap
algorithm may be used to estimate the standard error of 9 following the three steps
(Efron and Tibshirani 1993):

Step 1: Choose a positive integer B. For b = 1,..., B, independently generate a

bootstrap sample y®) (n) = { yfb), e, y,gb)} whose elements are drawn with rep-
lacement from the population of n objects y(n) = {y1,..., Vun}-

Step 2: For each bootstrap sample y® (n), calculate the corresponding estimate
0@ = 0(y®m))offforb=1,...,B.

Step 3: Calculate the sample standard deviation of the B replications:

B 1/2
1 —~ ~
Ry = | 5—— » 10 -9 | A8
@ [ e } (A8)
b=1
which is an estimate of the standard error of 8, where §©) = B~! Zf=1 ®) . Some-
times, $€; is called a nonparametric bootstrap estimate.
Estimates of the standard error of 6 depend on the choice of bootstrap samples
as well as the number of bootstrap samples, B. By the factor 1/(B — 1) in (A.8), one
might expect that a larger B may yield a better estimate of the standard error of 6.
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Since there are only (Z"n_l) different bootstrap samples for given n distinct
measurements in y(n) (Efron and Tibshirani 1993, p. 49), it is tempting to take
B = (2"”_1) and let y® (n) exhaust those different bootstrap samples by setting
b = 1,..., B. This idea works if n is quite small, such as n < 5. Even for small
size n, this approach requires intensive computation. For example, if n = 10, this
approach requires the evaluation of B = 92,378 estimates 9® in Step 2 in order to
obtain se;; if n = 20, there are 68,923,264,410 different bootstrap samples. When
n = 50, the number of distinct bootstrap samples is of the scale 5.045 x 10?2, which
is practically impossible to be exhausted in order to obtain an accurate estimate of
the standard error of 8.

Numerical experiences, however, suggest that even a small number of bootstrap
replications is usually sufficient for producing a good estimate of the standard error
of /é Often, B = 50 is taken; it is seldom to take B greater than 200 (although
much larger values of B are needed for constructing bootstrap confidence intervals)
(Efron and Tibshirani 1993, p. 52). More refined versions of the bootstrap algorithm
for different settings were discussed by Efron and Tibshirani (1993).

In contrast, the jackknife is a technique for estimating the bias and standard error
of an estimate which shares similarities to the bootstrap algorithm. Instead of forming
B bootstrap samples based on random draws, we form a jackknife sample by leaving
out one observation at a time. Fori = 1,...,n, let

Yiym) = V1. Yio1:Vit1s- -2 Vn}

be the ith jackknife sample which is a subset of y(n) with the ith observation
removed.

Apply the estimation method to the 7 th jackknife sample and obtain the ith jack-
knife replication of 0:

i) = 0y ().
Let /9\(.) =n"! er'l=1 /9\0). Then the jackknife estimate of bias is defined as
bias, = (n — 1)@y — 6).
and the jackknife estimate of standard error is defined as

1/2

R n—1<s ~ ~
se, = Z(O(i) —0¢))?

n :
i=1

The jackknife was proposed by Quenouille (1949) for estimation of bias and by
Tukey (1958) for estimating standard errors. The jackknife is closely related to the
bootstrap; Efron and Tibshirani (1993, Ch. 11) illustrated that the jackknife can be
viewed as an approximation to the bootstrap. The jackknife is easier to implement
than the bootstrap for the standard error estimation if # is less than B which is set as
a number between 100 and 200 for the bootstrap method, but it may be less efficient
than the bootstrap otherwise. When the estimator 9 is not “smooth”, the jackknife
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may fail to provide reasonable results. Efron and Tibshirani (1993, Ch. 11) discussed
these issues and described a remedy which forms a jackknife sample by leaving out
more than one observations at a time.

A.5 Monte Carlo Method and MCEM Algorithm

We outline the Monte Carlo method and the Monte Carlo EM (MCEM) algorithm.
The description here is based on Tanner (1996, §3.3, §4.4, §4.5) with modifications.
The Monte Carlo method is useful for approximating integrals or expectations.
Suppose U is a continuous random variable (or vector) and 4 (u) is its probability
density function. For a given function g(-), we want to evaluate the expectation

Elg(U)} = / g ()h(u)du,

where the expectation exists and has no analytic form.

The Monte Carlo method may be applied to approximate the integral. Choose a
positive integer B and independently generate a sequence of values, {u, ... u(B)},
from the distribution /(). Then we approximate E{g(U)} using

E{g(U)} = Zg(u“’))

The Monte Carlo method has applied widely in practice. For instance, it can be
used in combination with the EM algorithm (discussed in §2.5.1), and the resulting
algorithm is called the Monte Carlo EM algorithm. Specifically, at iteration k of the
E-step, the expectations in function Q(#;6®)), determined by (2.14), are approxi-
mated by applying the Monte Carlo method. For a specified positive integer B, we
independently generate a sequence of values, x(l) . xl.(B), from the distribution
Sf(xilyi, x}? ,zi:0%) for each giveni = 1,...,n. Let

n

B
~ 1 *
00:6%) =3 =13 log f(i.x(" 1|22 6)
b=1

i=1

At the M-step, @(9; 6%y is maximized with respect to 6 to obtain § *+1.

It is important to specify a large enough number B and monitor convergence of
the updated values {#®) : k = 0,1,2,...}. One may use different values of B for
different iterations. In early iterations, B can be taken as small numbers and then
be increased to larger numbers as the iteration number gets larger. Convergence of
{6®) : k =0,1,...} may be monitored by plotting 8% versus iteration number k.

Let 0 denote the convergence value of 8% as k approaches infinity. The precision
of & can be obtained using the formula of Louis (1982) by calculating the Hessian
matrix of £,(0) evaluated at 0 (Tanner 1996, §4.4). Specifically, the Hessian matrix
of £,(0) is given by
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a ¢ (9) Z 3% log f(Yi, Xi, X}|Z;: 6)
30067 Xil(¥i, X[".Zi) 30007

dlog f(Y;, Xi, X |Z;:0)
—Zvafxll(Y X¥.Z;)

20 % , (A9

i=1

where the expectation and the variance are evaluated with respect to the model
f(xilyi, xl.*, zi; 0). In most situations, it is difficult to analytically compute the int-
egrals on the right-hand side of (A.9). Monte Carlo methods may then be used to
approximate those integrals, thus leading to an approximation of the Hessian matrix
of £,(6).

For a given positive integer B and i = 1,...,n, independently generate a
sequence of values, {x(b) b =1,..., B}, from the distribution f(x;|y;,x}, zi;g).
Then the Hessian matrix (A.9) is approximated by

i 1 28210gf()’lv ;. x]ziz0)
3989T

i=1

d B (d1og f(yi,x® x¥|2::0)) (9log (i, x® xFlzii0)]
S e e [ }

| B
i=1
1 1 B dlog f(y; x® x*lZ“@) B dlog f(yi,x x*lz‘@) '
1> LR 1> 1> i 1>
2115 2 T 2 T :
b=1 b=1

i=1

S| =
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